
cover.indd   1 02/11/18   4:19 PM



Algorithm Design 
Practice for Collegiate 
Programming Contests 

and Education



http://taylorandfrancis.com


Algorithm Design 
Practice for Collegiate 
Programming Contests 

and Education

by Yonghui Wu  
and Jiande Wang



CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2019 by Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-1-4987-7663-9 (Hardback)

This book contains information obtained from authentic and highly regarded sources. 
Reasonable efforts have been made to publish reliable data and information, but the author 
and publisher cannot assume responsibility for the validity of all materials or the consequences 
of their use. The authors and publishers have attempted to trace the copyright holders of all 
material reproduced in this publication and apologize to copyright holders if permission 
to publish in this form has not been obtained. If any copyright material has not been 
acknowledged, please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, 
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other 
means, now known or hereafter invented, including photocopying, microfilming, and 
recording, or in any information storage or retrieval system, without written permission from 
the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. 
(CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit 
organization that provides licenses and registration for a variety of users. For organizations 
that have been granted a photocopy license by the CCC, a separate system of payment has 
been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, 
and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data
A catalog record has been requested for this book

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com
http://www.copyright.com
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com


v

Contents

Preface.............................................................................................................ix
Author Biographical Information................................................................ xiii

	 1	 Practice for Ad Hoc Problems.................................................................1
1.1	 Solving Problems by Mechanism Analysis..........................................1

1.1.1	 Factstone Benchmark............................................................ 1
1.1.2	 Bridge....................................................................................3

1.2	 Solving Problems by Statistical Analysis.............................................6
1.2.1	 Ants.......................................................................................6
1.2.2	 Matches Game.......................................................................9

1.3	 Problems...........................................................................................12

	 2	 Practice for Simulation Problems..........................................................45
2.1	 Simulation of Direct Statement........................................................45

2.1.1	 The Hardest Problem Ever.................................................. 46
2.1.2	 Rock-Paper-Scissors Tournament.........................................48
2.1.3	 Robocode.............................................................................50
2.1.4	 Eurodiffusion.......................................................................56

2.2	 Simulation by Sieve Method.............................................................63
2.2.1	 The Game........................................................................... 64
2.2.2	 Game Schedule Required.....................................................68

2.3	 Construction Simulation..................................................................72
2.3.1	 Packets.................................................................................72
2.3.2	 Paper Cutting......................................................................75

2.4	 Problems...........................................................................................78

	 3	 Practice for Number Theory..................................................................99
3.1	 Practice for Prime Numbers.............................................................99

3.1.1	 Calculating Prime Numbers by a Sieve................................99
3.1.2	 Testing the Primality of Large Numbers............................109

3.2	 Practice for Indeterminate Equations and Congruence...................113
3.2.1	 Greatest Common Divisors and Indeterminate Equations.... 113
3.2.2	 Congruences and Congruence Equations.......................... 117



vi  ◾  Contents

3.3	 Multiplicative Functions.................................................................126
3.4	 Problems.........................................................................................132

	 4	 Practice for Combinatorics..................................................................153
4.1	 Generating Permutations................................................................ 153

4.1.1	 Generating the Next Permutation Based on 
Lexicographic Order.......................................................... 153

4.1.2	 Generating All Permutations Based on Lexicographic 
Order................................................................................. 157

4.2	 Enumeration of Permutations and Combinations........................... 159
4.2.1	 Calculating Numbers of Permutations and 

Combinations.............................................................159
4.2.2	 Catalan Numbers, Bell Numbers and Stirling 

Numbers......................................................................171
4.3	 Applications of the Pigeonhole Principle and the 

Inclusion–Exclusion Principle.........................................................177
4.3.1	 Applications of the Pigeonhole Principle............................177
4.3.2	 Applications of the Inclusion–Exclusion Principle..............180

4.4	 Applications of the Pólya Counting Formula..................................186
4.4.1	 Necklace of Beads.............................................................. 191
4.4.2	 Toral Tickets......................................................................194
4.4.3	 Color..................................................................................198

4.5	 Problems.........................................................................................201

	 5	 Practice for Greedy Algorithms...........................................................215
5.1	 Practices for Greedy Algorithms..................................................... 215

5.1.1	 Pass-Muraille.....................................................................216
5.1.2	 Tian Ji: The Horse Racing..................................................219

5.2	 Greedy-Choices Based on Sorted Data...........................................223
5.2.1	 The Shoemaker’s Problem..................................................223
5.2.2	 Add All............................................................................. 226
5.2.3	 Wooden Sticks.................................................................. 228
5.2.4	 Radar Installation..............................................................231

5.3	 Greedy Algorithms Used with Other Methods to Solve 
P-Problems.................................................................................... 234
5.3.1	 Color a Tree.......................................................................235
5.3.2	 Copying Books..................................................................239

5.4	 Problems.........................................................................................242

	 6	 Practice for Dynamic Programming...................................................259
6.1	 Linear Dynamic Programming......................................................259

6.1.1	 Linear Dynamic Programming..........................................259
6.1.2	 Subset Sum....................................................................... 264



Contents  ◾  vii

6.1.3	 Longest Common Subsequence (LCS).............................. 266
6.1.4	 Longest Increasing Subsequence (LIS)...............................269

6.2	 Tree-Like Dynamic Programming..................................................278
6.2.1	 Binary Apple Tree..............................................................278
6.2.2	 Anniversary Party..............................................................281

6.3	 Dynamic Programming with State Compression.......................... 284
6.3.1	 Nuts for Nuts.................................................................... 284
6.3.2	 Mondriaan’s Dream...........................................................288

6.4	 Problems.........................................................................................291

	 7	 Practice for Advanced Data Structures...............................................335
7.1	 Suffix Arrays...................................................................................335

7.1.1	 Doubling Algorithm Used to Calculate a Rank Array 
and a Suffix Array..............................................................335

7.1.2	 The Longest Common Prefix.............................................339
7.1.3	 Application of Suffix Array................................................341

7.2	 Segment Trees................................................................................357
7.2.1	 Segment Trees....................................................................357
7.2.2	 Updating a Single Point in a Segment Tree....................... 360
7.2.3	 Updating a Subinterval in a Segment Tree........................ 364

7.3	 Graph Algorithms..........................................................................382
7.3.1	 Euler Graphs......................................................................382
7.3.2	 Traveling Salesman Problem and Tournaments.................391
7.3.3	 Maximum Independent Sets..............................................403
7.3.4	 Articulation Points, Bridges, and Biconnected 

Components..................................................................... 408
7.4	 Problems........................................................................................ 420

	 8	 Practice for Computational Geometry............................................... 443
8.1	 Points, Line Segments, and Plans.................................................. 443

8.1.1	 Dot Product and Cross Product........................................ 444
8.1.2	 Line Segment Intersection..................................................453
8.1.3	 Solving Polyhedron Problems by Euler’s Polyhedron 

Formula.............................................................................465
8.2	 Calculating the Area for Union of Rectangles by Sweep Line 

Algorithms.....................................................................................469
8.2.1	 Sweeping in the Vertical Direction.....................................470
8.2.2	 Sweeping in the Horizontal Direction................................477

8.3	 Intersection of Half-Planes.............................................................481
8.3.1	 On-Line Algorithm for Intersection of Half-Planes............482
8.3.2	 Polar Angles.......................................................................489



viii  ◾  Contents

8.4	 Convex Hull and Finding the Farthest Pair of Points.................... 500
8.4.1	 Convex Hull..................................................................... 500
8.4.2	 Finding the Farthest Pair of Points.................................... 505

8.5	 Problems......................................................................................... 511

	 9	 Practice for State Space Search............................................................591
9.1	 Constructing a State Space Tree.....................................................592

9.1.1	 Robot.................................................................................594
9.1.2	 The New Villa................................................................... 600

9.2	 Optimizing State Space Search...................................................... 606
9.2.1	 Be Wary of Rose................................................................607
9.2.2	 Fill.....................................................................................612
9.2.3	 Package Pricing.................................................................. 616
9.2.4	 Eight..................................................................................624
9.2.5	 Remmarguts’ Date.............................................................632
9.2.6	 Jaguar King........................................................................637

9.3	 A Game Tree Used to Solve a Game Problem................................ 642
9.3.1	 Find the Winning Move................................................... 643
9.3.2	 The Pawn Chess.................................................................650

9.4	 Problems.........................................................................................654

		  Bibliography........................................................................................677

		  Index����������������������������������������������������������������������������������������������������679



Preface

Programming contests are contests solving problems by programming. Starting 
in the 1990s, the ACM International Collegiate Programming Contest (ACM-
ICPC) has become a worldwide programming contest. Every year, 6 continents, 
over 110 countries, 50,000 students, 5,000 coaches, and 3,000 universities par-
ticipate in ACM-ICPC local contests, preliminary contests, and regional contests 
all over the world. Alongside, some international programming contests, such as 
Google Code Jam, TopCoder Open Algorithm, Facebook Hacker Cup, Internet 
Problem Solving Contest (IPSC), and so on, are held every year. Programmers 
from all over the world, in addition to students, can participate in these contests 
through the Internet.

Based on these programming contests, programming contests’ problems from 
all over the world can be obtained, analyzed, and solved by students. These con-
test problems can be used not only for programming contest training, but also for 
education.

In our opinion, not only programming contestants’ ability to solve problems, 
but also computer students’ programming skills are based on their programming 
knowledge system and programming strategies for solving problems. The program-
ming knowledge system can be summarized as: “Algorithms + Data Structures = 
Programs.” It is also the foundation for the knowledge system of computer science 
and engineering. Strategies for solving problems are strategies for data modeling and 
algorithm design. When data models and algorithms for problems are not standard, 
we need to take some strategies to solve these problems.

Based on these facts, we published a series of books, not only for systematic 
programming contest training, but also for polishing computer students’ program-
ming skill better, using programming contests problems: Data Structure Experiment 
for Collegiate Programming Contest and Education, Algorithm Design Experiment 
for Collegiate Programming Contest and Education, and Programming Strategies 
Solving Problems in Mainland China. And the traditional Chinese version for 
Data Structure Experiment for Collegiate Programming Contest and Education and 
Programming Strategies Solving Problems were also published in Taiwan. In 2016, 
the first book’s English version Data Structure Practice: for Collegiate Programming 
Contest and Education was published by CRC Press.

Algorithm Design Practice for Collegiate Programming Contest and Education is 
the English version for Algorithm Design Experiment for Collegiate Programming 

ix



x  ◾  Preface

Contest and Education. There are 9 chapters and 247 programming contest prob-
lems in this book.

Chapter 1, “Practice for Ad Hoc Problems”, focuses on solving problems that 
there are no classical algorithms to solve. There are two methods to solve such 
problems: the mechanism analysis method and the statistical analysis method. In 
Chapter 2, “Practice for Simulation Problems”, experiments and practices for simu-
lation problems are shown. In problem descriptions, solution procedures or rules are 
shown. Simulation problems are solved by implementing rules or simulating solu-
tion procedures. Chapter 3, “Practice for Number Theory”, Chapter 4, “Practice 
for Combinatorics”, and Chapter 8, “Practice for Computational Geometry”, intro-
duce the mathematical background for number theory, combinatorics, and com-
putational geometry, respectively, and then show problems solved by mathematical 
methods. Greedy algorithms and dynamic programming are used to solve opti-
mization problems. Chapter 5, “Practice for Greedy Algorithms”, and Chapter 6, 
“Practice for Dynamic Programming”, introduce greedy algorithms and dynamic 
programming respectively, and show problems solved by greedy algorithms and 
dynamic programming. Chapter 7, “Practice for Advanced Data Structures”, 
describes using suffix arrays, segment trees, and some graph algorithms to solve 
problems. Search technologies are fundamental to computer science and technol-
ogy. Chapter 9, “Practice for State Space Search”, describes the implementation of 
state space search through solving contest problems.

The features of the book are as follows:

1.	The book’s outlines are based on the outlines of algorithms. Programming 
contest problems and their analyses and solutions are used as experiments. 
For each chapter, there is a “Problems” section to let students solve program-
ming contests’ problems, and hints for these problems are also included.

2.	Problems in the book are all selected from the ACM-ICPC regional and 
world finals programming contests, universities’ local contests, and online 
contests, from 1990 to now.

3.	Not only analyses and solutions, or hints to problems are shown, but 
also test data for most of the problems are provided. Sources and IDs for 
Online Judge for these problems are also provided. This can help readers 
polish their programming skills better and more easily. In addition, there 
are problems and test data available for download at https://www.crcpress 
.com/9781498776639.

The book can be used not only as an experiment book, but also for training for 
systematic programming contests.

We appreciate Professors Steven Skiena and Rezaul Chowdhury, from Stony 
Brook University; C. Jinshong Hwang, Ziliang Zong, and Hongchi Shi, from Texas 
State University; Normaziah Abdul Aziz, from International Islamic University 
Malaysia; Abul L. Haque, from North South University; Jiannong Cao, from  

https://www.crcpress.com/
https://www.crcpress.com/


Preface  ◾  xi

The Hong Kong Polytechnic University; and Rudolf Fleischer, from German 
University of Technology in Oman. They provided us platforms in which English 
is the native language that improved our manuscript. We also appreciate Miss Jiaqi 
Chen, an undergraduate student from the Georgia Institute of Technology, who 
reviewed and used several chapters in the manuscript, and pointed out some errors.

Online Judge systems for problems in this book are as follows:

Online Judge Systems Abbreviations Web Sites

Peking University 
Online Judge System

POJ http://poj.org/

Zhejiang University 
Online Judge System

ZOJ http://acm.zju.edu.cn/onlinejudge/

UVA Online Judge 
System

UVA http://uva.onlinejudge.org/ 
http://livearchive.onlinejudge.org/

Ural Online Judge 
System

Ural http://acm.timus.ru/

SGU Online Judge 
System

SGU http://acm.sgu.ru/

If you discover anything you believe to be an error, please contact us through 
Yonghui Wu’s email id: yhwu@fudan.edu.cn. Your help is appreciated.

Yonghui Wu, Jiande Wang
June, 2018

http://poj.org/
http://acm.zju.edu.cn/
http://uva.onlinejudge.org/
http://livearchive.onlinejudge.org/
http://acm.timus.ru/
http://acm.sgu.ru/


http://taylorandfrancis.com


xiii

Author Biographical 
Information

Yonghui Wu, �Ph.D., Associate Professor, Fudan University. He acted as the coach 
of Fudan University Programming Contest teams from 2001 to 2011. Under his 
guidance, Fudan University qualified for ACM-ICPC World Finals every year and 
won three medals (bronze medal in 2002, silver medal in 2005, and bronze medal 
in 2010) in ACM-ICPC World Finals. Since 2012, he has published a series of books 
for programming contest and education in simplified and traditional Chinese and 
English. Since 2013, he has given lectures in Oman, Taiwan, HongKong, Macau, 
Malaysia, Bangladesh, Mainland China, and the United States for program-
ming contest training. He is the chair of ACM-ICPC Asia Programming Contest 
Training Committee now.

Jiande Wang, �High School Senior Teacher. He is a famous coach for Olympiad in 
Informatics in China. He has published 24 books for programming contests since 
1990s. Under his guidance, his students won seven gold medals, three silver med-
als, and two bronze medals in International Olympiad in Informatics for China.



http://taylorandfrancis.com


1

Chapter 1

Practice for Ad 
Hoc Problems

Ad hoc means “for the special purpose or end presently under consideration.” There 
are no classical algorithms that can solve these ad hoc problems. Programmers need to 
design specific algorithms to solve ad hoc problems. There are two strategies to design 
algorithms for solving ad hoc problems: mechanism analysis and statistical analysis.

To solve an ad hoc problem, we need to see past its appearance and understand 
its essence.

In this chapter, two kinds of analyses solving ad hoc problems are shown:

◾◾ Mechanism Analysis;
◾◾ Statistical Analysis.

1.1  Solving Problems by Mechanism Analysis
Mechanism analysis examines the characteristics and internal mechanisms of an 
object to find a mathematical representation of the problem. Therefore, the key to 
mechanism analysis is mathematical modeling. Solving problems by mechanism 
analysis is a top-down method.

1.1.1  Factstone Benchmark

Amtel has announced that it will release a 128-bit computer chip by 2010, a 256-bit 
computer by 2020, and so on, continuing its strategy of doubling the word size every 
ten years. (Amtel released a 64-bit computer in 2000, a 32-bit computer in 1990, 



2  ◾  Algorithm Design Practice for Collegiate Programming

a 16-bit computer in 1980, an 8-bit computer in 1970, and a 4-bit computer, its first, 
in 1960.)

Amtel will use a new benchmark—the Factstone—to advertise the vastly 
improved capacity of its new chips. The Factstone rating is defined to be the largest 
integer n such that n! can be represented as an unsigned integer in a computer word.

Given a year 1960≤y≤2160, what will be the Factstone rating of Amtel’s most 
recently released chip?

Input

There are several test cases. For each test case, there is one line of input containing y. 
A line containing 0 follows the last test case.

Output
For each test case, output a line giving the Factstone rating.

  Analysis

For a given year, first the number of bits for the computer in this year is calculated, 
and then the largest integer n (the Factstone rating) that n! can be represented as an 
unsigned integer in a computer word is calculated.

The computer was a 4-bit computer in 1960. Amtel doubles the word size every 

ten years. That is, the number of bits for the computer in year Y is 2
2 1960

10=
+ −



K

Y

. 
The largest unsigned integer for K-bit is 2K−1. If n! is the largest unsigned integer 
not greater than 2K−1, then n is the Factstone rating in year Y. There are two cal-
culation methods.

Method 1: Calculate n! directly. This method is slow and easily leads to overflow.
Method 2: Logarithms are used to calculate n!. Based on the following formula:

	 log ! log log ( 1) ...... log 1 log (2 1) ,2 2 2 2 2= + − + + ≤ − <n n n KK

Sample Input Sample Output

1960
1981
0

3
8

Source:	 Waterloo local 2005.09.24 

IDs for Online Judges: POJ 2661, UVA 10916



Practice for Ad Hoc Problems  ◾  3

n can be calculated. Initially i is 1, repeat i++, and log2i is accumulated until the 
sum is larger than K. Then i−1 is the Factstone rating.

  Program

#include <stdio.h>
#include <math.h>
int y,Y,i,j,m;    // Year y
double f,w;    // f: the sum of accumulation for log2 i
main(){
   while (1 == scanf("%d",&y) && y){    //Input test cases
      w = log(4);
      for (Y=1960; Y<=y; Y+=10){
           w *= 2;
      }
      i = 1;    //accumulation log2 i until larger than w
      f = 0;
      while (f < w) {
         f += log((double)++i);
      }
      printf("%d\n",i-1);    //Output the Factstone rating
   }
   if (y) printf("fishy ending %d\n",y);
}

1.1.2  Bridge

Consider that n people wish to cross a bridge at night. A group of at most two 
people may cross at any time, and each group must have a flashlight. Only one 
flashlight is available among the n people, so some sort of shuttle arrangement 
must be arranged in order to return the flashlight so that more people may 
cross.

Each person has a different crossing speed; the speed of a group is determined 
by the speed of the slower member. Your job is to determine a strategy that gets all 
n people across the bridge in the minimum time.

Input

The first line of input contains n, followed by n lines giving the crossing times for 
each of the people. There are not more than 1000 people, and nobody takes more 
than 100 seconds to cross the bridge.



4  ◾  Algorithm Design Practice for Collegiate Programming

Output

The first line of output must contain the total number of seconds required for all 
n people to cross the bridge. The following lines give a strategy for achieving 
this time. Each line contains either one or two integers, indicating which person or 
people form the next group to cross. (Each person is indicated by the crossing time 
specified in the input. Although many people may have the same crossing time, the 
ambiguity is of no consequence.) Note that the crossings alternate directions, as it is 
necessary to return the flashlight so that more may cross. If more than one strategy 
yields the minimal time, any one will do.

  Analysis

The strategy that gets all n people across the bridge in the minimum time is: fast 
people should return the flashlight to help slow people.

Because a group of at most two people may cross the bridge each time, we solve the 
problem by analyzing members of groups. First, n people’s crossing times are sorted in 
descending order. Suppose that in the current sequence, A is the current fastest person’s 
crossing time, B is the current second fastest person’s crossing time, a is the current 
slowest person’s crossing time, and b is the current second slowest person’s crossing time.

There are two methods for making the current slowest person and the current 
second slowest person to cross the bridge:

Method 1: The fastest person helps the slowest person and the second slowest 
person to cross the bridge. The steps are as follows:
Step 1: The fastest person and the slowest person cross the bridge;
Step 2: The fastest person is back;
Step 3: The fastest person and the second slowest person cross the bridge;
Step 4: The fastest person is back.

It takes time 2×A+a+b.

Sample Input Sample Output

4
1
2
5
10

17
1  2
1
5  10
2
1  2

Source:	 POJ 2573, ZOJ 1877, UVA 10037

IDs for Online Judge: Waterloo local 2000.09.30



Practice for Ad Hoc Problems  ◾  5

Method 2: The fastest person and the second fastest person help the current 
slowest person and the current second slowest person to cross the bridge.
Step 1: The fastest person and the second fastest person cross the bridge;
Step 2: The fastest person is back and returns the flashlight to the slowest 

person and the second slowest person;
Step 3: The slowest person and the second slowest person cross the bridge and 

give the flashlight to the second fastest person;
Step 4: The second fastest person is back.

It takes time 2×B+A+a.

Each time, we need to compare method 1 and method 2. If  (2×A+a+b<2×B+A+a), 
then we use method 1, else we use method 2. And each time the current slowest 
person and the current second slowest person cross the bridge. Finally, there are 
two cases:

Case 1: If there are only two persons who need to cross the bridge, then the two 
persons cross the bridge. It takes time B.

Case 2: There are three persons who need to cross the bridge. First, the fastest 
person and the slowest person cross the bridge. Then, the fastest person is 
back. Finally, the last two persons cross the bridge. It takes time a+A+b.

  Program

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<string>
using  namespace std;
int n,i,j,k,a[111111];    //n: the number of persons, a[ ]: n 
people’s crossing times
int ans=0;    // ans: the total number of seconds for all n 
people to cross the bridge
int main () {
    scanf("%d",&n);    //Input
    for(i=1;i<=n;i++)scanf("%d",a+i);
    if(n==1){    //only 1 person
        printf("%d\n%d\n",a[1],a[1]);return 0;
    }



6  ◾  Algorithm Design Practice for Collegiate Programming

    int nn=n;
    sort(a+1,a+n+1);    //n people’s crossing times are sorted 
in descending order
    while(n>3){    //calculate the total number of seconds for 
all n people to cross the bridge
      if(a[1]+a[n-1]<2*a[2]){    //Method 1
          ans+=a[n]+a[1]*2+a[n-1];
      }else{    //Method 2
            ans+=a[2]+a[1]+a[2]+a[n];
        }
        n-=2;    //the two slowest persons cross the bridge
    }
    if(n==2)ans+=a[2];    //only two persons need to cross the 
bridge
    else  ans+=a[1]+a[2]+a[3];    //three persons need to 
cross the bridge
    printf("%d\n",ans);    //the total number of seconds for 
all n people to cross the bridge
    n=nn;
    while(n>3){    //output the strategy for achieving this 
time
        if(a[1]+a[n-1]<2*a[2])    //Method 1
            printf("%d%d\n%d\n%d%d\n%d\n",a[1],a[n],a[1], 
a[1],a[n-1],a[1]);
        else    //Method 2
            printf("%d%d\n%d\n%d%d\n%d\n",a[1],a[2],a[1], 
a[n-1],a[n],a[2]);
        n-=2;    //the two slowest persons cross the bridge
    }
    if(n==2)printf("%d %d\n",a[1],a[2]);    //only two persons 
need to cross the bridge
    else    //three persons need to cross the bridge
        printf("%d %d\n%d\n%d %d\n",a[1],a[3],a[1],a[1],a[2]);
    return 0;
}

1.2  Solving Problems by Statistical Analysis
Unlike mechanism analysis, statistical analysis begins with a partial solution to the 
problem, and the overall global solution is found based on analyzing the partial 
solution. Solving problems by statistical analysis is a bottom-up method.

1.2.1  Ants

An army of ants walk on a horizontal pole of length l cm, each with a constant 
speed of 1 cm/s. When a walking ant reaches an end of the pole, it immediately falls 
off it. When two ants meet, they turn back and start walking in opposite directions. 



Practice for Ad Hoc Problems  ◾  7

We know the original positions of ants on the pole; unfortunately, we do not know 
the directions in which the ants are walking. Your task is to compute the earliest 
and the latest possible times needed for all ants to fall off the pole.

Input

The first line of input contains one integer giving the number of cases that follow. 
The data for each case start with two integer numbers: the length of the pole (in cm) 
and n, the number of ants residing on the pole. These two numbers are followed by 
n integers giving the position of each ant on the pole as the distance measured from 
the left end of the pole, in no particular order. All input integers are not bigger than 
1000000, and they are separated by whitespace.

Output

For each case of input, output two numbers separated by a single space. The first num-
ber is the earliest possible time when all ants fall off the pole (if the directions of their 
walks are chosen appropriately), and the second number is the latest possible such time.

  Analysis

The upper limit of the number of ants is 1000000. The upper limit of the number 
of combinations for ants’ walking is 21000000. Therefore, the problem can’t be solved 
by enumerating ants walking.

First, we analyze the case that a few ants walk on a horizontal pole (Figure 1.1).
In Figure 1.1, when two ants meet, that is, “  ”, they’ll turn back 

and start walking in opposite directions, that is, “  ”. All ants are the 
same. Therefore, all ants walk in their original directions no matter whether they 
meet or not. There are two values for the time that an ant falls off the pole: the ant 
walks to the left, or the ant walks to the right.

Sample Input Sample Output

2
10  3
2  6  7
214  7
11  12  7  13  176  23  191

4  8
38  207

Source:	 Waterloo local 2004.09.19

IDs for Online judges: POJ 1852, ZOJ 2376, UVA 10714



8  ◾  Algorithm Design Practice for Collegiate Programming

Suppose li is the position of ant i on the pole, that is, the distance measured 
from the left end of the pole, 1≤i≤n; little is the earliest possible time when all ants 
fall off the pole; and big is the latest possible time when all ants fall off the pole. 
Based on these facts, the algorithm is as follows:

	
min{ , }, max{ , }.
1 1

= − = −
≤ ≤ ≤ ≤

little l L l big l L l
i n

i i
i n

i i

  Program

#include <stdio.h>
int c,big,little,L,i,j,k,n;    //c: number of test cases; L: 
the length of the pole; n: number of ants on the pole
main(){
   scanf("%d",&c);    // input the number of test cases
   while (c-- && (2 == scanf("%d%d",&L,&n))) {    //Input the 
length of the pole and the number of ants on the pole

Figure 1.1



Practice for Ad Hoc Problems  ◾  9

      big = little = 0;    //Initialization
      for (i=0;i<n;i++) {    //Input original positions for 
all ants and adjust times
         scanf("%d",&k);
         if (k > big) big = k;    //adjust the earliest 
possible time
         if (L-k > big) big = L-k;
         if (k > L-k) k = L-k;    //adjust the latest possible 
time
         if (k > little) little = k;
      }
      printf("%d %d\n",little,big);    //Output the result
   }
   if (c != -1) printf("missing input\n");
}

1.2.2  Matches Game

Here is a simple game. In this game, there are several piles of matches and two 
players. The two players play in turn. In each turn, one can choose a pile and 
take away an arbitrary number of matches from the pile (of course, the number of 
matches, which is taken away, cannot be zero and cannot be larger than the number 
of matches in the chosen pile). If, after a player’s turn, there is no match left, the 
player is the winner. Suppose that the two players are all very clear. Your job is to 
tell whether the player who plays first can win the game or not.

Input

The input consists of several lines, and in each line there is a test case. At the begin-
ning of a line, there is an integer M (1≤M≤20), which is the number of piles. Then 
come M positive integers, which are not larger than 10000000. These M integers 
represent the number of matches in each pile.

Output

For each test case, output “Yes” in a single line, if the player who play first will win; 
otherwise output “No.”

Sample Input Sample Output

2  45  45
3  3  6  9

No
Yes

Source:	 POJ Monthly, readchild 

ID for Online Judge: POJ 2234



10  ◾  Algorithm Design Practice for Collegiate Programming

  Analysis

The problem is a Nimm’s Game problem. Cases for the game are analyzed as 
follows:

Case 1: There is only one pile of matches. The player who plays first will take 
away all matches from the pile and win the game.

Case 2: There are two piles of matches. Numbers of matches in the two piles are 
N1 and N2 respectively.
If N1≠N2, the player who plays first will take away some matches from the 

larger pile to make the two piles have the same number of matches. Then, 
by mimicking the player who plays second and taking the same number 
of matches that he takes, just from the opposite pile, the player who plays 
first will win the game.

If N1=N2, the player who plays second will take the same number of matches 
as the player who plays first takes, just from the opposite pile, and then 
the player who plays second will win the game.

Case 3: There are more than two piles of matches.

Each natural number can be represented as a binary number. For example, 
57(10)=111001(2), that is, 57(10)=25+24+23+20. A pile with 57 matches can be regarded 
as 4 little piles, a pile with 25 matches, a pile with 24 matches, a pile with 23 matches, 
and a pile with 20 matches.

Suppose there are k piles of matches, k>2, and the numbers of matches in the 
k piles are N1, N2, ……, and Nk respectively. Ni can be represented as a (s+1)-digit 
binary number, that is, Ni=nis…ni1ni0, nij is a binary digit, 0≤j≤s, 1≤i≤k. If the digit 
of a binary number is less than s+1, leading zeros are added.

The game state is balanced if n10+n20+…+nk0 is even, n11+n21+…+nk1 is even, 
……, and n1s+n2s+…+nks is even, that is, n10 XOR n20 XOR…XOR nk0 is 0, n11 
XOR n21 XOR…XOR nk1 is 0, ……, and n1s XOR n2s XOR…XOR nks is 0; else the 
game state is unbalanced. If a player faces an unbalanced state, he can take away 
some matches from a pile to make the state a balanced state. And if a player faces a 
balanced state, no matter what strategies he takes, the state will become an unbal-
anced state. The final state for the game is that all binary numbers are zero, that is, 
the final state is balanced. Therefore, the strategy for winning the game (Bouton’s 
Theorem) is as follows:

The player who plays first will win the game if the initial state is unbalanced. 
And the player who plays second will win the game if the initial state is 
balanced.



Practice for Ad Hoc Problems  ◾  11

For example, there are four piles of matches. There are 7, 9, 12, and 15 matches 
in the four piles respectively. 7, 9, 12, and 15 can be represented as binary numbers 
0111, 1001, 1100, and 1111. This is shown in the following list.

Size of a Pile 23 = 8 22 = 4 21 = 2 20 = 1

7 0 1 1 1

9 1 0 0 1

12 1 1 0 0

15 1 1 1 1

Odd Odd Even Odd

The initial state for the game is unbalanced. The player who plays first takes 
away some matches from a pile to make the state become a balanced state. There are 
many choices. For example, the player who plays first takes away 11 matches from 
a pile with 12 matches to make the state become a balanced state. This is shown in 
the following list.

Size of a Pile 23 = 8 22 = 4 21 = 2 20 = 1

7 0 1 1 1

9 1 0 0 1

12⇒1 0 0 0 1

15 1 1 1 1

The method that the player who plays first takes away some matches from a pile 
to make the state become a balanced state is to select a row (a pile), and to flip val-
ues of bits in odd columns in the row. After flipping values of bits in odd columns, 
the number of matches is less than the original number of matches in the row. The 
number of matches that the player who plays first takes away from the correspond-
ing pile is the difference between the original number of matches and the new 
number of matches. Then, the player who plays second takes away matches under 
a balanced state. The state will become an unbalanced state. And the player who 
plays first can make the state balance no matter how the player who plays second 
takes away matches. The process is repeated until the player who plays second takes 
away some matches under a balanced state last time, and then the player who plays 
first can take away all remainder matches.

For the same reason, the player who plays second will win the game when the 
initial state is a balanced game.



12  ◾  Algorithm Design Practice for Collegiate Programming

Therefore, the algorithm is as follows:
N piles of matches are represented as N binary numbers. If the initial state is 

unbalanced, the player who plays first will win the game, else the player who plays 
second will win the game.

  Program

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <string>
# include <cmath>
# include <algorithm>
using namespace std;
int main(){
	 int n;
	 while(~scanf("%d",&n)){    //number of piles
		  int a=0,b;    //a: result, b: number of matches in the 
current pile
		  for(int i=0;i<n;i++){    //input numbers of matches in 
all piles
			   scanf("%d",&b);
			   a^=b;    //XOR operations
		  }
		  printf("%s\n",a?"Yes":"No");    //if a isn’t balanced, 
output “Yes”, else output “No”
	 }
	 return 0;
}

1.3  Problems
1.3.1  Perfection

From the article Number Theory in the 1994 Microsoft Encarta: “If a, b, c are inte-
gers such that a = bc, a is called a multiple of b or of c, and b or c is called a divisor 
or factor of a. If c is not ±1, b is called a proper divisor of a. Even integers, which 
include 0, are multiples of 2, for example, −4, 0, 2, 10; an odd integer is an integer 
that is not even, for example, −5, 1, 3, 9. A perfect number is a positive integer that 
is equal to the sum of all its positive, proper divisors; for example, 6, which equals 
1 + 2 + 3, and 28, which equals 1 + 2 + 4 + 7 + 14, are perfect numbers. A positive 



Practice for Ad Hoc Problems  ◾  13

number that is not perfect is imperfect and is deficient or abundant according to 
whether the sum of its positive, proper divisors is smaller or larger than the number 
itself. Thus, 9, with proper divisors 1, 3, is deficient; 12, with proper divisors 1, 2, 
3, 4, 6, is abundant.”

Given a number, determine if it is perfect, abundant, or deficient.

Input

A list of N positive integers (none greater than 60,000), with 1<N<100. A 0 will 
mark the end of the list.

Output

The first line of output should read PERFECTION OUTPUT. The next N lines of 
output should list for each input integer whether it is perfect, deficient, or abundant, 
as shown in the following example. Format counts: the echoed integers should be 
right-justified within the first five spaces of the output line, followed by two blank 
spaces, followed by the description of the integer. The final line of output should 
read END OF OUTPUT.

Sample Input Sample Output

15  28  6  56  60000  22
496  0

PERFECTION OUTPUT
      15   DEFICIENT
      28   PERFECT
        6   PERFECT
      56   ABUNDANT
60000   ABUNDANT
      22   DEFICIENT
    496   PERFECT
END OF OUTPUT

Source:	 ACM Mid-Atlantic 1996

IDs for Online Judges: POJ 1528, ZOJ 1284, UVA 382

  Hint

First, all proper divisors of the current integer are calculated. Then the sum of all 
proper divisors is calculated.

If the current integer > the sum of all proper divisors, then output “DEFICIENT”;
If the current integer < the sum of all proper divisors, then output “ABUNDANT”;
If the current integer = the sum of all proper divisors, then output “PERFECT”.



14  ◾  Algorithm Design Practice for Collegiate Programming

1.3.2  Uniform Generator

Computer simulations often require random numbers. One way to generate pseudo-
random numbers is via a function of the form:

1 %       where “%” is the modulus operator.( ) ( )+ = + seed x seed x STEP MOD

Such a function will generate pseudo-random numbers (seed) between 0 and 
MOD-1. One problem with functions of this form is that they will always generate 
the same pattern over and over. In order to minimize this effect, selecting the STEP 
and MOD values carefully can result in a uniform distribution of all values between 
(and including) 0 and MOD-1.

For example, if STEP=3 and MOD=5, the function will generate the series of 
pseudo-random numbers 0, 3, 1, 4, 2 in a repeating cycle. In this example, all of 
the numbers between and including 0 and MOD-1 will be generated every MOD 
iterations of the function. Note that by the nature of the function to generate the 
same seed(x+1) every time, seed(x) occurs means that if a function will generate 
all the numbers between 0 and MOD-1, it will generate pseudo-random numbers 
uniformly with every MOD iteration.

If STEP=15 and MOD=20, the function generates the series 0, 15, 10, 5 (or any 
other repeating series if the initial seed is other than 0). This is a poor selection of 
STEP and MOD because no initial seed will generate all of the numbers from 0 
and MOD-1.

Your program will determine whether choices of STEP and MOD will generate 
a uniform distribution of pseudo-random numbers.

Input

Each line of input will contain a pair of integers for STEP and MOD in that order 
(1≤STEP,MOD≤100000).

Output

For each line of input, your program should print the STEP value right-justified in 
columns 1 through 10, the MOD value right-justified in columns 11 through 20, 
and either “Good Choice” or “Bad Choice” left-justified starting in column 25. 
The “Good Choice” message should be printed when the selection of STEP and 
MOD will generate all the numbers between and including 0 and MOD-1 when 
MOD numbers are generated. Otherwise, your program should print the mes-
sage “Bad Choice.” After each output test set, your program should print exactly 
one blank line.



Practice for Ad Hoc Problems  ◾  15

Sample Input Sample Output

3  5 3 5 Good Choice

15  20 15 20 Bad Choice

63923  99999 63923 99999 Good Choice

Source:	 ACM South Central USA 1996

IDs for Online Judges: POJ 1597, ZOJ 1314, UVA 408

  Hint

Suppose seedi is the i-th pseudo-random number. Based on the problem descrip-
tion, the next pseudo-random number (the (i+1)-th pseudo-random number) is 
seedi+1=(seedi+step)%MOD.

From seed0, the function is iterated MOD-1 times. If produced MOD-1 pseudo-
random numbers are all the numbers between 1 and MOD-1, it generates a uni-
form distribution of pseudo-random numbers; else it doesn’t generate a uniform 
distribution of pseudo-random numbers.

1.3.3  WERTYU

A common typing error is to place the hands on the keyboard one row to the right 
of the correct position (see Figure 1.2). So “Q” is typed as “W” and “J” is typed as 
“K” and so on. You are to decode a message typed in this manner.

Input

Input consists of several lines of text. Each line may contain digits, spaces, uppercase 
letters (except Q, A, Z), or punctuation shown above (except back-quote [ ]̀). Keys 
labelled with words (Tab, BackSp, Control, etc.) are not represented in the input.

ControlControl AltAlt

3 4 5 6 7 8 9 0 - = BackSp21`

E R T Y U I O P [ ] \Tab WQ

EnterD F G H J K L ; ‘SA

C V B N M , . /XZ

Figure 1.2



16  ◾  Algorithm Design Practice for Collegiate Programming

Output

You are to replace each letter or punctuation symbol by the one immediately to its 
left on the QWERTY keyboard shown above. Spaces in the input should be echoed 
in the output.

Sample Input Sample Output

O S, GOMR YPFSU/ I AM FINE TODAY.

Source:	 Waterloo local 2001.01.27

IDs for Online Judges: POJ 2538, ZOJ 1884, UVA 10082

  Hint

First, the offline method is used to calculate the conversion table based on the key-
board figure. Then, for each letter, the corresponding letter in the conversion table 
is output.

1.3.4  Soundex

Soundex coding groups together words that appear to sound alike based on their 
spelling. For example, “can” and “khawn”, “con” and “gone” would be equivalent 
under Soundex coding.

Soundex coding involves translating each word into a series of digits in which 
each digit represents a letter:

1 represents B, F, P, or V
2 represents C, G, J, K, Q, S, X, or Z
3 represents D or T
4 represents L
5 represents M or N
6 represents R

The letters A, E, I, O, U, H, W, and Y are not represented in Soundex coding, 
and repeated letters with the same code digit are represented by a single instance of 
that digit. Words with the same Soundex coding are considered equivalent.

Input

Each line of input contains a single word, all uppercase, less than 20 letters long.



Practice for Ad Hoc Problems  ◾  17

Output

For each line of input, produce a line of output giving the Soundex code.

Sample Input Sample Output

KHAWN
PFISTER
BOBBY

25
1236
11

Source:	 Waterloo local 1999.09.25

IDs for Online Judges: POJ 2608, ZOJ 1858, UVA 10260

  Hint

For each word, letters are transferred into corresponding digits from left to right. 
And based on the problem description, letters A, E, I, O, U, H, W, and Y are not 
represented in Soundex coding, and repeated letters with the same code digit are 
represented by a single instance of that digit.

1.3.5  Minesweeper

The game Minesweeper is played on an n by n grid. In this grid are hidden m mines, 
each at a distinct grid location. The player repeatedly touches grid positions. If a 
position with a mine is touched, the mine explodes and the player loses. If a position 
not containing a mine is touched, an integer between 0 and 8 appears, denoting 
the number of adjacent or diagonally adjacent grid positions that contain a mine. 
A sequence of moves in a partially played game is illustrated below in Figure 1.3.

Here, n is 8, m is 10, blank squares represent the integer 0, raised squares represent 
unplayed positions, and the figures resembling asterisks represent mines. The left-
most image represents the partially played game. From the first image to the second, 

Figure 1.3



18  ◾  Algorithm Design Practice for Collegiate Programming

the player has played two moves, each time choosing a safe grid position. From the 
second image to the third, the player is not so lucky; he chooses a position with a 
mine and therefore loses. The player wins if he continues to make safe moves until 
only m unplayed positions remain; these must necessarily contain the mines.

Your job is to read the information for a partially played game and to print the 
corresponding board.

Input

The first line of input contains a single positive integer n≤10. The next n lines rep-
resent the positions of the mines. Each line represents the contents of a row using 
n characters: a period indicates an unmined positon, while an asterisk indicates a 
mined position. The next n lines are each n characters long: touched positions are 
denoted by an x, and untouched positions by a period. The sample input corre-
sponds to the middle section of Figure 1.3.

Output

Your output should represent the board, with each position filled in appropriately. 
Positions that have been touched and do not contain a mine should contain an inte-
ger between 0 and 8. If a mine has been touched, all positions with a mine should 
contain an asterisk. All other positions should contain a period.

Sample Input Sample Output

8
...**..*
......*.
....*...
........
........
.....*..
...**.*.
.....*..
xxx.....
xxxx....
xxxx....
xxxxx...
xxxxx...
xxxxx...
xxx.....
xxxxx...

001.....
0013....
0001....
00011...
00001...
00123...
001.....
00123...

Source:	 Waterloo local 1999.10.02

IDs for Online Judges: POJ 2612, ZOJ 1862, UVA 10279



Practice for Ad Hoc Problems  ◾  19

  Hint

Suppose g[i][j] is the matrix for mines, and try[i][j] is the touch matrix, 1≤i, j≤n.
First we need to determine whether a mine is touched or not, that is, whether 

there exists such a grid that (try[i][j]=='x'&&g[i][j]=='*'). The mark mc=
' * ' There exists a touched mine.
'.' There is no touched mine.






 shows whether there is a touched mine or not.

Then calculate and output the state for every grid (i,j) from left to right, and 
from top to bottom, 1≤i, j≤n.

If grid (i,j) is touched and doesn’t contain a mine (try[i][j]== 'x'&&g[i][j]== '.'), 
then the number of adjacent or diagonally adjacent grid positions that contain a 
mine x is calculated and is filled into (i,j); else (i.e., try[i][j]== '.'||g[i][j]== '*'), if grid 
(i,j) contains a mine, mc is filled into (i,j); else ‘.’ is filled into (i,j).

1.3.6  Tic Tac Toe

Tic Tac Toe is a child’s game played on a 3 by 3 grid. One player, X, starts by plac-
ing an X at an unoccupied grid position. Then the other player, O, places an O at 
an unoccupied grid position. Play alternates between X and O until the grid is filled 
or one player’s symbols occupy an entire line (vertical, horizontal, or diagonal) in 
the grid.

We will denote the initial empty Tic Tac Toe grid with nine dots. Whenever 
X or O plays, we fill in an X or an O in the appropriate position. The example in 
Figure 1.4 illustrates each grid configuration from the beginning to the end of a 
game in which X wins.

Your job is to read a grid and to determine whether or not it could possibly be 
part of a valid Tic Tac Toe game. That is, is there a series of plays that can yield this 
grid somewhere between the start and end of the game?

Input

The first line of input contains N, the number of test cases. 4N−1 lines follow, 
specifying N grid configurations separated by empty lines.

X X O X O X O X O X O X O
O O OO OO

X X X X X X XXX

... .. . . . . . .

... ... ... ... . . . . . .

... ... ... .. .. . .

Figure 1.4



20  ◾  Algorithm Design Practice for Collegiate Programming

Output

For each case, print “yes” or “no” on a line by itself, indicating whether or not the 
configuration could be part of a Tic Tac Toe game.

Sample Input Sample Output

2
X.O
OO.
XXX

O.X
XX.
OOO

yes
no

Source:	 POJ 2361, ZOJ 1908, UVA 10363

IDs for Online Judges: Waterloo local 2002.09.21

  Hint

Based on the problem description, a configuration for part of a valid Tic Tac Toe 
game must satisfy the following properties:

1.	The number of Os must be one less than or equal to the number of Xs;
2.	If the number of Os is one less than the number of Xs, O doesn’t win the 

game;
3.	If the number of Os is equal to the number of Xs, X doesn’t win the game.

That is to say, if a configuration isn’t part of a valid Tic Tac Toe game, it must 
satisfy the following properties:

1.	The number of Os must be larger than the number of Xs; or
2.	The number of Os is two less than the number of Xs at least; or
3.	Both O and X win the game; or
4.	O wins the game; and the number of Os isn’t equal to the number of Xs; or
5.	X wins the game; and the number of Os is equal to the number of Xs.

Otherwise, the configuration is part of a valid Tic Tac Toe game.

1.3.7  Rock, Scissors, Paper

Bart’s sister Lisa has created a new civilization on a two-dimensional grid. At the 
outset, each grid location may be occupied by one of three life forms: Rocks, Scissors, 



Practice for Ad Hoc Problems  ◾  21

or Papers. Each day, differing life forms occupying horizontally or vertically adja-
cent grid locations wage war. In each war, Rocks always defeat Scissors, Scissors 
always defeat Papers, and Papers always defeat Rocks. At the end of the day, the 
victor expands its territory to include the loser’s grid position. The loser vacates 
the position.

Your job is to determine the territory occupied by each life form after n days.

Input

The first line of input contains t, the number of test cases. Each test case begins 
with three integers not greater than 100: r and c, the number of rows and columns 
in the grid, and n. The grid is represented by the r lines that follow, each with c 
characters. Each character in the grid is R, S, or P, indicating that it is occupied by 
Rocks, Scissors, or Papers respectively.

Output

For each test case, print the grid as it appears at the end of the nth day. Leave an 
empty line between the output for successive test cases.

Sample Input Sample Output

2
3  3  1
RRR
RSR
RRR
3  4  2
RSPR
SPRS
PRSP

RRR
RRR
RRR

RRRS
RRSP
RSPR

Source:	 POJ 2339, ZOJ 1921, UVA 10443

IDs for Online Judges: Waterloo local 2003.01.25

  Hint

Because the two-dimensional grid is changed at the end of the day, two matrices 
are used to represent yesterday’s two-dimensional grid and today’s two-dimensional 



22  ◾  Algorithm Design Practice for Collegiate Programming

grid respectively. Today’s two-dimensional grid is calculated based on yesterday’s 
two-dimensional grid.

◾◾ An ‘R’ will be changed into a ‘P’ if and only if the ‘R’ is adjacent to a ‘P’ 
in yesterday’s two-dimensional grid. That is, if an ‘R’ is adjacent to a ‘P’ in 
yesterday’s two-dimensional grid, then the ‘R’ is changed into ‘P’ in today’s 
two-dimensional grid.

◾◾ An ‘S’ will be changed into an ‘R’ if and only if the ‘S’ is adjacent to an ‘R’ 
in yesterday’s two-dimensional grid. That is, if an ‘S’ is adjacent to an ‘R’ in 
yesterday’s two-dimensional grid, then the ‘S’ is changed into ‘R’ in today’s 
two-dimensional grid.

◾◾ A ‘P’ will be changed into an ‘S’ if and only if the ‘P’ is adjacent to an ‘S’ 
in yesterday’s two-dimensional grid. That is, if a ‘P’ is adjacent to an ‘S’ in 
yesterday’s two-dimensional grid, then the ‘P’ is changed into ‘S’ in today’s 
two-dimensional grid.

For example,

R S P R
S P R S
P R S P

R R S P
R S P R
S P R S

R R R S
R R S P
R S P R

R R R R
R R R S
R R S P

⇒ ⇒ ⇒



The grid as it appears at the end of the nth day is calculated based on the above rules.

1.3.8  Prerequisites?

Freddie the freshman has chosen to take k courses. To meet the degree require-
ments, he must take courses from each of several categories. Can you assure Freddie 
that he will graduate, based on his course selection?

Input

Input consists of several test cases. For each case, the first line of input contains 
1≤k≤100, the number of courses Freddie has chosen, and 0≤m≤100, the number 
of categories. One or more lines containing k four-digit integers follow; each is 
the number of a course selected by Freddie. Each category is represented by a line 
containing 1≤c≤100, the number of courses in the category; 0≤r≤c, the minimum 
number of courses from the category that must be taken; and the c course numbers 



Practice for Ad Hoc Problems  ◾  23

in the category. Each course number is a four-digit integer. The same course may 
fulfil several category requirements. Freddie’s selections, and the course numbers in 
any particular category, are distinct. A line containing 0 follows the last test case.

Output

For each test case, output a line containing “yes” if Freddie's course selection meets 
the degree requirements; otherwise output “no.”

Sample Input Sample Output

3  2
0123  9876  2222
2  1  8888  2222
3  2  9876  2222  7654
3  2
0123  9876  2222
2  2  8888  2222
3  2  7654  9876  2222
0

yes
no

Source:	 Waterloo local 2005.09.24

IDs for Online Judges: POJ 2664, UVA 10919

  Hint

Suppose ci is the number of courses in the i-th category, donei is the set of courses in 
the i-th category, and ri is the minimum number of courses from the i-th category 
that must be taken, 1≤i≤m.

First, k courses that Freddie has chosen to take are put into a set take[ ].
Then courses that Freddie has chosen to take are analyzed. For courses in the 

i-th category, if ri≤|take[ ]∩ donei|, the number of courses in the i-th category that 
Freddie has chosen to take is larger than or equal to the minimum number of 
courses from the i-th category that must be taken, and set the mark yesi=true.

Finally, if ∩
≤ ≤

yes
i m

i{ }
1

==true, then Freddie’s course selection meets the degree 

requirements, else Freddie’s course selection doesn’t meet the degree requirements.

1.3.9  Save Hridoy

It would be great if banners with good words could inspire us all. Then we could 
make large banners with good words on them to make this world beautiful. With all 
good wishes, we will make such a banner today—a banner to save a life1, a banner 
to save humanity.



24  ◾  Algorithm Design Practice for Collegiate Programming

In this problem, the program-generated banners will contain the text “SAVE 
HRIDOY”. We will make this banner with different text sizes and two possible 
types of orientations: horizontal and vertical (see Figure 1.5). As we will make ban-
ners of different size in plain monochrome text, we will use two different ASCII 
characters to denote black-and-white pixels. In this process, the smallest possible 
banner (font size 1) for us in horizontal orientation is:

You can see that here black pixels are formed with the “*” character and white 
pixels are marked with the “.” character. In this banner, each character is repre-
sented in a (5 × 5) grid, two consecutive characters in a single word are separated 
by a single vertical dotted line, and the two words are separated by three vertical 
dotted lines. In the case of vertical banners (of font size 1), two consecutive letters in 
a single word are separated by a horizontal dotted line, and two words are separated 
by three horizontal dotted lines. Look at the second output for sample input to 
know how vertical banners are formed. In the case of a banner of font size 2, each 
pixel is represented by a (2 × 2) grid of pixels. So actually a banner of font size two 
has double the width and double the height of a banner of font size 1.

Input

The input file contains at most 30 lines of inputs. Each line contains an integer 
N (0<N<51). This value of N denotes the font size and orientation of a banner. Input 
is terminated by a line containing a single zero. This line should not be processed.

Output

If N is positive, then you have to draw a banner of horizontal orientation, and if 
N is negative, then you have to draw a banner of vertical orientation. The detailed 
description of output for these two types of cases is given below:

1.	If N is positive, then produce 5N lines of output. These lines actually draw 
the horizontal banner. Two consecutive letters in a word are separated by N 
vertical dotted lines. Two words are separated by 3N vertical dotted lines.

2.	If N is negative, then produce 5L×10+11L lines of output, where L is the abso-
lute value of N. Two consecutive characters in a word are separated by L hori-
zontal dotted lines, and two words are separated by 3L horizontal dotted lines.

Figure 1.5



Practice for Ad Hoc Problems  ◾  25

After the output of each test case, print two blank lines.

Sample Input Sample Output

-
1
2
0

*****
*....

*****
....*

*****
.....

.***.
*...*

*****
*...*
*...*
.....
*...*
*...*
*...*
.*.*.
..*..
.....

*****
*....
***..
*....

*****
.....
.....
.....
*...*
*...*

*****
*...*
*...*
.....

*****
*...*

*****
*.*..
*..**
.....

*****
..*..
..*..

(continued)



26  ◾  Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output

..*..
*****
.....
***..
*..*.
*...*
*..*.
***..
.....
*****
*...*
*...*
*...*
*****
.....
*...*
.*.*.
..*..
..*..
..*..

**********....******....**......**..**********......**......**..**********..
**********..******......**********..**......**
**********....******....**......**..**********......**......**..**********..
**********..******......**********..**......**
**..........**......**..**......**..**..............**......**..**......**......**......
**....**....**......**....**..**..
**..........**......**..**......**..**..............**......**..**......**......**......
**....**....**......**....**..**..
**********..**********..**......**..******..........**********..********
**......**......**......**..**......**......**....
**********..**********..**......**..******..........**********..********
**......**......**......**..**......**......**....
........**..**......**....**..**....**..............**......**..**..**..........**......
**....**....**......**......**....
........**..**......**....**..**....**..............**......**..**..**..........**......
**....**....**......**......**....
**********..**......**......**......**********......**......**..**....****..**
********..******......**********......**....
**********..**......**......**......**********......**......**..**....****..**
********..******......**********......**....

Source:	 UVA Monthly Contest August 2005

ID for Online Judge: UVA 10894



Practice for Ad Hoc Problems  ◾  27

  Hint

First, the offline method is used to construct a matrix F[][], representing a ban-
ner of horizontal orientation, and a matrix G[][], representing a banner of vertical 
orientation (font size 1).

Then, for each test case N, F[][], or G[][] is magnified. If N is positive, then 
F[][] is magnified N times. That is, a horizontal banner with 5N×61N is produced, 

where (i,j) is 1 1−





+





F
i
N

1 1−





+





j
N

. If N is negative, then G[][] is magni-

fied |N| times. That is, a horizontal banner with 61N×5N is produced, where (i,j) is 
1 1−

−






+





G
i

N
1 1−

−






+





j
N

.

1.3.10  Find the Telephone

In some places, it is common to remember a phone number by associating its digits 
to letters. In this way, the expression MY LOVE means 69 5683. Of course, there 
are some problems, because some phone numbers cannot form a word or a phrase 
and the digits 1 and 0 are not associated to any letter.

Your task is to read an expression and find the corresponding phone number 
based on the table below. An expression is composed by the capital letters (A-Z), 
hyphens (-) and the numbers 1 and 0.

Letters Number

ABC 2

DEF 3

GHI 4

JKL 5

MNO 6

PQRS 7

TUV 8

WXYZ 9

Input

The input consists of a set of expressions. Each expression is in a line by itself and 
has C characters, where 1≤C≤30. The input is terminated by end of file (EOF).



28  ◾  Algorithm Design Practice for Collegiate Programming

Output

For each expression, you should print the corresponding phone number.

Sample Input Sample Output

1-HOME-SWEET-HOME
MY-MISERABLE-JOB

1-4663-79338-4663
69-647372253-562

Source: UFRN-2005 Contest 1

ID for Online Judge: UVA 10921

  Hint

In an expression, characters are analyzed from left to right. If a character is a 
hyphen, ‘1’, or ‘0’, the character is output directly; else the number that the charac-
ter corresponds to is output.

1.3.11  2 the 9s

A well-known trick to know if an integer N is a multiple of nine is to compute the sum 
S of its digits. If S is a multiple of nine, then so is N. This is a recursive test, and the 
depth of the recursion needed to obtain the answer on N is called the 9-degree of N.

Your job is, given a positive number N, to determine if it is a multiple of nine 
and, if it is, its 9-degree.

Input

The input is a file such that each line contains a positive number. A line containing the 
number 0 is the end of the input. The given numbers can contain up to 1000 digits.

Output

The output of the program shall indicate, for each input number, if it is a multiple 
of nine, and in case it is, the value of its 9-degree. See the sample output for an 
example of the expected formatting of the output.

Sample Input Sample Output

9999999999999999999999

99999999999999999999999999999980

999999999999999999999 is a multiple of 9 
and has 9-degree 3.

9 is a multiple of 9 and has 9-degree 1.
9999999999999999999999999999998 is not 
a multiple of 9.

Source:	 UFRN-2005 Contest 1

ID for Online Judge: UVA 10922



Practice for Ad Hoc Problems  ◾  29

  Hint

For this problem, the statistical analysis method is used. First, two sample test cases 
are analyzed.

1.	N = 999999999999999999999
a.	 The first level for the recursion: There are 21 digits for 

999999999999999999999.
The sum of 21 digits is 9×21=189;
The second level for the recursion: The sum of three digits for 189 is 
1+8+9=18;
The third level for the recursion: The sum of two digits for 18 is 9. The 
recursion ends.
Therefore, 999999999999999999999 is a multiple of nine and has 
9-degree 3.

2.	N = 9999999999999999999999999999998
b.	 The first level for the recursion: There are 31 digits for 99999999999999

99999999999999998. The sum of 31 digits is 30×9+8=278;
The second level for the recursion: The sum of three digits for 278 is 
2+7+8=17;
The third level for the recursion: The sum of two digits for 17 is 8. 8 isn’t 
a multiple of 9. The recursion ends.

Therefore, 9999999999999999999999999999998 is not a multiple of 9.
The method determining whether a positive number N is a multiple of nine or 

not is a recursive method. And the algorithm can be implemented with the above 
method to solve the problem.

1.3.12  You Can Say 11

Your job, given a positive number N, is to determine whether it is a multiple of 
eleven.

Input

The input is a file such that each line contains a positive number. A line contain-
ing the number 0 is the end of the input. The given numbers can contain up to 
1000 digits.



30  ◾  Algorithm Design Practice for Collegiate Programming

Output

The output of the program shall indicate, for each input number, if it is a multiple 
of eleven or not.

Sample Input Sample Output

112233
30800
2937
323455693
5038297
112234
0

112233 is a multiple of 11.
30800 is a multiple of 11.
2937 is a multiple of 11.
323455693 is a multiple of 11.
5038297 is a multiple of 11.
112234 is not a multiple of 11.

Source:	 UFRN-2005 Contest 2

ID for Online Judge: UVA 10929

  Hint

Suppose the given large positive number can be represented as a high precision 
number A=a0…al-1. From right to left, sums of odd positions and even posi-
tions for the number are calculated respectively. Then the difference for the two 
sums is calculated. If the difference is a multiple of 11 (including 0), that is, 

11*2*

0

2

2* 1

1

2

∑ ∑− =
=







−

=







a a ki

i

l

i

i

l

, then A is a multiple of 11. Otherwise, A is not a multiple 

of 11.
Another method is to simply shift and mod. A number A is divisible by 11 if A 

mod 11 is 0. We can shift and mod with primitive types.

1.3.13  Parity

We define the parity of an integer n as the sum of the bits in binary representation 
computed in modulo two. As an example, the number 21=101012 has three 1s in its 
binary representation, so it has parity 3 (mod 2), or 1.

In this problem, you have to calculate the parity of an integer 1≤I≤2147483647.

Input

Each line of the input has an integer I and the end of the input is indicated by a line 
where I=0 that should not be processed.



Practice for Ad Hoc Problems  ◾  31

Output

For each integer I in the input, you should print a line “The parity of B is P (mod 2).”, 
where B is the binary representation of I.

Sample Input Sample Output

1
2
10
21
0

The parity of 1 is 1 (mod 2).
The parity of 10 is 1 (mod 2).
The parity of 1010 is 2 (mod 2).
The parity of 10101 is 3 (mod 2).

Source:	 UFRN-2005 Contest 2

ID for Online Judge: UVA 10931

  Hint

The problem requires you to figure out how many 1’s are in a binary number for the 
decimal number they give you. This is most easily done by keeping track of the 1’s 
and continuously bitshifting until the number is 0. The constraints are 31 bits of all 
1’s 2^31−1, so just an integer will suffice.

1.3.14  Not That Kind of Graph

Your task is to graph the price of a stock over time. In one unit of time, the stock 
can either Rise, Fall, or stay Constant. The stock’s price will be given to you as a 
string of R’s, F’s, and C’s. You need to graph it using the characters ‘/’ (slash), ‘\’ 
(backslash) and ‘_’ (underscore).

Input

The first line of input gives the number of cases, N. N test cases follow. Each one 
contains a string of at least 1 and at most 50 uppercase characters (R, F, or C).

Output

For each test case, output the line “Case #x:”, where x is the number of the test 
case. Then print the graph, as shown in the sample output, including the x- and 
y-axes. The x-axis should be one character longer than the graph, and there should 
be one space between the y-axis and the start of the graph. There should be no 



32  ◾  Algorithm Design Practice for Collegiate Programming

trailing spaces on any line. Do not print unnecessary lines. The x-axis should 
always appear directly below the graph. Finally, print an empty line after each 
test case.

Sample Input Sample Output

1RCRFCRFFCCRRC Case #1:
|                _
|    _/\_/\       /
| /           \__/
+---------------

Source:	 Abednego’s Graph Lovers’ Contest, 2005

ID for Online Judge: UVA 10800

  Hint

The problem explanation covers the problem with enough detail to solve it without 
really needing much insight. We are given a string of characters, each of which 
is R (rise), C (constant), or F (fall), and we have to draw the corresponding line. 
Just make a 2D matrix of characters and draw to the matrix, and then output 
the matrix.

For the problem, the two points should be noted. The stock price does not nec-
essarily start at its minimum. Don’t output spaces at the end of the line.

1.3.15  Decode the Tape

Your boss has just unearthed a roll of old computer tapes. The tapes have holes in 
them and might contain some sort of useful information. It falls to you to figure 
out what is written on them.

Input

The input will contain one tape.

Output

Output the message that is written on the tape.



Practice for Ad Hoc Problems  ◾  33

Sample Input Sample Output

___________
|o   .  o|
|  o  .   |
| ooo .  o|
| ooo .o o|
| oo o.  o|
| oo  . oo|
| oo o. oo|
|  o  .   |
| oo  . o |
| ooo . o |
| oo o.ooo|
| ooo .ooo|
| oo o.oo |
|  o  .   |
| oo  .oo |
| oo o.ooo|
| oooo.   |
|  o  .   |
| oo o. o |
| ooo .o o|
| oo o.o o|
| ooo .   |
| ooo . oo|
|  o  .   |
| oo o.ooo|
| ooo .oo |
| oo  .o o|
| ooo . o |
|  o  .   |
| ooo .o  |
| oo o.   |
| oo  .o o|
|  o  .   |
| oo o.o  |
| oo  .  o|
| oooo. o |
| oooo.  o|
|  o  .   |
| oo  .o  |
| oo o.ooo|
| oo  .ooo|
|  o o.oo |
|    o. o |
___________

A quick brown fox jumps over the lazy dog.

Source:	 Abednego’s Mathy Contest 2005

ID for Online Judge: UVA 10878



34  ◾  Algorithm Design Practice for Collegiate Programming

  Hint

From the sample input, there are 10 characters a0…a9 in a line in a tape, where a0 is 
leading flag ‘|’, a6 is a space, spaces in other positions represent 0, and ‘o’ represents 1. 

That is, if the i-th is ‘o’, the position represents an integer 
2 7 9
2 2 5

.
9

8
= ≤ ≤

≤ ≤







−

−
a

i
i

i

i

i
A line 

corresponds to an ASCII code representing a character. The character string is the 
message that is written on the tape.

1.3.16  Fractions Again?!

It is easy to see that for every fraction in the form 
k
1 (k>0), we can always find two 

positive integers x and y, x≥y, such that:

	
= +

k x y
1 1 1 .

	
Now our question is: can you write a program that counts how many such pairs 

of x and y there are for any given k?

Input

Input contains no more than 100 lines, each giving a value of k (0<k≤10000).

Output

For each k, output the number of corresponding (x, y) pairs, followed by a sorted 
list of the values of x and y, as shown in the sample output.

Sample Input Sample Output

2
12

2
1/2 = 1/6 + 1/3
1/2 = 1/4 + 1/4
8
1/12 = 1/156 + 1/13
1/12 = 1/84 + 1/14
1/12 = 1/60 + 1/15
1/12 = 1/48 + 1/16
1/12 = 1/36 + 1/18
1/12 = 1/30 + 1/20
1/12 = 1/28 + 1/21
1/12 = 1/24 + 1/24

Source:	 Return of the Newbies 2005

ID for Online Judge: UVA 10976



Practice for Ad Hoc Problems  ◾  35

  Hint

For a given positive integer k, find all pairs of positive integers x and y, x≥y, 

such that 
1 1 1= +
k x y

. Obviously k+1≤y≤2k. For every possible y, check whether 

the corresponding x is an integer or not. That is, because 
*

1− =y k
k y x

, 
*=
−

x
k y
y k

. If 
(k×y)%(y−k)==0, then x is an integer.

1.3.17  Factorial! You Must be Kidding!!!

Arif has bought a supercomputer from Bongobazar. Bongobazar is a place in Dhaka 
where secondhand goods are available. So the supercomputer he bought is also sec-
ondhand and has some bugs. One of the bugs is that the range of unsigned long 
integers of this computer for a C/C++ compiler has changed. Now its new lower 
limit is 10000 and the upper limit is 6227020800. Arif writes a program in C/C++ 
which determines the factorial of an integer. The factorial of an integer is defined 
recursively as:

( )

( )

=

= × −n n n

Factorial 0 1

Factorial Factorial ( 1).

Of course, one can manipulate these expressions. For example, it can be 
written as:

( ) = × − × −n n n nFactorial ( 1) Factorial ( 2)

This definition can also be converted to an iterative one.
But Arif knows that his program will not behave correctly in the supercom-

puter. You are to write a program which will simulate that changed behavior in a 
normal computer.

Input

The input file contains several lines of input. Each line contains a single integer n. 
No integer has more than 6 digits. Input is terminated by end of file.

Output

For each line of input, you should output a single line. This line will contain a single 
integer n! if the value of n! fits within the unsigned long integer of Arif ’s computer. 
Otherwise, the line will contain one of the following two words:

Overflow!      //(When n! > 6227020800)
Underflow!      //(When n! < 10000)



36  ◾  Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output

2
10
100

Underflow!
3628800
Overflow!

Source:	 GWCF Contest 4 - The Decider

ID for Online Judge: UVA 10323

  Hint

The concept behind the problem is quite simple: given n, if n! is greater than 
6227020800, then print “Overflow!”; if n! is less than 10000, print “Underflow!”; 
otherwise print n!.

Though a negative factorial is normally undefined, this problem stretches the 
limit of well-known definitions.

For this problem, we have F(n)=n×F(n−1), and F(0)=1. With some manip-

ulations, for negative factorials, we can get: F(0)=0×F(−1), or ( 1) (0)
0

.− = =∞F
F  

Continuing with this logic: F(−1)=−1×F(−2), or F(−2)=−F(−1). Similarly, 
( 1) ( 3) ( 2)− = − =− −F F F .

First, the offline method is used to calculate f [i]=i!, 8≤i≤13. Then, for each n:

if is between 8 to 13, then print [ ];
if ( 14||(n 0&&( n)%2 1)), then print “Overflow!”;
if ( 7||(n 0&&( n)%2 0)), then print “Underflow!”.

n f n

n

n

≥ < − ==
≤ < − ==

1.3.18  Squares

A children’s board game consists of a square array of dots that contains lines con-
necting some of the pairs of adjacent dots. One part of the game requires that the 
players count the number of squares of certain sizes that are formed by these lines. 
For example, in Figure 1.6, there are three squares, two of size 1 and one of size 2. 
(The “size” of a square is the number of line segments required to form a side.)

Your problem is to write a program that automates the process of counting all 
the possible squares.

Input

The input file represents a series of game boards. Each board consists of a descrip-
tion of a square array of n2 dots (where 2≤n≤9) and some interconnecting horizontal 



Practice for Ad Hoc Problems  ◾  37

and vertical lines. A record for a single board with n2 dots and m interconnecting 
lines is formatted as follows:

Line 1: n  the number of dots in a single row or column of the array
Line 2: m  the number of interconnecting lines

Each of the next m lines are of one of two types: Hij, indicates a horizontal line 
in row i which connects the dot in column j to the one to its right in column j+1; 
or Vij, indicates a vertical line in column i which connects the dot in row j to the 
one below in row j+1.

Information for each line begins in column 1. The end of input is indicated by 
end of file. The first record of the sample input below represents the board of the 
square above.

Output

For each record, label the corresponding output with “Problem #1”, “Problem #2”, 
and so forth. Output for a record consists of the number of squares of each size 
on the board, from the smallest to the largest. lf no squares of any size exist, your 
program should print an appropriate message indicating this. Separate output for 
successive input records by a line of asterisks between two blank lines, as shown in 
the sample below.

Sample Input Sample Output

4
16
H  1  1
H  1  3
H  2  1

Problem #1

2 square (s) of size 1
1 square (s) of size 2

Figure 1.6

(continued)



38  ◾  Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output

H  2  2
H  2  3
H  3  2
H  4  2
H  4  3
V  1  1
V  2  1
V  2  2
V  2  3
V  3  2
V  4  1
V  4  2
V  4  3
2
3
H  1  1
H  2  1
V  2  1

**********************************

Problem #2

No completed squares can be found.

Source:	 ACM World Finals 1989

ID for Online Judge: UVA 201

  Hint

Since N≤9, we can simply iterate all the possible squares.
We can think of vertical or horizontal lines as edges between two adjacent 

points. After that, we can take a three-dimensional array (say a[N ][N ][2]) to store 
the count of horizontal (a[i][j][0]) edges and vertical (a[i][j][1]) edges. a[i][j][0] con-
tains the number of horizontal edges at row i up to column j. And a[i][j][1] contains 
the number of vertical edges at column j up to row i. Next you use a O(n2) loop to 
find a square. A square of size 1 is found if there is an edge from (i, j) to (i, j+1) and 
(i, j+1) to (i+1, j+1) and (i, j) to (i+1, j) and (i+1, j) to (i+1, j+1). We can get this 
just by subtracting the values calculated above.

1.3.19  The Cow Doctor

Texas is the state with the largest number of cows in the United States: accord-
ing to the 2005 report of the National Agricultural Statistics Service, the bovine 
population of Texas is 13.8 million. This is higher than the population of the 



Practice for Ad Hoc Problems  ◾  39

two runner-up states combined: there are only 6.65 million cows in Kansas and 
6.35 million cows in Nebraska.

There are several diseases that can threaten a herd of cows, the most feared 
being “Mad Cow Disease” or Bovine Spongiform Encephalopathy (BSE); there-
fore, it is very important to be able to diagnose certain illnesses. Fortunately, there 
are many tests available that can be used to detect these diseases.

A test is performed as follows. First, a blood sample is taken from the cow, and 
then the sample is mixed with a test material. Each test material detects a certain 
number of diseases. If the test material is mixed with a blood sample having any of 
these diseases, then a reaction takes place that is easy to observe. However, if a test 
material can detect several diseases, then we have no way to decide which of these 
diseases is present in the blood sample, as all of them produce the same reaction. 
There are materials that detect many diseases (such tests can be used to rule out 
several diseases at once), and there are tests that detect only a few diseases (they can 
be used to make an accurate diagnosis of the problem).

The test materials can be mixed to create new tests. If we have a test material 
that detects diseases A and B, and there is another test material that detects diseases 
B and C, then they can be mixed to obtain a test that detects diseases A, B, and 
C. This means that if we have these two test materials, then there is no need for a 
test material that tests diseases A, B, and C—such a material can be obtained by 
mixing these two.

Producing, distributing, and storing many different types of test materials is 
very expensive, and in most cases, unnecessary. Your task is to eliminate as many 
unnecessary test materials as possible. It has to be done in such a way that if a test 
material is eliminated, then it should be possible to mix an equivalent test from 
the remaining materials. (“Equivalent” means that the mix tests exactly the same 
diseases as the eliminated material, not more, not less.)

Input

The input contains several blocks of test cases. Each case begins with a line con-
taining two integers: the number 1≤n≤300 of diseases, and the number 1≤m≤200 
of test materials. The next m lines correspond to the m test materials. Each line 
begins with an integer, the number 1≤k≤300 of diseases that the material can 
detect. This is followed by k integers describing the k diseases. These integers are 
between 1 and n.

The input is terminated by a block with n=m=0.

Output

For each test case, you have to output a line containing a single integer: the maxi-
mum number of test materials that can be eliminated.



40  ◾  Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output

10  5
2  1  2
2  2  3
3  1  2  3
4  1  2  3  4
1  4
3  7
1  1
1  2
1  3
2  1  2
2  1  3
2  3  2
3  1  2  3
0  0

2
4

Source:	 ACM Central Europe 2005

IDs for Online Judges: POJ 2943, UVA 3524

  Hint by the Problemsetter

The doctor has some test materials. Each test material can test a set of diseases. A 
mixture of two test materials gives a new test material that can test diseases for at 
least one of the mixed materials tested.

