SECOND EDITION

ALGORITHMIC
THINKING

LEARN ALGORITHMS TO
LEVEL UP YOUR CODING SHKILLS

DANIEL ZINGARO

no starch
press®

PRAISE FOR
ALGORITHMIC THINKING, 2ND EDITION

“Algorithmic Thinking will empower you—whether you're looking to get a leg up
on technical interviews, enter the world of competitive programming, or just
want to sharpen your skills.”

—JOSH LOSPINOSO, PHD, AUTHOR OF
C++ CRASH COURSE

“This book . . . is by far the quickest way to get hands-on experience with
algorithms, and is also a great supplement to more theoretical expositions.”

—RICHARD PENG, ASSOCIATE PROFESSOR
AT THE UNIVERSITY OF WATERLOO’S
CHERITON SCHOOL OF COMPUTER
SCIENCE

“Algorithmic Thinking provides the theoretical background and detailed
problem explanations required to stay ahead of our human and robotic
competitors.”

—DUNCAN SMITH, SENIOR SOFTWARE
ENGINEER AT MICROSOFT

“Not only does Algorithmic Thinking guide readers on how to approach
tackling problems, but Zingaro also helps them understand why these
approaches work.”

—SUSHANT SACHDEVA, PHD,
ALGORITHMS PROFESSOR AT
THE UNIVERSITY OF TORONTO

“The step-by-step solution explanations are so detailed, it feels like Zingaro
is directly teaching us, his readers. This second edition is a worthy update to
an already excellent text.”

—DR STEVEN HALIM, SENIOR
LECTURER AT NATIONAL
UNIVERSITY OF SINGAPORE

“Algorithmic Thinking discusses many interesting problems from programming
contests and presents useful techniques that are not often included in
algorithm textbooks.”

—ANTTI LAAKSONEN,
UNIVERSITY OF HELSINKI

ALGORITHMIC
THINKING

2ND EDITION

Learn Algorithma to Level up
Your Coding Skilla

by Daniel Zingaro

¢

no starch
press®

San Francisco

ALGORITHMIC THINKING, 2ND EDITION. Copyright © 2024 by Daniel Zingaro.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

First printing
27 26 25 24 23 12345

ISBN-13: 978-1-7185-0322-9 (print)
ISBN-13: 978-1-7185-0323-6 (ebook)

® Published by No Starch Press®, Inc.
245 8th Street, San Francisco, CA 94103
phone: +1.415.863.9900
www.nostarch.com; info@nostarch.com

Publisher: William Pollock

Managing Editor: Jill Franklin

Production Manager: Sabrina Plomitallo-Gonzalez
Production Editor: Sydney Cromwell

Developmental Editor: Alex Freed

Cover Illustrator: Rob Gale

Interior Design: Octopod Studios

Technical Reviewers: Naaz Sibia and Larry Yueli Zhang
Copyeditor: George Hale

Proofreader: Elizabeth Littrell

The Library of Congress has catalogued the first edition as follows:

Name: Zingaro, Daniel, author.
Title: Algorithmic thinking : a problem-based introduction / by Daniel Zingaro.
Includes bibliographical references and index.
Identifiers: LCCN 2020031510 (print) | LCCN 2020031511 (ebook) | ISBN 9781718500808 (paperback) |
ISBN 1718500807 (paperback) | ISBN 9781718500815 (ebook)
Subjects: LCSH: Computer algorithms--Problems, exercises, etc. | Computer programming--Problems, exercises, etc.
Classification: LCC QA76.9.A43 756 2020 (print) | LCC QA76.9.A43 (ebook) | DDC 005.13--dc23
LC record available at https://lccn.loc.gov/2020031510
LC ebook record available at https://lccn.loc.gov/2020031511

For customer service inquiries, please contact info@nostarch.com. For information on distribution, bulk sales,
corporate sales, or translations: sales@nostarch.com. For permission to translate this work: rights@nostarch.com.
To report counterfeit copies or piracy: counterfeit@nostarch.com.

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

To Doyali

About the Author

Dr. Daniel Zingaro is an associate teaching professor of computer science
and award-winning teacher at the University of Toronto. His main area of
research is computer science education, where he studies how students learn
computer science material.

About the Technical Reviewer

Naaz Sibia is an MSc student of computer science at the University of Toronto
with an interest in computer science education research and human com-
puter interaction (HCI). Her research focuses on identifying challenges
faced by students in computing and utilizing HCI principles to design in-
terventions that improve their learning experience.

About the First Edition Technical Reviewer

Larry Yueli Zhang is an assistant professor of computer science in the De-
partment of Electrical Engineering and Computer Science at York Univer-
sity’s Lassonde School of Engineering. His teaching and research span a
wide range of topics, including introductory programming, algorithms, data
structures, operating systems, computer networks, and social network anal-
ysis, all underscored by a passion for computing education. Larry holds a
PhD in computer science from the University of Toronto.

BRIEF CONTENTS

Foreword . ..o Xix
Acknowledgments xxi
INtrodUCHiON . . .o xxiii
Chapter T: Hash Tables 1
Chapter 2: Trees and Recursiont 37
Chapter 3: Memoization and Dynamic Programming............... il 77
Chapter 4: Advanced Memoization and Dynamic Programming 125
Chapter 5: Graphs and Breadth-First Search............. 151
Chapter 6: Shortest Paths in Weighted Graphs 197
Chapter 7: Binary Searcho 231
Chapter 8: Heaps and Segment Treesivinii i 277
Chapter 9: Union-Find ... 331
Chapter 10: Randomization e 375
AREIWOrd . o 403
Appendix A: Algorithm Runtime 405
Appendix B: Because | Can't Resist. ...t 411
Appendix C: Problem Creditso 427

CONTENTS IN DETAIL

FOREWORD xix
ACKNOWLEDGMENTS XXi
INTRODUCTION xxiii
What We'll Do . .o e e e e e xxiii
New to the Second Editionouiui i e XXV
Who This Book Is For ... oii e e XXV
Our Programming Language.oouein i e XXVi
Why Use €8 oottt XXVi
Static Keywordo XXVi
Include Files o e XXVii
Freeing Memoryt Xxvii
Topic Selechon e XXvii
Programming Judges.ouen i xxviii
Anatomy of a Problem Descriptioncouueuiiie i XXX
Starter Problem: Food Lines.o.iiueiii XXXi
The Problem . ..o XXXi
Solving the Problemo Xxxii
ONliNE RESOUICES . . . ettt e e XXXV
NOTES .ot eeeeeeee XXXIV
1
HASH TABLES 1
Problem 1: Unique Snowflakeso 1
The Problemo 2
Simplifying the Problem 4
Solving the Core Problemo i 5
Solution 1: Pairwise COMPAriSONSvuueuer ettt eeeeennenn. 8
Solution 2: Doing Less Work ..o oo 12
Hash Tableso 17
Hash Table Designouueu e 17
Why Use Hash Tables@ ... o 20
Problem 2: Login Mayhemo 20
The Problemo o 20
Solution 1: Looking at All Passwordsvuviieiniiniiii i, 21

Solution 2: Using a Hash Table ..., 23

Problem 3: Spelling Checko 29

The Problemo 29
Thinking About Hash Tables. ... 30
An Ad Hoc Solution . ..o oo 32
SUMMUAIY o ettt ettt et ettt e e e e e e et e et e 35
I 1P 35
2
TREES AND RECURSION 37
Problem 1: Halloween Haul e 37
The Problem o 38
Binary Trees . ..ottt 39
Solving the Sample Instanceooiin i 41
Representing Binary Trees. ... 41
Collecting All the Candyvvvie e 46
A Completely Different Solution. ..ot 51
Walking the Minimum Number of Streets ...t 56
Reading the INputo 59
Why Use RECUISIONEottt e et e ettt e e et aaeaas 65
Problem 2: Descendant Distancecuueeueun ettt 66
The Problem 66
Reading the Inputo 68
Number of Descendants from One Nodecoooiiiiiiiiii ... 72
Number of Descendants from All Nodes.............cooiiiiii .., 73
SOrting NOES . ..o v ettt 74
Outputting the Information 75
The main FUNCHONot 75
SUMMAIY ettt e e e e e 76
NOtES e e 76
3
MEMOIZATION AND DYNAMIC PROGRAMMING 77
Problem 1: Burger Fervor ..ot 78
The Problemo 78
Forming a Plan ... i 78
Characterizing Optimal Solutionsooviiit i 80
Solution T: RECUISIONttt 81
Solution 2: Memoizationuuuiiiii i 86
Solution 3: Dynamic Programming..........oviniiiininiiiiiiiinaanann., 91
Memoization and Dynamic Programmingovuiiiiiiiiniiniiiiienaennn, 94
Step 1: Structure of Optimal Solutions.......... .o, 95
Step 2: Recursive Solutionoouiin i 96
Step 3: Memoizationo vu i 96
Step 4: Dynamic Programmingo 97

Xii Contents in Detail

Problem 2: Moneygrubbers 98

The Problemo 98
Characterizing Optimal Solutionsoiii i 99
Solution T: RECUISION . .. c ettt 101
The main FUNCHON . .. c et e 105
Solution 2: Memoizationoouiiit 106
Problem 3: Hockey Rivalryooi 108
The Problemo 109
AboUt RIVAIFIES e e ettt 110
Characterizing Optimal Solutions . ..ot 111
Solution T: RECUISION ..o e ettt et 114
Solution 2: Memoizationuoutiii 117
Solution 3: Dynamic Programming...........c.veniiniiniiniiinainennn.. 119
A Space Optimizationouiuiiii e 122
SUMMAIY ettt ettt et e e ettt et e e e e e e e e e 123
NOTES .ttt e 123
4
ADVANCED MEMOIZATION AND DYNAMIC PROGRAMMING 125
Problem T: The JUmper. e 125
The Problem 126
Working Through an Example........ ... 127
Solution 1: Backward Formulationo 128
Solution 2: Forward Formulation......... oo 133
Problem 2: Ways to Buildo 137
The Problemo 138
Working Through an Example........ oo 139
Solution 1: Using “Exactly” Subproblems oo, 140
Solution 2: Adding More Subproblems...............coc il 144
SUMMGAIY ottt ettt et e e e ettt e e e e e e e e e 149
NOTES .ottt 149
5
GRAPHS AND BREADTH-FIRST SEARCH 151
Problem 1: Knight Chase.........cooiii e 151
The Problem 152
Moving Optimally. 153
Best Knight Outcomeounii it 163
The Knight Flip-Flop ..o oo 165
A Time Ophmizationt e 168
Graphs and BFS . ..o 169
What Are Graphs@. ... 169
Graphs vs. Trees. .. e ittt e 170
BFS on Graphs ..ot 172
Graphs vs. Dynamic Programming..........oouvuiiniiiinnininiieaann.n. 173

Contents in Detail

xiii

Problem 2: Rope Climbo o 173

The Problemo 173
Solution 1: Finding the Moves.......covuiiiiiii e 174
Solution 2: ARemodelo 179
Problem 3: Book Translation..........o.iiuun i 187
The Problem 187
Reading the Language Namesttt 188
Building the Graph 189
The BRS .ottt 192
The Total COst ..ttt e e 194
SUMMATY ettt et e et 195
N OTES ettt et e e 195
6
SHORTEST PATHS IN WEIGHTED GRAPHS 197
Problem 1: Mice Mazeinii i 198
The Problemo 198
Moving On from BESottt e e 199
Finding Shortest Paths in Weighted Graphscooiiiiiiat. 200
Building the Graphooo 203
Implementing Dijkstra’s Algorithm oo i 205
Two Optimizations 207
Dijkstra’s Algorithmo 210
Runtime of Dijkstra’s Algorithm, 210
Negative-Weight Edgesoouiiiiiiii i 211
Problem 2: Grandma Planner. oot 213
The Problem o 213
Adjacency Matrix ... oo et 214
Building the Graphoo i 215
Working Through a Weird Test Caseoovvuviniiiiiiniiiinen.n. 217
Task 1: Shortest Paths ..o e 219
Task 2: Number of Shortest Paths. ..., 222
SUMMAIY ettt e e e e e e e 228
NOtES ot e 229
7
BINARY SEARCH 231
Problem 1: Feeding Antsttt 231
The Problemo 232
A New Flavor of Tree Problem 233
Reading the Inputot 235
Testing Feasibility ... 237
Searching for a Solution ..o 239

xiv Contents in Detail

Binary Search 240

Runtime of Binary Searcho 241
Determining Feasibility i 242
Searching a Sorted Arrayot 242
Problem 2: River JUmp ..o oue i 243
The Problem 243
AGreedy Ideaot 244
Testing Feasibilityoo o 246
Searching for a Solutionot 250
Reading the INput . ..ottt 253
Problem 3: Living Qualityiii e 254
The Problem o 254
Sorting Every Rectangle.o 256
Using Binary Search. 259
Testing Feasibilityooii 260
A Quicker Way to Test Feasibility ..ot 261
Problem 4: Cave DOoors v. ettt e e 267
The Problemo 267
Solving a Subtasko 268
Using Linear Search 270
Using Binary Search.oooiuiii 272
SUMMATY ettt e ettt e 274
N OTES ettt e e 275
8
HEAPS AND SEGMENT TREES 277
Problem 1: Supermarket Promotion......o 277
The Problemo 277
Solution 1: Maximum and Minimum inan Arrayooveiiiienn.. 278
MOX-HEAPS - - e et 282
MINHEAPS .o e 293
SOlUHON 21 HEAPS .« ettt et 295
Heaps . . oot e 298
Two More Applicationsvuu it 298
Choosing a Data SIrUCIUIE ... v vttt 300
Problem 2: Building Treaps. . ..o vuvuee ettt 300
The Problem 300
Recursively Outputting Treaps « .. e v eene ittt 302
Sorting by Label 303
Solution T: RECUISION ... c vttt e 303
Range Maximum QUENIES eute et 307
SEgMENT TIEES . o .t ettt ettt 308
Solution 2: Segment Treescuueun ittt 316
SegMENT TIEES .\ttt et e 317

