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FOREWORD

For the novice tennis player, keeping the ball in the court is hard enough
(especially from the backhand side). Only after months of practice, once
the basic rallying skills have been mastered, does the sport and its addic-
tive nature begin to reveal itself. You add to your repertoire more advanced
tools—a slice backhand, a kick serve, a drop volley. You strategize at a higher
level of abstraction—serve and volley, chip and charge, hug the baseline. You
develop intuition for which tools and strategies will be most effective against
different types of opponents—there’s no silver-bullet approach that works
well against everyone.

Programming is like tennis. For the beginning coder, coaxing the com-
puter to understand what you want it to do—to execute your solution to a
problem—is hard enough. Graduate from this white-belt level and the true
problem-solving fun begins: How do you come up with the solution in the
first place? While there’s no silver-bullet approach that solves every com-
putational problem efficiently, there are enduringly useful, advanced tools
and strategies: hash tables, search trees, recursion, memoization, dynamic
programming, graph search, and more. And to the trained eye, many prob-
lems and algorithms offer dead giveaways as to which tools are the right
ones. Does your algorithm perform repeated lookups or minimum com-
putations? Speed it up with a hash table or min-heap, respectively! Can you
build a solution to your problem from solutions to smaller subproblems?
Use recursion! Do the subproblems overlap? Speed up your algorithm with
memoization!

Be it tennis or programming, you can’t up your game to the next level
without two things: practice and a good coach. To this end, I give you



Algorithmic Thinking: Learn Algorithms to Level up Your Coding Skills and
Daniel Zingaro. This book teaches all the concepts that I’ve mentioned, but
it is no mere laundry list. With Zingaro as a tutor by your side, you’ll learn,
through practice on challenging competition problems, a repeatable process
for figuring out and deftly applying the right algorithmic tools for the job.
And you’ll learn it all from a book that exudes clarity, humor, and just the
right dose of Canadian pride. Happy problem-solving!

Tim Roughgarden
New York, NY

May 2020
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INTRODUCT ION

I’m assuming that you’ve learned to use
a programming language such as C, C++,

Java, or Python . . . and I’m hoping that
you’re hooked. It’s hard to explain to nonpro-

grammers why solving problems through program-
ming is so rewarding and fun.

I’m also hoping that you’re ready to take your programming skill to the
next level. I have the privilege of helping you do that.

What We’ll Do
I could start by teaching you some fancy new techniques, telling you why
they’re useful, and comparing them to other fancy techniques, but I won’t.
That material would lay inert, holding on for a little, waiting for the opportu-
nity to spring into action—if in fact some opportunity ever did present itself.

Instead, what I do throughout this book is pose problems: hard prob-
lems. These are problems that I hope you cannot solve, problems that I
hope stymie your current approaches. You’re a programmer. You want
to solve problems. Now it’s time for learning those fancy techniques. This
book is all about posing hard problems and then solving them by bridging
between what you know and what you need.



You won’t see traditional textbook problems here. You won’t find an op-
timal way to multiply a chain of matrices or compute Fibonacci numbers. I
promise: you won’t solve the Towers of Hanoi puzzle. There are many excel-
lent textbooks out there that do these things, but I suspect that many people
are not motivated by those kinds of puzzles.

My approach is to use new problems that you haven’t seen before. Each
year, thousands of people participate in programming competitions, and
these competitions require new problems to measure what participants can
come up with on their own rather than who can google the fastest. These
problems are fascinating, riffing on the classics while adding twists and con-
text to challenge people to find new solutions. There is a seemingly endless
stream of programming and computing knowledge encompassed by these
problems. We can learn as much as we like by choosing the right problems.

Let’s start with some basics. A data structure is a way to organize data so
that desirable operations are fast. An algorithm is a sequence of steps that
solves a problem. Sometimes we can make fast algorithms without using
sophisticated data structures; other times, the right data structure can
offer a significant speed boost. My goal is not to turn you into a competi-
tive programmer, though I’d take that as a happy side benefit. Rather, my
goal is to teach you data structures and algorithms using problems from the
competitive programming world—and to have fun while doing so. You can
reach me at daniel.zingaro@gmail.com. Email me if you have learned. Email
me if you have laughed.

New to the Second Edition
I’ve thoroughly enjoyed the opportunity to discuss the first edition of this
book with readers. Their feedback has led to many of the changes and im-
provements in this new edition.

I’ve made small improvements and additions throughout, but here are
the major highlights of what’s new:

Chapter 1 I removed the Compound Words problem, as it can be
solved in ways that did not require a hash table. Instead, now we have
a problem about passwords on a social networking website. I’ve also
streamlined the code in this chapter to help those without a C/C++ pro-
gramming background, and I added more information about the effi-
ciency of hash tables.

Chapter 3 I added more guidance for how to discover the needed sub-
problems when solving a problem with dynamic programming.

Chapter 4 This chapter is completely new, and it focuses on more ad-
vanced uses of memoization and dynamic programming. This was a fre-
quent request of readers, and I’m excited to have been able to add this.
You’ll learn how to look at dynamic programming problems in reverse
(and why you’d want to), how to work with more dimensions in your
subproblem arrays, and how to further optimize your dynamic program-
ming code when it’s just not fast enough.
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Chapter 5, previously Chapter 4 I added guidance on how to choose
between using dynamic programming and using a graph.

Chapter 8, previously Chapter 7 I added further discussion of why we
implement heaps as arrays rather than as explicit trees.

Chapter 10 This chapter is completely new and teaches you how to use
randomization, a topic not often covered in books. Randomization is a
technique that can help you design algorithms that are simple and fast.
You’ll use two types of randomization algorithms to solve problems that
would otherwise be very difficult. You’ll also learn what to look for in
a problem when trying to decide whether to use randomization in the
first place.

Who This Book Is For
This book is for any programmer who wants to learn how to solve tough
problems. You’ll learn many data structures and algorithms, their benefits,
the types of problems they can help you solve, and how to implement them.
You’ll be a better programmer after this!

Are you taking a course on data structures and algorithms and getting
your butt kicked by a wall of theorems and proofs? It doesn’t have to be that
way. This book can serve as a companion text for you, helping you get to the
core of what’s going on so that you can write code and solve problems.

Are you looking for an edge in your next coding interview? You need
to be able to compare and contrast different approaches for solving a prob-
lem, choose the best data structure or algorithm, and explain and imple-
ment your solution. You’ll practice all of these skills over and over as you
read this book. Never fear hash tables, recursion, dynamic programming,
trees, graphs, or heaps again!

Are you an independent learner working toward expertise in data struc-
tures and algorithms? Piecing together stuff from all over the internet can
be tiring and lead to knowledge gaps if the right resources are not found.
This book will provide you the solid foundation and consistent presentation
that you need to become an expert.

As explored further in the next section, all code in this book is written
in the C programming language. However, this isn’t a book on learning C.
If your prior programming experience is in C or C++, then jump right in. If
instead you’ve programmed in a language such as Java or Python, I suspect
that you’ll pick up most of what you need by reading, but you may wish to
review some C concepts now or on first encounter. In particular, I’ll use
pointers and dynamic memory allocation, so, no matter what your prior
experience, you might like to brush up on those topics. The best C book I
can recommend is C Programming: A Modern Approach, 2nd edition, by K. N.
King. Even if you’re okay with C, read it anyway. It’s that good and a won-
derful companion any time you get tripped up by C stuff.

Introduction xxv



Our Programming Language
I’ve chosen to use C as the programming language for this book, rather than
some higher-level language such as C++, Java, or Python. I’ll discuss why and
also justify a couple of other C-related decisions I’ve made.

Why Use C?
The primary reason for using C is that I want to teach you data structures
and algorithms from the ground up. When we want a hash table, we’ll build
it ourselves. There will be no reliance on dictionaries or hashmaps or simi-
lar data structures of other languages. When we don’t know the maximum
length of a string, we’ll build an extensible array: we won’t let the language
handle memory allocation for us. I want you to know exactly what’s going
on, with no tricks up my sleeve. Using C helps me toward this goal.

Solving programming problems in C, as we do in this book, is a use-
ful primer should you decide to continue with C++. If you become serious
about competitive programming, then you’ll be happy to know that C++ is
the most popular language used by competitive programmers, thanks to its
rich standard library and ability to generate code that favors speed.

Static Keyword
Regular local variables are stored on what’s called the call stack. On each call
of a function, some of the call stack memory is used to store local variables.
Then, when the function returns, that memory is freed up for other local
variables to use later. The call stack is small, though, and isn’t appropriate
for some of the massive arrays that we’ll meet in this book. Enter the static

keyword. When used on a local variable, it changes the storage duration
from automatic to static, which means that the variable maintains its value
between function calls. As a side effect, these variables are not stored in the
same memory area along with regular local variables, since then their values
would be lost when a function is terminated. Instead, they’re stored in their
own separate segment of memory, where they don’t have to compete with
whatever else might be on the call stack.

One thing to watch out for with this static keyword is that such local
variables are only initialized once! For a quick example, see Listing 1.

int f(void) {

¶ static int x = 5;

printf("%d\n", x);

x++;

}

int main(void) {

f();

f();

f();
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return 0;

}

Listing 1: A local variable with a static keyword

I’ve used static on local variable x ¶. Without that, you’d expect 5 to
be printed three times. However, since static is there, you should see this
output instead:

5

6

7

Include Files
To save space, I don’t include the #include lines that should be added to the
start of C programs. You’ll be safe if you include the following:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

Freeing Memory
Unlike Java or Python, C requires the programmer to free all memory that is
manually allocated. The pattern is to allocate memory using malloc, use that
memory, and then free the memory using free.

For two reasons, though, I do not free memory here. First, freeing mem-
ory adds clutter, distracting from the primary teaching purpose of the code.
Second, these programs are not long-lived: your program will run on a few
test cases, and that’s it. The operating system reclaims all of the unfreed
memory on program termination, so there’s nothing to worry about even
if you run a program many times. Of course, not freeing memory is quite ir-
responsible in practice: no one is happy with a program that consumes more
and more memory as it runs. If you’d like to practice freeing memory, you
can add calls of free to the programs presented in this book.

Topic Selection
The fields of data structures and algorithms are too large to be corralled by
one book (or by this one author!). I used three criteria to help me decide
what topics made the cut.

First, I chose topics of broad applicability: each can be used to solve not
only the corresponding problems in the book but many other problems as
well. In each chapter, I focus on at least two problems. I generally use the
first problem to introduce the data structure or algorithm and one of its pro-
totypical uses. The other problems are meant to give a sense of what else
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the data structure or algorithm can do. For example, in Chapter 6, we study
Dijkstra’s algorithm. If you google it, you’ll see that Dijkstra’s algorithm is
used to find shortest paths. Indeed, in the first problem of the chapter, we
use it for that very purpose. However, in the second problem, we go further,
tweaking Dijkstra’s algorithm to find not only the shortest path but also the
number of shortest paths. I hope that, as you progress through each chap-
ter, you learn more and more about the affordances, constraints, and sub-
tleties of each technique.

Second, I chose topics whose implementation did not overwhelm the
surrounding discussion. I wanted the solution to any problem to top out
at around 150 lines. That includes reading the input, solving the problem
itself, and producing the output. A data structure or algorithm whose imple-
mentation took 200 or 300 lines was for practical reasons not suitable.

Third, I chose topics that lend themselves to correctness arguments that
I hope are convincing and intuitive. Teaching you specific data structures
and algorithms is of course one of my goals, because I am imagining that
you’re here to learn powerful problem-solving approaches and how to im-
plement them. Meanwhile, I’m also hoping that you’re interested in why
what you’re learning works, so I have more quietly pursued another goal:
convincing you that the data structure or algorithm is correct. There won’t
be formal proofs or anything like that. Nonetheless, if I have succeeded in
my secret goal, then you’ll learn about correctness right along with the data
structure or algorithm. Don’t be content in merely tracing code and mar-
veling that it magically works every time. There is no magic, and the insights
that make code tick are within your grasp, just as is the code itself.

If you’d like to go beyond the chapters of this book, I recommend start-
ing with Appendix B. There, I’ve included some additional material related
to Chapters 1, 3, 5, 8, 9, and 10.

Many readers will benefit by practicing or reading additional material as
they progress through the book. The Notes sections at the end of the chap-
ters point to additional resources, some of which contain further examples
and sample problems. There are also online resources that offer a curated,
categorized list of problems and their solution strategies. TheMethods to
Solve page by Steven Halim and Felix Halim is the most comprehensive that
I’ve found; see https://cpbook.net/methodstosolve.

Programming Judges
Each problem that I have chosen is available on a programming-judge web-
site. Many such websites exist, each of which generally contains hundreds
of problems. I’ve tried to keep the number of judges that we use small but
large enough to give me the flexibility to choose the most appropriate prob-
lems. For each judge website, you’ll need a username and password; it’s
worth setting up your accounts now so that you don’t have to stop to do so
while working through the book. Here are the judges that we’ll use:
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Codeforces https://codeforces.com

DMOJ https://dmoj.ca

POJ http://poj.org

SPOJ http://spoj.com

UVa https://uva.onlinejudge.org

Each problem description begins by indicating the judge website where
the problem can be found and the particular problem code that you should
use to access it.

While some problems on the judge websites are written by individual
contributors, others are originally from well-known competitions. Here are
some of the competitions from which problems in this book originate:

International Olympiad in Informatics (IOI) This is a prestigious an-
nual competition for high school students. Each participating country
sends up to four participants, but each participant competes individu-
ally. The competition runs over two days, with multiple programming
tasks on each day.

Canadian Computing Competition (CCC) and Canadian Computing
Olympiad (CCO) These annual competitions for high school students
are organized by the University of Waterloo. CCC (aka Stage 1) takes
place at individual schools, with the top performers moving on to take
the CCO (aka Stage 2) at the University of Waterloo. The top perform-
ers in Stage 2 represent Canada at the IOI. When I was a high school
student, I participated in the CCC, but I never made it to the CCO—I
wasn’t even close.

Croatian Open Competition in Informatics (COCI) This online com-
petition is offered many times per year. Performance is used to deter-
mine the Croatian IOI team.

National Olympiad in Informatics in Province (NOIP) This is an an-
nual competition for high school students in China, similar in function
to the CCC. The top performers are invited to the National Olympiad
in Informatics (NOI), China. The top NOI contestants are eligible for
further training and possible selection to China’s IOI team.

South African Programming Olympiad (SAPO) This competition is
offered in three rounds per year. The rounds increase in difficulty, from
Round 1 to Round 2 to the Final Round. Performance is used to select
students to represent South Africa at the IOI.

USA Computing Olympiad (USACO) This online competition is
offered several times per year, the most challenging of which is the US
Open competition. In each competition, you’ll encounter four levels of
problems: bronze (easiest), silver, gold, and platinum (hardest). Perfor-
mance is used to determine the American IOI team.

East Central North America (ECNA) Regional Programming Contest
In this annual competition for university students, the top performers are
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invited to the annual International Collegiate Programming Contest
(ICPC) world finals. Unlike the other competitions here, where students
compete individually, ECNA and the world finals competitions are team
competitions.

DWITE This was an online programming contest designed to help
students practice for annual competitions. Unfortunately, DWITE is no
longer running, but the old problems—and they are good ones!—are still
available.

See Appendix C for the source of each problem in this book.
When you submit code for a problem, the judge compiles your program

and runs it on test cases. If your program passes all test cases, and does so
within the allotted time, then your code is accepted as correct; judges show
AC for accepted solutions. If your program fails one or more test cases, then
your program is not accepted; judges show WA (for “Wrong Answer”) in these
cases. A final popular outcome is for when your program is too slow, in
which case judges show TLE (“Time-Limit Exceeded”). Note that TLE does not
mean that your code is otherwise correct: if your code times out, the judges
do not run any further test cases, so there may be some WA bugs hidden be-
hind the TLE.

At the time of publication, my solution for each problem passes all test
cases within the allotted time with the specified judge. Within those base re-
quirements, my aim has been to make the code readable and to choose clar-
ity over speed. This is a book about teaching data structures and algorithms,
not squeezing further performance out of a program that otherwise gets the
job done.

Anatomy of a Problem Description
Before solving a problem, we must be precise about what we are being asked
to do. This precision is required not only in understanding the task itself but
also in the way that we should read input and produce output. For this rea-
son, each problem begins with a problem description of three components:

The Problem Here, I provide the context for the problem and what
we are being asked to do. It’s important to read this material carefully
so that you know exactly what problem we’re solving. Sometimes, mis-
reading or misinterpreting seemingly small words can lead to incorrect
solutions. For example, one of our problems in Chapter 3 asks us to buy
“at least” a certain number of apples: if you instead buy “exactly” that
many apples, your program will fail some of the test cases.

Input The author of the problem provides test cases, all of which must
be passed for a submission to be deemed correct. It’s our responsibility
to read each test case from the input so that we can process it. How do
we know how many test cases there are? What is on each line of each test
case? If there are numbers, what are their ranges? If there are strings,
how long can they be? All of this information is provided here.
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Output It can be very frustrating to have a program that produces the
correct answer but fails test cases because it does not output answers in
the correct format. The output portion of a problem description dic-
tates exactly how we should produce output. For example, it will tell us
how many lines of output to produce for each test case, what to put on
each line, whether blank lines are required between or after test cases,
and so on. In addition, I provide the time limit for the problem here:
if the program does not output the solution for all test cases within the
time limit, then the program does not pass.

I have rewritten the text of each problem from the official description
so that I can maintain a consistent presentation throughout. Despite these
tweaks, my description will convey the same information as the official
description.

For most problems in this book, we’ll read input from standard input
and write output to standard output. (There are only two problems where
standard input and output are not involved; they are in Chapter 7.) This
means we should use C functions such as scanf, getchar, printf, and so on
and not explicitly open and close files.

Starter Problem: Food Lines
Let’s familiarize ourselves with a sample problem description. I’ll provide
some commentary in parentheses along the way, directing your attention to
the important bits. Once we understand the problem, I can think of noth-
ing better to do than solve it. Unlike the other problems in the book, we’ll
be able to do so with programming constructs and ideas that I hope you
already know. If you can solve the problem on your own or work through
my solution with little or no trouble, then I think you’re ready for what’s to
come. If you get seriously stuck, then you may wish to revisit programming
fundamentals and/or solve a few other starter problems before continuing.

This is DMOJ problem lkp18c2p1. (You might like to go now to the DMOJ
website and search for this problem so that you’re ready to submit our code
once we’re done.)

The Problem
There are n lines of people waiting for food. We know the number of people
that are already waiting in each line. Then, each of m new people will arrive,
and they will join a shortest line (a line with the fewest number of people).
Our task is to determine the number of people in each line that each of the
m people joins.

(Spend a little time interpreting the above paragraph. There’s an exam-
ple coming next, so if anything is unclear, try to remedy it with the combina-
tion of the above paragraph and the example below.)

Here’s an example. Suppose that there are three lines of people, with
three people in Line 1, two people in Line 2, and five people in Line 3. Then,
four new people arrive. (Try to work out what happens for this case before
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reading the rest of this paragraph.) The first person joins a line with two
people, Line 2; now Line 2 has three people. The second person joins a line
with three people, Line 1 or Line 2—let’s say Line 1; Line 1 now has four
people. The third person joins a line with three people, Line 2; Line 2 now
has four people. The fourth and final person joins a line with four people,
Line 1 or Line 2—let’s say Line 1; Line 1 now has five people.

Input
The input contains one test case. The first line of input contains two positive
integers, n and m, giving the number of lines of people and number of new
people, respectively. n and m are at most 100. The second line of input con-
tains n positive integers, giving the number of people in each line of people
before the new people arrive. Each of these integers is at most 100.

Here’s the input for the above test case:

3 4

3 2 5

(Note how there is exactly one test case here. Therefore, we should expect to
read exactly two lines of input.)

Output
For each of the m new people, output a line containing the number of peo-
ple in the line that they join.

The correct output for the above test case is:

2

3

3

4

The time limit for solving the test case is three seconds. (Given that we
have to handle at most 100 new people for each test case, three seconds is a
long time. We won’t need any fancy data structures or algorithms.)

Solving the Problem
For problems involving data structures that are difficult to build by hand, I
may start by reading the input. Otherwise, I tend to save that code for last.
The reason for this is that we can generally test the functions we’re writing
by calling them with sample values; there is no need to worry about parsing
the input until we’re ready to solve the whole problem.

The key data that we need to maintain are the number of people in each
line. The appropriate storage technique is an array, using one index per line.
We’ll use a variable named lines for that array.

Each new person that arrives chooses to join a shortest line, so we’ll
need a helper function to tell us which line that is. That helper function is
given in Listing 2.
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int shortest_line_index(int lines[], int n) {

int j;

int shortest = 0;

for (j = 1; j < n; j++)

if (lines[j] < lines[shortest])

shortest = j;

return shortest;

}

Listing 2: Index of a shortest line

Now, given a lines array and n and m, we can solve a test case, the code
for which is given in Listing 3:

void solve(int lines[], int n, int m) {

int i, shortest;

for (i = 0; i < m; i++) {

shortest = shortest_line_index(lines, n);

printf("%d\n", lines[shortest]);

¶ lines[shortest]++;

}

}

Listing 3: Solving the problem

For each iteration of the for loop, we call our helper function to grab
the index of the shortest line. We then print the length of that shortest line.
This person then joins that line: that’s why we must increment the number
of people in that line by one ¶.

All that’s left is to read the input and call solve; that’s done in Listing 4.

#define MAX_LINES 100

int main(void) {

int lines[MAX_LINES];

int n, m, i;

scanf("%d%d", &n, &m);

for (i = 0; i < n; i++)

scanf("%d", &lines[i]);

solve(lines, n, m);

return 0;

}

Listing 4: The main function

Putting together our shortest_line_index, solve, and main functions and
adding the required #include lines at the top gives us a complete solution
that we can submit to the judge. When doing so, be sure to choose the cor-
rect programming language: for the programs in this book, you want to find
GCC, or C99, or C11, or however the judge refers to a compiler for C.
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If you want to test your code locally before submitting it to the judge,
then you have a few options. Since our programs read from standard input,
one thing you can do is run the program and type a test case by hand. That’s
a reasonable thing to do for small test cases, but it’s tedious doing that over
and over, especially for large test cases. (You may also need to issue an end-
of-file control code after you type the input, such as CTRL-Z on Windows or
CTRL-D on other operating systems.) A better option is to store the input in
a file and then use input redirection from the command prompt to have the
program read from that file instead of the keyboard. For example, if you
store a test case for the present problem in file food.txt, and your compiled
program is called food, then try:

$ food < food.txt

This makes it easy to play with many test cases: just change what’s in food.txt
and then run the program with input redirection again.

Congratulations! You’ve solved your first problem. Moreover, you now
know our game plan for each problem in the book, as we’ll use the same
general structure I have given here. We’ll first understand the problem itself
and work through some examples. Then we’ll start writing code to solve the
problem. We won’t always get it right the first time, though. Maybe our code
will be too slow or fail some specific test cases. That’s okay! We’ll learn new
data structures and algorithms and then strike back at the problem. Even-
tually, we will solve each one—and after each such experience, we will know
more and be better programmers than when we started.

Let’s get to it.

Online Resources
Supplementary resources for this book, including downloadable code
and additional exercises, are available at https://nostarch.com/algorithmic
-thinking-2nd-edition.

Notes
Food Lines is originally from the 2018 LKP Contest 2, hosted by DMOJ.
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1
HASH TABLES

It’s amazing how often computer programs
need to search for information, whether

it’s to find a user’s profile in a database or to
retrieve a customer’s orders. No one likes wait-

ing for a slow search to complete.
In this chapter, we’ll solve two problems whose solutions hinge on being

able to perform efficient searches. The first problem is determining whether
or not all snowflakes in a collection are identical. The second is determining
how many passwords can be used to log in to someone’s account. We want
to solve these problems correctly, but we’ll see that some correct approaches
are simply too slow. We’ll be able to achieve enormous performance in-
creases using a data structure known as a hash table, which we’ll explore at
length.

We’ll end the chapter by looking at a third problem: determining how
many ways a letter can be deleted from one word to arrive at another. Here
we’ll see the risks of uncritically using a new data structure—when learning
something new, it’s tempting to try to use it everywhere!

Problem 1: Unique Snowflakes
This is DMOJ problem cco07p2.



The Problem
We’re given a collection of snowflakes, and we have to determine whether
any of the snowflakes in the collection are identical.

A snowflake is represented by six integers, where each integer gives the
length of one of the snowflake’s arms. For example, this is a snowflake:

3, 9, 15, 2, 1, 10

Snowflakes can also have repeated integers, such as

8, 4, 8, 9, 2, 8

What does it mean for two snowflakes to be identical? Let’s work up to
that definition through a few examples.

First, we’ll look at these two snowflakes:

1, 2, 3, 4, 5, 6

and

1, 2, 3, 4, 5, 6

These are clearly identical because the integers in one snowflake match
the integers in their corresponding positions in the other snowflake.

Here’s our second example:

1, 2, 3, 4, 5, 6

and

4, 5, 6, 1, 2, 3

These are also identical. We can see this by starting at the 1 in the second
snowflake and moving right. We see the integers 1, 2, and 3 and then, wrap-
ping around to the left, we see 4, 5, and 6. These two pieces together give us
the first snowflake.

We can think of each snowflake as a circle as in Figure 1-1.

1

2

3

4

5

6

1

2

3

4

5

6

Figure 1-1: Two identical snowflakes

The two snowflakes are identical because we can start at the 1 in the sec-
ond snowflake and follow it clockwise to get the first snowflake.

Let’s try a different kind of example:

1, 2, 3, 4, 5, 6

2 Chapter 1



and

3, 2, 1, 6, 5, 4

From what we’ve seen so far, we would deduce that these are not identi-
cal. If we start with the 1 in the second snowflake and move right (wrapping
around to the left when we hit the right end), we get 1, 6, 5, 4, 3, 2. That’s
not even close to the 1, 2, 3, 4, 5, 6 in the first snowflake.

However, if we begin at the 1 in the second snowflake and move left in-
stead of right, then we do get exactly 1, 2, 3, 4, 5, 6! Moving left from the 1

gives us 1, 2, 3, and wrapping around to the right, we can proceed leftward
to collect 4, 5, 6. In Figure 1-2, this corresponds to starting at the 1 in the
second snowflake and moving counterclockwise.

1

1

2 2

3

3

4

4

5
5

6

6

Figure 1-2: Two other identical snowflakes

That’s our third way for two snowflakes to be identical: two snowflakes
are identical if they match when we move counterclockwise through the
numbers.

Putting it all together, we can conclude that two snowflakes are iden-
tical if they are the same, if we can make them the same by moving right-
ward through one of the snowflakes (moving clockwise), or if we can make
them the same by moving leftward through one of the snowflakes (moving
counterclockwise).

Input
The first line of input is an integer n, the number of snowflakes that we’ll be
processing. The value n will be between 1 and 100,000. Each of the follow-
ing n lines represents one snowflake: each line has six integers, where each
integer is at least 0 and at most 10,000,000.

Output
Our output will be a single line of text:

• If there are no identical snowflakes, output exactly No two snowflakes

are alike.

• If there are at least two identical snowflakes, output exactly Twin

snowflakes found.

The time limit for solving the test cases is one second.
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Simplifying the Problem
One general strategy for solving competitive programming challenges is to
first work with a simpler version of the problem. Let’s warm up by eliminat-
ing some of the complexity from this problem.

Suppose that instead of working with snowflakes made of multiple in-
tegers, we’re working with single integers. We have a collection of integers,
and we want to know whether any are identical. We can test whether two in-
tegers are identical with C’s == operator. We can test all pairs of integers, and
if we find even one pair of identical integers, we’ll stop and output

Twin integers found.

If no identical integers are found, we’ll output

No two integers are alike.

Let’s make an identify_identical function with two nested loops to com-
pare pairs of integers, as shown in Listing 1-1.

void identify_identical(int values[], int n) {

int i, j;

for (i = 0; i < n; i++) {

¶ for (j = i + 1; j < n; j++) {

if (values[i] == values[j]) {

printf("Twin integers found.\n");

return;

}

}

}

printf("No two integers are alike.\n");

}

Listing 1-1: Finding identical integers

We feed the integers to the function through the values array. We also
pass in n, the number of integers in the array.

Notice that we start the inner loop at i + 1 and not 0 ¶. If we started at
0, then eventually j would equal i, and we’d compare an element to itself,
giving us a false positive result.

Let’s test identify_identical using this small main function:

int main(void) {

int a[5] = {1, 2, 3, 1, 5};

identify_identical(a, 5);

return 0;

}

Run the code and you will see from the output that our function cor-
rectly identified a matching pair of 1s. In general, I won’t provide much test
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code in this book, but it’s important that you play with and test the code
yourself as we go along.

Solving the Core Problem
Let’s take our identify_identical function and try to modify it to solve the
Snowflake problem. To do so, we need to make two extensions to our code:

1. We have to work with six integers at a time, not one. A two-
dimensional array should work nicely here: each row will be a
snowflake with six columns (one column per element).

2. As we saw earlier, there are multiple ways for two snowflakes to be
identical. Unfortunately, this means we can’t just use == to compare
snowflakes. We need to take into account our “moving right” and
“moving left” criteria (not to mention that == in C doesn’t compare
contents of arrays anyway!). Correctly comparing snowflakes will be
the major update to our algorithm.

To begin, let’s write a pair of helper functions: one for checking “mov-
ing right” and one for checking “moving left.” Each of these helpers takes
three parameters: the first snowflake, the second snowflake, and the starting
point for the second snowflake.

Checking to the Right
Here is the function signature for identical_right:

int identical_right(int snow1[], int snow2[], int start)

To determine whether the snowflakes are the same by “moving right,”
we scan snow1 from index 0 and snow2 from index start. If we find correspond-
ing elements that are not equal, then we return 0 to signify that we haven’t
found identical snowflakes. If all the corresponding elements do match,
then we return 1. Think of 0 as representing false and 1 as representing true.

In Listing 1-2 we make a first attempt at writing this function’s code.

// bugged!

int identical_right(int snow1[], int snow2[], int start) {

int offset;

for (offset = 0; offset < 6; offset++) {

¶ if (snow1[offset] != snow2[start + offset])

return 0;

}

return 1;

}

Listing 1-2: Identifying identical snowflakes moving right (bugged!)

As you may notice, this code won’t work as we hope. The problem is
start + offset ¶. If we have start = 4 and offset = 3, then start + offset = 7.
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The trouble is snow2[7], as snow2[5] is the farthest index to which we are al-
lowed to go.

This code doesn’t take into account that we must wrap around to the
left of snow2. If our code is about to use an erroneous index of 6 or greater,
we should reset our index by subtracting six. This will let us continue with
index 0 instead of index 6, index 1 instead of index 7, and so on. Let’s try
again with Listing 1-3.

int identical_right(int snow1[], int snow2[], int start) {

int offset, snow2_index;

for (offset = 0; offset < 6; offset++) {

snow2_index = start + offset;

if (snow2_index >= 6)

snow2_index = snow2_index - 6;

if (snow1[offset] != snow2[snow2_index])

return 0;

}

return 1;

}

Listing 1-3: Identifying identical snowflakes moving right

This works, but we can still improve it. One change that many program-
mers would consider making at this point involves using %, the mod opera-
tor. The % operator computes remainders, so x % y returns the remainder of
integer-dividing x by y. For example, 9 % 3 is 0, because there is no remain-
der when dividing 9 by 3. 10 % 4 is 2, because 2 is left over when dividing
10 by 4.

We can use mod here to help with the wraparound behavior. Notice
that 0 % 6 is 0, 1 % 6 is 1, . . . , 5 % 6 is 5. Each of these numbers is smaller than
6, and so will itself be the remainder when dividing 6. The numbers 0 to 5
correspond to the legal indices of snow2, so it’s good that % leaves them alone.
For our problematic index 6, 6 % 6 is 0: 6 divides 6 evenly, with no remain-
der at all, wrapping us around to the start. That’s precisely the wraparound
behavior we wanted.

Let’s update identical_right to use the % operator. Listing 1-4 shows the
new function.

int identical_right(int snow1[], int snow2[], int start) {

int offset;

for (offset = 0; offset < 6; offset++) {

if (snow1[offset] != snow2[(start + offset) % 6])

return 0;

}

return 1;

}

Listing 1-4: Identifying identical snowflakes moving right using mod
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Whether you use this “mod trick” is up to you. It saves a line of code
and is a common pattern that many programmers will be able to identify.
However, it doesn’t always easily apply, even in cases that exhibit similar
wraparound behavior, such as identical_left. Let’s turn to this now.

Checking to the Left
The function identical_left is very similar to identical_right, except that we
need to move left and then wrap around to the right. When traversing right,
we had to be wary of erroneously accessing index 6 or greater; this time, we
have to be wary of accessing index –1 or less.

Unfortunately, our mod solution won’t directly work here. In C, -1 / 6 is
0, leaving a remainder of –1, and so -1 % 6 is –1. We’d need -1 % 6 to be 5.

Let’s just do this without using mod. In Listing 1-5, we provide the code
for the identical_left function.

int identical_left(int snow1[], int snow2[], int start) {

int offset, snow2_index;

for (offset = 0; offset < 6; offset++) {

snow2_index = start - offset;

if (snow2_index <= -1)

snow2_index = snow2_index + 6;

if (snow1[offset] != snow2[snow2_index])

return 0;

}

return 1;

}

Listing 1-5: Identifying identical snowflakes moving left

Notice the similarity between this function and that of Listing 1-3. All
we did was subtract the offset instead of adding it and change the bounds
check at 6 to a bounds check at -1.

Putting It Together
With these two helper functions, identical_right and identical_left, we can
finally write a function that tells us whether two snowflakes are identical.
Listing 1-6 gives the code for an are_identical function that does this. We
simply test moving right and moving left for each of the possible starting
points in snow2.

int are_identical(int snow1[], int snow2[]) {

int start;

for (start = 0; start < 6; start++) {

¶ if (identical_right(snow1, snow2, start))

return 1;

· if (identical_left(snow1, snow2, start))

return 1;

}
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return 0;

}

Listing 1-6: Identifying identical snowflakes

We test whether snow1 and snow2 are the same by moving right in snow2 ¶.
If they are identical according to that criterion, we return 1 (true). We then
similarly check the moving-left criterion ·.

It’s worth pausing here to test the are_identical function on a few sample
snowflake pairs. Please do that before continuing!

Solution 1: Pairwise Comparisons
When we need to compare two snowflakes, we just deploy our are_identical

function instead of ==. Comparing two snowflakes is now as easy as compar-
ing two integers.

Let’s revise our earlier identify_identical function (Listing 1-1) to work
with snowflakes using the new are_identical function (Listing 1-6). We’ll
make pairwise comparisons between snowflakes, printing out one of two
messages depending on whether we find identical snowflakes. The code is
given in Listing 1-7.

void identify_identical(int snowflakes[][6], int n) {

int i, j;

for (i = 0; i < n; i++) {

for (j = i + 1; j < n; j++) {

if (are_identical(snowflakes[i], snowflakes[j])) {

printf("Twin snowflakes found.\n");

return;

}

}

}

printf("No two snowflakes are alike.\n");

}

Listing 1-7: Finding identical snowflakes

This identify_identical function on snowflakes is almost, symbol for sym-
bol, the same as the identify_identical function on integers in Listing 1-1. All
we’ve done is swap == for a function that compares snowflakes.

Reading the Input
We’re not quite ready to submit to our judge. We haven’t yet written the
code to read the snowflakes from standard input. Revisit the problem de-
scription at the start of the chapter. We need to read a line containing inte-
ger n that tells us how many snowflakes there are and then read each of the
following n lines as an individual snowflake.

Listing 1-8 is a main function that processes the input and then calls
identify_identical from Listing 1-7.
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#define SIZE 100000

int main(void) {

¶ static int snowflakes[SIZE][6];

int n, i, j;

scanf("%d", &n);

for (i = 0; i < n; i++)

for (j = 0; j < 6; j++)

scanf("%d", &snowflakes[i][j]);

identify_identical(snowflakes, n);

return 0;

}

Listing 1-8: The main function for Solution 1

Notice that the snowflakes array is a static array ¶. This is because the
array is huge; without using such a static array, the amount of space needed
would likely outstrip the amount of memory available to the function. We
use static to place the array in its own, separate piece of memory, where
space is not a concern. Be careful with static, though. Regular local vari-
ables are initialized on each call of a function, but static ones retain what-
ever value they had on the previous function call (see “Static Keyword” on
page xxvi).

Also notice that we’ve allocated an array of 100,000 snowflakes ¶. You
might be concerned that this is a waste of memory. What if the input has
only a few snowflakes? For competitive programming problems, it’s gen-
erally okay to hardcode the memory requirements for the largest problem
instance: the test cases are likely to stress test your submission on the maxi-
mum size anyway!

The rest of the function is straightforward. We read the number of snow-
flakes using scanf, and we use that number to determine the number of iter-
ations of the outer for loop. For each such iteration, we loop six times in the
inner for loop, each time reading one integer. We then call identify_identical
to produce the appropriate output.

Putting this main function together with the other functions we have
written gives us a complete program that we can submit to the judge. Try
it out . . . and you should get a “Time-Limit Exceeded” error. It looks like we
have more work to do!

Diagnosing the Problem
Our first solution was too slow, so we got a “Time-Limit Exceeded” error.
Let’s understand why.

For our discussion here, we’ll assume that there are no identical snow-
flakes. This is the worst-case scenario for our code, since then it doesn’t stop
processing early.

The reason that our first solution is slow is because of the two nested
for loops in Listing 1-7. Those loops compare each snowflake to every other
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snowflake, resulting in a huge number of comparisons when the number of
snowflakes n is large.

Let’s figure out the number of snowflake comparisons our program
makes. Since we might compare each pair of snowflakes, we can restate this
question as asking for the total number of snowflake pairs. For example, if
we have four snowflakes numbered 1, 2, 3, and 4, then our scheme performs
six snowflake comparisons: Snowflakes 1 and 2, 1 and 3, 1 and 4, 2 and 3, 2
and 4, and 3 and 4. Each pair is formed by choosing one of the n snowflakes
as the first snowflake and then choosing one of the remaining n – 1 snow-
flakes as the second snowflake.

For each of n decisions for the first snowflake, we have n – 1 decisions
for the second snowflake. This gives a total of n(n – 1) decisions. However,
n(n – 1) double-counts the true number of snowflake comparisons that we
make—it includes both of the comparisons 1 and 2 and 2 and 1, for exam-
ple. Our solution compares these only once, so we can divide by 2, giving
n(n – 1)/2 snowflake comparisons for n snowflakes.

This might not seem so bad, but let’s substitute some values of n into
n(n – 1)/2 and see what happens. Substituting 10 gives 10(9)/2 = 45. Per-
forming 45 comparisons is a piece of cake for any computer and can be
done in milliseconds. How about n = 100? That gives 4,950: still no prob-
lem. It looks like we’re okay for a small n, but the problem statement says
that we can have up to 100,000 snowflakes. Go ahead and substitute 100,000
for n in n(n – 1)/2: this gives 4,999,950,000 snowflake comparisons. If you
run a test case with 100,000 snowflakes on a typical laptop, it will take some-
thing like three minutes. That’s far too slow—we need at most one second,
not several minutes! As a conservative rule of thumb for today’s comput-
ers, think of the number of steps that we can perform per second as about
30 million. Trying to make nearly 5 billion snowflake comparisons in one
second is not doable.

If we expand n(n – 1)/2, we get n2/2 –n/2. The largest exponent there is
2. Algorithm developers therefore call this an O(n2) algorithm, or a quadratic-
time algorithm. O(n2) is pronounced “big O of n squared,” and you can think
of it as telling you that the rate at which the amount of work grows is quad-
ratic relative to the problem size. For a brief introduction to big O, see
Appendix A.

We need to make such a large number of comparisons because identical
snowflakes could show up anywhere in the array. If there were a way to get
identical snowflakes close together in the array, we could quickly determine
whether a particular snowflake was part of an identical pair. Maybe we can
try sorting the array to get the identical snowflakes close together?

Sorting Snowflakes
C has a library function called qsort that we can use to sort an array. The
key requirement is a comparison function: it takes pointers to two elements
to sort, and it returns a negative integer if the first element is less than the
second, 0 if they are equal, and a positive integer if the first is greater than
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the second. We can use are_identical to determine whether two snowflakes
are equal; if they are, we return 0.

What does it mean, though, for one snowflake to be less than or greater
than another? It’s tempting to just agree on some arbitrary rule here. We
might say, for example, that the snowflake that is “less” is the one whose first
differing element is smaller than the corresponding element in the other
snowflake. We do that in Listing 1-9.

int compare(const void *first, const void *second) {

int i;

const int *snowflake1 = first;

const int *snowflake2 = second;

if (are_identical(snowflake1, snowflake2))

return 0;

for (i = 0; i < 6; i++)

if (snowflake1[i] < snowflake2[i])

return -1;

return 1;

}

Listing 1-9: A comparison function for sorting

Unfortunately, sorting in this way will not help us solve our problem.
You might try writing a program that uses sorting to put identical snow-
flakes next to each other so that you can find them quickly. But here’s a
four-snowflake test case that would likely fail on your laptop:

4

3 4 5 6 1 2

2 3 4 5 6 7

4 5 6 7 8 9

1 2 3 4 5 6

The first and fourth snowflakes are identical—but the message No two

snowflakes are alike. may be output. What’s going wrong?
Here are two facts that qsort might learn as it executes:

1. Snowflake 4 is less than Snowflake 2.

2. Snowflake 2 is less than Snowflake 1.

From this, qsort could conclude that Snowflake 4 is less than Snowflake 1,
without ever directly comparing Snowflake 4 and Snowflake 1! Here it’s re-
lying on the transitive property of less than. If a is less than b, and b is less
than c, then surely a should be less than c. It seems like our definitions of
“less” and “greater” matter after all.

Unfortunately, it isn’t clear how one would define “less” and “greater”
on snowflakes so as to satisfy transitivity. If you’re disappointed, perhaps
you can take solace in the fact that we’ll be able to develop a faster solution
without using sorting at all.
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In general, collecting similar values with sorting can be a useful data-
processing technique. As a bonus, good sorting algorithms run quickly—
certainly faster than O(n2), but we aren’t going to be able to use sorting here.

Solution 2: Doing Less Work
Comparing all pairs of snowflakes and trying to sort the snowflakes proved
to be too much work. To work up to our next, and ultimate, solution, let’s
pursue the idea of trying to avoid comparing snowflakes that are obviously
not identical. For example, if we have snowflakes

1, 2, 3, 4, 5, 6

and

82, 100, 3, 1, 2, 999

there’s no way that these snowflakes can be identical. We shouldn’t even
waste our time comparing them.

The numbers in the second snowflake are very different from the num-
bers in the first snowflake. To devise a way to detect that two snowflakes are
different without having to directly compare them, we might begin by com-
paring the snowflake’s first elements, because 1 is very different from 82.
But now consider these two snowflakes:

3, 1, 2, 999, 82, 100

and

82, 100, 3, 1, 2, 999

These two snowflakes are identical even though 3 is very different
from 82. We need to do more than just look at first elements.

A quick litmus test for determining whether two snowflakes might be
identical is to use the sum of their elements. When we sum our two example
snowflakes, for 1, 2, 3, 4, 5, 6, we get a total of 21, and for 82, 100, 3, 1,

2, 999, we get 1,187. We say that the code for the former snowflake is 21 and
the code for the latter is 1,187.

Our hope is that we can throw the “21 snowflakes” in one bin and throw
the “1,187 snowflakes” in another, and then we never have to compare the
21s to the 1,187s. We can do this binning for each snowflake: add up its
elements, get a code of x, and then store it along with all of the other snow-
flakes with code x.

Of course, finding two snowflakes with a code of 21 does not guarantee
they are identical. For example, both 1, 2, 3, 4, 5, 6 and 16, 1, 1, 1, 1, 1

have a code of 21, and they are surely not identical.
That’s okay, because our “sum” rule is designed to weed out snowflakes

that are clearly not identical. This allows us to avoid comparing all pairs—the
source of the inefficiency in Solution 1—and only compare pairs that have
not been filtered out as obviously nonidentical.
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In Solution 1, we stored each snowflake consecutively in the array: the
first snowflake at index 0, the second at index 1, and so on. Here, our stor-
age strategy is different: sum codes determine snowflakes’ locations in the
array! That is, for each snowflake, we calculate its code and use that code as
the index for where to store the snowflake.

We have to solve two problems:

1. Given a snowflake, how do we calculate its code?

2. What do we do when multiple snowflakes have the same code?

Let’s deal with calculating the code first.

Calculating Sum Codes
At first glance, calculating the code seems easy. We could just sum all of the
numbers within each snowflake like so:

int code(int snowflake[]) {

return (snowflake[0] + snowflake[1] + snowflake[2]

+ snowflake[3] + snowflake[4] + snowflake[5]);

}

This works fine for many snowflakes, such as 1, 2, 3, 4, 5, 6, and 82,

100, 3, 1, 2, 999, but consider a snowflake with huge numbers, such as

1000000, 2000000, 3000000, 4000000, 5000000, 6000000

The code that we calculate is 21000000. We plan to use that code as the
index in an array that holds the snowflakes, so to accommodate this, we’d
have to declare an array with room for 21 million elements. As we’re using at
most 100,000 elements (one for each snowflake), this is an outrageous waste
of memory.

We’re going to stick with an array that has room for 100,000 elements.
We’ll need to calculate a snowflake’s code as before, but then we must force
that code to be a number between 0 and 99999 (the minimum and maximum
index in our array). One way to do this is to break out the % (mod) operator
again. Taking a nonnegative integer mod x yields an integer between 0 and
x – 1. No matter the sum of a snowflake, if we take it mod 100,000, we’ll get a
valid index in our array.

This method has one downside: taking the mod like this will force more
nonidentical snowflakes to end up with the same code. For example, the
sums for 1, 1, 1, 1, 1, 1 and 100001, 1, 1, 1, 1, 1 are different—6 and
100006—but once we take them mod 100,000, we get 6 in both cases. This is
an acceptable risk to take: we’ll just hope that this doesn’t happen much;
when it does, we’ll perform the necessary pairwise comparisons.

We’ll calculate the sum code for a snowflake and mod it, as displayed in
Listing 1-10.
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#define SIZE 100000

int code(int snowflake[]) {

return (snowflake[0] + snowflake[1] + snowflake[2]

+ snowflake[3] + snowflake[4] + snowflake[5]) % SIZE;

}

Listing 1-10: Calculating the snowflake code

Snowflake Collisions
In Solution 1, we used the following fragment to store a snowflake at index i

in the snowflakes array:

for (j = 0; j < 6; j++)

scanf("%d", &snowflakes[i][j]);

This worked because exactly one snowflake was stored in each row of
the two-dimensional array.

However, now we have to contend with the 1, 1, 1, 1, 1, 1 and 100001,

1, 1, 1, 1, 1 kind of collision, where, because they’ll end up with the same
mod code and that code serves as the snowflakes index in the array, we need
to store multiple snowflakes in the same array element. That is, each array
element will no longer be one snowflake but a collection of zero or more
snowflakes.

One way to store multiple elements at the same array index is to use a
linked list, a data structure that links each element to the next. Here, each
element in the snowflakes array will point to the first snowflake in the linked
list; the remainder of the snowflakes can be accessed through next pointers.

We’ll use a typical linked list implementation. Each snowflake_node con-
tains both a snowflake and a pointer to the next snowflake. To collect these
two components, we’ll use a struct. We’ll also make use of typedef, which al-
lows us to later use snowflake_node instead of the full struct snowflake_node:

typedef struct snowflake_node {

int snowflake[6];

struct snowflake_node *next;

} snowflake_node;

This change necessitates updates to two functions, main and identify

_identical, because those functions use our old two-dimensional array.

The New main Function
You can see the updated main code in Listing 1-11.

int main(void) {

¶ static snowflake_node *snowflakes[SIZE] = {NULL};

· snowflake_node *snow;

int n, i, j, snowflake_code;
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scanf("%d", &n);

for (i = 0; i < n; i++) {

¸ snow = malloc(sizeof(snowflake_node));

if (snow == NULL) {

fprintf(stderr, "malloc error\n");

exit(1);

}

for (j = 0; j < 6; j++)

¹ scanf("%d", &snow->snowflake[j]);

º snowflake_code = code(snow->snowflake);

» snow->next = snowflakes[snowflake_code];

¼ snowflakes[snowflake_code] = snow;

}

identify_identical(snowflakes);

// deallocate all malloc'd memory, if you want to be good

return 0;

}

Listing 1-11: The main function for Solution 2

Let’s walk through this code. First, notice that we changed the type of
our array from a two-dimensional array of numbers to a one-dimensional
array of pointers to snowflake nodes ¶. We also declare snow ·, which will
point to snowflake nodes that we allocate.

We use malloc to allocate memory for each snowflake_node ¸. Once we
have read in and stored the six numbers for a snowflake ¹, we use snowflake

_code to hold the snowflake’s code º, calculated using the function we wrote
in Listing 1-10.

The last thing to do is to add the snowflake to the snowflakes array, which
amounts to adding a node to a linked list. We do this by inserting the snow-
flake at the beginning of the linked list. We first point the inserted node’s
next pointer to the first node in the list », and then we set the start of the list
to point to the inserted node ¼. The order matters here: if we had reversed
the order of these two lines, we would lose access to the elements already in
the linked list!

Notice that, in terms of correctness, it doesn’t matter where in the linked
list we add the new node. It could go at the beginning, the end, or some-
where in the middle—it’s our choice. So we should do whatever is fastest,
and adding to the beginning is fastest because it doesn’t require us to tra-
verse the list at all. If we instead chose to add an element to the end of a
linked list, we’d have to traverse the entire list. If that list had a million ele-
ments, we’d have to follow the next pointers a million times until we got to
the end—that would be very slow!

Let’s work on a quick example of how this main function works. Here’s
the test case:

4

1 2 3 4 5 6

8 3 9 10 15 4
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16 1 1 1 1 1

100016 1 1 1 1 1

Each element of snowflakes begins as NULL, the empty linked list. As we
add to snowflakes, elements will begin to point at snowflake nodes. The num-
bers in the first snowflake add up to 21, so it goes into index 21. The second
snowflake goes into index 49. The third snowflake goes into index 21. At this
point, index 21 is a linked list of two snowflakes: 16, 1, 1, 1, 1, 1 followed by
1, 2, 3, 4, 5, 6.

How about the fourth snowflake? That goes into index 21 again, and
now we have a linked list of three snowflakes there. See Figure 1-3 for the
hash table that we’ve built.

0 1 2 21 49  99999... ... ...

100016, 1, 1, 1, 1, 1

16, 1, 1, 1, 1, 1

1, 2, 3, 4, 5, 6

8, 3, 9, 10, 15, 4

Figure 1-3: A hash table with four snowflakes

There are multiple snowflakes in index 21. Does this mean that we have
identical snowflakes? No! This emphasizes the fact that a linked list with
multiple elements is not sufficient evidence to claim that we have identical
snowflakes. We have to compare each pair of those elements to correctly
state our conclusion. That’s the final piece of the puzzle.

The New identify_identical Function
We need identify_identical to make all pairwise comparisons of snowflakes
within each linked list. Listing 1-12 shows the code to do so.

void identify_identical(snowflake_node *snowflakes[]) {

snowflake_node *node1, *node2;

int i;

for (i = 0; i < SIZE; i++) {

¶ node1 = snowflakes[i];

while (node1 != NULL) {

· node2 = node1->next;

while (node2 != NULL) {

if (are_identical(node1->snowflake, node2->snowflake)) {

printf("Twin snowflakes found.\n");

return;

}
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node2 = node2->next;

}

¸ node1 = node1->next;

}

}

printf("No two snowflakes are alike.\n");

}

Listing 1-12: Identifying identical snowflakes in linked lists

We begin with node1 at the first node in a linked list ¶. We use node2 to
traverse from the node to the right of node1 · all the way to the end of the
linked list. This compares the first snowflake in the linked list to all other
snowflakes in that linked list. We then advance node1 to the second node ¸,
and we compare that second snowflake to each snowflake to its right. We
repeat this until node1 reaches the end of the linked list.

This code is dangerously similar to identify_identical from Solution 1
(Listing 1-7), which made all pairwise comparisons between any two snow-
flakes. By contrast, our new code only makes pairwise comparisons within a
single linked list. But what if someone crafts a test case where all snowflakes
end up in the same linked list? Wouldn’t the performance then be as bad as
in Solution 1? It would, yes, but absent such nefarious data, we’re in great
shape. Take a minute to submit Solution 2 to the judge and see for yourself.
You should see that we’ve discovered a much more efficient solution! What
we’ve done is use a data structure called a hash table. We’ll learn more about
hash tables next.

Hash Tables
A hash table consists of two things:

1. An array. Locations in the array are referred to as buckets.

2. A hash function, which takes an object and returns its code as an in-
dex into the array.

The code returned by the hash function is referred to as a hashcode; that
code determines at which index an object is stored or hashed.

Look closely at what we did in Listings 1-10 and 1-11 and you’ll see that
we already have both of these things. That code function, which took a snow-
flake and produced its code (a number between 0 and 99,999), is a hash
function; and that snowflakes array is the array of buckets, where each bucket
contains a linked list.

Hash Table Design
Designing a hash table involves many design decisions. Let’s talk about three
of them here.

The first decision concerns size. In Unique Snowflakes, we used an ar-
ray size of 100,000. We could have instead used a smaller or larger array. A
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smaller array saves memory. For example, on initialization, a 50,000-element
array stores half as many NULL values as does a 100,000-element array. How-
ever, a smaller array leads to more objects ending up in the same bucket.
When objects end up in the same bucket, we say that a collision has occurred.
The problem with having many collisions is that they lead to long linked
lists. Ideally, all of the linked lists would be short so that we wouldn’t have
to walk through and do work on many elements. A larger array avoids some
of these collisions.

To summarize, we have a memory–time tradeoff here. Make the hash
table too small and collisions run rampant. Make the hash table too big
and memory waste becomes a concern. In general, try to choose an array
size that’s a reasonable percentage—such as 20 percent or 50 percent or
100 percent—of the maximum number of elements you expect to insert into
the hash table.

In Unique Snowflakes, we used an array size of 100,000 to match the
maximum number of snowflakes; had we been constrained to use less mem-
ory, smaller arrays would have worked just fine as well.

The second consideration is our hash function. In Unique Snowflakes,
our hash function adds up a snowflake’s numbers mod 100,000. Impor-
tantly, this hash function guarantees that, if two snowflakes are identical,
they will end up in the same bucket. (They might also end up in the same
bucket if they are not identical, of course.) This is the reason why we can
search within linked lists, and not between them, for identical snowflakes.

When solving a problem with a hash table, the hash function that we use
should take into account what it means for two objects to be identical. If two
objects are identical, then the hash function must hash them to the same
bucket. In the case in which two objects must be exactly equal to be consid-
ered “identical,” we can scramble things so extensively that the mapping
between object and bucket is far more intricate than what we did with the
snowflakes. Check out the oaat (one-at-a-time) hash function in Listing 1-13
for an example.

#define hashsize(n) ((unsigned long)1 << (n))

#define hashmask(n) (hashsize(n) - 1)

unsigned long oaat(char *key, unsigned long len, unsigned long bits) {

unsigned long hash, i;

for (hash = 0, i = 0; i < len; i++) {

hash += key[i];

hash += (hash << 10);

hash ^= (hash >> 6);

}

hash += (hash << 3);

hash ^= (hash >> 11);

hash += (hash << 15);

return hash & hashmask(bits);

}
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int main(void) { // sample call of oaat

char word[] = "hello";

// 2^17 is the smallest power of 2 that is at least 100000

¶ unsigned long code = oaat(word, strlen(word), 17);

printf("%u\n", code);

return 0;

}

Listing 1-13: An intricate hash function

To call oaat ¶ as we do in the main function, we pass three parameters:

key The data that we want to hash (here, we’re hashing the word string)

len The length of those data (here, the length of the word string)

bits The number of bits that we want in the resulting hashcode
(here, 17)

The maximum value that a hashcode could have is one less than 2 to the
power of bits. For example, if we choose 17, then 217 – 1 = 131,071 is the
maximum that a hashcode could be.

How does oaat work? Inside the for loop, it starts by adding the current
byte of the key. That part is similar to what we did when adding up the num-
bers in a snowflake (Listing 1-10). Those left shifts and exclusive ors are in
there to put the key through a blender. Hash functions do this blending to
implement an avalanche effect, which means that a small change in the key’s
bits makes a huge change to the key’s hashcode. Unless you intentionally
created pathological data for this hash function or inserted a huge number
of keys, it would be unlikely that you’d get many collisions. This highlights
an important point: with a single hash function, there is always a collection
of data that will lead to collisions galore and subsequently horrible perfor-
mance. A fancy hash function like oaat can’t protect against that. Unless
we’re concerned about malicious input, though, we can often get away with
using a reasonably good hash function and can assume that it will spread the
data around.

Indeed, this is why using our hash table solution (Solution 2) for Unique
Snowflakes was so successful. We used a good hash function that distributes
many nonidentical snowflakes into different buckets. Since we’re not secur-
ing our code from attack, we don’t have to worry about some evil person
studying our code and figuring out a way to cause millions of collisions.

For our third and final design decision, we have to think about what we
want to use as our buckets. In Unique Snowflakes, we used a linked list as
each bucket. Using linked lists like this is known as a chaining scheme.

In another approach, known as open-addressing, each bucket holds at
most one element, and there are no linked lists. To deal with collisions, we
search through buckets until we find one that is empty. For example, sup-
pose that we try to insert an object into bucket number 50, but Bucket 50 is
already occupied. We might then try Bucket 51, then 52, then 53, stopping
when we find an empty bucket. Unfortunately, this simple sequence can lead
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to poor performance when a hash table has many elements stored in it, so
more nuanced search schemes are often used in practice.

Chaining is generally easier to implement than open-addressing, which
is why we used chaining for Unique Snowflakes. However, open-addressing
does have some benefits, including saving memory by not using linked list
nodes.

Why Use Hash Tables?
Using a hash table turbocharges our solution to Unique Snowflakes. On a
typical laptop, a test case with 100,000 elements will take only a fraction of
a second to run! No pairwise comparisons of all elements and no sorting is
needed, just a little processing on a bunch of linked lists.

Recall that we used an array size of 100,000. The maximum number of
snowflakes that can be presented to our program is also 100,000. If we’re
given 100,000 snowflakes and assume the perfect scenario of each one going
into its own bucket, then we’d have only one snowflake per linked list. If we
have a little bad luck, then maybe a few of those snowflakes will collide and
end up in the same bucket. In the absence of pathological data, though, we
expect that each linked list will have at most a few elements. As such, mak-
ing all pairwise comparisons within a bucket will take only a small, constant
number of steps. We expect hash tables to give us a linear-time solution, be-
cause we take a constant number of steps in each of the n buckets. So we
take something like n steps, in comparison to the n(n – 1)/2 formula we had
for Solution 1. In terms of big O, we’d say that we expect an O(n) solution.

Whenever you’re working on a problem and you find yourself repeat-
edly searching for some element, consider using a hash table. A hash table
takes a slow array search and converts it into a fast lookup. For some prob-
lems, you may be able to sort an array rather than use a hash table. A tech-
nique called binary search (discussed in Chapter 7) could then be used to
quickly search for elements in the sorted array. But often—such as in Unique
Snowflakes and the problem we’ll solve next—that won’t work. Hash tables
to the rescue!

Problem 2: Login Mayhem
Let’s go through another problem and pay attention to where a naive solu-
tion would rely on a slow search. We’ll then drop in a hash table to cause
a dramatic speedup. We’ll go a little more quickly than we did for Unique
Snowflakes because now we know what to look for.

This is DMOJ problem coci17c1p3hard.

The Problem
To log in to your account on a social network website, you’d expect that
only your password would work—no one should be able to use a different
password to get into your account. For example, let’s say that your password
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is dish. (That’s a terribly weak password—don’t actually use that anywhere!)
To log in to your account, someone would need to enter exactly dish as the
password. That’s just how logins work.

But now imagine that you are wanting to join a (hopefully theoretical)
social network website that has a major security concern: other passwords
besides yours can be used to get into your account! Specifically, if some-
one tries a password that has your password as a substring, then they’re in.
If your password were dish, for example, then passwords like brandish and
radishes would work to get into your account because the string dish is in
them. You don’t know what password to choose for your account—so at var-
ious points you will ask: “If I chose this password, how many current users’
passwords would get in to my account?”

We need to support two types of operations:

Add Sign up a new user with the given password.

Query Given a proposed password p, return the number of current
users’ passwords that could be used to get into an account whose pass-
word is p.

Input
The input consists of the following lines:

• A line containing q, the number of operations to be performed. q is
between 1 and 100,000.

• q lines, each giving one add or query operation to be performed.

Here are the operations that can be performed in those q lines:

• An add operation is specified as the number 1, a space, and then the
new user’s password. It indicates that a new user has joined with the
provided password. This operation doesn’t result in any output.

• A query operation is specified as the number 2, a space, and then a
proposed password p. It indicates that we should output the num-
ber of current users’ passwords that could be used to get into an
account whose password is p.

All passwords provided in these operations are between 1 and 10 lower-
case characters.

Output
Output the result of each query operation, one per line.

The time limit for solving the test case is three seconds.

Solution 1: Looking at All Passwords
Let’s work through a test case to make sure that we know exactly what we’re
being asked to do.
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¶ 6

· 2 dish

1 brandish

1 radishes

1 aaa

¸ 2 dish

¹ 2 a

We can tell from the first line ¶ that there are 6 operations for us to per-
form. The first operation · asks us how many of the existing users’ pass-
words would get into an account whose password is dish. Well, there are no
existing users, so the answer is 0!

Next, we add three user passwords, and then we get to our next query
operation ¸. Now we’re being asked about dish in the context of these three
passwords. You might be thinking that we need to search through the exist-
ing passwords to count up the ones that have dish in them. (Hmmm, search-
ing! That’s our first inkling that a hash table may be needed here.) If you do
that, you’ll find that two of the passwords—brandish and radishes—have dish in
them. The answer is therefore 2.

And what about the final query ¹? We’re looking for passwords that
have an a in them. If you search through the three existing passwords, you’ll
find that all three of them do! The answer is therefore 3.

We’re done! The correct output for the full test case is:

0

2

3

If we implement the solution strategy that we just used, we might arrive
at something like Listing 1-14.

¶ #define MAX_USERS 100000

#define MAX_PASSWORD 10

int main(void) {

static char users[MAX_USERS][MAX_PASSWORD + 1];

int num_ops, op, op_type, total, j;

char password[MAX_PASSWORD + 1];

int num_users = 0;

scanf("%d", &num_ops);

for (op = 0; op < num_ops; op++) {

scanf("%d%s", &op_type, password);

· if (op_type == 1) {

strcpy(users[num_users], password);

num_users++;
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¸ } else {

total = 0;

for (j = 0; j < num_users; j++)

if (strstr(users[j], password))

total++;

printf("%d\n", total);

}

}

return 0;

}

Listing 1-14: Solution 1

The problem description says that we’ll have at most 100,000 opera-
tions. If each is an add operation, then we get 100,000 users ¶, and we can’t
have any more than that.

For each add operation ·, we copy the new password into our users
array. And for each query operation ¸, we loop through all of the existing
user passwords, checking how many of them have the proposed password as
a substring.

Like our first solution to Unique Snowflakes, this solution is not fast
enough to pass the test cases in time. That’s because we have an O(n2) al-
gorithm here, where n is the number of queries.

We are able to quickly add user passwords to our array—no problem
there. What slows us down are the query operations, because each of them
has to scan through all existing user passwords. That’s where the quadratic-
time behavior comes from. Suppose, for example, that a test case starts by
adding 50,000 user passwords, and then hammers us with 50,000 queries.
Taken together, that would require about 50,000 × 50,000 = 2,500,000,000
steps. That’s over 2 billion steps; there’s no way that we can do that many in
our allowed time limit of three seconds.

Solution 2: Using a Hash Table
We need to speed up the query operations. And we’re going to use a hash
table to do so. But how? Isn’t it just a fact of life that we need to compare
each query password with each existing password? No! Read on as we turn
the problem on its head.

How to Use the Hash Table
For each query operation, it would be nice if we could just look up the
needed password in a hash table to determine how many existing user pass-
words could get into its account. For example, once we add the users with
passwords brandish, radishes, and aaa, then it would be nice to be able to look
up dish in the hash table and get a value of 2. But while we’re adding those
three user passwords, how are we supposed to know to be keeping track of
what’s going on with dish? We don’t know which passwords are going to be
queried later.
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Well, since we don’t know the future, let’s just add one to the total for
every single substring of each user password. That way we’ll be ready if we
ever need to look any of them up.

Focus on the brandish password. If we consider each substring, then
we’ll increment the total for b, br, bra, bran, brand, brandi, brandis, brandish,
r, ra, and so on. Don’t worry: if we process them all, we’ll definitely hit dish
and increment it. We’ll increment dish again when we do the same kind of
substring processing on radishes. So, dish will end up with a total of 2, as
needed.

You might worry that we’re being excessive here, processing a ton of
substring passwords, the vast majority of which are not going to be queried.
However, remember from the problem description that passwords can be at
most 10 characters. Each substring has a starting point and an ending point.
In a password of 10 characters, there are only 10 possible starting points and
10 possible ending points, so an upper bound on the number of substrings
in a password is 10 × 10 = 100. As we have at most 100,000 user passwords,
each of which has at most 100 substrings, we’ll store at most 100,000 × 100
= 10,000,000 substrings in our hash table. That’ll take up a few megabytes of
memory, for sure, but that’s nothing to worry about. We’re trading a little
memory for the ability to look up any password’s total when we need it.

As with Unique Snowflakes, our solution will use a hash table of linked
lists. We also need a hash function. We won’t use something like the snow-
flake hash function here, because it would lead to collisions between pass-
words like cat and act that are anagrams. Unlike in the Unique Snowflakes
problem, passwords should be distinguished not just by their letters but by
the locations of those letters. Some collisions are inevitable, of course, but
we should do what we can to limit their prevalence. To that end, we’ll wield
that wild oaat hash function from Listing 1-13.

Searching the Hash Table
We’ll use the following node to store passwords in our hash table:

#define MAX_PASSWORD 10

typedef struct password_node {

char password[MAX_PASSWORD + 1];

int total;

struct password_node *next;

} password_node;

This node is similar to snowflake_node from Unique Snowflakes, but we
now also have a total member to keep track of the total count for this
password.

Now we can write a helper function to search the hash table for a given
password. See Listing 1-15 for the code.
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#define NUM_BITS 20

password_node *in_hash_table(password_node *hash_table[], char *find) {

unsigned password_code;

password_node *password_ptr;

¶ password_code = oaat(find, strlen(find), NUM_BITS);

· password_ptr = hash_table[password_code];

while (password_ptr) {

¸ if (strcmp(password_ptr->password, find) == 0)

return password_ptr;

password_ptr = password_ptr->next;

}

return NULL;

}

Listing 1-15: Searching for a password

This in_hash_table function takes a hash table and a password to find in
the hash table. If the password is found, the function returns a pointer to
the corresponding password_node; otherwise, it returns NULL.

The function works by calculating the hashcode of the password ¶ and
using that hashcode to find the appropriate linked list to search ·. It then
checks each password in the list, looking for a match ¸.

Adding to the Hash Table
We also need a function that will add one to a given password in the hash
table. See Listing 1-16 for the code.

void add_to_hash_table(password_node *hash_table[], char *find) {

unsigned password_code;

password_node *password_ptr;

¶ password_ptr = in_hash_table(hash_table, find);

if (!password_ptr) {

password_code = oaat(find, strlen(find), NUM_BITS);

password_ptr = malloc(sizeof(password_node));

if (password_ptr == NULL) {

fprintf(stderr, "malloc error\n");

exit(1);

}

strcpy(password_ptr->password, find);

· password_ptr->total = 0;

password_ptr->next = hash_table[password_code];

hash_table[password_code] = password_ptr;

}

¸ password_ptr->total++;

}

Listing 1-16: Adding one to a password’s total
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We use our in_hash_table function ¶ to determine whether the password
is already in the hash table. If it isn’t, we add it to the hash table and give it a
count of 0 for now ·. The technique for adding each password to the hash
table is the same as for the Unique Snowflakes problem: each bucket is a
linked list, and we add each password to the beginning of one of those lists.

Next, whether the password was already in there or not, we increment
its total ¸. In that way, a password that we just added will have its total in-
creased from 0 to 1, whereas existing passwords will simply have their total

incremented.

The main Function, Take 1
Ready for the main function? Our first attempt is in Listing 1-17.

// bugged!

int main(void) {

¶ static password_node *hash_table[1 << NUM_BITS] = {NULL};

int num_ops, op, op_type, i, j;

char password[MAX_PASSWORD + 1], substring[MAX_PASSWORD + 1];

password_node *password_ptr;

scanf("%d", &num_ops);

for (op = 0; op < num_ops; op++) {

scanf("%d%s", &op_type, password);

· if (op_type == 1) {

for (i = 0; i < strlen(password); i++)

for (j = i; j < strlen(password); j++) {

strncpy(substring, &password[i], j - i + 1);

substring[j - i + 1] = '\0';

¸ add_to_hash_table(hash_table, substring);

}

¹ } else {

º password_ptr = in_hash_table(hash_table, password);

» if (!password_ptr)

printf("0\n");

else

printf("%d\n", password_ptr->total);

}

}

return 0;

}

Listing 1-17: The main function (bugged!)

To determine the size of the hash table, we’ve used this strange bit of
code: 1 << NUM_BITS ¶. We set NUM_BITS to 20 in Listing 1-15; 1 << 20 is a short-
cut for computing 220, which is 1,048,576. (The oaat hash function requires
that the hash table have a number of elements that is a power of 2.) Remem-
ber that the maximum number of users we’ll have is 100,000; the hash table
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size that I chose is about 10 times this maximum to account for the fact that
we insert multiple strings for each password. Smaller or larger hash tables
would have worked fine, too.

For each add operation ·, we increment the total for each substring by
using our add_to_hash_table helper function ¸. And for each query opera-
tion ¹, we use our in_hash_table helper function º to retrieve the total for
the password; if the password isn’t in the hash table » then we output 0.

Put all of our functions together and let’s try running our code! Re-
member this test case?

6

2 dish

1 brandish

1 radishes

1 aaa

2 dish

2 a

The output is supposed to be:

0

2

3

Unfortunately, our code gives this instead:

0

2

5

Wait, 5? Where’s that 5 coming from?
Look at the password aaa. How many a substrings are in there? There

are three! And we’re going to find each of them, resulting in three incre-
ments to the total for a. But that doesn’t make sense: aaa should be able to
bump up the total for a at most once, not multiple times. After all, aaa is only
one password.

The main Function, Take 2
What we need to do is make sure that, for each password, each of its sub-
strings counts only once. To do that, we’ll maintain an array of all of the
substrings that we’ve generated for the current password. Prior to using a
substring, we’ll search to make sure that we haven’t used that substring yet.

We’re introducing a new search here, so it’s worth thinking about whe-
ther we need a new hash table of substrings. While we could indeed add
another hash table for that, we don’t need to: as we already argued, each
password won’t have too many substrings, so a linear search (that is, an
element-by-element search) through them is going to be fast enough.

Check out Listing 1-18 for the finishing touch.
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¶ int already_added(char all_substrings[][MAX_PASSWORD + 1],

int total_substrings, char *find) {

int i;

for (i = 0; i < total_substrings; i++)

if (strcmp(all_substrings[i], find) == 0)

return 1;

return 0;

}

int main(void) {

static password_node *hash_table[1 << NUM_BITS] = {NULL};

int num_ops, op, op_type, i, j;

char password[MAX_PASSWORD + 1], substring[MAX_PASSWORD + 1];

password_node *password_ptr;

int total_substrings;

char all_substrings[MAX_PASSWORD * MAX_PASSWORD][MAX_PASSWORD + 1];

scanf("%d", &num_ops);

for (op = 0; op < num_ops; op++) {

scanf("%d%s", &op_type, password);

if (op_type == 1) {

total_substrings = 0;

for (i = 0; i < strlen(password); i++)

for (j = i; j < strlen(password); j++) {

strncpy(substring, &password[i], j - i + 1);

substring[j - i + 1] = '\0';

· if (!already_added(all_substrings, total_substrings, substring)) {

add_to_hash_table(hash_table, substring);

strcpy(all_substrings[total_substrings], substring);

total_substrings++;

}

}

} else {

password_ptr = in_hash_table(hash_table, password);

if (!password_ptr)

printf("0\n");

else

printf("%d\n", password_ptr->total);

}

}

return 0;

}

Listing 1-18: A new helper function and fixed main function
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We have a new already_added helper function here ¶ that we’ll use to tell
us whether the find substring is already in the all_substrings array for the
current password.

In the main function itself, notice now that we check whether we’ve seen
the current substring ·. If we have not, only then do we add it to the hash
table.

It’s time to submit our code to the judge. Go for it! As with Unique
Snowflakes, the speedup from using a hash table amounts to an improve-
ment from O(n2) to O(n), which is plenty fast for the three-second time limit.

Problem 3: Spelling Check
Sometimes, problems look like they can be solved in a particular way be-
cause they bear resemblance to other problems. Here’s a problem where it
seems that a hash table is appropriate, but on further reflection we see that
hash tables vastly overcomplicate what is required.

This is Codeforces problem 39J (Spelling Check). (The easiest way to
find it is to search online for Codeforces 39J.)

The Problem
In this problem, we are given two strings where the first string has one more
character than the second. Our task is to determine the number of ways in
which one character can be deleted from the first string to arrive at the sec-
ond string. For example, there is one way to get from favour to favor: we can
remove the u from the first string.

There are three ways to get from abcdxxxef to abcdxxef: we can remove
any of the x characters from the first string.

The context for the problem is a spellchecker. The first string might
be bizzarre (a misspelled word) and the second might be bizarre (a correct
spelling). In this case, there are two ways to fix the misspelling—by removing
either one of the two zs from the first string. The problem is more general,
though, having nothing to do with actual English words or spelling mistakes.

Input
The input is two lines, with the first string on the first line and the second
string on the second line. Each string can be up to one million characters.

Output
If there is no way to remove a character from the first string to get the sec-
ond string, output 0. Otherwise, output two lines:

• On the first line, output the number of ways in which a character
can be deleted from the first string to get the second string.

• On the second line, output a space-separated list of the indices of
the characters in the first string that can be removed to get the
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second string. The problem requires we index a string from 1, not
0. (That’s a bit annoying, but we’ll be careful.)

For example, for this input:

abcdxxxef

abcdxxef

we would output:

3

5 6 7

The 5 6 7 are the indices of the three x characters in the first string,
since we are counting from one (not zero).

The time limit for solving the test cases is two seconds.

Thinking About Hash Tables
I spent a truly embarrassing number of hours searching for the problems
that drive the chapters in this book. The problems dictate what I can teach
you about the relevant data structure or algorithm. I need the problem solu-
tions to be algorithmically complex, but the problems themselves need to be
sufficiently simple so that we can understand what is being asked and keep
the relevant details at hand. I really thought I had found exactly that kind of
hash table problem I needed for this section. Then I went to solve it.

In Problem 2, Login Mayhem, we were given the passwords as part of
the input. That was nice, because we just jammed each substring from the
passwords into a hash table and then used the hash table to search for them
as needed. Here, in Problem 3, we’re not given any such list of strings to in-
sert. Unfazed, when I first tried solving this problem, I created a hash table
and I inserted into it each prefix of the second (that is, shorter) string. For
example, for the word abc, I would have inserted a, ab, and abc. I also cre-
ated another hash table for the suffixes of the second string. For the word
abc, I would have inserted c, bc, and abc. Armed with those hash tables, I
proceeded to consider each character of the first string. Removing each
character is tantamount to splitting the string into a prefix and a suffix. We
can just use the hash tables to check whether both the prefix and suffix are
present. If they are, then removing that character is one of the ways in which
we can transform the first string into the second.

This technique is tempting, right? Want to give it a try?
The thing I had failed to keep in mind was that each string could be

up to a million characters long. We certainly can’t store all of the prefixes
and suffixes themselves in the hash table—that would take up way too much
memory. I played around with using pointers in the hash table to point to
both the start and end of the prefixes and suffixes. That solves the concerns
of memory use, but it doesn’t free us from having to compare these extra-
long strings whenever we perform a search using the hash table. In Unique
Snowflakes and Login Mayhem, the elements in the hash table were small:
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6 integers for a snowflake and 10 characters for a password. That’s nothing.
However, here, the situation is different: we might have strings of a million
characters! Comparing such long strings is very time-consuming.

Another timesink here is computing the hashcode of prefixes and suf-
fixes of these strings. We might call oaat on a string of length 900,000, and
then call it again on a string with one additional character. That duplicates
all of the work from the first oaat call, when all we wanted was to incorporate
one more character into the string being hashed.

Yet, I persisted. I had it in my mind that a hash table was the way to go
here, and I failed to consider alternatives. At this point, I probably should
have taken a fresh look at the problem. Instead, I learned about incremental
hash functions, hash functions that are very fast when generating the hash-
code for an element that is very similar to the previously hashed element.
For example, if I already have the hashcode for abcde, then computing the
hashcode for abcdef using an incremental hash function will be very fast,
because it can lean on the work already done for abcde rather than starting
from scratch.

Another insight was that, if it is too costly to compare extra-long strings,
we should try to avoid comparing them at all. We could just hope that our
hash function is good enough and that we’re lucky enough with the test
cases so that no collisions occur. If we look for some element in the hash
table, and we find a match . . . well, let’s hope it was an actual match and not
us getting unlucky with a false positive. If we’re willing to make this conces-
sion, then we can use a structure that’s simpler than the hash table array that
we used up to this point in the chapter. In array prefix1, each index i gives
the hashcode for the prefix of length i from the first string. In array prefix2,
each index i gives the hashcode for the prefix of length i from the second
string. In each of two other arrays, we can do similarly for the suffixes of the
first string and suffixes of the second string.

Here is some code that shows how the prefix1 array can be built:

// long long is a very large integer type in C99

unsigned long long prefix1[1000001];

prefix1[0] = 0;

for (i = 1; i <= strlen(first_string); i++)

¶ prefix1[i] = prefix1[i - 1] * 39 + first_string[i];

The other arrays can be built similarly.
It’s important that we use unsigned integers here. In C, overflow is well

defined on unsigned integers but not signed integers. If a word is long
enough, we’ll definitely get overflow, so we don’t want to allow undefined
behavior.

Now we can use these arrays to determine whether prefixes or suffixes
match. For example, to determine whether the first i characters of the first
string equal the first i characters of the second string, just check whether
prefix1[i] and prefix2[i] are equal.

Note how little work it takes to calculate the hashcode for prefix1[i]

given the hashcode for prefix1[i - 1]: it’s just a multiplication, followed by
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adding the new character ¶. Why multiply by 39 and add the character?
Why not use something else for the hash function? Honestly, because what I
chose didn’t lead to any collisions in the Codeforces test cases. Yes, I know,
it’s unsatisfying.

Not to worry, though: there’s a better way! To get there, we’ll stare at
the problem a little more closely, instead of just jumping to a hash table
solution.

An Ad Hoc Solution
Let’s think more carefully through an earlier example:

abcdxxxef

abcdxxef

Suppose that we remove the f from the first string (index 9). Does this
make the first string equal the second? No, so 9 will not show up in our
space-separated list of indices. The strings have a long prefix of matching
characters. There are six such characters to be exact: abcdxx. After that, the
two strings diverge, where the first string has an x and the second has an e.
If we don’t fix that, then we have no hope that the two strings will be equal.
The f is too far to the right for its deletion to produce equal strings.

That leads to our first observation: if the length of the longest common
prefix (in our example, six, the length of abcdxx) is p, then our only options
for deleting characters are those with indices of ≤ p + 1. In our example, we
should consider deleting the characters whose indices are ≤ 7: a, b, c, d, the
first x, the second x, and the third x. Deleting anything to the right of index
p + 1 doesn’t fix the diverging character at index p + 1 and hence can’t make
the strings equal.

Notice that only some of these deletions actually work. For example,
deleting the a, b, c, or d from the first string does not give us the second
string. Only each of the three deletions of x gives us the second string. So,
while we’ve got an upper bound for indices to consider (≤ p + 1), we also
need a lower bound.

To think about a lower bound, consider removing the a from the first
string. Does that make the two strings equal? Nope. The reasoning is similar
to that in the previous paragraph: there are diverging characters to the right
of the a that can’t possibly be fixed by removing the a. If the length of the
longest common suffix (in our example, four, the length of xxef) is s, then we
should consider deleting each of the final s + 1 characters of the first string.
In terms of indices, we’re interested only in those that are ≥ n – s, where
n is the length of the first string. In our example, this tells us to consider
only indices that are ≥ 9 – 4 = 5. In the above paragraph, we argued that
we should look at only indices that are ≤ 7. Together, we see that indices
5, 6, and 7 are the ones whose deletion transforms the first string into the
second. As can be seen in Figure 1-4, what matters here are the indices that
are included in both the prefixes and suffixes: each of those characters is a
valid deletion.
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a b c d x x x e f

1 2 3 4 5 6 7 8

a b c d x x e f

First seven characters: longest prefix (p) + 1

Last five characters: longest suffix (s) + 1

1 2 3 4 5 6 7 8 9

First seven characters: longest prefix (p) + 1

Last five characters: longest suffix (s) + 1

Figure 1-4: Overlap between the longest prefix and longest suffix

In general, the indices of interest go from n – s to p + 1. For any index
in this range, we know from p + 1 that the two strings are the same prior to
the index. We also know from n – s that the two strings are the same after the
index. Therefore, once we remove the index, the two strings are identical.
If the range is empty, then there are no indices whose deletion transforms
the first string into the second, so 0 is output in this case. Otherwise, we
use a for loop to loop through the indices and printf to produce the space-
separated list. Let’s take a look at the code!

Longest Common Prefix
We have a helper function in Listing 1-19 to calculate the length of the
longest common prefix of two strings.

int prefix_length(char s1[], char s2[]) {

int i = 1;

while (s1[i] == s2[i])

i++;

return i - 1;

}

Listing 1-19: Calculating the longest common prefix

Here s1 is the first string and s2 is the second string. We use 1 as the
starting index of the strings. Starting at index 1, the loop continues as long
as corresponding characters are equal. (In a case such as abcde and abcd, the e

will fail to match the null terminator at the end of abcd, so i will correctly end
up with value 5.) When the loop terminates, index i is the index of the first
mismatched character; therefore, i - 1 is the length of the longest common
prefix.

Longest Common Suffix
Now, to calculate the longest common suffix, we use Listing 1-20.
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int suffix_length(char s1[], char s2[], int len) {

int i = len;

while (i >= 2 && s1[i] == s2[i - 1])

i--;

return len - i;

}

Listing 1-20: Calculating the longest common suffix

The code is quite similar to Listing 1-19. This time, however, we com-
pare from right to left, rather than left to right. For this reason, we need the
len parameter, which gives us the length of the first string. The final com-
parison that we’re allowed to make is i == 2. If we had i == 1, then we’d be
accessing s2[0], which is not a valid element of the string!

The main Function
Finally, we have our main function in Listing 1-21.

#define SIZE 1000000

int main(void) {

¶ static char s1[SIZE + 2], s2[SIZE + 2];

int len, prefix, suffix, total;

· gets(&s1[1]);

¸ gets(&s2[1]);

len = strlen(&s1[1]);

prefix = prefix_length(s1, s2);

suffix = suffix_length(s1, s2, len);

¹ total = (prefix + 1) - (len - suffix) + 1;

º if (total < 0)

» total = 0;

¼ printf("%d\n", total);

½ for (int i = 0; i < total; i++) {

printf("%d", i + len - suffix);

if (i < total - 1)

printf(" ");

else

printf("\n");

}

return 0;

}

Listing 1-21: The main function

We use SIZE + 2 as the size of our two character arrays ¶. The maximum
number of characters that we’re required to read is one million, but we need
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an extra element for the null terminator. And we need one element on top
of that because we start indexing our strings at index 1, “wasting” index 0.

We read the first · and second string ¸. Notice we pass a pointer to
index 1 of each string: gets therefore starts storing characters at index 1

rather than index 0. After calling our helper functions, we calculate the
number of indices that can be deleted from s1 to give us s2 ¹. If this number
is negative º, then we set it to 0 ». This makes the printf call correct ¼. We
use a for loop ½ to print the correct indices. We want to start printing at
len - suffix, so we add len - suffix to each integer i.

When submitting to the judge, you may need to choose GNU G++ rather
than GNU GCC.

There we have it: a linear-time solution. We had to perform some tough
analysis, but after that we were able to proceed without complex code and
without the need for a hash table. Before considering a hash table, ask your-
self, is there anything about the problem that would make hash tables un-
wieldy? Is a search really necessary, or are there features of the problem that
obviate such searching in the first place?

Summary
A hash table is a data structure: a way to organize data so that certain oper-
ations are fast. Hash tables speed up the search for some specified element.
To speed up other operations, we need other data structures. For example,
in Chapter 8, we’ll learn about a heap, which is a data structure that can be
used when we need to quickly identify the maximum or minimum element
in an array.

Data structures are general approaches to organizing and manipulating
data. Hash tables apply to all kinds of problems beyond what is shown here;
I hope that you now have good intuition for when a hash table can be used.
Be on the lookout for other problems where otherwise efficient solutions
are hampered by repeated, slow searches.

Notes
Unique Snowflakes is originally from the 2007 Canadian Computing
Olympiad.

Login Mayhem is based on a problem from the 2017 Croatian Open
Competition in Informatics, Round 1.

Spelling Check is originally from the 2010 School Team Contest #1,
hosted by Codeforces. The prefix-suffix solution (used after I finally gave
up on a hash table solution) originates from a note posted at https://codeforces
.com/blog/entry/786.

In our hash table code, we used malloc to allocate nodes of our linked
lists. It’s sometimes possible to avoid using malloc and node structures al-
together. See “Unique Snowflakes: Implicit Linked Lists” in Appendix B if
you’re interested in how that can be done.

Hash Tables 35

https://codeforces.com/blog/entry/786
https://codeforces.com/blog/entry/786


The oaat hash function is by Bob Jenkins (see http://burtleburtle.net/bob/
hash/doobs.html).

For additional information about hash table applications and implemen-
tations, see Algorithms Illuminated (Part 2): Graph Algorithms and Data Struc-
tures by Tim Roughgarden (2018).
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2
TREES AND RECURS ION

In this chapter, we’ll look at two problems
that will require processing and answer-

ing questions about hierarchical data. The
first problem is about collecting candy from a

neighborhood. The second concerns queries on fam-
ily trees. Because loops are a natural means to process
collections of data, we’ll try them first. We’ll soon see,
though, that these problems push against what we can
easily express with loops, and this will motivate a shift
in the way we think about and solve such problems.
You’ll leave this chapter knowing about recursion, a
problem-solving technique that applies whenever the
solution to a problem involves solutions to simpler,
smaller problems.

Problem 1: Halloween Haul

This is DMOJ problem dwite12c1p4.



The Problem
It’s Halloween, a holiday that often involves getting dressed up, candy from
neighbors, and a stomachache. In this problem, you want to collect all the
candy from a particular neighborhood as efficiently as possible. The neigh-
borhood has a rigid, though strange, shape. Figure 2-1 shows a sample
neighborhood.

72 3 6

2

15

4 9

7 41

Figure 2-1: A sample neighborhood

The circles with numbers in them are houses. Each number gives the
amount of candy you’ll get by visiting that house. Candy values are at most
two digits. The circle at the top is your starting location. The circles without
numbers are intersections between streets, where you choose which way to
walk next. The lines that connect circles are the streets. Moving from one
circle to another corresponds to walking one street.

Let’s think about how you could move through this neighborhood. Be-
gin at the top circle. If you walk down the street on the right, you get to an
intersection. If you then walk down the street on the right from that circle,
you end up at a house and collect 41 pieces of candy. You could then walk
back up the two streets to the top to return to your starting location. You’ll
have thus walked a total of four streets and collected 41 pieces of candy.

However, your goal is to collect all of the candy and to do so by walking
the minimum number of streets. You’re allowed to end your walk as soon as
you’ve collected all of the candy; there’s no requirement to get back to the
top circle.

Input
The input consists of exactly five lines, where each line is a string of at most
255 characters that describes a neighborhood.

38 Chapter 2



How can a string encode a diagram? This isn’t like the Unique Snow-
flakes problem from Chapter 1, where each snowflake was just six integers.
Here we have circles, lines connecting circles, and candy values in some of
those circles.

As with the Unique Snowflakes problem, we can simplify things by ini-
tially ignoring some of the complexities of the full problem. For that rea-
son, I’ll defer the way that the input is provided until later. Here’s a teaser,
though: there’s a quite clever and compact way to represent these diagrams
as strings. Stay tuned.

Output
Our output will be five lines of text, with each line corresponding to one of
the five input lines. Each line of output contains two integers separated by a
space: the minimum number of streets walked to obtain all of the candy and
the total amount of candy obtained.

The time limit for solving the test case is two seconds.

Binary Trees
In Figure 2-2, I’ve augmented the neighborhood from Figure 2-1 to include
letters in the nonhouse circles. These letters have nothing to do with the
problem and won’t affect our code, but they allow us to uniquely refer to
each circle.

H

F G

A E

72 3 6 D

C 2

B 15

4 9

7 41

Figure 2-2: A sample neighborhood with
letter labels

The particular shape of the neighborhoods in our Halloween Haul prob-
lem is known as a binary tree. Both binary and tree are important words here.
Let’s unpack their definitions, starting with tree.
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Defining Tree
A tree is a structure that consists of nodes (the circles) and edges between nodes
(the lines representing streets). The node at the top—the H circle—is referred
to as the root. You’ll often see the term vertex used synonymously with node;
in this book, I’ll stick to “node.”

The nodes in the tree have a parent-child relationship. For example, we
say that H is the parent of F and G, because there is an edge from H to F and
an edge from H to G. We also say that F and G are children of H. More specif-
ically, F is the left child of H, and G is the right child of H. Any node that has
no children is referred to as a leaf. In the current problem, the nodes with
candy values (the houses) are leaves.

Much of the terminology that computer scientists use when discussing
trees is familiar from the notion of family trees. For example, F and G are
siblings, because they have the same parent. E is an example of a descendant
of H, because E is reachable by moving down the tree from H.

The height of a tree is determined by the largest number of edges that we
can traverse on a downward path from the root to a leaf. What is the height
of our sample tree? Well, here’s one downward path we could traverse: H
to G to 7. That path has two edges (H to G and G to 7), giving us a height of
at least two. However, we can find a much longer downward path! Here’s
one such longest downward path: H to F to E to D to C to B to 4. That path
has six edges on it. Convince yourself that there is no longer downward path
here. The height of this tree is six.

Trees have a very regular, repeatable structure, which helps us process
them. For example, if we remove the root H, along with the edges from H to
F and from H to G, we end up with two subtrees (Figure 2-3).

F

A E

72 3 6 D

C 2

B 15

4 9

G

7 41

Figure 2-3: A tree split in two

Notice that each of the two subtrees is a legitimate tree on its own: it
has a root, nodes and edges, and the proper structure. We could further
split these trees into even smaller pieces, and each of those pieces would be
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a tree. A tree can be thought of as consisting of smaller trees, each of which
consists of even smaller trees, and so on.

Defining Binary
In the context of trees, binary simply means that each node in our trees has
at most two children. A given node in a binary tree can have zero children,
or one child, or two children, but no more. The binary trees in our cur-
rent problem are in fact a little more constrained than that: each node is
required to have exactly zero or two children—you’ll never see a node with
exactly one child. Such a binary tree, where every nonleaf node has exactly
two children, is referred to as a full binary tree.

Solving the Sample Instance
Let’s go ahead and solve the Halloween Haul problem on our sample tree
(Figure 2-2). We’re required to return both the minimum number of streets
we have to walk to get all of the candy and the total amount of candy. We’ll
start with the latter, because it’s the easier of the two to calculate.

We can calculate the total amount of candy by hand: just add up all of
the candy values in the house nodes. If we do that, we get 7 + 41 + 72 + 3 + 6 +
2 + 15 + 4 + 9 = 159.

Now, let’s figure out the minimum number of streets that you must walk
to collect all of the candy. Does it even matter how we traverse the tree?
After all, you have to visit every house—maybe your quickest route is simply
to avoid visiting the same house multiple times.

Let’s traverse the tree by visiting left children before right children. By
using this strategy, here is the order in which you visit the nodes: H, F, A,
72, A, 3, A, F, E, 6, E, D, C, B, 4, B, 9, B, C, 15, C, D, 2, D, E, F, H, G, 7, G,
41. Note how your final stop is the 41 house and not H: you’re not required
to return to your starting location once you’re finished collecting the candy.
There are 30 edges in that path. (There are 31 nodes in the path, and the
number of edges in a path is always the number of nodes minus one.) Is
walking 30 streets the best you can do?

In fact, you can do better: the most efficient route involves walking only
26 streets. Spend some time now trying to find this more optimized traver-
sal. As in the 30-street traversal, you’ll have to visit the nonhouse nodes mul-
tiple times and you want to visit each house exactly once, but you can save
four street-walks by being strategic about the final house that you visit.

Representing Binary Trees
To create a solution in code, we’ll need to find a way to represent neigh-
borhood trees. As you’ll see, it’s convenient to convert the strings from the
input that represent trees to explicit tree structures that represent relation-
ships between nodes. In this section, I’ll provide those tree structures. We
won’t yet be able to read the strings and convert them to trees, but we’ll be
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able to hardcode trees. That gives us the foothold we need to start solving
the problem.

Defining Nodes
When solving the Unique Snowflakes problem in the last chapter, we used a
linked list to store a chain of snowflakes. Each snowflake node contained the
snowflake itself, and it also contained a pointer to the next snowflake in the
chain:

typedef struct snowflake_node {

int snowflake[6];

struct snowflake_node *next;

} snowflake_node;

We can use a similar struct to represent a binary tree. In our neighbor-
hood trees, the houses have candy values and the other nodes do not. Even
though we have these two kinds of nodes, we’ll be okay with just one node
structure. We’ll just make sure that house nodes have correct candy val-
ues; we won’t even initialize the candy values of nonhouse nodes, because
we won’t look at those values anyway.

That gives us this starting point:

typedef struct node {

int candy;

// ... what else should we add?

} node;

In a linked list, each node points to the next node in the chain (or is NULL
if there is no next node). From one node, we can move to exactly one other
node. In contrast, in a tree, a single next pointer per node will not suffice,
because a nonleaf node will have both a left child and a right child. We need
two pointers per node, as in Listing 2-1.

typedef struct node {

int candy;

struct node *left, *right;

} node;

Listing 2-1: The node struct

It’s apparent that the parent is not included here. Should we throw in a
*parent as well, letting us access the parent of a node in addition to its chil-
dren? This would be useful for some problems, but it is not required for
Halloween Haul. We will need a way to move up the tree (from child to par-
ent), but we can do so implicitly, without explicitly following parent point-
ers. You’ll see more about this later.
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Building a Tree
With this node type in hand, we can now build sample trees. We work bottom-
up, uniting subtrees until we reach the root. Let’s demonstrate the start of
this process on our sample tree.

We’ll start with the 4 and 9 nodes at the bottom of our sample tree.
Then we can combine those under a new parent to create the subtree whose
root is B.