Given is a set of test materials. Determine how many of them are redundant, 
i.e., can be obtained by mixing some other test materials.

This problem is pretty straightforward. How can you check whether a given test 
material M is redundant? Consider the set S of all other test materials that test a 
subset of M ’s diseases. M is redundant if and only if the mixture of all materials in 
S tests exactly the same set of diseases as M.

It is convenient to represent the materials as bit vectors.

1.3.20  Wine Trading in Gergovia

As you may know from the comic “Asterix and the Chieftain’s Shield”, Gergovia 
consists of one street, and every inhabitant of the city is a wine salesman. How does 
this economy works? Simple enough: everyone buys wine from other inhabitants 
of the city. Every day, each inhabitant decides how much wine he wants to buy or 
sell. Interestingly, demand and supply is always the same, so that each inhabitant 
gets what he wants.



Practice for Ad Hoc Problems  ◾  41

There is one problem, however: Transporting wine from one house to another 
results in work. Since all wines are equally good, the inhabitants of Gergovia don’t 
care which persons they are doing trade with; they are only interested in selling or 
buying a specific amount of wine. They are clever enough to figure out a way of 
trading so that the overall amount of work needed for transports is minimized.

In this problem, you are asked to reconstruct the trading during one day in 
Gergovia. For simplicity, we will assume that the houses are built along a straight 
line with equal distance between adjacent houses. Transporting one bottle of wine 
from one house to an adjacent house results in one unit of work.

Input

The input consists of several test cases.
Each test case starts with the number of inhabitants n (2≤n≤100000). The 

following line contains n integers ai (−1000≤ai≤1000). If ai≥0, it means that the 
inhabitant living in the i-th house wants to buy ai bottles of wine, otherwise if ai<0, 
he wants to sell −ai bottles of wine. You may assume that the numbers ai sum up 
to 0.

The last test case is followed by a line containing 0.

Output

For each test case, print the minimum number of work units needed so that every 
inhabitant has his demand fulfilled. You may assume that this number fits into a 
signed 64-bit integer (in C/C++ you can use the data type “long long”, or in JAVA 
the data type “long”).

Sample Input Sample Output

5
5  -4  1  -3  1
6
-1000  -1000  -1000  1000  1000  1000
0

9
9000

Source:	 Ulm Local 2006

ID for Online Judge: POJ 2940

 � Hint by the Problemsetter (http://www.informatik 
.uni-ulm.de/acm/Locals/2006/)

This problem is based on the so-called “Earth Mover’s Distance”, which is used to 
calculate a measure of similarity between two histograms. In the one-dimensional 
case, the following greedy algorithm gives optimal results:

http://www.informatik.uni-ulm.de/
http://www.informatik.uni-ulm.de/


42  ◾  Algorithm Design Practice for Collegiate Programming

Go through the values from left to right, and try to reduce them to 0 by using 
greedily the closest values. To get the required linear time complexity, notice that 
only values to the right can be used to reduce the current value to 0 (since all values 
to the left are already 0). Therefore, we can add the current value to the next value 
and add the absolute value to the number of work units needed.

Judges’ test data consists of 25 test cases, and most of them are random-generated.

1.3.21  Power et al.

Finding the exponent of any number can be very troublesome as it grows expo-
nentially. But in this problem you will have to do a very simple task. Given two 
non-negative numbers m and n, you have to find the last digit of mn in the decimal 
number system.

Input

The input file contains less than 100000 lines. Each line contains two integers m 
and n (less than 10101). Input is terminated by a line containing two zeros. This line 
should not be processed.

Output

For each set of input, you must produce one line of output, which contains a single 
digit. This digit is the last digit of mn.

Sample Input Sample Output

2  2
2  5
0  0

4
2

Source:	 June 2003 Monthly Contest

IDs for Online Judge: UVA 10515

  Hint

First, the regularity of the last digit of 8n is analyzed. And through it, the regularity 
of the last digit of mn is obtained.

The last digit of 81 is 8. The last digit of 82 is 4. The last digit of 83 is 2. The last 
digit of 84 is 6. The last digit of 85 is 8. The last digit of 86 is 4. ……. That is, there 
are four times for one cycle. For example, for 81998, because 1998 mod 4=2, the last 
digit of 81998 is 6.



Practice for Ad Hoc Problems  ◾  43

Likewise, for 2, 3, and 7, there are also four times for one cycle; for 4 and 9, 
there are also two times for one cycle; and the last digit of any power of 5 and 6 
is itself.

Therefore, the algorithm is as follows:
Suppose the last digit of m is k, and the last two digits of n is d. The last digit of 

mn ans = (kp)%10, where 
4 %4 0
%4 %4 0

p
d

d d
=

==
≠






.

1.3.22  Connect the Cable Wires

Asif is a student of East West University, and he is currently working for the 
EWUISP to meet his relatively high tuition fees. One day, as a part of his job, he 
was instructed to connect cable wires to N houses. All the houses lie in a straight 
line. He wants to use only the minimum number of cable wires required to com-
plete his task, such that all the houses receive the cable service. A house can either 
get the connection from the main transmission center, or it can get it from a 
house to its immediate left or right, provided the latter house is already getting 
the service.

You are to write a program that determines the number of different combina-
tions of the cable wires that is possible so that every house receives the service.

Example: If there are two houses, then three combinations are possible, as shown 
in Figure 1.7.

Input

Each line of input contains a positive integer N (N≤2000). The meaning of N is 
described in the above paragraph. A value of 0 for N indicates the end of input 
which should not be processed.

Figure 1.7  Circles represent the transmission center and the small rectangles 
represent the houses.



44  ◾  Algorithm Design Practice for Collegiate Programming

Output

For each line of input you have to output, on a single line, the number of possible 
arrangements. You can safely assume that this number will have less than 1000 
digits.

Sample Input Sample Output

1
2
3
0

1
3
8

Source:	 The Next Generation - Contest I 2005

ID for Online Judge: UVA 10862

  Hint

Let f(n) be the number of ways to connect the main transmission center and n 
houses. By removing the main transmission center and its cables to the houses, 
there will be one or more connected components of houses. Let k be the number 
of houses of the rightmost connected component. Then, there are k ways to con-
nect one cable from the main transmission center to this component, and there are 
f(n−k) ways to connect the main transmission center to the rest n−k houses.

So, there are k×f(n−k) ways to connect them all. Since the range of k is from 
1 to n inclusive, by setting f(0)=1, we then have f(n)=1×f(n−1)+2×f(n−2)+...+
(n−1)×f(1)+n×f(0). fib(2×n)=fib(n+1)×fib(n)+fib(n)×f(n−1) (Fibonacci). Therefore, 
f(n)=fib(2×n).



45

Chapter 2

Practice for Simulation 
Problems

In the real world, there are many problems that we can solve by simulating their 
processes. Such problems are called simulation problems. For these problems, solu-
tion procedures or rules are shown in problem descriptions. Programs must simu-
late procedures or implement rules based on descriptions.

In this chapter, three kinds of simulations are introduced:

◾◾ Simulation of Direct Statement;
◾◾ Simulation by Sieve Method;
◾◾ Construction Simulation.

2.1  Simulation of Direct Statement
For problems for simulation of direct statement, programmers are required to solve 
these problems by strictly implementing rules shown in the descriptions of the 
problems. Programmers must read such problems carefully, and simulate processes 
based on descriptions. A problem for simulation of direct statement becomes harder 
as the number of rules increases. It causes the amount of code to increase and 
become more illegible.

There are two kinds of simulations of direct statement: simulations based 
on a sequence of instructions, and simulations based on a sequence of time 
intervals.



46  ◾  Algorithm Design Practice for Collegiate Programming

2.1.1  The Hardest Problem Ever

Julius Caesar lived in a time of danger and intrigue. The hardest situation Caesar 
ever faced was keeping himself alive. In order to survive, he decided to create one of 
the first ciphers. This cipher was so incredibly sound that no one could figure it out 
without knowing how it worked.

You are a subcaptain of Caesar’s army. It is your job to decipher the messages 
sent by Caesar and provide the text of the messages to your general. The code is 
simple. For each letter in a plaintext message, you shift it five places to the right to 
create the secure message (i.e., if the letter is ‘A’, the cipher text would be ‘F’). Since 
you are creating plain text out of Caesar’s messages, you will do the opposite:

Cipher text: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
   Plain text: V W X Y Z A B C D E F G H I J K L M N O P Q R S T U

Only letters are shifted in this cipher. Any non-alphabetical character should 
remain the same, and all alphabetical characters will be uppercase.

Input

Input to this problem will consist of a (non-empty) series of up to 100 data sets. 
Each data set will be formatted according to the following description, and there 
will be no blank lines separating data sets. All characters will be uppercase.

A single data set has three components:

1.	Start line: A single line, “START”;
2.	Cipher message: A single line containing from 1 to 200 characters, inclusive, 

comprising a single message from Caesar;
3.	End line: A single line, “END”.

Following the final data set will be a single line, “ENDOFINPUT”.

Output

For each data set, there will be exactly one line of output. This is the original mes-
sage by Caesar.

Sample Input Sample Output

START
NS BFW, JAJSYX TK NRUTWYFSHJ FWJ 
YMJ WJXZQY TK YWNANFQ HFZXJX

END
START

IN WAR, EVENTS OF IMPORTANCE 
ARE THE RESULT OF TRIVIAL 
CAUSES



Practice for Simulation Problems  ◾  47

Sample Input Sample Output

N BTZQI WFYMJW GJ KNWXY NS F 
QNYYQJ NGJWNFS ANQQFLJ YMFS 
XJHTSI NS WTRJ

END
START
IFSLJW PSTBX KZQQ BJQQ YMFY 
HFJXFW

NX RTWJ IFSLJWTZX YMFS MJ
END
ENDOFINPUT

I WOULD RATHER BE FIRST IN A 
LITTLE IBERIAN VILLAGE THAN 
SECOND IN ROME

DANGER KNOWS FULL WELL THAT 
CAESAR IS MORE DANGEROUS 
THAN HE

Source:	 ACM South Central USA 2002

IDs for Online Judges: POJ 1298, ZOJ 1392, UVA 2540

  Analysis

Obviously, the problem is solved by strictly implementing the rule in the problem 
description. The rule creating plain text out of Caesar’s messages is as follows:

A letter in the plain text = ‘A’+(A letter in the cipher text−‘A’+21)%26.

  Program

#include <iostream>
#include <string>
using namespace std;
int main()
{
	 string str;    //Caesar's message
	 int i;
	 while (cin >> str)    //Input Caesar's message
	 {
		  cin.ignore(INT_MAX, '\n');
		  if (str == "ENDOFINPUT") break;
		  getline(cin, str, '\n');
		  for (i = 0; i < str.length(); i++)    // The rule 
creating plain text
			   if (isalpha(str[i]))
				    str[i] = 'A' + (str[i] - 'A' + 21) % 26;
		  cout << str << endl;    // Output the original message by 
Caesar



48  ◾  Algorithm Design Practice for Collegiate Programming

		  cin >> str;    //Next Caesar's message
	 }
	 return 0;
}

2.1.2  Rock-Paper-Scissors Tournament

Rock-paper-scissors is a game for two players, A and B, who each choose, indepen-
dently of the other, one of rock, paper, or scissors. A player choosing paper wins over 
a player choosing rock; a player choosing scissors wins over a player choosing paper; a 
player choosing rock wins over a player choosing scissors. A player choosing the same 
thing as the other player neither wins nor loses.

A tournament has been organized in which each of n players plays k rock-paper-

scissors games with each of the other players— −( 1)
2

k
n n  games in total. Your job is 

to compute the win average for each player, defined as 
+
w

w l
, where w is the number 

of games won and l is the number of games lost by the player.

Input

Input consists of several test cases. The first line of input for each case contains 
1≤n≤100, 1≤k≤100 as defined above. For each game, a line follows containing p1, 
m1, p2, m2. 1≤p1≤n and 1≤p2≤n are distinct integers identifying two players; m1 and 
m2 are their respective moves (“rock”, “scissors”, or “paper”). A line containing 0 
follows the last test case.

Output

Output one line each for player 1, player 2, and so on, through player n, giving the 
player’s win average rounded to three decimal places. If the win average is unde-
fined, output “-”. Output an empty line between cases.

Sample Input Sample Output

2  4
1 rock 2 paper
1 scissors 2 paper
1 rock 2 rock
2 rock 1 scissors
2  1
1 rock 2 paper
0

0.333
0.667

0.000
1.000

Source:	 Waterloo local 2005.09.17

IDs for Online Judges: POJ 2654, UVA 10903



Practice for Simulation Problems  ◾  49

  Analysis

This is a problem for simulation of direct statement. In the problem description, a 
player choosing paper wins over a player choosing rock; a player choosing scissors wins 
over a player choosing paper; and a player choosing rock wins over a player choosing 
scissors. A player choosing the same thing as the other player neither wins nor loses. A 
tournament has been organized in which each of n players plays k rock-scissors-paper 

games with each of the other players— −( 1)
2

k
n n  games in total. For each test case, 

cases are input one by one; and for each player, the number of games won and the 
number of games lost are accumulated. Finally, the win average for each player is cal-
culated. For a player, if the number of games won and the number of games lost are 

all 0, then the win average is undefined; else the win average for the player is 
+
w

w l
.

  Program

#include <stdio.h>
#include <string.h>
int w[200], l[200];    //For player i, the number of games won 
w[i], and the number of games lost l[i]
int p1,p2,i,j,k,m,n;    // n players, m test cases, k games 
for each player, p1 and p2 play a game
char m1[10], m2[10];    //player p1 chooses m1[]; player p2 
chooses m2[]
main(){
   for (m=0; 1<=scanf("%d%d",&n,&k)&& n; m++) {//n players 
play k rock-scissors-paper games with each of the other 
players
      if (m) {
         printf("\n");
         memset(w,0,sizeof(w));    //initialization
         memset(l,0,sizeof(l));
      }
     for(i=0; i<k*n*(n-1)/2;i++){//Input players and moves
         scanf("%d%s%d%s",&p1,m1,&p2,m2);
         if (!strcmp(m1,"rock") && !strcmp(m2,"scissors") ||
             !strcmp(m1,"scissors") && !strcmp(m2,"paper") ||
             !strcmp(m1,"paper") && !strcmp(m2,"rock")) {
             w[p1]++; l[p2]++;    //p1 wins and p2 loses
         }



50  ◾  Algorithm Design Practice for Collegiate Programming

         if (!strcmp(m2,"rock") && !strcmp(m1,"scissors") ||
             !strcmp(m2,"scissors") && !strcmp(m1,"paper") ||
             !strcmp(m2,"paper") && !strcmp(m1,"rock")) {
             w[p2]++; l[p1]++;    //p2 wins and p1 loses
         }
      }
// the win average
      for (i=1;i<=n;i++) {
         if (w[i]+l[i]) printf("%0.3lf\n",(double)w[i]/
(w[i]+l[i]));
         else printf("-\n");    //
      }
   }
   if (n) printf("extraneous input! %d\n",n);
}

2.1.3  Robocode

Robocode is an educational game designed to help learn Java. The players write 
programs that control tanks fighting with each other on a battlefield. The idea of 
this game may seem simple, but it takes a lot of effort to write a winning tank’s 
program. Today we are not going to write an intelligent tank, but design a simpli-
fied Robocode game engine.

Assume that the whole battlefield is 120×120 (pixels). Each tank can only move 
in the vertical and horizontal directions on the fixed path. (There are paths every 
10 pixels in the battlefield in both vertical and horizontal directions. In all, there 
are 13 vertical and 13 horizontal paths available for tanks, as shown in Figure 2.1.) 
The shape and size of the tank are negligible, and one tank has (x, y) (x, y ∈ [0, 
120]) representing its coordinate position and α (α ∈ {0, 90, 180, 270}) represent-
ing its facing direction (α = 0, 90, 180, or 270 means facing right, up, left, or down, 
respectively). They have a constant speed of 10 pixels/second when they move and 
they can’t move out of the boundary (on touching any boundary of the battlefield, 

0, 0

0, 120
Y

120, 0X

Figure 2.1 



Practice for Simulation Problems  ◾  51

the tanks will stop moving, staying in the direction that they are currently facing). 
The tank can shoot in the direction it’s facing whether it’s moving or still. The shot 
moves at the constant speed of 20 pixels/second, and the size of the shot is also neg-
ligible. It will explode when it meets a tank on the path. It’s possible for more than 
one shot to explode in the same place if they all reach a tank at the exact same time. 
The tank being hit by the explosion will be destroyed and removed from the battle-
field at once. A shot exploding or flying out of the boundary will also be removed.

When the game begins, all the tanks are stopped at different crosses of the verti-
cal and horizontal paths. Given the initial information of all the tanks and several 
commands, your job is to find the winner—the last living tank when all the com-
mands are executed (or omitted) and no shot exists in the battlefield (meaning that 
no tank may die in the future).

Input

There are several test cases. The battlefield and paths are all the same for all test 
cases as shown in Figure 2.1. Each test case starts with integers N (1≤N≤10) and 
M (1≤M≤1000), separated by a blank. N represents the number of the tanks play-
ing in the battlefield, and M represents the number of commands to control the 
movement of the tanks. The following N lines give the initial information (at time 
0) of each tank, in the format:

Name x y α
The Name of a tank consists of no more than 10 letters. x, y, α are integers and 

x, y∈{0, 10, 20, ..., 120}, α∈{0, 90, 180, 270}. Each field is separated by a blank.
The following M lines give commands in this format:

Time Name Content

Each field is separated by a blank. All the commands are given in the ascend-
ing order of Time (0≤Time≤30), which is a positive integer meaning the timestamp 
when the commands are sent. Name points out which tank will receive the com-
mand. The Content has different types as follows:

MOVE When receiving the MOVE command, the tank starts to move in its facing 
direction. If the tank is already moving, the command takes no effect.

STOP When receiving the STOP command, the tank stops moving. If the tank 
has already stopped, the command takes no effect.

TURN 
angle

When receiving the TURN command, the tank changes the facing 
direction α to be ((α + angle + 360) mod 360), regardless of whether it is 
moving or not. You are guaranteed that ((α + angle + 360) mod 360) 
∈{0, 90, 180, 270}. The TURN command doesn’t affect the moving state 
of the tank.

SHOOT When receiving the SHOOT command, the tank will shoot one shot in 
the direction it’s facing.



52  ◾  Algorithm Design Practice for Collegiate Programming

Tanks take the corresponding action as soon as they receive the commands. For 
example, if the tank at (0, 0), α=90, receives the command MOVE at time 1, it will 
start moving at once and will reach (0, 1) at time 2. Notice that a tank could receive 
multiple commands in one second and take the action one by one. For example, if 
the tank at (0, 0), α=90, receives a command sequence of “TURN 90; SHOOT; 
TURN −90”, it will turn to the direction α=180, shoot, and then turn back. If 
the tank receives a command sequence of “MOVE; STOP”, it will remain in the 
original position.

Some more notes you need to pay attention to:

If a tank is hit by an explosion, it will take not act on any of the commands 
received at that moment. Of course, all the commands sent to the already 
destroyed tank should also be omitted.

Although the commands are sent at discrete seconds, the movement and explo-
sions of tanks and shots happen in the continuous time domain.

No two tanks will meet on the path guaranteed by the input data, so you don’t 
need to consider that situation.

All the input contents will be legal for you.
A test case with N=M=0 ends the input, and should not be processed.

Output

For each test case, output the winner’s name in one line. The winner is defined as 
the last living tank. If there is no tank, or more than one tank living at the end, 
output “NO WINNER!” in one line.

Sample Input Sample Output

2 2
A 0 0 90
B 0 120 180
1 A MOVE
2 A SHOOT
2 2
A 0 0 90
B 0 120 270
1 A SHOOT
2 B SHOOT
2 6
A 0 0 90
B 0 120 0
1 A MOVE
2 A SHOOT
6 B MOVE

A
NO WINNER!
B



Practice for Simulation Problems  ◾  53

Sample Input Sample Output

30 B STOP
30 B TURN 180
30 B SHOOT
0 0

Source:	 ACM Beijing 2005

IDs for Online Judges: POJ 2729, UVA 3466

  Analysis

The problem is a simulation problem based on a sequence of time intervals. For 
each command, 0≤Time≤30 (seconds), and states may be changed after the last 
command is sent. Therefore, Robocode must be simulated for 45 seconds at most.

If a tank at (0, 0) shoots at a tank at (0, 1), and the tank at (0, 1) moves to the 
tank at (0, 0), then the moving tank is shot after it moves 10/3 pixels, and after 
0.5 seconds. Therefore, the map should be enlarged six times, and states should be 
simulated every 1/6 seconds.

Attributes for tanks and shots are as follows: positions, directions, move (or 
stop), and removed (or unremoved).

Starting at Time 0, commands are processed one by one. If the timestamp when 
the current command is sent is t2, and the timestamp when the last command is 
sent is t1, states from t1 to t2 must be simulated. Then attributes for the tank receiv-
ing the current command are set as follows:

If the command is the “MOVE” command, the tank receiving the command 
moves in its facing direction;

If the command is the “STOP” command, the tank receiving the command 
stops moving;

If the command is the “SHOOT” command and the tank receiving the com-
mand isn’t removed, then a shot is added, and its attributes are same as the 
attributes of a tank, except MOVE;

If the command is TURN angle, then the tank receiving the command adjusts 

its facing direction as (the original number of direction +



 +

90
%4 4angle ) % 4, 

where the number of direction is 
90

angle .

After all commands are processed, states are simulated for 15 seconds continuously.
Finally, the number of living tanks at the end is calculated. If all tanks are 

removed, or more than one tank lives, then output “NO WINNER!”; else output 
the last living tank.



54  ◾  Algorithm Design Practice for Collegiate Programming

  Program

#include <iostream>
#include <map>
#include <cstdio>
#include <cstring>
#include <string.h>
#include <string>
using namespace std ;
const int DirX[4] = { 10 , 0 , -10 , 0 } ;    // Horizontal 
increment and vertical increment
const int DirY[4] = { 0 , 10 , 0 , -10 } ;
#define mp make_pair
int   N , M , Shoot ;    //N: number of tanks, M: number of 
commands, N+1..Shoot: Shots
int   x[1050] , y[1050] , d[1050] ;    // (x[ ], y[ ]) : 
positions for tanks and shots; d[ ]: their directions
bool run[1050],die[1050] ;    // run[ ]: flags for tanks' 
moving, die[ ]: flags for tanks' or shots' removing
string symbol[1050] ;    // symbol[i]: the i-th tank's name
map<string,int> Name ;    // Name[s]: the sequence number of 
the tank whose name is s
void  Init()
{
      Name.clear() ;
      for ( int i = 1 ; i <= N ; i ++ )    //Initialization
      {
          cin >> symbol[i] >> x[i] >> y[i] >> d[i] ;
          x[i] *= 6 ; y[i] *= 6 ;d[i] /= 90 ;    // the map is 
enlarged six times, direction numbers are calculated
          run[i] = false ;die[i] = false ;
          Name[symbol[i]] = i ;
      }
      Shoot = N ;
}
bool  In( int x , int y )    //whether (x,y) is in the 
boundary or not
{
      if ( x >= 0 && x <= 6*120 && y >= 0 && y <= 6*120 ) 
return true ;
      return false ;
}
void  RunAll()    // Situation in 1 time unit is simulated
{
      for ( int i = 1 ; i <= N ; i ++ )    // All tanks are 
simulated



Practice for Simulation Problems  ◾  55

      {
          if ( run[i] && !die[i] )
          {
               if ( In( x[i] + DirX[d[i]] , y[i] + DirY[d[i]] 
) )
               {
                    x[i] += DirX[d[i]] ;y[i] += DirY[d[i]] ;
               }
               else run[i] = false ;
          }
      }
      for ( int i=N+1 ; i <= Shoot ; i ++ )    //All shots are 
simulated
      {
          if ( !die[i] )
          {
               if ( In( x[i] + DirX[d[i]] * 2 , y[i] + 
DirY[d[i]] * 2 ) )
               {
                    x[i] += DirX[d[i]] * 2 ;y[i] += DirY[d[i]] 
* 2 ;
               }
               else die[i] = true ;
          }
      }
      for ( int i = 1 ; i <= N ; i ++ )    //unremoved tank i
      {
          if ( die[i] ) continue ;
          for ( int j = N+1 ; j <= Shoot ; j ++ ) if ( !die[j] )    
//if tank i is shot by shot j
          {
               if ( x[i] == x[j] && y[i] == y[j] )
               {
                   die[j] = true ; die[i] = true ;
               }
          }
      }
}
void  Solve()    //Process commands and output results
{
      int now = 0 ;    // Since Time 0
      for ( int i = 1 ; i <= M ; i ++ )    //Time, Tank, 
Content for each command
      {
          int t ; string sym , s ; int th ;
          cin >> t >> sym >> s ;
          t *= 6 ;    // Time *6
          while ( t > now ) { RunAll() ; now ++ ; }    
//Simulating situations now ..t



56  ◾  Algorithm Design Practice for Collegiate Programming

          int symId = Name[sym] ;    //sequence number for the 
tank receiving command
          if ( s == "MOVE" )
               run[symId] = true ;
          else if ( s == "STOP" )
               run[symId] = false ;
          else if ( s == "SHOOT" )
          {
           if ( !die[symId] )
               {
                    Shoot ++ ;
                    run[Shoot] = true ;die[Shoot] = false ;
                    d[Shoot] = d[symId] ; x[Shoot] = x[symId] ; 
y[Shoot] = y[symId] ;
               }
          }
          else    //changing direction
          {
               cin >> th ; th /= 90 ;
               d[symId] = (d[symId] + (th % 4) + 4 ) % 4 ;
          }
      }
      for ( int i = 1 ; i <= 15*6 ; i ++ ) RunAll() ;    
// simulating 15 seconds
      int cnt = 0 ;    //cnt: the number of last living tanks
      for ( int i = 1 ; i <= N ; i ++ ) if ( !die[i] ) cnt ++ ;
      if ( cnt != 1 ) cout << "NO WINNER!\n" ;
      else
      {
          for ( int i = 1 ; i <= N ; i ++ ) if ( !die[i] ) 
cout << symbol[i] << "\n" ;
      }
}
int   main()
{
while ( cin>>N>>M && ( N || M ) )
  {
      Init() ;
      Solve() ;
  }
}

2.1.4  Eurodiffusion

On January 1, 2002, 12 European countries abandoned their national currency 
for a new currency, the euro. No more francs, marks, lires, guldens, kroner, ... only 
euros, all over the eurozone. The same banknotes are used in all countries. And the 
same coins? Well, not quite. Each country has limited freedom to create its own 
euro coins.



Practice for Simulation Problems  ◾  57

“Every euro coin carries a common European face. On the obverse, member 
states decorate the coins with their own motif. No matter which motif is on the 
coin, it can be used anywhere in the 12 member states. For example, a French citi-
zen is able to buy a hot dog in Berlin using a euro coin with the imprint of the King 
of Spain.” (Source: http://europa.eu.int/euro/html/entry.html.)

On January 1, 2002, the only euro coins available in Paris were French coins. 
Soon the first non-French coins appeared in Paris. Eventually, one may expect all 
types of coins to be evenly distributed over the 12 participating countries. (Actually 
this will not be true. All countries continue minting and distributing coins with 
their own motifs. So even in a stable situation, there should be an excess of German 
coins in Berlin.) So, how long will it be before the first Finnish or Irish coins are in 
circulation in the south of Italy? How long will it be before coins of each motif are 
available everywhere?

You must write a program to simulate the dissemination of euro coins through-
out Europe, using a highly simplified model. Restrict your attention to a single euro 
denomination. Represent European cities as points in a rectangular grid. Each city 
may have up to four neighbors (one to the north, east, south, and west). Each city 
belongs to a country, and a country is a rectangular part of the plane. Figure 2.2 
shows a map with three countries and 28 cities. The graph of countries is con-
nected, but countries may border holes that represent seas, or non-euro countries, 
such as Switzerland or Denmark. Initially, each city has one million (1000000) 
coins in its country’s motif. Every day a representative portion of coins, based on 
the city’s beginning day balance, is transported to each neighbor of the city. A 
representative portion is defined as one coin for every full 1000 coins of a motif.

Figure 2.2 

http://europa.eu.int/


58  ◾  Algorithm Design Practice for Collegiate Programming

A city is complete when at least one coin of each motif is present in that city. A 
country is complete when all of its cities are complete. Your program must deter-
mine the time required for each country to become complete.

Input

The input consists of several test cases. The first line of each test case is the number 
of countries (1≤c≤20). The next c lines describe each country. The country descrip-
tion has the format: name xl yl xh yh, where name is a single word with 25 characters 
at the most; xl yl are the lower-left city coordinates of that country (most south-
westward city) and xh yh are the upper-right city coordinates of that country (most 
northeastward city): 1≤xl≤xh≤10 and 1≤yl≤yh≤10.

The last case in the input is followed by a single zero.

Output

For each test case, print a line indicating the case number, followed by a line for 
each country with the country’s name and the number of days for that country to 
become complete. Order the countries by days to completion. If two countries have 
identical days to completion, order them alphabetically by name.

Use the output format shown in the example.

Sample Input Sample Output

3
France 1 4 4 6
Spain 3 1 6 3
Portugal 1 1 2 2
1
Luxembourg 1 1 1 1
2
Netherlands 1 3 2 4
Belgium 1 1 2 2
0

Case Number 1
  Spain 382
  Portugal 416
  France 1325
Case Number 2
  Luxembourg 0
Case Number 3
  Belgium 2
  Netherlands 2

Source:	 ACM World Finals 2003 - Beverly Hills

IDs for Online Judges: UVA 2724

  Analysis

In Europe there are n countries (1≤n≤20). Each country is a rectangular part of 
the plane. Each city belongs to a country and is a point in the corresponding rect-
angular grid. Initially, each city has one million (1000000) coins in its country’s 



Practice for Simulation Problems  ◾  59

motif. Every day a representative portion of coins, based on the city’s beginning 
day balance, is transported to each neighbor of the city. In a day, if a city has 

x(x>103) coins of a motif, = 









103d d

x  coins of the motif can be transported to 

each neighbor. The problem requires you to output the number of days that each 
country has to become complete, that is, at least one coin of each motif is present 
in every city.

The problem is a simulation problem based on a sequence of time intervals. 
Because the data range is small, we can simulate the dissemination of coins every 
day, and use arrays to store all information.

1.	Constructing a graph for the dissemination of coins.
Cities are represented as vertices. Neighboring relations between cities are 
represented as edges. The information for a vertex includes:
i.	 The country which the city belongs to;

ii.	 The state for the city, including
•	 Marks for all motifs, represented as a binary number with n digits. 

Initially, the digit corresponding to its country’s motif is 1, and other 
digits are 0. Obviously, when the city is complete, n digits are all 1, 
that is, the value of the mark is 2n−1. When values of marks for all 
vertices are 2n−1, the algorithm ends.

•	 Numbers of all motifs. Initially, each city has one million (1000000) 
coins in its country’s motif, and numbers of other motifs are 0.

Each city is numbered according to the sequence of input. If there are n 
countries and m cities (n≤m≤102), in the first country’s rectangular grid, the 
city in its lower-left corner is numbered 1; and in the last country’s rectan-
gular grid, the city in its upper-right corner is numbered m. Based on ver-
tices’ information and relations, degrees for vertices and the adjacency list 
for the graph are calculated. Suppose g[i] is the degree of vertex i (1≤i≤m, 
0≤g[i]≤4); and edge[i][l] is the number of the l-th neighboring vertex for ver-
tex i (0≤i≤m−1,0≤l≤4, 0≤edge[i][l]≤m−1).

2.	Simulating the dissemination of coins every day based on a sequence of 
time intervals.
Today’s dissemination of coins is only based on yesterday’s dissemination of 
coins. Therefore, in the simulation there are two states: precursor state o1 and 
current state o2. And calculating o2 is only based on o1. The simulation pro-
cess of each day is as follows: Initially, f  [o2]←f  [o1], and st[o2]←st[o1]. It flips 
after simulating the dissemination of coins, that is ↔1 2o o . Suppose f  [o1]
[i][j] is the number of coins in motif j in city i yesterday; st[o1][i] are marks 
for all motifs in city i yesterday; f  [o2][i][j] is the number of coins in motif j 
in city i today, st[o2][i] are marks for all motifs in city i today; a[k].ans is the 
number of days for country k to become complete; and a[k].name is the name 
of country k.



60  ◾  Algorithm Design Practice for Collegiate Programming

Initially, o1=0, o2=1. For vertex j in country k (0≤k≤n−1, the number 
of the first vertex in country k≤j≤ (the number of the last vertex in coun-
try k), f  [o1][j][i]=106, st[o1][ j]=2k, and other values for f  [o1] and st[o1] are 
all 0.

The goal for the simulation is to calculate two variables.
	 a.	 cnt: The number of current cities that become complete. Obviously, 

initially cnt is 0. And the simulation ends when cnt==m.
	 b.	 day[y]: The number of days for city y to become complete. The 

number of days for country k to become complete is the maximal 
value for numbers of days for its cities to become complete, that is, 
a[k].ans=maxy∈country k day[y].

From day 0 (ans←0), the dissemination of coins is simulated day by day until 
cnt==m:

++ans;
The current state o2 is calculated based on the precursor 
state o1(f[o2]=f[o1], st[o2]=st[o1]);
Each city i(0≤i≤m−1) is enumerated:
{ The binary digit k whose value is 1 in st[o1][i] is 
enumerated:
		  The number of motif k transported to each neighborhood of 

city i d is calculated = 











1
10

;3

[ ][ ][ ]
d

f o i k

	     if (d≠0)
         { f[o2][i][k]−=g[i]*d;

Each neighboring city y for city i is enumerated (y = edge[i][l],0≤l≤g[i]−1): 
if city y has no motif k, and city y will have n motifs after it has motif k ( f  [o2]
[y][k]==0 && (st[o2][y] | = 2k)==2n − 1), then the number of days for city y to 
become complete is ans (day[y]=ans), and the number of complete cities increases 
1 (++cnt);

The number of motif k in city y increases d ( f  [o2][y][k]+=d );

         }
   }

↔1 2o o ;

After the above simulation, number of days for m cities to become complete is 
day[ ]. Based on that, a[k].ans=maxy∈country kday[y]; 0≤k≤n−1.

Finally, a[ ] is sorted: a[ ].ans is as the first key, and a[ ].name is as the second 
key. And a[i].name and a[i].ans (0≤i≤n−1) are output line by line.



Practice for Simulation Problems  ◾  61

  Program

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define ms(x, y) memset(x, y, sizeof(x))
#define mc(x, y) memcpy(x, y, sizeof(x))
const int dir[4][2] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};    
// shift for 4 directions
struct city {    // city
	 char name[30];    // city name
	 int ans;    // the number of days for the city to become 
complete
};
int cs(0);
int log2[1 << 21];    // log2[2i]=i
int n, tot, full;    //n: the number of countries, tot: the 
number of cities, full: the mark that n countries become 
complete
city a[22];    //the sequence of countries
int bl[22], br[22];    // for country i, bl[i]: the first 
city, br[i]: the last city
int num[11][11], belong[122];    //num[x][y]: the number of 
the city at (x, y), belong[t]: the country that city t belongs 
to
int g[122];    //g[i]: the number of neighboring cities for 
city i
int edge[122][4];    // edge[i][l] is the number of lth 
neighboring vertex for vertex i
int o1, o2, f[2][122][22];    // precursor state o1 and 
current state o2; f[o][i][j] is the number of coins in motif j 
in city i in state o
int day[122], st[2][122];    // day[y]: Number of days for 
city y to become complete, st[o][i] are marks for all motifs 
in city i, represented as a binary number with n digits: if 
the k-th digit is 1, city i has the coin in motif k; 
otherwise, city i does not have the coin in motif k; 0≤k≤n−1.
bool cmp(const city &a, const city &b) {    // Compare country 
a and b (the first key is the number of days for a country to 
become complete, and the second key is names of countries)
	 return a.ans < b.ans || a.ans == b.ans && strcmp(a.name, 
b.name) < 0;
}
void print() {    //Output the solution to the current 
test case



62  ◾  Algorithm Design Practice for Collegiate Programming

	 sort(a, a + n, cmp);    //Sorting countries a[ ]
	 printf("Case Number %d\n", ++cs);    //Output the number of 
test cases
	 for (int i = 0; i < n; ++i)    // Output countries' names 
and the number of days for countries to become complete in 
a[ ]
		  printf("   %s   %d\n", a[i].name, a[i].ans);
}
int main() {
	 for (int i = 0; i < 21; ++i) log2[1 << i] = i;    
// log2[2i]=i
	 while (scanf("%d", &n), n) {    //repeatedly input 
countries' names until 0
		  tot=0; full=(1 << n)-1;    //tot: number of cities, the 
mark for a city to become complete 2n−1
		  ms(num, 0xFF);    //num[][] is initialized 255
		  for (int i=0, x1, y1, x2, y2; i<n; ++i) {    // Input 
countries' names and coordinates
			   scanf("%s%d%d%d%d", a[i].name, &x1, &y1, &x2, &y2);
			   --x1, --y1, --x2, --y2;
			   bl[i] = tot;    //start city for country i
    			  for (int x=x1; x<=x2; ++x)    //every city in the 
rectangles belongs to country i
				    for (int y = y1; y <= y2; ++y) {
					     num[x][y] = tot; belong[tot++] = i;
				    }
			   br[i] = tot;    //end city for country i
		  }
		  if (n == 1) {    //If there is only one country
			   a[0].ans = 0;
			   print();
			   continue;
		  }
// Initialization: calculate the number of neighbors for each 
city, and construct edge[ ][ ]
		  ms(g, 0);
		  for (int i=0; i<10;++i)    //Enumeration
		    for (int j = 0; j < 10; ++j)
			   if (num[i][j]!= -1)    //If (i, j) is a city
				    for (int k = 0, nx, ny; k < 4; ++k) {
						      nx = i + dir[k][0], ny = j + dir[k][1];
						      if(nx>=0 && nx<10 && ny>=0 && ny<10 && num[nx]
[ny]!=-1)
						        edge[num[i][j]][g[num[i][j]]++] = num[nx][ny];
					     }
		  o1 = 0, o2 = 1;    //Initialize states
		  ms(f[o1], 0); ms(st[o1], 0);
		  for (int i = 0; i < n; ++i)    //Enumerate each country
		  for (int j = bl[i]; j < br[i]; ++j) {    // Enumerate 
city j in country i. Initially city j has 106 coins in motif i



Practice for Simulation Problems  ◾  63

				    f[o1][j][i] = 1000000; st[o1][j] = 1 << i;
			    }
		  ms(day, 0xFF);
		  int ans = 0, cnt = 0;
		  do {
			   ++ans;
			   mc(f[o2], f[o1]); mc(st[o2], st[o1]);    //calculate 
the current state based on the precursor state
			   for (int i = 0; i < tot; ++i)    // Enumerate city i
			     for(int j=st[o1][i], k, d; j; j-=1<<k){    
// Enumerate motif k in city i
				    k = log2[j - (j & (j - 1))];
				    d=f[o1][i][k] / 1000;    // The number of motif k 
transported to each neighbor of city i d is calculated
				    if(d){    //if motif k can be transported
			       	 f[o2][i][k] -= g[i] * d;
					      for (int l=0, y; l<g[i]; ++l){
						      y = edge[i][l];
						      if (f[o2][y][k]==0 && (st[o2][y] |= 1 << k) == 
full) {
						       day[y]=ans;
						       ++cnt;
						      }
						      f[o2][y][k] += d; d
					     }
				       }
			   }
			   swap(o1, o2);    // o1↔o2
		  } while (cnt < tot);    // until tot cities become 
complete
// numbers of days for all countries to become complete
		  for (int i = 0; i < n; ++i) {    // Enumerate every 
country
			   a[i].ans = 0;
		     for (int j = bl[i]; j < br[i]; ++j) a[i].ans = 
max(a[i].ans, day[j]);
		  }
		  print();    //Output the solution to the current test 
case
	 }
	 return 0;
}

2.2  Simulation by Sieve Method
In some problems, constraints are given in descriptions. And these constraints con-
stitute a sieve. All possible solutions are put on the sieve to filter out solutions that 
do not meet constraints. Finally, solutions settling on the sieve are solutions to the 
problem. The method for solving such problems is called the simulation by sieve 



64  ◾  Algorithm Design Practice for Collegiate Programming

method. The structure and idea for the simulation by sieve method is concise and 
clear, but it is also blind. Therefore, its time efficiency may not be good. The key to 
the simulation by sieve method is to find the constraints. Any errors and omissions 
will lead to failure. Because filtering rules do not need complex algorithm design, 
such problems are usually simple simulation problems.

2.2.1  The Game

A game of Renju is played on a 19×19 board by two players. One player uses black 
stones and the other uses white stones. The game begins on an empty board and 
two players alternate in placing black stones and white stones. Black always goes 
first. There are 19 horizontal and 19 vertical lines on the board, and the stones are 
placed on the intersections of the lines.

Horizontal lines are marked 1, 2, ..., 19 from up to down, and vertical lines are 
marked 1, 2, ..., 19 from left to right, as shown in Figure 2.3.

The objective of this game is to put five stones of the same color consecutively 
along a horizontal, vertical, or diagonal line. So, black wins in Figure 2.3. But, a 
player does not win the game if more than five stones of the same color were put 
consecutively.

Given a configuration of the game, write a program to determine whether white 
has won, or black has won, or nobody has won yet. There will be no input data 

1
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 2.3 



Practice for Simulation Problems  ◾  65

where the black and the white both win at the same time. Also, there will be no 
input data where the white or the black wins in more than one place.

Input

The first line of the input file contains a single integer t (1≤t≤11), the number of 
test cases, followed by the input data for each test case. Each test case consists of 
19 lines, each having 19 numbers. A black stone is denoted by 1, a white stone is 
denoted by 2, and 0 denotes no stone.

Output

There should be one or two line(s) per test case. In the first line of the test case 
output, you should print 1 if black wins, 2 if white wins, and 0 if nobody wins 
yet. If black or white won, in the second line print the horizontal line number 
and the vertical line number of the leftmost stone among the five consecutive 
stones. (Select the uppermost stone if the five consecutive stones are located 
vertically.)

Sample Input Sample Output

1
0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
0  1  2  0  0  2  2  2  1  0  0  0  0  0  0  0  0  0  0
0  0  1  2  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0
0  0  0  1  2  0  0  0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  1  2  2  0  0  0  0  0  0  0  0  0  0  0  0
0  0  1  1  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  2  1  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0

1
3  2

Source:	 ACM Tehran Sharif 2004 Preliminary

IDs for Online Judge: POJ 1970, ZOJ 2495



66  ◾  Algorithm Design Practice for Collegiate Programming

  Analysis

Initially all stones on the 19×19 board constitute a sieve. Every stone is scanned 
from top to down and from left to right. If there is a stone at position (i, j), its adja-
cent stones in direction k are analyzed (0≤k≤3, 0≤i, j≤18), as shown in Figure 2.4.

The objective of this game is to put five stones of the same color consecutively 
along a horizontal, vertical, or diagonal line. Therefore, the constraint conditions 
for winning a game are as follows:

1.	The number at position (i, j) is different from the number at the adjacent posi-
tion in the opposite direction for direction k;

2.	From (i, j) and along direction k, five positions are in the board;
3.	From (i, j) and along direction k, numbers at five continuous positions are the 

same, and the number at the sixth position is different, or the sixth position 
is out of the board.

If the above constraint conditions hold, the stone at position (i, j) wins the 
game. If four directions are examined and the above constraint conditions don't 
hold, the stone at position (i, j) is filtered out. 

If all stones are filtered out, nobody wins the game.

  Program

#include <iostream>
using namespace std;
const int d[4][2] = {{0, 1}, {1, 0}, {1, 1}, {-1, 1}};    
//displacements for 4 directions

Direction 4: Down

(i, j)

Direction 3: Right down

Direction 1: Right

Direction 2: Right up

Figure 2.4 



Practice for Simulation Problems  ◾  67

inline bool valid(int x, int y)    //(x, y) in the board or 
not
{
	 return x >= 0 && x < 19 && y >= 0 && y < 19;
}
int a[20][20];    //board
int main()
{
	 int i, j, k, t, x, y, u;
	 scanf("%d", &t);    //the number of test cases
	 while (t--)    //Input test cases
	 {
		  for (i = 0; i < 19; ++i)    //Input a board
			   for (j = 0; j < 19; ++j) scanf("%d", &a[i][j]);
		  for (j = 0; j < 19; ++j)    // Every stone (i, j) is 
scanned from top to down and from left to right.
		  {
			   for (i = 0; i < 19; ++i)
			   {
				    if (a[i][j] == 0) continue;
				    for (k = 0; k < 4; ++k)    //4 directions are 
enumerated
				    {
					     x = i - d[k][0];y = j - d[k][1];
					     if (valid(x, y) && a[x][y] == a[i][j]) continue;
					     x = i + d[k][0] * 4;y=j + d[k][1] * 4;
					     if (!valid(x, y)) continue;
					     for (u = 1; u < 5; ++u)
					     {
						      x = i + d[k][0] * u;y = j + d[k][1] * u;
						      if (a[x][y] != a[i][j]) break;
					     }
					     x = i+d[k][0]*5;y = j+d[k][1]*5;
					     if (valid(x, y) && a[x][y] == a[i][j]) continue;
					     if (u == 5) break;
				    }
				    if (k < 4) break;
			   }
			   if (i < 19) break;
		  }
		  if (j < 19)    // five stones of the same color 
consecutively along a direction from (i,j), the color wins the 
game;
		  {
			   printf("%d\n", a[i][j]);
			   printf("%d %d\n", i + 1, j + 1);
		  }
	  	else puts("0");    // nobody wins the game
	 }
	 return 0;
}



68  ◾  Algorithm Design Practice for Collegiate Programming

2.2.2  Game Schedule Required

Sheikh Abdul really loves football. So you better not ask how much money he has 
spent to make famous teams join the annual tournament. Of course, having spent 
so much money, he would like to see certain teams play each other. He has worked 
out a complete list of games that he would like to see. Now it is your task to distrib-
ute these games into rounds according to the following rules:

1.	In each round, each remaining team plays at most one game;
2.	If there is an even number of remaining teams, every team plays exactly one 

game;
3.	If there is an odd number of remaining teams, there is exactly one team 

which plays no game (it advances with a wildcard to the next round);
4.	The winner of each game advances to the next round, and the loser is elimi-

nated from the tournament;
5.	If there is only one team left, this team is declared the winner of the 

tournament.

As can be proved by induction, in such a tournament with n teams, there are 
exactly n−1 games required until a winner is determined.

Obviously, after round 1, teams may already have been eliminated which 
should take part in another game. To prevent this, for each game you also have to 
tell which team should win.

Input

The input contains several test cases. Each test case starts with an integer n (2≤n≤1000), 
the number of teams participating in the tournament. The following n lines 
contain the names of the teams participating in the tournament. You can assume 
that each team name consists of up to 25 letters of the English alphabet (‘a’ to ‘z’ or 
‘A’ to ‘Z’).

Then follow n−1 lines, describing the games that Sheikh Abdul would like to see 
(in any order). Each line consists of the two names of the teams which take part in 
that game. You can assume that it is always possible to find a tournament schedule 
consisting of the given games.

The last test case is followed by a zero.

Output

For each test case, write the game schedule, distributed in rounds.
For each round, first write “Round #X  ” (where X is the round number) in a line 

by itself. Then write the games scheduled in this round in the form: “A defeats B”, 
where A is the name of the advancing team and B is the name of the team being 
eliminated. You may write the games of a round in any order. If a wildcard is needed 



Practice for Simulation Problems  ◾  69

for the round, write “A advances with wildcard” after the last game of the round, 
where A is the name of the team which gets the wildcard. After the last round, write 
the winner in the format shown below. Print a blank line after each test case.

Sample Input Sample Output

3
A
B
C
A B
B C
5
A
B
C
D
E
A B
C D
A E
C E
0

Round #1
B defeats A
C advances with wildcard
Round #2
C defeats B
Winner: C

Round #1
A defeats B
C defeats D
E advances with wildcard
Round #2
E defeats A
C advances with wildcard
Round #3
E defeats C
Winner: E

Source:	 Ulm Local 2005

IDs for Online Judges: POJ 2476, ZOJ 2801

  Analysis

There are n teams and n−1 games. For n−1 games that Sheikh Abdul would like to 
see, the two names of the teams which take part in the game are stored in a[i] and 
b[i] respectively, 1≤i≤n−1. Numbers of games that teams take part in are stored in 
cnt[i], 1≤i≤n.

Constraints in the problem description constitute a sieve. Initially all teams are 
put on the sieve.

Sheikh Abdul would like to see every game in each round. In a round, a team 
which will take part in other games will win the game. Constraints constituting a 
sieve are as follows:

In each round, the number of games is the number of teams in the current round 
divided by 2.

In each round, n−1 games that Sheikh Abdul would like to see are searched 
sequentially. For game i, 1≤i≤n−1, if a[i] and b[i] are in the sieve, and one 



70  ◾  Algorithm Design Practice for Collegiate Programming

team can only take part in one game, then the game that a[i] and b[i] take 
part in is in the round, and the team that has only one game is defeated and 
filtered out. After n−1 games are searched, teams in the sieve enter the next 
round.

The above process is repeated until only one team is left.

  Program

#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<map>
using namespace std;
const int maxN=1010;
int n,a[maxN],b[maxN],cnt[maxN];    //n: the number of teams; 
teams taking part in game i are a[i] and b[i], 1≤i≤n−1; the 
number of games that team k is taking part in is cnt[k], 1≤k≤n
char name[maxN][30];    //teams' names
bool flag[maxN];    //the flag indicates whether a team is in 
the sieve or not
map<string,int> que;
bool cmp(int a,string s)    //determine whether the name for 
team a is s or not
{
	 for (int i=0;i<s.size();i++)
		  if (name[a][i]!=s[i]) return false;
	 return true;
}
void init()    //Input a test case: n teams and n−1 games
{
	 que.clear();
	 for (int i=1;i<=n;i++)    //team's name
	 {
	 scanf("%s",name[i]);
	 que.insert(map<string,int>::value_type(name[i],i));        
//teams' numbers
	 }
	 string s;
	 int p;
	 char ch;scanf("%c",&ch);
	 for (int i=1;i<n;i++)    // n−1 games



Practice for Simulation Problems  ◾  71

	 {
		  scanf("%c",&ch);s="";
		  while (ch!=' ') { s+=ch;scanf("%c",&ch);}
		  p=que[s];
		  cnt[p]++;a[i]=p;
		  scanf("%c",&ch);s="";
		  while (ch!='\n') { s+=ch;scanf("%c",&ch);}
		  p=que[s];
		  cnt[p]++;b[i]=p;
	 }
}
void work()    // calculate and output the game schedule, 
distributed in rounds
{
	 int rnd=1,tm=n,s=n/2,now=0;    //rnd: the number of the 
current round, tm: the number of teams in the sieve, s: the 
number of games in a round, now: the number of hold games in a 
round
	 memset(flag,1,sizeof(flag));    // Initially all teams are 
put on the sieve
	 while (tm!=1)	               // only one team left
		  for (int i=1;i<n;i++)	   // n−1 games are searched 
sequentially
			   if (flag[a[i]]&&flag[b[i]]&&((cnt[a[i]]==1)||(cnt
[b[i]]==1)))//two teams are on the sieve, at least one team 
can only take part in a game
			   {
			    if (now==0)printf("Round #%d\n",rnd);// the round 
number
				    now++;tm--;    //number of hold games in the current 
round +1,
				    cnt[a[i]]--;cnt[b[i]]--;
// if only b[i] take part in one game, b[i] is defeated; if 
only a[i] take part in one game, a[i] is defeated; and if a[i] 
and b[i] take part in one game, b[i] wins
				    if (cnt[a[i]]) printf("%s defeats %s\n",name[a[i]], 
name[b[i]]);
				      else if (cnt[b[i]]) printf("%s defeats %s\n", 
name[b[i]],name[a[i]]);
				        else{
								�        printf("%s defeats %s\n",name[b[i]], 

name[a[i]]);
								        printf("Winner: %s\n",name[b[i]]);}
				    flag[a[i]]=false;flag[b[i]]=false;

				    if (now==s)
				    {
					     now=0;rnd++;s=tm/2;
					     for (int i=1;i<=n;i++)    // wildcard for the team 
that doesn't take part in a game in the round
					     {



72  ◾  Algorithm Design Practice for Collegiate Programming

						      if (flag[i] && cnt[i])
							        �printf("%s advances with wildcard\n",name[i]);
						      if (cnt[i]) flag[i]=true;else flag[i]=false;
					     }
				    }
		  }
	 printf("\n");
}	
int main()
{
	 while (scanf("%d",&n),n)    //number of teams
	 {
		  init();    // Input a test case: n teams and n−1 games
		  work();    // calculate and output the game schedule, 
distributed in rounds
	 }
	 return 0;
}

2.3  Construction Simulation
Construction simulation is a kind of relatively complex simulation method. It 
requires a mathematical model to represent and solve a problem. We need to design 
parameters of the model, and calculate a simulation result. Because such math-
ematical models represent objects and their relationships accurately, the efficiencies 
are relatively high.

2.3.1  Packets

A factory produces products packed in square packets of the same height h and of the 
sizes 1×1, 2×2, 3×3, 4×4, 5×5, and 6×6. These products are always delivered to cus-
tomers in the square parcels of the same height h as the products have and of the size 
6×6. Because of the expenses, it is in the interest of the factory as well as of the cus-
tomer to minimize the number of parcels necessary to deliver the ordered products 
from the factory to the customer. A good program, solving the problem of finding 
the minimum number of parcels necessary to deliver the given products according 
to an order, would save a lot of money. You are asked to create such a program.

Input

The input file consists of several lines specifying orders. Each line specifies one 
order. Orders are described by six integers separated by one space, representing 
successively the number of packets of individual size from the smallest size 1×1 to 
the biggest size 6×6. The end of the input file is indicated by the line containing 
six zeros.



Practice for Simulation Problems  ◾  73

Output

The output file contains one line for each line in the input file. This line contains 
the minimal number of parcels into which the order from the corresponding line 
of the input file can be packed. There is no line in the output file corresponding to 
the last “null” line of the input file.

Sample Input Sample Output

0  0  4  0  0  1
7  5  1  0  0  0
0  0  0  0  0  0

2
1

Source:	 ACM Central Europe 1996

IDs for Online Judges: POJ 1017, ZOJ 1307, UVA 311

  Analysis

The simulation problem is solved by the construction method. The greedy method 
is also used. Packets are packed in parcels in descending order by size. Because the 
parcels’ size is 6×6, each packet sized 4×4, 5×5, or 6×6 is packed in a parcel. The 
strategy is as follows:

A packet sized 6×6 is packed in a parcel.
A packet sized 5×5 is packed in a parcel. Packets sized 1×1 are packed into the 

remaining space of the parcel.
A packet sized 4×4 is packed in a parcel. Packets sized 2×2 are packed into the 

remaining space of the parcel. If there is no packet sized 2×2, packets sized 
1×1 are packed into the remaining space of the parcel.

Four packets sized 3×3 are packed in a parcel.

The algorithm is as follows:
Suppose the number of packets sized i×i is ai (1≤i≤6).

The number of parcels in which packets sized 6×6, 5×5, 4×4, and 3×3 are packed 

is 
46 5 4
3M a a a

a= + + +




.

The number of packets sized 2×2 and which can be packed in above M par-
cels is L2=a4×5+u[a3 mod 4], where u[0]=0, u[1]=5, u[2]=3, and u[3]=1. If 
there are any remaining packets sized 2×2 (a2>L2), they are packed in new 

−



9

2 2a L  parcels. And + = −



9

2 2M
a L .



74  ◾  Algorithm Design Practice for Collegiate Programming

The number of packets sized 1×1 and which can be packed in above M par-
cels is L1=M×36−a6×36−a5×25−a4×16−a3×9−a2×4. If there are remain-

ing packets sized 1×1 (a1>L1), they are packed in new −



36

1 1a L  parcels. 

And + = −



36

1 1M
a L

.

Obviously, M is the minimum number of parcels.

  Program
#include <iostream>
using namespace std;
int main()
{
	 int a[10],i,j,sum,m,left1,left2;    // the number of packets 
whose size are i*i is a[i], the number of packets is sum, the 
minimal number of parcels is m; the number of parcels in which 
2*2 can be packed is left2, the number of parcels in which 1*1 
can be packed is left1
	 int u[4]={0,5,3,1};    // u[a[3]% 4]
	 while (1)
	 {
		  sum=0;
		  for(i=1;i<=6;i++)    //Input the number of packets
		  {
			   cin>>a[i];
			   sum+=a[i];
		  }
		  if(sum==0) break; 
		  m=a[6]+a[5]+a[4]+(3+a[3])/4;    // The number of parcels 
in which packets whose size are 6*6, 5*5, 4*4, and 3*3 are 
packed
		  left2=a[4]*5+u[a[3]%4];    // the number of parcels in 
which 2*2 can be packed is left2
		  if(a[2]>left2)    //If there are remaining 2*2 packets, 
new parcels are needed
			   m+=(a[2]-left2+8)/9;
		  left1=m*36-a[6]*36-a[5]*25-a[4]*16-a[3]*9-a[2]*4;    // 
the number of parcels in which 1*1 can be packed is left1
		  if(a[1]>left1)    // If there are remaining 1*1 packets, 
new parcels are needed
			   m+=(a[1]-left1+35)/36;
		  cout<<m<<endl;    // the minimal number of parcels
	 }
	 return 0;
}



Practice for Simulation Problems  ◾  75

2.3.2  Paper Cutting

ACM managers need business cards to present themselves to their customers and 
partners. After the cards are printed on a large sheet of paper, they are cut with a 
special cutting machine. Since the machine operation is very expensive, it is neces-
sary to minimize the number of cuts made. Your task is to find the optimal solution 
to produce the business cards.

There are several limitations you have to comply with. The cards are always 
printed in a grid structure of exactly a×b cards. The structure size (number of 
business cards in a single row and column) is fixed and cannot be changed due 
to printing software restrictions. The sheet is always rectangular and its size 
is fixed. The grid must be perpendicular to the sheet edges, that is, it can be 
rotated by 90° only. However, you can exchange the meaning of rows and col-
umns and place the cards into any position on the sheet; they can even touch 
the paper edges.

For instance, assume the card size is 3×4 cm, and the grid size 1×2 cards. The 
four possible orientations of the grid are depicted in Figure 2.5. The minimum 
paper size needed for each of them is stated.

The cutting machine used to cut the cards is able to make an arbitrary long 
continuous cut. The cut must run through the whole piece of the paper; it can-
not stop in the middle. Only one free piece of paper can be cut at once—you 
cannot stack pieces of paper onto each other, nor place them beside each other 
to save cuts.

Input

The input consists of several test cases. Each of them is specified by six positive inte-
ger numbers, A, B, C, D, E, and F, on one line separated by a space. The numbers 
are:

A and B are the size of a rectangular grid, 1≤A, B≤1000; C and D are the dimen-
sions of a card in cms, 1≤C, D≤1000; and E and F are the dimensions of a 
paper sheet in cms, 1≤E, F≤1000000.

The input is terminated by a line containing six zeros.

6 × 4 cm 8 × 3 cm

4 × 6 cm
3 × 8 cm

Figure 2.5 



76  ◾  Algorithm Design Practice for Collegiate Programming

Output

For each of the test cases, output a single line. The line should contain the text: 
“The minimum number of cuts is X.”, where X is the minimum number of cuts 
required. If it is not possible to fit the card grid onto the sheet, output the sentence 
“The paper is too small.” instead.

Sample Input Sample Output

1  2  3  4  9  4
1  2  3  4  8  3
1  2  3  4  5  5
3  3  3  3  10  10
0  0  0  0  0  0

The minimum number of cuts is 2.
The minimum number of cuts is 1.
The paper is too small.
The minimum number of cuts is 10.

Source:	 CTU Open 2003

IDs for Online Judges: POJ 1791, ZOJ 2160

  Analysis

First, the cutting machine cuts the paper to produce grids. Then it cuts grids to pro-
duce cards. Suppose A×B is the size of a rectangular grid; C×D is the size of a card; 
and E×F is the size of a paper sheet. In the longitudinal direction, there are A cards 
whose length is C. That is, the length is A×C in the longitudinal direction. In the 
horizontal direction, there are B cards whose length is D. That is, the length is B×D 
in the horizontal direction. The constraint condition is (A×C≤E)&&(B×D≤F).

In order to produce A×B rectangular grids, at least A×B−1 cuts are needed. 
If A×C<E in the longitudinal direction, a cut is needed. And if B×D<F in the 
horizontal direction, a cut is added. Therefore, the minimal number of cuts 
C0=A×B−1+(A×C<E)+(B×D<F).

Grids can be turned 90°, 180°,, and 270°. Cases are as follows:

1.	B×A is the size of a rectangular grid; C×D is the size of a card; and E×F is the 
size of a paper sheet.

2.	A×B is the size of a rectangular grid; D×C is the size of a card; and E×F is the 
size of a paper sheet.

3.	B×A is the size of a rectangular grid; D×C is the size of a card; and E×F is the 
size of a paper sheet.

Based on the above method, the minimum numbers of cuts are C1, C2, 
and C3, respectively. If the constraint condition doesn’t hold, the minimum 



Practice for Simulation Problems  ◾  77

number of cut is ∞. Obviously the minimum number of cuts is Ans=min{C0, C1, 
C2, C3}.

If Ans=∞, it is not possible to fit the card grid onto the sheet.

  Program

#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#define TOOBIG INT_MAX
int ncuts(int a,int b,int c,int d,int e,int f) ;
void do_solve(int a,int b,int c,int d,int e,int f)    
//enumerate four cases and calculate the minimal numbers of 
cuts
{
  int x,m ;
  m=ncuts(a,b,c,d,e,f) ;    //Case 0: C0
  if ((x=ncuts(b,a,c,d,e,f))<m) m=x ;    // Case 1: C1
  if ((x=ncuts(a,b,d,c,e,f))<m) m=x ;    // Case 2: C2
  if ((x=ncuts(b,a,d,c,e,f))<m) m=x;    // Case 3: C3
  if (m==TOOBIG)
    puts("The paper is too small.")  ;
  else
    printf("The minimum number of cuts is " "%d.\n",m) ;
}
int ncuts(int a,int b,int c,int d,int e,int f) 
{
  if (a*c>e || b*d>f) return TOOBIG ;    // constraint 
condition
 return a*b-1+(a*c<e)+(b*d<f)  ;    // the minimal number of 
cuts
}
int main()
{ int a,b,c,d,e,f ;
  for(;;) {
    a=0 ; b=0 ; c=0 ; d=0 ; e=0 ; f=0 ;
    scanf("%d %d %d %d %d %d",&a,&b,&c,&d,&e,&f) ;    //a test 
case
    if (!a && !b && !c && !d && !e && !f) break ; 
    do_solve(a,b,c,d,e,f) ;
  }
  return 0 ;
}



78  ◾  Algorithm Design Practice for Collegiate Programming

2.4  Problems
2.4.1  Mileage Bank

The Mileage program of ACM (Airline of Charming Merlion) is good for travelers 
who fly frequently. Once you complete a flight with ACM, you can earn ACMPerk 
miles in your ACM Mileage Bank, depending on the mileage you actually fly. In 
addition, you can use the ACMPerk mileage in your Mileage Bank to exchange for 
a free flight ticket from ACM in the future.

The following table helps you calculate how many ACMPerk miles you can earn 
when you fly on ACM.

When you fly ACM Class Code You’ll Earn

First Class F Actual mileage + 100% mileage bonus

Business Class B Actual mileage + 50% mileage bonus

Economy Class
1–500 miles
500+ miles

Y
500 miles
Actual mileage

The ACMPerk mileage consists of two parts. One is the actual flight mile-
age (the minimum ACMPerk mileage for the economy class for one flight is 
500 miles), and the other is the mileage bonus (its accuracy is up to one mile) 
when a traveller flies in business class and first class. For example, one can earn 
1329 ACMPerk miles, 1994 ACMPerk miles, and 2658 ACMPerk miles for Y, B, 
or F class, respectively, for the flight from Beijing to Tokyo (the actual mileage 
between Beijing and Tokyo is 1329 miles). When one flies from Shanghai to 
Wuhan, one can earn ACMPerk 500 miles for economy class and ACMPerk 
650 miles for business class (the actual mileage between Shanghai and Wuhan 
is 433 miles).

Your task is to help ACM build a program for automatic calculation of ACMPerk 
mileage.

Input

The input file contains several data cases. Each case has many flight records, each 
per line. The flight record is in the following format:

OriginalCity    DistanceCity    ActualMiles    ClassCode

Each case ends with a line of one zero.
A line of one # presents the end of the input file.



Practice for Simulation Problems  ◾  79

Output

Output the summary of ACMPerk mileages for each test case, one per line.

Sample Input Sample Output

Beijing Tokyo 1329
F
Shanghai Wuhan 433 Y
0
#

3158

Source:	 ACM Beijing 2002

IDs for Online Judges: POJ 1326, ZOJ 1365, UVA 2524

  Hint

The problem is a simple, straightforward simulation problem. First, flight records 
are input one by one. Then, based on the rule in the problem description, the sum-
mary of ACMPerk mileages is calculated.

2.4.2  Cola

You see the following special offer by a convenience store:

“A bottle of Choco Cola for every 3 empty bottles returned”

Now you decide to buy some (say N) bottles of cola from the store. You would 
like to know how you can get the most cola from them.

Figure 2.6 shows the case where N=8. Method 1 is the standard way: after 
finishing your eight bottles of cola, you have eight empty bottles. Take six of them 
and you get two new bottles of cola. Now after drinking them, you have four empty 

Method 1: Method 2 (Better!):

8

2

1

11 12

+

8

3

1+

Figure 2.6 



80  ◾  Algorithm Design Practice for Collegiate Programming

bottles, so you take three of them to get yet another new cola. Finally, you have 
only two bottles in hand, so you cannot get a new cola any more. Hence, you have 
enjoyed 8 + 2 + 1 = 11 bottles of cola.

You can actually do better! In method 2, you first borrow an empty bottle from 
your friend (or the storekeeper??), and then you can enjoy 8 + 3 + 1 = 12 bottles of cola! 
Of course, you will have to return your remaining empty bottle back to your friend.

Input

Input consists of several lines, each containing an integer N (1≤N≤200).

Output

For each case, your program should output the maximum number of bottles of cola 
you can enjoy. You may borrow empty bottles from others, but if you do that, make 
sure that you have enough bottles afterward to return to them.

Sample Input Sample Output

8 12

Source:	 Contest of Newbies 2006

ID for Online Judge: UVA 11150

  Hint

Suppose n is the number of bottles of cola you buy from the store initially; i is the 
number of empty bottles you borrow; cnt is the total number of bottles, initially 
cnt=n+i; tot is the number of bottles of cola you can enjoy, initially tot=n; and ans 
is the maximum number of bottles of cola you can enjoy, initially ans=0.

The “trick” is that borrowing more than two bottles does not help—you would 
have to return the extra bottles without trading them in, and the borrowing should 
be done in the beginning, since it would cascade down otherwise. Therefore, the 
program only needs to simulate borrowing either 0, 1, or 2 bottles. For each case, 
we simulate the process as follows:

Repeat the process until cnt<3:

		  The number of produced empty bottles tmp=cnt%3;
		  The number of increased bottles of cola cnt/=3;
		  The number of bottles of cola you can enjoy tot+=cnt;
		  The number of increased empty bottles cnt+=tmp;
if (cnt≥i && tot>ans) ans=tot;    // you can return remaining 
empty bottles back to your friend, and drink more.

We can easily take the best out of the three simulations.



Practice for Simulation Problems  ◾  81

2.4.3  The Collatz Sequence

An algorithm given by Lothar Collatz produces sequences of integers, and is 
described as follows:

Step 1: Choose an arbitrary positive integer A as the first item in the sequence.
Step 2: If A = 1 then stop.
Step 3: If A is even, then replace A by A/2 and go to Step 2.
Step 4: If A is odd, then replace A by 3×A+1 and go to Step 2.

It has been shown that this algorithm will always stop (in Step 2) for initial 
values of A as large as 109, but some values of A encountered in the sequence may 
exceed the size of an integer on many computers. In this problem, we want to 
determine the length of the sequence that includes all values produced until either 
the algorithm stops (in Step 2), or a value larger than some specified limit would be 
produced (in Step 4).

Input

The input for this problem consists of multiple test cases. For each case, the input 
contains a single line with two positive integers, the first giving the initial value of 
A (for Step 1) and the second giving L, the limiting value for terms in the sequence. 
Neither of these, A or L, is larger than 2147483647 (the largest value that can be 
stored in a 32-bit signed integer). The initial value of A is always less than L. A line 
that contains two negative integers follows the last case.

Output

For each input case, display the case number (sequentially numbered starting with 
1), a colon, the initial value for A, the limiting value L, and the number of terms 
computed.

Sample Input Sample Output

3 100
34 100
75 250
27 2147483647
101 304
101 303
−1 −1

Case 1: A = 3, limit = 100, number of terms = 8
Case 2: A = 34, limit = 100, number of terms = 14
Case 3: A = 75, limit = 250, number of terms = 3
Case 4: A = 27, limit = 2147483647, number of terms = 112
Case 5: A = 101, limit = 304, number of terms = 26
Case 6: A = 101, limit = 303, number of terms = 1

Source:	 ACM North Central Regionals 1998

ID for Online Judge: UVA 694



82  ◾  Algorithm Design Practice for Collegiate Programming

  Hint

This is a “follow the instructions” problem. Given the initial value of a (for Step 1) 
and the limiting value for terms in the sequence l, the number of terms ans is 
calculated as follows:

	 ans=0;
		  while(a<=l&&a!=1){ 
			   ans++;
			   a=a&1?3*a+1:a/2; 
			   }
	 if(a==1)	ans++; 

2.4.4  Let's Play Magic!

You have seen a card magic trick named “Spelling Bee.” The process goes as follows:

1.	The magician first arranges 13 cards in a circle, as shown in Figure 2.7.
2.	Starting from the marked position, he counts the cards clockwise, saying 

“A—C—E.”
3.	He turns the card at the “E” position, and... it is an Ace!
4.	Next, he takes away the Ace and continues to count the cards, saying 

“T—W—O.”
5.	He turns over the card at position “O”... it is a Two!!
6.	He continues to do this with the rest of the cards from Three to King. :-)

Now, how does the magician arrange the cards?

A

C

E

T

Start
here!

Count
this
way

W
O

.  .  .

.  .  .

Figure 2.7 



Practice for Simulation Problems  ◾  83

Input

Input consists of several test cases. Each case begins with an integer N (1≤N≤52), 
the number of cards to be used in the magic trick. The following N lines show the 
order of the turning over of the cards and the words to be spelled. None of the 
words will have more than 20 characters. The format for each card is a string with 
two characters: first the value, and second, the suit.

Input ends with a test case where N=0. This test case should not be processed.

Output

For each case, your program should output the initial arrangement of the cards.

Sample Input Sample Output

13
AS ACE
2S TWO
3S THREE
4C FOUR
5C FIVE
6C SIX
7D SEVEN
8D EIGHT
9D NINE
TH TEN
JH JACK
QH QUEEN
KH KING
0

QH 4C AS 8D KH 2S 7D 5C TH JH 3S 6C 9D

Source:	 Return of the Newbies 2005

ID for Online Judge: UVA 10978

  Hint

N cards are arranged in a circle. Starting from a certain card, the magician counts 
cards in a clockwise direction and spells N words. When the last letter of a word is 
pronounced, he turns over the card and removes it from the circle.

Given the sequence of words, and the order in which the cards are removed, 
find the initial arrangement of cards in the circle.

The algorithm simulates the magician’s actions and recovers the arrangement 
of cards.



84  ◾  Algorithm Design Practice for Collegiate Programming

2.4.5  Throwing Cards Away

Given is an ordered deck of n cards numbered 1 to n with card 1 at the top and card 
n at the bottom. The following operation is performed as long as there are at least 
two cards in the deck:

Throw away the top card and move the card that is now on the top of the deck 
to the bottom of the deck.

Your task is to find the sequence of discarded cards and the last remaining card.

Input

Each line of input (except the last) contains a number n≤50. The last line contains 
0, and this line should not be processed.

Output

For each number from the input, produce two lines of output. The first line presents 
the sequence of discarded cards, and the second line reports the last remaining card. 
No line will have leading or trailing spaces. See the sample for the expected format.

Sample Input Sample Output

7
19
10
6
0

Discarded cards: 1, 3, 5, 7, 4, 2
Remaining card: 6
Discarded cards: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 4, 8, 12, 16, 2, 10, 18, 14
Remaining card: 6
Discarded cards: 1, 3, 5, 7, 9, 2, 6, 10, 8
Remaining card: 4
Discarded cards: 1, 3, 5, 2, 6
Remaining card: 4

Source:	 A Special Contest 2005

ID for Online Judge: UVA 10935

  Hint

Simulate the problem as described. A queue is used to simulate efficiently.

2.4.6  Gift?!

There is a beautiful river in a small village. There are n rocks arranged in a straight 
line numbered 1 to n from the left bank to the right bank, as shown below:

[Left Bank] - [Rock1] - [Rock2] - [Rock3] - [Rock4] ... [Rock n] - [Right Bank]



Practice for Simulation Problems  ◾  85

The distance between two adjacent rocks is exactly 1 meter, while the distance 
between the left bank and rock 1, and between rock n and the right bank, is also 
1 meter.