Contents in Detail

XV

Problem 3: TWo SUM ..ot 318

The Problem ..o 318
Filling the Segment Treeo.vuiriinii e 319
Querying the Segment Treeottt 323
Updating the Segment Treeiuiiti e 324
The Main FUNCHON . ..t 328
SUMMATY ettt et e e 329
7<) 1= O 329
9
UNION-FIND 331
Problem T: Social Networkt i 332
The Problem o 332
Modelingasa Graph ... 333
Solution T: BFS .t 336
UnionFind ..o 340
Solution 2: UnionFind 343
Optimization T: Union by Size ..o 346
Optimization 2: Path Compressionovuviiiiiiiiiiiiiiiaann.n. 350
Union-Find ..o 352
Relationships: Three Requirementscoviiiiiiiiiniiiineinen.. 353
Choosing Union-Findo 353
OpHMIZAONS ..o e 353
Problem 2: Friends and Enemiesooitit it 354
The Problem o 354
Augmenting Union-Find i 355
The Main FUNCHON . ..o e e 359
Find and Union ..o 360
SetFriends and SetEnemies ...t 361
AreFriends and AreEnemies ...ttt 363
Problem 3: Drawer Choreo.ii e 364
The Problem ..o 364
Equivalent Drawers.oou et 365
The Main FUNCHON . ..o e e 370
Findand Union e 372
SUMMUGIY .« o ettt ettt e e et ettt e e e e 373
I oY =Y 373
10
RANDOMIZATION 375
Problem T: Yokan 376
The Problem ..o 376
Randomly Choosing a Piececoouiuiiiiii i, 376

xvi Contents in Detail

Generating Random Numberso 378

Determining Number of Pieces ..., 379
Guessing Flavors.t 381
How Many Attempts Do We Need? ...t 384
Filling the Flavor Arrays.vui et 385
The main FUNCHONttt 386
RANAOMIZAHON « . e .ttt et 387
Monte Carlo Algorithms ... 387
Las Vegas Algorithmsoon o 388
Deterministic vs. Randomized Algorithms, 389
Problem 2: Caps and Bottlesoiuiiniii 390
The Problem o 390
Solving a Subtask 391
Solution T: RECUISION . ..ottt 393
Solution 2: Adding Randomizationcoooiiiiiiiiiiiiii 396
QUICKSOTT . . e e 398
Implementing Quicksort.t 398
Worst-Case and Expected Runtime.............oooiiiiiiiiiiiiiiii .. 400
SUMMAIY .« 402
NOTES oo 402
AFTERWORD 403
A
ALGORITHM RUNTIME 405
The Case for Timing ... and Something Elset 405
Big O NOtGHON ...ttt e e e 407
Linear Time .. .o 407
Constant Time 408
Another Exampleo 409
QUAraHE TIME .« e e et e ettt e e e et 409
Big O in This BOOkeut ettt 410
B
BECAUSE | CAN'T RESIST 411
Unique Snowflakes: Implicit Linked Listsoooiiiiiiiii i, 411
Burger Fervor: Reconstructing a Solutionovuiiiii i 414
Knight Chase: Encoding Movesv it 416
Dijkstra’s Algorithm: Using a Heap........viiiiii e 418
Mice Maze: Tracing with Heapsot 418
Mice Maze: Implementation with Heaps ..., 421

Contents in Detail xvii

Compressing Path Compressionc..veunein ittt 422

Step 1: NoMore Ternary If ... 423
Step 2: Cleaner Assignment Operatorc.veuiiniinenneeenennen.. 423
Step 3: Understand the Recursion. ..o 424
Caps and Bottles: InPlace Sortingovuviiin i 424
C
PROBLEM CREDITS 427
INDEX 431

xviii Contents in Detail

FOREWORD

For the novice tennis player, keeping the ball in the court is hard enough
(especially from the backhand side). Only after months of practice, once
the basic rallying skills have been mastered, does the sport and its addic-
tive nature begin to reveal itself. You add to your repertoire more advanced
tools—a slice backhand, a kick serve, a drop volley. You strategize at a higher
level of abstraction—serve and volley, chip and charge, hug the baseline. You
develop intuition for which tools and strategies will be most effective against
different types of opponents—there’s no silver-bullet approach that works
well against everyone.

Programming is like tennis. For the beginning coder, coaxing the com-
puter to understand what you want it to do—to execute your solution to a
problem—is hard enough. Graduate from this white-belt level and the true
problem-solving fun begins: How do you come up with the solution in the
first place? While there’s no silver-bullet approach that solves every com-
putational problem efficiently, there are enduringly useful, advanced tools
and strategies: hash tables, search trees, recursion, memoization, dynamic
programming, graph search, and more. And to the trained eye, many prob-
lems and algorithms offer dead giveaways as to which tools are the right
ones. Does your algorithm perform repeated lookups or minimum com-
putations? Speed it up with a hash table or min-heap, respectively! Can you
build a solution to your problem from solutions to smaller subproblems?
Use recursion! Do the subproblems overlap? Speed up your algorithm with
memoization!

Be it tennis or programming, you can’t up your game to the next level
without two things: practice and a good coach. To this end, I give you

XX

Foreword

Algorithmic Thinking: Learn Algorithms to Level up Your Coding Skills and
Daniel Zingaro. This book teaches all the concepts that I've mentioned, but
it is no mere laundry list. With Zingaro as a tutor by your side, you’ll learn,
through practice on challenging competition problems, a repeatable process
for figuring out and deftly applying the right algorithmic tools for the job.
And you’ll learn it all from a book that exudes clarity, humor, and just the
right dose of Canadian pride. Happy problem-solving!

Tim Roughgarden
New York, NY
May 2020

ACKNOWLEDGMENTS

What an idyllic experience it was to work with the folks at No Starch Press.
They’re all laser-focused on writing books to help readers learn. I've found
my people! Liz Chadwick supported my book from the start (and unsup-
ported another one—I'm grateful for that!). It is a gift to have worked with
Alex Freed, my developmental editor. She’s patient, kind, and always eager
to help me improve how I write instead of just fixing my mistakes. I thank all
those involved in the production of the second edition of this book, includ-
ing my copyeditor, George Hale; production editor, Sydney Cromwell; and
cover designer, Rob Gale.

I thank the University of Toronto for offering me the time and space to
write. I thank Naaz Sibia, my technical reviewer, for her careful review of the
manuscript and for finding the time to help me.

I thank Tim Roughgarden for authoring the book’s foreword. Tim’s
books and videos are examples of the kind of clarity that we need to strive
for when teaching algorithms.

I thank my colleagues Larry Zhang, Jan Vahrenhold, and Mahika
Phutane for their review of draft chapters.

I thank everyone who contributed to the problems that I used in this
book and to competitive programming in general. I thank the DMOJ ad-
ministrators for their support of my work. Special thanks to Tudor Brindus,
Radu Pogonariu, and Maxwell Cruickshanks for their help in improving and
adding problems.

I thank my parents for handling everything—everything. All they asked
me to do was learn. I thank Doyali, my partner, for giving some of our time
to this book and for modeling the care it takes to write.

Finally, I thank all of you for reading this book and wanting to learn.

INTRODUCTION

I’'m assuming that you’ve learned to use
a programming language such as C, C++,
Java, or Python...and I'm hoping that
you’re hooked. It’s hard to explain to nonpro-
grammers why solving problems through program-
ming is so rewarding and fun.

I’'m also hoping that you’re ready to take your programming skill to the
next level. I have the privilege of helping you do that.

What We'll Do

I could start by teaching you some fancy new techniques, telling you why
they’re useful, and comparing them to other fancy techniques, but I won’t.
That material would lay inert, holding on for a little, waiting for the opportu-
nity to spring into action—if in fact some opportunity ever did present itself.
Instead, what I do throughout this book is pose problems: hard prob-
lems. These are problems that I hope you cannot solve, problems that I
hope stymie your current approaches. You’re a programmer. You want
to solve problems. Now it’s time for learning those fancy techniques. This
book is all about posing hard problems and then solving them by bridging
between what you know and what you need.

xxiv

You won't see traditional textbook problems here. You won’t find an op-
timal way to multiply a chain of matrices or compute Fibonacci numbers. I
promise: you won’t solve the Towers of Hanoi puzzle. There are many excel-
lent textbooks out there that do these things, but I suspect that many people
are not motivated by those kinds of puzzles.

My approach is to use new problems that you haven’t seen before. Each
year, thousands of people participate in programming competitions, and
these competitions require new problems to measure what participants can
come up with on their own rather than who can google the fastest. These
problems are fascinating, riffing on the classics while adding twists and con-
text to challenge people to find new solutions. There is a seemingly endless
stream of programming and computing knowledge encompassed by these
problems. We can learn as much as we like by choosing the right problems.

Let’s start with some basics. A data structure is a way to organize data so
that desirable operations are fast. An algorithm is a sequence of steps that
solves a problem. Sometimes we can make fast algorithms without using
sophisticated data structures; other times, the right data structure can
offer a significant speed boost. My goal is not to turn you into a competi-
tive programmer, though I'd take that as a happy side benefit. Rather, my
goal is to teach you data structures and algorithms using problems from the
competitive programming world—and to have fun while doing so. You can
reach me at daniel.zingaro@gmail.com. Email me if you have learned. Email
me if you have laughed.

New to the Second Edition

Introduction

I've thoroughly enjoyed the opportunity to discuss the first edition of this
book with readers. Their feedback has led to many of the changes and im-
provements in this new edition.

I've made small improvements and additions throughout, but here are
the major highlights of what’s new:

Chapter 1 Iremoved the Compound Words problem, as it can be
solved in ways that did not require a hash table. Instead, now we have

a problem about passwords on a social networking website. I've also
streamlined the code in this chapter to help those without a C/C++ pro-
gramming background, and I added more information about the effi-
ciency of hash tables.

Chapter 3 I added more guidance for how to discover the needed sub-
problems when solving a problem with dynamic programming.

Chapter 4 This chapter is completely new, and it focuses on more ad-
vanced uses of memoization and dynamic programming. This was a fre-
quent request of readers, and I'm excited to have been able to add this.
You’ll learn how to look at dynamic programming problems in reverse
(and why you’d want to), how to work with more dimensions in your
subproblem arrays, and how to further optimize your dynamic program-
ming code when it’s just not fast enough.

Chapter 5, previously Chapter 4 I added guidance on how to choose
between using dynamic programming and using a graph.

Chapter 8, previously Chapter 7 Iadded further discussion of why we
implement heaps as arrays rather than as explicit trees.

Chapter 10 This chapter is completely new and teaches you how to use
randomization, a topic not often covered in books. Randomization is a
technique that can help you design algorithms that are simple and fast.
You'll use two types of randomization algorithms to solve problems that
would otherwise be very difficult. You’ll also learn what to look for in

a problem when trying to decide whether to use randomization in the
first place.

Who This Book Is For

This book is for any programmer who wants to learn how to solve tough
problems. You’ll learn many data structures and algorithms, their benefits,
the types of problems they can help you solve, and how to implement them.
You’ll be a better programmer after this!

Are you taking a course on data structures and algorithms and getting
your butt kicked by a wall of theorems and proofs? It doesn’t have to be that
way. This book can serve as a companion text for you, helping you get to the
core of what’s going on so that you can write code and solve problems.

Are you looking for an edge in your next coding interview? You need
to be able to compare and contrast different approaches for solving a prob-
lem, choose the best data structure or algorithm, and explain and imple-
ment your solution. You’ll practice all of these skills over and over as you
read this book. Never fear hash tables, recursion, dynamic programming,
trees, graphs, or heaps again!

Are you an independent learner working toward expertise in data struc-
tures and algorithms? Piecing together stuff from all over the internet can
be tiring and lead to knowledge gaps if the right resources are not found.
This book will provide you the solid foundation and consistent presentation
that you need to become an expert.

As explored further in the next section, all code in this book is written
in the C programming language. However, this isn’t a book on learning C.
If your prior programming experience is in C or C++, then jump right in. If
instead you’ve programmed in a language such as Java or Python, I suspect
that you’ll pick up most of what you need by reading, but you may wish to
review some C concepts now or on first encounter. In particular, I’ll use
pointers and dynamic memory allocation, so, no matter what your prior
experience, you might like to brush up on those topics. The best C book I
can recommend is C Programming: A Modern Approach, 2nd edition, by K. N.
King. Even if you're okay with C, read it anyway. It’s that good and a won-
derful companion any time you get tripped up by C stuff.

Introduction XXV

XXvi

Our Programming Language

Introduction

I've chosen to use C as the programming language for this book, rather than
some higher-level language such as C++, Java, or Python. I'll discuss why and
also justify a couple of other C-related decisions I've made.

Why Use C?

The primary reason for using C is that I want to teach you data structures
and algorithms from the ground up. When we want a hash table, we’ll build
it ourselves. There will be no reliance on dictionaries or hashmaps or simi-
lar data structures of other languages. When we don’t know the maximum
length of a string, we’ll build an extensible array: we won’t let the language
handle memory allocation for us. I want you to know exactly what’s going
on, with no tricks up my sleeve. Using C helps me toward this goal.

Solving programming problems in C, as we do in this book, is a use-
ful primer should you decide to continue with C++. If you become serious
about competitive programming, then you’ll be happy to know that C++ is
the most popular language used by competitive programmers, thanks to its
rich standard library and ability to generate code that favors speed.

Static Keyword

Regular local variables are stored on what’s called the call stack. On each call
of a function, some of the call stack memory is used to store local variables.
Then, when the function returns, that memory is freed up for other local
variables to use later. The call stack is small, though, and isn’t appropriate
for some of the massive arrays that we’ll meet in this book. Enter the static
keyword. When used on a local variable, it changes the storage duration
from automatic to static, which means that the variable maintains its value
between function calls. As a side effect, these variables are not stored in the
same memory area along with regular local variables, since then their values
would be lost when a function is terminated. Instead, they’re stored in their
own separate segment of memory, where they don’t have to compete with
whatever else might be on the call stack.

One thing to watch out for with this static keyword is that such local
variables are only initialized once! For a quick example, see Listing 1.

int f(void) {

@ static int x = 5;
printf("%d\n", x);
X++;

}

int main(void) {
O
fO;
fO);

return 0;

}

Listing 1: A local variable with a static keyword

I've used static on local variable x @. Without that, you’d expect 5 to
be printed three times. However, since static is there, you should see this
output instead:

5

Include Files

To save space, I don’t include the #include lines that should be added to the
start of C programs. You’ll be safe if you include the following:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

Freeing Memory

Unlike Java or Python, C requires the programmer to free all memory that is
manually allocated. The pattern is to allocate memory using malloc, use that
memory, and then free the memory using free.

For two reasons, though, I do not free memory here. First, freeing mem-
ory adds clutter, distracting from the primary teaching purpose of the code.
Second, these programs are not long-lived: your program will run on a few
test cases, and that’s it. The operating system reclaims all of the unfreed
memory on program termination, so there’s nothing to worry about even
if you run a program many times. Of course, not freeing memory is quite ir-
responsible in practice: no one is happy with a program that consumes more
and more memory as it runs. If you’d like to practice freeing memory, you
can add calls of free to the programs presented in this book.

Topic Selection

The fields of data structures and algorithms are too large to be corralled by
one book (or by this one author!). I used three criteria to help me decide
what topics made the cut.

First, I chose topics of broad applicability: each can be used to solve not
only the corresponding problems in the book but many other problems as
well. In each chapter, I focus on at least two problems. I generally use the
first problem to introduce the data structure or algorithm and one of its pro-
totypical uses. The other problems are meant to give a sense of what else

Introduction XXvii

xxviii

the data structure or algorithm can do. For example, in Chapter 6, we study
Dijkstra’s algorithm. If you google it, you'll see that Dijkstra’s algorithm is
used to find shortest paths. Indeed, in the first problem of the chapter, we
use it for that very purpose. However, in the second problem, we go further,
tweaking Dijkstra’s algorithm to find not only the shortest path but also the
number of shortest paths. I hope that, as you progress through each chap-
ter, you learn more and more about the affordances, constraints, and sub-
tleties of each technique.

Second, I chose topics whose implementation did not overwhelm the
surrounding discussion. I wanted the solution to any problem to top out
at around 150 lines. That includes reading the input, solving the problem
itself, and producing the output. A data structure or algorithm whose imple-
mentation took 200 or 300 lines was for practical reasons not suitable.

Third, I chose topics that lend themselves to correctness arguments that
I hope are convincing and intuitive. Teaching you specific data structures
and algorithms is of course one of my goals, because I am imagining that
you’re here to learn powerful problem-solving approaches and how to im-
plement them. Meanwhile, I'm also hoping that you’re interested in why
what you’re learning works, so I have more quietly pursued another goal:
convincing you that the data structure or algorithm is correct. There won’t
be formal proofs or anything like that. Nonetheless, if I have succeeded in
my secret goal, then you’ll learn about correctness right along with the data
structure or algorithm. Don’t be content in merely tracing code and mar-
veling that it magically works every time. There is no magic, and the insights
that make code tick are within your grasp, just as is the code itself.