Here’s the 4 node:

node *four = malloc(sizeof(node));

four->candy = 4;

four->left = NULL;

four->right = NULL;

This is a house node, so we remember to give it a candy value. It’s also
important to set its left and right children to NULL. If we don’t do that, they’ll
remain uninitialized, pointing to unspecified memory, and that’ll mean trou-
ble if we try to access it.

Now consider the 9 node. This is another house, so the code is struc-
turally identical:

node *nine = malloc(sizeof(node));

nine->candy = 9;

nine->left = NULL;

nine->right = NULL;

We now have two nodes. They’re not yet part of a tree. They’re hanging
out by themselves. We can unite them under a common parent, like this:

node *B = malloc(sizeof(node));

B->left = four;

B->right = nine;

This B node is given a left pointer to the 4 house and a right pointer to
the 9 house. It’s candy member is not initialized, which is fine because non-
house nodes have no sensible candy value anyway.

Figure 2-4 depicts what we’ve generated so far.

B

4 9

Figure 2-4: The first three nodes
in our hardcoded tree
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Before powering ahead and producing the C subtree, let’s do a little
cleanup. Creating a house node involves four things: allocating the node,
setting the candy value, setting the left child to NULL, and setting the right
child to NULL. Similarly, creating a nonhouse node involves doing three
things: allocating the node, setting the left child to some existing subtree,
and setting the right child to some other existing subtree. We can capture
these steps in helper functions rather than typing them out each time, as
shown in Listing 2-2.

node *new_house(int candy) {

node *house = malloc(sizeof(node));

if (house == NULL) {

fprintf(stderr, "malloc error\n");

exit(1);

}

house->candy = candy;

house->left = NULL;

house->right = NULL;

return house;

}

node *new_nonhouse(node *left, node *right) {

node *nonhouse = malloc(sizeof(node));

if (nonhouse == NULL) {

fprintf(stderr, "malloc error\n");

exit(1);

}

nonhouse->left = left;

nonhouse->right = right;

return nonhouse;

}

Listing 2-2: Helper functions for creating nodes

Let’s rewrite our earlier four, nine, B code to use these helper functions,
and add the 15 and C nodes while we’re at it:

node *four = new_house(4);

node *nine = new_house(9);

node *B = new_nonhouse(four, nine);

node *fifteen = new_house(15);

node *C = new_nonhouse(B, fifteen);

Figure 2-5 depicts our five-node tree.
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B

4 9

C

15

Figure 2-5: The first five nodes in
our hardcoded tree

Notice that node C has a left child that is a nonhouse node (B in our
code) and a right child that is a house node (fifteen in our code). Our
new_nonhouse function allows this asymmetry (one nonhouse child and one
house child): each is just a node. We can mix and match nonhouse nodes
and house nodes at will.

At this point, we have a five-node subtree rooted at node C. We should
be able to use that C node to access the candy values stored in the tree. (We
could also use B, four, nine, and fifteen to access parts of the tree, because
building a tree piecewise leaves a residue of node variables in our wake, but
later we’ll build a function for converting a string to a tree that will furnish
us with only the tree’s root, so let’s not cheat by using those variables here.)

Here’s a quick exercise: What does this print?

printf("%d\n", C->right->candy);

If you said 15, you’d be correct! We access C’s right child, which is the
fifteen house node, and then we access fifteen’s candy value.

How about this?

printf("%d\n", C->left->right->candy);

That should output 9: a left and then a right takes us from C to nine.
Now try this:

printf("%d\n", C->left->left);

Yikes! On my laptop, I’m getting the value 10752944. Why? The reason
is that we’re printing a pointer value, not a candy value. We will have to be
careful here.

Finally, what would this print?

printf("%d\n", C->candy);

This gives us a useless number. Here we’re printing the candy member
for a nonhouse node, but only houses have meaningful values of candy.

We’re now ready to start tackling this problem. Finish up the code to
build the sample tree and we’ll be on our way.
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Collecting All the Candy
We have two main tasks: calculating the minimum number of streets re-
quired to collect all of the candy and calculating the total amount of candy
in the tree. We’ll write a helper function for each task, starting with calculat-
ing the total amount of candy, the easier of the two tasks. The helper func-
tion will have the following signature:

int tree_candy(node *tree)

The function takes a pointer to a node that is the root of the tree and re-
turns an integer that will be the total amount of candy in the tree.

If we were dealing with linked lists, we could use a loop like we did when
solving the Unique Snowflakes problem. The body of the loop would pro-
cess the current node and then use the next member of the node to advance
to the next node. At each step, there’s only one place to go: further down
the linked list. However, the structure of binary trees is more complex. Each
nonleaf node has a left and a right subtree. Each must be traversed; other-
wise, we’ll miss processing part of the tree!

To show a tree traversal in action, we will return to our sample tree
(Figure 2-2): Beginning at node H, where should we go first? We could move
right to G and then move right again to 41, collecting 41 pieces of candy
there. Then what? We’re at a dead end, and there’s a lot more candy to col-
lect. Remember that each nonleaf node stores pointers only to its left and
right children, not to its parent. Once at 41, we have no way to get back
up to G.

Starting again, we need to move from H to G and to record that we must
later process the F subtree—otherwise, we’ll have no way to return to the
F subtree.

Once at G, we similarly need to move to 41 and to record that we must
later process the 7 subtree. When we’re at 41, we see that there are no sub-
trees to process, and we have recorded two subtrees (F and 7) that we still
need to process.

Perhaps next we choose to process the 7 subtree, giving us a total candy
value of 41 + 7 = 48. After that, we’ll process the F subtree. Making any one
decision about where to go from F leaves a whole subtree unprocessed, so
we also need to record that.

That is, if we use a loop, for each nonleaf node we must do two things:
choose one of its subtrees to process first and record that the other subtree
is pending to be processed. Choosing one of the subtrees amounts to fol-
lowing the left or right pointer—there is no problem there. Recording infor-
mation so that we can visit the other subtree later, however, will be trickier.
We’ll need a new tool.

Storing Pending Subtrees on a Stack
At any moment, we can have multiple subtrees pending for us to visit later.
We need to be able to add another subtree to that collection and to remove
and return subtrees when we’re ready to process them.
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We can use an array to manage this bookkeeping. We’ll define a large ar-
ray that can hold as many references to pending subtrees as needed. To tell
us how many subtrees are pending, we’ll keep a highest_used variable that will
track the highest index being used in the array. For example, if highest_used
is 2, it means that indices 0, 1, and 2 hold references to pending subtrees and
that the rest of the array is currently unused. If highest_used is 0, it means
that only index 0 is being used. To signify that no part of the array is being
used, we set highest_used to -1.

The easiest spot to add to the array is at index highest_used + 1. If we
tried to add an element anywhere else, we’d first have to move existing el-
ements to the right; otherwise, we’d overwrite one of the existing elements!
Similarly, the easiest element to remove from the array is highest_used.
Using any other index would necessitate moving elements to the left to fill
the vacancy left by the removed element.

Using this scheme, suppose we first add a reference to subtree F and
then add a reference to subtree 7. This places the F subtree at index 0 and
the 7 subtree at index 1. The value of highest_used is currently 1. Now, when
we remove an element from this array, which subtree do you think gets re-
moved: the F subtree or the 7 subtree?

The 7 subtree gets removed! In general, the element that was most re-
cently added is the one that is removed.

Computer scientists refer to this as last-in, first-out (LIFO) access. Collec-
tions of data that provide LIFO access are referred to as stacks. Adding an
element to a stack is known as a push, and removing an element from a stack
is known as a pop. The top of the stack refers to the element that would next
be popped from the stack; that is, the top of the stack is the most recently
pushed item.

There are real-life stacks all over the place. Say you have some plates that
have just been washed, and you put them away on a shelf in a cupboard, one
after the other. The last one that you add (push) to the shelf will be at the
top of the stack, and it will be the first plate that you remove (pop) when
retrieving a plate from the cupboard. This is LIFO.

A stack also powers the undo functionality in your word processor. Sup-
pose you type a word, then a second word, then a third word. Now you hit
undo. The third word goes away, since it was the last one that you entered.

Implementing a Stack
Let’s implement the stack. To begin, we package both the array and highest

_used into a struct. This keeps the stack’s variables together and also allows
us to create as many stacks as we wish. (In Halloween Haul, we need only
one stack, but you might use this code in other settings where multiple stacks
are required.) Here’s our definition:

#define SIZE 255

typedef struct stack {

node * values[SIZE];
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int highest_used;

} stack;

Recall that each input line is at most 255 characters. Each character will
represent at most one node. Each tree that we deal with will thus have at
most 255 nodes, and this is why our values array has space for 255 elements.
Also, notice that each element in values is of type node *, a pointer to node.
We could have stored nodes in there directly, rather than pointers to nodes,
but that would be less memory efficient because the nodes from the tree
would be duplicated when added to the stack.

We’ll create a function for each operation on a stack. First, we need a
new_stack function that creates a new stack. Next, we need push_stack and
pop_stack functions to add to and remove from the stack, respectively.
Finally, we’ll have an is_empty_stack function that tells us whether the stack
is empty.

The new_stack function is provided in Listing 2-3.

stack *new_stack(void) {

¶ stack *s = malloc(sizeof(stack));

if (s == NULL) {

fprintf(stderr, "malloc error\n");

exit(1);

}

· s->highest_used = -1;

return s;

}

Listing 2-3: Creating a stack

First, we allocate memory for the stack ¶. Then, we set highest_used to
-1 ·; recall that -1 here means an empty stack. Notice that we don’t do any-
thing to initialize the elements of s->values here: our stack is empty, so its
values are irrelevant.

I’ve put stack_push and stack_pop together in Listing 2-4 to highlight the
symmetry of their implementation.

void push_stack(stack *s, node *value) {

¶ s->highest_used++;

· s->values[s->highest_used] = value;

}

node * pop_stack(stack *s) {

¸ node * ret = s->values[s->highest_used];

¹ s->highest_used--;

º return ret;

}

Listing 2-4: Push and pop on a stack
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In push_stack, we first make room for a new element ¶, and then place
value in that free location ·.

Our pop_stack function is responsible for removing the element at in-
dex highest_used. If it did just that, however, then the function wouldn’t be
all that useful: we’d be able to call it and it would pop the element for us,
but it wouldn’t tell us what was popped! To remedy that, we store in ret the
element from the stack that we are about to remove ¸. We then remove
the element from the stack by decreasing highest_used by one ¹. Finally, we
return the element that was removed º.

I have not included error checking in push_stack or pop_stack. Notice that
push_stack would fail if you tried to push more than the maximum number
of elements—but we’re safe, because we’ve made the stack as big as any input
we’ll be provided. Likewise, pop_stack would fail if you tried to pop from an
empty stack—but we’ll be careful to check that the stack is nonempty before
we pop. Of course, general-purpose stacks should be made more robust!

We’ll determine whether a stack is empty using is_empty_stack (shown in
Listing 2-5), which uses == to check whether highest_used is -1.

int is_empty_stack(stack *s) {

return s->highest_used == -1;

}

Listing 2-5: Determining whether a stack is empty

Before we calculate the total amount of candy in a tree, let’s exercise
our stack code with a small, standalone example, as given in Listing 2-6. I
encourage you to take a few minutes to trace the example on your own. Pre-
dict what will happen! Then, run the code and check whether the output
matches what you expected.

int main(void) {

stack *s;

s = new_stack();

node *n, *n1, *n2, *n3;

n1 = new_house(20);

n2 = new_house(30);

n3 = new_house(10);

push_stack(s, n1);

push_stack(s, n2);

push_stack(s, n3);

while (!is_empty_stack(s)) {

n = pop_stack(s);

printf("%d\n", n->candy);

}

return 0;

}

Listing 2-6: An example of using a stack
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Let’s figure out what this example does. First we create a new stack
called s. We then create three house nodes: n1 has 20 pieces of candy, n2 has
30 pieces of candy, and n3 has 10 pieces of candy.

We push these (single-node) subtrees onto the stack: first n1 is pushed,
then n2, then n3. As long as the stack is nonempty, we pop an element from
the stack and print its candy value. The elements come off the stack in the
opposite order in which they were pushed, so we get 10, 30, 20 as the result
of the printf calls.

A Stack Solution
We now have a means of keeping track of pending subtrees: whenever we
make a choice of which subtree to process, we put the other one on the
stack. What’s important for calculating the total amount of candy is that the
stack gives us a way to push a subtree (to help us remember that subtree)
and pop a subtree (to help us process a subtree when we’re ready to do so).

We could also have used a queue, a data structure to give us elements in
first-in, first-out (FIFO) order, which would change the order in which sub-
trees are visited and the order in which we add candy to our total, but it
would give us the same end result. I chose a stack because it’s easier to im-
plement than a queue.

We’re now ready to implement tree_candy using a stack. We need to han-
dle two cases: the first is what we do when looking at a nonhouse node, and
the second is what we do when looking at a house node.

To know whether our current node is a nonhouse node, we can check its
left and right pointers. For a nonhouse, both will be non-null, because they
point to subtrees. If we confirm we’re looking at a nonhouse node, we store
the pointer to the left subtree in the stack, and we proceed down the right
subtree. The code for the nonhouse-node case goes like this:

if (tree->left && tree->right) {

push_stack(s, tree->left);

tree = tree->right;

}

Otherwise, if left and right are NULL, then we’re looking at a house node.
House nodes have candy, so the first thing we should do is add that house’s
candy value to our total amount of candy:

total = total + tree->candy;

It’s a house, so there’s no further down in the tree we can go. If the
stack is empty, we’re done: an empty stack means that there are no more
pending trees to process. If the stack is not empty, then we need to pop a
subtree from the stack and process that subtree. Here’s the code for process-
ing a house:

total = total + tree->candy;

if (is_empty_stack(s))

tree = NULL;

50 Chapter 2



else

tree = pop_stack(s);

The complete code for tree_candy, using a stack, is given in Listing 2-7.

int tree_candy(node *tree) {

int total = 0;

stack *s = new_stack();

while (tree != NULL) {

if (tree->left && tree->right) {

push_stack(s, tree->left);

tree = tree->right;

} else {

total = total + tree->candy;

if (is_empty_stack(s))

tree = NULL;

else

tree = pop_stack(s);

}

}

return total;

}

Listing 2-7: Calculating the total amount of candy using a stack

Let n be the number of nodes in a tree. Each time through the while

loop, tree is a different node. We therefore visit each node just once. Each
node is also pushed to and popped from the stack at most once. In all, each
node is involved in a constant number of steps, so we have a linear-time, or
O(n), algorithm here.

A Completely Different Solution
Our tree_candy function works, but it isn’t the simplest solution. We had to
write an implementation of a stack. We had to keep track of pending trees.
We had to backtrack to a pending tree whenever we hit a dead end. For two
reasons, using a stack in the way we have done may not be the ideal solution
strategy when writing functions on trees:

1. Whenever we have to go one way but return later to go the other
way, we’re stuck using this kind of stack code. Tree-processing is rife
with problems that require this pattern.

2. The complexity of stack-based code scales with the complexity of
the problem. Adding up all of the candy in a tree isn’t so bad, but
other related problems that we solve later in this chapter are more
challenging. Those problems require not only a stack of pending
trees but control flow information for tracking the processing that
we need to perform on each tree.
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We’ll rewrite our code so it’s able to work at a higher level of abstrac-
tion, eliminating stacks completely from both our code and our thought
processes.

Recursive Definitions
Our stack-based tree_candy function is concerned with the particular steps
needed to solve the problem: push this on the stack, move that way in the
tree, pop from the stack when we hit a dead end, stop when we’ve processed
the entire tree. I will now give you another solution that focuses on the struc-
ture of the problem. This method solves the main problem in terms of solu-
tions to smaller subproblems. The solution comprises two rules:

Rule 1 If the root of the tree is a house node, then the total amount of
candy in the tree equals the amount of candy at that house.

Rule 2 If the root of the tree is a nonhouse node, then the total
amount of candy in the tree equals the total amount of candy in the left
subtree plus the total amount of candy in the right subtree.

This is called a recursive definition. A definition is recursive if it offers
a solution to a problem by referring to solutions to subproblems. Rule 2 is
where we see this in action. We care about solving the original problem of
calculating the total amount of candy in the tree. That total can be calcu-
lated, according to Rule 2, by adding up the solutions to two smaller prob-
lems: the total amount of candy in the left subtree and the total amount of
candy in the right subtree.

It’s at about this time that students in my classes start blanching all over
the place. How is this description going to solve anything? Even if it does,
how can this kind of thing be written in code? The problem is aggravated by
books and tutorials that imbue recursive definitions with a mystical quality
that is to be trusted but not understood. However, there is no leap of faith
or temerity required.

Let’s work through a small example to get a feel for why this recursive
definition is correct.

Consider this tree consisting of a single house with four pieces of candy:

4

Rule 1 immediately tells us that the answer for this tree is four. When-
ever we see this tree later, just remember that the answer is four.

Now, consider this tree consisting of a single house with nine pieces of
candy:

9

Again, Rule 1 applies, telling us that the answer is nine: when we see this
tree later, we’ll just respond that the answer is nine.
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Now, let’s solve the problem for a bigger tree:

B

4 9

This time, Rule 1 does not apply: the root of the tree is a nonhouse
node, not a house node. However, we are rescued by Rule 2, which tells
us that the total amount of candy here is the total amount of candy in the
left subtree plus the total amount of candy in the right subtree. We already
know that the total amount of candy in the left subtree is four: it is a tree
that we have seen before. Similarly, we know that the total amount of candy
in the right subtree is nine: we have seen that tree before, too. By Rule 2,
therefore, the entire tree has 4 + 9 = 13 pieces of candy. Remember this for
when we see this tree again!

Let’s go a little further. Here’s another one-house tree, this one with 15
pieces of candy:

15

Rule 1 tells us this tree has a total of 15 pieces of candy. Remember that!
Now consider a five-node tree:

B

4 9

C

15

Rule 2 applies here, because the root is a nonhouse node. We need the
total amount of candy in the left subtree and the total amount of candy in
the right subtree. We already know the total amount of candy in the left sub-
tree, as we remember our earlier answer of 13. There’s no point going into
that left subtree and recalculating anything: we already know the answer.
Similarly, we already know the total amount of candy in the right subtree, as
it was 15. By Rule 2, then, we have a total of 13 + 15 = 28 pieces of candy in
the tree.

You can keep using this logic to find the total amount of candy in big-
ger and bigger trees. As we did in the example here, solve smaller subtrees
before larger subtrees. In doing so, Rule 1 or Rule 2 will always apply, and
answers for smaller subtrees will be known when they are needed.

Let’s encode Rule 1 and Rule 2 as a C function; see Listing 2-8.
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int tree_candy(node *tree) {

¶ if (!tree->left && !tree->right)

return tree->candy;

· return tree_candy(tree->left) + tree_candy(tree->right);

}

Listing 2-8: Calculating the total amount of candy using recursion

Notice how Rule 1 and Rule 2 are directly represented here. We have
an if statement whose condition is true when the left and right subtrees are
NULL ¶. No subtrees means that tree is a house node. We should therefore
apply Rule 1, which is exactly what we do. Specifically, we return the amount
of candy in the house node tree. If Rule 1 does not apply, we know that tree
is a nonhouse node, and we can implement Rule 2 and return the candy in
the left subtree plus the candy in the right subtree · . . . but here we pause.

How does Rule 2 work here? The total amount of candy in the left sub-
tree is obtained by calling tree_candy on the left subtree. This is the same
as for the right subtree: to obtain the total amount of candy in the right
subtree, we’re calling tree_candy on the right subtree. But we’re already in
tree_candy!

Calling a function from inside itself is known as a recursive call. A func-
tion that makes a recursive call is said to be using recursion. One of the biggest
mistakes you can make at this point is to try to trace what’s going on in the
computer when this recursion happens. I’m going to refrain from giving the
low-level details on how the computer organizes these recursive calls. (Suf-
fice it to say that it uses a stack to keep track of pending function calls. It’s
very similar to how we earlier used a stack in our code to solve tree_candy!
For that reason, our recursive code, much like our stack-based code, is an
O(n) solution.)

Over and over, I’ve seen the quagmire that can result from trying to
manually trace recursive calls. It’s the wrong level of abstraction. Let the
computer execute it in the same way that, without a second thought, you let
it execute your loops or function calls.

Here’s how I suggest thinking through what the recursive code is doing:

• If the root of the tree is a house, return its amount of candy.

• Otherwise, the root of the tree is a nonhouse. Return the total
amount of candy in the left subtree plus the total amount of candy
in the right subtree.

It’s easy to err when writing recursive code. One common mistake is to
inadvertently throw information away when in fact it should be returned.
The following flawed implementation exhibits this error:

// bugged!

int tree_candy(node *tree) {

if (!tree->left && !tree->right)

return tree->candy;
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¶ tree_candy(tree->left) + tree_candy(tree->right);

}

Our bug is that we return nothing from the recursive calls ¶, as there is
no return keyword. We’re supposed to return the sum, not throw it away.

Another common mistake is to make a recursive call on something that’s
not a smaller subproblem of the current problem. Here’s an example:

// bugged!

int tree_candy(node *tree) {

if (!tree->left && !tree->right)

return tree->candy;

¶ return tree_candy(tree);

}

Look at the second return statement ¶. If I told you that the total amount
of candy in a tree is obtained by calculating the total amount of candy in the
tree, I think you’d be quite vexed—but that’s exactly the rule that it embod-
ies. This function will not work on a tree whose root is a nonhouse node: it
will continue to use up memory with pending function calls until the pro-
gram crashes.

Practicing Recursion
Before proceeding with solving the Halloween Haul problem, let’s practice
with recursion by writing two more functions in the spirit of tree_candy.

First, given a pointer to the root of a full binary tree, let’s return the
number of nodes in the tree. If the node is a leaf, then there is only one
node in the tree, so 1 is the correct return value. Otherwise, we’re looking
at a nonleaf, and the number of nodes in the tree is one (this node) plus the
number of nodes in the left subtree plus the number of nodes in the right
subtree. That is, the two rules are as follows:

Rule 1 If the root of the tree is a leaf node, then the number of nodes
in the tree equals 1.

Rule 2 If the root of the tree is a nonleaf node, then the number of
nodes in the tree equals 1 plus the number of nodes in the left subtree
plus the number of nodes in the right subtree.

A rule like Rule 1 is known as a base case, because it can be solved di-
rectly, without using recursion. A rule like Rule 2 is known as a recursive case,
because its solution requires that smaller subproblems be recursively solved.
Every recursive function requires at least one base case and at least one re-
cursive case: the base case tells us what to do when the problem is easy, and
the recursive case tells us what to do when the problem is not.

Converting these rules to code yields the function in Listing 2-9.

int tree_nodes(node *tree) {

if (!tree->left && !tree->right)

return 1;
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return 1 + tree_nodes(tree->left) + tree_nodes(tree->right);

}

Listing 2-9: Calculating the number of nodes

Second, let’s write a function to return the number of leaves in a tree. If
the node is a leaf, we return 1. If the node is a nonleaf, then that node is not
a leaf, so it doesn’t count; what does count is the number of leaves in the left
subtree and the number of leaves in the right subtree. The code is given in
Listing 2-10.

int tree_leaves(node *tree) {

if (!tree->left && !tree->right)

return 1;

return tree_leaves(tree->left) + tree_leaves(tree->right);

}

Listing 2-10: Calculating the number of leaves

The only difference between this code and that in Listing 2-9 is the lack
of the 1 + in the last line. Recursive functions are often very similar to each
other but can compute very different things!

Walking the Minimum Number of Streets
I’ve gone on and on and on, so you might want to revisit the problem de-
scription to reorient yourself. We know how to produce the total amount of
candy now, but that’s only one of the two required outputs. We also need to
output the minimum number of streets that must be walked to obtain all of
the candy. No candy for guessing that we’ll nail this using recursion!

Calculating the Number of Streets
Earlier, I provided a 30-street walk for the tree in Figure 2-2. I also asked you
to find an even better—and in fact optimal—26-street walk. This optimal walk
saves four streets by taking advantage of the fact that we can end the walk as
soon as the final piece of candy has been collected. There’s no requirement
in the problem description to walk back to the root of the tree.

What if we did return to the root of the tree as part of the walk? It’s true
that we’d get the wrong answer, because we’d walk more streets than re-
quired. It’s also true, though, that returning to the root greatly simplifies
the problem. We don’t have to be concerned with the thorny issue of how to
cleverly do the walk to minimize the number of streets. (After all, we’ll end
up back at the root, so we don’t have to orchestrate things so that the final
house we visit is a good choice.) Perhaps we’ll be able to overshoot the min-
imum (by returning to the root) and then subtract off the extra streets that
we walked? That’s our gambit!

Let’s follow the same plan as for tree_candy and define a base case and a
recursive case.
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What do we do if the root of the tree is a house—how many streets do we
walk starting from that house and getting back to that house? The answer is
zero! No streets are required.

What do you do if the root is a nonhouse? Return to Figure 2-3, where
I split the tree in two. Suppose we knew the number of streets required to
walk the F subtree and the number of streets required to walk the G sub-
tree. We can calculate those recursively. Then, add H and its two edges back
in. How many more streets must we walk now? We have to walk one street
from H to F and then walk one street from F back to H after we finish with
the F subtree. We have to do similarly for G: walking from H to G and then
from G back to H after we finish with the G subtree. That’s four additional
streets, beyond those that we get from the recursion.

Here are our two rules:

Rule 1 If the root of the tree is a house node, then the number of
streets we walk is zero.

Rule 2 If the root of the tree is a nonhouse node, then the number of
streets we walk is the number of streets we walk for the left subtree plus
the number of streets we walk for the right subtree plus 4.

At this stage, you should be getting a little more comfortable converting
such rules into code. Listing 2-11 supplies an implementation.

int tree_streets(node *tree) {

if (!tree->left && !tree->right)

return 0;

return tree_streets(tree->left) + tree_streets(tree->right) + 4;

}

Listing 2-11: Calculating the number of streets getting back to the root

If you perform a walk in Figure 2-2 starting at H, collecting all the candy,
and ending at H, you will walk 32 streets. No matter how you walk the tree,
as long as you visit each house once and don’t unnecessarily rewalk streets,
you’ll get 32. The minimum number of streets we can walk, with no require-
ment to return to the root, is 26. Since 32 – 26 = 6, by ending at the root we
overshoot the correct answer by six.

Because there’s no requirement to return to the root, it makes sense to
arrange our walk so that the last house that we visit is as far away as possible
from the root. For example, ending at the house with 7 pieces of candy is a
bad move, because we’re only two streets from H anyway—but look at those
gloriously distant 4 and 9 houses way at the bottom. It would be wonderful
to end our walk at one of those houses. If we end our walk at 9, for example,
then we’d save six streets: 9 to B, B to C, C to D, D to E, E to F, and F to H.

The plan, then, is to end our walk at a house that is located the maxi-
mum number of streets away from the root. If that house is six streets from
the root, it means that there is a path of six edges from the root to some leaf.
This is exactly the definition of the height of a tree! If we can calculate the
height of a tree—recursively, I’ll bet—then we can subtract the height from
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what tree_streets gives us. That leaves us off at a house furthest from the
root, thereby saving us the maximum number of streets.

As a quick aside, there’s actually no reason to know which house is the
furthest, or even to know how to perform a walk to make that house be last.
All we have to do is convince ourselves that we can construct a walk to make
that house be last. I’ll give a quick argument using Figure 2-2 that I hope
convinces you. Starting at H, compare the heights of the F and G subtrees,
and completely walk whichever has smaller height—G, in this case. Then,
repeat this process using F’s subtrees. Compare the heights of the A and E
subtrees, and completely walk the A subtree (because it’s height is smaller
than that of E). Keep doing this until all subtrees have been walked; the final
house that you visit will be a house furthest from H.

Calculating Tree Height
Let’s now move on to tree_height and another manifestation of our Rule 1–
Rule 2 recursive approach.

The height of a tree consisting of a single house is zero, because there
are no edges at all that we can traverse.

For a tree whose root is a nonhouse, consult Figure 2-3 again. The F sub-
tree has a height of five, and the G subtree has a height of one. We can solve
these subproblems recursively. The height of the original tree, with H in
there, is one more than the maximum of five and one, because an edge from
H increases the number of edges to each leaf by one.

That analysis gives us these two rules:

Rule 1 If the root of the tree is a house node, then the tree’s height
is zero.

Rule 2 If the root of the tree is a nonhouse node, then the tree’s height
is one more than the maximum of the left subtree’s height and the right
subtree’s height.

See Listing 2-12 for the code. We have a little max helper function to tell
us the maximum of two numbers; otherwise, tree_height holds no surprises.

int max(int v1, int v2) {

if (v1 > v2)

return v1;

else

return v2;

}

int tree_height(node *tree) {

if (!tree->left && !tree->right)

return 0;

return 1 + max(tree_height(tree->left), tree_height(tree->right));

}

Listing 2-12: Calculating the height of the tree
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We now have tree_candy to calculate the total amount of candy and tree

_streets and tree_height to calculate the minimum number of streets. Putting
those three together gives us a function that solves the problem given a tree;
see Listing 2-13.

void tree_solve(node *tree) {

int candy = tree_candy(tree);

int height = tree_height(tree);

int num_streets = tree_streets(tree) - height;

printf("%d %d\n", num_streets, candy);

}

Listing 2-13: Solving the problem, given a tree

Try calling this function on the trees you built in “Building a Tree” on
page 43.

Reading the Input
We are now ever so close, but we’re not quite there. Yes, we can solve the
problem if we have a tree in hand, but recall that the input to the problem
is lines of text, not trees. We’ll have to convert each of those lines to a tree
before we can unleash tree_solve on it. At last, we’re finally ready to unveil
the way in which trees are represented as text.

Representing a Tree as a String
I’ll show you the correspondence between a line of text and its tree by pro-
gressing through several examples.

First, a tree of a single house node is represented simply as the text of
the candy value. For example, this tree (whose node’s candy value is four):

4

is represented as follows:

4

A tree whose root is a nonhouse node is represented (recursively!) by
the following, in order: an opening parenthesis, a first smaller tree, a space,
a second smaller tree, and a closing parenthesis. The first smaller tree in
there is the left subtree, and the second smaller tree is the right subtree. For
example, this three-node tree

B

4 9
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is represented like this:

(4 9)

Similarly, here is a five-node tree:

B

4 9

C

15

This five-node tree is represented like this:

((4 9) 15)

Here, the left subtree is (4 9) and the right subtree is 15.
Written as rules, we have the following:

Rule 1 If the text is the digits of integer c, then the tree is a single
house node with c candy.

Rule 2 If the text starts with an opening parenthesis, then the root
of the tree is a nonhouse node. After the opening parenthesis, the text
contains the tree’s left subtree, a space, the tree’s right subtree, and a
closing parenthesis.

Reading in a Nonhouse Node
Our goal is to write function read_tree with this signature:

node *read_tree(char *line)

It takes a string, and it returns the corresponding tree.
Let’s start by implementing Rule 2, since Rule 1 involves some subtle

work to convert characters to integers.
Rule 2, the recursive rule, requires us to make two calls to read_tree: one

to read the left subtree and one to read the right subtree. Let’s see how far
we get:

node *tree;

tree = malloc(sizeof(node));

if (line[0] == '(') {

¶ tree->left = read_tree(&line[1]);

· tree->right = read_tree(???);

return tree;

}

After allocating memory for the root of our tree, we make a recursive
call to read the left subtree ¶. We pass a pointer to index 1 of line so that
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the recursive call receives the string not including the opening parenthesis
at index 0. However, in the next line, we’re in trouble ·. Where do we start
reading the right subtree? Equivalently, how many characters are in the left
subtree? We don’t know! We could write a separate function to figure out
where the left subtree ends. For example, we could count the number of
opening and closing parentheses until they’re equal, except that this seems
wasteful: If read_tree successfully read the left subtree, surely that recursive
call knew where that subtree ended? If only there were a way to communi-
cate that information back to the original read_tree call, it could use that to
determine what part of the string to pass to the second recursive call.

Adding a parameter to a recursive function is a general and powerful
way to solve this kind of problem. Whenever a recursive call has information
not conveyed through what it returns, or it needs information that is not
passed, consider adding a parameter. If that parameter is a pointer, it can
be used to both pass additional information to recursive calls and receive
information back.

For our purposes, we want to be able to tell a recursive call where its
string starts. Also, we want the recursive call to be able to tell us, when it’s
finished, where we should continue processing the string. To do this, we’ll
add an integer pointer parameter pos. However, we don’t want to add that
parameter to read_tree, because the caller of read_tree has no business or in-
terest knowing about this extra parameter. The caller of read_tree should be
able to just pass a string, not caring about this pos parameter that is internal
to our implementation.

We’ll keep the signature of read_tree as before, with only the line param-
eter. Then read _tree will call read_tree_helper, and it’s read_tree_helper that
has this pos parameter and induces the recursion.

Listing 2-14 gives the read_tree code. It passes a pointer to 0 to read_tree

_helper, because index 0 (the start of the string) is where we want to start pro-
cessing.

node *read_tree(char *line) {

int pos = 0;

return read_tree_helper(line, &pos);

}

Listing 2-14: Calling our helper, with a pointer to int

We’re now ready to try again with our implementation of Rule 2:

node *tree;

tree = malloc(sizeof(node));

if (line[*pos] == '(') {

¶ (*pos)++;

tree->left = read_tree_helper(line, pos);

· (*pos)++;

tree->right = read_tree_helper(line, pos);
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¸ (*pos)++;

return tree;

}

The function will be called with pos referring to the first character of a
tree, so we first advance pos by one character to skip over the opening paren-
thesis ¶. Now pos is perfectly positioned at the start of the left subtree. We
then make the recursive call to read the left subtree. That recursive call will
update pos to the index of the character following the left subtree. Because
a space follows the left subtree, we skip over that space ·. Now we’re posi-
tioned at the start of the right subtree; we recursively grab that right sub-
tree and then skip over the closing parenthesis ¸, the one that closes the
opening parenthesis that we skipped over initially ¶. Skipping the closing
parenthesis is important, because this function is responsible for processing
the entire subtree, including its closing parenthesis. If we left out this final
skip, whoever called the function may be left staring at a closing parenthe-
sis when they expected a space. After skipping that closing parenthesis, the
only thing left to do is return our tree.

Reading in a House Node
With Rule 2 out of the way, let’s tackle Rule 1. Before we can make much
progress, we’ll need to be able to convert part of a string to an integer. Let’s
write a small, separate program to make sure that we can do this. It will take
a string that we assume represents a house node and print its candy value.
Surprisingly, if we’re not careful, we may get baffling results. Be advised: we
are not careful in Listing 2-15.

#define SIZE 255

// bugged!

int main(void) {

char line[SIZE + 1];

int candy;

gets(line);

candy = line[0];

printf("%d\n", candy);

return 0;

}

Listing 2-15: Reading a candy value (bugged!)

Run that program and enter the number 4.
You’ll likely see 52 as the output. Run it again and enter the number 9.

You’re likely to see 57. Now run it with 0. You’ll likely see 48. Finally, run it
with each value from 0 to 9. You should see that each output is offset by the
output that 0 produced. If 0 outputs 48, then 1 will output 49, 2 will output
50, 3 will output 51, and so on.

What we’re seeing here is the character code for each digit. The crucial
point is that the codes for integers are consecutive. We can therefore
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subtract the character code for zero to put our integers in the proper range.
With this fix, we get the code in Listing 2-16. Try it!

#define SIZE 255

int main(void) {

char line[SIZE + 1];

int candy;

gets(line);

candy = line[0] - '0';

printf("%d\n", candy);

return 0;

}

Listing 2-16: Reading a candy value

This little program works for single-digit integers. The description of
Halloween Haul, though, requires that we also accommodate candy inte-
gers that are two digits. Suppose we read digit 2 and then digit 8. We want
to combine these and end up with the integer 28. What we can do is multi-
ply the first digit by 10 (that gives us 20 here) and then add the 8 (for a total
of 28). Listing 2-17 is another little test program to enable us to check that
we’ve got this right. Here we assume that a string of two digits will be typed.

#define SIZE 255

int main(void) {

char line[SIZE + 1];

int digit1, digit2, candy;

gets(line);

digit1 = line[0] - '0';

digit2 = line[1] - '0';

candy = 10 * digit1 + digit2;

printf("%d\n", candy);

return 0;

}

Listing 2-17: Reading a candy value with two digits

That’s all we need for Rule 1, and we can write this:

--snip--

tree->left = NULL;

tree->right = NULL;

¶ tree->candy = line[*pos] - '0';

· (*pos)++;

if (line[*pos] != ')' && line[*pos] != ' ' &&

line[*pos] != '\0') {

¸ tree->candy = tree->candy * 10 + line[*pos] - '0';
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¹ (*pos)++;

}

return tree;

We begin by setting the left and right subtrees to NULL; we’re creating a
house node, after all. We then take a character and convert it to a digit ¶
and then skip over that digit ·. Now, if this candy value is only one digit,
then we have correctly stored its value. If it is two digits, then we need to
multiply the first digit by 10 and add the second digit. We therefore deter-
mine whether the candy value is one or two digits. If we’re not looking at
a closing parenthesis, or a space, or the null terminator at the end of the
string, then we must be looking at a second digit. If a second digit is present,
we incorporate it into our candy value ¸ and move past the digit ¹.

Listing 2-18 puts together our code for Rules 2 and 1.

node *read_tree_helper(char *line, int *pos) {

node *tree;

tree = malloc(sizeof(node));

if (tree == NULL) {

fprintf(stderr, "malloc error\n");

exit(1);

}

if (line[*pos] == '(') {

(*pos)++;

tree->left = read_tree_helper(line, pos);

(*pos)++;

tree->right = read_tree_helper(line, pos);

(*pos)++;

return tree;

} else {

tree->left = NULL;

tree->right = NULL;

tree->candy = line[*pos] - '0';

(*pos)++;

if (line[*pos] != ')' && line[*pos] != ' ' &&

line[*pos] != '\0') {

tree->candy = tree->candy * 10 + line[*pos] - '0';

(*pos)++;

}

return tree;

}

}

Listing 2-18: Converting a string to a tree

All that’s left is to construct a tidy main function to read each test case
and solve it! Listing 2-19 is all it takes.
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#define SIZE 255

#define TEST_CASES 5

int main(void) {

int i;

char line[SIZE + 1];

node *tree;

for (i = 0; i < TEST_CASES; i++) {

gets(line);

tree = read_tree(line);

tree_solve(tree);

}

return 0;

}

Listing 2-19: The main function

We’ve successfully used recursion to solve this problem, as you should
be able to verify by submitting our solution to the judge.

Why Use Recursion?
It’s not always easy to know whether recursion will offer a clean solution to
a problem. Here’s the telltale sign: whenever a problem can be solved by
combining solutions to smaller subproblems, you should try recursion. In
all of our recursive code in this chapter, we have solved exactly two subprob-
lems in order to solve the larger problem. These two-subproblem problems
are very common, but a problem may require solving three or four or more
subproblems.

How do you know that breaking a problem into subproblems can help
you solve the original problem, and how do you know what those subprob-
lems are in the first place? We’ll revisit these questions in Chapter 3, when
we build on what we’ve learned here to study memoization and dynamic pro-
gramming. In the meantime, think about whether you could easily solve a
given problem if someone told you the solutions to smaller subproblems.
For example, think back to calculating the total amount of candy in the tree.
This is not an easy problem. What if someone told you the total amount of
candy in the left subtree and the total amount of candy in the right subtree?
That would make the problem easier. A problem made easier by virtue of
knowing its subproblem solutions is a strong clue that recursion applies.

Let’s move on to another problem where recursion is useful. As you
read the problem description, try to identify where and why recursion will
come into play.
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Problem 2: Descendant Distance
We’ll now move away from binary trees to general trees in which nodes can
have many children.

This is DMOJ problem ecna05b.

The Problem
In this problem, we are given a family tree and a specified distance d. The
score for each node in the tree is the number of descendants it has at dis-
tance d. Our task is to output the nodes with high scores; I’ll explain exactly
how many nodes that is in the Output section. To see what I mean by de-
scendants at a specified distance, look at the family tree in Figure 2-6.

Zara

Amber

Vlad Sana Ashley Kevin

Omar Gabriel Lucas

Enzo

Min Becky

Jad Cassie

Figure 2-6: A sample family tree

Consider the Amber node. Amber has four children, so she has four
descendants at a distance of one. Amber also has five grandchildren: five
nodes at a distance of two. Generalizing, we can say that, for any node, the
number of descendants at distance d is the number of nodes that are exactly
d edges down the tree from that node.

Input
The first line of input gives the number of test cases that will follow. Each
test case consists of the following lines:
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• A line containing two integers, n and d, where n tells us how many
more lines there are for this test case and d specifies the descendant
distance of interest.

• n lines used to build the tree. Each of these lines consists of the
name of a node, an integer m, and m node names giving the chil-
dren of this node. Each name is at most 10 characters long. These
lines can come in any order—there’s no requirement that parent
lines come before their descendant lines.

There are at most 1,000 nodes in any test case.
Here is a possible input to generate the sample tree in Figure 2-6, asking

for the nodes with the most descendants at a distance of two:

1

7 2

Lucas 1 Enzo

Zara 1 Amber

Sana 2 Gabriel Lucas

Enzo 2 Min Becky

Kevin 2 Jad Cassie

Amber 4 Vlad Sana Ashley Kevin

Vlad 1 Omar

Output
The output for each test case has two parts.

First, output the following line:

Tree i:

where i is 1 for the first test case, 2 for the second test case, and so on.
Then, output information for the nodes with high scores (where the

score for a node is the number of descendants it has at distance d), sorted
from most to least. Output the names that are tied for the number of de-
scendants at distance d in alphabetical order.

Use the following rules to determine how many names to output:

• If there are three or fewer names with descendants at distance d,
output them all.

• If there are more than three names with descendants at distance d,
start by outputting those with the top three scores, starting from
the highest score. Then, output each other name whose score is
the same as the third score from the top. For example, if we have
names with eight, eight, two, two, two, one, and one descendants at
distance d, we would output information for five names: those with
eight, eight, two, two, and two descendants at distance d.
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For each name that we’re required to output, we output a line consisting
of the name, followed by a space, followed by its number of descendants at
distance d.

Output for each test case is separated from the next by a blank line.
Here is the output for the above sample input:

Tree 1:

Amber 5

Zara 4

Lucas 2

The time limit for solving the test cases is 0.6 seconds.

Reading the Input
One interesting difference between this problem and the Halloween Haul
problem is that we’re no longer dealing with binary trees. Here, a node can
have any number of children. We’ll have to change our node structure, since
left and right pointers are not going to work for us anymore. Instead, we’ll
use an array children of children and an integer num_children to record the
number of children stored in the array. We’ll also have a name member to
store the node’s name (Zara, Amber, and so on) and a score member for
when we calculate the number of descendants at distance d. Our node struct
is given in Listing 2-20.

typedef struct node {

int num_children;

struct node **children;

char *name;

int score;

} node;

Listing 2-20: The node struct

In Halloween Haul, the trees started as recursively defined expressions,
from which we could recursively read off the left and right subtrees. This is
not the case here: nodes can come in any order. For example, we might see

Zara 1 Amber

Amber 4 Vlad Sana Ashley Kevin

where we learn about Zara’s child, Amber, before we learn about Amber’s
children. However, we could equally well see

Amber 4 Vlad Sana Ashley Kevin

Zara 1 Amber

where we learn about Amber’s children before Zara’s!
We know that the nodes and parent-child relationships we read from the

file will, by the time we’re done, form a single tree. Nonetheless, there’s no
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guarantee that we have a single tree as we process the lines. For example, we
might read the lines

Lucas 1 Enzo

Zara 1 Amber

This tells us that Enzo is a child of Lucas and that Amber is a child of
Zara, but so far that’s all we know. We have two disconnected subtrees here,
and it will take future lines to connect these subtrees.

For these reasons, maintaining a single, connected tree as we read the
lines is hopeless. Instead, we’ll maintain an array of pointers to nodes. Every
time we see a name we haven’t seen before, we create a new node and add
a pointer to that node to the array. It will therefore prove valuable to have a
helper function that searches the array and tells us whether we have seen a
name before.

Finding a Node
Listing 2-21 implements a find_node function. The nodes parameter is an ar-
ray of pointers to nodes, num_nodes gives the number of pointers in the array,
and name is the name that we’re searching for.

node *find_node(node *nodes[], int num_nodes, char *name) {

int i;

for (i = 0; i < num_nodes; i++)

if (strcmp(nodes[i]->name, name) == 0)

return nodes[i];

return NULL;

}

Listing 2-21: Finding a node

A linear search is an element-by-element search of an array. Inside our
function, we use a linear search to search through nodes, and . . . but wait!
Aren’t we searching through an array? This is tailor-made hash table terri-
tory right here (see Chapter 1). I encourage you to swap in a hash table on
your own and compare the performance. To keep things simple, and be-
cause there are at most only 1,000 nodes, we’ll proceed with this (slow) lin-
ear search.

We do a string comparison between each name in the array and the de-
sired name. If strcmp returns 0, it means that the strings are equal, so we re-
turn the pointer to the corresponding node. If we reach the end of the array
without finding the name, we return NULL to signal that the name was not
found.

Creating a Node
When a name is not found in the array, we’ll have to create a node with that
name. This will involve a call to malloc, and we’ll see that malloc will be re-
quired elsewhere in the program as well. So, I’ve written a helper function,
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malloc_safe, that we can call whenever we need it. See Listing 2-22: it’s just a
regular malloc, but with error checking added:

void *malloc_safe(int size) {

char *mem = malloc(size);

if (mem == NULL) {

fprintf(stderr, "malloc error\n");

exit(1);

}

return mem;

}

Listing 2-22: The malloc safe function

The new_node helper function in Listing 2-23 uses malloc_safe to create a
new node.

node *new_node(char *name) {

node *n = malloc_safe(sizeof(node));

n->name = name;

n->num_children = 0;

return n;

}

Listing 2-23: Creating a node

We allocate the new node and then set the node’s name member. Then,
we set the node’s number of children to 0. The reason we use zero here is
because we may not know how many children the node has. For example,
suppose that the first line that we read for the tree is

Lucas 1 Enzo

We know that Lucas has one child, but we have no idea how many chil-
dren Enzo has. The caller of new_node can set the number of children to a
new value once that information is available. That happens immediately for
Lucas here, but not for Enzo.

Building a Family Tree
Now we’re ready to read and build the tree. Listing 2-24 gives the function.
Here nodes is an array of pointers to nodes, with space allocated by the caller
of this function; num_lines indicates the number of lines to read.

#define MAX_NAME 10

int read_tree(node *nodes[], int num_lines) {

node *parent_node, *child_node;

char *parent_name, *child_name;

int i, j, num_children;

int num_nodes = 0;

¶ for (i = 0; i < num_lines; i++) {
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parent_name = malloc_safe(MAX_NAME + 1);

scanf("%s", parent_name);

scanf("%d", &num_children);

· parent_node = find_node(nodes, num_nodes, parent_name);

if (parent_node == NULL) {

parent_node = new_node(parent_name);

nodes[num_nodes] = parent_node;

num_nodes++;

}

else

¸ free(parent_name);

¹ parent_node->children = malloc_safe(sizeof(node) * num_children);

º parent_node->num_children = num_children;

for (j = 0; j < num_children; j++) {

child_name = malloc_safe(MAX_NAME + 1);

scanf("%s", child_name);

child_node = find_node(nodes, num_nodes, child_name);

if (child_node == NULL) {

child_node = new_node(child_name);

nodes[num_nodes] = child_node;

num_nodes++;

}

else

free(child_name);

» parent_node->children[j] = child_node;

}

}

return num_nodes;

}

Listing 2-24: Converting lines into a tree

The outer for loop ¶ iterates once for each of the num_lines lines of in-
put. Each line has the name of a parent and one or more names for chil-
dren; we deal with the parent first. We allocate memory, read the parent’s
name, and read the parent’s number of children. Then, we use our find_node

helper function to determine whether we have seen this node before ·. If
we have not, we use our new_node helper function to create a new node, store
a pointer to the new node in the nodes array, and increment the number of
nodes. If the node is already in the nodes array, we free the memory for the
parent name since it will not be used ¸.

We next allocate memory for the parent’s child pointers ¹, and we store
the number of children º. We then process the child nodes; each child is
processed similarly to the parent node. Once the child node exists and has
its members set, we store a pointer to it in the parent’s children array ». No-
tice that there is no child code that allocates any memory or sets the number
of children, like we had for the parent. If we have seen a child name before,
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then its children were already set when this name was encountered the first
time. If this is the first time we’re seeing the name, then we’ll set its children
when we later learn about its children; if this child is a leaf, its number of
children will remain at its initialized value of 0.

We end by returning the number of nodes in the tree. We’ll need this
when we want to process each node.

Number of Descendants from One Node
We need to calculate the number of descendants at distance d for each node,
so we can find the nodes with the most such descendants. A more modest
goal, and the goal for this section, is to calculate the number of descendants
at distance d from a single node. We’ll write the function with this signature:

int score_one(node *n, int d)

where n is the node whose number of descendants at distance d we’d like to
calculate.

If d is 1, then we want to know the number of children of n. That we can
do: we have stored a num_children member with each node. All we have to do
is return that:

if (d == 1)

return n->num_children;

If d is greater than 1, then what? It may be worth thinking about this
first in the more familiar context of binary trees. Here’s the binary tree from
Halloween Haul (Figure 2-2) again:

H

F G

A E

72 3 6 D

C 2

B 15

4 9

7 41
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Suppose we had a node of a binary tree and we wanted to know its num-
ber of descendants at some specified distance. If we knew how many de-
scendants at that distance were in the left subtree and how many were in the
right subtree, would that help?

Not quite. Suppose, for example, that we wanted to know the number
of descendants of H at a distance of two. We calculate the number of de-
scendants of F at a distance of two and the number of descendants of G at a
distance of two. That doesn’t help, because each of those descendants is at a
distance of three from H! We don’t care about nodes at a distance of three.

How do we fix this? We calculate the number of descendants of F at a
distance of one and G at a distance of one! Each of those nodes is at a dis-
tance of two from H.

To calculate the number of descendants at any distance d, then, we cal-
culate the number of descendants at distance d – 1 in the left subtree and
number of descendants at distance d – 1 in the right subtree.

In the context of family trees, where a node can have more than two chil-
dren, we generalize this slightly: the number of descendants at distance d is
the sum of the number of descendants at distance d – 1 in each subtree. And
how are we going to find the number of descendants at distance d – 1 in each
subtree? It’s recursion time!

Here are some rules for us to use. Given a node n:

Rule 1 If d equals one, then the number of descendants at distance d
equals the number of children of n.

Rule 2 If d is greater than one, then the number of descendants at dis-
tance d equals the sum of the number of descendants at distance d – 1 in
each subtree of n.

The corresponding code is given in Listing 2-25.

int score_one(node *n, int d) {

int total, i;

if (d == 1)

return n->num_children;

total = 0;

for (i = 0; i < n->num_children; i++)

total = total + score_one(n->children[i], d - 1);

return total;

}

Listing 2-25: The number of descendants from one node

Number of Descendants from All Nodes
To calculate the number of descendants at distance d for all nodes, we sim-
ply put score_one in a loop (Listing 2-26).

void score_all(node **nodes, int num_nodes, int d) {

int i;
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for (i = 0; i < num_nodes; i++)

nodes[i]->score = score_one(nodes[i], d);

}

Listing 2-26: The number of descendants from all nodes

Here is where we use the score member in each node struct: after this
function runs, score holds the number of descendants of interest for each
node. Now we just have to figure out which nodes have the highest scores!

Sorting Nodes
In our ill-fated attempt to sort snowflakes (see “Diagnosing the Problem”
on page 9), we came across the C qsort function. We can bring qsort to bear
here to sort our nodes. We’re required to sort by number of descendants at
distance d, from highest to lowest. If nodes are tied for the number of de-
scendants at distance d, then we sort those alphabetically.

To use qsort, we’re tasked with writing a comparison function that takes
pointers to two elements and returns a negative integer if the first element
is less than the second, 0 if they are equal, and a positive integer if the first is
greater than the second. Our comparison function is given in Listing 2-27.

int compare(const void *v1, const void *v2) {

const node *n1 = *(const node **)v1;

const node *n2 = *(const node **)v2;

if (n1->score > n2->score)

return -1;

if (n1->score < n2->score)

return 1;

return strcmp(n1->name, n2->name);

}

Listing 2-27: A comparison function for sorting

Any qsort comparison function, like this one, has the same signature: it
takes two void pointers. These pointers are const to signify that we should
not make any changes to the elements that they point to.

Void pointers must be cast before we can perform comparisons or oth-
erwise access the underlying elements. Remember that qsort calls compare
with pointers to two elements from our array, but, because our array is an
array of pointers, what gets passed to compare is two pointers to pointers to
elements. Therefore, we first cast the void pointers to type const node**, and
then we apply * to give us values for n1 and n2 that are of type const node*.
Now we can use n1 and n2 as pointers to nodes.

We begin by comparing the scores that are stored in each node. These
scores will have already been calculated as the number of descendants at the
distance d. If n1 has more such descendants than n2, we return -1 to indi-
cate that n1 should sort before n2. Similarly, if n1 has fewer descendants at
distance d than n2, we return 1 to indicate that n1 should sort after n2.
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The only way to get to the final line, then, is if n1 and n2 have the same
number of descendants at distance d. It’s here where we want to break the
tie by sorting on the nodes’ names. We do this using strcmp, which returns a
negative number, zero, or positive number if the first string is alphabetically
less than, equal to, or greater than the second string, respectively.

Outputting the Information
After we sort the nodes, the names to output are those at the beginning of
the nodes array. Listing 2-28 gives the function that produces this output:

void output_info(node *nodes[], int num_nodes) {

int i = 0;

¶ while (i < 3 && i < num_nodes && nodes[i]->score > 0) {

printf("%s %d\n", nodes[i]->name, nodes[i]->score);

i++;

· while (i < num_nodes && nodes[i]->score == nodes[i - 1]->score) {

printf("%s %d\n", nodes[i]->name, nodes[i]->score);

i++;

}

}

}

Listing 2-28: Outputting the nodes

The variable i counts the number of nodes that we have outputted. The
outer while loop ¶ is controlled by three conditions that together determine
whether we are allowed to output more nodes. If all three conditions are
true, we know that more output is required, so we enter the body of that
while loop. We then print information for the current node and increase i

so that we look at the next node. Now, as long as this new node is tied with
the previous node, we want to keep outputting nodes, with no heed to the
“maximum of three nodes” rule. The conditions on the inner while loop ·
encode this logic: if there are more nodes and the current node’s score is
tied with the previous node, then we enter the body of the inner while loop
and print information for the relevant node.

The main Function
All that remains is to glue our functions together and add the logic to pro-
cess the test cases. We do this in Listing 2-29.

#define MAX_NODES 1000

int main(void) {

int num_cases, case_num;

int n, d, num_nodes;

¶ node **nodes = malloc_safe(sizeof(node) * MAX_NODES);

scanf("%d", &num_cases);
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for (case_num = 1; case_num <= num_cases; case_num++) {

· printf("Tree %d:\n", case_num);

scanf("%d %d", &n, &d);

num_nodes = read_tree(nodes, n);

score_all(nodes, num_nodes, d);

qsort(nodes, num_nodes, sizeof(node*), compare);

output_info(nodes, num_nodes);

¸ if (case_num < num_cases)

printf("\n");

}

return 0;

}

Listing 2-29: The main function

We begin by allocating pointers for the maximum number of nodes that
can make up a test case ¶. We then read the number of test cases and loop
once for each test case. Recall that each test case requires two pieces of out-
put: information about the test case number and information about the rel-
evant nodes. The first is handled by a single call of printf ·. For the second,
we start leaning on our earlier functions: we read the tree, solve the problem
for each node, sort the nodes, and then output the required information.

There’s a check at the bottom of the code to tell whether or not we’re in
the final test case ¸; this is so we can output a blank line between tests.

Summary
Recursive solutions are virtuous, simple, clean, easy to devise, easy to under-
stand, and easy to prove correct . . .

Well, at least, that’s the sense you’d get if you read enough about recur-
sion and talked to enough recursion enthusiasts. It’s clear what the experts
think. Through my students, however, I’ve observed a disconnect between
the way that recursion is touted and the way it is learned. It takes time and
practice to appreciate the expert perspective. Don’t worry if you find re-
cursive solutions tough to devise and trust. Keep at it! Many teachers and
writers have their own approaches and examples for introducing recursion.
More than for any other topic in the book, I encourage you to seek out addi-
tional material on recursion to complement what I have offered here.

In the next chapter, we’ll keep going with recursion, optimizing it for a
different class of problems.

Notes
Halloween Haul is originally from the 2012 DWITE Programming Competi-
tion, Round 1. Descendant Distance is originally from the 2005 East Central
North America Regional Programming Contest. For a book-length treat-
ment of recursion, check out Thinking Recursively with Java by Eric Roberts
(2005).
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3
MEMOIZAT ION AND DYNAMIC

PROGRAMMING

In this chapter, we’ll study three problems
that appear to be solvable using recursion.

As you’ll see, while in theory we can use re-
cursion, in practice it leads to an explosion of

work that renders the problems unsolvable. Not to
worry: you’ll learn two powerful, related techniques,
called memoization and dynamic programming, that
will lead to shocking performance increases, morph-
ing runtimes from hours or days to seconds. In the
next chapter, we’ll level up and solve two even more
challenging problems using these techniques. Once
you get the hang of this stuff, you’ll be able to solve
hundreds of other programming problems as well. If
you’re going to read one chapter in this book, read
this one.



Problem 1: Burger Fervor

This is UVa problem 10465.

The Problem
A man named Homer Simpson likes to eat and drink. He has tminutes that
he’ll spend eating burgers and drinking beer. There are two kinds of bur-
gers. One of them takes mminutes to eat, and the other takes nminutes
to eat.

Homer likes burgers more than beer, so he’d like to spend the entire t
minutes eating burgers. However, doing so isn’t always possible. For exam-
ple, if m = 4, n = 9, and t = 15, then no combination of the 4-minute and
9-minute burgers can take him exactly 15 minutes to eat. In such a case, he’ll
spend as much time as possible eating burgers and then fill the rest of the
time drinking beer. Our task is to determine the number of burgers that
Homer can eat.

Input
We read test cases until there is no more input. Each test case is represented
by a line of three integers: m, the number of minutes it takes to eat the first
kind of burger; n, the number of minutes it takes to eat the second kind of
burger; and t, the number of minutes that Homer will spend eating burgers
and drinking beer. Each m, n, and t value is less than 10,000.

Output
For each test case:

• If Homer can spend exactly tminutes eating burgers, then output
the maximum number of burgers that he can eat.

• Otherwise, output the maximum number of burgers that Homer
can eat when maximizing his time eating burgers, a space, and the
number of remaining minutes (during which he’ll drink beer).

The time limit for solving the test cases is three seconds.

Forming a Plan
Let’s start by thinking about a few different test cases. Here’s the first one:

4 9 22

Here, the first kind of burger takes 4 minutes to eat (m = 4), the second
kind of burger takes 9 minutes to eat (n = 9), and Homer has 22 minutes to
spend (t = 22). This is an example in which Homer can fill the entire time by
eating burgers. The maximum number of burgers that Homer can eat here
is three, so 3 is the correct output for this test case.

The three burgers that Homer should eat are one 4-minute burger and
two 9-minute burgers. This takes him 1 × 4 + 2 × 9 = 22 minutes, as required.
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Notice, though, that we are not being asked to indicate the number of each
kind of burger he should eat. All we’re asked to do is output the total num-
ber of burgers. When I provide the number of each kind of burger below, I
do so only to offer evidence that the proposed output makes sense.

Here’s another test case:

4 9 54

Again, Homer can fill the entire time with burgers. The correct output
here is 11, obtained by eating nine 4-minute burgers and two 9-minute bur-
gers. Unlike the 4 9 22 test case, here Homer has multiple ways to spend
exactly 54 minutes eating burgers. For example, he could eat six 9-minute
burgers—that fills up the 54 minutes, too—but, remember, if we can fill the
entire t minutes, then we want to output the maximum number of burgers.

As noted in the problem description, it’s not always possible for Homer
to completely fill the tminutes by eating burgers. Let’s study the example
that I gave there as our next test case:

4 9 15

How many burgers should Homer eat here? He can eat a maximum of
three burgers by eating three 4-minute burgers. By doing so, Homer would
spend 12 minutes eating burgers, and he would have to spend the remaining
15 – 12 = 3 minutes drinking beer. So, he eats three burgers and has three
minutes’ beer-drinking time, making the output 3 3. Have we solved this
test case?

We have not! Carefully reread the problem description and zone in on
this: “output the maximum number of burgers that Homer can eat when
maximizing his time eating burgers.” That is, when Homer cannot fill the
entire time by eating burgers, we want to maximize the time that he spends
eating burgers and then the maximum number of burgers he can eat in that
time. The correct output for 4 9 15 is in fact 2 2: the first 2 means that he
eats two burgers (one 4-minute burger and one 9-minute burger, for a to-
tal of 13 minutes) and the second 2 means that he has to spend 2 minutes
(15 – 13) drinking beer.

In the 4 9 22 and 4 9 54 test cases, we’re asked to solve the problem for
22 and 54 minutes, respectively. We found that there is indeed a way to
spend the entire time eating burgers, so we can report the maximum num-
ber of burgers as our solution. However, in the 4 9 15 case, we found that
there is no way to completely fill the 15 minutes by eating burgers. Thinking
ahead to our code, how are we going to handle this? How will we be able to
conclude that the answer is 2 2?

One idea is that we can next try to fill exactly 14 minutes with the
4-minute and 9-minute burgers. If we succeed, then we have our answer:
we report the maximum number of burgers that Homer can eat in exactly
14 minutes, followed by 1, the number of minutes Homer spends drinking
beer. This would maximize the amount of time that Homer can spend eat-
ing burgers. We already know that eating burgers for exactly 15 minutes is
impossible, so 14 minutes is the next best option.

Memoization and Dynamic Programming 79



Let’s see if 14 minutes works. Can we fill exactly 14 minutes with the
4-minute and 9-minute burgers? No! Like the 15-minute case, this will be
impossible.

We can, though, fill exactly 13 minutes by eating two burgers: one
4-minute burger and one 9-minute burger. That leaves Homer two minutes
for drinking beer. This justifies 2 2 as the correct output.

In summary, our plan is to determine whether Homer can eat burgers
for exactly tminutes. If he can, then we’re done: we report the maximum
number of burgers he can eat. If he can’t, then we next determine whether
Homer can eat burgers for exactly t – 1 minutes. If he can, then we’re done,
and we report the maximum number of burgers he can eat and the number
of minutes spent drinking beer. If he can’t, then we will move on to trying
t – 2 minutes, then t – 3 minutes, and so on, stopping when the time can be
completely filled by eating burgers.

Characterizing Optimal Solutions
Consider the 4 9 22 test case. Whatever combination of burgers and beer
we propose as the solution better take exactly 22 minutes, and it better ac-
tually be doable using the 4-minute and 9-minute burgers. Such a solution,
which adheres to the rules of a problem, is called a feasible solution. A so-
lution attempt that does not follow the rules is called an infeasible solution.
For example, having Homer spend 4 minutes eating burgers and 18 minutes
drinking beer is feasible. Having Homer spend 8 minutes eating burgers
and 18 minutes drinking beer is infeasible, because 8 + 18 is not 22. Hav-
ing Homer spend 5 minutes eating burgers and 17 minutes drinking beer is
also infeasible, because there’s no way we can use the 4-minute and 9-minute
burgers to get a total of 5 minutes of burger time.

Burger Fervor is an optimization problem. An optimization problem in-
volves choosing the best—that is, optimal—solution out of all feasible solu-
tions. There may be many feasible solutions of varying quality. Some will be
really poor, such as drinking beer for 22 minutes. Others will be close to but
not quite optimal—maybe they’re off by one or two. And, of course, some of
them will be optimal. Our goal is to identify an optimal solution among all
possible solutions.

Suppose we’re solving a case where the first kind of burger takes mmin-
utes to eat, the second kind of burger takes nminutes to eat, and we want to
try to spend exactly tminutes eating burgers.

If t = 0, then the correct output is 0, because we can fill the entire 0 min-
utes by eating zero burgers. As we continue, we’ll therefore focus on what to
do when t is greater than 0.

Let’s think about what an optimal solution for tminutes must look like.
Of course, we can’t possibly know anything specific, such as “Homer eats
a 4-minute burger, then a 9-minute burger, then another 9-minute burger,
then . . . ” We haven’t done anything yet to solve the problem, so obtaining
this level of detail is wishful thinking.

There is, however, something we can say that’s not wishful thinking. It’s
at once so inane that you’d be forgiven for wondering why I am stating it at
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all and so powerful that at its core lies a solution strategy for a bewildering
number of optimization problems.

Here it is: Suppose that Homer can fill exactly tminutes by eating bur-
gers. (If this supposition ends up being wrong, then we’ll try it again with
t – 1 minutes, then t – 2 minutes, and so on.) The final burger that he eats,
the one that finishes off his tminutes, must be an m-minute burger or an
n-minute burger.

How could that final burger be anything else? Homer can only eat
m-minute and n-minute burgers, so there are only two choices for the last
burger that he eats and so two choices for what the end of the optimal solu-
tion must look like.

If we know that the final burger that Homer eats in an optimal solution
is an m-minute burger, we know he has t – mminutes left to spend. There
must be a way to fill those t – mminutes with burgers, without drinking any
beer: remember that we are assuming that Homer can spend the entire
tminutes by eating burgers. If we could spend those t – mminutes optimally,
with Homer eating the maximum number of burgers, then we’d have an
optimal solution to the original problem of tminutes. We’d take the number
of burgers that he can eat in t – mminutes and add one m-minute burger to
fill the remaining mminutes.

Now, what if we knew that the final burger that Homer eats in an opti-
mal solution is an n-minute burger? Then he has t – nminutes left to spend.
Again, by virtue of the entire tminutes being spent eating burgers, we know
that it must be possible for Homer to eat burgers for the first t – n of those
minutes. If we could spend those t – nminutes optimally, then we’d have an
optimal solution to the original problem of tminutes. We’d take the number
of burgers that he can eat in t – nminutes and add one n-minute burger to
fill the remaining nminutes.

Now we seem to be squarely in farce territory. We just assumed that we
knew what the final burger was! However, there’s no way we could know
this. We do know that the final burger is an m-minute burger or an n-minute
burger. We definitely don’t know which it is.

The wonderful truth is that we don’t need to know. We can assume the
final burger is an m-minute burger and solve the problem optimally given
that choice. We then make the other choice—assume that the final burger is
an n-minute burger—and solve the problem optimally given that choice. In
the first case, we have a subproblem of t – mminutes to solve optimally; in
the second case, we have a subproblem of t – nminutes to solve optimally.
Whenever we have characterized a solution to a problem in terms of solu-
tions to subproblems, we would do well to try a recursive approach as we did
in Chapter 2.

Solution 1: Recursion
Let’s attempt a recursive solution. We’ll begin by writing a helper function
to solve for exactly tminutes. Once we’re done, we’ll rely on it to write a
function that solves for exactly tminutes, t – 1 minutes, t – 2 minutes, and
so on, until we can completely fill some number of minutes with burgers.
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The Helper Function: Solving for the Number of Minutes
To solve each problem and subproblem instance, we need three things: m
and n from the test case and the t value for the current instance. We’ll there-
fore write the body of the following function:

int solve_t(int m, int n, int t)

If Homer can spend exactly t minutes eating burgers, then we’ll return
the maximum number of burgers he can eat. If he can’t spend exactly t min-
utes eating burgers—meaning he must spend at least one minute drinking
beer—then we’ll return -1. A return value of 0 or more means that we’ve
solved the problem using burgers alone; a return value of -1 means that the
problem cannot be solved using burgers alone.

If we call solve_t(4, 9, 22), we expect to get 3 as the return value: three
is the maximum number of burgers that Homer can eat in exactly 22 min-
utes. If we call solve_t(4, 9, 15), we expect to get -1 as the return value:
there’s no combination of 4-minute and 9-minute burgers that gives us ex-
actly 15 minutes.

We’ve already settled on what to do when t = 0: in this case, we have 0
minutes to spend, and we do so by having Homer eat zero burgers:

if (t == 0)

return 0;

That’s the base case of our recursion. To implement the rest of this
function, we need the analysis from the last section. Remember that, to
solve the problem for exactly tminutes, we think about the final burger
that Homer eats. Maybe it’s an m-minute burger. To check that possibility,
we solve the subproblem for exactly t – mminutes. Of course, the final bur-
ger can only be an m-minute burger if we’ve got at least mminutes to spend.
This logic can be coded as follows:

int first;

if (t >= m)

first = solve_t(m, n, t - m);

else

first = -1;

We use first to store the optimal solution to the t - m subproblem, with
-1 indicating “no solution.” If t >= m, then there’s a chance that an m-minute
burger is the final one, so we make a recursive call to compute the optimal
number of burgers that Homer can eat in exactly t - m minutes. That recur-
sive call will return a number greater than -1 if it can be solved exactly or -1

if it can’t. If t < m, then there’s no recursive call to make: we set first = -1 to
signify that an m-minute burger isn’t the final burger and that it can’t partici-
pate in an optimal solution for exactly t minutes.

Now, what about when an n-minute burger is the final burger? The code
for this case is analogous to the m-minute burger case, this time storing the
result in the variable second instead of first:
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int second;

if (t >= n)

second = solve_t(m, n, t - n);

else

second = -1;

Let’s summarize our current progress:

• The variable first is the solution to the t - m subproblem. If it’s -1,
then we can’t completely fill t - m minutes with burgers. If it’s any-
thing else, then it gives the optimal number of burgers that Homer
can eat in exactly t - m minutes.

• The variable second is the solution to the t - n subproblem. If it’s -1,
then we can’t completely fill t - n minutes with burgers. If it’s any-
thing else, then it gives the optimal number of burgers that Homer
can eat in exactly t - n minutes.

There’s a chance that both first and second have values of -1. A value of
-1 for first means that an m-minute burger can’t be the final burger. A value
of -1 for second means that an n-minute burger can’t be the final burger. If
the final burger can’t be an m-minute burger and can’t be an n-minute bur-
ger, then we’re out of options and have to conclude that there’s no way to
solve the problem for exactly t minutes:

if (first == -1 && second == -1)

return -1;

Otherwise, if first or second or both are greater than -1, then we can
build at least one solution for exactly t minutes. In this case, we start with
the maximum of first and second to choose the better subproblem solution.
If we add one to that maximum, thereby incorporating the final burger, then
we obtain the maximum for the original problem of exactly t minutes:

return max(first, second) + 1;

The full function is given in Listing 3-1.

int max(int v1, int v2) {

if (v1 > v2)

return v1;

else

return v2;

}

int solve_t(int m, int n, int t) {

int first, second;

if (t == 0)

return 0;

if (t >= m)

Memoization and Dynamic Programming 83



¶ first = solve_t(m, n, t - m);

else

first = -1;

if (t >= n)

· second = solve_t(m, n, t - n);

else

second = -1;

if (first == -1 && second == -1)

¸ return -1;

else

¹ return max(first, second) + 1;

}

Listing 3-1: Solving for exactly t minutes

It’s worth spending a few minutes getting a feel for what the function
does—even if you’re already convinced of its correctness.

Let’s begin with solve_t(4, 9, 22). The recursive call for first ¶ solves
the subproblem for 18 minutes (22–4). That recursive call returns 2, because
two is the maximum number of burgers that Homer can eat in exactly
18 minutes. The recursive call for second · solves the subproblem for 13
minutes (22 – 9). That recursive call returns 2 as well, because two is the max-
imum number of burgers that Homer can eat in exactly 13 minutes. That
is, both first and second are 2 in this case; tacking on the final four-minute
or nine-minute burger gives a solution of 3 ¹ for the original problem of ex-
actly 22 minutes.

Let’s now try solve_t(4, 9, 20). The recursive call for first ¶ solves the
subproblem for 16 minutes (20 – 4) and yields 4 as a result, but what about
the recursive call for second ·? Well, that one is asked to solve the subprob-
lem for 11 minutes (20 – 9), but there is no way to spend exactly 11 minutes
by eating 4-minute and 9-minute burgers! Thus this second recursive call re-
turns -1. The maximum of first and second is therefore 4 (the value of first),
and so we return 5 ¹.

So far we’ve seen an example where the two recursive calls both give
subproblem solutions with the same number of burgers and an example
where only one recursive call gives a subproblem solution. Now let’s look
at a case where each recursive call returns a subproblem solution, but where
one is better than the other! Consider solve_t(4, 9, 36). The recursive call
for first ¶ yields 8, the maximum number of burgers that Homer can eat in
exactly 32 minutes (36 – 4). The recursive call for second · yields 3, the max-
imum number of burgers that Homer can eat in exactly 27 minutes (36 – 9).
The maximum of 8 and 3 is 8, and so we return 9 as the overall solution ¹.

Finally, try solve_t(4, 9, 15). The recursive call for first ¶ is asked to
solve for exactly 11 minutes (15 – 4) and, since this is impossible with these
kinds of burger, returns -1. The result for the second recursive call · is simi-
lar: solving for exactly 6 minutes (15 – 9) is impossible, so it also returns -1.
There is therefore no way to solve for exactly 15 minutes, so we return -1 ¸.
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The solve and main Functions
Recall from “Forming a Plan” on page 78 that if we can fill exactly tminutes
by eating burgers, then we output the maximum number of burgers. Other-
wise, Homer has to spend at least one minute drinking beer. To figure out
the number of minutes that he must spend drinking beer, we try to solve for
exactly t – 1 minutes, t – 2 minutes, and so on, until we find a number of min-
utes that can be filled by eating burgers. Happily, with our solve_t function,
we can set the t parameter to whatever we want. We can start at the given
value of t and then, as needed, make calls on t - 1, t - 2, and so on. We ef-
fect this plan in Listing 3-2.

void solve(int m, int n, int t) {

int result, i;

¶ result = solve_t(m, n, t);

if (result >= 0)

· printf("%d\n", result);

else {

i = t - 1;

¸ result = solve_t(m, n, i);

while (result == -1) {

i--;

¹ result = solve_t(m, n, i);

}

º printf("%d %d\n", result, t - i);

}

}

Listing 3-2: Solution 1

First, we solve the problem for exactly t minutes ¶. If our result is at
least zero, then we output the maximum number of burgers · and stop.

If it wasn’t possible for Homer to eat burgers for the entire t minutes,
we set i to t - 1, since t - 1 is the next-best number of minutes that we
should try. We then solve the problem for this new value of i ¸. If we don’t
get a value of -1, we’re successful and the while loop is skipped. If we’re not
successful, the while loop executes until we successfully solve a subproblem.
Inside the while loop, we decrement the value of i and solve that smaller
subproblem ¹. The while loop will eventually terminate; for example, we
can certainly fill zero minutes with burgers. Once we escape the while loop,
we’ve found the largest number of minutes, i, that can be filled by burgers.
At that point, result will hold the maximum number of burgers, and t - i is
the number of minutes that remain, so we output both values º.

That’s that. We use recursion in solve_t to solve for t exactly. We tested
solve_t on different kinds of test cases, and everything looked good. Not
being able to solve for exactly t poses no problem: we use a loop inside of
solve to try the minutes one by one, from largest to smallest. All we need
now is a main function to read the input and call solve; Listing 3-3 provides
the code.
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int main(void) {

int m, n, t;

while (scanf("%d%d%d", &m, &n, &t) != -1)

solve(m, n, t);

return 0;

}

Listing 3-3: The main function

Ah, a harmonious moment. We’re now ready to submit Solution 1 to
the judge. Please do that now. I’ll wait . . . and wait . . . and wait.

Solution 2: Memoization
Solution 1 fails, not because it’s incorrect, but because it’s too slow. If you
submit Solution 1 to the judge, you’ll receive a “Time-Limit Exceeded” error.
Remember the “Time-Limit Exceeded” error we received in Solution 1 of
the Unique Snowflakes problem in Chapter 1? There, the inefficiency was
emblematic of doing unnecessary work. Here, as we’ll soon see, the ineffi-
ciency does not lie in doing unnecessary work, but in doing necessary work
over and over and over.

The problem description says that t can be any number of minutes less
than 10,000. Surely, then, the following test case should pose no problem
at all:

4 2 88

The m and n values, 4 and 2, are very small. Relative to 10,000, the t
value of 88 is very small as well. You may be surprised and disappointed that
our code on this test case may not run within the three-second problem time
limit. On my laptop, it takes about 10 seconds. That’s 10 seconds on a puny
88 test case. While we’re at it, let’s try this slightly bigger test case:

4 2 90

All we did was increase t from 88 to 90, but this small increase has a dis-
proportionate effect on runtime: on my laptop, this test case takes about 18
seconds—almost double what the 88 test case takes! Testing with a t value of
92 just about doubles the runtime again, and so on and so on. No matter
how fast the computer, you’re unlikely to ever make it to a t value of even
100. By extrapolating from this trend, we can see that it’s unfathomable
how much time it would take to run our code on a test case where t is in the
thousands. This kind of algorithm, in which a fixed increment in problem
size leads to a doubling of runtime, is called an exponential-time algorithm.

We have established that our code is slow—but why? Where is the
inefficiency?
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Counting the Function Calls
I’m going to take Solution 1 and add some code that counts the number
of times that solve_t is called; see Listing 3-4 for the new solve_t and solve

functions. We now have a global variable total_calls that is initialized to 0 on
entry to solve and is increased by 1 on every call of solve_t. That variable is
of type long long; long or int simply isn’t big enough to capture the explosion
of function calls.

unsigned long long total_calls;

int solve_t(int m, int n, int t) {

int first, second;

¶ total_calls++;

if (t == 0)

return 0;

if (t >= m)

first = solve_t(m, n, t - m);

else

first = -1;

if (t >= n)

second = solve_t(m, n, t - n);

else

second = -1;

if (first == -1 && second == -1)

return -1;

else

return max(first, second) + 1;

}

void solve(int m, int n, int t) {

int result, i;

· total_calls = 0;

result = solve_t(m, n, t);

if (result >= 0)

printf("%d\n", result);

else {

i = t - 1;

result = solve_t(m, n, i);

while (result == -1) {

i--;

result = solve_t(m, n, i);

}

printf("%d %d\n", result, t - i);

}

¸ printf("Total calls to solve_t: %llu\n", total_calls);

}

Listing 3-4: Solution 1, instrumented

Memoization and Dynamic Programming 87



At the start of solve_t, we increase total_calls by 1 ¶ to count this func-
tion call. In solve, we initialize total_calls to 0 · so that the count of calls is
reset before each test case is processed. For each test case, the code prints
the number of times that solve_t was called ¸.

If we give it a go with this input:

4 2 88

4 2 90

we get this as output:

44

Total calls to solve_t: 2971215072

45

Total calls to solve_t: 4807526975

We’ve made billions of calls!
Consider a given m, n, t test case. Our solve_t function has three param-

eters, but only the third parameter t ever changes. There are, therefore, only
t + 1 different ways that solve_t can be called. For example, if t in a test case
is 88, then the only calls that can be made to solve_t are those with t values of
88, 87, 86, and so on. Once we know the answer for some t value, such as 86,
there’s no reason to ever compute that answer again.

Of those billions of calls, only about 88 or 90 of them can be distinct.
We conclude that the same subproblems are being solved a staggering num-
ber of times.

Remembering Our Answers
Here’s some intuition for the staggering number of calls we make. If we call
solve_t(4, 2, 88), it makes two recursive calls: one to solve_t(4, 2, 86) and
the other to solve_t(4, 2, 84). So far, so good. Now consider what will hap-
pen for the solve_t(4, 2, 86) call. It will make two recursive calls of its own,
the first of which is solve_t(4, 2, 84)—exactly one of the recursive calls made
by solve_t(4, 2, 88)! That solve_t(4, 2, 84) work will therefore be performed
twice. Once would have been enough!

However, the imprudent duplication is only just beginning. Consider
the two solve_t(4, 2, 84) calls. By reasoning as in the previous paragraph,
we see that each call eventually leads to two calls of solve_t(4, 2, 80), for a
total of four. Again, once would have been enough!

Well, it would have been enough if we had somehow remembered the
answer from the first time we computed it. If we remember the answer to a
call of solve_t the first time we compute it, we can just look it up later when
we need that answer again.

Remember, don’t refigure. That’s the maxim of the memoization technique.
Memoization comes from the word memoize, which means to store as if on a
memo. It is a clunky word, sure, but one that’s in widespread use.

Using memoization involves three steps:
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1. Declare an array large enough to hold the solutions to all possible
subproblems. In Burger Fervor, t is less than 10,000, so an array of
10,000 elements suffices. This array is typically given the name memo.

2. Initialize the elements of memo to a value reserved to mean “unknown
value.”

3. At the start of the recursive function, add code to check whether
the subproblem solution has already been solved. This involves
checking the corresponding index of memo: if the “unknown value”
is there, then we have to solve this subproblem now; otherwise, the
answer is already stored in memo and we simply return it, without do-
ing any further recursion. Whenever we solve a new subproblem, we
store its solution in memo.

Let’s augment Solution 1 with memoization.

Implementing Memoization
The appropriate place to declare and initialize the memo array is in solve, since
that’s the function that first gets triggered for each test case. We’ll use a
value of -2 to represent an unknown value; we can’t use positive numbers be-
cause those would be confused with numbers of burgers, and we can’t use -1

because we’re already using -1 to mean “no solution possible.” The updated
solve function is given in Listing 3-5.

#define SIZE 10000

void solve(int m, int n, int t) {

int result, i;

¶ int memo[SIZE];

for (i = 0; i <= t; i++)

memo[i] = -2;

result = solve_t(m, n, t, memo);

if (result >= 0)

printf("%d\n", result);

else {

i = t - 1;

result = solve_t(m, n, i, memo);

while (result == -1) {

i--;

result = solve_t(m, n, i, memo);

}

printf("%d %d\n", result, t - i);

}

}

Listing 3-5: Solution 2, with memoization implemented

We declare the memo array using the maximum possible size for any test
case ¶. Then we loop from 0 to t and set each element in the range to -2.

Memoization and Dynamic Programming 89



There’s also a small but important change in our calls to solve_t. Now
we’re passing in memo along with the other arguments; in this way, solve_t can
check memo to determine whether the current subproblem has already been
solved and update memo if it has not.

The updated solve_t code is given in Listing 3-6.

int solve_t(int m, int n, int t, int memo[]) {

int first, second;

¶ if (memo[t] != -2)

return memo[t];

if (t == 0) {

memo[t] = 0;

return memo[t];

}

if (t >= m)

first = solve_t(m, n, t - m, memo);

else

first = -1;

if (t >= n)

second = solve_t(m, n, t - n, memo);

else

second = -1;

if (first == -1 && second == -1) {

memo[t] = -1;

return memo[t];

} else {

memo[t] = max(first, second) + 1;

return memo[t];

}

}

Listing 3-6: Solving for exactly t minutes, with memoization implemented

The game plan is the same as it was in Solution 1, Listing 3-1: if t is 0,
solve the base case; otherwise, solve for t - m minutes and t - n minutes and
use the better one.

To this structure we fasten memoization. The huge reduction in time
is realized when we check if a solution for t is already in the memo array ¶,
returning that stored result if it is. There is no fussing over whether the final
burger takes m or nminutes. There is no further recursion. All we have is an
immediate return from the function.

If we don’t find a solution in memo, then we have work to do. The work
is the same as before—except that, whenever we’re about to return the
solution, we first store it in the memo. Before each of our return statements,
we store the value we’re about to return in memo so that our program main-
tains a memory of it.
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Testing Our Memoization
I demonstrated that Solution 1 was doomed by showing you two things: that
small test cases took far too long to run and that the slowness was caused by
making an exorbitant number of function calls. How does Solution 2 fare in
terms of these metrics?

Try Solution 2 with the input that bested Solution 1:

4 2 88

4 2 90

On my laptop, the time taken is imperceptibly small.
How many function calls are made? I encourage you to instrument

Solution 2 in the way that we did for Solution 1 (Listing 3-4). If you do that
and run it with the above input, you should get this output:

44

Total calls to solve_t: 88

45

Total calls to solve_t: 90

88 calls when t is 88. 90 calls when t is 90. The difference between
Solution 2 and Solution 1 is like night and a few billion days. We’ve gone
from an exponential-time algorithm to a linear-time algorithm. Specifically,
we now have an O(t) algorithm, where t is the number of Homer’s minutes.

It’s judge time. If you submit Solution 2, you’ll see that we pass all of the
test cases.

This is certainly a milestone, but it is not the last word on Homer and
his burgers. We’ll be able to use something called dynamic programming to
eliminate the recursion from our code.

Solution 3: Dynamic Programming
We’ll bridge our way from memoization to dynamic programming by mak-
ing explicit the purpose of recursion in Solution 2. Consider the solve_t

code in Listing 3-7; it’s the same as the code in Listing 3-6 except that I’m
now highlighting just the two recursive calls.

int solve_t(int m, int n, int t, int memo[]) {

int first, second;

if (memo[t] != -2)

return memo[t];

if (t == 0) {

memo[t] = 0;

return memo[t];

}

if (t >= m)

¶ first = solve_t(m, n, t - m, memo);

else

first = -1;
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if (t >= n)

· second = solve_t(m, n, t - n, memo);

else

second = -1;

if (first == -1 && second == -1) {

memo[t] = -1;

return memo[t];

} else {

memo[t] = max(first, second) + 1;

return memo[t];

}

}

Listing 3-7: Solving for exactly t minutes, focusing on recursive calls

At the first recursive call ¶, one of two very different things will happen.
The first is that the recursive call finds its subproblem solution in the memo
and returns immediately. The second is that the recursive call does not find
the subproblem solution in the memo, in which case it carries out its own
recursive calls. All of this is true of the second recursive call · as well.

When we make a recursive call and it finds its subproblem solution in
the memo, we have to wonder why we made the recursive call at all. The
only thing that the recursive call will do is check the memo and return; we
could have done that ourselves. If the subproblem solution is not in the
memo, however, then the recursion is really necessary.

Suppose that we could orchestrate things so that the memo array always
holds the next subproblem solution that we need to look up. We want to
know the optimal solution when t is 5? It’s in memo. What about when t is 18?
That’s in memo, too. By virtue of always having the subproblem solutions in
the memo, we’ll never require a recursive call; we can just look up the solu-
tion right away.

Here we have the difference between memoization and dynamic pro-
gramming. A function that uses memoization makes a recursive call to solve
a subproblem. Maybe the subproblem was already solved, maybe it wasn’t—
regardless, it will be solved when the recursive call returns. A function that
uses dynamic programming organizes the work so that a subproblem is al-
ready solved by the time we need it. We then have no reason to use recur-
sion: we just look up the solution.

Memoization uses recursion to ensure that a subproblem is solved; dy-
namic programming ensures that the subproblem is already solved and
therefore has no use for recursion.

Our dynamic-programming solution dispenses with the solve_t func-
tion and systematically solves for all values of t in solve. Listing 3-8 gives
the code.

void solve(int m, int n, int t) {

int result, i, first, second;

int dp[SIZE];

¶ dp[0] = 0;
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for (i = 1; i <= t; i++) {

· if (i >= m)

¸ first = dp[i - m];

else

first = -1;

¹ if (i >= n)

second = dp[i - n];

else

second = -1;

if (first == -1 && second == -1)

º dp[i] = -1;

else

» dp[i] = max(first, second) + 1;

}

¼ result = dp[t];

if (result >= 0)

printf("%d\n", result);

else {

i = t - 1;

result = dp[i];

while (result == -1) {

i--;

½ result = dp[i];

}

printf("%d %d\n", result, t - i);

}

}

Listing 3-8: Solution 3, with dynamic programming

The canonical name for a dynamic-programming array is dp. We could
have called it memo, since it serves the same purpose as a memo table, but we
call it dp to follow convention. Once we declare the array, we solve the base
case, explicitly storing the fact that the optimal solution for zero minutes
is to eat zero burgers ¶. Then we have the loop that controls the order in
which the subproblems are solved. Here, we solve the subproblems from
smallest number of minutes (1) to largest number of minutes (t). The vari-
able i determines which subproblem is being solved. Inside our loop, we
have the familiar check of whether it makes sense to test the m-minute bur-
ger as the final burger ·. If so, we look up the solution to the i - m subprob-
lem in the dp array ¸.

Notice how we just look up the value from the array ¸, without using
any recursion. We can do that because we know, by virtue of the fact that
i - m is less than i, that we’ve already solved subproblem i - m. This is
precisely why we solve subproblems in order, from smallest to largest: larger
subproblems will require solutions to smaller subproblems, so we must en-
sure that those smaller subproblems have already been solved.
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The next if statement ¹ is analogous to the previous one · and handles
the case when the final burger is an n-minute burger. As before, we look up
the solution to a subproblem using the dp array. We know for sure that the
i - n subproblem has already been solved, because the i - n iteration took
place before this i iteration.

We now have the solutions to both of the required subproblems. All
that’s left to do is store the optimal solution for i in dp[i] º ».

Once we’ve built up the dp array, solving subproblems 0 to t, we can look
up subproblem solutions at will. We thus simply look up the solution to sub-
problem t ¼, printing it if there’s a solution and looking up solutions to pro-
gressively smaller subproblems if there’s not ½.

Like our memoized solution, this is a linear-time solution. In general,
the dynamic-programming and memoized solutions of a problem will have
the same efficiency, but, that efficiency may be easier to identify in dynamic-
programming solutions because they use a loop rather than recursion.

Let’s see one example dp array before moving on. For the test case that
follows:

4 9 15

the final contents of the dp array are:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Value 0 –1 –1 –1 1 –1 –1 –1 2 1 –1 –1 3 2 –1 –1

We can trace the code in Listing 3-8 to confirm each of these subprob-
lem solutions. For example, dp[0], the maximum number of burgers that
Homer can eat in zero minutes, is 0 ¶. dp[1] is -1 because both checks · ¹
fail, meaning we store -1 º.

As a final example, we’re going to reverse-engineer how dp[12] got its
value of 3. Since 12 is greater than 4, the first check passes ·. We then set
first to dp[8] ¸, which has a value of 2. Similarly, 12 is greater than 9, so the
second check passes ¹, and we set second to dp[3], which has a value of -1.
The maximum of first and second is therefore 2, so we set dp[12] to 3, one
more than that maximum ».

Please feel free to submit our dynamic programming solution to the
judge. It should pass all test cases just like our memoization solution did.
Is one of these solutions better than the other? And when should we be us-
ing memoization and dynamic programming, anyway? Read on to find out.

Memoization and Dynamic Programming
We solved Burger Fervor in four steps. First, we characterized what an opti-
mal solution must look like; second, we wrote a recursive solution; third, we
added memoization; and fourth, we eliminated the recursion by explicitly
solving subproblems from smallest to largest. These four steps offer a gen-
eral plan for tackling many other optimization problems.
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Step 1: Structure of Optimal Solutions
The first step is to show how to decompose an optimal solution to a problem
into optimal solutions for smaller subproblems. In Burger Fervor, we did
this by reasoning about the final burger that Homer eats. Is it an m-minute
burger? That leaves the subproblem of filling t – mminutes. What if it is an
n-minute burger? That leaves the problem of filling t – nminutes. We don’t
know which it is, of course, but we can simply solve these two subproblems
to find out.

It’s critical that our subproblems really are smaller than the original
problem. If they are not, then we will fail to eventually reach a base case.
The problems in Chapter 5 serve as examples of what we need to do when
subproblems cannot be easily ordered by size.

We also require that an optimal solution to a problem contains within it
not just some solutions to the smaller subproblems but optimal solutions to
those subproblems. Let’s make this point explicit here.

In Burger Fervor, when supposing that the final burger in an optimal so-
lution is an m-minute burger, we argued that a solution to the t – m subprob-
lem was part of the solution to the overall t problem. Moreover, an optimal
solution for tmust include the optimal solution for t – m: if it didn’t, then
the solution for t wouldn’t be optimal after all, since we could improve it by
using the better solution for t – m! A similar argument can be used to show
that, if the last burger in an optimal solution is an n-minute burger, then the
remaining t – nminutes should be filled with an optimal solution for t – n.

Let me unpack this a little through an example. Suppose that m = 4,
n = 9, and t = 54. The value of an optimal solution is 11. There is an opti-
mal solution S where the final burger is a 9-minute burger. My claim is that
Smust consist of this 9-minute burger along with an optimal solution for 45
minutes. The optimal solution for 45 minutes is 10 burgers. If S used some
suboptimal solution for the first 45 minutes, then S wouldn’t be an example
of an optimal 11-burger solution. For example, if S used a suboptimal five-
burger solution for the first 45 minutes, then it would use a total of only six
burgers for the full 54 minutes!

If an optimal solution to a problem is composed of optimal solutions
to subproblems, we say that the problem has optimal substructure. If a prob-
lem has optimal substructure, the techniques from this chapter are likely
to apply.

I’ve read and heard people claim that solving optimization problems
using memoization or dynamic programming is formulaic, that once you’ve
seen one such problem, you’ve seen them all, and you can just turn the crank
when a new problem arises. I don’t think so. That perspective belies the
challenges of both characterizing the structure of optimal solutions and
identifying that this will be fruitful in the first place.

For example, when discussing the structure of an optimal solution for
Burger Fervor, I made a big deal about focusing on exactly tminutes. As a re-
sult, in our code we couldn’t necessarily look up the answer in one shot—we
needed to check for a solution to exactly tminutes, then exactly t – 1 min-
utes, then exactly t – 2 minutes, and so on, until we found a solution. But
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couldn’t we have found a way to characterize the optimal solution so that we
didn’t need to search like that? Well, we could have, but that would have led
to an overall trickier solution for this problem. (We’ll see this alternate kind
of approach as an effective way to solve Problem 3 later in this chapter.)

My point here is simply that discovering what an optimal solution looks
like can be surprisingly tricky. The sheer breadth of problems that can be
solved using memoization and dynamic programming means that practic-
ing with and generalizing from as many problems as possible is the only way
forward.

Step 2: Recursive Solution
Step 1 not only suggests to us that memoization and dynamic programming
will lead to a solution, but also leaves in its wake a recursive approach for
solving the problem. To solve the original problem, try each of the possibili-
ties for an optimal solution, solving subproblems optimally using recursion.
In Burger Fervor, we argued that an optimal solution for exactly tminutes
might consist of an m-minute burger and an optimal solution for exactly
t – mminutes or an n-minute burger and an optimal solution for exactly t – n
minutes. Solving the t – m and t – n subproblems is therefore required and,
as these are smaller subproblems than t, we used recursion to solve them. In
general, the number of recursive calls depends on the number of available
candidates competing to be the optimal solution.

Step 3: Memoization
If we succeed with Step 2, then we have a correct solution to the problem.
As we saw with Burger Fervor, though, such a solution may require an abso-
lutely unreasonable amount of time to execute. The culprit is that the same
subproblems are being solved over and over, as a result of a phenomenon
known as overlapping subproblems. Really, if we didn’t have overlapping sub-
problems, then we could stop right here: recursion would be fine on its own.
Think back to Chapter 2 and the two problems we solved there. We solved
those successfully with recursion alone, and that worked because each sub-
problem was solved only once. In Halloween Haul, for example, we calcu-
lated the total amount of candy in a tree. The two subproblems were finding
the total amounts of candy in the left and right subtrees. Those problems
are independent: there’s no way that solving the subproblem for the left sub-
tree could somehow require information about the right subtree, or vice
versa.