�Frog Frank was about to cross the river. His neighbor Frog Funny came to him 
and said,

�“Hello, Frank. Happy Children’s Day! I have a gift for you. See it? A little parcel 
on Rock 5.”

�“Oh, that's great! Thank you! I’ll get it.”
�“Wait...This present is for smart frogs only. You can’t get it by jumping to it directly.”
�“Oh? Then what should I do?”
�“Jump more times. Your first jump must be from the left bank to Rock 1, then, 

jump as many times as you like—no matter forward or backward, but 
your i-th jump must cover 2×i−1 meters. What’s more, once you return 
to the left bank or reach the right bank, the game ends, and no more 
jumps are allowed.”

�“Hmmm, not easy... let me think!” answered Frog Frank. “Should I give it a try?”

Input

The input will contain no more than 2000 test cases. Each test case contains a sin-
gle line. It contains two positive integers n (2≤n≤106), and m (2≤m≤n), m indicates 
the number of the rock on which the gift is located. A test case in which n=0, m=0 
will terminate the input and should not be regarded as a test case.

Output

For each test case, output a single line containing “Let me try!” if it’s possible to 
get to rock m; otherwise, output a single line containing “Don’t make fun of me!”.

Sample Input Sample Output

9  5
12  2
0  0

Don’t make fun of me!
Let me try!

Note: In test case 2, Frank can reach the gift in this way:

Forward (to rock 4), Forward (to rock 9), Backward (to rock 2, got the gift!)

  Note that if Frank jumps forward in his last jump, he will land on the 
right bank (assume that banks are large enough) and thus, he would lose 
the game.

Source:	 OIBH Online Programming Contest 1

IDs for Online Judge: ZOJ 1229, UVA 10120



86  ◾  Algorithm Design Practice for Collegiate Programming

  Hint

Suppose n rocks are arranged in a straight line numbered 1 to n from the left bank 
to the right bank, and m indicates the number of the rock on which the gift is 
located. It can be proved, if n>50, Frog Frank can reach each rock. If n≤50, we need 
to determine whether Frog Frank can reach a rock or not. First, the offline method 
is to determine whether Frog Frank can reach a rock or not.

	

[ ][ ]
Frank Frog can reach Rock

Frank Frog can’t reach Rock
,

1 50,1 .

ans n m
true m
false m

n m n( )

=






≤ ≤ ≤ ≤

Then, for each test case n and m, if n≤50, output the result based on ans[n][m].

2.4.7  A-Sequence

For this problem an A-sequence is a sequence of positive integers ai satisfying 
1≤a1<a2<a3<... and every ak of the sequence is not the sum of two or more distinct 
earlier terms of the sequence.

You should write a program to determine if a given sequence is or is not an 
A-sequence.

Input

The input consists of a set of lines; each line starts with an integer 2≤D≤30 that 
indicates the number of integers that the current sequence has. Following this num-
ber there is the sequence itself. The sequence is composed by integers; each integer 
is greater than or equal to 1 and less than or equal to 1000. The input is terminated 
by end of file (EOF).

Output

For each test case in the input you should print two lines: the first line should 
indicate the number of the test case and the test case itself; in the second line 
you should print “This is an A-sequence.”, if the corresponding test case is an 
A-sequence, or “This is not an A-sequence.”, if the corresponding test case is not 
an A-sequence.



Practice for Simulation Problems  ◾  87

Sample Input Sample Output

2 1 2
3 1 2 3
10 1 3 16 19 25 70 100 243 245 306

Case #1: 1 2
This is an A-sequence.
Case #2: 1 2 3
This is not an A-sequence.
Case #3: 1 3 16 19 25 70 100 243 245 306
This is not an A-sequence.

Source:	 UFRN-2005 Contest 2

ID for Online Judge: UVA 10930

  Hint

The problem requires you to determine whether a sequence of positive integers is 
an A-sequence or not. If a sequence of positive integers is an A-sequence, then the 
sequence of positive integers is in the ascending order, and every element of the 
sequence is not the sum of two or more distinct earlier terms of the sequence.

For a test case, positive integers are input one by one. Suppose sums of two or 
more distinct earlier terms of the sequence are stored in g[]; z is the current input 
integer; and la is the previous integer.

For the current integer z, if z is the sum of two or more distinct earlier terms of 
the sequence, or z≤la, then the sequence isn’t an A-sequence, and exit the process. 
Else, first, elements in g[] and z are analyzed: if for all g[i], g[i]+z isn’t in g[], a new 
element g[i]+z is added into g[]; then la=z, and the next integer z is input. After all 
elements in the sequence are dealt with, the sequence is an A-sequence.

2.4.8  Building Design

An architect wants to design a very high building. The building will consist of some 
floors, and each floor will have a certain size. The size of a floor must be greater 
than the size of the floor immediately above it. In addition, the designer (who is 
a fan of a famous Spanish football team) wants to paint the building in blue and 
red, each floor a color, and in such a way that the colors of two consecutive floors 
are different.

To design the building, the architect has n available floors, with their associated 
sizes and colors. All the available floors are of different sizes. The architect wants 
to design the highest possible building with these restrictions, using the available 
floors.



88  ◾  Algorithm Design Practice for Collegiate Programming

Input

The input file consists of a first line with the number p of cases to solve. The first line 
of each case contains the number of available floors. Then, the size and color of each 
floor appear in one line. Each floor is represented with an integer between −999999 
and 999999. There is no floor with size 0. Negative numbers represent red floors 
and positive numbers represent blue floors. The size of the floor is the absolute value 
of the number. There are no two floors with the same size. The maximum number 
of floors for a problem is 500000.

Output

For each case the output will consist of a line with the number of floors of the high-
est building with the mentioned conditions.

Sample Input Sample Output

2
5
7
−2
6
9
−3
8
11
−9
2
5
18
17
−15
4

2
5

Source:	 IV Local Contest in Murcia 2006

ID for Online Judge: UVA 11039

  Hint

First, the sizes of the floors are sorted in descending order. Second, we set the low-
est floor for the building as blue, and design the highest possible building with the 
restrictions in the problem description. The number of floors of the highest build-
ing is l1. Third, we set the lowest floor for the building as red, and design the highest 



Practice for Simulation Problems  ◾  89

possible building with the restrictions in the problem description. The number of 
floors of the highest building is l2.

Obviously, the number of floors of the highest building is max{l1, l2}.

2.4.9  Light Bulbs

Hollywood’s newest theater, the Atheneum of Culture and Movies, has a huge 
computer-operated marquee composed of thousands of light bulbs. Each row of 
bulbs is operated by a set of switches that are electronically controlled by a com-
puter program. Unfortunately, the electrician installed the wrong kind of switches, 
and tonight is the ACM’s opening night. You must write a program to make the 
switches perform correctly.

A row of the marquee contains n light bulbs controlled by n switches. Bulbs 
and switches are numbered from 1 to n, left to right. Each bulb can be either ON 
or OFF. Each input case will contain the initial state and the desired final state for 
a single row of bulbs.

The original lighting plan was to have each switch control a single bulb. 
However, the electrician’s error caused each switch to control two or three consecu-
tive bulbs, as shown in Figure 2.8. The leftmost switch (i=1) toggles the states of 
the two leftmost bulbs (1 and 2); the rightmost switch (i=n) toggles the states of the 
two rightmost bulbs (n−1 and n). Each remaining switch (1<i<n) toggles the states 
of the three bulbs with indices i−1, i, and i+1. (In the special case where there is 
a single bulb and a single switch, the switch simply toggles the state of that bulb.) 
Thus, if bulb 1 is ON and bulb 2 is OFF, flipping switch 1 will turn bulb 1 OFF 
and bulb 2 ON. The minimum cost of changing a row of bulbs from an initial con-
figuration to a final configuration is the minimum number of switches that must 
be flipped to achieve the change.

You can represent the state of a row of bulbs in binary, where 0 means the bulb is 
OFF and 1 means the bulb is ON. For instance, 01100 represents a row of five bulbs 
in which the second and third bulbs are both ON. You could transform this state into 
10000 by flipping switches 1, 4, and 5, but it would be less costly to simply flip switch 2.

First switch

First bulb Second bulb Third bulb

Second switch Third switch nth switch

nth bulb(n – 1)st bulb

Figure 2.8 



90  ◾  Algorithm Design Practice for Collegiate Programming

You must write a program that determines the switches that must be flipped to 
change a row of light bulbs from its initial state to its desired final state with minimal 
cost. Some combinations of initial and final states may not be feasible. For compact-
ness of representation, decimal integers are used instead of binary for the bulb config-
urations. Thus, 01100 and 10000 are represented by the decimal integers 12 and 16.

Input

The input file contains several test cases. Each test case consists of one line. The line 
contains two non-negative decimal integers, at least one of which is positive and 
each of which contains at most 100 digits. The first integer represents the initial 
state of the row of bulbs, and the second integer represents the final state of the row. 
The binary equivalent of these integers represents the initial and final states of the 
bulbs, where 1 means ON and 0 means OFF.

To avoid problems with leading zeros, assume that the first bulb in either the 
initial or the final configuration (or both) is ON. There are no leading or trailing 
blanks in the input lines, no leading zeros in the two decimal integers, and the 
initial and final states are separated by a single blank.

The last test case is followed by a line containing two zeros.

Output

For each test case, print a line containing the case number and a decimal integer 
representing a minimum-cost set of switches that need to be flipped to convert the 
row of bulbs from initial state to final state. In the binary equivalent of this inte-
ger, the rightmost (least significant) bit represents the nth switch, 1 indicates that 
a switch has been flipped, and 0 indicates that the switch has not been flipped. If 
there is no solution, print “impossible”. If there is more than one solution, print the 
one with the smallest decimal equivalent.

Print a blank line between cases. Use the output format shown in the example.

Sample Input Sample Output

12  16
1  1
3  0
30  5
7038312  7427958190
4253404109  657546225
0  0

Case Number 1: 8
Case Number 2: 0
Case Number 3: 1
Case Number 4: 10
Case Number 5: 2805591535
Case Number 6: impossible

Source:	 ACM World Finals - Beverly Hills - 2003

ID for Online Judge: UVA 2722



Practice for Simulation Problems  ◾  91

  Hint

Every switch is either flipped or not, and can’t be flipped more. After the first 
switch’s operation is determined, only the second switch’s operation can control 
the first bulb. The second switch’s operation is determined. Therefore, all switches’ 
operation can be determined, and so on. The simulation algorithm is as follows. 
First, determine whether the first switch  should be flipped or not, and then every 
switch is enumerated one by one to determine all operations. High precision num-
bers are used to represent the states of the row of bulbs.

2.4.10  Link and Pop—the Block Game

Recently, Robert found a new game on the Internet that is the newest version of “Link 
and Pop.” The game rule is very simple. Initially, a board of size n×m is filled with n×m 
blocks. Each of these blocks has a symbol on it. All you need to do is to find a pair of 
blocks with the same symbol on them, which can be linked with a line that consists of 
at most three straight horizontal or vertical line segments. Note that the line segments 
cannot cross the other blocks on the board (see Figure 2.9 for some examples of pos-
sible links; note that some blocks have already been removed from the board).

If you successfully find such a pair of blocks, the two blocks can be popped 
(i.e., removed) together. After this, some of the blocks may be moved to new posi-
tions on the board following the rules described later. Then, you can start to find 
the next pair. The game continues until there are no blocks left on the board or you 
cannot find such a pair.

The blocks are moved according to the following rules. First, each block has a 
static moving attribute, which is one of ‘up’, ‘down’, ‘left’, ‘right’, and ‘stand still’. 
After a pair of blocks is removed, the blocks are checked one by one to see whether 
they can be moved towards the direction of its moving attribute. The blocks in the 
top row are checked first. Inside the same row, the blocks on the left are checked 
first. If the adjacent position at the direction of the block’s moving attribute is 
not occupied, the block will be moved to that position immediately. No block 
can be moved beyond the boundary of the game board. Of course, a block with 
attribute ‘stand still’ will always stay at its original position. After all the blocks are 
checked, which is called a turn of checking, another turn of checking is started. 

A A B C

B E C F
E

H
G

H
E D

Figure 2.9 



92  ◾  Algorithm Design Practice for Collegiate Programming

This continues until no more blocks can be moved to a new position following the 
moving rules. Note that inside each turn of checking, each of the blocks is checked 
and possibly moved only once. Blocks must not be checked and moved on its new 
position in one turn of checking.

Robert felt that the game was very interesting. However, after some time of 
playing, he found that when the size of the board is rather large, finding a pair of 
blocks becomes a very tough job. Furthermore, he often gets a ‘Game Over’ because 
no more blocks can be popped. Robert felt that it is not his fault that not all the 
blocks are being popped. It is only that there is a great chance that the game cannot 
be finished if the blocks are placed randomly at first. However, it will be very time-
consuming to prove this by playing the game many times. So, Robert asks you to 
write a program for him that will simulate his behavior in the game and see if the 
game can be finished.

In order to make such a program possible, Robert summarizes his rules of 
selecting block pairs as follows. First, the pair of blocks that can be linked with 
one straight line segment must be found and popped because such pairs are easy 
to find. Next, if such a pair does not exist, the pairs that can be linked by two 
straight line segments must be found and popped. Finally, if both the above 
described pairs do not exist, the pairs that can be linked by three straight line 
segments must be found and popped. If more than one pair that can be linked 
with the same number of straight line segments exists, the pair that contains a 
block, which is positioned at the topmost row (or leftmost if two more blocks are 
positioned in the same row), will be selected first. If this rule still cannot break 
the tie (more than one pair may share one block that is positioned at the most top, 
left position), the other blocks in these pairs are compared according to the same 
rules. Figure 2.10 shows a trace of a mini game of “Link and Pop” that follows 
the above rules.

A A C

H G H

C  F G

A A C

H G H

C F G

C G

H H

C F G

F

C

H G H

C F G

C G

C F G

G

F G

C

H G H

C F G

F

C G

H H

C F G

C G

C  F G

G

F G

Figure 2.10 



Practice for Simulation Problems  ◾  93

Input

The input contains no more than 30 test cases. The first line of each test case con-
tains two integers n, m(1≤n, m≤30), which is the size of the board. After this line, 
there will be n more lines. Each of these lines contains m strings, separated by single 
spaces. Each of these strings represents one block in the initial configuration. Each 
string always consists of two capital letters. The first letter is the symbol of the block. 
The second letter is always one of the letters ‘U’, ‘D’, ‘L’, ‘R’, and ‘S’, which shows the 
block’s moving attribute, that is, up, down, left, right, and stand still, respectively. 
There are no blank lines between test cases. The input ends with a line of two 0’s: ‘0 0’.

Output

For each test case, first output the test case number. After this line, you must output 
the final configuration of the board with n lines, each containing m characters. If 
there is a block on the position, output the symbol of the block. If there is no block on 
the position, output a period instead. Do not output blank lines between test cases.

Sample Input Sample Output

3  3
AD  AU  CL
HS  GU  HL
CS  FD  GS
1  2
BS  BL
0  0

Case 1
...
...
.F.
Case 2
..

Source:	 ACM Shanghai 2004

IDs for Online Judges: POJ 2281, ZOJ 2391, UVA 3260

  Hint

This is a simulation problem. The time limit for the problem is ample. Therefore, 
based on Robert’s rules of selecting block pairs, the solution can be obtained. The 
simulation method is as follows.

First, we try to find whether there is a pair of blocks that can be linked with 
one straight line segment. Second, if there is no such pair of blocks, we try to find 
whether there is a pair of blocks that can be linked by two straight line segments. 
Finally, if both of the above pairs do not exist, we try to find a pair that can be 
linked by three straight line segments. If more than one pair that can be linked 
with the same number of straight line segments exists, the pair that contains a 



94  ◾  Algorithm Design Practice for Collegiate Programming

block, which is positioned at the topmost row (or leftmost if two more blocks are 
positioned in the same row), will be selected first. If this rule still cannot break 
the tie (more than one pair may share one block that is positioned at the most 
top, left position), the other block in these pairs are compared according to the 
same rules.

Each block has a static moving attribute, which is one of ‘up’, ‘down’, ‘left’, 
‘right’, and ‘stand still’. After a pair of blocks is removed, the blocks are checked 
one by one to see whether they can be moved toward the direction of its moving 
attribute. The blocks in the top row are checked first. Inside the same row, the 
blocks on the left are checked first. If the adjacent position at the direction of the 
block’s moving attribute is not occupied, the block will be moved to that position. 
No block can be moved beyond the boundary of the game board. Of course, a 
block with attribute ‘stand still’ will always stay at its original position. After all the 
blocks are checked, which is called a turn of checking, another turn of checking is 
started. This continues until no more blocks can be moved to a new position fol-
lowing the moving rules.

BFS is used to find the popped pair every time. A dequeue is used in BFS: if a 
pair of blocks is linked with one straight line segment, it is added at the front of the 
queue; and if a pair of blocks is linked with more than one straight line segment, it 
is added at the rear of the queue. A pair of blocks is popped based on rules in the 
problem description.

2.4.11  Packing Rectangles

Four rectangles are given. Find the smallest enclosing (new) rectangle into which 
these four may be fitted without overlapping. By smallest rectangle, we mean the 
one with the smallest area.

All four rectangles should have their sides parallel to the corresponding sides of 
the enclosing rectangle. Figure 2.11 shows six ways to fit four rectangles together. 
These six are the only possible basic layouts, since any other layout can be obtained 
from a basic layout by rotation or reflection. There may exist several different 
enclosing rectangles fulfilling the requirements, all with the same area. You have to 
produce all such enclosing rectangles.

Figure 2.11 



Practice for Simulation Problems  ◾  95

Input

Your program is to read from standard input. The input consists of four lines. Each 
line describes one given rectangle by two positive integers: the lengths of the sides 
of the rectangle. Each side of a rectangle is at least 1 and at most 50.

Output

Your program is to write to standard output. The output should contain one line 
more than the number of solutions. The first line contains a single integer: the 
minimum area of the enclosing rectangles. Each of the following lines contains one 
solution described by two numbers p and q, with p≤q. These lines must be sorted in 
ascending order of p, and must all be different.

Sample Input Sample Output

1  2
2  3
3  4
4  5

40
4 10
5 8

Source:	 IOI 1995

ID for Online Judges: POJ 1169

  Hint

1.	Calculating the length and width of the enclosing rectangle.
There are six ways to fit four rectangles together. These six ways are the only 
possible basic layouts, since any other layout can be obtained from a basic 
layout by rotation or reflection. Therefore, the key to the problem is to cal-
culate areas of rectangles for the six ways. Suppose the four rectangles are 
as follows:

Rectangle w whose length and width are w1 and w2, respectively;
Rectangle x whose length and width are x1 and x2, respectively;
Rectangle y whose length and width are y1 and y2, respectively;
Rectangle z whose length and width are z1 and z2, respectively.

The first layout is as shown in Figure 2.12. The length of the enclosing 
rectangle is MAX(w1, x1, y1, z1), and the width is w2+x2+y2+z2.



96  ◾  Algorithm Design Practice for Collegiate Programming

The second layout is as shown in Figure 2.13. The length of the enclosing 
rectangle is MAX(w1, x1, y1)+z1, and the width is MAX(z2, w2+x2+y2).

The third layout is as shown in Figure 2.14. The length of the enclosing 
rectangle is MAX(w1, x1+MAX(z1, y1)), and the width is w2+MAX(x2, z2+y2).

Lengthw

y
z

x

Width

Figure 2.14 

Length

z

w
x

y

Width

Figure 2.13 

Length
z y x w

Width

Figure 2.12 



Practice for Simulation Problems  ◾  97

The fourth and the fifth layout are as shown in Figure 2.15. The com-
mon character for the two layouts is that two rectangles are stacked, and the 
other two rectangles aren’t. The length of both the enclosing rectangles is 
MAX(MAX(w1, x1), y1+z1), and their width is w2+x2+MAX(y2, z2).

The sixth layout is as shown in Figure 2.16. Every two rectangles are 
stacked, where z1≥w1, x1≥y1, and there are two different ways. There are two 
cases for the sixth layout.

Case 1: The length of both the enclosing rectangles is MAX(w1+x1, z1+y1), and 
their width is MAX(w2+z2, x2+y2).

Case 2: The length of both the enclosing rectangles is MAX(w1+x1, z1+x1), and 
their width is MAX(w2+z2, x2+y2).

Any other case for the sixth layout that every two rectangles are stacked 
can be obtained from the above two cases by rotation or reflection.

2.	The minimum area of the enclosing rectangle is calculated by 
enumeration.
All cases of enclosing rectangles of the above six layouts are enumerated. 
For the six layouts, there are seven enclosing rectangles. And for an enclos-
ing rectangle, another enclosing rectangle will be generated if a rectangle in 
the enclosing rectangle is rotated 90°. Therefore, there are 4!×7×24 enclosing 
rectangles. All of these enclosing rectangles are enumerated to calculate the 
minimum area of the enclosing rectangle.

LengthLength
y

x
z

z w

x
y

w

Width

z2 ≤ y2 z2 > y2 

Width

Figure 2.16 

Length Lengthw

y

z

x
xwz

y

Width

The fourth layout The �fth layout

Width

Figure 2.15 



http://taylorandfrancis.com


99

Chapter 3

Practice for 
Number Theory

Number theory is a branch of pure mathematics that studies the properties of 
integers. In this chapter, experiments are organized in three parts:

1.	Prime Numbers;
2.	Indeterminate Equations and Congruence;
3.	Multiplicative Functions.

3.1  Practice for Prime Numbers
Prime numbers are natural numbers greater than 1 that have no positive divisors 
other than 1 and the number itself. Natural numbers greater than 1 that are not 
prime numbers are called composite numbers.

Two kinds of experiments for prime numbers are discussed next:

1.	Calculating all prime numbers in an integer interval [2, n] by a sieve.
2.	Testing big prime numbers.

3.1.1  Calculating Prime Numbers by a Sieve

First, the sieve of Eratosthenes is introduced. The sieve of Eratosthenes is used to 
calculate all prime numbers in an integer interval [2, n].



100  ◾  Algorithm Design Practice for Collegiate Programming

Suppose u[] is a sieve. Initially all numbers in the interval are in the sieve. In 
the sieve, the smallest number is found in ascending order, multiples of the num-
ber are composite numbers, and the sieve will filter out these numbers. Finally, 
only prime numbers are in the sieve. The algorithm for the sieve of Eratosthenes 
is as follows:

    int i, j, k;
    for (i=2; i<=n; i++) u[i]=true;    // all numbers in the 
interval are in the sieve
    for (i=2; i<=n; i++)    // find the smallest number in the 
sieve
    if (u[i]){
        for (j=2; j*i<=n; j++)    // the sieve filters out 
multiples of i
            u[j*i]=false;
    }
    for (i=2; i<=n; i++) if (u[i]) {    //prime numbers in the 
sieve are put into su[]
        su[++num]=i;
    }

The sieve of Eratosthenes is a simple algorithm to find prime numbers. Its 
time complexity is O(n×log log n). There are other more efficient algorithms 
for finding prime numbers. For example, the algorithm for Euler’s sieve is as 
follows:

int i, j, num=1;
memset(u, true, sizeof(u));
for (i=2; i<=n; i++){    //for each number i in the integer 
interval
  if (u[i]) su[num++]=i;    // the smallest number in the 
sieve is put into the prime list
  for (j=1; j<num; j++) {    //for each number in the prime 
list
   if (i*su[j]>n) break;    //if the product of i and the 
current prime is greater than n, the next integer i is 
analyzed
    u[i*su[j]]=false;    // the sieve filters out the product 
of i and the current prime
    if (i% su[j]==0) break;    // if the current prime is the 
divisor for i, the next integer i is analyzed
   }
 }

The time complexity for Euler’s sieve is O(n).



Practice for Number Theory  ◾  101

3.1.1.1  Goldbach’s Conjecture

In 1742, Christian Goldbach, an amateur German mathematician, sent a letter to 
Leonhard Euler, in which he made the following conjecture:

Every even number greater than four can be written as 
the sum of two odd prime numbers. For example: 8=3+5. 
Both 3 and 5 are odd prime numbers. 20=3+17=7+13; 
42=5+37=11+31=13+29=19+23.

Today it is still unproven whether the conjecture is right. (I have the proof, of 
course, but it is too long to write it on the margin of this page.)

Anyway, your task now is to verify Goldbach’s conjecture for all even numbers 
less than a million.

Input

The input file will contain one or more test cases. Each test case consists of one even 
integer n with 6≤n<1000000. Input will be terminated by a value of 0 for n.

Output

For each test case, print one line of the form n=a+b, where a and b are odd primes. 
Numbers and operators should be separated by exactly one blank line as shown in 
the sample output below. If there is more than one pair of odd primes adding up to 
n, choose the pair where the difference b−a is maximized. If there is no such pair, 
print a line saying “Goldbach’s conjecture is wrong.”

Sample Input Sample Output

8
20
42
0

8 = 3 + 5
20 = 3 + 17
42 = 5 + 37

Source:	 Ulm Local 1998

IDs for Online Judges: POJ 2262, ZOJ 1951, UVA 543

  Analysis

First, the offline method is used to calculate the prime list su[] and prime sieve 
u[] in the interval [2, 1000000]. Then, for each test case (one even integer n), 
for each prime number in su[] (2×su[i]≤n), if n−su[i] is also a prime number (i.e., 
u[n−su[i]]==true), then su[i] and n−su[i] is the solution to the problem.



102  ◾  Algorithm Design Practice for Collegiate Programming

  Program

#include<cmath>
#include<cstring>
#include<cstdlib>
#include<cstdio>
using namespace std;
bool u[1111111];    //sieve
int su[1111111],num;    // prime list su[], num: the length of 
the su[]
void prepare(){    //Construct su[], sieve of Eratosthenes
  int i,j,k;
    for(i=2;i<=1000000;i++)u[i]=true;
    for(i=2;i<=1000000;i++)
    if(u[i]){
        for(j=2;j*i<=1000000;j++)
            u[j*i]=false;
    }
    for(i=2;i<=1000000;i++)if(u[i]){
        su[++num]=i;
    }
}
int main () {
    prepare();    // Construct su[]
    int i,j,k,n;
    while(scanf("%d",&n)>0&&n)   //Input test cases
    {
        bool ok=false;
        for(i=2;i<=num;i++)   //search each prime number in 
the prime list in ascending order
        {
            if(su[i]*2>n)break;    //search ends
            if(u[n-su[i]]){    // the even number can be 
written as the sum of two odd prime numbers
                ok=true;
                break;
            }
        }
        if(!ok)puts("Goldbach's conjecture is wrong.");    
//Output result
        else printf("%d = %d + %d\n",n,su[i],n-su[i]);
    }
    return 0;
}



Practice for Number Theory  ◾  103

3.1.1.2  Summation of Four Primes

Euler proved in one of his classic theorems that prime numbers are infinite in 
number. But can every number be expressed as a summation of four positive 
primes? I don’t know the answer. Perhaps you can help! I want your solution to be 
very efficient as I have a 386 machine at home. But the time limit specified is for a 
Pentium III 800 machine. The definition of prime number for this problem is: “A 
prime number is a positive number which has exactly two distinct integer factors.” 
For example, 37 is prime as it has exactly two distinct integer factors, 37 and 1.

Input

The input contains one integer number N (N≤10000000) in every line. This is the 
number you will have to express as a summation of four primes. Input is terminated 
by end of file.

Output

For each line of input, there is one line of output, which contains four prime num-
bers according to the given condition. If the number cannot be expressed as a sum-
mation of four prime numbers, print “Impossible.” in a single line. There can be 
multiple solutions. Any good solution will be accepted.

Sample Input Sample Output

24
36
46

3  11  3  7
3  7  13  13
11  11  17  7

Source:	 Regionals 2001 Warmup Contest

ID for Online Judge: UVA 10168

  Analysis

The problem is solved based on Goldbach’s conjecture. The algorithm is as follows:
First, the prime list su[] and its length num in the integer interval [2, 9999999] 

are calculated. Then, for each test case N,

1.	if N≤12:
N<8, N can’t be expressed as a summation of four prime numbers;
N==8, N can be expressed as a summation of four prime numbers: 2 2 2 2;
N==9, N can be expressed as a summation of four prime numbers: 2 2 2 3;



104  ◾  Algorithm Design Practice for Collegiate Programming

N==10, N can be expressed as a summation of four prime numbers: 2 2 3 3;
N==11, N can be expressed as a summation of four prime numbers: 2 3 3 3;
N==12, N can be expressed as a summation of four prime numbers: 3 3 3 3;

2.	if N>12:
First, two prime numbers are subtracted from N. If N is an even number 
(N%2==0), the two prime numbers, 2 and 2, are subtracted from N, that 
is, N−=4; else the two prime numbers, 2 and 3, are subtracted from N, 
that is, N−=5. Obviously, N is an even number greater than four. Based on 
Goldbach’s conjecture, every even number greater than four can be written 
as the sum of two odd prime numbers. Search the prime list su[](1≤i≤num, 
2×su[i]≤n). If su[n−su[i]]==true, N can be expressed as a summation of two 
prime numbers: su[i] and n−su[i].
Finally, output the result.

  Program

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
using namespace std;
bool u[10000001];    //sieve
int su[5000000],num;    // the prime list su[] and its length 
num
void prepare(){    //construct the prime list su[] in the 
interval [2, 9999999]
  int i,j,num;
memset(u,true,sizeof(u));    //initially all numbers in the 
sieve
for (i=2; i<=9999999; i++){    //analyze all numbers in the 
interval one by one
   if (u[i]) su[++num]=i;    //the least number is put into 
the prime list
   for (j=1; j<=num; j++) {    //analyze every number in the 
prime list
     if (i*su[j]>n) break; 
     u[i*su[j]]=false;  
     if (i% su[j]==0) break; 
    }



Practice for Number Theory  ◾  105

 }
}
int main () 
{
    prepare();    // construct the prime list su[] in the 
interval [2, 9999999]
    int n,i,j,k;
    while(scanf("%d",&n)>0){    // Input integer n
        if(n==8){puts("2 2 2 2");continue;}  
        if(n==9){puts("2 2 2 3");continue;}
        if(n==10){puts("2 2 3 3");continue;}
        if(n==11){puts("2 3 3 3");continue;}
        if(n==12){puts("3 3 3 3");continue;}
        if(n<8){puts("Impossible.");continue;}
        if(n%2==0){printf("2 2 ");n-=4;} 
        else{printf("2 3 ");n-=5;}
        for(i=1;i<=num;i++)    // based on Goldbach's 
conjecture
        {
            if(su[i]*2>n)break;  
            if(u[n-su[i]]){    //if su[i] and n−su[i] are two 
prime numbers
                printf("%d %d\n",su[i],n-su[i]);
                break;
            }
        }
    }
}

3.1.1.3  Digit Primes

A prime number is a positive number, which is divisible by exactly two different 
integers. A digit prime is a prime number whose sum of digits is also prime. For 
example, the prime number 41 is a digit prime because 4+1=5 and 5 is a prime 
number. The number 17 is not a digit prime because 1+7=8, and 8 is not a prime 
number. In this problem, your job is to find out the number of digit primes within 
a certain range less than 1000000.

Input

The first line of the input file contains a single integer N (0<N≤500000) that indi-
cates the total number of inputs. Each of the next N lines contains two integers t1 
and t2 (0<t1≤t2<1000000).

Output

For each line of input except the first line, produce one line of output containing a 
single integer that indicates the number of digit primes between t1 and t1 (inclusive).



106  ◾  Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output

3
10  20
10  100
100  10000

1
10
576

Note:	 You should at least use scanf() and printf() to take input and produce 
output for this problem. cin and cout are too slow for this problem to get 
it within the time limit.

Source:	 The Diamond Wedding Contest: Elite Panel’s 1st Contest 2003

ID for Online Judge: UVA 10533

  Analysis

Suppose u[] is the prime sieve for the interval [2, 1100001]; u2[] are numbers 
of digit primes, where u2[i] is the number of digit primes in the interval [2, i], 
2≤i≤1100001.

First, the offline method is used to calculate u2[]. The prime sieve u[] for the 
interval [2, 1100001] is calculated. For each number i in [2, 1100001], if i is a digit 
prime, that is, u[i]&&u[the sum of digits for i]==true, then u2[i]=1. Then calculate 
u2[i]: u2[i]+=u2[i−1] (2≤i≤1100001). Finally, based on u2[], calculate the number 
of digit primes within a certain range [i,j]:u2[j]−u2[i−1].

  Program

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
using namespace std;
bool u[1100001];    // prime sieve
int u2[1100001];    // numbers of digit primes



Practice for Number Theory  ◾  107

void prepare(){    // Calculate the prime sieve u[] in 
[2, 1100001]
    int i,j,k;
    for(i=2;i<1100001;i++)u[i]=1;    // Initially all numbers 
in the sieve
    for(i=2;i<1100001;i++)    // the least is a prime, and its 
multiples are taken out
    if(u[i])
      for(j=i+i;j<1100001;j+=i)
        u[j]=false;
}
bool ok(int x){    //Determine whether the sum of digits for x 
is a prime
    int i,j,k=0;
    while(x){    // the sum of digits for x
        k+=x%10;x/=10;
    }
    return u[k];
}
int main (){
    int i,j,k;
    prepare();    // Calculate the prime sieve u[] in [2, 
1100001]
    for(i=2;i<1100001;i++)    // Calculate digit primes  in 
[2, 1100001]
      if(u[i])&&(ok(i)) u2[i]=1;
    for(i=2;i<1100001;i++)u2[i]+=u2[i-1];    // u2[i] is the 
number of digit primes in [2, i]
    scanf("%d",&k);    // the number of test cases
    while(k--){
        scanf("%d %d",&i,&j);    //input a test case, an 
interval [i, j]
        printf("%d\n",u2[j]-u2[i-1]);    // the number of 
digit primes within [i, j]
    }
}

3.1.1.4  Prime Gap

The sequence of n−1 consecutive composite numbers (positive integers that are not 
prime and not equal to 1) lying between two successive prime numbers p and p+n is 
called a prime gap of length n. For example, <24, 25, 26, 27, 28> between 23 and 
29 is a prime gap of length 6.

Your mission is to write a program to calculate, for a given positive integer k, the 
length of the prime gap that contains k. For convenience, the length is considered 
0 in case no prime gap contains k.



108  ◾  Algorithm Design Practice for Collegiate Programming

Input

The input is a sequence of lines each of which contains a single positive integer. 
Each positive integer is greater than 1 and less than or equal to the 100000th prime 
number, which is 1299709. The end of the input is indicated by a line containing 
a single zero.

Output

The output should be composed of lines each of which contains a single non-
negative integer. It is the length of the prime gap that contains the corresponding 
positive integer in the input if it is a composite number, or 0 otherwise. No other 
characters should occur in the output.

Sample Input Sample Output

10
11
27
2
492170
0

4
0
6
0
114

Source:	 ACM Japan 2007

IDs for Online Judges: POJ 3518, UVA 3883

  Analysis

Suppose ans[k] is the length of the prime gap that contains k. If k is a prime 
number, then ans[k]=0. For any two successive prime numbers p1 and p2, 
ans[p1+1]=ans[p1+2]=…=ans[p2−1]=p2−p1. The algorithm is as follows:

1.	Calculating ans[]:
Calculating the prime sieve u[] in the interval [2, 1299709];
Enumerate every number i in the interval [2, 1299709]. If i is a prime num-

ber (u[i]==true), then ans[i]=0. If i is a composite number, then find the 
next prime number j(u[i]==u[i+1]==…==u[j−1]==false, u[j]==true), 
ans[i]=ans[i+1]=ans[j−1]=j−i+1, and i=j.

2.	For each test case k, output ans[k].



Practice for Number Theory  ◾  109

  Program

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
using namespace std;
const int maxn=1299710;  
bool u[maxn];    //prime sieve
int ans[maxn];    // the length of the prime gap
void prepare(){
    int i,j,k;
    for(i=2;i<maxn;i++)u[i]=1;    //Calculate prime sieve u[] 
in [2, 1299710]
    for(i=2;i<maxn;i++)          
      if(u[i])    // i is a prime number
          for(j=2;j*i<maxn;j++) u[i*j]=0;
    for(i=2;i<maxn;i++)    // Enumerate every number i in the 
interval
    if(!u[i]){    // i is a composite number
        j=i; 
        while(j<maxn&&!u[j]) j++;
        j--;
        for(k=i;k<=j;k++) ans[k]=j-i+2;    //calculate the 
length of the prime gap
        i=j;
    }else ans[i]=0;    // i is a prime number
}
int main () 
{
    int i,j,k;
    prepare();  
    while(scanf("%d",&k)>0&&k>0){ 
        printf("%d\n",ans[k]);  
    }
}

3.1.2  Testing the Primality of Large Numbers

Trial division is the simplest method to test whether a given number n is a prime 
number or not. n is a prime number if and only if n is not a multiple of any 
integer between 2 and n . But trial division is also slow for testing the primality 



110  ◾  Algorithm Design Practice for Collegiate Programming

of large numbers. There are two optimization methods for trial division: “Sieve + 
Trial Division”, and the Miller–Rabin primality test.

“Sieve + Trial Division” is as follows. First, the prime sieve u[] and prime list 
su[] for the interval [2, ]n  are calculated. The length of su[] is num. x is a prime 
number if and only if x is a prime number in the interval [2, ]n  (u[x]==1), or x is 
not a multiple of any integer between 2 and n  (x%su[0]≠0, …, x%su[num−1]≠0). 
The time complexity is O( )n .

3.1.2.1  Primed Subsequence

Given a sequence of positive integers of length n, we define a primed subsequence 
as a consecutive subsequence of length at least two that sums to a prime num-
ber greater than or equal to two. For example, given the sequence: 3 5 6 3 8, 
there are two primed subsequences of length 2 (5+6=11 and 3+8=11), one primed 
subsequence of length 3 (6+3+8=17), and one primed subsequence of length 
4 (3+5+6+3=17).

Input

Input consists of a series of test cases. The first line consists of an integer t (1<t<21), 
the number of test cases. Each test case consists of one line. The line begins with 
the integer n, 0<n<10001, followed by n non-negative numbers less than 10000 
comprising the sequence. You should note that 80 percent of the test cases will have 
at most 1000 numbers in the sequence.

Output

For each sequence, print the “Shortest primed subsequence is length x:”, where x 
is the length of the shortest primed subsequence, followed by the shortest primed 
subsequence, separated by spaces. If there are multiple such sequences, print the one 
that occurs first. If there are no such sequences, print “This sequence is anti-primed.”.

Sample Input Sample Output

3

5  3  5  6  3  8

5  6  4  5  4  12
21  15  17  16  32  28  22  26  30  34  29 
31  20  24  18  33  35  25  27  23  19  21

Shortest primed subsequence 
is length 2: 5 6

Shortest primed subsequence 
is length 3: 4 5 4

This sequence is anti-primed.

Source:	 June 2005 Monthly Contest

ID for Online Judge: UVA 10871



Practice for Number Theory  ◾  111

  Analysis

There are n non-negative numbers less than 10000 comprising the sequence, 
0<n<10001.

First, the prime sieve u[] and prime list su[] for the interval [2, 10010] are cal-
culated. The length of su[] is num. If x is a prime number in the interval [2, 10010]
(u[x]==1), or x isn’t a multiple of any integer in su[](x%su[0]≠0,…,x%su[num−1]≠0), 
then x is a prime number.

Then, based on the above, the shortest primed subsequence is calculated.
Input a sequence whose length is n, and calculate the sum of the first i integers 

s[i](1≤i≤n, s[i]+=s[i−1]):
Dynamic Programming is used to calculate the shortest primed subsequence:

Enumerate the length i(2≤i≤n):
Enumerate the front pointer j(1≤j≤n−i+1):

          If (s[i+j−1]−s[j−1] is a prime number)
             Output the subsequence from the jth integer to 

the (j+i−1)th integer, and exit; 
        Output “This sequence is anti-primed.”;

  Program

#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<cstdlib>
using namespace std;
bool u[10010];    // prime sieve
int su[10010],num;    //prime list and its length
void prepare(){    //construct the prime list su[] in the 
interval [2, 10010]
  int i,j,num;
memset(u,true,sizeof(u));
for(i=2;i<=10010;i++){  
   if(u[i]) su[++num]=i;  
   for(j=1;j<=num;j++) {   
     if (i*su[j]>n)break;    
     u[i*su[j]]=false; 
     if (i% su[j]==0) break;  
    }



112  ◾  Algorithm Design Practice for Collegiate Programming

 }
}
bool pri(int x){    // If x is a prime number in the interval 
[2, 10010] or (u[x]==1), or x isn't a multiple of any integer 
in su[], return true; else return false
    int i,j,k;
    if(x<10010)return u[x];
    for(i=1;i<=num;i++)
    if(x%su[i]==0)return false;
    return true;
}
int n,s[10010];    //the sum of the first i integers is s[i]
int main()
{
    int i,j,k;
    prepare();    // calculate the prime list su[]
    int te;
    scanf("%d",&te);    //number of test cases
    while(te--){
        scanf("%d",&n);    //the length of sequence
        s[0]=0;
        for(i=1;i<=n;i++)    //calculate s[]
        {
            scanf("%d",&s[i]);
            s[i]+=s[i-1];
        }
        bool ok=false;
        for(i=2;i<=n;i++){    //enumerate lengths of 
subsequence
        for(j=1;j+i-1<=n;j++)    //enumerate front pointers
        {
            k=s[i+j-1]-s[j-1];    //calculate the sum of 
subsequences
            if(pri(k)){    // if k is a prime number
                ok=true;
                printf("Shortest primed subsequence is length 
%d:",i);
                for(k=1;k<=i;k++)printf(" 
%d",s[j+k-1]-s[j+k-2]);
                puts("");
                break;
            }
        }
        if(ok)break;   
        }
        if(!ok)puts("This sequence is anti-primed.");    
// there are no primed sequences
    }
   // system("pause");
}



Practice for Number Theory  ◾  113

3.2 � Practice for Indeterminate 
Equations and Congruence

Experiments in this section are for the following problems: Greatest Common 
Divisor (GCD), Indeterminate Equations, Congruence, and Congruence Equations.

3.2.1 � Greatest Common Divisors and 
Indeterminate Equations

The GCD for integers a and b can be found by repeated application of the divi-
sion algorithm, known as the Euclidean algorithm. The Euclidean algorithm is as 
follows:









= = = =
GCD a b

b a
GCD b a a

a b
GCD b a b

( , ) 0
( mod , ) Otherwise

0
( , mod ) Otherwise

.

Proof. The key to the proof is GCD(a, b) and GCD(b mod a,a) can be divided 
by each other. b mod a can be represented as an integer linear combination of 

a and b:b mod = −




×a b

b
a

a . Because a and b can be divided by GCD(a, b), 

−




×b

b
a

a can also be divided by GCD(a, b). Therefore GCD(b mod a,a) can be 

divided by GCD(a, b). Similarly, GCD(a, b) can also be divided by GCD(b mod 
a,a). Therefore, GCD(a, b)=± GCD(b mod a,a).

Similarly, GCD(a, b) and GCD(b,a mod b) can be divided by each other.
For example, GCD(319, 377)=GCD(58, 319)=GCD(29, 58)=GCD(0, 29)=29.
Theorem 3.2.1.1 (Bezout’s Theorem). If a and b are integers, then there are 

integers x and y, such that ax+by=GCD(a, b).
Corollary 3.2.1.1 Integers a and b are relatively prime integers if and only if 

there are integers x and y such that ax+by=1.
Given an indeterminate equation ax+by=GCD(a, b), where a and b are integers, 

the Extended Euclidean algorithm can be used to calculate integer roots (x, y) of 
the equation.

Suppose ax1+by1=GCD(a, b), bx2+(a mod b)y2=GCD(b,a mod b). Because 
GCD(a, b)=GCD(b,a mod b), ax1+by1=bx2+(a mod b)y2. Because a mod 

= −




×b a

a
b

b , + = + −




×





= + −









1 1 2 2 2 2 2ax by bx a

a
b

b y ay b x
a
b

y . Therefore 

x1=y2, and = −




×1 2 2y x

a
b

y . Therefore (x1, y1) is based on (x2, y2). Repeat the 



114  ◾  Algorithm Design Practice for Collegiate Programming

recursive process to calculate (x3, y3), (x4, y4), ......., until b==0. At that time x=1, 
y=0. Therefore, the Extended Euclidean algorithm is as follows:

int exgcd(int a, int b, int &x, int &y)
{
    if (b==0) {x=1; y=0; return a;}
    int t=exgcd(b, a%b, x, y);
    int x0=x, y0=y;
    x=y0; y=x0-(a/b)*y0;
    return t;
}

Given an indeterminate equation ax+by=c, where a, b, and c are integer con-
stants, x and y are integer variables, x∈[xl,xr], and y∈[yl,yr], integer roots (x, y) of the 
equation are required to calculate.

Method 1: Enumeration
Enumerate each pair of (x, y) and find integer roots. That is, the indeterminate 
equation should be calculated (xr−xl+1)×(yr−yl+1) times.

Method 2: Extended Euclidean Algorithm
For an indeterminate equation ax+by=c, c must be a multiple of GCD(a, b). If c 
isn’t a multiple of GCD(a, b), the indeterminate equation is unsolvable; else the 
Extended Euclidean algorithm is used to solve the problem.

Suppose d=GCD(a, b), a'=a DIV d, b'=b DIV d, and c'=c DIV d. Then the 
indeterminate equation ax+by=c can be written as a'x+b'y=c' and GCD(a', b')==1. 
The Extended Euclidean algorithm is used to solve a'x+b'y=1 and (x', y') is the 
integer root. Suppose x0=x'×c', y0=y'×c'. Then (x0, y0) is a solution to ax+by=c, that 
is, ax0+by0=c. Based on that, a(x0+b)+b(y0−a)=c, a(x0+2×b)+b(y0−2×a)=c, ......, 
a(x0+k×b)+b(y0−k×a)=c, k∈Z. Therefore, general solutions to an indeterminate 
equation ax+by=c are x= x0+k×b, y= y0−k×a, k∈Z.

3.2.1.1  The Equation

There is an equation ax+by+c=0. Given a, b, c, x1, x2, y1, y2, you must deter-
mine how many integer roots of this equation will satisfy the following conditions: 
x1≤x≤x2, y1≤y≤y2. The integer root of this equation is a pair of integer numbers 
(x, y).

Input

Input contains integer numbers a, b, c, x1, x2, y1, y2 delimited by spaces and line 
breaks. All numbers are not greater than 108 by absolute value.



Practice for Number Theory  ◾  115

Output

Write the answer to the output.

Sample Input Sample Output

1  1  -3
0  4
0  4

4

ID for Online Judge: SGU 106

  Analysis

First, for the equation ax+by+c=0, several special cases for the problem are 
considered.

1.	If a==0, b==0, and c≠0, then there is no solution. If a==0, b==0, and c==0, 
then the number of integer roots of an equation is ((x2−x1+1)×(y2−y1+1)).

2.	If a==0, and b≠0, then by=c. If c isn’t a multiple of b, or c/b isn’t an element 
in [y1,y2], then there is no solution; else for each number x in [x1,x2], (x,c/b) 
is an integer root.

3.	If b==0, and a≠0, it is the same as 2.
4.	If c isn’t a multiple of GCD(a, b), there is no solution.

Then, the solution process is as follows:

1.	The equation ax+by+c=0 is written as ax+by=−c.
2.	If a is negative, the value of a needs to be flipped. And we must flip the value 

of x, if we flip the value of a. That is, the interval [x1, x2] is changed into [−x2, 
−x1]. It is the same for b and y.

3.	The Extended Euclidean algorithm is used to calculate the initial solution x0 
and y0.

4.	The integer roots of this equation (x, y) are calculated: x=x0+k×b, y=y0−k×a, 
k ∈Z. If x∈[x1,x2] and y∈[y1,y2], (x, y) is an integer root.

There is a problem in division: how to transfer reals into integers? For the upper 
bound, floor( ) is used for round down; and for the lower bound, ceil( ) is used for 
round up. For example, if 2.5≤k≤5.5, k can be 3, 4, and 5; and if −5.5≤k≤−2.5, k 
can be −3, −4, and −5.



116  ◾  Algorithm Design Practice for Collegiate Programming

  Program

#include<cstdio>
#include<cmath>
long long a,b,c,x1,x2,yy1,y2,x0,yy0;    // an equation 
ax+by+c=0, the interval for x is[x1, x2], the interval for y 
is [yy1, y2], initial solution (x0, yy0)
inline long long cmin(const long long &x,const long long &y) 
{return x<y?x:y;}
inline long long cmax(const long long &x,const long long &y) 
{return x>y?x:y;}
long long gcd(long long a,long long b)    //GCD(a, b)
{
    if (b==0) return a;
    return gcd(b, a % b);
}
void exgcd(long long a,long long b)    // Extended Euclidean 
algorithm is used to calculate the initial solution (x0, yy0) 
for ax+by=1 
{
    if (b==0){x0=1;yy0=0;return;}
    exgcd(b, a%b);
    long long t=x0; x0=yy0; yy0=t-a/b*yy0;
    return;
}
int main()
{
    scanf("%I64d%I64d%I64d%I64d%I64d%I64d%I64d",&a,&b,&c,&x1,&
x2,&yy1,&y2);
// indeterminate equation: ax+by+c=0, x1≤x≤x2, yy1≤y≤y2
    c=-c;    // ax+by+c=0 is changed to ax+by=−c 
    if (c<0) {a=-a; b=-b; c=-c;}                     
    if (a<0) {a=-a; long long t=x1; x1=-x2; x2=-t;}   //adjust 
intervals for x and y
    if (b<0) {b=-b; long long t=yy1; yy1=-y2; y2=-t;}
    if (a==0 && b==0)    // special case: a==0 && b==0
    {
        if (c==0)                
        {
            printf("%I64d",(x2-x1+1)*(y2-yy1+1));
            return 0;
        }
        printf("0");return 0;                   
    }



Practice for Number Theory  ◾  117

    else if (a==0)    // special case: a==0 && b≠ 0
    {
        if(c%b==0)if(c/b<=y2 && c/b>=yy1){ printf("%I64d",x2-
x1+1);return 0;}
        printf("0");
return 0;
    }
    else if (b==0)    // special case: a≠0 && b==0
    {
        if(c%a==0) if(c/a<=x2 && c/a>=x1){ printf("%I64d",y2-
yy1+1);return 0;}
        printf("0");return 0;
    }                                               
  long long d=gcd(a,b);    // d=GCD(a, b). If (c%d!=0), there 
is no solution; else Extended Euclidean algorithm is used to 
calculate the initial solution x0 and yy0
    if (c%d!=0){printf("0");return 0;}
    a=a/d;b=b/d;c=c/d;
    exgcd(a,b);
    x0=x0*c;yy0=yy0*c;
//the upper bound r and the lower bound l
    double tx2=x2,tx1=x1,tx0=x0,ta=a,tb=b,tc=c,ty1=yy1,ty2=y2,
ty0=yy0;
    long long down1=floor(((tx2-tx0)/
tb)),down2=floor(((ty0-ty1)/ta));
    long long r=cmin(down1,down2);
    long long up1=ceil(((tx1-tx0)/tb)),up2=ceil(((ty0-ty2)/
ta));
    long long l=cmax(up1,up2);
    if (r<l) printf("0");    // number of solutions
       else printf("%I64d",r-l+1);
    return 0;
}

3.2.2  Congruences and Congruence Equations

Given a positive integer m and two integers a and b, if ((a−b) mod m)=0, we say a is 
congruent to b modulo m, written as a≡b(mod m). For example, −7≡−3≡1≡5≡9(mod 4), 
−5≡−1≡3≡7≡11(mod 4). On the other hand, if ((a−b) mod m)≠0, we say a and b 
are incongruent modulo m.

Given a set of integers Z and a positive integer m, congruences modulo m satisfy 
reflexive property, symmetric property, and transitive property. Therefore Z can be 
divided into m disjoint subsets, called congruence classes modulo m, containing 
integers that are mutually congruent modulo m.



118  ◾  Algorithm Design Practice for Collegiate Programming

1.	Congruence Equation
A congruence of the form ax≡b(mod m), where a and b are integers, m is a 
positive integer, and x is an unknown integer, is called a linear congruence in 
one variable. The method for calculating x is as follows:
Step 1: The Euclidean algorithm and Extended Euclidean algorithm are used 

to calculate d=GCD(a, m) and (x', y') where d=ax'+my', and x' is a solu-
tion to ax'≡d(mod m).

Step 2: If b mod d≠0, there is no solution for ax≡b(mod m); else there 
are d incongruent solutions modulo m, where the first solution 

is = ×





' mod0x x
b
d

m , and the other d−1 solutions are 

= + ×











mod0x x i
m
d

mi , 1≤i≤d−1.

In order to prove the correctness of the two steps, the following three theorems 
are used.

1.	Theorem 3.2.2.1 If ac≡bc(mod m) and GCD(c, m)=d, then a b
m
d

≡ 











mod .

2.	Theorem 3.2.2.2 If d≠0 and ad≡bd(mod md), then a≡b(mod m).
3.	Theorem 3.2.2.3 If GCD(a, m)=1, there are solutions for ax+b≡0(mod m).

Step 1: Suppose d=GCD(a, m). If b mod d=0, solutions to 







≡

















moda
d

x
b
d

m
d

 and ax≡b(mod m) are the same.

Proof. Based on Theorem 3.2.2.1 and Theorem 3.2.2.2, solutions 

to ax≡b(mod m) and 





≡

















moda
d

x
b
d

m
d

 are the same. Because 

GCD(a, m)=d>1, 





a
d

 and 





m
d

 are relatively prime integers. Based on 

Theorem 3.2.2.3, there are solutions for 





≡

















moda
d

x
b
d

m
d

, that is, 

there is a congruence class [x], where [ ]= + ×





= ± ± …







| 0, 1, 2,x x k
m
d

k , and 

[x] are solutions to ax≡b(mod m), ≤ ≤





0 x
m
d

. 



Practice for Number Theory  ◾  119

Because x, +





x
m
d

, + ×





2x
m
d

, …… , and ( )+ − ×





1x d
m
d

 are all in [x], 

≤ + ×




<0 x i

m
d

m, 1≤i≤d−1; and they are incongruent modulo m; x, +





x
m
d

, 

+ ×





2x
m
d

, …… , and ( )+ − ×





1x d
m
d

 are d incongruent solutions modulo m 

to ax≡b(mod m).
Step 2: For ax≡b(mod m), there are exactly d incongruent solutions modulo 

m: x modulo m, +











x
m
d

 modulo m, + ×











2x
m
d

 modulo m, …, and 

+ − ×











( 1)x d
m
d

 modulo m.

Proof. Suppose + ×





x t
m
d

 is a solution to ax≡b(mod m). Because t≡i(mod 

d), i∈{0, 1, 2, …, d−1}, based on Theorem 3.2.2.2, ( )×




≡ ×





modt
m
d

i
m
d

m , 

that is, + ×





x t
m
d

 is one of x, +





x
m
d

, + ×





2x
m
d

,…, ( )+ − ×





1x d
m
d

. 

Therefore, there are d incongruent solutions modulo m, +











x
m
d

 modulo m, 

+ ×











2x
m
d

 modulo m, …, and + − ×











( 1)x d
m
d

 modulo m.

Based on the above discussions, Theorem 3.2.2.4 holds.
Theorem 3.2.2.4 Given a positive integer m and two integers a and b, 

suppose GCD(a,  m)=d. If b mod d≠0, then ax≡b(mod m) has no solutions. 
And if b mod d=0, then ax≡b(mod m) has exactly d incongruent solutions 
modulo m.

For example, given a congruence equation 9x≡8(mod 3), GCD(9,3)=3. 
Because 8 mod 3≠0, there is no solution for 9x≡8(mod 3).

Given a congruence equation 9x≡12(mod 15), GCD(9,15)=3. Because 
12 mod 3=0, 9x≡12(mod 15) has exactly three incongruent solutions 
modulo 15. The Extended Euclidean algorithm is used to calculate (x', y') 
where 3=9x'+15y', x'=2, y'=−1, 2 is a solution to 9x'≡3(mod 15). Therefore, 
x0=8 mod 15=8, x1=(x0+5) mod 15=13, and x2=(x0+10) mod 15=18 
mod 15=3.



120  ◾  Algorithm Design Practice for Collegiate Programming

2.	Congruence Equations
Definition 3.2.2.1. Given an integer a with GCD(a, m)=1, an integer solu-
tion x to ax≡1(mod m) is called an inverse of a modulo m.

By Theorem 3.2.2.4, a Congruence Equation ax≡1(mod m) has solutions 
if and only if GCD(a, m)=1 and all solutions are congruent modulo m.

For example, solutions to 6x≡1(mod 41) satisfy x≡7(mod 41). Therefore, 
7 is an inverse of 6 modulo 41, and all integers congruent to 7 modulo 41 are 
inverses of 6 modulo 41. Because 7×6≡1(mod 41), 6 and all integers congru-
ent to 6 modulo 41 are inverses of 7 modulo 41.

Theorem 3.2.2.5 (The Chinese Remainder Theorem). Let n1, n2, …, nk 
be pairwise relatively prime positive integers. Then the system of congruences

           a≡a1(mod n1)
           a≡a2(mod n2)
           .........
           .........
           .........
           a≡ak(mod nk)

has a unique solution modulo n=n1n2...nk.
The system of congruences can be transformed as a polynomial 

a=(a1×c1+…ai×ci+…+ak×ck) mod (n1×n2×…×nk). Based on the polynomial, a 
can be calculated. Now we prove that the system of congruences can be trans-
formed as a polynomial a=(a1×c1+…ai×ci+…+ak×ck) mod (n1×n2×…×nk), and 
show the method for calculating ci (1≤i≤k).

Proof. Because n1, n2, …, nk are pairwise relatively prime positive integers, 

GCD(ni,nj)=1, i≠j. Suppose =m
n
ni

i
, 1≤i≤k. GCD(ni,mi)=1, 1≤i≤k. There exist 

integers ni' and mi', such that mimi'+nini'=1. That is, there exists an integer mi' 
such that

	
( )' 1 mod =1, 2,...,mimi ni i k≡

	
(1)

On the other hand, because GCD(ni,nj)=1 and =m
n
ni

i
, ni|mj, i≠j. 

Therefore

	
( )' 0 mod 1, 2, ...,ajmjmj ni i,j= k≡

	
(2)

Based on (1) and (2),

a m m' a m m' ... a m m' a m m' n ,

a m m' a n , i= , ,..., k.
k k k i i i i

i i i i i

≡
≡

( )
( )

+ + + mod

mod 1 2
1 1 1 2 2 2

Therefore, a=a1m1m1'+a2m2m2'+…+akmkmk'(mod n) is the unique solution 
modulo n to the system of congruences.



Practice for Number Theory  ◾  121

For example, a≡2(mod 3), a≡4(mod 7), and a≡5(mod 8). 3, 7, and 8 are 
pairwise relatively prime positive integers. m1=n2×n3=56, m2=n1×n3=24, and 
m3=n1×n2=21. n=3×7×8=168. 56×2=112≡1(mod 3), 24×5=120≡1(mod 7), 
and 21×5=105≡1(mod 8). 2×112+4×120+5×105=1229. a=1229 mod n=53.

Steps for calculating the system of congruences are as follows:

Step 1: Calculate mi, i=1, 2, …, k. Suppose n=n1×n2×...×nk; = = ×1
1

2m
n
n

n

×…×3n nk ; = = × × ×…×2
2

1 3 4m
n
n

n n n nk ; ……; = =m
n
ni

i
×…× × …×− +1 1 1n n n ni i k ; 

……; = = × × ×− −...1 2 1m
n
n

n n nk
k

k k .

Step 2: Calculate an inverse mi
-1 of mi modulo ni, that is, mi×mi

-1≡1(mod ni) , 
i=1, 2, …, k. There are two methods for calculating mi

-1:
1.	Congruence Equation

Because mi and ni are relatively prime integers, that is, GCD(mi, ni)=1, 
by m1×m1

-1≡1(mod n1); …; mi×mi
-1≡1(mod ni); …; mk×mk

-1≡1(mod nk), 
m1

-1, ..., mi
-1, ..., mk

-1 are calculated. There is exactly one solution mi
-1 to 

mi×mi
-1≡1(mod ni), 1≤i≤k.

2.	Extended Euclidean algorithm
The Extended Euclidean algorithm is used to calculate x and y for 
GCD(ni, mi)=ni×x+mi×y=1, and y is mi

-1 (1≤i≤k).
Step 3: Calculate ci=mi×(mi

-1mod ni), 1≤i≤k.
Step 4: Calculate a=(a1×c1+…+ai×ci+…+ak×ck)mod n.

3.2.2.1  C Looooops

A compiler mystery: We are given a C-language style for a loop of type

for (variable=A; variable!=B; variable+=C)
     statement;

that is, a loop which starts by setting a variable to value A, and while variable is 
not equal to B, repeats the statement, followed by increasing the variable by C. We 
want to know how many times does the statement get executed for particular values 
of A, B, and C, assuming that all arithmetic is calculated in a k-bit unsigned integer 
type (with values 0≤x<2k) modulo 2k.

Input

The input consists of several instances. Each instance is described by a single line 
with four integers A, B, C, k separated by a single space. The integer k (1≤k≤32) is 
the number of bits of the control variable of the loop and A, B, C (0≤A,B,C <2k) are 
the parameters of the loop.

The input is finished by a line containing four zeros.



122  ◾  Algorithm Design Practice for Collegiate Programming

Output

The output consists of several lines corresponding to the instances on the input. The 
i-th line contains either the number of executions of the statement in the i-th instance 
(a single integer number) or the word FOREVER if the loop does not terminate.

Sample Input Sample Output

3  3  2  16
3  7  2  16
7  3  2  16
3  4  2  16
0  0  0  0

0
2
32766
FOREVER

Source:	 CTU Open 2004

IDs for Online Judges: POJ 2115, ZOJ 2305

  Analysis

Based on the problem description, a loop which starts by setting variable to value A 
and while variable is not equal to B, repeats the statement, followed by increasing the 
variable by C. All arithmetic is calculated in a k-bit unsigned integer type (with values 
0≤x<2k) modulo 2k. Therefore D=(B−A)mod 2k is equivalent to x×C≡D(mod 2k). 
Obviously, the number of the loop is 0 if and only if D=(B−A)mod 2k=0.

There are solutions to x×C≡D(mod2k) if and only if D mod GCD(C,2k)==0. The 
Extended Euclidean algorithm is used to calculate the minimal non-negative inte-
ger solution x to x×C+y×2k=GCD(C,2k). That is, x is a solution to Cx≡GCD(C,2k)
(mod 2k). If ((D mod GCD(C, 2k))≠0), there is no solution to x×C≡D(mod 2k), and the 
program enters an endless loop; else (x×D)mod 2k is the solution to x×C≡D(mod 2k); 
that is, the number of executions of the statement.

  Program

#include<cmath>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#define ll long long
#include<iostream>
using namespace std;



Practice for Number Theory  ◾  123

ll exgcd(ll a,ll b,ll &x,ll &y){    //Extended Euclidean 
algorithm: calculate x and y for d=GCD(a,b)=ax+by (x and y can 
be 0 or negative)
	 if(b==0){
		  x=1;y=0;return a;
	 }
	 ll t=exgcd(b,a%b,y,x);
	 y-=a/b*x;
	 return t;
}
ll gcd(ll a,ll b){    //Euclidean algorithm returns GCD(a,b)
    if(b==0)return a;
    return gcd(b,a%b);
}
int main () {
    int A,B,C,K;
    ll i,j,ans;
    while(1){
        scanf("%d%d%d%d",&A,&B,&C,&K);    // a test case
        if(!A&&!B&&!C&&!K)break;    // four zeros, break
        ll a,b,c,k;
        a=A,b=B,c=C,k=K;
        ll d=b-a;    //d=(b-a)%2k. If d=0, the number of loops 
is 0; If d%GCD(c, 2k) ≠0, endless loop
        k=(1ll)<<k;
        d%=k;
        if(d<0)d+=k;
        if(d==0){
            puts("0");continue;
        }
        ll tem=gcd(c,k);
        if(d%tem){
            puts("FOREVER");continue;
        }
        c/=tem,k/=tem,d/=tem;
        exgcd(c,k,ans,j);    //solution ans to GCD(c, 
k)=c*ans+k*j
        ans*=(d);
        ans%=k;
        if(ans<0)ans+=k;
        cout<<ans<<endl;
    }
    return 0;
}

3.2.2.2  Biorhythms

Some people believe that there are three cycles in a person’s life that start the day he 
or she is born. These three cycles are the physical, emotional, and intellectual cycles, 
and they have periods of lengths 23, 28, and 33 days, respectively. There is one peak 



124  ◾  Algorithm Design Practice for Collegiate Programming

in each period of a cycle. At the peak of a cycle, a person performs at his or her best 
in the corresponding field (physical, emotional, or mental). For example, if it is the 
mental curve, thought processes will be sharper and concentration will be easier.

Since the three cycles have different periods, the peaks of the three cycles 
generally occur at different times. We would like to determine when a triple peak 
occurs (the peaks of all three cycles occur in the same day) for any person. For each 
cycle, you will be given the number of days from the beginning of the current year 
at which one of its peaks (not necessarily the first) occurs. You will also be given a 
date expressed as the number of days from the beginning of the current year. Your 
task is to determine the number of days from the given date to the next triple peak. 
The given date is not counted. For example, if the given date is 10 and the next triple 
peak occurs on day 12, the answer is 2, not 3. If a triple peak occurs on the given 
date, you should give the number of days to the next occurrence of a triple peak.

Input

You will be given a number of cases. The input for each case consists of one line of 
four integers p, e, i, and d. The values p, e, and i are the number of days from the 
beginning of the current year at which the physical, emotional, and intellectual 
cycles peak, respectively. The value d is the given date and may be smaller than any 
of p, e, or i. All values are non-negative and at most 365, and you may assume that 
a triple peak will occur within 21252 days of the given date. The end of input is 
indicated by a line in which p=e=i=d=−1.

Output

For each test case, print the case number followed by a message indicating the 
number of days to the next triple peak, in the following form:

Case 1: the next triple peak occurs in 1234 days.

Use the plural form “days” even if the answer is 1.

Sample Input Sample Output

0  0  0  0
0  0  0  100
5  20  34  325
4  5  6  7
283  102  23  320
203  301  203  40
-1  -1  -1  -1

Case 1: the next triple peak occurs in 21252 days.
Case 2: the next triple peak occurs in 21152 days.
Case 3: the next triple peak occurs in 19575 days.
Case 4: the next triple peak occurs in 16994 days.
Case 5: the next triple peak occurs in 8910 days.
Case 6: the next triple peak occurs in 10789 days.

Source:	 ACM East Central North America 1999

IDs for Online Judges: POJ 1006, ZOJ 1160, UVA 756



Practice for Number Theory  ◾  125

  Analysis

These three cycles are the physical, emotional, and intellectual cycles, and they 
have periods of lengths 23, 28, and 33 days, respectively. These three integers are 
pairwise relatively prime positive integers. Suppose x is the number of days to the 
next triple peak. The system of congruences is as follows:

	

   23
   28

     33

( )
( )
( )

≡
≡
≡







x p mod
x e mod
x i mod

Based on The Chinese Remainder Theorem, x is the only solution in the inter-
val [1, 23×28×33=21253]. Suppose ai and ni are the number of days to the next 
triple peak and the period of length respectively, that is, a1=p, a2=e, a3=i, n1=23, 
n2=28, and n3=33. The system of congruences is as follows:

	 ( )≡ ≤ ≤mod , (1 3).x a n ii i

The above four steps are used to calculate ∑= −

=

* *( mod )1

1

3

s m a m ni i i i

i

, where 

m1=28×33, m2=23×33, and m3=23×28. The Extended Euclidean algorithm is used 
to calculate the inverse mi

-1 for mi modulo ni, that is, mi×mi
-1≡1(mod ni).

Suppose d is the given date. The number of days to the next triple peak is the 
minimum positive integer for (s−d)mod n, where n=23×28×33.

  Program

#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<string>
using namespace std;
typedef long long ll;
ll power(ll a,ll p,ll mo){    //Calculate ap%(mo)
	 ll ans=1;
	 for(;p;p>>=1){
		  if(p&1){
			   ans*=a;



126  ◾  Algorithm Design Practice for Collegiate Programming

			   if(mo>0)ans%=mo;
		  }
		  a*=a;
		  if(mo>0)a%=mo;
	 }
	 return ans;
}
ll exgcd(ll a,ll b,ll &x,ll &y){    // Extended Euclidean 
algorithm: calculate x for GCD(a, b)=ax+by 
	 if(b==0){
		  x=1;y=0;return a;
	 }
	 ll t=exgcd(b,a%b,y,x);
	 y-=a/b*x;
	 return t;
}
ll niyuan(ll a,ll p){    //calculate a-1%p
	 ll x,y;
	 exgcd(a,p,x,y);    //calculate x for ax≡GCD(a, p)(%p)
	 return (x%p+p)%p; 
}
int main(){
    int  a,b,c,d,i,j,k,u,v,te=0;
    while(1){
      scanf("%d%d%d%d",&a,&b,&c,&d);    //test case
      if(a==b&&b==c&&c==d&&a==-1)break;    //end case

//calculate ∑ ( )








an mi ai mi ni -d

i

= ( * *( -1 mod ))

=1

3

% 23*28*33 , that 

is, the number of days to the next triple peak
      ll an=0;    
      an=28*33*a*niyuan(28*33,23)+23*33*b*niyuan(23*33,28)+23*
28*c*niyuan(28*23,33);
      an-=d;
      an%=(28*33*23);
      if(an<=0)an+=28*33*23;
      printf("Case %d: the next triple peak occurs in %d 
days.\n",++te,(int)an);
    }
}

3.3  Multiplicative Functions
Definition 3.3.1 (Multiplicative Function). An arithmetic function f is a multipli-
cative function if f(ab)=f(a)f(b), where a and b are relatively prime positive integers. 
An arithmetic function f is a completely multiplicative function if f(ab)=f(a)f(b), 
where a and b are positive integers.



Practice for Number Theory  ◾  127

Definition 3.3.2 (Euler Phi-Function φ(n)). Suppose n is a positive integer. 
The Euler phi-function ϕ(n) is defined to be the number of positive integers not 
exceeding n that are relatively prime to n.

For example, ϕ(1)=ϕ(2)=1, ϕ(3)=ϕ(4)=2.
Theorem 3.3.1 If n is a prime number, ϕ(n)=n−1. And if n is a composite num-

ber, ϕ(n)<n−1.
For example, ϕ(7)=6.
Theorem 3.3.2 (Phi-Function Formula).

1.	If p is a prime and k≥1, then ϕ(pk)=pk−pk-1.
2.	If m and n are relatively prime numbers, ϕ(mn)=ϕ(m)ϕ(n).

Therefore, ϕ(n) is a multiplicative function, but ϕ(n) isn’t a completely multi-
plicative function.

Theorem 3.3.3 A number m can be written as a product of primes: 
= × × ×... ,1 2

1 2m p p pk k
r
kr  where p1, p2, …, pr are all different primes. 

ϕ =ϕ ×ϕ × ×ϕ( ) ( ) ( ) ... ( ).1 2
1 2m p p pk k

r
kr

For example, ϕ(18)=ϕ(2×32)=ϕ(2)×ϕ(32)=32−3=6.
Definition 3.3.3 (Reduced Residue System Modulo n). A reduced residue 

system modulo n is a set of ϕ(n) integers such that each element of the set is rela-
tively prime to n, and no two different elements of the set are congruent modulo n.

For example, if n=10, ϕ(10)=4. Each element in the set {1, 3, 7, 9} is relatively 
prime to 10, and no two different elements of the set are congruent modulo 10. 
Therefore, the set {1, 3, 7, 9} is a reduced residue system modulo 10. For the same 
reason, the set {−3, −1, 1, 3} is also a reduced residue system modulo 10.

Theorem 3.3.4 If a set {r1, r2, …, rϕ(n)} is a reduced residue system modulo n, 
and if n and a are coprime positive integers, then the set {ar1, ar2, …, arϕ(n)} is also a 
reduced residue system modulo n.

For example, the set {1, 3, 7, 9} is a reduced residue system modulo 10, and 3 
and 10 are coprime positive integers. Then the set {3, 9, 21, 27} is also a reduced 
residue system modulo 10.

Theorem 3.3.5 (Euler’s Theorem, or Fermat–Euler Theorem). If n and a are 
coprime positive integers, then aϕ(n)≡1(mod n).

Proof. Suppose a set {r1, r2, …, rϕ(n)} is a reduced residue system whose element 
doesn’t exceed n and is relatively prime to n. By Theorem 3.3.4, if n and a are 
coprime positive integers, then the set {ar1, ar2, …, arϕ(n)} is also a reduced residue 
system modulo n. Therefore, the least positive residue system for {ar1, ar2, …, arϕ(n)} 
is the set {r1, r2, …, rϕ(n)} in some order. If all elements in {ar1, ar2, …, arϕ(n)} and {r1, 
r2, …, rϕ(n)} are multiplied together, ar1ar2…arϕ(n)≡r1r2 …rϕ(n) (mod n). Therefore, 
aϕ(n)r1r2…rϕ(n)≡r1r2…rϕ(n) (mod n). Because r1r2…rϕ(n) and n are relatively prime num-
bers, then aϕ(n)≡1 (mod n).

For example, {1, 3, 7, 9} is a reduced residue system whose element doesn’t 
exceed 10 and is relatively prime to 10. 10 and 3 are coprime positive integers. 