If you’d like to go beyond the chapters of this book, I recommend start-
ing with Appendix B. There, I've included some additional material related
to Chapters 1, 3, 5, 8, 9, and 10.

Many readers will benefit by practicing or reading additional material as
they progress through the book. The Notes sections at the end of the chap-
ters point to additional resources, some of which contain further examples
and sample problems. There are also online resources that offer a curated,
categorized list of problems and their solution strategies. The Methods to
Solve page by Steven Halim and Felix Halim is the most comprehensive that
I've found; see https://cpbook.net/methodstosolve.

Programming Judges

Introduction

Each problem that I have chosen is available on a programming-judge web-
site. Many such websites exist, each of which generally contains hundreds
of problems. I've tried to keep the number of judges that we use small but
large enough to give me the flexibility to choose the most appropriate prob-
lems. For each judge website, you’ll need a username and password; it’s
worth setting up your accounts now so that you don’t have to stop to do so
while working through the book. Here are the judges that we’ll use:

https://cpbook.net/methodstosolve

Codeforces hitps://codeforces.com
DMOJ https.//dmoj.ca

POJ hitp.//poj.org

SPOJ http://spoj.com

UVa https:;//uva.onlinejudge.org

Each problem description begins by indicating the judge website where
the problem can be found and the particular problem code that you should
use to access it.

While some problems on the judge websites are written by individual
contributors, others are originally from well-known competitions. Here are
some of the competitions from which problems in this book originate:

International Olympiad in Informatics (IOI) This is a prestigious an-
nual competition for high school students. Each participating country
sends up to four participants, but each participant competes individu-
ally. The competition runs over two days, with multiple programming
tasks on each day.

Canadian Computing Competition (CCC) and Canadian Computing
Olympiad (CCO) These annual competitions for high school students
are organized by the University of Waterloo. CCC (aka Stage 1) takes
place at individual schools, with the top performers moving on to take
the CCO (aka Stage 2) at the University of Waterloo. The top perform-
ers in Stage 2 represent Canada at the IOI. When I was a high school
student, I participated in the CCC, but I never made it to the CCO—I
wasn’t even close.

Croatian Open Competition in Informatics (COCI) This online com-
petition is offered many times per year. Performance is used to deter-
mine the Croatian IOI team.

National Olympiad in Informatics in Province (NOIP) This is an an-
nual competition for high school students in China, similar in function
to the CCC. The top performers are invited to the National Olympiad
in Informatics (NOI), China. The top NOI contestants are eligible for
further training and possible selection to China’s IOI team.

South African Programming Olympiad (SAPO) This competition is
offered in three rounds per year. The rounds increase in difficulty, from
Round 1 to Round 2 to the Final Round. Performance is used to select
students to represent South Africa at the IOI.

USA Computing Olympiad (USACO) This online competition is
offered several times per year, the most challenging of which is the US
Open competition. In each competition, you’ll encounter four levels of
problems: bronze (easiest), silver, gold, and platinum (hardest). Perfor-
mance is used to determine the American IOl team.

East Central North America (ECNA) Regional Programming Contest
In this annual competition for university students, the top performers are

Introduction XXix

https://codeforces.com
https://dmoj.ca
http://poj.org
http://spoj.com
https://uva.onlinejudge.org

XXX

invited to the annual International Collegiate Programming Contest
(ICPC) world finals. Unlike the other competitions here, where students
compete individually, ECNA and the world finals competitions are team
competitions.

DWITE This was an online programming contest designed to help
students practice for annual competitions. Unfortunately, DWITE is no
longer running, but the old problems—and they are good ones!—are still
available.

See Appendix C for the source of each problem in this book.

When you submit code for a problem, the judge compiles your program
and runs it on test cases. If your program passes all test cases, and does so
within the allotted time, then your code is accepted as correct; judges show
AC for accepted solutions. If your program fails one or more test cases, then
your program is not accepted; judges show WA (for “Wrong Answer”) in these
cases. A final popular outcome is for when your program is too slow, in
which case judges show TLE (“Time-Limit Exceeded”). Note that TLE does not
mean that your code is otherwise correct: if your code times out, the judges
do not run any further test cases, so there may be some WA bugs hidden be-
hind the TLE.

At the time of publication, my solution for each problem passes all test
cases within the allotted time with the specified judge. Within those base re-
quirements, my aim has been to make the code readable and to choose clar-
ity over speed. This is a book about teaching data structures and algorithms,
not squeezing further performance out of a program that otherwise gets the
job done.

Anatomy of a Problem Description

Introduction

Before solving a problem, we must be precise about what we are being asked
to do. This precision is required not only in understanding the task itself but
also in the way that we should read input and produce output. For this rea-
son, each problem begins with a problem description of three components:

The Problem Here, I provide the context for the problem and what
we are being asked to do. It’s important to read this material carefully
so that you know exactly what problem we’re solving. Sometimes, mis-
reading or misinterpreting seemingly small words can lead to incorrect
solutions. For example, one of our problems in Chapter 3 asks us to buy
“at least” a certain number of apples: if you instead buy “exactly” that
many apples, your program will fail some of the test cases.

Input The author of the problem provides test cases, all of which must
be passed for a submission to be deemed correct. It’s our responsibility
to read each test case from the input so that we can process it. How do
we know how many test cases there are? What is on each line of each test
case? If there are numbers, what are their ranges? If there are strings,
how long can they be? All of this information is provided here.

Output It can be very frustrating to have a program that produces the
correct answer but fails test cases because it does not output answers in
the correct format. The output portion of a problem description dic-
tates exactly how we should produce output. For example, it will tell us
how many lines of output to produce for each test case, what to put on
each line, whether blank lines are required between or after test cases,
and so on. In addition, I provide the time limit for the problem here:

if the program does not output the solution for all test cases within the
time limit, then the program does not pass.

I have rewritten the text of each problem from the official description
so that I can maintain a consistent presentation throughout. Despite these
tweaks, my description will convey the same information as the official
description.

For most problems in this book, we’ll read input from standard input
and write output to standard output. (There are only two problems where
standard input and output are not involved; they are in Chapter 7.) This
means we should use C functions such as scanf, getchar, printf, and so on
and not explicitly open and close files.

Starter Problem: Food Lines

Let’s familiarize ourselves with a sample problem description. I'll provide
some commentary in parentheses along the way, directing your attention to
the important bits. Once we understand the problem, I can think of noth-
ing better to do than solve it. Unlike the other problems in the book, we’ll
be able to do so with programming constructs and ideas that I hope you
already know. If you can solve the problem on your own or work through
my solution with little or no trouble, then I think you're ready for what'’s to
come. If you get seriously stuck, then you may wish to revisit programming
fundamentals and/or solve a few other starter problems before continuing.

This is DMO]J problem 1kp18c2p1. (You might like to go now to the DMO]J
website and search for this problem so that you’re ready to submit our code
once we're done.)

The Problem

There are n lines of people waiting for food. We know the number of people
that are already waiting in each line. Then, each of m new people will arrive,
and they will join a shortest line (a line with the fewest number of people).
Our task is to determine the number of people in each line that each of the
m people joins.

(Spend a little time interpreting the above paragraph. There’s an exam-
ple coming next, so if anything is unclear, try to remedy it with the combina-
tion of the above paragraph and the example below.)

Here’s an example. Suppose that there are three lines of people, with
three people in Line 1, two people in Line 2, and five people in Line 3. Then,
four new people arrive. (Try to work out what happens for this case before

Introduction XXXi

XXXi

Introduction

reading the rest of this paragraph.) The first person joins a line with two
people, Line 2; now Line 2 has three people. The second person joins a line
with three people, Line 1 or Line 2—let’s say Line 1; Line 1 now has four
people. The third person joins a line with three people, Line 2; Line 2 now
has four people. The fourth and final person joins a line with four people,
Line 1 or Line 2—let’s say Line 1; Line 1 now has five people.

Input
The input contains one test case. The first line of input contains two positive
integers, n and m, giving the number of lines of people and number of new
people, respectively. n and m are at most 100. The second line of input con-
tains » positive integers, giving the number of people in each line of people
before the new people arrive. Each of these integers is at most 100.

Here’s the input for the above test case:

34
325

(Note how there is exactly one test case here. Therefore, we should expect to
read exactly two lines of input.)

Output
For each of the m new people, output a line containing the number of peo-
ple in the line that they join.

The correct output for the above test case is:

S w w N

The time limit for solving the test case is three seconds. (Given that we
have to handle at most 100 new people for each test case, three seconds is a
long time. We won’t need any fancy data structures or algorithms.)

Solving the Problem

For problems involving data structures that are difficult to build by hand, I
may start by reading the input. Otherwise, I tend to save that code for last.
The reason for this is that we can generally test the functions we’re writing
by calling them with sample values; there is no need to worry about parsing
the input until we’re ready to solve the whole problem.

The key data that we need to maintain are the number of people in each
line. The appropriate storage technique is an array, using one index per line.
We'll use a variable named lines for that array.

Each new person that arrives chooses to join a shortest line, so we’ll
need a helper function to tell us which line that is. That helper function is
given in Listing 2.

int shortest line_index(int lines[], int n) {
int j;
int shortest = 0;
for (j = 1; j < n; j++)
if (lines[j] < lines[shortest])
shortest = j;
return shortest;

}

Listing 2: Index of a shortest line

Now, given a lines array and n and m, we can solve a test case, the code
for which is given in Listing 3:

void solve(int lines[], int n, int m) {
int i, shortest;
for (i = 0; i <m; i++) {
shortest = shortest_line_index(lines, n);
printf("%d\n", lines[shortest]);
@ lines[shortest]++;
}
}

Listing 3: Solving the problem

For each iteration of the for loop, we call our helper function to grab
the index of the shortest line. We then print the length of that shortest line.
This person then joins that line: that’s why we must increment the number
of people in that line by one @.

All that’s left is to read the input and call solve; that’s done in Listing 4.

#define MAX_LINES 100

int main(void) {
int lines[MAX LINES];
int n, m, i;
scanf("%d%d", &n, &m);
for (i = 0; 1 < n; i++)

scanf("%d", &lines[i]);

solve(lines, n, m);
return 0;

}

Listing 4: The main function

Putting together our shortest_line_index, solve, and main functions and
adding the required #include lines at the top gives us a complete solution
that we can submit to the judge. When doing so, be sure to choose the cor-
rect programming language: for the programs in this book, you want to find
GCG, or €99, or C11, or however the judge refers to a compiler for C.

Introduction Xxxiii

If you want to test your code locally before submitting it to the judge,
then you have a few options. Since our programs read from standard input,
one thing you can do is run the program and type a test case by hand. That’s
a reasonable thing to do for small test cases, but it’s tedious doing that over
and over, especially for large test cases. (You may also need to issue an end-
of-file control code after you type the input, such as CTRL-Z on Windows or
CTRL-D on other operating systems.) A better option is to store the input in
a file and then use input redirection from the command prompt to have the
program read from that file instead of the keyboard. For example, if you
store a test case for the present problem in file food.xt, and your compiled
program is called food, then try:

$ food < food.txt

This makes it easy to play with many test cases: just change what’s in food. txt
and then run the program with input redirection again.

Congratulations! You’ve solved your first problem. Moreover, you now
know our game plan for each problem in the book, as we’ll use the same
general structure I have given here. We’ll first understand the problem itself
and work through some examples. Then we’ll start writing code to solve the
problem. We won’t always get it right the first time, though. Maybe our code
will be too slow or fail some specific test cases. That’s okay! We’ll learn new
data structures and algorithms and then strike back at the problem. Even-
tually, we will solve each one—and after each such experience, we will know
more and be better programmers than when we started.

Let’s get to it.

Online Resources

Notes

XXXiv

Introduction

Supplementary resources for this book, including downloadable code
and additional exercises, are available at https.//nostarch.com/algorithmic
-thinking-2nd-edition.

Food Lines is originally from the 2018 LKP Contest 2, hosted by DMO].

https://nostarch.com/algorithmic-thinking-2nd-edition
https://nostarch.com/algorithmic-thinking-2nd-edition

HASH TABLES

It’s amazing how often computer programs
need to search for information, whether
it’s to find a user’s profile in a database or to
retrieve a customer’s orders. No one likes wait-
ing for a slow search to complete.

In this chapter, we’ll solve two problems whose solutions hinge on being
able to perform efficient searches. The first problem is determining whether
or not all snowflakes in a collection are identical. The second is determining
how many passwords can be used to log in to someone’s account. We want
to solve these problems correctly, but we’ll see that some correct approaches
are simply too slow. We’ll be able to achieve enormous performance in-
creases using a data structure known as a hash table, which we’ll explore at
length.

We’ll end the chapter by looking at a third problem: determining how
many ways a letter can be deleted from one word to arrive at another. Here
we’ll see the risks of uncritically using a new data structure—when learning
something new, it’s tempting to try to use it everywhere!

Problem 1: Unique Snowflakes
This is DMOJ problem cco07p2.

Chapter 1

The Problem

We’re given a collection of snowflakes, and we have to determine whether
any of the snowflakes in the collection are identical.

A snowflake is represented by six integers, where each integer gives the
length of one of the snowflake’s arms. For example, this is a snowflake:

3, 9, 15, 2, 1, 10

Snowflakes can also have repeated integers, such as

8,4, 8,9, 2,38

What does it mean for two snowflakes to be identical? Let’s work up to
that definition through a few examples.
First, we’ll look at these two snowflakes:

1, 2,3,4,5,6

and

11 21 3) 4) 5) 6

These are clearly identical because the integers in one snowflake match
the integers in their corresponding positions in the other snowflake.
Here’s our second example:

1, 2,3,4,5,6

and

4, 5, 6,1, 2,3

These are also identical. We can see this by starting at the 1 in the second
snowflake and moving right. We see the integers 1, 2, and 3 and then, wrap-
ping around to the left, we see 4, 5, and 6. These two pieces together give us
the first snowflake.

We can think of each snowflake as a circle as in Figure 1-1.

Figure 1-1: Two identical snowflakes

The two snowflakes are identical because we can start at the 1 in the sec-
ond snowflake and follow it clockwise to get the first snowflake.
Let’s try a different kind of example:

1, 2, 3, 4, 5, 6

and

3,2, 1,6, 5, 4

From what we’ve seen so far, we would deduce that these are not identi-
cal. If we start with the 1 in the second snowflake and move right (wrapping
around to the left when we hit the right end), we get 1, 6, 5, 4, 3, 2. That’s
not even close to the 1, 2, 3, 4, 5, 6in the first snowflake.

However, if we begin at the 1 in the second snowflake and move left in-
stead of right, then we do get exactly 1, 2, 3, 4, 5, 6! Moving left from the 1
gives us 1, 2, 3, and wrapping around to the right, we can proceed leftward
to collect 4, 5, 6. In Figure 1-2, this corresponds to starting at the 1 in the
second snowflake and moving counterclockwise.

4 6
Figure 1-2: Two other identical snowflakes

That’s our third way for two snowflakes to be identical: two snowflakes
are identical if they match when we move counterclockwise through the
numbers.

Putting it all together, we can conclude that two snowflakes are iden-
tical if they are the same, if we can make them the same by moving right-
ward through one of the snowflakes (moving clockwise), or if we can make
them the same by moving leftward through one of the snowflakes (moving
counterclockwise).

Input

The first line of input is an integer n, the number of snowflakes that we’ll be
processing. The value n will be between 1 and 100,000. Each of the follow-
ing 7 lines represents one snowflake: each line has six integers, where each
integer is at least 0 and at most 10,000,000.