If there’s no subproblem overlap, we can just use recursion. When there
is subproblem overlap, however, it’s time for memoization. As we learned
when solving Burger Fervor, memoization means that we store the solution
to a subproblem the first time we solve it. Then, whenever that subproblem
solution is needed in the future, we simply look it up rather than recalculate
it. Yes, the subproblems still overlap, but now they are solved only once, just
like in Chapter 2.
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Step 4: Dynamic Programming
Very likely, the solution resulting from Step 3 will be fast enough. Such a so-
lution still uses recursion, but without the risk of duplicating work. As I’ll
explain in the next paragraph, sometimes we want to eliminate the recur-
sion. We can do so as long as we systematically solve smaller subproblems
before larger subproblems. This is dynamic programming: the use of a loop
in lieu of recursion, explicitly solving all subproblems in order from smallest
to largest.

So what’s better: memoization or dynamic programming? For many
problems, they are roughly equivalent and, in those cases, you should use
what you find more comfortable. My personal choice is memoization. We’ll
see an example (Problem 3 later in this chapter) where the memo and dp tables
have multiple dimensions. In such problems, I often have trouble getting all
of the base cases and bounds for the dp table correct.

Memoization solves subproblems on an as-needed basis. For example,
consider the Burger Fervor test case where we have a kind of burger that
takes 2 minutes to eat, a kind of burger that takes 4 minutes to eat, and 90
minutes of time. A memoized solution will never solve for odd numbers of
minutes, such as 89 or 87 or 85, because those subproblems do not result
from subtracting multiples of 2 and 4 from 90. Dynamic programming, by
contrast, solves all subproblems on its way up to 90. The difference here
seems to favor memoized solutions; indeed, if huge swaths of the subprob-
lem space are never used, then memoization may be faster than dynamic
programming. This has to be balanced against the overhead inherent in re-
cursive code, though, with all of the calling and returning from functions. If
you’re so inclined, it wouldn’t hurt to code up both solutions to a problem
and see which is faster!

You’ll commonly see people refer to memoized solutions as top-down
solutions and dynamic-programming solutions as bottom-up solutions. It’s
called “top-down” because, to solve large subproblems, we recurse down to
small subproblems. In “bottom-up” solutions, we start from the bottom—the
smallest subproblems—and work our way to the top.

Memoization and dynamic programming are captivating to me. They
can solve so many types of problems; I don’t know another algorithm de-
sign technique that even comes close. Many of the tools that we learn in this
book, such as hash tables in Chapter 1, offer valuable speedups. The truth
is that, even without those tools, we could solve many problem instances—
not in time to have such solutions accepted by the judge, but perhaps still in
time to be practically useful. However, memoization and dynamic program-
ming are different. They vivify recursive ideas, turning algorithms that are
astonishingly slow into those that are astonishingly fast. I hope I can pull you
into the fold with this chapter and the next and that you won’t stop when
these chapters do.
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Problem 2: Moneygrubbers
In Burger Fervor, we were able to solve each problem by considering only
two subproblems. Here, we’ll see an example where each problem may re-
quire solving many more subproblems.

This is UVa problem 10980.

The Problem
You want to buy apples, so you go to an apple store. The store has a price for
buying one apple—for example, $1.75. The store also has m pricing schemes,
where each pricing scheme gives a number n and a price p for buying n ap-
ples. For example, one pricing scheme might state that three apples cost a
total of $4.00; another might state that two apples cost a total of $2.50. You
want to buy at least k apples and do so as cheaply as possible.

Input
We read test cases until there’s no more input. Each test case consists of the
following lines:

• A line containing the price for buying one apple, followed by the
number m of pricing schemes for this test case. m is at most 20.

• m lines, each of which gives a number n and total price p for buying
n apples. n is between 1 and 100.

• A line containing integers, where each integer k is between 0 and
100 and gives the desired number of apples to buy.

Each price in the input is a floating-point number with exactly two deci-
mal digits.

In the problem description, I gave an example price of one apple as
$1.75. I also gave two example pricing schemes: three apples for $4.00 and
two apples for $2.50. Using that data, suppose we wanted to determine the
minimum price for buying at least one apple and at least four apples, respec-
tively. Here’s the input for this test case:

1.75 2

3 4.00

2 2.50

1 4

Output
For each test case, output the following:

• A line containing Case c:, where c is the number of the test case
starting at 1.

• For each integer k, a line containing Buy k for $d, where d is the
cheapest cost for which we can buy at least k apples.
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Here’s the output for the above sample input:

Case 1:

Buy 1 for $1.75

Buy 4 for $5.00

The time limit for solving the test cases is three seconds.

Characterizing Optimal Solutions
The problem description specifies that we want to buy at least k apples as
cheaply as possible. This means that buying exactly k apples is only one op-
tion; we can buy more than k apples if it’s cheaper that way. We’re going
to start by trying to solve for exactly k apples, much as we solved for exactly
tminutes in Burger Fervor. Back then, we found a way when necessary to
move from exactly tminutes to smaller numbers of minutes. The hope is
that we can do something similar here, starting with k apples and finding
the cheapest cost for k, k + 1, k + 2, and so on. If it ain’t broke . . .

Before just recalling the title of this chapter and diving headlong into
memoization and dynamic programming, let’s make sure that we really do
need those tools.

What’s better: buying three apples for a total of $4.00 (Scheme 1) or two
apples for a total of $2.50 (Scheme 2)? We can try to answer this by calculat-
ing the cost per apple for each of these pricing schemes. In Scheme 1, we
have $4.00/3 = $1.33 per apple, and in Scheme 2 we have $2.50/2 = $1.25
per apple. It looks like Scheme 2 is better than Scheme 1. Let’s also suppose
that we can buy one apple for $1.75, which looks even worse than the two
schemes. We therefore have the cost per apple, from cheapest to most ex-
pensive, as follows: $1.25, $1.33, $1.75.

Now, suppose that we want to buy exactly k apples. How’s this for an al-
gorithm: at each step, use the cheapest cost per apple, until we’ve bought
k apples?

If we wanted to buy exactly four apples for the above case, then we’d
start with Scheme 2, because it lets us buy apples with the best price per ap-
ple. Using Scheme 2 once costs us $2.50 for two apples, and it leaves us with
two apples to buy. We can then use Scheme 2 again, buying two more apples
(for a total now of four apples) for another $2.50. We’d have spent $5.00 for
the four apples and, indeed, we cannot do better.

Note that just because an algorithm is intuitive or works on one test case
does not mean that it is correct in general. This algorithm of using the best-
available price per apple is flawed, and there are test cases that prove it. Try
to find such a test case before continuing!

Here’s one: suppose that we want to buy exactly three apples, not four.
We’d start with Scheme 2 again, giving us two apples for a total of $2.50.
Now we have only one apple to buy—and the only choice is to pay $1.75 for
the one apple. The total cost is $4.25—but there is a better way. Namely, we
should simply have used Scheme 1 once, costing us $4.00: yes, it has a higher
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cost per apple than Scheme 2, but it makes up for that by freeing us from
paying for one apple that has a still higher cost per apple.

It’s tempting to start affixing extra rules to our algorithm to try to fix it;
for example, “if there’s a pricing scheme for exactly the number of apples
that we need, then use it.” Suppose, however, we want to buy exactly three
apples. We can easily break this augmented algorithm by adding a scheme in
which the store sells three apples for $100.00.

When using memoization and dynamic programming, we try all the
available options for an optimal solution and then pick the best one. In Bur-
ger Fervor, should Homer end with an m-minute burger or an n-minute bur-
ger? We don’t know, so we try both. By contrast, a greedy algorithm is an
algorithm that tries just one option: the one that looks like the best choice at
the time.

Using the best price per apple, as we did above, is an example of a
greedy algorithm, because at each step it chooses what to do without con-
sidering other options. Sometimes greedy algorithms work. Moreover, since
they often run faster than dynamic-programming algorithms and are easier
to implement , a working greedy algorithm may be better than a working
dynamic-programming algorithm. For this problem, it appears that greedy
algorithms—whether the one above or others that might come to mind—are
not sufficiently powerful.

In Burger Fervor, we reasoned that, if it’s possible to spend tminutes
eating burgers, then the final burger in an optimal solution must be an
m-minute burger or an n-minute burger. For the present problem, we want
to say something analogous: that an optimal solution for buying k apples
must end in one of a small number of ways. Here’s a claim: if the available
pricing schemes are Scheme 1, Scheme 2, . . . , Scheme m, then the final thing
we do must be to use one of these m pricing schemes. There can’t be any-
thing else that we could do, right?

Well, this is not quite true. The final thing that we do in an optimal so-
lution might be buying one apple. We always have that as an option. Rather
than solve two subproblems as in Burger Fervor, we solve m + 1 subproblems:
one for each of the m pricing schemes and one for buying one apple.

Suppose that an optimal solution for buying k apples ends with us pay-
ing p dollars for n apples. We then need to optimally buy k – n apples and
add that cost to p. We need to establish that the overall optimal solution for
k apples contains within it an optimal solution for k – n apples. This is the
optimal substructure requirement of memoization and dynamic program-
ming. As with Burger Fervor, optimal substructure does hold. If a solution
for k didn’t use an optimal solution for k – n, then that solution for k can-
not be optimal after all: it’s not as good as what we’d get if we built it on the
optimal solution for k – n.

Of course, we don’t know what to do at the end of the solution to make
it optimal. Do we use Scheme 1, use Scheme 2, use Scheme 3, or just buy
one apple? Who knows? As in any memoization or dynamic-programming
algorithm, we simply try them all and choose the best one.
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Before we look at a recursive solution, note that, for any number k, we
can always find a way to buy exactly k apples. Whether one apple, two ap-
ples, five apples, whatever, we can buy that many. The reason is that we al-
ways have the option of buying one apple, and we can do that as many times
as we like. Compare this to Burger Fervor, where there were values of t such
that tminutes could not be filled by the available burgers. As a consequence
of this difference, here we won’t have to worry about the case where a recur-
sive call on a smaller subproblem fails to find a solution.

Solution 1: Recursion
Like in Burger Fervor, the first thing to do is write a helper function to solve
for a specific number of apples.

The Helper Function: Solving for the Number of Apples
Let’s write the function solve_k, whose job will be analogous to the solve_t

functions that we wrote for Burger Fervor. The function signature is as
follows:

double solve_k(int num[], double price[], int num_schemes,

double unit_price, int num_apples)

Each of these parameters except for the last comes directly from the cur-
rent test case. Here’s what each parameter is for:

num An array of numbers of apples, with one element per pricing scheme.
For example, if we have two pricing schemes, the first for three apples
and the second for two apples, then this array would be [3, 2].

price An array of prices, one element per pricing scheme. For exam-
ple, if we have two pricing schemes, the first with cost 4.00 and the sec-
ond with cost 2.50, then this array would be [4.00, 2.50]. Notice that
num and price together give us all of the information about the pricing
schemes.

num_schemes The number of pricing schemes. It’s the m value from the
test case.

unit_price The price for one apple.

num_apples The number of apples that we want to buy.

The solve_k function returns the minimum cost for buying exactly num_apples

apples.
The code for solve_k is given in Listing 3-9. In addition to studying this

code on its own, I strongly encourage you to compare it to the solve_t func-
tion from Burger Fervor (Listing 3-1). What differences do you notice? Why
are these differences present? Memoization and dynamic-programming so-
lutions share a common code structure. If we can nail that structure, then
we can focus on what’s different in and specific to each problem.
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¶ double min(double v1, double v2) {

if (v1 < v2)

return v1;

else

return v2;

}

double solve_k(int num[], double price[], int num_schemes,

double unit_price, int num_apples) {

double best, result;

int i;

· if (num_apples == 0)

¸ return 0;

else {

¹ result = solve_k(num, price, num_schemes, unit_price,

num_apples - 1);

º best = result + unit_price;

for (i = 0; i < num_schemes; i++)

» if (num_apples - num[i] >= 0) {

¼ result = solve_k(num, price, num_schemes, unit_price,

num_apples - num[i]);

½ best = min(best, result + price[i]);

}

return best;

}

}

Listing 3-9: Solving for exactly num apples apples

We start with a little min function ¶: we’ll need that for comparing so-
lutions and picking the smaller one. In Burger Fervor, we used a similar max

function, because we wanted the maximum number of burgers. Here, we
want the minimum cost. Some optimization problems are maximization prob-
lems (Burger Fervor) and others are minimization problems (Moneygrubbers)—
carefully read problem statements to make sure you’re optimizing in the
right direction!

What do we do if asked to solve for 0 apples ·? We return 0 ¸, because
the minimum cost to buy zero apples is exactly $0.00. That’s a base case, just
like filling zero minutes in Burger Fervor. As with recursion in general, at
least one base case is required for any optimization problem.

If we’re not in the base case, then num_apples will be a positive integer,
and we need to find the optimal way to buy exactly that many apples. The
variable best is used to track the best (minimum-cost) option that has been
found so far.

One option is to optimally solve for num_apples - 1 apples ¹ and add the
cost of the final apple º.

We now hit the big structural difference between this problem and Bur-
ger Fervor: a loop inside of the recursive function. In Burger Fervor, we
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didn’t need a loop, because we only had two subproblems to try. We just
tried the first one and then tried the second one. Here, though, we have one
subproblem per pricing scheme, and we have to go through all of them. We
check whether the current pricing scheme can be used at all »: if its number
of apples is no larger than the number that we need, then we can try it. We
make a recursive call to solve the subproblem resulting from removing the
number of apples in this pricing scheme ¼. (It’s similar to the earlier recur-
sive call where we subtracted one for the single apple ¹.) If that subproblem
solution plus the price of the current scheme is our best option so far, then
we update best accordingly ½.

The solve Function
We’ve optimally solved for exactly k apples, but there’s this detail from the
problem statement that we haven’t addressed yet: “You want to buy at least
k apples and to do so as cheaply as possible.” Why does the difference be-
tween exactly k apples and at least k apples matter in the first place? Can you
find a test case where it’s cheaper to buy more than k apples than it is to buy
k apples?

Here’s one for you. We’ll say that one apple costs $1.75. We have two
pricing schemes: Scheme 1 is that we can buy four apples for $3.00, and
Scheme 2 is that we can buy two apples for $2.00. Now, we want to buy at
least three apples. This test case in the form of problem input is as follows:

1.75 2

4 3.00

2 2.00

3

The cheapest way to buy exactly three apples is to spend $3.75: one ap-
ple for $1.75 and two apples using Scheme 2 for $2.00. However, we can
spend less money by in fact buying four apples, not three. The cheapest way
to buy four apples is to use Scheme 1 once, which costs us only $3.00. That
is, the correct output for this test case is:

Case 1:

Buy 3 for $3.00

(This output is a bit confusing, because we’re actually buying four ap-
ples, not three, but it is correct to output Buy 3 here. We always output the
number of apples that we’re asked to buy, whether or not we buy more than
that to save money.)

What we need is a solve function like the one we had for Burger Fervor
in Listing 3-2. There, we tried smaller and smaller values until we found a
solution. Here, we’ll try larger and larger values, keeping track of the mini-
mum solution as we go. Here’s a first crack at the code:

double solve(int num[], double price[], int num_schemes,

double unit_price, int num_apples) {

double best;
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int i;

¶ best = solve_k(num, price, num_schemes,

unit_price, num_apples);

· for (i = num_apples + 1; i < ???; i++)

best = min(best, solve_k(num, price, num_schemes,

unit_price, i));

return best;

}

We initialize best to the optimal solution for buying exactly num_apples ap-
ples ¶. Then, we use a for loop to try larger and larger numbers of apples ·.
The for loop stops when . . . uh-oh. How do we know when it’s safe to stop?
Maybe we’re being asked to buy 3 apples, but the cheapest thing to do is to
buy 4 or 5 or 10 or even 20. We didn’t have this problem in Burger Fervor,
because there we were making our way downward, toward zero, rather than
upward.

We can find a game-saving observation from the problem input specifi-
cation: it says that the number of apples in a given pricing scheme is at most
100. How does this help?

Suppose we’re being asked to buy at least 50 apples. Might it be best to
buy exactly 60 apples? Sure! Maybe the final pricing scheme in an optimal
solution for 60 apples is for 20 apples. Then we could combine those 20 ap-
ples with an optimal solution for 40 apples to get a total of 60 apples.

Suppose again that we’re buying 50 apples. Could it make sense for us
to buy exactly 180 apples? Well, think about an optimal solution for buying
exactly 180 apples. The final pricing scheme that we use gives us at most
100 apples. Before using that final pricing scheme, we’d have bought at least
80 apples and had done so more cheaply than we did for 180 apples. Cru-
cially, 80 is still greater than 50! Therefore, buying 80 apples is cheaper than
buying 180 apples. Buying 180 apples cannot be the optimal thing to do if
we want at least 50 apples.

In fact, for 50 apples, the maximum number of apples we should even
consider buying is 149. If we buy 150 or more apples, then removing the
final pricing scheme gives us a cheaper way to buy 50 or more apples.

The problem input specification not only limits the number of apples
per pricing scheme to 100, it also limits the number of apples to buy to 100.
In the case in which we are asked to buy 100 apples, then, the maximum
number of apples we should consider buying is 100 + 99 = 199. Incorporat-
ing this observation leads to the solve function in Listing 3-10.

#define SIZE 200

double solve(int num[], double price[], int num_schemes,

double unit_price, int num_apples) {

double best;

int i;

best = solve_k(num, price, num_schemes, unit_price, num_apples);

for (i = num_apples + 1; i < SIZE; i++)
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best = min(best, solve_k(num, price, num_schemes,

unit_price, i));

return best;

}

Listing 3-10: Solution 1

Now all we need is a main function and we can start submitting stuff to
the judge.

The main Function
Let’s get a main function written. See Listing 3-11. It’s not completely self-
contained, but all we’ll need is one helper function, get_number, that I’ll de-
scribe shortly.

#define MAX_SCHEMES 20

int main(void) {

int test_case, num_schemes, num_apples, more, i;

double unit_price, result;

int num[MAX_SCHEMES];

double price[MAX_SCHEMES];

test_case = 0;

¶ while (scanf("%lf%d ", &unit_price, &num_schemes) != -1) {

test_case++;

for (i = 0; i < num_schemes; i++)

· scanf("%d%lf ", &num[i], &price[i]);

printf("Case %d:\n", test_case);

more = get_number(&num_apples);

¸ while (more) {

result = solve(num, price, num_schemes, unit_price, num_apples);

printf("Buy %d for $%.2f\n", num_apples, result);

more = get_number(&num_apples);

}

¹ result = solve(num, price, num_schemes, unit_price, num_apples);

printf("Buy %d for $%.2f\n", num_apples, result);

}

return 0;

}

Listing 3-11: The main function

We begin by using scanf to try to read the first line of the next test case
from the input ¶. The next scanf call · is in a nested loop, and it reads the
number of apples and price for each pricing scheme.

Notice that each of the scanf format strings ends with a space, which en-
sures that we’re always positioned at the start of each line. This becomes
important once we get to the line containing the numbers of apples that we
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are asked to buy, because we’re going to use a helper function that assumes
we’re at the start of the line.

Why do we need a helper function? Well, we can’t just airily keep call-
ing scanf to read those numbers of apples, because we have to be able to stop
at a newline. That’s why we use my get_number helper function instead, de-
scribed further below. It returns 1 if there are more numbers to read and 0

if this is the last number on the line. We call this function to read each num-
ber in the loop ¸ that solves the test cases. We also need some code below
the loop ¹: when the loop terminates because it has read the final number
on the line, we still need to solve that final test case.

The code for get_number is given in Listing 3-12.

int get_number(int *num) {

int ch;

int ret = 0;

ch = getchar();

¶ while (ch != ' ' && ch != '\n') {

ret = ret * 10 + ch - '0';

ch = getchar();

}

· *num = ret;

¸ return ch == ' ';

}

Listing 3-12: The function to get an integer

This function reads an integer value using an approach reminiscent of
Listing 2-17. The loop continues as long as we haven’t yet hit a space or new-
line character ¶. When the loop terminates, we store what was read in the
pointer parameter passed to this function call ·. We use that pointer param-
eter, rather than return the value, because the return value has another role:
to indicate whether or not this is the last number on the line ¸. That is, if
get_number returns 1 (because it found a space after the number that it read),
it means that there are more numbers on this line; if it returns 0, then this is
the final number on this line.

We’ve got a complete solution now, but its performance is glacial. Even
test cases that look small will take ages, because we’re going all the way up to
299 apples no matter what.

Oh well. Let’s memoize the heck out of this thing.

Solution 2: Memoization
We introduced the memo array in solve (Listing 3-5) when memoizing Burger
Fervor. That was because each call of solve was for an independent test case.
However, in Moneygrubbers, we have that line where each integer specifies
a number of apples to buy, and we have to solve each one. It would be waste-
ful to throw away the memo array before we’ve completely finished with the
test case!
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We’re therefore going to declare and initialize memo in main. The updated
main function is in Listing 3-13.

int main(void) {

int test_case, num_schemes, num_apples, more, i;

double unit_price, result;

int num[MAX_SCHEMES];

double price[MAX_SCHEMES];

¶ double memo[SIZE];

test_case = 0;

while (scanf("%lf%d ", &unit_price, &num_schemes) != -1) {

test_case++;

for (i = 0; i < num_schemes; i++)

scanf("%d%lf ", &num[i], &price[i]);

printf("Case %d:\n", test_case);

· for (i = 0; i < SIZE; i++)

¸ memo[i] = -1;

more = get_number(&num_apples);

while (more) {

result = solve(num, price, num_schemes, unit_price, num_apples, memo);

printf("Buy %d for $%.2f\n", num_apples, result);

more = get_number(&num_apples);

}

result = solve(num, price, num_schemes, unit_price, num_apples, memo);

printf("Buy %d for $%.2f\n", num_apples, result);

}

return 0;

}

Listing 3-13: The main function, with memoization implemented

We declare the memo array ¶, and we set each element of memo to -1 (“un-
known” value) · ¸. Notice that the initialization of memo occurs just once per
test case. The only other change is that we add memo as a new parameter to
the solve calls.

The new code for solve is given in Listing 3-14.

double solve(int num[], double price[], int num_schemes,

double unit_price, int num_apples, double memo[]) {

double best;

int i;

best = solve_k(num, price, num_schemes, unit_price, num_apples, memo);

for (i = num_apples + 1; i < SIZE; i++)

best = min(best, solve_k(num, price, num_schemes, unit_price, i, memo));

return best;

}

Listing 3-14: Solution 2, with memoization implemented

Memoization and Dynamic Programming 107



In addition to adding memo as a new parameter at the end of the parame-
ter list, we pass memo to the solve_k calls. That’s it.

Finally, let’s take a look at the changes required to memoize solve_k. We
will store in memo[num_apples] the minimum cost of buying exactly num_apples

apples. See Listing 3-15.

double solve_k(int num[], double price[], int num_schemes,

double unit_price, int num_apples, double memo[]) {

double best, result;

int i;

¶ if (memo[num_apples] != -1)

return memo[num_apples];

if (num_apples == 0) {

memo[num_apples] = 0;

return memo[num_apples];

} else {

result = solve_k(num, price, num_schemes, unit_price,

num_apples - 1, memo);

best = result + unit_price;

for (i = 0; i < num_schemes; i++)

if (num_apples - num[i] >= 0) {

result = solve_k(num, price, num_schemes, unit_price,

num_apples - num[i], memo);

best = min(best, result + price[i]);

}

memo[num_apples] = best;

return memo[num_apples];

}

}

Listing 3-15: Solving for exactly num apples apples, with memoization implemented

Remember that the first thing we do when solving with memoization
is check whether the solution is already known ¶. If any value besides -1 is
stored for the num_apples subproblem, we return it. Otherwise, as with any
memoized function, we store a new subproblem solution in memo before re-
turning it.

We’ve now reached a natural stopping point for this problem: this mem-
oized solution can be submitted to the judge and should pass all test cases. If
you’d like more practice with dynamic programming, though, here’s a per-
fect opportunity for you to convert this memoized solution into a dynamic-
programming solution! Otherwise, we’ll put this problem on ice.

Problem 3: Hockey Rivalry
Our first two problems used a one-dimensional memo or dp array. Let’s look at
a problem whose solution dictates using a two-dimensional array.
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I live in Canada, so I suppose we weren’t getting through this book with-
out some hockey. Hockey is a team sport like soccer . . . but with goals.

This is DMOJ problem cco18p1.

The Problem
The Geese played n games, each of which had one of two outcomes: a win
for the Geese (W) or a loss for the Geese (L). (There are no tie games.) For
each of their games, we know whether they won or lost and we know the
number of goals that they scored. For example, we might know that their
first game was a win (W) and that they scored four goals in that game. (Their
opponent, whoever it was, must therefore have lost and scored fewer than
four goals.) The Hawks also played n games and, the same as the Geese,
each game was a win or loss for the Hawks. Again, for each of their games,
we know whether they won or lost and we know the number of goals that
they scored.

Some of the games that these teams played may have been against each
other, but there are other teams, too, and some of the games may have been
against these other teams.

We have no information about who played whom. We might know that
the Geese won a certain game and that they scored four goals in that game,
but we don’t know who their opponent was—their opponent could have
been the Hawks, but it also could have been some other team.

A rivalry game is a game where the Geese played the Hawks.
Our task is to determine the maximum number of goals that could have

been scored in rivalry games.

Input
The input contains one test case, the information for which is spread over
five lines as follows:

• The first line contains n, the number of games that each team played.
n is between 1 and 1,000.

• The second line contains a string of length n, where each character
is a W (win) or L (loss). This line tells us the outcome of each game
played by the Geese. For example, WLL means that the Geese won
their first game, lost their second game, and lost their third game.

• The third line contains n integers, giving the number of goals scored
in each game by the Geese. For example, 4 1 2 means that the Geese
scored four goals in their first game, one goal in their second game,
and two goals in their third game.

• The fourth line is like the second, but it tells us the outcome of each
game for the Hawks.

• The fifth line is like the third, but it tells us the number of goals
scored in each game by the Hawks.
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Output
The output is a single integer: the maximum number of goals scored in pos-
sible rivalry games.

The time limit for solving the test case is 0.6 seconds.

About Rivalries
Before jumping to the structure of optimal solutions, let’s be sure that we
understand exactly what’s being asked by working through some test cases.

We’ll start with this one:

3

WWW

2 5 1

WWW

5 7 8

There can’t be any rivalry games at all here. A rivalry game, like any
game, requires that one team win and the other lose—but the Geese won
all their games and the Hawks won all their games, so the Geese and Hawks
could not have played each other. Since there are no rivalry games possible,
there are no goals scored in rivalry games. The correct output is 0.

Let’s now have the Hawks lose all their games:

3

WWW

2 5 1

LLL

5 7 8

Are there any rivalry games now? The answer is still no! The Geese won
their first game by scoring two goals. For that game to be a rivalry game,
it must be with a game where the Hawks lost and where the Hawks scored
fewer than two goals. Since the fewest goals scored by the Hawks was five,
though, none of those games can be a rivalry game with the Geese’s first
game. Similarly, the Geese won their second game by scoring five goals, but
there is no loss for the Hawks where they scored four goals or fewer. That
is, there is no rivalry involving the Geese’s second game. The same kind of
analysis shows that the Geese’s third game also cannot be part of a rivalry.
Again, 0 is the correct output.

Let’s move past these zero cases. Here’s one:

3

WWW

2 5 1

LLL

4 7 8
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We’ve changed the first Hawks game so that they scored four goals in-
stead of five, and this is enough to produce a possible rivalry game! Specifi-
cally, the second game played by the Geese, where the Geese won and scored
five goals, could be a rivalry game with the first game by the Hawks, where
the Hawks lost and scored four goals. That game had nine goals scored in it.
As there are no other rivalry games that we can include, there are no other
goals that we can add to our total. The correct output here is 9.

Now consider this one:

2

WW

6 2

LL

8 1

Look at the final game that each team played: the Geese won and scored
two goals, and the Hawks lost and scored one goal. That could be a rivalry
game, with a total of three goals. The first game played by each team cannot
be a rivalry game (the Geese won with six goals, and the Hawks could not
have lost the same game with eight goals), so we can’t add any more goals. Is
3 the correct output?

It is not! We chose poorly, matching those final games. What we should
have done is match the first game played by the Geese with the second game
played by the Hawks. That could be a rivalry game, and it has seven goals.
This time we’ve got it: the correct output is 7.

Let’s look at one more example. Try to figure out the maximum total
before reading my answer:

4

WLWW

3 4 1 8

WLLL

5 1 2 3

The correct output is 20, witnessed by having two rivalry games: the sec-
ond Geese game with the first Hawks game (9 goals there) and the fourth
Geese game with the fourth Hawks game (11 goals there).

Did you predict instead that the correct output would be 25? If so, we’re
not allowed to add a rivalry of the first Geese game with the third Hawks
game. Call that pair x. Each team’s games are played in order, so if we used x
as a rivalry game, then we wouldn’t be allowed to also pair the second Geese
game (played after x) with the first Hawks game (played before x).

Characterizing Optimal Solutions
Consider an optimal solution to this problem: a solution that maximizes the
number of goals scored in rivalry games. What might this optimal solution
look like? Assume that the games for each team are numbered from 1 to n.
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Option 1
One option is that the optimal solution uses the final game n played by
the Geese and the final game n played by the Hawks as a rivalry game.
That game has a certain number of goals scored in it: call that g. We can
then strip out both of these games and optimally solve the smaller sub-
problem on the Geese’s first n–1 games and the Hawks’ first n–1 games.
That subproblem solution, plus g, is the optimal solution overall. Note,
though, that this option is only available if the two n games can really be
a rivalry game. For example, if both teams have a W for that game, then
this cannot be a rivalry game and Option 1 cannot apply.

Remember this test case from the prior section?

4

WLWW

3 4 1 8

WLLL

5 1 2 3

That’s an example of Option 1: we match the two rightmost scores,
8 and 3, and then optimally solve the subproblem for the remaining
games.

Option 2
Another option is that the optimal solution has nothing to do with these
final games at all. In that case, we strip out game n played by the Geese
and game n played by the Hawks, and we optimally solve the subprob-
lem on the Geese’s first n – 1 games and the Hawks’ first n – 1 games.

Here’s a test case from the prior section that is an example of
Option 2:

3

WWW

2 5 1

LLL

4 7 8

The 1 and 8 at the right are not part of an optimal solution. The op-
timal solution for the other games is the optimal solution overall.

So far we’ve covered the case where both game n scores are used and
the case where neither game n score is used. Are we done?

To see that we are not done, consider this test case from the previous
section:

2

WW

6 2

LL

8 1
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Option 1, matching the 2 and 1, leads to a maximum of three goals in
rivalry games. Option 2, throwing away both the 2 and 1, leads to a maxi-
mum of zero goals in rivalry games. However, the maximum overall here is
seven. Our coverage of types of optimal solutions, using only Option 1 and
Option 2, is therefore spotty.

What we need to be able to do here is drop a game from the Geese but
not from the Hawks. Specifically, we’d like to drop the Geese’s second game
and then solve the subproblem consisting of the Geese’s first game and both
of the Hawks’ games. For symmetry, we should also be able to drop the sec-
ond Hawks game and solve the resulting subproblem on the first Hawks
game and both Geese games. Let’s get these two additional options in there.

Option 3
Our third option is that the optimal solution has nothing to do with the
Geese’s game n. In that case, we strip out game n played by the Geese,
and we optimally solve the subproblem on the Geese’s first n – 1 games
and the Hawks’ first n games.

Option 4
Our fourth and final option is that the optimal solution has nothing to
do with the Hawks’ game n. In that case, we strip out game n played by
the Hawks, and we optimally solve the subproblem on the Geese’s first
n games and the Hawks’ first n – 1 games.

Options 3 and 4 induce a change in the structure of a solution to this
problem—whether that solution uses recursion, memoization, or dynamic
programming. In the previous problems of this chapter, our subproblems
were characterized by only one varying parameter: t for Burger Fervor and
k for Moneygrubbers. Without Options 3 and 4, we’d have gotten away with
a single parameter, n, for the Hockey Rivalry problem, too. That n parame-
ter would have reflected the fact that we were solving a subproblem for the
first n games played by the Geese and the first n games played by the Hawks.
With Options 3 and 4 in the mix, however, these n values are no longer
yoked: one can change when the other does not. For example, if we’re solv-
ing a subproblem concerning the first five games played by the Geese, this
does not mean that we’re stuck looking at the first five games played by the
Hawks. Symmetrically, a subproblem concerning the first five games played
by the Hawks doesn’t tell us anything about the number of games played by
the Geese.

We therefore need two parameters for our subproblems: i, the num-
ber of games played by the Geese, and j, the number of games played by the
Hawks.

For a given optimization problem, the number of subproblem parame-
ters could be one, two, three, or more. When confronting a new problem, I
suggest beginning with one subproblem parameter. Then, think about the
possible options for an optimal solution. Perhaps each option can be solved
by solving one-parameter subproblems, in which case additional parameters
are not required. However, sometimes it will be that one or more options
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require the solution to a subproblem that cannot be pinned down by one
parameter. In these cases, a second parameter can often help.

The benefit of adding additional subproblem parameters is the larger
subproblem space in which to couch our optimal solutions. The cost is the
responsibility of solving more subproblems. Keeping the number of param-
eters small—one, two, or perhaps three—is key for designing fast solutions to
optimization problems.

Before we move on, I want to highlight an important difference between
the way that we solved Burger Fervor and Moneygrubbers and the way that
we’re solving Hockey Rivalry. In the two earlier problems, we focused on
solving for exactly tminutes or exactly k apples. Here, by contrast, we’re
not forcing our subproblems to use any specific game. For example, a sub-
problem involving the first i games played by the Geese isn’t forced to use
Geese game i. The difference arose as a byproduct of our analysis of the
structure of optimal solutions. Each time we use dynamic programming, we
need to choose whether to use “exactly.” If we had chosen to use “exactly”
for Hockey Rivalry, then we would have ended up with comparably slower
and more complicated code. I’ve included that code in the online resources
for this book—check it out once you’re done here!

If you’re struggling to relate a problem to smaller subproblems, or strug-
gling to solve subproblems efficiently, it’s worth adding or removing “ex-
actly” and trying again. We’ll continue to practice identifying subproblems
in the next chapter.

Solution 1: Recursion
It’s now time for our recursive solution. Here’s the signature for the solve

function that we’ll write this time:

int solve(char outcome1[], char outcome2[], int goals1[],

int goals2[], int i, int j)

The first four parameters come directly from the current test case, while
the fifth and sixth are the subproblem parameters. Here are brief descrip-
tions of the parameters:

outcome1 The array of W and L characters for the Geese

outcome2 The array of W and L characters for the Hawks

goals1 The array of goals scored for the Geese

goals2 The array of goals scored for the Hawks

i The number of Geese games that we’re considering in this
subproblem

j The number of Hawks games that we’re considering in this
subproblem
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The last two parameters—the ones specific to the current subproblem—are
the only parameters that change on recursive calls.

If we started each of the arrays at index 0, as is standard for C arrays,
then we’d have to keep in our minds that information for some game k was
not at index k but at index k - 1. For example, information about game four
would be at index 3. To avoid this, we’ll store information about games start-
ing at index 1, so information about game four will be at index 4. This leaves
us with one less mistake to make! In addition, it frees up the value 0 to char-
acterize zero games played.

The code for the recursive solution is given in Listing 3-16.

¶ int max(int v1, int v2) {

if (v1 > v2)

return v1;

else

return v2;

}

int solve(char outcome1[], char outcome2[], int goals1[],

int goals2[], int i, int j) {

· int first, second, third, fourth;

¸ if (i == 0 || j == 0)

return 0;

¹ if ((outcome1[i] == 'W' && outcome2[j] == 'L' &&

goals1[i] > goals2[j]) ||

(outcome1[i] == 'L' && outcome2[j] == 'W' &&

goals1[i] < goals2[j]))

º first = solve(outcome1, outcome2, goals1, goals2, i - 1, j - 1) +

goals1[i] + goals2[j];

else

first = 0;

» second = solve(outcome1, outcome2, goals1, goals2, i - 1, j - 1);

¼ third = solve(outcome1, outcome2, goals1, goals2, i - 1, j);

½ fourth = solve(outcome1, outcome2, goals1, goals2, i, j - 1);

¾ return max(first, max(second, max(third, fourth)));

}

Listing 3-16: Solution 1

This is a maximization problem: we want to maximize the number of
goals scored in rivalry games. We start with a max function ¶—we’ll use that
when we need to determine which of the options is best. We then declare
four integer variables, one for each of the four options ·.

Let’s begin with base cases: What do we return if both i and j are 0?
This subproblem is for the first zero Geese games and zero Hawks games.
Since there are no games, there are certainly no rivalry games, and since
there are no rivalry games, there are no goals scored in rivalry games. We
should therefore return 0 here.
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That isn’t the only base case, though. For example, consider the sub-
problem where the Geese play zero games (i = 0) and the Hawks play three
games (j = 3). As with the case in the prior paragraph, there can’t be any
rivalry games here, because the Geese don’t have any games! A similar situ-
ation arises when the Hawks play zero games: even if the Geese play some
games, none of them can be against the Hawks.

That captures all of the base cases. That is to say, if i has value 0 or j has
value 0, then we have zero goals scored in rivalry games ¸.

With the base cases out of the way, we must now try the four possible
options for an optimal solution and choose the best one.

Option 1
Recall that this option is valid only when the final Geese game and final
Hawks game can be a rivalry game. There are two ways for this game to
be a rivalry game:

1. The Geese win, the Hawks lose, and the Geese score more goals
than the Hawks.

2. The Geese lose, the Hawks win, and the Geese score fewer goals
than the Hawks.

We encode these two possibilities ¹. If the game can be a rivalry game,
we compute the optimal solution for this option º: it consists of the op-
timal solution for the first i - 1 Geese games and j - 1 Hawks games
plus the total goals scored in the rivalry game.

Option 2
For this one, we solve the subproblem for the first i - 1 Geese games
and j - 1 Hawks games ».

Option 3
Here, we solve the subproblem for the first i - 1 Geese games and j

Hawks games ¼. Notice that i changes but j does not. This is exactly
why we need two subproblem parameters here, not one.

Option 4
We solve the subproblem for the first i Geese games and j - 1 Hawks
games ½. Again, one subproblem parameter changes but the other does
not; it’s a good thing there’s no need for us to keep them at the same
value!

There we go: first, second, third, and fourth—those are the only four pos-
sibilities for our optimal solution. We want the maximum of these, and that
is what we compute and return ¾. The innermost max call calculates the
maximum of third and fourth. Working outward, the next max call calculates
the maximum of that winner and second. Finally, the outermost call calcu-
lates the maximum of that winner and first.

We’re just about there. All we need now is a main function that reads the
five lines of input and calls solve. The code is given in Listing 3-17.

#define SIZE 1000

int main(void) {
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int i, n, result;

¶ char outcome1[SIZE + 1], outcome2[SIZE + 1];

· int goals1[SIZE + 1], goals2[SIZE + 1];

¸ scanf("%d ", &n);

for (i = 1; i <= n; i++)

scanf("%c", &outcome1[i]);

for (i = 1; i <= n; i++)

scanf("%d ", &goals1[i]);

for (i = 1; i <= n; i++)

scanf("%c", &outcome2[i]);

for (i = 1; i <= n; i++)

scanf("%d", &goals2[i]);

result = solve(outcome1, outcome2, goals1, goals2, n, n);

printf("%d\n", result);

return 0;

}

Listing 3-17: The main function

We declare the outcome (W and L) ¶ and goals-scored arrays ·. The + 1

there is because of our choice to begin indexing at 1. If we had used just
SIZE, then valid indices would go from zero to 999, when what we need is
to include index 1,000.

We then read the integer on the first line ¸, which gives the number
of games played by the Geese and Hawks. There’s a space right after the %d

and before the closing quote. That space causes scanf to read whitespace
following the integer. Crucially, this reads the newline character at the end
of the line, which otherwise would be included when we use scanf to read
individual characters . . . which we do next!

We read the W and L information for the Geese and then read the goals-
scored information for the Geese. We then do the same for the Hawks. Fi-
nally, we call solve. We want to solve the problem considering all n Geese
games and all n Hawks games, which explains why the last two arguments
are n. We know exactly how to call solve to get our answer in one shot; un-
like for our solutions to Burger Fervor and Moneygrubbers, we don’t need
to search for it.

Any chance you’ll submit this solution to the judge? The “Time-Limit
Exceeded” error should come as no surprise.

Solution 2: Memoization
In Burger Fervor and Moneygrubbers, we used a one-dimensional array for
the memo. That’s because our subproblems had but one parameter: the
number of minutes and number of apples, respectively. In contrast, the
subproblems in Hockey Rivalry have two parameters, not one. We’ll cor-
respondingly need a memo array with two dimensions, not one. Element
memo[i][j] is used to hold the solution to the subproblem on the first i Geese
games and the first j Hawks games. Other than switching from one to two
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dimensions in the memo, the technique remains as before: return the solu-
tion if it’s already stored; calculate and store it if it’s not.

The updated main function is given in Listing 3-18.

int main(void) {

int i, j, n, result;

char outcome1[SIZE + 1], outcome2[SIZE + 1];

int goals1[SIZE + 1], goals2[SIZE + 1];

static int memo[SIZE + 1][SIZE + 1];

scanf("%d ", &n);

for (i = 1; i <= n; i++)

scanf("%c", &outcome1[i]);

for (i = 1; i <= n; i++)

scanf("%d ", &goals1[i]);

for (i = 1; i <= n; i++)

scanf("%c", &outcome2[i]);

for (i = 1; i <= n; i++)

scanf("%d", &goals2[i]);

for (i = 0; i <= SIZE; i++)

for (j = 0; j <= SIZE; j++)

memo[i][j] = -1;

result = solve(outcome1, outcome2, goals1, goals2, n, n, memo);

printf("%d\n", result);

return 0;

}

Listing 3-18: The main function, with memoization implemented

Notice that the memo array is huge—over 1,000 elements in each dimen-
sion and therefore over 1 million elements in all—so we make the array static
as in Listing 1-8.

The memoized solve function is given in Listing 3-19.

int solve(char outcome1[], char outcome2[], int goals1[],

int goals2[], int i, int j, int memo[SIZE + 1][SIZE + 1]) {

int first, second, third, fourth;

if (memo[i][j] != -1)

return memo[i][j];

if (i == 0 || j == 0) {

memo[i][j] = 0;

return memo[i][j];

}

if ((outcome1[i] == 'W' && outcome2[j] == 'L' &&

goals1[i] > goals2[j]) ||

(outcome1[i] == 'L' && outcome2[j] == 'W' &&

goals1[i] < goals2[j]))

first = solve(outcome1, outcome2, goals1, goals2, i - 1, j - 1, memo) +

goals1[i] + goals2[j];
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else

first = 0;

second = solve(outcome1, outcome2, goals1, goals2, i - 1, j - 1, memo);

third = solve(outcome1, outcome2, goals1, goals2, i - 1, j, memo);

fourth = solve(outcome1, outcome2, goals1, goals2, i, j - 1, memo);

memo[i][j] = max(first, max(second, max(third, fourth)));

return memo[i][j];

}

Listing 3-19: Solution 2, with memoization implemented

This solution passes all test cases and does so quickly. If we just wanted
to solve this problem, we would stop right now, but here we have the oppor-
tunity to plumb further and learn more about dynamic programming as
we do so.

Solution 3: Dynamic Programming
We just saw that to memoize this problem we needed a two-dimensional memo
array, not a one-dimensional array. To develop a dynamic-programming so-
lution, we’ll correspondingly need a two-dimensional dp array. We declared
the memo array as follows in Listing 3-18:

static int memo[SIZE + 1][SIZE + 1];

and we’ll do likewise for the dp array:

static int dp[SIZE + 1][SIZE + 1];

As in the memo array, element dp[i][j] will hold the subproblem solution
for the first i Geese games and first j Hawks games. Our task, then, is to
solve each of these subproblems and return dp[n][n] once we’re done.

In memoized solutions to optimization problems, it’s not our respon-
sibility to determine an order in which to solve the subproblems. We make
our recursive calls, and those calls return to us the solutions for their corre-
sponding subproblems. In dynamic-programming solutions, however, it is
our responsibility to determine an order in which to solve the subproblems.
We can’t just solve them in any order we want, because then a subproblem
solution might not be available when we need it.

For example, suppose we wanted to fill in dp[3][5]—that’s the cell for the
first three Geese games and the first five Hawks games. Take another look
back at the four options for an optimal solution.

• Option 1 requires us to look up dp[2][4].

• Option 2 also requires us to look up dp[2][4].

• Option 3 requires us to look up dp[2][5].

• Option 4 requires us to look up dp[3][4].

We must arrange it so that these elements of dp are already stored by the
time we want to store dp[3][5].
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For subproblems with only one parameter, you generally solve those
subproblems from smallest index to largest index. For subproblems with
more than one parameter, things are not so simple, as there are many more
orders in which the array can be filled. Only some of these orders maintain
the property that a subproblem solution is available by the time we need it.

For the Hockey Rivalry problem, we can solve dp[i][j] if we’ve already
stored dp[i - 1][j - 1] (Option 1 and Option 2), dp[i - 1][j] (Option 3),
and dp[i][j - 1] (Option 4). One order we can use is to solve all of the
dp[i - 1] subproblems before solving any of the dp[i] subproblems. For ex-
ample, this would result in dp[2][4] being solved before dp[3][5], which is ex-
actly what we need to satisfy Options 1 and 2. It would also result in dp[2][5]

being solved before dp[3][5], which is what we need for Option 3. That is,
solving row i - 1 before row i satisfies Options 1 to 3.

To satisfy Option 4, we can solve the dp[i] subproblems from smallest
j index to largest j index. That, for example, would solve dp[3][4] before
dp[3][5].

In summary, we solve all of the subproblems in row 0 from left to right,
then all of the subproblems in row 1 from left to right, and so on, until we
have solved all subproblems in row n.

The solve function is given in Listing 3-20.

int solve(char outcome1[], char outcome2[], int goals1[],

int goals2[], int n) {

int i, j;

int first, second, third, fourth;

static int dp[SIZE + 1][SIZE + 1];

for (i = 0; i <= n; i++)

dp[0][i] = 0;

for (i = 0; i <= n; i++)

dp[i][0] = 0;

¶ for (i = 1; i <= n; i++)

· for (j = 1; j <= n; j++) {

if ((outcome1[i] == 'W' && outcome2[j] == 'L' &&

goals1[i] > goals2[j]) ||

(outcome1[i] == 'L' && outcome2[j] == 'W' &&

goals1[i] < goals2[j]))

first = dp[i - 1][j - 1] + goals1[i] + goals2[j];

else

first = 0;

second = dp[i - 1][j - 1];

third = dp[i - 1][j];

fourth = dp[i][j - 1];

dp[i][j] = max(first, max(second, max(third, fourth)));

}

¸ return dp[n][n];

}

Listing 3-20: Solution 3, with dynamic programming
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We begin by initializing the base case subproblems, which are those in
which at least one of the indices is 0. Then, we hit the double for loop ¶ ·,
which controls the order in which the non-base-case subproblems are solved.
We first range over the rows ¶ and then the elements in each row ·, which,
as we have argued, is a valid order for solving the subproblems. Once we
have filled in the table, we return the solution for the original problem ¸.

We’re solving n2 subproblems here, each of which takes us a constant
number of steps. Therefore, we’ve achieved an O(n2) solution.

We can visualize the array produced by a two-dimensional dynamic-
programming algorithm as a table. This is helpful for getting a feel for how
the elements of the array are filled in. Let’s look at the final array for the
following test case:

4

WLWW

3 4 1 8

WLLL

5 1 2 3

Here’s the resulting array:

4 0 9 18 19 20
3 0 9 9 9 9
2 0 9 9 9 9
1 0 0 4 5 5
0 0 0 0 0 0

0 1 2 3 4

Consider, for example, the computation for the element in row 4,
column 2 or, in terms of the dp table, dp[4][2]. This is the subproblem for the
first four Geese games and first two Hawks games. Looking at the Geese’s
game four and the Hawks’ game two, we see that the Geese won with eight
goals and the Hawks lost with one goal, so this game could be a rivalry game.
Option 1 is therefore a possible option. Nine goals were scored in this game.
To that nine, we add the value at row 3, column 1, which is nine again. This
gives us a total of 18. That’s our maximum so far—now we have to try
Options 2 to 4 to see whether they are better. If you do that, you should ob-
serve that they all happen to have the value nine. We therefore store 18, the
maximum of all available options, in dp[4][2].

The only quantity of real interest here, of course, is that in the topmost,
rightmost cell, corresponding to the subproblem allowing the full n games
for the Geese and n games for the Hawks. That value, 20, is what we return
as the optimal solution. The other quantities in the table are only useful in-
sofar as they help us make progress toward calculating that 20.
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In terms of the main function, we make one small change to the code of
Listing 3-17: the only thing to do is remove the second n passed to solve, re-
sulting in:

result = solve(outcome1, outcome2, goals1, goals2, n);

A Space Optimization
I mentioned in “Step 4: Dynamic Programming” on page 97 that memoiza-
tion and dynamic programming are roughly equivalent. Roughly, because
sometimes there are benefits to be had by choosing one or the other. The
Hockey Rivalry problem furnishes an example of a typical optimization
that we can perform when using dynamic programming but not when using
memoization. The optimization is not one of speed but of space.

Here’s the key question: When solving a subproblem in row i of the dp

array, which rows do we access? Look back at the four options. The only
rows used are i - 1 (the previous row) and i (the current row). There’s no
i - 2 or i - 3 or anything else in there. As such, keeping the entire two-
dimensional array in memory is wasteful. Suppose we’re solving subprob-
lems in row 500. All we need is access to row 500 and row 499. We might as
well not have row 498 or 497 or 496 or any other row in memory, because
we’ll never look at these again.

Rather than a two-dimensional table, we can pull through with only two
one-dimensional arrays: one for the previous row and one for the current
row we are solving.

Listing 3-21 implements this optimization.

int solve(char outcome1[], char outcome2[], int goals1[],

int goals2[], int n) {

int i, j, k;

int first, second, third, fourth;

static int previous[SIZE + 1], current[SIZE + 1];

¶ for (i = 0; i <= n; i++)

· previous[i] = 0;

for (i = 1; i <= n; i++) {

for (j = 1; j <= n; j++) {

if ((outcome1[i] == 'W' && outcome2[j] == 'L' &&

goals1[i] > goals2[j]) ||

(outcome1[i] == 'L' && outcome2[j] == 'W' &&

goals1[i] < goals2[j]))

first = previous[j - 1] + goals1[i] + goals2[j];

else

first = 0;

second = previous[j - 1];

third = previous[j];

fourth = current[j - 1];

current[j] = max(first, max(second, max(third, fourth)));
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}

¸ for (k = 0; k <= SIZE; k++)

¹ previous[k] = current[k];

}

return current[n];

}

Listing 3-21: Solution 3, with space optimization implemented

We initialize previous to all zeros ¶ ·, thereby solving all subproblems in
row 0. In the rest of the code, whenever we previously referred to row i - 1,
we now use previous. In addition, whenever we previously referred to row
i, we now use current. Once a new row has been fully solved and stored in
current, we copy current into previous ¸ ¹ so that current can be used to solve
the next row.

Summary
I’ve presented what I think of as the core of memoization and dynamic pro-
gramming: explicating the structure of an optimal solution, developing a
recursive algorithm, speeding it up through memoization, and optionally
replacing the recursion by filling a table.

There’s more to learn, though. What if I showed you how to crack some
nasty dynamic-programming problems merely through a change in perspec-
tive? What if I told you that we can work with three or more dimensions to
solve the toughest dynamic-programming problems?

In the next chapter, you’ll learn all that and more. See you there!

Notes
Hockey Rivalry is originally from the 2018 Canadian Computing Olympiad.

Sometimes, you need to know not only the value of an optimal solution,
but the decisions that you should make to achieve that solution. Check out
“Burger Fervor: Reconstructing a Solution” in Appendix B for an example
of how to do this.

Many algorithm textbooks delve deeper into the theory and applica-
tion of memoization and dynamic programming. My favorite treatment is
Algorithm Design by Jon Kleinberg and Éva Tardos (2006).
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4
ADVANCED MEMOIZAT ION AND

DYNAMIC PROGRAMMING

In this chapter, we’re going to continue
with memoization and dynamic program-

ming. You don’t need to read this chapter to
continue through the book. But there’s more

to learn if you’d like to deepen your understanding.
We’ll see how to make a dynamic-programming prob-
lem easier through a change in perspective, work with
more than two dimensions in our subproblem arrays,
and stretch our skills to go beyond the “optimize the
solution” problems we’ve seen thus far. We’ll also get
a bit more practice with the fundamentals. You’ll be a
dynamic-programming rock star after this.

Problem 1: The Jumper

We’ll start this chapter with a dynamic-programming problem that’s solvable
using what we learned in Chapter 3. As in that chapter, we’ll be able to solve



the problem by focusing on what the end of the optimal solution must look
like. We’ll see, though, that this isn’t the only way to do it. In particular, we’ll
see that we can instead focus not on the end of the optimal solution, but on
its beginning. You may find this second approach more intuitive than the
first, if not for this problem then perhaps for other problems. And once you
learn this change in perspective, you’ll have two approaches to throw at your
next dynamic-programming problem.

This is DMOJ problem crci07p2.

The Problem
Nikola is playing a game on a row of n squares. The leftmost square is
Square 1 and the rightmost square is Square n. Nikola starts on Square 1
and wants to get to Square n. To do so, she makes one or more jumps. Her
first jump is required to be from Square 1 to Square 2. After that, the jump-
ing rules are as follows:

• Nikola can jump to the right by exactly one more than the number
of squares on her previous jump. For example, if Nikola jumped
3 squares on her previous jump, then she can jump to the right by
4 squares now.

• Nikola can jump to the left by exactly the same number of squares
as on her previous jump. For example, if Nikola jumped 3 squares
on her previous jump, then she can jump 3 squares to the left now.

I’ll use the term jump distance to refer to the number of squares moved
on a given jump.

The valid squares here are those from 1 to n. Therefore, if a jump would
take Nikola to the left of square 1 or to the right of square n, that jump is not
allowed.

Each square has an entry cost. Whenever Nikola jumps, she pays the
entry cost of the square in which she lands.

We want to determine the minimum total cost for Nikola to get from
Square 1 to Square n.

Input
The input consists of the following lines:

• A line containing n, the number of squares in the row. n is between
2 and 1,000.

• n lines, each giving the entry cost for a square. The first of these
lines is the entry cost for Square 1, the second is the entry cost for
Square 2, and so on. Each entry cost is an integer between 1
and 500.

Output
Output the minimum total cost for Nikola to get from Square 1 to Square n.

The time limit for solving the test case is 0.6 seconds.
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Working Through an Example
Let’s work through one test case to make sure we know exactly what we are
being asked to do. Here it is:

7

3

5

1

9

7

2

3

Nikola starts on Square 1 and has to get to Square 7. Remembering that
the first jump has to be to Square 2, here’s one possible route:

Square 1 to Square 2
Cost 5.
Most recent jump distance is now 1.

Square 2 to Square 4
Cost 9.
Most recent jump distance is now 2.

Square 4 to Square 7
Cost 3.
Most recent jump distance is now 3.

We made it to Square 7! The total cost is 5 + 9 + 3 = 17. This is not the
minimum total cost, though. Try to find it before continuing.

Here’s how we can get the minimum total cost:

Square 1 to Square 2
Cost 5.
Most recent jump distance is now 1.

Square 2 to Square 1
Cost 3.
Most recent jump distance remains 1.

Square 1 to Square 3
Cost 1.
Most recent jump distance is now 2.

Square 3 to Square 6
Cost 2.
Most recent jump distance is now 3.

Square 6 to Square 3
Cost 1.
Most recent jump distance remains 3.
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Square 3 to Square 7
Cost 3.
Most recent jump distance is now 4.

The total cost this time is 5 + 3 + 1 + 2 + 1 + 3 = 15.

Solution 1: Backward Formulation
Before we can write any code, we need to settle on our subproblems and
how to use these subproblems to characterize the structure of an optimal
solution.

Finding the Subproblems
How many subproblem parameters do we need? Could we get away with
just one?

If we have only one subproblem parameter, then we could use it to keep
track of which square Nikola is on. But then how would we know which
jumps were allowed for a given subproblem? Think about the end of an
optimal solution for getting from Square 1 to Square 4. To get closer to a
base case, we’d need to know which square Nikola was on prior to Square 4
so that we could make a recursive call to that earlier square. For example,
if we knew that Nikola used a jump distance of 2 to get to Square 4, then
we would know that prior to Square 4 she must have been on Square 2 or
Square 6. But we don’t know the jump distance that Nikola used—it’s not
one of our subproblem parameters. This isn’t going to work.

Let’s try one more time with just one subproblem parameter. What if we
use it to keep track of the most recent jump distance? Well, then we won’t
have a subproblem parameter available to tell us which square Nikola is on!
And without knowing where Nikola is, we won’t have a way to know when
we’ve reached the base case square.

It looks like we need two subproblem parameters: one to tell us the
square that Nikola is on and one to tell us the jump distance that she used
to get to that square.

For each of these parameters, we need to decide whether to use “ex-
actly.” In Chapter 3, we saw examples of using “exactly” subproblems when
we solved Burger Fervor and Moneygrubbers. We also saw an example of
not using “exactly” when we solved Hockey Rivalry. Had we used “exactly”
in Hockey Rivalry, our subproblems would have forced specific games to be
matched as rivalry games, which wasn’t needed for that problem.

Here, it makes sense that we’d want to know exactly which square Nikola
is on. We could use that to figure out exactly which square she was on prior
to the most recent jump . . . well, not quite. We’d also need to know exactly
the jump distance that she used to get to the current square. We could then
use both the current square and jump distance to figure out exactly where
Nikola must have come from. That is, we need “exactly” for both subprob-
lem parameters.

The problem description specifies that we have no choice for the first
jump: it has to be from Square 1 to Square 2. Instead of worrying about
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maintaining that condition in our subproblems, we’ll just ignore it: our sub-
problems will tell us the minimum cost to get from Square 2 to some other
square. Later, we’ll add the cost of jumping from Square 1 to Square 2, and
that’ll give us our final solution.

We can’t use any old sequence of jumps from Square 2, though. Think
about what would happen if our solution from Square 2 started with a jump
of distance 3. We need to jump from Square 1 to Square 2 first and, uh-oh,
a jump distance of 3 is not allowed to follow that! We need to ensure that
our subproblems solve only for solutions that are feasible given that we’ll
prepend the jump from Square 1 to Square 2. We’ll call such solutions
connectible.

Okay, now we’re ready for the subproblems! The subproblem with
parameters i and j will tell us the minimum cost of a connectible solution
from Square 2 to exactly Square i using a final jump distance of exactly j.

That subproblem definition is quite a mouthful. Let’s use the test case
from the prior section to nail down a few examples of how the definition
works.

What is the solution for the subproblem when i = 7 and j = 3? This is
asking us for the best connectible solution that starts at Square 2, ends at
Square 7, and has a final jump distance of 3. The answer is 12, witnessed
by Nikola jumping from Square 2 to Square 4 (cost 9), to Square 7 (cost 3).
(Remember we’re ignoring the cost of jumping from Square 1 to Square 2 in
these subproblems.)

What about the solution for the subproblem with i = 7 and j = 4? The
answer is 10: Nikola can jump from Square 2 to Square 1 (cost 3), then to
Square 3 (cost 1), to Square 6 (cost 2), to Square 3 (cost 1), and finally to
Square 7 (cost 3).

What about i = 7 and j = 2? Try it, and you should find that achieving
this is impossible: there’s no way to find a connectible solution that gets
from Square 2 to Square 7 with a final jump distance of 2.

One more: i = 2 and j = 1. We’re already at Square 2 here. Furthermore,
j = 1 means that we need a jump of distance 1 to get us to Square 2. No prob-
lem: the jump from square 1 to Square 2 that we’re going to prepend is ex-
actly this kind of jump! The answer here is therefore 0. Hmm, I think we
may have just found a base case.

Characterizing Optimal Solutions
Consider a subproblem with some value of i and some value of j. What
might the optimal solution look like for this subproblem?

Option 1
One option is that this optimal solution ends with a jump to the right.
The j value gives us the distance of this jump, so we know that this jump
must have been from Square i – j. In order to jump to the right by j,
Nikola must have gotten to her previous square with a jump distance
of j – 1. (Why j – 1? Because a jump to the right is required to have a
jump distance that’s one more than the jump distance of the previous

Advanced Memoization and Dynamic Programming 129



jump.) So the solution for this option is the solution to the subproblem
for Square i – j and jump distance j – 1, plus the entry cost of Square i.

Yikes—it can be confusing thinking about the solution backward like
this! For example, we’re talking about jumping to the right, yet we’re using
a Square i – j that’s to the left. But remember: we’re looking for the square
that Nikola came from, so if she jumped to the right from that square, then
she indeed came from a smaller-numbered square.

Option 2
Our second option is that this optimal solution ends with a jump to the
left. The j value gives us the distance of this jump, so we know that this
jump must have been from Square i + j. In order to jump to the left by
j, Nikola must have gotten to her previous square with a jump distance
of j. So the solution for this option is the solution to the subproblem for
Square i + j and jump distance j, plus the entry cost of Square i.

Solving One Subproblem
Let’s skip the bare recursive solution and work on a memoized solution. To
do so, we’ll start by writing the code for the following solve_ij function
signature:

int solve_ij(int cost[], int n, int i, int j,

int memo[SIZE + 1][SIZE + 1])

This function solves the subproblem for the given values of i and j.
Here’s what each parameter is for:

cost The array of entry costs. The entry cost for Square 1 is cost[1], the
entry cost for Square 2 is cost[2], and so on.

n The number of squares in the row.

i The ending square for this subproblem.

j The final jump distance for this subproblem.

memo The memoization array.

The code for this function is given in Listing 4-1.

#define SIZE 1000

int min(int v1, int v2) {

if (v1 < v2)

return v1;

else

return v2;

}

int solve_ij(int cost[], int n, int i, int j, int memo[SIZE + 1][SIZE + 1]) {

int first, second;

¶ if (memo[i][j] != -2)
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return memo[i][j];

· if (i == 2 && j == 1) {

memo[i][j] = 0;

return memo[i][j];

}

¸ if (i - j >= 1 && j >= 2)

first = solve_ij(cost, n, i - j, j - 1, memo);

else

first = -1;

¹ if (i + j <= n)

second = solve_ij(cost, n, i + j, j, memo);

else

second = -1;

º if (first == -1 && second == -1) {

memo[i][j] = -1;

return memo[i][j];

} else if (second == -1) {

memo[i][j] = first + cost[i];

return memo[i][j];

} else if (first == -1) {

memo[i][j] = second + cost[i];

return memo[i][j];

} else {

memo[i][j] = min(first, second) + cost[i];

return memo[i][j];

}

}

Listing 4-1: Solving one subproblem

As we did when solving Burger Fervor in Chapter 3, we use -2 in the memo

array ¶ to indicate that a subproblem hasn’t been solved yet. The typical
value to use here would be -1, but we’ll use -1 to indicate that we’ve already
tried to solve a subproblem but that it has no solution.

As we discovered in the previous section, an important base case is when
we’re on square 2 and need to get to that square with a jump of distance 1 ·.
In this case, we return 0: there’s no cost to get from Square 2 to Square 2!

Next we try each of the two options for an optimal solution. We use the
variable first to hold the value for Option 1 and second to hold the value for
Option 2.

Option 1
This is the option where Nikola jumps to the right to get to Square i. To
use this option, we need to ensure that Nikola would have come from a
valid square. We also need to ensure that j is at least 2 ¸, which guar-
antees that she got to the previous square with a jump distance of at
least 1. After all, it wouldn’t make sense to say that Nikola got to a prior
square using a jump of distance 0!
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Option 2
This is the option where Nikola jumps to the left to get to Square i. As
in the previous option, we need to ensure that Nikola came from a valid
square ¹.

It’s possible for one or both options to fail to find a solution; in those
cases we use a value of -1. If both options fail, then we return -1 º. The rest
of the code determines which of the two options is best, and returns that
plus cost[i] as the solution.

Where’s the Optimal Solution?
Now we can solve any subproblem we want. So, what call of solve_ij should
we make to find the solution to the original problem?

Trick question: one call won’t be enough! We’re going to need to do
some searching, much as we did when we solved Burger Fervor and Money-
grubbers in Chapter 3. But why?

We know for sure that we need to end exactly on Square n, so we don’t
need any searching there. What we don’t know is the jump distance that
we should have used as the final jump. Should we have ended with a jump
distance of 2? 3? 4? Who knows? We need to try them all and pick the best
one. See Listing 4-2 for the code to do this.

int solve(int cost[], int n) {

int i, j, best, result;

¶ static int memo[SIZE + 1][SIZE + 1];

for (i = 1; i <= SIZE; i++)

for (j = 1; j <= SIZE; j++)

memo[i][j] = -2;

· best = -1;

¸ for (j = 1; j <= n; j++) {

result = solve_ij(cost, n, n, j, memo);

if (result != -1) {

if (best == -1)

¹ best = cost[2] + result;

else

º best = min(best, cost[2] + result);

}

}

return best;

}

Listing 4-2: Solution 1

This function is where we set up the memo array ¶ so that it’s shared across
all calls to solve_ij.

The best variable holds the best solution that we’ve found thus far. It be-
gins at -1 · and is updated whenever we find a better solution ¹ º. Be care-
ful: we need to add cost[2] here in order to reincorporate the jump from
Square 1 to Square 2.
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Notice that we’re looping through the final jump distances between 1

and n ¸. There’s no point trying any final distance larger than n because
they can’t lead to a valid square. That is, we’re guaranteed to find the best
final jump distance because we’re trying all of the valid possibilities.

The main Function
It’s time to wrap up this solution. All we need is a main function to read the
input and call solve. The code is in Listing 4-3.

int main(void) {

int i, n;

int cost[SIZE + 1];

scanf("%d ", &n);

for (i = 1; i <= n; i++)

scanf("%d", &cost[i]);

printf("%d\n", solve(cost, n));

return 0;

}

Listing 4-3: The main function

If you submit our code to the judge, you should pass all test cases within
the time limit.

But we can still do better.

Solution 2: Forward Formulation
Let’s first talk about why Solution 1 is fast, and then discuss why we can still
improve it.

How Fast is Solution 1?
Solution 1 is an O(n2) algorithm. It’d be easier to see that from a bottom-up
dynamic-programming solution, with its telltale two nested loops, but we can
still make an argument using our memoized solution. Our solve_ij function
(Listing 4-1) fills in each of the n2 elements of memo at most once. To fill in
each such element, our code makes two recursive calls. We can therefore say
that our code makes at most 2n2 recursive calls. Beyond that, each recur-
sive call of solve_ij performs a constant number of steps to decide whether
to use first or second in the optimal solution. So solve_ij takes O(n2) time
throughout all recursive calls.

The maximum number of squares in a row is 1,000. Our O(n2) algo-
rithm is therefore performing something like 1,0002 = 1,000,000 steps. We
can do that easily within our 0.6-second time limit.

All right, so Solution 1 is fast. What could we possibly want to im-
prove, then?
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Backward vs. Forward
Perhaps you’ve been bothered by an incongruity between the way that
Nikola’s jumps are described in the problem description and the way that
we thought about jumps in our memoized solution. The problem descrip-
tion tells us what Nikola can do on each jump starting from the first jump.
That is, it focuses on where Nikola is right now and what she can do next.
Our memoized solution, by contrast, focuses on where Nikola got to and
how she got there. For example, rather than thinking, “Nikola jumped from
Square 2 to Square 4,” we have to think, “Nikola got to Square 4 by jumping
from Square 2.” We have to think about the problem backward!

In addition to those extra mental gymnastics, our backward formula-
tion has a consequence on the amount of code we have to write as well. Re-
member how we had to search through all possible final jump distances in
Listing 4-2? The reason we needed that is because we don’t know how the
optimal solution ends. Maybe it ends with a jump distance of 2, or a jump
distance of 3, or a jump distance of 4, and so on. But we do know exactly
how it begins: with a jump distance of 1 from Square 1 to Square 2! As long
as we keep track of the most recent jump distance, we’ll never have to guess
what it might be. That is, if we solve the problem forward (keeping track of
where we are) rather than backward (keeping track of where we ended up),
we’ll be able to entirely avoid the jump-distance search. We’ll get to the end
of the optimal solution with whatever we need the final jump distance to be.

Finding the Subproblems, Again
We’ll stick with our earlier idea of using two subproblem parameters. That’s
because we need one to tell us the square that Nikola is on and one to tell us
the jump distance that she used to get to that square.

This time, the subproblem with parameters i and j is going to tell us the
minimum cost of a solution from exactly Square i to Square n given that
Square i was reached with a jump distance of exactly j.

We need some examples of this! We’ll again use the test case from
“Working Through an Example” on page 127.

Let’s start with the subproblem with i = 2 and j = 1. This is asking us for
the best solution that starts at Square 2, ends at Square 7, and got to Square 2
using a jump distance of 1. (Notice that we don’t care at all about the jump
distance that ultimately takes us to Square n. It could be anything!) The
answer here is 10: Nikola can jump from Square 2 to Square 1 (cost 3), to
Square 3 (cost 1), to Square 6 (cost 2), to Square 3 (cost 1), to Square 7
(cost 3). Hey, that’s the same answer as for the i = 7, j = 4 subproblem from
the backward formulation! But in the backward formulation, we would have
to try all final jump distances to confirm that this is the optimal one. No
longer.

Now think about any subproblem with i = n. What’s the answer? It’s 0:
we’re already on square n! We don’t care what j is, because we don’t care
how we got to Square n. We’ve found our base case again.
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Characterizing Optimal Solutions, Again
We need to redo our optimal substructure work from Solution 1.

Option 1
One option is that Nikola next makes a jump to the right. The j value
gives us the jump distance to the current square. The jump to the right
will have distance j + 1, and Nikola will therefore land on Square i + j + 1.
So the solution for this option is the entry cost of Square i+ j+1, plus the
solution to the subproblem for Square i + j + 1 and jump distance j + 1.

Option 2
Our second option is that Nikola next makes a jump to the left. That
jump to the left will have distance j, and Nikola will therefore land on
Square i– j. So the solution for this option is the entry cost of Square i– j,
plus the solution to the subproblem for Square i – j and jump distance j.

Solving the Needed Subproblem
Now we can write a solve function that solves a subproblem of our choice.
See Listing 4-4 for the code.

int solve(int cost[], int n, int i, int j,

int memo[SIZE + 1][SIZE + 1]) {

int first, second;

if (memo[i][j] != -2)

return memo[i][j];

if (i == n) {

memo[i][j] = 0;

return memo[i][j];

}

¶ if (i + j + 1 <= n)

first = solve(cost, n, i + j + 1, j + 1, memo);

else

first = -1;

· if (i - j >= 1)

second = solve(cost, n, i - j, j, memo);

else

second = -1;

if (first == -1 && second == -1) {

memo[i][j] = -1;

return memo[i][j];

} else if (second == -1) {

memo[i][j] = cost[i + j + 1] + first;

return memo[i][j];

} else if (first == -1) {

memo[i][j] = cost[i - j] + second;

return memo[i][j];

} else {

memo[i][j] = min(cost[i + j + 1] + first, cost[i - j] + second);
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return memo[i][j];

}

}

Listing 4-4: Solution 2

As in our backward formulation (Listing 4-1), we need to implement
each of the two options for an optimal solution. In each case, we first check
that the next square is a valid square ¶ · prior to considering the jump.

The main Function
What call of solve should we make in order to find the solution to the
original problem?

That’s not a trick question this time—we know exactly which subproblem
we need to solve! We need to solve the subproblem with i = 2 (starting on
square 2) and j = 1 (getting to square 2 with a jump of distance 1). We can in-
corporate this in our main function that reads the input. Check out the code
in Listing 4-5.

int main(void) {

int i, j, n, result;

int cost[SIZE + 1];

static int memo[SIZE + 1][SIZE + 1];

scanf("%d ", &n);

for (i = 1; i <= n; i++)

scanf("%d", &cost[i]);

for (i = 1; i <= SIZE; i++)

for (j = 1; j <= SIZE; j++)

memo[i][j] = -2;

result = cost[2] + solve(cost, n, 2, 1, memo);

printf("%d\n", result);

return 0;

}

Listing 4-5: The main function

For this problem, I prefer the forward solution, but you may instead pre-
fer the backward solution—it’s an individual choice!

When I’m working on a memoization or dynamic-programming solu-
tion, I always start by trying to formulate a backward solution. Backward so-
lutions often feel more natural to me because they more closely model the
way that I think about recursion. If I get stuck for too long, though, or when
there’s friction between the forward nature of the problem description and
the backward formulation, I’ll give it a whirl with a forward solution. Keep
both of these complementary approaches in your dynamic-programming
toolbox!
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What About Dynamic Programming?
We have a perfectly good forward memoized solution for this problem. Still,
you might want to develop a dynamic-programming solution. If you do,
there’s a bit of a surprise waiting in there!

Think back to how we solved Hockey Rivalry in Chapter 3 with dynamic
programming. In “Solution 3: Dynamic Programming” on page 119, we
learned that we need to figure out the order in which to solve the subprob-
lems. In Hockey Rivalry, we did this by solving all of the subproblems in row
0 from left to right, then all of the subproblems in row 1 from left to right,
and so on.

But that order won’t work for us now.
What do we need in order to solve dp[i][j]? From Option 1, we need to

have already solved dp[i + j + 1][j + 1]; that is, we need something from a
higher-numbered column. From Option 2, we need to have already solved
dp[i - j][j]; that is, we need something from a lower-numbered row in the
current column. Taken together, we need to solve all of the subproblems
in column n, then all of the subproblems in column n - 1, and so on. And
within each column, we need to solve the subproblem in row 1, then row 2,
and so on.

Here’s the double for loop that we can use to solve the subproblems in
the right order:

for (j = n; j >= 1; j--)

for (i = 1; i < n; i++) {

code to fill in dp[i][j]

}

Always be careful with the order that you solve the subproblems!
If you’d like to see the full dynamic-programming solution, please check

the online resources for this book. Otherwise, we’re ready to continue here
with another dynamic-programming problem. A real doozy. You’re so ready
for this.

Problem 2: Ways to Build
The four dynamic-programming problems that we’ve solved so far (three in
Chapter 3 and one in this chapter) asked us to maximize (Burger Fervor and
Hockey Rivalry) or minimize (Moneygrubbers and The Jumper) the value
of a solution. I’d like to end this chapter with a problem of a slightly differ-
ent flavor: rather than find an optimal solution, we’ll count the number of
possible solutions.

One other difference that will arise is in the number of dimensions of
our subproblem array. In the four earlier problems, we used a one- or two-
dimensional array of subproblem solutions. We’re going to need more di-
mensions than that to solve this one.

This is DMOJ problem noip15p5.
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The Problem
We’re given a source string a, a target string b, and an integer k. We want to
build b from a by putting together k substrings of a.

There are some rules that we need to follow:

• We have to use the substrings of a in the same order that they
occur in a.

• We’re not allowed to use any empty substrings—each one has to have
at least one character.

• We’re not allowed to use substrings that overlap: if we use some
character from a in one of our substrings, then we are not allowed
to use that character in some other substring.

• We have to use exactly k substrings of a to build b.

For example, let’s say that a is xxyzxyz, b is xxyz, and k is 3. One way to
build b by putting together three substrings of a is to take the x from the be-
ginning of a, the xy to the right of that, and the z from the end of a. Putting
those substrings together gives us xxyz, exactly the string b that we need.

Now, there may be many different ways to build b from a. But notice
that as long as we follow the rules it doesn’t matter how we build b—each way
is just as good as the others. It therefore doesn’t make sense to talk about
the optimal way to build b. What we’re asked to determine for this problem,
then, is not the best way to build b, but the total number of ways that we can
build b. In the previous example, there are 11 ways. Can you find them all?

Input
The input contains one test case, the information for which is spread over
three lines as follows:

• The first line contains three numbers: the length of String a, the
length of String b, and the integer k giving the number of substrings
that we must take from a to build b. The length of String a is be-
tween 1 and 1,000, the length of String b is between 1 and 200, and
k is between 0 and 200.

• The second line contains the String a.

• The third line contains the String b.

Output
Output the number of ways we can build b using exactly k substrings of a.

This number may be huge. To spare us from integer overflow worries,
the problem specifies that we output this number mod 1,000,000,007.

The time limit for solving the test case is two seconds.
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Working Through an Example
Were you able to find all 11 ways to build b for the example that I gave in the
problem description? Let’s make sure you have them all, as we’ll be using
this as a running example for this problem.

Here is the example in the form of a test case:

7 4 3

xxyzxyz

xxyz

For quick reference, here are the indices for the characters of a:

Index 0 1 2 3 4 5 6
Value x x y z x y z

How can we build xxyz from xxyzxyz using exactly three substrings? In
the following, I’ll indicate each substring of a using a range of indices; for
example, 0-0 refers to the substring of a that consists of the character at
index 0, and 1-2 refers to the substring of a consisting of the characters at
indices 1 and 2.

Here are five ways to do it:

• 0-1 (xx), 5-5 (y), 6-6 (z)

• 1-1 (x), 4-5 (xy), 6-6 (z)

• 0-0 (x), 4-5 (xy), 6-6 (z)

• 0-1 (xx), 2-2 (y), 6-6 (z)

• 0-0 (x), 1-2 (xy), 6-6 (z)

Notice in each of these ways that our final substring is the final char-
acter z from a. That is, we’ve fixed the final substring to be that z and then
searched for ways to take two substrings from xxyzxy to build xxy. We are
starting to see how we can find solutions to the initial problem by finding
solutions to smaller subproblems.

There are six remaining ways. Let’s get those down:

• 1-1 (x), 4-4 (x), 5-6 (yz)

• 0-0 (x), 4-4 (x), 5-6 (yz)

• 0-0 (x), 1-1 (x), 5-6 (yz)

• 0-1 (xx), 2-2 (y), 3-3 (z)

• 0-0 (x), 1-2 (xy), 3-3 (z)

• 0-0 (x), 1-1 (x), 2-3 (yz)

Adding up the five ways from before, we now have a total of 5 + 6 = 11
ways to solve the problem.
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Solution 1: Using “Exactly” Subproblems
We need to identify our subproblems and then use them to find all optimal
solutions. We’ll try for a backward formulation.

Finding the Subproblems
How many subproblem parameters will we need this time?

We need to keep track of where we are in String a and keep track of
where we are in String b. That’s a good start, but it isn’t quite enough. We
also need a subproblem parameter to tell us how many more substrings to
take. For the first time, we’re going to use three subproblem parameters!

We did well using “exactly” subproblem parameters when we solved The
Jumper earlier in this chapter. As usual, we need to decide whether to use it
for each of our subproblem parameters here. It makes sense to use “exactly”
for the parameter that tracks how many more substrings to take, because
we need to use exactly that number of substrings (not, for instance, at most
that number of substrings). It’s less clear what to do for the subproblem pa-
rameters that keep track of where we are in a and where we are in b. Let’s
just start with “exactly” parameters for those, too, and see what happens. In
what follows, we’ll use the notation s[i..j] to refer to the characters from in-
dex i up to and including index j of String s.

The subproblem with parameters i, j, and k is going to tell us the num-
ber of ways that we can choose exactly k substrings from a[0..i] to build
exactly b[0..j], with the restriction that the rightmost substring ends with ex-
actly the character a[i].

Let’s return to our running example to clarify how these subproblems
work. What’s our answer for the subproblem with i = 6, j = 3, and k = 3?
(Don’t answer “11” too quickly!)

Since a[0..6] is all of a, and b[0..3] is all of b, this subproblem is asking
about the full a and b strings. So we’re looking for all ways to choose exactly
three substrings from a to build b, with the restriction that the rightmost
substring ends with exactly the z at a[6].

The answer is 8! Here they are—the first five are the ones that use the
final z in a as its own substring, and the remaining three use the final yz in a
as its own substring:

• 0-1 (xx), 5-5 (y), 6-6 (z)

• 1-1 (x), 4-5 (xy), 6-6 (z)

• 0-0 (x), 4-5 (xy), 6-6 (z)

• 0-1 (xx), 2-2 (y), 6-6 (z)

• 0-0 (x), 1-2 (xy), 6-6 (z)

• 1-1 (x), 4-4 (x), 5-6 (yz)

• 0-0 (x), 4-4 (x), 5-6 (yz)

• 0-0 (x), 1-1 (x), 5-6 (yz)

But why can’t we include themissing solutions, like 0-1 (xx), 2-2 (y), 3-3 (z)?
Shouldn’t those count?
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The reason we can’t use them here is because they don’t use that final z
at a[6]. They don’t satisfy the requirements of the type of “exactly” subprob-
lem that we’re using.

That said, we have eight ways so far, and we do need to get to 11. Look-
ing at the i = 6, j = 3, k = 3 subproblem therefore isn’t enough. We can find
the three missing ways by looking at the subproblem i = 3, j = 3, k = 3. Those
ways are as follows:

• 0-1 (xx), 2-2 (y), 3-3 (z)

• 0-0 (x), 1-2 (xy), 3-3 (z)

• 0-0 (x), 1-1 (x), 2-3 (yz)

As in our backward formulation of The Jumper in this chapter and Bur-
ger Fervor and Moneygrubbers in Chapter 3, we’ll need to do some post-
processing to find what we need. In those other problems, we searched the
relevant subproblems to discover the optimal one; here, we’ll search the rele-
vant subproblems to find all possible solutions.

Characterizing the Ways
Consider an i, j, k subproblem as described in the previous section. There
are two categories of ways to satisfy this subproblem. In each category, we
require that a[i] is the same character as b[j]—if it isn’t, then the require-
ments of the subproblem are not met and the answer is zero.

Category 1
One category of ways involves using a[i] as the final substring. If we use
up one substring on a[i], then we have k – 1 substrings to go, so we’ll
continue by solving subproblems with k – 1 as the third parameter. Sim-
ilarly, we’ll continue with j – 1 as the second parameter, because we just
used character b[j].

What about the first parameter—what do we do there? Do we just do
the same thing that we did with j and k and continue with i – 1?

Not necessarily! It’s true that continuing with i – 1 is one possibility,
but there are others. We need to be able to skip some characters from
a and continue at an earlier point. That is, we might want to match
b[j – 1] with a[i – 2] or a[i – 3] or some even earlier character. We’re
going to need a loop in here that tries all values of the first parameter
up to i – 1, while fixing j – 1 for the second parameter and k – 1 for the
third parameter.

Using our running example, consider again the subproblem with
i = 6, j = 3, and k = 3. We know that the answer for this subproblem is
8. Of those 8, there are 5 that fall into Category 1. We get 3 of those 5
from the subproblem with i = 5, j = 2, and k = 2 and the other 2 from the
subproblem with i = 2, j = 2, and k = 2.

Category 2
The other category of ways involves using at least two characters for the
final substring.
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There’s a neat trick that we can use for this one. Imagine that we
solve the subproblem with parameters i – 1, j – 1, and k (that’s right: the
third parameter is k, not k – 1!). It turns out that this is the only subprob-
lem that we need to solve!

That subproblem uses all k substrings to find solutions that end by
matching a[i – 1] with b[j – 1]. But each of those solutions can be ex-
tended to a solution that matches a[i] with b[j] by just tacking a[i] (or
b[j]—they’re the same) on to the final substring. Similarly, any solution
in this category that matches a[i] with b[j] and uses k substrings corre-
sponds to a solution to the subproblem that matches a[i – 1] with b[j – 1]
and uses k substrings. In conclusion, the number of solutions here is
exactly the same as it is for the i – 1, j – 1, k subproblem.

In our running example, the subproblem with i = 6, j = 3, and k = 3
has three solutions in this category. We get that by looking up the an-
swer to the subproblem with i = 5, j = 2, and k = 3.

Notice that there can not be any other categories besides these two.
Category 1 uses the single-character string a[i] as the final substring;
Category 2 uses a longer string that ends with a[i] as the final substring.
There can’t be anything else.

Solving One Subproblem
As we did when solving The Jumper earlier in this chapter, we’ll skip the un-
adorned recursive solution and jump right to a memoized one. We need a
function to tell us the answer for the subproblem with the given i, j, and k

values. That function will have the following signature:

int solve_ijk(char a[], char b[], int i, int j, int k,

int memo[MAX_A][MAX_B][MAX_K + 1])

Here, a is the source string; b is the target string; i, j, and k are the three
subproblem parameters; and memo is the memoization array.

The code for this function is given in Listing 4-6.

#define MAX_A 1000

#define MAX_B 200

#define MAX_K 200

#define MOD 1000000007

int solve_ijk(char a[], char b[], int i, int j, int k,

int memo[MAX_A][MAX_B][MAX_K + 1]) {

int total, q;

if (memo[i][j][k] != -1)

return memo[i][j][k];

¶ if (j == 0 && k == 1 && a[i] == b[j]) {

memo[i][j][k] = 1;

return memo[i][j][k];

}
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· if (i == 0 || j == 0 || k == 0) {

memo[i][j][k] = 0;

return memo[i][j][k];

}

¸ if (a[i] != b[j]) {

memo[i][j][k] = 0;

return memo[i][j][k];

}

total = 0;

¹ for (q = 0; q < i; q++)

º total = (total + solve_ijk(a, b, q, j - 1, k - 1, memo)) % MOD;

» total = (total + solve_ijk(a, b, i - 1, j - 1, k, memo)) % MOD;

memo[i][j][k] = total;

return memo[i][j][k];

}

Listing 4-6: Solving one subproblem

When we solved Hockey Rivalry in Chapter 3, we started indexing our
arrays at 1 rather than 0, and that simplified our solution a little. Here, how-
ever, I’ve decided to index starting at 0. You could indeed use the Hockey
Rivalry indexing trick here as well; I’ve chosen not to in order to spare us
the trouble of defining what subproblems mean when the empty string is
in play.

Let’s work through the code, starting with the base cases.
Our first base case is when j is 0, k is 1, and a[i] and b[j] are the same

character ¶. What we’re being asked for here is the number of ways to build
the one-character string b[0] using a[i] given that a[i] matches b[0]. The
answer is 1, because we can use a[i] as a match!

Now, in any other case where i is 0, or j is 0, or k is 0 ·, the answer is
0. For example, if i is 0 and j is greater than 0, then we’re being asked to
choose substrings from a one-character string to build a string with more
than one character. That would be impossible!

There’s actually one more base case here ¸, and it kicks in when charac-
ters a[i] and b[j] are not equal. In this case, we return 0 right away, because
there’s no way to use that final character a[i] to match b[j].

Now we arrive at the code for implementing each of the two categories.
Each one adds its contribution to the total variable.

For Category 1, we need a loop ¹ that tries each relevant ending point
of a, adding the subproblem answers to total º. We use the mod operator
here as required by the problem description.

For Category 2, we don’t need a loop: we just solve the one subproblem
that directly gives us the answer ».

Collecting the Solutions
We need to call solve_ijk using all values of i. That’s because any character
of a might match the rightmost character of b. The code that calls solve_ijk
in the needed ways is in Listing 4-7.
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int solve(char a[], char b[], int a_length, int b_length,

int num_substrings) {

int i, j, k, result;

static int memo[MAX_A][MAX_B][MAX_K + 1];

for (i = 0; i < a_length; i++)

for (j = 0; j < b_length; j++)

for (k = 0; k <= num_substrings; k++)

memo[i][j][k] = -1;

result = 0;

for (i = 0; i < a_length; i++) {

result = result + solve_ijk(a, b, i, b_length - 1, num_substrings, memo);

result = result % MOD;

}

return result;

}

Listing 4-7: Solution 1

In our prior dynamic-programming problems, we used min or max to find
the best solution. But notice in Listing 4-6 and Listing 4-7 that we’re not do-
ing that. Instead, because we want to find the total number of solutions, we
are adding everything together using +.

The main Function
The main function for this solution is in Listing 4-8.

int main(void) {

int a_length, b_length, num_substrings;

char a[MAX_A + 1], b[MAX_B + 1];

scanf("%d%d%d", &a_length, &b_length, &num_substrings);

scanf("%s", a);

scanf("%s", b);

printf("%d\n", solve(a, b, a_length, b_length, num_substrings));

return 0;

}

Listing 4-8: The main function

Now we have a complete solution to this problem. Feel free to submit to
the judge.

Prepare to be disappointed.

Solution 2: Adding More Subproblems
For the first time in this book, we have received a “Time-Limit Exceeded”
error when using memoization. The thing is, even if we use memoization
or dynamic programming, we may still have to be concerned with the effi-
ciency of our algorithm. Some problems admit multiple such solutions that,
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while faster than exponential time, may still differ from each other in terms
of their efficiency.

Runtime of Solution 1
Let’s use m for the length of the source string, n for the length of the tar-
get string, and k for the number of substrings we need to take. There are a
total of about mnk subproblems that our solution may end up solving. For
each, we get hammered by Category 1 solutions, which require that we loop
through the source string, adding another factor of m to our runtime. What
we have, then, is an algorithm that takes a number of steps proportional
to m2nk. To see how bad this is, let’s substitute the maximum values for
these variables here: 1,000 for m, 200 for n, and 200 for k. This will give us
1,0002 × 200 × 200 = 40,000,000,000. Forty billion! And we need to get all
of this done with a two-second time limit? Not gonna happen. We need to
do better. As we’ll see, we’ll be able to drop one of the factors of m and solve
this thing in just O(mnk) time.

There are two general strategies we might consider at this point. The
first is to throw our existing subproblems away and try again with new sub-
problems. I tried doing that; you can check the online resources for this
book to see what I came up with. It didn’t help.

Throwing those subproblems away in this case is a needlessly drastic
move. After all, we have a correct and reasonably efficient solution; the only
hitch is the loop that we need for each subproblem in Category 1.

The second strategy, and the one that we will succeed with here, is to
add new subproblems to our existing subproblems. This second strategy
may seem counterintuitive. You might reason that if our program is already
too slow, adding and solving more subproblems would just slow us down
even further. But what if our new subproblems in fact helped us solve our
existing subproblems faster? In particular, what if they gave us a way to solve
subproblems from Category 1 without the need of a loop? And what if we
could also solve those new subproblems efficiently? Then we’d be golden!
We’ll be solving more subproblems, yes, but we’ll make up for it bigtime with
how efficiently we can solve each subproblem. Let’s try!

The New Subproblems
Remember this bit of code from Listing 4-6?

for (q = 0; q < i; q++)

total = (total + solve_ijk(a, b, q, j - 1, k - 1, memo)) % MOD;

That’s the loop that adds up all of the ways in Category 1. It’s the loop we
need to eliminate.

This q loop keeps j - 1 and k - 1 fixed, and varies the first subproblem
parameter from 0 to i - 1. That is, it solves the 0, j – 1, k – 1 subproblem, then
the 1, j – 1, k – 1 subproblem, then the 2, j – 1, k – 1 subproblem, and so on.

How awesome would it be if we could look up, in one shot, the sum of
all of these subproblem answers? Then we wouldn’t need the q loop at all.
This is what our new subproblems are going to do for us. For example, a
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new subproblem with parameters i = 4, j, and k will be the sum of five of
our old subproblems: the ones with the same j and k values, but where i is 0,
1, 2, 3, or 4. That is, the new subproblems drop the requirement that a[i] is
the same character as b[j]. Here are the definitions for both our old and new
subproblems.

Old
The old subproblem with parameters i, j, and k is going to tell us the
number of ways that we can choose exactly k substrings from a[0..i] to
build exactly b[0..j], with the restriction that the rightmost substring
ends with exactly the character a[i].

New
The new subproblem with parameters i, j, and k is going to tell us the
number of ways that we can choose exactly k substrings from a[0..i] to
build exactly b[0..j].

Now, with these new subproblems, let’s return to our running example.
What’s our answer for the new subproblem with i = 6, j = 3, and k = 3? This
time it really is 11! The subproblem is asking, with no restrictions, for all the
ways that we can choose exactly three substrings from a to build b. And we
know that there are 11 of them. Notice, as a nice side bonus here, that we no
longer need to solve multiple subproblems as in Listing 4-7. All we need is
the answer to one subproblem: the one that includes all characters of a, all
characters of b, and the number of substrings k.

Solving the Needed Subproblem
Let’s jump to the new code. For each triple of values i, j, and k, we’re going
to store answers not for one, but for two subproblems. We’ll use a C struct to
collect both:

typedef struct pair {

int end_at_i;

int total;

} pair;

The end_at_i member will store the number of solutions for our old
subproblems (the ones from Solution 1), and the total member will store
the number of solutions for our new subproblems. Our memo array stays as a
three-dimensional array, with each element now consisting of both end_at_i

and total. Other possible designs include two separate three-dimensional
memo arrays or a four-dimensional array where the new dimension is of
length 2.

Now we can write the code that will solve both our old and new sub-
problems.

In all of our memoization and dynamic-programming code thus far, we
had to figure out one answer for each setting of the subproblem parame-
ters. But here we need to figure out two, one for each member of the struct.
Look out for that as you read through the code. Check it out in Listing 4-9.
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pair solve(char a[], char b[], int i, int j, int k,

pair memo[MAX_A][MAX_B][MAX_K + 1]) {

int total, end_at_i;

if (memo[i][j][k].total != -1)

return memo[i][j][k];

if (j == 0 && k == 1) {

¶ if (a[i] != b[j]) {

if (i == 0)

total = 0;

else

· total = solve(a, b, i - 1, j, k, memo).total;

¸ memo[i][j][k] = (pair){0, total};

} else {

if (i == 0)

total = 1;

else

total = 1 + solve(a, b, i - 1, j, k, memo).total;

memo[i][j][k] = (pair){1, total};

}

return memo[i][j][k];

}

if (i == 0 || j == 0 || k == 0) {

memo[i][j][k] = (pair){0, 0};

return memo[i][j][k];

}

if (a[i] != b[j])

end_at_i = 0;

else {

¹ end_at_i = (solve(a, b, i - 1, j - 1, k - 1, memo).total +

º solve(a, b, i - 1, j - 1, k, memo).end_at_i);

end_at_i = end_at_i % MOD;

}

» total = (end_at_i + solve(a, b, i - 1, j, k, memo).total) % MOD;

memo[i][j][k] = (pair){end_at_i, total};

return memo[i][j][k];

}

Listing 4-9: Solution 2

As in Solution 1, a critical case here is when j is 0 and k is 1. There are
two important subcases to consider.

Let’s begin with the one where a[i] and b[j] are different characters ¶.
We know that the end_at_i number of solutions is 0 here, as it would be in
Solution 1. But the total number of solutions might not be 0. For example,
if i were 4 and each of the first three characters of a were the same as b[0],
then our answer would be 3 here. To get them all, we make a recursive call
to find the total number of matches using the characters from a up to index
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i - 1 ·. We then store in our memo array both the total answer that we calcu-
lated and the end_at_i answer of 0 ¸.

Our handling of the subcase where a[i] and b[j] are the same character
is similar; we just need to add 1 to both end_at_i and total to account for the
match between a[i] and b[j].

Now let’s work on how to solve the current end_at_i subproblem. Recall
that Category 1 involves using a[i] as the final substring, and Category 2 in-
volves using at least two characters for the final substring.

It’s easier to talk through Category 2, so let’s do that one first. That
code is nearly the same as before: we retrieve the number of end_at_i solu-
tions using the subproblem parameters i - 1, j - 1, and k º.

What about our new code for Category 1? This is our moment of vic-
tory, because we can solve such a subproblem in a single step ¹ by looking
up the needed total subproblem directly!

There’s one final thing that we need to do. After all, we have those new
total subproblems now. It’s our responsibility to solve those, too, so that
they’re correct when we look them up. Fortunately, we’ll be able to solve
each total subproblem quickly as well. To do it, we make use of the fact that
we just found the number of solutions that use a[i]. We can just add that to
the old total for i - 1 to get our final total ».