128  ◾  Algorithm Design Practice for Collegiate Programming

And {3, 9, 21, 27} is also a reduced residue system modulo 10. Therefore, the 
least positive residue system for {3, 9, 21, 27} is the set {1, 3, 7, 9} in some order. 
3×9×21×27≡1×3×7×9 (mod 10). 1×3×7×9(mod 10)=9. n=10, a=3, and ϕ(10)=4. 
34=3ϕ(10)≡1(mod 10).

Corollary 3.3.1. If n and a are coprime positive integers, then aϕ(n)+1≡a(mod n).
Theorem 3.3.6 (Fermat’s Little Theorem). If p is a prime number, a is a posi-

tive integer, and GCD(a, p)=1, then ap-1≡1(mod p). And if p is a prime and a is an 
positive integer, ap≡a(mod p).

For example, if a=3 and p=5, 34≡1(mod 5). And if a=6 and p=3, 63≡6(mod 3).
Definition 3.3.4 (Order of a Modulo n). Suppose a and n are relatively prime 

integers, where a≠0 and n>0. The least positive integer x such that ax≡1(mod n) is 
the order of a modulo n, and is denoted as ordna.

For example, suppose a=3 and n=5. 34=81≡1(mod 5). Therefore ord53=4.
Definition 3.3.5 (Primitive Root). Suppose a and n are relatively prime inte-

gers, where n>0. If ordna=ϕ(n), then a is a primitive root modulo n, and n has a 
primitive root.

For example, ord53=ϕ(5)=4. 3 is a primitive root of modulo 5, and 5 has a 
primitive root.

Theorem 3.3.7 If a positive integer n has a primitive root, then it has ϕ(ϕ(n)) 
different incongruent primitive roots.

3.3.1.1  Relatives

Given n, a positive integer, how many positive integers less than n are relatively 
prime to n? Two integers a and b are relatively prime if there are no integers x>1, 
y>0, z>0 such that a=xy and b=xz.

Input

There are several test cases. For each test case, standard input contains a line with 
n≤1,000,000,000. A line containing 0 follows the last case.

Output

For each test case there should be a single line of output answering the question 
posed above.

Sample Input Sample Output

7
12
0

6
4

Source:	 Waterloo local 2002.07.01

IDs for Online Judges: POJ 2407, ZOJ 1906, UVA 10299



Practice for Number Theory  ◾  129

  Analysis

Given a positive integer n, the number of positive integers less than n are relatively 
prime to n is the Euler phi-function ϕ(n). n can be written as a product of primes: 

= × × ×... .1 2
1 2n p p pk k

r
kr  Therefore, ϕ =ϕ ×ϕ × ×ϕ( ) ( ) ( ) ... ( ),1 2

1 2n p p pk k
r
kr  where 

ϕ = − × −( ) ( 1) ,1p p pi
k

i i
ki i  1≤i≤r.

  Program

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
using namespace std;
typedef long long ll;
bool u[50000];    //Prime sieve
ll su[50000],num;    //Prime list whose length is num
ll gcd(ll a,ll b){    //GCD(a, b)
    if(b==0)return a;
    return gcd(b,a%b);
}
void prepare(){    //Construct prime list su[] in [2, 50000]
    ll i,j,k;
    for(i=2;i<50000;i++)u[i]=1;
    for(i=2;i<50000;i++)
        if(u[i])
        for(j=2;j*i<50000;j++)
            u[i*j]=0;
    for(i=2;i<50000;i++)
        if(u[i])
            su[++num]=i;
}
ll phi(ll x)    // Euler phi-function φ(x)
{
    ll ans=1;
    int i,j,k;
    for(i=1;i<=num;i++)
    if(x%su[i]==0){    //the number of prime factor su[i] is j
        j=0;



130  ◾  Algorithm Design Practice for Collegiate Programming

        while(x%su[i]==0){++j;x/=su[i];}
        for(k=1;k<j;k++)ans=ans*su[i]%1000000007ll;
        ans=ans*(su[i]-1)%1000000007ll;
        if(x==1)break;
    }
    if(x>1)ans=ans*(x-1)%1000000007ll;
    return ans;    // return φ(x)
}
int main(){
    prepare();    // Construct prime list su[] in [2, 50000]
    int n,i,j,k;
    ll ans=1;
    while(scanf("%d",&n)==1&&n>0){    
//Input test cases until 0
        ans=phi(n);    //calculate and output φ(n)
        printf("%d\n",(int)ans);
    }
}

3.3.1.2  Primitive Roots

We say that integer x, 0<x<p, is a primitive root modulo odd prime p if and 
only if the set {(xi mod p)|1≤i≤p−1} is equal to {1, ..., p−1}. For example, the 
consecutive powers of 3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive 
root modulo 7.

Write a program which given any odd prime 3≤p<65536 outputs the number of 
primitive roots modulo p.

Input

Each line of the input contains an odd prime numbers p. Input is terminated by the 
end-of-file separator.

Output

For each p, print a single number that gives the number of primitive roots in a 
single line.

Sample Input Sample Output

23
31
79

10
8
24

Source:	 Jiayi@pku

ID for Online Judge: POJ 1284



Practice for Number Theory  ◾  131

  Analysis

Based on the problem description, an integer x, 0<x<p, is a primitive root modulo 
odd prime p if and only if the set {(xi mod p)|1≤i≤p−1} is equal to {1, ..., p−1}. If 
p has a primitive root, then it has ϕ(ϕ(p)) different primitive roots. Because p is a 
prime, ϕ(ϕ(p))=ϕ(p−1).

  Program

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
using namespace std;
typedef long long ll;
bool u[50000];    //prime sieve
ll su[50000],num;    //prime list whose length is num
void prepare(){    //Calculate prime list su[]
    ll i,j,k;
    for(i=2;i<50000;i++)u[i]=1;
    for(i=2;i<50000;i++)
        if(u[i])
         for(j=2;j*i<50000;j++) u[i*j]=0;
    for(i=2;i<50000;i++)
        if(u[i]) su[++num]=i;
}
ll phi(ll x)    // Euler phi-function φ(x)
{
    ll ans=1;
    int i,j,k;
    for(i=1;i<=num;i++)    //Enumerate each prime
    if(x%su[i]==0){    //if x has prime factor su[i], then 
φ(s[i])=su[i]j-1*(su[i]-1), and adjust φ(x)
        j=0;
        while(x%su[i]==0){++j;x/=su[i];}
        for(k=1;k<j;k++)ans=ans*su[i]%1000000007ll;
        ans=ans*(su[i]-1)%1000000007ll;
        if(x==1)break;
    }



132  ◾  Algorithm Design Practice for Collegiate Programming

    if(x>1)ans=ans*(x-1)%1000000007ll;    // φ(x)
    return ans;
}
int main(){
    prepare();    //construct prime list su[]
    int n,i,j,k;
    ll ans=1;
    while(scanf("%d",&n)==1){    //input test case n until EOF
        ans=phi(n-1);    //the number of primitive roots for n
        printf("%d\n",(int)ans);
    }
}

3.4  Problems
3.4.1  Prime Frequency

Given a string containing only alpha-numerals (0-9, A-Z and a-z), you have to 
count the frequency (the number of times the character is present) of all the charac-
ters and report only those characters whose frequency is a prime number. A prime 
number is a number which is divisible by exactly two different integers.

Some examples of prime numbers are 2, 3, 5, 7, 11, etc.

Input

The first line of the input is an integer T (0<T< 201) that indicates how many sets of 
inputs are there. Each of the next T lines contains a single set of input.

The input of each test set is a string consisting of alpha-numerals only. The 
length of this string is positive and less than 2001.

Output

For each set of input, produce one line of output. This line contains the serial of 
output followed by the characters whose frequency in the input string is a prime 
number. These characters are to be sorted in lexicographically ascending order. 
Here “lexicographically ascending” means ascending in terms of the ASCII values. 
Look at the output for sample input for details. If none of the character frequency 
is a prime number, you should print “empty” (without the quotes) instead.

Sample Input Sample Output

3
ABCC
AABBBBDDDDD
ABCDFFFF

Case 1: C
Case 2: AD
Case 3: empty

Source:	 Bangladesh National Computer Programming Contest

ID for Online Judge: UVA 10789



Practice for Number Theory  ◾  133

  Hint

First, the offline method is used to calculate the prime sieve u[] in [2, 2200]. Second, 
for each test case (a string), every character’s frequency p[] is calculated. Third, char-
acters whose frequency is a prime number are sorted in lexicographically ascending 
order. If none of the character frequency is a prime number, “empty” is output.

3.4.2  Twin Primes

Twin primes are pairs of primes of the form (p, p+2). The term “twin prime” was 
coined by Paul Stäckel (1892–1919). The first few twin primes are (3, 5), (5, 7), 
(11, 13), (17, 19), (29, 31), (41, 43). In this problem you are asked to find out the 
S-th twin prime pair where S is an integer that will be given in the input.

Input

The input will contain less than 10001 lines of input. Each line contains an inte-
gers S (1≤S≤100000), which is the serial number of a twin prime pair. Input file is 
terminated by end of file.

Output

For each line of input, you will have to produce one line of output which contains 
the S-th twin prime pair. The pair is printed in the form (p1,<space>p2). Here 
<space> means the space character (ASCII 32). You can safely assume that the 
primes in the 100000-th twin prime pair are less than 20000000. 

Sample Input Sample Output

1
2
3
4

(3, 5)
(5, 7)
(11, 13)
(17, 19)

Source:	 Regionals Warmup Contest 2002, Venue: Southeast University, Dhaka, 
Bangladesh

ID for Online Judge: UVA 10394

  Hint

Suppose the sequence for twin primes is ans[], where ans[i] is the least prime for the 
i-th twin primes, 1≤i≤num.



134  ◾  Algorithm Design Practice for Collegiate Programming

The method for calculating ans[] is as follows:

First, the sieve method is used to calculate the prime sieve u[] for the interval 
[2, 20000000];

Second, each integer i is enumerated. If i and i+2 is a twin prime (u[i]&&u[i+2]), 
then i is added into the sequence for twin primes (ans[++num]=i);

Finally, for each test case s, the twin prime (ans[s], ans[s]+2) is output.

3.4.3  Less Prime

Let n be an integer, 100≤n≤10000. Find the prime number x, x≤n, so that n−p×x is 
maximum, where p is an integer such that p×x≤n<(p+1)×x.

Input

The first line of the input contains an integer, M, indicating the number of test 
cases. For each test case, there is a line with a number N, 100≤N≤10000.

Output

For each test case, the output should consist of one line showing the prime number 
that verifies the condition above.

Sample Input Sample Output

5
4399
614
8201
101
7048

2203
311
4111
53
3527

Source:	 III Local Contest in Murcia 2005

ID for Online Judge: UVA 10852

  Hint

Because n−p×x is maximum (x is a prime number, p is an integer, p×x≤n<(p+1)×x), 
x is such a prime number that x%n is maximal for all prime numbers less than n. 
The algorithm is as follows:

First, the prime list su[] for the interval [2, 11111] is calculated, where its length 
is num. Then, for each test case n, all prime numbers less than n are enumerated, 



Practice for Number Theory  ◾  135

max { % [ ] [ ] }
1

= <
≤ ≤

tmp n su i su i n
i num

. The prime number that verifies the condition above 

is su[k] that tmp=n%su[k].

3.4.4  Prime Words

A prime number is a number that has only two divisors: itself and the number one. 
Examples of prime numbers are: 1, 2, 3, 5, 17, 101, and 10007.

In this problem, you should read a set of words. Each word is composed only by 
letters in the range a-z and A-Z. Each letter has a specific value: the letter a is worth 
1, letter b is worth 2, and so on until letter z, which is worth 26. In the same way, 
letter A is worth 27, letter B is worth 28, and letter Z is worth 52.

You should write a program to determine if a word is a prime word or not. A 
word is a prime word if the sum of its letters is a prime number.

Input

The input consists of a set of words. Each word is in a line by itself and has L letters, 
where 1≤L≤20. The input is terminated by end of file (EOF).

Output

For each word you should print: It is a prime word., if the sum of the letters of the 
word is a prime number; otherwise you should print: It is not a prime word.

Sample Input Sample Output

UFRN
contest
AcM

It is a prime word.
It is not a prime word.
It is not a prime word.

Source:	 UFRN-2005 Contest 1

ID for Online Judge: UVA 10924

  Hint

First, the offline method is used to calculate a prime list u[] in the interval [2, 1010].
Second, a test case (a word whose length is n) is input, and the sum of letters in 

the word is ( [ ] ' ' 1 [ ] {' '..' '}), [ ] ' ' 27 [ ] {' '..' '}
1

∑= − + ∈ − + ∈
=

X s i a s i a z s i A s i A Z
i

n

.

If X is a prime number in [2, 1010], the word is a prime word; else it isn’t a prime 
word.



136  ◾  Algorithm Design Practice for Collegiate Programming

3.4.5  Sum of Different Primes

A positive integer may be expressed as a sum of different prime numbers (primes), 
in one way or another. Given two positive integers n and k, you should count the 
number of ways to express n as a sum of k different primes. Here, two ways are 
considered to be the same if they sum up the same set of the primes. For example, 
8 can be expressed as 3+5 and 5+3, but they are not distinguished.

When n and k are 24 and 3 respectively, the answer is two because there are 
two sets {2, 3, 19} and {2, 5, 17} whose sums are equal to 24. There are no other sets 
of three primes that sum up to 24. For n=24 and k=2, the answer is three, because 
there are three sets {5, 19}, {7, 17} and {11, 13}. For n=2 and k=1, the answer is one, 
because there is only one set {2} whose sum is 2. For n=1 and k=1, the answer is 
zero. As 1 is not a prime, you shouldn’t count {1}. For n=4 and k=2, the answer is 
zero, because there are no sets of two different primes whose sums are 4.

Your job is to write a program that reports the number of such ways for the 
given n and k.

Input

The input is a sequence of datasets followed by a line containing two zeros separated 
by a space. A dataset is a line containing two positive integers n and k separated by 
a space. You may assume that n≤1120 and k≤14.

Output

The output should be composed of lines, each corresponding to an input dataset. An 
output line should contain one non-negative integer indicating the number of ways for 
n and k specified in the corresponding dataset. You may assume that it is less than 231.

Sample Input Sample Output

24  3
24  2
2  1
1  1
4  2
18  3
17  1
17  3
17  4
100  5
1000  10
1120  14
0  0

2
3
1
0
0
2
1
0
1
55
200102899
2079324314

Source:	 ACM Japan 2006

IDs for Online Judges: POJ 3132, ZOJ 2822, UVA 3619



Practice for Number Theory  ◾  137

  Hint

Suppose su[] is the prime list in the interval [2, 1200]; f [i][j] is the number of ways 
to express j as a sum of i different primes, 1≤i≤14, and su[i]≤j≤1199. Obviously, 
f [0][0]=1.

First, su[] is calculated. Its length is num.
Then, for a test case (two positive integers n and k), Dynamic Programming is 

used to compute the number of ways to express n as a sum of k different primes.

Enumerate each prime su[i] in su[] (1≤i≤num):
  Enumerate the number of different primes j in descending 
order (j=14…1):
    Enumerate the sum of the first j primes p (p=1199…su[i]):
      Accumulate the number of ways that su[i] is as the j-th 
prime f[j][p]+=f[j−1][p−su[i]];

Finally, f [k][n] is the solution to the problem.

3.4.6  Gerg’s Cake

Gerg is having a party, and he has invited his friends. p of them have arrived 
already, but a are running late. To occupy his guests, he tried playing some team 
games with them, but he found that it was impossible to divide the p guests into 
any number of equal-sized groups of more than one person.

Luckily, he has a backup plan—a cake that he would like to share between his 
friends. The cake is in the shape of a square, and Gerg insists on cutting it up into 
equal-sized square pieces. He wants to reserve one slice for each of the a missing 
friends, and the rest of the slices have to be divided evenly between the p remaining 
guests. He does not want any cake himself. Can he do it? 

Input

The input will consist of several test cases. Each test case will be given as a non-
negative integer a and a positive integer p as specified above, on a line. Both a and 
p will fit into a 32-bit signed integer. The last line will contain “−1 −1” and should 
not be processed. 

Output

For each test case, output “Yes” if the cake can be fairly divided and “No” 
otherwise.



138  ◾  Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output

1  3
1024  17
2  101
0  1
-1  -1

Yes
Yes
No
Yes

Source:	 2005 ACM ICPC World Finals Warmup 2

ID for Online Judge: UVA 10831

 � Hint by the Problemsetter (http://www 
.algorithmist.com/index.php/Main_Page)

The summary of the problem is as follows. Given a and p, can a square cake be 
divided into a+n×p equal-sized pieces?

You have to test whether there is a solution to x2=a+n×p, where n is an inte-
ger. Taking everything modulo p, we get x2≡a(mod p). Now we use a trick to get 
to Fermat’s Little Theorem: we take everything to the power (p−1)/2, so we get 
xp−1≡a(p−1)/2≡1(mod p). So we only have to check whether a(p-1)/2≡1(mod p). If it 
is, there is a solution, and otherwise there isn’t. This can easily be calculated in 
O(log p).

There are a few special cases, for example, a≡0(mod p), p=1 and p=2.

3.4.7  Widget Factory

The widget factory produces several different kinds of widgets. Each widget is care-
fully built by a skilled widgeteer. The time required to build a widget depends on 
its type: the simple widgets need only three days, but the most complex ones may 
need as many as nine days.

The factory is currently in a state of complete chaos: recently, the factory has 
been bought by a new owner, and the new director has fired almost everyone. The 
new staff know almost nothing about building widgets, and it seems that no one 
remembers how many days are required to build each different type of widget. 
This is embarrassing when a client orders widgets and the factory cannot tell the 
client how many days are needed to produce the required goods. Fortunately, 
there are records that say, for each widgeteer, the date when he started working 
at the factory, the date when he was fired, and what types of widgets he built. 
The problem is that the record does not say the exact date of starting and leaving 

http://www.algorithmist.com/
http://www.algorithmist.com/


Practice for Number Theory  ◾  139

the job, only the day of the week. Nevertheless, even this information might be 
helpful in certain cases: for example, if a widgeteer started working on a Tuesday, 
built a Type 41 widget, and was fired on a Friday, then we know that it takes 
four days to build a Type 41 widget. Your task is to figure out from these records 
(if possible) the number of days that are required to build the different types of 
widgets. 

Input

The input contains several blocks of test cases. Each case begins with a line 
containing two integers: the number 1≤n≤300 of the different types, and the 
number 1≤m≤300 of the records. This line is followed by a description of the m 
records. Each record is described by two lines. The first line contains the total 
number 1≤k≤10000 of widgets built by this widgeteer, followed by the day of 
the week when he or she started working and the day of the week he or she was 
fired. The days of the week are given by the strings ‘MON’, ‘TUE’, ‘WED’, 
‘THU’, ‘FRI’, ‘SAT’, and ‘SUN’. The second line contains k integers separated 
by spaces. These numbers are between 1 and n, and they describe the different 
types of widgets that the widgeteer built. For example, the following two lines 
mean that the widgeteer started working on a Wednesday, built a Type 13 widget, 
a Type 18 widget, a Type 1 widget, again a Type 13 widget, and was fired on a 
Sunday.

4 WED SUN
13 18 1 13 

Note that the widgeteers work seven days a week, and they were working on 
every day between their first and last day at the factory (if you like weekends and 
holidays, then do not become a widgeteer!).

The input is terminated by a test case with n=m=0.
Hint: Huge input file, ‘scanf ’ recommended to avoid TLE. 

Output

For each test case, you have to output a single line containing n integers separated 
by spaces: the number of days required to build the different types of widgets. 
There should be no space before the first number or after the last number, and 
there should be exactly one space between two numbers. If there is more than one 
possible solution for the problem, then write “Multiple solutions.” (without the 
quotes). If you are sure that there is no solution consistent with the input, then 
write “Inconsistent data.” (without the quotes).



140  ◾  Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output

2  3
2  MON  THU
1  2

3  MON  FRI
1  1  2
3  MON  SUN
1  2  2
10  2
1  MON  TUE
3
1  MON  WED
3
0  0

8 3

Inconsistent 
data.

Source: ACM Central Europe 2005

IDs for Online Judges: POJ 2947, UVA 3529

  Hint

There are N types of widgets, and each type takes a fixed number of days (between 
three and nine) to be produced. In the factory there were several workers. For each 
of them, we know the information “He started on weekday X, produced c1 widgets 
of type t1, ..., ck widgets of type tk and finished on weekday Y.” The task is to deter-
mine the production time for each of the widgets.

There may be inputs where there is no answer or more than one answer, and in 
these cases you just have to output a corresponding message.

Note that if we want to know the number of days D a widget takes to be com-
pleted, it is enough to determine (D modulo 7).

Each worker’s information can be translated into a linear congruence modulo 7. 
The resulting set of equations can be solved using Gaussian elimination.

Note that all operations when solving the set of equations are done modulo 7. 
Seven (the number of days in a week) is a prime number. Thus Z7 (the set {0, 1, 2, 
3, 4, 5, 6} with addition and multiplication modulo 7) is a field. In other words, 
each number other than 0 has a multiplicative inverse, and thus we can divide in 
Z7. E.g., in Z7 2×4=1, so instead of dividing a number by 4, we can multiply it by 2.

3.4.8  Count the Factors

Write a program that computes the number of different prime factors in a positive 
integer. 



Practice for Number Theory  ◾  141

Input

The input tests will consist of a series of positive integers. Each number is on a line 
on its own. The maximum value is 1000000. The end of the input is reached when 
the number 0 is met. The number 0 shall not be considered as part of the test set. 

Output

The program shall output each result on a line by its own, following the format 
given in the sample output.

Sample Input Sample Output

289384
930887
692778
636916
747794
238336
885387
760493
516650
641422
0

289384 : 3
930887 : 2
692778 : 5
636916 : 4
747794 : 3
238336 : 3
885387 : 2
760493 : 2
516650 : 3
641422 : 3

Source:	 2004 Federal University of Rio Grande do Norte Classifying Contest-R 
ound 2

ID for Online Judge: UVA 10699

  Hint

First, the prime list su[] in the interval [2, 1200] is calculated.
Then, for each test case, a positive integer x, the method by which the number 

of different prime factors k for x is calculated as follows:
Initially k=0. The prime list su[] is searched one by one. If su[i] is a prime factor 

for x (x% su[i]==0), then k++; and x/=su[i] is repeated until (x% su[i]≠0). If x>1 
after all elements in su[] have been searched, k++.

3.4.9  Prime Land

Everybody in the Prime Land is using a prime base number system. In this system, 
each positive integer x is represented as follows: Let { } 0=

∞pi i  denote the increasing 
sequence of all prime numbers. We know that x>1 can be represented in only one 
way in the form of product of powers of prime factors. This implies that there is an 



142  ◾  Algorithm Design Practice for Collegiate Programming

integer kx and uniquely determined integers , ,......, , ,( 0)1 1 0 >−e e e e ek k kx x x , that 
......1 1 0

1 1 0= × × × ×−
−x p p p pk

e
k
e e e

x
kx

x
kx . The sequence ( , ,......, , )1 1 0−e e e ek kx x  is considered 

to be the representation of x in the prime base number system.
It is really true that all numerical calculations in the prime base number system 

can seem to us a little bit unusual, or even hard. In fact, the children in Prime Land 
learn to add and to subtract numbers for several years. On the other hand, multi-
plication and division are very simple.

Recently, somebody has returned from a holiday in the Computer Land where small 
smart things called computers have been used. It turns out that they could be used to 
make addition and subtraction in the prime base number system much easier. It has 
been decided to make an experiment and let a computer do the operation “minus one”.

Help people in the Prime Land and write a corresponding program for them.
For practical reasons, we will write here the prime base representation as a 

sequence of such pi and ei from the prime base representation above, for which ei>0. 
We will keep decreasing order with regard to pi. 

Input

The input file consists of lines (at least one), each of which, except the last, contains 
a prime base representation of just one positive integer greater than 2 and less or 
equal to 32767. All numbers in the line are separated by one space. The last line 
contains number 0. 

Output

The output file contains one line for each but the last line of the input file. If x is a posi-
tive integer contained in a line of the input file, the line in the output file will contain 
x−1 in prime base representation. All numbers in the line are separated by one space. 
There is no line in the output file corresponding to the last “null” line of the input file.

Sample Input Sample Output

17  1
5  1  2  1
509  1  59 1
0

2 4
3 2
13  1  11  1  7  1  5  1  3  1  2  1

Source:	 ACM Central Europe 1997

IDs for Online Judges: POJ 1365, ZOJ 1261, UVA 516

  Hint

First, a prime list in the interval [2, 32767] is calculated.



Practice for Number Theory  ◾  143

Then, for a test case (a prime base representation of a number x), x is calculated 
by multiplying ......1 1 0

1 1 0= × × × ×−
−x p p p pk

e
k
e e e

x
kx

x
kx .

Finally, the prime base representation of x−1 is output.

3.4.10  Prime Factors

An integer g>1 is said to be prime if and only if its only positive divisors are itself 
and one (otherwise, it is said to be composite). For example, the number 21 is com-
posite; the number 23 is prime. Note that the decomposition of a positive number 
g into its prime factors, i.e., g=f1×f2×……×fn is unique if we assert fi>1 that for all 
i and fi≤fj for i<j.

One interesting class of prime numbers are the so-called Mersenne primes 
which are of the form 2p−1. Euler proved that 231−1 is prime in 1772—all without 
the aid of a computer. 

Input

The input will consist of a sequence of numbers. Each line of input will contain one 
number g in the range −231<g<231, but this number is different from −1 and 1. The 
end of input will be indicated by an input line having a value of zero. 

Output

For each line of input, your program should print a line of output consisting of the 
input number and its prime factors. For an input number g>0, g=f1×f2×……×fn, 
where each fi is a prime number greater than unity (with fi≤fj for i<j), the format 
of the output line should be g=f1×f2×……×fn. Where g<0, if |g|=f1×f2×……×fn, the 
format of the output line should be g=−1×f1×f2×……×fn.

Sample Input Sample Output

-190
-191
-192
-193
-194
195
196
197
198
199
200
0

-190 = -1 x 2 x 5 x 19
-191 = -1 x 191
-192 = -1 x 2 x 2 x 2 x 2 x 2 x 2 x 3
-193 = -1 x 193
-194 = -1 x 2 x 97
195 = 3 x 5 x 13
196 = 2 x 2 x 7 x 7
197 = 197
198 = 2 x 3 x 3 x 11
199 = 199
200 = 2 x 2 x 2 x 5 x 5

Source:	 ACM East Central Region 1997

ID for Online Judge: UVA 583



144  ◾  Algorithm Design Practice for Collegiate Programming

  Hint

First, a prime list in the interval [2, 2 ]31  is calculated.
Then, for a input number x, if x is negative, the −1 coefficient should be added 

before factoring; this method is similar to the 3.4.8 Count the factors method.

3.4.11  Perfect Pth Powers

We say that x is a perfect square if, for some integer b, x=b2. Similarly, x is a perfect 
cube if, for some integer b, x=b3. More generally, x is a perfect pth power if, for some 
integer b, x=bp. Given an integer x, you are to determine the largest p such that x is 
a perfect pth power. 

Input

Each test case is given by a line of input containing x. The value of x will have mag-
nitude of at least 2 and be within the range of a (32-bit) int in C, C++, and Java. A 
line containing 0 follows the last test case. 

Output

For each test case, output a line giving the largest integer p such that x is a perfect 
pth power.

Sample Input Sample Output

17
1073741824
25
0

1
30
2

Source:	 Waterloo local 2004.01.31

IDs for Online Judges: POJ 1730, ZOJ 2124

  Hint

The positive integer x is represented as the product of powers of prime factors 
*1

1
2

2
=x p p pe e

k
ek. The largest integer p such that x is a perfect pth power is 

p=GCD(e1, e2, …, ek).



Practice for Number Theory  ◾  145

3.4.12  Factovisors

The factorial function n! is defined thus for n a non-negative integer:

   0!=1
   n!=n×(n−1)! (n>0)

We say that a divides b if there exists an integer k such that k×a=b. 

Input

The input to your program consists of several lines, each containing two non-
negative integers, n and m, both less than 2^31. 

Output

For each input line, output a line stating whether or not m divides n!, in the format 
shown below.

Sample Input Sample Output

6  9
6  27
20  10000
20  100000
1000  1009

9 divides 6!
27 does not divide 6!
10000 divides 20!
100000 does not divide 20!
1009 does not divide 1000!

Source:	 2001 Summer keep-fit 1

ID for Online Judge: UVA 10139

  Hint

The non-negative integer m is represented as the product of powers of prime factors 

1
∏=

=

m pi
e

i

k
i . m divides n! if and only if n! can be represented as the product of pow-

ers of prime factors ! ' '

1
∏=

=

n pi
e

i

t
i , where {p1, p2, …, pk} is a subset for {p1', p2', …, pt'} 

and the power for pi in {p1, p2, …, pk} is less than or equal to the power for pi in 
{p1', p2', …, pt'}.

In order to avoid “Out Of Memory Error (OOME)”, the power for pi for n! is 

calculated directly from n: ' ( )1

1
∑=









 >+

=

e
n
p

p ni
i
j

k

j

k

.

We should note: 0 can’t divide n!; and m divides n! is true if m≤n.



146  ◾  Algorithm Design Practice for Collegiate Programming

3.4.13  Farey Sequence

The Farey Sequence Fn for any integer n with n≥2 is the set of irreducible rational 
numbers a/b with 0 <a<b≤n and GCD(a, b)=1 arranged in increasing order. The 
first few are as follows:

F2 = {1/2}
F3 = {1/3, 1/2, 2/3}
F4 = {1/4, 1/3, 1/2, 2/3, 3/4}
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}

Your task is to calculate the number of terms in the Farey sequence Fn. 

Input

There are several test cases. Each test case has only one line, which contains a posi-
tive integer n (2≤n≤106). There are no blank lines between cases. A line with a single 
0 terminates the input. 

Output

For each test case, you should output one line, which contains N(n)—the number 
of terms in the Farey sequence Fn.

Sample Input Sample Output

2
3
4
5
0

1
3
5
9

Source:	 POJ Contest, Author: Mathematica@ZSU

ID for Online Judge: POJ 2478

  Hint

Based on the problem description, the Farey Sequence Fn for any integer n with 
n≥2 is the set of irreducible rational numbers a/b with 0<a<b≤n and GCD(a, b)=1 
arranged in increasing order. Suppose F[i] is the number of terms in the Farey 
sequence Fi, and fi' is the number of terms whose denominators are i in the Farey 
sequence Fi. Therefore,

	

' 2
[ 1] ' 3

.[ ] =
=

− + ≤ ≤






F i

f i
F i f i n

i

i



Practice for Number Theory  ◾  147

For each term in the Farey sequence, Fi, its denominator i and numerator are 
relatively prime. Therefore, fi' is Euler phi-function ϕ(i). The offline method is used 
to calculate F[]. Then for each test case (a positive integer k), F[k] is output.

3.4.14  Irreducible Basic Fractions

A fraction m/n is basic if 0<=m<n and it is irreducible if gcd(m, n)=1. Given a posi-
tive integer n, in this problem you are required to find out the number of irreducible 
basic fractions with denominator n.

For example, the set of all basic fractions with denominator 12, before reduction 
to lowest terms, is

	
0

12
, 1
12

, 2
12

, 3
12

, 4
12

, 5
12

, 6
12

, 7
12

, 8
12

, 9
12

, 10
12

, 11
12

Reduction yields

	

0
12

, 1
12

, 1
6

, 1
4

, 1
3

, 5
12

, 1
2

, 7
12

, 2
3

, 3
4

, 5
6

, 11
12

Hence there are only the following four irreducible basic fractions with denomi-
nator 12:

	
1

12
, 5
12

, 7
12

, 11
12  

Input

Each line of the input contains a positive integer n(<1000000000) and the input 
terminates with a value 0 for n (do not process this terminating value). 

Output

For each n in the input, print a line containing the number of irreducible basic 
fractions with denominator n.

Sample Input Sample Output

12
123456
7654321
0

4
41088
7251444

Source:	 2001 Regionals Warmup Contest

ID for Online Judge: UVA 10179



148  ◾  Algorithm Design Practice for Collegiate Programming

  Hint
m
n

 is irreducible if and only if gcd(m, n)=1. The number of m satisfying n≤m and 

GCD(m, n)=1 is ϕ(n). Therefore, the number of irreducible basic fractions with 
denominator n is ϕ(n).

3.4.15  LCM Cardinality

A pair of numbers has a unique LCM but a single number can be the LCM of more 
than one possible pairs. For example, 12 is the LCM of (1,12), (2,12), (3,4), etc. 
For a given positive integer N, the number of different integer pairs with LCM that 
is equal to N can be called the LCM cardinality of that number N. In this problem, 
your job is to find out the LCM cardinality of a number. 

Input

The input file contains at most 101 lines of inputs. Each line contains an integer 
N (0<N≤2×109). Input is terminated by a line containing a single zero. This line 
should not be processed. 

Output

For each line of input except the last one, produce one line of output. This line 
contains two integers N and C. Here N is the input number and C is its cardinality. 
These two numbers are separated by a single space.

Sample Input Sample Output

2
12
24
101101291
0

2 2
12 8
24 11
101101291 5

Source:	 UVa Monthly Contest August 2005

ID for Online Judge: UVA 10892

  Hint

For a given positive integer N, the number of different integer pairs with LCM is 
equal to N and can be called the LCM cardinality of that number N. Suppose A 



Practice for Number Theory  ◾  149

and B are a pair of integers. A and B can be represented as the product of powers 

of prime factors, ∏=A pi
a

i

i , and ∏=B pi
b

i

ii . The LCM for A and B is N, 

, ∏( )= =N LCM A B pi
C

i

i , where ∀i , ci=max{ai, bi}. This is the insight that lets us 

solve the problem.
Suppose f [i] is the LCM cardinality for the first i prime factors for N.
For the first i−1 prime factors for N, there are two cases:

1.	If ∀ <j i, cj=aj=bj. If ai=ci, then bi=0...ci, there are ci+1 pairs of integers (ci,0), 
(ci,1), …, (ci,ci);

2.	Otherwise, there are 2×ci+1 pairs of integers (0,ci), (1,ci), …, (ci−1,ci), (ci,ci−1), 
…, (ci,0), (ci,ci).

Therefore, f [i]=( f [i−1]−1×(2×ci+1)+ci+1.

3.4.16  GCD Determinant

We say that a set S={x1, x2, ..., xn} is factor closed if, for any xi∈S and any divisor d 
of xi. we have d∈S. Let’s build a GCD matrix (S)=(sij), where sij =GCD(xi, xj)—the 
GCD of xi and xj. Given the factor closed set S, find the value of the determinant:

	

gcd( , ) gcd( , ) gcd( , ) gcd( , )
gcd( , ) gcd( , ) gcd( , ) gcd( , )
gcd( , ) gcd( , ) gcd( , ) gcd( , )

gcd( , ) gcd( , ) gcd( , ) gcd( , )

1 1 1 2 1 3 1

2 1 2 2 2 3 2

3 1 3 2 3 3 3

1 2 3







    



=D

x x x x x x x x
x x x x x x x x
x x x x x x x x

x x x x x x x x

n

n

n

n

n n n n n

Input

The input file contains several test cases. Each test case starts with an integer n 
(0<n<1000), that stands for the cardinality of S. The next line contains the num-
bers of S: x1, x2, ..., xn. It is known that each xi is an integer, 0<xi<2×109. The input 
data set is correct and ends with an end of file. 

Output

For each test case, find and print the value Dn mod 1000000007.



150  ◾  Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output

2
1  2
3
1  3  9
4
1  2  3  6

1
12
4

Source:	 ACM Southeastern European Regional Programming 
Contest 2008

IDs for Online Judges: POJ 3910, UVA 4190

  Hint

Suppose ai is the row (gcd(xi, x1) gcd(xi, x2) gcd(xi, x3) … gcd(xi, xn)) for the matrix 
Dn, and aij represents gcd(xi, xj).

There is a linear transformation for the matrix Dn 
( | )&&( )

∑−
≠

a ab d

d b d b

. Each ad 

satisfying (d | b)&&(d≠b) has been transformed before ab is transformed.

After ab has been transformed, 
0 gcd( , )

( ) gcd( , )
.=

<
ϕ =






a

x x x

x x x xij
i j i

i i j i

First, all xi are sorted in ascending order. Second, the gcd matrix M is con-
structed as the problem description. Third, a linear transformation for the matrix is 
done as above. The matrix must be an upper triangular matrix, and each element 
for the diagonal line of the matrix is the Euler phi-function ϕ(xi) for the row’s 

corresponding number xi. Therefore, det ( )
1

M xi

i

n

∏( ) = ϕ
=

.

3.4.17  GCD and LCM Inverse 

Given two positive integers a and b, we can easily calculate the GCD and the least 
common multiple (LCM) of a and b. But what about the inverse? That is: given 
GCD and LCM, finding a and b. 

Input

The input contains multiple test cases, each of which contains two positive inte-
gers, the GCD and the LCM. You can assume that these two numbers are both 
less than 263. 



Practice for Number Theory  ◾  151

Output

For each test case, output a and b in ascending order. If there are multiple solutions, 
output the pair with smallest a+b.

Sample Input Sample Output

3  60 12  15

Source:	 POJ Achilles

ID for Online Judge: POJ 2429

  Hint

For this problem, LCM=LCM(a, b), GCD=GCD(a, b), and a×b=LCM×GCD with 
smallest a+b.

First =N
LCM
GCD

 is calculated. If N==1, then the pair with smallest a+b is (GCD, 

LCM); else (a, b) is calculated.

Suppose a=t×GCD, = = ×
b

LCM
t

N GCD
t

. Therefore, : :=a b t
N
t

. Obviously, 

a+b being the smallest is equivalent to +t
N
t

 being the smallest. The method for 
calculating t is as follows:

The positive integer N is represented as the product of powers of prime factors 

1
∏=

=

N pi
e

i

k
i . Array a[] is used to represent the product of powers of prime factors for 

N, where (1 )[ ]= ≤ ≤a i p i ki
ei .

The recursive function dfs(0,1,N) is used to calculate t.

void dfs(i, t', n){ //i is the pointer for a[], a:b=t', n is 
LCM

GCD
    if (i==m+1){    // a[] has been analyzed
        if ((minx==-1) || (t'+n/t' <minx)){ 
            minx= t'+n/t';
            t= t' ;
        }
        return;    //backtracking
    }
    dfs(i+1, t'*a[i], n);    //a:b=t'*a[i], the (i+1)-th prime 
factor for N is analyzed
    dfs(i+1, t', n);    // a:b=t', the (i+1)-th prime factor 
for N is analyzed
}

If t2>N, then t=N/t. The pair with smallest a+b is (t×GCD, LCM/t).



http://taylorandfrancis.com


153

Chapter 4

Practice for Combinatorics

Combinatorics is the branch of mathematics studying the enumeration, combina-
tion, and permutation of sets of elements and the mathematical relations that char-
acterize their properties. This chapter focuses on the following topics:

◾◾ Generating Permutations;
◾◾ Enumeration of Permutations and Combinations;
◾◾ The Pigeonhole Principle and the Inclusion−Exclusion Principle;
◾◾ The Pólya Counting Formula.

4.1  Generating Permutations
In this section, experiments for generating the next permutation and all permuta-
tions based on lexicographic order are shown.

4.1.1 � Generating the Next Permutation Based 
on Lexicographic Order

Lexicographic order refers to generating the next permutation based on the alpha-
betical order of their component elements. Suppose the current permutation is 
(p)=p1…pi-1pi…pn. The method for generating the next permutation (q) based on 
lexicographic order is as follows:

Step 1: Find the longest suffix that is non-increasing by scanning the sequence 
from right to left. The element immediately to the left of the suffix is called 
“the first element.” If there is no such element, the sequence is non-increasing 



154  ◾  Algorithm Design Practice for Collegiate Programming

and is the last permutation. That is, find such an index i that i=max{ j|pj-1<pj, 
pj ≥ pj+1}, and pi-1 is the first element.

Step 2: Find the rightmost successor to the first element in the suffix. Because 
the first element is less than the head of the suffix, some elements in the suffix 
are greater than the first element. In the suffix, the rightmost successor to the 
first element is the smallest element greater than the first element. We call the 
element “the second element.” That is, find such an index j that j=max{k|k≥i, 
pi-1<pk}.

Step 3: Swap pi-1 and pj, and get a new sequence p p p p p p pi j i i j i − + − −1 2 1 1 1

+ 1p pj n.
Step 4: Reverse the subsequence after the original index of the first element. The 

next permutation is ( ) . .1 2 1 1 1 1q p p p p p p p p pi j n j i j i i� … �= − + − − +

Suppose the current permutation is (p)=2763541. Based on lexicographic order, 
the next permutation is (q)=2764135.

1.	2763541 : Find the first element, and pi-1 pi is 35.
2.	2763541 : Find the second element: 4.
3.	2764531 : Swap the first element and the second element.
4.	2764135 : Reverse the subsequence after the original index of the first element. 

And get the next permutation (q).

4.1.1.1  ID Codes

It is 2084 and the year of Big Brother has finally arrived, albeit a century late. In 
order to exercise greater control over its citizens and thereby counter a chronic break-
down in law and order, the government decides on a radical measure—all citizens 
are to have a tiny microcomputer surgically implanted in their left wrists. This com-
puter will contain all sorts of personal information, as well as a transmitter which 
will allow people’s movements to be logged and monitored by a central computer.

An essential component of each computer will be a unique identification code, 
consisting of up to 50 characters drawn from the 26 lowercase letters. The set of 
characters for any given code is chosen somewhat haphazardly. The complicated 
way in which the code is imprinted into the chip makes it much easier for the man-
ufacturer to produce codes that are rearrangements of other codes, rather than to 
produce new codes with a different selection of letters. Thus, once a set of letters has 
been chosen, all possible codes derivable from it are used before changing the set.

For example, suppose it is decided that a code will contain exactly three occur-
rences of “a”, two of “b”, and one of “c”; then three of the allowable 60 codes under 
these conditions are:

abaabc
abaacb
ababac



Practice for Combinatorics  ◾  155

These three codes are listed from top to bottom in alphabetic order. Among 
all codes generated with this set of characters, these codes appear consecutively in 
this order.

Write a program to assist in the issuing of these identification codes. Your pro-
gram will accept a sequence of no more than 50 lowercase letters (which may con-
tain repeated characters) and print the successor code if one exists, or print the 
message “No Successor” if the given code is the last in the sequence for that set of 
characters.

Input

Input will consist of a series of lines, each containing a string representing a code. 
The entire file will be terminated by a line consisting of a single #.

Output

Output will consist of one line for each code read, containing the successor code or 
the words “No Successor”.

Sample Input Sample Output

abaacb
cbbaa
#

ababac
No Successor

Source:	 New Zealand Contest 1991

IDs for Online Judges: POJ 1146, UVA 146

  Analysis

1.	The successor code is the next permutation based on lexicographic order. 
Therefore, the algorithm is as follows. Suppose the given code is s0s1s2……sl-1.

2.	Find the index i that i=max{ j|sj-1≥sj}.
3.	If i==0, then the given code is the last in the sequence for that set of charac-

ters, output “No Successor”, and exit; else
4.	On the right of “the first element”, find the smallest character greater than it. 

That is, find such an index j that j=max{k|si-1<sk};
5.	Swap si-1 and sj, and get s0…si-2 sj si si+1…sj-1 si-1 sj+1…sl-1;
6.	Reverse the substring after sj, and get the successor code (q)=s0…si-2sj sl-1…

sj+1si-1sj-1 …si+1 si.



156  ◾  Algorithm Design Practice for Collegiate Programming

  Program

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <string>
# include <cmath>
# include <algorithm>
using namespace std;
typedef long long int64;
char s[60];int l;    // identification codes whose length is l
int get() {    //If there is a successor code for s, output 
the successor and return 1; else return 0
	   int i=l-1;
	   while (i>0&&s[i-1]>=s[i]) i--;    //find the first element
	    if (!i) return 0;    //no successor
	   int mp=i;    // find the second element
	   for (int j=i+1;j<l;j++) {
		    if(s[j]<=s[i-1])continue;
		    if(s[j]<s[mp])mp=j;
	   }
	   swap(s[mp],s[i-1]);    // Swap si-1 and smp
	   sort(s+i,s+l);    // Reverse the suffix after the i-th 
character
	   return 1;  
}
int main(){
	   while (~scanf("%s",s)&&s[0]!='#'){    //Input 
identification codes until '#'
		      l=strlen(s);    //the length of the identification 
code
		      if(get())  printf("%s\n",s);  // output the successor
		      else  printf("No Successor\n");
	   }
	   return 0;
}

Not only can lexicographic order generate the next permutation for p1…pi-1 
pi…pn, but it can also generate an r-combination of a set S of n elements {a1, 
a2,…, an}, where a1<a2<…<an. Suppose the current r-combination of a set S is {ak1, 
ak2,…, akr}, where 1≤k1<k2<…<kr≤n. Obviously, the first r-combination of a set S 



Practice for Combinatorics  ◾  157

of n elements is {a1, a2,…, ar}, and the last r-combination of a set S of n elements 
is {an-r+1, an-r+2,…, an}.

If the current r-combination of a set S{ak1, ak2,…, akr} isn’t {an-r+1, an-r+2,…, an}, 
then the next r-combination is calculated as follows:

Suppose i is the maximal index kj that akj<an-kr+kj. Based on lexicographic 
order, the next r-combination is {ak1,…, akj-1, akj+1,…, akr, akr+1}. Therefore, for an 
r-combination {ak1, ak2,…, akr}, the algorithm for calculating the next r-combination 
is as follows:

1.	i=max{kj|akj<an-kr+kj };
2.	ai ← ai+1, where kj≤i≤kr.

4.1.2 � Generating All Permutations Based 
on Lexicographic Order

Based on Section 4.1.1, the method for generating all permutations for a finite set 
with n elements is as follows:

First, sort the n elements in ascending order; the permutation is the first permu-
tation. Then the method generating the next permutation based on lexicographic 
order is used repeatedly until the last permutation is generated.

4.1.2.1  Generating Fast, Sorted Permutation

Generating permutation has always been an important problem in computer sci-
ence. In this problem, you will have to generate the permutation of a given string in 
ascending order. Remember that your algorithm must be efficient.

Input

The first line of the input contains an integer n, which indicates how many strings to 
follow. The next n lines contain n strings. Strings will only contain alpha-numerals 
and never contain any space. The maximum length of the string is 10.

Output

For each input string, print all the permutations possible in ascending order. Note 
that the strings should be treated as case-sensitive strings and no permutation should 
be repeated. A blank line should follow each output set.



158  ◾  Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output

3
ab
abc
bca

ab
ba

abc
acb
bac
bca
cab
cba

abc
acb
bac
bca
cab
cba

Source:	 TCL Programming Contest, 2001

ID for Online Judge: UVA 10098

  Analysis

Suppose the length of string s is l. Therefore, l ! permutations in ascending order are 
required to output. The algorithm is as follows:

The first permutation is achieved by sorting string s in ascending order. For the 
current permutation s,

1.	i=max{ j|sj-1≥sj};
2.	 j=max{k|si-1<sk};
3.	Swap si-1 and sj, and get s0…si-2 sj si si+1…sj-1 si-1 sj+1…sl-1;
4.	Reverse the substring after sj, and get the next permutation (q)=s0…si-2 

sj sl-1…sj+1si-1sj-1 ….si+1 si;

The above process is repeated until i==0. All of the permutations possible in 
ascending order are generated.

  Program

# include <cstdio>
# include <cstring>



Practice for Combinatorics  ◾  159

# include <cstdlib>
# include <iostream>
# include <string>
# include <cmath>
# include <algorithm>
using namespace std;
typedef long long int64;
char s[60];int l;    // the length of string s is l
int get(){    // If there is a successor for s, output the 
successor and return 1; else return 0
	     int i=l-1;    // find the first character
	     while(i>0&&s[i-1]>=s[i])i--;
	     if(!i) 	return 0;    // no successor
	     int mp=i;    // find the second character
	     for(int j=i+1;j<l;j++){
		      if(s[j]<=s[i-1])continue;
		      if(s[j]<s[mp])mp=j;
	     }
	     swap(s[mp],s[i-1]);    // Swap si-1 and smp
	     sort(s+i,s+l);    // Reverse the substring after si
	     return 1; 
}
int main(){
	     int casen;scanf("%d",&casen);    //number of strings
	     while(casen--){
		        scanf("%s",s);    //current string
		        l=strlen(s);    //the length of the current string
		        sort(s,s+l); 
		        printf("%s\n",s);    //the first permutation
		        while(get()) printf("%s\n",s);   //all permutations
		        printf("\n");
	         }
	     return 0;
}

4.2  Enumeration of Permutations and Combinations
In this section, first, experiments for calculating numbers of permutations and 
combinations are shown; and then, experiments for Catalan numbers, Bell num-
bers, and Stirling numbers are shown.

4.2.1 � Calculating Numbers of Permutations 
and Combinations

P(n, r) is denoted as the number of r-permutations of an n-element set. 

P n r
n

n r
=

−
( , ) !

( )!
.



160  ◾  Algorithm Design Practice for Collegiate Programming

C(n, r) is denoted as the number of r-combination of an n-element set. 

C n r
n

r n r
=

−
( , ) !

!( )!
 (or denote by 







n
r

).

In programs, optimization methods can be used to calculate C(n, r).

Method 1:

C n r n
r n r

n r n r n
r

n r
r

n r
r

n=
−

= − + × − + × ×
× × ×

= − + × − +
−

×( , ) !
!( )!

( 1) ( 2) ...
1 2 ...

1 2
1

...
1

.

Method 2: The formula for calculating binomial coefficients is used:

C i j C i j C i j c i[ ][ ]= − + − − =( , ) ( 1, ) ( 1, 1), that is, 0 1, and

[ ] [ ] [ ][ ] [ ] [ ]= − + − −1 1 1 .c i j c i j c i j

4.2.1.1  Binomial Showdown 

In how many ways can you choose k elements out of n elements, not taking order 
into account? Write a program to compute this number.

Input 

The input file will contain one or more test cases. Each test case consists of one line 
containing two integers n (n>=1) and k (0<=k<=n). Input is terminated by two 
zeros for n and k.

Output

For each test case, print one line containing the required number. This number will 
always fit into an integer; i.e., it will be less than 231.

Warning: Don’t underestimate the problem. The result will fit into an integer—
but whether all intermediate results arising during the computation will also fit into 
an integer depends on your algorithm. The test cases will go to the limit.

Sample Input Sample Output

4  2
10  5
49  6
0  0

6
252
13983816

Source:	 Ulm Local 1997

IDs for Online Judges: POJ 2249, ZOJ 1938



Practice for Combinatorics  ◾  161

  Analysis

Method 1 is used to solve the problem directly:

C n k
n

k n k
n k n k n

k
( ) ( )

( ) ( )=
−

=
− + × − + × ×

× × ×
, !

! !
1 2 ...
1 2 ...

                               

n k
k

n k
k

n= − + × − +
−

×1 2
1

...
1

.

  Program

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <string>
# include <cmath>
# include <algorithm>
using namespace std;
typedef long long int64;
int64 work(int64 n,int64 k){    //Calculate C(n, k) 
	     if(k>n/2)	k=n-k;    // To reduce the amount of 
calculation
	     int64 a=1,b=1;
	     for(int i=1;i<=k;i++){ 
		          a*=n+1-i;  
		          b*=i;
		          if(a%b==0)a/=b,b=1; 
	     }
	     return a/b;    //return C(n, k)
}
int main()  {
	     int n,k;
	     while(~scanf("%d %d",&n,&k)&&n){    // Input test cases
		          printf("%lld\n",work(n,k));    // Calculate and 
output C(n, k)
            }
	     return 0;
}



162  ◾  Algorithm Design Practice for Collegiate Programming

4.2.1.2  Combinations

Computing the exact number of ways that N things can be taken M at a time can 
be a great challenge when N and/or M become very large. Challenges are the stuff of 
contests. Therefore, you are to make just such a computation, given the following:

Given: 5≤N≤100; 5≤M≤100; M≤N
Compute the EXACT value of: C=N !/(N−M)!M !
You may assume that the final value of C will fit in a 32-bit Pascal LongInt or a 

C long. For the record, the exact value of 100! is:
93,326,215,443,944,152,681,699,238,856,266,700,490,715,968,264,381,621, 

468,592,963,895,217,599,993,229,915,608,941,463,976,156,518,286,253,697,920,
827,223,758,251,185,210,916,864,000,000,000,000,000,000,000,000

Input

The input to this program will be one or more lines each containing zero or more 
leading spaces, a value for N, one or more spaces, and a value for M. The last line of 
the input file will contain a dummy N, M pair with both values equal to zero. Your 
program should terminate when this line is read.

Output

The output from this program should be in the form:
N things taken M at a time is C exactly.

Sample Input Sample Output

100  6
20  5
18  6
0  0

100 things taken 6 at a time is 1192052400 exactly.
20 things taken 5 at a time is 15504 exactly.
18 things taken 6 at a time is 18564 exactly.

IDs for Online Judges: POJ 1306, UVA 369

  Analysis

Suppose c[i][ j] is C(i, j).
Based on the formula calculating binomial coefficients, c[i][j]=c[i−1][ j]+c[i−1]

[ j−1].
Initially, c[i][0]=1, 0≤i≤101. Then, based on the above formula, c[i][ j] can be 

calculated, 1≤i≤100, 1≤j≤100. Finally, for each test case N, M, output c[N ][M].



Practice for Combinatorics  ◾  163

  Program

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <string>
# include <cmath>
# include <algorithm>
using namespace std;
typedef unsigned long long int64;
unsigned int c[110][110];    //c[i][j] is C(i, j)
void pp(){    //calculate c[][] using the formula
	     for (int i=0;i<102;i++)  c[i][0]=1;
	     for (int i=1;i<101;i++)
	        for(int j=1;j<101;j++)  c[i][j]=c[i-1][j-1]+c[i-1]
[j];
}
int main(){
	     pp();    //offline method is used to calculate c[][]
	     int n,m;
	     while (~scanf("%d %d",&n,&m)&&(n||m))     //Input test 
cases
		       printf("%d things taken %d at a time is %u 
exactly.\n",n,m,c[n][m]);    //output C(n, m)
	     return 0;
}

4.2.1.3  Packing Rectangles

Four rectangles are given. Find the smallest enclosing (new) rectangle into which 
these four may be fitted without overlapping. By “smallest rectangle”, we mean the 
one with the smallest area.

All four rectangles should have their sides parallel to the corresponding sides 
of the enclosing rectangle. Figure 4.1 shows six ways to fit four rectangles together. 
These six are the only possible basic layouts, since any other layout can be obtained 

Figure 4.1 



164  ◾  Algorithm Design Practice for Collegiate Programming

from a basic layout by rotation or reflection. Several different enclosing rectangles 
fulfilling the requirements may exist, all with the same area. You have to produce 
all such enclosing rectangles.

Input

Your program is to read from standard input. The input consists of four lines. Each 
line describes one given rectangle by two positive integers: the lengths of the sides 
of the rectangle. Each side of a rectangle is at least 1 and at most 50.

Output

Your program is to write to standard output. The output should contain one line 
more than the number of solutions. The first line contains a single integer: the min-
imum area of the enclosing rectangles. Each of the following lines contains one 
solution described by two numbers p and q with p≤q. These lines must be sorted in 
ascending order of p, and the lines must all be different.

Sample Input Sample Output

1  2
2  3
3  4
4  5

40
4  10
5  8

Source:	 IOI 1995

ID for Online Judge: POJ 1169

  Analysis

1.	Calculating widths and heights for the enclosing rectangles.
The problem description shows six ways to fit four rectangles together. The key 
to the problem is to calculate the area of the enclosing rectangles for six ways. 
Suppose four rectangles which will be placed into the enclosing rectangle are 
represented as an array t[0…3], and for rectangle t[i], its height and width 
are t[i].x and t[i].y respectively, 0≤i≤3.

For each rectangle, there are two ways to place it into the enclosing rect-
angle: place it horizontally, or place it vertically. Obviously, if a rectangle’s 
placement method is changed, we only need to exchange its height and width.



Practice for Combinatorics  ◾  165

Based on the problem description, six ways to fit four rectangles together 
are analyzed as follows:

Case 1:

Four rectangles (t[0], t[1], t[2], and t[3]) are placed in order as shown in 
Figure 4.2. For Case 1, the height and width for the enclosing rectangle p are 
as follows: p.x=max{t[0].x, t[1].x, t[2].x, t[3].x}; p.y=t[0].y+t[1].y+t[2].y+t[3].y.

Case 2:

In the enclosing rectangle p, there are two parts: the upper part and the 
lower part, as shown in Figure 4.3. In the upper part, t[0], t[1], and t[2] 
are placed; and in the lower part, t[3] is placed. For case 2, the height and 
width for the enclosing rectangle p are as follows: p.x=max{t[0].x, t[1].x, 
t[2].x}+t[3].y, p.y=max{t[3].x, t[0].y+t[1].y+t[2].y}.

t[0]
t[1]

t[2] t[3]

y
rectangle p

x

Figure 4.2 

t[0] t[1]
t[2]

t[3].x t[3].y

y

x

rectangle p

Figure 4.3



166  ◾  Algorithm Design Practice for Collegiate Programming

Case 3:

In the enclosing rectangle p, there are two parts: the left part and the right 
part, as shown in Figure 4.4. In the left part, t[2] is placed below, t[0] and t[1] 
are placed up, and t[2] and t[1] are right-aligned. In the right part, t[3] is placed. 
For case 3, the height and width for the enclosing rectangle p is as follows: 
p.x=max{max{t[0].x, t[1].x}+t[2].x, t[3].x)}, p.y=max{t[0].y+t[1].y, t[2].y}+t[3].y.

Case 4 and Case 5:

In the enclosing rectangle p, two rectangles, t[1]and t[2], are stacked 
together, and two other rectangles, t[0] and t[3], are placed alone, as shown 
in Figure 4.5. The height and width for the enclosing rectangle p is as follows: 
p.x=max{t[1].x+t[2].x, t[0].x, t[3].x}, p.y=t[0].y+t[3].y+max(t[1].y, t[2].y}.

t[0]

t[0]
t[3]

t[1]

t[1]
t[2]

t[2]

t[3]

y

x

y

x

rectangle p
rectangle p

Figure 4.5 

t[0]
t[1]

t[2]

t[3]

y

x

rectangle p

Figure 4.4 



Practice for Combinatorics  ◾  167

Case 6:

In the enclosing rectangle p, four rectangles are placed in two rows, and 
in each row there are two rectangles, where t[1].x≤t[3].x≤t[0].x+t[1].x and 
t[0].y≤t[1].y. In Figure 4.6, there are two different ways. All placements can 
be calculated through rotations and reflections for the two ways. The height 
and width for the enclosing rectangle p are as follows: p.x=max{t[0].x+t[1].x, 
t[2].y+t[3].x}, p.y=max{t[0].y+t[2].x, t[1].y+t[3].y}.

2.	Enumeration is used to calculate the minimal enclosing rectangle.
The algorithm is as follows:

All possible permutations for four rectangles are enumerated (a, b, c, d) 
(0≤a, b, c, d≤3, a≠b≠c≠d), and r[a…d ] is stored in t[0…3] in order. Suppose 
heights and widths for four rectangles are r[i].x and r[i].y, respectively, 0≤i≤3, 
and the placements for each rectangle are enumerated, where

v i i=





≤ ≤[ ]

0 The rectangle is placed vertically.
1 The rectangle is placed horizontally.

, 0 3.

If rectangle t[i] is placed horizontally (i.e., v[i]=1, 0≤i≤3), its height and 
width are exchanged (i.e., t[i].x↔t[i].y).

There are four rectangles, and there are two placements for each rectan-
gle. Therefore, there are 4!×24 different t[0…3]. And for each t[0…3], there 
are five enclosing rectangles (Case 1 to 5). Therefore, there are 4!×24×5=1920 
areas of enclosing rectangles. We can calculate the minimum area of the 
enclosing rectangles as min_area.

Suppose soln[0…ps] stores the sequence of enclosing rectangles whose 
area is min_area. In the sequence, each element is described by two numbers 
soln[i].x and soln[i].y with soln[i].x≤soln[i].y. All elements are sorted in ascend-
ing order of soln[i].x, 0≤i≤ps.

t[1]

t[0]

t[3]

y

x

rectangle p

t[2].y

t[2].x

t[1]

t[0]

t[3]

y

x rectangle p

t[2].y

t[2].x

Figure 4.6 



168  ◾  Algorithm Design Practice for Collegiate Programming

Initially, min_area=∞, the rear pointer for soln[] ps=0. Then, each enclos-
ing rectangle p in r[0…3] is enumerated:

If . . , then ( . . );
If . . _ , then _ . . ; and is stored
( [0] , 1);
If . . _ , then is added into []( [ ] );
If . . _ , then is omitted.

p x p y p x p y
p x p y min area min area p x p y p

soln p ps
p x p y min area p soln soln ps p
p x p y min area p

> ↔
× < = ×

← =
× = ++ ←
× >

After the enumeration, min_area is the minimum area of the enclosing 
rectangles. All elements in array soln are sorted, x is the first key, and y is the 
second key. And all elements are different.

  Program

#include <fstream>
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
#define MAX 0x7fffffff 
typedef struct    //rectangle
{
  int x;  
  int y;
}rec;
int min_area = MAX;    //Initialization: the minimum area of 
the enclosing rectangles
rec soln[1000];    //the sequence of enclosing rectangles 
whose area is minimal, whose length is ps
int ps = 0;
rec r[4];    // Input 4 rectangles
rec t[4];    // 4 rectangles placed into the enclosing 
rectangle
rec zero={0,0};    //Initialize height and width
int v[4];    // placements for each rectangle
inline void make(rec p)    // soln[] is adjusted based on the 
current enclosing rectangle p
{
if(p.x>p.y) 
{
  p.x = p.x ^ p.y; p.y = p.x ^ p.y; p.x = p.x ^ p.y;  
}



Practice for Combinatorics  ◾  169

if(min_area > p.x*p.y) 
{
  min_area = p.x*p.y;
  ps = 0;
  soln[ps++] = p;
}
else if(min_area==p.x*p.y) 
{
  soln[ps++] = p;
}
}

void search()  // Enumeration calculating the area of minimal 
enclosing rectangles soln[ ]
{
int i;
for(int a=0;a<4;a++)     //all permutations for 4 rectangles 
(a, b, c, d)
for(int b=0;b<4;b++)
for(int c=0;c<4;c++)
for(int d=0;d<4;d++)
{
  if(a != b)
  if(a != c)
  if(a != d)
  if(b != c)
  if(b != d)
  if(c != d)
  {
   for(v[0]=0;v[0]<2;v[0]++)    // Enumerating placements 
(vertically or horizontally) for 4 rectangles
    for(v[1]=0;v[1]<2;v[1]++)
     for(v[2]=0;v[2]<2;v[2]++)
      for(v[3]=0;v[3]<2;v[3]++)
      {
       t[0]=r[a]; t[1]=r[b]; t[2]=r[c]; t[3]=r[d]; 
       for(i=0;i<4;i++)    //exchanging the height and width 
for a rectangle
        if(v[i] == 1)
        {
         t[i].x = t[i].x ^ t[i].y; t[i].y = t[i].x ^ t[i].y; 
t[i].x = t[i].x ^ t[i].y;
        }
       rec p=zero;    //Case 1
       p.x = max(t[0].x,max(t[1].x,max(t[2].x,t[3].x))); //the 
height and width for p
       p.y = t[0].y + t[1].y + t[2].y + t[3].y;
       make(p);    // soln[] is adjusted based on the current 
enclosing rectangle p
       if(p.x == 10 && p.y == 8) p=p;
       p = zero;    //Case 2



170  ◾  Algorithm Design Practice for Collegiate Programming

       p.x=max(t[0].x,max(t[1].x,t[2].x))+t[3].y;    // the 
height and width for p
       p.y = max(t[0].y+t[1].y+t[2].y,t[3].x);
       make(p);    // soln[] is adjusted based on the current 
enclosing rectangle p
       if(p.x == 10 && p.y == 8) p=p; 
       p=zero;    //Case 3
       p.x=max(max(t[0].x,t[1].x)+t[2].x,t[3].x);    // the 
height and width for p
       p.y = max(t[0].y+t[1].y,t[2].y)+t[3].y;
       make(p);    // soln[] is adjusted based on the current 
enclosing rectangle p
       if(p.x == 10 && p.y == 8) p=p;     
       p=zero;    //Case 4 and 5
       p.x=max(t[0].x,max(t[1].x+t[2].x,t[3].x));    // the 
height and width for p
       p.y = t[0].y + max(t[1].y,t[2].y) + t[3].y ;
       make(p);    // soln[] is adjusted based on the current 
enclosing rectangle p
       if(p.x == 10 && p.y == 8) p=p;
       if(t[0].y>t[1].y) continue;    //Case 6: If 4 
rectangles can't satisfy t[1].x≤t[3].x≤t[0].x+t[1].x and t[0].
y≤t[1].y, continue to enumerate
       if(t[3].x > t[0].x+t[1].x) continue;
       if(t[3].x<t[1].x) continue;
       p = zero;    //Initialization
       p.x = max(t[0].x+t[1].x,t[2].y+t[3].x);    // the 
height and width for p
       p.y = max(t[1].y+t[3].y,t[0].y+t[2].x);
       make(p);    // soln[] is adjusted based on the current 
enclosing rectangle p
       if(p.x == 6 && p.y == 6) p=p;
      }
  }
}
}
bool comp(rec a,rec b) //comparing enclosing rectangles a and 
b (x is the 1st key, y is the 2nd key)
{
if(a.x<b.x) return 1;
      else if(a.x == b.x && a.y<b.y) return 1;
              else return 0;
}
bool comp2(rec a,rec b)    //determine whether enclosing 
rectangles a and b are same
{
      return a.x==b.x && a.y==b.y;
}
int main()
{



Practice for Combinatorics  ◾  171

for(int i=0;i<4;i++)    //Input heights and widths for 
4 rectangles
{
  cin>>r[i].x>>r[i].y;
}
search();    //Calculating  soln[ ]
sort(&soln[0],&soln[ps],comp);            
rec *t = unique(&soln[0],&soln[ps],comp2);
cout<<min_area<<endl;    //Output the minimum area of the 
enclosing rectangles
for(rec *i=&soln[0];i!=t;i++) 
  cout<<(*i).x<<" "<<(*i).y<<endl;
return 0;
}

4.2.2 � Catalan Numbers, Bell Numbers 
and Stirling Numbers

4.2.2.1  Catalan Numbers

The Catalan sequence is the sequence C0, C1, …, Cn, … ; where C0=1, C1=1, and 
Cn=C0Cn-1+C1Cn-2+…+Cn-1C0, n≥2.

Therefore, =
+

=(2 , )
1

, 0,1,2,......C
C n n

n
nn ; or = −

+
× >−

4 2
1

, 11C
n
n

C nn n .

The Catalan sequence is a frequent counting sequence. For example,

1.	Cn is the number of stack-sortable permutations of {1, ..., n}.
2.	Cn is the number of different ways that a convex polygon with n+2 sides can 

be cut into triangles by connecting vertices with non-crossing line segments.
3.	Cn is the number of rooted binary trees with n nodes.

4.2.2.1.1  Game of Connections

This is a small but ancient game. You are supposed to write down the numbers 1, 
2, 3, . . . , 2n−1, 2n consecutively in clockwise order on the ground to form a circle, 
and then, to draw some straight line segments to connect them into number pairs. 
Every number must be connected to exactly one another. And, no two segments 
are allowed to intersect.

It’s still a simple game, isn’t it? But after you’ve written down the 2n numbers, 
can you tell me in how many different ways you can connect the numbers into pairs?

Input

Each line of the input file will be a single positive number n, except the last line, 
which is a number −1. You may assume that 1≤n≤100.



172  ◾  Algorithm Design Practice for Collegiate Programming

Output

For each n, print in a single line the number of ways to connect the 2n numbers 
into pairs.

Sample Input Sample Output

2
3
-1

2
5

Source:	 ACM Shanghai 2004 Preliminary

IDs for Online Judges: POJ 2084, ZOJ 2424

  Analysis

Based on the problem description, there are n lines connecting 2n numbers into 
pairs. For each line, there are i pairs of numbers on the left, and there are n−i−1 
pairs of numbers on the right. Suppose Cn is the number of ways to connect the 2n 
numbers into pairs. C0=1, C1=1, and Cn=C0Cn-1+C1Cn-2+…+Cn-1C0, n≥2. Therefore, 
Cn is a Catalan number.

The offline method is used to calculate the Catalan sequence C0, C1, …, C120. 
Because the range of Catalan numbers is out of the range of integers in program-
ming languages, Catalan numbers are stored as high-precision numbers.

  Program

# include <cstdio>
# include <cstring>
# include <algorithm>
# include <iostream>
using namespace std;
struct BIGNUM{    //High-precision number
short s[200],l;    //the length of integer array s[] is l
}c[120];    // Catalan sequence, where c[i]=Ci

BIGNUM operator*(BIGNUM a,int b){    //a←a*b, where a is an 
integer array, b is a integer
	     for(int i=0;i<a.l;i++)  a.s[i]*=b; 
	     for(int i=0;i<a.l;i++){       //carry



Practice for Combinatorics  ◾  173

		          a.s[i+1]+=a.s[i]/10;
		          a.s[i]%=10;
	     }
while(a.s[a.l]!=0){   
		    a.s[a.l+1]+=a.s[a.l]/10;
		    a.s[a.l]%=10;
		    a.l++;
	     }
return a;
}
BIGNUM operator/(BIGNUM a,int b){    //a←a/b, where a is an 
integer array, b is an integer
	     for(int i=a.l-1;i>0;i--){  
		    a.s[i-1]+=(a.s[i]%b)*10;
		    a.s[i]/=b;
}
a.s[0]/=b;                        
while(a.s[a.l-1]==0) a.l--;    //number of digits
return a;
}
void print(BIGNUM a){    //output array a
	     for(int i=a.l-1;i>=0;i--){
		          printf("%d",a.s[i]);
	     }
printf("\n");
}
int n;

int main(){
	     c[0].l=1;c[0].s[0]=1;    //The first Catalan number C0=1
	     for(int i=0;i<=101;i++)    //Calculate Catalan sequence 

C C
n

n
n n= *

4* -2
+1

-1 , offline method

		          c[i+1]=(c[i]*(4*i+2))/(i+2); 
	     while(~scanf("%d",&n)){    //Input test cases
		          if(n<0)	 break;
		          print(c[n]);    //Output Cn
	     }
return 0;
}

4.2.2.2  Bell Numbers and Stirling Numbers

Bell numbers, B0, B1, …, Bn, …, are numbers of partitions of a set, where Bn 
is  the number of different ways to partition a set that has exactly n elements, 
or equivalently, the number of equivalence relations on it. Obviously,  B0=1, 

∑= =+

=

B B C n k Bn k

k

n

1. ( , )1 1

0

.



174  ◾  Algorithm Design Practice for Collegiate Programming

Stirling numbers of the first kind are the number of ways to arrange n objects 
into k cycles, where S(n, 0)=0, S(1, 1)=1, S(n, k)=S(n−1, k−1)+(n−1)×S(n−1, k).

Stirling numbers of the second kind are the number of ways to partition 
a  set of n elements into k non-empty subsets. S(n, n)=S(n, 1)=1, S(n, k)=S(n−1, 
k−1)+ k×S(n−1, k).

Obviously, ∑ ( )=+

=

,1

1

B S n kn

k

n

, where S(n, k) is a Stirling number of the second 
kind.

Bell numbers and Stirling numbers of the second kind can be calculated 
through constructing Bell triangle a.

1.	Put 1 on the first row. That is, a[0, 0]=1.
2.	For the nth row, the leftmost number is the rightmost number on the (n−1)th 

row. That is, a[n, 0]=a[n−1, n−1], n≥1.
3.	For the nth row, numbers not on the left column are sums of the number to 

the left and the number above the number to the left. That is, a[n, m]=a[n, 
m−1]+a[n−1, m−1], m, n≥1.

In a Bell triangle, the numbers on the left-hand side are the Bell numbers for 
that row (see Figure 4.7). That is, Bi=a[i, 0], i≥0. The sums of numbers on each row 
are Stirling numbers of the second kind.

4.2.2.2.1  Bloques

Little John has N blocks, all of them of different sizes. He is playing to build cities 
in the beach. A city is just a collection of buildings.

A single block over the sand can be considered as a building. Then John can 
construct higher buildings by putting a block above any other block. At most one 
block can be put immediately above any other block. However, he can stack sev-
eral blocks together to construct a building. However, it’s not allowed to put bigger 
blocks on top of smaller ones, since the stack of blocks may fall. A block can be 
specified by a natural number that represents its size.

1
1
2
5
15
52
203
877

2
3
7
20
67
255
1080

5
10
27
87
322
1335 ...

...
...

15
37
114
409
1657

52
151
523
2066

203
674
2589

877
3263 4140

Figure 4.7 



Practice for Combinatorics  ◾  175

The order among buildings doesn’t matter. That is:

1 3
2 4

is the same configuration as:

3 1
4 2

Your problem is to compute the number of possible different cities using N 
blocks. We say that #(N) gives the number of different cities of size N. If N=2, for 
instance, there are only two possible cities:

City #1:

1 2

In this city, both blocks of size 1 and 2 are put over the sand.

City #2:

1
2

In this city a block of size 1 is over a block of size 2, and a block of size 2 is over 
the sand.

So, #(2)=2.