Output

Our output will be a single line of text:

* If there are no identical snowflakes, output exactly No two snowflakes
are alike.

* If there are at least two identical snowflakes, output exactly Twin
snowflakes found.

The time limit for solving the test cases is one second.

Hash Tables 3

4

Chapter 1

Simplifying the Problem

One general strategy for solving competitive programming challenges is to
first work with a simpler version of the problem. Let’s warm up by eliminat-
ing some of the complexity from this problem.

Suppose that instead of working with snowflakes made of multiple in-
tegers, we’re working with single integers. We have a collection of integers,
and we want to know whether any are identical. We can test whether two in-
tegers are identical with C’s == operator. We can test all pairs of integers, and
if we find even one pair of identical integers, we’ll stop and output

Twin integers found.

If no identical integers are found, we’ll output

No two integers are alike.

Let’s make an identify_identical function with two nested loops to com-
pare pairs of integers, as shown in Listing 1-1.

void identify identical(int values[], int n) {
int i, j;
for (i = 0; i < n; i++) {
O for (j=1+1;3<n; jr) {
if (values[i] == values[j]) {
printf("Twin integers found.\n");
return;
}
}
}

printf("No two integers are alike.\n");

}

Listing 1-1: Finding identical integers

We feed the integers to the function through the values array. We also
pass in n, the number of integers in the array.

Notice that we start the inner loop ati + 1 and not 0 @. If we started at
0, then eventually j would equal i, and we’d compare an element to itself,
giving us a false positive result.

Let’s test identify identical using this small main function:

int main(void) {
int a[5] = {1, 2, 3, 1, 5};
identify identical(a, 5);
return 0;

}

Run the code and you will see from the output that our function cor-
rectly identified a matching pair of 1s. In general, I won’t provide much test

code in this book, but it’s important that you play with and test the code
yourself as we go along.

Solving the Core Problem

Let’s take our identify_identical function and try to modify it to solve the
Snowflake problem. To do so, we need to make two extensions to our code:

1. We have to work with six integers at a time, not one. A two-
dimensional array should work nicely here: each row will be a
snowflake with six columns (one column per element).

2. As we saw earlier, there are multiple ways for two snowflakes to be
identical. Unfortunately, this means we can’t just use == to compare
snowflakes. We need to take into account our “moving right” and
“moving left” criteria (not to mention that == in C doesn’t compare
contents of arrays anyway!). Correctly comparing snowflakes will be
the major update to our algorithm.

To begin, let’s write a pair of helper functions: one for checking “mov-
ing right” and one for checking “moving left.” Each of these helpers takes
three parameters: the first snowflake, the second snowflake, and the starting
point for the second snowflake.

Checking to the Right

Here is the function signature for identical_right:

int identical right(int snow1[], int snow2[], int start)

To determine whether the snowflakes are the same by “moving right,”
we scan snowl from index 0 and snow2 from index start. If we find correspond-
ing elements that are not equal, then we return 0 to signify that we haven’t
found identical snowflakes. If all the corresponding elements do match,
then we return 1. Think of 0 as representing false and 1 as representing true.

In Listing 1-2 we make a first attempt at writing this function’s code.

// bugged!
int identical right(int snow1[], int snow2[], int start) {
int offset;
for (offset = 0; offset < 6; offset++) {
@O if (snowi[offset] != snow2[start + offset])
return 0;
}
return 1;

}
Listing 1-2: Identifying identical snowflakes moving right (bugged!)

As you may notice, this code won’t work as we hope. The problem is
start + offset @. If we have start = 4 and offset = 3, then start + offset = 7.

Hash Tables 5

6

Chapter 1

The trouble is snow2[7], as snow2[5] is the farthest index to which we are al-
lowed to go.

This code doesn’t take into account that we must wrap around to the
left of snow2. If our code is about to use an erroneous index of 6 or greater,
we should reset our index by subtracting six. This will let us continue with
index o0 instead of index 6, index 1 instead of index 7, and so on. Let’s try
again with Listing 1-3.

int identical _right(int snowi[], int snow2[], int start) {
int offset, snow2_index;
for (offset = 0; offset < 6; offset++) {
snow2_index = start + offset;
if (snow2_index >= 6)
snow2_index = snow2_index - 6;
if (snowi[offset] != snow2[snow2_index])
return 0;
}
return 1;

}

Listing 1-3: Identifying identical snowflakes moving right

This works, but we can still improve it. One change that many program-
mers would consider making at this point involves using %, the mod opera-
tor. The % operator computes remainders, so x % y returns the remainder of
integer-dividing x by y. For example, 9 % 3 is 0, because there is no remain-
der when dividing 9 by 3. 10 % 4 is 2, because 2 is left over when dividing
10 by 4.

We can use mod here to help with the wraparound behavior. Notice
thato % 6is 0,1 % 6is 1,...,5 % 61is 5. Each of these numbers is smaller than
6, and so will itself be the remainder when dividing 6. The numbers 0 to 5
correspond to the legal indices of snow2, so it’s good that % leaves them alone.
For our problematic index 6, 6 % 6is 0: 6 divides 6 evenly, with no remain-
der at all, wrapping us around to the start. That’s precisely the wraparound
behavior we wanted.

Let’s update identical_right to use the % operator. Listing 1-4 shows the
new function.

int identical_right(int snow1[], int snow2[], int start) {
int offset;
for (offset = 0; offset < 6; offset++) {
if (snowi[offset] != snow2[(start + offset) % 6])
return 0;
}

return 1;

}

Listing 1-4: Identifying identical snowflakes moving right using mod

Whether you use this “mod trick” is up to you. It saves a line of code
and is a common pattern that many programmers will be able to identify.
However, it doesn’t always easily apply, even in cases that exhibit similar
wraparound behavior, such as identical_left. Let’s turn to this now.

Checking to the Left
The function identical_left is very similar to identical_right, except that we
need to move left and then wrap around to the right. When traversing right,
we had to be wary of erroneously accessing index 6 or greater; this time, we
have to be wary of accessing index —1 or less.
Unfortunately, our mod solution won’t directly work here. In C, -1 / 6 is
0, leaving a remainder of -1, and so -1 % 6 is —1. We’d need -1 % 6 to be 5.
Let’s just do this without using mod. In Listing 1-5, we provide the code
for the identical left function.

int identical left(int snowi[], int snow2[], int start) {
int offset, snow2_index;
for (offset = 0; offset < 6; offset++) {
snow2_index = start - offset;
if (snow2_index <= -1)
snow2_index = snow2_index + 6;
if (snowi[offset] != snow2[snow2_index])
return 0;
}
return 1;

}

Listing 1-5: Identifying identical snowflakes moving left

Notice the similarity between this function and that of Listing 1-3. All
we did was subtract the offset instead of adding it and change the bounds
check at 6 to a bounds check at -1.

Putting It Together

With these two helper functions, identical_right and identical_left, we can
finally write a function that tells us whether two snowflakes are identical.
Listing 1-6 gives the code for an are_identical function that does this. We
simply test moving right and moving left for each of the possible starting
points in snow2.

int are_identical(int snowi[], int snow2[]) {
int start;
for (start = 0; start < 6; start++) {
@ if (identical right(snowl, snow2, start))
return 1;
@ if (identical left(snowl, snow2, start))
return 1;

Hash Tables 7

8

Chapter 1

return 0;

}

Listing 1-6: Identifying identical snowflakes

We test whether snow1 and snow2 are the same by moving right in snow2 @.
If they are identical according to that criterion, we return 1 (true). We then
similarly check the moving-left criterion @.

It’s worth pausing here to test the are_identical function on a few sample
snowflake pairs. Please do that before continuing!

Solution 1: Pairwise Comparisons

When we need to compare two snowflakes, we just deploy our are_identical
function instead of ==. Comparing two snowflakes is now as easy as compar-
ing two integers.

Let’s revise our earlier identify identical function (Listing 1-1) to work
with snowflakes using the new are_identical function (Listing 1-6). We’ll
make pairwise comparisons between snowflakes, printing out one of two
messages depending on whether we find identical snowflakes. The code is
given in Listing 1-7.

void identify identical(int snowflakes[][6], int n) {
int i, j;
for (i = 0; i < n; i++) {
for (=1+1;3<n; j+) {
if (are_identical(snowflakes[i], snowflakes[j])) {
printf("Twin snowflakes found.\n");
return;
}
}
}

printf("No two snowflakes are alike.\n");

}

Listing 1-7: Finding identical snowflakes

This identify_identical function on snowflakes is almost, symbol for sym-
bol, the same as the identify_identical function on integers in Listing 1-1. All
we’ve done is swap == for a function that compares snowflakes.

Reading the Input
We’re not quite ready to submit to our judge. We haven’t yet written the
code to read the snowflakes from standard input. Revisit the problem de-
scription at the start of the chapter. We need to read a line containing inte-
ger n that tells us how many snowflakes there are and then read each of the
following n lines as an individual snowflake.

Listing 1-8 is a main function that processes the input and then calls
identify_identical from Listing 1-7.

#define SIZE 100000

int main(void) {
@ static int snowflakes[SIZE][6];
int n, i, j;
scanf("%d", &n);
for (i = 0; 1 < n; i++)
for (j = 0; j < 6; j++)
scanf("%d", &snowflakes[i][j]);
identify_identical(snowflakes, n);
return 0;

}

Listing 1-8: The main function for Solution 1

Notice that the snowflakes array is a static array @. This is because the
array is huge; without using such a static array, the amount of space needed
would likely outstrip the amount of memory available to the function. We
use static to place the array in its own, separate piece of memory, where
space is not a concern. Be careful with static, though. Regular local vari-
ables are initialized on each call of a function, but static ones retain what-
ever value they had on the previous function call (see “Static Keyword” on
page xxvi).

Also notice that we’ve allocated an array of 100,000 snowflakes @. You
might be concerned that this is a waste of memory. What if the input has
only a few snowflakes? For competitive programming problems, it’s gen-
erally okay to hardcode the memory requirements for the largest problem
instance: the test cases are likely to stress test your submission on the maxi-
mum size anyway!

The rest of the function is straightforward. We read the number of snow-
flakes using scanf, and we use that number to determine the number of iter-
ations of the outer for loop. For each such iteration, we loop six times in the
inner for loop, each time reading one integer. We then call identify_identical
to produce the appropriate output.

Putting this main function together with the other functions we have
written gives us a complete program that we can submit to the judge. Try
it out...and you should get a “Time-Limit Exceeded” error. It looks like we
have more work to do!

Diagnosing the Problem
Our first solution was too slow, so we got a “Time-Limit Exceeded” error.
Let’s understand why.

For our discussion here, we’ll assume that there are no identical snow-
flakes. This is the worst-case scenario for our code, since then it doesn’t stop
processing early.

The reason that our first solution is slow is because of the two nested
for loops in Listing 1-7. Those loops compare each snowflake to every other

Hash Tables 9

10

Chapter 1

snowflake, resulting in a huge number of comparisons when the number of
snowflakes n is large.

Let’s figure out the number of snowflake comparisons our program
makes. Since we might compare each pair of snowflakes, we can restate this
question as asking for the total number of snowflake pairs. For example, if
we have four snowflakes numbered 1, 2, 3, and 4, then our scheme performs
six snowflake comparisons: Snowflakes 1 and 2, 1 and 3, 1 and 4, 2 and 3, 2
and 4, and 3 and 4. Each pair is formed by choosing one of the n snowflakes
as the first snowflake and then choosing one of the remaining n - 1 snow-
flakes as the second snowflake.

For each of n decisions for the first snowflake, we have n — 1 decisions
for the second snowflake. This gives a total of n(n - 1) decisions. However,
n(n - 1) double-counts the true number of snowflake comparisons that we
make—it includes both of the comparisons 1 and 2 and 2 and 1, for exam-
ple. Our solution compares these only once, so we can divide by 2, giving
n(n - 1)/2 snowflake comparisons for n snowflakes.

This might not seem so bad, but let’s substitute some values of n into
n(n — 1)/2 and see what happens. Substituting 10 gives 10(9)/2 = 45. Per-
forming 45 comparisons is a piece of cake for any computer and can be
done in milliseconds. How about n = 10072 That gives 4,950: still no prob-
lem. It looks like we’re okay for a small , but the problem statement says
that we can have up to 100,000 snowflakes. Go ahead and substitute 100,000
for n in n(n - 1)/2: this gives 4,999,950,000 snowflake comparisons. If you
run a test case with 100,000 snowflakes on a typical laptop, it will take some-
thing like three minutes. That’s far too slow—we need at most one second,
not several minutes! As a conservative rule of thumb for today’s comput-
ers, think of the number of steps that we can perform per second as about
30 million. Trying to make nearly 5 billion snowflake comparisons in one
second is not doable.

If we expand n(n-1)/2, we get n?/2-n/2. The largest exponent there is
2. Algorithm developers therefore call this an O(n?) algorithm, or a quadratic-
time algorithm. O(n?) is pronounced “big O of n squared,” and you can think
of it as telling you that the rate at which the amount of work grows is quad-
ratic relative to the problem size. For a brief introduction to big O, see
Appendix A.

We need to make such a large number of comparisons because identical
snowflakes could show up anywhere in the array. If there were a way to get
identical snowflakes close together in the array, we could quickly determine
whether a particular snowflake was part of an identical pair. Maybe we can
try sorting the array to get the identical snowflakes close together?

Sorting Snowflakes

C has a library function called gsort that we can use to sort an array. The
key requirement is a comparison function: it takes pointers to two elements
to sort, and it returns a negative integer if the first element is less than the
second, 0 if they are equal, and a positive integer if the first is greater than

the second. We can use are_identical to determine whether two snowflakes
are equal; if they are, we return o.

What does it mean, though, for one snowflake to be less than or greater
than another? It’s tempting to just agree on some arbitrary rule here. We
might say, for example, that the snowflake that is “less” is the one whose first
differing element is smaller than the corresponding element in the other
snowflake. We do that in Listing 1-9.

int compare(const void *first, const void *second) {

int i;
const int *snowflakel = first;
const int *snowflake2 = second;
if (are_identical(snowflakel, snowflake2))

return 0;
for (i = 0; 1 < 6; it++)

if (snowflake1[i] < snowflake2[i])

return -1;

return 1;

}

Listing 1-9: A comparison function for sorting

Unfortunately, sorting in this way will not help us solve our problem.
You might try writing a program that uses sorting to put identical snow-
flakes next to each other so that you can find them quickly. But here’s a
four-snowflake test case that would likely fail on your laptop:

4
345612
234567
4567809
123456

The first and fourth snowflakes are identical—but the message No two
snowflakes are alike. may be output. What’s going wrong?
Here are two facts that gqsort might learn as it executes:

1. Snowflake 4 is less than Snowflake 2.
2. Snowflake 2 is less than Snowflake 1.

From this, gsort could conclude that Snowflake 4 is less than Snowflake 1,
without ever directly comparing Snowflake 4 and Snowflake 1! Here it’s re-
lying on the transitive property of less than. If a is less than b, and b is less
than ¢, then surely @ should be less than c. It seems like our definitions of
“less” and “greater” matter after all.

Unfortunately, it isn’t clear how one would define “less” and “greater”
on snowflakes so as to satisfy transitivity. If you’re disappointed, perhaps
you can take solace in the fact that we’ll be able to develop a faster solution
without using sorting at all.

Hash Tables 11

12

Chapter 1

In general, collecting similar values with sorting can be a useful data-
processing technique. As a bonus, good sorting algorithms run quickly—
certainly faster than O(n?), but we aren’t going to be able to use sorting here.