There’s a nice interplay here between the end_at_i subproblems and the
total subproblems in that we use each to efficiently solve the other. This
is the core reason why adding our new total subproblems helped us: they
speed up the computation of the end_at_i subproblems and, having quickly
solved the relevant end_at_i subproblem, we can repay the favor and quickly
solve the total subproblem as well.

The main Function
All we need now is our main function. See the code in Listing 4-10.

int main(void) {

int a_length, b_length, num_substrings, i, j, k, result;

char a[MAX_A + 1];

char b[MAX_B + 1];

static pair memo[MAX_A][MAX_B][MAX_K + 1];

scanf("%d%d%d", &a_length, &b_length, &num_substrings);

scanf("%s", a);

scanf("%s", b);

for (i = 0; i < a_length; i++)

for (j = 0; j < b_length; j++)

for (k = 0; k <= num_substrings; k++)

memo[i][j][k] = (pair){-1, -1};

result = solve(a, b, a_length - 1, b_length - 1, num_substrings, memo).total;

printf("%d\n", result);

return 0;

}

Listing 4-10: The main function
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If you submit this solution to the judge, you should be able to pass all
test cases in time.

Summary
In this chapter, we’ve learned that dynamic-programming problems can
be solved forward or backward, and that sometimes it matters a great deal
which we choose. We’ve also learned that our initial solution approach may
not be fast enough, at which point we need to reconsider our subproblems
or add new subproblems.

Can’t get enough of this? You may be happy to know that ideas related
to dynamic programming often make cameos in other algorithms. In the
next chapter, for example, you’ll see that we’ll once again store results for
later lookup. And in Chapter 7, you’ll see a problem in which dynamic pro-
gramming plays a supporting role, speeding up computation required by the
main algorithm of interest.

Notes
The Jumper is originally from the 2007 Croatian Regional Competition in
Informatics. Ways to Build is originally from the 2015 National Olympiad in
Informatics in Provinces.
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5
GRAPHS AND BREADTH-F IRST

SEARCH

In this chapter, we’ll study three problems
in which we’re asked to solve puzzles in the

minimum number of moves. How quickly
can a knight catch a pawn? How quickly can a

student climb a rope in gym class? How cheaply can
we translate a book written in one language to other
target languages? Breadth-first search (BFS) is the uni-
fying algorithm here. BFS dispatches these problems,
and it applies more generally whenever we want to
solve a puzzle with the minimum number of moves.
Along the way, we’ll learn about graphs, a powerful
way to model and solve problems that involve objects
and connections between those objects.

Problem 1: Knight Chase

This is DMOJ problem ccc99s4.



The Problem
This problem concerns two players, a pawn and a knight, playing a board
game. (Don’t worry: you don’t need to know anything about chess.)

The board has r rows, with row 1 at the bottom and row r at the top. The
board has c columns, with column 1 at the left and column c at the right.

The pawn and knight each start on their own square of the board. The
pawn moves first, then the knight moves, then the pawn, then the knight,
and so on, until the game ends. For each turn, a move must be made: re-
maining at the current square is not an option.

The pawn has no choice on what move to make: for each of its turns, it
moves up one square.

The knight, by contrast, has up to eight choices for each move:

• Up 1, right 2

• Up 1, left 2

• Down 1, right 2

• Down 1, left 2

• Up 2, right 1

• Up 2, left 1

• Down 2, right 1

• Down 2, left 1

I say “up to eight choices,” not “exactly eight choices,” because moves that
bring the knight outside of the board are not allowed. For example, if the
board has 10 columns and the knight is in column 9, then no move that
takes the knight two columns to the right is allowed.

The following diagram shows the knight’s available moves:

f e

b a

K

d c

h g

Here, the knight is represented as K, and each letter from a to h represents
one of its possible moves.

The game ends when one of three things happens: the knight wins, the
game is a stalemate (that is, a tie), or the knight loses.

Win The knight wins if the knight makes a move and lands on the
same square as the pawn before the pawn reaches the top row. To win,
the knight has to be the one to make the move; if the pawn makes a
move and lands on the knight, this doesn’t count as the knight winning.
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Stalemate The game is a stalemate if the knight makes a move and
lands on the square above the pawn before the pawn reaches the top
row. Again, the knight has to be the one to make this move; the only ex-
ception is that the game can start as a stalemate if the knight starts one
square above the pawn.

Loss The knight loses if the pawn reaches the top row before the game
otherwise ends. That is, if the pawn gets to the top row before the knight
lands on the pawn or lands on the square above it, then the knight loses.
Once the pawn reaches the top row, the knight is not allowed to move
anymore.

The goal is to determine the best-case outcome for the knight and the
number of knight moves required to produce that outcome.

Input
The first line of input gives the number of test cases that will follow. Each
test case consists of six lines:

• The number of rows in the board, between 3 and 99

• The number of columns in the board, between 2 and 99

• The starting row of the pawn

• The starting column of the pawn

• The starting row of the knight

• The starting column of the knight

It’s guaranteed that the pawn and knight will have different starting po-
sitions and that the knight starts at a position where it has at least one avail-
able move.

Output
For each test case, output a line with one of three messages:

• If the knight can win, output Win in m knight move(s).

• If the knight cannot win but can cause a stalemate, output Stalemate
in m knight move(s).

• If the knight cannot win or cause a stalemate, output Loss in m knight

move(s).

Here, m is the minimum number of moves made by the knight.
The time limit for solving the test cases is one second.

Moving Optimally
A true two-player game, such as tic-tac-toe or chess, gives each player a choice
of what move to make next. However, here, only the knight has a choice.
The pawn’s moves are all fixed, and we’ll know exactly where the pawn is at
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all times. It’s a good thing, too, because this problem would be significantly
more difficult if both players had choices.

There may be various ways for the knight to win or cause a stalemate.
Suppose that the knight can win. Each way that the knight can win requires
some number of moves; we want to identify the minimum number of moves.

Exploring the Board
Let’s explore a little through this input:

1

7

7

1

1

4

6

The board for this test case has seven rows and seven columns. The pawn
starts at row 1, column 1, and the knight starts at row 4, column 6.

Moving optimally, the knight can win here in three moves. The follow-
ing diagram shows how the knight can do this:

7

6 K2

5 K1

4 K3 P3 K

3 P2

2 P1

1 P

1 2 3 4 5 6 7

Here, K is used for the knight’s starting position and P for the pawn’s
starting position. K1, K2, and K3 give the location of the knight after move 1,
move 2, and move 3, respectively; P1, P2, and P3 do likewise for the pawn.
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The coordinates (x, y) refer to row x, column y. As expected, the pawn
simply marches up its column, from (1, 1), to (2, 1), to (3, 1), and finally to
(4, 1). The knight, however, moves as follows:

1. Starting at (4, 6), it moves up one and left two to (5, 4). The pawn is
at (2, 1).

2. From (5, 4), it moves up one and left two to (6, 2). The pawn is at
(3, 1).

3. From (6, 2), it moves down two and left one to (4, 1). That’s where
the pawn is!

There are other ways for the knight to win. For example, here’s what can
happen if the knight goofs off a little:

7

6 K2

5 K4 P4 K1

4 P3 K3 K

3 P2

2 P1

1 P

1 2 3 4 5 6 7

The knight catches the pawn after four moves, not three. Though the
knight still wins, this is not the fastest way that it can do so. We need to re-
port a minimum of three moves here, not four.

Suppose that we had an algorithm to determine the minimum number
of moves that the knight can take from its starting point to some destination.
We could then determine the number of knight moves required to get to
each pawn location; if the knight can get there at the same time as the pawn,
then the knight wins. If the knight cannot win, then we could do similarly
for stalemates. That is, we could determine the number of knight moves
required to get to the square above each pawn location; if at any point the
knight can land on the square above the pawn, we have a stalemate.

To design such an algorithm, we can explore the board from the knight’s
starting point. There’s only one square on the board that is reachable in
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zero moves: the knight’s starting point itself. From there, we can discover
those squares that are reachable in one move. From those squares that are
one move away, we can discover those squares that are reachable in two
moves. We can use those squares reachable in two moves to find those reach-
able in three moves, and so on. We stop when we find the desired destina-
tion; at that point, we’ll know the minimum number of moves that it takes to
get there.

Let’s demonstrate this procedure using the same test case as before:
seven rows and seven columns, with the knight starting at (4, 6). (We’ll ig-
nore the pawn for now.) To confirm our answer of three moves that we
arrived at by hand, we’ll calculate the minimum number of moves for the
knight to get from (4, 6) to (4, 1).

In the following diagrams, numbers in the squares indicate the mini-
mum distance from the knight’s starting point. As mentioned above, the
only square reachable in zero moves is the knight’s starting point itself, (4, 6).
We’ll call this round 0 of the exploration:

7

6

5

4 0

3

2

1

1 2 3 4 5 6 7

From (4, 6), we try all eight possible moves to identify the squares reach-
able in one move. We can’t move up one and right two or down one and
right two, because those would take us beyond the right edge of the board.
That leaves six squares that are one move away. This is round 1:
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7

6 1 1

5 1

4 0

3 1

2 1 1

1

1 2 3 4 5 6 7

We haven’t found (4, 1) yet, so we keep going. We explore from each
of those six new squares that we discovered in round 1; that will yield the
squares that are two moves away. For example, consider square (6, 5); the
squares reachable from there are as follows:

• Up 1, right 2: (7, 7)

• Up 1, left 2: (7, 3)

• Down 1, right 2: (5, 7)

• Down 1, left 2: (5, 3)

• Up 2, right 1: (which is not valid)

• Up 2, left 1: (which is not valid)

• Down 2, right 1: (4, 6)

• Down 2, left 1: (4, 4)

These squares are two moves away from the starting point—except for
(4, 6), whose value (0) we filled in before! Looking at all valid moves from
all squares that are one move away brings us to round 2, the squares that are
two moves away.
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7 2 2 2

6 2 1 2 1

5 2 1 2 2

4 2 2 0

3 2 1 2 2

2 2 1 2 1

1 2 2 2

1 2 3 4 5 6 7

Notice that there cannot be any other squares that are two moves away.
Every square that is two moves away must emanate from a square that is one
move away, and we explored all possible moves from all possible squares that
are one move away.

There is still no (4, 1), so we keep going. Exploring from all squares that
are two moves away gives us round 3, the squares that are three moves away:

7 3 2 3 2 3 2

6 3 2 3 1 2 1

5 3 2 1 2 3 2

4 3 2 3 2 3 0 3

3 3 2 1 2 3 2

2 3 2 3 1 2 1

1 3 2 3 2 3 2

1 2 3 4 5 6 7
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There we have it: square (4, 1) is filled in with a value of 3. It therefore
takes a minimum of three moves to get from (4, 6) to (4, 1). Had we not
found (4, 1) here, we’d continue: we could proceed to find squares that are
four moves away, then five moves away, and so on.

This technique—finding all squares that are zero moves away, then one
move away, then two moves away, and so on—is called breadth-first search, or
BFS for short. The word breadth refers to a full range. BFS is so named be-
cause we explore the full range of what is reachable from each square before
moving on to other squares. BFS is fast, memory efficient, and clean to im-
plement. It’s an absolute power move to invoke BFS whenever you want the
minimum distance from one location to another location. Let’s go for it!

Implementing Breadth-First Search
Let’s start with a couple of type definitions that clean up our code a little.
First, each board position is composed of a row and a column, so let’s pack-
age those together using a struct:

typedef struct position {

int row, col;

} position;

A board is a two-dimensional array, and we can make a type definition
for that too. We’ll let it hold integers, which will correspond to numbers of
moves. We have a maximum of 99 rows and 99 columns, but we allocate one
extra row and column so we can start indexing rows and columns at 1, not 0:

#define MAX_ROWS 99

#define MAX_COLS 99

typedef int board[MAX_ROWS + 1][MAX_COLS + 1];

Finally, let’s make an array type for holding the positions that we dis-
cover during the BFS. We’ll make it big enough that it can hold every possi-
ble square on the board:

typedef position positions[MAX_ROWS * MAX_COLS];

Now we’re ready for the BFS itself. We need a function to determine
the minimum number of knight moves to get from its starting point to some
destination that we specify. (Recall that our plan is to find the minimum
number of moves needed to catch the pawn at each pawn location.) Here’s
the signature for the function we’ll implement:

int find_distance(int knight_row, int knight_col,

int dest_row, int dest_col,

int num_rows, int num_cols)

The parameters knight_row and knight_col give the starting location of
the knight, and dest_row and dest_col give the desired destination. The pa-
rameters num_rows and num_cols give, respectively, the number of rows and
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columns in the board; we’ll need those to determine whether a move is valid.
The function returns the minimum number of moves for the knight to go
from its starting location to the destination. If there’s no way for the knight
to get to the destination, then we return -1.

There are two key arrays that drive the BFS:

cur_positions This array holds the positions discovered from the cur-
rent round of BFS. For example, it might be all of the positions discov-
ered in round 3.

new_positions This array holds the positions discovered in the next
round of BFS. For example, if cur_positions holds the positions discov-
ered in round 3, then new_positions will hold those positions discovered
in round 4.

The code is given in Listing 5-1.

int find_distance(int knight_row, int knight_col,

int dest_row, int dest_col,

int num_rows, int num_cols) {

positions cur_positions, new_positions;

int num_cur_positions, num_new_positions;

int i, j, from_row, from_col;

board min_moves;

for (i = 1; i <= num_rows; i++)

for (j = 1; j <= num_cols; j++)

min_moves[i][j] = -1;

¶ min_moves[knight_row][knight_col] = 0;

· cur_positions[0] = (position){knight_row, knight_col};

num_cur_positions = 1;

¸ while (num_cur_positions > 0) {

num_new_positions = 0;

for (i = 0; i < num_cur_positions; i++) {

from_row = cur_positions[i].row;

from_col = cur_positions[i].col;

¹ if (from_row == dest_row && from_col == dest_col)

return min_moves[dest_row][dest_col];

º add_position(from_row, from_col, from_row + 1, from_col + 2,

num_rows, num_cols, new_positions,

&num_new_positions, min_moves);

add_position(from_row, from_col, from_row + 1, from_col - 2,

num_rows, num_cols, new_positions,

&num_new_positions, min_moves);

add_position(from_row, from_col, from_row - 1, from_col + 2,

num_rows, num_cols, new_positions,

&num_new_positions, min_moves);
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add_position(from_row, from_col, from_row - 1, from_col - 2,

num_rows, num_cols, new_positions,

&num_new_positions, min_moves);

add_position(from_row, from_col, from_row + 2, from_col + 1,

num_rows, num_cols, new_positions,

&num_new_positions, min_moves);

add_position(from_row, from_col, from_row + 2, from_col - 1,

num_rows, num_cols, new_positions,

&num_new_positions, min_moves);

add_position(from_row, from_col, from_row - 2, from_col + 1,

num_rows, num_cols, new_positions,

&num_new_positions, min_moves);

add_position(from_row, from_col, from_row - 2, from_col - 1,

num_rows, num_cols, new_positions,

&num_new_positions, min_moves);

}

» num_cur_positions = num_new_positions;

for (i = 0; i < num_cur_positions; i++)

cur_positions[i] = new_positions[i];

}

return -1;

}

Listing 5-1: The minimum number of knight moves using BFS

The first thing we do is clear out the min_moves array by setting all val-
ues to -1; this means that we have not yet computed the number of moves.
The only square for which we know the minimum number of moves is the
knight’s starting square, so we initialize that to 0 ¶. That starting square is
also the square that jump-starts the BFS ·. The while loop then runs as long
as the most-recent round of BFS has discovered at least one new square ¸.
Inside the while loop, we look at each such square. If we discover the destina-
tion square ¹, then we return its minimum number of moves. Otherwise, we
keep exploring.

Exploring all eight moves from a given square is accomplished by eight
calls to a helper function called add_position, which adds new squares to
new_positions and updates num_new_positions accordingly. Focus on the first
four arguments: those give the current row and column and the new row
and column resulting from one of the eight moves. For example, the first
call º is for the move that goes up two and right one. We’ll look at the code
for add_position shortly.

We’ve gone through each square in cur_positions and found new squares
that are one more move away. That completes one round of BFS. To pre-
pare for the next round, we keep track of the number of new squares » and
copy all of the new squares from new_positions to cur_positions. That way, the
next iteration of the while loop uses those new squares and finds further new
squares from there.
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If we reach the bottom of the code and haven’t found the destination
square, then we return -1—that destination square is not reachable from the
knight’s starting location.

Now for that add_position helper function; see Listing 5-2.

void add_position(int from_row, int from_col,

int to_row, int to_col,

int num_rows, int num_cols,

positions new_positions, int *num_new_positions,

board min_moves) {

struct position new_position;

if (to_row >= 1 && to_col >= 1 &&

to_row <= num_rows && to_col <= num_cols &&

min_moves[to_row][to_col] == -1) {

¶ min_moves[to_row][to_col] = 1 + min_moves[from_row][from_col];

new_position = (position){to_row, to_col};

new_positions[*num_new_positions] = new_position;

(*num_new_positions)++;

}

}

Listing 5-2: Adding a position

The if statement has five conditions, all of which must be true for to_row

and to_col to be a valid position: the row must be at least one, the column
must be at least one, the row must be at most the number of rows, the
column must be at most the number of columns, and . . . hmm, that last one,
min_moves[to_row][to_col] == -1, what’s that doing?

That final condition is there to determine whether we’ve already seen
this square. If we haven’t, then it will have a value of -1 and we can go ahead
and set its number of moves now. If it already has some other value, then
it must have been discovered in an earlier round of BFS, and therefore it al-
ready has a smaller number of moves than what we could give it now. That
is, a value other than -1 means that the minimum number of moves is al-
ready set, and we shouldn’t mess with it.

If all five conditions pass, then we’ve discovered a new square. We dis-
covered (from_row, from_col) in the previous round of BFS and (to_row, to_col)
in the current round. Therefore, the minimum number of moves to (to_row,
to_col) is one more than the minimum moves to (from_row, from_col) ¶. By
virtue of (from_row, from_col) coming from the previous round of BFS, we
already have its value stored in min_moves, and so we can simply look up its
value without recalculating it.

You may see shades of memoization and dynamic programming here.
It’s true: BFS uses the same trick of looking stuff up rather than recomput-
ing it. However, there’s not really a notion of maximizing or minimizing a
solution based on subproblem solutions or combining smaller solutions to
form a larger solution. Algorithm developers therefore generally don’t re-
fer to BFS as a dynamic-programming algorithm, instead classifying it as a
search or exploration algorithm.
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Best Knight Outcome
We’ve got BFS bottled up nicely as the find_distance function. Now let’s
count the number of moves as the pawn marches up its column and use
find_distance to determine whether the knight can ever land on the pawn.
For example, if the pawn takes three moves to get somewhere, and the knight
can take exactly three moves to get there too, then the knight wins in three
moves. If the knight can’t win, then we can try a similar technique for stale-
mates: let the pawn march up its column again, this time checking whether
the knight can cause a stalemate. If no stalemates are possible, well, then the
knight loses. I’ve got this logic coded up in Listing 5-3. The function solve

takes six parameters: the starting row and column of the pawn, the start-
ing row and column of the knight, and the numbers of rows and columns in
the board. It prints one line of output corresponding to whether the knight
wins, stalemates, or loses.

// bugged!

void solve(int pawn_row, int pawn_col,

int knight_row, int knight_col,

int num_rows, int num_cols) {

int cur_pawn_row, num_moves, knight_takes;

¶ cur_pawn_row = pawn_row;

num_moves = 0;

while (cur_pawn_row < num_rows) {

knight_takes = find_distance(knight_row, knight_col,

cur_pawn_row, pawn_col,

num_rows, num_cols);

· if (knight_takes == num_moves) {

printf("Win in %d knight move(s).\n", num_moves);

return;

}

cur_pawn_row++;

num_moves++;

}

¸ cur_pawn_row = pawn_row;

num_moves = 0;

while (cur_pawn_row < num_rows) {

knight_takes = find_distance(knight_row, knight_col,

cur_pawn_row + 1, pawn_col,

num_rows, num_cols);

if (knight_takes == num_moves) {

printf("Stalemate in %d knight move(s).\n", num_moves);

return;

}

cur_pawn_row++;

num_moves++;
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}

¹ printf("Loss in %d knight move(s).\n", num_rows - pawn_row - 1);

}

Listing 5-3: The best outcome for the knight (bugged!)

Let’s get a grip on this code by studying it in three chunks.
The first chunk is the code that checks whether the knight can win.

We begin by saving the pawn’s row in a new variable ¶—we’ll mess with the
pawn’s row to move the pawn up the board, so we need to remember the
row in which it originally started. The while loop keeps going as long as
the pawn hasn’t reached the top row. On each iteration, we calculate the
number of moves that the knight needs to get to the same location as the
pawn. If the knight can get there at the same time as the pawn ·, then
the knight can win. If the knight can’t win, then the pawn will reach the top
of the board and we’ll continue below the while loop.

That’s where the second chunk of code begins ¸. Its task is to deter-
mine whether the knight can cause a stalemate. The code is the same as the
first chunk, except that in the while loop it checks the number of moves re-
quired for the knight to land on the row above the pawn rather than the row
of the pawn.

The third chunk is a single line ¹, and it only executes if the knight can-
not win or stalemate. This chunk simply outputs the loss message.

That’s how we process a single test case. To read and process all of the
test cases, we need a little main function; it’s as simple as Listing 5-4.

int main(void) {

int num_cases, i;

int num_rows, num_cols, pawn_row, pawn_col, knight_row, knight_col;

scanf("%d", &num_cases);

for (i = 0; i < num_cases; i++) {

scanf("%d%d", &num_rows, &num_cols);

scanf("%d%d", &pawn_row, &pawn_col);

scanf("%d%d", &knight_row, &knight_col);

solve(pawn_row, pawn_col, knight_row, knight_col, num_rows, num_cols);

}

return 0;

}

Listing 5-4: The main function

Feeling good? We’ve now got a complete solution. We’re using BFS
to optimize the number of moves taken by the knight. We’re checking for
knight wins, stalemates, and losses. Now submit this solution to the judge.
Are you still feeling good?
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The Knight Flip-Flop
In earlier chapters, I hit you with some solutions that were correct but too
slow to pass the test cases. In contrast, what I’ve provided here for the Knight
Chase problem is incorrect: there are test cases for which we produce the
wrong output. Our code happens to be unnecessarily slow, too.

Let’s fix it all!

Making Our Code Correct
Our code is incorrect because it does not consider that the knight can some-
times be too fast! That is, it can get to a pawn’s location before the pawn
gets there. Testing for exactly the same number of pawn and knight moves
is therefore too stringent.

A test case will clear this up:

1

5

3

1

1

3

1

This is a board with five rows and three columns; the pawn starts at
row 1, column 1 and the knight starts at row 3, column 1. Here’s what our
current code outputs for this test case:

Loss in 3 knight move(s).

(The output is 3, not 4, because the knight is not allowed to move once the
pawn reaches the top row.) This means that there is no win or stalemate lo-
cation for which the minimum number of knight moves is the same as the
number of pawn moves. That, at least, is true. However, it’s still possible for
the knight to win here and to do so in two moves. Take some time to try to
identify how the knight can do this!

There’s no way for the knight to win in one move if the pawn is at (2, 1).
However, after two moves, the pawn is at (3, 1), and it’s possible for the
knight to land on (3, 1) after two moves, too. Here’s what the knight can do:

• Move 1: go from (3, 1) to (5, 2).

• Move 2: go from (5, 2) back to (3, 1).

The minimum number of moves for the knight to get to (3, 1) is zero—
it’s the knight’s starting point, after all. By going to some other square and
returning, the knight can land on (3, 1) not only after zero moves but after
two moves as well.

Here’s a self-check: change the knight’s starting point from (3, 1) to
(5, 3). Can you figure out how the knight can win now in three moves?

Generalizing, we can say that if the knight can get to a square in a mini-
mum of mmoves, then it can also get to that square in m + 2 moves, or m + 4
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moves, and so on. All it has to do is keep going to some other square and
returning.

What this means for our solution is that, at each step, there are two ways
for the knight to win or stalemate: it can do so because its minimum num-
ber of moves matches the number of pawn moves or because its minimum
number of moves is an even number larger than the number of pawn moves.

That is, instead of:

if (knight_takes == num_moves) {

we need this:

if (knight_takes >= 0 && num_moves >= knight_takes &&

(num_moves - knight_takes) % 2 == 0) {

Here, we’re testing whether the difference between the number of pawn
moves and the number of knight moves is a multiple of two.

There are two instances of the incorrect code in Listing 5-3; changing
both yields the (correct!) code in Listing 5-5.

void solve(int pawn_row, int pawn_col,

int knight_row, int knight_col,

int num_rows, int num_cols) {

int cur_pawn_row, num_moves, knight_takes;

cur_pawn_row = pawn_row;

num_moves = 0;

while (cur_pawn_row < num_rows) {

knight_takes = find_distance(knight_row, knight_col,

cur_pawn_row, pawn_col,

num_rows, num_cols);

¶ if (knight_takes >= 0 && num_moves >= knight_takes &&

(num_moves - knight_takes) % 2 == 0) {

printf("Win in %d knight move(s).\n", num_moves);

return;

}

cur_pawn_row++;

num_moves++;

}

cur_pawn_row = pawn_row;

num_moves = 0;

while (cur_pawn_row < num_rows) {

knight_takes = find_distance(knight_row, knight_col,

cur_pawn_row + 1, pawn_col,

num_rows, num_cols);

· if (knight_takes >= 0 && num_moves >= knight_takes &&

(num_moves - knight_takes) % 2 == 0) {

printf("Stalemate in %d knight move(s).\n", num_moves);
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return;

}

cur_pawn_row++;

num_moves++;

}

printf("Loss in %d knight move(s).\n", num_rows - pawn_row - 1);

}

Listing 5-5: The best outcome for the knight

As promised, all we’ve done is change two conditions ¶ ·. Now the
code passes the judge.

A Correctness Argument
If you’re suitably convinced of correctness, feel free to skip this section. Oth-
erwise, I’d now like to address a possible concern that you may have at this
point.

Suppose that the knight gets to a square an even number of moves ahead
of the pawn and that this takes mmoves. Also suppose that the knight leaves
and revisits this square as many times as it likes, returning to this square
after m + 2 moves, m + 4 moves, and so on, eventually catching the pawn here.
It would be scary if the knight could use some other sequence of moves to
catch the pawn in m + 1 moves, or m + 3 moves, and so on, because then
adding an odd number of moves could provide us a better minimum than
adding an even number of moves. Fortunately, that can’t happen.

Try this little experiment: choose a starting point and destination for
the knight, and find the minimum number of moves that it takes for the
knight to move from the starting point to the destination. That number of
moves is m. Now try to find a way for the knight to get from that same start-
ing point to that same destination using exactly one more move, or three
more moves, and so on. For example, if the fastest way takes two moves, try
to find a way to take three moves. You won’t be able to do so.

Each knight move changes the row or column number by two and the
other by one. For example, it might change the row number from six to four
and the column number from four to five. Changing a number by two does
not change whether that number is even or odd, but changing a number
by one does change that number from even to odd or vice versa. That is, in
terms of being even or odd, each move leaves one of the two numbers (row
or column) alone, and it changes the other one. When a number changes
from even to odd or vice versa, we say that its parity changes.

Let k be an odd integer. Now we’re ready to see why the knight can’t
take both mmoves and m + kmoves to get to the same destination. Suppose
that the knight can take mmoves to get to square s, that m1 of those moves
change whether the row is even or odd, and that m2 of those moves change
whether the column is even or odd.

Let’s say that m1 and m2 are both even. As such, the moves don’t change
the parity of the row or column: if we start with some number and flip its
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parity an even number of times, its parity doesn’t change. If we make some
other sequence of moves, and it flips the parity of the row an odd number
of times or flips the parity of the column an odd number of times, then that
sequence cannot land at s, because it will land on a square with different row
or column parity than s.

Now, m, the total number of moves m1 + m2, is even: adding two even
numbers gives an even number. But, m + k is odd, because it’s the sum of an
even number and an odd number. And, since m + k is odd, it cannot be built
from an even number of moves that change the row and an even number of
moves that change the column; at least one of them must be odd and there-
fore change the parity of the row or column. This is why these m + kmoves
cannot result in the knight landing on s! (There are three other cases—m1
even and m2 odd, m1 odd and m2 even, and m1 odd and m2 odd—but I’ll skip
those. Their analysis is similar.)

A Time Optimization
Our current solution (Listing 5-5) can make a lot of BFS calls. Each time the
pawn moves up a row, we use BFS (by calling find_distance) to determine
whether it can be caught there by the knight.

Suppose that the pawn starts at (1, 1). We run a BFS from the knight’s
starting point to (1, 1), and that explores some of the squares. Suppose that
the knight can’t catch the pawn here. We then have to run a BFS from the
knight’s starting point to (2, 1). This explores some of the squares, too. How-
ever, (1, 1) and (2, 1) are very close together, to the point that the second
BFS probably re-explores many of the squares whose shortest distances were
discovered in the first BFS call. Unfortunately, each of our BFS calls is inde-
pendent, so that second BFS call redoes a lot of the work that the first BFS
call did. The third call then duplicates a lot of what the prior two BFS calls
did, and on and on.

It’s true that BFS is fast, and I’ll give more details on why in the next
section. Still, it pays to try to reduce the number of invocations of BFS.

I have good news: we can reduce the number of BFS calls to just . . . one!
Recall our BFS code in Listing 5-1. We had code ¹ to cut our BFS short if
we found the target position. However, if this code is removed, then the
BFS will explore the entire board, calculating the shortest distance to each
square. Making that change means that we can make one call to BFS and
then be done with it. From then on, we just look up what we need in the
min_moves array.

Do it! Make the required changes to the code so that BFS is called only
one time.

The code we worked through together takes 0.1 seconds when I submit
to the judge. With the “only one invocation of BFS” optimization, the code
takes only 0.02 seconds, a speedup of 500 percent. More importantly, this
optimization shows that BFS can be used not only to find the shortest dis-
tance from a starting position to some other position, but also to find the
distance from the starting position to all other positions. I’ll discuss BFS a
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little more in the next section. And keep reading after that, because I think
the flexibility of BFS is going to surprise you.

Graphs and BFS
BFS is a powerful search algorithm, as we saw in the solution to the Knight
Chase problem. To run a BFS, we need what’s called a graph. We didn’t
think about graphs when solving the Knight Chase problem—or perhaps
didn’t know what they were!—but there was indeed a graph underlying
the BFS.

What Are Graphs?
Figure 5-1 is our first example of a graph.

(5,1)

(4,1) (4,3)

(3,2)

(5,2)

(4,2) (4,4)

(3,1) (3,3)

(5,3)

(4,5)

(3,4)

(5,4)

(3,5)

(5,5)

(2,2)(2,1) (2,3) (2,4) (2,5)

(1,2)(1,1) (1,3) (1,4) (1,5)

Figure 5-1: A graph of knight moves

Like a tree, a graph consists of nodes (the boxes) and edges between nodes
(the lines). In this graph, the edges represent valid knight moves. For ex-
ample, from the (5, 1) node, the knight can move on an edge to (4, 3) or on
an edge to (3, 2). There are no other edges involving (5, 1), so there are no
other knight moves from there.

Now I can explain how we implicitly used a graph to solve the Knight
Chase problem. Suppose that (5, 1) is the knight’s starting position. Our
BFS tries all eight moves from there, but six of them lead to a position that is
outside of the board; in graph terminology, six of them are not edges from
(5, 1). The BFS discovers the two nodes that are reachable on an edge from
(5, 1): (4, 3) and (3, 2). The exploration then continues with the nodes reach-
able from each of these two nodes, and so on.

I laid the graph out as a grid to reflect the underlying board, but the
way that a graph is drawn carries no meaning. All that matters are the nodes
and edges. I could have drawn the graph with the nodes chaotically spread
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around, and it would have conveyed the same meaning. However, when the
graph is rooted in some underlying geometry, it makes sense to display the
graph in a corresponding way for easier interpretation.

To solve the Knight Chase problem, we didn’t need to explicitly repre-
sent the graph in code, because we figured out the available moves (edges)
from each node as we explored the board. Sometimes, though, we do need
to represent a graph explicitly in code, along the lines of our tree representa-
tions in Chapter 2. We’ll see how to do that in Problem 3.

Graphs vs. Trees
Graphs and trees have a lot in common. They’re both used to represent rela-
tionships between nodes. In fact, every tree is a graph, but there are graphs
that are not trees. Graphs are more general, and they can express more than
what trees can express.

First, graphs (but not trees) allow cycles. We have a cycle in a graph if we
can start from a node and get back to it without using any repeated edges or
nodes. (The first and last nodes in the cycle are the only ones that repeat.)
Look back at Figure 5-1. Here’s a cycle in that graph: (5, 3) → (4, 5) → (3, 3)
→ (4, 1) → (5, 3).

Second, graphs (but not trees) can be directed. The trees and graph we’ve
seen so far are undirected, meaning that if two nodes a and b are connected
by an edge, then we can travel both from a to b and from b to a. The graph
in Figure 5-1 is undirected; for example, we can move from (5, 3) on an edge
to (4, 5) and use that same edge to move from (4, 5) to (5, 3). Sometimes,
though, we want to allow travel in only one direction, not the other. A
directed graph is a graph in which each edge indicates the allowed direction
of travel. Figure 5-2 depicts a directed graph.

A

B

C D

E

Figure 5-2: A directed graph

Note, in Figure 5-2, how it’s possible to move from E to each of the other
nodes, but it is not possible to move from any of those nodes to E. The edges
are one-way edges.
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Directed graphs are useful whenever an undirected graph would lead to
loss of information. In my Computer Science department, each course has
one or more prerequisite courses. For example, we have a C Programming
course, which requires that students have already taken our Software De-
sign course. A directed edge Software Design → C Programming captures
this relationship. Had we used an undirected edge, we’d still know that the
courses were related, but we wouldn’t know the order in which the courses
must be taken. Figure 5-3 shows a small prerequisite graph.

Intro to
Programming

Intro to CS

Software
Design

Theory of 
Computation

C
Programming

Figure 5-3: A graph of course prerequisites

The third thing that makes graphs more general than trees is that graphs
can be disconnected. All trees and graphs we have seen to this point are
connected, which means that you can get from any node to any other node.
Now check out the disconnected graph in Figure 5-4.
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Intro to
Programming

Intro to CS

Software
Design

Theory of
Computation

C
Programming

World
Prehistory

Agricultural
Origins

Figure 5-4: A graph of disconnected course prerequisites

It’s disconnected because, for example, you can’t follow a path from
Intro to Programming toWorld Prehistory. Disconnected graphs are useful
whenever a graph is naturally composed of separate pieces.

BFS on Graphs
We can run BFS on an undirected graph (as we did for the Knight Chase
problem) or a directed graph. The algorithm is the same: we go through the
possible moves from the current node and explore them. BFS is known as a
shortest-path algorithm: among all paths between a starting node and some
other node, BFS gives us the shortest one in terms of the number of edges.
As long as what we care about is minimizing the number of edges, it solves
the single-source shortest-paths problem, since it finds shortest paths from a
single source (or starting) node.

What we need to control to make BFS fast is not whether the graph is
undirected or directed, but the number of times we invoke BFS and the
number of edges in the graph. The runtime of a BFS call is proportional
to the number of edges reachable from the starting node. That’s because
BFS looks at each edge once to determine whether it leads to the discovery
of a new node. We call BFS a linear-time algorithm, since it does work linear
in the number of edges: if 5 edges takes 5 steps for BFS to explore it, then
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10 edges will take 10 steps. We’ll use the number of edges to estimate the
number of steps performed by BFS.

In the Knight Chase problem, we had a board with r rows and c columns.
Each node has at most eight edges, so the board has at most 8rc edges in
total. Therefore, running one BFS takes 8rc steps. For the biggest board,
99×99, this is fewer than 80,000 steps. If we call BFS on the order of r times,
as can happen in Listing 5-5, then we’re looking at 8r2c steps. Now the 99×99
board isn’t looking so good: it could take over 7 million steps. This is why it
helps so much to reduce the number of calls of BFS!

Any time a problem involves a set of objects (board locations, courses,
people, websites, and so on) and relationships between those objects, it’s a
good bet that modeling the problem as a graph will help. Once you model
a problem as a graph, you can take advantage of a huge number of fast algo-
rithms on graphs. BFS is one of those algorithms.

Graphs vs. Dynamic Programming
Sometimes it can be difficult to determine whether to use dynamic program-
ming or a graph to solve a problem. The giveaway is often the presence of a
cycle: if you have a cycle, then you need a graph.

None of the problems that we solved in Chapter 3 or Chapter 4 had a
cycle. In Burger Fervor we recursed with fewer minutes. In Moneygrubbers
we recursed with fewer needed apples. In Hockey Rivalry we recursed with
fewer games. We always go down—there’s no way to loop back to a higher
number of minutes or apples or games to cause a cycle.

It’s trickier to see that this is true for The Jumper in Chapter 4, but it
is. Think back to our forward formulation. If we jump to the right, then we
recurse with a bigger jump distance. If we jump to the left, then we recurse
with the same jump distance but a smaller-numbered square. There’s no
way to start at a given subproblem and get back to it using these jumps. You
might try to do that by making some jumps to the left and then making a
jump to the right—but your jump to the right will have increased the jump
distance by one and there’s no way to decrease it by one ever again.

No cycle!

Problem 2: Rope Climb
In the Knight Chase problem, we were explicitly given a board on which a
game takes place. Here, we won’t be given the board directly, so we’ll have to
work it out. Again, the strategy will be to model valid moves using BFS.

This is DMOJ problem wc18c1s3.

The Problem
Bob is asked to climb a rope in gym class. The rope is infinitely long, but
Bob is being asked to get only to a height of at least hmeters.
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Bob starts at a height of 0. He knows how to jump up by exactly jme-
ters, but that’s the only jump he knows how to do—so if j is 5, then he can’t
jump up four or six meters or any other number of meters except five. In
addition, Bob knows how to fall, and he can fall down any number of meters:
one, two, three, and so on.

Each jump or fall counts as one move. For example, if Bob jumps up five
meters, falls down two meters, jumps up five meters, and falls down eight
meters, then Bob will have made four moves.

Now, here’s the fun part: Alice has spread itching powder on some seg-
ments of the rope. If such a segment goes from height a to height b, then
the entire segment from a to b, including the endpoints a and b, has itching
powder. The effect that the itching powder has on Bob’s moves is as follows:

• Bob cannot jump up jmeters if that would land him on itching
powder.

• Bob cannot fall down a given number of meters if that would land
him on itching powder.

The goal is to determine the minimum number of moves needed for
Bob to get to height h or higher.

Input
The input contains one test case, consisting of the following lines:

• A line containing three integers: h, j, and n. h tells us the minimum
height that Bob must reach, j is the distance that Bob can jump up,
and n is the number of segments on which Alice has spread itching
powder. Each integer is at most 1,000,000, and j is at most h.

• n lines, each of which contains two integers. The first integer gives
the starting height for a segment of rope with itching powder; the
second gives the ending height. Each integer is at most h – 1.

Output
Output the minimum number of moves needed for Bob to reach height h or
higher. If there is no way for Bob to reach height h or higher, output -1.

The time limit for solving the test case is 1.8 seconds.

Solution 1: Finding the Moves
Let’s start by making direct comparisons to the Knight Chase problem. No-
tice in both cases that our goal is to minimize the number of moves. Whe-
ther it’s a knight on a board or Bob on a rope, the goal is the same. It’s true
that the knight was moving around a two-dimensional board and Bob is mov-
ing around a one-dimensional rope, but that just changes how we’ll refer to
each position. BFS won’t otherwise care about the change from two dimen-
sions to one. If anything, dropping one dimension simplifies things a little!

How about the number of possible moves from each position? The
knight had at most eight of those. In contrast, the number of possible moves
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Bob can make increases with his position. For example, if Bob is at a height
of 4, and he can jump up by 5, then he has five possible moves: jump up by
5, fall down by 1, fall down by 2, fall down by 3, or fall down by 4. If Bob is
at a height of 1,000, then he has 1,001 possible moves! So we’ll have to take
Bob’s current position into account when determining the number of avail-
able moves.

What about the itching powder? Knight Chase doesn’t have anything
resembling that. Let’s look at a test case to see what we’re up against here:

10 4 1

8 9

Bob has to get to a height of 10 or higher. He can jump up by four. So,
if there were no itching powder, he’d be able to jump from a height of 0 to 4,
then to 8, and then to 12. That’s three moves.

Bob can’t do that, though! He isn’t allowed to jump from 4 to 8, because
there’s itching powder at a height of 8 (as the itching powder goes from 8
to 9). The solution, by factoring in the itching powder, is four moves. For
example, Bob can jump from 0 to 4, then fall to 3, then jump to 7, and then
jump to 11. That jump from 7 to 11 breezes right past the itching powder.

The move from 4 to 8 seems available based on Bob’s ability to jump up
by four, but it is actually not available because of the itching powder. This
isn’t so different than a knight move being unavailable because it would take
the knight outside of the board. For those invalid knight moves, we detected
them in the BFS and didn’t add them to the next round of positions. We’ll
handle itching powder similarly: any move that would cause Bob to land on
itching powder will be disallowed in our BFS code.

Speaking of those invalid knight moves that take the knight outside of
the board, do we have to worry about that kind of thing here? The rope is
infinitely long, so we won’t break any rules by letting Bob climb higher and
higher. However, at some point we really do have to stop; otherwise, the BFS
will forever be finding and exploring new positions. I’ll invoke the insight
from Moneygrubbers in Chapter 3 that helped us out of a very similar bind
when buying apples. We said there that if we’re asked to buy 50 apples, then
we should consider buying at most 149 apples, because each pricing scheme
gives us at most 100 apples. Here, remember from the problem description
that j, the distance that Bob jumps up, is at most h, the minimum target
height. We shouldn’t let Bob get to height 2h or higher. Think about what
it would mean the first time we got Bob to height 2h or higher. One move
prior, Bob would have been at height 2h – j ≥ h, and that would have taken
one move less than getting Bob to height 2h! Thus, getting Bob to height 2h
or higher can’t be the fastest way to get him to at least height h.

Implementing Breadth-First Search
We’ll very closely follow what we did for the Knight Chase problem, making
changes only when necessary. Back then, each knight position consisted of
both a row and a column, so we created a struct to hold both of those pieces
of information. Now, a position on a rope is just an integer, so we don’t
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need a struct for that. We’ll make type definitions for the “board” and the
positions discovered by BFS:

#define SIZE 1000000

typedef int board[SIZE * 2];

typedef int positions[SIZE * 2];

It may seem a little weird to call a rope a board, I suppose, but it serves
the same purpose as the corresponding type definition in the Knight Chase
problem, so let’s stick with it.

We’re eventually going to make a single call of BFS, and that call is go-
ing to calculate the minimum number of moves for Bob to get from a height
of zero to each valid position. The code for the BFS is given in Listing 5-6—
compare this to the find_distance code in Listing 5-1. (Especially, compare
it to the code I hope you wrote after reading “A Time Optimization” on
page 168.)

void find_distances(int target_height, int jump_distance,

int itching[], board min_moves) {

static positions cur_positions, new_positions;

int num_cur_positions, num_new_positions;

int i, j, from_height;

for (i = 0; i < target_height * 2; i++)

¶ min_moves[i] = -1;

min_moves[0] = 0;

cur_positions[0] = 0;

num_cur_positions = 1;

while (num_cur_positions > 0) {

num_new_positions = 0;

for (i = 0; i < num_cur_positions; i++) {

from_height = cur_positions[i];

· add_position(from_height, from_height + jump_distance,

target_height * 2 - 1,

new_positions, &num_new_positions,

itching, min_moves);

¸ for (j = 0; j < from_height; j++)

add_position(from_height, j,

target_height * 2 - 1,

new_positions, &num_new_positions,

itching, min_moves);

}

num_cur_positions = num_new_positions;

for (i = 0; i < num_cur_positions; i++)

cur_positions[i] = new_positions[i];
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}

}

Listing 5-6: Minimum number of moves for Bob using BFS

There are four parameters for this find_distances function:

target_height The minimum height that Bob must reach. It’s the h
value from the test case.

jump_distance The distance that Bob can jump up. It’s the j value from
the test case.

itching An array that indicates where itching powder is present. If
itching[i] is 0, then there’s no itching powder at height i; otherwise,
there is. (Looking ahead, we’ll have to build this array from the seg-
ments of itchy rope given in the test case. But we’ll be able to do that,
and then we won’t have to worry about the particular segments them-
selves: we can just index this array.)

min_moves The board in which we’ll store the minimum number of
moves to get to each position.

As in Listing 5-1 for Knight Chase, we initialize each position of the
board to -1 ¶, which means that BFS hasn’t found this position yet. That
initialization, as with any other manipulation of board here, indexes a one-
dimensional (not two-dimensional!) array. Other than that, the structure is
quite similar to the BFS code for Knight Chase.

There is, however, an interesting structural change to the code that adds
positions. Bob has exactly one jump distance, so there’s only one jump move
to consider ·: Bob starts at from_height and ends up, if it’s a valid position, at
from_height + jump_distance. We can use target_height * 2 - 1 to get the max-
imum height that Bob is allowed to reach. For falling down, we cannot hard-
code Bob’s available moves; those moves depend on Bob’s current height.
To handle that, we use a loop ¸ to consider all destination heights from 0
(the ground) up to but not including from_height (Bob’s current height). This
loop is the only significant change from the Knight Chase BFS.

To wrap up our BFS code, we need to implement the add_position helper
function. That code is given in Listing 5-7.

void add_position(int from_height, int to_height, int max_height,

positions new_positions, int *num_new_positions,

int itching[], board min_moves) {

if (to_height <= max_height && itching[to_height] == 0 &&

min_moves[to_height] == -1) {

min_moves[to_height] = 1 + min_moves[from_height];

new_positions[*num_new_positions] = to_height;

(*num_new_positions)++;

}

}

Listing 5-7: Adding a position
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Bob wants to move from from_height to to_height. This move is allowed
if it passes three tests. First, Bob can’t be jumping above the maximum al-
lowed height. Second, he can’t be jumping somewhere that has itching pow-
der. Third, the min_moves board better not have already recorded a number
of moves for to_height: if a value is already in there, then it has a faster way
to get to to_height. If we passed these tests, then we’ve found a new, valid
position; we set the number of moves to get there and then store this as a
position for the next round of BFS.

Finding the Best Height
There are many possibilities for Bob’s final position. It could be the target
height h from the test case. However, depending on j and the itching pow-
der, it could be higher than that. We know for each position the minimum
number of moves to get there. What we have to do now is check all of the
candidate positions, choosing the one that minimizes the number of moves.
That code is given in Listing 5-8.

void solve(int target_height, board min_moves) {

¶ int best = -1;

int i;

for (i = target_height; i < target_height * 2; i++)

· if (min_moves[i] != -1 && (best == -1 || min_moves[i] < best))

best = min_moves[i];

printf("%d\n", best);

}

Listing 5-8: The minimum number of moves

It’s possible that Bob can’t get to his target height, so we start best off
with a value of -1 ¶. For each candidate height, we then check whether it’s
possible for Bob to land there. If he can, and doing so is faster than our cur-
rent minimum number of moves best ·, then we update best accordingly.

We’ve now got all the code to process a test case and output the result.
All that’s left is to read the input. The main function in Listing 5-9 does that.

int main(void) {

int target_height, jump_distance, num_itching_sections;

static int itching[SIZE * 2] = {0};

static board min_moves;

int i, j, itch_start, itch_end;

scanf("%d%d%d", &target_height, &jump_distance, &num_itching_sections);

for (i = 0; i < num_itching_sections; i++) {

scanf("%d%d", &itch_start, &itch_end);

¶ for (j = itch_start; j <= itch_end; j++)

· itching[j] = 1;

}

find_distances(target_height, jump_distance, itching, min_moves);

solve(target_height, min_moves);
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return 0;

}

Listing 5-9: The main function

As is typical for large arrays, we have made itching and min_moves static.
The elements of itching are initialized to 0, which means that there is no itch-
ing powder yet on the rope. For each segment where there is itching powder
on the rope, we loop through each integer in the range ¶ and set the cor-
responding element of itching to 1 ·. Once we’re done looping through
the itchy segments, each index of itching tells us if the rope does (value 1) or
does not (value 0) have itching powder there. We no longer care about the
individual itchy segments themselves—we have all that we need in itching.

That’s it. We’ve got a solution that uses a single call of BFS. It’s time to
submit to the judge. As some might say, Bob’s your uncle . . .

Or, hopefully he will be, but he’s not yet. Because you should receive a
“Time-Limit Exceeded” error with this code.

Solution 2: A Remodel
Let’s run test cases of increasing size to get a sense of how our runtime is
growing. To simplify things, we won’t use any itching powder. Here’s the
first test case:

30000 5 0

That’s a target height of at least 30,000, with a jump distance of 5. On
my laptop, that takes about eight seconds. Now let’s double the target height:

60000 5 0

I’m looking at about 30 seconds here. That’s nearly four times longer
than in the previous case. We’ve long blown past the 1.8-second time limit,
but let’s do this one more time, doubling the target height again:

120000 5 0

That gives a glacially slow 130 seconds, approximately another fourfold
increase from the previous test case. That is, it seems that doubling the in-
put size leads to the runtime being multiplied by four. This isn’t as catas-
trophic as what we saw in “Solution 2: Memoization” when solving Burger
Fervor in Chapter 3, but it’s clearly too slow.

Too Many Fall Edges
In “BFS on Graphs” on page 172, I warned that we need to keep two things
in check when using BFS: the number of times we call BFS and the number
of edges in the graph. We’re doing as well as possible with the number of
BFS calls, as we only call BFS once. To further pursue a solution based on
BFS, then, we need a way to reduce the number of edges in the graph.
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Let’s take a look at the graph for a small example shown in Figure 5-5.
We’ll then be able to extrapolate to larger examples and see why our code
churrs and churrs.
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Figure 5-5: A graph of Bob’s moves

The graph shows the available moves from a height of 0 to a height of 7,
if we assume that Bob can jump up by 3. This is an example of a directed
graph; notice, for example, that there is a move from 6 to 5 but not one
from 5 to 6.

The graph contains jump edges that encode Bob’s possible jumps and
fall edges that encode Bob’s possible falls. The jump edges go from the
bottom to the top and the fall edges go from the top to the bottom. For ex-
ample, the edge from a height of 0 to a height of 3 is a jump edge; the afore-
mentioned edge from 6 to 5 is a fall edge.

The number of jump edges isn’t worrisome at all. We have at most one
jump edge per node. If we have n nodes, then we have at most n jump edges.
If we decide to model up to a height of 8 instead of 7, then we’d add only
one new jump edge.

However, the fall edges proliferate at a much faster rate. Notice that
there is one fall edge from a height of 1, two fall edges from 2, three fall
edges from 3, and so on. That is, for a rope of height h, we have a total of
1 + 2 + 3 + . . . + h fall edges. If we want to know how many fall edges there are
for a given rope height, we could add up the integers from 1 to that height.
There is, however, a convenient formula that we can use instead to get the
answer much faster. It’s h(h + 1)/2. For a rope height of 50, for example,
we’d have 50(51)/2 = 1, 275 fall edges. For a rope height of two million, we’d
have over two trillion fall edges.
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Back in Chapter 1, we saw a very similar formula in “Diagnosing the
Problem” on page 9, when we were counting pairs of snowflakes. Like that
one, our formula here is quadratic, being O(h2), and it’s this quadratic
growth in fall edges that bests our algorithm.

Changing the Moves
If we’re going to reduce the number of edges in the graph, then we’re go-
ing to have to change the available moves that the graph encodes. We can’t
change the rules of the actual game that Bob plays in gym class, but we can
change the moves in our graph model of the game. Of course, we are only
able to change the graph if a BFS on the new graph produces the same an-
swer as a BFS on the old graph.

There’s an important lesson here. It’s tempting to map the available
moves, one for one, from the real-world problem to the graph. We did that
for Knight Chase and succeeded in solving the problem. While this might
be tempting, it’s not a requirement. We can produce a different graph, one
with a more desirable number of nodes or edges, as long as that graph can
still give us the answer to the original problem.

Suppose that we want to fall some distance from a height of five meters.
One possibility might be to fall four meters. Indeed, solving the problem as
in Solution 1, there would be a fall edge from a height of 5 down to 1. How-
ever, another way to think of this fall is as four falls of one meter each. That
is, we can think of Bob falling from 5 to 4, then falling to 3, then falling to 2,
and then falling finally to 1. That is, I’m imagining that every fall edge would
be exactly one meter long. No more fall edges like those from a height of
5 to 3, or 5 to 2, or 5 to 1, or 5 to 0. There would be just one fall edge from
each node, bringing us one meter lower. This should drastically cut down on
the number of fall edges!

We have to be careful, though. We can’t let each of these mini, one-
meter falls count as a move. If Bob falls four meters, using four one-meter-
fall edges, then we still have to count it as a single move, not four moves.

Imagine that we have two ropes (0 and 1), not one. Rope 0 is the rope
that we’ve always had. Alice set it up. It might have itching powder. Rope 1
is new, devised by us, for the purposes of modeling. It has no itching pow-
der. In addition, when Bob is on Rope 1, he’s not allowed to move upward.

When Bob wants to make a fall move, he will move from Rope 0 to
Rope 1. He’ll stick with Rope 1, falling, for as long as he wants to fall. Then,
at any point where there isn’t itching powder on Rope 0, he can end his fall
by moving back to Rope 0. Specifically, we have the following moves now:

• When Bob is on Rope 0, he has two possible moves: jump up by j
meters or move over to Rope 1. Each costs one move.

• When Bob is on Rope 1, he has two possible moves: fall by one me-
ter or move over to Rope 0. Each costs 0 moves. That’s right: these
moves are free!

Bob jumps up as before, using Rope 0. When he wants to fall, he moves
to Rope 1 (that costs him one move), falls down Rope 1 as much as he likes
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(that’s free), and then moves back to Rope 0 (that’s free, too). The whole
fall, then, costs Bob just one move. Perfect—this is just as before! No one will
know that we’re using two ropes instead of one.

Compare Figure 5-5, with its mass of edges, to Figure 5-6, which depicts
the two-ropes maneuver.
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Figure 5-6: A graph of Bob’s
moves using two ropes

It’s true that we’ve doubled the number of nodes, but that’s okay: what
we care about for BFS is not the number of nodes but the number of edges.
On that front, we’re laughing. We have, at most, two edges leaving each
node: on Rope 0, we have a jump edge and a move to Rope 1; on Rope 1, we
have a fall edge and a move to Rope 0. That is, for height h, we have about 4h
edges. That’s linear! We’ve avoided that messy quadratic h2 business.

I’ve annotated each edge here with whether it costs a move (1) or doesn’t
(0). This is our first example of a weighted graph, where each edge is given a
weight or cost.

Adding Positions
We’ve meandered our way back to a two-dimensional board. (Hello, Knight
Chase!) We need one dimension for Bob’s height and the second for the
rope that Bob is on. The standard terminology for that second dimension is
a state. When Bob is on Rope 0, we’ll say he’s in state 0, and when Bob is on
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Rope 1, we’ll say he’s in state 1. Let’s use “state” from now on instead of
“rope.”

Here are the new typedefs:

typedef struct position {

int height, state;

} position;

typedef int board[SIZE * 2][2];

typedef position positions[SIZE * 4];

Rather than start with find_distances, as we have been doing in this chap-
ter, we’ll start with the add_position functions. Yes: functions, plural, because
we’re going to encode each type of move as its own function. There are four
types of moves: a jump up, a fall down, a move from State 0 to State 1, and a
move from State 1 to State 0. Hence we’ll need four add_position functions.

Jumping Up
The code for following a jump edge is given in Listing 5-10.

void add_position_up(int from_height, int to_height, int max_height,

positions pos, int *num_pos,

int itching[], board min_moves) {

¶ int distance = 1 + min_moves[from_height][0];

if (to_height <= max_height && itching[to_height] == 0 &&

· (min_moves[to_height][0] == -1 ||

min_moves[to_height][0] > distance)) {

min_moves[to_height][0] = distance;

pos[*num_pos] = (position){to_height, 0};

(*num_pos)++;

}

}

Listing 5-10: Adding a position: jumping up

This function involves jumping up from from_height to to_height. This
kind of move is allowed only in state 0; whenever we index min_moves, we’ll
therefore use 0 as the second index.

The code is similar to Listing 5-7, but with a few important changes.
First, I’ve changed the name of new_positions to pos and num_new_positions to
num_pos. We’ll talk about the reason for this change to more generic parame-
ter names after we’ve gone through the four functions.

Second, to facilitate comparison between the four functions, I’ve added
a distance variable ¶ that indicates the number of moves it takes to get to
to_height by using from_height. Here, it’s one more move than the minimum
number of moves to from_height, because we pay one move for this jump.

Third and finally, I’ve changed the part of the if condition that checks
whether we’ve found a new position ·. This is because a position might
be discovered by an edge that counts as one move, but it could later be
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rediscovered by an edge that doesn’t count as a move. We want to allow for
the possibility that the minimum number of moves is updated and improved
by one of those no-cost edges. (Jumping up is not a no-cost edge, so we don’t
need this change here; but I’ve kept it in for consistency across the four
functions.)

Falling Down
Let’s now take a look at the code for falling down given in Listing 5-11.

void add_position_down(int from_height, int to_height,

positions pos, int *num_pos,

board min_moves) {

¶ int distance = min_moves[from_height][1];

if (to_height >= 0 &&

(min_moves[to_height][1] == -1 ||

min_moves[to_height][1] > distance)) {

min_moves[to_height][1] = distance;

pos[*num_pos] = (position){to_height, 1};

(*num_pos)++;

}

}

Listing 5-11: Adding a position: falling down

Falling down can only happen in state 1; that’s why the second index is 1
whenever we access min_moves. Also, there’s nothing to do with itching pow-
der here. Bob can fall as much as he likes in State 1 and not have to worry
about the itching powder. Finally, a crucial point about the calculated dis-
tance is that there’s no + 1 added ¶!

Remember: this doesn’t count as a move.

Switching States
There are two more functions to go. First we have the function to move from
State 0 to State 1 in Listing 5-12.

void add_position_01(int from_height,

positions pos, int *num_pos,

board min_moves) {

int distance = 1 + min_moves[from_height][0];

if (min_moves[from_height][1] == -1 ||

min_moves[from_height][1] > distance) {

min_moves[from_height][1] = distance;

pos[*num_pos] = (position){from_height, 1};

(*num_pos)++;

}

}

Listing 5-12: Adding a position: moving from state 0 to state 1
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Then we have the function to move from state 1 to state 0, shown in
Listing 5-13.

void add_position_10(int from_height,

positions pos, int *num_pos,

int itching[], board min_moves) {

int distance = min_moves[from_height][1];

if (itching[from_height] == 0 &&

(min_moves[from_height][0] == -1 ||

min_moves[from_height][0] > distance)) {

min_moves[from_height][0] = distance;

pos[*num_pos] = (position){from_height, 0};

(*num_pos)++;

}

}

Listing 5-13: Adding a position:moving from state 1 to state 0

Moving from State 0 to State 1 costs one move, but moving from State 1
to State 0 does not. Also notice we’re only allowed to move from State 1 to
State 0 if there’s no itching powder at that height. Without that check, we’d
be allowed to stop a fall on a segment of the rope with itching powder, and
that would be breaking the rules.

0-1 BFS
Now it’s time to incorporate the state into the find_distances code from
Listing 5-6. However, we had better be careful, lest we miscount the moves.

Here’s an example. I’ll use (h, s) to refer to Bob being at height h in
state s. Suppose that Bob can jump up by three. Bob starts at (0, 0), and it
takes zero moves to get there. Exploring from (0, 0), we will identify (0, 1) as
a new position, and record that it takes one move to get there. It’ll be added
to the positions for the next round of BFS. We’ll also find (3, 0) and similarly
record that it takes one move to get there. That’s another position for the
next round of BFS. That’s all standard BFS fare.

When exploring out of (3, 0), we’ll find the new positions (3, 1) and
(6, 0). Both will be added to the next round of BFS, and both will be reach-
able in a minimum of two moves.

However, we need to be careful with position (3, 1). We know that (2, 1)
is reachable from here, so it’s tempting to add it to the next round of BFS. If
we did that, though, then we wouldn’t be doing BFS anymore. We are sup-
posed to put positions in the next round of the BFS when they are exactly
one move away from those in the current round. Is (2, 1) one more move
away from (3, 1)? No! They are the same number of moves from (0, 0), be-
cause falling in State 1 is free.

That is, (2, 1) doesn’t go in the next round of BFS. It goes in the current
round of BFS, right along with (3, 1) and everything else whose minimum
moves is two.

In summary, whenever we move along an edge that costs us a move,
we add the new position to the next round of BFS. That’s what we’ve always
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done. However, when we move along an edge that is free, then we add it to
the current round of BFS so that it can be processed along with the other
positions whose distance is the same. This is why we moved away from
new_positions and num_new_positions in the add_position functions in “Adding
Positions” on page 182. Two of the functions will indeed add moves to the
new positions, but the other two will add moves to the current positions.

This variant of BFS is called 0-1 BFS, because it works on graphs whose
edges cost zero moves or one move.

At last, it’s time for the BFS. Check it out in Listing 5-14.

void find_distances(int target_height, int jump_distance,

int itching[], board min_moves) {

static positions cur_positions, new_positions;

int num_cur_positions, num_new_positions;

int i, j, from_height, from_state;

for (i = 0; i < target_height * 2; i++)

for (j = 0; j < 2; j++)

min_moves[i][j] = -1;

min_moves[0][0] = 0;

cur_positions[0] = (position){0, 0};

num_cur_positions = 1;

while (num_cur_positions > 0) {

num_new_positions = 0;

for (i = 0; i < num_cur_positions; i++) {

from_height = cur_positions[i].height;

from_state = cur_positions[i].state;

¶ if (from_state == 0) {

add_position_up(from_height, from_height + jump_distance,

target_height * 2 - 1,

new_positions, &num_new_positions,

itching, min_moves);

add_position_01(from_height, new_positions, &num_new_positions,

min_moves);

} else {

add_position_down(from_height, from_height - 1,

cur_positions, &num_cur_positions, min_moves);

add_position_10(from_height,

cur_positions, &num_cur_positions,

itching, min_moves);

}

}

num_cur_positions = num_new_positions;

for (i = 0; i < num_cur_positions; i++)

cur_positions[i] = new_positions[i];
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}

}

Listing 5-14: The minimum number of moves for Bob using 0-1 BFS

The new code checks whether the current position is in State 0 or
State 1 ¶. In each case, there are two moves to consider. In State 0, the new
positions (those for the next round of BFS) are used; in State 1, the current
positions are used.

What about the main and solve functions? For main, we can use the same
function from Solution 1. For solve, we just need to add State 0 whenever we
index min_moves. If you make those changes and submit to the judge, you’ll
see that we pass all tests with plenty of time to spare.

Problem 3: Book Translation
In the Knight Chase and Rope Climb problems, there was no explicit graph
to read from the input; the BFS incrementally produced the graph as it ex-
plored. We’ll now see a problem where the graph is presented to us up front.

This is DMOJ problem ecna16d.

The Problem
You have written a new book in English, and you want to get the book
translated into n other target languages. You’ve found m translators. Each
translator knows how to translate between exactly two languages and will do
the translation at a given cost. For example, a translator may know how to
translate between Spanish and Bengali at a cost of $1,800; this means that
you could ask this translator to translate from Spanish to Bengali for $1,800
or Bengali to Spanish for $1,800.

To reach a given target language may require multiple translations. For
example, you may want to translate your book from English to Bengali but
have no translator between these two languages. You might instead have to
translate from English to Spanish and then Spanish to Bengali.

To reduce the number of translation errors, you will minimize the num-
ber of translations needed to reach each target language. If there are multi-
ple ways to achieve a minimum number of translations to a target language,
then you will choose the cheapest one. Your goal is to minimize the number
of translations to each target language; if there are multiple ways to do this,
choose the one with minimum total cost.

Input
The input contains one test case, consisting of the following lines:

• A line containing two integers n and m. n is the number of target
languages; m is the number of translators. There are at most
100 target languages and at most 4,500 translators.
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• A line containing n strings, each naming a target language. English
will not be a target language.

• m lines, each giving information for one translator. Each of these
lines contains three space-separated tokens: a language, a second
language, and the positive integer cost to translate between them.
There is at most one translator per pair of languages.

Output
Output the minimum monetary cost to translate the book into all of the tar-
get languages, while minimizing the number of translations to each target
language. If there is no way to translate the book into all of the target lan-
guages, output Impossible.

The time limit for solving the test case is 0.6 seconds.

Reading the Language Names
Rather than use language names directly—English, Spanish, and so on—I’ll
associate each language with an integer. English will be language 0, and each
target language will be given a unique integer greater than 0. We can then
work with integers from here on out, as we did for the other problems in
this chapter.

There’s one annoyance here: the problem description does not tell us
the maximum length of a language name. We therefore cannot hardcode
some maximum language name length like 16 or even 100, because we have
no control over the input. We therefore use a read_word helper function; see
Listing 5-15.

/* based on https://stackoverflow.com/questions/16870485 */

char *read_word(int size) {

char *str;

int ch;

int len = 0;

str = malloc(size);

if (str == NULL) {

fprintf(stderr, "malloc error\n");

exit(1);

}

¶ while ((ch = getchar()) != EOF && (ch != ' ') && (ch != '\n')) {

str[len++] = ch;

if (len == size) {

size = size * 2;

· str = realloc(str, size);

if (str == NULL) {

fprintf(stderr, "realloc error\n");

exit(1);

}

}
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}

¸ str[len] = '\0';

return str;

}

Listing 5-15: Reading a word

The read_word function takes an initial size that we hope suffices for most
or all of the language names. When we call the function, we will give an
initial size of 16, because that covers most language names we’re likely to
see. We can use read_word to read characters ¶ up until the array reaches its
maximum length; if the array fills up and the language name still isn’t over,
it then uses realloc to double the array’s length ·, thereby creating more
space to read more characters. We’re careful to terminate str with a null
character ¸; otherwise, it wouldn’t be a valid string!

Building the Graph
Now let’s turn to building a graph from the input. This will help us explore
the allowable translations from each language.

Let’s work with a small test case:

3 5

Spanish Bengali Italian

English Spanish 500

Spanish Bengali 1800

English Italian 1000

Spanish Italian 250

Bengali Italian 9000

Can you construct the graph? What are the nodes and what are the
edges? Is it undirected or directed? Is it unweighted or weighted?

As always, the edges encode the allowed moves; here, a move corre-
sponds to a translation between two languages. The nodes, then, are the
languages. An edge going from language a to language bmeans that there is
a translator between these two languages. The translator can translate from
a to b or vice versa—so the graph is undirected. It’s also weighted, because
each edge (a translation) has a weight (the translation cost). The graph is
shown in Figure 5-7.
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English

Spanish

500

Italian

1000

Bengali

1800

250

9000

Figure 5-7: A graph of translations

The total translation cost for us to reach all of the target languages is
$500 for English to Spanish, plus $1,000 for English to Italian, plus $1,800
for Spanish to Bengali. That’s $3,300 in all. Don’t be taken in by that
alluring $250 Spanish–Italian translation: using that would result in a dis-
tance of two from English to Italian, but remember that we need the mini-
mum distances, even when that leads to spending more money. Indeed, the
reason we’ll be able to use BFS here is precisely because we care first about
the minimum number of edges for each target language, not its minimum
cost overall. For the latter, we’d need more powerful tools, and these will be
introduced in Chapter 6.

To store the graph, I’ll use what’s called an adjacency list. (Node b is said
to be adjacent to Node a if there is an edge from a to b; that’s where the name
“adjacency list” comes from.) This is just an array with one index per node,
where each index stores a linked list of the edges involving that node. We
use linked lists of edges, rather than arrays of edges, because we don’t know
in advance the number of edges that involve a given node.

Here are the constants and typedefs:

#define MAX_LANGS 101

#define WORD_LENGTH 16

typedef struct edge {

int to_lang, cost;

struct edge *next;

} edge;

typedef int board[MAX_LANGS];

typedef int positions[MAX_LANGS];

An edge has a to_lang and a cost—that makes sense. However, it doesn’t
have a from_lang, and that’s because we’ll already know the from_lang based on
which index of the adjacency list the edge is in.
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In Chapter 2, when storing trees, we used a struct node rather than a
struct edge. The reason for the node-centric focus in Chapter 2 is that the
nodes are the entities associated with information, such as candy values and
numbers of descendants. In the present problem, we have an edge-centric
focus, with the struct edge, because it’s the edges (not the nodes) that are
associated with information (the translation costs).

It’s easiest to add to a linked list at its beginning. One side effect of this
choice is that the edges for a node end up in the linked list in the opposite
order in which we read them. For example, if we read an edge from Node 1
to Node 2 and then read an edge from Node 1 to Node 3, then in our linked
list we will find that the edge to Node 3 shows up before the edge to Node 2.
Don’t let this catch you off guard when tracing through the code.

Now we’re ready to see how the graph is built. It’s in the main function
given in Listing 5-16.

int main(void) {

static edge *adj_list[MAX_LANGS] = {NULL};

static char *lang_names[MAX_LANGS];

int i, num_targets, num_translators, cost, from_index, to_index;

char *from_lang, *to_lang;

edge *e;

static board min_costs;

scanf("%d%d ", &num_targets, &num_translators);

¶ lang_names[0] = "English";

for (i = 1; i <= num_targets; i++)

· lang_names[i] = read_word(WORD_LENGTH);

for (i = 0; i < num_translators; i++) {

from_lang = read_word(WORD_LENGTH);

to_lang = read_word(WORD_LENGTH);

scanf("%d ", &cost);

from_index = find_lang(lang_names, from_lang);

to_index = find_lang(lang_names, to_lang);

e = malloc(sizeof(edge));

if (e == NULL) {

fprintf(stderr, "malloc error\n");

exit(1);

}

e->to_lang = to_index;

e->cost = cost;

e->next = adj_list[from_index];

¸ adj_list[from_index] = e;

e = malloc(sizeof(edge));

if (e == NULL) {

fprintf(stderr, "malloc error\n");

exit(1);

}
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e->to_lang = from_index;

e->cost = cost;

e->next = adj_list[to_index];

¹ adj_list[to_index] = e;

}

find_distances(adj_list, num_targets + 1, min_costs);

solve(num_targets + 1, min_costs);

return 0;

}

Listing 5-16: The main function for building the graph

The lang_names array maps integers (the array indices) to language names.
We give English the number 0, as promised ¶. We then map each integer
1, 2, . . . , to language names as we read them ·.

Remember that the graph is undirected: if we add an edge from a to b,
then we had better add the edge from b to a, too. As such, for each transla-
tor, we add two edges to the graph: one from from_index to to_index ¸ and
one from to_index to from_index ¹. Those from_index and to_index indices are
produced by find_lang, which searches for a language name; see Listing 5-17.

In the calls to the helper functions at the bottom, we use num_targets + 1

rather than num_targets because num_targets gives the number of target lan-
guages; the + 1 lets us include English in the count of total languages being
processed.

int find_lang(char *langs[], char *lang) {

int i = 0;

while (strcmp(langs[i], lang) != 0)

i++;

return i;

}

Listing 5-17: Finding a language

The BFS
The code for add_position in Listing 5-18 is similar to the other add_position

functions we’ve studied earlier in this chapter.

void add_position(int from_lang, int to_lang,

positions new_positions, int *num_new_positions,

board min_moves) {

if (min_moves[to_lang] == -1) {

min_moves[to_lang] = 1 + min_moves[from_lang];

new_positions[*num_new_positions] = to_lang;
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(*num_new_positions)++;

}

}

Listing 5-18: Adding a position

Now we’re ready for the BFS itself; see Listing 5-19.

void find_distances(edge *adj_list[], int num_langs, board min_costs) {

¶ static board min_moves;

static positions cur_positions, new_positions;

int num_cur_positions, num_new_positions;

int i, from_lang, added_lang, best;

edge *e;

for (i = 0; i < num_langs; i++) {

min_moves[i] = -1;

min_costs[i] = -1;

}

min_moves[0] = 0;

cur_positions[0] = 0;

num_cur_positions = 1;

while (num_cur_positions > 0) {

num_new_positions = 0;

for (i = 0; i < num_cur_positions; i++) {

from_lang = cur_positions[i];

· e = adj_list[from_lang];

while (e) {

add_position(from_lang, e->to_lang,

new_positions, &num_new_positions, min_moves);

e = e->next;

}

}

¸ for (i = 0; i < num_new_positions; i++) {

added_lang = new_positions[i];

e = adj_list[added_lang];

best = -1;

while (e) {

¹ if (min_moves[e->to_lang] + 1 == min_moves[added_lang] &&

(best == -1 || e->cost < best))

best = e->cost;

e = e->next;

}

min_costs[added_lang] = best;

}

num_cur_positions = num_new_positions;
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for (i = 0; i < num_cur_positions; i++)

cur_positions[i] = new_positions[i];

}

}

Listing 5-19: Minimum cost of translations using BFS

For each language, we’ll use min_costs to store the minimum-cost edge
that could have been used to discover that language. Referring back to
Figure 5-7, we’d store 500 for Spanish, 1,000 for Italian, and 1,800 for
Bengali. In a different function, described soon, we’ll add up all of these
numbers to get the total cost for all of the translations.

The minimum number of moves is of interest only to this function, not
the outside world, so we declare it as a local variable ¶. All the outside world
cares about is min_costs.

Trying each possible move amounts to traversing the linked list of edges
for the current node ·. That gives us all of the new_positions. Now we know
which languages are discovered in the next round of the BFS, but we don’t
yet know the cost of adding each of those languages. The thing is, there
could be multiple edges from cur_positions that reach the same node in
new_positions. Consult Figure 5-7 again. Bengali takes two translations, so
it’s discovered in round 2 of the BFS—but the edge we need is the one from
Spanish, not the one from Italian.

We therefore have a new for loop ¸, one whose role we haven’t seen
yet in this chapter. The variable added_lang tracks each of the new positions
(that is, the positions for the next round of BFS). We find the cheapest edge
between added_lang and any node discovered in the current round of BFS.
Each such language will have a distance of one less than added_lang, which
explains the first condition in the if statement ¹.

The Total Cost
Once we’ve got the costs stored, all we do is add them up to get the total cost
of translating to all target languages. The code is given in Listing 5-20.

void solve(int num_langs, board min_costs) {

int i, total = 0;

for (i = 1; i < num_langs; i++)

¶ if (min_costs[i] == -1) {

printf("Impossible\n");

return;

} else {

total = total + min_costs[i];

}

· printf("%d\n", total);

}

Listing 5-20: The minimum total cost

194 Chapter 5



The task is impossible if any of the target languages is not reachable ¶.
Otherwise, we print the total cost that we accumulated ·.

Now you’re ready to submit to the judge. Sabasa!

Summary
We wrote gobs of code in this chapter. Of course, I hope that the code of-
fers you a starting point for solving your own graph problems. In the long
term, though, what I hope you remember is the importance of modeling as
an early step in the problem-solving process. Couching a problem in terms
of BFS collapses the domains of knights and ropes and translations into the
single domain of graphs. Searching Google for “how to climb a rope” will
get you nowhere (except perhaps up a real rope). Searching for “breadth-
first search” will instead offer as many code samples and explanations and
examples as you’re willing to read. If you read comments left by program-
mers on the judges’ websites, you’ll see that they communicate on the level
of algorithms, not on the level of problem-specific aspects. Often, they’ll just
say “BFS Problem” to get their point across. You’re learning this language
of modeling and how to go from the model to working code. There’s more
graph-modeling coming up in the next chapter, where we tackle weighted
graphs in their full generality.

Notes
Knight Chase is originally from the 1999 Canadian Computing Competi-
tion. Rope Climb is originally from the 2018 Woburn Challenge, Online
Round 1, Senior Division. Book Translation is originally from the 2016 East
Central North America Regional Programming Contest.

There’s a trick that we can use to cut down the code we have to write
when considering multiple, similar moves in a BFS. Feel free to check out
how that works in “Knight Chase: Encoding Moves” in Appendix B.

We learned all about BFS in this chapter, but if you continue with graph
algorithms you might like to study depth-first search (DFS) as well. I recom-
mend Algorithms Illuminated (Part 2): Graph Algorithms and Data Structures
by Tim Roughgarden (2018) for more on BFS, DFS, and other graph
algorithms.
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6
SHORTEST PATHS IN WEIGHTED

GRAPHS

This chapter generalizes what we learned
in Chapter 5 about finding shortest paths.

In Chapter 5, our focus was on finding the
minimum number of moves needed to solve

a problem. Now, what if we care not about the mini-
mum number of moves but about the minimum
amount of time or distance? Think about using a GPS
app to get home. Maybe there’s a route to get home
using only one street that takes 10 minutes. Maybe
there’s another way that involves using three streets
that takes only eight minutes in total. We might prefer
using the three streets, since they save us time.

In this chapter, we’ll learn Dijkstra’s algorithm for finding shortest paths
in weighted graphs. We’ll use it to determine the number of mice that can
escape a maze within a time limit and the number of shortest paths between
someone’s home and their grandma’s house. I chose that grandma example
in particular to reprise a discovery we made in Chapter 5: that, suitably mod-
ified, algorithms such as BFS and Dijkstra’s can do much more than “find



the shortest path.” We’re learning algorithms—deservedly famous ones—but
also stocking up on flexible problem-solving tools. Let’s go!

Problem 1: Mice Maze
This is UVa problem 1112.

The Problem
A maze consists of cells and passages. Each passage leads from some cell a to
some other cell b, and it takes t time units to walk the passage. For example,
it may take 5 time units to walk from Cell 2 to Cell 4. Now for the passage
going the other way: it may take 70 time units to walk from Cell 4 to Cell 2,
or there may be no passage at all from Cell 4 to Cell 2—the a → b and b → a
passages are independent. One of the cells of the maze is designated as the
exit cell.

There’s a lab mouse in each cell, including the exit cell. The mice have
been trained to walk to the exit cell in as little time as possible. Our task is to
determine the number of mice that can reach the exit cell within a specified
time limit.

Input
The first line of input gives the number of test cases and is followed by a
blank line. There’s also a blank line between each pair of test cases. Each
test case consists of the following lines:

• A line containing n, the number of cells in the maze. Cells are num-
bered 1 to n; n is at most 100.

• A line containing e, the exit cell. e is between 1 and n.

• A line containing t, the integer time limit for the mice to get to the
exit cell. t is at least zero.

• A line containing m, the number of passages in the maze.

• m lines, each describing a passage in the maze. Each such line con-
tains three integers: the first cell a (between 1 and n), the second
cell b (between 1 and n), and the time (at least zero) it takes to walk
from a to b.

Output
For each test case, output the number of mice that reach the exit cell e within
the time limit t. The output for each test case is separated from the next by a
blank line.

The time limit for solving the test cases—for our code, not the mice—is
three seconds.

198 Chapter 6



Moving On from BFS
There are key similarities between the Mice Maze problem and the three
problems in Chapter 5. We can model the Mice Maze as a graph, where the
nodes are the maze cells and the edges are the passages. The graph is di-
rected (as in the Rope Climb problem), because a passage from Cell a to
Cell b tells us nothing about the possible passage from b to a.

The workhorse for the three problems in Chapter 5 was breadth-first
search. The killer feature of BFS is that it finds shortest paths. Not coinci-
dentally, we want shortest paths for our Mice Maze, too. They’ll let us deter-
mine how long it takes each mouse to reach the exit cell.

However, all this talk of similarities is obscuring a crucial difference: the
Mice Maze graph is weighted: on each edge, we have an arbitrary integer giv-
ing the time required to traverse that edge. See Figure 6-1 for an example.

1

2

12

3

6

4

45

5

7

26

9

2

8

21

Figure 6-1: The Mice Maze graph

Let’s say that the exit cell is Cell 4. What’s the minimum amount of time
taken by the mouse in Cell 1 to get to Cell 4? There’s an edge directly from
Cell 1 to Cell 4, so if we were counting edges (as in BFS), then the answer
would be 1. However, we are not interested in the number of edges here:
instead, we want the shortest path in terms of the sum of its edge weights.
The weight of the 1 → 4 edge is 45. That is not the shortest path. The short-
est path from Cell 1 to Cell 4 is the three-edge path that goes from Cell 1 to
Cell 3 (six units of time), then from Cell 3 to Cell 2 (two units of time), and
finally from Cell 2 to Cell 4 (nine units of time). That’s 6 + 2 + 9 = 17 in all. It
is because of this focus on edge weights, not edge counts, that BFS is out of
its element here and we’ll need a different algorithm.

Hold on, though: there were some weighted graphs in Chapter 5, and
we used BFS on those. What gives? Look back at Figure 5-6, a Rope Climb
graph where some of the edges had weight 1 and others had weight 0. We
managed to use a variant of BFS there, but only because the edge weights
were so constrained. Now look back at Figure 5-7, a Book Translation graph.
That’s a full-blown weighted graph with arbitrary edge weights. We managed
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to use BFS there, too, but that’s because the primary distance measure was
the number of edges. Once a node’s edge distance was determined by BFS,
only then did the edge weights come into play, helping us add the node as
cheaply as possible.

However, in no way does the Mice Maze have anything to do with the
number of edges. A path from a to bmight have 100 edges and a total time
of 5 units. A different path from a to bmight have only 1 edge with a time
of 80 units. BFS would discover that second path, when what we want is the
first.

Finding Shortest Paths in Weighted Graphs
BFS operates by progressively identifying nodes that are further and further
away, in terms of edge count, from the starting node. The algorithm that
I’ll present in this section operates similarly: it identifies the shortest path
for nodes further and further away, in terms of total edge weight, from the
starting node.

BFS organizes its work in rounds, where the nodes discovered in the
next round are one edge more distant than the nodes in the current round.
We aren’t going to be able to use that rounds idea to find shortest paths in
weighted graphs, because the shortest paths that we discover most recently
are not necessarily those that will help us find the shortest path for a new
node. We’ll have to work a little harder to find the next shortest path.

To demonstrate, let’s find the shortest paths from Node 1 to each node
in the graph using Figure 6-1. That will tell us how long it takes the mouse in
cell 1 to get to the exit cell.

For each node, we’ll maintain two pieces of information:

done This is a true/false variable. If it’s false, it means that we haven’t
found the shortest path for this node yet; if it’s true, then we have. Once
a node’s done value is true, we’re done with it: its shortest path will never
change again.

min_time This is the shortest path distance from the starting node to
this node, in terms of total time, using a path whose other nodes are all
done. As more and more nodes become done, min_time can decrease,
because we have more options for paths to this node.

The shortest path from Node 1 to Node 1 is 0: there’s nowhere to go
and no edge to take. Let’s start there, with a min_time for Node 1 of 0 and
no min_time information for the other nodes:

node done min_time

1 false 0
2 false
3 false
4 false
5 false
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We next set Node 1 to done, and then we set the min_time for each other
node based on the edge weights from Node 1. Here’s our next snapshot:

node done min_time

1 true 0
2 false 12
3 false 6
4 false 45
5 false 7

Now, here’s a claim that’s at the heart of what we’re doing here: the
shortest path from Node 1 to Node 3 is 6, and there’s no way we can ever
do better than 6. I chose Node 3 in my claim because it has the smallest
min_time value of any node that is not done.

Claiming that the answer is 6 right now might seem brazen. What if
there were some other path to Node 3 that was shorter, maybe another
path that goes through some other nodes before eventually making its way
to Node 3?

Here’s why that can’t happen, and why our claim of 6 is safe. Imagine
that there were some shorter path p from Node 1 to Node 3. That path must
start at Node 1 and leave Node 1 on some edge e. Then it must take zero or
more other edges and arrive at Node 3. Check it out: e already takes at least
6 time units, because 6 is the minimum time it takes to go from Node 1 to
some other node. Any other edges that are on p only add to this, so there’s
no way that p could have a total time of less than 6 units!

So, Node 3 is done: we know its shortest path. Now we will have to use
Node 3 to check whether we can improve any of the shortest paths for nodes
that are not yet done. Remember that the min_time values give the shortest
path using done nodes. It takes 6 time units to get to Node 3, and there’s an
edge from Node 3 to Node 2 that takes 2 time units, so we now have a way
to get from Node 1 to Node 2 in only 8 time units. We therefore update the
min_time value for Node 2 from 12 to 8. Here’s where that leaves us:

node done min_time

1 true 0
2 false 8
3 true 6
4 false 45
5 false 7

Nodes 2, 4, and 5 are not yet done. Which one can we doneify now? The
answer is Node 5: it’s got the minimum min_time. Can we use Node 5 to up-
date any of our other shortest paths? Node 5 does have an outgoing edge to
Node 2, but getting from Node 1 to Node 5 (7 time units) and then taking
the edge from Node 5 to Node 2 (21 time units) takes more time (7+21 = 28)
than our old path fromNode 1 to Node 2 (8 time units). So we leave Node 2’s
min_time alone. The only change in the next snapshot, then, is to set Node 5
to done.
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node done min_time

1 true 0
2 false 8
3 true 6
4 false 45
5 true 7

There are two nodes to go. Node 2 has a min_time of 8, and Node 4 has a
min_time of 45. As always, we choose the smaller, finalizing the shortest path
distance from Node 1 to Node 2 as 8. Again, there can be no shorter path to
Node 2 than 8. Any shorter path p from Node 1 to Node 2 must begin with
some done nodes and will at some point cross for the first time on an edge
from a done node to one that is not done. Call that edge x → y, where x is
done and y is not. So that’s how p gets from Node 1 to Node y. It can then
do whatever it wants to get from Node y to Node 2 . . . but it’s all frivolous.
Getting from Node 1 to Node y already takes at least 8 time units: if it were
less, then y’s min_time value would be less than 8 and we’d have chosen to set
y to done rather than Node 2.Whatever p does to get fromNode y to Node 2
can only add even more time. So p can’t be shorter than 8.

Adding Node 2 gives us two edges to check for shorter paths. There’s
an edge from Node 2 to Node 1, but that won’t help us because Node 1 is
already done. There’s an edge of 9 time units from Node 2 to Node 4. That
one does help us! Getting from Node 1 to Node 2 takes 8 time units, and
then the 2 → 4 edge takes 9 time units, for a total of 17 time units. That’s
better than our old path from Node 1 to Node 4 that took 45 time units.
Here’s the next snapshot:

node done min_time

1 true 0
2 true 8
3 true 6
4 false 17
5 true 7

There’s only one node, Node 4, that’s not done. As all other nodes are
done, we’ve found all of their shortest paths. Node 4, therefore, can’t help
us find any new, shorter paths. We can set Node 4 to done and conclude:

node done min_time

1 true 0
2 true 8
3 true 6
4 true 17
5 true 7

It takes 17 time units for the mouse in Cell 1 to get to the exit cell 4.
We could repeat the process for each other node to find out how long each
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other mouse takes to get to the exit cell, then count the mice that get there
in time.

This algorithm is known as Dijkstra’s algorithm, after EdsgerW. Dijkstra,
a pioneering and influential computer scientist. Given a starting node s and
a weighted graph, it calculates the shortest path from s to each node in the
graph. It’s exactly what we need to solve the Mice Maze problem. Let’s read
the input to build the graph and then see how Dijkstra’s algorithm can be
implemented.

Building the Graph
With all of your experience building trees and graphs to this point, there
won’t be many surprises here. We’ll build the graph like we built it for the
Book Translation problem in the previous chapter (see “Building the Graph”
on page 189). The only difference is that the graphs there were undirected
and our graphs here are directed. In more good news, we’re given the node
numbers directly and don’t have to map between language names and
integers.

Just so we have something on which to test, here’s an input correspond-
ing to Figure 6-1:

1

5

4

¶ 12

9

1 2 12

1 3 6

2 1 26

1 4 45

1 5 7

3 2 2

2 4 9

4 3 8

5 2 21

That 12 ¶ gives the time limit for the mice to get to the exit. (You can
verify that three mice can get to the exit within this time limit; those mice
are the ones in Cells 2, 3, and 4.)

As in Book Translation, we’ll use an adjacency list representation of the
graph. Each edge maintains the cell to which it points, the length of time
required to walk the edge, and a next pointer.

Here’s the needed constant and typedef:

#define MAX_CELLS 100

typedef struct edge {
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int to_cell, length;

struct edge *next;

} edge;

The graphs are read by the main function in Listing 6-1.

int main(void) {

static edge *adj_list[MAX_CELLS + 1];

int num_cases, case_num, i;

int num_cells, exit_cell, time_limit, num_edges;

int from_cell, to_cell, length;

int total, min_time;

edge *e;

scanf("%d", &num_cases);

for (case_num = 1; case_num <= num_cases; case_num++) {

scanf("%d%d%d", &num_cells, &exit_cell, &time_limit);

scanf("%d", &num_edges);

¶ for (i = 1; i <= num_cells; i++)

adj_list[i] = NULL;

for (i = 0; i < num_edges; i++) {

scanf("%d%d%d", &from_cell, &to_cell, &length);

e = malloc(sizeof(edge));

if (e == NULL) {

fprintf(stderr, "malloc error\n");

exit(1);

}

e->to_cell = to_cell;

e->length = length;

e->next = adj_list[from_cell];

· adj_list[from_cell] = e;

}

total = 0;

for (i = 1; i <= num_cells; i++) {

¸ min_time = find_time(adj_list, num_cells, i, exit_cell);

¹ if (min_time >= 0 && min_time <= time_limit)

total++;

}

printf("%d\n", total);

if (case_num < num_cases)

printf("\n");

}

return 0;

}

Listing 6-1: The main function for building the graph
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The input specification says that a blank line follows the number of test
cases and that a blank line sits between each pair of test cases. However, us-
ing scanf, we don’t have to worry about that: when reading a number, scanf
skips leading whitespace (including newlines) that it encounters.

The first thing we do for each test case is to clear the adjacency list by
setting each cell’s edge list to NULL ¶. Not doing that results in a horrible bug
where each test case includes edges from prior test cases. (I would know: I
made that mistake, and three hours later it was three hours later.) It’s our
responsibility to clear things for each test case!

Upon initializing each edge, we add it to the linked list for from_cell ·.
We don’t add anything to the linked list for to_cell, because the graph is di-
rected (not undirected).

The problem requires that we find the shortest path from each cell to
the exit cell. For each cell, then, we call find_time ¸, a helper function that
implements Dijkstra’s algorithm. We’ll write that function next. Given a
starting cell i and target cell exit_cell, it returns -1 if there’s no path at all
or else returns the shortest path time. Each cell that takes time_limit units
of time or less to get to the exit cell results in total being incremented by
one ¹. Once each cell’s shortest path has been considered, total is output.

Implementing Dijkstra’s Algorithm
Now it’s time to implement Dijkstra’s algorithm, following the outline pro-
vided in “Finding Shortest Paths in Weighted Graphs” on page 200. Here’s
the signature for the function that we’ll implement:

int find_time(edge *adj_list[], int num_cells,

int from_cell, int exit_cell)

The four parameters correspond to the adjacency list, number of cells, start-
ing cell, and exit cell, respectively. Dijkstra’s algorithm will calculate the
shortest path time from the starting cell to all other cells, including the exit
cell. Once we’re done, we can return the shortest path time to the exit cell.
That may seem extravagant, calculating the shortest path to all cells only to
throw everything away except the shortest path to the exit cell. There are
various optimizations that we can perform, and we’ll turn to those in the
next subsection. For now, let’s settle in with a working, unadorned imple-
mentation.

The body of Dijkstra’s algorithm is implemented by two nested for loops.
The outer for loop runs once per cell; each iteration sets one cell to done
and updates shortest paths using that new cell. The inner for loop is a mini-
mum computation: it finds the cell whose min_time value, among all cells that
are not done, is minimum. See Listing 6-2 for the code.

int find_time(edge *adj_list[], int num_cells,

int from_cell, int exit_cell) {

static int done[MAX_CELLS + 1];

static int min_times[MAX_CELLS + 1];
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int i, j, found;

int min_time, min_time_index, old_time;

edge *e;

¶ for (i = 1; i <= num_cells; i++) {

done[i] = 0;

min_times[i] = -1;

}

· min_times[from_cell] = 0;

for (i = 0; i < num_cells; i++) {

min_time = -1;

¸ found = 0;

¹ for (j = 1; j <= num_cells; j++) {

º if (!done[j] && min_times[j] >= 0) {

» if (min_time == -1 || min_times[j] < min_time) {

min_time = min_times[j];

min_time_index = j;

found = 1;

}

}

}

¼ if (!found)

break;

done[min_time_index] = 1;

e = adj_list[min_time_index];

while (e) {

old_time = min_times[e->to_cell];

½ if (old_time == -1 || old_time > min_time + e->length)

min_times[e->to_cell] = min_time + e->length;

e = e->next;

}

}

¾ return min_times[exit_cell];

}

Listing 6-2: The shortest path to the exit cell using Dijkstra’s algorithm

The purpose of the done array is to indicate whether each cell is done: a 0

means “not done” and a 1 means “done.” The purpose of the min_times array
is to store the shortest path distance from the starting cell to each cell.

We use a for loop ¶ to initialize these two arrays: it sets all done values
to 0 (false) and min_times values to -1 (not found). We then set min_times for
from_cell to 0 · to indicate that the shortest path distance from the starting
cell to itself is zero.

The found variable tracks whether a new cell can be discovered by
Dijkstra’s algorithm. On each iteration of the outer for loop, it starts off as
0 (false) ¸ and gets set to 1 (true) if a cell can be found—but how could a cell
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not be found? For example, earlier in this chapter, we found all of the cells.
However, there may be graphs where there is no path between a starting cell
and some other cell. On those graphs, there will be cells that Dijkstra’s algo-
rithm does not find; when no new cell can be found, it’s time to stop.

Now we arrive at the inner for loop ¹, whose task is to identify the cell
whose shortest path will be found next. This loop will leave min_time_index

with the index of the cell whose shortest path has been found and min_time

with the shortest path time itself. The eligible cells are those that are both
not done and have a min_times value that’s at least 0 (that is, not -1) º. We
need the cell to be not done, because done cells already have their shortest
paths finalized. We also need the min_times value to be at least 0: if it’s -1,
then the cell hasn’t been found yet, so we have no idea what its shortest path
is. If we had no eligible cell yet or the current cell has a shorter path than
our shortest thus far », we update min_time and min_time_index and set found
to 1 to flag that we successfully found a cell.

If no cell was found, then we stop ¼. Otherwise, we set the identified
cell to done and loop through its outgoing edges to find shorter paths.
For each edge e, we check whether the cell provides a shorter path to e->to

_cell ½. That possible shorter path is min_time (the time taken to get from
from_cell to min_time_index) plus the time taken to walk edge e (from
min_time_index to e->to_cell).

When looking at edge e, shouldn’t we first be verifying that e->to_cell is
not done before checking whether we’ve found a shorter path ½? Although
we could add that check, it would have no effect. Done cells already have
their finalized shortest paths; there’s no way that some shorter path can be
found.

Having computed shortest paths to all cells, we’ve certainly computed
the shortest path to the exit cell. The final thing to do is return that time ¾.

That’s a wrap! Go ahead and submit to the judge. The code should pass
all of the test cases.

Two Optimizations
There are a few things that can be done to speed up Dijkstra’s algorithm.
The most widely applicable and dramatic speedup is wrought by a data struc-
ture called a heap. In our current implementation, it’s very expensive to find
the next node to set to done, as we need to scan through all nodes that are
not done to find the one with the shortest path. A heap uses a tree to con-
vert this slow, linear search into a fast search. As heaps are useful in many
contexts beyond Dijkstra’s algorithm, I’ll discuss them later, in Chapter 8.
Here, I’ll offer a couple of optimizations more specific to the Mice Maze
problem.