Input

A sequence of non-negative integer numbers, each one in a different line. All of 
them but the last one are natural numbers. The last one is 0 and means the end. 
Each natural number is less than 900.

Output

For each natural number I in the input, you must write a line with the pair of 
numbers I, #(I).

Sample Input Sample Output

2
3
0

2, 2
3, 5

Source:	 Contest ACM-BUAP 2005

ID for Online Judge: UVA 10844



176  ◾  Algorithm Design Practice for Collegiate Programming

  Analysis

The problem requires you to compute the number of possible different cities using 
N blocks, that is, the number of different ways to partition a set. Therefore, #(N) 
is a Bell number Bn.

The offline method is used to calculate Bell numbers B0, B1, …, Bn … in the 
range by constructing a Bell triangle. Because the range of Bell numbers is out of 
the range of integers in programming languages, Bell numbers are stored as high-
precision numbers.

  Program

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <string>
# include <cmath>
# include <algorithm>
using namespace std;
typedef unsigned long long int64;
int64 m=1e10; 
struct Bigint{    //High-precision number
int l;int64 s[200];    //s[] stores a high-precision number, 
each element stores a 10-digit decimal number, the length is l

void read(int64 x){    //integer x is represented by a high-
precision number s[]
		  l=-1; memset(s,0,sizeof(s))
		  do {
			     s[++l]=x%m;
			     x/=m;
		  } while(x);
}
void print(){    // Output s[]
		  printf("%llu",s[l]);    // s[l]: practical number of 
digit, s[l−1]…s[0]: 10 digits
		  for(int i=l-1;i>=0;i--)  printf("%010llu",s[i]);
}
} dp[2][1000],ans[1000];    //In a Bell triangle, the value 
for (i, j) is dp[i&1][j]; the value for (i−1,j) is dp 
[(i&1)^1][j], and the Bell number for i is ans[i+1]



Practice for Combinatorics  ◾  177

Bigint operator+(Bigint a,Bigint &b){    //Addition for high-
precision numbers a←a+b
	     a.l=max(a.l,b.l);int64 d=0; 
	     for(int i=0;i<=a.l;i++) { 
		          a.s[i]+=d+b.s[i];
		          d=a.s[i]/m;a.s[i]%=m;
	     }
	     if(d)a.s[++a.l]=d; 
	     return a;
}
int n;
void getans(int id,int n){ 
	     int i=id^1;  
	     for(int j=1;j<=n-1;i++)dp[id][j+1]=dp[i][j]+dp[id][j];  
      }
void work(){    //Offline method: calculate Bell numbers
	     dp[1][1].read(1);ans[2]=dp[0][1]=ans[1]=dp[1][1];    //
initialize Bell triangle: B1=B0=1 
	     for(int i=2;i<=900;i++){  
		          getans(i&1,i); 
		          dp[(i&1)^1][1]=ans[i+1]=dp[i&1][i]; 
	     }
}
int main(){
	     work();
	     while(~scanf("%d",&n)&&n){ 
		    printf("%d, ",n);  ans[n+1].print();    //output n and 
its Bell number
		    printf("\n");
	     }
	     return 0;
}

4.3 � Applications of the Pigeonhole Principle 
and the Inclusion–Exclusion Principle

This section focuses on the Pigeonhole Principle and the Inclusion–Exclusion Principle.

4.3.1  Applications of the Pigeonhole Principle

Theorem 4.3.1. If n+1 objects are put into n containers, then at least one container 
must contain more than one object.
Theorem 4.3.2. If m objects are put into n containers, then at least one container 

must contain at least k objects, where 
mod 0

1 mod 0
.=

=







+ ≠











k

m
n

m n

m
n

m n



178  ◾  Algorithm Design Practice for Collegiate Programming

The steps for applying the pigeonhole principle to solve problems are as 
follows:

1.	Determine what objects and containers are based on problem descriptions;
2.	Construct containers;
3.	Apply the pigeonhole principle to solve problems.

4.3.1.1  Find a Multiple

The input contains N natural (i.e., positive integer) numbers (N≤10000). Each 
of these numbers is not greater than 15000. These numbers are not necessarily 
different (so it may happen that two or more of them will be equal). Your task 
is to choose a few of the given numbers (1≤few≤N ) so that the sum of chosen 
numbers is a multiple for N (i.e., N×k=[sum of chosen numbers] for some natural 
number k).

Input

The first line of the input contains the single number N. Each of the next N lines 
contains one number from the given set.

Output

In case your program decides that the target set of numbers cannot be found, it 
should print the single number 0 to the output. Otherwise, it should print the 
number of the chosen numbers in the first line followed by the chosen numbers 
themselves (on a separate line each) in arbitrary order.

If there are more than one set of numbers with the required properties, you 
should print to the output only one (preferably your favorite) of them.

Sample Input Sample Output

5
1
2
3
4
1

2
2
3

Source:	 Ural Collegiate Programming Contest 1999

IDs for Online Judes: POJ 2356, Ural 1032



Practice for Combinatorics  ◾  179

  Analysis

For this problem, we can prove this proposition.
For a sequence with N natural (i.e., positive integer) numbers a1,…, aN, there 

exists a subsequence al, …, ar, ∑
=

ai

i l

r

 that can be divided exactly by N.

Proof. Suppose ∑= =
=

, 1, 2,...,
1

B a i Ni k

k

i

.

If there exists a Bi exactly divisible by N, the proposition holds; else there are 
N−1 remainders for Bi divided by N; i=1, 2, …, N.

Remainders are regarded as containers, and Bi are regarded as objects. There 
are N objects are put into N−1 containers. Based on the pigeonhole principle, there 
must exist Bj and Bi, Bj%N==Bi%N, 1≤j<i≤N. Therefore, (Bi−Bj)%N==0, that is, 

∑
= +1

ak

k j

i

 can be divided exactly by N, so the proposition holds.

  Program

# include <stdio.h>
int a[10004],s[10004],mod[10004],n;
void print(int s,int t){    //Output a[s]..a[t]
printf("%d\n",t-s+1);    //the number of the chosen numbers
for(int i=s;i<=t;i++)    //the chosen numbers
printf("%d\n",a[i]);
}
int main(){
scanf("%d",&n);    //Input the number of positive integers N
for(int i=1;i<=n;i++){    // Remainders are regarded as 
containers
	 scanf("%d",a+i);    // the i-th positive integers
	 s[i]=s[i-1]+a[i];    //the sum of the first i positive 
integers 
	 if(s[i]%n==0){    //if the sum of the first i positive 
integers can be divided exactly by N
			   print(1,i);
			   break;



180  ◾  Algorithm Design Practice for Collegiate Programming

			   }else if(!mod[s[i]%n]){    //If the remainder never 
appears, i is put into a container; else output the chosen 
numbers
		       	 mod[s[i]%n]=i;
	      	  }else{
			            print(mod[s[i]%n]+1,i);
			            break;
		             }
	  }
return 0;
}

4.3.2  Applications of the Inclusion–Exclusion Principle

The inclusion–exclusion principle counts the number of elements in the union of 
finite sets. The inclusion–exclusion principle is as follows:

Suppose there are finite sets A1, ..., An, and S is a finite universal set containing 
A1, ..., An.

A A A A A A A A A

A A A

A A A A A A S A A A A

A i n

n i

i

n

i i

i i n

i i i

i i i n

n
n

n n n i

i

∑ ∑ ∑∪ ∪ ∪ = − ∩ + ∩ ∩ −

+ − ∩ ∩ ∩

∪ ∪ = ∩ ∩ = − ∪ ∪ ∪

≤ ≤

= ≤ < ≤ ≤ < < ≤

−

... | | ......

( 1) ... ;

...... ...... | | ...... ;where

indicates the cardinality of a set , 1 .

1 2

1 1 1

1
1 2

1 2 1 2 1 2

1 2

1 2

1 2 3

1 2 3

When the inclusion–exclusion principle is used for A1, ..., An, there are 
C(n, 2)=n(n−1)/2 two-set intersections, C(n, 3)=n(n−1)(n−2)/3! three-set intersec-
tions, and so on.

4.3.2.1  Tmutarakan Exams

The University of New Tmutarakan trains first-class specialists in mental arithmetic. 
To enter the university, you should master arithmetic perfectly. One of the entrance 
exams at the Divisibility Department is the following. Examinees are asked to find 
k different numbers that have a common divisor greater than 1. All numbers in each 
set should not exceed a given number s. The numbers k and s are announced at the 
beginning of the exam. To exclude copying (the department is the most prestigious 
in town), each set of numbers is credited only once (to the person who submitted 
it first).

Last year, these numbers were k=25 and s=49 and, unfortunately, nobody 
passed the exam. Moreover, it was proven later by the best minds of the depart-
ment that there do not exist sets of numbers with the required properties. To avoid 



Practice for Combinatorics  ◾  181

embarrassment this year, the dean has asked for your help. You should find the 
number of sets of k different numbers, each of the numbers not exceeding s, which 
have a common divisor greater than 1. Of course, the number of such sets equals 
the maximum possible number of new students of the department.

Input

The input contains numbers k and s (2≤k≤s≤50).

Output

You should output the maximum possible number of the department’s new stu-
dents if this number does not exceed 10000, which is the maximum capacity of the 
department; otherwise, you should output 10000.

Sample Input Sample Output

3 10 11

Source:	 USU Open Collegiate Programming Contest March 2001 Senior Session

ID for Online Judge: Ural 1091

  Analysis

Every natural number n≥2 is a prime number or a product of prime numbers.
Every common divisor i (2≤i≤s) is enumerated. In 1…s the number of numbers 

that have a common divisor i is = −





+1d
s i

i
. The number of k-combination of a 

d-element set is C(d, k), and the number in each k-combination has the common 
divisor i.

If the common divisor i is a prime number, C(d, k) is accumulated into the 
number of the department’s new students;

If the common divisor i is a product of two prime numbers, in the number of 
the department’s new students, C(d, k) is counted twice. Based on the inclusion–
exclusion principle, C(d, k) must be subtracted from the number of the department’s 
new students.

Because of the range of s, for this problem, we need not consider products of three 
prime numbers. Suppose ans is the maximum possible number of the department’s 
new students.



182  ◾  Algorithm Design Practice for Collegiate Programming

For every number i in [2s]

     If (i is a prime number) +=
-

+1,












ans C
s i

i
k  

        Else if(i is a product of two prime numbers) 













ans C
s i

i
k-=

-
+1, ;

  Output ans (ans>10000 ? 10000 : ans).

  Program

# include <cstdio>
# include <algorithm>
# include <iostream>
using namespace std;
typedef long long int64;

bool pp[60];    //prime sieve          
int64 c[60][60];    //c[n][m] is C(n, m) 
int k,s;
void cal_prime() {    //calculate prime
pp[0]=pp[1]=1;
for(int i=2;i<=50;i++){
		  if(pp[i])continue;
		  for(int j=i*2;j<=50;j+=i)pp[j]=1;
	   }
}

void cal_number(){    // The formula calculating binomial 
coefficients is used to calculate c[][]
for(int i=0;i<=50;i++) c[i][0]=1;
for(int i=1;i<=50;i++)
	   for(int j=1;i<=50;j++)	c[i][j]=c[i-1][j]+c[i-1][j-1];
}

inline bool pxp(int a){    //determine whether a is a product 
of two primes
	   for(int i=2;i<=50;i++) if(a%i==0&&!pp[i]&&!pp[a/i]&&i!=a/i)
return true;
return false;
}
int work(){    // ans is the maximum possible number of the 
department's new students
int64 ans=0;    //Initialization 



Practice for Combinatorics  ◾  183

for(int i=2;i<=s;i++){

		  if(!pp[i]){    //if i is a prime, +=
-

+1,












ans C
s i

i
k

			    int cnt=0;  
			    for(int j=i;j<=s;j+=i)cnt++;
			    ans+=c[cnt][k];

		   }else if(pxp(i)){    //if i is a product of two prime 

numbers, 












ans C
s i

i
k-=

-
+1,   

			          int cnt=0;
			          for(int j=i;j<=s;j+=i)cnt++;
			          ans-=c[cnt][k];
		        }
	 }
	 return ans>10000?10000:ans;    //return ans
}			

int main(){
cal_prime();    //construct prime sieve p[]
cal_number();    // calculate c[][]
scanf("%d %d",&k,&s);    //calculate the solution
cout<<work()<<endl;
return 0;
}

Derangement: A derangement is a permutation of the elements of a set, such 
that no element appears in its original position. Suppose there are n elements a1, 
a2, …, an, and the original position for ai is the i-th position, 1≤i≤n. The number of 

derangements for n elements is = − + − + −



! 1 1

1!
1
2!

... ( 1) 1
!

D n
nn

n .

Obviously, D1=0, and D2=1. For n>2, the recursion formula for numbers of 
derangements is Dn=(n−1)(Dn-2+Dn-1), (n=3, 4, 5, …).

When n becomes large, the range of the number of derangements for n ele-
ments may be out of the range of integers in programming languages. Under such 
circumstances, the number of derangements for n elements are represented as a 
high-precision number.

4.3.2.2  Sweet Child Makes Trouble

Children are always sweet, but they can sometimes make you feel bitter. In this 
problem, you will see how Tintin, a five-year-old boy, creates trouble for his par-
ents. Tintin is a joyful boy and is always busy doing something. But what he does 
is not always pleasant for his parents. He likes to play with household things like 
his father’s wristwatch or his mother’s comb. When he’s finished playing, he places 



184  ◾  Algorithm Design Practice for Collegiate Programming

the item in some other place. Tintin is very intelligent and a boy with a very sharp 
memory. To make things worse for his parents, he never returns the things he has 
taken for playing to their original places.

Think about a morning when Tintin has managed to “steal” three household 
objects. Now, in how many ways he can place those things such that nothing is 
placed in their original place? Tintin does not like to give his parents that much 
trouble. So, he does not leave anything in a completely new place; he merely per-
mutes the objects.

Input

There will be several test cases. Each will have a positive integer less than or equal 
to 800, indicating the number of things Tintin has taken for playing. Each integer 
will be in a line by itself. The input is terminated by a –1 (minus one) in a single 
line, which should not be processed.

Output

For each test case, print an integer indicating in how many ways Tintin can rear-
range the things he has taken.

Sample Input Sample Output

2
3
4
-1

1
2
9

Source:	 The FOUNDATION Programming Contest 2004

ID for Online Judge: UVA 10497

  Analysis

Because Tintin never returns the things he has taken for playing to their original 
places, the problem requires you to calculate the number of derangements.

Because the number of things Tintin has taken for playing is a positive integer 
less than or equal to 800, a high-precision number is used to calculate the result. 
First, the offline method is used to calculate D1…D800. Then, for each test case n, 
output Dn directly.



Practice for Combinatorics  ◾  185

  Program

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <string>
# include <cmath>
# include <algorithm>
using namespace std;
typedef unsigned long long int64;
int64 m=1e10;    //High-precision number array s, each element 
is a 10-digit decimal number
struct Bigint{    //Struct Bigint for high-precision 
calculation
	     int64 s[1000];int l; // High-precision number array s[], 
its length is l
	     Bigint(){l=0; memset(s,0,sizeof(s))}    //Initialization
	     void operator *=(int x){  //s←s*x, where x is an integer
		          int64 d=0;  
		          for(int i=0;i<=l;i++){  
			               d+=s[i]*x;s[i]=d%m;
			               d/=m;
		          }
		          while(d){  
			         s[++l]=d%m;
			         d/=m;
		          }
	     }
	     void print(){
		    printf("%llu",s[l]);    //output
		    for(int i=l-1;i>=0;i--)   
			          printf("%010llu",s[i]);
	 }
	 void set(int64 a){    //integer a is transferred into high-
precision array s
		    s[l]=a%m;a/=m;
		    if(a)l++,s[l]=a%m;
	     }
}dp[1000];    // dp[n] is Dn
Bigint operator+(Bigint b,Bigint&a){    //b←b+a, where b and a 
are high-precision arrays
	     int64 d=0;  
	     b.l=max(b.l,a.l); 
	     for(int i=0;i<=b.l;i++)   
             {



186  ◾  Algorithm Design Practice for Collegiate Programming

	               b.s[i]+=d+a.s[i];
	               d=b.s[i]/m;b.s[i]%=m;
	         }
	     if(d)b.l++,b.s[b.l]=d;   
	     return b;
}
int n;
int main(){
	     dp[1].set(0);dp[2].set(1);    // dp[1]=0, dp[1]=1
	     for(int i=3;i<=800;i++)dp[i]=dp[i-2]+dp[i-1],
dp[i]*=(i-1);    //offline method to calculate dp[]
	     while(~scanf("%d",&n)&&~n){    //input n
		          dp[n].print();printf("\n");    //output Dn
	     }
	     return 0;
}

4.4  Applications of the Pólya Counting Formula
	 1.	Group and Permutation Group.

Definition 4.4.1 (Group). A group is a set G together with an operation, 
called the group law of G, that combines any two elements a and b to form 
another element, denoted as a*b or ab. (G,*), and this element must satisfy the 
following four requirements:

	 1.	 Closure. For any a, b∈G, a*b∈G.
	 2.	 Associativity. For any a, b, c∈G, (a*b)*c=a*(b*c).
	 3.	 Identity element. There exists an identity element e in G, such that for 

each a∈G, e*a=a*e=a.
	 4.	 Inverse element. For each a∈G, there exists an element b in G, such that 

a*b=b*a=e, where e is the identity element.
For example, G={−1, 1}, and (G,*) is a group.
If G is a finite set, (G,*) is a finite group; else (G,*) is an infinite group.

Definition 4.4.2 (Permutation Group). A permutation group is a group 
(G,*) whose elements are permutations of {a1, a2, ……, an} and * is the com-
position of permutations.

Pólya’s theorem is based on permutation groups.
There are n! permutations for {a1, a2, …, an}. If f  is a permutation of {a1, 

a2, ……, an}, the permutation can be denoted by a 2-by-n array:

	











...
( ) ( ) ... ( )

.1 2

1 2

a a a
f a f a f a

n

n

For example, there are permutations f1 and f2 of {1, 2, 3, 4},



Practice for Combinatorics  ◾  187

f f

f f

f f f f

f f

f f f f

1 2 3 4
3 1 2 4

, 1 2 3 4
4 3 2 1

,

1 2 3 4
3 1 2 4

1 2 3 4
4 3 2 1

1 2 3 4
2 4 3 1

.

And is called the composition of permutations and . Similarly,

1 2 3 4
4 3 2 1

1 2 3 4
3 1 2 4

1 2 3 4
4 2 1 3

.

Therefore, .

1 2

1 2

1 2 1 2

2 1

1 2 2 1

=






=








=












=








=












=








≠

A permutation can be written in a product of cycles. For example, 






=







= =1 2 3 4 5

4 3 1 5 2
(1 4 5 2 3),

1 4 5 2 3
5 1 4 2 3

(1 5 4)(2)(3) (1 5 4), 

and 
1 2 3 4 5
3 1 2 5 4

(1 3 2)(4 5)






= .

If there is a permutation f =(1 2…n), then f  n=(1)(2)…(n)= e.
An even permutation is a permutation obtainable from an even number 

of two-element swaps. And an odd permutation is a permutation obtainable 
from an odd number of two-element swaps.

	 2.	Conjugacy Class.
Suppose Sn is all permutations for {1, 2, …, n}. For example, all permutations 
for {1, 2, 3, 4} are S4={(1)(2)(3)(4), (12), (13), (14), (23), (24), (34), (123), (124), 
(132), (134), (142), (143), (234), (243), (1234), (1243), (1324), (1342), (1423), 
(1432), (12)(34), (13)(24), (14)(23)}.

A permutation P in Sn can be written as =� ������ ������P a a a b b b h h hk k k

l

l( ... )( ... )...( ... )1 2 1 2 1 2

cycles

1 2 ,  

where k1+k2+…+kl=n. Suppose Ck is the number of cycles whose order is k, 
k=1…n, and cycles whose order is k is denoted by ( )k Ck.

Therefore, Sn can be categorized into (1) (2) ...( )1 2 nC C Cn. If Ci=0, then ( )i Ci  

can be omitted, i=1…n. Obviously, ∑ =
=1

kc nk

k

n

. For example, in S4, permuta-

tions with the same format are shown as follows:
There are three permutations for (1)0(2)2(3)0(4)0, or (2)2: (12)(34), (13)

(24), and (14)(23);
There are eight permutations for (1)1(3)1: (123), (124), (132), (134), (142), 

(143), (234), and (243);



188  ◾  Algorithm Design Practice for Collegiate Programming

There are six permutations for (1)2(2)1: (12), (13), (14), (23), (24), and 
(34);

There is one permutation for (1)4: (1)(2)(3)(4);
There are six permutations for (4)1: (1234), (1243), (1324), (1342), (1423), 

and (1432).
Definition 4.4.3 (Conjugacy Class). In Sn, permutations with the same 

format are called conjugacy classes.
The number of conjugacy classes in Sn is equal to the number of integer 

partitions of n.
The number of permutations for a conjugacy class (1) (2) ...( )1 2 nC C Cn is 

!
!... !1 2 ...1

1 2

n
c c nn

c c cn
.

For example, in S4, numbers of permutations for all conjugacy classes are 
as follows:

In conjugacy class (2)2 there are 
×

=4!
2! 2

32  permutations. In conjugacy 

class (1)1(3)1 there are 
×

=4!
1! 3

8 permutations. In conjugacy class (1)2(2)1 there 

are 
×

=4!
2! 2

6   permutations. In conjugacy class (1)4 there are =4!
4!

1 permuta-

tion. In conjugacy class (4)1 there are =4!
4

6 permutations.

Suppose G is a permutation group for {1, 2, …, n}, and K is a number in 
{1, 2, …, n}. Of course, G is a subgroup for Sn. The stabilizer of the number 
K, written ZK, is the set of all permutations of G that leave K fixed.

For example, G={e, (1 2), (3 4), (1 2)(3 4)}. Z1={e, (3 4)}; Z2={e, (3 4)}; 
Z3={e, (1 2)}; Z4={e, (1 2)}. Obviously, ZK is a subgroup for G, K is a number 
in {1, 2, 3, 4}. For G, under the permutation, 1 can be permuted to 2, 2 can 
be permuted to 1; and 3 can be permuted to 4, 4 can be permuted to 3. But 
1 or 2 can’t be permuted to 3 or 4, and 3 or 4 can’t be permuted to 1 or 2. 
Therefore, 1 and 2 are in one equivalence class, and 3 and 4 are in the other 
equivalence class.

Suppose G is a permutation group for {1, 2, …, n}, and K is a number 
in {1, 2, …, n}. Under the permutation, {1, 2, …, n} can be partitioned into 
several equivalence classes. The equivalence class that K belongs to is denoted 
as EK.

	 3.	Burnside’s Lemma and Pólya Counting Formula.
Theorem 4.4.1 Suppose G is a permutation group for {1, 2, …, n}, and K 

is a number in {1, 2, …, n}. |EK |×|ZK |=|G|.
For example, G={e, (1 2), (3 4), (1 2) (3 4)}; E1=E2={1, 2}, E3=E4={3, 4}; 

|E1|=|E2|=|E3|=|E4|=2; Z1=Z2={e, (3 4)}, Z3=Z4={e, (1 2)}; |Z1|=|Z2|=|Z3|=
|Z4|=2. Obviously, |E1|×|Z1|=|E2|×|Z2|=|E3|×|Z3|=|E4|×|Z4|=4=|G|.



Practice for Combinatorics  ◾  189

In S4, even permutations A4={(1)(2)(3)(4), (1 2 3), (1 2 4), (1 3 2), (1 3 4), 
(1 4 2), (1 4 3), (2 3 4), (2 4 3), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}. E1={1, 2, 3, 4}. 
Z1={e, (2 3 4), (2 4 3)}. Obviously, |E1|×|Z1|=4×3=12=|A4|.

Suppose G={α1, α2, …, αm} is a permutation group on {1, 2, …, n}, where 
α1=e. α k can be written as a product of cycles:c1(αk) is the number of cycles 
whose order is 1, k=1, 2, …, m. For example, G={e, (1 2), (3 4), (1 2) (3 4)}; 
α1=e=(1)(2)(3)(4), c1(α1)=4; α2=(1 2)=(1 2)(3)(4), c1(α2)=2; α3=(3 4)=(1)(2) (3 
4), c1(α3)=2; α4=(1 2) (3 4), c1(α4)=0.

Burnside’s Lemma. Suppose G={α1, α2, …, αm} is a permutation group 
on {1, 2, …, n}, and l is the number of equivalence classes under G.

= α + α + + α1
| |

[ ( ) ( ) ... ( )].1 1 1 2 1l
G

c c c m

Burnside’s Lemma is used to count the number of nonequivalent color-
ings of a set X under the action of a group of permutations of X. For example, 
a square is divided into four little squares. Two colors are used to color four 
squares. There are 16 possible colorings, as shown in Figure 4.8.

If the above squares are rotated 90°, 180°, and 270° counterclockwise, 
there are three other permutations for 16 colorings.

	 1.	 Rotation by 0°: P1=(C1)(C2)(C3)(C4)(C5)……(C16), that is, C1(P1)=16;
	 2.	 Rotation by 90°: P2=(C1)(C2)(C3C4C5C6)(C7C8C9C10)(C11C12)(C13C14C15C16), 

that is, C1(P2)=2;
	 3.	 Rotation by 180°: P3=(C1)(C2)(C3C5)(C4C6)(C7C9)(C8C10)(C11)(C12)(C13C15)

(C14C16), that is, C1(P3)=4;
	 4.	 Rotation by 270°: P4=(C1)(C2)(C3C4C5C6)(C7C8C9C10)(C11C12)

(C13C14C15C16), that is, C1(P4)=2.
Therefore, G={P1, P2, P3, P4}, and |G|=4, the number of nonequivalent 

colorings = + + + =1
4

(16 2 4 2) 6l . The six corresponding nonequivalent 

colorings are as shown in Figure 4.9.
The four little squares can also be numbered 1, 2, 3, and 4 respectively 

(Figure 4.10).

C1 C2 C3 C4 C5 C6 C7 C8

C9 C10 C11 C12 C13 C14 C15 C16

Figure 4.8 



190  ◾  Algorithm Design Practice for Collegiate Programming

If the above square is rotated 0°, 90°, 180°, and 270° counterclockwise, a 
permutation group G={P1, P2, P3, P4} is used to represent the rotations. The 
number of permutations |G|=4. Suppose c(Pi) is the number of cycles for Pi, 
i=1, 2, 3, 4. Therefore, P1=(1)(2)(3)(4), c(P1)=4; P2=(1 2 3 4), c(P2)=1; P3=(1 3)
(2 4), c(P3)=2; P4=(4 3 2 1), c(P4)=1.

Suppose m is the number of colors. If each cycle is colored with 
same color in Pi, the number of colorings ( )mc Pi  is the number of color-
ings for G under permutation  Pi. = = = = =( ) ( )c Pc P c P2 2 ( ) 16, 2 24

1 1
11 2

= = = =( )c P c Pc P( ) 2, 2 2 ( ) 41 2
2

1 3
3 , and c Pc P2 2 ( ) 21

1 4
4 = = =( ) .

P4=(4 3 2 1), cycles whose order is 1 for P4 are (c1)(c2). That is, c1 and c2 
are the four little squares are colored with the same color. (See Figure 4.11.)

P3=(1 3)(2 4), cycles whose order is 1 for P3 are (c1)(c2)(c11)(c12). That is, 
square 1 and square 3 are colored with the same color, and square 2 and 
square 4 are colored with the same color (see Figure 4.12).

C1 C2 C3 C4 C5 C6

Figure 4.9

2

3 4

1

 

Figure 4.10 

C1 C2

Figure 4.11 

C1 C2 C11 C12

Figure 4.12 



Practice for Combinatorics  ◾  191

Obviously, the number of nonequivalent colorings = + + + =l
1
4

(2 2 2 2 ) 6.4 1 2 1  

Based on that, the Pólya Counting Formula is as follows:
Pólya Counting Formula. Let G be a permutation group {P1, P2, ……, 

Pk} of n elements. And m colors are used to color the n elements. Then the 

number of nonequivalent colorings 1 ( )( ) ( ) ( )1 2l
G

m m mc P c P c Pk
= + + , where 

c(Pi) is the number of cycles for Pi, i=1…k.
If there is a permutation group G of a set. Based on the number of per-

mutations |G|, and the number of cycles c(Pi) for each permutation Pi, the 
Pólya Counting Formula is used to calculate the number of produced equiv-
alence classes.

4.4.1  Necklace of Beads

Beads of red, blue, or green colors are connected together into a circular necklace 
of n beads (n<24) (see Figure 4.13). If the repetitions that are produced by rotation 
around the center of the circular necklace or reflection to the axis of symmetry are 
all neglected, how many different forms of the necklace are there?

Input

The input has several lines, and each line contains the input data n. −1 denotes the 
end of the input file.

Red

RedGreen

O

Blue

The form with n = 4

Red

Green Green

O

Blue Blue

The form with n = 5

Figure 4.13 



192  ◾  Algorithm Design Practice for Collegiate Programming

Output

The output should contain the output data: the number of different forms, in each 
line corresponding to the input data.

Sample Input Sample Output

4
5
-1

21
39

Source: ACM Xi’an 2002

IDs for Online Judges: POJ 1286, UVA 2708

  Analysis

Suppose a is the current permutation, where aj is the number of beads in the jth 
position, 1≤j≤n.

Rotate around the center of the circular necklace and reflect to the axis of sym-
metry i times successively, 0≤i≤n−1.

1.	The i-th times, a rotation: Bead j is permutated by bead ( j+i)%n+1, that is, 
a[j]=a[( j+i)%n+1], 1≤j≤n. Suppose ci is the number of cycles for the i-th per-
mutation. The number of colorings is 3ci.

2.	The i-th times, a reflection: Bead j and bead (n+1−j) exchange each other, 
that is, a[j]↔a[n+1−j], 1≤j≤n. Suppose ci' is the number of cycles for the i-th 
permutation. The number of colorings is 3 'ci.

Obviously, there are 2×n permutations. The Pólya Counting Formula is used to 

calculate the number of different forms: ∑= +
=

1
2

(3 3 )
1

'l
n

c c

i

n
i i .

  Program

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>



Practice for Combinatorics  ◾  193

# include <string>
# include <cmath>
# include <algorithm>
using namespace std;
typedef long long int64;

int n,vis[30],lab[30];    // lab[]: current permutation, bead 
j is permutated by bead lab[j]; vis[j]: permutation flag for j
int64 qpow(int64 a,int64 b){    //calculate and return ab

	     int64 ans=1;
	     while(b){
		          if(b&1)	ans*=a;
		          a*=a;b>>=1;
	     }
	     return ans;
}

int getloop(){    // calculate and return the number of cycles 
for the current permutation
	     memset(vis,0,sizeof(vis));
	     int cnt=0;
	     for(int i=1;i<=n;i++) {
		          if(vis[i])continue;    //calculate the cycle in 
which i is
		          cnt++;   
		          int j=i;
		          do{
			               vis[j]=1;
			               j=lab[j];
		         }while(!vis[j]);
	     }
	     return cnt;    //return the number of cycles for the 
current permutation
}

void work(){    // calculate the number of different forms for 
n beads
	     if(!n){ 
	           printf("0\b");
	           return;
	       }
	     int64 ans=0;
	     for(int i=0;i<n;i++){    // rotations and reflections
		          for(int j=1;j<=n;j++) lab[j]=(j+i)%n+1;    // The 
i-th times, a rotation
		          ans+=qpow(3,getloop());    // the number of 
colorings with 3 colors
		          for(int j=1;j<=n/2;j++)swap(lab[j],lab[n+1-j]);   
// The i-th times, a reflection
		          ans+=qpow(3,getloop());    // the number of 
colorings with 3 colors



194  ◾  Algorithm Design Practice for Collegiate Programming

	     }
	     ans/=(n*2);    // the number of different forms
	     printf("%lld\n",ans);
}

int main(){
	     while(~scanf("%d",&n)&&~n)work();    //Input n, 
calculate and output
	     return 0;
}

4.4.2  Toral Tickets

On the planet Eisiem, passenger tickets for the new means of transportation are 
planned to have the form of tores. Each tore is made of a single rectangular black 
rubber sheet containing N×M squares. Several squares are marked with white, thus 
encoding the ticket’s source and destination.

When the passenger buys the ticket, the ticket booking machine takes the rub-
ber sheet, marks some squares to identify the route of the passenger, and then pro-
vides it to the passenger. Next, the passenger must glue the ticket.

The ticket must be glued in as follows: First, two of its sides of greater length 
are glued together, forming a cylinder. Next, cylinder base circles, each of which 
has the length equal to the length of the short side of the original rubber sheet, are 
glued together. They must be glued in such a way that the cells, the sides of which 
are glued, first belonged to the same row of the sheet. Note that the inner and the 
outer part of the sheet can be distinguished.

The resulting tore is the valid ticket.
Note that if the original sheet is square, there are two topologically different 

ways to make a tore out of a rubber sheet.
Ticket material is so perfect, and gluing quality is so fine, that no one is able to 

find the seam, and this leads to some problems. First, the same tore can be obtained 
using different sheets. More than that, the same sheet can lead to tores that look a 
bit different.

Now, the transport companies of Eisiem wonder how many different routes 
they can organize, so that the following conditions are satisfied:

tickets for different routes are represented by different tores;
if some rubber sheet was marked to make the tore for some route, it cannot be 

used to make the tore for another route.

Help them to calculate the number of routes they can organize.

Input

The first line of the input file contains n and m (1≤n, m≤20).



Practice for Combinatorics  ◾  195

Output

Output the number of routes that Eisiem transport companies can organize.

Sample Input Sample Output

2  2
2  3

6
13

Source:	 Petrozavodsk Summer Trainings 2003, 2003-08-23  
(Andrew Stankevich’s Contest #2)

IDs for Online Judges: ZOJ 2344, SGU 208

  Analysis

In the rectangular black rubber sheet, squares are numbered 1... n×m from top to 
down, and from left to right. For the rectangle, there are n×m classes of permuta-
tions, where the case that every square is moved left i squares circularly, and is 
moved down j squares circularly, is regarded as one class of permutations, 0≤i≤n−1, 
0≤j≤m−1.

A class of permutations can also be classified into following permutations.

1.	Rotation by 0°: square k is permutated by square y×n+x;
2.	Rotation by 180°: square k is permutated by square (m−1−y)×n+(n−1−x);

If the rectangle is a square (m==n), there are two other permutations:

1.	Rotation by 90°: square k is permutated by square (m−1−x)×n+y;
2.	Rotation by 270°: square k is permutated by square x×n+(n−1−y);

where x=(k%n+i)%n, y=(k/n+j)%m. 
The number of cycles 1cij and 2cij under permutations 1 and 2 are calculated. 

If m==n, the number of cycles 3cij and 4cij  under permutations 3 and 4 are also 
calculated.

Therefore, if n≠m, there are s=2×n×m permutations; and if m==n, there are 
s=4×n×m permutations. Each square can be colored with white or black. The Pólya 
Counting Formula is used to calculate the number of routes that Eisiem transport 

companies can organize: 1 (2 2 (2 2 If ))
0 1,0 1

1 2 3 4∑= + + + = =
≤ ≤ − ≤ ≤ −

l
s

n mc c c c

i n j m

ij ij ij ij .



196  ◾  Algorithm Design Practice for Collegiate Programming

Because the upper limit for N and M is 20, the number of routes may be out of 
the range for integers. Calculation of high-precision numbers should be used. In 
order to improve the time complexity, the offline method is also used.

  Program

# include <cstdio>
# include <cstring>
# include <iostream>
# include <algorithm>
using namespace std;

struct BIGNUM{    // BIGNUM is used for calculation of high-
precision numbers
int s[200];   //high-precision number: s[] whose length is l
int l;
}ans,two[405];    // the number of routes Eisiem can organize 
is ans; two[i] is 2i

inline BIGNUM operator*(BIGNUM a,int b){    //a←a×b, where a 
is a high-precision number, and b is an integer
	 for(int i=0;i<a.l;i++)a.s[i]*=b; 
	 for(int i=0;i<a.l;i++){
	 a.s[i+1]+=a.s[i]/10;
	 a.s[i]%=10;
	 }
	 while(a.s[a.l]){    //carry
		  a.s[a.l+1]+=a.s[a.l]/10;
		  a.s[a.l]%=10;
		  a.l++;
}
return a;    //return a*b
}

inline BIGNUM operator+(BIGNUM a,BIGNUM b){    //a←a+b, where 
a and b are high-precision numbers
a.l=max(a.l,b.l);  
for(int i=0;i< a.l;i++)a.s[i]+=b.s[i]; 
for(int i=0;i< a.l;i++){
a.s[i+1]+=a.s[i]/10;
a.s[i]%=10;
}
while(a.s[a.l]){    //carry
	 a.s[a.l+1]+=a.s[a.l]/10;
	 a.s[a.l]%=10;
	 a.l++;
}



Practice for Combinatorics  ◾  197

return a;    //return a+b
}
inline BIGNUM operator/(BIGNUM a,int b){    //a←a/b, where a 
is a high-precision number, and b is an integer
  for(int i=a.l-1;i>0;i--){  
		   a.s[i-1]+=(a.s[i]%b)*10;
		   a.s[i]/=b;
	 }
	 a.s[0]/=b;
	 while(!a.s[a.l-1])a.l--;    
	 return a;    // return a/b
}

void print(BIGNUM a){    //output high-precision number a
	 for(int i=a.l-1;i>=0;i--){
		    printf("%d",a.s[i]);
	 }
	 printf("\n");
}

void cal_two(){    // 2i

	 two[0].l=1;two[0].s[0]=1;
	 for(int i=1;i<=400;i++)
	 two[i]=two[i-1]*2;
}

int n,m,p[4][500],nm,vis[500];    //rectangular black rubber 
sheet is n*m
int circle(int la){   //number of circles under permutation la
	 int a=0;    //initialize number of circles
	 memset(vis,0,sizeof(vis));  
	 for(int i=0;i<nm;i++) {    //Enumeration
		  if(!vis[i])a++;    //if i isn't permutated, number of 
circles+1
		  vis[i]=1;    // set mark for permutation
		  for(int j=p[la][i];!vis[j];j=p[la][j])   //elements in 
the circle are set to the permutation mark
		  vis[j]=1;
	 }
	 return a;    //return number of circles under permutation la
}

void work(){    // calculate the number of routes Eisiem can 
organize
int div=0;
memset(ans.s,0,sizeof(ans.s));     //initialize the number of 
routes 0
ans.l=0;
for(int i=0;i<n;i++)    //Enumeration
	 for(int j=0;j<m;j++){
		  for(int k=0;k<nm;k++){



198  ◾  Algorithm Design Practice for Collegiate Programming

			   int x=(k%n+i)%n,y=(k/n+j)%m; 
			   p[0][k]=y*n+x;    // Rotation by 0°
			   p[1][k]=(m-1-y)*n+(n-1-x);    // Rotation by 180°
				    if(n==m){    //Square, Rotation by 90° and 270°
					     p[2][k]=(m-1-x)*n+y;p[3][k]=x*n+(n-1-y);	 }
				    }
			   div+=2;    //accumulation
			   ans=ans+two[circle(0)];    //accumulation for the 
number of circles for Rotation by 0° 
			   ans=ans+two[circle(1)];    // accumulation for the 
number of circles for Rotation by 180°
			   if(n==m){    //Square
				    div+=2;
				    ans=ans+two[circle(2)];    // accumulation for the 
number of circles for Rotation by 90°
				    ans=ans+two[circle(3)];    // accumulation for the 
number of circles for Rotation by 270°
			   }
		  }
	 ans=ans/div;  
	 print(ans);    //Output the result
}

int main(){
cal_two();
while(~scanf("%d %d",&n,&m)){    //Input test cases
	 if(n<m)swap(n,m); 
	 nm=n*m;    //number of squares
	 work();    // calculate and output the number of routes 
Eisiem can organize
}
return 0;
}

4.4.3  Color

Beads of n colors are connected together into a circular necklace of n beads (n 
≤1000000000). Your job is to calculate how many different types of the necklaces 
can be produced. You should know that the necklace might not use up all the N 
colors, and the repetitions that are produced by rotation around the center of the 
circular necklace are all neglected.

You only need to output the answer module as a given number p.

Input

The first line of the input is an integer x (x≤3500) representing the number of test 
cases. The following x lines each contains two numbers n and P (1≤n≤1000000000, 
1≤p≤30000), representing a test case.



Practice for Combinatorics  ◾  199

Output

For each test case, output one line containing the answer.

Sample Input Sample Output

5
1 30000
2 30000
3 30000
4 30000
5 30000

1
3
11
70
629

Source: POJ Monthly, Lou Tiancheng

ID for Online Judge: POJ 2154

  Analysis

Method 1: Using the Pólya Counting Formula
Method 1 is analyzing each rotation, calculating the number of cycles, and 

using the Pólya Counting Formula to calculate the number of nonequivalent 
classes. For each rotation s, ai=a(i+k×s)%n, where ai is the i-th bead, and these beads 
are in a cycle. Multiples of s mod n are 0, d, 2×d, …, n−d, where d=GCD(n, s). The 
number of cycles is =n

n
d

d . Therefore, the number of different kinds of the necklace 

∑=
=

−
1 ( . )

0

1

ans
n

nGCD n i

i

n

.

The time complexity is O(n×log2n). Because the range of n is too large, optimi-
zation should be done.

Method 2: Euler Phi-Function φ(n)

The length of each cycle is enumerated. For all i such that GCD(i, n)=k, i
k

 

and n
k

 are relative prime, and ϕ





n
k

 numbers and n
k

 are relative prime (ϕ is Euler 

Phi-Function). The number of different kinds of the necklace is calculated as  

∑ ∑= ϕ





× = ϕ





× −1

| |

1ans
n

n
p

n
n
p

n
p n

p

p n

p .



200  ◾  Algorithm Design Practice for Collegiate Programming

The time complexity for enumerating p is ( )O n . And the time complexity for 

calculating the Euler Phi-Function is ( )O n . The time complexity for method 2 

is ( )
3
4O n .

The given program uses Method 2.

  Program

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <string>
# include <cmath>
# include <algorithm>
using namespace std;
typedef long long int64;
bool np[50000];    //Sieve
int prime[50000],pn,lim=50000;    //Prime list prime[], its 
length pn, its upper limit lim
int n,p;
void pp(){    //calculate prime list prime[] in the interval 
[2, lim−1]
	     np[0]=np[1]=1; 
	     for(int i=2;i<lim;i++){ 
		          if(np[i])	 continue;
		          prime[pn++]=i; 
		          for(int j=i*2;j<lim;j+=i)np[j]=1; 
	     }
}
int phi(int n){    // Euler Phi-Function n p( )%ϕ
	     int ans=n;
	     for(int i=0;i<pn&&prime[i]*prime[i]<=n;i++){    // Each 
factor for n
		          if(n%prime[i]!=0)continue;
		          ans-=ans/prime[i];                      
		          do{ 
			           n/=prime[i];
		          }while(n%prime[i]==0);
	     }
	     if(n!=1)ans-=ans/n;
	     return ans%p;
}
int exp_m(int64 a,int b){    //calculate (ab) %p
	     int ans=1,x=a%p;



Practice for Combinatorics  ◾  201

	     while(b){
		          if(b&1)ans=(ans*x)%p;
		          x=(x*x)%p;
		          b>>=1;
	     }
	     return ans;    // return (ab)%p
}
int main(){
	     int casen; 
	     pp();    //Calculating prime list
	     scanf("%d",&casen);    //number of test cases
	     while(casen--){
		          int ans=0,i;
		          scanf("%d %d",&n,&p);    //Input a test case
		          for(i=1;i*i<n;i++){    //enumerate each factor i 

for n,  ∑= ϕ 



 + ϕ











− −

< =

ans
n
i

n i n p
i

n

i

i n n i

1 1

02

* ( )* %
, %

 

			           if(n%i!=0)continue;
			            ans+=(((phi(n/i)%p)*exp_m(n,i-1))+((phi(i)%p)*
exp_m(n,n/i-1)));
			            ans%=p;
		    }
		    if(i*i==n){    //if n==i2, then ans= ans+ i n pi( ( )* )%-1ϕ   
			         ans+=((phi(i)%p)*exp_m(n,i-1));
			         ans%=p;    // the answer module a given number p
		         }
		    printf("%d\n",ans);    // output the answer
	     }
	     return 0;
}

4.5  Problems
4.5.1  Common Permutation

Given two strings of lowercase letters, a and b, print the longest string x of lower-
case letters such that there is a permutation of x that is a subsequence of a and there 
is a permutation of x that is a subsequence of b.

Input

The input file contains several lines of input. Consecutive two lines make a set of 
input. That means, in the input file, lines 1 and 2 are a set of input, lines 3 and 4 are 
a set of input, and so on. The first line of a pair contains a and the second contains b. 
Each string is on a separate line and consists of at most 1000 lowercase letters.



202  ◾  Algorithm Design Practice for Collegiate Programming

Output

For each set of input, output a line containing x. If several x satisfy the criteria above, 
choose the first one in alphabetical order.

Sample Input Sample Output

pretty
women
walking
down
the
street

e
nw
et

Source:	 World Finals Warm-up Contest, University of Alberta Local Contest

ID for Online Judge: UVA 10252

  Hint

Given two strings of lowercase letters, a and b, the problem requires you to output 
the longest string x in alphabetical order such that there is a permutation of x that 
is a subsequence of a and there is a permutation of x that is a subsequence of b. The 
algorithm is as follows:

Suppose S a a ala...1 1 2= , and S b b blb...2 1 2= .
First, frequencies for each letter in S1 and S2 are calculated. Let c1[i] be the fre-

quency for the i-th letter in S1, c2[i] be the frequency for the i-th letter in S2, where 
1≤i≤26, the first letter is “a”, the second letter is “b”, …, and the 26th letter is “z”.

Second, the common permutation for S1 and S2 is calculated. For each i 
(1≤i≤26), if the i-th letter appears in S1 and S2 ((c1[i]≠0)&&(c2[i]≠0)), the letter 
appears k (=min{c1[i], c2[i]}) times in the common permutation.

4.5.2  Anagram

You are to write a program that has to generate all possible words from a given set 
of letters.

Example: Given the word “abc”, your program should—by exploring all differ-
ent combination of the three letters—output the words “abc”, “acb”, “bac”, “bca”, 
“cab”, and “cba”.

In the word taken from the input file, some letters may appear more than once. 
For a given word, your program should not produce the same word more than once, 
and the words should be output in alphabetically ascending order.



Practice for Combinatorics  ◾  203

Input

The input file consists of several words. The first line contains a number giving the 
number of words to follow. Each following line contains one word. A word consists 
of uppercase or lowercase letters from A to Z. Uppercase and lowercase letters are 
to be considered different.

Output

For each word in the input file, the output file should contain all different words 
that can be generated with the letters of the given word. The words generated from 
the same input word should be output in alphabetically ascending order. An upper-
case letter goes before the corresponding lowercase letter.

Sample Input Sample Output

3
aAb
abc
acba

Aab
Aba
aAb
abA
bAa
baA
abc
acb
bac
bca
cab
cba
aabc
aacb
abac
abca
acab
acba
baac
baca
bcaa
caab
caba
cbaa

Source:	 ACM Southwestern European Regional Contest 1995

IDs for Online Judges: POJ 1256, UVA 195



204  ◾  Algorithm Design Practice for Collegiate Programming

  Hint

There are different strategies to solve this problem. The most efficient strategy is 
sorting the letters in the input word first, and then directly producing all possible 
anagrams without duplicates. A less efficient way is to first sort the letters in the 
input word, and then produce all possible permutations (correctly sorted) and elim-
inate all duplicates on the fly without storing more than one word. A completely 
inefficient way is to first produce all permutations and store them in memory, and 
then sort them and eliminate duplicates as the last step.

4.5.3  How Many Points of Intersection?

We have two rows. There are a dots on the top row and b dots on the bottom row. 
We draw line segments connecting every dot on the top row with every dot on 
the bottom row. The dots are arranged in such a way that the number of internal 
intersections among the line segments is maximized. To achieve this goal, we must 
not allow more than two line segments to intersect in a point. The intersection 
points on the top row and the bottom are not included in our count; we can allow 
more than two line segments to intersect on those two rows. Given the value of a 
and b, your task is to compute P(a, b), the number of intersections in between the 
two rows. For example, in Figure 4.14, a=2 and b=3. This figure illustrates that 
P(2, 3)=3.

Input

Each line in the input will contain two positive integers a(0<a≤20000) and 
b(0<b≤20000). Input is terminated by a line where both a and b are zero. This case 
should not be processed. You will need to process at most 1200 sets of inputs.

1

a c

b

2

2
Top row

Bottom row

1

3

Figure 4.14 



Practice for Combinatorics  ◾  205

Output

For each line of input, print in a line the serial of the output, followed by the value 
of P(a, b). Look at the output for sample input for details. You can assume that the 
output for the test cases will fit in 64-bit signed integers.

Sample Input Sample Output

2  2
2  3
3  3
0  0

Case 1: 1
Case 2: 3
Case 3: 9

Source:	 Bangladesh National Computer Programming Contest, 2004

ID for Online Judge: UVA 10790

  Hint

Line segments connecting two dots on the top row and dots on the bottom 
row  will produce one intersection point. Based on the multiplication principle, 
P(a, b)=C(a, 2)×C(b, 2).

4.5.4  Permutations

We remind you that the permutation of some final set is a one-to-one mapping of 
the set onto itself. Less formally, that is a way to reorder elements of the set. For 
example, one can define a permutation of the set {1,2,3,4,5} as follows:

	
=







( )

1 2 3 4 5
4 1 5 2 3

P n

This record defines a permutation P as follows: P(1)=4, P(2)=1, P(3)=5, etc.
What is the value of the expression P(P(1))? It’s clear that P(P(1))=P(4)=2. And 

P(P(3))=P(5)=3. One can easily see that if P(n) is a permutation, then P(P(n)) is a 
permutation as well. In our example (believe us):

	
=







( ( ))

1 2 3 4 5
2 4 3 1 5

P P n

It is natural to denote this permutation by P2(n)=P(P(n)). In a general form the 
definition is as follows: P(n)=P1(n), Pk(n)=P(Pk-1(n)).



206  ◾  Algorithm Design Practice for Collegiate Programming

Among the permutations there is a very important one—that moves nothing:

	
=











( ) 1 2 3
1 2 3

E n n
nN

It is clear that for every k the following relation is satisfied: (EN)k=EN. The fol-
lowing less trivial statement is correct (we won’t prove it here, but you may prove it 
to yourself incidentally):

Let P(n) be some permutation of an N elements set. Then there exists a natural 
number k, so that P k=EN.

The least natural k such that P k=EN is called an order of the permutation P. 
The problem that your program should solve is now formulated in a very simple 
manner: “Given a permutation, find its order.”

Input

In the first line of the standard input, only a natural number N (1≤N≤1000) is con-
tained, that is, a number of elements in the set that is rearranged by this permuta-
tion. In the second line, there are N natural numbers of the range from 1 up to N, 
separated by a space, that define a permutation—the numbers P(1), P(2),…, P(N).

Output

You should write only a natural number to the standard output, that is an order of 
the permutation. You may consider that an answer shouldn’t exceed 109.

Sample Input #1 Sample Output #1

5
4  1  5  2  3

6

Sample Input #2 Sample Output #2

8
1  2  3  4  5  6  7  8

1

Source:	 Ural State University Internal Contest October 2000 Junior Session

ID for Online Judge: POJ 2369

  Hint

For the permutation P(1), P(2),…, P(N), the numbers of elements in each cycle are 
calculated. Obviously, the least natural k such that Pk=EN is the Least Common 
Multiple (LCM) for these numbers.



Practice for Combinatorics  ◾  207

4.5.5  Coupons

Coupons in cereal boxes are numbered 1 to n, and a set of one of each is required 
for a prize (a cereal box, of course). With one coupon per box, how many boxes on 
average are required to make a complete set of n coupons?

Input

Input consists of a sequence of lines each containing a single positive integer n, 
1≤n≤33, giving the size of the set of coupons. Input is terminated by end of file.

Output

For each input line, output the average number of boxes required to collect the 
complete set of n coupons. If the answer is an integer number, output the number. If 
the answer is not an integer, then output the integer part of the answer, followed by 
a space, and then by the proper fraction in the format shown below. The fractional 
part should be irreducible. There should be no trailing spaces in any line of output.

Sample Input Sample Output

2
5
17

3
   5
11 --
   12
   340463
58 ------
   720720

Source:	 Math Lovers’ Contest, Source: University of Alberta Local Contest

ID for Online Judge: UVA 10288

  Hint

There are n coupons. Suppose that k coupons are collected, and EK boxes are bought. 

The probability of getting a coupon in the next time is −n k
n

. And the probability 

of getting two coupons two times is − × , ,n k
n

k
n

 and so on. Therefore, there is a 
formula:

	
∑= + − + 



+

=

∞

( 1) .1

0

E E
n k

n
i

k
nk k

i

i



208  ◾  Algorithm Design Practice for Collegiate Programming

The formula ∑ =
−

=

∞

(1 )
0

2kx
x
x

k

k

 (taking the derivative of two sides of the equa-

tion ∑ =
−

=

∞
1

(1 )
0

x
x

k

k

) is used to calculate the sum of ∑− + 





=

∞

( 1)
0

n k
n

i
k
n

i

i

 in the 

above formula. = +
−+1E E
n

n kk k . Therefore, ∑= ×
=

1

1

E n
in

i

n

.

4.5.6  Pixel Shuffle

Shuffling the pixels in a bitmap image sometimes yields random-looking images. 
However, by repeating the shuffling enough times, one finally recovers the original 
images. This should be no surprise, since “shuffling” means applying a one-to-one 
mapping (or permutation) over the cells of the image, which come in finite number, 
as shown in Figure 4.15.

Your program should read a number n, and a series of elementary transforma-
tions that define a “shuffling” ϕ of n×n images. Then, your program should com-
pute the minimal number m (m>0), such that m applications of ϕ always yield the 
original n×n image.

For instance, if ϕ is counter-clockwise 90o rotation, then m=4, as shown in 
Figure 4.16.

(a) (b) (c) (d) (e) (f) (g)

Figure 4.16 

Figure 4.15 



Practice for Combinatorics  ◾  209

Input

Input consists of two lines, and the first line is number n (2≤n≤210, n even). The 
number n is the size of images. One image is represented internally by an n×n pixel 
matrix (a ji ), where i is the row number and j is the column number. The pixel at the 
upper-left corner is at row 0 and column 0.

The second line is a non-empty list of at most 32 words, separated by spaces. 
Valid words are the keywords id, rot, sym, bhsym, bvsym, div, and mix, or a keyword 
followed by “-”. Each keyword key designates an elementary transform (as defined 
by Figure 4.17), and key-designates the inverse of the transform key. For instance, 
rot- is the inverse of counterclockwise 90o rotation, that is, clockwise 90o rotation. 

id, identity. Nothing changes: b
i
j = a

i
j.

Transformations of image (a
i
j) into image (b

i
j)

rot, counter-clockwise 90° rotation

sym, horizontal symmetry: b
i
j = a

i
n–1–j  

bhsym, horizontal symmetry applied to the lower
half of image: when i ≥ n/2, then b

i
j = a

i
n–1–j

Otherwise b
i
j = a

i
j.

bvsym, vertical symmetry applied to the lower half
of image (i ≥ n/2)

div, division. Rows 0, 2, . . . , n – 2 become rows 0,
1, . . . n/2 – 1, while rows 1, 3, . . . n – 1 become rows
n/2, n/2 + 1, . . . n – 1.

mix, row mix. Rows 2k and 2k + 1 are interleaved.
The pixels of row 2k in the new image are 
a0

2k, a0
2k+1, a1

2k, a1
2k+1, . . . an/2–1, an/2–1,

an/2, an/2    ,

2k 2k+1

2k 2k +1 2kan/2+1, 2k +1 an/2+1, . . . 2kan–1, 2k+1an–1  
while the pixels of row 2k + 1 in the new image are

Figure 4.17 



210  ◾  Algorithm Design Practice for Collegiate Programming

Finally, the list k1, k2,..., kp designates the compound transform ϕ=k1k2...kp. For 
instance, “bvsym rot-” is the transform that first performs clockwise 90o rotation 
and then vertical symmetry on the lower half of the image.

Output

Your program should output a single line whose content is the minimal number 
m (m>0) such that ϕm is the identity. You may assume that, for all test input, you 
have m <231.

Sample Input 1 Sample Output 1

256
rot- div rot div

8

Sample Input 2 Sample Output 2

256
bvsym div mix

63457

Source:	 ACM Southwestern Europe 2005

IDs for Online Judges: POJ 2789, UVA 3510

  Hint

The problem statements define several operations on square images. Each of the 
operations is some simple permutation of the image’s pixels. The input contains a 
sequence of operations. Your program should output the smallest positive K such 
that applying the whole sequence of operations K times always yields the original 
image.

The sequence of operations defines a (more complicated) permutation of the 
image’s pixels. If you split this permutation into cycles, the answer is the LCM of 
the cycle lengths.

4.5.7  The Colored Cubes

All six sides of a cube are to be coated with paint. Each side is coated uniformly 
with one color. When a selection of n different colors of paint is available, how many 
different cubes can you make?

Note that any two cubes are only to be called “different” if it is not possible 
to rotate the one into such a position that it appears with the same coloring as 
the other.



Practice for Combinatorics  ◾  211

Input

Each line of the input file contains a single integer n (0<n<1000) denoting the 
number of different colors. Input is terminated by a line where the value of n=0. 
This line should not be processed.

Output

For each line of input, produce one line of output. This line should contain the 
number of different cubes that can be made by using the matching number of 
colors.

Sample Input Sample Output

1
2
0

1
10

Source:	 2004 ICPC Regional Contest Warmup 1

ID for Online Judge: UVA 10733

  Hint

All six sides of a cube are to be colored with paints. Each side is painted uniformly 
with one color. When a selection of n different colors of paint is available, how 
many different cubes can you make?

Two cubes are considered different if it is not possible to rotate one cube into a 
such position that it appears with the same coloring as the other (see Figure 4.18).

a

e
(bottom)

c (back)

d
(left)

b

f

Figure 4.18 



212  ◾  Algorithm Design Practice for Collegiate Programming

It’s a pretty straightforward problem, if you know a bit of the Pólya-Burnside 
theory of counting.

First, you need to construct the permutation group of the cube’s rotations. In 
simple terms, it’s the set of ways (permutations) in which you can relabel the cube’s 
faces, and get an equivalent cube (under rotations.)

The cube (with the initial labeling as shown in Figure 4.18) has 24 such ways, 
listed in the following table. The first column shows the final labeling of the cube, 
and the second one gives the corresponding permutation of faces.

Cube’s arrangement Permutation Number of fixed points

abcdef (a)(b)(c)(d)(e)(f) n6

adcbfe (a)(bd)(c)(ef) n4

aecfdb (a)(bedf)(c) n3

afcebd (a)(bfde)(c) n3

badcfe (ab)(cd)(ef) n3

bcdaef (abcd)(e)(f) n3

bedfac (abe)(cdf) n2

bfdeca (abf)(cde) n2

cbadfe (ac)(b)(d)(ef) n4

cdabef (ac)(bd)(e)(f) n4

ceafbd (ac)(be)(df) n3

cfaedb (ac)(bf)(de) n3

dabcef (adcb)(e)(f) n3

dcbafe (ad)(bc)(ef) n3

debfca (adf)(bec) n2

dfbeac (ade)(bfc) n2

eafcbd (aeb)(cfd) n2

ebfdca (aecf)(b)(d) n3

ecfadb (aed)(bcf) n2

edfbac (ae)(bd)(cf) n3

faecdb (afb)(ced) n2



Practice for Combinatorics  ◾  213

fbedac (afce)(b)(d) n3

fceabd (afd)(bce) n2

fdebca (af)(bd)(ce) n3

You can obtain all these permutations by first listing the most important 
ones—rotating around the X, Y, and Z axes, and then listing all their possible 
combinations.

A fixed point of a permutation is some coloring, such that the permutation 
results in a cube, which has the same coloring. If each face of the cube may be 
assigned one of n colors, and the permutation has c disjoint cycles, then it has nc 
fixed points (the faces of each cycle have to be colored in the same color, there are c 
cycles, and n ways to choose colors for each).

By Burnside’s Lemma, the total number of distinct colorings is equal to the 
arithmetic mean of the number of fixed points of permutations. That is, the answer 

to the problem is given by + × + × + ×1
24

( 3 12 8 )6 4 3 2n n n n .

If you have never heard of the Pólya-Burnside theory, there are still some other 
methods to solve this problem.

For example, you could’ve guessed that the function, given that the number of 
colorings is a polynomial in n; obtain its values for small n by brute force, and use 
interpolation to find the polynomial’s coefficients.

Here’s another possible solution. Start by backtracking this subproblem: there 
are six available paints, the i-th of which must be used to color exactly 0≤ni≤6 sides 
of the cube (of course n1+n2+…+n6=6); how many colorings are possible? Then use 
well-known combinatorics (and probably, dynamic programming) to reduce the 
original problem to subproblems of this type.



http://taylorandfrancis.com


215

Chapter 5

Practice for Greedy 
Algorithms

Greedy algorithms are used to solve optimization problems through a sequence of 
steps. At each step, greedy algorithms make the locally optimal choice in order to 
find a globally optimal solution. For some problems, greedy algorithms can yield 
a globally optimal solution, but for some problems, such as the traveling salesman 
problem (TSP), they can’t.

This chapter organizes practices for greedy algorithms as follows:

◾◾ Practices for Greedy Algorithms;
◾◾ Greedy Choices Based on Sorted Data;
◾◾ Greedy Algorithms Used with Other Methods to Solve P-Problems.

5.1  Practices for Greedy Algorithms
Greedy algorithms are used to solve optimization problems through a sequence of 
steps, and to make the choice that looks best at each step. There are some famous 
greedy algorithms, such as Prim’s algorithm and Kruskal’s algorithm, used to find a 
minimum spanning tree for a weighted undirected graph; Dijkstra’s algorithm, used 
to get single-source shortest paths between nodes in a graph; and Huffman coding.

There are two properties for optimization problems that can be solved by greedy 
algorithms:

1.	Optimal substructures: Optimal solutions to problems consisting of a sequence 
of their optimal solutions to subproblems (necessity).

2.	The property for greedy choices: Global optimal solutions to problems can be 
obtained by making a sequence of local optimal (greedy) choices (feasibility).



216  ◾  Algorithm Design Practice for Collegiate Programming

The following two experiments are practices for greedy algorithms.

5.1.1  Pass-Muraille

In modern-day magic shows, passing through walls is very popular, in which a magi-
cian performer passes through several walls in a predesigned stage show. The wall-
passer (Pass-Muraille) has a limited wall-passing energy to pass through at most k 
walls in each wall-passing show. The walls are placed on a grid-like area. An example 
is shown in Figure 5.1, where the land is viewed from above. All the walls have unit 
widths, but different lengths. You may assume that no grid cell belongs to two or 
more walls. A spectator chooses a column of the grid. Our wall-passer starts from the 
upper side of the grid and walks along the entire column, passing through every wall 
on his way to get to the lower side of the grid. If he faces more than k walls when he 
tries to walk along a column, he would fail and would not present a good show. For 
example, in the wall configuration shown in Figure 5.1, a wall-passer with k=3 can 
pass from the upper side to the lower side by choosing any column except column 6.

Given a wall-passer with a given energy and a show stage, we want to remove the 
minimum number of walls from the stage so that our performer can pass through 
all the walls at any column chosen by spectators.

Input

The first line of the input file contains a single integer t (1≤t≤10), the number of test 
cases, followed by the input data for each test case. The first line of each test case 
contains two integers n (1≤n≤100), the number of walls, and k (0≤k≤100), the max-
imum number of walls that the wall-passer can pass through, respectively. After the 
first line, there are n lines each containing two (x, y) pairs representing coordinates 
of the two endpoints of a wall. Coordinates are non-negative integers less than or 
equal to 100. The upper-left of the grid is assumed to have coordinates (0, 0). The 
second sample test case below corresponds to the land given in Figure 5.1.

0
0

1

2

3

4

5

6

7

8

Shaded cells represent the walls

1 2 3 4 5 6 7 8

Figure 5.1



Practice for Greedy Algorithms  ◾  217

Output

There should be one line per test case containing an integer number which is the 
minimum number of walls to be removed, such that the wall-passer can pass 
through walls starting from any column on the upper side.

Sample Input Sample Output

2
3  1
2  0  4  0
0  1  1  1
1  2  2  2
7  3
0  0  3  0
6  1  8  1
2  3  6  3
4  4  6  4
0  5  1  5
5  6  7  6
1  7  3  7

1
1

Source:	 ACM Tehran 2002 Preliminary

IDs for Online Judges: POJ 1230, ZOJ 1375

  Hint

Walls are parallel to X.

  Analysis

All columns are scanned from left to right. Removing the minimum number of 
walls from the stage must guarantee removing the minimum number of walls in 
scanned columns. Therefore, the optimal solution to the problem consists of its 
optimal solutions to subproblems. The key to the problem is its greedy choice.

Suppose there are D walls in the current column. If D≤K, we needn’t remove 
any wall; and if D>K, D−K walls must be removed. The greedy choice is as fol-
lows. For walls in the current column, the longest D−K walls in unscanned col-
umns are removed. Obviously, the greedy choice removes a minimum number 
of walls.



218  ◾  Algorithm Design Practice for Collegiate Programming

  Program

#include<iostream>   
using namespace std;   
int t,n,k,x,y,x1,y2,max_x,max_y,sum_s=0;    //t: number of 
test cases; n: number of walls; k: at most k walls can be 
passed through; x,y,x1,y2: Coordinate; max_x,max_y: maximal 
row and column Coordinate; sum_s: the minimum number of 
removed walls
int map[105][105];
int main() 
{ 
   scanf("%d",&t);    // number of test cases
   while(t--)    // all test cases are processed
   {   
      memset(map,0,sizeof(map)); 
      max_x=0;    //Initialization
      max_y=0;   
      sum_s=0;  
      scanf("%d %d",&n,&k);  
      for (int i=1;i<=n;i++)   
      {   
         scanf("%d %d %d %d",&x,&y,&x1,&y2); 
         if (x>max_x)max_x=x; 
         if (x1>max_x)max_x=x1;   
         if(y>max_y)max_y=y;  
         if (x<x1) 
          { 
             for (int j=x;j<=x1;j++) map[j][y]=i;  
          }   
         else  
         { 
             for (int j=x1;j<=x;j++) map[j][y]=i; 
             
         }   
       }   
      for (int i=0;i<=max_x;i++)    //scan from left to right
      {             
               int tem=0;    //calculate the number of walls 
in the i-th column
               for (int j=0;j<=max_y;j++)  if (map[i][j]>0) 
tem++;  
               int offset=tem-k;  
               if (offset>0)    // some walls are removed
               {   
                   sum_s+=offset;   



Practice for Greedy Algorithms  ◾  219

                   while(offset--)   
                   {   
                         int max_s=0,max_bh;   
                         for (int k=0;k<=max_y;k++)   //search 
                         {   
                              if (map[i][k]>0)     
//calculate length of wall in unscanned columns
                              {   
                                   int tem_s=0;
                                   for (int z=i+1;z<=max_x; 
z++)   
                                     if (map[z][k]==map[i][k]) 
tem_s++;   
                                         else  break;   
                                   if (max_s<tem_s)   //record
                                   {   
                                      max_s=tem_s; max_bh=k;   
                                   }  
                              } 
                         } 
                         for (int a=i;a<=i+max_s;a++) map[a]
[max_bh]=0;    // some walls are removed
                 }   
               }   
      }   
      printf("%d\n",sum_s);    //output the result
   }   
   return 0;   
}

5.1.2  Tian Ji: The Horse Racing

Here is a famous story from Chinese history.

About 2300 years ago, General Tian Ji was a high official 
in the country Qi. He likes to play horse racing with the 
king and others.

Both Tian and the king have three horses in different 
classes, namely, regular, plus, and super. The rule is to have 
three rounds in a match; each of the horses must be used in 
one round. The winner of a single round takes two hundred 
silver dollars from the loser.

Being the most powerful man in the country, the king 
has such nice horses that in each class, his horse is better 
than Tian’s. As a result, each time the king takes six hun-
dred silver dollars from Tian.



220  ◾  Algorithm Design Practice for Collegiate Programming

Tian Ji was not happy about that, until he met Sun Bin, 
one of the most famous generals in Chinese history. Using a 
little trick that he learned from Sun, Tian Ji brought home 
two hundred silver dollars and such a grace in the next match.

It was a rather simple trick (Figure 5.2). Using his regular class horse race against 
the super class from the king, they will certainly lose that round. But then his plus 
beat the king’s regular, and his super beat the king’s plus. What a simple trick. And 
what do you think of Tian Ji, the high-ranked official in China?

Wherever Tian Ji lives nowadays, he will certainly laugh at himself. Even 
more, if he were sitting in the ACM contest right now, he may discover that the 
horse racing problem can be simply viewed as finding the maximum matching 
in a bipartite graph. Draw Tian’s horses on one side, and the king’s horses on the 
other. Whenever one of Tian’s horses can beat one from the king, we draw an 
edge between them, meaning we wish to establish this pair. Then, the problem 
of winning as many rounds as possible is just to find the maximum matching in 
this graph. If there are ties, the problem becomes more complicated; he needs to 
assign weights 0, 1, or −1 to all the possible edges, and find a maximum weighted 
perfect matching.

However, the horse racing problem is a very special case of bipartite matching. 
The graph is decided by the speed of the horses—a vertex of higher speed always 
beats a vertex of lower speed. In this case, the weighted bipartite matching algo-
rithm is too advanced a tool to deal with the problem.

In this problem, you are asked to write a program to solve this special case of 
matching problem.

Input

The input consists of up to 50 test cases. Each case starts with a positive integer 
n (n≤1000) on the first line, which is the number of horses on each side. The next n 
integers on the second line are the speeds of Tian’s horses. Then the next n integers 
on the third line are the speeds of the king’s horses. The input ends with a line that 
has a single “0” after the last test case.

–200 +200

+200
–2

00

92

83

71

–200

–200

95

87

74

92

83

71

95

87

74

92

83

71

95

87

74

Figure 5.2



Practice for Greedy Algorithms  ◾  221

Output

For each input case, output a line containing a single number, which is the maxi-
mum money Tian Ji will get, in silver dollars.

Sample Input Sample Output

3
92  83  71
95  87  74
2
20  20
20  20
2
20  19
22  18
0

200
0
0

Source:	 ACM Shanghai 2004

IDs for Online Judges: POJ 2287, ZOJ 2397 UVA 3266

  Analysis

The problem can be solved by several different methods. Maximum matching in 
a bipartite graph or dynamic programming can be used to solve the problem, but 
using a greedy algorithm to solve the problem is simple and efficient. The greedy 
algorithm is as follows:

First, the speeds of Tian’s horses and the speeds of the king’s horses are sorted 
in ascending order respectively. Suppose the sequence for speeds of Tian’s current 
horses in ascending order is A=a1…an; and the sequence for the speeds of the king’s 
current horses are sorted in ascending order is B=b1…bn.

Second, greedy choices are as follows:

1.	If Tian’s current slowest horse is faster than the king’s current slowest horse, that 
is, a1>b1; then Tian’s current slowest horse races against the king’s current slow-
est horse, that is, a1 is compared with b1. Because b1 is less than any elements in 
A and the king’s current slowest horse can be defeated by any Tian’s remainder 
horse, the king’s current slowest horse is defeated by Tian’s current slowest horse.

2.	If Tian’s current slowest horse is slower than the king’s current slowest horse, 
that is, a1<b1; then Tian’s current slowest horse races against the king’s current 
fastest horse, that is, a1 is compared with bn. Because a1 is less than any elements 
in B and Tian’s current slowest horse can be defeated by any king’s remainder 
horse, Tian’s current slowest horse is defeated by the king’s current fastest horse.



222  ◾  Algorithm Design Practice for Collegiate Programming

3.	If Tian’s current fastest horse is faster than the king’s current fastest horse, 
that is, an>bn; then Tian’s current fastest horse races against the king’s current 
fastest horse, that is, an is compared with bn. Because an is larger than any ele-
ments in B and Tian’s current fastest horse can defeat any king’s remainder 
horse, Tian’s current fastest horse defeats the king’s current fastest horse.

4.	If Tian’s current fastest horse is slower than the king’s current fastest horse, 
that is, an<bn; then Tian’s current slowest horse races against the king’s cur-
rent fastest horse, that is, a1 is compared with bn. Because bn is larger than 
any elements in A and the king’s current fastest horse can defeat any Tian’s 
remainder horse, the king’s current fastest horse defeats Tian’s current slow-
est horse.

5.	If (a1==b1) and (an>bn), then it is suitable that Tian’s current fastest horse 
races against the king’s current fastest horse, that is, an is compared with bn.

6.	If (an==bn), then there exists an optimal solution that a1 is compared with bn.

The above process repeats until the horse racing ends. Tian’s current fastest 
or slowest horse races against the king’s current fastest or slowest horse each time 
based on the above greedy choices. Optimal solutions to subproblems constitute the 
global optimal solution to the problem.