Solution 2: Doing Less Work

Comparing all pairs of snowflakes and trying to sort the snowflakes proved
to be too much work. To work up to our next, and ultimate, solution, let’s
pursue the idea of trying to avoid comparing snowflakes that are obviously
not identical. For example, if we have snowflakes

1, 2,3,4,5,6

and

82, 100, 3, 1, 2, 999

there’s no way that these snowflakes can be identical. We shouldn’t even
waste our time comparing them.

The numbers in the second snowflake are very different from the num-
bers in the first snowflake. To devise a way to detect that two snowflakes are
different without having to directly compare them, we might begin by com-
paring the snowflake’s first elements, because 1 is very different from 82.
But now consider these two snowflakes:

3, 1, 2, 999, 82, 100

and

82, 100, 3, 1, 2, 999

These two snowflakes are identical even though 3 is very different
from 82. We need to do more than just look at first elements.

A quick litmus test for determining whether two snowflakes might be
identical is to use the sum of their elements. When we sum our two example
snowflakes, for 1, 2, 3, 4, 5, 6, we get a total of 21, and for 82, 100, 3, 1,

2, 999, we get 1,187. We say that the code for the former snowflake is 21 and
the code for the latter is 1,187.

Our hope is that we can throw the “21 snowflakes” in one bin and throw
the “1,187 snowflakes” in another, and then we never have to compare the
21s to the 1,187s. We can do this binning for each snowflake: add up its
elements, get a code of x, and then store it along with all of the other snow-
flakes with code x.

Of course, finding two snowflakes with a code of 21 does not guarantee
they are identical. For example, both 1, 2, 3, 4, 5, 6and 16, 1, 1, 1, 1, 1
have a code of 21, and they are surely not identical.

That’s okay, because our “sum” rule is designed to weed out snowflakes
that are clearly not identical. This allows us to avoid comparing all pairs—the
source of the inefficiency in Solution 1—and only compare pairs that have
not been filtered out as obviously nonidentical.

In Solution 1, we stored each snowflake consecutively in the array: the
first snowflake at index o, the second at index 1, and so on. Here, our stor-
age strategy is different: sum codes determine snowflakes’ locations in the
array! That is, for each snowflake, we calculate its code and use that code as
the index for where to store the snowflake.

We have to solve two problems:

1. Given a snowflake, how do we calculate its code?

2. What do we do when multiple snowflakes have the same code?

Let’s deal with calculating the code first.

Calculating Sum Codes

At first glance, calculating the code seems easy. We could just sum all of the
numbers within each snowflake like so:

int code(int snowflake[]) {
return (snowflake[0] + snowflake[1] + snowflake[2]
+ snowflake[3] + snowflake[4] + snowflake[5]);

This works fine for many snowflakes, such as 1, 2, 3, 4, 5, 6, and 82,
100, 3, 1, 2, 999, but consider a snowflake with huge numbers, such as

1000000, 2000000, 3000000, 4000000, 5000000, 6000000

The code that we calculate is 21000000. We plan to use that code as the
index in an array that holds the snowflakes, so to accommodate this, we’d
have to declare an array with room for 21 million elements. As we’re using at
most 100,000 elements (one for each snowflake), this is an outrageous waste
of memory.

We’re going to stick with an array that has room for 100,000 elements.
We’ll need to calculate a snowflake’s code as before, but then we must force
that code to be a number between 0 and 99999 (the minimum and maximum
index in our array). One way to do this is to break out the % (mod) operator
again. Taking a nonnegative integer mod x yields an integer between 0 and
x— 1. No matter the sum of a snowflake, if we take it mod 100,000, we’ll get a
valid index in our array.

This method has one downside: taking the mod like this will force more
nonidentical snowflakes to end up with the same code. For example, the
sums for 1, 1, 1, 1, 1, 1 and 100001, 1, 1, 1, 1, 1 are different—6 and
100006—but once we take them mod 100,000, we get 6 in both cases. This is
an acceptable risk to take: we’ll just hope that this doesn’t happen much;
when it does, we’ll perform the necessary pairwise comparisons.

We'll calculate the sum code for a snowflake and mod it, as displayed in
Listing 1-10.

Hash Tables 13

#define SIZE 100000

int code(int snowflake[]) {
return (snowflake[0] + snowflake[1] + snowflake[2]
+ snowflake[3] + snowflake[4] + snowflake[5]) % SIZE;
}

Listing 1-10: Calculating the snowflake code

Snowflake Collisions

In Solution 1, we used the following fragment to store a snowflake at index i
in the snowflakes array:

for (j = 0; j < 6; j++)
scanf("%d", &snowflakes[i][j]);

This worked because exactly one snowflake was stored in each row of
the two-dimensional array.

However, now we have to contend with the 1, 1, 1, 1, 1, 1 and 100001,
1, 1, 1, 1, 1Kkind of collision, where, because they’ll end up with the same
mod code and that code serves as the snowflakes index in the array, we need
to store multiple snowflakes in the same array element. That is, each array
element will no longer be one snowflake but a collection of zero or more
snowflakes.

One way to store multiple elements at the same array index is to use a
linked list, a data structure that links each element to the next. Here, each
element in the snowflakes array will point to the first snowflake in the linked
list; the remainder of the snowflakes can be accessed through next pointers.

We’ll use a typical linked list implementation. Each snowflake_node con-
tains both a snowflake and a pointer to the next snowflake. To collect these
two components, we’ll use a struct. We’ll also make use of typedef, which al-
lows us to later use snowflake node instead of the full struct snowflake node:

typedef struct snowflake node {
int snowflake[6];
struct snowflake node *next;
} snowflake node;

This change necessitates updates to two functions, main and identify
_identical, because those functions use our old two-dimensional array.

The New main Function
You can see the updated main code in Listing 1-11.

int main(void) {
@ static snowflake node *snowflakes[SIZE] = {NULL};
@ snowflake_node *snow;

int n, i, j, snowflake_code;

14 Chapter 1

scanf("%d", &n);
for (i =0; i < n; i++) {
® snow = malloc(sizeof(snowflake node));
if (snow == NULL) {
fprintf(stderr, "malloc error\n");
exit(1);
}
for (j = 0; j < 6; j++)
® scanf("%d", &snow->snowflake[j]);
@® snowflake code = code(snow->snowflake);
® snow->next = snowflakes[snowflake code];
@ snowflakes[snowflake code] = snow;
}
identify identical(snowflakes);
// deallocate all malloc'd memory, if you want to be good
return 0;

}

Listing 1-11: The main function for Solution 2

Let’s walk through this code. First, notice that we changed the type of
our array from a two-dimensional array of numbers to a one-dimensional
array of pointers to snowflake nodes @. We also declare snow @, which will
point to snowflake nodes that we allocate.

We use malloc to allocate memory for each snowflake_node ®. Once we
have read in and stored the six numbers for a snowflake @, we use snowflake
_code to hold the snowflake’s code @, calculated using the function we wrote
in Listing 1-10.

The last thing to do is to add the snowflake to the snowflakes array, which
amounts to adding a node to a linked list. We do this by inserting the snow-
flake at the beginning of the linked list. We first point the inserted node’s
next pointer to the first node in the list ®, and then we set the start of the list
to point to the inserted node @. The order matters here: if we had reversed
the order of these two lines, we would lose access to the elements already in
the linked list!

Notice that, in terms of correctness, it doesn’t matter where in the linked
list we add the new node. It could go at the beginning, the end, or some-
where in the middle—it’s our choice. So we should do whatever is fastest,
and adding to the beginning is fastest because it doesn’t require us to tra-
verse the list at all. If we instead chose to add an element to the end of a
linked list, we’d have to traverse the entire list. If that list had a million ele-
ments, we’d have to follow the next pointers a million times until we got to
the end—that would be very slow!

Let’s work on a quick example of how this main function works. Here’s
the test case:

4
123456
83910154

Hash Tables 15

1611111
100016 1 11 1 1

Each element of snowflakes begins as NULL, the empty linked list. As we
add to snowflakes, elements will begin to point at snowflake nodes. The num-
bers in the first snowflake add up to 21, so it goes into index 21. The second
snowflake goes into index 49. The third snowflake goes into index 21. At this
point, index 21 is a linked list of two snowflakes: 16, 1, 1, 1, 1, 1 followed by
1, 2, 3, 4, 5, 6.

How about the fourth snowflake? That goes into index 21 again, and
now we have a linked list of three snowflakes there. See Figure 1-3 for the
hash table that we’ve built.

0 1 2 21 49 99999
(@] o
| 16,1,1,1,1,1 | 83,910,154

1,2,3,4,5,6

| 100016,1,1,1,1,1 |

Figure 1-3: A hash table with four snowflakes

There are multiple snowflakes in index 21. Does this mean that we have
identical snowflakes? No! This emphasizes the fact that a linked list with
multiple elements is not sufficient evidence to claim that we have identical
snowflakes. We have to compare each pair of those elements to correctly
state our conclusion. That’s the final piece of the puzzle.

The New identify_identical Function

We need identify_identical to make all pairwise comparisons of snowflakes
within each linked list. Listing 1-12 shows the code to do so.

void identify_ identical(snowflake_node *snowflakes[]) {
snowflake node *nodel, *node2;
int i;
for (i = 0; i < SIZE; i++) {
@ node1 = snowflakes[i];
while (node1 != NULL) {
® node2 = nodel->next;
while (node2 != NULL) {
if (are_identical(node1->snowflake, node2->snowflake)) {
printf("Twin snowflakes found.\n");
return;

}

16 Chapter 1

node2 = node2->next;

}
® nodel = nodel->next;
}
}
printf("No two snowflakes are alike.\n");

}

Listing 1-12: Identifying identical snowflakes in linked lists

We begin with node1 at the first node in a linked list @. We use node2 to
traverse from the node to the right of node1 @ all the way to the end of the
linked list. This compares the first snowflake in the linked list to all other
snowflakes in that linked list. We then advance node1 to the second node ©,
and we compare that second snowflake to each snowflake to its right. We
repeat this until node1 reaches the end of the linked list.

This code is dangerously similar to identify_identical from Solution 1
(Listing 1-7), which made all pairwise comparisons between any two snow-
flakes. By contrast, our new code only makes pairwise comparisons within a
single linked list. But what if someone crafts a test case where all snowflakes
end up in the same linked list? Wouldn’t the performance then be as bad as
in Solution 1? It would, yes, but absent such nefarious data, we’re in great
shape. Take a minute to submit Solution 2 to the judge and see for yourself.
You should see that we’ve discovered a much more efficient solution! What
we’ve done is use a data structure called a hash table. We’ll learn more about
hash tables next.

Hash Tables

A hash table consists of two things:

1. Anarray. Locations in the array are referred to as buckets.

2. A hash function, which takes an object and returns its code as an in-
dex into the array.

The code returned by the hash function is referred to as a hashcode; that
code determines at which index an object is stored or hashed.

Look closely at what we did in Listings 1-10 and 1-11 and you’ll see that
we already have both of these things. That code function, which took a snow-
flake and produced its code (a number between 0 and 99,999), is a hash
function; and that snowflakes array is the array of buckets, where each bucket
contains a linked list.

Hash Table Design

Designing a hash table involves many design decisions. Let’s talk about three
of them here.

The first decision concerns size. In Unique Snowflakes, we used an ar-
ray size of 100,000. We could have instead used a smaller or larger array. A

Hash Tables 17

smaller array saves memory. For example, on initialization, a 50,000-element
array stores half as many NULL values as does a 100,000-element array. How-
ever, a smaller array leads to more objects ending up in the same bucket.
When objects end up in the same bucket, we say that a collision has occurred.
The problem with having many collisions is that they lead to long linked
lists. Ideally, all of the linked lists would be short so that we wouldn’t have

to walk through and do work on many elements. A larger array avoids some
of these collisions.

To summarize, we have a memory-time tradeoff here. Make the hash
table too small and collisions run rampant. Make the hash table too big
and memory waste becomes a concern. In general, try to choose an array
size that’s a reasonable percentage—such as 20 percent or 50 percent or
100 percent—of the maximum number of elements you expect to insert into
the hash table.

In Unique Snowflakes, we used an array size of 100,000 to match the
maximum number of snowflakes; had we been constrained to use less mem-
ory, smaller arrays would have worked just fine as well.

The second consideration is our hash function. In Unique Snowflakes,
our hash function adds up a snowflake’s numbers mod 100,000. Impor-
tantly, this hash function guarantees that, if two snowflakes are identical,
they will end up in the same bucket. (They might also end up in the same
bucket if they are not identical, of course.) This is the reason why we can
search within linked lists, and not between them, for identical snowflakes.

When solving a problem with a hash table, the hash function that we use
should take into account what it means for two objects to be identical. If two
objects are identical, then the hash function must hash them to the same
bucket. In the case in which two objects must be exactly equal to be consid-
ered “identical,” we can scramble things so extensively that the mapping
between object and bucket is far more intricate than what we did with the
snowflakes. Check out the oaat (one-at-a-time) hash function in Listing 1-13
for an example.

#define hashsize(n) ((unsigned long)1l << (n))
#tdefine hashmask(n) (hashsize(n) - 1)

unsigned long oaat(char *key, unsigned long len, unsigned long bits) {

unsigned long hash, i;

for (hash = 0, i = 0; i < len; i++) {
hash += key[i];
hash += (hash << 10);
hash = (hash >> 6);

}

hash += (hash << 3);

hash *= (hash >> 11);

hash += (hash << 15);

return hash & hashmask(bits);

18 Chapter 1

int main(void) { // sample call of oaat
char word[] = "hello";
// 217 1is the smallest power of 2 that is at least 100000
@ unsigned long code = oaat(word, strlen(word), 17);
printf("%u\n", code);
return 0;

}

Listing 1-13: An intricate hash function
To call oaat @ as we do in the main function, we pass three parameters:

key The data that we want to hash (here, we’re hashing the word string)
len The length of those data (here, the length of the word string)

bits The number of bits that we want in the resulting hashcode
(here, 17)

The maximum value that a hashcode could have is one less than 2 to the
power of bits. For example, if we choose 17, then 217 — 1=181,071 is the
maximum that a hashcode could be.

How does oaat work? Inside the for loop, it starts by adding the current
byte of the key. That part is similar to what we did when adding up the num-
bers in a snowflake (Listing 1-10). Those left shifts and exclusive ors are in
there to put the key through a blender. Hash functions do this blending to
implement an avalanche effect, which means that a small change in the key’s
bits makes a huge change to the key’s hashcode. Unless you intentionally
created pathological data for this hash function or inserted a huge number
of keys, it would be unlikely that you’d get many collisions. This highlights
an important point: with a single hash function, there is always a collection
of data that will lead to collisions galore and subsequently horrible perfor-
mance. A fancy hash function like oaat can’t protect against that. Unless
we’re concerned about malicious input, though, we can often get away with
using a reasonably good hash function and can assume that it will spread the
data around.

Indeed, this is why using our hash table solution (Solution 2) for Unique
Snowflakes was so successful. We used a good hash function that distributes
many nonidentical snowflakes into different buckets. Since we’re not secur-
ing our code from attack, we don’t have to worry about some evil person
studying our code and figuring out a way to cause millions of collisions.

For our third and final design decision, we have to think about what we
want to use as our buckets. In Unique Snowflakes, we used a linked list as
each bucket. Using linked lists like this is known as a chaining scheme.