Recall that as soon as a cell is done, we never change its shortest path
again. As such, once we set the exit cell to done, we have its shortest path.
After that, there’s no reason to find shortest paths for other cells. We may as
well terminate Dijkstra’s algorithm early.

We can still do better, though. For a maze of n cells, we invoke Dijkstra’s
algorithm n times, once for each cell. For Cell 1, we compute all shortest
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paths—and then keep only the shortest path to the exit cell. We do the same
for Cell 2, Cell 3, and so on, throwing out all of the shortest paths we found
except for those that involve the exit cell.

Instead, consider running Dijkstra’s algorithm just once, with the exit
cell as the starting cell. Dijkstra’s algorithm would then find the shortest
path from the exit cell to Cell 1, the exit cell to Cell 2, and so on. However,
that’s not quite what we want, because the graph is directed: the shortest
path from the exit cell to Cell 1 is not necessarily the shortest path fromCell 1
to the exit cell.

Here again is Figure 6-1:

1

2

12

3

6

4

45

5

7

26

9

2

8

21

As we discovered earlier, the shortest path from Cell 1 to Cell 4 is 17,
but the shortest path from Cell 4 to Cell 1 is 36.

The shortest path from Cell 1 to Cell 4 uses the edges 1 → 3, 3 → 2,
and 2 → 4. If we intend on starting Dijkstra’s algorithm from Cell 4, then we
need it to find edges 4 → 2, 2 → 3, and 3 → 1. Each of these edges is the
reverse of an edge in the original graph. Figure 6-2 shows the reversed graph.
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1

2

12

3

6

4

45

5

7

26

9

2

8

21

Figure 6-2: A reversed version of the
graph in Figure 6-1

Now we can run Dijkstra’s algorithm—just one invocation of it!—from
Cell 4 to recover shortest paths to all nodes.

In terms of implementation, we would need to produce the reversed
graph instead of the original graph. This can be done in the main function
(Listing 6-1), when reading the graph. Instead of:

e->to_cell = to_cell;

e->length = length;

e->next = adj_list[from_cell];

adj_list[from_cell] = e;

we want this:

e->to_cell = from_cell;

e->length = length;

e->next = adj_list[to_cell];

adj_list[to_cell] = e;

That is, the edge now points to from_cell, and it gets added to the linked
list for to_cell. If you make this change and adapt the code so that it invokes
Dijkstra’s algorithm just once (from the exit cell), you’ll end up with a much
faster program. Give it a try!
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Dijkstra’s Algorithm
Dijkstra’s algorithm takes over where BFS leaves off. BFS finds shortest
paths in terms of numbers of edges in an unweighted graph; Dijkstra’s al-
gorithm finds shortest paths in terms of edge weights in a weighted graph.

Like BFS, Dijkstra’s algorithm takes a starting node, and it finds short-
est paths from there to each node in the graph. Like BFS, it then solves the
single-source shortest-paths problem, except on weighted graphs rather than
unweighted graphs.

To be fair, Dijkstra’s algorithm can find shortest paths in unweighted
graphs, too. Just take the unweighted graph and give each edge a weight of
one. Now, when Dijkstra’s algorithm finds the shortest paths, it will have
minimized the number of edges in the path, precisely what BFS does.

Why not hammer every shortest-path problem, unweighted or weighted,
with Dijkstra’s algorithm, then? Indeed, there are problems where it’s diffi-
cult to decide between BFS and Dijkstra’s algorithm. For example, I suspect
that many people would have chosen Dijkstra’s algorithm over (modified)
BFS to solve the Rope Climb problem in Chapter 5. When the task is clearly
to minimize the number of moves, BFS should still get the call: it’s generally
easier to implement than Dijkstra’s algorithm and runs a little faster, too. By
no means, however, is Dijkstra’s algorithm slow.

Runtime of Dijkstra’s Algorithm
Let’s characterize the runtime of Dijkstra’s algorithm as seen in Listing 6-2.
We’ll use n to refer to the number of nodes in the graph.

The initialization loop ¶ iterates n times, doing a constant number of
steps per iteration, so it does total work proportional to n. The next bit of
initialization · is a single step. Whether we say that the initialization takes
n steps or n + 1 steps changes nothing, so we’ll ignore this 1 and say that it
takes n steps.

The real work done by Dijkstra’s algorithm starts now. Its outer for loop
iterates up to n times. For each such iteration, the inner for loop does n iter-
ations to find the next node. The inner for loop, then, iterates a total of n2

times. Each such iteration does a constant amount of work, so the inner for

loop does total work proportional to n2.
The other work that Dijkstra’s algorithm does is to iterate through the

edges of each node. There are a total of n nodes, so certainly each node
has no more than n edges leaving it. We therefore take n steps to iterate
through the edges of one node, and we have to do this for each of the n
nodes. That’s another n2 steps.

Summarizing, we’ve got n work in the initialization, n2 work in the inner
for loop, and n2 work checking the edges. The biggest exponent there is 2,
so this is an O(n2), or quadratic, algorithm.

In Chapter 1, we sneezed at a quadratic-time algorithm for Unique Snow-
flakes, tossing it away in favor of a linear-time algorithm. In that sense, the
implementation of Dijkstra’s algorithm that we have developed is not too
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impressive. In another sense, though, it is, because in n2 time it’s solving not
one but n problems, one for each shortest path from the starting node.

I’ve chosen to present Dijkstra’s algorithm in this book, but there are
many other shortest-paths algorithms. Some find the shortest path between
all pairs of nodes in the graph in one fell swoop. Doing so solves the all-
pairs shortest-paths problem. One such algorithm is called the Floyd–Warshall
algorithm, and it runs in O(n3) time. Interestingly, we can find all-pairs short-
est paths with Dijkstra’s algorithm, too, and just as quickly. We can run
Dijkstra’s algorithm n times, once from each starting node. That’s n invo-
cations of an n2 algorithm, for a total of O(n3) work.

Weighted or unweighted, single-source or all-pairs, Dijkstra’s algorithm
can do it. Is it simply unstoppable? Negative!

Negative-Weight Edges
We’ve made an implicit assumption to this point in the chapter: edge weights
are nonnegative. In the Mice Maze, for example, edge weights represent
times to walk edges; walking an edge surely can’t cause time to go backward,
so no edge weight was negative. Similarly, in many other graphs, edges with
negative weights don’t arise simply because they don’t make sense. For ex-
ample, consider a graph where the nodes are cities and edges are flight costs
between cities. No airline is going to pay us for taking their flights, so each
edge will be a nonnegative dollar cost.

Now consider a game in which some moves give us points, and other
moves take points away. Those latter moves correspond to negative-weight
edges. Thus negative-weight edges do appear from time to time. How does
Dijkstra’s algorithm respond? Let’s find out using the sample graph in
Figure 6-3.

A

B

3 C

5

D

1

−500

Figure 6-3: A graph with
a negative-weight edge
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Let’s try to find shortest paths from Node A. As always, Dijkstra’s algo-
rithm begins by assigning a shortest path of 0 to Node A and setting Node A
to done. The distance to B from A is 3, the distance to C from A is 5, but the
distance to D from A is not defined (and has been left blank):

node done min_distance

A true 0
B false 3
C false 5
D false

Dijkstra’s algorithm then decides to finalize the shortest path to Node B
at 3, and it sets B to done. It also updates the shortest path to D:

node done min_distance

A true 0
B true 3
C false 5
D false 4

By virtue of B being done, we’re claiming that 3 is the shortest path
from A to B, but that spells trouble, because 3 is not the shortest path that
we can find from A to B. The shortest path is A → C → B, with a total weight
of –495. For kicks, let’s continue under these fishy circumstances and see
what Dijkstra’s algorithm would do anyway. The next node that’s done is D:

node done min_distance

A true 0
B true 3
C false 5
D true 4

That shortest path to D is wrong, too! It should be –494. As all nodes
are done except for C, there’s nothing that C can do:

node done min_distance

A true 0
B true 3
C true 5
D true 4

Even if we let Dijkstra’s algorithm change the shortest path to B here,
from 3 to –495, then the shortest path to D will still be wrong. We’d have
to somehow process B again, even though B is done. We’d need some way
of saying, “Hey, I know that I said B was done, but I’m changing my mind.”
In any event, the classical Dijkstra’s algorithm as I’ve presented it gets this
example wrong.
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In general, Dijkstra’s algorithm does not work when graph edges can be
negative. For that, you may wish to explore the Bellman–Ford algorithm or the
aforementioned Floyd–Warshall algorithm.

Let’s proceed here with another problem where we don’t have to worry
about negative-weight edges. We’ll use Dijkstra’s algorithm again, or, rather,
we’ll adapt Dijkstra’s algorithm to solve a new kind of problem about short-
est paths.

Problem 2: Grandma Planner
Sometimes, we’ll be asked for not only the shortest path distance but also
further information about the shortest paths. This problem is just such an
example.

This is DMOJ problem saco08p3.

The Problem
Bruce is planning a trip to his grandma’s house. There are n towns, num-
bered 1 to n. Bruce starts in Town 1, and his grandma lives in Town n. Be-
tween each pair of towns is a road, and we’re given the length (distance) of
each road.

Bruce wishes to arrive at his grandma’s with a box of cookies, so he
must buy it along the way. Some of the towns have cookie stores; Bruce is re-
quired to hit at least one of these cookie towns on his way to his grandma’s.

Our task is twofold. First, we must determine the minimum distance
needed for Bruce to get from his starting point to his grandma’s house,
picking up a box of cookies along the way. That minimum distance does
not tell us how many options Bruce has for getting to his grandma’s. Maybe
there’s only one way that he can do it, with all other routes requiring greater
distance, or maybe there are several routes all with the same minimum dis-
tance. So, second, we’re asked to determine the number of these minimum-
distance routes.

Input
The input contains one test case, consisting of the following lines:

• A line containing n, the number of towns. Towns are numbered 1 to
n. There are between 2 and 700 towns.

• n lines, each containing n integers. The first of these lines gives the
road distance from Town 1 to each town (Town 1, then Town 2, and
so on); the second of these lines gives the road distance from Town
2 to each town; and so on. The distance from a town to itself is zero;
each other distance is at least one. The distance from Town a to
Town b is the same as the distance from Town b to Town a.

• A line containing m, the number of towns that have a cookie store.
m is at least one.
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• A line containing m integers, each giving the number of a town with
a cookie store.

Output
Output the following on a single line:

• The minimum distance to get from Town 1 to Town n (picking up a
box of cookies along the way)

• A space

• The number of minimum-distance routes, mod 1,000,000

The time limit for solving the test case is one second.

Adjacency Matrix
The way that the graph is represented here differs from that of the Mice
Maze and that of the Book Translation problem in Chapter 5. In those two
problems, each edge was supplied as one node, the other node, and the
edge weight. For example, consider the following:

1 2 12

This means that there’s an edge from Node 1 to Node 2 with weight 12.
In the Grandma Planner problem, the graph is presented as an adjacency

matrix, which is a two-dimensional array of numbers where a given row, col-
umn coordinate gives us the weight of the edge at that row and column.

Here’s a sample test case:

4

0 3 8 2

3 0 2 1

8 2 0 5

2 1 5 0

1

2

The 4 at the top tells us that there are four towns. The next four lines are
the adjacency matrix. Let’s focus on the first of those lines:

0 3 8 2

This single line gives all of the edges leaving Town 1. There’s an edge
from Town 1 to Town 1 of weight 0, from Town 1 to Town 2 of weight 3,
fromTown 1 to Town 3 of weight 8, and fromTown 1 to Town 4 of weight 2.

The next line,

3 0 2 1

does similarly for Town 2, and so on.
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Notice that there’s an edge between any pair of towns; that is, there are
no missing edges. Such a graph is called a complete graph.

This adjacency matrix has some redundancy. For example, it says in
row 1, column 3 that there’s an edge from Town 1 to Town 3 of weight 8.
However, since the problem specifies that the road from Town a to Town b
is the same distance as that of the road from Town b to Town a, we see this 8
again in row 3, column 1. (We’re therefore dealing with undirected graphs.)
We also have 0’s along the diagonal, which explicitly state that the distance
from some town to itself is zero. We’ll just ignore those.

Building the Graph
This problem is ultimately going to demand our creativity not once, but
twice. First, we’ll need to force our paths through a town with a cookie store.
Among those paths, we want the shortest one. Second, we’ll need to keep
track not only of the shortest path but also of the number of ways we can
realize that shortest path. Double the fun, I say!

Let’s begin by reading the test case from the input and building the
graph. We’re well positioned to do that at this point. With our graph in
hand, we’ll then be ready for what lies ahead.

The plan is to read the adjacency matrix, building our adjacency lists
as we go. We’ll have to keep track of the town indices ourselves, since the
adjacency matrix doesn’t explicitly provide them.

It’s possible to read in and use the adjacency matrix directly, avoiding
the adjacency list representation altogether. Each row i gives the distance
to each town, so we could just loop through row i in Dijkstra’s algorithm
instead of looping through i’s adjacency list. Since the graph is complete,
we wouldn’t even have to waste time skipping over edges that don’t exist.
We’ll use adjacency lists here, however, for continuity with what we’ve
already done.

Here’s a constant and edge struct that we’ll use:

#define MAX_TOWNS 700

typedef struct edge {

int to_town, length;

struct edge *next;

} edge;

The code for reading the graph is given in Listing 6-3.

int main(void) {

static edge *adj_list[MAX_TOWNS + 1] = {NULL};

int i, num_towns, from_town, to_town, length;

int num_stores, store_num;

static int store[MAX_TOWNS + 1] = {0};

edge *e;
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scanf("%d", &num_towns);

¶ for (from_town = 1; from_town <= num_towns; from_town++)

for (to_town = 1; to_town <= num_towns; to_town++) {

scanf("%d", &length);

· if (from_town != to_town) {

e = malloc(sizeof(edge));

if (e == NULL) {

fprintf(stderr, "malloc error\n");

exit(1);

}

e->to_town = to_town;

e->length = length;

e->next = adj_list[from_town];

adj_list[from_town] = e;

}

}

¸ scanf("%d", &num_stores);

for (i = 1; i <= num_stores; i++) {

scanf("%d", &store_num);

store[store_num] = 1;

}

solve(adj_list, num_towns, store);

return 0;

}

Listing 6-3: The main function for building the graph

After reading the number of towns, we use a double for loop to read
the adjacency matrix. Each iteration of the outer for loop ¶ is responsible
for reading one row, specifically, the row for from_town. To read that row,
we have an inner for loop, which reads one length value for each to_town. So
now we know where the edge starts, where the edge ends, and the length
of the edge. We then want to add the edge, but only if it’s not one of those
0-weight edges that go from a town back to itself. If the edge is between dis-
tinct towns ·, then we add it to the adjacency list for from_town. Because the
graph is undirected, we must also ensure that eventually this edge is added
to the adjacency list for to_town. We had to do that explicitly in Listing 5-16
when solving the Book Translation problem. We don’t have to do that here,
though, because it’ll get added later without us doing anything special when
we process the row for to_town. For example, if from_town is 1 and to_town is
2, then the 1 → 2 edge will be added now. Later, when from_town is 2 and
to_town is 1, then the 2 → 1 edge will be added.

All that’s left is to read the information about which towns have cookie
stores, starting with the number of such towns ¸. To keep track of these
towns, we use array store, where store[i] is 1 (true) if Town i has a cookie
store and 0 (false) if it does not.
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Working Through a Weird Test Case
Let’s get a feel for the problem by working through the test case from
“Adjacency Matrix” on page 214. The corresponding graph is provided
in Figure 6-4, where c represents a cookie town.

2

c

3

2

4

1

1

3

8

2

5

Figure 6-4: The grandma graph

Bruce starts in Town 1 and has to get to Town 4. Town 2 is the only town
with a cookie store. What’s the shortest-distance path? While it’s true that
Bruce can zip from Town 1 directly to Town 4 along the edge of distance
2, that isn’t a feasible solution to the problem. Remember that we need to
ensure that a town with a cookie store is included in any proposed shortest
path. For this particular graph, this means that we must include Town 2. (In
other test cases, there could be multiple towns that have cookie stores; what
we’d need to do is include one or more of them.)

Here’s a path from Town 1 to Town 4 that is feasible: 1 → 2 (distance 3)
→ 4 (distance 1). That’s a total distance of 4, and it is indeed a shortest path
from Town 1 to Town 4 that passes through Town 2.

That’s not the only optimal path, though. There’s one more, and here it
is: 1 → 4 (distance 2) → 2 (distance 1) → 4 (distance 1). What’s a little weird
about this path is that we visit Town 4, grandma’s house, twice. We start by
going from Town 1 to Town 4, but we cannot end the path there because
we don’t have the box of cookies yet. Then we go from Town 4 to Town 2,
where we pick up the box of cookies. Finally, we go from Town 2 to Town 4,
which is our second visit to Town 4, but this time we arrive with the box of
cookies, and so we have a feasible path.

It does seem that this path is cyclic, since we get to Town 4 once and
then get to Town 4 again. Viewed in a different light, however, there is no
cycle at all. When we visited Town 4 the first time, we had no box of cook-
ies; when we visited Town 4 again, we had a box of cookies. These two visits
are therefore not repeats: it’s true that Town 4 was visited twice, but it is also
true that the state (not carrying a box of cookies versus carrying a box of
cookies) differs each time.

Shortest Paths in Weighted Graphs 217



Now we see that the same town can’t possibly be visited more than twice.
If a town is visited three times, for example, then two of those visits must be
in the same state. Perhaps Visit 1 and Visit 2 were both in the “not carrying
a box of cookies” state. Then that really is a cycle, and it costs us some dis-
tance to traverse the cycle, so removing it gives a shorter path.

It’s not sufficient, then, to know which town we’re in. We also need to
know whether or not a box of cookies has been picked up.

We’ve wrestled with this kind of problem once before, when solving
Rope Climb in Chapter 5. There, we discussed adding a second rope to pro-
duce a more suitable model of the problem. We’re going to reprise that idea
here, by adding a state that tells us whether or not a box of cookies is be-
ing carried. In State 0, no box of cookies is being carried; in State 1, a box
of cookies is being carried. A feasible path, then, is any path that arrives at
grandma’s house in State 1. Arriving at grandma’s house in State 0 cannot
be the end of a feasible path.

Take a look at Figure 6-5, which introduces a cookie state to Figure 6-4.
Again, c represents a cookie town. The edges with no arrows are undirected,
but now we have some directed edges, too.

(4,0)

(2,0)

c

1

(3,0)

5

2

(2,1)

0

(1,0)

2

8

3

(4,1)

(3,1)

5

1

2

(1,1)

2

8

3

Figure 6-5: A grandma graph
with a cookie state
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Here’s what we do to create this graph:

• Add four new town nodes, one for each original town in the graph.
The original nodes are in State 0; the new nodes are in Sate 1.

• Keep all of the original edges, except for those leaving Town 2 (the
town with the cookie store). If we reach Town 2 in State 0, then
we’ve transitioned to State 1, so the only edge leaving (2,0) is the
directed edge to (2,1). It’s a 0-weight edge, because changing state
takes no time. While Dijkstra’s algorithm can’t be trusted on graphs
with negative-weight edges (see “Negative-Weight Edges” on
page 211), 0-weight edges are okay.

• Connect nodes in State 1 using exactly the same edges that origi-
nally connected nodes in State 0.

When we’re in State 0 and reach a town with a cookie store, we buy a
box of cookies and end up in State 1. Once we’re in State 1, the graph gives
us no way to return to State 0, because there’s no way to lose the box of
cookies.

We start in Town 1, State 0. We must arrive in Town 4, State 1. This re-
quires that we eventually move from State 0 to State 1 and then go to Town 4
using the State-1 edges. When there are multiple towns with cookie stores,
the problem becomes increasingly tricky, because then we have to choose
exactly which cookie town takes us from State 0 to State 1. Well, it might be
tricky for us, but not for Dijkstra’s algorithm, because we’re just asking for a
shortest path in a graph.

Task 1: Shortest Paths
So far, we’ve talked about how to model the problem as a graph and find
the shortest path distance, but not how to find the number of shortest paths.
I’ll take these two subtasks in turn. At the end of this subsection, we’ll have
solved half of the problem, correctly printing the shortest path distance. We
won’t be printing anything for the number of paths, though, so we’ll still fail
all of the test cases. Don’t worry: in the next subsection, we’ll work out how
to coax the number of paths out of our code, too. It’s Dijkstra time!

With our new model (using the States 0 and 1), the graph that we read
from the input no longer corresponds to the graph that we’ll explore with
Dijkstra’s algorithm. One idea is to produce the adjacency list representa-
tion of the new graph from the adjacency list for the original graph. That is,
start with an empty graph that has twice the number of nodes and add all
of the required edges. That can be done, but I think it’s easier to leave the
graph alone, logically adding the state to the code for Dijkstra’s algorithm.
(When solving the Rope Climb problem in Chapter 5, we didn’t have much
of a choice of what to do, because the input did not contain a graph.)

We’ll write the function with the following signature:

void solve(edge *adj_list[], int num_towns, int store[])
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Here, adj_list is the adjacency list, num_towns is the number of towns (and
the number of grandma’s town), and store tells us for any given i whether
town i has a cookie store.

Now we’ll proceed just as we did with the Mice Maze (Listing 6-2). At
each step, however, we ask what effect the state has on our code and we
make appropriate modifications. Let’s walk through the code, which is given
in Listing 6-4. Compare this code to Listing 6-2 to highlight the similarities.

void solve(edge *adj_list[], int num_towns, int store[]) {

static int done[MAX_TOWNS + 1][2];

static int min_distances[MAX_TOWNS + 1][2];

int i, j, state, found;

int min_distance, min_town_index, min_state_index, old_distance;

edge *e;

¶ for (state = 0; state <= 1; state++)

for (i = 1; i <= num_towns; i++) {

done[i][state] = 0;

min_distances[i][state] = -1;

}

· min_distances[1][0] = 0;

¸ for (i = 0; i < num_towns * 2; i++) {

min_distance = -1;

found = 0;

for (state = 0; state <= 1; state++)

for (j = 1; j <= num_towns; j++) {

if (!done[j][state] && min_distances[j][state] >= 0) {

if (min_distance == -1 || min_distances[j][state] < min_distance) {

min_distance = min_distances[j][state];

min_town_index = j;

min_state_index = state;

found = 1;

}

}

}

if (!found)

break;

¹ done[min_town_index][min_state_index] = 1;

º if (min_state_index == 0 && store[min_town_index]) {

old_distance = min_distances[min_town_index][1];

if (old_distance == -1 || old_distance > min_distance)

min_distances[min_town_index][1] = min_distance;

} else {

» e = adj_list[min_town_index];

while (e) {

old_distance = min_distances[e->to_town][min_state_index];
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if (old_distance == -1 || old_distance > min_distance + e->length)

min_distances[e->to_town][min_state_index] = min_distance +

e->length;

e = e->next;

}

}

}

¼ printf("%d\n", min_distances[num_towns][1]);

}

Listing 6-4: The shortest path to grandma’s using Dijkstra’s algorithm

Right from the start, we see the influence of the state on our arrays, as
done and min_distances are now two-dimensional arrays. The first dimension
is indexed by the town number, and the second is indexed by the state. In
our initialization ¶, we’re careful to initialize the elements of both states.

Our starting point is Town 1, State 0, so that’s the distance that we ini-
tialize to 0 ·.

As always, we want to continue running Dijkstra’s algorithm until no
new nodes can be found. We have num_towns towns, but each one exists in
both State 0 and State 1, so we have a maximum of num_towns * 2 nodes
to find ¸.

The nested state and j loops together find the next node. When these
loops are done ¹, two important variables will be set: min_town_index gives
the index of the town, and min_state_index gives the index of the state.

Our next step depends on which state we’re in and whether the town
has a cookie store. If we’re in State 0 and at a town with a cookie store º,
then we ignore adj_list and consider only the transition to State 1. Remem-
ber that the transition from [min_town_index][0] to [min_town_index][1] has dis-
tance 0, so our new path to [min_town_index][1] has the same distance as the
shortest path to [min_town_index][0]. In typical Dijkstra fashion, we update
the shortest path if our new path is shorter.

Otherwise, we’re in State 0 but not at a town with a cookie store, or
we’re in State 1. The available edges here are exactly those in the input graph
from the current town, so we examine all edges from min_town_index ». Now
we’re in Mice Maze territory, looking for new shorter paths using edge e.
Just be careful to use min_state_index everywhere, since none of these edges
changes the state.

The final thing to do is print the shortest path distance ¼. We use
num_towns as the first index (that’s grandma’s town) and 1 as the second index
(so that a box of cookies is being carried).

If you run our program on the test case from “Adjacency Matrix” on
page 214, you should get the correct output of 4. Indeed, for any test case,
we’ll output the shortest path. Now, let’s move on to the number of
shortest paths.
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Task 2: Number of Shortest Paths
It takes just a few changes to beef up Dijkstra’s algorithm so that it finds
not only the shortest path distance, but also the number of shortest paths.
Those changes are subtle, so I’ll begin by working a few steps of an example
to give you some intuition about why what we’re doing makes sense. I’ll then
show the new code before giving a more detailed correctness argument.

Working Through an Example
Let’s trace Dijkstra’s algorithm on Figure 6-5 from node (1,0). In addition
to tracking whether each node is done and the minimum distance to each
node, we’ll also keep num_paths, giving the number of shortest paths of
minimum distance to the node. We’ll see that those paths counted by
num_paths get thrown away whenever a shorter path is found.

To begin, we initialize the state for the starting node (1, 0). We set its
minimum distance to 0 and set it to be done. As there’s exactly one path of
distance 0 from the starting node to itself (the path of no edges), we set its
number of paths to 1. We use the edges from the starting node to initialize
the other nodes, and we set each of them to have one path (the path from
the starting node). This gives us our first snapshot:

node done min_distance num_paths

(1,0) true 0 1
(2,0) false 3 1
(3,0) false 8 1
(4,0) false 2 1
(1,1) false
(2,1) false
(3,1) false
(4,1) false

Now what? Well, as always with Dijkstra’s algorithm, we scan through
the nodes that are not done and choose one with minimum min_distance
value. We therefore choose node (4,0). Dijkstra’s algorithm guarantees that
this node has its shortest path set, so we can set it to done. Then, we must
check the edges leaving (4,0) to see whether we can find shorter paths to
other nodes. We can indeed find a shorter path to (3,0): before it was 8, but
now it’s 7, because we can get to (4,0) with distance 2, and then from (4,0)
to (3,0) with distance 5. What do we put for the number of shortest paths
to (3,0)? Well, it used to be 1, so it’s tempting to make it 2. However, 2 is
wrong, because that would count the path of distance 8, and that’s no longer
a shortest path. The answer is 1, because there’s only one path of distance 7.

There’s an edge from (4,0) to (2,0) that we shouldn’t dismiss too quickly.
The old shortest path to (2,0) was 3. What does the edge from (4,0) to (2,0)
do for us? Does it give us a shorter path? Well, the distance to (4,0) is 2,
and the edge from (4,0) to (2,0) has distance 1, so we have a new way to get
to (2,0) with distance 3. That’s not a shorter path, but it is another short-
est path! That is, getting to (4,0) and then using the edge to (2,0) gives us
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new ways to get to (2,0). The number of new ways is the number of shortest
paths to (4,0), which is just one. That gives us 1 + 1 = 2 shortest paths to get
to (2,0).

This is all summarized in the next snapshot:

node done min_distance num_paths

(1,0) true 0 1
(2,0) false 3 2
(3,0) false 7 1
(4,0) true 2 1
(1,1) false
(2,1) false
(3,1) false
(4,1) false

The next node that’s done is (2,0). There’s an edge of weight 0 from
(2,0) to (2,1), and it takes distance 3 to get to (2,0), so we have a shortest
path of distance 3 to (2,1) as well. There are two ways to get to (2,0) with that
minimum distance, so there are two ways to get to (2,1) as well. Here’s what
we’ve got now:

node done min_distance num_paths

(1,0) true 0 1
(2,0) true 3 2
(3,0) false 7 1
(4,0) true 2 1
(1,1) false
(2,1) false 3 2
(3,1) false
(4,1) false

The next node that’s done is (2,1), and it is this node that finds the
shortest path distance to our destination (4,1). There are two shortest paths
to (2,1), so there are two shortest paths to (4,1) as well. Node (2,1) also finds
new shortest paths to (1,1) and (3,1). Here’s what we’ve got now:

node done min_distance num_paths

(1,0) true 0 1
(2,0) true 3 2
(3,0) false 7 1
(4,0) true 2 1
(1,1) false 6 2
(2,1) true 3 2
(3,1) false 5 2
(4,1) false 4 2
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Node (4,1) is the next one out, so we have our answer: the shortest path
is 4 and the number of shortest paths is 2. (In our code we won’t have a stop-
ping criterion here at the destination, so Dijkstra’s algorithm would keep
going, finding shortest paths and number of shortest paths for other nodes.
I encourage you to persevere with this example until the end.)

That’s how the algorithm works. It can be summarized by two rules:

Rule 1 Suppose that we use Node u to find a shorter path to Node v.
Then the number of shortest paths to v is the number of shortest paths
to u. (All of the old paths to v are invalidated and no longer count, be-
cause we now know that they are not shortest paths.)

Rule 2 Suppose that we use Node u to find a path to Node v that’s the
same distance as the current shortest path to v. Then the number of
paths to v is the number of shortest paths that we already had for v, plus
the number of shortest paths to u. (All of the old paths to v still count.)

Suppose that we focus on some node n and watch what happens to its
minimum distance and number of shortest paths as it runs. We don’t know
what the shortest path to n will be: we might have its shortest path now, or
Dijkstra’s algorithm might find a shorter one later. If we have its shortest
path now, then we had better accumulate the number of shortest paths to n,
since we may ultimately need that value to compute the number of shortest
paths for other nodes. If we don’t have its shortest path now, then in retro-
spect we’ll have pointlessly accumulated its number of shortest paths. That’s
okay, though, because we’ll just reset the number of shortest paths anyway
when we find a shorter path.

The Code
To solve this task, we can start with Listing 6-4 and make the changes nec-
essary to find the number of shortest paths. The updated code is given in
Listing 6-5.

#define MOD 1000000

void solve(edge *adj_list[], int num_towns, int store[]) {

static int done[MAX_TOWNS + 1][2];

static int min_distances[MAX_TOWNS + 1][2];

¶ static int num_paths[MAX_TOWNS + 1][2];

int i, j, state, found;

int min_distance, min_town_index, min_state_index, old_distance;

edge *e;

for (state = 0; state <= 1; state++)

for (i = 1; i <= num_towns; i++) {

done[i][state] = 0;

min_distances[i][state] = -1;

· num_paths[i][state] = 0;

}
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min_distances[1][0] = 0;

¸ num_paths[1][0] = 1;

for (i = 0; i < num_towns * 2; i++) {

min_distance = -1;

found = 0;

for (state = 0; state <= 1; state++)

for (j = 1; j <= num_towns; j++) {

if (!done[j][state] && min_distances[j][state] >= 0) {

if (min_distance == -1 || min_distances[j][state] < min_distance) {

min_distance = min_distances[j][state];

min_town_index = j;

min_state_index = state;

found = 1;

}

}

}

if (!found)

break;

done[min_town_index][min_state_index] = 1;

if (min_state_index == 0 && store[min_town_index]) {

old_distance = min_distances[min_town_index][1];

¹ if (old_distance == -1 || old_distance >= min_distance) {

min_distances[min_town_index][1] = min_distance;

º if (old_distance == min_distance)

num_paths[min_town_index][1] += num_paths[min_town_index][0];

else

num_paths[min_town_index][1] = num_paths[min_town_index][0];

» num_paths[min_town_index][1] %= MOD;

}

} else {

e = adj_list[min_town_index];

while (e) {

old_distance = min_distances[e->to_town][min_state_index];

if (old_distance == -1 ||

old_distance >= min_distance + e->length) {

min_distances[e->to_town][min_state_index] = min_distance +

e->length;

¼ if (old_distance == min_distance + e->length)

num_paths[e->to_town][min_state_index] +=

num_paths[min_town_index][min_state_index];

else

num_paths[e->to_town][min_state_index] =

num_paths[min_town_index][min_state_index];

½ num_paths[e->to_town][min_state_index] %= MOD;

}
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e = e->next;

}

}

}

¾ printf("%d %d\n", min_distances[num_towns][1], num_paths[num_towns][1]);

}

Listing 6-5: The shortest path and number of shortest paths to grandma’s

I added a num_paths array that tracks the number of paths that we’ve
found for each node ¶ and set all of its elements to 0 ·. The only nonzero
element in num_paths is for our starting node (1,0), which has one path of dis-
tance 0 (the path that begins at the starting node and follows no edges) ¸.

The remaining new work is to update num_paths. As we’ve discussed,
there are two cases. If we find a shorter path, then the old number of paths
no longer counts. If we find another way to reach a node using its current
path distance, then we add to the old number of paths. It’s that second case
that can trip us up if we’re not careful, because we need to include an equal-
ity check in addition to a greater-than check ¹. If we used exactly the code
that we’ve used throughout the chapter,

if (old_distance == -1 || old_distance > min_distance) {

then the number of paths to a node would only be updated when a shorter
path was found; there would be no way to accumulate shortest paths from
multiple sources. Instead, we use >= rather than >

if (old_distance == -1 || old_distance >= min_distance) {

so that we can find more shortest paths, even if the shortest path itself does
not change.

Now we can implement exactly the two cases that we’ve discussed for
updating the number of paths. We have to do these cases twice, because
there are two places in the code where Dijkstra’s algorithm can find short-
est paths. The first addition º is to the code that follows a 0-weight edge
from State 0. If the shortest path is the same as before, we add; if there’s
now a new shorter path, we reset. The second addition of essentially the
same code ¼ is added to the code for looping through the edges leaving the
current node. In both cases, we use the mod operator » ½ to keep us under
1,000,000 shortest paths.

The final required change is to update the printf call at the end ¾, now
also printing the number of shortest paths to grandma’s.

You’re ready to submit to the judge. Let’s discuss a little bit about cor-
rectness before we wrap up for good.

Algorithm Correctness
There are no negative-weight edges in our Grandma Planner graphs, so we
know that Dijkstra’s algorithm will correctly find all shortest path distances.
There are some 0-weight edges—one from each cookie town in State 0 to the
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corresponding town in State 1—but Dijkstra’s algorithm copes just fine with
those when finding shortest paths.

However, we must carefully think through the implications of 0-weight
edges on finding the number of shortest paths. If we allow arbitrary 0-weight
edges, then there may be an infinite number of shortest paths. Take a look
at Figure 6-6, where we have 0-weight edges from A to B, B to C, and C to
A. The shortest path from A to C, for example, is 0, and we have an infinite
number of such paths: A → B → C, A → B → C → A → B → C, and so on.

A

B

0

C

0

0

Figure 6-6: A graph with
an infinite number of
shortest paths

Luckily, cycles of 0-weight edges cannot actually present themselves in
Grandma Planner graphs. Remember that all road distances are at least
one. Suppose that there were a 0-weight edge from Node u to Node v. This
means that u is in State 0 and v is in State 1. We can never get from v back to
u, because our graphs provide no way to move from State 1 back to State 0.

I’ll end by arguing the following: once a node is set to done, we have
found its total number of shortest paths. Consider a run of our algorithm
where it gives the wrong number of shortest paths. Our algorithm hums
along, finding shortest paths and the number of shortest paths . . . and then,
boom, it makes a mistake for the first time. It sets some node n to done, but
it’s missed finding some of its shortest paths. We need to argue that this mis-
take cannot arise.

Suppose that some shortest paths to n end with some edge m → n. If
m → n has a weight greater than 0, then the shortest path to m is shorter
than the shortest path to n. (It’s the shortest path to nminus the weight
of m → n.) Dijkstra’s algorithm works by finding nodes that are further
and further from the starting node, so Node mmust be done by this point.
When Dijkstra’s algorithm set m to done, it would have gone through all
edges from m, including m → n. Since m’s number of paths was set cor-
rectly (m is done, and Dijkstra’s algorithm hadn’t made its mistake yet), Dijk-
stra’s algorithm includes all of those paths in n’s path count.

Now, what if m → n is a 0-weight edge? We need m to be done before n;
otherwise, m’s number of paths cannot be trusted when exploring the edges
that leave m. We know that 0-weight edges go from a node in State 0 to a
node in State 1, so mmust be in State 0 and nmust be in State 1. The short-
est path to mmust be the same as the shortest path to n, since the 0-weight
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edge adds nothing to m’s shortest path. At some point, then, at the time
when m and n are not done, Dijkstra’s algorithm will have to choose which
of the two to next set to done. It had better choose m; and it will, because,
as I’ve written the code, when there is a tie it chooses a node from State 0
rather than State 1.

We need to tread lightly: we’re really getting away with something here.
Here’s a test case that exemplifies why we have to process State-0 nodes be-
fore State-1 nodes:

4

0 3 1 2

3 0 2 1

1 2 0 5

2 1 5 0

2

2 3

Trace our modified Dijkstra’s algorithm on this example. If you have a
choice of which node to next set to done, choose one from State 0. If you
do that, you’ll get the correct answer: a shortest path distance of four and
four shortest paths. Then, trace the algorithm again, only this time break
ties by choosing a node from State 1. You’ll still get the correct shortest path
distance of four, because Dijkstra’s algorithm is not sensitive to how ties are
broken. But our modified Dijkstra’s algorithm is, witnessed by the fact that
you should get two shortest paths rather than four.

Summary
Dijkstra’s algorithm is designed to find shortest paths in graphs. We’ve seen
in this chapter how to model a problem instance as a suitable weighted graph
and then use Dijkstra’s algorithm. Moreover, Dijkstra’s algorithm, like BFS
in Chapter 5, can serve as a guide for solving related but distinct problems.
In the Grandma Planner problem, we found the number of shortest paths
by a suitable modification to Dijkstra’s algorithm. We didn’t have to start
from scratch. We’re not always literally going to be asked for the shortest
path. If Dijkstra’s algorithm were resolute, finding shortest paths and noth-
ing else, then it would offer no help when contexts shift. Indeed, we’d have
learned a powerful algorithm, but one of an all-or-nothing flavor. Fortu-
nately, Dijkstra’s algorithm applies more broadly. If you continue with graph
algorithms beyond what I’ve included in this book, you’ll likely see ideas
from Dijkstra’s algorithm appear again. While there may be millions of
problems out there, there are far fewer algorithms. The best algorithms are
often the ones that rest on ideas so flexible that they can ooze beyond their
intended purpose.
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Notes
Mice Maze is originally from the 2001 Southwestern Europe Regional Con-
test. Grandma Planner is originally from the 2008 South African Program-
ming Olympiad, Final Round.

For more about graph search and its many applications to competitive
programming problems, I recommend Competitive Programming 4 by Steven
Halim and Felix Halim (2020).
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7
BINARY SEARCH

This chapter is all about binary search. If
you don’t know what binary search is—

excellent! I’m excited for the opportunity to
teach you a systematic, performant technique

for isolating an optimal solution from among zillions
of possible solutions. And if you do know what binary
search is and think that it’s just for searching a sorted
array—excellent! You’ll learn that binary search is for
so much more than that. To keep things fresh, we will
not search a sorted array in this entire chapter, not
even once.

What do minimizing the amount of liquid needed to feed ants, maximiz-
ing the minimum jump distance between rocks, finding the best living area
in a city, and flipping switches to open cave doors have in common? Let’s
find out.

Problem 1: Feeding Ants
This is DMOJ problem coci14c4p4.



The Problem
Bobi has a terrarium in the shape of a tree. Each edge of the tree is a pipe
in which liquid flows down. Some pipes are superpipes that increase the
amount of liquid that flows through them. Bobi keeps one of his pet ants in
each of the tree’s leaves. (Yes, this context is a reach. I won’t pretend other-
wise, but this problem is otherwise ace.)

Each pipe has a percentage value that indicates the percentage of the
available liquid that flows through it. For example, suppose that a node n
has three downward pipes, where those pipes have percentage values of
20 percent, 50 percent, and 30 percent, respectively. If 20 liters of liquid
arrive at Node n, then the 20 percent pipe gets 20 × 0.2 = 4 liters, the
50 percent pipe gets 20 × 0.5 = 10 liters, and the 30 percent pipe gets
20 × 0.3 = 6 liters.

Now consider the superpipes. For each superpipe, Bobi decides whether
its special behavior is off or on. If it is off, then it behaves like a regular pipe.
If it is on, then it squares the amount of liquid that it receives.

Bobi pours liquid into the root of the tree. His goal is to give each ant
at least the amount of liquid that it requires and to do so by pouring as little
liquid as possible.

Let’s make this description concrete by studying a sample terrarium; see
Figure 7-1.

node 1

node 2
2

20%

node 3
9

50%

node 4

30%

node 5
7

50%

node 6
8

50%

Figure 7-1: A sample terrarium

I’ve numbered the nodes from 1 to 6; the leaf nodes (2, 3, 5, and 6) have
an additional annotation giving the amount of liquid required by each ant.
I’ve also annotated each edge with its percentage value. Notice that the per-
centage values of the downward pipes leaving a given node always add up to
100 percent.

There’s one superpipe in the tree, from Node 1 to Node 4; I’ve drawn
that with a thicker edge. Suppose that 20 liters of liquid are poured into the
root. The superpipe gets 30 percent of the 20 liters, which is 6 liters. If the
superpipe’s special behavior is off, then 6 liters flow through it. However,
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if the superpipe’s special behavior is on, then, instead of 6 liters of liquid
flowing through it, 62 = 36 liters of liquid flow through it.

Input
The input contains one test case, consisting of the following lines:

• A line containing n, the number of nodes in the tree. n is between 1
and 1,000. The tree nodes are numbered from 1 to n, and the root
of the tree is node 1.

• n – 1 lines used to build the tree. Each of these lines represents one
pipe and consists of four integers: the two nodes connected by the
pipe, the pipe’s percentage value (between 1 and 100), and whether
the pipe is a superpipe (with 0 meaning no and 1 meaning yes).

• A line containing n integers, one for each node, giving the number
of liters of liquid needed by the ant in that node. Each ant requires
between 1 and 10 liters of liquid. For any nonleaf node (where there
is no ant), a value of –1 is given.

Here’s an input that could generate the sample terrarium in Figure 7-1:

6

1 2 20 0

1 3 50 0

1 4 30 1

4 5 50 0

4 6 50 0

-1 2 9 -1 7 8

Note how the first line (integer 6 here) indicates the number of nodes
in the tree, not the number of lines that build the tree. The number of lines
that build the tree (in this case five lines) is always one less than the number
of nodes. (Why is it always one less? Each line that builds the tree effectively
tells us the parent of one of the n nodes. Each node except for the root has a
parent, so we need n – 1 lines to tell us about all of the n – 1 parents.)

Output
Output the minimum number of liters of liquid that Bobi must pour into
the tree’s root to feed all the ants. Include four digits of accuracy after the
decimal point. The correct output is guaranteed to be at most 2,000,000,000
(two billion).

The time limit for solving the test case is 0.6 seconds.

A New Flavor of Tree Problem
As in Chapter 2, we’re in the domain of trees here. If we want to explore a
terrarium tree, then we can use recursion. (A full graph-search algorithm
such as BFS is overkill because there are no cycles.)
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For the two problems in Chapter 2, our solutions were based on the
structure of the tree and the values stored in nodes:

• In Halloween Haul, we calculated the total candy by adding up the
values in the leaves, and we calculated the total street-walks using
the height and shape of the tree.

• In Descendant Distance, we calculated the number of descendants
at the desired distance by using the number of children of
each node.

That is, what we needed—candy values, height, tree shape—were right there,
encoded for us in the tree itself. In the present problem, we’re asked to find
the minimum number of liters that Bobi must pour—but the tree doesn’t
contain any values like that! The tree has information on pipe percentage,
superpipe status, and ant appetite, but it has nothing directly informing us
of the amount of liquid that should be poured into the root. In particular,
the superpipes, with their liquid-squaring behavior, make unclear the rela-
tionship between the amount of liquid needed by the ants and the amount
of liquid that should be poured.

Because the tree won’t readily give us what we need, I’ll just pick a value
out of thin air—say, 10. There you go, Bobi. Pour 10 liters in there.

I hope you’re very suspicious of what I just did, recklessly choosing a
number like that. You should be surprised if 10 were the answer. I pulled 10
out of thin air, after all. You may also be surprised that we can in fact learn a
lot by trying out the value 10 and seeing what happens.

Let’s use Figure 7-1 again. Suppose that we pour 10 liters of liquid into
the root. Twenty percent of 10 is 2, so 2 liters of liquid will make it to the
ant in Node 2. Perfect: that ant needs 2 liters of liquid, so we’re sending just
enough liquid. Let’s continue.

Since 50 percent of 10 is 5, the ant in Node 3 gets 5 liters of liquid. Now
we’re in trouble: that ant needs 9 liters of liquid, and 5 liters is not enough.
More bad news: the pipe between Nodes 1 and 3 is not a superpipe, so
there’s nothing we can do except declare that 10 is not in fact the solution.

We could proceed by picking another number of liters out of thin air
and similarly simulating the flow of liquid on that new number. However,
because 10 liters was insufficient, now we should restrict our thin-air range
to only values greater than 10. Since 10 liters was insufficient, any smaller
value will be insufficient, too. There’s no point trying 2 liters or 7 liters or
9.5 liters or anything less than 10. They’re all too small.

Let’s next try 20 liters. This time, the ant at Node 2 gets 4 liters, which is
just fine because that ant only needs 2 liters. The ant at Node 3 gets 10 liters,
which again is fine because that ant only needs 9 liters.

The pipe between Nodes 1 and 4 takes 30 percent of the liquid, so that’s
6 liters of the total 20 liters. However, this pipe is a superpipe! If we use its
special behavior, the pipe cranks up the 6 liters to 62 = 36 liters, so 36 liters
arrives at Node 4. Now the ants at Nodes 5 and 6 are fine: each ant gets
18 liters, and they only need 7 liters (Node 5) and 8 liters (Node 6).
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Unlike 10 liters, then, 20 liters is a feasible solution, but is it the opti-
mal (that is, minimal) solution? Maybe, maybe not. What we know for sure
is that there’s no point testing any number of liters greater than 20. We al-
ready have 20 as a feasible solution; why try values, such as 25 or 30, that are
worse?

We’ve now reduced the problem to finding an optimal solution between
10 and 20 liters. We could keep choosing numbers, reducing the range at
each step, until our range is so small that one of its endpoints serves as an
accurate solution.

In the general case, what number of liters should we choose first? The
optimal solution could be up to 2 billion, so starting with 10 may be way,
way off. And, once we test a number of liters, where should we go next? The
optimal solution might be considerably larger or smaller than our current
guess, so adding or subtracting 10 at a time may not help us make much
progress.

These are good questions, good questions that we will answer . . . but
not yet. Let’s first tackle how to read the input (so that we can explore a
tree) and how to determine whether a number of liters is a feasible solution.
Then, we’ll see a super-fast algorithm for searching massive ranges. A range
of two billion? We’ll eat that for breakfast.

Reading the Input
In Chapter 2, we used a node struct at the core of how trees were represented.
Then, in Chapter 5, Book Translation, we used the adjacency list representa-
tion of a graph with an edge struct. There we learned that whether we use a
node or edge struct comes down to whether it’s the nodes or the edges that
carry additional attributes. In the present problem, the edges carry infor-
mation (a percentage and a superpipe status), but so do the leaf nodes (the
amount of liquid required by each ant). It’s therefore tempting and reason-
able to use both an edge struct and a node struct. Instead, to closely parallel the
use of adjacency lists, I’ve chosen to stick with only an edge struct. As in the
problem description, we number nodes starting at 1, but, with no node struct,
we have nowhere to store the amount of liquid required by each ant. For
that reason, we augment the adjacency list with a liquid_needed array, where
liquid_needed[i] gives the amount of liquid required by the ant in Node i.

Here’s the constant and typedef that we’ll use throughout the code:

#define MAX_NODES 1000

typedef struct edge {

int to_node, percentage, superpipe;

struct edge *next;

} edge;

As in Book Translation (Chapter 5) and the two problems in Chapter 6,
we can chain these edge structs together through next pointers to form a
linked list of edges. If an edge is in the linked list for nNde i, then we know
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that the parent node of the edge is i. The to_node member tells us the child
node at which this edge connects with the parent node; percentage is an in-
teger between 1 and 100 that gives the percentage value for the pipe (edge);
and superpipe is a flag whose value is 1 if the pipe is a superpipe and 0 if it’s a
regular pipe.

Now we can read the tree from the input, as shown in Listing 7-1.

int main(void) {

static edge *adj_list[MAX_NODES + 1] = {NULL};

static int liquid_needed[MAX_NODES + 1];

int num_nodes, i;

int from_node, to_node, percentage, superpipe;

edge *e;

scanf("%d", &num_nodes);

for (i = 0; i < num_nodes - 1; i++) {

scanf("%d%d%d%d", &from_node, &to_node, &percentage, &superpipe);

e = malloc(sizeof(edge));

if (e == NULL) {

fprintf(stderr, "malloc error\n");

exit(1);

}

e->to_node = to_node;

e->percentage = percentage;

e->superpipe = superpipe;

e->next = adj_list[from_node];

¶ adj_list[from_node] = e;

}

for (i = 1; i <= num_nodes; i++)

· scanf("%d", &liquid_needed[i]);

solve(adj_list, liquid_needed);

return 0;

}

Listing 7-1: The main function for building the tree

The code is similar to, but simpler than, Listing 5-16 (Book Translation).
In particular, each edge is read from the input, its members are set, and
then it’s added to the list of edges for from_node ¶. You may expect a corre-
sponding edge to be added for to_node, since the graph is undirected, but
I’ve left out such edges: liquid moves down the tree, not up, so adding back-
ward edges would needlessly complicate the code that explores a tree.

Once the edge information is read in, all that’s left is to read the values
for the amount of liquid required by each ant. We’ll use the liquid_needed

array for that ·. The combination of adj_list and liquid_needed captures ev-
erything we need to know about the test case.
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Testing Feasibility
Our next milestone is this: determine whether a given amount of liquid is a
feasible solution. This is a crucial step, because once we have a function that
can test a value for feasibility, we’ll be able to use it to progressively narrow
the search space until we find the optimal solution. Here’s the signature for
the function that we’ll write:

int can_feed(int node, double liquid,

edge *adj_list[], int liquid_needed[])

Here, node is the root node of the tree, liquid is the amount of liquid
that we pour into the root of the tree, adj_list is the adjacency list for the
tree, and liquid_needed is the amount of liquid required by each ant. We’ll
return 1 if liquid is enough to feed the ants (that is, if liquid is a feasible solu-
tion) and 0 if it is not.

We spent a whole chapter (Chapter 2) writing recursive functions on
trees. Let’s think about whether we can use recursion again.

Remember that, to use recursion, we need a base case—a case that can
be solved with no recursion. Luckily, we have one! If the tree is a single leaf
node, then we can determine right away whether liquid is sufficient. If liquid
is greater than or equal to the amount of liquid needed by the ant in this
leaf, then we have a feasible solution; otherwise, we don’t.

We can tell whether a node is a leaf by checking the corresponding value
in liquid_needed: if it’s -1, then it isn’t a leaf; otherwise, it is. (We could have
also used the adjacency list to check whether or not the linked list for the
node was empty.) Here’s what we’ve got:

if (liquid_needed[node] != -1)

return liquid >= liquid_needed[node];

Now, consider the recursive case. Imagine that the root node of some
tree has p downward pipes (that is, p children). We’re given the amount of
liquid that’s poured into the root. Using the pipe percentage values, we can
determine the amount of liquid that goes into each pipe; using the super-
pipe statuses, we can determine the amount of liquid that reaches the bot-
tom end of each pipe. If enough liquid reaches the bottom end of each pipe,
then the liquid poured into the root was sufficient and we should return 1.
Otherwise, the amount of liquid that reaches the bottom end of some pipe
isn’t sufficient, and we should return 0. This suggests that we should make p
recursive calls, one for each pipe that leaves the root. We’ll do that in a loop
that uses the adjacency list to go through each such pipe.

The full code for the function is given in Listing 7-2.

int can_feed(int node, double liquid,

edge *adj_list[], int liquid_needed[]) {

edge *e;

int ok;

double down_pipe;

if (liquid_needed[node] != -1)
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return liquid >= liquid_needed[node];

e = adj_list[node];

¶ ok = 1;

while (e && ok) {

down_pipe = liquid * e->percentage / 100;

if (e->superpipe)

· down_pipe = down_pipe * down_pipe;

if (!can_feed(e->to_node, down_pipe, adj_list, liquid_needed))

¸ ok = 0;

e = e->next;

}

return ok;

}

Listing 7-2: Testing the feasibility of the amount of liquid

The ok variable tracks whether liquid is a feasible solution for the tree. If
ok is 1, then the solution is still feasible; if ok is 0, then it’s definitely not. We
initialize ok to 1 ¶, and we set it to 0 if the amount of liquid through one of
the pipes isn’t sufficient ¸. If ok is still 1 at the bottom of the function, then
we’ve satisfied all pipes and we conclude that liquid is feasible.

We determine the amount of liquid that enters each pipe by using that
pipe’s percentage value. Then, if the pipe is a superpipe, we square that
value · . . . but hey, wait! The problem description says that Bobi gets to de-
cide whether or not to use the special behavior of each superpipe. However,
here we’re just indiscriminately squaring the amount of liquid, thereby al-
ways using the special behavior.

The reason we can get away with this is that squaring makes values big-
ger: compare 2 to 22 = 4, 3 to 32 = 9, and so on. Since we want to know
whether the given amount of liquid is feasible and there’s no penalty for us-
ing the special behavior of a superpipe, we may as well generate as much
liquid as possible. Maybe we could have gotten away without using some
superpipe special behavior, but no one’s asking us to be economical.

Don’t worry that squaring makes positive values less than one, such as
0.5, smaller. 0.52 = 0.25, so indeed we wouldn’t want to activate superpipe
behavior in such cases. Each ant requires at least 1 liter of liquid, though.
So, if we’re down to 0.5 liters of liquid at some node, then nothing we do is
going to feed the ants in the node’s subtree anyway. We’d eventually return 0

whether or not we squared the value.
Let’s show how useful this can_feed function is by continuing the work

we did in “A New Flavor of Tree Problem” on page 233. We showed there
that 10 liters was not sufficient for the sample instance from the problem
description. Comment out the solve call at the bottom of Listing 7-1 (don’t
worry: we’ll write that solve function soon), and add a call to can_feed to test
10 liters of liquid:

printf("%d\n", can_feed(1, 10, adj_list, liquid_needed));
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You should see a result of 0, which means that 10 liters isn’t sufficient.
We also showed that 20 liters was sufficient. Change the can_feed call to test
20 liters instead of 10:

printf("%d\n", can_feed(1, 20, adj_list, liquid_needed));

You should see a result of 1, which means that 20 liters is sufficient.
Now, we know that 10 is not enough but 20 is. Let’s squeeze this range

down further. Try 15, and you should see an output of 0. So, it seems 15 is
not enough. Our optimal answer is now greater than 15 and at most 20.

Try 18 next: you should see that 18 is enough. How about 17? No, 17
is not enough, nor is 17.5 or 17.9. It turns out that the optimal solution is
indeed 18.

That’s enough of the ad hoc searching. Let’s systematize this.

Searching for a Solution
From the problem description, we know that the optimal solution is at most
two billion. There’s therefore a massive search space in which the optimal
solution lies. Our goal is to cut down this space as quickly as possible by
never wasting a guess.

It’s easy to waste a guess. For example, if we start with a guess of 10, and
the optimal solution is in fact two billion, then we’ve essentially wasted that
guess: all we’ve done is eliminate the numbers between 0 and 10. It’s true
that a guess of 10 would be fantastic if the optimal solution were, say, 8,
because that one step would cut the range down to 0 to 10 and we’d find 8
soon after. Nonetheless, taking shots like this isn’t worth it, because getting
lucky once in a while won’t offset the very likely case that our guess tells us
almost nothing. It’s for this reason that you don’t guess 10 as your first guess
when someone asks you to guess their number between 1 and 1,000. Sure, if
they say “lower,” you look like a full-on rock star, but if they say “higher,” as
they most likely will, you’ve all but wasted that first guess.

To guarantee that we learn as much as possible with each guess, we’ll
always guess the middle of the range. To do so, we maintain two variables,
low and high, holding the low end and high end, respectively, of our current
range. We then calculate the middle of the range, mid, test the feasibility of
mid, and update low or high based on what we learn. We’ll implement this
strategy in Listing 7-3.

#define HIGHEST 2000000000

void solve(edge *adj_list[], int liquid_needed[]) {

double low, high, mid;

low = 0;

high = HIGHEST;

¶ while (high - low > 0.00001) {

· mid = (low + high) / 2;

¸ if (can_feed(1, mid, adj_list, liquid_needed))
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high = mid;

else

low = mid;

}

¹ printf("%.4lf\n", high);

}

Listing 7-3: Searching for the optimal solution

It’s important to initialize low and high so that their range is guaranteed
to contain the optimal solution. At all times, we’ll maintain that low is less
than or equal to the optimal solution and that high is greater than or equal
to the optimal solution. We start low off with a value of 0; as each ant re-
quires at least 1 liter, 0 liters is definitely less than or equal to the optimal
solution. We start high off with a value of 2 billion, because it’s guaranteed
by the problem description that 2 billion is the maximum value of the opti-
mal solution.

The while loop condition forces the range between low and high to be
very small by the time the loop ends ¶. We need four digits of accuracy,
hence the four 0s after the decimal point in 0.00001.

The first thing to do in the loop body is to calculate the middle of the
range. We’ll do that by taking the average of low and high, storing that result
in mid ·.

Now it’s time to test mid liters for feasibility, using can_feed ¸. If mid is
feasible, we have learned that guessing anything larger than mid would be a
waste. We therefore set high = mid to cut the range off at a maximum of mid.

If mid is not feasible, then guessing anything smaller than mid would be a
waste. We therefore set low = mid to cut the range off at a minimum of mid.

Once the loop terminates, low and high are very close together. We’re
printing high ¹, but printing low would work just as well.

This technique, where we keep dividing the range in half until it’s very
small, is called binary search. It’s a surprisingly subtle and powerful algo-
rithm, further evidence of which will come from the remaining problems in
this chapter. It’s also very fast, able to handle ranges of billions or trillions
with ease.

Submit the solution to the judge, and then let’s keep going. There’s a lot
more to know about binary search.

Binary Search
Feeding Ants is an exemplar of the types of problems where binary search
thrives. There are two ingredients to such problems; if you see these in-
gredients in a new problem you’re facing, it’s worth your time to try binary
search.

Ingredient 1: Hard optimality and easy feasibility For some prob-
lems, it’s hard to come up with a way to find an optimal solution. Fortu-
nately, in many such cases, it’s considerably easier to determine whether
or not some proposed solution is feasible. This was the situation in the
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Feeding Ants problem: we didn’t know how to find an optimal solu-
tion directly, but we did see how to determine whether some number
of liters was feasible.

Ingredient 2: Infeasible–feasible split We need the problem to ex-
hibit the property that there is a border between infeasible and feasible
solutions. All solutions on one side of the border must be infeasible,
and all solutions on the other side must be feasible. In Feeding Ants,
small values were infeasible and large values were feasible. Imagine con-
sidering values from small to large and asking whether each is infeasible
or feasible. In doing so, we’ll see a bunch of infeasible values and then
a feasible value; after our first feasible value, we won’t see infeasible val-
ues again. Suppose we try a value of 20 liters and find that it’s infeasible.
This means that we’re still in the infeasible part of the search space, and
we must search larger values. If 20 liters is feasible, then we’re in the fea-
sible part of the search space, and we should search smaller values. (Not
meeting Ingredient 2 renders binary search useless. For example, sup-
pose we have a problem where small values are infeasible, larger values
are feasible, and even-larger values are infeasible again. We try a value
of 20 and find that it is infeasible. Don’t even think about focusing on
values greater than 20: for all we know, values less than 10 could be in-
feasible and 10 to 15 could be feasible, giving 10 as the optimal solution
here.) It’s also okay if the search space transitions from feasible to infea-
sible, rather than from infeasible to feasible. Our next problem will offer
such an example.

Runtime of Binary Search
The reason why binary search is so powerful is that it makes a huge amount
of progress with just a single iteration. For example, suppose that we’re
searching for an optimal solution in a range of two billion. A single itera-
tion of binary search throws out half of this range, leaving a range of only
one billion. Let that sink in: with just a single if statement and one variable
update to mid, we make one billion units of progress! If binary search takes
q iterations to search a range of one billion, then it takes only one more iter-
ation, q + 1, to search a range of two billion. The number of iterations grows
very slowly compared to the width of the range.

The number of iterations taken by binary search to cut a range n to
range 1 is roughly the number of times that nmust be divided by 2 to get
down to 1. For example, say that we start with a range of 8. After one iter-
ation, we’ll have reduced the range to at most 4. After two iterations, we’ll
have reduced the range to at most 2. After three iterations, we’ll have re-
duced the range to 1. Moreover, if we don’t care about decimal digits of ac-
curacy, then that’s it: three iterations.

There’s a mathematical function called the base-2 logarithm, which, given
value n, tells you how many times you have to divide n by 2 to get 1 or less.
It’s written log2 n or, when the discussion makes it clear that two is the base,
as just logn. For example, log2 8 is 3 and log2 16 is 4. log2 2,000,000,000
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(that’s two billion) is 30.9, so it takes about 31 iterations to knock this range
down to 1.

Binary search is an example of a logarithmic-time algorithm. We therefore
say that it’s O(logm). (You’d ordinarily use n here instead of m, but we’re
going to use n for something else later in this section.) To reduce a range to
1, m is the initial width of the range. However, in Feeding Ants, we needed
to go further, obtaining four decimal digits of accuracy. What is m there?

It’s time to come clean on how we used binary search in Feeding Ants:
we do more than log2 2,000,000,000 iterations of binary search, because
we don’t stop when the width of the range is 1. Instead, we stop once we’ve
achieved four digits of accuracy after the decimal point. Adding five zeros
gives us the number of iterations that we do: log2 200,000,000,000,000
rounds up to 48. Only 48 iterations are needed to pull a solution with four
decimal digits of accuracy from a bewildering range of trillions. That’s what
binary search is made of.

On a tree of n nodes, the can_feed function in Listing 7-2 (Feeding Ants)
takes linear time; that is, time proportional to n. We call that function
log2m × 104 times, where m is the width of the range (two billion in the
test cases). This is proportional to logm work. In total, then, we do n work
a total of logm times. This is an O(n logm) algorithm. It is not quite linear,
because of that extra logm factor, but still very fast.

Determining Feasibility
What I like most about binary search algorithms is that determining whether
a value is feasible often requires the use of some other type of algorithm.
That is, on the outside we have binary search, but on the inside—to test if
each value is feasible—we have something else. That something else could
be anything. In Feeding Ants, it was a tree search. In our next problem,
it will be a greedy algorithm. In our third problem, it will be a dynamic-
programming algorithm. We won’t see one in this book, but there are prob-
lems where checking feasibility requires running a graph algorithm. That
stuff you’ve learned in the previous chapters will all be in play again.

Determining feasibility often requires considerable creativity (just hope-
fully not as much creativity as needed for finding optimality!).

Searching a Sorted Array
If you were familiar with binary search prior to reading this chapter, odds
are that it was in the context of searching a sorted array. A typical scenario
is that we are given an array a and a value v, and we want to find the smallest
index of a whose value is greater than or equal to v. For example, if we were
given the array {-5, -1, 15, 31, 78} and vwere 26, we’d return index 3, because
the value at index 3 (31) is the first one that’s greater than or equal to 26.

Why does binary search work here? Take a look at the two ingredients:

Ingredient 1 Without a binary search, finding the optimal value would
involve a costly scan through the array. Therefore, optimality is hard
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to obtain, but feasibility is easy: if I give you an index i, you can tell me
right away whether a[i] is greater than or equal to v just by comparing
a[i] to v.

Ingredient 2 Any values smaller than v come before any values that
are greater than or equal to v—remember that a is sorted! That is, the
infeasible values come before the feasible values.

It’s true that binary search can be used to find a suitable index in an ar-
ray in logarithmic time; later, in Chapter 10, we’ll use it for that very pur-
pose. But we solved Feeding Ants with binary search, with no such array in
sight. Don’t restrict yourself to thinking about binary search only when you
have an array to search. Binary search is far more flexible than that.

Problem 2: River Jump
We’ll now see a problem in which we need a greedy algorithm to determine
feasibility.

This is POJ problem 3258.

The Problem
There’s a river of length L along which rocks have been placed. There’s a
rock at Location 0 (the beginning of the river), a rock at Location L (the end
of the river), and then n other rocks between these. For example, on a river
of length 12, we might have rocks at the following locations: 0, 5, 8, and 12.

A cow begins on the first rock (Location 0), jumps from there to the sec-
ond rock, jumps from the second rock to the third rock, and so on, until it
gets to the rock at the end of the river (Location L). Its minimum jump dis-
tance is the minimum distance between any consecutive pair of rocks. In the
above example, the minimum jump distance is 3, witnessed by the distance
between the rocks at Locations 5 and 8.

Farmer John is bored by the short jumps made by the cow, so he wants
to increase the minimum jump distance as much as possible. He can’t re-
move the rock at Location 0 or Location L, but he is able to remove m of the
other rocks.

In the above example, suppose that Farmer John is able to remove one
rock. His choice is then to remove the rock at Location 5 or Location 8. If
he removes the rock at Location 5, the minimum jump distance is 4 (from
Location 8 to Location 12). However, he shouldn’t do that, because if he
removes the rock at Location 8, then he achieves a greater minimum jump
distance of 5 (from Location 0 to Location 5).

Our task is to maximize the minimum jump distance that Farmer John
can achieve by removing m rocks.
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Input
The input contains one test case, consisting of the following lines:

• A line containing the three integers L (the length of the river), n
(the number of rocks, not including the rocks at the beginning and
end), and m (the number of rocks that Farmer John can remove).
L is between 1 and 1,000,000,000 (one billion), n is between 0 and
50,000, and m is between 0 and n.

• n lines, each giving the integer location of a rock. No two rocks will
be at the same location.

Output
Output the maximum achievable minimum jump distance. For the above
example, we would output 5.

The time limit for solving the test case is two seconds.

A Greedy Idea
In Chapter 3, when solving the Moneygrubbers problem, we introduced the
idea of a greedy algorithm. A greedy algorithm does what looks promising
right now, with no regard to the long-term consequences of its choices. Such
an algorithm is often easy to propose: just state the greedy rule that it uses
to make its next choice. When solving the Moneygrubbers problem, for ex-
ample, I proposed the greedy algorithm that chooses the option of cheapest
cost per apple. That greedy algorithm was incorrect. That lesson is worth
remembering: while it’s easy to propose a greedy algorithm, it’s not easy to
find one that’s correct.

For two reasons, I didn’t dedicate a chapter of the book to greedy al-
gorithms. First, they’re not as broadly applicable as other algorithm design
approaches (such as dynamic programming). Second, when they do hap-
pen to work, it’s often for subtle, problem-specific reasons. I’ve been duped
many times over the years by seemingly correct but ultimately flawed greedy
algorithms. A careful proof of correctness is often required to distinguish
between the ones that are right and the ones that only feel right.

Nevertheless, greedy algorithms did make a concealed—and this time
correct—appearance in Chapter 6 in the form of Dijkstra’s algorithm. Al-
gorithmists generally classify Dijkstra’s algorithm as greedy. Once the algo-
rithm declares that a node’s shortest path has been found, it never goes back
on that decision. It commits, once and for all, and does not let future discov-
eries influence what it has done in the past.

Greedy algorithms are now going to reappear. When I was introduced
to River Jump several years ago, my instinct was that I could use a greedy al-
gorithm to solve it. I wonder if you’ll find the proposed algorithm as natural
as I did. Here’s the greedy rule: find the two rocks that are closest together,
remove the one that’s closest to its other neighbor rock, and repeat.

Let’s return to the example from the problem description. Here it is as a
test case:
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12 2 1

5

8

For convenience, here are the rock locations: 0, 5, 8, and 12. We’re al-
lowed to remove one rock. The two rocks that are closest together are those
at Locations 5 and 8, so the greedy rule will result in one of these being re-
moved. The rock at Location 8 is a distance of 4 from its neighbor to the
right; the rock at Location 5 is a distance of 5 from its neighbor to the left.
Therefore, the greedy algorithm removes the rock at Location 8. It works
correctly in this example.

Let’s throw a bigger example in here and see what the greedy algorithm
does. Suppose that the river has a length of 12 and we’re allowed to remove
two rocks. Here’s the test case:

12 4 2

1

3

8

9

The rock locations are 0, 1, 3, 8, 9, and 12. What will the greedy algo-
rithm do? The rocks that are closest together are the ones at Locations 0
and 1 and those at Locations 8 and 9. We’ll have to choose one pair—let’s
choose 0 and 1. Since removing the rock at Location 0 is not allowed, we re-
move the rock at Location 1. The remaining rock locations are 0, 3, 8, 9,
and 12.

Now the closest rocks are at Locations 8 and 9. The distance between 9
and 12 is less than the distance between 8 and 3, so the greedy algorithm re-
moves the rock at Location 9. We’re left with 0, 3, 8, and 12. The minimum
jump distance here, and the correct answer, is 3. The greedy algorithm wins
again.

Isn’t that right? Keep knocking off the smallest distance between two
rocks. How could we possibly do better than that? The greedy algorithm
charms.

Sadly, the greedy algorithm is not correct. I encourage you to try to
come up with a counterexample before I spoil it in the next paragraph.

Here’s a counterexample:

12 4 2

2

4

5

8

We’re allowed to remove two rocks. The rock locations are 0, 2, 4, 5, 8,
and 12. The greedy rule identifies the rocks at Locations 4 and 5 as the clos-
est rocks. It will remove the rock at Location 4, since the distance between
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4 and 2 is less than the distance between 5 and 8. Here’s what’s left: 0, 2, 5,
8, and 12.

Now the greedy rule identifies the rocks at Locations 0 and 2 as the clos-
est pair. It isn’t allowed to remove the rock at 0, so it removes the rock at 2.
We’re left with 0, 5, 8, and 12. That’s a minimum jump distance of 3. Here
we have a mistake made by the greedy algorithm, because the maximum
achievable minimum jump distance is 4. To see this, rather than remove
the rocks at Locations 2 and 4, remove the ones at Locations 2 and 5. That
leaves us with 0, 4, 8, and 12.

What went wrong? By removing the rock at Location 4 as its first move,
the greedy algorithm creates a situation involving a jump distance of 2 and a
jump distance of 3. It can only fix one of those two with its second move, so
it has no chance of producing a minimum jump distance of anything greater
than 3.

I don’t know a greedy algorithm that directly solves this problem. Like
Feeding Ants, this is a tough one to solve head-on. Fortunately, we don’t
have to.

Testing Feasibility
In “Binary Search” on page 240, I offered two signals that point to a binary
search solution: that it’s easier to test feasibility than produce optimality and
that the search space transitions from infeasible to feasible (or feasible to
infeasible). We’ll see that the River Jump problem passes on both counts.

Instead of solving for the optimal solution outright, let’s solve for a dif-
ferent question: Is it possible to achieve a minimum jump distance of at least
d? If we can nail this, then we can use binary search to find the largest feasi-
ble value of d.

Here’s the test case that ended the previous subsection:

12 4 2

2

4

5

8

We’re allowed to remove two rocks. The rock locations are 0, 2, 4, 5, 8,
and 12.

Here’s a question: What is the minimum number of rock removals that
are needed to achieve a minimum jump distance of at least 6? Let’s work
from left to right and check. The rock at Location 0 has to stay—that’s spelled
out in the problem description. It’s then evident that we have no choice of
what to do with the rock at Location 2: we must remove it. If we didn’t, then
the distance between the rocks at Locations 0 and 2 would be less than 6.
So, one rock is removed. The remaining rocks are at 0, 4, 5, 8, and 12.

Now, consider the rock at Location 4—do we keep it or remove it? Again,
we’re forced to remove it. If we keep it, then the rocks at Locations 0 and 4
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would be closer together than 6. That’s our second removal, and we’re left
with rocks at 0, 5, 8, and 12.

The rock at Location 5 has to be removed, too, because it’s only a dis-
tance of 5 from the 0 rock. That’s our third removal, leaving us with rocks at
0, 8, and 12.

We have to remove the rock at Location 8, too! It’s far enough from
Location 0 but too close to Location 12. That’s our fourth removal, ulti-
mately leaving us with just two rocks at 0 and 12.

So it takes four removals to achieve a minimum jump distance of at least
6, but we’re only allowed to remove two rocks. As such, 6 is not a feasible
solution. It’s too big.

Is 3 a feasible solution? That is, can we achieve a minimum jump dis-
tance of at least 3 by removing two rocks? Let’s see.

The rock at Location 0 stays. The rock at Location 2 has to go. That’s
our first removal, and it leaves us with this: 0, 4, 5, 8, and 12.

The rock at Location 4 can stay: it’s more than a distance of 3 from
Location 0. The rock at Location 5, though, has to go, because it’s too close
to the rock at Location 4. That’s our second removal, giving us this: 0, 4, 8,
and 12.

The rock at Location 8 is fine: it’s far enough away from the rocks at
Locations 4 and 12. We’re done: it took us only two removals to achieve a
minimum jump distance of at least 3. So, 3 is feasible.

We seem to be homing in on a greedy algorithm for checking feasibility.
The rule is this: consider each rock in order, and remove it if it’s too close
to the previously kept rock. Also check the rightmost rock that we kept, and
remove it if it’s too close to the end of the river. Then, count the number of
rocks that we removed; that count tells us whether the proposed minimum
jump distance is feasible given the number of rocks we’re allowed to remove.
(To be clear, this is a proposed greedy algorithm for checking feasibility of a
specified jump distance, not for finding the optimal solution in one shot.)

The code for this algorithm is in Listing 7-4.

int can_make_min_distance(int distance, int rocks[], int num_rocks,

int num_remove, int length) {

int i;

int removed = 0, prev_rock_location = 0, cur_rock_location;

if (length < distance)

return 0;

for (i = 0; i < num_rocks; i++) {

cur_rock_location = rocks[i];

¶ if (cur_rock_location - prev_rock_location < distance)

removed++;

else

prev_rock_location = cur_rock_location;

}

· if (length - prev_rock_location < distance)

removed++;
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return removed <= num_remove;

}

Listing 7-4: Testing the feasibility of the jump distance

The function has five parameters:

distance The minimum jump distance whose feasibility we’re testing

rocks An array giving the location of each rock, not including the rocks
at the beginning and end of the river

num_rocks The number of rocks in the rocks array

num_remove The number of rocks that we’re allowed to remove

length The length of the river

The function returns 1 (true) if distance is a feasible solution and returns
0 otherwise.

The variable prev_rock_location tracks the location of the most recent
rock that we’ve kept. Inside the for loop, cur_rock_location holds the location
of the rock that we’re currently considering. We then have our crucial test
to determine whether to keep or remove the current rock ¶. If the current
rock is too close to the previous rock, then we remove the current rock and
increase the number of removals by one. Otherwise, we keep the current
rock and update prev_rock_location accordingly.

When the loop terminates, we’ve counted the number of rocks that we
must remove. Well . . . almost. We still need to check whether the rightmost
rock that we’ve kept is too close to the end of the river ·. If it is, then we
remove that rock. (Don’t worry about the possibility of removing the rock at
Location 0. If we really have removed all the rocks, then prev_rock_location

will be 0. However, length - 0 < distance cannot be true; if it were, then we
would have returned in the if statement at the start of the function.)

Now we have no rocks within the minimum jump distance of each other,
and we have not removed rocks unnecessarily. How could we possibly do
better than that? The greedy algorithm charms . . . but here we go again.
The last time this occurred, in “A Greedy Idea” on page 244, the greedy al-
gorithm turned out to be incorrect. Don’t be convinced by a couple of ex-
amples where things happen to work out. Don’t let me sweet-talk you into
believing that everything is okay.

Before moving on, I’d like to give a fairly precise argument for why this
greedy algorithm is correct. Specifically, I’ll show that it removes the mini-
mum number of rocks required to achieve a minimum jump distance of at
least d. I’ll assume that d is at most the length of the river; otherwise, the
greedy algorithm immediately and correctly determines that a minimum
jump distance of d is infeasible.

For each rock from left to right, our greedy algorithm decides whether
to keep the rock or remove it. Our goal will be to show that it matches, step
for step, what an optimal solution does. When the greedy algorithm de-
cides to keep a rock, we’ll show that an optimal solution keeps that rock,
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too. When the greedy algorithm decides to remove a rock, we’ll show that
an optimal solution removes that rock, too. If the greedy algorithm does
exactly what an optimal solution does, then what we get from it must be cor-
rect. In this example, “optimal” will be used to refer to an optimal solution.
For each rock, we have four possibilities: greedy and optimal both remove
the rock, greedy and optimal both keep the rock, greedy removes it but op-
timal keeps it, and greedy keeps it but optimal removes it. We have to show
that the third and fourth cases cannot actually occur.

Before we proceed to the four cases, consider again removing two rocks
from these rock locations: 0, 2, 4, 5, 8, and 12. When asked whether it’s pos-
sible to achieve a minimum jump distance of at least 3, we have seen that
greedy will remove the rocks at Locations 2 and 5, leaving us with 0, 4, 8,
and 12. So we might expect that the optimal solution is also to remove the
same two rocks. Although that is optimal, another optimal solution is to re-
move the rocks at Locations 2 and 4, resulting in these rocks: 0, 5, 8, and 12.
That’s another way to get a minimum distance of at least 3 by removing two
rocks, and it’s as good as what the greedy algorithm produces. Rather than
match the optimal solution, we’ll be just as happy matching an optimal so-
lution. We don’t care which one greedy matches: all optimal solutions are
equally optimal.

We have some optimal solution S that we want greedy to match. Greedy
starts running, and for some time there are no discrepancies: it does what-
ever S does. Greedy at least does the right thing for the rock at Location 0:
that one has to stay, no matter what.

Greedy is thus looking at the rocks from left to right, doing the right
stuff, keeping rocks and removing rocks just like optimal solution S . . . and
then, boom, greedy and S disagree on what to do with some rock. We think
about the first rock on which greedy and S disagree.

Greedy removes it, but optimal keeps it.
The greedy algorithm only removes a rock when it’s too close to another
rock. If greedy removes a rock because it’s less than d from the rock to
the left, then Smust have removed the rock, too. Because this is the first
disagreement, S includes exactly the same rocks to the left as greedy. So
if S did not remove the rock, then it would have two rocks within a dis-
tance of less than d. However, that can’t happen: S is an optimal (and
necessarily feasible) solution where all distances between rocks are at
least d. We can conclude that S really does remove the rock, agreeing
with greedy. Similar reasoning shows that, if greedy removes a rock be-
cause it’s too close to the end of the river, then Smust remove it, too.

Greedy keeps it, but optimal removes it.
We’re not going to be able to make greedy and Smatch here, but that’s
okay, because we’ll be able to form a new optimal solution U that keeps
this rock. Let r be the current rock; the one that greedy keeps and S re-
moves. Think about a new set of rocks T that has exactly the same rocks
as S plus rock r. Therefore, T removes one fewer rock than S. Because
of this, T can’t be a feasible solution. If it were, then it would be better
(by one rock) than S, contradicting the fact that S is an optimal solution.
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Since the only difference between S and T is that T has rock r, it must be
r that causes T to be infeasible. Therefore, in T, rmust be closer than d
to rock r2 to its right. We know that r2 can’t be the rock at the end of the
river, because then greedy wouldn’t have kept r (as r would be too close
to the end of the river). So r2 is some rock that is allowed to be removed.

Now, think about another new set of rocks U that has exactly the
same rocks as T except that it doesn’t have r2. We can say that U has
the same number of rocks as S: we added one rock r to S to get T, and
we removed one rock r2 from T to get U. Also, U has no rocks that are
less than a distance of d apart, because it doesn’t include the offending
rock r2. That is, U is an optimal solution, just like S. Crucially, U con-
tains rock r! So greedy agrees with optimal solution U to include r.

Let’s give our feasibility tester a whirl before we continue. Here’s how to
call it on the example that we used throughout this section:

int main(void) {

int rocks[4] = {2, 4, 5, 8};

printf("%d\n", can_make_min_distance(6, rocks, 4, 2, 12));

return 0;

}

The code above asks whether it’s possible to achieve a minimum jump
distance of at least 6 by removing two rocks. The answer is “no,” so you
should see 0 (false) as the output. Change the first argument from 6 to 3, and
now you’re asking whether a minimum jump distance of at least 3 is feasible.
Run the program again, and you should see 1 (true).

Excellent: now we have a way to check feasibility. It’s time to bring out
binary search to give us optimality.

Searching for a Solution
To use binary search, let’s adapt the code from Listing 7-3. In Feeding Ants,
we had to achieve four digits of accuracy after the decimal point. Here, how-
ever, we’re looking to optimize the minimum jump distance, and that’s guar-
anteed to be an integer value because all rocks are at integer locations. So
we’ll stop when high and low are within one, rather than within the four deci-
mal digits. Listing 7-5 gives the new code.

// bugged!

void solve(int rocks[], int num_rocks,

int num_remove, int length) {

int low, high, mid;

low = 0;

high = length;

while (high - low > 1) {

mid = (low + high) / 2;

¶ if (can_make_min_distance(mid, rocks, num_rocks, num_remove, length))

· low = mid;
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else

¸ high = mid;

}

printf("%d\n", high);

}

Listing 7-5: Searching for the optimal solution (bugged!)

On each iteration, we calculate the midpoint mid of the range, and we
use our helper function to test its feasibility ¶.

If mid is feasible, then everything less than mid is also feasible, so we
update low to cut off the low half of the range ·. Notice the contrast to
Listing 7-3: there, a feasible mid means that everything greater than mid is
feasible, so we cut off the high half of the range instead.

If mid is infeasible, then everything greater than mid is also infeasible, so
we update high to cut off the high half of the range ¸.

Unfortunately, this binary search is not correct. To see why, run it on
this test case:

12 4 2

2

4

5

8

You should get an output of 5, but the optimal solution is in fact 4.
Ahh, I know what to do. Let’s change the printf call at the bottom to

output low instead of high. When the loop terminates, low will be one less
than high, so this change will result in an output of 4 instead of 5. The new
code is given in Listing 7-6.

// bugged!

void solve(int rocks[], int num_rocks,

int num_remove, int length) {

int low, high, mid;

low = 0;

high = length;

while (high - low > 1) {

mid = (low + high) / 2;

if (can_make_min_distance(mid, rocks, num_rocks, num_remove, length))

low = mid;

else

high = mid;

}

printf("%d\n", low);

}

Listing 7-6: Searching for the optimal solution (still bugged!)
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That fixes the problematic test case, but now we get this test case wrong:

12 0 0

This is a perfectly valid test case, if a little strange: the length of the river
is 12, and there are no rocks. The maximum achievable minimum jump dis-
tance is 12, but our binary search returns 11 on this example. Again, we are
off by one.

Binary search is legendarily difficult to implement correctly. Should
that > be a >=? Should that be a mid or a mid + 1? Do we want low + high or
low + high + 1? If you keep on with binary search problems, you’ll grapple
with all of this eventually. I don’t know any other algorithm with the bug-
density potential of binary search.

Let’s be a little more careful for our next attempt. Suppose we knew at
all times that low and everything smaller than low are feasible and that high
and everything larger than high are infeasible. Such a claim is called an
invariant, which simply means that it’s always true as the code runs.

When the loop terminates, low will be one less than high. If we’ve man-
aged to maintain our invariant, then we know that low is feasible. We also
know that nothing greater than low can be feasible: high is next, and the in-
variant tells us that high is infeasible. So low will be the maximum feasible
value, and we’ll need to output low.

However, in all of this we assume that we can make this invariant true at
the beginning of the code and keep it true at all times thereafter.

Let’s start with the code above the loop. This code does not necessarily
make the invariant true:

low = 0;

high = length;

Is low feasible? Certainly! A minimum jump distance of at least 0 is al-
ways achievable, because every jump has a nonzero distance. Is high infea-
sible? Well, it could be, but what if we can jump the whole river after we
remove the allowed number of rocks? Then length is feasible, and our invari-
ant is broken. Here’s a better initialization:

low = 0;

high = length + 1;

Now high certainly isn’t feasible: we can’t achieve a minimum jump dis-
tance of length + 1 when the river is only of length length.

We next have to figure out what to do for the two possibilities in the
loop. If mid is feasible, then we can set low = mid. The invariant is okay, be-
cause low and everything to its left are feasible, and, if mid is not feasible,
then we can set high = mid. The invariant is again okay, because high and
everything to its right are infeasible. Thus, in both cases, we maintain the
invariant.

252 Chapter 7



We now see that nothing in the code invalidates the invariant, and so
we’re safe to output low when the loop terminates. The correct code is given
in Listing 7-7.

void solve(int rocks[], int num_rocks,

int num_remove, int length) {

int low, high, mid;

low = 0;

high = length + 1;

while (high - low > 1) {

mid = (low + high) / 2;

if (can_make_min_distance(mid, rocks, num_rocks, num_remove, length))

low = mid;

else

high = mid;

}

printf("%d\n", low);

}

Listing 7-7: Searching for the optimal solution

For a river of length L, we’re calling can_make_min_distance a total of logL
times. If we have n rocks, then can_make_min_distance (Listing 7-4) takes O(n)
time. Therefore, our solution to this problem is an O(n logL) algorithm.

Reading the Input
We’re nearly there. All that’s left is to read the input and call solve. The code
is provided in Listing 7-8.

#define MAX_ROCKS 50000

int compare(const void *v1, const void *v2) {

int num1 = *(const int *)v1;

int num2 = *(const int *)v2;

return num1 - num2;

}

int main(void) {

static int rocks[MAX_ROCKS];

int length, num_rocks, num_remove, i;

scanf("%d%d%d", &length, &num_rocks, &num_remove);

for (i = 0; i < num_rocks; i++)

scanf("%d", &rocks[i]);

¶ qsort(rocks, num_rocks, sizeof(int), compare);

solve(rocks, num_rocks, num_remove, length);

Binary Search 253



return 0;

}

Listing 7-8: The main function for reading the input

We’ve been analyzing this problem by thinking about locations of rocks
from left to right, that is, from smallest location to largest location. However,
the rocks could come from the input in any order. Nothing in the problem
description guarantees that they’ll be sorted.

It’s been a while, but we did use qsort to sort nodes in Chapter 2 when
solving the Descendant Distance problem. Sorting rocks is a little easier
than sorting those nodes. Our comparison function compare takes pointers
to two integers, and it returns the result of subtracting the second from the
first. This leads to a negative integer if the first integer is smaller than the
second, 0 if the two integers are equal, and a positive integer if the first inte-
ger is larger than the second. We use qsort with this comparison function to
sort the rocks ¶. We then call solve with the array of sorted rocks.

If you submit this solution to the judge, then you should see that all test
cases pass.

Problem 3: Living Quality
So far in this chapter, we’ve seen two approaches to check feasibility: a re-
cursive traversal of a tree and a greedy algorithm. Now, we’ll see an example
where we’ll use ideas from dynamic programming (Chapter 3) to efficiently
check feasibility.

This is the first problem in the book where we don’t read from standard
input or write to standard output. We’ll write a function with a name speci-
fied by the judge. In lieu of standard input, we’ll use an array passed by the
judge. In lieu of standard output, we’ll return the correct value from our
function. This is rather nice: we won’t have to bother with scanf and printf

at all!
Incidentally, this will also be our first problem from a world champi-

onship programming competition (IOI 2010). You’ve got this!
This is DMOJ problem ioi10p3.

The Problem
A city consists of a rectangular grid of blocks. Each block is identified by its
row and column coordinates. There are r rows numbered 0 to r – 1 from top
to bottom and c columns numbered 0 to c – 1 from left to right.

Each block has been given a distinct quality rank between 1 and rc. For
example, if we have seven rows and seven columns, then the ranks of each
block will be some permutation of the numbers from 1 to 49. See Table 7-1
for an example city.

254 Chapter 7



Table 7-1: A Sample City

0 1 2 3 4 5 6

0 48 16 15 45 40 28 8

1 20 11 36 19 24 6 33

2 22 39 30 7 9 1 18

3 14 35 2 13 31 12 46

4 32 37 21 3 41 23 29

5 42 49 38 10 17 47 5

6 43 4 34 25 26 27 44

The median quality rank of a rectangle is the quality rank such that half of
the quality ranks in the rectangle are smaller and half are larger. For exam-
ple, consider the five-row-by-three-column (5×3) rectangle in the top left of
Table 7-1. It consists of 15 quality ranks: 48, 16, 15, 20, 11, 36, 22, 39, 30, 14,
35, 2, 32, 37, and 21. The median quality rank is 22, because seven numbers
are less than 22 and the other seven are greater.

We’ll be provided integers h and w that specify the height (number of
rows) and width (number of columns) of candidate rectangles. Our task is to
identify the minimum median quality rank of any rectangle with h rows and
w columns. (In this problem, low-quality ranks correspond to high qualities;
finding the minimum median quality rank therefore corresponds to finding
a high-quality living area of the city.)

Let’s use (x, y) to refer to row x, column y. Suppose h is 5 and w is 3.
Then, for the city in Table 7-1, we would identify 13 as the minimum me-
dian quality rank. The rectangle whose median quality rank is 13 is the one
whose top-left coordinate is (1, 3) and whose bottom-right coordinate
is (5, 5).

Input
There’s nothing to read from standard input. Everything we need will come
from the judge through function parameters. Here’s the signature for the
function that we’ll write:

int rectangle(int r, int c, int h, int w, int q[3001][3001])

Here, r and c are the numbers of rows and columns in the city, respec-
tively. Similarly, h and w are the numbers of rows and columns in the can-
didate rectangles, respectively; h will be at most r and w will be at most c.
It’s also guaranteed that h and w will be odd numbers. (Why is that? Since
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multiplying two odd numbers results in an odd number, hw, the number of
blocks in a candidate rectangle, will be an odd number. The median is pre-
cisely defined in this case: the quality rank such that half of the remaining
quality ranks are smaller and the other half are larger. What if we had an
even number of quality ranks, such as the four ranks 2, 6, 4, and 5? What
would the median be? We’d have to choose between 4 and 5. The problem
author has spared us this choice.)

The final parameter q gives the quality rank of the blocks. For example,
q[2][3] gives the quality of the block at row 2, column 3. Notice how the di-
mensions on q tell us the maximum number of rows and columns in the city:
3,001, in each case.

Output
We won’t produce anything on standard output. Instead, from the rectangle

function just described, we’ll return the minimum median quality rank.
The time limit for solving the test case is 4.5 seconds.

Sorting Every Rectangle
It’s hard to make much progress toward an efficient solution that doesn’t
use binary search, but we’ll try here, anyway. It’ll give us practice looping
through all of the candidate rectangles. We’ll get to binary search in the next
subsection.

To start, we need a couple of constants and a type definition:

#define MAX_ROWS 3001

#define MAX_COLS 3001

typedef int board[MAX_ROWS][MAX_COLS];

Much as we did in Chapter 5, we’ll use board whenever we need a two-
dimensional array of the correct size.

Suppose you are given the top-left and bottom-right coordinates of a
rectangle and asked to determine the median quality rank of its blocks. How
can you do it?

Sorting can help. Sort the quality ranks from smallest to largest, and
then pick out the element at the middle index. For example, say we have
these 15 quality ranks again: 48, 16, 15, 20, 11, 36, 22, 39, 30, 14, 35, 2, 32,
37, and 21. If we sort them, we get 2, 11, 14, 15, 16, 20, 21, 22, 30, 32, 35,
36, 37, 39, and 48. There are 15 quality ranks, so all we do is take the eighth
one, 22, and that’s our median.

There are slightly faster algorithms for finding the median directly, with-
out taking the scenic route through sorting. Sorting gives us an algorithm
that takes O(n logn) time to find the median; there’s a sophisticated O(n) al-
gorithm for finding the median that I encourage you to look up if you are
interested.
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We won’t go there, though. What we do in this subsection is going to be
so slow that no improved algorithm for finding the median is going to be of
benefit.

Listing 7-9 gives the code for finding the median of a given rectangle.

int compare(const void *v1, const void *v2) {

int num1 = *(const int *)v1;

int num2 = *(const int *)v2;

return num1 - num2;

}

int median(int top_row, int left_col, int bottom_row, int right_col,

board q) {

static int cur_rectangle[MAX_ROWS * MAX_COLS];

int i, j, num_cur_rectangle;

num_cur_rectangle = 0;

for (i = top_row; i <= bottom_row; i++)

for (j = left_col; j <= right_col; j++) {

cur_rectangle[num_cur_rectangle] = q[i][j];

num_cur_rectangle++;

}

¶ qsort(cur_rectangle, num_cur_rectangle, sizeof(int), compare);

return cur_rectangle[num_cur_rectangle / 2];

}

Listing 7-9: Finding the median of a given rectangle

The first four parameters of median delimit the rectangle by specifying
the top-left row and column and the bottom-right row and column. The fi-
nal parameter, q, holds the quality ranks. We use the one-dimensional array
cur_rectangle to accumulate the quality ranks for the rectangle. The nested
for loops go through each block in the rectangle and add the block’s quality
rank to cur_rectangle. After corralling the quality ranks, we’re all set to feed
them to qsort ¶. Then we know exactly where the median is—it’s in the mid-
dle of the array—so we just return it.

With that function in hand, we can now proceed to loop through each
candidate rectangle, keeping track of the one whose median quality rank is
the smallest. Check out Listing 7-10 for the code.

int rectangle(int r, int c, int h, int w, board q) {

int top_row, left_col, bottom_row, right_col;

¶ int best = r * c + 1;

int result;

for (top_row = 0; top_row < r - h + 1; top_row++)

for (left_col = 0; left_col < c - w + 1; left_col++) {

· bottom_row = top_row + h - 1;

¸ right_col = left_col + w - 1;

¹ result = median(top_row, left_col, bottom_row, right_col, q);

if (result < best)
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best = result;

}

return best;

}

Listing 7-10: Finding the smallest median of all candidate rectangles

The variable best tracks the best (smallest) median that we’ve found so
far. We start it off with a big value, bigger than the median of any candidate
rectangle ¶. There’s no way for a rectangle to have a median of r * c + 1:
that would mean that half of its quality ranks were larger than r * c, but
by the problem description, no quality ranks can be larger than r * c. The
nested for loops consider each possible top-left coordinate for a rectangle.
That gives us the top row and left column, but we also need the bottom row
and right column in order to call median. To calculate the bottom row, we
take the top row, add h (the number of rows in the candidate rectangles),
and then subtract 1 ·. It’s really easy to make an off-by-one error here, but
that - 1 is required. If the top row is 4 and h is 2, then we want the bottom
row to be 4 + 2 – 1 = 5; if we made the bottom row be 4 + 2 = 6, then we’d
have a rectangle with three rows instead of the desired two. We use a similar
calculation to find the right column ¸. With the four coordinates available,
we call median to calculate the median of the rectangle ¹. The remainder of
the code updates best if we’ve found a better median.