  Program

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int a[1010],b[1010];    //Speeds of Tian’s horses and the 
king’s horses
int main()
{
    int n;
    while(scanf("%d",&n),n)     //number of Tian’s horses (the 
king’s horses)
    {
        for(int i=1; i<=n; i++)  scanf("%d",&a[i]);    // Input 
speeds of Tian’s horses
        for(int i=1; i<=n; i++)  scanf("%d",&b[i]);    // Input 
speeds of the king’s horses
        sort(a+1,a+1+n);    //Sorting speeds in ascending 
order
        sort(b+1,b+1+n);  
        int tl=1,tr=n,ql=1,qr=n;    //Initialization
        int sum=0; 



Practice for Greedy Algorithms  ◾  223

        while(tl<=tr)    // the horse racing doesn’t end
        {
            if(a[tl]<b[ql])    // Tian’s slowest horse is 
slower than the king’s slowest horse
            {
                qr--;tl++;sum=sum-200;
            }
            else if(a[tl]==b[ql])    // Speeds of the two 
slowest horses are same
            {
                while(tl<=tr&&ql<=qr) 
                {
                    if(a[tr]>b[qr])    //Tian’s fastest horse 
is faster than the king’s fastest horse
                    {
                        sum+=200;tr--;qr--;
                    }
                    else    // Tian’s slowest horse races 
against the king’s fastest horse
                    {
                        if(a[tl]<b[qr])  sum-=200;
                        tl++;qr--; break;
                    }
                }
            }
            else    // Tian’s slowest horse is faster than the 
king’s slowest horse
            {
                tl++;ql++;sum=sum+200;
            }
        }
        printf("%d\n",sum);    //Output the result
    }
    return 0;
}

5.2  Greedy-Choices Based on Sorted Data
The key to a greedy algorithm is its greedy choices. Sometimes the greedy choices 
must be based on sorted data. First, data are sorted. Then greedy choices are made 
based on the sorted data.

5.2.1  The Shoemaker’s Problem

A shoemaker has N jobs (orders from customers) which he must make. The shoe-
maker can work on only one job in each day. For each i-th job, the integer Ti 
(1≤Ti≤1000) indicates the time in days it takes the shoemaker to finish the job. 



224  ◾  Algorithm Design Practice for Collegiate Programming

For each day of delay before starting to work for the i-th job, the shoemaker must 
pay a fine of Si (1≤Si≤10000) cents. Your task is to help the shoemaker, by writing 
a program to find the sequence of jobs with minimal total fine.

Input

The input begins with a single positive integer on a line by itself, indicating the 
number of the cases following, each of them as described below. This line is fol-
lowed by a blank line, and there is also a blank line between two consecutive 
inputs.

The first line of input contains an integer N (1≤N≤1000). The next N lines each 
contain two numbers: the time and the fine of each task in order.

Output

For each test case, the output must follow the description below. The outputs of two 
consecutive cases will be separated by a blank line.

Your program should print the sequence of jobs with minimal fine. Each job 
should be represented by its number in input. All integers should be placed on only 
one output line and separated by one space. If multiple solutions are possible, print 
the first lexicographically.

Sample Input Sample Output

1

4
3  4
1  1000
2  2
5  5

2  1  3  4

Source:	 Second Programming Contest of Alex Gevak, 2000

ID for Online Judge: UVA 10026

  Analysis

“For each day of delay before starting to work for the ith job, the shoemaker must 
pay a fine of Si cents” means “For each day of delay after starting to work for the ith 
job, the shoemaker must pay a fine of Si/Ti cents”. Si/Ti is the measurement of influ-
ence for the ith job, 1≤i≤n. Therefore, in order to pay a minimal fine, the job whose 



Practice for Greedy Algorithms  ◾  225

measurement of influence is higher must be finished earlier. The greedy algorithm 
is as follows:

The metric for jobs is their measurement of influence. The n jobs are sorted 
using their measurement of influence as the first key (in ascending order), and the 
numbers of jobs as the second key (in descending order). The sorted sequence is the 
sequence of jobs with minimal fine.

  Program

#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxN=1010;    // the upper limit of the number of 
jobs
struct job
{
	 double a;    // measurement of influence for the job
	 int num;    // the number of a job
} p[maxN];    // the sequence of jobs with minimal fine
int n;
void init()
{
	 double a1,a2;
	 scanf("%d",&n);    // n jobs
	 for (int i=1;i<=n;i++)     // the time and fine of each task
	 {
		  scanf("%lf%lf",&a1,&a2);
		  p[i].a=a2/a1;p[i].num=i;    // Calculate Si/Ti, and record 
the number
	 }
}
bool cmp(job x,job y)    // sort two jobs using their 
measurement of influence as the first key (in ascending 
order), and numbers of jobs as the second key (in descending 
order)
{
	 if ((x.a>y.a)||((x.a==y.a)&&(x.num<y.num))) return true;
	 return false;
}
void work() 



226  ◾  Algorithm Design Practice for Collegiate Programming

{
	 sort(p+1,p+n+1,cmp);    // sort n jobs using their 
measurement of influence as the first key (in ascending 
order), and numbers of jobs as the second key (in descending 
order)
	 for (int i=1;i<n;i++) printf("%d ",p[i].num);    // Output 
the result
	 printf("%d\n",p[n].num);
}
int main()
{
	 int t;
	 scanf("%d",&t);    //the number of test cases
	 for (int i=1;i<=t;i++)    // deal with each test case
	 {
		  if (i>1) printf("\n");
		  init();
		  work();
	 }
	 return 0;
}

5.2.2  Add All

The problem name reflects your task; just add a set of numbers. But you may feel 
that it is not interesting to write a C/C++ program just to add a set of numbers. 
Such a problem will simply question your erudition. So, let’s add some flavor of 
ingenuity to it.

The addition operation requires cost now, and the cost is the summation of 
those two numbers to be added. So, to add 1 and 10, you need a cost of 11. If you 
want to add 1, 2 and 3, there are several ways:

	

1 2 3, cost 3 1 3 4, cost 4 2 3 5, cost 5
3 3 6, cost 6 2 4 6, cost 6 1 5 6, cost 6
Total 9 Total 10 Total 11

+ = = + = = + = =
+ = = + = = + = =

= = =

I hope you have already understood your mission, to add a set of integers so that 
the cost is minimal.

Input

Each test case will start with a positive number, N (2≤N≤5000) followed by N posi-
tive integers (all are less than 100000). Input is terminated by a case where the value 
of N is zero. This case should not be processed.



Practice for Greedy Algorithms  ◾  227

Output

For each case, print the minimum total cost of addition in a single line.

Sample Input Sample Output

3
1  2  3
4
1  2  3  4
0

9
19

Source:	 UVa Regional Warmup Contest 2005

ID for Online Judge: UVA 10954

  Analysis

Initially there is a set of n positive numbers. Each time, two positive numbers are 
deleted from the set, and the sum of the two numbers is added into the set. The 
process repeats n−1 times. The final sum is the total cost of addition. The problem 
requires you to calculate the minimum total cost of the addition.

Obviously, in order to get the minimum total cost of addition, the greedy choice 
is to select two minimal positive numbers each time. Therefore a min heap is suitable 
to represent the set.

  Program

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxN=5010;    //the upper limit of the size of the set
int n,a[maxN];    // n: the size of the heap, a[]: min heap
void sift(int i)    // the subtree with root i is adjusted as 
a min heap
{



228  ◾  Algorithm Design Practice for Collegiate Programming

	 a[0]=a[i];
	 int k=i<<1;  
	 while (k<=n)
	 {
		  if ((k<n)&&(a[k]>a[k+1])) k++;  
		  if (a[0]>a[k]) { a[i]=a[k];i=k;k=i<<1;} else k=n+1; 
	 }
	 a[i]=a[0]; 
}
void work()     //Calculate and output the result
{
	 for (int i=n >> 1;i;i--) sift(i);    // set up a min heap 
	 long long ans=0; 
	 while (n!=1)   
	 {
		  swap(a[1],a[n--]); 
		  sift(1);    // adjust the heap
		  a[1]+=a[n+1];
		  ans+=a[1];
		  sift(1);    // adjust the heap
	 }
	 cout << ans << endl;    //Output the result
}
int main()
{
	 while (scanf("%d",&n),n)  
	 {
		  for (int i=1;i<=n;i++) scanf("%d",&a[i]);    // Input n 
positive numbers
		  work();    // calculate and output the minimum total cost 
of addition
	 }
	 return 0;
}

5.2.3  Wooden Sticks

There is a pile of n wooden sticks. The length and weight of each stick are known 
in advance. The sticks are to be processed by a woodworking machine in one-by-
one fashion. It needs some time, called setup time, for the machine to prepare for 
processing a stick. The setup times are associated with cleaning operations and 
changing tools and shapes in the machine. The setup times of the woodworking 
machine are given as follows:

1.	The setup time for the first wooden stick is one minute.
2.	Right after processing a stick of length l and weight w, the machine will 

need no setup time for a stick of length l ' and weight w' if l≤l ' and w≤w'. 
Otherwise, it will need one minute for setup.



Practice for Greedy Algorithms  ◾  229

You are to find the minimum setup time to process a given pile of n wooden 
sticks. For example, if you have five sticks whose pairs of length and weight are (9 , 4) , 
(2 , 5) , (1 , 2) , (5 , 3) , and (4 , 1) , then the minimum setup time should be two 
minutes since there is a sequence of pairs (4 , 1) , (5 , 3) , (9 , 4) , (1 , 2) , (2 , 5).

Input

The input consists of T test cases. The number of test cases (T  ) is given in the first 
line of the input file. Each test case consists of two lines: The first line has an integer 
n, 1≤n≤5000, that represents the number of wooden sticks in the test case, and the 
second line contains 2n positive integers l1, w1, l2, w2,……, ln, wn, each of magni-
tude at most 10000, where li and wi are the length and weight of the ith wooden 
stick, respectively. The 2n integers are delimited by one or more spaces.

Output

The output should contain the minimum setup time in minutes, one per line.

Sample Input Sample Output

3
5
4  9  5  2  2  1  3  5  1  4
3
2  2  1  1  2  2
3
1  3  2  2  3  1

2
1
3

Source:	 ACM Taejon 2001

IDs for Online Judges: POJ 1065, ZOJ 1025, UVA 2322

  Analysis

Right after processing a stick of length l and weight w, the machine will need no 
setup time for a stick of length l ' and weight w' if l≤l ' and w≤w'. Otherwise, it will 
need one minute for setup. In order to reduce the setup time, the strategy for greedy 
choice is as follows:

For unprocessed sticks, the stick with minimal length is selected first. If there 
are more than one stick with minimal length, the stick with minimal weight is 
selected.



230  ◾  Algorithm Design Practice for Collegiate Programming

First, all sticks are sorted. A stick is represented as (l, w), where l is its length, 
and w is its weight. Sticks are sorted using l as the first key and w as the second key. 
That is, (l1,w1)<(l2,w2), if l1<l2||(l1==l2&&w1<w2).

After sorting sticks, the greedy choice is processed as follows:
Initially, setup time c=0, and stick 0 is as the first unprocessed stick in the 

sequence. Then the following steps repeat.

Step 1: In the sequence, all unprocessed sticks after stick 0 which can be pro-
cessed without setup time are set as processed. That is to say, the machine will 
need no setup time for these sticks, if stick 0 is processed.

Step 2: Setup time c++.
Step 3: Search the first unprocessed stick in the sequence. If there is no unpro-

cessed stick, then output the minimum setup time; else set the first unprocessed 
stick as stick 0, and return to Step 1.

  Program

#include <iostream>   
using namespace std;  
const int N = 5000;  
struct node{    // Struct of stick
    node& operator=(node &n){  
             l=n.l, w=n.w, isUsed=n.isUsed;    //the length, 
weight, flag that is processed or not for stick n
            return *this;  
    }  
    bool operator>(node &n){    //compare sticks
        return l>n.l || (l==n.l && w>n.w);  
    }  
    void swap(node &n){    //exchange sticks
        node tmp=*this;  
        *this=n;  
        n=tmp;  
    }  
    int l, w;  
    bool isUsed;  
}A[N];    //sequence of sticks A[ ]
int main()  
{  
    int t, n, i, j, k; 
    cin >> t;    //number of test cases
    for(i=0;i<t;i++){    // test cases are processed one by one
        cin >> n;  



Practice for Greedy Algorithms  ◾  231

        for(j=0;j<n;j++){    //Input length, weight for all 
sticks
            cin >> A[j].l >> A[j].w;  
            A[j].isUsed=false;  
        }  
        for(j=1;j<n;j++)    //Sorting A
            for(k=1;k<=n-j;k++)  
                if(A[k-1] > A[k])  
                    A[k-1].swap(A[k]);  
        node cur = A[0];    // stick 0 is as the last 
processed stick cur
        A[0].isUsed=true;  
        int c=0;    //Initialize setup time
        while(true){  
            for(j=1;j<n;j++)    //set sticks whose lengths and 
weights are larger than the current stick as processed
            if(A[j].isUsed==false)  
                if(A[j].l >= cur.l && A[j].w >= cur.w){  
                    A[j].isUsed=true;  
                    cur = A[j];  
                }  
            c++;    //setup time+1
            for(j=1;j<n;j++) if(A[j].isUsed==false){  //Search 
the first unprocessed stick
                cur = A[j];  
                A[j].isUsed=true;  
                break;  
            }  
            if(j==n) break;    //all sticks are processed
        }  
        cout << c << endl;    // output the minimum setup time
    }  
    return 0;  
}  

5.2.4  Radar Installation

Assume the coast is an infinite straight line. Land is on one side of the coast, and the 
sea is on the other. Each small island is a point located on the seaside. And any radar 
installation, located on the coast, can only cover d distance, so an island in the sea 
can be covered by a radius installation, if the distance between them is at most d.

We use the Cartesian coordinate system, defining the coast as the x-axis. The 
seaside is above the x-axis, and the land side is below. Given the position of each 
island in the sea, and given the distance of the coverage of the radar installation, 
your task is to write a program to find the minimal number of radar installations 
to cover all the islands. Note that the position of an island is represented by its x−y 
coordinates.



232  ◾  Algorithm Design Practice for Collegiate Programming

Input

The input consists of several test cases. The first line of each case contains two 
integers n (1≤n≤1000) and d, where n is the number of islands in the sea and d is 
the distance of coverage of the radar installation. This is followed by n lines, each 
containing two integers representing the coordinate of the position of each island. 
Then a blank line follows to separate the cases. The input is terminated by a line 
containing a pair of zeros.

Output

For each test case, output one line consisting of the test case number followed by 
the minimal number of radar installations needed. “−1” installation means no solu-
tion for that case.

Sample Input Sample Output

3  2
1  2
-3  1
2  1

1  2
0  2

0  0

Case 1: 2
Case 2: 1

Source:	 ACM Beijing 2002

IDs for Online Judge: POJ 1328, ZOJ 1360, UVA 2519

  Analysis

Each small island is represented as a segment on the coast. If a radar locates on the 
segment, the island can be covered by the radar. Suppose the Cartesian coordinate 
for the island is (x, y). If a radar locates on the coast from (x−h, 0) to (x+h, 0), where 

2 2= −h d y , the island can be covered. Therefore, the island is represented as a 
segment from (x−h, 0) to (x+h, 0). It can be shown as in Figure 5.3.

Suppose there are n islands. First, n islands are represented as n segments. 
Second, right endpoints are as the first key (in ascending order), left endpoints are 
as the second key (in ascending order), and the n segments are sorted. Finally, all 
sorted segments are scanned one by one. If the current segment isn’t covered by a 
radar, a radar locates at the right endpoint for the segment.



Practice for Greedy Algorithms  ◾  233

  Program

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;
const int maxn = 1010;    //the upper limit of number of segments 
struct tt {
        double l,r;    // left, right pointer 
} p[maxn];    // the sequence of segments, where the i-th 
island is represented as segment [p[i].l, p[i].r]
int n,d;    //n: number of islands, any radar covers d distance
bool flag;
void init( ) {    //Input positions of islands, and calculate 
corresponding segments
      flag = true;
      int i;
      double x,y;
      for(i = 1 ; i <= n ; ++i){
            scanf("%lf%lf",&x,&y);
            if(d < y){    // if d<y, no solution 
                flag = false;
            }
            double h = sqrt(d*d - y*y); 
            p[i].l = x - h; 
            p[i].r = x + h;
        }
}
bool cmp (tt a, tt b){    //compare segment a and segment b
     if( b.r - a.r > 10e-7){
                 return true;
      }
     if(abs(a.r - b.r) < 10e-7 && ( b.l - a.l > 10e-7)) {

(x – h, 0) (x + h, 0)

d d

island (x, y)

h = d2 – y2

(x, 0)

Figure 5.3



234  ◾  Algorithm Design Practice for Collegiate Programming

           return true;
      }
     return false;
}
void work( ) {    //Calculate and output the minimal number of 
radar installations needed
if( d == -1){ printf("-1\n");  return ;  } 
sort(p+1,p+1+n,cmp);    // Sorting segments
int ans = 0;   // Initialize the minimal number of radar 
installations needed
double last = -10000.0;   //Initialize the position of radar 
installation
int i;
for(i = 1 ; i <= n ; ++i){    // search segments one by one
     if(p[i].l <= last){    //there is a radar on the segment
             if(p[i].r <= last){ 
                       last = p[i].r;
              }
      continue;
      }
      ans++;    // a radar is installed on the right endpoint
      last = p[i].r;
}
printf("%d\n",ans);    //Output
}
int main(){
int counter = 1;
while(scanf("%d%d",&n,&d)!=EOF,n||d){    // Input test cases
    printf("Case %d: ",counter++);    // the number of test cases 
    init();  
    if(!flag){
         printf("-1\n");
      }else{
         work();
      }
}
return 0;
}

5.3 � Greedy Algorithms Used with Other 
Methods to Solve P-Problems

In the real world, problems that we can solve can be classified into two classes:

P-Problems: P-Problems are polynomially solvable problems. That is, a P-Problem 
can be solved by an algorithm whose running time is bounded by a polynomial.

NP-Complete Problems: NP-Complete Problems cannot be solved in polyno-
mial time.



Practice for Greedy Algorithms  ◾  235

In this section, practices for greedy algorithms used with other methods to solve 
P-Problems are shown.

5.3.1  Color a Tree

Bob is very interested in the data structure of a tree. A tree is a directed graph in 
which a special node is singled out, called the “root” of the tree, and there is a 
unique path from the root to each of the other nodes.

Bob intends to color all the nodes of a tree with a pen. A tree has N nodes, and 
these nodes are numbered 1, 2, …, N. Suppose coloring a node takes one unit of time, 
and after finishing coloring one node, he is allowed to color another. Additionally, 
he is allowed to color a node only when its father node has been colored. Obviously, 
Bob is only allowed to color the root on the first try.

Each node has a “coloring cost factor”, Ci. The coloring cost of each node 
depends both on Ci and the time when Bob finishes the coloring of this node. At 
the beginning, the time is set to 0. If the finishing time of coloring node i is Fi, then 
the coloring cost of node i is Ci×Fi.

For example, a tree with five nodes is shown in Figure 5.4. The coloring cost 
factors of each node are 1, 2, 1, 2, and 4. Bob can color the tree in the order 1, 3, 5, 
2, 4, with the minimum total coloring cost of 33.

Given a tree and the coloring cost factor of each node, please help Bob to find 
the minimum possible total coloring cost for coloring all the nodes.

Input

The input consists of several test cases. The first line of each case contains two 
integers N and R (1≤N≤1000, 1≤R≤N ), where N is the number of nodes in the tree 
and R is the node number of the root node. The second line contains N integers, 
the i-th of which is Ci (1≤Ci≤500), the coloring cost factor of node i. Each of the 
next N−1 lines contains two space-separated node numbers V1 and V2, which are 
the endpoints of an edge in the tree, denoting that V1 is the father node of V2. No 
edge will be listed twice, and all edges will be listed.

1

2 3

4 5

C2 = 2 C3 = 1

C1 = 1

C5 = 4C4 = 2

Figure 5.4



236  ◾  Algorithm Design Practice for Collegiate Programming

A test case of N=0 and R=0 indicates the end of input, and should not be 
processed.

Output

For each test case, output a line containing the minimum total coloring cost 
required for Bob to color all the nodes.

Sample Input Sample Output

5  1
1  2  1  2  4
1  2
1  3
2  4
3  5
0  0

33

Source:	 ACM Beijing 2004

IDs for Online Judge: POJ 2054, ZOJ 2215, UVA 3138

  Analysis

For each node, the coloring cost is based on its coloring cost factor and the time at 
which Bob finishes coloring it. The coloring cost factor for each node is given. The 
key to the problem is determining the sequence coloring nodes.

Because Bob is allowed to color a node only when the node’s father has been 
colored, the pointer pointing to its father for each node should be set up when edges 
are input. A DFS is used to calculate pointers pointing to its father for each node.

The sequence coloring nodes can be regarded as a merger process. For a father-
child relationship (k, x), node x can be colored only after its father k is colored. 
If there are several children, the sequence coloring nodes should be determined.

Suppose now[i] is the average for coloring cost factors for nodes which are 
merged into node i, and cnt[i] is the number of nodes which are merged into node i. 
Initially now[i]= the coloring cost factor for node i, cnt[i]=1(1≤i≤n). After node x 

is colored, it is merged into node k, = × + ×
+

[ ] [ ] [ ] [ ] [ ]
[ ] [ ]

now k
now k cnt k now x cnt x

cnt k cnt x
, 

and cnt[k]=cnt[k]+cnt[x]. Such a merge process is performed n−1 times. Each time, 
the criteria for the merger is selecting a uncolored node whose now value is maxi-
mal. Obviously, it is a greedy strategy. The implementation process is as follows.



Practice for Greedy Algorithms  ◾  237

n-1 merger processes are run:
Selecting an unmerged node k (isn’t the root) whose now value is maximal;
Setting the merger mark for node k;
Determining the sequence for coloring node k and its father f;
Searching node f which is the nearest for k and isn’t merged based on the father 

pointer for k, and adjusting now[f ] and cnt[f ];

From the root, based on the coloring sequence, calculating the minimum total 
coloring cost required for Bob to color all the nodes.

	
∑= ×

=

ans i i
i

n

the coloring cost factor for node in the coloring sequence.
1

  Program

#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxN=1100;    // the upper limit for the number of nodes
int root,n,fa[maxN],l[maxN],next[maxN],cnt[maxN],c[maxN],e[maxN]
[maxN];
// root: the root of the tree; n: the number of nodes; fa[ ]: 
each node’s father; next[ ]: the coloring sequence, where the 
node is colored after node x is colored is node next[x]; cnt[ ]: 
the number of merged nodes for each node; c[ ]: coloring cost 
factor; e[ ][ ]: the adjacency matrix for the tree
double now[maxN];    //now[ ]: coloring costs for nodes after 
merger
void init()    // Input coloring cost factors for n nodes and 
edges, and construct e[ ][ ]
{
	 int x,y;
	 memset(e,0,sizeof(e)); 
	 for (int i=1;i<=n;i++) scanf("%d",&c[i]); 
	 for (int i=1;i<n;i++) { scanf("%d%d",&x,&y);e[x][++e[x]
[0]]=y;e[y][++e[y][0]]=x;}
}
void dfs(int x)    //calculating the pointer pointing to its 
father for each node



238  ◾  Algorithm Design Practice for Collegiate Programming

{
	 int y;
	 for (int i=1;i<=e[x][0];i++)    // for each child of x, 
setting its father pointer x
	 {
		  y=e[x][i];
		  if (fa[y]==0) { fa[y]=x;dfs(y);}
	 }
}
void addedge(int x,int y)    //determine the coloring sequence 
for x and y, that is, y is colored after x is colored
{
	 while (next[x]) x=next[x];
	 next[x]=y;
}
void work()    //calculate and output the minimum total 
coloring cost
{
	 memset(fa,0,sizeof(fa));    //initialization
	 fa[root]=-1;
	 dfs(root);	 // Traverse the tree whose root is root, and 
determine father-children relationships
	 for (int i=1;i<=n;i++) now[i]=c[i];    // initialization
	 bool flag[maxN];    // marks for merging nodes
	 int k,f;
	 double max;
	 memset(flag,1,sizeof(flag));  memset(next,0,sizeof(next));  
	 for (int i=1;i<=n;i++) cnt[i]=1; 
	 for (int i=1;i<n;i++)    // n−1 merger processes
	 {
		  max=0;    // Selecting an unmerged node k (isn’t the 
root) whose now value is maximal
		  for (int j=1;j<=n;j++) if ((j!=root)&&(flag[j])&&(max<now 
[j])) { max=now[j];k=j;}
			   f=fa[k];addedge(f,k);    // Determining the sequence 
for coloring node k and its father f;
		  while (!flag[f]) f=fa[f];    // Searching node f which is 
the nearest for k and isn’t merged based on the pointer 
pointing to the father for k, that is, the father node for k 
after merger
		  flag[k]=false;    // Set the merger mark for node k 
		  now[f]=(now[f]*cnt[f]+now[k]*cnt[k])/(cnt[f]+cnt[k]);    
// adjusting now[f] 
		  cnt[f]+=cnt[k];    // adjusting cnt[f] 
	 }
	 int p=root,ans=0;    // calculate minimum total coloring cost
	 for (int i=1;i<=n;i++)
	 {
		  ans+=i*c[p];p=next[p];
	 }



Practice for Greedy Algorithms  ◾  239

	 printf("%d\n",ans);    // output the minimum total coloring 
cost 
}
int main()
{
	 while (scanf("%d%d",&n,&root),n+root)    //Input
	 {
		  init(); 
		  work();    // calculate and output the minimum total 
coloring cost
	 }
	 return 0;
}

5.3.2  Copying Books

Before the invention of book printing, it was very hard to make a copy of a 
book. All the contents had to be rewritten by hand by so-called scribers. The 
scriber was given a book, and after several months he finished creating a copy of it. 
One of the most famous scribers lived in the 15th century and his name was 
Xaverius Endricus Remius Ontius Xendrianus (Xerox). Anyway, the work was 
very annoying and boring. And the only way to speed it up was to hire more 
scribers.

Once upon a time, there was a theater ensemble that wanted to play famous 
antique tragedies. The scripts of these plays were divided into many books, and 
actors needed more copies of them, of course. So they hired many scribers to make 
copies of these books. Imagine you have m books (numbered 1, 2 … m) that may 
have different numbers of pages (p1, p2, ……, pm), and you want to make one copy 
of each of them. Your task is to divide these books among k scribers, k≤m. Each 
book can be assigned to a single scriber only, and every scriber must get a con-
tinuous sequence of books. That means, there exists an increasing succession of 
numbers 0=b0<b1<b2<…<bk-1≤bk=m such that the i-th scriber gets a sequence of 
books with numbers between bi−1+1 and bi. The time needed to make a copy of all 
the books is determined by the scriber who was assigned the most work. Therefore, 
our goal is to minimize the maximum number of pages assigned to a single scriber. 
Your task is to find the optimal assignment.

Input

The input consists of N cases. The first line of the input contains only positive 
integer N. Then follow the cases. Each case consists of exactly two lines. At 
the first line, there are two integers m and k, 1≤k≤m≤500. At the second line, 
there are integers p1, p2, … pm separated by spaces. All these values are positive and 
less than 10000000.



240  ◾  Algorithm Design Practice for Collegiate Programming

Output

For each case, print exactly one line. The line must contain the input succession 
p1, p2, … pm divided into exactly k parts, such that the maximum sum of a single 
part should be as small as possible. Use the slash character (‘/’) to separate the parts. 
There must be exactly one space character between any two successive numbers and 
between the number and the slash.

If there is more than one solution, print the one that minimizes the work 
assigned to the first scriber, and then to the second scriber, etc. But each scriber 
must be assigned at least one book.

Sample Input Sample Output

2
9 3
100 200 300 400 500 600 700 800 900
5 4
100 100 100 100 100

100 200 300 400 500 / 600 700 / 800 900
100 / 100 / 100 / 100 100

Source: ACM Central European Regional Contest 1998

IDs for Online Judge: POJ 1505, ZOJ 2002, UVA 714

  Analysis

Binary search can be used to solve the problem. If the current maximum number of pages 
assigned to a single scriber x is feasible, we can reduce it; otherwise, we can increase it.

The key to the problem is to determine whether the current maximum number 
of pages assigned to a single scriber x is feasible or not. Because numbers of pages 
assigned to scribers are increasing from left to right, the greedy strategy is as fol-
lows. From back to front, every book is scanned, and the criteria that the current 
book can be assigned to the current scriber is that after the book is assigned to the 
scriber, the sum of numbers of pages assigned to the scriber isn’t more than x, and 
every remainder scriber can be assigned at least one book. If the current book meets 
the criteria, the book is assigned to the current scriber; else the book is assigned to a 
new scriber, and the new scriber becomes the current scriber. A slash character (‘/’) 
is used to separate the two scribers’ work.

Obviously, if k scribers can’t finish copies for m books, then the current maxi-
mum number of pages assigned to a single scriber x isn’t feasible; else the current 
maximum number of pages assigned to a single scriber x is feasible.

Binary search is used to find the minimal maximum number of pages assigned 
to a single scriber min. The above greedy algorithm is used to find the optimal 
assignment.



Practice for Greedy Algorithms  ◾  241

  Program

#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxN=510;    //the upper limit of the number of 
books
int n,m,a[maxN];    //n books, m scribers, a[]:the sequence of 
books
long long sum;    // sum of pages
bool flag[maxN];    // flag to separate books

void init()    //Input the current test case
{
	 sum=0;
	 scanf("%d%d",&n,&m);    // Input numbers of books and scribers
	 for (int i=1;i<=n;i++)    // Input the numbers of pages, and 
sum
	 {
		  scanf("%d",&a[i]);sum+=a[i];
	 }
}
bool judge(long long lmt)    // determine whether the current 
maximum number of pages assigned to a single scriber lmt is 
feasible or not
{    // determine whether the i-th book needs a new scriber or 
not: isn’t more than lmt, every remainder scriber can be 
assigned at least one book
// from back to front
	 memset(flag,0,sizeof(flag));
	 int cnt=m;    // start from the mth scriber
	 long long now=0;    //number of pages for the current 
scriber
	 for (int i=n;i;i--)    // scan books
	 {
		  if ((now+a[i]>lmt)||(i<cnt))	    // large than lmt, or 
every remainder scriber can’t be assigned at least one book
		  {
			   now=a[i];cnt--;flag[i]=true;    // add a new scriber
			   if (cnt==0) return false;    //need more scribers, for 
lmt
		  }



242  ◾  Algorithm Design Practice for Collegiate Programming

		  else now+=a[i];    // accumulation
	 }
	 return true;    // lmt is feasible
}

void work()    //calculate and output the solution to the 
current test case
{
	 long long l=0,r=sum,mid;    // initial interval [l, sum], 
middle pointer mid
	 for (int i=1;i<=n;i++) if (l<a[i]) l=a[i];    // the maximal 
number of pages in these books
	 while (l!=r)    //Binary search in [l, r]
	 {
		  mid=(l+r)>>1;    // middle pointer mid
		  if (judge(mid)) r=mid;else l=mid+1;    // if mid is 
feasible, left subinterval; else right subinterval
	 }
	 judge(l);    //calculate

	 for(int i=1;i<=n;i++)     // output
	 {
		  printf("%d",a[i]);  
		  if (i<n) printf(" ");
		  if (flag[i]) printf("/ ");  
	 }
	 printf("\n");
}
int main()
{
	 int t;
	 scanf("%d",&t);    // the number of test cases
	 for (int i=1;i<=t;i++)    // deal with every test case
	 {
		  init();    // the i-th test case
		  work();    //calculate and output the solution to the 
i-th test case
	 }
	 return 0;
}

5.4  Problems
5.4.1  Stripies

Our chemical biologists have invented a new very useful form of life called stripies 
(in fact, they were first called in Russian “polosatiki”, but the scientists had to invent 
an English name to apply for an international patent). The stripies are transparent 



Practice for Greedy Algorithms  ◾  243

amorphous amoebiform creatures that live in flat colonies in a jelly-like nutrient 
medium. Most of the time the stripies are moving. When two of them collide, a 
new stripie appears instead. Long observations made by our scientists enabled them 
to establish that the weight of the new stripie isn’t equal to the sum of the weights 
of the two disappeared stripies that collided; nevertheless, they soon learned that 
when two stripies of weights m1 and m2 collide, the weight of the resulting stripie 
equals 2×sqrt(m1×m2). Our chemical biologists are very anxious to know to what 
limits the total weight of a given colony of stripies can decrease.

You are to write a program that will help them to answer this question. You may 
assume that three or more stripies never collide together.

Input

The first line of the input contains one integer N (1≤N≤100)—the number of strip-
ies in a colony. Each of the next N lines contains one integer ranging from 1 to 
10000—the weight of the corresponding stripie.

Output

The output must contain one line with the minimal possible total weight of the 
colony with the accuracy of three decimal digits after the point.

Sample Input Sample Output

3
72
30
50

120.00

Source:	 ACM Northeastern Europe 2001, Northern Subregion

IDs for Online Judge: POJ 1862, ZOJ 1543, Ural 1161

  Hint

Suppose that the weights of n stripies are m1, m2, …, mn, respectively. After n−1 
collisions, the total weight of the colony is as follows.

	
2 ( ) 1

2
.1

1 2

1
2

3 2

1
21

=






−

−
−W m m m mn

n n
n



244  ◾  Algorithm Design Practice for Collegiate Programming

Obviously, if m1, m2, …, mn are sorted in ascending order, the total weight of 
the colony W is minimal.

5.4.2  The Product of Digits

Your task is to find the minimal positive integer number Q so that the product of 
the digits of Q is exactly equal to N.

Input

The input contains the single integer number N (0≤N≤109).

Output

Your program should print to the output only the number Q. If such a number does 
not exist, print −1.

Sample Input Sample Output

10 25

Source: USU Local Contest 1999

IDs for Online Judge: Ural 1014

  Hint

The criteria for factorization of N is to produce factors as big as possible.
There are two special cases: If N==0, then Q=0; and if N==1, then Q=1.
Otherwise, the greedy strategy is used as follows. N is factorized from 9 to 2. 

First, factors 9 are produced, as many as possible; second, factors 8 are produced, 
as many as possible; ……; and so on. If the final result for the factorization is not 1, 
then there is no solution; else Q is the positive integer that lists the factors from 
small to large.

5.4.3  Democracy in Danger

In one of the countries of the Caribbean basin, all decisions were accepted by the 
simple majority of votes at the general meeting of citizens (fortunately, there were 
not many of them). One of the local parties, aspiring to come to power as lawfully 
as possible, got its way in putting into effect some reform of the election system. 



Practice for Greedy Algorithms  ◾  245

The main argument was that the population of the island recently had increased, 
and it was no longer easy to hold general meetings.

The essence of the reform is as follows. From the moment of the reform coming 
into effect, all the citizens were divided into K (maybe not equal) groups. Votes on 
every question were to be held then in each group; moreover, the group was said 
to vote “for” if more than half of the group had voted “for”; otherwise, it was said 
to vote “against”. After the voting in each group, a number of the group that had 
voted “for” and “against” was calculated. The answer to the question was positive if 
the number of groups that had voted “for” was greater than the half of the general 
number of groups.

At first the inhabitants of the island accepted this system with pleasure. But 
when the first delights dispersed, some negative properties became obvious. It 
appeared that supporters of the party that had introduced this system could influ-
ence the formation of groups of voters. Due to this, they had an opportunity to put 
into effect some decisions without a majority of voters voting “for” it.

Let’s consider three groups of voters, containing five, five, and seven persons, 
respectively. Then it is enough for the party to have only three supporters in each 
of the first two groups. So it would be able to put into effect a decision with the 
help of only six votes “for” instead of the nine that would be necessary in the case 
of general votes.

You are to write a program which would determine according to the given 
partition of the electors the minimal number of supporters of the party, sufficient 
for putting into effect of any decision, with some distribution of those supporters 
among the groups.

Input

In the first line, only an odd integer K—a quantity of groups—is written (1≤K≤101). 
In the second line, there are written K odd integers, separated with a space. Those 
numbers define a number of voters in each group. The population of the island does 
not exceed 9999 persons.

Output

You should write a minimal quantity of supporters of the party that can put into 
effect any decision.

Sample Input Sample Output

3
5  7  5

6

Source: Autumn School Contest 2000

IDs for Online Judge: Ural 1025



246  ◾  Algorithm Design Practice for Collegiate Programming

  Hint

K groups are sorted in ascending order of the numbers of voters in groups. There are 

K groups. Therefore, the party needs 
2

1





+K  groups voting “for”. If there are n 

voters in a group, the party needs 
2

1





+n  supporters in the group. Therefore, the 

minimal quantity of supporters of the party is that there are just over half 

supporters for the party in the first 
2

1





+K  groups.

5.4.4  Box of Bricks

Little Bob likes playing with his box of bricks. He puts the bricks one upon another 
and builds stacks of different heights. “Look, I’ve built a wall!”, he tells his older sis-
ter Alice. “Nah, you should make all stacks the same height. Then you would have 
a real wall”, she retorts. After a little consideration, Bob sees that she is right. So he 
sets out to rearrange the bricks, one by one, such that all stacks are the same height 
afterwards. But since Bob is lazy, he wants to do this with the minimum number of 
bricks moved, as shown in Figure 5.5. Can you help?

Input

The input consists of several data sets. Each set begins with a line containing the 
number n of stacks Bob has built. The next line contains n numbers, the heights hi 
of the n stacks. You may assume 1≤n≤50 and 1≤hi≤100.

The total number of bricks will be divisible by the number of stacks. Thus, it 
is always possible to rearrange the bricks such that all stacks have the same height.

The input is terminated by a set starting with n=0. This set should not be processed.

Output

For each set, first print the number of the set, as shown in the sample output. Then 
print the line “The minimum number of moves is k.”, where k is the minimum num-
ber of bricks that have to be moved in order to make all the stacks the same height.

Figure 5.5



Practice for Greedy Algorithms  ◾  247

Output a blank line after each set.

Sample Input Sample Output

6
5  2  4  1  7  5
0

Set #1
The minimum number of moves is 5.

Source:	 ACM Southwestern European Regional Contest 1997

IDs for Online Judge: POJ 1477, ZOJ 1251, UVA 591

  Hint

Suppose the average value of 1
∑

= =avg

h

n

i

i

n

. That is, avg is the heights of the n stacks 

after the bricks are moved.
The criteria that bricks in the i-th stack should be moved is as follows. If hi>avg, 

then hi−avg bricks should be moved in the stack. Therefore, the minimum number 

of bricks that have to be moved is ( | )
1

∑= − >
=

ans h avg h avgi i

i

n

.

5.4.5  Minimal Coverage

Given several segments of line (in the X axis) with coordinates [Li, Ri], you are to 
choose the minimal number of them, such that they would completely cover the 
segment [0, M].

Input

The first line is the number of test cases, followed by a blank line.
Each test case in the input should contain an integer M (1≤M≤5000), followed 

by pairs “Li Ri”(|Li|, |Ri|≤50000, i≤100000), each on a separate line. Each test case 
of input is terminated by pair “0 0”.

Each test case will be separated by a single line.

Output

For each test case, in the first line of output, your program should print the mini-
mal number of line segments which can cover segment [0, M]. In the following 



248  ◾  Algorithm Design Practice for Collegiate Programming

lines, the coordinates of segments, sorted by their left end (Li), should be printed 
in the same format as in the input. Pair “0 0” should not be printed. If [0, M ] 
cannot be covered by given line segments, your program should print “0” (without 
quotes).

Print a blank line between the outputs for two consecutive test cases.

Sample Input Sample Output

2

1
-1  0
-5  -3
2  5
0  0

1
-1  0
0  1
0  0

0

1
0  1

Source:	� USU Internal Contest March’2004

IDs for Online Judge: UVA 10020, Ural 1303

  Hint

All segments are sorted in ascending order of left ends as the first key, and right 
ends as the second key ((Li≤Li+1||((Li == Li+1)&&(Ri<Ri+1)), 1≤i≤the number of 
segments −1).

The criteria for selecting segments is selecting a segment whose right end is the 
farthest among segments whose left ends are covered.

The greedy algorithm is as follows:
Suppose that now is the end position that the current segment covers; and len is 

the farthest position that a segment k whose left end is covered can reach. Initially 
ans=now=len=0.

Every segment in the sorted sequence is analyzed one by one:

	    if  ((Li ≤now)&&(len<Ri)) {len= Ri; k=i;}
	    if  ((Li+1 >now)&&(now<len)) {now=len; segment k is as a 
new covered segment;}
       if (now≥m) output the result and exit;
If now<m after all segments are analyzed, then [0, M] cannot 
be covered by given segments.



Practice for Greedy Algorithms  ◾  249

5.4.6  Annoying Painting Tool

Perhaps you wonder what an annoying painting tool is? First of all, the painting 
tool we speak of supports only black and white. Therefore, a picture consists of a 
rectangular area of pixels, which are either black or white. Second, there is only one 
operation that can change the color of pixels:

Select a rectangular area of r rows and c columns of pixels, which is completely 
inside the picture. As a result of the operation, each pixel inside the selected rect-
angle changes its color (from black to white, or from white to black).

Initially, all pixels are white. To create a picture, the operation described above 
can be applied several times. Can you paint a certain picture which you have in mind?

Input

The input contains several test cases. Each test case starts with one line containing 
four integers n, m, r, and c. (1≤r≤n≤100, 1≤c≤m≤100), The following n lines each 
describe one row of pixels of the painting you want to create. The i-th line consists 
of m characters describing the desired pixel values of the i-th row in the finished 
painting (‘0’ indicates white, ‘1’ indicates black).

The last test case is followed by a line containing four zeros.

Output

For each test case, print the minimum number of operations needed to create the 
painting, or −1 if it is impossible.

Sample Input Sample Output

3  3  1  1
010
101
010
4  3  2  1
011
110
011
110
3  4  2  2
0110
0111
0000
0  0  0  0

4
6
-1

Source: Ulm Local 2007

IDs for Online Judge: POJ 3363



250  ◾  Algorithm Design Practice for Collegiate Programming

  Hint

The first thing to realize is that in an optimal solution, the painting operation is 
never applied more than once at the same position. Also, it doesn’t matter in which 
order the operations are done; therefore, we can do the painting operations from 
top to bottom, and from left to right.

Using these ideas, we can easily check if a painting operation at some position is 
required or not. Since the pixel in the top left corner of a selected area for the paint-
ing operation will not be changed by later operations, we just check if it already 
has the required color. If its color still needs to be changed, we have to apply the 
painting operation.

After we have applied all the painting operations, we need to check the pixels in 
the rightmost m−c columns and bottom n−r rows to see if they have their required 
color. If one of these pixels doesn’t have its required color, it is impossible to create 
the painting.

Since the size of the picture is at most 100×100, a naive implementation with 
O(n^4) runs in time. There exists an optimal solution which runs in O(n×m). The 
idea is to store how many operations have been applied with the top left corner in 
one of the first i rows and j columns. With this stored data, it is possible to answer 
in constant time how many operations covering a pixel have been applied.

5.4.7  Troublemakers

Every school class has its troublemakers—those kids who can make the teacher’s 
life miserable. On his own, a troublemaker is manageable, but when you put certain 
pairs of troublemakers together in the same room, teaching a class becomes very 
hard. There are n kids in Mrs. Shaida’s math class, and there are m pairs of trouble-
makers among them. The situation has gotten so bad that Mrs. Shaida has decided 
to split the class into two classes. Help her do it in such a way that the number of 
troublemaker pairs is reduced by at least a half.

Input

The first line of input gives the number of cases, N. N test cases follow. Each one 
starts with a line containing n (0≤n≤100) and m (0<m<5000). The next m lines 
will contain a pair of integers u and v meaning that when kids u and v are in the 
same room, they make a troublemaker pair. Kids are numbered from 1 to n.

Output

For each test case, output one line containing “Case #x:” followed by L—the num-
ber of kids who will be moved to a different class (in a different room). The next line 



Practice for Greedy Algorithms  ◾  251

should list those kids. The total number of troublemaker pairs in the two rooms 
must be at most m/2. If that is impossible, print “Impossible.” instead of L and an 
empty line afterwards.

Sample Input Sample Output

2
4  3
1  2
2  3
3  4
4  6
1  2
1  3
1  4
2  3
2  4
3  4

Case #1: 3
1  3  4
Case #2: 2
1  2

Source:	� Abednego’s Graph Lovers’ Contest, 2006

IDs for Online Judge: UVA 10982

  Hint

A graph is used to represent the problem, where kids in Mrs. Shaida’s math class 
are represented as vertices, and there are edges between each pair of troublemakers. 
Mrs. Shaida splits the class into two classes, s[0] and s[1], where the number of kids 
in s[1] is less than the number of kids in s[0].

The method that Mrs. Shaida uses to split the class into two classes is as 
follows:

For kid i (1≤i≤n), numbers of kids among kid 1 to kid i−1 who constitute a pair 
of troublemakers with kid i in s[0] and s[1] are calculated. If such a number in s[1] is 
less than such a number in s[0], the kid i is moved to s[1]; else the kid i stays in s[0].

The greedy algorithm is as follows.

For (i=1; i≤n; i++)
     Calculate the numbers of vertices which connect with 
vertice i in s[0] and s[1] from vertice 1 to vertice i−1;
     if (the number of such vertices in s[1]<the number of 
such vertices in s[0])
       vertice i is moved to s[1];
Finally, vertices in s[1] corresponds to kids moved to a 
different class (in a different room).



252  ◾  Algorithm Design Practice for Collegiate Programming

5.4.8  Constructing BST

BST (Binary Search Tree) is an efficient data structure for searching. In a BST, all 
the elements of the left subtree are smaller, and those of the right subtree are greater 
than the root. A typical example of BST is as shown in Figure 5.6.

Normally, we construct BST by successively inserting an element. In that case, 
the ordering of elements has great impact on the structure of the tree. Look at the 
following cases in Figure 5.7.

In this problem, you have to find the order of 1 to N integers such that the BST 
constructed by them has a height of at most H. The height of a BST is defined by 
the following relation:

1.	A BST having no node has height 0.
2.	Otherwise, it is equal to the maximum of the height of the left subtree and 

right subtree plus 1.

Again, several orders can satisfy the criterion. In that case, we prefer the 
sequence where smaller numbers come first. For example, for N=4, H=3, we want 
the sequence 1 3 2 4 rather than 2 1 4 3 or 3 2 1 4.

Input

Each test case starts with two positive integers N (1≤N≤10000) and H (1≤H≤30). 
Input is terminated by N=0, H=0. This case should not be processed. There can be 
at most 30 test cases.

10

5

1 6 11 15

13

Figure 5.6

4

3

2

1

1

2

3

4

1 1

2 4

2

41

3

Order: 4 3 2 1 Order: 1 2 3 4 Order: 3 4 2 1 or
 3 2 1 4 or
 3 2 4 1

Order: 2 1 4 3 or
 2 4 3 1 or
 2 4 1 3

Figure 5.7



Practice for Greedy Algorithms  ◾  253

Output

The output of each test case should consist of a line starting with “Case #: ” where 
# is the test case number. It should be followed by the sequence of N integers in 
the same line. There must not be any trailing space at the end of the line. If it is 
not possible to construct such a tree, then print “Impossible.”. (without the quotes).

Sample Input Sample Output

4  3
4  1
6  3
0  0

Case 1: 1  3  2  4
Case 2: Impossible.
Case 3: 3  1  2  5  4  6

Source:	� ACM ICPC World Finals Warmup 1, 2005

IDs for Online Judge: UVA 10821

  Hint

The problem requires you to output the Pre-order Traversal of a BST. Because 
smaller numbers come first in the sequence, the number for the root is as small as 
possible.

A BST with the height of at most H is constructed by the order of 1 to N 
integers. The number of nodes in its left subtree and right subtree is no more than 
2H-1−1. The criteria for the number of the root is as follows:

If the right subtree is a full subtree, the number for the root is N−(2H-1−1); else 
the number for the root is 1.

Then the problem is transferred and a BST with the height of at most H−1 is 
constructed by the order of 1 to root−1 integers, the BST is as the left subtree; and 
a BST with the height of at most H−1 is constructed by the order of root+1 to N, the 
BST is as the right subtree.

Obviously the greedy algorithm is a recursive algorithm.

  Program

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>



254  ◾  Algorithm Design Practice for Collegiate Programming

#include<cstring>
#include<algorithm>
using namespace std;
const int maxN=31;
int n,h,cnt,s[maxN];    //s[i]: the number of nodes for a full 
binary treeth height i
//function work is an in order traversal for a BST with height 
at most h, nodes from l to r 
void work(int l,int r,int h)
{
	 int m=max(l,r-s[h-1]);    //the number of root is as small 
as possible
	 printf("%d",m);
	 if (++cnt<n) printf(" ");
	 if (l<m) work(l,m-1,h-1);    // recursion for the left 
subtree
	 if (r>m) work(m+1,r,h-1);    // recursion for the right 
subtree
}
int main()
{
	 for (int i=0;i<=30;i++) s[i]=(1<<i)-1;
	 int t=0;
	 while (scanf("%d%d",&n,&h),n+h)
	 {
		  cnt=0;
		  printf("Case %d: ",++t);
		  if (s[h]<n) printf("Impossible.");else work(1,n,h); 
		  printf("\n");
	 }
	 return 0;
}

5.4.9  Gone Fishing

John is going on a fishing trip. He has h hours available (1≤h≤16), and there are n 
lakes in the area (2≤n≤25), all reachable along a single, one-way road. John starts at 
lake 1, but he can finish at any lake he wants. He can only travel from one lake to 
the next one, but he does not have to stop at any lake unless he wishes to. For each 
i=1, …, n −1, the number of five-minute intervals it takes to travel from lake i to 
lake i+1 is denoted ti (0<ti≤192). For example, t3=4 means that it takes 20 minutes 
to travel from lake 3 to lake 4. To help plan his fishing trip, John has gathered 
some information about the lakes. For each lake i, the number of fish expected 
to be caught in the initial five minutes, denoted as fi ( fi≥0), is known. Each five 
minutes of fishing decreases the number of fish expected to be caught in the next 
five-minute interval by a constant rate of di (di≥0). If the number of fish expected 
to be caught in an interval is less than or equal to di, there will be no more fish left 



Practice for Greedy Algorithms  ◾  255

in the lake in the next interval. To simplify the planning, John assumes that no 
one else will be fishing at the lakes to affect the number of fish he expects to catch.

Write a program to help John plan his fishing trip to maximize the number of 
fish expected to be caught. The number of minutes spent at each lake must be a 
multiple of five.

Input

You will be given a number of cases in the input. Each case starts with a line con-
taining n. This is followed by a line containing h. Next, there is a line of n integers 
specifying fi (1≤i≤n), then a line of n integers di (1≤i≤n), and finally, a line of n −1 
integers ti (1≤i≤n − 1). Input is terminated by a case in which n=0.

Output

For each test case, print the number of minutes spent at each lake, separated by 
commas, for the plan achieving the maximum number of fish expected to be caught 
(you should print the entire plan on one line, even if it exceeds 80 characters). This 
is followed by a line containing the number of fish expected.

If multiple plans exist, choose the one that spends as long as possible at lake 1, even 
if no fish are expected to be caught in some intervals. If there is still a tie, choose the one 
that spends as long as possible at lake 2, and so on. Insert a blank line between cases.

Sample Input Sample Output

2
1
10  1
2  5
2
4
4
10  15  20  17
0  3  4  3
1  2  3
4
4
10  15  50  30
0  3  4  3
1  2  3
0

45, 5
Number of fish expected: 31

240, 0, 0, 0
Number of fish expected: 480

115, 10, 50, 35
Number of fish expected: 724

Source: ACM East Central North America 1999

IDs for Online Judge: POJ 1042, UVA 757



256  ◾  Algorithm Design Practice for Collegiate Programming

  Hint

Obviously, in the solution there is no turning back. That is, in John’s fishing trip, if 
John fishes at a lake and leaves the lake, he can’t go back to the lake.

Suppose John finishes the trip at lake ed. How can we calculate the maximum 
number of fish expected to be caught at lake ed?

The criteria for selecting a lake is as follows:

If the time is allowed, the lake in which there are a maximum number of fish is 
selected.

The greedy algorithm is as follows:
Initially, for lake i, the number of fish expected to be caught f2[i] is the number 

of fish expected to be caught in the initial five minutes fi, and the time that John 

fishes at the lake tt[i] is 0, 1≤i≤ed. The time that John can fish is 2
1

∑= −
=

h h ti

i

ed

, 

for there is no turning back in his fishing trip. The current number of fish to be 
caught now=0.

Then, for each terminal ed, repeat the following steps until h2≤0:

Search a lake p in which there are a maximum number of fish, 
that is, ]p f i

i ed
f2[ = max { 2[ ]}

1≤ ≤
;

        h2−=5; 
        tt[p]+=5;
        now+=f2[p];
        the number of fish to be caught in lake p is adjusted 
f2[p]=max(f2[p]−dp, 0);
Finally, if (ans<now), then ans=now, and ans_tt[ ] is adjusted;

Obviously, after every terminal ed is enumerated (1≤ed≤n), the number of min-
utes spent at each lake, and the plan for achieving the maximum number of fish 
expected to be caught can be computed. That is, ans is the maximum number of 
fish expected to be caught, and ans_tt[ ] is the number of minutes spent at each lake.

  Program

#include<iostream>
#include<cstdio>
#include<cstdlib>



Practice for Greedy Algorithms  ◾  257

#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxN=30;
int n,h,f[maxN],d[maxN],t[maxN];
int f2[maxN],tt[maxN],ans,ans_tt[maxN];    //f2 is the same as 
f, tt is the time that John fishes at the lake; ans_tt is the 
tt when ans is maximal
void init()
{
// Initialization
	 ans=-1;
	 memset(t,0,sizeof(t));
	 memset(f,0,sizeof(f));
	 memset(d,0,sizeof(d));
	 memset(ans_tt,0,sizeof(ans_tt));
//Input
	 scanf("%d",&h);h*=60;    //h is transferred into minutes
	 for (int i=1;i<=n;i++) scanf("%d",&f[i]);
	 for (int i=1;i<=n;i++) scanf("%d",&d[i]);
	 for (int i=1;i<n;i++) {scanf("%d",&t[i]);t[i]+=t[i-1];} 
}
//function work : calculate the maximum number of fish 
expected to be caught at lake ed
void work(int ed)
{
	 memcpy(f2,f,sizeof(f));
	 memset(tt,0,sizeof(tt));
	 int now=0,h2=h;    //now: the current number of fish to be 
caught; h2: the time that John can fish
	 h2-=t[ed-1]*5;    // the number of minutes spent from lake 1 
to lake ed
	 f2[0]=-1;
	 while (h2>0)    // each while corresponds to five minutes of 
fishing
	 {
		  int p=0;
		  h2-=5;    // spend 5 minutes
		  for (int i=1;i<=ed;i++)    // search a lake p in which 
there are maximum number of fish
			   if (f2[p]<f2[i]) p=i;
		  tt[p]+=5;
		  now+=f2[p];f2[p]=max(f2[p]-d[p],0);    // accumulation
	 }
	 if (ans<now) { ans=now;memcpy(ans_tt,tt,sizeof(tt));}
}
//output the result
void print()
{



258  ◾  Algorithm Design Practice for Collegiate Programming

	 for (int i=1;i<=n;i++)
	 {
		  printf("%d",ans_tt[i]);
		  if (i<n) printf(", ");
	 }
	 printf("\nNumber of fish expected: %d\n\n",ans);
}
int main()
{
	 while (scanf("%d",&n),n)
	 {
		  init();
		  for (int i=1;i<=n;i++)    // every terminal is enumerated
			   work(i);
		  print();
	 }
	 return 0;
}



259

Chapter 6

Practice for Dynamic 
Programming

Dynamic programming (DP) is used to solve optimization problems. DP breaks an 
optimization problem into a sequence of related subproblems, solves these subprob-
lems just once, stores solutions to subproblems, and constructs an optimal solution 
to the problem, based on solutions to subproblems. The method for storing solu-
tions to subproblems is called memorization. When the same subproblem occurs, 
its solution can be used directly.

There are two characteristics for a problem solved by DP:

1.	Optimization. An optimal solution to a problem consists of optimal solutions 
to subproblems.

2.	No aftereffect. A solution to a subproblem is only related to solutions to its 
direct predecessors.

In this chapter, DP experiments are organized as follows:

◾◾ Linear Dynamic Programming;
◾◾ Tree-Like Dynamic Programming;
◾◾ Dynamic Programming with State Compression.

6.1  Linear Dynamic Programming
6.1.1  Linear Dynamic Programming

Basic concepts for DP and the method for linear DP are as follows.
Stage k and State sk: The solution to a problem is divided into k orderly and 

related stages. In a stage there are several states. State sk is a state in stage k.



260  ◾  Algorithm Design Practice for Collegiate Programming

For example, Figure 6.1 shows a solution to a problem that is divided into five 
orderly and related stages. State 1 is called the initial state, in stage 1. State 10 is 
called the goal state, in stage 5. In stage 3 there are three states: state 4, state 5, and 
state 6.

Decision uk and Available Decision Set Dk(sk): The choice from a state in 
stage k−1 (the current stage) to a state in stage k (the next stage) is called decision 
uk. Normally, a state can be reachable through more than one decision from the last 
stage, and such decisions constitute an available decision set Dk(sk).

For example, there are two decisions reaching state 5: 2→5, 3→5, D3(5)={2, 3}. 
A decision sequence from the initial state to the goal state is called a strategy. For 
example, 1→3→5→8→10 is a strategy.

Successor Function and Optimization: A successor function is used to 
describe the transition from stage k−1 to stage k. The DP method is used to solve 
some optimization problems. Successor functions are used to find a solution with 
the optimal (minimum or maximum) value to a problem. A successor function can 
be formally defined as follows:

	
f s opt g f T s u uk k

u D s
k k k k k

k k k

( )( )=
∈

−( ) ( , ) , ;
( )

1

where Tk(sk, uk) is a state sk−1  in stage k−1 which relates to state sk through deci-
sion uk, and f T s uk k k k− ( ( , ))1  is an optimal solution, g(x, uk) is a function for value 
x and decision uk, that is, g f T s uk k k k−( ( ( , )1  is a function from state sk−1 to state sk 
through decision uk; opt means optimization; and f1(s1) is an initial value. Because 
uk is one decision in a decision set Dk(sk), all decisions are enumerated to get 
the optimal solution to sk. From the initial state, successor functions are used to 
get the optimal solution fn (goal state) to the problem finally.

If the stages are in linear order, linear DP is used to solve the problem.

for (every stage i is processed in linear order)

{
	 for (every state j in stage i is enumerated (j∈Si))
	 { for (every state k in stage i−1 which is related to state 
j is enumerated (k∈Si-1))

10
1

2

3

4 7

8

9

5

6

1

5

3

7

5 4

3
3

6

4

4

4

5
2

Figure 6.1 



Practice for Dynamic Programming  ◾  261

		  { calculate 
∈

( ) = ( ( ), )
( )

-f j opt g f k ui
u D k

i k
k k

1 ; }

	 }
}

6.1.1.1  Brackets Sequence

Let us define a regular brackets sequence in the following way:

1.	An empty sequence is a regular sequence.
2.	If S is a regular sequence, then (S) and [S] are both regular sequences.
3.	If A and B are regular sequences, then AB is a regular sequence.

For example, all of the following sequences of characters are regular brackets 
sequences:

(), [], (()), ([]), ()[], ()[()]

And all of the following character sequences are not:

(, [, ), )(, ([)], ([(]

Some sequence of characters ‘(’, ‘)’, ‘[’, and ‘]’ is given. You are to find the short-
est possible regular brackets sequence that contains the given character sequence 
as a subsequence. Here, a string a1 a2 ... an is called a subsequence of the string 
b1 b2 ... bm, if there exist such indices 1≤i1<i2<…<in≤m, that aj=bij for all 1≤j≤n.

Input

The input file contains at most 100 brackets (characters ‘(’, ‘)’, ‘[’ and ‘]’) that are 
situated on a single line without any other characters among them.

Output

Write to the output file a single line that contains some regular brackets 
sequence that has the minimal possible length and contains the given sequence 
as a subsequence.

Sample Input Sample Output

([(] ()[()]

Source:	 ACM Northeastern Europe 2001

IDs for Online Judges: POJ 1141, ZOJ 1463, Ural 1183, UVA 2451



262  ◾  Algorithm Design Practice for Collegiate Programming

  Analysis

Suppose stage r is the length of subsequence, 1≤r≤n; and state i is the pointer 
pointing to the front of the current subsequence, 0≤i≤n−r. Based on i and r, the 
pointer j pointing to the rear of the current subsequence can be calculated, j=i+r−1. 
Suppose dp[i, j] is the minimal number of characters that must be inserted into 
si…sj. Obviously, if the length of subsequence is 1, dp[i, i]=1, 0≤i<strlen(s).

If ((si=='[')&&(sj==']')||(si=='(')&&(sj==')')), then the minimal number of 
characters that must be inserted into si…sj is the minimal number of characters 
that must be inserted into si+1…s j−1, that is, dp[i, j]=dp[i+1, j−1]; otherwise si…sj 
is divided into two parts, and we need to determine the pointer k (i≤k<j) so that 

[ , ] min( [ , ] [ 1, ]).
1

dp i j dp i k dp k j
k j

= + +
≤ <

Based on the above, a memorized list path[ ][ ] is used to store all solutions to 
subproblems:

	

=
− == == == ==

= + +





 ≤ <

path i j
s s s s

k dp i j dp i k dp k j
i j i j

i k j

[ ][ ]
1 (( '[')& &( ']')) || (( '(')& &( ')'))

[ , ] min( [ , ] [ 1, ]) .

After the memorized list path[ ][ ] is calculated through DP, the regular brack-
ets sequence that has the minimal possible length and contains the given sequence 
as a subsequence can be obtained through recursion.

  Program

#include<cstdio>
#include<cstring>
const int N=100;
char str[N];    //Input String
int dp[N][N];
int path[N][N];
void oprint(int i,int j)    //output regular brackets sequence 
containing subsequence str[i, j]
{
    if(i>j)
      return;
    if(i==j)    //there is only one character for subsequence 
str[i, j]
      {
        if(str[i]=='['||str[i]==']')



Practice for Dynamic Programming  ◾  263

         printf("[]");
       else
         printf("()");
    }
   else if(path[i][j]==-1)    // str[i] and str[j] are matched 
brackets
       {
       printf("%c",str[i]);
       oprint(i+1,j-1);
       printf("%c",str[j]);
      }
     else    // otherwise
     {
       oprint(i,path[i][j]);
       oprint(path[i][j]+1,j);
    }
}
int main(void)
{
   while(gets(str))
     {
        int n=strlen(str);
       if(n==0)
         {
           printf("\n");
           continue;
        }
     memset(dp,0,sizeof(dp));
     for(int i=0;i<n;i++)
        dp[i][i]=1;
     for(int r=1;r<n;r++)    //Stage: r is the length of 
subsequences
       {
         for(int i=0;i<n-r;i++)    //State: fronts of 
subsequences are enumerated
           {
             int j=i+r;    // rears of subsequences
             dp[i][j]=0x7fffffff;    // Initialization
             if((str[i]=='(' && str[j]==')') || (str[i]=='[' 
&& str[j]==']'))    // str[i] and str[j] are matched
               {
                 dp[i][j]=dp[i+1][j-1];
                 path[i][j]=-1;
               }
             for(int k=i; k<j; k++)    // k is enumerated
               {
                 if(dp[i][j]>dp[i][k]+dp[k+1][j])
                   {
                     dp[i][j]=dp[i][k]+dp[k+1][j];
                     path[i][j]=k;



264  ◾  Algorithm Design Practice for Collegiate Programming

                  }
              }
          }
      }
     oprint(0,n-1);    // Output the regular brackets sequence
     printf("\n");
  }
  return 0;
}

There are three classical problems solved by DP method: Subset Sum; Longest 
Common Subsequence (LCS); and Longest Increasing Subsequence(LIS).

6.1.2  Subset Sum
Suppose S={x1, x2, …, xn} is a set of non-negative integers, and c is a non-negative 
integer. The Subset Sum problem is to determine whether there is a subset of the 
given set with the sum equal to given c.

Coin counting is a classical problem for Subset Sum. Given a set of n non-
negative integers {a1, a2, ..., an} and a non-negative integer T, coin counting is 
to determine how many solutions to k1a1+k2a2+…+kn an=T, where k1, k2, …, kn 
are non-negative integers. DP can be used to solve the problem. Suppose c(i, j) is 
the number of solutions to k1a1+k2a2+…+kiai=j, ki>0. Obviously the goal for coin 
counting is to calculate c(n, T ). In order to calculate c(i, j), stage i is the first and i 
integers are used, 1≤i≤n; states are k1a1+k2a2+…+ki ai=j, ai≤j≤T. The successor func-
tion is as follows:

	

c i j

i

c k j a i j ai

k

i

i∑=

=

− ≥ ≥








 =

−
( , )

1 0

( , ) 1,
1

1

The final solution is c(n, T ).

6.1.2.1  Dollars

New Zealand currency consists of $100, $50, $20, $10, and $5 notes and $2, $1, 
50c, 20c, 10c and 5c coins. Write a program that will determine, for any given 
amount, in how many ways that amount may be made up. Changing the order of 
listing does not increase the count. Thus 20c may be made up in four ways: 1×20c, 
2×10c, 10c+2×5c, and 4×5c.



Practice for Dynamic Programming  ◾  265

Input

Input will consist of a series of real numbers no greater than $50.00 each on a sepa-
rate line. Each amount will be valid, that is, it will be a multiple of 5c. The file will 
be terminated by a line containing zero (0.00).

Output

Output will consist of a line for each of the amounts in the input, each line consist-
ing of the amount of money (with two decimal places and right-justified in a field 
of width 5), followed by the number of ways in which that amount may be made 
up, right-justified in a field of width 12.

Sample Input Sample Output

0.20
2.00
0.00

0.20            4
2.00        293

Source:	 New Zealand Contest 1991

IDs for Online Judge: UVA 147

  Analysis

First, DP is used to calculate all solutions to the problem in the range. The 5c coin 
is the smallest coin. Other notes and coins for New Zealand currency are multiples 
for the 5c coin. Therefore, the 5c coin is used as the unit for notes and coins for 
New Zealand currency. Suppose b[i] is the number of 5c coins for the i-th currency, 
0≤i≤10; a[i, j] is the number of ways in which j 5c coins may be made up using the 
first i-th currencies, 0≤i≤10, 0≤j≤6000.

Obviously, the number of ways in which j 5c coins may be made up only using 
5c coin is 1, that is, a[0, j]=1, 0≤j≤6000. If the amount is equal to a coin or a note, 
there is a way that the amount may be made up using the coin or the note.

For 10 cents, there are two ways. 10 cents are made up using 5c coins or a 10c coin.
For 15 cents, the first way is that 15c cents are made up only using 5c coins. 

Then we calculate the number of ways in which 15 cents are made up using 5c coin 
and 10c coin (the way only using 5c coin needn’t be considered). First a 10c coin is 
used (at least one 10c coin is used), and then a 5c coin is used. Therefore, there are 
two ways for 15 cents.

For 20 cents, the first case is that only 5c coins are used. For the second case, a 
10c coin is used first (at least one 10c coin is used), and for the remaining 10 cents, 
there are two ways. The final case is that only the 20c coin is used. Therefore, there 
are four ways.



266  ◾  Algorithm Design Practice for Collegiate Programming

Based on the above, the number of ways in which j 5c coins may be made 
up using the first i-th currencies is based on the number of ways in which 
j−b[i] 5c coins may be made up using the first (i−1)th currencies. That is, 

[ , ] [ , [ ]] [ ].
0

1

a i j a k j b i j b i
k

i

∑= − ≥
=

−

Then, for each test case, the solution can be computed based on array a. For a 
real number n, the solution is a[10, n × 20 ].

The problem can also be solved by generation function.

  Program

#include <iomanip>
#include <iostream>
using namespace std;
int main(void) {
	 int b[] = {1, 2, 4, 10, 20, 40, 100, 200, 400, 1000, 2000};    
//5c coin is used as the unit for notes and coins for 
New Zealand currency
	 long long a[6001] = {1};    // the number of ways in which n 
5c coins may be made up using notes and coins for New Zealand 
currency is a[n]
	 //Off-line method, DP
	 for (int i = 0; i < 11; i++){    // Enumerate all coins and 
notes
		  for (int j = b[i]; j < 6001; j++) {    // Enumerate
			   a[j] += a[j - b[i]];
		  }
	 } 
	 cout << fixed << showpoint << setprecision(2);
	 for (float fIn; cin >> fIn && fIn != 0; cout << endl) {
		  cout << setw(6) << fIn << setw(17) << a[(int)(fIn * 20 + 
0.5f)];
	 }
	 return 0;
}

6.1.3  Longest Common Subsequence (LCS)

For a sequence, elements in its subsequence appear in the same relative order, and 
are not necessarily contiguous. For example, for the string “abcdefg”, “abc”, “abg”, 
“bdf”, and “aeg” are all subsequences. And for strings “HIEROGLYPHOLOGY” 
and “MICHAELANGELO”, string “HELLO” is a common subsequence.



Practice for Dynamic Programming  ◾  267

Given two sequences of items, the Longest Common Subsequence (LCS) is to 
find the longest subsequence in both of them.

The LCS problem can be solved in terms of smaller subproblems. Given two 
sequences x and y, of length m and n respectively, the longest common subsequence 
z of x and y is found as follows:

Suppose sequence x=<x1, x2, .., xm>, and the i-th prefix xi'==<x1, x2, .., xi>, 
i=0,1,..,m; sequence y=<y1, y2, .., yn>, and the i-th prefix yi'==<y1, y2, .., yi>, 
i=0,1,..,n; and sequence z=<z1, z2, .., zk> is an LCS for x and y. For example, if 
x=<A,B,C,B,D,A,B>, then x4'=<A,B,C,B>, and x0' is an empty sequence.

Stage and state are pointer i for prefix of x and pointer j for prefix of y respec-
tively. And xi−1 and yi−1 have been calculated through LCS. Decisions are made 
based on the following properties.

Property 1: If xm=yn, then zK=xm=yn and −z k' 1 is an LCS for −x m' 1 and −y n' 1.
Property 2: If xm≠yn, then zK≠xm, and z is an LCS for −x m' 1 and y.
Property 3: If xm≠yn, then zK≠yn, and z is an LCS for x and −y n' 1.

Suppose c[i, j] is the length of LCS for xi' and yj'.

	

=

= =
− − + > =

− − > ≠










c i j

i j
c i j i j x y

c i j c i j i j x y
i j

i j

[ , ]

0 0 or 0
[ 1, 1] 1 , 0 and

max{ [ , 1], [ 1, ]} , 0 and

The time complexity for calculating c[i, j] is O(n2).

6.1.3.1  Longest Match

A newly opened detective agency is struggling with their limited intelligence to find 
out a secret information for passing technique among its detectives. Since they are 
new in this profession, they know well that their messages will easily be trapped 
and hence modified by other groups. They want to guess the intentions of other 
groups by checking the changed sections of messages. First, they have to get the 
length of the longest match. You are going to help them.

Input

The input file may contain multiple test cases. Each case will contain two succes-
sive lines of string. Blank lines and non-letter printable punctuation characters may 
appear. Each line of string will be no longer than 1000 characters. The length of 
each word will be less than 20 characters.

Output

For each case of input, you have to output a line starting with the case number 
right-justified in a field width of two, followed by the longest match, as shown 



268  ◾  Algorithm Design Practice for Collegiate Programming

in the sample output. In the case of at least one blank line for each input, output 
“Blank!”. Consider the non-letter punctuation characters as white spaces.

Sample Input Sample Output

This is a test.
test
Hello!
The document provides late-breaking 
information late breaking.

1. Length of longest match:  1
2. Blank!
3. Length of longest match:  2

Source:	 TCL Programming Contest 2001

IDs for Online Judge: UVA 10100

  Analysis

Consecutive letters in a string are regarded as a word. Words in two strings are got-
ten one by one, where words in the first string are stored in T1.word[1]…T1.word[n], 
and words in the second string are stored in T2.word[1]…T2.word[m].

Then every word is regarded as a “character”. The LCS algorithm is used to 
calculate the Longest Common Subsequence (LCS). The length of the subsequence 
is the length of the longest match.

  Program

#include<iostream>
#include<cstring>
#include<cstdio>
#include<string>
#include<algorithm>
#define N (1024)
using namespace std;
struct text{    // two successive lines of string
	 int num;    // number of words
	 string word[1024];    // words
}t1,t2;
string s1,s2;
int f[N][N];    //the number of matched words for the first 
i-th words in s1 and the first j-th words in s2 is f[i, j]
void devide(string s,text &t)    // sequence of words t.word[] 
whose length is t.num is taken out from s
{



Practice for Dynamic Programming  ◾  269

	 int l=s.size();    //the length of s
	 t.num=1;
	 for(int i=0;i<1000;i++) t.word[i].clear();
	 for (int i=0;i<l;++i)
		  if ('A'<=s[i] && s[i]<='Z' || 'a'<=s[i] && s[i]<='z'||'0'
<=s[i]&&s[i]<='9')
				      t.word[t.num]+=s[i];
		  else	 ++t.num;
	 int now=0;
	 for(int i=1;i<=t.num;i++)if(!t.word[i].empty())
t.word[++now]=t.word[i];
	 t.num=now;
}
int main(void)
{
	 int test=0;    //Initialization: the number of test cases
	 while (!cin.eof())
	 {
		  ++test;
		  getline(cin,s1);    // Input string s1
		  devide(s1,t1);   
		  getline(cin,s2);    //Input string s2
		  devide(s2,t2);
		  printf("%2d. ",test);
		  if(s1.empty() || s2.empty())
		  {
			   printf("Blank!\n");
			   continue;
		  }
		  memset(f,0,sizeof(f));
		  for (int i=1;i<=t1.num;++i)    // words in s1
			   for (int j=1;j<=t2.num;++j)    //words in s2
			   {    //Calculation
				    f[i][j]=max(f[i-1][j],f[i][j-1]);
				    if (t1.word[i]==t2.word[j])
					     f[i][j]=max(f[i][j],f[i-1][j-1]+1);
			   }
		  printf("Length of longest match: %d\n",f[t1.num]
[t2.num]);    // Output result
	 }
	 return 0;
}

6.1.4  Longest Increasing Subsequence (LIS)

The Longest Increasing Subsequence (LIS) problem is to find the longest increas-
ing subsequence of a given sequence. Given a real sequence A=<a1, a2, …, an>, the 
Longest Increasing Subsequence for A is such a longest subsequence L=<ak1, ak2, …, 
akm>, where k1<k2<…<km and ak1<ak2<…<akm.