In another approach, known as open-addressing, each bucket holds at
most one element, and there are no linked lists. To deal with collisions, we
search through buckets until we find one that is empty. For example, sup-
pose that we try to insert an object into bucket number 50, but Bucket 50 is
already occupied. We might then try Bucket 51, then 52, then 53, stopping
when we find an empty bucket. Unfortunately, this simple sequence can lead

Hash Tables 19

20

to poor performance when a hash table has many elements stored in it, so
more nuanced search schemes are often used in practice.

Chaining is generally easier to implement than open-addressing, which
is why we used chaining for Unique Snowflakes. However, open-addressing
does have some benefits, including saving memory by not using linked list
nodes.

Why Use Hash Tables?

Using a hash table turbocharges our solution to Unique Snowflakes. On a
typical laptop, a test case with 100,000 elements will take only a fraction of
a second to run! No pairwise comparisons of all elements and no sorting is
needed, just a little processing on a bunch of linked lists.

Recall that we used an array size of 100,000. The maximum number of
snowflakes that can be presented to our program is also 100,000. If we're
given 100,000 snowflakes and assume the perfect scenario of each one going
into its own bucket, then we’d have only one snowflake per linked list. If we
have a little bad luck, then maybe a few of those snowflakes will collide and
end up in the same bucket. In the absence of pathological data, though, we
expect that each linked list will have at most a few elements. As such, mak-
ing all pairwise comparisons within a bucket will take only a small, constant
number of steps. We expect hash tables to give us a linear-time solution, be-
cause we take a constant number of steps in each of the n buckets. So we
take something like n steps, in comparison to the n(z - 1)/2 formula we had
for Solution 1. In terms of big O, we’d say that we expect an O(n) solution.

Whenever you're working on a problem and you find yourself repeat-
edly searching for some element, consider using a hash table. A hash table
takes a slow array search and converts it into a fast lookup. For some prob-
lems, you may be able to sort an array rather than use a hash table. A tech-
nique called binary search (discussed in Chapter 7) could then be used to
quickly search for elements in the sorted array. But often—such as in Unique
Snowflakes and the problem we’ll solve next—that won’t work. Hash tables
to the rescue!

Problem 2: Login Mayhem

Chapter 1

Let’s go through another problem and pay attention to where a naive solu-
tion would rely on a slow search. We’ll then drop in a hash table to cause
a dramatic speedup. We’ll go a little more quickly than we did for Unique
Snowflakes because now we know what to look for.

This is DMOJ problem cocii7cip3hard.

The Problem

To log in to your account on a social network website, you’d expect that
only your password would work—no one should be able to use a different
password to get into your account. For example, let’s say that your password

is dish. (That’s a terribly weak password—don’t actually use that anywhere!)
To log in to your account, someone would need to enter exactly dish as the
password. That’s just how logins work.

But now imagine that you are wanting to join a (hopefully theoretical)
social network website that has a major security concern: other passwords
besides yours can be used to get into your account! Specifically, if some-
one tries a password that has your password as a substring, then they’re in.
If your password were dish, for example, then passwords like brandish and
radishes would work to get into your account because the string dish is in
them. You don’t know what password to choose for your account—so at var-
ious points you will ask: “If I chose this password, how many current users’
passwords would get in to my account?”

We need to support two types of operations:

Add Sign up a new user with the given password.

Query Given a proposed password p, return the number of current
users’ passwords that could be used to get into an account whose pass-
word is p.

Input
The input consists of the following lines:

* Aline containing ¢, the number of operations to be performed. ¢ is
between 1 and 100,000.

* glines, each giving one add or query operation to be performed.

Here are the operations that can be performed in those ¢ lines:

* An add operation is specified as the number 1, a space, and then the
new user’s password. It indicates that a new user has joined with the
provided password. This operation doesn’t result in any output.

* A query operation is specified as the number 2, a space, and then a
proposed password p. It indicates that we should output the num-
ber of current users’ passwords that could be used to get into an
account whose password is p.

All passwords provided in these operations are between 1 and 10 lower-
case characters.

Output

Output the result of each query operation, one per line.
The time limit for solving the test case is three seconds.

Solution 1: Looking at All Passwords

Let’s work through a test case to make sure that we know exactly what we’re
being asked to do.

Hash Tables 21

(103

A 2 dish
1 brandish
1 radishes
1 aaa

® 2 dish

(4 JVRF

We can tell from the first line @ that there are 6 operations for us to per-
form. The first operation @ asks us how many of the existing users’ pass-
words would get into an account whose password is dish. Well, there are no
existing users, so the answer is 0!

Next, we add three user passwords, and then we get to our next query
operation ®. Now we're being asked about dish in the context of these three
passwords. You might be thinking that we need to search through the exist-
ing passwords to count up the ones that have dish in them. (Hmmm, search-
ing! That’s our first inkling that a hash table may be needed here.) If you do
that, you’ll find that two of the passwords—brandish and radishes—have dish in
them. The answer is therefore 2.

And what about the final query @? We’re looking for passwords that
have an a in them. If you search through the three existing passwords, you'll
find that all three of them do! The answer is therefore 3.

We’re done! The correct output for the full test case is:

If we implement the solution strategy that we just used, we might arrive
at something like Listing 1-14.

@ i#define MAX_USERS 100000
#define MAX_PASSWORD 10

int main(void) {

static char users[MAX_USERS][MAX_PASSWORD + 1];

int num_ops, op, op_type, total, j;

char password[MAX PASSWORD + 1];

int num_users = 0;

scanf("%d", &num_ops);

for (op = 0; op < num_ops; op++) {
scanf("%d%s", &op_type, password);

strcpy(users[num_users], password);
num_users++;

22 Chapter 1

® } else {

total = 0;

for (j = 0; j < num_users; j++)

if (strstr(users[j], password))
total++;
printf("%d\n", total);
}

}
return 0;

}
Listing 1-14: Solution 1

The problem description says that we’ll have at most 100,000 opera-
tions. If each is an add operation, then we get 100,000 users @, and we can’t
have any more than that.

For each add operation @, we copy the new password into our users
array. And for each query operation ®, we loop through all of the existing
user passwords, checking how many of them have the proposed password as
a substring.

Like our first solution to Unique Snowflakes, this solution is not fast
enough to pass the test cases in time. That’s because we have an O(n?) al-
gorithm here, where n is the number of queries.

We are able to quickly add user passwords to our array—no problem
there. What slows us down are the query operations, because each of them
has to scan through all existing user passwords. That’s where the quadratic-
time behavior comes from. Suppose, for example, that a test case starts by
adding 50,000 user passwords, and then hammers us with 50,000 queries.
Taken together, that would require about 50,000 x 50,000 = 2,500,000,000
steps. That’s over 2 billion steps; there’s no way that we can do that many in
our allowed time limit of three seconds.

Solution 2: Using a Hash Table

We need to speed up the query operations. And we’re going to use a hash
table to do so. But how? Isn’t it just a fact of life that we need to compare
each query password with each existing password? No! Read on as we turn
the problem on its head.

How to Use the Hash Table

For each query operation, it would be nice if we could just look up the
needed password in a hash table to determine how many existing user pass-
words could get into its account. For example, once we add the users with
passwords brandish, radishes, and aaa, then it would be nice to be able to look
up dish in the hash table and get a value of 2. But while we’re adding those
three user passwords, how are we supposed to know to be keeping track of
what’s going on with dish? We don’t know which passwords are going to be
queried later.

Hash Tables 23

24

Chapter 1

Well, since we don’t know the future, let’s just add one to the total for
every single substring of each user password. That way we’ll be ready if we
ever need to look any of them up.

Focus on the brandish password. If we consider each substring, then
we’ll increment the total for b, br, bra, bran, brand, brandi, brandis, brandish,

1, ra, and so on. Don’t worry: if we process them all, we’ll definitely hit dish
and increment it. We’ll increment dish again when we do the same kind of
substring processing on radishes. So, dish will end up with a total of 2, as
needed.

You might worry that we’re being excessive here, processing a ton of
substring passwords, the vast majority of which are not going to be queried.
However, remember from the problem description that passwords can be at
most 10 characters. Each substring has a starting point and an ending point.
In a password of 10 characters, there are only 10 possible starting points and
10 possible ending points, so an upper bound on the number of substrings
in a password is 10 x 10 = 100. As we have at most 100,000 user passwords,
each of which has at most 100 substrings, we’ll store at most 100,000 x 100
=10,000,000 substrings in our hash table. That’ll take up a few megabytes of
memory, for sure, but that’s nothing to worry about. We’re trading a little
memory for the ability to look up any password’s total when we need it.

As with Unique Snowflakes, our solution will use a hash table of linked
lists. We also need a hash function. We won’t use something like the snow-
flake hash function here, because it would lead to collisions between pass-
words like cat and act that are anagrams. Unlike in the Unique Snowflakes
problem, passwords should be distinguished not just by their letters but by
the locations of those letters. Some collisions are inevitable, of course, but
we should do what we can to limit their prevalence. To that end, we’ll wield
that wild oaat hash function from Listing 1-13.

Searching the Hash Table

We’ll use the following node to store passwords in our hash table:

#define MAX_PASSWORD 10

typedef struct password node {
char password[MAX PASSWORD + 1];
int total;
struct password_node *next;

} password_node;

This node is similar to snowflake_node from Unique Snowflakes, but we
now also have a total member to keep track of the total count for this
password.

Now we can write a helper function to search the hash table for a given
password. See Listing 1-15 for the code.

#define NUM_BITS 20

password node *in_hash_table(password node *hash_table[], char *find) {
unsigned password_code;
password_node *password_ptr;
@ password code = oaat(find, strlen(find), NUM_BITS);
0 password ptr = hash_table[password code];
while (password ptr) {
® if (strcmp(password ptr->password, find) == 0)
return password ptr;
password_ptr = password_ptr->next;
}
return NULL;
}

Listing 1-15: Searching for a password

This in_hash_table function takes a hash table and a password to find in
the hash table. If the password is found, the function returns a pointer to
the corresponding password_node; otherwise, it returns NULL.

The function works by calculating the hashcode of the password @ and
using that hashcode to find the appropriate linked list to search @. It then
checks each password in the list, looking for a match @.

Adding to the Hash Table

We also need a function that will add one to a given password in the hash
table. See Listing 1-16 for the code.

void add_to hash table(password node *hash table[], char *find) {
unsigned password_code;
password_node *password ptr;
@ password_ptr = in_hash_table(hash_table, find);
if (!password_ptr) {
password code = oaat(find, strlen(find), NUM_BITS);
password ptr = malloc(sizeof(password node));
if (password ptr == NULL) {
fprintf(stderr, "malloc error\n");
exit(1);
}
strcpy(password_ptr->password, find);
® password ptr->total = 0;
password_ptr->next = hash_table[password_code];
hash_table[password_code] = password ptr;

}
® password ptr->total++;

}

Listing 1-16: Adding one to a password'’s total

Hash Tables

26

Chapter 1

We use our in_hash_table function @ to determine whether the password
is already in the hash table. If it isn’t, we add it to the hash table and give it a
count of 0 for now @. The technique for adding each password to the hash
table is the same as for the Unique Snowflakes problem: each bucket is a
linked list, and we add each password to the beginning of one of those lists.

Next, whether the password was already in there or not, we increment
its total . In that way, a password that we just added will have its total in-
creased from 0 to 1, whereas existing passwords will simply have their total
incremented.

The main Function, Take 1
Ready for the main function? Our first attempt is in Listing 1-17.

// bugged!
int main(void) {

@ static password node *hash_table[1 << NUM BITS] = {NULL};

int num_ops, op, op_type, i, j;
char password[MAX_PASSWORD + 1], substring[MAX_PASSWORD + 1];
password_node *password ptr;
scanf("%d", &num_ops);
for (op = 0; op < num_ops; op++) {
scanf("%d%s", &op_type, password);

O if (op_type == 1) {
for (i = 0; i < strlen(password); i++)
for (j = i; j < strlen(password); j++) {
strncpy(substring, &password[i], j - i + 1);
substring[j - i + 1] = "\0';
® add to hash_table(hash_table, substring);
}

O } else {
® password_ptr = in_hash_table(hash_table, password);
® if (!password ptr)
printf("o\n");
else
printf("%d\n", password ptr->total);
}
}

return 0;

}

Listing 1-17: The main function (bugged!)

To determine the size of the hash table, we’ve used this strange bit of
code: 1 << NUM_BITS @. We set NUM_BITS to 20 in Listing 1-15; 1 << 20 is a short-
cut for computing 220, which is 1,048,576. (The oaat hash function requires
that the hash table have a number of elements that is a power of 2.) Remem-
ber that the maximum number of users we’ll have is 100,000; the hash table

size that I chose is about 10 times this maximum to account for the fact that
we insert multiple strings for each password. Smaller or larger hash tables
would have worked fine, too.

For each add operation @, we increment the total for each substring by
using our add_to_hash_table helper function ®. And for each query opera-
tion @, we use our in_hash_table helper function @ to retrieve the total for
the password,; if the password isn’t in the hash table ® then we output o.

Put all of our functions together and let’s try running our code! Re-
member this test case?

dish
brandish
radishes
aaa

dish

a

N N B R RPN O

The output is supposed to be:

Unfortunately, our code gives this instead:

0
2
5

Wait, 5?7 Where’s that 5 coming from?

Look at the password aaa. How many a substrings are in there? There
are three! And we’re going to find each of them, resulting in three incre-
ments to the total for a. But that doesn’t make sense: aaa should be able to
bump up the total for a at most once, not multiple times. After all, aaa is only
one password.

The main Function, Take 2
What we need to do is make sure that, for each password, each of its sub-
strings counts only once. To do that, we’ll maintain an array of all of the
substrings that we’ve generated for the current password. Prior to using a
substring, we’ll search to make sure that we haven’t used that substring yet.
We’re introducing a new search here, so it’s worth thinking about whe-
ther we need a new hash table of substrings. While we could indeed add
another hash table for that, we don’t need to: as we already argued, each
password won’t have too many substrings, so a linear search (that is, an
element-by-element search) through them is going to be fast enough.
Check out Listing 1-18 for the finishing touch.

Hash Tables 27

@ int already added(char all substrings[][MAX_PASSWORD + 1],
int total substrings, char *find) {
int i;
for (i = 0; i < total substrings; i++)
if (strcmp(all_substrings[i], find) == 0)
return 1;
return 0;

}

int main(void) {
static password_node *hash_table[1 << NUM BITS] = {NULL};
int num_ops, op, op_type, i, j;
char password[MAX_PASSWORD + 1], substring[MAX_PASSWORD + 1];
password_node *password ptr;
int total substrings;
char all_substrings[MAX_PASSWORD * MAX_PASSWORD][MAX_PASSWORD + 1];
scanf("%d", &num_ops);
for (op = 0; op < num_ops; op++) {
scanf("%d%s", &op_type, password);

if (op_type == 1) {
total_substrings = 0;
for (i = 0; i < strlen(password); i++)
for (j = 1i; j < strlen(password); j++) {
strncpy(substring, &password[i], j - i + 1);
substring[j - i + 1] = "\0';
® if (lalready added(all_substrings, total substrings, substring)) {
add_to_hash_table(hash_table, substring);
strcpy(all_substrings[total substrings], substring);
total_substrings++;
}
}

} else {
password ptr = in_hash_table(hash_table, password);
if (!password ptr)
printf("o\n");
else
printf("%d\n", password ptr->total);
}
}

return 0;

}

Listing 1-18: A new helper function and fixed main function

28 Chapter 1

We have a new already_added helper function here @ that we’ll use to tell
us whether the find substring is already in the all_substrings array for the
current password.

In the main function itself, notice now that we check whether we’ve seen
the current substring @. If we have not, only then do we add it to the hash
table.