We’re done with this solution. There’s no main function, because the
judge calls rectangle directly, but the absence of main means that we can’t test
our code on our own computer. For testing purposes, you can introduce a
main function, but don’t keep that in there when you submit to the judge.
Here’s an example main function on the city in Table 7-1:

int main(void) {

static board q = {{48, 16, 15, 45, 40, 28, 8},

{20, 11, 36, 19, 24, 6, 33},

{22, 39, 30, 7, 9, 1, 18},

{14, 35, 2, 13, 31, 12, 46},

{32, 37, 21, 3, 41, 23, 29},

{42, 49, 38, 10, 17, 47, 5},

{43, 4, 34, 25, 26, 27, 44}};

int result = rectangle(7, 7, 5, 3, q);

printf("%d\n", result);

return 0;

}

You should see an output of 13 when you run the program.
Feel free to submit our solution, minus the main function, to the judge.

It’ll pass a few test cases but time-out on the rest.
To get a feel for why our code is so slow, let’s focus on the case where r

and c are both the same number m. To exhibit the worst case, take h and w
to both be m/2. (We don’t want the rectangles to be too big, because then
there won’t be many rectangles; and we don’t want them to be too small,
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because then each is easy to process.) The slowest part of our median func-
tion is the call to qsort. It’s given an array with m/2 × m/2 = m2/4 values.
On an array of n values, qsort takes n logn steps. Replacing n by m2/4 gives
(m2/4) log(m2/4) = O(m2 logm). So we’re already slower than quadratic—and
all we’ve done is calculate the median for one rectangle! The rectangle func-
tion calls median a total of m2/4 times, so our total runtime is O(m4 logm).
That power of 4 relegates this solution to only very small problem instances.

There are two bottlenecks here. The first is sorting each rectangle. The
second is doing a lot of work from scratch for each rectangle. Using a binary
search disposes the former, and a neat dynamic-programming trick disposes
the latter.

Using Binary Search
Why should we be optimistic that binary search will lead to a speedup here?
First, in the previous subsection, we saw that finding optimality head-on is
a costly endeavor; our approach that piggybacked on sorting was slightly
slower than an m4 algorithm. Second, we have another example of a prob-
lem where all infeasible solutions come first and are followed by all feasible
solutions. Suppose I tell you that there is no rectangle with median quality
rank of at most five. Then there’d be no point looking for rectangles with
median quality five, or four, or three, or anything else less than five. Con-
versely, suppose I tell you that there is a rectangle with median quality rank
of at most five. Now, there’d be no point looking for rectangles with median
quality of six, or seven, or anything greater than five. This is tailor-made bi-
nary search territory.

In the Feeding Ants problem, small values were infeasible and large
values were feasible. In the River Jump problem, small values were feasible
and large values were infeasible. Here, we’re back in the Feeding Ants case:
small values are infeasible and large values are feasible. We’ll therefore need
a change to the River Jump invariant, flipping the locations of the feasible
and infeasible portions of the solution space.

Here’s the invariant that we’ll use: low and everything smaller than low

are infeasible; high and everything larger than high are feasible. This tells us
that we should return high when we’re done, as it will be the smallest feasible
value. The code, in Listing 7-11, is otherwise very similar to Listing 7-7.

int rectangle(int r, int c, int h, int w, board q) {

int low, high, mid;

low = 0;

high = r * c + 1;

while (high - low > 1) {

mid = (low + high) / 2;

if (can_make_quality(mid, r, c, h, w, q))

high = mid;

else

low = mid;

}
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return high;

}

Listing 7-11: Searching for the optimal solution

To finish the job, we need an implementation of can_make_quality to test
feasibility.

Testing Feasibility
Here’s the signature for the feasibility-checking function that we’ll write:

int can_make_quality(int quality, int r, int c, int h, int w, board q)

In “Sorting Every Rectangle” on page 256, we were saddled by having to
calculate the median quality rank of each rectangle. Now this is no longer
the case: we’re content to determine whether the median value of some rect-
angle is at most some cutoff quality rank value.

This is an easier problem for which a sorting step is unnecessary. Here’s
the key observation: the specific values themselves no longer matter; all that
matters is the relationship between each value and quality. To exploit this
observation, we’ll replace all values that are less than or equal to quality by
–1 and all values greater than quality by 1. We then add up these –1 and 1
values for a given rectangle. If we have at least as many –1 values as 1 val-
ues (that is, there are at least as many small values as large values, relative to
quality), then the sum will be zero or negative, and we can conclude that this
rectangle has a median quality rank of quality or less.

Let’s work an example. Here are the 15 quality ranks again for the 5×3
rectangle in the top left of Table 7-1: 48, 16, 15, 20, 11, 36, 22, 39, 30, 14,
35, 2, 32, 37, and 21. Does this rectangle have a median quality rank of 16 or
less? Take each value and replace it by –1 if it’s less than or equal to 16 and
1 if it’s greater than 16. Here are the new values: 1, –1, –1, 1, –1, 1, 1, 1, 1,
–1, 1, –1, 1, 1, and 1. If we add these up, we get a value of 5. This means that
there are five more large values than small values, and we must conclude
that a median of 16 or smaller is not possible for this rectangle. If we wanted
to know whether a median of 30 was feasible, we’d get this after replacing
the numbers by –1s and 1s: 1, –1, –1, –1, –1, 1, –1, 1, –1, –1, 1, –1, 1, 1, and
–1. Adding these up, we get a total of –3.

Aha! So 30 is a feasible median. Crucially, we’re making this feasible–
infeasible decision with no sorting at all.

We need to loop through each rectangle, testing whether it has a median
quality rank of quality or less. Listing 7-12 does exactly this.

int can_make_quality(int quality, int r, int c, int h, int w, board q) {

¶ static int zero_one[MAX_ROWS][MAX_COLS];

int i, j;

int top_row, left_col, bottom_row, right_col;

int total;
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for (i = 0; i < r; i++)

for (j = 0; j < c; j++)

· if (q[i][j] <= quality)

zero_one[i][j] = -1;

else

zero_one[i][j] = 1;

for (top_row = 0; top_row < r - h + 1; top_row++)

for (left_col = 0; left_col < c - w + 1; left_col++) {

bottom_row = top_row + h - 1;

right_col = left_col + w - 1;

total = 0;

for (i = top_row; i <= bottom_row; i++)

for (j = left_col; j <= right_col; j++)

¸ total = total + zero_one[i][j];

if (total <= 0)

return 1;

}

return 0;

}

Listing 7-12: Testing the feasibility of quality

We can’t just obliterate the q array with –1s and 1s, because then we
couldn’t use the original quality ranks to later test other values of quality.
Therefore, we use a new array to hold the –1s and 1s ¶. Notice how this ar-
ray is filled in based on whether each value is less than or equal to (–1) or
greater than (1) the cutoff quality parameter that we’re checking ·.

We then go through each rectangle, just as we did in Listing 7-10. We
add up all of its –1 and 1 values ¸ and return 1 (true) if it has a median qual-
ity rank that’s small enough.

All right! We have sidestepped the sorting—crafty, eh? What we did in
this subsection is crucial to a fast solution to solving our problem, but we’re
not there yet, because if you count the number of nested loops, you’ll see
that there are four of them.

At the end of “Sorting Every Rectangle” we observed that our first
solution—with no binary search anywhere!—was a very slow O(m4 logm),
where m is the number of rows or columns in the city. Here, our feasibility
check is already m4; multiply by the log factor for the binary search, and it’s
not clear that we’ve made any progress.

Oh, but we have! It’s just locked up behind too many nested loops, in-
volving too much recomputation. Dynamic programming is now going to
take us the rest of the way.

A Quicker Way to Test Feasibility
Suppose we start with Table 7-1 and are interested in whether any 5×3 rect-
angle has a median quality rank of 16 or less. Changing all values less than
or equal to 16 to –1 and all values greater than 16 to 1 results in Table 7-2.
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Table 7-2: A City with Quality Ranks Replaced

0 1 2 3 4 5 6

0 1 –1 –1 1 1 1 –1

1 1 –1 1 1 1 –1 1

2 1 1 1 –1 –1 –1 1

3 –1 1 –1 –1 1 –1 1

4 1 1 1 –1 1 1 1

5 1 1 1 –1 1 1 –1

6 1 –1 1 1 1 1 1

We might begin by summing the elements of the 5×3 rectangle whose
top-left coordinate is (0, 0). As we saw in the previous section, the sum of
that rectangle is 5. Next, maybe we want to sum the elements of the 5×3
rectangle whose top-left coordinate is (0, 1). Adding up all 15 numbers here
is what we would have done in the previous subsection. However, doing so
fails to lean on the work we did to compute the sum of the first rectangle.
Indeed, this second rectangle has 10 values in common with the first rectan-
gle. We should be able to prevent this kind of duplication of effort for this
and all other rectangles.

Dodging the repeated work here amounts to efficiently solving what’s
known as a two-dimensional range sum query. The one-dimensional case uses
similar ideas, but in a simpler context, so we’ll briefly study that before re-
turning to finish the Living Quality problem. (About half of Chapter 8 will
be devoted to range queries, so stay tuned!)

One-Dimensional Range Sum Queries
Here’s a one-dimensional array:

Index 0 1 2 3 4 5 6
Value 6 2 15 9 12 4 11

If asked to find the sum of the array from index 2 to index 5, we could
directly sum the values in that range: 15 + 9 + 12 + 4 = 40. That’s not very fast,
and it would be particularly unfortunate if we were asked for the sum of the
entire array. However, if we had to answer just a few such queries, we could
get away with answering each by summing the appropriate values.

Now imagine that we’re getting peppered by hundreds or thousands of
these queries. It makes sense to have done a little up-front work, once, if it
means that we can then answer the queries more quickly.
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Consider the “index 2 to 5” query. What if we could look up the sum
from index 0 to 5? That sum is 48. That’s not 40, the answer that we want.
Far from useless, though, is that 48 is quite close to what we need. It’s only
wrong because it includes the values at index 0 and index 1, stuff that we
now need to exclude. We could do that if we could look up the sum from
index 0 to 1. That sum is 8. If we subtract this 8 from 48, we get 40.

What’s needed, then, is a new array, one where index i holds the sum
of all values from index 0 to index i. This new array is included in the Prefix
Sum row in the following table:

Index 0 1 2 3 4 5 6
Value 6 2 15 9 12 4 11

Prefix Sum 6 8 23 32 44 48 59

No matter the query, we can now quickly answer it using the prefix sum
array: to calculate the sum of the range from index a to b, take the value at
index b and subtract the value at index a – 1. For 2 to 5, we get 48 – 8 = 40,
and for 1 to 6, we get 59 – 6 = 53. These are constant-time answers, for eter-
nity, and all we had to do was one preprocessing pass over the array.

Two-Dimensional Range Sum: Queries
Let’s return to the two-dimensional world of our quality ranks. Summing
the elements of each rectangle is too slow, so we’ll extend what we did in
one dimension to two dimensions. Specifically, we’ll produce a new array,
where index (i, j) is the sum of the elements of the rectangle whose top-left
coordinate is (0, 0) and whose bottom-right coordinate is (i, j).

Let’s look again at Table 7-2.

0 1 2 3 4 5 6

0 1 –1 –1 1 1 1 –1

1 1 –1 1 1 1 –1 1

2 1 1 1 –1 –1 –1 1

3 –1 1 –1 –1 1 –1 1

4 1 1 1 –1 1 1 1

5 1 1 1 –1 1 1 –1

6 1 –1 1 1 1 1 1
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The corresponding prefix array is in Table 7-3. (It may seem a little
strange to call it a “prefix array” here, but let’s stick with it to match the
terminology from the one-dimensional case.)

Table 7-3: An Array for Two-Dimensional Range Sum
Queries

0 1 2 3 4 5 6

0 1 0 –1 0 1 2 1

1 2 0 0 2 4 4 4

2 3 2 3 4 5 4 5

3 2 2 2 2 4 2 4

4 3 4 5 4 7 6 9

5 4 6 8 6 10 10 12

6 5 6 9 8 13 14 17

Let’s make sure we know what this array tells us before worrying about
how to quickly build it. The value in row 4, column 2 gives the sum of the
values of the rectangle whose top-left coordinate is (0, 0) and whose bottom-
right coordinate is (4, 2). We have seen in “Testing Feasibility” that this sum
is 5 and, indeed, that’s what this array has there.

How could we compute that (4, 2) value of 5 using other values that
we’ve already computed? We need to start with its value in Table 7-2, add
what’s in range above it, and add everything in its row to the left. We can do
this with judicious use of the array in Table 7-3, as shown in Table 7-4.

Table 7-4: Quickly Calculating a Given Sum

0 1 2 3 4 5 6

0 • ■ • ■ •
1 • ■ • ■ •
2 • ■ • ■ •
3 • ■ • ■ •
4 ■ ■ 1

5

6
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We need to start with the 1, capture the cells that include a circle (those
above), capture the cells that include a square (those to the left), and add
them all up. We can capture the cells that include a circle by looking up
the element at row 3, column 2. We can also capture the cells that include
a square by looking up the element at row 4, column 1. However, adding
those together double-counts the cells that include both a circle and a square
(those both above and to the left), but this is not an issue because the ele-
ment at row 3, column 1 captures exactly those circle-and-square cells, whose
subtraction undoes the double-counting. In all, we have 1 + 2 + 4 – 2 = 5,
as desired. As long as we work from top to bottom and left to right, we can
build this array with only two additions and one subtraction per cell.

We now know how to build an array like that in Table 7-3. So what?
The “so what” is that it enables us to quickly calculate the sum of any

rectangle. Suppose we wanted the sum of the rectangle whose top-left coor-
dinate is (1, 3) and whose bottom-right coordinate is (5, 5). We can’t just use
the value 10 in row 5, column 5 of Table 7-3. That captures everything in the
desired rectangle but also includes more than we want: it includes elements
that are outside (above or to the left) of our desired rectangle. However, just
as in the one-dimensional case, we’ll be able to adjust that value to include
only the elements in the rectangle. See Table 7-5 for how to do this. In this
table, the cells of the desired rectangle are marked by stars.

Table 7-5: Quickly Calculating the Sum of a Rectangle

0 1 2 3 4 5 6

0 • ■ • ■ • ■ • • •
1 ■ ■ ■ ⋆ ⋆ ⋆

2 ■ ■ ■ ⋆ ⋆ ⋆

3 ■ ■ ■ ⋆ ⋆ ⋆

4 ■ ■ ■ ⋆ ⋆ ⋆

5 ■ ■ ■ ⋆ ⋆ ⋆

6

This time, we need to subtract the cells that include a circle and the cells
that include a square. We can get the cells with a circle from row 0, column
5 and the cells with a square from row 5, column 2. But subtracting both will
double-subtract the cells that have both a circle and a square, so we need to
add back the cell in row 0, column 2. That is, we have 10 – 2 – 8 + (–1) = –1,
which is the sum of the rectangle.
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Here’s a general expression for this calculation:

sum[bottom_row][right_col] - sum[top_row - 1][right_col] -

sum[bottom_row][left_col - 1] + sum[top_row - 1][left_col - 1]

This will be used in the code presented next.

Two-Dimensional Range Sum: Code
We’re ready to put it all together—the –1 and 1 idea, building the prefix ar-
ray, and using the prefix array for fast rectangle sums—in Listing 7-13.

int can_make_quality(int quality, int r, int c, int h, int w, board q) {

static int zero_one[MAX_ROWS][MAX_COLS];

static int sum[MAX_ROWS + 1][MAX_COLS + 1];

int i, j;

int top_row, left_col, bottom_row, right_col;

int total;

¶ for (i = 0; i < r; i++)

for (j = 0; j < c; j++)

if (q[i][j] <= quality)

zero_one[i][j] = -1;

else

zero_one[i][j] = 1;

for (i = 0; i <= c; i++)

sum[0][i] = 0;

for (i = 0; i <= r; i++)

sum[i][0] = 0;

· for (i = 1; i <= r; i++)

for (j = 1; j <= c; j++)

sum[i][j] = zero_one[i - 1][j - 1] + sum[i - 1][j] +

sum[i][j - 1] - sum[i - 1][j - 1];

¸ for (top_row = 1; top_row <= r - h + 1; top_row++)

for (left_col = 1; left_col <= c - w + 1; left_col++) {

bottom_row = top_row + h - 1;

right_col = left_col + w - 1;

total = sum[bottom_row][right_col] - sum[top_row - 1][right_col] -

sum[bottom_row][left_col - 1] + sum[top_row - 1][left_col - 1];

if (total <= 0)

return 1;

}

return 0;

}

Listing 7-13: Testing the feasibility of quality quickly
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Step 1 is to build the zero_one array ¶, exactly as we did in Listing 7-12.
Step 2 is to build the prefix sum array sum ·. We’ll use indices that start at
1, rather than 0, so that we don’t have to worry about staying within bounds
when we later process cells on the edges of the array. Finally, Step 3 is to use
the prefix sum array to quickly calculate the sum of each rectangle ¸. Notice
how each rectangle can be summed in constant time here! We paid for the
preprocessing work of Step 2, but that work pays for itself every time we sum
a rectangle without summing its elements.

Compared to Listing 7-12, we’ve removed two levels of nesting from the
for loops. Therefore, this is an O(m2 logm) algorithm, which is fast enough
to pass all of the test cases. Go for it! Then take a well-deserved break, be-
cause we’ve got one more big problem to solve before we’re through with
this chapter.

Problem 4: Cave Doors
Another IOI championship problem? Bring it on! This one is unique to the
chapter because it uses binary search not to find an optimal solution, but to
quickly zone-in on a desired element. As we did in the Living Quality prob-
lem, we won’t read anything from standard input, and we won’t write any-
thing to standard output. Rather, we’ll learn about the problem instance
and submit our answer through calls to functions provided by the judge. As
you read the problem description, try to anticipate why binary search is still
appropriate here.

This is DMOJ problem ioi13p4.

The Problem
You are at the entrance to a long, narrow cave, and you want to get through
the cave to the other side. There are n doors that you must pass through:
the first door is Door 0, the second is Door 1, and so on.

Each door can be open or closed. You can walk through any open door,
but you can’t get past or see through a closed door. So if Door 0 and Door 1
are open but Door 2 is closed, then you progress to Door 2 but no further.

At the entrance to the cave is a panel of n switches. Like the doors, the
switches are numbered starting from 0. Each switch can be in the up (0) po-
sition or the down (1) position. Each switch is associated with a different
door, and it determines whether that door is open or closed. If a switch is
set to the correct position, then its associated door is open; otherwise, its
associated door is closed. You don’t know which switch is associated with
which door, and you don’t know whether the switch should be up or down
for the door to be open. For example, maybe Switch 0 is associated with
Door 5, and the switch has to be down for Door 5 to be open. And maybe
Switch 1 is associated with Door 0, and the switch has to be up for Door 0 to
be open.

You can set the switches to whatever positions you choose and then walk
through the cave to determine the first door that is closed. You have the
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stamina to do this at most 70,000 times. Your goal is to determine both the
correct position (0 or 1) and the associated door for each switch.

We have to write the function with this signature:

void exploreCave(int n)

where n is the number of doors and switches (between 1 and 5,000). To im-
plement this function, you call two functions provided by the judge. These
are described next.

Input
We’re not reading anything from standard input. The only way to learn
about the problem instance is to call the function tryCombination provided
by the judge. Its signature is

int tryCombination(int switch_positions[])

The parameter switch_positions is an array of length n giving the posi-
tion (0 or 1) of each switch. That is, switch_positions[0] gives the position of
Switch 0, switch_positions[1] gives the position of Switch 1, and so on. The
tryCombination function simulates what would happen if we set the switches as
in switch_positions and walked through the cave. If some door is still closed,
it returns the number of the first closed door; otherwise, it returns -1 to in-
dicate that all doors are open.

Output
We’re not writing anything to standard output. Instead, when we’re ready,
we submit our answer by calling the function answer provided by the judge.
Its signature is

void answer(int switch_positions[], int door_for_switch[])

We have one shot at this: when we call answer, we can’t then do anything
else, so we had better submit the correct answer the first time. The parame-
ter switch_positions is our proposed switch positions, in the same format as
for tryCombination. The parameter door_for_switch is our proposed association
between switches and doors: door_for_switch[0] gives the door for Switch 0,
door_for_switch[1] gives the door for Switch 1, and so on.

The number of calls to tryCombination, rather than execution time, is the
scarce resource here. We’re allowed to make at most 70,000 calls; if we make
more, then our program is terminated and we do not solve the problem.

Solving a Subtask
The author of this problem has split the points across five subtasks. The fifth
subtask is the problem in its full generality as I’ve presented it here. The
other subtasks impose additional constraints on the problem instances to
make the problem easier.
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I like when problem authors use subtasks, especially when I’m struggling
to solve a problem. I can then target each subtask in turn, improving my so-
lution as I go, until I solve the full problem. Moreover, if I can’t solve the full
problem, then I still get points for the subtasks that I was able to solve.

The first subtask in the Cave Doors problem is to solve the problem
when each switch i is associated with door number i. That is, Switch 0 is as-
sociated with Door 0, Switch 1 is associated with Door 1, and so on. What we
need to deduce is the correct position (0 or 1) for each switch.

Don’t worry: we won’t stop with this problem until we solve it fully. But
let’s start by solving Subtask 1 here, so we can focus on correctly calling the
tryCombination and answer judge functions before we tackle the other aspects
of the problem.

We don’t have access to the code for the two judge functions, so we’re
not going to be able to locally compile and run our program. (If you’d like
to get things set up locally, you can google “IOI 2013 tasks” and find the test
data and templates for the Cave Doors problem, but you won’t need to do
any of that to follow the discussion here.) Whenever we want to test what
we’re doing, we can submit our code to the judge. In particular, once we
successfully solve Subtask 1 and submit our code, the judge should give us
some points. The code for Subtask 1 is given in Listing 7-14.

void exploreCave(int n) {

int switch_positions[n], door_for_switch[n];

int i, result;

for (i = 0; i < n; i++) {

¶ switch_positions[i] = 0;

· door_for_switch[i] = i;

}

for (i = 0; i < n; i++) {

¸ result = tryCombination(switch_positions);

if (result == i) // door i is closed

¹ switch_positions[i] = 1;

}

º answer(switch_positions, door_for_switch);

}

Listing 7-14: Solving Subtask 1

To begin, we use a for loop to set each switch position to 0 ¶ and asso-
ciate Door i with Switch i ·. We’ll update the switch positions when needed,
but (as per the subtask constraints) we’ll have no reason to touch the door
associations again.

The second for loop loops through each switch. Its job is to determine
if the current switch should stay in Position 0 or change to Position 1. Let’s
work through the first iteration, when i is 0. We call tryCombination ¸, which
returns to us the number of the first door that is closed. If it returns 0, then
Switch 0 is not set correctly; if Switch 0 were set correctly, Door 0 would be
open, and tryCombination would return a number other than 0. So, if Door 0
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is closed, then we change the position of Switch 0 from 0 to 1 ¹. That opens
Door 0, and we can move on to Door 1.

When i is 1, we again call tryCombination. We won’t get a result of 0, be-
cause our code has already done the work to guarantee that Door 0 is open.
If we get a result of 1, it means that Door 1 is closed, and we have to change
Switch 1 from Position 0 to Position 1.

Generalizing, we can say that, when we start a new iteration of the loop,
all of the doors up to and including Door i - 1 are open. If Door i is closed,
then we change the position of Switch i from 0 to 1; otherwise, Door i is al-
ready open, and Switch i is already correctly set.

Once we’re finished with that second for loop, we’ve figured out the
correct position of each switch. We communicate this to the judge through
the call to the answer function º.

I suggest submitting this code to the judge to verify that you’re correctly
calling tryCombination and answer. Once you’re ready, we’ll move on to solve
the real deal.

Using Linear Search
It’s a good thing we solved Subtask 1, beyond the fact of getting our feet
wet. That’s because there’s a nice strategy in our solution that paves our way.
That strategy is to figure out how to open each door and never let that door
interfere again.

In our solution to Subtask 1, we focus first on Door 0 and get that door
open. Once it’s open, we never mess with its switch again. With Door 0 out
of the way, we next focus on getting Door 1 open. Once Door 1 is open, we
never mess with its switch again. As far as we are concerned, Doors 0 and 1
are gone; the Doors may as well start with Door 2. We continue in this way,
knocking off one door after another, until all doors are open.

In Subtask 1, we knew exactly which door was associated with each of
the switches. There was no searching required to figure out this correspon-
dence. But, to solve the full problem, we do need a search, because we don’t
know which switch controls the current door. We start by getting Door 0
closed. Then we search through the switches. We change the position of the
current switch and ask whether or not Door 0 opened. If not, then this was
not the correct switch. If so, then we’ve found the switch for Door 0. We
keep Door 0 open from this point onward, and we repeat the process for
Door 1: getting it closed and then looping through the switches to find the
one that opens it.

Let’s start with the new exploreCave code given in Listing 7-15. It’s brief,
because it offloads the search to a helper function.

void exploreCave(int n) {

int switch_positions[n], door_for_switch[n];

int i;

for (i = 0; i < n; i++)

¶ door_for_switch[i] = -1;
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for (i = 0; i < n; i++)

· set_a_switch(i, switch_positions, door_for_switch, n);

answer(switch_positions, door_for_switch);

}

Listing 7-15: The exploreCave function

As with solving Subtask 1, each element of switch_positions will end up
being a 0 or 1, indicating the position of each switch. door_for_switch indi-
cates the door associated with each switch. We initialize each element of
door_for_switch to -1 ¶ to indicate that the door for each switch is unknown.
When the door for Switch i becomes known, we’ll update switch_positions[i]

and door_for_switch[i] accordingly.
Pop quiz: If door_for_switch[5] is 8, what does that mean? Does it mean

that Switch 5 is associated with Door 8 or that Door 5 is associated with
Switch 8?

It’s the former! Make sure you’re clear on this before continuing.
For each Door i, we call the set_a_switch helper function ·. Its task is

to search through the switches to determine the one that is associated with
Door i. It also determines whether that switch should be in Position 0 or 1.

The code for set_a_switch is given in Listing 7-16.

void set_a_switch(int door, int switch_positions[],

int door_for_switch[], int n) {

int i, result;

int found = 0;

for (i = 0; i < n; i++)

if (door_for_switch[i] == -1)

¶ switch_positions[i] = 0;

result = tryCombination(switch_positions);

if (result != door) { // door is open

for (i = 0; i < n; i++)

if (door_for_switch[i] == -1)

· switch_positions[i] = 1;

}

i = 0;

while (!found) {

if (door_for_switch[i] == -1) {

¸ switch_positions[i] = 1 - switch_positions[i];

result = tryCombination(switch_positions);

¹ if (result != door)

found = 1;

else

i++;

}
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else

i++;

}

door_for_switch[i] = door;

}

Listing 7-16: Finding and setting the switch for the current door using a linear search

The door parameter dictates which door we want to solve next.
We begin with a loop through the switches. We set the position of the

switches to 0 ¶, but only for those switches that are not associated with a
door yet. (Remember that, if a switch is already associated with a door, we
don’t want to change that switch’s position ever again.)

With all relevant switches set to Position 0, we determine whether the
current door is open or closed. If it’s open, then we want to close it so that
we can later change switch positions, one at a time, to see which switch opens
it. To close the door, we just set all switch positions to 1 ·. This works be-
cause the door was open when the switch positions were all 0; one of those
switches controls this door, so the door will close when that switch position
changes.

With the door closed, it’s time to search for the switch that opens it. For
each switch not already associated with a door, we toggle its position from
0 to 1 or 1 to 0 ¸. Notice how subtracting the position from 1 changes the
position: if it was 1 before, then it’s 0 now; if it was 0 before, then it’s 1 now.
Then, we check the new status of the door. If it’s open ¹, then we’ve found
the associated switch! If it’s still closed, then this wasn’t the right switch and
the loop continues.

What we’re doing in set_a_switch is a linear search through all of the re-
maining switches. We could have up to 5,000 switches, so finding the switch
for a single door could take up to 5,000 calls of tryCombination.

We can call tryCombination up to 70,000 times. If we get unlucky and the
search for the first door takes 5,000 calls, the second takes 4,999 calls, the
third takes 4,998 calls, and so on, then we can only handle about 14 doors
before we go over the limit. Only 14 doors is not much. We could have 5,000
doors—we’re not even close! This is the end of the line for a linear search.

Using Binary Search
The numbers 5,000 (maximum number of doors) and 70,000 (maximum
number of tryCombination calls) subtly encode the fact that binary search is
a plausible solution strategy. Notice that log2 5,000 rounds up to 13. If we
can find a way to use binary search, then it’ll pick out the switch for the cur-
rent door in only 13 calls of tryCombination, not 5,000. If we take 13 calls per
door, and we have 5,000 doors, that’s 13 × 5,000 = 65,000 calls in all. We’ll
need one extra call per door to tell us whether the door is closed but, still,
we should be able to get in under the 70,000 limit.

How can binary search be used here? It must have something to do with
eliminating half of the switch range on each step. Take some time to think
through this before continuing!
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I’ll explain the idea through an example. Suppose we have eight doors
and eight switches and that Door 0 is currently closed. If we flip Switch 0,
and Door 0 doesn’t open, then we’ve learned very little: all we’ve learned is
that Switch 0 isn’t the switch associated with Door 0. (It’s like starting with
“1” when guessing someone’s number between 1 and 1,000.) A better idea
is to flip half of the switches. So let’s flip Switches 0, 1, 2, and 3. No mat-
ter what that does to Door 0, we learn a lot. If Door 0 is still closed, then
Switches 0 to 3 have nothing to do with Door 0, and we can focus only on
Switches 4 to 7. If Door 0 is now open, we know that one of the Switches 0
to 3 is the switch that’s associated with Door 0, and we can focus only on
Switches 0 to 3. One step: half the range gone. We continue in this way until
we find the switch (and its position) associated with Door 0.

Suppose that we go all the way, cutting the range of switches in half
again and again until we have only one switch remaining. Let’s say we find
that Switch 6 is associated with Door 0.We’ll then set Switch 6 so that Door 0
is open. That’s how it stays. When we next solve Door 1, or indeed any other
door later, we’ll be careful not to change the position of Switch 6.

I can now present the binary search solution to this problem. The new
set_a_switch code is given in Listing 7-17. The exploreCave function is the
same as before (Listing 7-15).

void set_a_switch(int door, int switch_positions[],

int door_for_switch[], int n) {

int i, result;

int low = 0, high = n-1, mid;

for (i = 0; i < n; i++)

if (door_for_switch[i] == -1)

switch_positions[i] = 0;

result = tryCombination(switch_positions);

if (result != door) {

for (i = 0; i < n; i++)

if (door_for_switch[i] == -1)

switch_positions[i] = 1;

}

¶ while (low != high) {

mid = (low + high) / 2;

for (i = low; i <= mid; i++)

if (door_for_switch[i] == -1)

switch_positions[i] = 1 - switch_positions[i];

· result = tryCombination(switch_positions);

if (result != door) {

high = mid;

for (i = low; i <= mid; i++)

if (door_for_switch[i] == -1)

switch_positions[i] = 1 - switch_positions[i];
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}

else

low = mid + 1;

}

door_for_switch[low] = door;

¸ switch_positions[low] = 1 - switch_positions[low];

}

Listing 7-17: Finding and setting the switch for the current door using a binary search

Compared to Listing 7-16, the only real change is the replacement of
the linear search with a binary search. Prior to each evaluation of the binary
search condition ¶, we’ll arrange so that the current door is closed. In par-
ticular, once low and high are equal and the loop terminates, the door will
still be closed. Then all we have to do is change the position of switch low to
open the door.

Let’s now study the binary search itself. On each iteration, we calculate
the midpoint mid, then change the position of the first half of the switches
(but only those that are not already associated with doors). What effect did
that have on the current door ·? There are two possibilities:

The door is now open. We now know that the switch we seek is be-
tween low and mid, so we throw away all switches greater than mid. We
also flip each switch between low and mid back to what they were prior to
this iteration. This closes the door again so that we’re ready for the next
iteration.

The door is still closed. The switch we want is therefore between mid

+ 1 and high, so we throw away all switches that are mid or less. That’s all
we do! No switches get flipped here, because the door is still closed, just
as we want it.

When we finish the binary search, low and high will be equal, and they
tell us the switch associated with the current door. The current door is still
closed at this point, so we flip the switch to open it ¸.

There are no more caveats: we have a clean, fast, binary-search-based
solution. Send this off to the judge and you should pass all of the test cases.

Summary
Sometimes it’s much tougher to find an optimal solution than it is to check
whether some proposed solution is feasible. How much liquid should be
poured in a tree? I don’t know. Is 10 liters enough liquid? Now that question
I can handle.

When the conditions are right, binary search can convert a hard opti-
mization problem into an easier feasibility-check problem. Sometimes it
feels like cheating! We pay just an extra logarithmic factor for adding the
binary search. A logarithmic factor is practically free. In return, we get to
deal with an easier problem.
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I’m not claiming that binary search is the only way to solve the prob-
lems in this chapter. For example, it’s possible to solve Feeding Ants without
binary search along the lines of what we did in Chapter 2, but I find that so-
lution trickier than the one I presented in this chapter. Some problems that
can be solved by binary search can also be solved by dynamic programming,
but, again, doing so may be very challenging and there’d likely be little prac-
tical payoff anyway.

What I am claiming is that binary search can offer solutions that are
both nearly as fast as and easier to design than anything else we might try.
If you’re not convinced, you might revisit each problem in this chapter, this
time considering how you might solve it without binary search. But, really: if
you’re working on a problem and see that you can use binary search, just do
it and don’t look back.

Notes
Feeding Ants is originally from the 2014 Croatian Open Competition in
Informatics, Round 4. River Jump is originally from the December 2006
USA Computing Olympiad, Silver Division. Living Quality is originally from
the 2010 International Olympiad in Informatics. Cave Doors is originally
from the 2013 International Olympiad in Informatics.

Binary search is one manifestation of a general algorithm design tech-
nique called divide and conquer (D&C). D&C algorithms solve one or more
independent subproblems, then combine those solutions to solve the origi-
nal problem. Binary search solves just one subproblem—the one correspond-
ing to the part of the input that we know contains the solution. Other D&C
algorithms typically solve two or more subproblems; in Chapter 10, we’ll see
such an example. To learn about other problems that are solved efficiently
by D&C algorithms, see Algorithms Illuminated (Part 1): The Basics by Tim
Roughgarden (2017).
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8
HEAPS AND SEGMENT TREES

Data structures organize our data to make
it possible to accelerate certain operations.

For example, in Chapter 1, we learned about
hash tables, which speed up the search for a

specified element in a collection.
In this chapter, we’ll learn two new data structures: heaps and segment

trees. A heap is what you want whenever you need the maximum (or mini-
mum) element; a segment tree is what you want when you need to perform
queries on pieces of an array. In our first problem, we’ll see how heaps turn
slow maximum computations into fast heap operations; in our second and
third problems, we’ll see how segment trees do similarly for more general
array queries.

Problem 1: Supermarket Promotion
This is SPOJ problem PRO.

The Problem
In a supermarket, each shopper picks up the items that they want to buy,
then goes through the checkout to pay for their items. Once a shopper pays,
the shopper is given a receipt that has the total cost of what they purchased.



For example, if someone picks up some items and the total is $18, then the
cost written on their receipt is $18. We don’t care about the cost of individ-
ual items.

The supermarket is having a promotion that will last n days. During the
promotion, each receipt is placed in a ballot box. At the end of each day,
two receipts are removed from the ballot box: one of maximum cost x and
one of minimum cost y. The shopper who produced the maximum-cost re-
ceipt gets a prize worth x – y dollars. (Don’t worry about how the supermar-
ket identifies that shopper based on their receipt.) The x and y receipts are
then gone, never to reappear, but all other receipts from that day stay in the
ballot box (and may be removed on some future day).

It’s guaranteed that there will be at least two receipts in the ballot box at
the end of each day.

Our task is to compute the total prize money that will be given out by
the supermarket as part of the promotion.

Input
The input contains one test case, consisting of the following lines:

• A line containing n, the duration in days of the promotion. n is be-
tween 1 and 5,000.

• n lines, one for each day of the promotion. Each such line begins
with integer k, indicating that there are k receipts on this day. The
line then contains k integers, representing the cost of each receipt
for this day. k is between 0 and 100,000; each receipt cost is a posi-
tive number that’s at most 1,000,000.

The total number of receipts produced throughout the entire promo-
tion is at most 1,000,000.

Output
Output the total prize money given out by the supermarket.

The time limit for solving the test case is 0.6 seconds.

Solution 1: Maximum and Minimum in an Array
For many of the problems in this book, it’s a challenge to devise a correct
algorithm, let alone an efficient one. At least for the current problem, cor-
rectness doesn’t seem so hard. Determining the prize on each day simply
involves searching the ballot box for the maximum cost and then searching
again for the minimum cost. Maybe that will be efficient enough, too?

Let’s look at a test case:

2

16 6 63 16 82 25 2 43 5 17 10 56 85 38 15 32 91

1 57
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Remember that the first number on each line of receipts tells us the
number of receipts and is not itself a receipt cost. After the first day and be-
fore removing any receipts, we have these 16 receipt costs:

6 63 16 82 25 2 43 5 17 10 56 85 38 15 32 91

The maximum receipt is 91 and the minimum is 2. Those two receipts
are removed, and they contribute 91 – 2 = 89 in prize money. Here’s what’s
left after removing 91 and 2:

6 63 16 82 25 43 5 17 10 56 85 38 15 32

Now we move on to the second day. We add the 57 to get:

6 63 16 82 25 43 5 17 10 56 85 38 15 32 57

The maximum now is 85 and the minimum is 5, so that’s 85 – 5 = 80
added to the prize money. The total prize money for this promotion is there-
fore 89 + 80 = 169.

One implementation idea involves storing the receipts in an array. To
remove a receipt, we could literally remove it, as we just did. That would in-
volve shifting later receipts to the left, to fill the vacated array entry. But it’s
simpler to keep the receipts where they are and associate a used flag with
each receipt. If used is 0, then the receipt hasn’t been used yet; if it’s 1, then it
has been used and is logically removed (so we had better ignore it from here
on out).

Here are a couple of constants and the receipt struct:

#define MAX_RECEIPTS 1000000

#define MAX_COST 1000000

typedef struct receipt {

int cost;

int used;

} receipt;

We’re going to need helper functions to identify and remove the maxi-
mum receipt cost and minimum receipt cost, so let’s knock those out now.
Listing 8-1 gives the code.

int extract_max(receipt receipts[], int num_receipts) {

int max, max_index, i;

¶ max = -1;

for (i = 0; i < num_receipts; i++)

· if (!receipts[i].used && receipts[i].cost > max) {

max_index = i;

max = receipts[i].cost;

}
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¸ receipts[max_index].used = 1;

return max;

}

int extract_min(receipt receipts[], int num_receipts) {

int min, min_index, i;

¹ min = MAX_COST + 1;

for (i = 0; i < num_receipts; i++)

º if (!receipts[i].used && receipts[i].cost < min) {

min_index = i;

min = receipts[i].cost;

}

» receipts[min_index].used = 1;

return min;

}

Listing 8-1: Finding and removing maximum and minimum costs

The standard term for the operation that removes and returns the max-
imum value is extract-max. Likewise, the operation that removes and returns
the minimum value is called extract-min.

These functions operate very similarly. The extract_max function sets max
to -1 ¶, which is smaller than any receipt cost. When it finds a “real” receipt
cost, max will be set to that cost, and from then on it will track the largest cost
found so far. Similar reasoning explains why extract_min initializes min with a
cost higher than any valid cost ¹. Notice that, in each function, the only re-
ceipts that are considered are those whose used value is 0 · º and that each
function sets the identified receipt’s used value to 1 ¸ ».

With those two helper functions in hand, we can write a main function
to read the input and solve the problem. One interesting aspect here is that
reading input and solving the problem are interleaved: we read a little input
(the receipts for the first day), calculate the prize for that day, read a little
more input (the receipts for the second day), calculate the prize for that day,
and so on. This is implemented in Listing 8-2.

int main(void) {

static struct receipt receipts[MAX_RECEIPTS];

int num_days, num_receipts_today;

int num_receipts = 0;

¶ long long total_prizes = 0;

int i, j, max, min;

scanf("%d", &num_days);

for (i = 0; i < num_days; i++) {

scanf("%d", &num_receipts_today);

for (j = 0; j < num_receipts_today; j++) {

scanf("%d", &receipts[num_receipts].cost);

receipts[num_receipts].used = 0;

num_receipts++;
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}

max = extract_max(receipts, num_receipts);

min = extract_min(receipts, num_receipts);

total_prizes += max - min;

}

printf("%lld\n", total_prizes);

return 0;

}

Listing 8-2: The main function for reading input and solving the problem

The only gotcha here is the type of the total_prizes variable ¶. An in-
teger or long integer may not be enough. A typical long integer can hold
values up to about 4 billion; the total prize money could be up to 5,000 ×
1,000,000, which is 5 billion. Long long integers can hold integers that are
billions, trillions, and way beyond that, so we’re certainly safe using a long
long integer here.

The outer for loop runs once for each day, and the inner for loop reads
each receipt for the day. Once each day’s receipts have been read, we extract
the maximum receipt, extract the minimum receipt, and update the total
prize money.

This is a complete solution to the problem. It correctly outputs 169 for
our sample test case, and you should spend some time convincing yourself
that it’s correct in general.

Unfortunately, it’s too slow, and you would get a “Time-Limit Exceeded”
error from the judge.

We can explore the inefficiency by thinking about a worst-case test case.
Let’s say that the promotion lasts 5,000 days and that on each of the first
10 days we get 100,000 receipts. After the tenth day, we’ll have about a mil-
lion receipts in the array. Finding the maximum and minimum involves a
linear scan through the array. However, since we remove only two receipts
per day, we’ll have close to a million receipts in there all the way through
the promotion. So, we’re looking at 5,000 days, almost all of which require
about a million steps to find the maximum and another million steps to find
the minimum. That’s about 5,000 × 2,000,000, or 10 billion, steps! There
is no chance of solving this, given the stringent time limit. If only we could
speed up those maximum and minimum computations.

Let’s quickly disarm sorting as a possible improvement here. If we kept
the receipts array sorted, then finding and removing the maximum would
take constant time, as the maximum would be at the rightmost index. Find-
ing the minimum would take constant time, too, but it would take linear
time to remove the minimum since we’d have to shift all other elements to
the left. Sorting also ruins the efficiency of adding a receipt: when we’re
not sorting, we can just plunk it at the end of the array, but when sorting we
have to find its proper position. No, sorting isn’t the answer. The answer
is heaps.
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Max-Heaps
We’ll begin by focusing on how to quickly find and extract the maximum
element from an array. That’s only solving half the problem—we need to be
able to do this for the minimum, too—but we’ll get to that.

Finding the Maximum
Take a look at the tree in Figure 8-1. It has 13 nodes corresponding to the
following 13 receipts (the first 13 receipts in our sample test case): 6, 63, 16,
82, 25, 2, 43, 5, 17, 10, 56, 85, and 38.

85

63 82

17 56 43 16

5 6 10 25 2 38

Figure 8-1: A max-heap

Quick—what’s the maximum receipt cost in that tree?
It’s 85, and it’s right there at the root. If you were promised that the

maximum element of some tree was at its root, then you could just return
the element at the root and not search or traverse the tree at all.

Our plan is to maintain the tree such that the maximum receipt cost is
always at the root. We’ll have to be vigilant, because we’re going to be bom-
barded by two kinds of events that can mess up our tree:

A new receipt comes in. We have to figure out how to reorganize the
tree to incorporate this receipt. The new receipt could even be higher
than everything else in the tree, in which case we need to get the receipt
to the root.

A receipt gets extracted from the tree. We have to figure out how to
reorganize the tree so that the maximum element remaining in the tree
is at the root.

Of course, we have to do these inserts and extracts quickly. In particu-
lar, we need to be quicker than linear time, as a linear-time scan through an
array is what brought us here in the first place!

What Is a Max-Heap?
Figure 8-1 is an example of a max-heap. The “max” there means that this tree
enables us to quickly find the maximum element.

A max-heap has two important properties. First, it’s a complete binary
tree. This means that each level in the tree is full (that is, it has no missing
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nodes), except possibly the bottom level, whose nodes are filled in from left
to right. In Figure 8-1, notice how each level is completely full. Well, the bot-
tom level isn’t completely full, but that’s okay because its nodes are filled
in from the left. (Don’t confuse complete binary trees here with full binary
trees from Chapter 2.)

The fact that a max-heap is a complete binary tree doesn’t directly help
us find the maximum, insert an element, or extract the maximum, but it
does lead to a lightning-fast implementation of heaps, as we’ll see.

Second, the value of a node is greater than or equal to the values of its
child nodes. (The values in Figure 8-1 are all distinct, so a parent’s value is
strictly greater than those of its children.) This is called the max-heap-order
property.

Consider the node in Figure 8-1 with a value of 56. As promised, 56 is
greater than the values of its child nodes (10 and 25). This property is true
everywhere in the tree, and it’s why the maximum value must be at the root.
Every other node has a parent node with greater value!

Inserting into a Max-Heap
When a new receipt arrives, we’ll insert it into the max-heap, but we have to
do it carefully so that the max-heap-order property is maintained.

Starting with Figure 8-1, let’s insert 15. There’s only one place we can
put it without breaking the complete-tree property: on the bottom level, to
the right of the 38 (see Figure 8-2).

85

63 82

17 56 43 16

5 6 10 25 2 38 15

Figure 8-2: A max-heap with 15 inserted

It’s a complete binary tree, for sure, but does the max-heap-order prop-
erty hold? It does! 15’s parent is 16, and 16 is greater than 15, just as we re-
quire. There’s no additional work to do.

Now consider a tougher one. We’ll insert 32 into Figure 8-2, resulting in
Figure 8-3.
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85

63 82

17 56 43 16

5 6 10 25 2 38 15 32

Figure 8-3: A max-heap with 32 inserted

There’s some trouble here. Inserting 32 has broken the max-heap-order
property, because its parent 16 is less than 32. (Here, and in subsequent fig-
ures, the thick edge shows a max-heap-order violation.) We can fix this prob-
lem by swapping the 16 and 32, as in Figure 8-4.

85

63 82

17 56 43 32

5 6 10 25 2 38 15 16

Figure 8-4: A max-heap with the max-heap-order violation repaired

Ahh, order has been restored: 32 must be greater than both of its chil-
dren at this point. It’s greater than its child 16 because that’s why we per-
formed the swap, and it’s greater than its other child 15 because 15 used to
be a child of 16. In general, performing such a swap is guaranteed to main-
tain the max-heap-order property between the new node and its children.

We’re back to a max-heap, and it only took us one swap to do it. It could
take more swaps, though, which I’ll demonstrate now by inserting 91 into
Figure 8-4. See Figure 8-5 for the result.
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85

63 82

17 56 43 32

5 6 10 25 2 38 15 16

91

Figure 8-5: A max-heap with 91 inserted

We had to start a new level at the bottom of the tree, since the previous
bottom level is full. We can’t keep the 91 as a child of 5, though, because it
violates the max-heap-order property. A swap will fix it . . . well, sort of. See
Figure 8-6.

85

63 82

17 56 43 32

91 6 10 25 2 38 15 16

5

Figure 8-6: A max-heap with 91 moved up

We’ve fixed the problem between 5 and 91, but now we have a new prob-
lem between 17 and 91. We can fix this one by another swap; see Figure 8-7.
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85

63 82

91 56 43 32

17 6 10 25 2 38 15 16

5

Figure 8-7: A max-heap with 91 moved up again

We have yet another max-heap-order violation, this time between 63
and 91. However, notice that the violation is moving up the tree, becoming
closer and closer to the root. At worst, we’ll end up shuttling 91 up to the
root of the tree. That’s exactly what will happen here, because 91 is the max-
imum element. It takes two more swaps to finish the job: the first is shown
in Figure 8-8.

85

91 82

63 56 43 32

17 6 10 25 2 38 15 16

5

Figure 8-8: A max-heap with 91 moved up yet again

And the second swap is shown in Figure 8-9.

286 Chapter 8



91

85 82

63 56 43 32

17 6 10 25 2 38 15 16

5

Figure 8-9: A max-heap with the heap-order violation repaired

We’ve got a max-heap again! We only had to perform four swaps to fix
the heap of 16 elements, and that was for a value that bubbled up all the way
to the root. As we’ve seen, inserting other values that don’t make it all the
way to the root will be even faster than that.

Extracting from a Max-Heap
At the end of each day of the promotion, we’ll need to extract the maximum
receipt from the max-heap. As with insertion, we must be careful to fix the
tree so that it’s a max-heap again. We’ll see that the process mirrors that of
insertion, this time with a value bubbling down rather than up.

Let’s start with Figure 8-1 and extract the maximum. Here is that
figure again:

85

63 82

17 56 43 16

5 6 10 25 2 38

Extracting the maximum removes 85 as the root of the tree, but we need
to put something else at the root; otherwise, we would no longer have a tree.
The only node we can use, without breaking the complete-tree property, is
the rightmost node on the bottom level. That is, we can swap 85 with 38,
arriving at Figure 8-10.
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38

63 82

17 56 43 16

5 6 10 25 2

Figure 8-10: A max-heap with 85 extracted

We just took a small value from the bottom of the tree and blasted it up
to the top. In general, that’s going to break the max-heap-order property. It
certainly does so here, because 38 is less than both 63 and 82.

We’ll again fix the max-heap-order property by using swaps. Unlike in-
sertion, extraction presents us with a choice. Should we swap 38 and 63, or
should we swap 38 and 82? Swapping 38 and 63 doesn’t solve the problem
at the root, because 82 would end up as a child of 63. Swapping 38 and 82
is the right move. In general, we want to perform the swap with the larger
child, so the max-heap-order property is fixed between the larger child and
its new children. Figure 8-11 shows the result of swapping 38 and 82.

82

63 38

17 56 43 16

5 6 10 25 2

Figure 8-11: A max-heap with 38 moved down

We’re not out of the woods yet—there’s still a max-heap-order violation
between 38 and 43. The good news is that the max-heap-order violation is
moving down the tree. If we keep pushing the violations down, then in the
worst case we’ll have a max-heap again when 38 hits the bottom of the tree.

Let’s swap 38 and 43; see Figure 8-12.
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82

63 43

17 56 38 16

5 6 10 25 2

Figure 8-12: A max-heap with 38 moved farther down

The 38 is now fine right where it is, so we’ve restored the max-heap-
order property.

Height of a Max-Heap
Both insertion and extraction perform at most one swap per level: insertion
swaps up the tree and extraction swaps down the tree. Are insertion and ex-
traction fast? That depends on the height of the max-heap: if the height is
small, then these operations are fast. Thus we need to understand the rela-
tionship between the number of elements in a max-heap and the height of
the max-heap.

Take a look at Figure 8-13, where I’ve drawn the complete binary tree of
16 nodes.

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16

Figure 8-13: A complete binary tree of 16 nodes (numbered from top to
bottom and left to right)

I’ve numbered the nodes from top to bottom, left to right. That’s why
the root is 1; its two children are 2 and 3; their children are 4, 5, 6, and 7;
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and so on. We can observe that each new level starts with a number that is
a power of 2: the root is 1, the level below that starts at 2, the level below
that starts at 4, then 8, then 16. That is, we need to double the number of
nodes to produce just one more level in the tree. This is like binary search,
where doubling the number of elements leads to just one more iteration of
the loop. As with binary search, then, the height of a complete binary tree,
and therefore the height of a max-heap, is O(logn), where n is the number of
elements in the tree.

We are victorious! Inserting into a max-heap is O(logn). Extracting from
a max-heap is O(logn). We no longer have to be slowed down by O(n) linear-
time work.

Max-Heaps as Arrays
A max-heap is just a binary tree, and we know how to implement binary
trees. While it is possible to implement a max-heap as such, it’s quite chal-
lenging to do so.

Think back to when we solved Halloween Haul in Chapter 2. We used a
node struct with pointers to the left and right children. That would be enough
for us to be able to bubble a value down a max-heap. However, it would not
be enough for us to be able to bubble a value up a max-heap, because doing
so requires access to parent nodes. So we might add a parent pointer:

typedef struct node {

fields for receipts

struct node *left, *right, *parent;

} node;

Even if we added the parent like that, we still have direct access only to
the root of our tree. When inserting a value, how are we supposed to quickly
find where to insert it? When extracting, how are we supposed to quickly
find the rightmost node on the bottom level? There is a better way.

Let’s again use Figure 8-13, where I’ve numbered the nodes from top to
bottom and left to right. The parent of node number 16 is 8. The parent of
node number 12 is 6. The parent of node number 7 is 3. What is the rela-
tionship between the number of a node and the number of its parent?

The answer is: divide by 2! 16/2 = 8. 12/2 = 6. 7/2 = 3. Well, that last
one is really 3.5, so just drop the fractional part.

We integer-divide by 2 to move up the tree. Let’s see what happens if we
reverse that process and multiply by two instead. 8 × 2 = 16, so multiplying
by 2 takes us from 8 to its left child. However, most nodes have two children,
and we may also want to move from a node to its right child. We can do that,
too: we just add 1 to the number of the left child. For example, we can move
from 6 to its left child by 6 × 2 = 12 and move from 6 to its right child by
6 × 2 + 1 = 13. (The relationship between 13/2 and 6 is an example of why
it’s safe to drop the 0.5 to move from a child to its parent.)

These relationships between nodes hold only because max-heaps are
complete binary trees. In general, binary trees can have more chaotic struc-
ture, having a long chain of nodes here and a short chain there. We can’t
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breeze around such a tree by multiplying and dividing by 2 unless we in-
serted placeholder nodes to maintain the illusion that the tree is com-
plete. That would waste a huge amount of memory if the tree were very
unbalanced.

If we store a max-heap in an array—first the root, then its children, then
their children, and so on—then the index of a node in the array corresponds
to its node number. We’ll have to start indexing at 1, not 0, to match the
numbering in Figure 8-13. (It’s possible to start at index 0, but that would re-
sult in slightly messier relationships between nodes: the parent of the node
at index i would be at (i – 1)/2, and the children would be at indices 2i + 1
and 2i + 2.)

Here again is Figure 8-1, the heap of 13 receipt costs:

85

63 82

17 56 43 16

5 6 10 25 2 38

Here is the corresponding array:

Index 1 2 3 4 5 6 7 8 9 10 11 12 13
Value 85 63 82 17 56 43 16 5 6 10 25 2 38

Index 6 in the array has a value of 43. What is 43’s left child? To an-
swer that, just look up index 6 × 2 = 12 in the array: it’s 2. What is 43’s right
child? Look up index 6 × 2 + 1 = 13: it’s 38. What is 43’s parent? Check in-
dex 6/2 = 3: it’s 82. No matter which node we’re currently focused on in the
tree, we can use the array to move to a child or the parent with just a tiny bit
of math.

Implementing a Max-Heap
Each element of our heaps will hold both a receipt index and a receipt cost.
These are the two pieces of information that we’ll want to know about a re-
ceipt when we extract it.

Here’s the struct:

typedef struct heap_element {

int receipt_index;

int cost;

} heap_element;
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Now we’re ready to implement a max-heap. The two key operations are
inserting into the heap and extracting the maximum from the heap. Let’s
start with inserting into the heap; see Listing 8-3.

void max_heap_insert(heap_element heap[], int *num_heap,

int receipt_index, int cost) {

int i;

heap_element temp;

¶ (*num_heap)++;

· heap[*num_heap] = (heap_element){receipt_index, cost};

¸ i = *num_heap;

¹ while (i > 1 && heap[i].cost > heap[i / 2].cost) {

temp = heap[i];

heap[i] = heap[i / 2];

heap[i / 2] = temp;

º i = i / 2;

}

}

Listing 8-3: Inserting into max-heap

The max_heap_insert function takes four parameters. The first two are
for the heap: heap is the array that holds the max-heap, and num_heap is a
pointer to the number of elements in the heap. The reason why num_heap

is a pointer is because we’ll need to increase the number of elements in the
heap by one and make the caller aware of that increase. The latter two pa-
rameters are for the new receipt: receipt_index is the index of the receipt
that we’re inserting, and cost is its associated cost.

We begin by increasing the number of elements in the heap by one ¶
and then storing the new receipt in the new heap slot ·. Variable i tracks
the index in the heap of the newly inserted element ¸.

We have no guarantee that we still have a max-heap. What we just in-
serted may be larger than its parent, so we need to perform the required
swaps. That’s the point of the while loop ¹.

There are two conditions required for the while loop to continue. First,
we need i > 1, because otherwise i is 1 and has no parent. (Remember that
the heap starts at index 1, not 0.) Second, we need the node’s receipt cost to
be greater than that of its parent. The body of the while loop performs the
swap, then it moves us from the current node to its parent º. Ahh, again, we
have that divide-by-2 scheme to move up the tree. Such spare, pleasing, and
correct code is the best kind.

Now let’s turn to extracting from the max-heap. Listing 8-4 provides
the code.

heap_element max_heap_extract(heap_element heap[], int *num_heap) {

heap_element remove, temp;

int i, child;

¶ remove = heap[1];

· heap[1] = heap[*num_heap];

292 Chapter 8



¸ (*num_heap)--;

¹ i = 1;

º while (i * 2 <= *num_heap) {

» child = i * 2;

if (child < *num_heap && heap[child + 1].cost > heap[child].cost)

¼ child++;

½ if (heap[child].cost > heap[i].cost) {

temp = heap[i];

heap[i] = heap[child];

heap[child] = temp;

¾ i = child;

} else

break;

}

return remove;

}

Listing 8-4: Extracting the maximum from max-heap

We begin by saving the receipt that we’re about to extract, which is at
the root of the heap ¶. We then replace the root with the bottom-most,
right-most node · and decrease the number of elements in the heap by
one ¸. That new root element might not meet the max-heap-order prop-
erty, so we use variable i to track its position in the heap ¹. Then, just as in
Listing 8-3, we have a while loop that will perform the necessary swaps. This
time, the while loop condition º says that the left child of Node i is in the
heap; if it’s not, then Node i has no children and a max-heap-order violation
cannot exist.

Inside the loop, child is set to the left child ». Then, if the right child
exists, we check whether its cost is higher than that of the left child. If it is,
then we set child to be that right child ¼. Now child is the biggest child, so
we check whether it is involved in a max-heap-order violation ½. If it is, then
we perform the swap. Finally, we move down the tree ¾ so that we’re ready
to check for another max-heap-order violation.

Notice what happens if the node and its largest child are already cor-
rectly ordered: we break out of the loop, since there can’t be any more viola-
tions in the tree.

The last thing the function does is return the maximum-cost receipt.
We’ll be able to use that to help determine the prize for the day and to make
sure that we never consider this receipt again. First, however, let’s learn
about min-heaps, so we can extract minimums in addition to maximums.

Min-Heaps
A min-heap allows us to quickly insert a new receipt and extract the minimum-
cost receipt.
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Definition and Operations
Guess what? You know almost everything you need to know about min-
heaps, because they are almost identical to max-heaps.

A min-heap is a complete binary tree. It will have height O(logn), where
n is the number of elements in the heap. We’ll be able to store it in an array
just as we did a max-heap. To find the parent of a node, divide by 2; to find
the left child, multiply by 2; to find the right child, multiply by 2 and add 1.
There is nothing new here.

The only new thing is the min-heap-order property: the value of a node is
less than or equal to the values of its child nodes. This results in the smallest
value, not the largest value, at the root. That’s exactly where we want it to
make minimum-extractions fast.

Let’s again consider the following 13 receipt costs: 6, 63, 16, 82, 25, 2,
43, 5, 17, 10, 56, 85, and 38. Figure 8-14 shows a min-heap for these costs.

2

5 6

17 10 16 43

82 25 63 56 85 38

Figure 8-14: A min-heap

Inserting into a min-heap and extracting the minimum from a min-heap
are analogous to the corresponding max-heap operations.

To insert, add the new node to the right of all nodes on the bottom
level, or start a new level if the bottom level is full. Then swap the node up
until it becomes the root or is greater than or equal to its parent.

To extract the minimum, replace the root by the bottom-most, right-
most value, and then swap it down the tree until it becomes a leaf or is less
than or equal to its children.

Implementing a Min-Heap
Implementing a min-heap is a copy-and-paste job using our max-heap code.
Just change the function names and change the comparisons from > to <.
That’s it. See Listing 8-5 for the insertion code.

void min_heap_insert(heap_element heap[], int *num_heap,

int receipt_index, int cost) {

int i;

heap_element temp;

(*num_heap)++;

heap[*num_heap] = (heap_element){receipt_index, cost};
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i = *num_heap;

while (i > 1 && heap[i].cost < heap[i / 2].cost) {

temp = heap[i];

heap[i] = heap[i / 2];

heap[i / 2] = temp;

i = i / 2;

}

}

Listing 8-5: Inserting into min-heap

Listing 8-6 gives the minimum-extraction code.

heap_element min_heap_extract(heap_element heap[], int *num_heap) {

heap_element remove, temp;

int i, child;

remove = heap[1];

heap[1] = heap[*num_heap];

(*num_heap)--;

i = 1;

while (i * 2 <= *num_heap) {

child = i * 2;

if (child < *num_heap && heap[child + 1].cost < heap[child].cost)

child++;

if (heap[child].cost < heap[i].cost) {

temp = heap[i];

heap[i] = heap[child];

heap[child] = temp;

i = child;

} else

break;

}

return remove;

}

Listing 8-6: Extracting a minimum from min-heap

There is big-time code duplication here! In practice, what you’d do is
write more general heap_insert and heap_extract functions that take a compar-
ison function as a parameter (much like qsort does). It’s simpler, though, to
understand the code without that, so let’s keep it as is.

Solution 2: Heaps
Now that we’ve got max-heaps and min-heaps, we’re ready for round 2 with
this problem.

All we need is a main function that reads the input and uses heaps to
quickly insert and extract receipts. See Listing 8-7 for the code. As you read
through it, you’ll come across two while loops. What on earth are those
doing?
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int main(void) {

¶ static int used[MAX_RECEIPTS] = {0};

· static heap_element max_heap[MAX_RECEIPTS + 1];

static heap_element min_heap[MAX_RECEIPTS + 1];

int num_days, receipt_index_today;

int receipt_index = 0;

long long total_prizes = 0;

int i, j, cost;

int max_num_heap = 0, min_num_heap = 0;

heap_element max_element, min_element;

scanf("%d", &num_days);

for (i = 0; i < num_days; i++) {

scanf("%d", &receipt_index_today);

for (j = 0; j < receipt_index_today; j++) {

scanf("%d", &cost);

¸ max_heap_insert(max_heap, &max_num_heap, receipt_index, cost);

¹ min_heap_insert(min_heap, &min_num_heap, receipt_index, cost);

receipt_index++;

}

º max_element = max_heap_extract(max_heap, &max_num_heap);

while (used[max_element.receipt_index])

max_element = max_heap_extract(max_heap, &max_num_heap);

used[max_element.receipt_index] = 1;

» min_element = min_heap_extract(min_heap, &min_num_heap);

while (used[min_element.receipt_index])

min_element = min_heap_extract(min_heap, &min_num_heap);

used[min_element.receipt_index] = 1;

total_prizes += max_element.cost - min_element.cost;

}

printf("%lld\n", total_prizes);

return 0;

}

Listing 8-7: The main function for solving the problem using heaps

We have a used array ¶ that will store for each receipt a 1 if it has been
used and a 0 if not. The max-heap · and min-heap are one element larger
than the used array; this accounts for us not using index 0 in the heaps.

For a given day, we insert the index of each receipt into both the max-
heap ¸ and min-heap ¹. We then extract a receipt from the max-heap º
and extract a receipt from the min-heap ». This is where those two while

loops come in, looping until we get a receipt that hasn’t yet been used. Let
me explain what’s going on.

When we extract a receipt from the max-heap, it would be nice to also
extract it from the min-heap so that the two heaps always contain exactly the
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same receipts. Notice, though, that we don’t actually extract that same re-
ceipt from the min-heap. Why? Because we have no idea where that receipt
is in the min-heap! At some later time, that receipt might be extracted from
the min-heap—but it has already been used, so we want to throw it away and
not process it again.

The opposite can happen, too, because we extract a receipt from the
min-heap and leave it in the max-heap. At some later time, that used receipt
might come out of the max-heap. We need to ignore it and extract from the
max-heap again.

So that’s what the while loops do: ignore receipts that have already been
processed by one of the heaps.

A new test case may help. Here it is:

2

2 6 7

2 9 10

The prize money here is 7 – 6 = 1 from the first day and 10 – 9 = 1 from
the second day, so the total prize money is 2.

After reading the two receipts on the first day, each heap holds the two
receipts. For the max-heap, we have:

receipt_index cost

1 7
0 6

For the min-heap, we have:

receipt_index cost

0 6
1 7

We then do the heap extractions, removing one receipt from each heap.
Here’s what’s left for the max-heap:

receipt_index cost

0 6

Here’s what’s left for the min-heap:

receipt_index cost

1 7

Receipt 0 is still in the max-heap, and Receipt 1 is still in the min-heap.
However, they have been used, so we’d better not use them again.
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Now consider the second day. Receipts 2 and 3 get added to each heap,
so for the max-heap, we have:

receipt_index cost

3 10
0 6
2 9

For the min-heap, we have:

receipt_index cost

1 7
2 9
3 10

When we extract from the max-heap, we get Receipt 3. That’s great.
However, when we extract from the min-heap, we get Receipt 1. Without
the while loop to throw it away, this would be big trouble, because Receipt 1
has already been used.

At the end of a given day, one or both of the while loops might iterate
many times. If this kept happening, day after day, then we’d have to be con-
cerned about the impact on our program’s efficiency. Notice, though, that
a receipt can be removed from a heap at most once. If there are r receipts in
a heap, then there can be at most r extractions from the heap, whether they
are clustered in a single day or across many days.

It is time to submit to the judge. Unlike Solution 1, which frittered away
its time with slow searches, our heap-based solution should pass all of the
test cases well within the time limit.

Heaps
If you have a stream of values coming in and at any given time you may be
asked to process the maximum or minimum value, then a heap is what you
want. A max-heap is used to extract and process the maximum; a min-heap
is used to extract and process the minimum.

A heap can be used to implement a priority queue. In a priority queue,
each element has a priority that determines its importance. In some applica-
tions, the priorities of important elements are big numbers, in which case a
max-heap should be used; in others, the priorities of important elements are
small numbers, in which case a min-heap should be used. Of course, if we
need both high- and low-priority elements, we can use two heaps as we did
when solving the Supermarket Promotion problem.

Two More Applications
I find that min-heaps are used more often than max-heaps. Let’s explore two
examples where min-heaps can be used.
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Heapsort
There’s a famous sorting algorithm called heapsort that we can implement
now that we understand min-heaps. All we do is insert all of the values into
the min-heap and then extract the minimum one by one. The extractions
pull out the smallest value, then the second-smallest value, then the third-
smallest value, and so on, handing us the values sorted from smallest to
largest. It’s literally four lines. Check it out in Listing 8-8.

#define N 10

int main(void) {

static int values[N] = {96, 61, 36, 74, 45, 60, 47, 6, 95, 93};

static int min_heap[N + 1];

int i, min_num_heap = 0;

// Heapsort. 4 lines!

for (i = 0; i < N; i++)

min_heap_insert(min_heap, &min_num_heap, values[i]);

for (i = 0; i < N; i++)

values[i] = min_heap_extract(min_heap, &min_num_heap);

for (i = 0; i < N; i++)

printf("%d ", values[i]);

printf("\n");

return 0;

}

Listing 8-8: Heapsort

We’re inserting integers into the heap here, so you should change
min_heap_insert and min_heap_extract to use and compare integers rather than
heap_element structs.

Heapsort performs n inserts and n extracts. A heap implements each of
those in logn time, so heapsort is an O(n logn) algorithm. That’s the same
worst-case runtime as the fastest possible sorting algorithms. (The q in C’s
qsort function probably gets its name from quicksort, which is a sorting algo-
rithm that is faster than heapsort in practice. We’ll encounter quicksort in
Chapter 10.)

Dijkstra’s Algorithm
Dijkstra’s algorithm (Chapter 6) spends a lot of its time finding the next
node to process. It does that by searching through node distances, look-
ing for the smallest one. To speed up Dijkstra’s algorithm, we can use a
min-heap! This is demonstrated in “Dijkstra’s Algorithm: Using a Heap” in
Appendix B.
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Choosing a Data Structure
A data structure is typically good for only a few different operation types.
There’s no super data structure that makes everything fast, so it’s up to you
to choose the appropriate data structure for the problem you’re solving.

Think back to Chapter 1, when we learned about the hash table data
structure. Could we have used a hash table to solve Supermarket Promotion?

No! A hash table is good for speeding up the search for a specific item
that we’re searching for. What are the snowflakes that might be similar to
snowflake s? Is word c in this word list? Those are the kinds of questions you
want to ask of a hash table. What is the minimum element in this array? No
hashing is going to help there. You’d have to search through the hash ta-
ble, which is no faster than searching a regular array. It’s our job to choose
a data structure specifically designed for the task at hand. For finding the
minimum element in an array, that data structure is a min-heap.

As with any general-purpose data structure, heaps can be used to solve
a surprisingly diverse set of problems—but the heap data structure itself
remains as is, just as you’ve learned it here. So instead of solving another
heap problem, let’s proceed to a problem where we’ll need a new data struc-
ture called a segment tree. As with heaps, segment trees speed up only a small
number of types of operations. Even so, it’s impressive how many problems
are in the wheelhouse of segment trees, where those speedups are exactly
what we need.

Problem 2: Building Treaps
In this problem, we’ll produce a representation of a treap. A treap is a
flexible data structure that can solve a variety of search problems, and I en-
courage you to learn more about treaps if you’re interested. Here we’re con-
cerned only with building a treap, not using it. Of course, I’ll provide all you
need to know about treaps for our purposes.

This is POJ problem 1785.

The Problem
A treap is a binary tree where each node has both a label and a priority.
Figure 8-15 shows an example treap, in which the uppercase letters are the
labels and the positive integers are the priorities. I’ve separated the label
and priority for each node by a slash. For example, the root node has label C
and priority 58.
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C/58

A/54 H/56

B/42 G/55 J/40

D/49

E/36

F/5

I/16 K/39

Figure 8-15: A treap

A treap has to satisfy two properties: one on its labels and one on its
priorities.

First, let’s talk about labels. For any node x, the labels in its left sub-
tree are all less than the label of x, and the labels in its right subtree are all
greater than the label of x. This is called the binary search tree (BST) property.

You can verify that the treap in Figure 8-15 meets this label property.
For our alphabetic labels, one label is less than another if it comes earlier in
the alphabet. Take the root node as an example. Its label is C. Both labels in
its left subtree are less than C, and all labels in its right subtree are greater
than C. As another example, consider the node with label G. All of the la-
bels in its left subtree—D, E, and F—are less than G. What about all of the
labels in its right subtree? Well, there are none, so there’s nothing to check!

Second, let’s talk about priorities. For any node x, the priorities of its
children are less than the priority of x. Hey, this is like the max-heap-order
property!

Take a look at the root again. Its priority is 58. Its children had better
have lower priorities—and they do, with priorities 54 and 56. How about that
G node, with priority 55? We need its child to have a lower priority—and it
does, with priority 49.

So that’s a treap: a binary tree whose labels satisfy the BST property and
whose priorities satisfy the max-heap-order property. Notice that there’s no
shape requirement: a treap can have any structure whatsoever. There’s cer-
tainly no complete tree requirement like there is for heaps.

In this problem, we are provided the label/priority of each node. Our
task is to assemble and output a treap for these nodes.

Input
The input contains zero or more test cases. Each line of input begins with an
integer n. Each n is between 0 and 50,000. If n is 0, then there are no further
test cases to process.
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If n is greater than zero, then it indicates the number of nodes in the
test case. Following n is n space-separated tokens, one for each node. Each
token is of the form L/P, where L is the label and P is the priority for this
node. Labels are strings of letters; priorities are positive integers. All labels
are unique, and all priorities are unique.

Here is possible input that leads to the treap in Figure 8-15:

11 A/54 I/16 K/39 E/36 B/42 G/55 D/49 H/56 C/58 J/40 F/5

0

Output
For each test case, output the treap on its own line. Here is the required for-
mat for the treap:

(<left_subtreap><L>/<P><right_subtreap>)

Here <left_subtreap> is the left subtreap, <L> is the label of the root, <P> is
the priority of the root, and <right_subtreap> is the right subtreap. The sub-
treaps are output in the same format.

Here is the output corresponding to the sample input:

((A/54(B/42))C/58(((D/49(E/36(F/5)))G/55)H/56((I/16)J/40(K/39))))

The time limit for solving the test cases is two seconds.

Recursively Outputting Treaps
Let’s again consider our sample nodes and reason through how we can pro-
duce a treap from them. Here are those nodes:

A/54 I/16 K/39 E/36 B/42 G/55 D/49 H/56 C/58 J/40 F/5

Remember that treap priorities must obey the max-heap-order prop-
erty. In particular, this means that a node with maximum priority must be
the root node. In addition, because the input guarantees that all priorities
are distinct, there is only one node that has the maximum priority. So it’s
settled: the root node must be C/58.

We now must decide for each other node whether it should go in C’s
left subtreap or right subtreap. The priorities of these nodes are all less than
58, so priority won’t help us make any kind of left–right split—but the BST
property will! The BST property of treaps tells us that the labels in the left
subtreap must be less than C and the labels in the right subtreap must be
greater than C. We can therefore split the remaining nodes into two groups,
one for the left subtreap and one for the right subtreap, as follows:

A/54 B/42

I/16 K/39 E/36 G/55 D/49 H/56 J/40 F/5

That is, the left subtreap will have Nodes A and B, and the right sub-
treap will have Nodes I, K, E, G, and so on.
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Now, we’re done! We’ve split the original problem into two smaller sub-
problems of exactly the same form. We were asked to produce a treap for
11 nodes. We’ve reduced that problem to producing a treap for two nodes
and a treap for eight nodes. We can do those recursively!

Let’s nail down the specific rules that we’ll use. For the base case, we
can use a treap of zero nodes, which requires no output at all. For the re-
cursive case, we’ll identify the root as the node with highest priority and
then split the remaining nodes into those with smaller labels and those with
larger labels. We output an open parenthesis, recursively output the treap
for the smaller labels, output the root node of the treap, output the treap for
the larger labels, and finally output a closing parenthesis.

For our sample input, we’ll output an opening parenthesis. Then we’ll
output the left subtreap:

(A/54(B/42))

This is followed by the root node:

C/58

then the right subtreap:

(((D/49(E/36(F/5)))G/55)H/56((I/16)J/40(K/39)))

and finally a closing parenthesis.

Sorting by Label
I have one other implementation idea before we turn to the code. As I’ve
described things so far, it seems that we’d need to literally create a new ar-
ray with small-labeled nodes to pass to the first recursive call and a new array
with large-labeled nodes to pass to the second recursive call. That would re-
sult in lots of copying between arrays. Fortunately, we can avoid all that by
sorting the nodes by label, from smallest to largest, at the outset. Then we
can just tell each recursive call the starting and ending indices of the array
that it is responsible for.

For example, if we sort our sample input by label, we get this:

A/54 B/42 C/58 D/49 E/36 F/5 G/55 H/56 I/16 J/40 K/39

We can then tell the first recursive call to produce the subtreap for the
first two nodes and the second recursive call to produce the subtreap for the
latter eight.

Solution 1: Recursion
Here are some constants and a struct:

#define MAX_NODES 50000

#define LABEL_LENGTH 16
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typedef struct treap_node {

char * label;

int priority;

} treap_node;

We don’t know how long the labels are, so we’ll go with an initial size of
16. You’ll see that we call a read_label function to read each label; if a length
of 16 proves insufficient, that function will allocate more memory until the
label fits. (This is probably overkill, since it looks like the test cases use short
labels of up to only five letters, but it’s better to be safe than sorry.)

The main Function
Let’s look at the main function, as given in Listing 8-9. It uses some helper
functions—read_label that we just talked about and compare for comparing
treap nodes—and calls solve for actually outputting the treap. We’ll discuss
those shortly.

int main(void) {

static treap_node treap_nodes[MAX_NODES];

int num_nodes, i;

scanf("%d ", &num_nodes);

while (num_nodes > 0) {

for (i = 0; i < num_nodes; i++) {

treap_nodes[i].label = read_label(LABEL_LENGTH);

scanf("%d ", &treap_nodes[i].priority);

}

qsort(treap_nodes, num_nodes, sizeof(treap_node), compare);

solve(treap_nodes, 0, num_nodes - 1);

printf("\n");

scanf("%d ", &num_nodes);

}

return 0;

}

Listing 8-9: The main function for reading input and solving the problem

Be careful with scanf in a program that reads a mix of numbers and
strings. Here, each number from the input is followed by whitespace, and we
don’t want those space characters prefixing the labels that follow. To read
and throw away those spaces, we use a space following each %d scanf format
specifier.

Helper Functions
We use scanf to read the priorities but not the labels. The labels are read by
the read_label function in Listing 8-10.

/* based on https://stackoverflow.com/questions/16870485 */

char *read_label(int size) {
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char *str;

int ch;

int len = 0;

str = malloc(size);

if (str == NULL) {

fprintf(stderr, "malloc error\n");

exit(1);

}

¶ while ((ch = getchar()) != EOF && (ch != '/')) {

str[len++] = ch;

if (len == size) {

size = size * 2;

str = realloc(str, size);

if (str == NULL) {

fprintf(stderr, "realloc error\n");

exit(1);

}

}

}

str[len] = '\0';

return str;

}

Listing 8-10: Reading a label

We’ve used essentially the same function once before in Listing 5-15.
The only difference this time is that we stop reading at the / character that
separates the label from the priority ¶. As usual, qsort needs a compari-
son function, and the one we want, given in Listing 8-11, compares nodes
by label.

int compare(const void *v1, const void *v2) {

const treap_node *n1 = v1;

const treap_node *n2 = v2;

return strcmp(n1->label, n2->label);

}

Listing 8-11: A comparison function for sorting

The strcmp function works perfectly as a comparison function, because it
returns a negative integer if the first string is alphabetically less than the sec-
ond string, 0 if the strings are equal, and a positive integer if the first string is
alphabetically greater than the second string.

Outputting the Treap
Before we get to the main event—the solve function—we need a helper func-
tion to return the index of the node with maximum priority. This is pro-
vided in Listing 8-12. It’s a slow, linear search from index left to index right

(and this should worry you!).
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int max_priority_index(treap_node treap_nodes[], int left, int right) {

int i;

int max_index = left;

for (i = left + 1; i <= right; i++)

if (treap_nodes[i].priority > treap_nodes[max_index].priority)

max_index = i;

return max_index;

}

Listing 8-12: Finding the maximum priority

Now we’re ready to output the treap! See Listing 8-13 for the solve

function.

void solve(treap_node treap_nodes[], int left, int right) {

int root_index;

treap_node root;

¶ if (left > right)

return;

· root_index = max_priority_index(treap_nodes, left, right);

root = treap_nodes[root_index];

printf("(");

¸ solve(treap_nodes, left, root_index - 1);

printf("%s/%d", root.label, root.priority);

¹ solve(treap_nodes, root_index + 1, right);

printf(")");

}

Listing 8-13: Solving the problem

This function takes three parameters: the array of treap nodes and left

and right indices determining the range of nodes over which we’d like the
treap to be built. In order for the treap to be built for all of the nodes, the
initial call from main will pass 0 for left and num_nodes - 1 for right.

The base case for this recursive function occurs when there are no nodes
in the treap ¶. In this case, we simply return without outputting anything.
With no nodes, there is no output.

Otherwise, from nodes with indices between left and right, we find the
index of the node with maximum priority ·. That’s the root of the treap,
and it splits the problem in two: outputting a treap for those nodes with
smaller labels and outputting a treap for those nodes with larger labels. We
solve each of these subproblems with a recursive call ¸ ¹.

There we have it: our first solution. It’s quite nice, I’d say. In fact, it
does two important things right. First, it sorts the nodes, once and for all, so
that each call of solve needs only its left and right indices. Second, it uses re-
cursion to make short work of the otherwise-daunting process of outputting
a treap.
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However, submit this code to the judge and you’ll see that everything
grinds to a halt because of that linear search to find the node with maximum
priority (Listing 8-12). What’s so wrong with it? What kind of treap triggers
its worst-case performance? We’ll talk about that next.

Range Maximum Queries
In the previous chapter, we talked about solving the range sum query prob-
lem. That one asked, “Given an array a, left index left, and right index right,
what is the sum of all elements from a[left] to a[right]?”

Here, in Building Treaps, we’re being asked to solve a related problem
known as the range maximum query (RMQ) problem. This asks, “Given an ar-
ray a, left index left, and right index right, what is the index of the maximum
element of all elements from a[left] to a[right]?” (Rather than the index,
for some problems it might suffice to get the maximum element itself, but
for Building Treaps we need the index.)

In Solution 1, we offered an implementation of RMQ in Listing 8-12. It
iterates from left to right, checking whether we’ve found an index whose
node has higher priority than what we’ve discovered so far. We call that
function for each subtreap, and each call involves a linear search through the
active segment of the array. If most of those linear searches were on small
array segments, then we might get away with this. However, there are some
inputs that cause many of the searches to be on huge segments of the array.
Here’s such a list of nodes that we might read from the input:

A/1 B/2 C/3 D/4 E/5 F/6 G/7

We scan all seven nodes, finding G/7 as the node with maximum priority.
We then recursively output the treap for the small-labeled nodes and recur-
sively output the treap for the large-labeled nodes. Unfortunately, the first
recursive call gets all but the G/7 node, as the second recursive call is on zero
nodes. The first recursive call gets this:

A/1 B/2 C/3 D/4 E/5 F/6

Now we need another scan of these six elements to identify the node
with highest priority. We’ll identify F/6 as that node, make it the root of this
subtreap, and then make two more recursive calls. Again, however, the first
recursive call is saddled with all remaining nodes, leading to another ex-
pensive array scan. This pattern of expensive array scans can continue until
there are no nodes remaining.

Generalizing, we can say that, for n nodes, the first RMQ could take
n steps, the second could take n – 1 steps, and so on, all the way down to
1 step. That’s 1 + 2 + 3 + . . .+ n steps in all. A closed form for this formula is
n(n + 1)/2. In Chapter 1, we saw a very similar formula in “Diagnosing the
Problem” on page 9. We can similarly conclude that we’re doing O(n2) (quad-
ratic) work here.

Here’s another way to see that we’re doing O(n2) work. Throw away
the n/2 smallest terms and focus on only the remaining n/2 larger terms.
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(Let’s assume that n is even so that n/2 is an integer.) This leaves us with
n + (n – 1) + (n – 2) + . . . + (n/2 + 1). There are n/2 terms here, each of which
is larger than n/2, so in total they add up to at least (n/2)(n/2) = n2/4. This
is quadratic!

Therefore, a linear search to solve the RMQ problem is not satisfactory.
In the previous chapter, we used a prefix array to speed up range sum

queries. Give that a quick refresher now, because I’m about to ask you a
question: Can we use that technique to solve the RMQ, too?

Unfortunately, no. (Or, fortunately no, because I can teach you one of
my favorite data structures as a result.) To sum the elements from index 2
to 5, we can look up the prefix sum for index 5 and subtract the prefix sum
for index 1. That’s because subtraction undoes addition: the prefix sum for
index 5 contains the prefix sum for index 1, so we can just subtract the lat-
ter out of there. Unfortunately, we cannot “undo” a maximum computation
in the same way. If the maximum for the elements up to index 5 is 10, and
the maximum for the elements up to index 1 is also 10, what is the maxi-
mum from index 2 to index 5? Who knows! With that 10 gone, it could be
whatever is at index 2, or 3, or 4, or 5. A huge, early element prevents later
elements from making any change at all to the prefix array. When that huge
element is gone, we lose our bearings. Contrast that to a prefix sum array,
where every element leaves its mark.

As a last-ditch effort, let’s try a heap. Can we use a max-heap to solve the
RMQ? No, again. A max-heap gives us the maximum element in the entire
heap, with no provision for restricting that to a given range.

It’s time for something new.

Segment Trees
Shoo, treaps, shoo! We’ll return to treaps later, just as soon as we have a bet-
ter implementation of RMQ.

A segment tree is a full binary tree where each node is associated with
a particular segment of an underlying array. (In Building Treaps, the un-
derlying array is the array of priorities.) Each node stores the answer for
the query on its segment. For the RMQ, each node stores the index of the
maximum element in its segment, but segment trees can be used for other
queries, too. The segments are arranged such that a small number of them
can be assembled to answer any query.

The Segments
The root node of a segment tree covers the entire array. So, if we’re ever
asked for the RMQ on the entire array, we can solve that in one step by just
looking at the root. For other queries, we’ll have to use other nodes. The
root node has two children: the left child covers the first half of the array
and the right child covers the second half. Each of these nodes has two chil-
dren of its own, which subdivide the segments even further, and so on, until
we get to segments of just one element.
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Figure 8-16 shows a segment tree that supports queries on an eight-
element array. Each node is labeled with its left and right endpoints. There’s
no information in the segment tree about the RMQ yet; for now, we’ll just
focus on the segments themselves.

0-7

0-3 4-7

0-1 2-3 4-5 6-7

0-0 1-1 2-2 3-3 4-4 5-5 6-6 7-7

Figure 8-16: A segment tree for an eight-element array

Notice that the sizes of segments are cut in half for each level that we
descend in the tree. For example, the root segment covers eight elements,
each of its children covers four elements, each of their children covers two
elements, and so on. Like a heap, the height of a segment tree is logn, where
n is the number of elements in the array. We’ll be able to answer any query
by doing a constant amount of work per level, so we’ll obtain O(logn) time
per query.

Figure 8-16 is a complete binary tree. Through our study of heaps, we
know what to do with these: store them in an array! We can then use the
same math to find the children of a parent, which we’ll need when process-
ing segment trees.

Now, I’m going to hit you with another segment tree, one that exposes a
bit of a surprise. See Figure 8-17.

0-10

0-5 6-10

0-2 3-5 6-8 9-10

0-1 2-2 3-4 5-5 6-7 8-8 9-9 10-10

0-0 1-1 3-3 4-4 6-6 7-7

Figure 8-17: A segment tree for an 11-element array

That’s not a complete binary tree at all, because the bottom level is not
filled in from left to right! For example, Node 2-2 has no children, even
though 3-4 does.
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Everything’s okay, though. We’ll continue to store a segment tree in an
array. We’ll continue to multiply a node’s index by 2 to get its left child and
to multiply by 2 and add 1 to get its right child. All that will happen is a little
bit of waste in the array. For example, the order of elements in the array for
Figure 8-17 is as follows, where * is an unused element:

0-10

0-5 6-10

0-2 3-5 6-8 9-10

0-1 2-2 3-4 5-5 6-7 8-8 9-9 10-10

0-0 1-1 * * 3-3 4-4 * * 6-6 7-7 * * * * * *

This waste doesmake it a little more difficult to determine the number of
array elements we need for the segment tree.

If the number of elements, n, in the underlying array is a power of 2,
then we’ll be safe with a segment tree that can hold 2n elements. For ex-
ample, count the nodes in Figure 8-16: it takes 15 nodes, which is less than
8 × 2 = 16. (2n is safe because all powers of 2 less than n add up to exactly
n – 1. For example, 4 + 2 + 1 = 7, which is 1 less than 8.) If n isn’t a power of
2, then 2n isn’t enough. For proof, look no further than Figure 8-17, which
would require an array of 31 elements (more than 2 × 11 = 22) to hold it.

The more elements to cover in the segment tree, the bigger we need
to make the segment tree array—but how big should it be? Suppose that we
have an underlying array of n elements for which we want to build a segment
tree. I’ll argue that the segment tree should be allocated an array of 4n ele-
ments to be safe.

Let m be the smallest power of 2 greater than or equal to n. For exam-
ple, if n is 11, then m is 16. We can store a segment tree for m elements in an
array with 2m elements. Since m ≥ n, an array with 2m elements is enough to
store a segment tree for n elements, too.

Fortunately, m can’t be that high: it’s at most twice the value of n. (The
worst case occurs for values of n that are just above powers of 2. For exam-
ple, if n is 9, then m is 16, which is almost twice as large as 9.) Therefore, if
we need an array of 2m elements and m is at most 2n, then 2m is at most
2 × 2n = 4n.

Initializing the Segments
In each node of the segment tree, we’ll store three things: the left index of
its segment, the right index of its segment, and the index of the maximum
element in the range. We’ll initialize the first two of these before moving to
the third.

Here’s the struct that we’ll use for a segment tree node:

typedef struct segtree_node {

int left, right;

int max_index;

} segtree_node;
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To initialize the left and right members for each node, we’ll write the body
for the following function signature:

void init_segtree(segtree_node segtree[], int node,

int left, int right)

We assume that segtree is an array with sufficient space for the segment
tree. The node parameter is the root index of the segment tree; left and
right are its segment’s left and right indices, respectively. An initial call of
init_segtree would look like this:

init_segtree(segtree, 1, 0, num_elements - 1);

Here num_elements is the number of elements in the underlying array (for
example, the number of nodes in a treap).

We can use recursion to implement init_segtree. If left and right are
equal, then we have a one-element segment and there is no subdividing to
do. Otherwise, we’re in the recursive case and have to split the segment in
two. Listing 8-14 provides the code.

void init_segtree(segtree_node segtree[], int node,

int left, int right) {

int mid;

segtree[node].left = left;

segtree[node].right = right;

¶ if (left == right)

return;

· mid = (left + right) / 2;

¸ init_segtree(segtree, node * 2, left, mid);

¹ init_segtree(segtree, node * 2 + 1, mid + 1, right);

}

Listing 8-14: Initializing segment tree segments

We first store the values of left and right in the node. Then, we check
the base case ¶, returning from the function if no children are required.

If children are required, then we calculate the midpoint of the current
range ·. We then need to build the left segment tree for the indices from
left to mid and the right segment tree for the indices from mid + 1 to right.
This is accomplished by two recursive calls: one for the left ¸ and one for
the right ¹. Notice how we use node * 2 to move to the left child and
node * 2 + 1 to move to the right child.

Filling the Segment Tree
With the segment tree initialized, it’s time to add the index of the maximum
element in its segment to each node. For an example, we’ll need both a seg-
ment tree and the array on which the segment tree will be based. For the
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segment tree, let’s use Figure 8-17, and, for the array, let’s use the 11 pri-
orities from “Sorting by Label” on page 303. Figure 8-18 shows the filled
segment tree. The maximum index for each node is given below its segment
endpoints.

0-10
2

0-5
2

6-10
7

0-2
2

3-5
3

6-8
7

9-10
9

0-1
0

2-2
2

3-4
3

5-5
5

6-7
7

8-8
8

9-9
9

10-10
10

0-0
0

1-1
1

3-3
3

4-4
4

6-6
6

7-7
7

Index 0 1 2 3 4 5 6 7 8 9 10
Value 54 42 58 49 36 5 55 56 16 40 39

Figure 8-18: A segment tree and an array of priorities

Let’s perform a couple of quick checks. Consider the 0-0 node on the
bottom of the tree. That’s a segment of only index 0, so the only choice for
the index of the maximum element is 0. This sounds like a base case to me!

Now consider Node 6-10. The node says that 7 is the index of the max-
imum element from index 6 to index 10. Index 7 holds 56, and you can
verify that this is the largest element in the segment. To quickly calculate
this, we can use the maximum indices stored in 6-10’s child nodes: the left
child says that 7 is the desired index for the 6-8 segment, and the right child
says that 9 is the desired index for the 9-10 segment. For 6-10, then, we re-
ally have only two choices: index 7 or index 9, the elements that we get back
from these subtrees. This sounds like a recursive case to me!

That’s right: we’re going to use recursion to fill the tree, much as we did
to initialize the tree’s segments. Listing 8-15 gives the code.

int fill_segtree(segtree_node segtree[], int node,

treap_node treap_nodes[]) {

int left_max, right_max;

¶ if (segtree[node].left == segtree[node].right) {

segtree[node].max_index = segtree[node].left;

· return segtree[node].max_index;

}
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¸ left_max = fill_segtree(segtree, node * 2, treap_nodes);

¹ right_max = fill_segtree(segtree, node * 2 + 1, treap_nodes);

º if (treap_nodes[left_max].priority > treap_nodes[right_max].priority)

segtree[node].max_index = left_max;

else

segtree[node].max_index = right_max;

» return segtree[node].max_index;

}

Listing 8-15: Adding the maximums

The segtree parameter is the array where the segment tree is stored; we
assume that it has already been initialized by Listing 8-14. The node parame-
ter is the root index of the segment tree, and treap_nodes is an array of treap
nodes. We need the treap nodes here so we can access their priorities, but
otherwise this doesn’t have anything to do with treaps. You could easily re-
place the treap nodes with whatever you need for solving a given problem.

This function returns the index of the maximum element for the root
node of the segment tree.

The code begins with the base case check: that the node spans just a sin-
gle index ¶. If it does, then the maximum index for the node is just its left
index (or its right—they’re the same, after all). We then return that maxi-
mum index ·.

If we’re not in the base case, then we’re looking at a segment that spans
more than one index. We make a recursive call to the left subtree ¸. That
call figures out the max_index value for each node in that subtree and returns
to us the max_index value of that subtree’s root. We then do the same for the
right subtree ¹. Then we compare the indices we got back from those re-
cursive calls º, choosing the one whose priority is higher, and setting this
node’s max_index accordingly. The last thing to do is to return that maximum
index ».

Filling the tree in this way takes linear time: for each node, we do a con-
stant amount of work to find its maximum index.

Querying the Segment Tree
Let’s recap. We were stymied in our attempts to solve Building Treaps be-
cause we didn’t have a fast way to respond to the range maximum queries.
As a result, we’ve spent a lot of time developing segment trees, deciding how
to choose the segments, how big to make the segment tree array, and how to
store the index of the maximum element for each node.

Of course, all of this segment tree stuff would be for naught unless it
gives us fast queries. Finally, then, it’s time for the payoff: getting fast queries
using a segment tree. It’s go time! Don’t worry—it doesn’t involve much
more than the kind of recursion we’ve been using on segment trees so far.
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To get a feel for this, we’ll make some sample queries on Figure 8-18.
Here’s that figure again:

0-10
2

0-5
2

6-10
7

0-2
2

3-5
3

6-8
7

9-10
9

0-1
0

2-2
2

3-4
3

5-5
5

6-7
7

8-8
8

9-9
9

10-10
10

0-0
0

1-1
1

3-3
3

4-4
4

6-6
6

7-7
7

Index 0 1 2 3 4 5 6 7 8 9 10
Value 54 42 58 49 36 5 55 56 16 40 39

For our first query, let’s do 6-10. This range covers only some of what
the root’s 0-10 segment covers, so returning the root’s maximum index
wouldn’t be justified. Instead, we’ll ask each of the root’s children for the
maximum relevant index and use those answers to return the maximum in-
dex overall. The root’s left child covers Segment 0-5, and that has no overlap
at all with our 6-10 range. The left recursive call tells us nothing. The root’s
right child, however, covers exactly Segment 6-10. The recursive call on that
right child will return 7, and that’s what we should return overall: 7 is the
index of the maximum element in the 6-10 range.

For our second query, let’s do 3-8. Again, we’ll ask each of the root’s
children for the maximum relevant index—except that, this time, both chil-
dren will have something to say, because 3-8 overlaps both 0-5 and 6-10. The
recursive call on the left child will return 3, and the recursive call on the
right child will return 7. At the root, then, all we do is compare the element
at index 3 with the element at index 7. The one at index 7 is higher, so that’s
our answer.