270  ◾  Algorithm Design Practice for Collegiate Programming

There are three DP methods to calculate LIS.
Method 1: A LIS problem is transformed into an LCS problem.
A LIS problem can be transformed into an LCS problem. Suppose X=<b1, 
b2, …, bn> is a sorted sequence in ascending order for A=<a1, a2, …, an>. 
Obviously the LCS for X and A is the LIS for A.
The time complexity for sorting A is O(nlog2(n)). The time complexity for 
calculating the LCS for X and A is O(n2). Therefore, the time complexity for 
Method 1 is O(nlog2(n)+n2).
Method 2: DP method.
Suppose f(i) is the length of the LIS for the subsequence in A whose rear is 
ai. Obviously,

f(1)=1
f(i)=max {f(j)|aj<ai}+1
       1≤j≤i-1

f(n) is the length of the LIS for A. Obviously, the time 
complexity using the DP method is O(n2).

Method 3: Dichotomy.
For Method 2, in order to calculate f(i), the maximal f( j)( j<i) must be found. 
Array B is used to store the rear for LIS of subsequences, that is, B[f( j)]=aj. 
When f(i) is calculated, dichotomy is used to find j in array B where j<i and 
B[f( j)]=aj<ai. Then B[f [j]+1]=ai.

Experiments for the three DP methods are as follows.

6.1.4.1  History Grading

Many problems in computer science involve maximizing some measure according 
to constraints. Consider a history exam in which students are asked to put several 
historical events into chronological order. Students who order all the events cor-
rectly will receive full credit, but how should partial credit be awarded to students 
who incorrectly rank one or more of the historical events?

Some possibilities for partial credit include:

1.	One point for each event whose rank matches its correct rank;
2.	One point for each event in the longest (not necessarily contiguous) sequence 

of events which are in the correct order relative to each other.

For example, if four events are correctly ordered 1 2 3 4, then the order 1 3 2 
4 would receive a score of 2 using the first method (events 1 and 4 are correctly 
ranked) and a score of 3 using the second method (event sequences 1 2 4 and 1 3 4 
are both in the correct order relative to each other).

In this problem, you are asked to write a program to score such questions using 
the second method.



Practice for Dynamic Programming  ◾  271

Given the correct chronological order of n events 1, 2, …, n as c1, c2, …, cn 
where 1≤ci≤n denotes the ranking of event i in the correct chronological order and 
a sequence of student responses r1, r2, …, rn where 1≤ri≤n denotes the chronological 
rank given by the student to event i; determine the length of the longest (not neces-
sarily contiguous) sequence of events in the student responses that are in the correct 
chronological order relative to each other.

Input

The first line of the input will consist of one integer n indicating the number of 
events with 2≤n≤20. The second line will contain n integers, indicating the correct 
chronological order of n events. The remaining lines will each consist of n inte-
gers with each line representing a student’s chronological ordering of the n events. 
All lines will contain n numbers in the range [1..n], with each number appearing 
exactly once per line, and with each number separated from other numbers on the 
same line by one or more spaces.

Output

For each student ranking of events, your program should print the score for that 
ranking. There should be one line of output for each student ranking.

Sample Input 1 Sample Output 1

4
4  2  3  1
1  3  2  4
3  2  1  4
2  3  4  1

1
2
3

Sample Input 2 Sample Output 2

10
3  1  2  4  9  5  10  6  8  7
1  2  3  4  5  6  7  8  9  10
4  7  2  3  10  6  9  1  5  8
3  1  2  4  9  5  10  6  8  7
2  10  1  3  8  4  9  5  7  6

6
5
10
9

Source:	 Internet Programming Contest 1991

IDs for Online Judge: UVA 111



272  ◾  Algorithm Design Practice for Collegiate Programming

  Analysis

Suppose st[ ] is the correct chronological order of n events, where st[t] is the t-th 
event in the chronological order; ed[ ] is the current student’s chronological order-
ing of the n events, where ed[t] is the t-th event in the current student’s chronologi-
cal order.

Obviously, the Longest Common Subsequence (LCS) for st[ ] and ed[ ] is the 
Longest Increasing Subsequence (LIS) for ed[ ], where its length is the score for that 
ranking. Method 1 is used to solve the problem.

  Program

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
int n;    //number of events
int f[30][30];
int st[30];    // st[t] is the t-th event in the chronological 
order
int ed[30];    // ed[t] is the t-th event in the current 
student's chronological order
int tmp[30]; 
int main(void)
{
	 freopen("111.in","r",stdin);
	 freopen("HG.out","w",stdout);
	 scanf("%d",&n);    // Input number of events
	 for(int i=1;i<=n;++i)    // Input the correct chronological 
order of n events
	 {
		  cin >> tmp[i];
		  st[tmp[i]]=i;
	 }
	 while(!cin.eof())    //Input students' chronological 
ordering of the n events
	 {
		  for(int i=1;i<=n;++i)    // Input current student's 
chronological ordering of the n events
		  {



Practice for Dynamic Programming  ◾  273

			   cin >> tmp[i];
			   ed[tmp[i]]=i;
		  }
		  if(cin.eof()) break;
		  memset(f,0,sizeof(f));
		  for(int i=1;i<=n;++i)    //Calculate the LCS for st[ ] 
and ed[ ]
			   for(int j=1;j<=n;++j)
			   {
				    f[i][j]=max(f[i-1][j],f[i][j-1]);
				    if(st[i]==ed[j])
					     f[i][j]=max(f[i][j],f[i-1][j-1]+1);
			   }
		  cout << f[n][n] << endl;    //Output the current 
student’s score
	 }
	 return 0;
}

6.1.4.2  Ski

Michael likes to ski. Skiing is really exciting for him. In order to get speed, 
the ski area must be down. When he skis down to the bottom, he has to walk 
up the hill again or wait for the lift to carry him. Michael wants to know the 
longest skidway in a ski area. The ski area is given by a two-dimensional array. 
Each digit of the array represents the height of the point. There is an example 
as follows:

	

1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9

From a point, he can ski to one of four adjacent points (up, down, left, 
and right), if and only if the height of an adjacent point is less than the height 
of the point. In the above example, a viable skidway is 24−17−16−1. Obviously 
25−24−23−...−3−2−1 is the longest viable skidway.

Input

Row R and column C for the ski area are shown in the first line (1≤R,C≤100). Then 
there are R rows, and in each row there are C integers representing the height of 
points h, where 0≤h≤10000.



274  ◾  Algorithm Design Practice for Collegiate Programming

Output

Output the length of the longest viable skidway that Michael can ski.

Sample Input Sample Output

5  5
1  2  3  4  5
16  17  18  19  6
15  24  25  20  7
14  23  22  21  8
13  12  11  10  9

25

Source:	 SHTSC 2002 (Problemsetter: Yongji Zhou)

IDs for Online Judge: POJ 1088

  Analysis

The problem requires you to calculate the length of the longest viable skidway whose 
points are adjacent and in descending order. The skidway is the Longest Decreasing 
Subsequence, if heights are as keys. Method 2 is used to solve the problem. Suppose 
f [ ][ ] is visited marks, if point (x, y) is in the skidway, then f [x][y]=true; and c[ ][ ] 
is the successor function, where c[x][y] is the longest viable skidway which starts 
from (x, y):

= +





c x y

Initialization
c xx yy xx yy x y[ ][ ]

1
max{ [ ][ ] 1} ( , ) is adjacent to ( , ), unvisited, and lower..

Because the start point isn’t given in the problem, the length of the longest 
viable skidway max { [ ][ ]}(1 ,1 )ans c x yx n y m= ≤ ≤ ≤ ≤ .

  Program

#include<cstdio>
using namespace std;
int n,m,s1[5],s2[5],i,j,ans;    //size of the ski area is n*m; 
the length of the longest viable skidway is ans
int a[105][105],c[105][105];    // adjacency matrix for ski 
area a[ ][ ], state transition equation c[ ][ ]
bool f[105][105];    //visited mark



Practice for Dynamic Programming  ◾  275

void work(int x,int y){    //recursively calculate the length 
of the longest viable skidway c[x][y] starting from (x, y)
              int i,xx,yy;
              f[x][y]=true;    //Set visited mark for (x, y)
              c[x][y]=1;    // Initialization
              for (i=1;i<=4;i++){    // 4 adjacent points
                  xx=x+s1[i];yy=y+s2[i];    // (xx, yy): 
adjacent point in direction i
                  if (a[xx][yy]<a[x]
[y]&&xx>0&&xx<=n&&yy>0&&yy<=m){    // (xx, yy) is in the area, 
can be skied down from (x, y), isn’t visited
                  if (!f[xx][yy]) work(xx,yy);
                  // adjustment
                  c[x][y]=c[x][y]>(c[xx][yy]+1)?c[x][y]:(c[xx]
[yy]+1);}
              }
     }
int main(){
    s1[1]=-1; s2[1]=0;  
    s1[2]=1; s2[2]=0;
    s1[3]=0; s2[3]=-1;
    s1[4]=0; s2[4]=1;
    scanf("%d%d",&n,&m);    //numbers of rows and columns
    for (i=1;i<=n;i++)    // heights of points
        for (j=1;j<=m;j++)scanf("%d",&a[i][j]);
    ans=0;    // Initialization
    for (i=1;i<=n;i++) 
     for (j=1;j<=m;j++)
       if (!f[i][j]) {work(i,j); ans=ans>c[i][j]?ans:c[i][j];}
    printf("%d\n",ans);    // output result
    return 0;
}

6.1.4.3  Wavio Sequence

A Wavio sequence is a sequence of integers. It has some interesting properties:

◾◾ Wavio is of odd length, i.e., L=2×n+1.
◾◾ The first (n+1) integers of Wavio sequence make a strictly increasing sequence.
◾◾ The last (n+1) integers of Wavio sequence make a strictly decreasing sequence.
◾◾ No two adjacent integers are same in a Wavio sequence.

For example 1, 2, 3, 4, 5, 4, 3, 2, 0 is a Wavio sequence of length 9. But 1, 2, 3, 
4, 5, 4, 3, 2, 2 is not a valid Wavio sequence. In this problem, you will be given a 
sequence of integers. You have to find out the length of the longest Wavio sequence 
which is a subsequence of the given sequence. Consider the given sequence as:

	 1 2 3 2 1 2 3 4 3 2 1 5 4 1 2 3 2 2 1.

Here the longest Wavio sequence is : 1 2 3 4 5 4 3 2 1. So, the output will be 9.



276  ◾  Algorithm Design Practice for Collegiate Programming

Input

The input file contains less than 75 test cases. The description of each test case is 
given below. Input is terminated by end of file.

Each set starts with a positive integer, N(1≤N≤10000). In the next few lines 
there will be N integers.

Output

For each set of input, print the length of the longest Wavio sequence in a line.

Sample Input Sample Output

10
1  2  3  4  5  4  3  2  1  10
19
1  2  3  2  1  2  3  4  3  2  1  5  4  1  2  3  2  2  1
5
1 2 3 4 5

9
9
1

Source:	 The Diamond Wedding Contest: Elite Panel’s 1st Contest 2003

IDs for Online Judge: UVA 10534

  Analysis

Suppose the sequence of integers is A=a1...an; LIS[k] is the length of the Longest 
Increasing Subsequence in [a1...ak]; and LDS[k] is the length of the Longest 
Decreasing Subsequence in [ak...an].

First, Method 3 is used to calculate the length of the Longest Increasing 
Subsequence in the prefix for A. If the prefix’s rear is ai, the length is f [i], 1≤i≤k. 
Therefore, LIS k f i

i k
=

≤ ≤
[ ] max{ [ ]}.

1

Second, Method 3 is used to calculate the length of the Longest Decreasing 
Subsequence in the postfix for A. If the postfix’s front is ai, the length is f [i], k≤i≤n. 
Therefore, LDS k f i

k i n
=

≤ ≤
[ ] max{ [ ]}.

If k is the pointer pointing to the middle of a Wavio sequence, that is, the 
number of integers in the left half and the number of integers in the right half is 
min{LIS[k], LDS[k]}. The length of the Wavio sequence is ans[k]=2×min{LIS[k], 
LDS[k]}−1.

The length of the longest Wavio sequence is ans ans k
k n

=
≤ ≤
max{ [ ]}.
1



Practice for Dynamic Programming  ◾  277

  Program

#include<cstdio>
#include<cstring>
using namespace std;
const int MAXN = 10010,INF = 2147483647;
int N,A[MAXN],F[MAXN],G[MAXN],L[MAXN];    // N: the number of 
integers, A[ ] is the given sequence, L[ ]: increasing 
sequence, F[ ] is as LIS[ ], G[ ] is as LDS[ ]
int binary(int l,int r,int x)    // return the number of 
elements in L[l, r] which are less than x
{
	 int mid;
	 l = 0; r = N;
	 while (l<r)
	 {
		  mid = (l+r)>>1;
		  if (L[mid+1]>=x) r = mid; else l = mid+1;
	 }
	 return l;
}
inline int min(int x,int y) { return (x<y) ? (x) : (y); }  
// return min{x, y}
int main()
{
	 int i,j,k,Ans;
	 while (scanf("%d",&N) != EOF)
	 {
		  for (i=1;i<=N;i++) scanf("%d",A+i);    // Input N 
integers
		  for (i=1;i<=N;i++) L[i]=INF; L[0]=-INF-1;    
// Initialization
		  for (i=1;i<=N;i++)    //Right to left in array A
		  {
			   F[i]=binary(1,N,A[i])+1;
			   if (A[i]<L[F[i]]) L[F[i]]=A[i];
		  }
		  for (i=1;i<=N;i++) L[i]=INF; L[0]=-INF-1;    // 
Initialization
		  for (i=N;i>=1;i--)    // Left to right in array A
		  {
			   G[i]=binary(1,N,A[i])+1;
			   if (A[i] < L[G[i]]) L[G[i]]=A[i];
		  }
		  Ans=0;



278  ◾  Algorithm Design Practice for Collegiate Programming

		  for (i=1;i<=N;i++)    // every element in A[ ] as the 
middle, and adjust
			   if ((k = min(F[i],G[i])) > Ans) Ans = k;
		  printf("%d\n",Ans*2-1);    // Output the result
	 }
	 return 0;
}

6.2  Tree-Like Dynamic Programming
If the background or the relationships between stages for a DP problem are repre-
sented as a tree, tree-like DP can be used to solve such problems.

Tree-like DP is different from linear DP:

1.	The calculation sequences are different. There are two calculation sequences 
for linear DP: forward and backward. The calculation sequence for tree-like 
DP is normally from leaves to the root, and the root is the solution.

2.	The calculation methods are different. A traditional iteration method is used 
in linear DP. The recursive method is used in tree-like DP, for tree-like DP is 
normally implemented by memorized search.

In this section, two problems for tree-like DP are shown.

6.2.1  Binary Apple Tree

Let’s imagine how an apple tree looks in the binary computer world. You’re right, 
it looks just like a binary tree, i.e., any biparous branch splits up to exactly two 
new branches. We will enumerate by integers the root of a binary apple tree, points 
of branching, and the ends of twigs. In this way, we may distinguish different 
branches by their ending points. We will assume that the root of the tree always 
is numbered by 1, and all numbers used for enumerating are numbered in range 
from 1 to N, where N is the total number of all enumerated points. For instance, 
in Figure 6.2, N is equal to 5. Figure 6.2 is an example of an enumerated tree with 
four branches.

As you may know, it’s not convenient to pick an apple from a tree when there 
are too many branches. That’s why some of them should be removed from a tree. 
But you are interested in removing branches in order to achieve a minimal loss of 

5

43

2

1

Figure 6.2 



Practice for Dynamic Programming  ◾  279

apples. So you are given numbers of apples on a branch and the number of branches 
that should be preserved. Your task is to determine how many apples can remain on 
a tree after the removal of excessive branches.

Input

The first line of input contains two numbers: N and Q (2≤N≤100; 1≤Q≤N−1). 
N denotes the number of enumerated points in a tree. Q denotes the number of 
branches that should be preserved. The next N−1 lines contain descriptions of 
branches. Each description consists of three integer numbers divided by spaces. The 
first two of them define a branch by its ending points. The third number defines the 
number of apples on this branch. You may assume that no branch contains more 
than 30000 apples.

Output

Output should contain only the number—the number of apples that can be pre-
served. And don’t forget to preserve the tree’s root.

Sample Input Sample Output

5 2
1 3 1
1 4 10
2 3 20
3 5 20

21

Source:	 Ural State University Internal Contest ’99 #2

IDs for Online Judge: Ural 1018

  Analysis

In this problem, the apple tree is a weighted binary tree. The problem requires you 
to get such a subtree with Q branches (i.e., Q+1 points) whose weight is maximal. 
For each internal point, there are three choices: pruning its left subtree, pruning its 
right subtree, or pruning some points in its left subtree and its right subtree; to get 
a subtree with maximal weight.

Suppose g[x][k] is the maximal weight for the subtree with root x in which there 
are k points (including the weight of the branch from root x to its parent). For each 



280  ◾  Algorithm Design Practice for Collegiate Programming

leaf, DP is used in the order of post-order traversal. The successor function for DP 
is as follows:

If x is a leaf, then g[x][k]= the weight of the edge from x to its parent; else all 
cases where k−1 nodes are distributed in its left subtree and its right subtree are 
enumerated, and the best case is found. That is,

[ ][ ]

0 0
the weight of the edge from to its parent is a leaf
the weight of the edge from to its parent
max { [the left child for ][ ]

[the right child for ][ 1]}

isn't a leaf

0 1

g x k

k
x x
x

g x i

g x k i

x

k k

=

=

+
+

− −
















≤ ≤ −

DP is used bottom-up until the root. Finally, ans=g[root][Q+1].

  Program

#include <cstdio>
#include <cstdlib>
#include <cstring>
#define Max(a,b) ((a)>(b)?(a):(b))
#define N (256)
using namespace std;
int n,m,ne,x,y,z;    //n: number of points, m: amount of 
preserve branches, that should be preserved, ne: the number of 
a branch, (x,y): a branch, z: weight
int id[N],w[N],v[N],next[N],head[N],lch[N],rch[N],f[N];
int g[N][N];    // Successor Function
void add(int x,int y,int z)    //add branch (x, y) with weight 
z into adjacency list
{
	 id[++ne]=y; w[ne]=z; next[ne]=head[x]; head[x]=ne;
}
void dfs(int x)    //a binary tree is constructed from point x
{
	 for (int p=head[x];p;p=next[p])    //search every branch p 
connecting x
		  if (id[p]!=f[x])
{
	  	if (!lch[x]) lch[x]=id[p]; else rch[x]=id[p]; 
	   	f[id[p]]=x;



Practice for Dynamic Programming  ◾  281

	  	v[id[p]]=w[p];
	  	dfs(id[p]);
	 }
}
int dp(int x,int k)    //from x, the subtree with k points and 
maximal number of apples
{
	 if (!k) return 0;    //subtree is empty
	 if (g[x][k]>=0) return g[x][k];    // return the result
	 if (!lch[x]) return (g[x][k]=v[x]);    // x is a leaf
	 for (int i=0;i<k;++i)    // calculate the best case
		  g[x][k]=Max(g[x][k],dp(lch[x],i)+dp(rch[x],k-i-1));
	 g[x][k]+=v[x];
	 return g[x][k];
}
int main()
{
	 scanf("%d%d",&n,&m);
	 for (int i=1;i<n;++i)
	 {
		  scanf("%d%d%d",&x,&y,&z);
		  add(x,y,z);
		  add(y,x,z);
	 }
	 dfs(1);
	 memset(g,255,sizeof(g));
	 printf("%d\n",dp(1,m+1));
	 return 0;
}

6.2.2  Anniversary Party

The president of the Ural State University is planning an eightieth anniversary 
party. The university has a hierarchical structure of employees; that is, the supervi-
sor relation forms a tree rooted at the president. Employees are numbered by integer 
numbers in a range from 1 to N. The personnel office has ranked each employee 
with a conviviality rating. In order to make the party fun for all attendees, the 
president does not want both an employee and his or her immediate supervisor to 
attend.

Your task is to make up a guest list with the maximal conviviality rating of the 
guests.

Input

The first line of the input contains a number N. 1≤N≤6000. Each of the sub-
sequent N lines contains the conviviality rating of the corresponding employee. 



282  ◾  Algorithm Design Practice for Collegiate Programming

Conviviality rating is an integer number in a range from -128 to 127. After that, 
the supervisor relation tree goes. Each line of the tree specification has the form

<L><K>
which means that the K-th employee is an immediate supervisor of the L-th 

employee. Input is ended with the line
0 0

Output

The output should contain the maximal total rating of the guests.

Sample Input Sample Output

7
1
1
1
1
1
1
1
1  3
2  3
6  4
7  4
4  5
3  5
0  0

5

Source:	 Ural State University Internal Contest October 2000 Students Session

IDs for Online Judge: POJ 2342, Ural 1039

  Analysis

The supervisor relation in Ural State University forms a tree rooted at the president. 
For each internal node u in the tree, there are two possible conviviality ratings of 
the subtree rooted at u:

1.	Conviviality rating including node u;
2.	Conviviality rating not including node u.

If the maximal conviviality rating of the subtree doesn’t include node u, then the 
maximal conviviality rating of the subtree is the sum of the maximal conviviality 



Practice for Dynamic Programming  ◾  283

ratings of all subtrees for node u (subtrees root at u’s children), and for such sub-
trees, their maximal conviviality ratings also have two cases: including their roots 
or not including their roots.

If the maximal conviviality rating of the subtree includes node u is the maximal 
conviviality rating of the subtree doesn’t include node u plus conviviality rating for 
node u. Suppose F[u][0] is the maximal conviviality rating of the subtree rooted 
at u which doesn’t include node u; and F[u][1] is the maximal conviviality rating 
of the subtree rooted at u which includes node u. Initially, F[u][0]=0, F[u][1]=u, 
1≤u≤n. Then from leaf nodes, based on post-order traversal, the successor function 
is calculated as follows:

          
[ ][0] max{ [ ][0], [ ][1]} ;

's children

∑=
∈

F u F v F v
v u

F[u][1] = F[u][1]( the conviviality rating of u)+F[u][0].

The successor function is calculated until root. Finally, ans=max{F[root][0], 
F[root][1]}.

  Program
#include<cstdio>
#include<cstring>
using namespace std;
const int MAXN = 6010;    //the upper limit of the number 
of nodes
int N,root,Ri[MAXN],F[MAXN][2],son[MAXN],bro[MAXN];    
// successor function F[][]
bool is_son[MAXN];
void init()    //Input and construct the adjacency list for 
the tree
{
      int i,j,k;
	     scanf("%d",&N);    //number of employees
      for (i=1;i<=N;i++) scanf("%d",Ri+i);    // the 
conviviality rating of employee
	     memset(son,0,sizeof(son)); 
memset(is_son,0,sizeof(is_son));
	     for (i=1;i<N;i++)
	 {
		  scanf("%d%d",&j,&k);    //k is the immediate supervisor 
for j
		  bro[j] =son[k]; son[k] = j;    //j is added into the 
adjacency list for k



284  ◾  Algorithm Design Practice for Collegiate Programming

		  is_son[j] = true;    // j has parent
  }
  for (i=1;i<=N;i++) 
	     if (!is_son[i]) root = i;
}
inline int max(int x,int y) { return (x>y)?(x):(y); }
void DP(int u)    // Dynamic Programming on a Tree, F[u][0] 
and F[u][1] are calculated
{
	    int v;
	    F[u][0] = 0; F[u][1] = Ri[u];    // Initialization
	    for (v=son[u]; v; v=bro[v])    //u’s every subtree
	    {
		       DP(v);
		       F[u][0]+=max(F[v][0],F[v][1]);  
		       F[u][1]+=F[v][0];  
	    }
}
void solve()    //Calculate the maximal total rating and 
output
{
	    DP(root);  
	    printf("%d\n",max(F[root][0],F[root][1])); 
}
int main()
{
     init();
     solve();
     return 0;
}

6.3  Dynamic Programming with State Compression
In some problems, each constituent part for a state can be represented as 0 or 1, and 
states can be represented as strings for 0 and 1. For example, grids in a chessboard 
can be represented by a string. And states for a chessboard can be represented as 
strings. We call this state compression. DP with state compression can be imple-
mented by bitwise operations.

6.3.1  Nuts for Nuts

Ryan and Larry decided that some nuts don’t really taste so good, but they realized 
that there are some nuts located in certain places of the island.. and they love them! 
Since they’re lazy, but greedy, they want to know the shortest tour that they can use 
to gather every single nut!

Can you help them?



Practice for Dynamic Programming  ◾  285

Input

You’ll be given x, and y, both less than 20, followed by x lines of y characters each 
as a map of the area, consisting solely of “.”, “#”, and “L”. Larry and Ryan are cur-
rently located in “L”, and the nuts are represented by “#”. They can travel in all eight 
adjacent directions in one step. See below for an example. There will be at most 
15 places where there are nuts, and “L” will only appear once.

Output

On each line, output the minimum number of steps starting from “L”, gather all 
the nuts, and back to “L”.

Sample Input Sample Output

5 5
L....
#....
#....
.....
#....
5 5
L....
#....
#....
.....
#....

8
8

Source:	 UVA Local Qualification Contest, 2005

IDs for Online Judge: UVA 10944

  Analysis

The places where Ryan and Larry and all nuts locate are as vertices. Their coordi-
nates are recorded, where (x0, y0) is the place where Larry and Ryan are currently 
located, and (xi, yi) is the place where the i-th nut is located, 1≤i≤n. Map[ ][ ] is used 
to represent distances between vertices, where Map i j max x x y yi j i j= − −[ ][ ] { , } 
for vertex i and vertex j.

The state that nuts are gathered is represented as a n bit binary number (bn−1 , …, 
b0), where bi=0 means the (i+1)-th nut isn’t gathered, and bi=1 means the (i+1)-th 
nut is gathered. Suppose j is the current state value that nuts are gathered, where 



286  ◾  Algorithm Design Practice for Collegiate Programming

nut i is the nut that is gathered finally, and the minimum number of steps is f [i][j]. 
Obviously the minimum number of steps that Ryan and Larry gather for every nut 
is [ ][2 ] [0][ ](1 )1f i map i i ni = ≤ ≤− . Suppose the state the nuts are gathered currently is 
j, where the number of gathered nuts is i, and the minimum number of steps is f [i][j]. 
Obviously, the minimum number of steps that Ryan and Larry gather for each nut is 

[ ][2 ] [0][ ], 11f i map i i ni = ≤ ≤− . The successor function is analyzed as follows:

Stage i; states are enumerated in ascending order, 0≤i≤2n−1;
State j; The last gathered nut j in stage i is enumerated, 1≤j≤n, i j ≠−& 2 0;1

Decision k: Nut k which isn’t in stage i is enumerated k n i k≤ ≤ = =−(1 , & 2 0),1  
and determine whether gathering nut k is better. If gathering nut k is better, 
f k i k+ −[ ][ 2 ]1  is adjusted, that is,

	 [ ][ 2 ] { [ ][ 2 ], [ ][ ] [ ][ ]}1 1f k i min f k i f j i map j kk k+ = + +− −

After n nuts are gathered, if nut i is the last gathered nut, the minimum number 
of steps to reach the position of nut i is f [i][2n−1], the number of steps back to “L” 
is map[0][i]. The number of steps is f [i][2n−1]+map[0][i].

Finally, all results are compared i(1≤i≤n), the minimum number of steps start-
ing from “L”, gather all the nuts, and back to “L” is:

	
min{ [ ][2 1] [0][ ]}.
1

ans f i map i
i n

n= − +
≤ ≤

  Program

#include <cstdio>
#include <cstring>
#define Max(a,b) ((a)>(b)?(a):(b))
#define Inf (1<<20)
#define N (30)
#define M (65536)

using namespace std;

int f[N][M];    // nuts are gathered currently is j, where the 
number of gathered nuts is i, and the minimum number of steps 
is f[i][j]
char s[N];    //current row
int map[N][N];    // distance between vertice i and vertex j 
is map[i, j]
int x[N],y[N];    //The sequence of vertices’ coordinates
int num,n,m,ans,maxz;    //num: number of nuts, n*m: the size 
of the map, ans: the minimum amount of steps starting from 



Practice for Dynamic Programming  ◾  287

“L”, gather all the nuts, and back to “L”, maxz: the state 
that all nuts are gathered

int Abs(int x) { if (x>0) return x; return -x; }  //|x|
void Update(int &x,int y) { if (x>y) x=y; }   //x←max{x,y}

int main()
{
	 while (scanf("%d%d",&n,&m)!=EOF)    //Input the size of the 
map
	 {
		  num=0;
		  for (int i=0;i<n;++i)    // Input every row, calculate 
the number of nuts, set up the sequence of vertices’ 
coordinates, where (x[0], y[0]) is the position where Larry 
and Ryan are currently located, (x[1…num], y[1…num]) are 
positions for num nuts
		  {
			   scanf("%s",s);
			   for (int j=0;j<m;++j)
			   if (s[j]=='#') { x[++num]=i; y[num]=j; } else
			   if (s[j]=='L') { x[0]=i; y[0]=j; }
		  }
		  if (!num) {printf("0\n"); continue; }
		  for (int i=0;i<=num;++i)    //Calculate distances between 
vertices
for (int j=0;j<=num;++j)	  
map[i][j]=Max(Abs(x[i]-x[j]),Abs(y[i]-y[j]));
		  maxz=(1<<num)-1;    // Calculate the state that all nuts 
are gathered
		  for (int i=0;i<=maxz;++i)    // Initialize successor 
function
   		  for (int j=0;j<=num;++j) f[j][i]=Inf;  
   	 for (int i=1;i<=num;++i) f[i][1<<(i-1)]=map[0][i]; 
		  for (int i=0;i<maxz;++i)    // states are enumerated
		  {
		     for (int j=1;j<=num;++j) if (i & (1<<(j-1)))    // The 
last gathered nut j in stage i is enumerated
			       for(int k=1;k<=num;++k)    // Nut k which isn’t in 
stage i is enumerated, and adjusted
            if (!(i & (1<<(k-1))))Update(f[k][i+(1<<(k-1))], 
f[j][i]+map[j][k]);
		  }
		  ans=Inf;
		  for (int i=1;i<=num;++i)    // Enumerate the last 
gathered nut i, and adjust
			   Update(ans,f[i][maxz]+map[i][0]);
		  printf("%d\n",ans);    // Output the result
	 }
	 return 0;
}



288  ◾  Algorithm Design Practice for Collegiate Programming

6.3.2  Mondriaan’s Dream

Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One 
night, after producing the drawings in his “toilet series” (where he had to use his 
toilet paper to draw on, for all of his paper was filled with squares and rectangles), 
he dreamt of filling a large rectangle with small rectangles of width 2 and height 1 
in varying ways (see Figure 6.3).

Expert as he was in this material, he saw at a glance that he will need a com-
puter to calculate the number of ways to fill the large rectangle whose dimen-
sions were integer values, as well. Help him, so that his dream won’t turn into a 
nightmare!

Input

The input file contains several test cases. Each test case is made up of two integer 
numbers: the height h and the width w of the large rectangle. Input is terminated 
by h=w=0. Otherwise, 1<=h, w<=11.

Output

For each test case, output the number of different ways the given rectangle can be 
filled with small rectangles of size 2 times 1. Assume that the given large rectangle 
is oriented, i.e., count symmetrical tilings multiple times (see Figure 6.4).

Figure 6.3 

Figure 6.4 



Practice for Dynamic Programming  ◾  289

Sample Input Sample Output

1  2
1  3
1  4
2  2
2  3
2  4
2  11
4  11
0  0

1
0
1
2
3
5
144
51205

Source:	 Ulm Local 2000

IDs for Online Judges: POJ 2411, ZOJ 1100

  Analysis

Assume that you could calculate the number of different paintings for a rectangle 
with c columns and r rows where the first r−1 rows are completely filled and the last 
row has any of 2c possible patterns. Then, by trying all variations of filling the last 
row where small rectangles may be spilled into a further row, you can calculate the 
number of different paintings for a rectangle with r+1 rows where the first r rows 
are completely filled and the last row again has any pattern.

This straightforwardly leads to a DP solution. All possible ways of filling a row, 
part of which may already be occupied and spilling into the next row and creating a 
new pattern, are generated by backtracking over a row. Viewing these as transitions 
from a pattern to another pattern, their number is given by the recursive equation 
T T Tc c c= +− −2 .1 2  Its solution is asymptotically exponential with a base of sqrt(2)+1, 
which is not a problem for c<=11.

If both h and w are odd, the result is 0. Since the number of paintings is a sym-
metric function, the number of columns should be chosen as the smaller of the two 
input numbers whenever possible to improve runtime behaviour substantially.

Judges’ test data includes all 121 legal combinations of h and w.
Since the size of the painting could be as large as 110, a simple backtracking 

solution won’t do, not even with using five hours of contest time to precalculate 
the results. Once the DP algorithm is implemented, a quick review of the results 
should reveal that they don’t fit into 32-bit ints. There are four ways to solve this 
problem: try double (which works actually), implement 64-bit arithmetics (only 
addition is needed), implement arbitrary precision arithmetics, or switch to Java 
and use BigInteger. A more efficient algebraic solution was not known to the judges.



290  ◾  Algorithm Design Practice for Collegiate Programming

  Program
#include <stdio.h>
static double cnt[12][1<<11];
static int trans[16384][2];
int rows, cols, ntrans;
/* there are ((sqrt(2)+1)^c - (sqrt(2)-1)^c) * (sqrt(2)+2) / 4 
transitions
 * which is the solution to T_{c} = 2 * T_{c-1} + T_{c-2}
 */
void backtrack (int n, int from, int to)
{
  if (n > cols) return;
  if (n == cols)
  {
    trans[ntrans][0] = from;
    trans[ntrans][1] = to;
    ++ntrans;
    return;
  }
  backtrack (n+2, from<<2, to<<2);
  backtrack (n+1, from<<1, (to<<1)|1);
  backtrack (n+1, (from<<1)|1, to<<1);
}
int main ()
{
  int r, t;
  FILE* in = fopen ("dream.in", "r");
  while (fscanf (in, " %d %d ", &rows, &cols) == 2)
  {
    if (rows == 0 || cols == 0) break;
    if (rows < cols) { t = rows; rows = cols ; cols = t; }
    /* calculate map of possible transitions by linear 
backtracking */
    ntrans = 0;
    backtrack (0, 0, 0);
    for (r=0 ; r<=rows ; r++)
      for (t=0 ; t<(1<<cols) ; t++)
        cnt[r][t] = 0;
    cnt[0][0] = 1;
    for (r=0 ; r<rows ; r++) /* the r topmost rows are already 
filled */
      for (t=0 ; t<ntrans ; t++) /* perform all transitions */
        cnt[r+1][trans[t][1]] += cnt[r][trans[t][0]];
    printf ("%.0f\n", cnt[rows][0]);
  }
  return 0;
}



Practice for Dynamic Programming  ◾  291

6.4  Problems
6.4.1  Tri Tiling

In how many ways can you tile a 3×n rectangle with 2×1 dominoes?
Figure 6.5 shows a sample tiling of a 3×12 rectangle.

Input

Input consists of several test cases followed by a line containing −1. Each test case 
is a line containing an integer 0≤n≤30.

Output

For each test case, output one integer number giving the number of possible tilings.

Sample Input Sample Output

2
8
12
-1

3
153
2131

Source:	 Waterloo local 2005.09.24

IDs for Online Judges: POJ 2663, ZOJ 2547, UVA 10918

  Hint

Suppose the state for column i is represented as a binary number j (0≤i≤n−1, 0≤j≤7), 
where 0 represents the square that is occupied by a domino, and 1 represents the 
square that isn’t occupied by a domino. Obviously, the state for (0, i) is c=j&1; the 

state for (1, i) is 
2

b
j= 




 &1; and the state for (2, i) is 

4
a

j= 




.

Suppose dp[i][j] is the number of possible tilings for the first i columns whose 
state is j. Obviously, dp[0][0]=1. From left to right, DP is used as follows.

	 If (1, i) and (2, i) are occupied by dominoes (!a&&!b==1), 
then dp[i+1][!c]+=dp[i][j];

Figure 6.5 



292  ◾  Algorithm Design Practice for Collegiate Programming

If (0, i) and (1, i) are occupied by dominoes (!b&&!c==1), 
then dp[i+1][(!a)*4]+=dp[i][j];
dp[i+1][(!a)×4+(!b)×2+(!c)]+=dp[i][j];

Finally, dp[n][0] is the solution to the problem.

6.4.2  Marks Distribution

In an examination. one student appeared in N subjects and has got total T marks. 
He has passed in all the N subjects where the minimum mark for passing in each 
subject is P. You have to calculate the number of ways the student can get the 
marks. For example, if N=3, T=34 and P=10, then the marks in the three subjects 
could be as follows:

Subject 1 Subject 2 Subject 3

1 14 10 10

2 13 11 10

3 13 10 11

4 12 11 11

5 12 10 12

6 11 11 12

7 11 10 13

8 10 11 13

9 10 10 14

10 11 12 11

11 10 12 12

12 12 12 10

13 10 13 11

14 11 13 10

15 10 14 10

So there are 15 solutions. So F (3, 34, 10)=15.

Input

In the first line of the input, there will be a single positive integer K followed by 
K lines, each containing a single test case. Each test case contains three positive 



Practice for Dynamic Programming  ◾  293

integers denoting N, T, and P respectively. The values of N, T. and P will be 
at most 70. You may assume that the final answer will fit in a standard 32-bit 
integer.

Output

For each input, print in a line the value of F (N, T, P).

Sample Input Sample Output

2
3  34  10
3  34  10

15
15

Source:	 4th IIUC Inter-University Programming Contest, 2005

ID for Online Judge: UVA 10910

  Hint

Suppose dp[i][j] shows the number of ways the student passes i sub-
jects and gets total j marks. Therefore, dp[1][j]=1, where P≤j≤T; and 

dp i j d i j k j k P
k P

j P

∑[ ][ ] = − − − ≥
=

−

[ 1][ ] , where 2≤i≤N, P≤j≤T. Finally, dp[N ][T ] is 

the solution to the problem.

6.4.3  Chocolate Box

Recently one of my friends, Tarik, became a member of the food committee of an 
ACM regional competition. He has been given m distinguishable boxes, and he 
has to put n types of chocolates in the boxes. The probability that one chocolate is 
placed in a certain box is 1/m. What is the probability that one or more boxes are 
empty? At first he thought it was an easy task. But soon he found that it was much 
harder. So, he falls into great trouble and asks you to help him in this task.

Input

Each line of the input contains two integers n indicating the total number of distin-
guishable types of chocolate and m indicating the total number of distinguishable 
boxes (m≤n<100). A single line containing −1 denotes the end.



294  ◾  Algorithm Design Practice for Collegiate Programming

Output

For each of the cases, you should calculate the probability corrected to seven deci-
mal places. The output format is shown below.

Sample Input Sample Output

50  12
50  12
−1

Case 1: 0.1476651
Case 2: 0.1476651

Source:	 The FOUNDATION Programming Contest 2004

ID for Online Judge: UVA 10648

  Hint

Suppose dp[i][j] is the probability that j boxes have chocolates after the i-th chocolate 
is placed. Initially, dp[1][1]=1. And dp[i][j]=dp[i−1][j]×f( j)+dp[−1][j−1]×f(m−j+1), 
where f x

x
m

( ) = , represents the probability that one chocolate is placed in x boxes, 

2≤i≤n, 1≤j≤m.
The solution is 1−dp[n][m].

6.4.4  A Spy in the Metro

Secret agent Maria was sent to Algorithms City to carry out an especially dangerous 
mission. After several thrilling events, we find her in the first station of Algorithms 
City Metro, examining the time table. The Algorithms City Metro consists of a 
single line with trains running both ways, so its timetable is not complicated.

Maria has an appointment with a local spy at the last station of Algorithms City 
Metro. Maria knows that a powerful organization is after her. She also knows that 
while waiting at a station, she is at great risk of being caught. To hide in a running 
train is much safer, so she decides to stay in running trains as much as possible, even 
if this means traveling backward and forward. Maria needs to know a schedule 
with minimal waiting time at the stations that gets her to the last station in time 
for her appointment. You must write a program that finds the total waiting time in 
a best schedule for Maria.

The Algorithms City Metro system has N stations, consecutively numbered 
from 1 to N. Trains move in both directions: from the first station to the last station 
and from the last station back to the first station (see Figure 6.6). The time required 



Practice for Dynamic Programming  ◾  295

for a train to travel between two consecutive stations is fixed since all trains move at 
the same speed. Trains make a very short stop at each station, which you can ignore 
for simplicity. Since she is a very fast agent, Maria can always change trains at a sta-
tion even if the trains involved stop in that station at the same time.

Input

The input file contains several test cases. Each test case consists of seven lines with 
information as follows.

◾◾ Line 1. The integer N (2≤N≤50), which is the number of stations.
◾◾ Line 2. The integer T (0≤T≤200), which is the time of the appointment.
◾◾ Line 3. N−1 integers: t1, t2, ... tN −1 (1≤ti≤20), representing the travel times 

for the trains between two consecutive stations: t1 represents the travel time 
between the first two stations, t2 the time between the second and the third 
station, and so on.

◾◾ Line 4. The integer M1 (1≤M1≤50), representing the number of trains depart-
ing from the first station.

◾◾ Line 5. M1 integers: , ,..., (0 250 and )1 2 11 ≤ ≤ < +d d d d d dM i i i , representing 
the times at which trains depart from the first station.

◾◾ Line 6. The integer M2 (1≤M2≤50), representing the number of trains depart-
ing from the Nth station.

◾◾ Line 7. M2 integers: , ,... (0 250 and )1 2 12 ≤ ≤ < +e e e e e eM i i i  representing the 
times at which trains depart from the Nth station.

The last case is followed by a line containing a single zero.

Output

For each test case, print a line containing the case number (starting with 1) and 
an integer representing the total waiting time in the stations for a best schedule, or 
the word “impossible” in case Maria is unable to make the appointment. Use the 
format of the sample output.

First station Second station Nth station

Figure 6.6 



296  ◾  Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output

4
55
5 10 15
4
0 5 10 20
4
0 5 10 15
4
18
1 2 3
5
0 3 6 10 12
6
0 3 5 7 12 15
2
30
20
1
20
7
1 3 5 7 11 13 17
0

Case Number 1: 5
Case Number 2: 0
Case Number 3: impossible

Source:	 ACM World Finals 2003

IDs for Online Judges: UVA 2728

  Hint

First, the time that each train departing from the first station arrives at each station 
x1[ ][ ] and the time that each train departing from the N-th station arrives at each 
station x2[ ][ ] are calculated, where the time that the i-th train departing from the 
first stationt arrives at the j-th station is x1[i][j]:

	

x i j

j

j
=

=

+ >













1[ ][ ]

the time at which the i-th train departs
from the first station

1

x1[i][j-1] the travel time between the (j-1)-th
station and the j-th station

1
;



Practice for Dynamic Programming  ◾  297

and the time that the i-th train departing from the N-th stationt arrives at the j-th 
station is x2[i][j]:

	

x i j =

=

+ + + <













2

the time at which the i-th train departs
from the N-th station

j n

x2[i][j 1] the travel time between the (j 1)-th
station and the j-th station

j n[ ][ ]
.

States are minimal waiting times at each point in time for each station. Because 
for the previous point in time, the waiting time must also be minimal, DP is used 
to solve the problem.

Suppose f [j][k] is the minimal waiting time that Maria arrives at the k-th station 
at point in time j. Obviously, f [0][1]=0;

Stage i: A stage is a point in time before the time of the appointment, 0≤i≤T−1;
State k: each station is enumerated, 0≤k≤N;
Decision: There are two kinds of decisions, forward and backward:

Forward: Each forward train j which arrives at the k-th station after point in 
time i is enumerated (1≤j≤the number of trains departing from the first 
station, i≤x1[j][k]). The minimal waiting time that train j arrives at the 
(k+1)-th station is f [x1[j][k+1]][k+1]=min{f [x1[j][k+1]][k+1], f [i][k]+x1[j]
[k]−i}.

Backward: Each backward train j which arrives at the k-th station after point 
in time i is enumerated (1≤j≤the number of trains departing from the N-
th station, i≤x2[j][k]). The minimal waiting time that train j arrives at the 
(k−1)-th station is f [x2[j][k−1]][k−1]=min{f [x2[j][k−1]][k−1], f [i][k]+x1[j]
[k]−i}

Because the time that trains arrive at the (k+1)-th station or the (k−1)-th station 
may be after i, we need to adjust: f [i+1][k]=min{f [i+1][k], f [i][k]+1}.

Obviously, if f [T ][N ] is the initial value before DP, Maria is unable to make 
the appointment; otherwise, f [T ][N ] is the total waiting time in the stations for a 
best schedule.

6.4.5  A Walk Through the Forest

Jimmy experiences a lot of stress at work these days, especially since his accident 
made working difficult. To relax after a hard day, he likes to walk home. To make 
things even nicer, his office is on one side of a forest, and his house is on the other. 
A nice walk through the forest, seeing the birds and chipmunks, is quite enjoyable.



298  ◾  Algorithm Design Practice for Collegiate Programming

The forest is beautiful, and Jimmy wants to take a different route every day. 
He also wants to get home before dark, so he always takes a path to make progress 
towards his house. He considers taking a path from A to B to be progress if there 
exists a route from B to his home that is shorter than any possible route from A. 
Calculate how many different routes through the forest Jimmy might take.

Input

Input contains several test cases followed by a line containing 0. Jimmy has num-
bered each intersection or joining of paths starting with 1. His office is numbered 
1, and his house is numbered 2. The first line of each test case gives the num-
ber of intersections N, 1<N≤1000, and the number of paths M. The following M 
lines each contain a pair of intersections a b and an integer distance 1≤d≤1000000 
indicating a path of length d between intersection a and a different intersection 
b. Jimmy may walk a path any direction he chooses. There is at most one path 
between any pair of intersections.

Output

For each test case, output a single integer indicating the number of different routes 
through the forest. You may assume that this number does not exceed 2147483647.

Sample Input Sample Output

5  6
1  3  2
1  4  2
3  4  3
1  5  12
4  2  34
5  2  24
7  8
1  3  1
1  4  1
3  7  1
7  4  1
7  5  1
6  7  1
5  2  1
6  2  1
0

2
4

Source:	 Waterloo local 2005.09.24

IDs for Online Judges: POJ 2662, UVA 10917



Practice for Dynamic Programming  ◾  299

  Hint

First, a weighted graph is constructed. Each intersection is represented as a vertex. 
Each path is represented as an edge. And the length for a path is represented as the 
weight of the corresponding edge. Jimmy’s office is as vertex 1, and Jimmy’s house 
is as vertex 2.

Second, Dijkstra’s algorithm is used to calculate the shortest path dist[] from 
each vertex to vertex 2, where dist[i] is the length of the shortest path form vertex i 
to vertex 2. Suppose f [x] is the number of paths from vertex x to vertex 2:

	

[ ]

1 2

( [ ] | ( , ) & & [ ] [ ]) 2
1

f x

x

f i i x E dist i dist x x
i

n

∑=

=

∈ < ≠








 =

Finally, f [1] is the number of different routes through the forest.

6.4.6  Common Subsequence

A subsequence of a given sequence is the given sequence with some elements (pos-
sibly none) left out. Given a sequence X=<x1, x2,…, xm>, another sequence Z=<z1, 
z2,…, zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, 
…, ik> of indices of X such that for all j=1, 2, …, k, xij=zj. For example, Z=<a, b, f, c> 
is a subsequence of X=<a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two 
sequences X and Y, the problem is to find the length of the maximum-length com-
mon subsequence of X and Y.

Input

The program input is from the standard input. Each data set in the input contains 
two strings representing the given sequences. The sequences are separated by any 
number of white spaces. The input data are correct.

Output

For each set of data, the program prints on the standard output the length of the 
maximum-length common subsequence from the beginning of a separate line.



300  ◾  Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output

abcfbc
programming
abcd

abfcab
contest
mnp

4
2
0

Source:	 ACM Southeastern Europe 2003

IDs for Online Judges: POJ 1458, ZOJ 1733, UVA 2759

  Hint

The problem is an LCS problem.

6.4.7  Lazy Cows

Farmer John regrets having applied high-grade fertilizer to his pastures since the 
grass now grows so quickly that his cows no longer need to move around when 
they graze. As a result, the cows have grown quite large and lazy... and winter is 
approaching.

Farmer John wants to build a set of barns to provide shelter for his immobile 
cows, and he believes that he needs to build his barns around the cows based on 
their current locations since they won’t walk to a barn, no matter how close or 
comfortable.

The cows’ grazing pasture is represented by a 2×B (1≤B≤15,000,000) array of 
cells, some of which contain a cow and some of which are empty. N (1≤N≤1000) 
cows occupy the cells in this pasture:

cow cow cow cow cow

cow cow cow

Ever the frugal agrarian, Farmer John would like to build a set of just K (1≤K≤N) 
rectangular barns (oriented with walls parallel to the pasture’s edges) whose total 
area covers the minimum possible number of cells. Each barn covers a rectangular 
group of cells in their entirety, and no two barns may overlap. Of course, the barns 
must cover all of the cells containing cows.

By way of example, in the picture above, if K=2. then the optimal solution con-
tains a 2×3 barn and a 1×4 barn and covers a total of 10 units of area.

Input

Line 1: Three space-separated integers, N, K, and B.



Practice for Dynamic Programming  ◾  301

Lines 2. N+1: Two space-separated integers in the range (1,1) to (2,B) giv-
ing the coordinates of the cell containing each cow. No cell contains more than 
one cow.

Output

Line 1: The minimum area required by the K barns in order to cover all of the 
cows.

Sample Input Sample Output

8  2  9
1  2
1  6
1  7
1  8
1  9
2  2
2  3
2  4

10

Source:	 USACO 2005 USOpen Gold

ID for Online Judge: POJ 2430

  Hint

This is a problem for DP with state compression. Suppose dp[i][j][k] represents the 
best solution that the first i columns is covered by j barns, and the current state is 
k; where k==1 means only the first row is covered by a barn, k==2 means only the 
second row is covered by a barn, k==3 means the first row and the second row is 
covered by a barn, and k==4 means the first row and the second row are covered 
by two different barns.

6.4.8  Longest Common Subsequence

Given two sequences of characters, (Figure 6.7), print the length of the longest 
common subsequence of both sequences. For example, the longest common subse-
quence of the following two sequences:

abcdgh
aedfhr
is adh of length 3.



302  ◾  Algorithm Design Practice for Collegiate Programming

Input

The input consists of pairs of lines. The first line of a pair contains the first string 
and the second line contains the second string. Each string is on a separate line and 
consists of at most 1,000 characters.

Output

For each subsequent pair of input lines, output a line containing one integer num-
ber which satisfies the criteria stated above.

Sample Input Sample Output

a1b2c3d4e
zz1yy2xx3ww4vv
abcdgh
aedfhr
abcdefghijklmnopqrstuvwxyz
a0b0c0d0e0f0g0h0i0j0k0l0m0n0o0p0q0r0s0t0u0v0w0x0y0z0
abcdefghijklmnzyxwvutsrqpo
opqrstuvwxyzabcdefghijklmn

4
3
26
14

Source:	 November 2002 Monthly Contest

ID for Online Judge: UVA 10405

  Hint

This problem is a classical LCS problem.

6.4.9  Make Palindrome

By definition, a palindrome is a string which is not changed when reversed. 
“MADAM” is a nice example of a palindrome. It is an easy job to test whether a given 
string is a palindrome or not. But it may not be so easy to generate a palindrome.

Sequence 1:

Sequence 2:

Figure 6.7 



Practice for Dynamic Programming  ◾  303

Here we will make a palindrome generator that will take an input string and 
return a palindrome. You can easily verify that for a string of length ‘n’, no more 
than (n−1) characters are required to make it a palindrome. Consider “abcd” and 
its palindrome “abcdcba” or “abc” and its palindrome “abcba”. But life is not so 
easy for programmers!! We always want optimal cost. And you have to find the 
minimum number of characters required to make a given string into a palindrome 
if you are allowed to insert characters at any position of the string.

Input

Each input line consists only of lowercase letters. The size of the input string will be 
at most 1000. Input is terminated by EOF.

Output

For each input, print the minimum number of characters and such a palindrome 
separated by one space in a line. There may be many such palindromes. Any one 
will be accepted.

Sample Input Sample Output

abcd
aaaa
abc
aab
abababaabababa
pqrsabcdpqrs

3 abcdcba
0 aaaa
2 abcba
1 baab
0 abababaabababa
9 pqrsabcdpqrqpdcbasrqp

Source:	 The Real Programmers’ Contest -2 -A BUET Sprinter Contest 2003

ID for Online Judge: UVA 10453

  Hint

First, the longest common subsequence of the string and its reverse are calculated. 
This will give you the optimal overlap in the palindrome. Then the rest of the char-
acters are added into the string to make the shortest palindrome.

6.4.10  Vacation

You are planning to take some rest and to go on vacation, but you really don’t know 
which cities you should visit. So, you ask your parents for help. Your mother says 
“My son, you MUST visit Paris, Madrid, Lisbon, and London. But it’s only fun 



304  ◾  Algorithm Design Practice for Collegiate Programming

in this order.” Then your father says: “Son, if you’re planning to travel, go first to 
Paris, then to Lisbon, then to London and then, at last, go to Madrid. I know what 
I’m talking about.”

Now you’re a bit confused, as you didn’t expect this situation. You’re afraid that 
you’ll hurt your mother if you follow your father’s suggestion. But you’re also afraid 
to hurt your father if you follow your mother’s suggestion. But it can get worse, 
because you can hurt both of them if you simply ignore their suggestions!

Thus, you decide that you’ll try to follow their suggestions in the best way that 
you can. So, you realize that the “Paris-Lisbon-London” order is the one which 
better satisfies both your mother and your father. Afterwards, you can say that you 
could not visit Madrid, even though you would’ve liked it very much.

If your father suggested the “London-Paris-Lisbon-Madrid” order, then 
you would have two orders, “Paris-Lisbon” and “Paris-Madrid”, which would 
better satisfy both of your parents’ suggestions. In this case, you could only 
visit two cities.

You want to avoid problems like this one in the future. And what if their travel 
suggestions were bigger? Probably you would not find the better way very easily. So, 
you decided to write a program to help you in this task. You’ll represent each city 
by one character, using uppercase letters, lowercase letters, digits, and the space. 
Thus, you can have at most 63 different cities to visit. But it’s possible that you’ll 
visit some city more than once.

If you represent Paris with “a”, Madrid with “b”, Lisbon with “c”, and London 
with “d”, then your mother’s suggestion would be “abcd” and your father’s sugges-
tion would be “acdb” (or “dacb”, in the second example).

The program will read two travel sequences, and it must answer how many 
cities you can travel to such that you’ll satisfy both of your parents and its 
maximum.

Input

The input will consist of an arbitrary number of city sequence pairs. The end of 
input occurs when the first sequence starts with an “#” character (without the 
quotes). Your program should not process this case. Each travel sequence will be 
on a line alone and will be formed by legal characters (as defined above). All travel 
sequences will appear in a single line and will have at most 100 cities.

Output

For each sequence pair, you must print the following message in a line alone:

Case #d: you can visit at most K cities.

Where d stands for the test case number (starting from 1) and K is the maxi-
mum number of cities you can visit such that you’ll satisfy both your father’s sug-
gestion and your mother’s suggestion.



Practice for Dynamic Programming  ◾  305

Sample Input Sample Output

abcd
acdb
abcd
dacb
#

Case #1: you can visit at most 3 cities.
Case #2: you can visit at most 2 cities.

Source:	 2001 Universidade do Brasil (UFRJ). Internal Contest Warmup

ID for Online Judge: UVA 10192

  Hint

Your mother’s suggestion is the first string, and your father’s suggestion is the second 
string. The Longest Common Subsequence (LCS) for the two strings are cities that 
you’ll visit to satisfy both your father’s suggestion and your mother’s suggestion.

6.4.11  Is Bigger Smarter?

Some people think that the bigger an elephant is, the smarter it is. To disprove this, 
you want to take the data on a collection of elephants and put as large a subset of 
this data as possible into a sequence so that the weights are increasing, but the IQs 
are decreasing.

The input will consist of data for a group of elephants, one elephant per line, 
terminated by the end-of-file. The data for a particular elephant will consist of a 
pair of integers: the first representing its size in kilograms and the second represent-
ing its IQ in hundredths of IQ points. Both integers are between 1 and 10000. The 
data will contain information for at most 1000 elephants. Two elephants may have 
the same weight, the same IQ, or even the same weight and IQ.

Say that the numbers on the i-th data line are W[i] and S[i]. Your program should 
output a sequence of lines of data; the first line should contain a number n; the 
remaining n lines should each contain a single positive integer (each one representing 
an elephant). If these n integers are a[1], a[2],..., a[n], then it must be the case that

		  W[a[1]]<W[a[2]]<...<W[a[n]]

and

		  S[a[1]]>S[a[2]]>...>S[a[n]].

In order for the answer to be correct, n should be as large as possible. All 
inequalities are strict: weights must be strictly increasing, and IQs must be strictly 



306  ◾  Algorithm Design Practice for Collegiate Programming

decreasing. There may be many correct outputs for a given input, but your program 
only needs to find one.

Sample Input Sample Output

6008  1300
6000  2100
500    2000
1000  4000
1100  3000
6000  2000
8000  1400
6000  1200
2000  1900

4
4
5
9
7

Source:	 The “silver wedding” Contest 2001

ID for Online Judge: UVA 10131

  Hint

It is a standard DP (Longest Increasing Subsequence) problem. First, n elephants 
are sorted. The weight is as the first key. And the IQ is as the second key. Then the 
Longest Increasing Subsequence (LIS) for the sorted sequence is calculated.

6.4.12  Stacking Boxes

Some concepts in mathematics and computer science are simple in one or two 
dimensions but become more complex when extended to arbitrary dimensions. 
Consider solving differential equations in several dimensions and analyzing the 
topology of an n-dimensional hypercube. The former is much more complicated 
than its one-dimensional relative, while the latter bears a remarkable resemblance 
to its “lower-class” cousin.

Consider an n-dimensional “box” given by its dimensions. In two dimensions 
the box (2,3) might represent a box with length two units and width three units. 
In three dimensions the box (4,8,9) can represent a box 4×8×9 (length, width, 
and height). In six dimensions it is, perhaps, unclear what the box (4,5,6,7,8,9) 
represents; but we can analyze the properties of the box, such as the sum of its 
dimensions.

In this problem you will analyze a property of a group of n-dimensional boxes. 
You are to determine the longest nesting string of boxes, that is a sequence of boxes 
b1, b2, …, bk such that each box bi nests in box bi+1 (1≤i<k).



Practice for Dynamic Programming  ◾  307

A box D=(d1, d2, ……, dn) nests in a box E=(e1, e2, ……, en) if there is some 
rearrangement of the di such that when rearranged, each dimension is less than the 
corresponding dimension in box E. This loosely corresponds to turning box D to 
see if it will fit in box E. However, since any rearrangement suffices, box D can be 
contorted, not just turned (see examples below).

For example, the box D=(2,6) nests in the box E=(7,3) since D can be rear-
ranged as (6,2) so that each dimension is less than the corresponding dimension in 
E. The box D=(9,5,7,3) does NOT nest in the box E=(2,10,6,8), since no rearrange-
ment of D results in a box that satisfies the nesting property, but F=(9,5,7,1) does 
nest in box E since F can be rearranged as (1,9,5,7), which nests in E.

Formally, we define nesting as follows: box D=(d1, d2, ……, dn) nests in box 
E=(e1, e2, ……, en) if there is a permutation π of 1..n such that (dπ(1), dπ(2), ……, dπ(n)) 
“fits” in (e1, e2, ……, en), i.e., if dπ(i)≤ei for all dπ(i)≤ei.

Input

The input consists of a series of box sequences. Each box sequence begins with a line 
consisting of the number of boxes k in the sequence followed by the dimensionality 
of the boxes, n (on the same line).

This line is followed by k lines, one line per box with the n measurements of 
each box on one line separated by one or more spaces. The line in the sequence 
(1≤i≤k) gives the measurements for the box.

There may be several box sequences in the input file. Your program should pro-
cess all of them and determine, for each sequence, which of the k boxes determine 
the longest nesting string and the length of that nesting string (the number of boxes 
in the string).

In this problem, the maximum dimensionality is 10 and the minimum dimen-
sionality is 1. The maximum number of boxes in a sequence is 30.

Output

For each box sequence in the input file, output the length of the longest nest-
ing string on one line, followed on the next line by a list of the boxes that 
comprise this string in order. The “smallest” or “innermost” box of the nesting 
string should be listed first, and the next box (if there is one) should be listed 
second, etc.

The boxes should be numbered according to the order in which they appeared 
in the input file (the first box is box 1, etc.).

If there is more than one longest nesting string, then any one of them can be 
output.



308  ◾  Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output

5  2
3  7
8  10
5  2
9  11
21  18
8  6
5  2  20  1  30  10
23  15  7  9  11  3
40  50  34  24  14  4
9  10  11  12  13  14
31  4  18  8  27  17
44  32  13  19  41  19
1  2  3  4  5  6
80  37  47  18  21  9

5
3  1  2  4  5
4
7  2  5  6

Source:	 Internet Programming Contest 1990

ID for Online Judge: UVA 103

  Hint

This problem is a Longest Increasing Subsequence problem. The problem requires 
you to check whether box a fits in box b.

First, for each box, its dimension (s1, s2, s3, ..., sn) is sorted such that si≤sj for all i<j.
Second, boxes are sorted. For two boxes a and b, a<b if ai≤bi for all i.
Finally, the Longest Increasing Subsequence algorithm is used.
The time complexity for the problem is O(n2).

6.4.13  Function Run Fun

We all love recursion! Don’t we? Consider a three-parameter recursive function 
w(a, b, c):

( , , )

1 0 or 0 or 0
(20,20,20) 20 or 20 or 20

( , , 1) ( , 1, 1) ( , 1, ) and
( 1, , ) ( 1, 1, ) ( 1, , 1) ( 1, 1, 1) otherwise

=

<= <= <=
> > >

− + − − − − < <
− + − − + − − − − − −











w a b c

a b c
w a b c

w a b c w a b c w a b c a b b c
w a b c w a b c w a b c w a b c

This is an easy function to implement. The problem is, if implemented directly, 
for moderate values of a, b, and c (e.g., a=15, b=15, c=15), the program takes hours 
to run because of the massive recursion.



Practice for Dynamic Programming  ◾  309

Input

The input for your program will be a series of integer triples, one per line, until 
the end-of-file flag of −1 −1 −1. Using the above technique, you are to calculate 
w(a, b, c) efficiently and print the result.

Output

Print the value for w(a, b, c) for each triple.

Sample Input Sample Output

1  1  1
2  2  2
10  4  6
50  50  50
-1  7  18
-1  -1  -1

w(1, 1, 1) = 2
w(2, 2, 2) = 4
w(10, 4, 6) = 523
w(50, 50, 50) = 1048576
w(-1, 7, 18) = 1

Source:	 ACM Pacific Northwest 1999

IDs for Online Judge: POJ 1579, ZOJ 1168

  Hint

A memorized search is used to solve the problem. Suppose a[][][] is the memorized 
list, where a[x][y][z] stores the result for w(x, y, z).

	 For w(x, y, z),
	 If (x≤0||y≤0||z≤0), return 1;
	 If (x>20||y>20||z>20), return w(20, 20, 20);
	 If (x<y&&y<z), then a[x][y][z] memorizes w(x, y, z−1)+w(x, 
y−1, z−1)−w(x, y−1, z); else a[x][y][z] memorizes w(x−1, y, 
z)+w(x−1, y−1, z)+w(x−1, y, z−1)−w(x−1, y−1, z−1).

6.4.14  To the Max

Given a two-dimensional array of positive and negative integers, a subrectangle 
is any contiguous subarray of size 1×1 or greater located within the whole array. 
The sum of a rectangle is the sum of all the elements in that rectangle. In this 
problem, the subrectangle with the largest sum is referred to as the maximal 
subrectangle.



310  ◾  Algorithm Design Practice for Collegiate Programming

As an example, the maximal subrectangle of the array:

	

− −
−

− −
− −

0 2 7 0
9 2 6 2
4 1 4 1
1 8 0 2

is in the lower left corner:

	

−
−

9 2
4 1
1 8

and has a sum of 15.

Input

The input consists of an N×N array of integers. The input begins with a single posi-
tive integer N on a line by itself, indicating the size of the square two-dimensional 
array. This is followed by N^2 integers separated by white space (spaces and new 
lines). These are the N^2 integers of the array, presented in row-major order; that 
is, all numbers in the first row, left to right, then all numbers in the second row, 
left to right, etc. N may be as large as 100. The numbers in the array will be in the 
range [−127,127].

Output

Output the sum of the maximal subrectangle.

Sample Input Sample Output

4
0  -2  -7  0  9  2  -6  2
-4  1  -4  1  -1

8  0  -2

15

Source:	 ACM Greater New York 2001

IDs for Online Judges: POJ 1050, ZOJ 1074, UVA 2288

  Hint

Suppose max is the sum of the maximal subrectangle, initially max=−10000; and 
array m is the input array.



Practice for Dynamic Programming  ◾  311

First, array m is input. For row i, mai is the maximum for sums of continuous 
integers, 1≤i≤N. And after array m is input, the maximum max for all maximums 
for sums of continuous integers for each row is computed, max ma

i N
i=

≤ ≤
max{ }
1

.

Second, from the first row, a for repetition statement deals with every row top-
down. For the current row, integers for its below rows are added into its correspond-
ing columns. The maximum for sums of continuous integers in the current row is 
calculated. That is, row by row, for each row, its below row is added into the row. 
And max is adjusted after a row is added into the current row, if it isn’t the maximal 
value. After the for repetition, max is the sum of the maximal subrectangle.

6.4.15  Robbery

Inspector Robstop is very angry. Last night, a bank has been robbed and the robber 
has not been caught. And this has happened already for the third time this year, 
even though he did everything in his power to stop the robber: as quickly as possi-
ble, all roads leading out of the city were blocked, making it impossible for the rob-
ber to escape. Then, the inspector asked all the people in the city to watch out for 
the robber, but the only messages he received were of the form “We don’t see him.”

But this time, he has had enough! Inspector Robstop decides to analyze how 
the robber could have escaped. To do that, he asks you to write a program which 
takes all the information the inspector could get about the robber in order to find 
out where the robber has been at which time.

Coincidentally, the city in which the bank was robbed has a rectangular shape. 
The roads leaving the city are blocked for a certain period of time t, and during that 
time, several observations of the form “The robber isn’t in the rectangle Ri at time 
Ti” are reported. Assuming that the robber can move at most one unit per time step, 
your program must try to find the exact position of the robber at each time step.

Input

The input contains the description of several robberies. The first line of each descrip-
tion consists of three numbers W, H, t (1≤W, H, t≤100) where W is the width, H is 
the height of the city, and t is the time during which the city is locked.

The next line contains a single integer n (0≤n≤100), the number of messages the 
inspector received. The next n lines (one for each of the messages) consist of five inte-
gers ti, Li, Ti, Ri, Bi each. The integer ti is the time at which the observation has been 
made (1≤ti≤t), and Li, Ti, Ri, Bi are the left, top, right, and bottom respectively of 
the (rectangular) area which has been observed. (1≤Li≤Ri≤W, 1≤Ti≤Bi≤H; the point 
(1, 1) is the upper left-hand corner, and (W, H) is the lower right-hand corner of the 
city.) The messages mean that the robber was not in the given rectangle at time ti.

The input is terminated by a test case starting with W=H=t=0. This case should 
not be processed.



312  ◾  Algorithm Design Practice for Collegiate Programming

Output

For each robbery, first output the line “Robbery #k:”, where k is the number of the 
robbery. Then, there are three possibilities:

1.	If it is impossible that the robber is still in the city considering the messages, 
output the line “The robber has escaped.”

2.	If it is impossible that the robber is still in the city considering the messages, 
output the line “The robber has escaped.” In all other cases, assume that the 
robber really is in the city. Output one line of the form “Time step t: The 
robber has been at x, y.” for each time step, in which the exact location can 
be deduced. (x and y are the column and row of the robber in time step t.) 
Output these lines ordered by time t.

3.	If nothing can be deduced, output the line “Nothing known.” and hope that 
the inspector will not get even more angry.

Output a blank line after each processed case.

Sample Input Sample Output

4  4  5
4
1  1  1  4  3
1  1  1  3  4
4  1  1  3  4
4  4  2  4  4
10  10  3
1
2  1  1  10  10
0  0  0

Robbery #1:
Time step 1: The robber has been at 4,4.
Time step 2: The robber has been at 4,3.
Time step 3: The robber has been at 4,2.
Time step 4: The robber has been at 4,1.

Robbery #2:
The robber has escaped.

Source:	 ACM Mid-Central European Regional Contest 1999

IDs for Online Judges: POJ 1104, ZOJ 1144, UVA707

  Hint (given by the problemsetter)

We are told that there is a robber capable of moving one unit per time in a rectangu-
lar gridlike city. Furthermore, we are given subrectangles of the city that we know 
the robber was not in at different points in time. We have to determine where the 
robber could possibly be at each time slice in a given range.

Memoization is particularly well-suited for this problem. Maintain a three-
dimensional table indexed by width, height, and time holding three possible values: 
yes the robber could be there, no the robber cannot be there, and uncomputed. 



Practice for Dynamic Programming  ◾  313

Initialize the table to uncomputed for all possible values. Then read the witness input 
and mark every rectangle given by them to vacant. Now we can use memoization 
to decide which paths lead to a valid city block after the time is over. Start from the 
time t, and work back to time 1. A given position (width, height, time) can be reached 
only if at least one of its at most five predecessors can be reached (width±1, height±1, 
time−1) and (width, height, time−1). Obviously, time=1 is the base case for the recur-
sion. Don’t be greedy; explore all five options, even if the first one works, since we 
not only want to determine if the position is feasible, but also if it is unique.

After trying all paths starting at the end time, we can then perform the output. 
If there are no places at the finishing time where the robber can be, output that the 
robber must have escaped. Otherwise, for each time that there is only one position, 
output that position. Finally, if nothing was printed, output “Nothing known.”

6.4.16  Always on the Run

Screeching tires. Searching lights. Wailing sirens. Police cars everywhere. Trisha 
Quickfinger did it again! Stealing the “Mona Lisa” had been more difficult than 
planned, but being the world’s best art thief means expecting the unexpected. So 
here she is, with the wrapped frame tucked firmly under her arm, running to catch 
the northbound metro to the Charles de Gaulle airport.

But even more important than actually stealing the painting is to shake off the 
police that will soon be following her. Trisha’s plan is simple: for several days she 
will be flying from one city to another, making one flight per day. When she is rea-
sonably sure that the police have lost her trail, she will fly to Atlanta and meet her 
“customer” (known only as Mr. P.) to deliver the painting.

Her plan is complicated by the fact that nowadays, even when you are stealing 
expensive art, you have to watch your spending budget. Trisha therefore wants to 
spend the least money possible on her escape flights. This is not easy, since airline 
prices and flight availability vary from day to day. The price and availability of an 
airline connection depends on the two cities involved and the day of travel. Every 
pair of cities has a “flight schedule” which repeats every few days. The length of the 
period may be different for each pair of cities and for each direction.

Although Trisha is a good at stealing paintings, she easily gets confused when 
booking airline flights. This is where you come in.

Input

The input contains the descriptions of several scenarios in which Trisha tries to escape. 
Every description starts with a line containing two integers n and k. n is the number 
of cities through which Trisha’s escape may take her, and k is the number of flights she 
will take. The cities are numbered 1, 2, ..., n, where 1 is Paris, her starting point, and 
n is Atlanta, her final destination. The numbers will satisfy 2≤n≤10 and 1≤k≤1000.

Next you are given n(n −1) flight schedules, one per line, describing the connec-
tion between every possible pair of cities. The first n −1 flight schedules correspond 



314  ◾  Algorithm Design Practice for Collegiate Programming

to the flights from city 1 to all other cities (2, 3, ..., n), the next n −1 lines to those 
from city 2 to all others (1, 3, 4, ..., n), and so on.

The description of the flight schedule itself starts with an integer d, the length 
of the period in days, with 1≤d≤30. Following this are d non-negative integers, 
representing the cost of the flight between the two cities on days 1, 2, ..., d. A cost 
of 0 means that there is no flight between the two cities on that day.

So, for example, the flight schedule “3 75 0 80” means that on the first day the flight 
costs 75, on the second day there is no flight, on the third day it costs 80, and then the 
cycle repeats: on the fourth day the flight costs 75, there is no flight on the fifth day, etc.