It’s time to submit our code to the judge. Go for it! As with Unique
Snowflakes, the speedup from using a hash table amounts to an improve-
ment from O(n2) to O(n), which is plenty fast for the three-second time limit.

Problem 3: Spelling Check

Sometimes, problems look like they can be solved in a particular way be-
cause they bear resemblance to other problems. Here’s a problem where it
seems that a hash table is appropriate, but on further reflection we see that
hash tables vastly overcomplicate what is required.

This is Codeforces problem 393 (Spelling Check). (The easiest way to
find it is to search online for Codeforces 39].)

The Problem

In this problem, we are given two strings where the first string has one more
character than the second. Our task is to determine the number of ways in
which one character can be deleted from the first string to arrive at the sec-
ond string. For example, there is one way to get from favour to favor: we can
remove the u from the first string.

There are three ways to get from abcdxxxef to abcdxxef: we can remove
any of the x characters from the first string.

The context for the problem is a spellchecker. The first string might
be bizzarre (a misspelled word) and the second might be bizarre (a correct
spelling). In this case, there are two ways to fix the misspelling—by removing
either one of the two zs from the first string. The problem is more general,
though, having nothing to do with actual English words or spelling mistakes.

Input
The input is two lines, with the first string on the first line and the second
string on the second line. Each string can be up to one million characters.

Output

If there is no way to remove a character from the first string to get the sec-
ond string, output 0. Otherwise, output two lines:

* On the first line, output the number of ways in which a character
can be deleted from the first string to get the second string.

* On the second line, output a space-separated list of the indices of
the characters in the first string that can be removed to get the

Hash Tables 29

30

Chapter 1

second string. The problem requires we index a string from 1, not
0. (That’s a bit annoying, but we’ll be careful.)

For example, for this input:

abcdxxxef
abcdxxef

we would output:

3
567

The 5 6 7 are the indices of the three x characters in the first string,
since we are counting from one (not zero).
The time limit for solving the test cases is two seconds.

Thinking About Hash Tables

I spent a truly embarrassing number of hours searching for the problems
that drive the chapters in this book. The problems dictate what I can teach
you about the relevant data structure or algorithm. I need the problem solu-
tions to be algorithmically complex, but the problems themselves need to be
sufficiently simple so that we can understand what is being asked and keep
the relevant details at hand. I really thought I had found exactly that kind of
hash table problem I needed for this section. Then I went to solve it.

In Problem 2, Login Mayhem, we were given the passwords as part of
the input. That was nice, because we just jammed each substring from the
passwords into a hash table and then used the hash table to search for them
as needed. Here, in Problem 3, we’re not given any such list of strings to in-
sert. Unfazed, when I first tried solving this problem, I created a hash table
and I inserted into it each prefix of the second (that is, shorter) string. For
example, for the word abc, I would have inserted a, ab, and abc. I also cre-
ated another hash table for the suffixes of the second string. For the word
abc, I would have inserted c, bc, and abc. Armed with those hash tables, I
proceeded to consider each character of the first string. Removing each
character is tantamount to splitting the string into a prefix and a suffix. We
can just use the hash tables to check whether both the prefix and suffix are
present. If they are, then removing that character is one of the ways in which
we can transform the first string into the second.

This technique is tempting, right? Want to give it a try?

The thing I had failed to keep in mind was that each string could be
up to a million characters long. We certainly can’t store all of the prefixes
and suffixes themselves in the hash table—that would take up way too much
memory. I played around with using pointers in the hash table to point to
both the start and end of the prefixes and suffixes. That solves the concerns
of memory use, but it doesn’t free us from having to compare these extra-
long strings whenever we perform a search using the hash table. In Unique
Snowflakes and Login Mayhem, the elements in the hash table were small:

6 integers for a snowflake and 10 characters for a password. That’s nothing.
However, here, the situation is different: we might have strings of a million
characters! Comparing such long strings is very time-consuming.

Another timesink here is computing the hashcode of prefixes and suf-
fixes of these strings. We might call oaat on a string of length 900,000, and
then call it again on a string with one additional character. That duplicates
all of the work from the first oaat call, when all we wanted was to incorporate
one more character into the string being hashed.

Yet, I persisted. I had it in my mind that a hash table was the way to go
here, and I failed to consider alternatives. At this point, I probably should
have taken a fresh look at the problem. Instead, I learned about incremental
hash functions, hash functions that are very fast when generating the hash-
code for an element that is very similar to the previously hashed element.
For example, if I already have the hashcode for abcde, then computing the
hashcode for abcdef using an incremental hash function will be very fast,
because it can lean on the work already done for abcde rather than starting
from scratch.

Another insight was that, if it is too costly to compare extra-long strings,
we should try to avoid comparing them at all. We could just hope that our
hash function is good enough and that we’re lucky enough with the test
cases so that no collisions occur. If we look for some element in the hash
table, and we find a match.. .. well, let’s hope it was an actual match and not
us getting unlucky with a false positive. If we’re willing to make this conces-
sion, then we can use a structure that’s simpler than the hash table array that
we used up to this point in the chapter. In array prefixi, each index i gives
the hashcode for the prefix of length i from the first string. In array prefix2,
each index i gives the hashcode for the prefix of length i from the second
string. In each of two other arrays, we can do similarly for the suffixes of the
first string and suffixes of the second string.

Here is some code that shows how the prefixi array can be built:

// long long is a very large integer type in C99
unsigned long long prefix1[1000001];

prefix1[o0] = 0;

for (i = 1; i <= strlen(first_string); i++)

O prefixi[i] = prefixa[i - 1] * 39 + first string[i];

The other arrays can be built similarly.

It’s important that we use unsigned integers here. In C, overflow is well
defined on unsigned integers but not signed integers. If a word is long
enough, we’ll definitely get overflow, so we don’t want to allow undefined
behavior.

Now we can use these arrays to determine whether prefixes or suffixes
match. For example, to determine whether the first i characters of the first
string equal the first i characters of the second string, just check whether
prefixi[i] and prefix2[i] are equal.

Note how little work it takes to calculate the hashcode for prefixi[i]
given the hashcode for prefixi[i - 1]: it’s just a multiplication, followed by

Hash Tables 31

32

Chapter 1

adding the new character @. Why multiply by 39 and add the character?
Why not use something else for the hash function? Honestly, because what I
chose didn’t lead to any collisions in the Codeforces test cases. Yes, I know,
it’s unsatisfying.

Not to worry, though: there’s a better way! To get there, we’ll stare at
the problem a little more closely, instead of just jumping to a hash table
solution.

An Ad Hoc Solution

Let’s think more carefully through an earlier example:

abcdxxxef
abcdxxef

Suppose that we remove the f from the first string (index 9). Does this
make the first string equal the second? No, so 9 will not show up in our
space-separated list of indices. The strings have a long prefix of matching
characters. There are six such characters to be exact: abcdxx. After that, the
two strings diverge, where the first string has an x and the second has an e.
If we don’t fix that, then we have no hope that the two strings will be equal.
The f is too far to the right for its deletion to produce equal strings.

That leads to our first observation: if the length of the longest common
prefix (in our example, six, the length of abcdxx) is p, then our only options
for deleting characters are those with indices of < p + 1. In our example, we
should consider deleting the characters whose indices are < 7: a, b, ¢, d, the
first x, the second x, and the third x. Deleting anything to the right of index
p + 1 doesn’t fix the diverging character at index p + 1 and hence can’t make
the strings equal.

Notice that only some of these deletions actually work. For example,
deleting the a, b, ¢, or d from the first string does not give us the second
string. Only each of the three deletions of x gives us the second string. So,
while we’ve got an upper bound for indices to consider (< p + 1), we also
need a lower bound.

To think about a lower bound, consider removing the a from the first
string. Does that make the two strings equal? Nope. The reasoning is similar
to that in the previous paragraph: there are diverging characters to the right
of the a that can’t possibly be fixed by removing the a. If the length of the
longest common suffix (in our example, four, the length of xxef) is s, then we
should consider deleting each of the final s + 1 characters of the first string.
In terms of indices, we’re interested only in those that are > n - s, where
n is the length of the first string. In our example, this tells us to consider
only indices that are > 9 —4 = 5. In the above paragraph, we argued that
we should look at only indices that are < 7. Together, we see that indices
5, 6, and 7 are the ones whose deletion transforms the first string into the
second. As can be seen in Figure 1-4, what matters here are the indices that
are included in both the prefixes and suffixes: each of those characters is a
valid deletion.

First seven characters: longest prefix (p) + 1

1 2 3 4 5 6 7 8 9

Last five characters: longest suffix (s) + 1

First seven characters: longest prefix (p) + 1

1 2 3 4 5 6 7 8

Last five characters: longest suffix (s) + 1
Figure 1-4: Overlap between the longest prefix and longest suffix

In general, the indices of interest go from n — s to p + 1. For any index
in this range, we know from p + 1 that the two strings are the same prior to
the index. We also know from n —s that the two strings are the same after the
index. Therefore, once we remove the index, the two strings are identical.

If the range is empty, then there are no indices whose deletion transforms
the first string into the second, so 0 is output in this case. Otherwise, we
use a for loop to loop through the indices and printf to produce the space-
separated list. Let’s take a look at the code!

Longest Common Prefix

We have a helper function in Listing 1-19 to calculate the length of the
longest common prefix of two strings.

int prefix_length(char si[], char s2[]) {

int i = 15
while (s1[i] == s2[i])
i++;

return i - 1;

}

Listing 1-19: Calculating the longest common prefix

Here s1 is the first string and s2 is the second string. We use 1 as the
starting index of the strings. Starting at index 1, the loop continues as long
as corresponding characters are equal. (In a case such as abcde and abcd, the e
will fail to match the null terminator at the end of abcd, so i will correctly end
up with value 5.) When the loop terminates, index i is the index of the first
mismatched character; therefore, i - 1 is the length of the longest common
prefix.

Longest Common Suffix
Now, to calculate the longest common suffix, we use Listing 1-20.

Hash Tables 33

34

Chapter 1

int suffix_length(char si[], char s2[], int len) {
int i = len;
while (i >= 2 && s1[i] == s2[i - 1])
i--;
return len - i;

}

Listing 1-20: Calculating the longest common suffix

The code is quite similar to Listing 1-19. This time, however, we com-
pare from right to left, rather than left to right. For this reason, we need the
len parameter, which gives us the length of the first string. The final com-
parison that we’re allowed to make is i == 2. If we had i == 1, then we’d be
accessing s2[0], which is not a valid element of the string!

The main Function
Finally, we have our main function in Listing 1-21.

#define SIZE 1000000

int main(void) {

@ static char s1[SIZE + 2], s2[SIZE + 2];
int len, prefix, suffix, total;

A gets(&s1[1]);

® gets(&s2[1]);

len = strlen(&s1i[1]);

prefix = prefix_length(s1, s2);

suffix = suffix_length(s1, s2, len);
O total = (prefix + 1) - (len - suffix) + 1;
@ if (total < 0)

® total = 0;

@ printf("%d\n", total);

® for (int i = 0; i < total; i++) {
printf("%d", i + len - suffix);
if (i < total - 1)

printf(" ");
else
printf("\n");
}
return 0;

}

Listing 1-21: The main function

We use SIZE + 2 as the size of our two character arrays @. The maximum
number of characters that we’re required to read is one million, but we need

an extra element for the null terminator. And we need one element on top
of that because we start indexing our strings at index 1, “wasting” index 0.

We read the first @ and second string . Notice we pass a pointer to
index 1 of each string: gets therefore starts storing characters at index 1
rather than index 0. After calling our helper functions, we calculate the
number of indices that can be deleted from s1 to give us s2 @. If this number
is negative @, then we set it to 0 ®. This makes the printf call correct @. We
use a for loop @ to print the correct indices. We want to start printing at
len - suffix, so we add len - suffix to each integer i.

When submitting to the judge, you may need to choose GNU G++ rather
than GNU GCC.

There we have it: a linear-time solution. We had to perform some tough
analysis, but after that we were able to proceed without complex code and
without the need for a hash table. Before considering a hash table, ask your-
self, is there anything about the problem that would make hash tables un-
wieldy? Is a search really necessary, or are there features of the problem that
obviate such searching in the first place?

Summary

Notes

A hash table is a data structure: a way to organize data so that certain oper-
ations are fast. Hash tables speed up the search for some specified element.
To speed up other operations, we need other data structures. For example,
in Chapter 8, we’ll learn about a heap, which is a data structure that can be
used when we need to quickly identify the maximum or minimum element
in an array.

Data structures are general approaches to organizing and manipulating
data. Hash tables apply to all kinds of problems beyond what is shown here;
I hope that you now have good intuition for when a hash table can be used.
Be on the lookout for other problems where otherwise efficient solutions
are hampered by repeated, slow searches.

Unique Snowflakes is originally from the 2007 Canadian Computing
Olympiad.

Login Mayhem is based on a problem from the 2017 Croatian Open
Competition in Informatics, Round 1.

Spelling Check is originally from the 2010 School Team Contest #1,
hosted by Codeforces. The prefix-suffix solution (used after I finally gave
up on a hash table solution) originates from a note posted at https://codeforces
.com/blog/entry/786.

In our hash table code, we used malloc to allocate nodes of our linked
lists. It’s sometimes possible to avoid using malloc and node structures al-
together. See “Unique Snowflakes: Implicit Linked Lists” in Appendix B if
you’re interested in how that can be done.

Hash Tables 35

https://codeforces.com/blog/entry/786
https://codeforces.com/blog/entry/786

The oaat hash function is by Bob Jenkins (see Attp://burtleburtle.net/bob/
hash/doobs.html).

For additional information about hash table applications and implemen-
tations, see Algorithms Illuminated (Part 2): Graph Algorithms and Data Struc-
tures by Tim Roughgarden (2018).

36 Chapter 1

http://burtleburtle.net/bob/hash/doobs.html
http://burtleburtle.net/bob/hash/doobs.html

TREES AND RECURSION

In this chapter, we’ll look at two problems

that will require processing and answer-
ing questions about hierarchical data. The

first problem is about collecting candy from a

neighborhood. The second concerns queries on fam-
ily trees. Because loops are a natural means to process
collections of data, we’ll try them first. We’ll soon see,
though, that these problems push against what we can
easily express with loops, and this will motivate a shift
in the way we think about and solve such problems.
You’ll leave this chapter knowing about recursion, a
problem-solving technique that applies whenever the
solution to a problem involves solutions to simpler,
smaller problems.

Problem 1: Halloween Haul

This is DMO]J problem dwite12cip4.

38

Chapter 2

The Problem

It’s Halloween, a holiday that often involves getting dressed up, candy from
neighbors, and a stomachache. In this problem, you want to collect all the
candy from a particular neighborhood as efficiently as possible. The neigh-
borhood has a rigid, though strange, shape. Figure 2-1 shows a sample
neighborhood.

Figure 2-1: A sample neighborhood

The circles with numbers in them are houses. Each number gives the
amount of candy you’ll get by visiting that house. Candy values are at most
two digits. The circle at the top is your starting location. The circles without
numbers are intersections between streets, where you choose which way to
walk next. The lines that connect circles are the streets. Moving from one
circle to another corresponds to walking one street.

Let’s think about how you could move through this neighborhood. Be-
gin at the top circle. If you walk down the street on the right, you get to an
intersection. If you then walk down the street on the right from that circle,
you end up at a house and collect 41 pieces of candy. You could then walk
back up the two streets to the top to return to your starting location. You’ll
have thus walked a total of four streets and collected 41 pieces of candy.