I don’t normally unwind recursion, but I’ll make an exception here be-
cause I think it might help. Let’s further dive into the recursive call on the
left subtree. We’re still querying 3-8, and the range of the node is 0-5. The
left child of 0-5 is 0-2. 0-2 doesn’t have any indices in common with our 3-8
query range, so it’s out. That leaves the 3-5 node to do the work. Impor-
tantly, 3-5 is completely contained within our desired 3-8 range, so we stop
here and return 3 from the 3-5 recursive call.

Querying the node of a segment tree falls into one of three cases, and
we have seen them all in our examples here. Case 1 is when the node has
no indices in common with the query range, case 2 is when the node’s
segment is completely contained within the query range, and case 3 is when
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the node’s segment contains part of the query range but also contains in-
dices not in the query range.

I recommend pausing here, just before we look at the code, to work a
few more query examples by hand. In particular, try the query 4-9. You’ll no-
tice that it requires tracing two long paths down the tree. This is the worst-
case behavior: we split into two nodes near the top of the tree, and then we
trace those two paths all the way down. Convince yourself through further
examples, perhaps on larger segment trees, that those paths cannot further
subdivide into two long paths of their own. So, although querying a segment
tree does do a little more work than a heap operation—sometimes tracing
two paths rather than one—it still accesses a small number of nodes per level,
giving an O(logn) runtime.

The code for querying a segment tree is given in Listing 8-16.

int query_segtree(segtree_node segtree[], int node,

treap_node treap_nodes[], int left, int right) {

int left_max, right_max;

¶ if (right < segtree[node].left || left > segtree[node].right)

return -1;

· if (left <= segtree[node].left && segtree[node].right <= right)

return segtree[node].max_index;

¸ left_max = query_segtree(segtree, node * 2,

treap_nodes, left, right);

¹ right_max = query_segtree(segtree, node * 2 + 1,

treap_nodes, left, right);

if (left_max == -1)

return right_max;

if (right_max == -1)

return left_max;

º if (treap_nodes[left_max].priority > treap_nodes[right_max].priority)

return left_max;

return right_max;

}

Listing 8-16: Querying the segment tree

The function parameters are similar to those of Listing 8-15, except that
we’ve added the left and right indices of our query. The code handles each
of the three cases in turn.

In case 1, the node has nothing in common with the query. This holds
exactly when the query range ends before the node’s segment starts or when
the query range starts after the node’s segment ends ¶. We return -1 to indi-
cate that this node has no maximum index to return.

In case 2, the node’s segment is completely within the query range ·.
We therefore return the maximum index of this node’s segment.

Heaps and Segment Trees 315



That leaves case 3, where the node’s segment partially overlaps the query
range. We make two recursive calls: one to get the maximum index from the
left child ¸ and one to get the maximum index from the right child ¹. If
one of those returns -1, then we return the other. If they both return valid
indices, then we choose the index whose element is larger º.

Solution 2: Segment Trees
Our final order of business is to alter our first solution (specifically the main

function in Listing 8-9 and the solve function in Listing 8-13) to use segment
trees. It won’t take much: we’ll just make the appropriate calls to the seg-
ment tree functions that we’ve already written.

Listing 8-17 contains the new main function.

int main(void) {

static treap_node treap_nodes[MAX_NODES];

¶ static segtree_node segtree[MAX_NODES * 4 + 1];

int num_nodes, i;

scanf("%d ", &num_nodes);

while (num_nodes > 0) {

for (i = 0; i < num_nodes; i++) {

treap_nodes[i].label = read_label(LABEL_LENGTH);

scanf("%d ", &treap_nodes[i].priority);

}

qsort(treap_nodes, num_nodes, sizeof(treap_node), compare);

· init_segtree(segtree, 1, 0, num_nodes - 1);

¸ fill_segtree(segtree, 1, treap_nodes);

¹ solve(treap_nodes, 0, num_nodes - 1, segtree);

printf("\n");

scanf("%d ", &num_nodes);

}

return 0;

}

Listing 8-17: The main function with segment trees added

The only additions are the declaration of the segment tree ¶, a call to
initialize the segment tree’s segments ·, a call to compute the maximum in-
dex for each segment tree node ¸, and a new argument to pass the segment
tree along to the solve function ¹.

The new solve function itself is given in Listing 8-18.

void solve(treap_node treap_nodes[], int left, int right,

segtree_node segtree[]) {

int root_index;

treap_node root;

if (left > right)

return;

¶ root_index = query_segtree(segtree, 1, treap_nodes, left, right);
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root = treap_nodes[root_index];

printf("(");

solve(treap_nodes, left, root_index - 1, segtree);

printf("%s/%d", root.label, root.priority);

solve(treap_nodes, root_index + 1, right, segtree);

printf(")");

}

Listing 8-18: Solving the problem with segment trees added

There’s only one substantive change: the call to query_segtree to imple-
ment the RMQ ¶!

Phew! We had to work pretty hard there. This segment tree solution
should pass all of the judge’s test cases within the time limit. In the end, it
was worth it, though, because segment trees insinuate themselves into fast
solutions to all kinds of problems.

Segment Trees
Segment trees go by several other names in the wild, including interval trees,
tournament trees, order-statistic trees, and range query trees. It doesn’t help
that “segment tree” is also used to refer to an entirely different data struc-
ture than what we’ve studied here! Perhaps through my chosen terminology
I have unknowingly aligned myself with some particular segment of the pro-
grammer population.

Whatever you call them, segment trees are must-know structures for
those learning algorithms and those interested in competitive program-
ming. On an underlying array of n elements, you can build a segment tree
in O(n) time and query a range in O(logn) time.

In Building Treaps, we used segment trees to solve the RMQ, but seg-
ment trees can be used for other queries, too. If you can answer a query by
quickly combining answers to two subqueries, then a segment tree is likely
the tool of choice. What about a minimum range query? With a segment
tree, you just take the minimum (not the maximum) of the children’s an-
swers. What about a range sum query? With a segment tree, you just take
the sum of the children’s answers.

Perhaps you’re wondering whether segment trees apply only when the
elements of the underlying array remain constant through the execution
of the program. In Building Treaps, for example, the treap nodes never
changed, so there was no way in which our segment tree could ever become
out of sync with what was stored in the array. Indeed, many segment tree
problems share this characteristic: an array to be queried, not modified.
However, a neat bonus feature of segment trees is that they can be used even
when the underlying array is allowed to change. Problem 3 shows you how
this is done, and it also shows us a new type of query that we haven’t seen
before.
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Problem 3: Two Sum
There is no context this time—this is just a pure problem for segment trees.
As you’ll see, we’ll need to support updates to the array, and the query we’ll
need is not the same as the RMQ.

This is SPOJ problem KGSS.

The Problem
We are given a sequence of integers a[1], a[2], . . . , a[n], where each integer
is at least 0. (Think of the sequence as an array that starts at index 1 rather
than 0.)

We need to support two types of operations on the sequence:

Update Given integers x and y, change a[x] to y.

Query Given integers x and y, return the maximum sum of two ele-
ments in the range a[x] to a[y].

Input
The input contains one test case, consisting of the following lines:

• A line containing n, the number of elements in the sequence. n is
between 2 and 100,000.

• A line containing n integers, each giving one element of the se-
quence in order from a[1] to a[n]. Each integer is at least 0.

• A line containing q, the number of operations to be performed on
the sequence. q is between 0 and 100,000.

• q lines, each giving one update or query operation to be performed
on the sequence.

Here are the operations that can be performed in those q lines.

Update An update operation is specified as the letter U, a space, an in-
teger x, a space, and an integer y. It indicates that a[x] should be changed
to y. For example, U 1 4 means that a[1] is to be changed from its cur-
rent value to 4. x is between 1 and n; y is at least 0. This operation does
not result in any output.

Query A query operation is specified as the letter Q, a space, an
integer x, a space, and an integer y. It indicates that we should output
the maximum sum of two elements in the range a[x] to a[y]. For exam-
ple, Q 1 4 asks us for the maximum sum of two elements in the range
a[1] to a[4]. x and y are between 1 and n, and x is less than y.

Output
Output the result of each query operation, one per line.

The time limit for solving the test case is one second.
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Filling the Segment Tree
In Building Treaps, we needed the segment tree to give us indices of the
underlying array, which we used to characterize the recursion and split the
treap nodes. This time, however, there’s no reason to store indices in the
segment tree. All we care about is the sum of elements, not the indices of
those elements.

We’ll initialize the segments of our segment tree just like we did in
“Initializing the Segments” on page 310. We now need the segments to start
covering the array at index 1, not index 0, but otherwise there’s nothing
new here. Figure 8-19 shows a segment tree that supports a seven-element
array. It covers indices 1 to 7, not 0 to 6, to correspond to the problem
description.

1-7

1-4 5-7

1-2 3-4 5-6 7-7

1-1 2-2 3-3 4-4 5-5 6-6

Figure 8-19: A segment tree for a seven-element array

Add the code from Listing 8-14 to your program.
Now let’s think about how to fill each node with the maximum sum of

two elements in its segment. Suppose that we’ve already found the maxi-
mum sum of two elements for Node 1-2 and already found the maximum
sum of two elements for Node 3-4. We want to find the maximum sum of
two elements for Node 1-4. How do we do this?

Life was good when we were solving the RMQ, because the maximum
for a node is just the maximum of its children. For example, if the maximum
value in the left subtree is 10 and the maximum in the right subtree is 6,
then the maximum for their parent node is 10. No surprises there. In con-
trast, with this “maximum sum of two elements” segment tree, something
weird happens.

Suppose we have these four sequence elements: 10, 8, 6, and 15. The
maximum sum of two elements in Segment 1-2 is 18, and the maximum sum
of two elements in Segment 3-4 is 21. Is 18 the answer for Segment 1-4, or is
21? Neither is correct! The answer is 10 + 15 = 25. We can’t conjure up that
25 if all we know is the 18 from the left and 21 from the right. We need the
left and right children to tell us more about their segment—more than just
“Oh hey, here’s my maximum sum of two elements.”

To be clear, sometimes getting back just the maximum sum of two el-
ements from each child is enough. Consider this sequence: 10, 8, 6, and
4. The maximum sum of two elements for Segment 1-2 is 18, and the max-
imum sum of two elements in Segment 3-4 is 10. The maximum sum of
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two elements in 1-4 is 18, which happens to be the answer from its child
segment 1-2—but that was lucky!

There are at most three options for the maximum sum of two elements
for a segment. (There are fewer than three options if a node’s child doesn’t
have a valid maximum sum.) Those options are as follows:

Option 1 The maximum sum is in the left child. This is like the lucky
case that we just did. We get the answer from what the left child tells us.

Option 2 The maximum sum is in the right child. This is another
lucky case, where the answer is what the right child tells us.

Option 3 The maximum sum includes one element from the left child
and one element from the right child. This one requires more work,
because the answer is not one of the maximums of our children. This is
where we need more information from the children.

If the maximum sum of two elements for some segment consists of one
element from the left and one from the right, then it must use the maximum
element from the left and the maximum element from the right. Let’s re-
turn to the sequence 10, 8, 6, and 15. The maximum sum here is an exam-
ple that involves one element from the left (10) and one element from the
right (15). Notice that these are the largest elements in the left and right seg-
ments, respectively. There’s no way to take an element from each side and
do better than this.

Now we see what the segment tree nodes have to tell us. In addition to
what the outside world cares about—the maximum sum of two elements—we
also need the maximum element on its own. Combined, these two pieces of
information about child segments enable us to fill in the information for the
parent segment.

Figure 8-20 shows an example segment tree built for an array. Notice
that each node contains both maxsum (the maximum sum of two elements)
and maxelm (the maximum element).

1-7

maxsum 25

maxelm 15

1-4

maxsum 25

maxelm 15

5-7

maxsum 12

maxelm 9

1-2

maxsum 18

maxelm 10

3-4

maxsum 21

maxelm 15

5-6

maxsum 5

maxelm 3

7-7

maxsum −1

maxelm 9

1-1

maxsum −1

maxelm 10

2-2

maxsum −1

maxelm 8

3-3

maxsum −1

 maxelm 6

4-4

maxsum −1

maxelm 15

5-5

maxsum −1

 maxelm 3

6-6

maxsum −1

 maxelm 2

Index 1 2 3 4 5 6 7

Value 10 8 6 15 3 2 9

Figure 8-20: A segment tree and its corresponding array
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Computing the maximum element for each node is something that
we know how to do: it’s just the RMQ problem that we solved in Building
Treaps.

That leaves the maximum sum of two elements for each node. To begin,
we set the maximum sum for the nodes with one-element segments, such
as 1-1, 2-2, and so on, to the special value –1. The reason we do this is that
there aren’t even two elements in these segments to choose from! The –1
alerts us that the parent’s maximum sum cannot be the maximum sum of
this child.

The maximum sum for each other node is set based on the maximum
sums of its children. Consider Node 1-7. There are three options for its max-
imum sum. We could take the maximum sum 25 from the left, or we could
take the maximum sum 12 from the right, or we could take the maximum
element 15 from the left and the maximum element 9 from the right to get
15 + 9 = 24. Of these, 25 is the largest number, so that’s what we choose.

We make a special case of the fake –1 maximum sum values to highlight
that those cannot be taken as options for the maximum sum of the parent
node. Look out for this in the upcoming code.

We’ll use a struct for the segment tree nodes:

typedef struct segtree_node {

int left, right;

int max_sum, max_element;

} segtree_node;

We’ll use another struct for what we will return from the fill_segtree

and query_segtree functions:

typedef struct node_info {

int max_sum, max_element;

} node_info;

We need node_info because it lets us return both the maximum sum and
the maximum element; returning one integer, without the struct, would not
be sufficient.

The code for computing the maximum sum and the maximum element
for each segment is given in Listing 8-19.

int max(int v1, int v2) {

if (v1 > v2)

return v1;

else

return v2;

}

node_info fill_segtree(segtree_node segtree[], int node,

int seq[]) {

node_info left_info, right_info;
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¶ if (segtree[node].left == segtree[node].right) {

segtree[node].max_sum = -1;

segtree[node].max_element = seq[segtree[node].left];

· return (node_info){segtree[node].max_sum, segtree[node].max_element};

}

¸ left_info = fill_segtree(segtree, node * 2, seq);

right_info = fill_segtree(segtree, node * 2 + 1, seq);

¹ segtree[node].max_element = max(left_info.max_element,

right_info.max_element);

º if (left_info.max_sum == -1 && right_info.max_sum == -1)

» segtree[node].max_sum = left_info.max_element +

right_info.max_element;

¼ else if (left_info.max_sum == -1)

segtree[node].max_sum = max(left_info.max_element +

right_info.max_element,

right_info.max_sum);

½ else if (right_info.max_sum == -1)

segtree[node].max_sum = max(left_info.max_element +

right_info.max_element,

left_info.max_sum);

else

¾ segtree[node].max_sum = max(left_info.max_element +

right_info.max_element,

max(left_info.max_sum, right_info.max_sum));

return (node_info){segtree[node].max_sum, segtree[node].max_element};

}

Listing 8-19: Adding the maximum sum and maximum element

When the segment contains just one element, we’re in the base case ¶.
We set the maximum sum to the special -1 value, which indicates that there
is no valid sum of two elements here, and we set the maximum element to
the only element in the segment. We then return the maximum sum and
maximum element ·.

Otherwise, we’re in the recursive case. We use left_info to hold the in-
formation for the left segment and right_info to hold the information for the
right segment. Each of those variables is initialized using a recursive call ¸.

As we discussed, the maximum element in a segment is just the maxi-
mum of the maximum element in the left and the maximum element in the
right ¹.
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Now consider the maximum sum of two elements. If neither of the
children has a maximum sum º, then we know that each child’s segment
contains just one element. This parent therefore has only two elements in its
segment, and adding up those elements is the only choice for the maximum
sum of two elements ».

Next, what do we do if the left child has only one element and the right
child has more than one element ¼? Well, now we have two options for the
maximum sum for the parent. The first option is to add the maximum el-
ements from each half. The second is to take the maximum sum from the
right segment. We use max to take the best of these two. The case when the
right child has only one element and left child has more than one element is
analogous ½.

The final case is when both children have more than one element ¾.
Now we have three options: add the maximum elements from each half, take
the maximum sum from the left, or take the maximum sum from the right.

Querying the Segment Tree
The work we just did to fill in the segment information is going to pay off
again, right now, for the code to query the segment tree. See Listing 8-20.

node_info query_segtree(segtree_node segtree[], int node,

int seq[], int left, int right) {

node_info left_info, right_info, ret_info;

¶ if (right < segtree[node].left || left > segtree[node].right)

return (node_info){-1, -1};

· if (left <= segtree[node].left && segtree[node].right <= right)

return (node_info) {segtree[node].max_sum, segtree[node].max_element};

left_info = query_segtree(segtree, node * 2, seq, left, right);

right_info = query_segtree(segtree, node * 2 + 1, seq, left, right);

if (left_info.max_element == -1)

return right_info;

if (right_info.max_element == -1)

return left_info;

ret_info.max_element = max(left_info.max_element, right_info.max_element);

if (left_info.max_sum == -1 && right_info.max_sum == -1) {

ret_info.max_sum = left_info.max_element + right_info.max_element;

return ret_info;

}
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else if (left_info.max_sum == -1) {

ret_info.max_sum = max(left_info.max_element + right_info.max_element,

right_info.max_sum);

return ret_info;

}

else if (right_info.max_sum == -1) {

ret_info.max_sum = max(left_info.max_element + right_info.max_element,

left_info.max_sum);

return ret_info;

}

else {

ret_info.max_sum = max(left_info.max_element + right_info.max_element,

max(left_info.max_sum, right_info.max_sum));

return ret_info;

}

}

Listing 8-20: Querying the segment tree

The structure of this code parallels the RMQ code in Listing 8-16. If the
node’s segment has nothing in common with the query range ¶, we return a
struct where both the maximum sum and maximum element are -1. We can
use this special value of -1 for the maximum element to tell us that there is
no information available from a recursive call.

If the node’s segment is completely within the query range ·, then we
return the maximum sum and maximum element for this node.

Finally, if the node’s segment partially overlaps the query range, then
we follow the same logic as when we filled in the segment information in
Listing 8-19.

Updating the Segment Tree
When an element of the sequence array is updated, we have to adjust the
segment tree to keep pace. Otherwise, queries on the segment tree would
use now-stale array elements and may therefore yield results at odds with
what’s currently in the array.

One option is to start from scratch and ignore whatever segment infor-
mation is already in the tree. We can do that by rerunning Listing 8-19 each
time an array element is updated. That would certainly bring the segment
tree back up to date, so correctness is not a concern.
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Efficiency is a concern, though! Rebuilding the segment tree takes O(n)
time. All it would take to tank our performance is a stream of q update oper-
ations, with no query operations at all. That would force n work to be done
a total of q times, for O(nq) performance. That’s especially grim if you think
about the cost of updates with no segment tree at all: they’re constant-time
operations on an array! We can’t afford to trade constant time for linear
time. However, we can afford to trade constant time for logarithmic time,
because the latter is very close to constant time.

The way we escape the linear-time work is to realize that only a small
number of segment tree nodes need to be updated when an element of the
array is updated. Dismantling the entire tree for a single update is a gross
overreaction.

Let me explain what I mean by example. Here again is Figure 8-20:

1-7

maxsum 25

maxelm 15

1-4

maxsum 25

maxelm 15

5-7

maxsum 12

maxelm 9

1-2

maxsum 18

maxelm 10

3-4

maxsum 21

maxelm 15

5-6

maxsum 5

maxelm 3

7-7

maxsum −1

maxelm 9

1-1

maxsum −1

maxelm 10

2-2

maxsum −1

maxelm 8

3-3

maxsum −1

 maxelm 6

4-4

maxsum −1

maxelm 15

5-5

maxsum −1

 maxelm 3

6-6

maxsum −1

 maxelm 2

Index 1 2 3 4 5 6 7

Value 10 8 6 15 3 2 9

Now imagine the next operation is U 4 1, which means that index 4 of
the sequence should be changed to value 1 (as the 15 that was there is gone).
The new segment tree and array are shown in Figure 8-21.
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1-7

maxsum 19

maxelm 10

1-4

maxsum 18

maxelm 10

5-7

maxsum 12

maxelm 9

1-2

maxsum 18

maxelm 10

3-4

maxsum 7

maxelm 6

5-6

maxsum 5

maxelm 3

7-7

maxsum −1

maxelm 9

1-1

maxsum −1

maxelm 10

2-2

maxsum −1

maxelm 8

3-3

maxsum −1

 maxelm 1

4-4

maxsum −1

maxelm 1

5-5

maxsum −1

 maxelm 3

6-6

maxsum −1

 maxelm 2

Index 1 2 3 4 5 6 7

Value 10 8 6 1 3 2 9

Figure 8-21: A segment tree and its corresponding array following an array
update

Notice that only three nodes have changed. Node 4-4 has to change,
of course, because the only element in its segment changed. However, the
impact of that change can’t ripple too far: the only other nodes that can
change are ancestors of 4-4, because those are the only other nodes that
have an index of 4 in their segments! Indeed, in this example, you can con-
firm that the only other nodes that changed are the three ancestors 3-4, 1-4,
and 1-7. At worst, then, we go from a leaf of the tree to the root, updating
nodes along that path. Since the height of the tree is O(logn), this path has
only O(logn) nodes.

As long as we don’t waste time on recursion through inoperative parts
of the segment tree, we will end up with an O(logn) update procedure.
Listing 8-21 gives the code.

node_info update_segtree(segtree_node segtree[], int node,

int seq[], int index) {

segtree_node left_node, right_node;

node_info left_info, right_info;

¶ if (segtree[node].left == segtree[node].right) {

segtree[node].max_element = seq[index];

return (node_info) {segtree[node].max_sum, segtree[node].max_element};

}

left_node = segtree[node * 2];

right_node = segtree[node * 2 + 1];

· if (index <= left_node.right ) {

¸ left_info = update_segtree(segtree, node * 2, seq, index);
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¹ right_info = (node_info){right_node.max_sum, right_node.max_element};

} else {

right_info = update_segtree(segtree, node * 2 + 1, seq, index);

left_info = (node_info){left_node.max_sum, left_node.max_element};

}

segtree[node].max_element = max(left_info.max_element,

right_info.max_element);

if (left_info.max_sum == -1 && right_info.max_sum == -1)

segtree[node].max_sum = left_info.max_element +

right_info.max_element;

else if (left_info.max_sum == -1)

segtree[node].max_sum = max(left_info.max_element +

right_info.max_element,

right_info.max_sum);

else if (right_info.max_sum == -1)

segtree[node].max_sum = max(left_info.max_element +

right_info.max_element,

left_info.max_sum);

else

segtree[node].max_sum = max(left_info.max_element +

right_info.max_element,

max(left_info.max_sum, right_info.max_sum));

return (node_info) {segtree[node].max_sum, segtree[node].max_element};

}

Listing 8-21: Updating the segment tree

This function is designed to be called after the array element at the given
index has been updated. Every call of this function is required to ensure that
node is the root of a segment tree whose segment contains index.

Our base case is when the segment contains just one element ¶. Since
we never make a recursive call unless index is in the node’s segment, we know
this segment contains exactly our desired index. We thus update max _element

of the node to whatever is now stored at seq[index]. We don’t update max_sum:
it’s staying at -1, because this segment still has just one element in it.

Now suppose we’re not in the base case. We have a node, and we know
that exactly one of its elements, index, has been updated. There’s absolutely
no reason, then, to make two recursive calls, since only one of the node’s
children can house the updated element. If index is in the left child, then we
want to make a recursive call on the left child to update the left subtree. If
index is in the right child, then we want to make a recursive call on the right
child to update the right subtree.

Heaps and Segment Trees 327



To determine which child index is in, we compare it to the rightmost in-
dex of the left child. If index comes before the left child’s segment ends ·,
then we need a recursive call on the left; otherwise, we need a recursive call
on the right.

Let’s talk a little about the case where we make a recursive call on the
left ¸; the else branch, where we make a recursive call on the right, is simi-
lar. We make the recursive call that updates the left subtree and returns to
us the information for that updated segment. For the right subtree, we just
inherit what was there before ¹—there’s no update occurring there, so noth-
ing can change.

The rest of the code parallels that of Listing 8-19.

The main Function
We’re now ready to use our souped-up segment tree to solve the problem.
The code for the main function is given in Listing 8-22.

#define MAX_SEQ 100000

int main(void) {

static int seq[MAX_SEQ + 1];

static segtree_node segtree[MAX_SEQ * 4 + 1];

int num_seq, num_ops, i, op, x, y;

char c;

scanf("%d", &num_seq);

for (i = 1; i <= num_seq; i++)

scanf("%d", &seq[i]);

init_segtree(segtree, 1, 1, num_seq);

fill_segtree(segtree, 1, seq);

scanf("%d", &num_ops);

for (op = 0; op < num_ops; op++) {

scanf(" %c%d%d ", &c, &x, &y);

¶ if (c == 'U') {

seq[x] = y;

update_segtree(segtree, 1, seq, x);

· } else {

printf("%d\n", query_segtree(segtree, 1, seq, x, y).max_sum);

}

}

return 0;

}

Listing 8-22: The main function for reading input and solving the problem
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The only thing to highlight here is the logic for processing the opera-
tions. If the next operation is an update operation ¶, we respond by updat-
ing the array element and then updating the segment tree. Otherwise, the
operation is a query operation ·, and we respond by querying the seg-
ment tree.

It is time to submit the code. The judge should enjoy this fast, segment-
tree-based solution.

Summary
In this chapter, we studied how to implement and use heaps and segment
trees. Like any useful data structure, these data structures support a small
number of highly efficient operations. It’s not often that a data structure
solves a problem on its own. More typically, you already have an algorithm
whose speed is reasonable, and a data structure helps you make it even faster.
For example, our implementation of Dijkstra’s algorithm in Chapter 6 al-
ready does quite well, but add a min-heap and it does even better.

Whenever you’re performing the same kind of operation over and over,
you should seek out an opportunity to bolster your algorithm with a data
structure. Are you searching for specified items in an array? Then hash
tables are called for. Are you trying to find the maximum or minimum?
Then heaps will do the trick. Are you querying segments of an array? Then
employ segment trees. What about deciding whether two elements are in
the same set? Well now, you’ll have to read the next chapter for that one!

Notes
Supermarket Promotion is originally from the 2000 Polish Olympiad in
Informatics, Stage 3. Building Treaps is originally from the 2004 Ulm
University Local Contest. Two Sum is originally from the 2009 Kurukshetra
Online Programming Contest.

For more about segment trees and many other data structures, I recom-
mend Matt Fontaine’s Algorithms Live! series of videos (see http://algorithms
-live.blogspot.com). Matt’s segment tree video gave me the idea to explicitly
store left and right segment indices in each node. (Most of the segment
tree code you’ll see out there doesn’t do this, instead passing those indices
around as additional function parameters that I always have trouble keeping
straight.)
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9
UNION-F IND

We used the adjacency list data structure—
and algorithms on it—to solve graph prob-

lems in Chapters 5 and 6. That’s an efficient
data structure that works no matter the graph

problem. However, if we constrain the types of prob-
lems we want to solve, we can design an even more ef-
ficient data structure. Constrain the problems just a
little, and we likely wouldn’t be able to do any better
than an adjacency list. Constrain them too much, and
few people would use our data structure because it
would be unlikely to solve problems that they cared
about solving. Constrain the problems just right and
you have the union-find data structure, the topic of
this chapter. It solves graph problems—not all, only
some. For the ones it does solve, though, it’s much
faster than a general-purpose graph data structure.

Keeping track of communities in a social network, maintaining groups
of friends and enemies, and organizing items into specified drawers are all



graph problems. Importantly, they’re special graph problems, ones that can
be solved with incredible speed by using union-find. Let’s do this!

Problem 1: Social Network
This is SPOJ problem SOCNETC.

The Problem
You are asked to write a program that tracks the people and communities in
a social network.

There are n people, numbered 1, 2, . . . , n.
A community is a person plus that person’s friends, their friends’ friends,

their friends’ friends’ friends, and so on. For example, if Person 1 and Per-
son 4 are friends, and Person 4 and Person 5 are friends, then this commu-
nity consists of the three people, 1, 4, and 5. People in the same community
are all friends with each other.

Each person starts in a community alone; the person’s community can
get bigger as friendships between people are made.

Your program must support three operations:

Add Make the two provided people be friends. If this operation takes
place, and if these people were not in the same community before, then
they will be in the same (larger) community now.

Examine Report whether the two provided people are in the same
community.

Size Report the number of people who are in the provided person’s
community.

Your program will run on a computer with limited resources, so there is
a parameter m that gives the maximum number of people in a community.
We’re required to ignore any Add operation that would result in a commu-
nity with more than m people.

Input
The input contains one test case, consisting of the following lines:

• A line containing n, the number of people in the social network,
and m, the maximum number of people allowed in a community.
n and m are between 1 and 100,000.

• A line containing integer q, the number of operations to follow. q is
between 1 and 200,000.

• q lines, one for each operation.

Each of the q lines can be one of the following operations:

• An Add operation is of the form A x y, where x and y are people.
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• An Examine operation is of the form E x y, where x and y are
people.

• A Size operation is of the form S x, where x is a person.

Output
There is no output for an Add operation. The output for each Examine and
Size operation is on its own line.

Examine For an Examine operation, output Yes if the two people are
in the same community, and output No otherwise.

Size For a Size operation, output the number of people in the person’s
community.

The time limit for solving the test case is one second.

Modeling as a Graph
In Chapters 5 and 6, we practiced at length framing problems as graph ex-
plorations. We figured out what to use as the nodes and what to use as the
edges and then used BFS or Dijkstra’s algorithm to explore the graph.

We can similarly model a social network as a graph. The nodes are the
people in the social network. If the test case tells us that x and y are friends,
then we can add an edge between node x and node y. The graph is undi-
rected, because friendship between two people is mutual.

One key difference compared to the problems that we previously solved
in Chapters 5 and 6 is that the social network graph is dynamic. Each time
we process an Add operation between two people that are not yet friends,
we add a new edge to the graph. Compare that to Chapter 5’s Book Transla-
tion. There, we knew all of the languages and translators at the outset, so we
could build the graph once and never have to update it.

Let’s use a test case to animate how our graph grows and to observe how
the graph helps us implement the three required operations (Add, Examine,
and Size). Here it is:

7 6

11

A 1 4

A 4 5

A 3 6

E 1 5

E 2 5

A 1 5

A 2 5

A 4 3

S 4

A 7 6

S 4
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We start with seven people and no friendship connections, like this:

1 2 3 4 5 6 7

The A 1 4 operation makes People 1 and 4 friends, so we add an edge
between those two nodes:

1

4

2 3 5 6 7

The A 4 5 operation does similarly for People 4 and 5:

1

4

2 3

5

6 7

For A 3 6, we get:

1

4

2 3

6

5

7

The next operation is E 1 5, which asks us whether People 1 and 5 are in
the same community. The graph answers this for us: if there is a path from
Node 1 to Node 5 (or, equivalently, from Node 5 to Node 1), then they are in
the same community; otherwise, they are not. In this case, they are; the path
from Node 1 to Node 4 to Node 5 is a path from Node 1 to Node 5.

The next operation is E 2 5. There’s no path between Nodes 2 and 5, so
these two people are not in the same community.

Next we have A 1 5, which will add an edge between Nodes 1 and 5. (No-
tice how we’re interleaving operations that modify the graph with opera-
tions that query the graph.) Here’s the result:
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1

4

2 3

6

5

7

The addition of this edge caused a cycle, because it added a friendship
link between two people who were already in the same community. There-
fore, this new edge doesn’t have any impact on the number of communities
or their size. We could have left it out, but I’ve decided here to include all
allowed friendship links.

Now consider A 2 5, which does unite two communities:

1

4

2

3

6

5

7

Next we have A 4 3, which again unites two communities:

1

4

2

3

6

5

7

Now we have our first Size operation: S 4. How many people are in Per-
son 4’s community? This amounts to determining the number of nodes
reachable from Node 4. There are six such nodes, with the only unreachable
node being Node 7, so the answer is 6.

Now, consider A 7 6. We must add the edge between Nodes 7 and 6 . . .
whoa there! This edge would cause the formation of a new community with
all seven people, but the test case forces an upper limit of six people in any
given community. We must ignore this Add operation.
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For that reason, the answer to the final operation, S 4, is the same as it
was before: 6.

The correct output for our test case is:

Yes

No

6

6

This example shows what is needed to implement each operation. For
Add, we add a new edge to the graph, unless that edge would produce a
community with too many people. For Examine, we determine whether
there is a path between two nodes or, equivalently, whether one node is
reachable from the other. We can use BFS for that! For Size, we determine
the number of nodes reachable from a given node. We can use BFS again!

Solution 1: BFS
Let’s take this graph-based solution in two steps. First, I’ll show the main

function that processes the operations, progressively building the graph as
it goes. Then, I’ll show the BFS code.

The main Function
We need a constant and a struct to begin:

#define MAX_PEOPLE 100000

typedef struct edge {

int to_person;

struct edge *next;

} edge;

The main function is given in Listing 9-1. It reads the input, and it re-
sponds to the operations by incrementally building and querying the graph.

int main(void) {

static edge *adj_list[MAX_PEOPLE + 1] = {NULL};

static int min_moves[MAX_PEOPLE + 1];

int num_people, num_community, num_ops, i;

char op;

int person1, person2;

edge *e;

int size1, size2, same_community;

scanf("%d%d", &num_people, &num_community);

scanf("%d", &num_ops);

for (i = 0; i < num_ops; i++) {

scanf(" %c", &op);
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¶ if (op == 'A') {

scanf("%d%d", &person1, &person2);

· find_distances(adj_list, person1, num_people, min_moves);

¸ size1 = size(num_people, min_moves);

same_community = 0;

¹ if (min_moves[person2] != -1)

same_community = 1;

º find_distances(adj_list, person2, num_people, min_moves);

» size2 = size(num_people, min_moves);

¼ if (same_community || size1 + size2 <= num_community) {

e = malloc(sizeof(edge));

if (e == NULL) {

fprintf(stderr, "malloc error\n");

exit(1);

}

e->to_person = person2;

e->next = adj_list[person1];

adj_list[person1] = e;

e = malloc(sizeof(edge));

if (e == NULL) {

fprintf(stderr, "malloc error\n");

exit(1);

}

e->to_person = person1;

e->next = adj_list[person2];

adj_list[person2] = e;

}

}

½ else if (op == 'E') {

scanf("%d%d", &person1, &person2);

find_distances(adj_list, person1, num_people, min_moves);

if (min_moves[person2] != -1)

printf("Yes\n");

else

printf("No\n");

}

¾ else {

scanf("%d", &person1);

find_distances(adj_list, person1, num_people, min_moves);

printf("%d\n", size(num_people, min_moves));

}

}

return 0;

}

Listing 9-1: The main function for processing operations
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As we did in Book Translation in Chapter 5 and in the problems in
Chapter 6, we use an adjacency list representation of the graph.

Let’s see how the code handles each of the three types of operations,
starting with Add ¶. We call the helper function find_distances ·. That func-
tion, as we’ll see shortly, implements the BFS: it fills min_moves with the short-
est path in the graph from person1 to each person, using a value of -1 for any
person that is not reachable. Then, we call helper function size ¸, which
uses distance information in min_moves to determine the size of person1’s
community. We next determine whether person1 and person2 are in the
same community: if person2 is reachable from person1, then they’re in the
same community ¹. We need this information to determine whether to add
the edge: if the people are already in the same community, then the edge
can be safely added without worrying about creating a community that vio-
lates the constraint on the maximum number of people in a community.

Having found the size of person1’s community, we do the same for
person2’s community: first invoking BFS for person2 º and then computing
the community’s size ».

Now, if there’s no new community, or if the new community is small
enough ¼, then we add the edge to the graph. Actually, we add two edges,
because, remember, the graph is undirected.

The other operations take less code. For Examine ½, we run the BFS
and check whether person2 is reachable from person1. For Size ¾, we run the
BFS and then count the number of nodes reachable from person1.

The BFS Code
The BFS code we need here is very similar to the BFS code we wrote when
solving Book Translation in Chapter 5, except without the book translation
costs. See Listing 9-2.

void add_position(int from_person, int to_person,

int new_positions[], int *num_new_positions,

int min_moves[]) {

if (min_moves[to_person] == -1) {

min_moves[to_person] = 1 + min_moves[from_person];

new_positions[*num_new_positions] = to_person;

(*num_new_positions)++;

}

}

void find_distances(edge *adj_list[], int person, int num_people,

int min_moves[]) {

static int cur_positions[MAX_PEOPLE + 1], new_positions[MAX_PEOPLE + 1];

int num_cur_positions, num_new_positions;

int i, from_person;

edge *e;

for (i = 1; i <= num_people; i++)

min_moves[i] = -1;

min_moves[person] = 0;
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cur_positions[0] = person;

num_cur_positions = 1;

while (num_cur_positions > 0) {

num_new_positions = 0;

for (i = 0; i < num_cur_positions; i++) {

from_person = cur_positions[i];

e = adj_list[from_person];

while (e) {

add_position(from_person, e->to_person,

new_positions, &num_new_positions, min_moves);

e = e->next;

}

}

num_cur_positions = num_new_positions;

for (i = 0; i < num_cur_positions; i++)

cur_positions[i] = new_positions[i];

}

}

Listing 9-2: Minimum distance to people using BFS

Finding the Size of a Community
The last little helper function to write is size, which returns the number of
people in a given person’s community. See Listing 9-3.

int size(int num_people, int min_moves[]) {

int i, total = 0;

for (i = 1; i <= num_people; i++)

if (min_moves[i] != -1)

total++;

return total;

}

Listing 9-3: The size of a person’s community

In this function, it is assumed that min_moves has already been filled in
by find_distances. Every person whose min_moves value is not -1 is therefore
reachable. We use total to add up those reachable people.

There we have it: a graph-based solution. For each of the q operations,
we run one BFS. At worst, each operation adds one edge to the graph, so
each BFS call does work proportional to at most q. We therefore have an
O(q2), or quadratic, algorithm.

In Chapter 5, I advised you that it’s important not to run BFS too many
times. It’s best to make just one BFS call, if you can get away with that. Even
a few calls can be okay. After all, we got away with making a BFS call for each
pawn position when solving Knight Chase on page 151. The same sentiment
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applies to Dijkstra’s algorithm from Chapter 6: make as few calls as possible.
Here again, making a few calls is okay. We solved Mice Maze on page 198
using about 100 calls of Dijkstra, and it was fast enough. Thriftless use of
graph search hasn’t bitten us yet.

It does bite us now, though. If you submit your solution to the judge,
you’ll get a “Time-Limit Exceeded” error—and it isn’t even close. I’m play-
ing around with an example here on my laptop with 100,000 people in the
social network and 200,000 operations. The operations are divided equally
among Add, Examine, and Size operations. Our graph-based solution takes
over two minutes to run. You’re about to learn a new data structure called
union-find that, on the same example, runs 300 times faster. Union-find is
an efficiency beast.

Union-Find
For two reasons, BFS on a graph is not a satisfactory solution to the Social
Network problem. First, it produces too much! It determines shortest paths
between people. For example, it might tell us that the shortest path between
People 1 and 5 is two, but who cares? All we want to know is whether or not
two people are in the same community. How they ended up in the same
community and the chain of friendships that connect them are not of
interest.

Second, it remembers too little—or, rather, it remembers nothing: BFS
starts afresh with each call. However, think about how wasteful this is. For
example, an Add operation adds just one edge to the graph. The commu-
nities can’t be much different than they were before. BFS doesn’t use past
information at all, instead reprocessing the complete graph on the next
operation.

The goal, then, is to devise a data structure that doesn’t remember any-
thing about shortest paths and that does only a little work when a new friend-
ship is made.

Operations
The Add operation unites two communities into one. (Well, it does noth-
ing when the resulting community would be too big or when two people
are in the same community, but when it does something, it unites two com-
munities.) This kind of operation is referred to in the algorithms world as a
Union. In general, a Union replaces two sets by one larger set containing all
of their elements.

The Examine operation tells us whether the two provided people are
in the same community. One way to implement this is to designate one
element of each community as its representative element. For example, a
community with People 1, 4, and 5 might have 4 as its representative; a
community with People 3 and 6 might have 3 as its representative. Are
People 1 and 5 in the same community? Yes, because the representative
of Person 1’s community (4) is the same as the representative of Person 5’s
community (4). Are People 4 and 6 in the same community? No, because
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the representative of Person 4’s community (4) is not the same as the repre-
sentative of Person 6’s community (3).

Determining the representative of a person’s community is called a Find.
We can implement Examine with two Finds: find the representative of the
first person’s community, find the representative of the second person’s
community, and compare them.

Since an Add is a Union and an Examine is a Find, data structures that
implement these two operations are known as union-find data structures.

Once we have Union and Find working, we’ll be in great shape to sup-
port Size operations as well. All we’ll do is store the size of each community,
being sure to keep sizes up to date whenever we do a Union. We’ll then be
able to respond to each Size operation by returning the size of the appropri-
ate community.

Array-Based Approach
One idea is to use an array community_of that indicates the representative for
each person’s community. For example, if People 1, 2, 4, and 5 are in the
same community, People 3 and 6 are in the same community, and Person 7
is in their own community, then the array might look like this:

Index 1 2 3 4 5 6 7
Value 5 5 6 5 5 6 7

For a community of a single person, there is no choice for who is the
representative. That’s why the representative for Person 7 is 7. In a commu-
nity with multiple people, the representative is allowed to be any person in
the community. For example, we’re using 6 as a representative this time, but
we could have used 3 instead.

Using this scheme, we can implement Find in constant time. All we do is
look up the representative of the desired person, like this:

int find(int person, int community_of[]) {

return community_of[person];

}

You can’t do better than that!
Unfortunately, this scheme breaks down when we implement Union.

Our only option is to change all representatives for one community to the
representative of the other community. It would look like this:

void union_communities(int person1, int person2,

int community_of[], int num_people) {

int community1, community2, i;

community1 = find(person1, community_of);

community2 = find(person2, community_of);

for (i = 1; i <= num_people; i++)

if (community_of[i] == community1)

community_of[i] = community2;

}
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I’m ignoring the maximum size restriction on social-network communi-
ties here so as not to distract from the essentials. The code uses find to set
community1 and community2 to the representatives of person1’s community and
person2’s community, respectively. It then loops through all people, chang-
ing anyone in community1 to community2. The effect is that community1 is gone,
having been absorbed into community2.

If you build and submit a full solution based on the code I’ve given here,
you should see that it still receives a “Time-Limit Exceeded” error. We need
a better way to union two communities than looping through all of the
people.

Tree-Based Approach
The most efficient union-find data structures are based on trees. Each set is
represented as its own tree, with the root of the tree serving as that set’s rep-
resentative. I’ll describe how this works with the help of the example shown
in Figure 9-1.

1

2 34

5 6 7

Figure 9-1: A tree-based union-
find data structure

There are three trees here, so there are three distinct communities: one
has People 1, 2, 4, and 5; one has People 3 and 6; and one has Person 7. Each
tree’s roots—People 5, 6, and 7—serve as community representatives.

I’ve drawn the tree edges with an arrow pointing from child to parent.
You haven’t seen that before in this book. The reason I’m doing it now is to
emphasize the way that we’ll be navigating these trees. As I describe how to
support Find and Union in trees, we’ll see that it’s necessary to move up the
tree (from child to parent) but never down.

Let’s start with Find. Given a person, we have to return that person’s
representative. We can do that by moving up the appropriate tree until
we reach its root element. For example, let’s find the representative of Per-
son 1 in Figure 9-1. Since 1 is not a root, we move to 1’s parent. Person 4 is
not a root, so we move to 4’s parent. Person 5 is a root, so we’re done: 5 is
the representative of 1.

Compare this tree-hopping to what we were able to get away with in
“Array-Based Approach” on page 341. Rather than simply looking up the
representative in a single step, we have to move up the tree until we find the
root. That sounds dicey—what if a tree gets really, really tall?—but we’ll soon
see that this concern is unfounded, as we’ll be able to keep tree heights un-
der control.
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Now let’s talk about Union. Given two people, we want to unite their
two trees. In terms of correctness, it doesn’t matter how we jam the two
trees together. However, as was just mentioned in the context of Find, it
helps to keep tree heights small. If we insert one tree at the bottom of the
other, we might unnecessarily increase the height of the resulting tree. To
avoid that, we’ll insert one tree directly under the root of the other tree. To
see how that looks, see Figure 9-2, where I’ve unioned the tree with root 5
and the tree with root 6.
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3

4

5

6 7

Figure 9-2: A tree-based union-find
data structure after a union

I’ve chosen to make 6 the root of the combined tree. We could have also
chosen to make 5 the root of the combined tree. (Here’s a teaser: Why will
5 turn out to be the better choice? We’ll see why when we discuss union-find
optimizations.)

We now have enough to design a union-find solution to the Social Net-
work problem.

Solution 2: Union-Find
Primed by our discussion of heaps and segment trees in Chapter 8, you may
not be surprised that we’re going to store the union-find data structure in an
array!

Union-find trees are not necessarily binary trees, as their nodes can have
any number of children. So we won’t be able to move around these trees by
multiplying and dividing by 2, as we did in Chapter 8. We’re in luck, though,
because the only travel we need to support is from a child to its parent. All
we need is an array that maps from any given node to its parent. We can do
that with the array parent, where parent[i] gives the parent of Node i.

Recall Figure 9-1, where we had three communities: one that has
People 1, 2, 4, and 5; one with People 3 and 6; and one with Person 7. Here’s
the parent array corresponding to that figure:

Index 1 2 3 4 5 6 7
Value 4 5 6 5 5 6 7

What if we want to find the representative of Person 1’s community?
The value at index 1 is 4, which tells us that 4 is the parent of 1; the value at
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index 4 is 5, which tells us that the parent of 4 is 5; and the value at index
5 is 5, which means that 5 is the . . . parent of 5? Certainly not! Whenever
parent[i] is the same value as i, it means that we’ve reached the root of the
tree. (The other common trick to distinguish roots is to use a value of -1,
since that can’t be confused with a valid array index. I won’t use that in this
book, but you may come across it in other code that you find.)

The main Function
Now we’re ready for some code. Let’s start with the main function as given in
Listing 9-4. (It’s far briefer than Listing 9-1. In general, union-find code is
compact.)

int main(void) {

¶ static int parent[MAX_PEOPLE + 1], size[MAX_PEOPLE + 1];

int num_people, num_community, num_ops, i;

char op;

int person1, person2;

scanf("%d%d", &num_people, &num_community);

· for (i = 1; i <= num_people; i++) {

parent[i] = i;

size[i] = 1;

}

scanf("%d", &num_ops);

for (i = 0; i < num_ops; i++) {

scanf(" %c", &op);

if (op == 'A') {

scanf("%d%d", &person1, &person2);

¸ union_communities(person1, person2, parent, size, num_community);

}

else if (op == 'E') {

scanf("%d%d", &person1, &person2);

¹ if (find(person1, parent) == find(person2, parent))

printf("Yes\n");

else

printf("No\n");

}

else {

scanf("%d", &person1);

º printf("%d\n", size[find(person1, parent)]);

}

}
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return 0;

}

Listing 9-4: The main function for processing operations

In addition to the parent array that I’ve already described, there’s a size

array ¶. For each representative i, size[i] gives the number of people in its
community. Never look up the size of a community using a nonrepresen-
tative person. Once someone isn’t a representative, we won’t keep the size

value updated anymore.
A for loop is used to initialize parent and size ·. For parent, we let each

person be their own representative, which corresponds to having each per-
son in their own set. Because each set has just one person, we set each size

value to 1.
To implement Add, we call the union_communities helper function ¸. It

unites the communities of person1 and person2, subject to the num_community

size constraint. We’ll see its code soon.
To implement Examine, we make two calls to find ¹. If both calls return

the same value, then the people are in the same community; otherwise, they
are not.

Finally, to implement Size, we use the size array, looking up the repre-
sentative of the person’s set º.

I’ll next supply implementations of find and union_communities, and that
will finish off this implementation.

The find Function
The find function takes a person as a parameter and returns that person’s
representative. See Listing 9-5.

int find(int person, int parent[]) {

int community = person;

while (parent[community] != community)

community = parent[community];

return community;

}

Listing 9-5: The find function

The while loop keeps moving up the tree, until it finds a root. That root
person is the representative of the community, and so it is returned.

The union Function
The union_communities function takes two people—in addition to the parent

array, size array, and num_community constraint—and joins their two communi-
ties. (I would have called this function union, but that’s not allowed because
union is a C reserved word.) See Listing 9-6 for the code.

void union_communities(int person1, int person2, int parent[],

int size[], int num_community) {

int community1, community2;
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¶ community1 = find(person1, parent);

· community2 = find(person2, parent);

if (community1 != community2 &&

size[community1] + size[community2] <= num_community) {

¸ parent[community1] = community2;

¹ size[community2] = size[community2] + size[community1];

}

}

Listing 9-6: The union_communities function

First, we find the representative for each person’s community ¶ ·. Two con-
ditions must be met for a Union to take place: first, the communities must
be different; second, the sum of the sizes of the two communities must not
exceed the maximum-allowed community size. If both of these conditions
pass, then we perform the Union itself.

I’ve chosen to fold community1 into community2. That is, community1 will be
gone, and community2 will absorb community1. To make this happen, we must
appropriately modify parent and size.

Before this Union, community1 was the root of a community, but now we
want community1 to have community2 as its parent. So, that’s precisely what we
do ¸! Any person whose representative was previously community1 will now
have community2 as their representative.

In terms of size, community2 has all of the people it had before plus all of
the people that it inherited from community1. So the size is what it was before
with the addition of the size of community1 ¹.

That’s all! Feel free to submit this solution to the judge. It should finish
within the time limit and pass all test cases.

Somehow, though, I maybe had hoped that it didn’t pass within the time
limit—because I’m sitting on two ace union-find optimizations here that I
really want to teach you.

Hey, let’s just do them! This may be overkill for this problem, but they
offer such a speed boost that we’ll apply them throughout this chapter and
never worry about time limits again.

Optimization 1: Union by Size
Our union-find solution generally runs fast, but test cases can be crafted to
make it crawl. Here’s what the worst kind of test case looks like:

7 7

7

A 1 2

A 2 3

A 3 4

A 4 5

A 5 6

A 6 7

E 1 2
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Communities 1 and 2 are merged, that resulting community is merged
with Community 3, that resulting community is merged with Community 4,
and so on. After the six Unions, we have the tree as depicted in Figure 9-3.
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5
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7

Figure 9-3: A bad case of
a tree-based union-find
data structure

We have a long chain of nodes and, unfortunately, Finds and Unions
may end up traversing the entire chain. For example, E 1 2 would invoke a
Find on Person 1 and a Find on Person 2, each visiting almost every node.
Of course, a seven-node chain is tiny, but we can replicate the unioning pat-
tern to produce massive chains of whatever length we want. We can thereby
force Find and Union operations to take linear time; with q operations in all,
we can force our tree-based union-find algorithm to take O(q2) time. This
means that, in the worst case, the tree-based solution is not theoretically bet-
ter than the BFS solution. It’s better than BFS in practice, because most test
cases will not produce long chains of nodes . . . but some test cases might!

Hold on! Why are we letting these officious test cases bully us into pro-
ducing these awful trees? We don’t care what the union-find data structure
looks like. In particular, whenever a Union is requested, we have a choice of
which old representative becomes the representative of the unioned com-
munity. Rather than always folding the first community into the second, we
should make the choice that produces the best tree. Compare the nonsense
in Figure 9-3 to the wonder that is Figure 9-4.
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3 4 5 6 7

Figure 9-4: An optimized tree-based union-
find data structure

Person 2 is the root, and everyone else is exactly one edge away. No
matter what Union or Find comes next, we’ll be able to perform it very
efficiently.

How can our code make Figure 9-4 instead of Figure 9-3? The optimiza-
tion is called union by size. Whenever you’re about to union two communities
together, union the community with fewer people into the community with
more people.

In the test case that we’ve been discussing, we start with A 1 2. The two
communities each have one person, so it doesn’t matter which we choose
to keep; let’s keep Community 2. Now Community 2 has two people: the
one that it had and the one from Community 1. To do A 2 3, we compare
the size of Community 2 (two) to the size of Community 3 (one). We will
keep Community 2 because it is larger than Community 3. Now Commu-
nity 2 has three people. What about A 3 4? This gives us another person for
Community 2. We then keep going, absorbing one person after another into
Community 2.

Union by size certainly neutralizes the worst test cases, but there are still
test caseswhose treesneed somework togo from nodes to roots.Here’s one:
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A 6 8

A 4 8

E 1 5

Union by size produces Figure 9-5.
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Figure 9-5: A bad case of union by size

Although it’s true that some nodes are right below the root, there are
now nodes that are further away (the worst offender being Node 1). Still, the
tree is quite balanced, and it’s certainly better than the long chain of nodes
that we saw prior to the union-by-size optimization.

I’ll next show that the maximum height of a tree when using union by
size is O(logn), where n is the total number of people. This means that a
Find or Union takes O(logn) time, because a Find is just a traversal up the
tree and a Union is just two Finds plus a change of parent.

Let’s choose some arbitrary node x and think about how many times
the number of edges between x and its root can increase. When x’s commu-
nity absorbs another community, the number of edges between x and its
root doesn’t change, because the root of its community is the same as it was.
However, when x’s community is absorbed by another community, then the
number of edges between x and its new root is one more than it was before:
the path from x to its new root is what it was before (to get to its old root)
plus one more edge to get to its new root.

Therefore, putting an upper bound on the number of edges between x
and its root amounts to determining the maximum number of times that x’s
community can be absorbed into another community.

Say that x is in a community of size four. Could it be absorbed into a
community that was size two? No way! We’re using union by size, remember.
The only way x’s community can be absorbed into another community is
if the other community is at least as large as x’s. In this example, the other
community would have to be size four or greater. So we go from a com-
munity of size four to a community of at least size 4 + 4 = 4 × 2 = 8. That is,
the size of x’s community at least doubles when it’s absorbed into another
community.

Starting off in a community of size one, x’s community gets absorbed
and now it’s in a community of at least size two. It gets absorbed again and
now it’s in a community of at least size four. Getting absorbed again puts it
in a community of at least size eight. This doubling can’t continue forever. It
has to stop, at the latest, when x’s community contains all n people. Starting
from one, how many times can we double it before we get to n? That’s logn,
and that’s why the number of edges between any node and its root is capped
at logn.
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Using union by size cuts linear runtime to logarithmic runtime. Bet-
ter still, we don’t need much new code to implement this optimization. In
fact, for the Social Network problem, we’re already maintaining sizes of
communities—we can just use these sizes to decide which community gets
absorbed into the other. Listing 9-7 gives the new code. Compare the code
to Listing 9-6 to confirm that we’re doing almost the same thing as before.

void union_communities(int person1, int person2, int parent[],

int size[], int num_community) {

int community1, community2, temp;

community1 = find(person1, parent);

community2 = find(person2, parent);

if (community1 != community2 &&

size[community1] + size[community2] <= num_community) {

¶ if (size[community1] > size[community2]) {

temp = community1;

community1 = community2;

community2 = temp;

}

· parent[community1] = community2;

size[community2] = size[community2] + size[community1];

}

}

Listing 9-7: The union_communities function using union by size

By default, the code chooses community2 to absorb community1. This is the
right thing to do if community2 is larger than or the same size as community1.
If the size of community1 is larger than community2 ¶, then we swap community1

and community2 to reverse their roles. After that, community2 is guaranteed to
be the bigger community, and we can proceed by absorbing community1 into
community2 ·.

Optimization 2: Path Compression
Let’s revisit the test case that produced Figure 9-5. Only this time, let’s build
the tree and then keep spamming the same Examine operation:
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E 1 5

E 1 5

E 1 5

E 1 5

The E 1 5 operation is a little slow, each time requiring lengthy traver-
sals to the root. To Find the representative of Person 1, for example, we go
from Node 1 to Node 2 to Node 4 to Node 8. Now we know that Node 1’s
representative is Node 8. We would do a similar traversal for Person 5, but
that knowledge is short-lived, because we don’t remember that anywhere.
Every single E 1 5 operation causes us to redo the work to Find Person 1 and
Person 5, just to relearn what we learned last time.

Here we have another opportunity to benefit by controlling the struc-
ture of the tree. Remember that the particular shape of the tree doesn’t mat-
ter: all that matters is that people in the same community are present in the
same tree. Hence, as soon as we’ve determined the root of someone’s com-
munity, we might as well move that person to be a child of the root. While
we’re at it, we might as well move that person’s ancestors right below the
root, too.

Consider again Figure 9-5, and suppose we next perform E 1 5. If we
were using just the Union-by-size optimization, this Examine operation (like
any Examine operation) would not change the structure of the tree. Watch
what happens, though, if we use an optimization called path compression, as
depicted in Figure 9-6.
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4 5 6 7
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9

Figure 9-6: An example of path compression

This is nice, right? Finding Node 1 leads to Nodes 1 and 2 becoming
children of a root; finding Node 5 leads to Node 5 becoming a child of a
root. In general, path compression takes every node along a path and puts
it as a child of the root node. Finding any of those nodes will therefore be
extremely fast.

To implement path compression in the find function, we can make two
traversals from the provided person to the root of the tree. The first traver-
sal locates the root of the tree; that’s the traversal that any find function
does. The second traversal ensures that each node along the path has the
root as its parent. Listing 9-8 implements the new code. Compare it to
Listing 9-5 to see that what’s new is the second traversal.

int find(int person, int parent[]) {

int community = person, temp;
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¶ while (parent[community] != community)

community = parent[community];

· while (parent[person] != community) {

temp = parent[person];

parent[person] = community;

person = temp;

}

return community;

}

Listing 9-8: The find function with path compression implemented

This code works in two phases. The first phase is the first while loop ¶,
which results in community holding the representative (the root) of the com-
munity. With that representative in hand, the second phase, captured by the
second while loop ·, retraces the path from person to just below the root of
the tree, updating each node’s parent to be the tree’s root. The temp variable
is used to store the old parent of the current node. In that way, we can still
move to the current node’s old parent even after making it the root of the
tree. (There’s a shockingly concise though cryptic way to code path com-
pression that you might see in the wild. Brace yourself, and then check out
“Compressing Path Compression” in Appendix B.)

By using both union by size and path compression, it’s still possible that
a single Union or Find operation takes O(logn) time. However, taking all
Unions and Finds together, the average time taken per operation—while not
technically constant—is essentially constant. The runtime analysis is based
on a function called the inverse Ackermann function, which grows very, very,
very slowly. I won’t define the inverse Ackermann function or show how
it arises in the runtime analysis, but I’d like to give a sense of how strong
this result is.

The logarithm function grows slowly, so let’s start there. Taking the
log of a huge number gives back a very small number. For example, log
1,000,000,000 is only about 30. However, the log isn’t a constant: using a
sufficiently large value of n, you can make logn as big as you want.

The inverse Ackermann function is similarly not constant, but, unlike
the log function, you’ll never in practice get a value of 30 out of it. You can
make n as big as you want, as big as the biggest number representable in
your computer, and the inverse Ackermann of n will be at most 4. You can
think of union-find with union by size and path compression as taking an
average of just four steps per operation!

Union-Find
The union-find data structure turbocharges solutions to graph problems
whose primary operations are Union and Find. This doesn’t help with prob-
lems such as those in Chapters 5 and 6, where we’re required to calculate
distances between nodes. But when union-find does apply, adjacency lists
and graph search are overkill and just too slow.
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Relationships: Three Requirements
Union-find works on a collection of objects, where each object begins in its
own set. At all times, objects in the same set are equivalent, whatever “equiv-
alent” means for the problem that we’re solving. For example, in the Social
Network problem, people in the same set (community) are equivalent in the
sense that they are all friends.

Union-find requires that the relationship between our objects satisfy
three criteria. First, objects must be related to themselves. In terms of friend-
ships from the Social Network, this just means that each person is one’s own
friend. A relationship that meets this criterion is called reflexive.

Second, the relationship has to be directionless: we can’t have x as a
friend of y and at the same time have y as not a friend of x. A relationship
that meets this criterion is called symmetric.

Third, the relationship must cascade: if x is a friend of y, and y is a friend
of z, then x is a friend of z. A relationship that meets this criterion is called
transitive.

If any of these criteria is not met, then the Union operation we’ve been
discussing is broken. For example, suppose that we have a friendship rela-
tionship where transitivity does not hold. If we learn that x is a friend of y,
we have no idea whether x’s friends are y’s friends. We’re therefore not jus-
tified in uniting x’s community and y’s community; that might put people in
the same set that are not in fact friends.

A relationship that is reflexive, symmetric, and transitive is called an
equivalence relation.

Choosing Union-Find
When deciding whether union-find might apply, ask yourself this: What is
the relationship that I need to maintain between objects? Is it reflexive, sym-
metric, and transitive? If it is, and the primary operations can be mapped to
Finds and Unions, then you should consider union-find as a viable solution
strategy.

Beneath every union-find problem lies a graph problem that could be
modeled (less efficiently!) using adjacency lists and graph search. Unlike
what we did for the Social Network problem, for the remaining problems in
this chapter, we won’t take the scenic route through graphs.

Optimizations
I introduced two union-find optimizations: union by size and path compres-
sion. They offer protection against bad test cases and generally increase per-
formance no matter what the test case. They each take only a few lines of
code, so I recommend using them whenever you can.

“Whenever you can” is not to be confused with “always.” Unfortunately,
there are some union-find problems where these optimizations are not ap-
propriate. I haven’t yet encountered a problem where path compression is
problematic, but sometimes we need to remember the order in which sets
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are being united, and in those cases we can’t swap roots of trees using union
by size. You’ll see in Problem 3 an example where we can’t use union by size.

Problem 2: Friends and Enemies
You might worry that the only kind of “Add” operation we can support is
like that used in the Social Network problem: x and y are friends; x and y go
to the same school; x and y live in the same city—that kind of thing. It turns
out that we can support other types of Add information, too. x and y are not
friends. Hmm . . . that one’s interesting, telling us not that x and y are in the
same set but that they are not in the same set. How does union-find work
now? Read on!

This is UVa problem 10158.

The Problem
Two countries are at war. You have been granted permission to attend their
peace meetings, during which you can listen to pairs of people talking to
each other. There are n people at these meetings, numbered 0, 1, . . . , n – 1.
At first, you don’t know anything about who are friends (citizens of the same
country) or enemies (citizens of opposing countries). Your job is to record
information about who are friends or enemies and to respond to queries
based on what you know so far.

You must support four operations:

SetFriends Record that the two provided people are friends.

SetEnemies Record that the two provided people are enemies.

AreFriends Report whether you know for sure that the two provided
people are friends.

AreEnemies Report whether you know for sure that the two provided
people are enemies.

Friendship is an equivalence relation: it’s reflexive (x is a friend of x),
symmetric (if x is a friend of y, then y is a friend of x), and transitive (if x is a
friend of y and y is a friend of z, then x is a friend of z).

Enemyship is not an equivalence relation. It’s symmetric: if x is an en-
emy of y, then y is likewise an enemy of x. It’s neither, however, reflexive nor
transitive.

There’s a little more we need to know about friendship and enemyship.
Suppose that x has some friends and enemies, y has some friends and ene-
mies, and then we are told that x and y are enemies. What have we learned?
Well, we learn directly that x and y are enemies—but that’s not all. We can
also conclude that x’s enemies are friends with everyone in y’s set. (Sup-
pose that Alice and Bob are enemies and that David and Eve are friends—
and then we are told that Alice and David are enemies. We should conclude
that Bob is friends with David and Eve.) Similarly, we can conclude that y’s
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enemies are friends with everyone in x’s set. Here’s this paragraph in one
aphorism: the enemy of an enemy is a friend.

Now suppose that x has some friends and enemies and that y has some
friends and enemies—but that this time, we are told that x and y are friends.
Here, we should additionally conclude that x’s enemies and y’s enemies are
friends. (Hang in there. We’ll make all of this concrete as we work through
some examples.)

Input
The input contains one test case, consisting of the following lines:

• A line containing n, the total number of people attending the meet-
ings. n is less than 10,000.

• Zero or more lines, one for each operation.

• A line containing three integers, the first of which is 0. This signifies
the end of the test case.

Each operation line has the same format: an operation code followed by
two people (x and y).

• A SetFriends operation is of the form 1 x y.

• A SetEnemies operation is of the form 2 x y.

• An AreFriends operation is of the form 3 x y.

• An AreEnemies operation is of the form 4 x y.

Output
The output for each operation is on its own line.

• If a SetFriends operation succeeds, then it produces no output. If it
conflicts with information that is already known, then output -1 and
ignore the operation.

• If a SetEnemies operation succeeds, then it produces no output. If
it conflicts with information that is already known, then output -1
and ignore the operation.

• For an AreFriends operation, output 1 if the two people are known
to be friends and output 0 otherwise.

• For an AreEnemies operation, output 1 if the two people are known
to be enemies and output 0 otherwise.

The time limit for solving the test case is three seconds.

Augmenting Union-Find
If all we had to deal with were the SetFriends and AreFriends operations,
then we could directly apply union-find as we did when solving the Social
Network problem. We’d keep one set for each group of friends. Like Add in
Social Network, SetFriends would be implemented as a Union and bring
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together two sets of friends into a larger set. Like Examine in Social Net-
work, AreFriends would be implemented as a Find on each of the two peo-
ple to determine whether they’re in the same set.

We could start by solving the problem for just these two operations . . .
actually, you know what? I’m confident you could solve that restricted prob-
lem, right now, without anything else from me. Where I may be helpful is in
explaining the technique for incorporating SetEnemies and AreEnemies.

Augmentation: Enemies
Augmenting a data structure refers to storing additional information in that
data structure to support new or faster operations. Maintaining the size of
each set in a union-find data structure is an example of augmentation: you
could implement the data structure without it, but with it you can quickly
report set sizes and perform union by size.

You should consider augmentation when an existing data structure
almost does what you want. The key is to identify a suitable augmentation
that adds the desired functionality without appreciably slowing down other
operations.

We already have a union-find data structure that supports SetFriends
and AreFriends. It maintains the parent of each node as well as the size of
each set. We’re going to augment that data structure to support SetEnemies
and AreEnemies. Moreover, we’re going to do it without slowing down Set-
Friends and AreFriends much at all.

Suppose we’re told that x and y are enemies. From the problem descrip-
tion, we know that we’re going to have to union x’s enemies with y’s set and
union y’s enemies with x’s set. Who are x’s enemies? Who are y’s enemies?
With the standard union-find data structure, we don’t know. This is why we
need to augment the union-find data structure.

In addition to the parent of each node and the size of each set, we’re
going to keep track of an enemy for each set. We’ll store those enemies in an
array called enemy_of. Suppose that s is the representative of some set. If that
set has no enemies, then we’ll arrange for enemy_of[s] to hold a special value
that can’t be confused with a person. If that set has one or more enemies,
then enemy_of[s] will give us one of them.

That’s right: one of them, not all of them. Knowing one enemy of each
set is enough, because we can use that one enemy to find the representative
of everyone in that enemy’s set.

Let’s now work through two test cases. They’ll prepare us for the im-
plementation that follows. The diagrams I will show are conceptual and do
not correspond exactly to what an implementation might do. In particular, I
won’t use union by size or path compression in the diagrams, but we’ll throw
those optimizations into our implementation in the interest of performance.

Test Case 1
Recall that the operation code for SetFriends is 1 and the code for SetEnemies
is 2.

Here’s our first test case:
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9

1 0 1

1 1 2

1 3 4

1 5 6

¶ 2 1 7

· 2 5 8

¸ 1 2 5

0 0 0

The first four operations are SetFriends operations. No one has any en-
emies yet, so these operations play out just as did Add operations in the So-
cial Network problem. Figure 9-7 shows the state of the data structure after
these operations.

0

1

2

3

4

5

6 7 8

Figure 9-7: The data structure after four
SetFriends operations

Next we have our first SetEnemies operation ¶, and it indicates that
People 1 and 7 are enemies. This means that everyone in 1’s set is enemies
with everyone in 7’s set. To incorporate this into the data structure, we add
links between roots of these two sets: a link from 2 (the root of 1’s set) to 7,
and a link from 7 (the root of 7’s set) to 1. (You could have decided that the
latter should instead be a link from 7 to 2; that would be fine as well.) The
result of this operation is shown in Figure 9-8. In this and subsequent fig-
ures, enemy links are realized as dashed lines; in our implementation, enemy
links will be realized as the aforementioned enemy_of array.

0

1

2 7

3

4

5

6 8

Figure 9-8: The data structure after a
SetEnemies operation

Next is a SetEnemies operation between People 5 and 8 ·; performing
this operation might result in Figure 9-9.
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0
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5

6 8

Figure 9-9: The data structure after another
SetEnemies operation

Now it’s time for the final operation ¸, which says that People 2 and 5
are friends. This unites 2’s set and 5’s set into one larger set of friends, as
expected. The surprise, perhaps, is that we also unite two enemy sets. Specif-
ically, we unite the enemies of Person 2’s set with the enemies of Person 5’s
set. After all, if we know that two people are in the same country, then each
of their enemy sets must be together in the other country. The result of per-
forming these two Union operations is shown in Figure 9-10.

0

1

32

4

5

6 8

7

Figure 9-10: The data structure after
a final SetFriends operation

The reason I haven’t drawn enemy links from Person 2 to Person 7 and
from Person 7 to Person 1 is because we maintain enemy links only from
root nodes. Once a node is no longer a root, we’ll never use it again to find
enemies.

Two key things can be learned from this test case: that one enemy of a
set is stored at that set’s root and that a SetFriends operation requires two
Unions, not one. Now, what do we do when a set already has an enemy and
then that set is involved in a SetEnemies operation? That’s where our next
test case comes in.

Test Case 2
Our second test case differs from the first only in its final operation:

9

1 0 1

1 1 2
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1 3 4

1 5 6

2 1 7

2 5 8

¶ 2 2 5

0 0 0

Prior to the final operation, the data structure appears as depicted in
Figure 9-9. The final operation ¶ is now a SetEnemies operation rather than
a SetFriends operation. Person 2’s set already has an enemy, and now it has
new enemies from Person 5’s set. Hence we need to unite Person 2’s ene-
mies with Person 5’s set. Similarly, Person 5’s set already has an enemy and
now has new enemies from Person 2’s set, so we need to unite Person 5’s en-
emies with Person 2’s set.

The result of these two Unions is shown in Figure 9-11.

0

1

2

78 3

4

5

6

Figure 9-11: The data structure after a final
SetEnemies operation

Having laid this background, we’re ready for an implementation!

The main Function
Let’s start with the main function, which is given in Listing 9-9. It reads the
input, and it calls one helper function for each of the four operations that
we’re supporting.

#define MAX_PEOPLE 9999

int main(void) {

static int parent[MAX_PEOPLE], size[MAX_PEOPLE];

static int enemy_of[MAX_PEOPLE];

int num_people, i;

int op, person1, person2;

scanf("%d", &num_people);

for (i = 0; i < num_people; i++) {

parent[i] = i;

size[i] = 1;

¶ enemy_of[i] = -1;

}
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scanf("%d%d%d", &op, &person1, &person2);

while (op != 0) {

· if (op == 1)

if (are_enemies(person1, person2, parent, enemy_of))

printf("-1\n");

else

set_friends(person1, person2, parent, size, enemy_of);

¸ else if (op == 2)

if (are_friends(person1, person2, parent))

printf("-1\n");

else

set_enemies(person1, person2, parent, size, enemy_of);

¹ else if (op == 3)

if (are_friends(person1, person2, parent))

printf("1\n");

else

printf("0\n");

º else if (op == 4)

if (are_enemies(person1, person2, parent, enemy_of))

printf("1\n");

else

printf("0\n");

scanf("%d%d%d", &op, &person1, &person2);

}

return 0;

}

Listing 9-9: The main function for processing operations

Notice that, as part of the initialization, we set each enemy_of value
to -1 ¶. That’s our special value to indicate “no enemy.”

To implement SetFriends ·, we first check whether the two people are
already known to be enemies. If they are, we output -1; if they aren’t, we
call the set_friends helper function. The implementation of SetEnemies ¸
follows the same pattern. For AreFriends ¹ and AreEnemies º, we call a
helper function to determine whether the condition is true or false, and we
output 1 or 0 accordingly.

Find and Union
I’ll present the Find and Union functions here; they’ll be called by our helper
functions, set_friends, set_enemies, are_friends, and are_enemies. The Find
function is given in Listing 9-10. We’ve got path compression in there!
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int find(int person, int parent[]) {

int set = person, temp;

while (parent[set] != set)

set = parent[set];

while (parent[person] != set) {

temp = parent[person];

parent[person] = set;

person = temp;

}

return set;

}

Listing 9-10: The find function

The Union function is given in Listing 9-11. Union by size: you better
believe it!

int union_sets(int person1, int person2, int parent[],

int size[]) {

int set1, set2, temp;

set1 = find(person1, parent);

set2 = find(person2, parent);

if (set1 != set2) {

if (size[set1] > size[set2]) {

temp = set1;

set1 = set2;

set2 = temp;

}

parent[set1] = set2;

size[set2] = size[set2] + size[set1];

}

¶ return set2;

}

Listing 9-11: The union_sets function

The Union function does have one feature not present in our prior
Union code: it returns the representative of the resulting set ¶. We’ll turn
to the SetFriends operation next, and you’ll see there that we use this return
value.

SetFriends and SetEnemies
The SetFriends operation is implemented in Listing 9-12.

void set_friends(int person1, int person2, int parent[],

int size[], int enemy_of[]) {

int set1, set2, bigger_set, other_set;

¶ set1 = find(person1, parent);
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· set2 = find(person2, parent);

¸ bigger_set = union_sets(person1, person2, parent, size);

¹ if (enemy_of[set1] != -1 && enemy_of[set2] != -1)

º union_sets(enemy_of[set1], enemy_of[set2], parent, size);

» if (bigger_set == set1)

other_set = set2;

else

other_set = set1;

¼ if (enemy_of[bigger_set] == -1)

enemy_of[bigger_set] = enemy_of[other_set];

}

Listing 9-12: Recording that two people are friends

We begin by determining the representative of each of the two peo-
ple: set1 is the representative of person1 ¶ and set2 is the representative of
person2 ·. Since these two sets of people are now supposed to be all friends
with each other, we unite them into a bigger set ¸. We store the return value
of union_sets in bigger_set; we’ll use that soon.

We’ve now unioned person1’s set and person2’s set, but we’re not done,
because—remember this from our first test case—we might have to union
some enemies together as well. Specifically, if set1 has enemies and set2

has enemies, then we need to union those enemies into a single, bigger set.
That’s just what the code does: if both sets have enemies ¹, we union those
enemy sets º.

It’s tempting to think that we’re done at this point. We’ve performed
the required union of friends and union of enemies—what else is there to
do? Well, imagine that set1 has some enemies and that set2 does not. The
representative of set2 therefore has an enemy_of value of -1. Now, maybe set1

ends up being folded into set2 so that set2 is the bigger set. If we just call it a
day here and do nothing else, then set2 will not be able to find its enemies!
The enemy_of value for set2’s representative is still -1—and that’s wrong, be-
cause set2 does have enemies now.

Here’s how we handle this in the code. We already have bigger_set, in-
dicating which set—set1 or set2—resulted from unioning set1 and set2. We
use an if–else to set other_set to the other set »: if bigger_set is set1, then
other_set will be set2, and vice versa. Then, if bigger_set has no enemies ¼,
we copy over the enemy link from other_set. The result is that bigger_set is
guaranteed to be able to find its enemies if set1 or set2 or both had enemies.

Now it’s time for SetEnemies. Check it out in Listing 9-13.

void set_enemies(int person1, int person2, int parent[],

int size[], int enemy_of[]) {

int set1, set2, enemy;

set1 = find(person1, parent);

set2 = find(person2, parent);

¶ enemy = enemy_of[set1];

if (enemy == -1)

· enemy_of[set1] = person2;
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else

¸ union_sets(enemy, person2, parent, size);

¹ enemy = enemy_of[set2];

if (enemy == -1)

enemy_of[set2] = person1;

else

union_sets(enemy, person1, parent, size);

}

Listing 9-13: Recording that two people are enemies

We again begin by finding the representatives of each set, storing them
in set1 and set2, respectively. We then look up an enemy of set1 ¶. If set1
has no enemy, then we set person2 to be its enemy ·. If set1 does have an
enemy, then we’re in the territory of our second test case. We union set1’s
enemies with person2’s set ¸, which ensures that person2 and all of person2’s
friends are all enemies of person1.

That takes care of set1. Now we do likewise for set2 ¹, setting its enemy
to be person1 if it doesn’t have an enemy yet or otherwise unioning its ene-
mies with person1’s set.

Importantly, this function maintains the symmetry of the enemy rela-
tionship: if from person1 we can find enemy person2, then from person2 we
can find enemy person1. Consider a given call of set_enemies on person1 and
person2. If person1 has no enemies, then its enemy becomes person2, but
if person1 has enemies, its enemy set grows to include person2. Symmetrically,
if person2 has no enemies, then its enemy becomes person1, and if person2 has
enemies, then its enemy set grows to include person1.

AreFriends and AreEnemies
The AreFriends operation amounts to checking whether the two people are
in the same set or, equivalently, whether they have the same representative.
This can be accomplished with two calls to Find, as shown in Listing 9-14.

int are_friends(int person1, int person2, int parent[]) {

return find(person1, parent) == find(person2, parent);

}

Listing 9-14: Determining whether two people are friends

We have just one more operation to go! We can implement AreEnemies
by checking whether one person is in the other person’s set of enemies. The
code is given in Listing 9-15.

int are_enemies(int person1, int person2, int parent[],

int enemy_of[]) {

int set1, enemy;

set1 = find(person1, parent);

enemy = enemy_of[set1];

Union-Find 363



¶ return (enemy != -1) &&

(find(enemy, parent) == find(person2, parent));

}

Listing 9-15: Determining whether two people are enemies

Two things must be true for person2 to be an enemy of person1 ¶. First,
person1 must have an enemy. Second, person2 must be in its set of enemies.

Hey! Shouldn’t we also check whether person1 is an enemy of person2?
No, that’s not needed, because the enemy relationship is symmetric. If
person2 is not an enemy of person1, then there’s no point checking whether
person1 is an enemy of person2.

That’s it! We have successfully augmented the vanilla union-find data
structure to incorporate both friend and enemy information. If you submit
your code to the judge, you should pass all test cases. What about exceeding
the time limit? With union by size and path compression in there, the time
limit can’t stop us.

Problem 3: Drawer Chore
In the Social Network and Friends and Enemies problems, we were able to
use both union by size and path compression to speed up our implementa-
tions. In this next problem, we’ll attach more meaning to the root of each
set. We won’t be able to use union by size, because the choice of root mat-
ters. Think about why this is as you read the problem description!

This is DMOJ problem coci13c5p6.

The Problem
Mirko has n items strewn around his room and d empty drawers. The items
are numbered 1, 2, . . . , n; the drawers are numbered 1, 2, . . . , d. Each drawer
can hold at most one item. Mirko’s goal is to consider each item in turn,
placing it in a drawer if possible and throwing it away if not.

Each item has exactly two drawers in which it is allowed to be placed:
Drawer A and Drawer B. (It’s for organizational purposes. We wouldn’t want
to put the Halloween candy with the ants, after all.) For example, we might
be allowed to place item 3 in Drawer 7 (A) or Drawer 5 (B).

To determine what happens with each item, we use the following five
rules in order:

1. If Drawer A is empty, put the item in Drawer A and stop.

2. If Drawer B is empty, put the item in Drawer B and stop.

3. If Drawer A is full, move the existing item in Drawer A to its other
drawer; if that drawer is full, too, move its existing item to its other
drawer; and so on. If this process would terminate, place the item
in Drawer A and stop.

4. If Drawer B is full, move the existing item in Drawer B to its other
drawer; if that drawer is full, too, move its existing item to its other
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drawer; and so on. If this process would terminate, place the item in
Drawer B and stop.

5. If we have failed to place the item using the first four rules, we throw
the item away.

Because of Rules 3 and 4, placing an item may result in other items mov-
ing to their other drawers.

We need to output whether each item is kept or thrown away.

Input
The input contains one test case, consisting of the following lines:

• A line containing n, the number of items, and d, the number of
drawers. n and d are between 1 and 300,000.

• n lines, one for each item. Each line contains two integers a and b,
indicating that this item’s Drawer A is a and Drawer B is b. a will not
be the same integer as b.

Output
The output for each item is on its own line. For each item, output LADICA if
it is placed in a drawer and SMECE if it is thrown away. (These words come
from the original COCI problem description: ladica is the Croatian word
for drawer and smece is the Croatian word for trash.)

The time limit for solving the test case is one second.

Equivalent Drawers
Here’s an interesting scenario: We place a new item in Drawer 1—but,
uh-oh, Drawer 1 happens to be full. Its existing item’s other drawer is
Drawer 2. So we move that existing item to Drawer 2 and, uh-oh again,
Drawer 2 is full. Its existing item’s other drawer is Drawer 6. Ugh—Drawer 6
is full, too! We move its existing item to its other drawer, Drawer 4. Phew!
Drawer 4 is empty, so we stop.

In the process of ultimately filling Drawer 4, we moved three existing
items: from Drawer 1 to 2, from Drawer 2 to 6, and finally from Drawer 6
to 4. However, those particular moves won’t matter to us. All we’ll need to
know is that Drawer 4 ends up filled.

Prior to adding the new item, what Drawers 1, 2, 6, and 4 had in com-
mon is that if you try to place an item in any one of them, Drawer 4 ends
up getting filled. This is the sense in which these four drawers are equiva-
lent. For example, if you place an item in Drawer 4 directly, then Drawer
4 is filled right away. If you place an item in Drawer 6, Drawer 6’s existing
item moves to Drawer 4 and again Drawer 4 is filled. This pattern also holds
if you place an item in Drawer 2 and, as we saw at the start of this example,
if you place an item in Drawer 1. Drawer 4 is an empty drawer where the
chain of drawers terminates and, thinking ahead to our union-find data
structure, we see that this will be the representative of its set. Our set rep-
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resentatives will always be empty drawers; every other drawer in a set will be
full.

To make all of this concrete, let’s work through two test cases. In the
first one, we’ll have LADICA everywhere: we’ll be able to place each item in a
drawer. In the second, we’ll see some SMECE: there are some items that we will
not be able to place.

Test Case 1
Here’s our first test case:

6 7

1 2

2 6

6 4

5 3

5 7

2 5

We have seven drawers, each of which starts empty and in its own set.
I’ll place each set on its own line and highlight each set’s representative in
italics:

1

2

3

4

5

6

7

It’s a good time to refresh your memory of the rules from the problem
description before continuing.

The first item is 1 2; that’s a Drawer A of 1 and a Drawer B of 2. Since
Drawer 1 is empty, this item is placed in Drawer 1 (using Rule 1). In ad-
dition, Drawers 1 and 2 end up in the same set: placing a new item into
Drawer 1 or Drawer 2 would result in the same drawer, Drawer 2, being
filled. Here’s our next snapshot of the sets:

1 2

3

4

5

6

7
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Notice the new set has Drawer 2 as its representative. Using Drawer 1
as its representative would be incorrect: it would erroneously indicate that
Drawer 1 is empty! This is why we won’t use union by size: it might choose
the wrong root to be the representative of the resulting set.

Now consider the second item: 2 6. Drawer 2 is empty, so we place this
item there (using Rule 1 again). Now placing an item in Drawer 1, 2, or 6
would result in Drawer 6 being filled, so we union Drawers 1 and 2 with
Drawer 6:

1 2 6

3

4

5

7

Drawer 6 is empty, so placing an item in Drawer 6 fills it immediately.
Placing an item in Drawer 2 causes that drawer’s existing item to move to
Drawer 6, again filling Drawer 6. Placing an item in Drawer 1 causes its ex-
isting item to move to Drawer 2, and Drawer 2’s existing item to move to
Drawer 6 . . . , so Drawer 6 is filled again. That’s why we’re justified in putting
all three of these drawers in the same set, with Drawer 6 as its representative.

The next item is 6 4. We know what to do (using Rule 1 again):

1 2 6 4

3

5

7

The next item is 5 3. Again, this poses no problem (using Rule 1):

1 2 6 4

5 3

7

Every item we’ve processed so far has succeeded by using Rule 1. Of
course, that need not be the case, as is evinced by the next item: 5 7. Rule 1
does not apply, because Drawer 5 is already full. Rule 2 does apply, though,
because Drawer 7 is empty. This item is therefore placed in Drawer 7. The
empty drawer of the unioned set is Drawer 3, so that’s our representative, as
shown in the next snapshot:

1 2 6 4

5 7 3

We have one more item to go, and it’s a fun one: 2 5. Does Rule 1 apply?
No, because Drawer 2 is full. Does Rule 2 apply? No, because Drawer 5 is
full. Does Rule 3 apply? Yes! It applies because Drawer 2’s set has an empty
drawer (Drawer 4). How do we proceed?
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The argument in this case is that Drawer 2’s set and Drawer 5’s set should
be unioned, like this:

1 2 6 4 5 7 3

I’ll explain why this works. The 2 5 item ends up placed in Drawer 2: ex-
isting items move from Drawer 2 to Drawer 6 and move from Drawer 6 to
Drawer 4. Drawer 4 is now filled, so it can’t be the representative of its set
anymore. In fact, the only relevant, empty drawer is Drawer 3, so we’re
really hoping that Drawer 3 can serve as the set representative. Drawers 5,
7, and 3 should certainly be in the same set: placing an item in any of them
ultimately fills Drawer 3, because they were in the same set prior to us intro-
ducing the 2 5 item.

It remains to explain why Drawers 1, 2, 6, and 4 should be in Drawer 3’s
set, as well. Drawer 2 is fine: placing an item in Drawer 2 moves its existing
item to Drawer 5. Drawer 5 is in Drawer 3’s set, so we know what happens
from here: Drawer 3 will end up filled.

Drawer 1 is fine, too: placing an item in Drawer 1 moves its existing item
to Drawer 2, and from here we can use the previous paragraph to argue that
Drawer 3 will be filled. Similar logic applies to Drawers 6 and 4. For ex-
ample, if we place an item in Drawer 4 and then we “undo” the moves that
occurred when we filled Drawer 2, Drawer 4’s existing item moves back to
Drawer 6, Drawer 6’s existing item moves back to Drawer 2, and now we’re
back in the case in the previous paragraph.

Each item in this test case is placed in a drawer, so the correct output is
as follows:

LADICA

LADICA

LADICA

LADICA

LADICA

LADICA

Let’s extract a general principle from this test case. Say we’re processing
item x y and that the item ends up in x’s set. Then we union x’s set and y’s
set, keeping y’s representative as the representative of the union.

Why is this correct? Think about what happens when we try to place an
item in the unioned set, whose components are x’s old set and y’s old set.
Placing it in some drawer of y’s set still fills y’s representative, because we
haven’t messed with y’s set at all. Placing it in drawer x fills y’s representa-
tive, too, because we move x’s existing item to y, and then we’re back in the
case of placing an item in a drawer of y’s set. The only remaining option is
that the new item is placed in drawer z (which is different from x) in x’s set.
There is a chain of drawers from drawer z to drawer x; moving items along
that chain will fill drawer x, and from there y’s representative will be filled.

What if we’re processing item x y, and the item ends up in y’s set? In
this case, the roles of the two sets are reversed. In particular, we’ll keep the
representative of x’s set as the representative of the union set.
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Test Case 2
Now let’s see how some SMECE can arise. Here’s our second test case:

7 7

1 2

2 6

6 4

¶ 1 4

2 4

1 7

7 6

The first three items are LADICAs and result in a familiar state:

1 2 6 4

3

5

7

Now, here’s something different: item 1 4 ¶. For the first time, we see
an item whose Drawer A and Drawer B are in the same set. It therefore pro-
vides no new empty drawer for this set. That is, using Rule 2 fills Drawer 4
(so it’s a LADICA), but it gives us no set to union. Drawers 1, 2, 6, and 4 enter
a new kind of state, whereby it becomes impossible to successfully place an
item in any of them! If you try, you will cycle items around forever. For ex-
ample, try to place an item in Drawer 1. We can push Drawer 1’s existing
item to Drawer 2, then push Drawer 2’s existing item to Drawer 6, then push
Drawer 6’s existing item to Drawer 4, Drawer 4’s existing item gets pushed to
Drawer 1, Drawer 1’s existing item to Drawer 2, Drawer 2’s existing item to
Drawer 6, and so on and so on, until I hit my book’s page limit.

In our implementation, we’re going to flag this state by giving this set a
representative of 0:

1 2 6 4 0

3

5

7

Now we’re dangerously close to a SMECE. If any item comes along, both
of whose drawers are in this set, then there’s no way to place it. Look at
our next item: 2 4. Can we place it in Drawer 2? No; it’s full. What about
Drawer 4? No; it’s also full. Can we follow a chain of drawers from Drawer 2
to find an empty drawer? No. Is there a chain of drawers from Drawer 4 to
an empty drawer? No. Four strikes. SMECE.
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Moving on, we have item 1 7. This will be processed by using Rule 2. We
therefore perform a Union (because it’s a LADICA)—but watch out: because
it’s another Union that gives us a set without an empty drawer! Here’s the
result:

1 2 6 4 7 0

3

5

The final item is 7 6, and that’s another SMECE because none of the four
LADICA rules apply: Drawers 7 and 6 are in the same set, and that set has no
empty drawer.

The correct output for this test case is:

LADICA

LADICA

LADICA

LADICA

SMECE

LADICA

SMECE

The only rule we haven’t explored in our test cases is Rule 4. I encour-
age you to play around with Rule 4 a bit before continuing. In particular,
you can verify that whenever you apply Rule 4, the representative of the
unioned set will be 0.

Now it’s implementation time!

The main Function
Let’s start with the main function, which reads each item from the input and
processes it. The code is given in Listing 9-16.

#define MAX_DRAWERS 300000

int main(void) {

static int parent[MAX_DRAWERS + 1];

int num_items, num_drawers, i;

int drawer_a, drawer_b;

scanf("%d%d", &num_items, &num_drawers);

¶ parent[0] = 0;

for (i = 1; i <= num_drawers; i++)

parent[i] = i;

for (i = 1; i <= num_items; i++) {

scanf("%d%d", &drawer_a, &drawer_b);

· if (find(drawer_a, parent) == drawer_a)

¸ union_sets(drawer_a, drawer_b, parent);
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¹ else if (find(drawer_b, parent) == drawer_b)

º union_sets(drawer_b, drawer_a, parent);

» else if (find(drawer_a, parent) > 0)

¼ union_sets(drawer_a, drawer_b, parent);

½ else if (find(drawer_b, parent) > 0)

¾ union_sets(drawer_b, drawer_a, parent);

else

printf("SMECE\n");

}

return 0;

}

Listing 9-16: The main function for processing items

As usual, the parent array records the parent of each node in the union-
find data structure. Items are numbered starting from 1, so it’s safe for us
to use a representative of 0 for the drawers that can never have a new item
placed in them. We give 0 a representative of 0 ¶ to indicate that this set,
like all other sets, starts out empty.

Now, let’s look at those five rules. We implement each of the four LADICA

rules with one call to find and one call to union. If none of these rules ap-
plies, then we’re in the SMECE case. Let’s go through each LADICA rule in turn.

For Rule 1, we need to know whether drawer_a is empty. Remember that
each set of drawers (not including the “0” set) has exactly one empty drawer
and that this empty drawer is the representative of the set. The find function
returns the representative of the given set. Putting these two facts together,
we see that find returns drawer_a exactly when drawer_a is empty ·.

If we are in the Rule 1 case, then we need to union drawer_a’s set with
drawer_b’s set. We therefore call union_sets ¸. Careful, though: remember
that we must make drawer_b’s representative be the representative of the new
set, because drawer_a’s set has no empty drawers now that drawer_a is full.
To make that happen, we’ll use an implementation of union_sets that does
not perform union by size. It guarantees that the representative of the sec-
ond parameter that we pass—drawer_b here—will be the representative of the
unioned set. It’s also responsible for outputting the LADICA message. We’ll
see that code in the next subsection.

For Rule 2, we need to know if drawer_b is empty. We again use find to
check this ¹, and we perform the Union operation if this rule applies º.
This time, we call union_sets with the drawers in the opposite order so that
drawer_a’s representative becomes the representative of the unioned set.

For Rule 3, we need to know whether drawer_a’s set has an empty drawer.
A set has an empty drawer unless the set’s representative is 0. We use find

to check this condition »: if find returns a representative other than 0, then
this set has an empty drawer. If this rule applies, then we perform the
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expected Union ¼. We’ll see in the next subsection how union_sets is respon-
sible for appropriately moving sets to the “0” set.

Finally, for Rule 4, we need to know whether drawer_b’s set has an empty
drawer. The logic is the same as that for Rule 3: use find to check whether
this set has an empty drawer ½; if it does, perform the Union ¾.

Find and Union
The Find function is given in Listing 9-17. It uses path compression. That’s
a good thing, because I just submitted a solution without path compression
and I received a “Time-Limit Exceeded” error. #PathCompressionWins.

int find(int drawer, int parent[]) {

int set = drawer, temp;

while (parent[set] != set)

set = parent[set];

while (parent[drawer] != set) {

temp = parent[drawer];

parent[drawer] = set;

drawer = temp;

}

return set;

}

Listing 9-17: The find function

The Union function is given in Listing 9-18.

void union_sets(int drawer1, int drawer2, int parent[]) {

int set1, set2;

set1 = find(drawer1, parent);

set2 = find(drawer2, parent);

¶ parent[set1] = set2;

· if (set1 == set2)

¸ parent[set2] = 0;

printf("LADICA\n");

}

Listing 9-18: The union_sets function

As promised, there’s no union by size here: we always use set2, the set of
drawer2, as the new set ¶.

In addition, whenever an item is placed whose drawers are in the same
set ·, we set the representative of the resulting set to 0 ¸. Whenever find is
later called on any element of this resulting set, 0 will be returned, correctly
indicating that no item can ever be placed in this set again.

There we have it: a 50-line union-find solution to one of the most chal-
lenging problems in this book. Please submit your code to the judge!
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Summary
In this chapter, we’ve learned how to efficiently implement the union-find
data structure. Of all the data structures in this book, the union-find data
structure is the one that surprises me most with the breadth of its applica-
tions. “Really? This is a union-find problem?” I frequently have that thought.
Perhaps you similarly had that thought when we solved Friends and Enemies
or Drawer Chore. In any case, you’re likely to encounter other problems,
seemingly quite different from those that I presented here, where union-find
nevertheless applies.

Happily, given its wide applicability and speedy performance, we don’t
need huge amounts of code to implement union-find: just a few lines for
Union and a few lines for Find. In addition, you may find that the code isn’t
too tricky, once we’ve learned about the array representation for the trees.
Even the optimizations, union by size and path compression, require
little code.

Notes
Drawer Chore is originally from the 2013 Croatian Open Competition in
Informatics, Round 5. I found the “0 representative” idea from the COCI
website (see http://hsin.hr/coci/archive/2013_2014).
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10
RANDOMIZAT ION

Think back to when we learned about
binary search in Chapter 7. Rather than

answering the question, “What is the optimal
solution?” we instead asked, “Is this specific

value the optimal solution?” While we were solving
the Feeding Ants problem, you may have thought that
my picking values out of thin air was outlandish, won-
dering how that was going to work at all. But it works
great, as we now know.

You want something that’s even more outlandish than binary search?
How about just straight-up guessing a completely random solution. How
could that possibly work? What is it about specific problems that makes this
random guessing a viable strategy? And could random guessing still help us
solve a problem even if we already have a solution? The surprising conclu-
sions await.



Problem 1: Yokan
Yokan is a Japanese candy. It’s sweet. It has kind of a jelly or gummy texture.
Buy a nice big block and cut it into little pieces and pair it with some fruit
and chill it for a nice refreshing . . . oh, sorry. Back to algorithms.

This is DMOJ problem dmpg15g6.

The Problem
Two friends have found a Yokan consisting of n pieces. The pieces are num-
bered 1, 2, . . . , n. Each piece of the Yokan has a specific flavor, and each
friend will eat only those pieces that are the same flavor.

A slab of Yokan consists of all of the pieces from Piece l to Piece r. A
friend is happy with a slab if they can find at least one-third of that slab’s
pieces that have the same flavor. For example, if a slab has 9 pieces, then
a friend would need to find 9/3 = 3 pieces of the same flavor. For both
friends to be happy with the slab, they would each need to find their own
one-third of pieces that have the same flavor.

The friends will query about various slabs; for each, we need to deter-
mine whether both of them would be happy with that slab.

Input
The input consists of the following lines:

• A line containing n, the number of pieces in the Yokan, and m,
the number of possible piece flavors. n and m are between 1 and
200,000.

• A line containing n integers giving the flavors of the Yokan pieces
from Piece 1 to Piece n. Each integer is a flavor between 1 and m.

• A line containing q, the number of queries that the friends have. q is
between 1 and 200,000.

• q lines, one for each query. Each such line contains the integers l
and r, indicating the slab from Piece l to Piece r.

Output
The output for each query is on its own line. For each query:

• If both friends are happy with this slab, output YES.

• Otherwise, output NO.

The time limit for solving the test case is 1.4 seconds.

Randomly Choosing a Piece
Let’s start with a test case:

14 4

1 3 4 2 1 1 2 4 1 2 2 4 1 1
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3

3 11

8 11

5 6

The Yokan here has 14 pieces. It looks like this:

Piece 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Flavor 1 3 4 2 1 1 2 4 1 2 2 4 1 1

There are three queries to process. The first query starts at Piece 3 and
ends at Piece 11. We’re therefore interested in this slab of the Yokan:

Piece 3 4 5 6 7 8 9 10 11
Flavor 4 2 1 1 2 4 1 2 2

This slab has 9 pieces, so we want to determine whether each friend can
find 9/3 = 3 pieces of the same flavor. And they can! The first friend could
eat 3 pieces of Flavor 1. The second friend could eat 3 pieces of Flavor 2.
(There are 4 pieces of Flavor 2 there, but that fourth one is overkill for what
we need.) For this query, we would therefore output YES.

Think about how we might write code to determine whether the friends
are happy with this slab. In general, it would be too slow to do this by check-
ing each piece in the slab one by one; after all, a slab can have up to 200,000
pieces in it. This is a familiar roadblock for us by this point in the book; the
usual thing to do would be to use some fancy data structure to make the
queries fast.

But we’re going to do something far less usual here. I’d like you to look
at that Yokan slab again and randomly pick one of its pieces. Pieces of Fla-
vor 1 and pieces of Flavor 2 are prevalent here, so you may have ended up
picking a piece of one of those two flavors. If you did, then you just found a
way to satisfy the first friend. If not, please randomly pick another piece of
that Yokan slab. You may have gotten Flavor 1 or Flavor 2 that time. Still no?
Then try a third time. If you’re choosing randomly, you’re bound to pick
Flavor 1 or Flavor 2 within a small number of tries.

Let’s say that you’ve found Flavor 1 for the first friend. Now, do it again,
this time for the second friend. It’ll be a little more difficult this time: the
three Flavor 1 pieces are gone, so you’ll have to land on Flavor 2. Still, try
picking a random piece a few times, and I’m sure you’ll eventually pick one
of Flavor 2.

The program that we’ll write to solve this problem is going to do exactly
what you just did: picking pieces randomly, trying to find one whose flavor
makes each friend happy.

Suppose that the two friends are happy with a given Yokan slab. This
means that there’s a single flavor that shows up for 2/3 of the pieces, or
two different flavors that each show up for 1/3 of the pieces. Regardless, we
have a 2/3 chance of making the first friend happy by just choosing a piece
at random. If we succeed, then we’re done with the first friend and we move
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to the second friend. If we fail, well, we’ll just try again, and we’ll have a new
2/3 chance of success. If we fail that second time, we’ll try a third time, and
a fourth time, until we succeed.

We’ll figure out how many attempts we need later. For now, though, I
can promise that it won’t be very many. The intuition for this can come from
a coin-tossing experiment.

Imagine that you were playing a game with a fair coin. If you toss the
coin and it comes up heads, you win. If you toss the coin and it comes up
tails, you have to try again. Think of the coin coming up heads as making
the friend happy, and the coin coming up tails as not making the friend
happy and having to try again. How many times do you expect to have to
toss the coin before it comes up heads? Not many, right? If there’s a flavor
in the slab that makes a friend happy, we’ll toss only so many tails in a row
before we find a heads.

We were in the middle of working through a test case before all of that
randomizing and coin-tossing talk, so let’s finish that before continuing.

The second query starts at Piece 8 and ends at Piece 11. The corre-
sponding slab is:

Piece 8 9 10 11
Flavor 4 1 2 2

Unfortunately, the two friends are not happy with this one. Each friend
needs to find at least 4/3 = 1.3 pieces of the same flavor; as the available
number of pieces of each flavor is an integer, what we really need is at least
2 pieces of the same flavor. We can do this for the first friend with Flavor 2,
but we’re stuck for the second friend. We need to output NO here.

The third query starts at Piece 5 and ends at Piece 6. That’s this part of
the Yokan:

Piece 5 6
Flavor 1 1

Each friend needs just one piece of a given flavor. We can therefore
use Flavor 1 to make both friends happy: we can give one piece to the first
friend and the other to the second friend! The correct output is therefore YES.

Generating Random Numbers
We’ll need a way to generate random numbers in order to randomly pick
Yokan pieces. We’ll use C’s rand function to do this.

If we call rand with an integer x, we’re asking for rand to give us one of x
possibilities. Specifically, we’ll get back a random integer in the range 0 to
x - 1. For example, if we call rand(4), we’ll get back a 0, 1, 2, or 3.

Now, how can we use rand to pick a random piece of a slab? Let’s use the
term width to refer to the number of pieces in a slab. For example, the slab
from Piece 8 to Piece 11 has a width of 4. In this case, we’d need rand to give
us back 8, 9, 10, or 11. We can start by calling rand(4), because we need rand
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to give us one of four possibilities. That would give us a 0, 1, 2, or 3. This is a
good start, but those numbers are not in the right range. To fix that, we can
just add 8 to move that value into the 8–11 range that we need.

In code, generating a random number for a given width width and start-
ing point left can be done as in Listing 10-1.

int random_piece(int left, int width) {

¶ return (rand() % width) + left;

}

Listing 10-1: Randomly choosing a piece

The code carries out the plan that we just outlined: it generates a ran-
dom number from 0 to width - 1, then adds the starting point left to it ¶.

Determining Number of Pieces
Suppose that we’re working on a particular query. We’re going to choose a
random piece in that query’s slab. Does the flavor of that piece make one or
both of the friends happy? To answer that, we’ll need to be able to quickly
determine how many times that flavor shows up in the slab.

It will therefore be convenient for us to have a sorted array for each fla-
vor that gives us the pieces of that flavor. I’ll call such an array a flavor array.

Let’s go back to the Yokan from our test case:

Piece 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Flavor 1 3 4 2 1 1 2 4 1 2 2 4 1 1

The array for Flavor 1 would be [1, 5, 6, 9, 13, 14]; the array for Fla-
vor 2 would be [4, 7, 10, 11]; and so on. As promised, each of these arrays
is sorted: the piece numbers are in order from smallest to largest. We’ll see
how to generate these flavor arrays later; for now let’s just assume they exist.

We can use such an array to determine the number of pieces of a given
flavor that lie within a slab. For example, we could use the array [1, 5, 6, 9,

13, 14] to conclude that there are three pieces of Flavor 1 in the 3-11 slab:
the pieces 5, 6, and 9.

Let’s take stock. We have the query that we want to solve. We have a ran-
dom flavor that we care about checking. We have the flavor array: a sorted
array of piece numbers of that flavor. And we need to determine how many
of those pieces are in the range of the query.

We could do this using a linear search through the flavor array. But that
would be too slow—a linear amount of work per query.

If you think back to Chapter 7, you might wonder whether we can call
on a binary search here. We can indeed, because the array is sorted! Well,
actually, we’ll need to call binary search twice rather than once, but that
won’t change the fact that we’ll be able to find what we need in logarith-
mic time.
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We’re going to write a binary search function that takes a flavor array
pieces and an integer at_least and returns the index of the leftmost value in
the array that’s greater than or equal to at_least.

Before we do, we should make sure that the specification of that func-
tion actually does what we need. To that end, let’s use it to figure out how
many pieces of Flavor 1 are in the 3-11 slab.

To figure out where the pieces of Flavor 1 begin in that slab, we can call
our function with the array [1, 5, 6, 9, 13, 14] and an at_least value of 3.
We’ll get a result of 1. This tells us that the piece at index 1 is the first piece
of this flavor whose number is at least 3. That piece is Piece 5, which is in-
deed the first piece that we’re looking for.

Where do the pieces of Flavor 1 end in that slab? We can figure that
out, too! Just call our function with the same array, but this time an at_least

value of 12. Why 12? Because that’s the first piece not in the slab. If we make
this call, we’ll get a result of 4. This refers to the piece at index 4, which is
Piece 13. That’s the first piece of this flavor that’s not in the 3-11 slab. In
general, to figure out where a flavor ends, we’ll call our binary search func-
tion with an at_least value that’s 1 larger than the right end of the slab.

Now we know where the relevant pieces start (index 1) and where the
relevant pieces end (just to the left of index 4). If we subtract 1 from 4, we
get an answer of 3, which is exactly the number of pieces of Flavor 1 in the
3-11 slab.

Let’s write the code for our binary search function. (Soon, we’ll see the
function that calls this function twice.) As you learned in “Searching for a
Solution” on page 250, the right way to write a binary search function is
to first figure out the invariant. Our invariant will have two parts: that all
values at indices less than low are < at_least, and that all values at indices
high or greater are >= at_least. See Listing 10-2 for the code. In addition to
the aforementioned pieces and at_least parameters, we have a parameter
num_pieces that gives the number of pieces in the pieces array.

int lowest_index(int pieces[], int num_pieces, int at_least) {

int low, high, mid;

¶ low = 0;

· high = num_pieces;

¸ while (high - low >= 1) {

mid = (low + high) / 2;

if (pieces[mid] < at_least)

low = mid + 1;

else

high = mid;

}

¹ return low;

}

Listing 10-2: Searching for the first satisfying value

We need to make both parts of the invariant true above the loop. For
the first part, notice that the invariant isn’t making any claim about the
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value at index low; it makes a claim only about the values to the left of index
low. For that reason, we can set low to 0 above the loop ¶; there’s nothing to
the left of low now, so this part of the invariant is satisfied.

For the second part, the invariant claims something about all of the val-
ues at indices high or greater. Since we don’t know anything about any value
in the array, we need to make this part of the invariant claim nothing. We
can do this by setting high to just beyond the right end of the array ·: now
there are no valid indices between high and the end of the array.

The code inside the while loop maintains the invariant. I encourage you
to check this for yourself if you like, but you’ve had a lot of binary search
practice already so I don’t blame you if you’d rather not!

The while loop condition ¸ ensures that low and high are equal when the
loop terminates. The invariant tells us that all values to the left of low are too
small and that low is the first index of the value that’s >= at_least. This is why
we return low when the function terminates ¹.

Next, as promised, we’re going to make two calls of that function to fig-
ure out how many pieces of a given flavor are within the range of a given
slab. See Listing 10-3 for the code.

int num_in_range(int pieces[], int num_pieces, int left, int right) {

¶ int left_index = lowest_index(pieces, num_pieces, left);

· int right_index = lowest_index(pieces, num_pieces, right + 1);

¸ return right_index - left_index;

}

Listing 10-3: Determining number of pieces of a given flavor that are in range

Here, the pieces parameter is the flavor array, and the left and right pa-
rameters indicate the leftmost and rightmost pieces of the slab. The code
first finds the index in the slab where the flavor starts ¶. Then it finds the
index immediately to the right of where the flavor ends in the slab ·. Fi-
nally, it subtracts the first of these indices from the second to determine the
number of pieces of the flavor in the slab ¸.

Guessing Flavors
At this point, we know what to do once we’ve guessed a flavor: use binary
search to check whether the guessed flavor makes one or both friends happy.
Now we need to work on the code that makes the guesses.

Our overall strategy can be broken down into three steps:

Step 1 Figure out the number of pieces that we need to make one
friend happy.

Step 2 Try to make the first friend happy. Start by guessing a piece. If
the flavor of that piece makes the friend happy, then we are done; oth-
erwise, guess again. Keep guessing until we succeed or until we run out
of guesses. It’s possible for us to find a flavor that’s so prevalent that it
makes not just the first friend happy, but both friends happy. If that hap-
pens, we pump out a YES and stop right there, without doing Step 3.
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Step 3 Try to make the second friend happy using the same strategy
that we used for the first friend. If we happen to guess the flavor that
made the first friend happy, then we need to ignore it and move on to
our next attempt because that flavor isn’t prevalent enough to make
both friends happy.

We’ll write the function for the following signature:

void solve(int yokan[], int *pieces_for_flavor[],

int num_of_flavor[], int left, int right)

Here’s what each parameter is for:

yokan The array of Yokan flavors; yokan[1] is the flavor of the first piece,
yokan[2] is the flavor of the second piece, and so on. (We start at index 1
rather than 0 because the pieces are numbered from 1 in this problem.)
We need this array so that we can choose a random piece.

pieces_for_flavor The array of flavor arrays. Each flavor array is sorted
from smallest piece number to largest piece number. For example,
pieces_for_flavor[1] might be the array [1, 5, 6, 9, 13, 14], telling us all
of the pieces that are of Flavor 1. We need these arrays so that we can
binary search them.

num_of_flavor An array giving the number of pieces of each flavor;
num_of_flavor[1] is the number of pieces of Flavor 1, num_of_flavor[2] is
the number of pieces of Flavor 2, and so on. That is, this array tells us
how many elements are in each of the flavor arrays.

left The beginning index of the current query.

right The ending index of the current query.

The code for this function is in Listing 10-4. Look out for the three
steps—figure out the happy threshold, make the first friend happy, make the
second friend happy—as you read through the code.

void solve(int yokan[], int *pieces_for_flavor[],

int num_of_flavor[], int left, int right) {

int attempt, rand_piece, flavor, result;

int width = right - left + 1;

¶ double threshold = width / 3.0;

int first_flavor = 0;

· for (attempt = 0; attempt < NUM_ATTEMPTS; attempt++) {

¸ rand_piece = random_piece(left, width);

flavor = yokan[rand_piece];

¹ result = num_in_range(pieces_for_flavor[flavor],

num_of_flavor[flavor], left, right);

º if (result >= 2 * threshold) {

printf("YES\n");

return;

}
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» if (result >= threshold)

¼ first_flavor = flavor;

}

if (first_flavor == 0) {

printf("NO\n");

return;

}

½ for (attempt = 0; attempt < NUM_ATTEMPTS; attempt++) {

rand_piece = random_piece(left, width);

flavor = yokan[rand_piece];

¾ if (flavor == first_flavor)

continue;

result = num_in_range(pieces_for_flavor[flavor],

num_of_flavor[flavor], left, right);

if (result >= threshold) {

printf("YES\n");

return;

}

}

printf("NO\n");

}

Listing 10-4: Solving the problem

For Step 1, we determine the number of pieces that will make a friend
happy ¶.

For Step 2, we start guessing flavors for the first friend ·. The for loop
uses a NUM_ATTEMPTS constant that we haven’t defined yet. We’ll decide on this
number after we finish walking through this function. In the for loop, we
choose a random piece from the current slab ¸, then call our num_in_range

helper function to get the number of pieces in the slab that have the same
flavor as that random piece ¹.

Did our random flavor make one or both of the friends happy? We first
check whether the flavor was so prevalent that it makes both friends happy.
Specifically, if the flavor shows up 2/3 of the time (that is, twice the thresh-
old value), it can be used to make both friends happy º. In this case, we’re
done: we just output YES and return. If the flavor doesn’t make both friends
happy, it might still be good enough to make the first friend happy, so we
check for that next ». We also record the flavor that we found for the first
friend ¼.

If in all our guessing we weren’t able to find a flavor for the first friend,
then we output NO and stop.

If we were able to find a flavor for the first friend, then we proceed to
Step 3 ½, where we try to find a flavor for the second friend. The logic is
quite similar to what we did for the first friend. The only addition is to
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ensure that we don’t inadvertently use the flavor that we already used for
the first friend ¾.

If we get to the bottom of the function, it means that we weren’t able to
find a flavor for the second friend. We output NO in this case.

How Many Attempts Do We Need?
Let’s finally answer the question of how many attempts we need to ensure a
ridiculously high probability of success.

We’ll assume that each query asks about a slab of the Yokan where ex-
actly one third of the pieces are of some flavor x, exactly one third are of
some other flavor y, and the rest of the pieces are distributed among a bunch
of other flavors. That will be the hardest type of query of all for us. We may
get lucky and run into a query where one flavor shows up 50 percent or
70 percent or 85 percent of the time, and for those we’ll have an easier time
with our guessing. But we’re focusing on the hardest type of query because
if we can nail that one, then we know that we can nail any others.

Don’t worry if you haven’t worked with probability before. A probability
is just a value in the range 0 to 1. If something has a probability of 0 then it
never occurs; if something has a probability of 1 then it occurs every time.
You can multiply a probability value by 100 to turn it into a percentage.
For example, when tossing a coin there is a 0.5 probability that it comes up
heads; multiplied by 100, we see it equivalently has a 0.5 × 100 = 50 percent
chance of coming up heads. We need a couple of other rules of probability
as well, but I’ll explain those as we go along.

Let’s just pick a number of guesses out of nowhere and see how well we
do. How about 10? We’ll first figure out the probability that we make the
first friend happy. On our first guess, we have a 2/3 probability of success.
That’s because 2/3 of the pieces in the slab are of one of the two flavors that
each show up 1/3 of the time. What’s our probability of failure? There are
only two outcomes here: success and failure. They have to add up to 1, be-
cause there’s a 100 percent chance that one of these two outcomes happens.
So we can find the probability of failure by subtracting the probability of suc-
cess from 1. That gives us a 1 – 2/3 = 1/3 probability of failure.

What’s the probability of failure on all 10 guesses? For that to happen,
we need to have failed on each guess independently. There’s a 1/3 probabil-
ity that we fail on the first guess, a 1/3 probability that we fail on the second
guess, a 1/3 probability that we fail on the third guess, and so on. There’s a
rule that we can use here to figure out the probability that we fail on all of
these 10 independent guesses: just multiply all of the probabilities together.
We see that the probability of failing on all 10 guesses is (1/3)10, which is
about 0.000017.

Now we are able to calculate our probability of success for this friend:
1 – 0.000017 = 0.999983.

This is a better-than-99.99 percent probability of success. We’re doing
great!

What’s the probability that we make the second friend happy given that
we made the first friend happy? For this one, the probability of success on
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each attempt is 1/3, not 2/3, because the pieces of the first friend’s flavor
are gone. If you run through the calculation starting with 1/3 rather than
2/3, you should find a probability of success for the second friend of about
0.982658. That’s over 98.2 percent! We’re still looking good.

It’s nice that we now have both the probability of success for the first
friend and the probability of success for the second friend given success on
the first friend. But what we care about more is the probability of success for
both friends. To find that, we can multiply our two success probabilities to-
gether. Doing so, we find that the overall probability of making both friends
happy is 0.999983 × 0.982658 = 0.982641.

This probability is more than 98.2 percent. Pretty good, right? Unfor-
tunately, no. If we had to process one query, then this probability would be
just fine. But we may need to process a massive 200,000 queries. And we
need to get every single one of them right. If we get even one wrong, then
we fail the test case.

Suppose you’re throwing a ball into a basket and you have a 98.2 percent
probability of success on each throw. You throw one ball. That one’s proba-
bly going in. Now imagine that you throw 100 balls. You’re probably going
to botch at least a couple of those throws. And if you threw 200,000 balls?
Your probability of getting every single one into the basket is near 0.

While 10 attempts was a good try, it isn’t enough. We need more. Through
some trial and error, I’ve settled on using 60 attempts for each friend. If you
run through the calculations using 60 guesses instead of 10, you should find
a success probability for each query of about 0.99999999997.

That’s a lot of 9s! But we need them all because otherwise we’d take a
massive probability hit when going from 1 query to 200,000. To find our
probability of success for 200,000 queries, we can raise our per-query proba-
bility of success to the power of 200,000: 0.99999999997200,000 = 0.999994.

It looks like we’ve lost a few 9s. Still, this is a staggeringly high probabil-
ity, and this time it is for the probability that we get every single query right,
not just one.

We’re finally ready to set our NUM_ATTEMPTS constant. Let’s use 60:

#define NUM_ATTEMPTS 60

Filling the Flavor Arrays
We’re almost ready for the main function; we just need one more little helper
function first.

That helper function will take yokan (the Yokan array) and num_pieces (the
number of pieces in the Yokan) and produce the pieces_for_flavor flavor
arrays that we used in the solve function. See Listing 10-5 for the code.

#define MAX_FLAVORS 200000

void init_flavor_arrays(int yokan[], int num_pieces,

int *pieces_for_flavor[]) {
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¶ static int cur_of_flavor[MAX_FLAVORS + 1];

int i, flavor, j;

for (i = 1; i <= num_pieces; i++) {

flavor = yokan[i];

· j = cur_of_flavor[flavor];

pieces_for_flavor[flavor][j] = i;

cur_of_flavor[flavor]++;

}

}

Listing 10-5: Filling in the flavor arrays

The function assumes that each array in pieces_for_flavor already has
memory assigned to it; that’s a responsibility of the main function that’s com-
ing up next.

We use a local cur_of_flavor array ¶ to track the number of pieces we’ve
found so far of each flavor. Inside the for loop, we use this array to deter-
mine the index in which to store the current piece number ·.

The main Function
We’ve made it to the main function! Check it out in Listing 10-6.

#define MAX_PIECES 200000

int main(void) {

static int yokan[MAX_PIECES + 1];

static int num_of_flavor[MAX_FLAVORS + 1];

static int *pieces_for_flavor[MAX_FLAVORS + 1];

int num_pieces, num_flavors, i, num_queries, l, r;

¶ srand((unsigned) time(NULL));

scanf("%d%d", &num_pieces, &num_flavors);

· for (i = 1; i <= num_pieces; i++) {

scanf("%d", &yokan[i]);

num_of_flavor[yokan[i]]++;

}

¸ for (i = 1; i <= num_flavors; i++) {

¹ pieces_for_flavor[i] = malloc(num_of_flavor[i] * sizeof(int));

if (pieces_for_flavor[i] == NULL) {

fprintf(stderr, "malloc error\n");

exit(1);

}

}

º init_flavor_arrays(yokan, num_pieces, pieces_for_flavor);

scanf("%d", &num_queries);

386 Chapter 10



for (i = 0; i < num_queries; i++) {

scanf("%d%d", &l, &r);

» solve(yokan, pieces_for_flavor, num_of_flavor, l, r);

}

return 0;

}

Listing 10-6: The main function

Before we can use C’s rand function, we need to use the srand function to
initialize the random number generator with a seed. The seed determines
the sequence of random numbers that are generated. We don’t want to use
the same seed every time, otherwise we’ll generate the same sequence of
numbers each time. What works well is to use the current time as the seed
so that the random numbers change each time we run the program. We
do that using C’s time function ¶. To use that function, you’ll need to add
#include <time.h> at the top of your program.

There are two important for loops here. The first one · fills in the yokan

array and also uses the num_of_flavor array to keep track of the number of
pieces of each flavor. Why do we need to know the number of pieces of each
flavor? It’s because, without knowing that, we wouldn’t know how big to
make each flavor array. The second for loop ¸ is responsible for allocating
memory for the flavor arrays. It uses num_of_flavor to determine exactly how
big each flavor array should be ¹.

Following these for loops, we call our helper function to fill in the flavor
arrays whose memory we just allocated º.

And then we’re off to the queries! For each one, we call our solve func-
tion » to print YES or NO as needed.

If you submit our code to the judge, you should find that it passes all
test cases within the time limit. If your code is correct and you somehow fail
a test case, take a screenshot: you’ll probably never see that again.

Randomization
There are two main types of randomized algorithms. We just learned about
one of them. Let’s expand on that one here and preview the other.

Monte Carlo Algorithms
The type of algorithm that we used to solve Yokan, where there’s a chance
that we get the answer wrong, is called aMonte Carlo Algorithm. The key
question when using such an algorithm is: How many attempts should we
use? There’s a tradeoff between the number of attempts and the proba-
bility of success: as we crank up the number of attempts, we increase the
probability of success but slow down the algorithm. We generally want to
find a sweet spot where the probability of success is high enough but our
algorithm is still fast. Of course, what counts as a “high enough” probability
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of success depends on what we’re using the algorithm for. Solving a pro-
gramming competition problem? Ninety-nine percent probability of success
is fine. (If the algorithm fails, who cares: just run it again.) For algorithms
that impact the health and safety of people, though, 99 percent is not okay.

In our solution to Yokan, if we answer YES, then we’re guaranteed to be
correct. We only answer YES when we’re staring at the very flavors that show
why the friends are happy with the slab. By contrast, if we answer NO, then
we might be wrong. It might be the case that the friends aren’t happy with
the slab—but it could also be that we just got unlucky and kept picking bad
flavors. Because only one of the two types of answers can be wrong, we say
that our algorithm has one-sided errors. There are Monte Carlo algorithms
that can be wrong in both the “yes” and “no” cases; those are said to have
two-sided errors.

A Monte Carlo algorithm helped us solve Yokan because the probabil-
ity of randomly finding a useful flavor is so high. It might not seem that a
1/3 or 2/3 probability of success is that great, and indeed an algorithm that
worked only one-third or two-thirds of the time wouldn’t cut it. But remem-
ber that these probabilities are only our starting point. By the time we’re
done with our repeated attempts, we’ll have converted that wonderful per-
attempt probability to a wonderful per-answer probability.

Monte Carlo algorithms are useful for other problems as well. Con-
sider a graph with n nodes and imagine dividing the nodes into two groups.
There are about 2n ways to make this division, because for each of the n
nodes we have two options for where to put it. Such a division of nodes into
two groups is called a cut. The minimum cut problem asks which of these 2n

divisions has the fewest edges that cross from one group to the other. Now,
if we just randomly chose a cut, we’d have a per-attempt probability of suc-
cess of 1/2n, which is terrible and not a promising start to a Monte Carlo
algorithm. There is a Monte Carlo algorithm for this problem, though, and
it hinges on the surprising fact that the per-attempt probability of success
can be driven up to 1/n2. Relative to 1/2n, a probability of success of 1/n2 is
high indeed.

If you can find a way to come up with a “surprisingly high” per-attempt
probability of success, then you’re well on your way to developing a useful
Monte Carlo algorithm. Just crank up the number of attempts until you get
the overall probability of success that you want.

Las Vegas Algorithms
A Monte Carlo algorithm is always fast and almost always correct. A Las
Vegas Algorithm, by contrast, is always correct and almost always fast. (These
algorithms were given casino-related names to evoke the idea of gambling:
with a Monte Carlo algorithm we’re gambling with correctness, and with a
Las Vegas algorithm we’re gambling with speed.)

Suppose we had an algorithm that was quite fast for the vast majority
of test cases but quite slow for the few remaining test cases. We might be
okay to deploy this algorithm; we just have to hope that the Achilles’ heel
test cases don’t happen very often.
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But we can do better than that, and one way is through the use of a Las
Vegas algorithm. In such an algorithm, we randomize the decisions that the
algorithm makes as it runs. Because the algorithm has no fixed sequence of
steps, no one can craft a test case that’ll reliably slow it down because no one
knows what decisions the algorithm will make on that test case!

Why can Las Vegas algorithms be effective? I like Ethan Epperly’s article
“Why Randomized Algorithms?” (see https://www.ethanepperly.com/index.php/
2021/08/11/why-randomized-algorithms/). Suppose you were playing many
rounds of Rock Paper Scissors against your friend. One approach would
be to use a fixed pattern, like rock, paper, scissors, rock, paper, scissors,
rock, paper . . . This might work for a little while—but eventually your friend
will figure out what you’re doing, and then you’ll never win a round again.
They’ll just keep picking the option that beats you. A better approach is to
randomly decide what to do on each round. If you do that, you’re using a
Las Vegas algorithm. Your friend will have no clue what’s coming next! In
our code for such an algorithm, we’ll randomize the choices that we make so
that no fixed test case can force us into poor performance.

Way back in Chapter 1, we solved two problems using hash tables. In
each one, we chose one specific hash function and just went for it. A mali-
cious actor could bring those solutions to a crawl by intentionally causing a
huge number of hash collisions. It’s possible to address that through a Las
Vegas algorithm: rather than committing to a single hash function for all of
time, sitting there waiting for someone to figure out what we’re doing, we let
our program randomly choose which hash function to use each time it runs.
Doing so is called random hashing.

Random hashing is a frequently used Las Vegas algorithm. But there’s
one Las Vegas algorithm used even more frequently than that. We’re going
to see that one in Problem 2. First, let’s talk about whether we really do need
randomization in the first place.

Deterministic vs. Randomized Algorithms
A deterministic algorithm is an algorithm that doesn’t use randomness. Every
algorithm we looked at in the first nine chapters of this book is a determinis-
tic algorithm, and wow did we get a lot of mileage from those. Why not just
forget about randomized algorithms and stick with deterministic ones, then?
Why play around with guessing stuff and getting a 99.9999 percent probabil-
ity of success when we can just have 100 percent success with a deterministic
algorithm?

The reason is that a fast randomized algorithm can be easier to develop
than a fast deterministic algorithm. If you’re interested, you might try solv-
ing Yokan without using randomization. It’s certainly possible but requires
additional ideas not needed in the randomized algorithm.

There are problems where the efficiency gulf between the currently
best randomized algorithm and the currently best deterministic algorithm
is huge. For example, to determine whether a number is prime, there’s a
randomized algorithm that runs in O(n2) time, but the best we’ve been able
to do in terms of deterministic algorithms is O(n6).
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Likewise, it’s difficult to find a way to quickly solve our next problem
with a deterministic algorithm. Good thing we don’t have to. Let’s do some
more randomization!

Problem 2: Caps and Bottles
This is DMOJ problem cco09p4.

The Problem
We have n caps and n bottles. Each cap and bottle has a unique size, and
there is exactly one cap that perfectly fits each bottle.

Our goal is to match the caps to their corresponding bottles. (I’ve seen
this problem alternately phrased as matching nuts and bolts, keys and locks,
hats and people’s heads, you name it. Feel free to use one of these if it works
as a better visual for you.)

The caps and bottles have very similar sizes, so we cannot make compar-
isons between two caps or between two bottles. The only thing we can do is
try to put a cap on a bottle to learn whether the cap is too small, the right
size, or too big for the bottle.

To solve the problem, we interact with the judge by making queries and
progressively reporting our answer until we are done. (It’s kind of like how
we interacted with the judge when solving Cave Doors in Chapter 7, but here
we communicate with the judge by using input and output rather than by
calling functions.)

Input and Output
Because input and output are interleaved in this problem, we’ll look at them
together.

To start, we read the integer n, which tells us the number of caps and
bottles that we must match. n is between 1 and 10,000. The caps are num-
bered from 1 to n, as are the bottles.

After reading n, we can interact with the judge in two ways.

Query We can make a query by outputting 0 cap_num bottle_num. This
asks the judge to tell us about the relationship between the cap num-
bered cap_num and the bottle numbered bottle_num. We need to read from
the input to get the answer to our query. We’ll get a –1 if the cap is too
small for the bottle, a 0 if it matches the bottle, or a 1 if it’s too big for
the bottle.

Report We can tell the judge part of our answer by outputting
1 cap_num bottle_num, which means that we are matching the cap num-
bered cap_num with the bottle numbered bottle_num. The judge doesn’t
produce anything for us to read in response.

We need to eventually make n reports to the judge in order to match
each of the n caps with some distinct bottle. We can mix and match queries
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and reports as we prefer; that is, there’s no requirement to make all queries
before all reports or anything like that.

We are allowed to make at most 500,000 queries.

Solving a Subtask
For most problems in this book, we read from standard input, do what the
problem asks, and output the answer on standard output. Oftentimes, such
as for each problem in the previous chapter, what we read from standard
input are operations that tell us what to do next. The interaction for this
Caps and Bottles problem is a little different. Rather than being asked to
respond to queries, we are the ones making the queries to the judge.

The last time we had a nonstandard interaction with the judge was when
we solved Cave Doors in Chapter 7. There, we first solved a small subtask,
rather than the whole problem, to give us confidence that we were interact-
ing correctly. Let’s start that way here.

The first subtask for this problem guarantees that n will be at most 700.
The first algorithm that we come up with might make a lot of queries; the
hope is that with only 700 caps and bottles we’ll be able to pass at least those
test cases.

We need to figure out which bottle goes with each cap. Well, why not go
through the caps one by one, and just ask about each bottle for each cap? If
we do that, we get the code in Listing 10-7.

int main(void) {

int n, cap_num, bottle_num, result;

¶ scanf("%d", &n);

for (cap_num = 1; cap_num <= n; cap_num++)

for (bottle_num = 1; bottle_num <= n; bottle_num++) {

· printf("0 %d %d\n", cap_num, bottle_num);

¸ scanf("%d", &result);

if (result == 0) {

¹ printf("1 %d %d\n", cap_num, bottle_num);

break;

}

}

return 0;

}

Listing 10-7: Solving subtask 1

Let’s make sure we’ve got the interaction right. We start by reading the
value of n ¶, which tells us how many caps and bottles we’re dealing with.
Then we have a double for loop that considers matching each cap with each
bottle. For each such cap-bottle pair, we query the judge ·. We know that
the judge will then produce a response, so we read that next ¸. If we’ve
found a match, we tell the judge about it ¹.
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It’s a bit of a mind-bend to test this program locally, but let’s do it any-
way. We need to play the role of the judge, responding consistently to the
queries that the program makes.

We’ll work through a test case with three caps and bottles. To “play
judge,” we need to settle on some sizes for the caps and bottles so that we
can respond consistently to the queries. The program will never know what
these sizes are, but as the judge we need them so that we know whether a
cap is too small or too large. Let’s agree that the cap sizes are as follows:

Cap number 1 2 3
Size 23 85 8

and that the bottle sizes are as follows:

Bottle number 1 2 3
Size 85 23 8

If the program handles this test case correctly, it will match Cap 1 with
Bottle 2, Cap 2 with Bottle 1, and Cap 3 with Bottle 3.

Run our program. Type 3 from the keyboard to indicate that n is 3.
Now the program starts making queries. You’ll see those show up as

part of the program’s output. The first one is 0 1 1, which is asking us for
the relationship between Cap 1 and Bottle 1. Cap 1 (size 23) is smaller than
Bottle 1 (size 85), so we need to type -1 here. Go ahead—and once you do,
we’ll be asked another query.

The next query we get is 0 1 2, which asks us about Cap 1 and Bottle 2.
This cap and bottle match, so type 0. The program correctly reports that
Cap 1 and Bottle 2 are matched.

Now that our program has figured out how to match Cap 1, it should
move on to Cap 2. That’s exactly what it does, as we can see from the next
query: 0 2 1. Cap 2 and Bottle 1 match, so we need to type 0 in response.
The program now correctly reports a match between Cap 2 and Bottle 1.

All the program has to figure out now is what to do with Cap 3. It asks
the query 0 3 1, to which we must type -1 because Cap 3 is smaller than Bot-
tle 1. Then it asks 0 3 2, and again we type -1. Finally, we get the query 0 3 3;
as Cap 3 and Bottle 3 match, we type 0. When we do so, the program should
correctly report that Cap 3 is matched with Bottle 3 . . . and we’re done! The
program has successfully matched the caps and bottles.

If you submit our code to the judge, you should pass a few test cases.
The reason we don’t pass more is because of the requirement that we

make at most 500,000 queries. We can tell from our nested for loops that we
have an O(n2) algorithm here. With 10,000 caps and bottles, we might make
up to 10, 0002 = 100,000,000 queries. That’s way too many! We’ll need new
ideas to complete the remaining subtasks.
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Solution 1: Recursion
If we stay with our idea of choosing a cap and then figuring out which bottle
matches it, we need to make better use of the information that the judge
gives us.

Piles of Caps and Bottles
In the algorithm that we used to solve the subtask, we ask the judge about
the relationship between Cap 1 and Bottle 1, Cap 1 and Bottle 2, Cap 1 and
Bottle 3, and so on, until we find the bottle that matches Cap 1. Maybe we fi-
nally find the match with bottle 5,000. That was a lot of work! For the cost
of 5,000 queries, we match one cap and one bottle, and that’s all we get.
We’re back to square one for the next cap.

We’re throwing away a lot of information on our way to matching that
first cap, though, and that’s information we can use to make it easier for us
to match other caps later. In particular, so far we’re not doing anything with
the “too small” and “too big” information that the judge gives us.

If you were doing this by hand, how could you use this information from
the judge? One thing you might do is form two piles of bottles: one of small
bottles and one of big bottles. suppose we find that Cap 1 is too small for
Bottle 1. Throw that bottle into the big pile. Then maybe we find that Cap
1 is too big for Bottle 2. That bottle goes into the small pile. Cap 1 is too big
for Bottle 3? That bottle goes into the small pile, as well. Do this for every
bottle.

Now what we have are two piles of bottles. Maybe these are subprob-
lems? The hope is that we could solve each subproblem and thereby solve
the original problem.

This may feel like the setup to a dynamic-programming solution. But it’s
not, because the two subproblems are not overlapping. Solving one of them
doesn’t help us at all with the other one. Recursion, then? Can we use that?

For recursion to work, we need each subproblem to be a smaller version
of the original problem. Our original problem had a bunch of caps and bot-
tles. But, so far, our subproblems have only bottles. Where are the caps to
go with those bottles? We need to find a way to split the caps into small caps
and large caps, too. Once we do that, we’ll truly have our two subproblems:
one for the small caps and bottles and one for the big caps and bottles.

Here are the overall steps that we’ll use.

Step 1 Choose a cap for our subproblem.

Step 2 Go through the bottles. If the cap is smaller than the bottle,
put the bottle in the pile of big bottles; if the cap is bigger than the bot-
tle, put the bottle in the pile of small bottles. At some point during this
step, we’re going to find the bottle that matches the cap. Call this the
matching bottle. Report the match between the cap and the matching
bottle.

At the end of Step 2, we’ll have the two piles of bottles that we need.
Now for the caps . . .
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Step 3 Go through the caps. If the current cap is smaller than the
matching bottle, put the cap in the pile of small caps; if the current cap
is bigger than the matching bottle, put the cap in the pile of big caps. At
the end of this step, we’ll have the two piles of caps that we need.

Step 4 Recursively solve the subproblem on the small caps and small
bottles.

Step 5 Recursively solve the subproblem on the big caps and big
bottles.

Like binary search, this is an example of a divide and conquer algo-
rithm. We’re dividing the caps and bottles into smaller, independent sub-
problems and then conquering each of those subproblems recursively.

The main Function
There’s a bit of setup we need to do before we can implement our algo-
rithm; let’s get that out of the way first. See Listing 10-8 for our main

function.

#define MAX_N 10000

int main(void) {

int n, i;

¶ int cap_nums[MAX_N], bottle_nums[MAX_N];

scanf("%d", &n);

for (i = 0; i < n; i++) {

· cap_nums[i] = i + 1;

¸ bottle_nums[i] = i + 1;

}

solve(cap_nums, bottle_nums, n);

return 0;

}

Listing 10-8: The main function

There are two important arrays here: cap_nums and bottle_nums ¶. We will
initialize these arrays so that they contain all cap numbers · and all bottle
numbers ¸, respectively. This is our starting point for the caps and bottles
that we’re working with. In the code that we’ll see next, we’ll be making re-
cursive calls on smaller subsets of those caps and bottles.

Implementing Our Algorithm
Now let’s turn our five-step algorithm into code. See Listing 10-9.

void *malloc_safe(int size) {

char *mem = malloc(size);

if (mem == NULL) {

fprintf(stderr, "malloc error\n");

exit(1);

394 Chapter 10



}

return mem;

}

void solve(int cap_nums[], int bottle_nums[], int n) {

int small_count, big_count, cap_num, i, result, matching_bottle;

int *small_caps = malloc_safe(n * sizeof(int));

int *small_bottles = malloc_safe(n * sizeof(int));

int *big_caps = malloc_safe(n * sizeof(int));

int *big_bottles = malloc_safe(n * sizeof(int));

if (n == 0)

return;

small_count = 0;

big_count = 0;

¶ cap_num = cap_nums[0];

· for (i = 0; i < n; i++) {

printf("0 %d %d\n", cap_num, bottle_nums[i]);

scanf("%d", &result);

¸ if (result == 0) {

printf("1 %d %d\n", cap_num, bottle_nums[i]);

matching_bottle = bottle_nums[i];

} else if (result == -1) {

big_bottles[big_count] = bottle_nums[i];

big_count++;

} else {

small_bottles[small_count] = bottle_nums[i];

small_count++;

}

}

small_count = 0;

big_count = 0;

¹ for (i = 0; i < n; i++) {

printf("0 %d %d\n", cap_nums[i], matching_bottle);

scanf("%d", &result);

if (result == -1) {

small_caps[small_count] = cap_nums[i];

small_count++;

} else if (result == 1) {

big_caps[big_count] = cap_nums[i];

big_count++;

}

}
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º solve(small_caps, small_bottles, small_count);

» solve(big_caps, big_bottles, big_count);

}

Listing 10-9: Solution 1

Prior to our code that implements our five steps, we have some malloc

calls. We need those so that we have memory for the piles of caps and bot-
tles that we’ll form.

For Step 1, we must choose a cap. We can make that easy if we just choose
the first cap. Yeah, let’s just do that ¶ and move on. Nothing to see here.

For Step 2, we use a for loop to go through all of the bottles ·. For each
cap, there are three possibilities for the if statement inside this loop. In the
first, we find a match ¸, so we tell the judge about the match and remember
the matching bottle for later. In the second, the cap is too small for the bot-
tle, so we throw the bottle into the pile of big bottles. In the third, the cap is
too big for the bottle, so we throw the bottle into the pile of small bottles.

Step 3 is similar to Step 2, but this time we go through all of the caps ¹
rather than all of the bottles. If the cap is too small for the bottle, we throw
the cap into the pile of small caps. If the cap is too big for the bottle, we
throw the cap into the pile of big caps. Be careful not to mix these up! It’s
easy to mess up a -1 or a 1 and throw caps or bottles in the wrong piles.

For Step 4, we solve the “small caps and small bottles” subproblem with
a recursive call º.

And finally, for Step 5, we solve the “big caps and big bottles” subprob-
lem through another recursive call ».

And that’s it! Get the small stuff in one subproblem, get the big stuff in
another subproblem, and solve both subproblems recursively. Pretty slick,
right? . . . Right?

Unfortunately it isn’t quite slick enough. If you submit our code to the
judge, you will find that it times out before passing all test cases.

We are very close to nailing this problem, though. All we need to add is
randomization. Why is our current solution not quite there? And how will
randomization fix it? Those answers are next.

Solution 2: Adding Randomization
Before we see how to add randomization, let’s understand exactly the kind
of test case that defeats Solution 1.

Why Solution 1 Is Slow
Each call of our solve function operates on some caps and some bottles. Our
choice of cap splits the caps and bottles into two groups: the group with the
small caps and bottles and the group with the big caps and bottles. No mat-
ter which cap we choose, we get this correct behavior.

That said, the cap we choose does have a major impact on the number
of queries that we’ll need to solve the problem. The algorithm that we used
to solve the subtask (Listing 10-7) was an O(n2) algorithm, and it was too
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slow. So to offer an explanation for why Solution 1 is too slow, what we can
do is demonstrate that it, too, has test cases on which it takes O(n2) time.

The test case we’ll use may intuitively feel like it should be an easy one.
But that intuition is wrong.

As always for this problem, we’ll have n caps and n bottles. The sizes
of the caps will increase from Cap 1 to Cap n. For example, we can say that
Cap 1 has size 1, Cap 2 has size 2, Cap 3 has size 3, and so on. Let’s do sim-
ilarly for the bottles: Bottle 1 has size 1, Bottle 2 has size 2, Bottle 3 has
size 3, and so on.

Now, what will our Solution 1 algorithm do? On the first call of solve, it
will choose Cap 1 on which to split the caps and bottles. It’ll loop through
the caps, which costs n queries, and then it’ll loop through the bottles, which
costs another n queries. So that’s 2n queries so far. And what of our sub-
problems? Do they have similar sizes or are they very lopsided?

They are lopsided! There are no caps or bottles that are smaller than
the chosen cap. So the “smaller caps and bottles” subproblem is empty. The
“bigger caps and bottles” subproblem, then, has everything—all remaining
n – 1 caps and bottles.

What happens on that subproblem with n – 1 caps and bottles? Again,
we’re going to pick the first cap, which is Cap 2 this time. We’ll make n – 1
queries as we make our way through the first for loop and then another
n – 1 queries as we make our way through the second loop. That’s 2(n – 1)
queries for this subproblem. And, again, the two subproblems stemming
from this one are as lopsided as can be: an empty subproblem and a sub-
problem with n – 2 caps and bottles.

The situation here is very similar to the one on page 307 that clobbered
us when we were solving Building Treaps. In each case, we were hoping for a
nice, even split of our problem into two subproblems. When we don’t get
that, we end up doing a quadratic amount of work. Here, we’ll make 2n
queries, then 2(n – 1) queries, then 2(n – 2) queries, and so on. The total
number of queries we’ll make is 2(1 + 2 + 3 + . . . + n), which is O(n2).

Darn! All of that fancy splitting and recursing, and yet we’re still stuck
at O(n2).

What We Will Randomize
In Solution 1, we chose the first cap and split our problem around it. That
first cap determines what counts as “small” and “big.” As we just saw, if that
cap does a poor job of splitting, then our algorithm can be quadratic.

You might wonder whether we can avoid that poor behavior by making
a “smarter” choice of cap. Maybe we should have chosen the rightmost cap?
Unfortunately not: the test case from the prior subsection would wreck that,
too. Maybe we should have chosen the cap in the middle? Sure, but then
someone could craft a test case where the middle caps are always the small-
est caps. Then we’d be back to quadratic land again.

The best thing to do here is to choose our caps randomly! Each time
we need a cap, we’ll call rand to get it. If we do that, no test case can reliably
cause poor performance because on each run we’ll make different choices
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for how the algorithm executes. This converts our deterministic algorithm
into a Las Vegas algorithm.

Contrast this use of randomization with the kind of randomization that
we used when solving Yokan. In Yokan, the randomization determined
whether we got the right answer. In Caps and Bottles, we always get the
right answer; the randomization determines how fast we get it.

Adding the Randomization
We need just two changes to Solution 1. First, we need to add the call of
srand to the main function in Listing 10-8, just as we did when solving Yokan.

Second, we need to choose a random cap in Listing 10-9. Rather than
choosing the first cap:

cap_num = cap_nums[0];

we choose a random one:

cap_num = cap_nums[rand() % n];

If you make those two changes and submit the updated code to the
judge, you should find that it passes all test cases. Randomization has done
it again!

Believe it or not, in solving this problem we’ve also managed to secretly
learn one of the most famous algorithms in computer science. Let’s go
there next.

Quicksort
The key idea in our solution to Caps and Bottles is to choose a cap and then
use that cap to split the problem into two subproblems: one subproblem
with the small stuff and the other with the big stuff. This idea most famously
powers a sorting algorithm called Quicksort.

Implementing Quicksort
Quicksort is one of many algorithms that can be used to sort an array; in
practice, it’s one of the . . . quickest. In Caps and Bottles, the item that’s used
to split the problem is a cap; in Quicksort, the value that’s used to split the
array is called the pivot.

The code for Quicksort is similar to the code we used to solve Caps and
Bottles. Check it out in Listing 10-10.

#define N 10

void *malloc_safe(int size) {

char *mem = malloc(size);

if (mem == NULL) {

fprintf(stderr, "malloc error\n");

exit(1);

398 Chapter 10



}

return mem;

}

void swap(int *x, int *y) {

int temp = *x;

*x = *y;

*y = temp;

}

void quicksort(int values[], int n) {

int i, small_count, big_count, pivot_index, pivot;

int *small_values = malloc_safe(n * sizeof(int));

int *big_values = malloc_safe(n * sizeof(int));

if (n == 0)

return;

small_count = 0;

big_count = 0;

¶ pivot_index = rand() % n;

· swap(&values[0], &values[pivot_index]);

pivot = values[0];

¸ for (i = 1; i < n; i++) {

if (values[i] > pivot) {

big_values[big_count] = values[i];

big_count++;

} else {

small_values[small_count] = values[i];

small_count++;

}

}

quicksort(small_values, small_count);

quicksort(big_values, big_count);

¹ for (i = 0; i < small_count; i++)

values[i] = small_values[i];

º values[small_count] = pivot;

» for (i = 0; i < big_count; i++)

values[small_count + 1 + i] = big_values[i];

}

int main(void) {

static int values[N] = {96, 61, 36, 74, 45, 60, 47, 6, 95, 93};

int i;
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srand((unsigned) time(NULL));

quicksort(values, N);

for (i = 0; i < N; i++)

printf("%d ", values[i]);

printf("\n");

return 0;

}

Listing 10-10: Quicksort

We choose a random pivot index ¶ and move the pivot to the left end of
the array ·. We want the pivot out of the way like that so that we don’t lose
track of it—we’ll need to put it in the correct place later.

Next, we go through all of the other values in the array ¸, adding each
to big_values or small_values as appropriate. Once that’s done, we make our
two recursive calls to sort the small values and sort the big values.

What we want to do next is paste everything together: first the small
values, then the pivot, then the big values. We copy the small values to the
beginning of the values array ¹, then copy the pivot º, then copy the big
values ».

Next, we’ll see why our solution to Caps and Bottles is so fast. While
we’ll couch our discussion in terms of Caps and Bottles, what we learn
about its runtime directly applies to the runtime of Quicksort as well.

Worst-Case and Expected Runtime
Our solution to Caps and Bottles is a Las Vegas algorithm. The runtime
depends on how well each of our randomly chosen caps splits the problem
into the two subproblems. If we choose terrible cap after terrible cap, we get
O(n2) runtime. But that’s the worst-case behavior; the whole reason we in-
troduced randomization was to make it extremely unlikely that this would
actually happen. Rather than focusing on the worst-case runtime of such an
algorithm, then, algorithm designers tend to focus on the expected runtime,
which tells us what we can expect to happen in practice.

What can we expect in practice for our randomized solution to Caps
and Bottles? We already know what happens if we’re shockingly unlucky:
we get O(n2) performance. What happens if we’re shockingly lucky, picking
caps that perfectly split each problem in half?

To begin, we’ll choose our cap and make our 2n queries, as we always
do. If that cap perfectly splits the problem in half, then we’ll need to work
on two subproblems each with n/2 caps and bottles. Each of those two sub-
problems will generate 2n/2 = n queries of their own before they in turn
recurse. So those two subproblems with n/2 caps and bottles will generate
2n queries, just like our original problem did.

Now, if each subproblem with n/2 caps and bottles is split perfectly,
then we get four problems of size n/4. Each of those four will generate
2n/4 = n/2 queries before they recurse, for a total of 2n queries.
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To summarize, we make 2n queries for our original problem of size n, 2n
queries in total for our subproblems of size n/2, 2n queries in total for our
subproblems of size n/4, and so on. We can only do this about logn times
before we reach base case subproblems. So, we do 2n queries a total of logn
times, for a total of O(n logn) queries.

Another way to see this O(n logn) bound is through a recursion tree. Such
a tree characterizes how much work is done in each call of a recursive func-
tion. When we have perfect splits all the way down, our recursion tree looks
like the one in Figure 10-1.

2n

2n/2 2n/2

2n/4 2n/4 2n/4 2n/4

2n/8 2n/8 2n/8 2n/8 2n/8 2n/8 2n/8 2n/8

Figure 10-1: A recursion tree with perfect splits

Notice that each node splits into two nodes below, representing the fact
that each problem splits into two. The quantity in each node indicates the
number of queries that are directly made to solve that subproblem. The
2n at the top, for example, means that the initial call makes 2n queries. It’s
not saying that the total number of queries made in the entire algorithm is
2n, only that the initial call makes 2n queries of its own prior to recursing.
Notice that each level in this tree—the node at the top, the two nodes be-
low that, and the four nodes below those—make a total of 2n queries. If we
drew the entire tree, it would have about logn levels in it. In all, then, we
have O(n logn) queries.

Now, O(n logn) is a wonderful thing, but all I’ve argued so far is that this
is what happens when the algorithm gets super lucky with perfect splits. The
algorithm is generally not going to get this lucky, though, just as it’s gener-
ally not going to get super unlucky with horrible cap choices.
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It turns out that the expected runtime is very close to what is predicted
by the super lucky case rather than the super unlucky case. For example,
let’s imagine that each time we choose a cap, one subproblem will end up
with 90 percent of the caps and bottles and the other subproblem will end
up with the remaining 10 percent of the caps and bottles. You might con-
sider that pretty unlucky. But even in this case, our algorithm is O(n logn)!
Our biggest subproblem would go from size n, to size n/(10/9), to size
n/(10/9)2, and so on. That is, rather than dividing by 2 each time, we’re di-
viding by 10/9. How many times do we need to do this to get down to a base
case? It’s still logarithmic! The base of the log changes—it goes from log2 to
log10/9—but it’s still log. Yes: even if we get this unlucky, we’re still not going

to hit O(n2).

Summary
When I teach randomization in my algorithms classes, I often have at least
a few flummoxed students. “Really, Dan? Picking random numbers? This
feels like the kind of thing I would have tried before learning about real algo-
rithms.” But as I hoped I’ve demonstrated in this chapter, randomization is
no rookie move. Compared to deterministic algorithms, randomized algo-
rithms can be faster and easier to design.

In Chapter 7, I gave this advice: if you see an opportunity to use binary
search to solve a problem, just do it. Who cares if there’s a slightly more ef-
ficient solution that doesn’t use binary search. I offer similar advice here:
if you see an opportunity to use randomization, and you can tolerate the
randomness in correctness or runtime, just do it. Who cares if there’s a de-
terministic algorithm: even if you can come up with one (which may not be
easy!), it’ll probably be slower in practice anyway.

Notes
Yokan is originally from the 2015 Don Mills Programming Gala program-
ming competition, Gold Division. Caps and Bottles is originally from the
2009 Canadian Computing Olympiad.

There’s a way to cut down the amount of memory needed by our solu-
tion to Caps and Bottles. It’s a neat trick that applies to implementations
of Quicksort as well. Check it out in “Caps and Bottles: In-Place Sorting” in
Appendix B.

For a deep dive into sorting algorithms, I recommend Compared to What?:
An Introduction to the Analysis of Algorithms by Gregory J.E. Rawlins (1991).
It’s an oldie but a goodie. There are many sorting algorithms: some of them
are slow, some of them are fast; some of them merge sorted pieces, some
of them split and sort the pieces. The book compares and contrasts many
sorting algorithms. This is also the book that originally introduced me to the
Caps and Bottles problem.

402 Chapter 10



AFTERWORD

I wrote this book to teach you how to
think about and design data structures and

algorithms. On our way, we studied many
durable ideas from computer science. Hash

tables free us from expensive linear searches. Trees
organize hierarchical data. Recursion solves problems
whose solutions involve solving subproblems. Memo-
ization and dynamic programming keep recursion
fast even when subproblems overlap. Graphs generalize what is represent-
able by trees. Breadth-first search and Dijkstra’s algorithm find shortest
paths in graphs; since graphs are so general, “paths” can mean many things.
Binary search turns a “solve this” problem into a “check this” problem. Heaps
make it fast to find minimum or maximum elements; segment trees do sim-
ilarly for other kinds of queries. Union-find speeds up graph problems that
maintain equivalent sets of nodes. Randomization makes it easier to design
fast algorithms and protects us from worst-case test cases. That’s quite the
list, and I hope you’re pleased with what you’ve learned. I also hope that I’ve
helped you dig into why these data structures and algorithms are useful, why
they work so well, and what we can learn from their design.



I wrote this book to motivate you to think about and design data struc-
tures and algorithms. I used programming problems that I hope you found
intriguing (so that you’d want to solve them) and challenging (so that you’d
have to learn how to solve them). Perhaps you’re motivated by the problems
themselves. Perhaps you’re motivated by the ways that computer scientists
pose and solve problems. Perhaps you’re itching to solve problems that are
personally meaningful to you. Whatever the case, I hope that I’ve helped
you develop your skills and motivation to pursue what matters.

One nice thing about programming problems like those in this book is
that they wait patiently for us to solve them. They don’t change. They don’t
adapt—but we do. When we’re stuck on a problem, we can go away, learn
new things, and come back to try again. Real-world problems certainly aren’t
going to present to us their precise inputs and outputs. Some of their fea-
tures may change over time. It’s up to us to find out in what ways these prob-
lems wait patiently, too.

I wrote this book to teach. Thank you for trusting me and making time
to read through what I had to say.
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A
ALGORITHM RUNT IME

Each competitive programming problem
that we solve in this book specifies a time

limit on how long our program will be al-
lowed to run. If our program exceeds the time

limit, then the judge terminates our program with a
“Time-Limit Exceeded” error. A time limit is designed
to prevent algorithmically naive solutions from passing
the test cases. The problem author has some model
solutions in mind and sets the time limit as an arbiter
of whether we have demonstrated those solution ideas.
As such, in addition to being correct, we need our pro-
grams to be fast.

The Case for Timing . . . and Something Else

Most books on algorithms do not use time limits when discussing runtime.
Time limits and execution times do, however, appear frequently in this book.
The primary reason is that such times can give us intuitive understanding of
the efficiency of our programs. We can run a program and measure how



long it takes. If our program is too slow, according to the time limit for the
problem, then we know that we need to optimize the current code or find
a wholly new approach. We don’t know what kind of computer the judge is
using, but running the program on our own computer is still informative.
Say that we run our program on our laptop and it takes 30 seconds on some
small test case. If the problem time limit is three seconds, we can be confi-
dent that our program is simply not fast enough.

An exclusive focus on execution times, however, is limiting. Here are
five reasons why:

Execution time depends on the computer. As just suggested, timing
our program tells us only how long our program takes on one com-
puter. That’s very specific information, and it gives us little in the way of
understanding what to expect when it is run on other computers. When
working through the book, you may also notice that the time taken by a
program varies from run to run, even on the same computer. For ex-
ample, you might run a program on a test case and find that it takes
3 seconds; you might then run it again, on the same test case, and find
that it takes 2.5 seconds or 3.5 seconds. The reason for this difference
is that your operating system is managing your computing resources,
shunting them around to different tasks as needed. The decisions that
your operating system makes influence the runtime of your program.

Execution time depends on the test case. Timing our program on
a test case tells us only how long our program takes on that test case.
Suppose that our program takes one second to run on a small test case.
That may seem fast, but here’s the truth about small test cases: every
reasonable solution for a problem will be able to solve those. If I ask you
to sort a few numbers, or optimally schedule a few events, or whatever,
you can quickly do it with the first correct idea that you have. What’s
interesting, then, are large test cases. They are the ones where algorith-
mic ingenuity pays off. How long will our program take on a large test
case or on a huge test case? We don’t know. We’d have to run our pro-
gram on those test cases, too. Even if we did that, there could be specific
kinds of test cases that trigger poorer performance. We may be led to
believe that our program is faster than it is.

The program requires implementation. We can’t time something
that we don’t implement. Suppose that we’re thinking about a prob-
lem and come up with an idea for how to solve it. Is it fast? Although
we could implement it to find out, it would be nice to know, in advance,
whether or not the idea is likely to lead to a fast program. You would not
implement a program that you knew, at the outset, would be incorrect.
It would similarly be nice to know, at the outset, that a program would
be too slow.

Timing doesn’t explain slowness. If we find that our program is too
slow, then our next task is to design a faster one. However, simply tim-
ing a program gives us no insight into why our program is slow. It just
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is. Further, if we manage to think up a possible improvement to our pro-
gram, we’d need to implement it to see whether or not it helps.

Execution time is not easily communicated. For many of the reasons
above, it’s difficult to use execution time to talk to other people about
the efficiency of algorithms. “My program takes two seconds to run on
this computer that I bought last year, on a test case with eight chickens
and four eggs, using a program that I wrote in C. How about yours?”

Not to worry: computer scientists have devised a notation that addresses
these shortcomings of timing. It’s independent of the computer, indepen-
dent of test case, and independent of a particular implementation. It signals
why a slow program is slow. It’s easily communicated. It’s called big O, and
it’s coming right up.

Big O Notation
Big O is a notation that computer scientists use to concisely describe the ef-
ficiency of algorithms. It assigns each algorithm to one of a small number
of efficiency classes. An efficiency class tells you how fast an algorithm is or,
equivalently, how much work it does. The faster an algorithm, the less work
it does; the slower an algorithm, the more work it does. Each algorithm be-
longs to an efficiency class; the efficiency class tells you how much work that
algorithm does relative to the amount of input that it must process. To un-
derstand big O, we need to understand these efficiency classes. I’ll intro-
duce three of them here: linear time, constant time, and quadratic time.

Linear Time
Suppose that we are provided an array of integers in increasing order, and
we want to return its maximum integer. For example, given the array

[1, 3, 8, 10, 21]

we want to return 21.
One way to do this is to keep track of the maximum value that we have

found so far. Whenever we find a larger value than the maximum, we up-
date the maximum. Listing A-1 implements this idea.

int find_max(int nums[], int n) {

int i, max;

max = nums[0];

for (i = 0; i < n; i++)

if (nums[i] > max)

max = nums[i];

return max;

}

Listing A-1: Finding the maximum in an array of increasing integers
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The code sets max to the value at index 0 of nums, and then loops through
the array, looking for larger values. Don’t worry that the first iteration of the
loop compares max to itself: that’s just one iteration of unnecessary work.

Rather than timing specific test cases, let’s think about the amount of
work that this algorithm does as a function of the size of the array. Sup-
pose that the array has five elements. What does our program do? It per-
forms one variable assignment above the loop, then iterates five times in the
loop, and then returns the result. If the array has 10 elements, then our pro-
gram does similarly, except now it iterates 10 times in the loop rather than
5. What about a million elements? Our program iterates a million times.
Now we see that the assignment above the loop and return below the loop
pale in comparison to the amount of work done by the loop. What matters,
especially as the test case gets large, is the number of iterations of the loop.

If our array has n elements, then the loop iterates n times. In big O
notation, we say that this algorithm is O(n). Interpret this as follows: for an
array of n elements, the algorithm does work proportional to n. An O(n) al-
gorithm is called a linear-time algorithm because there is a linear relationship
between the problem size and the amount of work done. If we double the
problem size, then we double the work done and thereby double the run-
time. For example, if it takes one second to run on an array with two million
elements, we can expect it to take about two seconds to run on an array of
four million elements.

Notice that we didn’t have to run the code to arrive at this insight. We
didn’t even have to write the code out. (Well . . . yeah, I did write the code,
but that was just to make the algorithm clear.) Saying that an algorithm is
O(n) offers us the fundamental relationship between the problem size and
the growth in runtime. It’s true no matter what computer we use or which
test case we look at.

Constant Time
We know something about our arrays that we didn’t exploit yet: that the in-
tegers are in increasing order. The biggest integer will therefore be found
at the end of the array. Let’s just return that directly, rather than eventually
finding it through an exhaustive search of the array. Listing A-2 presents this
new idea.

int find_max(int nums[], int n) {

return nums[n - 1];

}

Listing A-2: Finding the maximum in an array of increasing integers

How much work does this algorithm do as a function of the size of the
array? Interestingly, array size no longer matters! The algorithm accesses
and returns nums[n - 1], the final element of the array, no matter if it has 5
elements or 10 or a million. The algorithm doesn’t care. In big O notation,
we say that this algorithm is O(1). It’s called a constant-time algorithm because
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the amount of work it does is constant, not increasing as the problem size
increases.

This is the best kind of algorithm. No matter how large our array, we
can expect about the same runtime. It’s surely better than a linear-time al-
gorithm, which gets slower as the problem size increases. Not many inter-
esting problems can be solved by constant-time algorithms, though. For
example, if we were given the array in arbitrary order, rather than increasing
order, then constant-time algorithms are out. There’s no way we could look
at a fixed number of array elements and hope to be guaranteed to find the
maximum.

Another Example
Consider the algorithm in Listing A-3: is it O(n) or O(1) or something else?
(Notice that I’ve left out the function and variable definitions so that we’re
not tempted to compile and run this.)

total = 0;

for (i = 0; i < n; i++)

total = total + nums[i];

for (i = 0; i < n; i++)

total = total + nums[i];

Listing A-3: What kind of algorithm is this?

Suppose that array nums has n elements. The first loop iterates n times,
and the second loop iterates n times. That’s 2n iterations in total. As a first
attempt, it’s natural to say that this algorithm is O(2n). While saying that is
technically true, computer scientists would ignore the 2, simply writing O(n).

This may seem weird, since this algorithm is twice as slow as the one in
Listing A-1, yet we declare both to be O(n). The reason comes down to a bal-
ancing act between simplicity and expressiveness of our notation. If we kept
the 2, then we’d perhaps be more accurate, but we’d obscure the fact that
this is a linear-time algorithm. Whether it’s 2n or 3n or anything times n, it’s
fundamental linear runtime growth does not change.

Quadratic Time
We have now seen linear-time algorithms (which are very fast in practice)
and constant-time algorithms (which are even faster than linear-time algo-
rithms). Now let’s look at something slower than linear time. The code is in
Listing A-4.

total = 0;

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

total = total + nums[j];

Listing A-4: A quadratic-time algorithm
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Compared to Listing A-3, notice that the loops are now nested rather
than sequential. Each iteration of the outer loop causes n iterations of the
inner loop. The outer loop iterates n times. Therefore, the total number of
iterations for the inner loop, and the number of times that we update total,
is n2. (The first iteration of the outer loop costs n work, the second costs n
work, the third costs n work, and so on. The total is n + n + n + . . . + n, where
the number of times we add n is n.)

In big O notation, we say that this algorithm is O(n2). It’s called a
quadratic-time algorithm because quadratic is the mathematical term referring
to a power of 2.

Let’s now probe why quadratic-time algorithms are slower than linear-
time algorithms. Suppose that we have a quadratic-time algorithm that takes
n2 steps. On a problem size of 5, it would take 52 = 25 steps; on a problem
size of 10, it would take 102 = 100 steps; and on a problem size of 20, it would
take 202 = 400 steps. Notice what’s happening when we double the problem
size: the work done quadruples. That’s far worse than linear-time algorithms,
where doubling the problem size leads to only a doubling of work done.

Don’t be surprised that an algorithm that takes 2n2 steps, 3n2 steps, and
so on is also classified as a quadratic-time algorithm. The big O notation
hides what’s in front of the n2 term, just as it hides what’s in front of the
n term in a linear-time algorithm.

What if we have an algorithm that we find takes 2n2 + 6n steps? This,
too, is a quadratic-time algorithm. We’re taking a quadratic runtime of 2n2

and adding a linear runtime of 6n to it. The result is still a quadratic-time
algorithm: the quadrupling behavior of the quadratic part quickly comes to
dominate the doubling behavior of the linear part.

Big O in This Book
There’s much more that can be said about big O. It has a formal mathemat-
ical basis used by computer scientists to rigorously analyze the runtime of
their algorithms. There are other efficiency classes besides the three that
I’ve introduced here (and I’ll introduce the few others that appear in this
book as needed). There is certainly more to learn if you are interested in go-
ing further, but what I’ve presented here is enough for our purposes.

Big O generally arises in this book on an as-needed basis. We may pur-
sue an initial solution for a problem, only to find that we get a “Time-Limit
Exceeded” error from the judge. In those cases, we need to understand
where we went wrong, and the first step in such an analysis is to appreciate
the way that our runtime grows as a function of problem size. A big O analy-
sis not only confirms that slow code is slow, but it often uncovers the partic-
ular bottlenecks in our code. We can then use that enhanced understanding
to design a more efficient solution.
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B
BECAUSE I CAN’T RES IST

In this appendix, I include additional
material related to some of the problems

studied in this book. I consider this appendix
as optional: it doesn’t concern material that I

think is core to the goal of learning about data struc-
tures and algorithms. However, if you’re keen to learn
more about a problem, this appendix is for you.

Unique Snowflakes: Implicit Linked Lists

It’s often the case that at compile time we don’t know how much memory
our program will need. If you’ve ever asked, “How big should I make this
array?” or “Will this array be big enough?” then you’ve experienced first-
hand the inflexibility of C arrays: we have to choose an array size, but we
might not know the size we need until the array starts filling up. In many
such cases, linked lists neatly solve the problem. Whenever we require new
memory to store some data, we just call malloc at runtime to add a node to a
linked list.

In the first problem in Chapter 1, Unique Snowflakes, we used linked
lists to chain together the snowflakes that reside in the same bucket. For
every snowflake that we read in, we used malloc to allocate memory for



exactly one snowflake. If we read 5,000 snowflakes, we’ll have made 5,000
malloc calls. The time taken by these malloc calls can add up.

Wait! We just said that linked lists are useful when we don’t know how
much memory we might need. In Unique Snowflakes, we do know! Or, at
least, we know the maximum that we’ll need: it’s whatever is required to store
at most 100,000 snowflakes.

That raises questions. Why are we using malloc, anyway? Is there a way to
avoid using malloc and linked lists? Indeed, we can solve Unique Snowflakes
in a way that doesn’t use malloc and leads to a doubling of speed. How?

The key idea is to preallocate an array of the maximum number of nodes
(100,000) that we might use. The array is called nodes, and it stores the nodes
from all of the (now-implicit) linked lists. Each element of nodes is an integer
giving the index of the next node in its list of nodes. Let’s get a handle on
this by deciphering a sample nodes array:

[-1, 0, -1, 1, 2, 4, 5]

Suppose we know that one of the lists starts at index 6. The value of in-
dex 6, 5, tells us that index 5 is the next node in the list. Similarly, index 5

tells us that index 4 is the next node in the list. Index 4 tells us that index 2

is the next node in the list. What about index 2, with the value of -1? We’ll
use -1 as our NULL value: it indicates that there’s no “next” element. We have
discovered the list of indices 6, 5, 4, and 2.

There’s one more nonempty list in that array. Suppose we know this
list starts at index 3. Index 3 tells us that index 1 is the next node in the list.
Index 1 tells us that index 0 is the next node in the list. That’s all then—
index 0 is a -1, so the list is over. We have discovered the list of indices 3, 1,
and 0.

That’s the nodes array. If some index has a value of -1, then it’s the end
of a list. Otherwise, it gives the index of the next element in the list.

Notice that nodes doesn’t tell us anything about where the lists start. We
had to assume that we somehow knew that the list heads were at indices 6
and 3. How could we have known that? By using another array, heads, that
gives the index of the first node in a list. heads uses -1 for the value of any
element that does not start a list.

Our malloc-less solution uses a total of three arrays in the main function:
snowflakes, nodes, and heads. The snowflakes array stores the actual snowflakes
so that we can look up a snowflake according to the indices in nodes and
heads. Here are the three arrays:

static int snowflakes[SIZE][6];

static int heads[SIZE];

static int nodes[SIZE];

Only two of our functions must be adjusted to move from linked lists
to the implicit lists that we use here: identify_identical and main. These ad-
justments are about syntax, not substance: identify_identical still performs
pairwise comparisons of all snowflakes in a list, and main still reads in the
snowflakes and builds the lists.
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The new identify_identical is in Listing B-1—compare this to what we
had before in Listing 1-12!

void identify_identical(int snowflakes[][6], int heads[],

int nodes[]) {

int i, node1, node2;

for (i = 0; i < SIZE; i++) {

node1 = heads[i];

while (node1 != -1) {

¶ node2 = nodes[node1];

while (node2 != -1) {

if (are_identical(snowflakes[node1], snowflakes[node2])) {

printf("Twin snowflakes found.\n");

return;

}

· node2 = nodes[node2];

}

¸ node1 = nodes[node1];

}

}

printf("No two snowflakes are alike.\n");

}

Listing B-1: Identifying identical snowflakes in implicit linked lists

Inside the for loop, node1 is set to the head of the current list. If this list
is empty, then the outer while loop won’t run at all for this node. If it isn’t
empty, then, by using the nodes array, node2 is set to the node after node1 ¶.
Rather than linked-list code like node2 = node2->next, we again use the nodes

array to find the next node · ¸.
The new main function is given in Listing B-2.

int main(void) {

static int snowflakes[SIZE][6];

static int heads[SIZE];

static int nodes[SIZE];

int n;

int i, j, snowflake_code;

for (i = 0; i < SIZE; i++) {

heads[i] = -1;

nodes[i] = -1;

}

scanf("%d", &n);

for (i = 0; i < n; i++) {

for (j = 0; j < 6; j++)

scanf("%d", &snowflakes[i][j]);

snowflake_code = code(snowflakes[i]);

¶ nodes[i] = heads[snowflake_code];

· heads[snowflake_code] = i;
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}

identify_identical(snowflakes, heads, nodes);

return 0;

}

Listing B-2: The main function for implicit linked lists

Suppose we have just read a snowflake and we have stored it in row i of
snowflakes. We want this snowflake to become the head of its list. To accom-
plish this, we store the old list head at nodes[i] ¶, and then we set the head
of the list to be snowflake i ·.

Take some time to compare this solution to our linked-list solution.
Which do you prefer? Is the malloc-less solution harder or easier for you to
understand? Submit both to the judge; is the speedup worth it?

Burger Fervor: Reconstructing a Solution
In Chapter 3, we solved three problems—Burger Fervor, Moneygrubbers,
and Hockey Rivalry—that involved minimizing or maximizing the value of a
solution. In Burger Fervor, we maximized Homer’s time spent eating bur-
gers; we gave an answer such as 2 2, meaning two burgers and two minutes
drinking beer. In Moneygrubbers, we minimized the amount of money re-
quired to purchase apples; we gave an answer such as Buy 3 for $3.00. In
Hockey Rivalry, we maximized the number of goals in rivalry games; we gave
an answer such as 20.

Notice, though, that what we are doing here is giving the value of an op-
timal solution. We are not giving the optimal solution itself. We are not indi-
cating which burgers to eat, or how to purchase the apples, or which games
are the rivalry games.

The vast majority of optimization problems in competitive program-
ming ask for the value of an optimal solution, which was the focus in
Chapters 3 and 4. However, we can, if we like, use memoization and dy-
namic programming to return an optimal solution itself.

Let’s see how this is done using Burger Fervor as an example. Given the
following test case:

4 9 15

let’s output not only the value of an optimal solution, but an optimal solu-
tion itself, like this:

2 2

Eat a 4-minute burger

Eat a 9-minute burger

The first line is what we had before; the other lines constitute an optimal
solution itself, proof that the 2 2 is indeed achievable.

Outputting an optimal solution like this is known as reconstructing or
recovering a solution. Both of these words suggest that we already have the
pieces that can be put together to produce the optimal solution. And that’s
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true: what we need is sitting right there in the memo or dp array. Here, let’s use
the dp array; the memo array could be used in precisely the same way.

We’re going to write the body for this function signature:

void reconstruct(int m, int n, int dp[], int minutes)

Recall that we have m-minute and n-minute burgers. The m and n parame-
ters are these values and come from the current test case. The dp parameter
is the array that is produced by the dynamic-programming algorithm in
Listing 3-8. Finally, the minutes parameter is the number of minutes spent
eating burgers. The function will print, one per line, the number of burgers
that should be eaten in an optimal solution.

What is the last burger that Homer should eat in an optimal solution?
If we were solving this problem from scratch, then we wouldn’t know this
answer. We’d have to see what happens if we choose an m-minute burger
to be last and also see what happens if we choose an n-minute burger to be
last. Indeed, that’s what we did when solving this problem in Chapter 3. Re-
member, though, that we now have the dp array at our disposal. That array is
going to tell us which of the two options is the best.

Here’s the key idea: take a look at dp[minutes - m] and dp[minutes - n].
Both of those values are available to us, because the dp array has already
been constructed. Whichever of these values is larger tells us what we should
use as the last burger. That is, if dp[minutes - m] is larger, then an m-minute
burger is last; if dp[minutes - n] is larger, then an n-minute burger is last. (If
dp[minutes - m] and dp[minutes - n] are equal, then you can choose arbitrarily
whether to make the last burger an m-minute or n-minute burger.)

This reasoning parallels that used in Listing 3-8 to build the dp array.
There, we chose the maximum of first and second; here, we reverse engineer
which of those choices the dynamic-programming algorithm made.

Once we have deduced the final burger, we remove the time taken to eat
that burger and then repeat the process. We keep going until we get down
to zero minutes, at which point our reconstruction is complete. Listing B-3
gives the code for the function.

void reconstruct(int m, int n, int dp[], int minutes) {

int first, second;

while (minutes > 0) {

first = -1;

second = -1;

if (minutes >= m)

first = dp[minutes - m];

if (minutes >= n)

second = dp[minutes - n];

if (first >= second) {

printf("Eat a %d-minute burger\n", m);

minutes = minutes - m;

} else {

printf("Eat a %d-minute burger\n", n);
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minutes = minutes - n;

}

}

}

Listing B-3: Reconstructing the solution

This function should be called in two places in Listing 3-8, once after
each printf call. The first is:

reconstruct(m, n, dp, t);

The second is:

reconstruct(m, n, dp, i);

I encourage you to reconstruct optimal solutions for the Moneygrub-
bers and Hockey Rivalry problems, following this same style.

Knight Chase: Encoding Moves
In the Knight Chase problem of Chapter 5, we designed a BFS algorithm to
find the number of moves needed for a knight to reach each square from its
starting point. The knight has eight possible moves, and we wrote each of
them out in our code (see Listing 5-1). For example, here’s what we did to
have the knight explore moving up one and right two:

add_position(from_row, from_col, from_row + 1, from_col + 2,

num_rows, num_cols, new_positions,

&num_new_positions, min_moves);

Here’s what we did for up one and left two:

add_position(from_row, from_col, from_row + 1, from_col - 2,

num_rows, num_cols, new_positions,

&num_new_positions, min_moves);

There is gross code duplication there: the only change is a plus sign to
a minus sign! In fact, all eight moves are encoded in a very similar way, just
messing around with some pluses and minuses and 1s and 2s. That kind of
thing is quite error-prone.

Fortunately, there is a neat technique to dodge this kind of code duplica-
tion. It applies to many problems where you’re asked to explore an implicit
graph of multiple dimensions (such as rows and columns).

Here are the knight’s eight possible moves, as presented in the problem
description in Chapter 5:

• Up 1, right 2

• Up 1, left 2

• Down 1, right 2
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• Down 1, left 2

• Up 2, right 1

• Up 2, left 1

• Down 2, right 1

• Down 2, left 1

Let’s first focus on the rows and write down how each move changes
the row number. The first move increases the row number by one, as does
the second move. The third and fourth moves, by contrast, reduce the row
number by one. The fifth and sixth moves increase the row number by two,
and the seventh and eighth moves reduce the row number by two. Here’s an
array of those numbers:

int row_dif[8] = {1, 1, -1, -1, 2, 2, -2, -2};

It’s called row_dif because it gives the difference in row numbers be-
tween the current row and the row after making a move.

Now let’s do the same thing for the columns. The first move increases
the column number by two, the second move decreases the column number
by two, and so on. As an array, the column differences are:

int col_dif[8] = {2, -2, 2, -2, 1, -1, 1, -1};

What’s useful about these two parallel arrays is that they characterize
the effect that each move has on the current row and column. The numbers
in row_dif[0] and col_dif[0] tell you that the first move increases the row by
one and increases the column by two, those in row_dif[1] and col_dif[1] tell
you that the second move increases the row by one and decreases the col-
umn by two, and so on.

Now, instead of typing out eight near-identical calls to add_position, we
can use a loop of eight iterations, typing out just one call to add_position in
there. Here’s how it’s done, using a new integer variable m to loop through
the moves:

for (m = 0; m < 8; m++)

add_position(from_row, from_col,

from_row + row_dif[m], from_col + col_dif[m],

num_rows, num_cols, new_positions,

&num_new_positions, min_moves);

That’s better! Update your Knight Chase code from Chapter 5 and give
it a go with the judge. You should still pass all of the test cases and your code
shouldn’t be noticeably faster or slower, but you’ve shaved off quite a bit of
repetitive code, and that’s a win.

We had only eight moves here, so we managed to survive Knight Chase
in Chapter 5 without using this encoding trick. However, if we had many
more moves than this, then pasting the call to add_position over and over sim-
ply wouldn’t be feasible. What we’ve seen here scales much more nicely.
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Dijkstra’s Algorithm: Using a Heap
In Chapter 6, we learned Dijkstra’s algorithm for finding shortest paths in
weighted graphs. The runtime of our Dijkstra implementation was O(n2),
where n is the number of nodes in the graph. Dijkstra’s algorithm spends a
lot of its time searching for minimums: on each iteration, it has to find the
node whose distance is minimum of all nodes that are not done.

Then, in Chapter 8, we learned about max-heaps and min-heaps. A max-
heap won’t help here—but a min-heap will, because its job is to quickly find
the minimum. We can therefore use a min-heap to speed up Dijkstra’s algo-
rithm. This is a match made in computer-science heaven.

The min-heap will hold all of the nodes that have been discovered and
that are not done. It might also hold some discovered nodes that are done.
That’s okay, though: as we did when solving the Supermarket Promotion
problem with heaps in Chapter 8, we’ll just ignore any done node that hap-
pens to come off the min-heap.

Mice Maze: Tracing with Heaps
Let’s enhance our solution to the Mice Maze problem from Chapter 6 to use
a min-heap. Here’s the graph that we used there (Figure 6-1):
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5
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2

8

21

In Chapter 6, we traced Dijkstra’s algorithm starting from Node 1. Let’s
do that again, this time using a min-heap. Each heap element will consist of
a node and a time necessary to reach that node. We’ll see that there can be
multiple occurrences of the same node on the heap. However, because it’s a
min-heap, we’ll be able to process each node using only its minimum time.

In each min-heap snapshot that follows, I’ve arranged the rows in the
same order as they’d be stored in the heap array.

We start with only Node 1 in the heap, with a time of 0. We have no
time information for other nodes. We therefore have this snapshot:
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Min-heap
node time

1 0

Rest of State
node done min_time

1 false 0
2 false
3 false
4 false
5 false

Extracting from the min-heap gives us its sole element, Node 1. We
then process Node 1 to update the shortest paths to Nodes 2, 3, 4, and 5 and
place these nodes on the min-heap. Here’s our state now:

Min-heap
node time

3 6
2 12
5 7
4 45

Rest of State
node done min_time

1 true 0
2 false 12
3 false 6
4 false 45
5 false 7

Node 3 is next out of the min-heap and gives us a shorter path to
Node 2. We therefore add another occurrence of Node 2 to the heap, this
one with a shorter path than before. Here’s what we’ve got now:

Min-heap
node time

5 7
2 8
4 45
2 12

Rest of State
node done min_time

1 true 0
2 false 8
3 true 6
4 false 45
5 false 7

Next out is Node 5. It doesn’t lead to any shortest-path updates, so noth-
ing new gets added to the heap. Here’s where we are:

Min-heap
node time

2 8
2 12
4 45

Rest of State
node done min_time

1 true 0
2 false 8
3 true 6
4 false 45
5 true 7
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Node 2 is next out of the min-heap—specifically the one with 8 time,
not the one with 12 time! It leads to an update of Node 4’s shortest path,
and consequently a new occurrence of Node 4 on the min-heap. Here’s
the result:

Min-heap
node time

2 12
4 45
4 17

Rest of State
node done min_time

1 true 0
2 true 8
3 true 6
4 false 17
5 true 7

The next node to come out of the min-heap is Node 2. Again! Node 2 is
already done, so we simply extract it from the heap and do nothing else. We
certainly don’t process this node again. Here’s what’s left:

Min-heap
cell time

4 17
4 45

Rest of State
node done min_time

1 true 0
2 true 8
3 true 6
4 false 17
5 true 7

The two occurrences of Node 4 will be extracted from the min-heap
in turn. The first Node 4 won’t lead to any shortest-path updates—all other
nodes are done—but will set Node 4 to done. The second Node 4 will there-
fore be skipped.

In most textbook heap-based implementations of Dijkstra’s algorithm,
it is assumed that there’s a way to decrease the shortest-path distance of a
node in a heap. That way, a node can be updated in the heap, and there’s
no need to have multiple occurrences of a node hanging around. The heaps
that we developed in Chapter 8, though, don’t support such a “decrease” op-
eration. Rest assured that what we’re doing here, with the insertions instead
of updates, has the same worst-case time complexity. Which is what, exactly?

Let’s use n to represent the number of nodes in the graph and m the
number of edges. We process each edge u → v at most once, when u is ex-
tracted from the heap. Each edge can lead to at most one insertion into
the heap, so we insert at most m elements. The biggest the heap could ever
get, then, is size m. We can only extract what’s been inserted, so there are at
most m extractions. That’s 2m heap operations in all, each of which takes at
most logm time. Therefore, we have an O(m logm) algorithm.

Compare this to the O(n2) implementation from Chapter 6. The heap-
based implementation is a clear win when the number of edges is small in
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relation to n2. For example, if there are n edges, then the heap-based imple-
mentation is O(n logn), which blows away the O(n2) runtime in Chapter 6. If
the number of edges is large, then it matters less which implementation we
use. For example, if there are n2 edges, then the heap-based implementation
is O(n2 logn), which is competitive with, but a little slower than, O(n2). If you
don’t know in advance whether your graph will have few or many edges, us-
ing a heap is a safe bet: the only cost is the extra logn factor on graphs with
many edges, but that’s a small price to pay in exchange for much better per-
formance on graphs with few edges.

Mice Maze: Implementation with Heaps
Now let’s solve Mice Maze using heaps. We use this struct for the heap
elements:

typedef struct heap_element {

int cell;

int time;

} heap_element;

I won’t replicate the min-heap insertion code (Listing 8-5) or extraction
code (Listing 8-6) here. The only change is to compare time rather than cost;
I’ll leave that to you.

The main function is the same as it was in Chapter 6 (Listing 6-1). All we
need is a replacement of find_time (Listing 6-2) to use a min-heap instead of
linear searches. That code is given in Listing B-4.

int find_time(edge *adj_list[], int num_cells,

int from_cell, int exit_cell) {

static int done[MAX_CELLS + 1];

static int min_times[MAX_CELLS + 1];

¶ static heap_element min_heap[MAX_CELLS * MAX_CELLS + 1];

int i;

int min_time, min_time_index, old_time;

edge *e;

int num_min_heap = 0;

for (i = 1; i <= num_cells; i++) {

done[i] = 0;

min_times[i] = -1;

}

min_times[from_cell] = 0;

min_heap_insert(min_heap, &num_min_heap, from_cell, 0);

· while (num_min_heap > 0) {

min_time_index = min_heap_extract(min_heap, &num_min_heap).cell;

if (done[min_time_index])

¸ continue;

min_time = min_times[min_time_index];
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done[min_time_index] = 1;

e = adj_list[min_time_index];

¹ while (e) {

old_time = min_times[e->to_cell];

if (old_time == -1 || old_time> min_time + e->length) {

min_times[e->to_cell] = min_time + e->length;

º min_heap_insert(min_heap, &num_min_heap,

e->to_cell, min_time + e->length);

}

e = e->next;

}

}

return min_times[exit_cell];

}

Listing B-4: Shortest path to exit using Dijkstra’s algorithm and heaps

Each cell can result in at most MAX_CELLS elements added to the min-heap,
and there are at most MAX_CELLS. We’re safe from overflowing the min-heap,
then, if we allocate space for MAX_CELLS * MAX_CELLS elements plus one, since
we index starting at 1 rather than 0 ¶.

The main while loop continues as long as there’s something in the min-
heap ·. If the node that we extract from the min-heap is already done, then
we don’t do anything on its iteration ¸. Otherwise, we process the out-
going edges as usual ¹, adding nodes to the min-heap when shorter paths
are found º.

Compressing Path Compression
In Chapter 9, you learned about path compression, an optimization to the
tree-based union-find data structure. We saw its code in the context of the
Social Network problem in Listing 9-8. Written like that, with the two while

loops, is not how you’ll see the code in practice.
I generally don’t like to dwell on opaque code—and I hope I haven’t pre-

sented you with any such code in the book—but I’ll make an exception here,
because you may at some point run into a particularly dense, one-line imple-
mentation of path compression. It’s presented in Listing B-5.

int find(int p, int parent[]) {

return p == parent[p] ? p : (parent[p] = find(parent[p], parent));

}

Listing B-5: Path compression in practice

I changed person to p to get the code on one line (since readability is al-
ready shot, why not?).

There’s a lot going on here: the ? : ternary if operator, using the result
of the = assignment operator, and even recursion. We’re going to unravel
this in three steps.
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Step 1: No More Ternary If
The ? : operator is a form of if–else that returns a value. Programmers use
it when they want to save space and jam an entire if statement on one line. A
quick example looks like this:

return x >= 10 ? "big" : "small";

If x is greater than or equal to 10, "big" is returned; otherwise, "small" is
returned.

The ? : operator is called a ternary operator because it takes three
operands: the first expression is the boolean expression whose truth we are
testing, the second expression is the result when the first expression is true,
and the third is the result when the first expression is false.

Let’s rewrite Listing B-5 to use a standard if...else statement rather
than the ternary if:

int find(int p, int parent[]) {

if (p == parent[p])

return p;

else

return parent[p] = find(parent[p], parent);

}

That’s a little better. Now we explicitly see that the code has two paths:
one if p is already the root and the other if p is not the root.

Step 2: Cleaner Assignment Operator
What do you think this code snippet does?

int x;

printf("%d\n", x = 5);

The answer is that it prints 5! You know that x = 5 assigns 5 to x, but it’s
also an expression whose value is 5. That’s right: = assigns a value, but it also
returns the value that it stored in the variable. It’s also why we can do

a = b = c = 5;

to assign the same value to multiple variables.
In the path-compression code, we have a return statement and an assign-

ment statement on the same line. That line both assigns a value to parent[p]

and returns that value. Let’s split those two actions out:

int find(int p, int parent[]) {

int community;

if (p == parent[p])

return p;

else {

community = find(parent[p], parent);

Because I Can’t Resist 423



parent[p] = community;

return community;

}

}

We’re explicitly finding the representative for p, assigning parent[p] to
that representative, and then returning the representative.

Step 3: Understand the Recursion
Now we have the recursion isolated on its own line:

community = find(parent[p], parent);

The find function performs path compression from its argument to the
root of the tree, and it returns the root of the tree. Therefore, this recursive
call performs path compression from p’s parent to the root of the tree, and it
returns the root of the tree. That handles all of the path compression except
for p itself. We need to set p’s parent to the root of the tree as well, which we
do with this:

parent[p] = community;

There we have it: proof that the one-line path-compression code really
does work!

Caps and Bottles: In-Place Sorting
In Chapter 10, we solved the Caps and Bottles problem using a famous “split-
ting” idea from Quicksort. If you look back at Listing 10-9, you’ll notice that
we’re allocating a lot of additional memory as our algorithm runs. Specifi-
cally, on each invocation of solve, we use malloc to allocate memory for four
arrays: the small caps, the small bottles, the big caps, and the big bottles.

It’s possible to avoid this use of additional memory and perform the
splitting directly in the cap_nums and bottle_nums arrays. This won’t decrease
the number of queries that we need to make, but it does decrease the mem-
ory that our program uses. It’s also a common optimization that people per-
form when implementing Quicksort.

To make this work, we need to keep track of the border between small
values and large values. We’ll maintain a variable called border to make this
happen. Once we finish going through all of the caps and bottles, that border
variable will tell us exactly where our problem is split in two; we need that in
order to make our recursive calls. See Listing B-6 for our new solution that
uses this idea.

#define MAX_N 10000

void swap(int *x, int *y) {

int temp = *x;
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*x = *y;

*y = temp;

}

int random_value(int left, int width) {

return (rand() % width) + left;

}

¶ void solve(int cap_nums[], int bottle_nums[], int left, int right) {

int border, cap_index, cap_num, i, result, matching_bottle;

if (right < left)

return;

border = left;

· cap_index = random_value(left, right - left + 1);

cap_num = cap_nums[cap_index];

i = left;

while (i < right) {

printf("0 %d %d\n", cap_num, bottle_nums[i]);

scanf("%d", &result);

¸ if (result == 0) {

swap(&bottle_nums[i], &bottle_nums[right]);

¹ } else if (result == 1) {

º swap(&bottle_nums[border], &bottle_nums[i]);

border++;

i++;

} else {

i++;

}

}

matching_bottle = bottle_nums[right];

» printf("1 %d %d\n", cap_num, matching_bottle);

border = left;

i = left;

while (i < right) {

printf("0 %d %d\n", cap_nums[i], matching_bottle);

scanf("%d", &result);

if (result == 0) {

swap(&cap_nums[i], &cap_nums[right]);

} else if (result == -1) {

swap(&cap_nums[border], &cap_nums[i]);

border++;

i++;
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} else {

i++;

}

}

¼ solve(cap_nums, bottle_nums, left, border - 1);

½ solve(cap_nums, bottle_nums, border, right - 1);

}

int main(void) {

int n, i;

int cap_nums[MAX_N], bottle_nums[MAX_N];

srand((unsigned) time(NULL));

scanf("%d", &n);

for (i = 0; i < n; i++) {

cap_nums[i] = i + 1;

bottle_nums[i] = i + 1;

}

solve(cap_nums, bottle_nums, 0, n - 1);

return 0;

}

Listing B-6: Solution with no extra memory allocation

Rather than an n parameter giving the number of caps and bottles, nowwe
need left and right parameters delimiting the operative part of the arrays¶.

Prior to the first while loop, we choose our random cap ·. The key in-
variant for the first while loop is that all bottles from left to border - 1 are
small bottles and all bottles from border to i - 1 are big bottles. The loop
will also eventually find the matching bottle; when it does, it puts that at the
right ¸. We’ll then be able to ignore that bottle in future recursive calls.

If we find that the cap is too big for the current bottle ¹, it means that
the current bottle is on the wrong side of border. After all, it’s a small bottle,
and small bottles have to go to the left of border. To fix it, we swap that small
bottle with the big bottle at bottle_nums[border] º, and then we increment
border to take into account that we now have one more small bottle to the left
of border.

When that while loop is done, we’ll have rearranged the bottles so the
small bottles are first and the big bottles follow. We’ll also have placed the
matching bottle at the right, so we tell the judge about that match now ».

The second while loop is nearly identical to the first, though this time it’s
splitting the caps rather than the bottles.

The final thing we need to do is make our two recursive calls. The first
one goes from left to border - 1 ¼—that’s all of the small caps and bottles.
The second one goes from border to right - 1 ½—that’s all of the big caps
and bottles. Be careful: we need right - 1 here, not right. The bottle and
cap at index right have already been matched and should therefore never
again be passed to a recursive call.
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IOI International Olympiad in Informatics
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SAPO South African Programming Olympiad



SWERC Southwestern Europe Regional Contest
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