However, your goal is to collect all of the candy and to do so by walking
the minimum number of streets. You're allowed to end your walk as soon as
you’ve collected all of the candy; there’s no requirement to get back to the
top circle.

Input
The input consists of exactly five lines, where each line is a string of at most
255 characters that describes a neighborhood.

How can a string encode a diagram? This isn’t like the Unique Snow-
flakes problem from Chapter 1, where each snowflake was just six integers.
Here we have circles, lines connecting circles, and candy values in some of
those circles.

As with the Unique Snowflakes problem, we can simplify things by ini-
tially ignoring some of the complexities of the full problem. For that rea-
son, I'll defer the way that the input is provided until later. Here’s a teaser,
though: there’s a quite clever and compact way to represent these diagrams
as strings. Stay tuned.

Output
Our output will be five lines of text, with each line corresponding to one of
the five input lines. Each line of output contains two integers separated by a
space: the minimum number of streets walked to obtain all of the candy and
the total amount of candy obtained.

The time limit for solving the test case is two seconds.

Binary Trees

In Figure 2-2, I've augmented the neighborhood from Figure 2-1 to include
letters in the nonhouse circles. These letters have nothing to do with the
problem and won'’t affect our code, but they allow us to uniquely refer to
each circle.

Figure 2-2: A sample neighborhood with
letter labels

The particular shape of the neighborhoods in our Halloween Haul prob-
lem is known as a binary tree. Both binary and tree are important words here.
Let’s unpack their definitions, starting with tree.

Trees and Recursion 39

40

Chapter 2

Defining Tree

A tree is a structure that consists of nodes (the circles) and edges between nodes
(the lines representing streets). The node at the top—the H circle—is referred
to as the root. You'll often see the term vertex used synonymously with node;
in this book, I'll stick to “node.”

The nodes in the tree have a parent-child relationship. For example, we
say that H is the parent of F and G, because there is an edge from H to F and
an edge from H to G. We also say that F and G are children of H. More specif-
ically, F is the left child of H, and G is the right child of H. Any node that has
no children is referred to as a leaf. In the current problem, the nodes with
candy values (the houses) are leaves.

Much of the terminology that computer scientists use when discussing
trees is familiar from the notion of family trees. For example, F and G are
siblings, because they have the same parent. E is an example of a descendant
of H, because E is reachable by moving down the tree from H.

The height of a tree is determined by the largest number of edges that we
can traverse on a downward path from the root to a leaf. What is the height
of our sample tree? Well, here’s one downward path we could traverse: H
to G to 7. That path has two edges (H to G and G to 7), giving us a height of
at least two. However, we can find a much longer downward path! Here’s
one such longest downward path: H to F to E to D to C to B to 4. That path
has six edges on it. Convince yourself that there is no longer downward path
here. The height of this tree is six.

Trees have a very regular, repeatable structure, which helps us process
them. For example, if we remove the root H, along with the edges from H to
F and from H to G, we end up with two subtrees (Figure 2-3).

Figure 2-3: A tree split in two

Notice that each of the two subtrees is a legitimate tree on its own: it
has a root, nodes and edges, and the proper structure. We could further
split these trees into even smaller pieces, and each of those pieces would be

a tree. A tree can be thought of as consisting of smaller trees, each of which
consists of even smaller trees, and so on.

Defining Binary

In the context of trees, binary simply means that each node in our trees has
at most two children. A given node in a binary tree can have zero children,
or one child, or two children, but no more. The binary trees in our cur-
rent problem are in fact a little more constrained than that: each node is
required to have exactly zero or two children—you’ll never see a node with
exactly one child. Such a binary tree, where every nonleaf node has exactly
two children, is referred to as a full binary tree.

Solving the Sample Instance

Let’s go ahead and solve the Halloween Haul problem on our sample tree
(Figure 2-2). We’re required to return both the minimum number of streets
we have to walk to get all of the candy and the total amount of candy. We’ll
start with the latter, because it’s the easier of the two to calculate.

We can calculate the total amount of candy by hand: just add up all of
the candy values in the house nodes. If we do that, we get 7+41+72+3+6+
2+15+4+9=159.

Now, let’s figure out the minimum number of streets that you must walk
to collect all of the candy. Does it even matter how we traverse the tree?
After all, you have to visit every house—maybe your quickest route is simply
to avoid visiting the same house multiple times.

Let’s traverse the tree by visiting left children before right children. By
using this strategy, here is the order in which you visit the nodes: H, F, A,
72,A,3,A,FE 6,E,D,C,B,48B,9,B,C,15C,D,2,D,E,F,H,G,7,G,
41. Note how your final stop is the 41 house and not H: you’re not required
to return to your starting location once you’re finished collecting the candy.
There are 30 edges in that path. (There are 31 nodes in the path, and the
number of edges in a path is always the number of nodes minus one.) Is
walking 30 streets the best you can do?

In fact, you can do better: the most efficient route involves walking only
26 streets. Spend some time now trying to find this more optimized traver-
sal. As in the 30-street traversal, you’ll have to visit the nonhouse nodes mul-
tiple times and you want to visit each house exactly once, but you can save
four street-walks by being strategic about the final house that you visit.

Representing Binary Trees

To create a solution in code, we’ll need to find a way to represent neigh-
borhood trees. As you'll see, it’s convenient to convert the strings from the
input that represent trees to explicit tree structures that represent relation-
ships between nodes. In this section, I'll provide those tree structures. We
won’t yet be able to read the strings and convert them to trees, but we’ll be

Trees and Recursion 41

42

Chapter 2

able to hardcode trees. That gives us the foothold we need to start solving
the problem.

Defining Nodes

When solving the Unique Snowflakes problem in the last chapter, we used a
linked list to store a chain of snowflakes. Each snowflake node contained the
snowflake itself, and it also contained a pointer to the next snowflake in the
chain:

typedef struct snowflake node {
int snowflake[6];
struct snowflake_node *next;
} snowflake_node;

We can use a similar struct to represent a binary tree. In our neighbor-
hood trees, the houses have candy values and the other nodes do not. Even
though we have these two kinds of nodes, we’ll be okay with just one node
structure. We’ll just make sure that house nodes have correct candy val-
ues; we won’t even initialize the candy values of nonhouse nodes, because
we won’t look at those values anyway.

That gives us this starting point:

typedef struct node {

int candy;
// ... what else should we add?
} node;

In a linked list, each node points to the next node in the chain (or is NULL
if there is no next node). From one node, we can move to exactly one other
node. In contrast, in a tree, a single next pointer per node will not suffice,
because a nonleaf node will have both a left child and a right child. We need
two pointers per node, as in Listing 2-1.

typedef struct node {

int candy;

struct node *left, *right;
} node;

Listing 2-1: The node struct

It’s apparent that the parent is not included here. Should we throw in a
*parent as well, letting us access the parent of a node in addition to its chil-
dren? This would be useful for some problems, but it is not required for
Halloween Haul. We will need a way to move up the tree (from child to par-
ent), but we can do so implicitly, without explicitly following parent point-
ers. You'll see more about this later.

Building a Tree

With this node type in hand, we can now build sample trees. We work bottom-
up, uniting subtrees until we reach the root. Let’s demonstrate the start of
this process on our sample tree.

We'll start with the 4 and 9 nodes at the bottom of our sample tree.
Then we can combine those under a new parent to create the subtree whose
root is B.

Here’s the 4 node:

node *four = malloc(sizeof(node));
four->candy = 4;

four->left = NULL;

four->right = NULL;

This is a house node, so we remember to give it a candy value. It’s also
important to set its left and right children to NULL. If we don’t do that, they’ll
remain uninitialized, pointing to unspecified memory, and that’ll mean trou-
ble if we try to access it.

Now consider the 9 node. This is another house, so the code is struc-
turally identical:

node *nine = malloc(sizeof(node));
nine->candy = 9;

nine->left = NULL;

nine->right = NULL;

We now have two nodes. They’re not yet part of a tree. They’re hanging
out by themselves. We can unite them under a common parent, like this:

node *B = malloc(sizeof(node));
B->left = four;
B->right = nine;

This B node is given a left pointer to the 4 house and a right pointer to
the 9 house. It’s candy member is not initialized, which is fine because non-
house nodes have no sensible candy value anyway.

Figure 2-4 depicts what we’ve generated so far.

Figure 2-4: The first three nodes
in our hardcoded tree

Trees and Recursion 43

Before powering ahead and producing the C subtree, let’s do a little
cleanup. Creating a house node involves four things: allocating the node,
setting the candy value, setting the left child to NULL, and setting the right
child to NULL. Similarly, creating a nonhouse node involves doing three
things: allocating the node, setting the left child to some existing subtree,
and setting the right child to some other existing subtree. We can capture
these steps in helper functions rather than typing them out each time, as
shown in Listing 2-2.

node *new_house(int candy) {

node *house = malloc(sizeof(node));

if (house == NULL) {
fprintf(stderr, "malloc error\n");
exit(1);

}

house->candy = candy;

house->left = NULL;

house->right = NULL;

return house;

node *new_nonhouse(node *left, node *right) {

node *nonhouse = malloc(sizeof(node));

if (nonhouse == NULL) {
fprintf(stderr, "malloc error\n");
exit(1);

}

nonhouse->left = left;

nonhouse->right = right;

return nonhouse;

}

Listing 2-2: Helper functions for creating nodes

Let’s rewrite our earlier four, nine, B code to use these helper functions,
and add the 15 and C nodes while we’re at it:

node *four = new_house(4);

node *nine = new_house(9);

node *B = new_nonhouse(four, nine);
node *fifteen = new_house(15);
node *C = new_nonhouse(B, fifteen);

Figure 2-5 depicts our five-node tree.

44 Chapter 2

Figure 2-5: The first five nodes in
our hardcoded tree

Notice that node C has a left child that is a nonhouse node (B in our
code) and a right child that is a house node (fifteen in our code). Our
new_nonhouse function allows this asymmetry (one nonhouse child and one
house child): each is just a node. We can mix and match nonhouse nodes
and house nodes at will.

At this point, we have a five-node subtree rooted at node C. We should
be able to use that C node to access the candy values stored in the tree. (We
could also use B, four, nine, and fifteen to access parts of the tree, because
building a tree piecewise leaves a residue of node variables in our wake, but
later we’ll build a function for converting a string to a tree that will furnish
us with only the tree’s root, so let’s not cheat by using those variables here.)

Here’s a quick exercise: What does this print?

printf("%d\n", C->right->candy);

If you said 15, you’d be correct! We access Cs right child, which is the
fifteen house node, and then we access fifteen’s candy value.
How about this?

printf("%d\n", C->left->right->candy);

That should output 9: a left and then a right takes us from C to nine.
Now try this:

printf("%d\n", C->left->left);

Yikes! On my laptop, I'm getting the value 10752944. Why? The reason
is that we’re printing a pointer value, not a candy value. We will have to be
careful here.

Finally, what would this print?

printf("%d\n", C->candy);

This gives us a useless number. Here we’re printing the candy member
for a nonhouse node, but only houses have meaningful values of candy.

We’re now ready to start tackling this problem. Finish up the code to
build the sample tree and we’ll be on our way.

Trees and Recursion 45

46

Chapter 2

Collecting All the Candy

We have two main tasks: calculating the minimum number of streets re-
quired to collect all of the candy and calculating the total amount of candy
in the tree. We’ll write a helper function for each task, starting with calculat-
ing the total amount of candy, the easier of the two tasks. The helper func-
tion will have the following signature:

int tree_candy(node *tree)

The function takes a pointer to a node that is the root of the tree and re-
turns an integer that will be the total amount of candy in the tree.

If we were dealing with linked lists, we could use a loop like we did when
solving the Unique Snowflakes problem. The body of the loop would pro-
cess the current node and then use the next member of the node to advance
to the next node. At each step, there’s only one place to go: further down
the linked list. However, the structure of binary trees is more complex. Each
nonleaf node has a left and a right subtree. Each must be traversed; other-
wise, we’ll miss processing part of the tree!

To show a tree traversal in action, we will return to our sample tree
(Figure 2-2): Beginning at node H, where should we go first? We could move
right to G and then move right again to 41, collecting 41 pieces of candy
there. Then what? We’re at a dead end, and there’s a lot more candy to col-
lect. Remember that each nonleaf node stores pointers only to its left and
right children, not to its parent. Once at 41, we have no way to get back
up to G.

Starting again, we need to move from H to G and to record that we must
later process the F subtree—otherwise, we’ll have no way to return to the
F subtree.

Once at G, we similarly need to move to 41 and to record that we must
later process the 7 subtree. When we’re at 41, we see that there are no sub-
trees to process, and we have recorded two subtrees (F and 7) that we still
need to process.

Perhaps next we choose to process the 7 subtree, giving us a total candy
value of 41 + 7 = 48. After that, we’ll process the F subtree. Making any one
decision about where to go from F leaves a whole subtree unprocessed, so
we also need to record that.

That is, if we use a loop, for each nonleaf node we must do two things:
choose one of its subtrees to process first and record that the other subtree
is pending to be processed. Choosing one of the subtrees amounts to fol-
lowing the left or right pointer—there is no problem there. Recording infor-
mation so that we can visit the other subtree later, however, will be trickier.
We’'ll need a new tool.

Storing Pending Subtrees on a Stack

At any moment, we can have multiple subtrees pending for us to visit later.
We need to be able to add another subtree to that collection and to remove
and return subtrees when we’re ready to process them.

We can use an array to manage this bookkeeping. We’ll define a large ar-
ray that can hold as many references to pending subtrees as needed. To tell
us how many subtrees are pending, we’ll keep a highest_used variable that will
track the highest index being used in the array. For example, if highest_used
is 2, it means that indices 0, 1, and 2 hold references to pending subtrees and
that the rest of the array is currently unused. If highest_used is 0, it means
that only index 0 is being used. To signify that no part of the array is being
used, we set highest_used to -1.

The easiest spot to add to the array is at index highest_used + 1. If we
tried to add an element anywhere else, we’d first have to move existing el-
ements to the right; otherwise, we’d overwrite one of the existing elements!
Similarly, the easiest element to remove from the array is highest_used.
Using any other index would necessitate moving elements to the left to fill
the vacancy left by the removed element.

Using this scheme, suppose we first add a reference to subtree F and
then add a reference to subtree 7. This places the F subtree at index 0 and
the 7 subtree at index 1. The value of highest_used is currently 1. Now, when
we remove an element from this array, which subtree do you think gets re-
moved: the F subtree or the 7 subtree?

The 7 subtree gets removed! In general, the element that was most re-
cently added is the one that is removed.

Computer scientists refer to this as last-in, first-out (LIFO) access. Collec-
tions of data that provide LIFO access are referred to as stacks. Adding an
element to a stack is known as a push, and removing an element from a stack
is known as a pop. The top of the stack refers to the element that would next
be popped from the stack; that is, the top of the stack is the most recently
pushed item.

There are real-life stacks all over the place. Say you have some plates that
have just been washed, and you put them away on a shelf in a cupboard, one
after the other. The last one that you add (push) to the shelf will be at the
top of the stack, and it will be the first plate that you remove (pop) when
retrieving a plate from the cupboard. This is LIFO.

A stack also powers the undo functionality in your word processor. Sup-
pose you type a word, then a second word, then a third word. Now you hit
undo. The third word goes away, since it was the last one that you entered.

Implementing a Stack

Let’s implement the stack. To begin, we package both the array and highest
_used into a struct. This keeps the stack’s variables together and also allows

us to create as many stacks as we wish. (In Halloween Haul, we need only
one sta