The input is terminated by a scenario with the formula n=k=0.

Output

For each scenario in the input, first output the number of the scenario, as shown in 
the sample output. If it is possible for Trisha to travel k days, starting in city 1, each 
day flying to a different city than the day before, and finally (after k days) arriving 
in city n, then print “The best flight costs x.”, where x is the least amount that the 
k flights can cost.

If it is not possible to travel in such a way, print “No flight possible.”.
Print a blank line after each scenario.

Sample Input Sample Output

3 6
2 130 150
3 75 0 80
7 120 110 0 100 110 120 0
4 60 70 60 50
3 0 135 140
2 70 80
2 3
2 0 70
1 80
0 0

Scenario #1
The best flight costs 460.

Scenario #2
No flight possible.

Source:	 ACM Southwestern European Regional Contest 1997

IDs for Online Judges: POJ 1476, ZOJ 1250, UVA 590

  Hint

A thief wants to find the cheapest way of travelling to a certain city in exactly k 
days. She must make exactly one flight each day.



Practice for Dynamic Programming  ◾  315

Suppose cost[a][b] is the cost to travel to city a on b day. Then cost[a][b] could 
be calculated as the minimum of cost[m][b−1] + cost to travel from city m to city a.

6.4.17  Martian Mining

The NASA Space Center, Houston, is less than 200 miles from San Antonio, Texas 
(the site of the ACM Finals this year). This is the place where the astronauts are 
trained for Mission Seven Dwarfs, the next giant leap in space exploration. The 
Mars Odyssey program revealed that the surface of Mars is very rich in yeyenum 
and bloggium. These minerals are important ingredients for certain revolutionary 
new medicines, but they are extremely rare on Earth. The aim of Mission Seven 
Dwarfs is to mine these minerals on Mars and bring them back to Earth.

The Mars Odyssey orbiter identified a rectangular area on the surface of Mars 
that is rich in minerals. The area is divided into cells that form a matrix of n rows 
and m columns, where the rows go from east to west and the columns go from 
north to south. The orbiter determined the amount of yeyenum and bloggium in 
each cell. The astronauts will build a yeyenum refinement factory west of the rect-
angular area and a bloggium factory to the north. Your task is to design the con-
veyor belt system that will allow them to mine the largest amount of minerals.

There are two types of conveyor belts: the first moves minerals from east to 
west, and the second moves minerals from south to north. In each cell, you can 
build either type of conveyor belt, but you cannot build both of them in the same 
cell. If two conveyor belts of the same type are next to each other, then they can 
be connected. For example, the bloggium mined at a cell can be transported to the 
bloggium refinement factory via a series of south-north conveyor belts.

The minerals are very unstable, thus they have to be brought to the factories 
on a straight path without any turns. This means that if there is a south-north 
conveyor belt in a cell, but the cell north of it contains an east-west conveyor belt, 
then any mineral transported on the south-north conveyor belt will be lost (see 
Figure 6.8). The minerals mined in a particular cell have to be put on a conveyor 

Y
ey

en
um

 r
e�

ne
ry

Bloggium re�nery

N

S

EW

Figure 6.8 



316  ◾  Algorithm Design Practice for Collegiate Programming

belt immediately, in the same cell (thus they cannot start the transportation in an 
adjacent cell). Furthermore, any bloggium transported to the yeyenum refinement 
factory will be lost, and vice versa.

Your program has to design a conveyor belt system that maximizes the total 
amount of minerals mined, i.e., the sum of the amount of yeyenum transported 
to the yeyenum refinery and the amount of bloggium transported to the blog-
gium refinery.

Input

The input contains several blocks of test cases. Each case begins with a line 
containing two integers: the number 1≤n≤500 of rows, and the number 
1≤m≤500 of columns. The next n lines describe the amount of yeyenum that 
can be found in the cells. Each of these n lines contains m integers. The first 
line corresponds to the northernmost row; the first integer of each line cor-
responds to the westernmost cell of the row. The integers are between 0 and 
1000. The next n lines describe in a similar fashion the amount of bloggium 
found in the cells.

The input is terminated by a block with n=m=0.

Output

For each test case, you have to output a single integer on a separate line: the maxi-
mum amount of minerals that can be mined.

Sample Input Sample Output

4  4
0  0  10  9
1  3  10  0
4  2  1  3
1  1  20  0
10  0  0  0
1  1  1  30
0  0  5  5
5  10  10  10
0  0

98

Source:	 ACM Central Europe 2005

IDs for Online Judges: POJ 2948, UVA 3530



Practice for Dynamic Programming  ◾  317

  Hint

Suppose the matrix that describes the amount of yeyenum is A[ ][ ], and the matrix 
that describes the amount of bloggium is B[ ][ ]. F[i][j] is the maximum amount 
of minerals that can be mined in the matrix whose upper-left corner is (0,0) and 
lower-right corner is (i, j), 0≤i≤n−1,0≤j≤m−1.

F[i][j] is calculated from top to down, and from left to right, 0≤i≤n−1, 
0≤j≤m−1. That is, before F[i][j] is calculated, F[i−1][j] and F[i][j−1] are cal-
culated. At (i, j), the astronauts can build a south-north conveyor belt for blog-
gium, or they can build a east-west conveyor belt for yeyenum. Therefore, 

F i j Max F i B k j F i j A i k
ko

t

ko

j

∑ ∑= − + − +[ ][ ] { [ ][ 1] [ ][ ], [ 1][ ] [ ][ ]}.
0 0

Obviously, F[n−1][m−1] is the maximum amount of minerals that can be mined.

6.4.18  String to Palindrome

In this problem you are asked to convert a string into a palindrome with a mini-
mum number of operations. The operations are described below.

Here you’d have the ultimate freedom. You are allowed to:

◾◾ Add any character at any position
◾◾ Remove any character from any position
◾◾ Replace any character at any position with another character

Every operation you do on the string would count for a unit cost. You’d have to 
keep that as low as possible.

For example, to convert “abccda” you would need at least two operations if we 
allowed you only to add characters. But when you have the option to replace any 
character, you can do it with only one operation. We hope you would be able to use 
this feature to your advantage.

Input

The input file contains several test cases. The first line of the input gives you the 
number of test cases, T (1≤T≤10). Then T test cases will follow, each in one line. 
The input for each test case consists of a string containing lowercase letters only. 
You can safely assume that the length of this string will not exceed 1000 characters.

Output

For each set of input, print the test case number first. Then print the minimum 
number of characters needed to turn the given string into a palindrome.



318  ◾  Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output

6
tanbirahmed
shahriarmanzoor
monirulhasan
syedmonowarhossain
sadrulhabibchowdhury
mohammadsajjadhossain

Case 1:  5
Case 2:  7
Case 3:  6
Case 4:  8
Case 5:  8
Case 6:  8

Source:	 2004-2005 ICPC Regional Contest Warmup 1

ID for Online Judge: UVA 10739

  Hint

Suppose s1…sn is a string, and f [i][j] is the minimum number of characters needed 
to turn si…sj into a palindrome, 1≤i≤j≤n.

If si==sj, then f[i][j]=f[i+1][j−1];
If si≠sj, there are three possibilities:
         sj is inserted into the i-th position, or si is 
deleted, that is, f[i+1][j]+1;
         si is inserted into the j-th position, or sj is 
deleted, that is, f[i][j−1]+1;
         si is replaced by sj, or sj is replaced by si, that 
is, f[i+1][j−1]+1;
and f[i][j]=min(f[i+1][j], f[i][j−1], f[i+1][j−1])+1.

The length of the current substring l is the current stage, 2≤l≤n. The front 
pointer i (1≤i≤n−l+1) for the substring is the current state. The rear pointer is 
j=i+l−1. Based on the above successor function, f [i][j] is calculated.

Finally, f [1][n] is the minimum number of characters needed to turn the given 
string into a palindrome.

6.4.19  String Morphing

There is a special multiplication operator such that

Left 
Right

a b c

a b b a

b c b a

c a c c



Practice for Dynamic Programming  ◾  319

Thus ab=b, ba=c, bc=a, cb=c, ...
For example, you are given the string bbbba and the character a,

(b(bb))(ba)=(bb)(ba) [as bb = b]
       = b(ba)   [as bb = b]	
       = bc	        [as ba = c]	
       = a        [as bc = a]

By adding suitable brackets, bbbba can produce a according to the above mul-
tiplication table.

You are asked to write a program to show the morphing steps of a string into an 
expected character, or otherwise, output “None exist!” if the given string cannot be 
morphed as expected.

Input

The first line of the input file gives the number of test cases. Each case consists of 
two lines. The first line is the starting string, which has at most 100 characters. The 
second line is the target character. All characters in the input are within the range 
of a−c.

Output

For each test case, your output should consist of several lines, showing the morph-
ing steps of a string into the character. In case there are more than one solution, 
always try to start the morphing from the left. Print a blank line between consecu-
tive sets of output.

Sample Input Sample Output

2
bbbba
a
bbbba
a

bbbba
bbba
bba
bc
a
bbbba
bbba
bba
bc
a

Source:	 Second Programming Contest for Newbies 2006

ID for Online Judge: UVA 10981



320  ◾  Algorithm Design Practice for Collegiate Programming

  Hint

First, the relationships between letters and numbers are as follows: a=0, b=1, c=2. 
The table for a special multiplication operator is shown in the following table.

Left 
Right

0 1 2

0 1 1 0

1 2 1 0

2 0 2 2

Suppose F[i][j][t] shows whether the interval [i, j] can can produce t or not. 
Obviously F[i][i][str[i]−'a']=true. Suppose Fm is used to store how the result is pro-
duced, where Fm[i][j][t][0] stores the intermediate pointer producing t; the result 
for the left subinterval [i, Fm[i][j][t][0]] is stored in Fm[i][j][t][1], and the result for 
the right subinterval [Fm[i][j][t][0]+1, j] is stored in Fm[i][j][t][2], 1≤i≤j≤n, 0≤t≤2.

DP is used to calculate F[][][] and Fm[][][], where stage l is the length of the 
substring, 2≤l≤n; stage i is the front pointer for the current substring, 1≤i≤n−l+1; 
the rear pointer j=i+l−1; and decision k (i≤k≤j−1) is the intermediate pointer such 
that the left subinterval [i, k] produces a and the right subinterval [k+1, j] produces 
b, (0≤a,b≤2, F[i][k][a]&&F[k+1][j][b]=true). The result t (t=mul[a][b]) is stored. 
Fm[i][j][t][0]=k, Fm[i][j][t][1]=a, Fm[i][j][t] [2]=b, and F[i][j][t] = true.

Suppose t is the expected character. If f [1][n][t]==false, then output “None 
exist!”; else output the morphing steps of a string into the character based on Fm.

6.4.20  End Up with More Teams

The prestigious ICPC is here again. The coaches are busy selecting teams. This year, 
they have adopted a new policy. Contrary to the traditional selection process, where 
few individual contests are held and the top three are placed in one team and the 
next three in another and so on, this year the coaches decided to place members 
in such a way that the total number of promisingteams is maximized. Promising 
teams are defined as a team having ability points of its members adding up to 20 or 
greater. Here the ability point of a member denotes his capability as a programmer, 
the higher the better.

Input

There will be as many as 100 cases in the input file. Each case of input has two 
lines. The first line contains a positive integer, where n indicates the number 



Practice for Dynamic Programming  ◾  321

of contestants available for selection. The next line will contain n positive 
integers, each of which will be at most 30. End of input is indicated by a value 
of 0 for n.

Output

For every case of input, there will be one line of output. This line should contain 
the case number followed by the maximum number of promising teams that can be 
formed. Note that it is not mandatory to assign everyone in a team. In case you 
don’t know, each team consists of exactly three members.

Constraint: n≤15

Sample Input Sample Output

9
22  20  9  10  19  30  2  4  1
6
2
15  3
0

Case 1:  3
Case 2:  0

Source:	 IIUPC 2006

ID for Online Judge: UVA 11088

  Hint

Suppose S is a sequence of contestants’ ability points, and best(S) is the maximum 
number of promising teams that can be formed.

The problem is solved with its subproblem as such:

If (|S|<3)
 best(S)=0;

else = = − − − +
+ + ≥
















max
1 20

0 otherwise
.1 2( { , ,..., }) ( )

, ,
best S a a a best S a a a

a a a
n

i j k
i j k

i j k

6.4.21  Many a Little Makes a Mickle

A long string does not look so long if we can identify a few short substrings that 
were used (possibly more than once) in some permutation to construct the longer 
string. Your task is to find if a given (long) string can be made up by choosing some 
(shorter) strings from a given collection.



322  ◾  Algorithm Design Practice for Collegiate Programming

You should note that:

1.	All the strings are composed of ASCII characters in the range 33 to 127.
2.	Any of the short strings or their reversed forms can be used any number of 

times to construct the long string.
3.	Each use of a short string or its reverse would be counted as one occurrence 

of that short string.

When you construct the longer string from these short strings, you should 
ensure that it is done by keeping the total occurrences of the short strings to a 
minimum.

For example, if we want to construct the string “aabbabbabbbb” from the set 
{“a”, “bb”, “abb”}, there can be many ways to achieve the goal. “a-abb-abb-abb-bb” 
and “a-abb-a-bba-bb-bb” are two such valid constructions. However, we would pre-
fer “a-abb-abb-abb-bb” (five substrings) over “a-abb-a-bba-bb-bb” (six substrings) 
because it uses a lesser number of substrings. You would only need to find the 
minimum number of substrings that could be used to construct the given string.

Input

The first line of the the input contains S (S<51), the number of data sets. Then 
S number of data sets follows. The first line of each data set contains the long 
string, P (0<length(P)<10001). The next line contains the number of short strings, 
N (0<N<51) to choose from. Each of the next N lines contain the short string 
Pi (0<length(Pi)<101) [ i≥1,2,3?N ]. You can safely assume that there is no blank/
empty line in the input file.

Output

For each data set print exactly one line of output.
Either Set S: C;
Or S: Not possible.
If it is possible to construct the string using the given strings, then print the first 

line; otherwise, print the second line. Here S is the serial of data set (sequentially 
from 1 to S) and C is the minimum number of times the substrings were used to 
construct P. For clarification see the sample output below.

Sample Input Sample Output

2
aabbabbabbbb
3
a

Set 1:  5.
Set 2:  Not possible.



Practice for Dynamic Programming  ◾  323

Sample Input Sample Output

bb
abb
ewu**bbacsecsc
4
ewu
bba
cse
csc

Source:	 Next Generation Contest 1

ID for Online Judge: UVA 10860

  Hint

A graph is constructed as follows. Spaces between the characters are as vertices, and 
the characters are edges. Therefore, two vertices are connected if the string between 
them is located in given shorter strings (or the reverse). Then it’s just a standard DP 
problem or a standard Shortest Path problem.

The graph is constructed in O(n2m), where n is the length of the longer string, 
and m is the length of the shorter string. The problem is strictly O(n2m) as that is 
the amount of data we’re given.

6.4.22  Rivers

Nearly all of the Kingdom of Byteland is covered by forests and rivers. Small riv-
ers meet to form bigger rivers, which also meet and, in the end, all the rivers flow 
together into one big river. The big river meets the sea near Bytetown.

There are n lumberjacks’ villages in Byteland, each placed near a river. 
Currently, there is a big sawmill in Bytetown that processes all trees cut in the 
Kingdom. The trees float from the villages down the rivers to the sawmill in 
Bytetown. The king of Byteland decided to build k additional sawmills in vil-
lages to reduce the cost of transporting the trees down river. After building the 
sawmills, the trees need not float to Bytetown, but can be processed in the first 
sawmill they encounter down river. Obviously, the trees cut near a village with 
a sawmill need not be transported by river. It should be noted that the rivers in 
Byteland do not fork. Therefore, for each village, there is a unique way down river 
from the village to Bytetown.

The king’s accountants calculated how many trees are cut by each village per year. 
You must decide where to build the sawmills to minimize the total cost of transport-
ing the trees per year. River transportation costs one cent per kilometre, per tree.



324  ◾  Algorithm Design Practice for Collegiate Programming

Write a program that:

◾◾ reads from the standard input the number of villages, the number of addi-
tional sawmills to be built, the number of trees cut near each village, and 
descriptions of the rivers,

◾◾ calculates the minimal cost of river transportation after building additional 
sawmills,

◾◾ writes the result to the standard output.

Figure 6.9 illustrates the example input data. Village numbers are given inside 
circles. Numbers below the circles represent the number of trees cut near villages. 
Numbers above the arrows represent the rivers’ lengths.

The sawmills should be built in villages 2 and 3.

Input

The first line of input contains two integers: n—the number of villages other 
than Bytetown (2≤n≤100), and k—the number of additional sawmills to be built 
(1≤k≤50 and k≤n). The villages are numbered 1,2, . . . , n, while Bytetown has 
number 0.

Each of the following n lines contains three integers, separated by single spaces. 
Line i+1 contains:

Wi—the number of trees cut near village i per year (0≤Wi≤10000);
Vi—the first village (or Bytetown) down river from village i (0≤Vi≤n);
Di—the distance (in kilometres) by river from village i to Vi (1≤Di≤10000);

It is guaranteed that the total cost of floating all the trees to the sawmill in 
Bytetown in one year does not exceed 2000000000 cents.

In 50 percent of test cases, n will not exceed 20.

0

Bytetown

1

1

1

1

1
3

5
10

10

4

3

2

Figure 6.9 



Practice for Dynamic Programming  ◾  325

Output

The first and only line of the output should contain one integer: the minimal cost 
of river transportation (in cents).

Sample Input Sample Output

4  2
1  0  1
1  1  10
10  2  5
1  2  3

4

Source:	 IOI 2005, Day 2

IDs for Online Judges: BZOJ 1812 http://www.
lydsy.com/JudgeOnline/problem.php?id=1812

  Hint

A directed graph is constructed as follows. n villages are represented as vertices 
(numbered from 1 to n), and the number of trees cut near village i per year is the 
weight for vertex i; there is an edge from a village to its first village (or Bytetown) 
down river, and the distance between the two villages is the weight for the edge; 
and Bytetown is vertex 0. The problem requires you to select k villages to build 
sawmills to reduce the cost of transporting the trees down river. That is, k villages 
constitute a set A. For each vertex i (i∉A), there is a vertex j ( j∈A) such that there is a 
path from vertex i to j, and the path is also the shortest path from vertex i to vertices 
in A, that is, in the path there are no other vertices in A. The length of the path × 
the weight of vertex i is the cost of transporting the trees for village i. The problem 
requires you to calculate the minimal cost of river transportation. Obviously, the 
problem is a problem for DP on a tree.

For vertex i, its parent pointer is pa[i], its right child is ch[i], and its left sibling 
is b[i], 1≤i≤n.

The current vertex is cur, and its parent is r. In the subtree whose root is cur, l 
sawmills are built. The minimal cost of river transportation is f [cur][r][l]. A recur-
sive function dfs(cur, r, l, tot) calculates f [cur][r][l], where tot is the length of the 
path from r to the nearest sawmill.

The end condition of recursion: If cur is a leaf (cur==−1), if there is no sawmill 
to be built (l==0), return 0; else return ∞.

If cur isn’t a leaf, there are two choices;

1.	At vertex cur a sawmill is built.
The rest l−1 sawmills are built in the subtree for cur (the length of the path 
from vertex cur to the nearest sawmill is 0), and the subtree for cur’s left 

http://www.lydsy.com/
http://www.lydsy.com/


326  ◾  Algorithm Design Practice for Collegiate Programming

sibling (the length of the path from r to the nearest sawmill is still tot). The 
minimal cost of river transportation is

	
1 min , , , 0 , , 1 , ;

0 1
D dfs ch cur cur i dfs b cur r l i tot

i l
{ }( ) ( )[ ] [ ]= + − −

≤ ≤ −

2.	At vertex cur there is no sawmill.
The cost of river transportation from vertex cur to the nearest sawmill is 
(tot+d[cur])×w[cur]. l sawmills are built in the subtree for cur (the length of 
the path from vertex cur to the nearest sawmill is tot+d[cur]), and the subtree 
for cur’s left sibling (the length of the path from r to the nearest sawmill is still 
tot). The minimal cost of river transportation is:

	

2 min , , , , , ,

.
0

D dfs ch cur r i tot d cur dfs b cur r l i tot

tot d cur w cur
i

{ }( ) ( )
( )

[ ] [ ] [ ]
[ ] [ ]

= + + −

+ + ×
≤ ≤

Obviously, f [cur][r][l]=min{D1, D2}.
The solution to the problem is dfs(ch[0], 0, k, 0).

6.4.23  Islands and Bridges

Given a map of islands and bridges that connect these islands, a Hamilton path, as 
we all know, is a path along the bridges such that it visits each island exactly once. 
On our map, there is also a positive integer value associated with each island. We 
call a Hamilton path the best triangular Hamilton path if it maximizes the value 
described below.

Suppose there are n islands. The value of a Hamilton path C1C2...Cn is calcu-
lated as the sum of three parts. Let Vi be the value for the island Ci. As the first 
part, we sum over all the Vi values for each island in the path. For the second part, 
for each edge CiCi+1 in the path, we add the product Vi×Vi+1. And for the third part, 
whenever three consecutive islands CiCi+1Ci+2 in the path forms a triangle in the 
map, i.e., there is a bridge between Ci and Ci+2, we add the product Vi×Vi+1×Vi+2.

Most likely, but not necessarily, the best triangular Hamilton path you are 
going to find contains many triangles. It is quite possible that there might be more 
than one best triangular Hamilton path; your second task is to find the number of 
such paths.

Input

The input file starts with a number q (q≤20) on the first line, which is the number 
of test cases. Each test case starts with a line with two integers n and m, which are 
the number of islands and the number of bridges in the map, respectively. The next 
line contains n positive integers, the i-th number being the Vi value of island i. 
Each value is no more than 100. The following m lines are in the form x y, which 



Practice for Dynamic Programming  ◾  327

indicates that there is a (two-way) bridge between island x and island y. Islands are 
numbered from 1 to n. You may assume there will be no more than 13 islands.

Output

For each test case, output a line with two numbers, separated by a space. The first 
number is the maximum value of a best triangular Hamilton path; the second 
number should be the number of different best triangular Hamilton paths. If the 
test case does not contain a Hamilton path, the output must be ‘0 0’.

Note: A path may be written down in the reverse order. We still think it is the 
same path.

Sample Input Sample Output

2
3  3
2  2  2
1  2
2  3
3  1
4  6
1  2  3  4
1  2
1  3
1  4
2  3
2  4
3  4

22  3
69  1

Source:	 ACM Shanghai 2004

IDs for Online Judges: POJ 2288, ZOJ 2398, UVA 3267

  Hint

A graph is constructed as follows. Islands are represented as vertices, bridges are 
represented as edges, and positive integers associated with islands are represented as 
weights associated with corresponding vertices. A state for a circuit is represented as 
a binary number with n digits d dn …−1 0. If vertex i is in the circuit, di+1=0; other-
wise di+1=1. A circuit is marked by its last edge and its state. Suppose f [ ][ ][ ] and 
way[ ][ ][ ] are used to store the best triangular Hamilton path, where the last edge in 
the circuit is (i, j), and the the state value for the circuit is k. The value of the circuit 
whose state is k is f [i][j][k], and the number of edges in the circuit is way[i][j][k].



328  ◾  Algorithm Design Practice for Collegiate Programming

Queues Q1[ ], Q2[ ], and Q3[ ] are used to store the two vertices for the last 
edge and the state for the circuit respectively; and IN[ ][ ][ ] is used to store marks 
that the circuit exists.

Initially, [ ][0][2 ] the weight of vertex1f i ii =− ; [ ][0][2 ] 11way i i =− ; 
[ ][0][2 ] true1IN i i =− ; i, 0 and i−2 1 are stored in Q1[ ], Q2[ ], and Q3[ ] respectively, 

1≤i≤n.
BFS is used for states’ transition and to calculate all circuits:

◾◾ Delete fronts of queues (last edge (y, x) and state z), each unvisited vertex xt 
which is adjacent to vertex x x xt E z xt∈ = =−(( , ) , & (2 ) 0)1  is analyzed:

◾◾ Edge (x, xt) is added into the circuit. The state for the circuit becomes 
zt z xt= + −2 1. The value of the circuit is adjusted as tmp=f [x][y][z]+the weight 
of vertex xt+the weight of vertex x×the weight of vertex xt. If vertices y, x, and 
xt constitute a triangle (y&&(y, xt)∈E ), tmp=tmp+the weight of vertex y× 
the weight of vertex x× the weight of vertex xt;

◾◾ If the value of the current Hamilton path is maximal (tmp>f [xt][x][zt]), then 
f [xt][x][zt]=tmp, and the number of edges is noted (way[xt][x][zt]=way[x][y][z]). 
If (IN[xt][x][zt]==false), then edge (x, xt) and zt is added into queues Q1[ ], 
Q2[ ], and Q3[ ] respectively, and IN[xt][x][zt]=true;

◾◾ If the value of the current Hamilton path is the same as f [xt][x][zt] (tmp==f [xt]
[x][zt]), then way[xt][x][zt]=way[xt][x][zt]+way[x][y][z];

Repeat the above process until queues are empty.
Obviously, all Hamilton paths are enumerated, and the maximum value of a 

best triangular Hamilton path is = −
≤ ≤ ≤ ≤ ≠

max { [ ][ ][2 1]}
1 ,0 ,

max f i j
i n j n i j

n .

The number of different best triangular Hamilton paths is calculated as follows.

	

( [ ][ ][2 1] | [ ][ ][2 1]} max).
1 ,0 ,1

ans way i j f i jn

i n j n j

n∑= − − =
≤ ≤ ≤ ≤ ≠

If the number of vertices n>1, the number of different best triangular Hamilton 
paths is ans/2 (because of the symmetry in an undirected graph); if n==1, the num-
ber of different best triangular Hamilton paths is ans.

6.4.24  Hie with the Pie

The Pizazz Pizzeria prides itself in delivering pizzas to its customers as fast as pos-
sible. Unfortunately, due to cutbacks, they can afford to hire only one driver to do 
the deliveries. He will wait for one or more (up to ten) orders to be processed before 
he starts any deliveries. Needless to say, he would like to take the shortest route in 
delivering these goodies and returning to the pizzeria, even if it means passing the 
same location(s) or the pizzeria more than once on the way. He has commissioned 
you to write a program to help him.



Practice for Dynamic Programming  ◾  329

Input

Input will consist of multiple test cases. The first line will contain a single integer n 
indicating the number of orders to deliver, where 1≤n≤10. After this will be n+1 lines 
each containing n+1 integers indicating the times to travel between the pizzeria (num-
bered 0) and the n locations (numbers 1 to n). The j-th value on the i-th line indicates 
the time to go directly from location i to location j without visiting any other locations 
along the way. Note that there may be quicker ways to go from i to j via other loca-
tions, due to different speed limits, traffic lights, etc. Also, the time values may not be 
symmetric, i.e., the time to go directly from location i to j may not be the same as the 
time to go directly from location j to i. An input value of n=0 will terminate input.

Output

For each test case, you should output a single number indicating the minimum 
time to deliver all of the pizzas and return to the pizzeria.

Sample Input Sample Output

3
0  1  10  10
1  0  1  2
10  1  0  10
10  2  10  0
0

8

Source:	 ACM East Central North America 2006

IDs for Online Judges: POJ 3311, UVA 3725

  Hint

Suppose the state for the path is represented as a binary number D=dn…d0, where 
1 Vertex is on the path
0 Vertex isn’t on the path

(0 i n);d
i

ii =





≤ ≤

f [i][k] is the minimum time that the pizzeria (numbered 0) is the start, the state 
for the path is k, and i is the end (0≤i≤n, 0 k 2 11n≤ ≤ −+ ).

First, the Floyd algorithm is used to calculate the shortest paths between any two 
vertices in the directed graph map[ ][ ]. Obviously, initially [ ][2 ] [0][ ]1f i map ii =− . 
Then Dynamic Programming of State Compression is used to calculate f [ ][ ]:

All possible states of paths i are enumerated (0≤i≤2n);



330  ◾  Algorithm Design Practice for Collegiate Programming

Vertices j and k are enumerated (1≤j, k≤n), where vertice j is in the state of 
the path ( &(2 ) 1)1i j =− , and vertice k isn’t in the state of the path ( &(2 ) 0);1i k =−  

[ ][ 2 ] Min{ [ ][ 2 ], [ ][ ] map[ ][ ]}1 1f k i f k i f j i j kk k+ = + +− −  is calculated.
Obviously, the minimum time to deliver all of the pizzas and return to the piz-

zeria is min{ [ ][2 1] [ ][0]}
1

ans f i map i
i n

n= − +
≤ ≤

.

6.4.25  Tian Ji: The Horse Racing

Here is a famous story from Chinese history.
About 2300 years ago, General Tian Ji was a high official in the country Qi. He 

likes to play horse racing with the king and others.
Both Tian and the king have three horses in different classes, namely, regular, 

plus, and super. The rule is to have three rounds in a match; each of the horses must 
be used in one round. The winner of a single round takes two hundred silver dollars 
from the loser.

Being the most powerful man in the country, the king has such nice horses that 
in each class, his horse is better than Tian’s. As a result, each time the king takes six 
hundred silver dollars from Tian.

Tian Ji was not happy about that, until he met Sun Bin, one of the most famous 
generals in Chinese history. Using a little trick he learned from Sun, Tian Ji brought 
home two hundred silver dollars in the next match.

It was a rather simple trick. Using his regular class horse race against the super 
class from the king, they will certainly lose that round. But then his plus beat the 
king’s regular, and his super beat the king’s plus (see Figure 6.10). What a simple 
trick. And what do you think of Tian Ji, the high-ranked official in China?

Where Tian Ji lives nowadays, he will certainly laugh at himself. Even more, if 
he were sitting in the ACM contest right now, he may discover that the horse rac-
ing problem can be simply viewed as finding the maximum matching in a bipartite 
graph. Draw Tian’s horses on one side, and the king’s horses on the other. Whenever 
one of Tian’s horses can beat one from the king, we draw an edge between them, 
meaning we wish to establish this pair. Then, the problem of winning as many rounds 
as possible is just to find the maximum matching in this graph. If there are ties, 

–200 +200

+200
–2

00

92

83

71

–200

–200

95

87

74

92

83

71

95

87

74

92

83

71

95

87

74

Figure 6.10 



Practice for Dynamic Programming  ◾  331

the problem becomes more complicated; he needs to assign weights 0, 1, or −1 to all 
the possible edges, and find a maximum weighted perfect matching.

However, the horse racing problem is a very special case of bipartite matching. 
The graph is decided by the speed of the horses—a vertex of higher speed always 
beats a vertex of lower speed. In this case, the weighted bipartite matching algo-
rithm is too advanced a tool to deal with the problem.

In this problem, you are asked to write a program to solve this special case of 
matching problem.

Input

The input consists of up to 50 test cases. Each case starts with a positive integer n 
(n≤1000) on the first line, which is the number of horses on each side. The next n 
integers on the second line are the speeds of Tian’s horses. Then the next n integers 
on the third line are the speeds of the king’s horses. The input ends with a line that 
has a single “0” after the last test case.

Output

For each input case, output a line containing a single number, which is the maxi-
mum money Tian Ji will get, in silver dollars.

Sample Input Sample Output

3
92  83  71
95  87  74
2
20  20
20  20
2
20  19
22  18
0

200
0
0

Source:	 ACM Shanghai 2004

IDs for Online Judge: POJ 2287, ZOJ 2397, UVA 3266

  Hint

The speeds of Tian’s horses and the speeds of the king’s horses are sorted in descend-
ing order respectively. If the king’s horses participating in the horse racing are in 
this order, then Tian will let the current slowest horse or the current fastest horse 



332  ◾  Algorithm Design Practice for Collegiate Programming

participate in the horse racing each time. If the king’s current fastest horse can defeat 
Tian’s any current horse, it defeats Tian’s current slowest horse. If the king’s current 
fastest horse can be defeated, Tian’s current fastest horse defeating it is suitable.

Suppose f [i][j] is the maximum silver dollars Tian will get when Tian can use 
horse from number i to number j, and the king’s current horse is horse j−i+1. 
Obviously, f [1][n] is the solution to the problem.

	 f[i][j]=max(f[i+1][j]+cmp(a[i], b[j−i+1]), f[i]
[j−1]+cmp(a[j], b[j−i+1]))

where a[ ] is Tian’s horse, b[ ] is the king’s horse, and cmp is the result that the two 
horses race.

6.4.26  Batch Scheduling

There is a sequence of N jobs to be processed on one machine. The jobs are num-
bered from 1 to N, so that the sequence is 1, 2,..., N. The sequence of jobs must be 
partitioned into one or more batches, where each batch consists of consecutive jobs 
in the sequence. The processing starts at time 0. The batches are handled one by 
one starting from the first batch as follows. If a batch b contains jobs with smaller 
numbers than batch c, then batch b is handled before batch c. The jobs in a batch 
are processed successively on the machine. Immediately after all the jobs in a batch 
are processed, the machine outputs the results of all the jobs in that batch. The 
output time of a job j is the time when the batch containing j finishes.

A setup time S is needed to set up the machine for each batch. For each job i, 
we know its cost factor Fi and the time Ti required to process it. If a batch contains 
the jobs x, x+1,... , x+k, and starts at time t, then the output time of every job in 
that batch is t+S+(Tx+Tx+1+...+Tx+k). Note that the machine outputs the results of all 
jobs in a batch at the same time. If the output time of job i is Oi, its cost is Oi×Fi. 
For example, assume that there are five jobs, and the setup time S = 1, (T1, T2, T3, 
T4, T5) = (1, 3, 4, 2, 1), and (F1, F2, F3, F4, F5) = (3, 2, 3, 3, 4). If the jobs are par-
titioned into three batches {1, 2}, {3}, {4, 5}, then the output times (O1, O2, O3, O4, 
O5)=(5, 5, 10, 14, 14) and the costs of the jobs are (15, 10, 30, 42, 56), respectively. 
The total cost for a partitioning is the sum of the costs of all jobs. The total cost for 
the example partitioning above is 153.

Input

Your program reads from standard input. The first line contains the number of 
jobs N, 1≤N≤10000. The second line contains the batch setup time S which is an 
integer, 0≤S≤50. The following N lines contain information about the jobs 1, 2,..., 
N in that order as follows. First on each of these lines is an integer Ti, 1≤Ti≤100, 
the processing time of the job. Following that, there is an integer Fi, 1≤Fi≤100, the 
cost factor of the job.



Practice for Dynamic Programming  ◾  333

Output

Your program writes to standard output. The output contains one line, which con-
tains one integer: the minimum possible total cost.

Sample Input Sample Output

5
1
1  3
3  2
4  3
2  3
1  4

153

Source:	 IOI 2002

IDs for Online Judge: POJ 1180

  Hint (given by the problemsetter)

This problem can be solved using DP. Let Ci be the minimum total cost 
of all partitionings of jobs Ji, Ji+1,…, Jn into batches. Let Ci(k) be the mini-
mum total cost when the first batch is selected as { J J Ji i k…+ −, , ,1 1}. That is, 

( )1 1 1C k C S T T T F F Fi k i i k i i n( ) ( )= + + + +…+ × + +…++ − + .
Then we have that Ci=min {Ci(k)|k=i+1, …, n+1} for 1≤i≤n, and Cn+1=0.
The time complexity of the above algorithm is O(n2).
Investigating the property of Ci(k), this problem can be solved in O(n) time.

	

From ,
we have that for ,

1 1 1C k C S T T T F F F
i k l C k C l

i k i i k i i n

i i

( )
( )

( ) ( )
( )

= + + + +…+ × + +… +
< < ≤

+ − +

	 ( ) 01 1 1C C T T T F F Fl k k k l i i n( )⇔ − + + +…+ × + +… + ≥+ − +

	 /( )1 1 1C C T T T F F Fk l k k l i i n( ) ( )⇔ − + +… + ≤ + +…++ − +

	 Let , /( ) and1 1 1g k l C C T T T f i F F Fk l k k l i i n( ) ( ) ( ) ( )= − + +…+ = + +…++ − +

Property 1: Assume that g(k, l)≤f(i) for 1≤i<k<l. Then Ci(k)≤Ci(l).
Property 2: Assume g( j, k)≤g(k, l) for some 1≤j<k<l≤n. Then for each i with 

1≤i<j, Ci( j)≤Ci(k) or Ci(l)≤Ci(k).
Property 2 implies that if g( j, k)≤g(k, l) for j<k<l, Ck is not needed for comput-

ing Fi. Using this property, a linear time algorithm can be designed, which is given 
in the following.



334  ◾  Algorithm Design Practice for Collegiate Programming

The algorithm calculates the values Ci for i = n down to 1. It uses a queue-like 
list Q = (ir, 1−ir , … , i2, i1) with tail ir and head i1 satisfying the following properties:

	 and g( , ) g(   ) .. , --------1 2 1 1 1 2 2 1i i i i i i i i g i ir r r r r r ( )< <…< < > >… >− − − − (1)

When Ci is calculated,

1.	// Using f(i), remove the unnecessary element at head of Q.

If f(i)≥g(i2, i1), delete i1 from Q since for all h≤i, 
f(h)≥f(i)≥g(i2, i1) and Ch(i2)≤Ch(i1) by Property 1.
Continue this procedure until for some t≥l, g(ir, 
ir−1)>g(ir−1, −2ir )>.....>g(it+1, it)>f(i).
Then by Property 1, Ci(iv+1)>Ci(iv) for v=t, ... , r−1 or 
r=t and Q contains only it.
Therefore, Ci(it) is equal to min{Ci(k)|k=i+1, ... , n+1}.

2.	// When inserting i at the tail of Q, maintain Q for the condition (1) to be 
satisfied.

If g(i, ir)≤g(ir, ir−1), delete ir from Q by Property 2.
Continue this procedure until g(i, iv)>g(iv, −1iv ).
Append i as a new tail of Q.

Each i is inserted into Q and deleted from Q at most once. In each insertion and 
deletion, it takes a constant time. Therefore, the time complexity is O(n).



335

Chapter 7

Practice for Advanced 
Data Structures

In this chapter, experiments for some frequently used data structures are discussed 
as follows:

◾◾ In linear lists, experiments for suffix arrays are shown;
◾◾ In trees, practices for segment trees are given;
◾◾ In graphs, some special graph algorithms are introduced.

7.1  Suffix Arrays
A string is a sequence of characters. A suffix for a string is a substring from a charac-
ter in the string to the end of the string. A suffix array is a sorted array of all suffixes 
of a string, and is used in full text indices, data compression algorithms, and so on.

7.1.1 � Doubling Algorithm Used to Calculate 
a Rank Array and a Suffix Array

Suppose S is a string, where its length is length(S), the i-th character in S is S[i], 
S[i…j] is the substring from S[i] to S[j] in S, and 1≤i≤j≤length(S). The suffix array 
of S is an array whose elements are suffixes from the i-th character, 1≤i≤length(S), 
represented as Suffix(S, i), that is, Suffix(S, i)=S[i..length(S)]. For convenience, for 
a string S, the suffix from the i-th character can be written as Suffix(i). Figure 7.1 
is an example.



336  ◾  Algorithm Design Practice for Collegiate Programming

All suffixes for a string can be sorted in lexicographic order. For a string whose 
length is n, there are n different suffixes. A suffix array SA and a rank array Rank 
are used to represent sorting the n suffixes.

Suffix Array SA: SA is an integer array storing a permutation of 1, 2, …, n, and 
Suffix(SA[i])<Suffix(SA[i+1]), 1≤i<n. For a string S, n suffixes are sorted in 
lexicographic order, and SA[i] stores the starting position for the i-th suffix. 
That is, a suffix array SA represents which is the i-th suffix in lexicographic order.

Rank Array Rank: Rank is an integer array with respect to SA. If SA[i]=j, then 
Rank[j]=i. That is, Rank represents which position a suffix is in.

Therefore, calculating a suffix array SA is the inverse operation for calculating a 
rank array Rank, 1= −Rank SA . For example, for a string “aabaaaab”, its suffix array 
SA and rank array Rank are shown in Figure 7.2.

Doubling the algorithm is used to calculate a rank array Rank for a string. In 
order to calculate Rank conveniently, the least character which doesn’t appear in 
the string is added to the end of the substring to make the length of the substring 
become an integer power of 2.

Doubling the algorithm is as follows. Substrings starting from every character 
with length 2k are sorted in lexicographic order, k≥0. Power k is increased by 1 each 
time. That is, the length of sorted substrings is doubled each time. And each time, 
sorting substrings is based on the last Rank. Suppose the key xy is the value for 
the current Rank for the substring whose starting position is i (1≤i≤n), and whose 
length is 2k, where

x is the rank for its left substring, that is, its starting position is i, and its length 
is 2 1−k , that is, x is Rank[i] for the last Rank;

y is the rank for its right substring, that is, its starting position is i+2k−1, and its 
length is 2 1−k , that is, y is [ 2 ]1+ −Rank i k  for the last Rank.

a a b a a a a String S

suf�x(8)

suf�x(7)

suf�x(6)

suf�x(5)

suf�x(4)

suf�x(3)

suf�x(2)

suf�x(1)

b

b

a b

a a b

a a a b

a a a a b

b a a a a b

a b a a a a b

a a b a a a a b

Figure 7.1



Practice for Advanced Data Structures  ◾  337

Values xy representing substrings whose length is 2k constitute an array xy[ ]. 
And Rank for substrings whose length is 2k is calculated through sorting xy. When 
2k≥n, Rank is the rank array. For example, there is a string S=“aabaaaab”.

k=0, substrings whose starting position is every character and length is 20=1 are 
sorted. Rank[1..8]={1, 1, 2, 1, 1, 1, 1, 2}.

k=1, substrings whose starting position is every character and length is 21=2 are 
sorted. That is, based on the previous rank values x and y, key xy[1..8]={11,12,
21,11,11,11,12,20}. And Rank[1..8]={1, 2, 4, 1, 1, 1, 2, 3}.

k=2, substrings whose starting position is every character and length is 22=4 are 
sorted. Key xy[1..8]={14, 21, 41, 11, 12, 13, 20, 30}. And Rank[1..8]={4, 6, 8, 
1, 2, 3, 5, 7}.

k=3, substrings whose starting position is every character and length is 23=8 are 
sorted. Key xy[1..8]={42, 63, 85, 17, 20, 30, 50, 70}. And Rank[1..8]={4, 6, 
8, 1, 2, 3, 5, 7}.

The process for doubling the algorithm is shown in Figure 7.3.
The program segment get_suffix_array() calculating rank array Rank[ ] and suf-

fix array SA[ ] is as follows:

    struct node{int now, next}d[maxn];    // linear list, 
where d[ ].now is the sequence number for an element, and 
d[ ].next is the successor pointer
   int val[maxn][2], c[maxn], Rank[maxn], SA[maxn], pos[maxn], 
x[maxn];    // x[ ] is the string; val[ ][ ] are keys, where x 
is val[ ][1], and y is val[ ][2]; c[ ] stores elements’ front 

a a b a a a a b
4Rank =

sa[1] =4

sa[2] =5

sa[3] =6

sa[4] =1

sa[5] =7

sa[6] =2

sa[7] =8

sa[8] =3

Array SA and Array Rank for “aabaaaab”

6 8 1 2 3 5 7

a a a a b

a a a b

a a b

a a b a a a a b

a b

a b a a a a b

b

b a a a a b

Figure 7.2



338  ◾  Algorithm Design Practice for Collegiate Programming

pointers in d[ ]; Rank[] stores suffixes’ rank, SA[] stores 
starting position for suffixes
   int n;    // the length of the string
void get_suffix_array( )    //Calculating Rank[ ] and SA[ ]
{
    int t = 1;    //Initialize the length of a substring
    while (t/2<=n){    //calculating Rank[] for substrings 
whose length is t
      for (int i=1; i<=n; i++) {
        val[i][0]=Rank[i];  //left substring (start position i, 
length t/2)
        val[i][1]=(((i+t/2<=n)?Rank[i+t/2]:0));//right 
substring (start position i+t/2, length t/2)
        pos[i]=i;
      }
      radix_sort(1, n);    //val[][0] and val[][1] are 
combined into xy, calculate Rank[] that substring’s length is t
      t *= 2; 
    }
    for (int i=1; i<=n; i++) SA[Rank[i]]=i;    //Calculate 
SA[] based on Rank[]
}
// radix_sort(1, n) used to sort key xy
void radix_sort(int l, int r) // val[][0] and val[][1] are 
combined into xy, calculate Rank[l…r] that substring’s length 
is t

Sorting 1

Length is 1

Length is 2

Length is 4

Length is 5

rank

Sorting 2

x  y

x  y

x  y

rank

Sorting 3

rank

Sorting 4

rank

a a b a a a a b

1 1 2 1 1 1 1 2

1 2 4 1 1 1 2 3

4 6 8 1 2 3 5 7

4 6 8 1 2 3 5 7

1  1 1  2 2  1 1  1 1  1 1  1 1  2 2  0

1  4 2  1 4  1 1  1 1  2 1  3 2  0 3  0

4  2 6  3 8  5 1  7 2  0 3  0 5  0 7  0

Figure 7.3



Practice for Advanced Data Structures  ◾  339

{
    for (int k =1; k>=0;k --) 
    {            
        memset(c, 0, sizeof(c)); 
        for (int i=r; i>=l; i --)
          add_value(val[pos[i]][k], pos[i], i); 
        int t = 0; 
        for (int i =0; i<=20000; i ++)
          for (int j=c[i]; j; j=d[j].next) pos[++t]=d[j].now;
    }
    int t=0; 
    for (int i=1; i<=n; i ++) {
      if (val[pos[i]][0]!=val[pos[i-1]][0]||val[pos[i]]
[1]!=val[pos[i-1]][1]) t++;
      Rank[pos[i]] = t;
    }
}
void add_value(int u, int v, int i)
{
    d[i].next=c[u]; c[u]=i;
    d[i].now=v;
}

The time complexity of doubling the algorithm is O(n*log2n).

7.1.2  The Longest Common Prefix

The algorithm calculating the longest common prefix is also important in process-
ing strings.

Property 7.1.1 Suppose height[i] is the length of the longest common prefix for 
suffix(SA[i−1]) and suffix(SA[i]), that is, the length of the longest common prefix for 
two adjacent suffixes in SA. For j and k, if Rank[j]<Rank[k], there is the following 
property:

The length of the longest common prefix for suffix( j) and suffix(k) is 
the minimum for {height[Rank[j]+1], height[Rank[j]+2], height[Rank[j]+3], . . . , 
height[Rank[k]]}.

For example, for a string “aabaaaab”, the length of the longest common prefix 
for suffixes “abaaaab” and “aaab” is calculated as shown in Figure 7.4.

In Figure 7.4, the rank for suffix “abaaaab” is 6, that is, SA[6]=2, and Rank[2]=6; 
the rank for suffix “aaab” is 2, that is, SA[2]=5, and Rank[5]=2. The length of 
the longest common prefix for suffix “abaaaab” and suffix “aaab” is min{height[3], 
height[4], height[5], height[6]}=min{2, 3, 1, 2}=1.

Calculating the longest common prefix for suffixes is to calculate the minimum 
in an interval. The longest common prefix for suffix( j) and suffix(k) is the minimum 
in an interval [Rank[j]+1 … Rank[k]].



340  ◾  Algorithm Design Practice for Collegiate Programming

The key to the problem is how to calculate array height[] effectively. If 
height[2], height[3], …, and height[n] are calculated one by one, the time com-
plexity is O(n2). In order to calculate array height[] effectively, h[i] is defined: 
h[i]=height[Rank[i]].

Property 7.1.2 h[i]≥h[i−1]−1.
Based on h[1], h[2],…, h[n], array height[ ] can be calculated. Its time complex-

ity is O(n). The program segment is as follows:

void get_common_prefix()     //Calculating the array for the 
longest common prefix height[ ]
{
    memset(h, 0, sizeof(h));
    for (int i=1; i<=n; i++) {  // Recursion: calculating h[ ]
      if (Rank[i]==1)
          h[i]=0;
      else{ 
          int now=0;
          if (i>1 && h[i-1]>1)now=h[i-1]-1;
          �while(now+i<=n&&now+sa[Rank[i]-1]<=n&&x[now+i]==x[now

+sa[Rank[i]-1]])
              now ++;
          h[i] = now;
         }
    }
    for (int i =1; i <= n; i ++) height[Rank[i]]=h[i];    
//Based on h[ ], height[ ] is calculated
}

a a b a a a a b

a a a a b

a a a b

a a b

a a b a a a a b

a b

a b a a a a b

b

b a a a a b

height
sa[1]=4

sa[2]=5

sa[3]=6

sa[5]=7

sa[7]=8

sa[8]=3

3

2

3

1

2

0

1

sa[6]=2

sa[4]=1

Figure 7.4



Practice for Advanced Data Structures  ◾  341

7.1.3  Application of Suffix Array

The reasons why suffix arrays can be widely used in string processing are as 
follows:

1.	Based on the rank array Rank[ ] and the array for the longest common 
prefix height[ ], brute-force searches can be avoided and algorithms can be 
optimized;

2.	The efficiency for calculating the rank array Rank[ ] and the array for the 
longest common prefix height[ ] can be improved. Calculating a rank array 
Rank[ ] and the array for the longest common prefix height[ ] can also be 
implemented as standard program segments.

In 7.1.3.1 Musical Theme, get_suffix_array() is to calculate the rank array 
Rank[ ]. And in 7.1.3.2 Common Substrings, get_common_prefix() is to calculate 
the array for the longest common prefix height[ ].

7.1.3.1  Musical Theme

A musical melody is represented as a sequence of N (1≤N≤20000) notes that are 
integers in the range 1..88, each representing a key on the piano. It is unfortunate 
but true that this representation of melodies ignores the notion of musical timing; 
but, this programming task is about notes and not about timings.

Many composers structure their music around a repeating “theme”, which, being 
a subsequence of an entire melody, is a sequence of integers in our representation. 
A subsequence of a melody is a theme if it:

Is at least five notes long
Appears (potentially transposed—see below) again somewhere else in the piece 

of music
Is disjoint from (i.e., non-overlapping with) at least one of its other appearance(s)

Transposed means that a constant positive or negative value is added to every 
note value in the theme subsequence.

Given a melody, compute the length (number of notes) of the longest theme.
One-second time limit for this problem’s solutions!

Input

The input contains several test cases. The first line of each test case contains the 
integer N. The following N integers represent the sequence of notes.

The last test case is followed by one zero.
Use scanf instead of cin to reduce the read time.



342  ◾  Algorithm Design Practice for Collegiate Programming

Output

For each test case, the output file should contain a single line with a single integer 
that represents the length of the longest theme. If there are no themes, output 0.

Sample Input Sample Output

30
25 27 30 34 39 45 52 60 69 79 69 60 52 45 
39 34 30 26 22 18 82 78 74 70 66 67 64 
60 65 80

0

5

Source:	 LouTiancheng@POJ

IDs for Online Judges: POJ 1743

  Analysis

One application of suffix arrays is to compute the length of the longest disjoint 
repeating substrings in a string. First, we need to determine two substrings whose 
length is k are the same and disjoint. The length of the longest common prefix, 
array height[ ], is used to solve the problem. Sorted suffixes are divided into several 
groups, where in each group suffixes’ height aren’t less than a number. For example, 
there is a string “aabaaaab”. If k=2, suffixes for “aabaaaab” are divided into four 
groups, as shown in Figure 7.5.

a a b a a a a b

a a a a b

a a a b

a a b

a a b a a a a b

a b

a b a a a a b

b

b a a a a b

height
sa[1]=4

sa[2]=5

sa[3]=6

sa[5]=7

sa[6]=2

sa[7]=8

sa[8]=3

Group 3

Group 4

Group 2

Group 13

2

3

1

2

0

1

k=2
sa[4]=1

Figure 7.5



Practice for Advanced Data Structures  ◾  343

In group 1: height[2]=3, height[3]=2, and height[4]=3. In the group suffixes’ 
height aren’t less than 2. The difference between the maximum and the mini-
mum for suffixes’ SA is SA[3]−SA[4]=5.

In group 2: height[5]=1, and height[6]=2. In the group suffixes’ height aren’t less 
than 1. The difference between the maximum and the minimum for suffixes’ 
SA is SA[5]−SA[6]=5.

In group 3: height[7]=0. In the group, the difference between the maximum 
and the minimum for suffixes’ SA is 0.

In group 4: height[8]=1. In the group, the difference between the maximum and 
the minimum for suffixes’ SA is 0.

Obviously, the two suffixes whose suffixes’ height are less than k must be in a 
group. Then, for each group, we need to determine whether the difference between 
the maximum and the minimum for suffixes’ SA is less than k or not. If the differ-
ence is less than k, then there exist two suffixes whose length of the longest disjoint 
repeating substrings is less than k; else there isn’t such a pair of suffixes. For example, 
in group 1, there exist two suffixes whose length of the longest disjoint repeating 
substrings is less than 3 (height[2]=height[4]=3), and the difference between the 
maximum and the minimum for suffixes’ SA is SA[3]−SA[4]=6−1=5>3. Therefore, 
the longest disjoint repeating substring is “aab”, and it appears two times.

The algorithm is as follows:

First, a string a is input and pretreated. Because of transposition, the current number 
subtracts the previous number. A new string whose length is n−1 is generated.

Second, for the new string, the longest common prefix, array height[ ], is calculated.

Then, the longest repeating substring is calculated.
Finally, if the length of the longest repeating substrings is less than 5, there is 

no theme; else the length of the longest theme is the length of the longest repeat-
ing substring s+1, for the longest repeating substrings can’t be adjacent, and can be 
overlapped. If the longest repeating substrings are adjacent in the new string, then 
they are overlapped in the original string.

The time complexity for the algorithm is O(n*log2n).

  Program

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <string>



344  ◾  Algorithm Design Practice for Collegiate Programming

#include <map>
#include <utility>
#include <vector>
#include <set>
#include <algorithm>
#define maxn 20010    //the upper limit of the length for the 
sequence of notes
#define Fup(i,s,t) for (int i=s; i <=t; i ++) //Increasing 
loop
#define Fdn(i,s,t) for (int i = s; i >= t; i --) //Descending 
loop
#define Path(i,s) for (int i=s; i; i=d[i].next)  //Singly 
Linked List d[]
using namespace std;
struct node {int now, next;}d[maxn];    // d[], where d[].now 
is the sequence number for an element, and d[].next is the 
successor pointer
int val[maxn][2], c[maxn], rank[maxn], sa[maxn], pos[maxn], 
h[maxn], height[maxn], x[maxn];    //x[]: the sequence of 
notes is transposed; val[][]: keys, where x is val[][0], y is 
val[][1]; c[ ] stores elements’ front pointers in d[ ]; Rank[] 
stores suffixes’ rank; SA[] stores the starting position for 
suffixes; height[] is the array for the longest common prefix; 
h[i]=height[Rank[i]]
int n;    // the length of the sequence of notes
void add_value(int u, int v, int i)   //add an element into d[]
{
    d[i].next = c[u]; c[u] = i;
    d[i].now = v;
}
void radix_sort(int l, int r)      // val[][0] and val[][1] 
are combined into xy, calculate Rank[l…r] that substring’s 
length is t
{
    Fdn(k, 1, 0){ 
      memset(c, 0, sizeof(c));
      Fdn(i, r, l) add_value(val[pos[i]][k], pos[i], i);
      int t = 0;
        Fup(i, 0, 20000)
            Path(j, c[i])
            pos[++ t] = d[j].now;
    }
    int t = 0;
    Fup(i, 1, n){
        if (val[pos[i]][0] != val[pos[i - 1]][0] || 
val[pos[i]][1] != val[pos[i - 1]][1])
            t ++;
        rank[pos[i]] = t;
    }
}



Practice for Advanced Data Structures  ◾  345

bool exist(int len)    //If there are disjoint repeating 
substrings whose length is len, return 1; else return 0
{
    int Min = n + 1, Max = 0;    // the maximum and the 
minimum for suffixes’ SA is initialized
    Fup(i, 1, n)    //Rank is in ascending order
        if (height[i] < len){    //if height[i]<len, and the 
difference between the maximum and the minimum for suffixes’ 
SA isn’t less than len, return 1
            if (Max - Min >= len)
                return 1;
            Min = Max = sa[i];
        }else{    //adjust the maximum and the minimum for 
suffixes’ SA
            Min = min(Min, sa[i]);
            Max = max(Max, sa[i]);
        }
    if (Max - Min >= len)    //if the difference between the 
maximum and the minimum for suffixes’ SA isn’t less than len, 
return 1; else return 0
        return 1;
    return 0;
}
void get_suffix_array()    // get_suffix_array() is in 7.1.1
{
    int t = 1; 
    while (t / 2 <= n){
        Fup(i, 1, n){ 
            val[i][0]=rank[i];
            val[i][1] = (((i + t / 2 <= n) ? rank[i + t / 2] : 
0));
            pos[i] = i;
        }
        radix_sort(1, n);
        t *= 2; 
    }
    Fup(i, 1, n) sa[rank[i]] = i;        
}
void get_common_prefix()    // get_common_prefix() is in 7.1.2
{
    memset(h, 0, sizeof(h)); 
    Fup(i, 1, n){
        if (rank[i] == 1) 
            h[i] = 0;
        else{ 
            int now = 0;
            if (i > 1 && h[i - 1] > 1)
                now = h[i - 1] - 1;
            while (now + i <= n && now + sa[rank[i] - 1] <= n 
&& x[now + i] == x[now + sa[rank[i] - 1]])



346  ◾  Algorithm Design Practice for Collegiate Programming

                now ++;
            h[i] = now;
        }
    }
    Fup(i, 1, n) height[rank[i]] = h[i];
}
int binary_search(int l, int r)    //using binary search to 
calculate the length of the longest disjoint repeating 
substring
{
    while (l <= r){
        int mid = (l + r) / 2; 
        if (exist(mid))   //If there exists a disjoint 
repeating substring whose length is mid, search the left 
interval; else search the right interval
            l = mid + 1;
        else
            r = mid - 1;
    }
    return r;    //return the length
}
void solve()    //compute and output the length of the longest 
theme
{
    Fup(i, 1, n - 1)    //For two adjacent notes, subtract the 
previous note from the current note, a new string is formed
        rank[i] = x[i]= x[i + 1] - x[i] + 88;
    n --;    //the length of the new string
    get_suffix_array();    //calculate Rank[]
    get_common_prefix();    // calculate height[]
    int ans = binary_search(0, n) + 1;    // using binary 
search to calculate the length of the longest disjoint 
repeating substring
    ans = ((ans < 5) ? 0 : ans);    // at least five notes 
long
    printf("%d\n", ans);    //output the length of the longest 
theme
}
int main()
{
    while (scanf("%d\n", &n), n > 0){
        Fup(i, 1, n)scanf("%d", &x[i]);    // the sequence of 
notes
        solve();    // calculate output the length of the 
longest theme
    }
    return 0;
}



Practice for Advanced Data Structures  ◾  347

7.1.3.2  Common Substrings

A substring of a string T is defined as:

	 = ≤ ≤ + − ≤+ + −( , ) ... ,1 1 | |1 1T i k TT T i i k Ti i i k

Given two strings A, B and one integer K, we define S, a set of triples (i, j, k):

	 = ≥ ={( , , )| , ( , ) ( , )}.S i j k k K A i k B j k

You are to give the value of |S| for specific A, B and K.

Input

The input file contains several blocks of data. For each block, the first line contains 
one integer K, followed by two lines containing strings A and B, respectively. The 
input file is ended by K=0. 1≤|A|,|B|≤105, 1≤K≤min{|A|,|B|}. Characters of A and B 
are all Latin letters.

Output

For each case, output an integer |S|.

Sample Input Sample Output

2
aababaa
abaabaa
1
xx
xx
0

22
5

Source:	 POJ Monthly, 2007.10.06, wintokk

ID for Online Judge: POJ 3415

  Analysis

The problem requires you to calculate the number of common substrings whose 
length isn’t less than k for two strings A, B.

In the previous problem, array height[ ] is the length of the longest common 
prefix for two suffixes whose ranks are adjacent. In this problem, array height[ ] 
is the number of common substrings whose length isn’t less than k for the longest 
common prefix for two suffixes whose ranks are adjacent. If height[i]−k+1>0, then 



348  ◾  Algorithm Design Practice for Collegiate Programming

there are height[i]−k+1 common substrings whose length is k for two suffixes whose 
ranks are i and i−1 respectively, and height[i]←height[i]−k+1; else there are no com-
mon substrings whose length is k for the two suffixes. Therefore, the idea for solving 
the problem is as follows.

Calculate the length of the longest common prefix for all suffixes for strings A, 
B, and accumulate the number of common substrings whose length isn’t less than k.

The algorithm is as follows. Strings A and B adjoin. And a character (e.g., “$”) 
which doesn’t appear is inserted into the string to separate Strings A and B. Based 
on array height[ ], strings are divided into several groups. For each group, the num-
ber of common substrings whose length isn’t less than k is calculated. For each 
suffix for B, calculate the number of common substrings whose length isn’t less 
than k for the longest common prefix for all suffixes for A. And for each suffix 
for A, calculate the number of common substrings whose length isn’t less than k for 
the longest common prefix for all suffixes for B.

  Program

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <string>
#include <map>
#include <utility>
#include <vector>
#include <set>
#include <algorithm>
#define maxn 200010
#define Fup(i, s, t) for (int i = s; i <= t; i ++)
#define Fdn(i, s, t) for (int i = s; i >= t; i --)
#define Path(i, s) for (int i = s; i; i = d[i].next)
using namespace std;
struct node {int now, next;}d[maxn];    // d[], where d[].now 
is the sequence number for an element, and d[].next is the 
successor pointer
int val[maxn][2], c[maxn], rank[maxn], sa[maxn], pos[maxn], 
h[maxn], height[maxn], x[maxn], sta[maxn], num1[maxn], 
num2[maxn];    //x[] is a combined array; val[][] are keys, 
where x is val[][0], and y is val[][1]; c[] stores front 
pointers for elements in d[]; Rank[], SA[] and height[] have 
been defined; h[i]=height[Rank[i]]; h[i]=height[Rank[i]];
string S, s;    // two strings for a test case



Practice for Advanced Data Structures  ◾  349

int n, k;
void add_value(int u, int v, int i) // add an element into d[]
{
    d[i].next = c[u]; c[u] = i;
    d[i].now = v;
}
void radix_sort(int l, int r)    // val[][0] and val[][1] are 
combined into xy, calculate Rank[l…r] that substring’s length 
is t
{
    Fdn(k, 1, 0){
        memset(c, 0, sizeof(c));
        Fdn(i, r, l)
            add_value(val[pos[i]][k], pos[i], i);
        int t = 0;
        Fup(i, 0, 200000)
            Path(j, c[i])
            pos[++ t] = d[j].now;
    }
    int t = 0;
    Fup(i, 1, n){
        if (val[pos[i]][0] != val[pos[i - 1]][0] || 
val[pos[i]][1] != val[pos[i - 1]][1])
            t ++;
        rank[pos[i]] = t;
    }
}
void get_suffix_array()  //calculate Rank[] and SA[]
{
    int t = 1;
    while (t / 2 <= n){
        Fup(i, 1, n){
            val[i][0] = rank[i];
            val[i][1] = (((i + t / 2 <= n) ? rank[i + t / 2] : 
0));
            pos[i] = i;
        }
        radix_sort(1, n);
        t *= 2;
    }
    Fup(i, 1, n)
        sa[rank[i]] = i;
}
void get_common_prefix()  //Calculating the array for the 
longest common prefix height[ ]
{
    memset(h, 0, sizeof(h));
    Fup(i, 1, n){
        if (rank[i] == 1)
            h[i] = 0;



350  ◾  Algorithm Design Practice for Collegiate Programming

        else{
            int now = 0;
            if (i > 1 && h[i - 1] > 1)
                now = h[i - 1] - 1;
            while (now + i <= n && now + sa[rank[i] - 1] <= n 
&& x[now + i] == x[now + sa[rank[i] - 1]])
                now ++;
            h[i] = now;
        }
    }
    Fup(i, 1, n)
        height[rank[i]] = h[i];
}
void get_ans()    //calculate the number of common substrings 
whose length isn’t less than k
{
    Fup(i, 2, n)
        height[i] -= k - 1;
    long long sum1 = 0, sum2 = 0, ans = 0;
    int top = 0;
    Fup(i, 2, n)
        if (height[i] <= 0){
            top = sum1 = sum2 = 0;
        }else{
            sta[++ top] = height[i];
            if (sa[i - 1] <= (int)S.size()){
                num1[top] = 1; num2[top] = 0;
                sum1 += (long long)sta[top];
            }else{
                num1[top] = 0; num2[top] = 1;
                sum2 += (long long)sta[top];
            }
            while (top > 0 && sta[top] <= sta[top - 1]){
                sum1 = sum1 - (long long)sta[top - 1] * 
num1[top - 1] + (long long)sta[top] * num1[top - 1];
                sum2 = sum2 - (long long)sta[top - 1] * 
num2[top - 1] + (long long)sta[top] * num2[top - 1];
                num1[top - 1] += num1[top];
                num2[top - 1] += num2[top];
                sta[top - 1] = sta[top];
                top --;
            }
            if (sa[i] <= (int)S.size())
                ans += sum2;
            else
                ans += sum1;
        }
    cout << ans << endl;
}
void init()    //Input the current test case (two strings) and 
are combined into array x[]



Practice for Advanced Data Structures  ◾  351

{
    cin >> S >> s;
    n = (int)S.size() + s.size() + 1;
    string str = S + '$' + s;
    Fup(i, 1, n)
        x[i] = rank[i] = (int)str[i - 1];
}
void solve()    //calculate the number of common substrings 
whose length isn’t less than k
{
    get_suffix_array();
    get_common_prefix();
    get_ans();
}
int main()
{
    ios::sync_with_stdio(false);
    while (cin >> k, k > 0){
        init();
        solve();
    }
    return 0;
}

7.1.3.3  Checking the Text

Wind’s birthday is approaching. In order to buy a really fantastic gift for her, Jiajia 
has to take a boring, yet money-making job—a text checker.

This job is very humdrum. Jiajia will be given a string of text consisting of 
English letters, and he must count the maximum number of letters that can be 
matched, starting from position two of the current text simultaneously. The match-
ing proceeds from left to right, one character by one.

Even worse, sometimes the boss will insert some characters before, after, or 
within the text. Jiajia wants to write a program to do his job automatically, but this 
program should be fast enough, because there are only a few days before Wind’s 
birthday.

Input

The first line of input file contains initial text.
The second line contains the number of commands n. And the following n lines 

describe each command. There are two formats of commands:

I ch p: Insert a character ch before the p-th. If p is larger than the current length 
of text, then insert at end of the text.

Q i j: Ask the length of matching started from the i-th and j-th character of the 
initial text, which doesn’t include the inserted characters.



352  ◾  Algorithm Design Practice for Collegiate Programming

You can assume that the length of initial text will not exceed 50000, the num-
ber of I commands will not exceed 200, and the number of Q commands will not 
exceed 20000.

Output

Print one line for each Q command, containing the max length of matching.

Sample Input Sample Output

abaab
5
Q  1  2
Q  1  3
I  a  2
Q  1  2
Q  1  3

0
1
0
3

Source:	 POJ Monthly, 2006.02.26, zgl & twb

ID for Online Judge: POJ 2758

  Analysis

Jiajia will be given a string of text consisting of English letters, and he must count 
the maximum number of letters that can be matched, starting from position two 
of the current text simultaneously. That is, given a string, the longest common 
prefix is required to calculate. Based on the definition of the longest common 
prefix, the longest common prefix for suffix( j) and suffix(k) (Rank[j]<Rank[k]) is 
min{height[Rank[j]+1], height[Rank[j]+2], …, height[Rank[k]]}, 1≤j<k≤length(S).

Dynamic programming is used to calculate the minimal values of height[] for 
all subintervals. A two-dimensional array f is used to store results, where f [i, j] 
stores the minimal height in the subinterval [j, j+2i−1].

Therefore, for suffixes suffix[a] and suffix[b], the max length of matching is 
the minimal values of height[] for the rank interval [l, r], where l=min(Rank[a], 
Rank[b])+1, r=max(Rank[a], Rank[b]).

Suppose cor[k] is the current position for the character whose initial position is 
k; dis[k] is the distance between the character whose initial position is k, and the 
recently inserted character right; opp[i] is the initial position for the current i-th 
character.



Practice for Advanced Data Structures  ◾  353

1.	If Ranks for suffix[a] and suffix[b] are same (l>r), the max length of matching 
is the length of the suffix suffix[a], that is, the length of string s−cor[a]+1;

2.	If there is no inserted character in the max matching (the minimal values of 
height[] for the rank interval [l, r] is less than dis[a] and dis[b]), the max length 
of matching is the minimal values of height[] for the rank interval [l, r];

3.	Otherwise, the max length of matching is len=min(dis[a], dis[b]) at least. 
Then the max length of matching len is calculated through a loop statement, 
and the condition for the loop statement is cor[a]+len≤the length of the string 
s&&cor[b]+len≤the length of the string s.

If (the (cor[a]+len−1)-th character in s≠the (str[cor[b]+len−1])-th character in s), 
then the max length of matching is len; else if the (cor[a]+len)-th character in s and 
the (str[cor[b]+len])-th character in s aren’t inserted characters, then the max length 
of matching is len+ the max length of matching for suffix[opp[cor[a]+len] and suffix
[opp[cor[b]+len]]; else len++, and continue to loop.

When the loop ends, len is the max length of matching.

  Program

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <string>
#include <map>
#include <utility>
#include <vector>
#include <set>
#include <algorithm>
#define maxn 50210    //the upper limit of the length of the 
text
#define Fup(i, s, t) for (int i = s; i <= t; i ++)    
//Increasing loop
#define Fdn(i, s, t) for (int i = s; i >= t; i --)       
//Descending loop
#define Path(i, s) for (int i = s; i; i = d[i].next)     
//Singly Linked List d[]
using namespace std;
struct node {int now, next;}d[maxn];    // d[], where d[].now 
is the sequence number for an element, and d[].next is the 
successor pointer



354  ◾  Algorithm Design Practice for Collegiate Programming

int f[maxn][20];    // f[i, j] stores the minimal height in 
the subinterval [j, j+2i−1]
int val[maxn][2], c[maxn], rank[maxn], sa[maxn], pos[maxn], 
h[maxn], height[maxn], x[maxn], cor[maxn], dis[maxn], 
opp[maxn];    //x[]: character array; val[][], x is val[][0], 
y is val[][1]; Rank[], SA[] and height[] have been defined; 
h[i]=height[Rank[i]]; cor[k] is the current position for the 
character whose initial position is k; dis[k] is the distance 
between the character whose initial position is k and the 
recently inserted character right; opp[i] is the initial 
position for the current i-th character
string str; 
int n, k;    //length of string, number of commands
void add_value(int u, int v, int i)  //add an element into d[i]
{
    d[i].next = c[u]; c[u] = i;
    d[i].now = v;
}
void radix_sort(int l, int r)    //val[][0] and val[][1] are 
combined to constitute xy, and calculate Rank[l..r] when the 
length is t
{
    Fdn(k, 1, 0){    //sort y and x
      memset(c, 0, sizeof(c)); 
      Fdn(i, r, l) add_value(val[pos[i]][k], pos[i], i);
      int t = 0;
      Fup(i, 0, 50000)
            Path(j, c[i])
            pos[++ t] = d[j].now;
    }
    int t = 0;
    Fup(i, 1, n){
        if (val[pos[i]][0] != val[pos[i - 1]][0] || 
val[pos[i]][1] != val[pos[i - 1]][1])
            t ++;
        rank[pos[i]] = t;
    }
}
void get_suffix_array()   //calculating Rank[] and SA[]
{
    int t = 1;    //initialize the length of the substring
    while (t / 2 <= n){    //while the string can be divided 
into left and right substrings, Rank[] for substrings whose 
length is t is calculated
        Fup(i, 1, n){
            val[i][0]=rank[i];    //rank for left substring 
(starting position is i, length is t/2)
            val[i][1] = (((i + t / 2 <= n) ? rank[i + t / 2] : 
0));    ///rank for right substring (starting position is 
i+t/2, length is t/2)



Practice for Advanced Data Structures  ◾  355

            pos[i] = i;
        }
        radix_sort(1, n);    //val[][0] and val[][1] are 
combined to xy, and calculate Rank[] with length t
        t *= 2;    //the length of substring *2
    }
    Fup(i, 1, n) sa[rank[i]] = i;    //SA[]       
}
void get_common_prefix()   //Calculate the longest common 
prefix height[]
{
    memset(h, 0, sizeof(h));
    Fup(i, 1, n){
        if (rank[i] == 1)
            h[i] = 0;
        else{ 
            int now = 0;
            if (i > 1 && h[i - 1] > 1)
                now = h[i - 1] - 1;
            while (now + i <= n && now + sa[rank[i] - 1] <= n 
&& x[now + i] == x[now + sa[rank[i] - 1]])
                now ++;
            h[i] = now;
        }
    }
    Fup(i, 1, n) height[rank[i]] = h[i];    //calculate 
height[] based on h[]
}
void get_RMQ()  //calculate f[][], f[i, j] stores the minimal 
height in the subinterval [j, j+2i−1]
{
    Fup(i, 1, n)f[i][0] = height[i];
    Fup(k, 1, (int)(log(n) / log(2)))    //length is 
enumerated (integral power of 2)
      Fup(i, 1, n - (1 << k) + 1)
            f[i][k]=min(f[i][k-1],f[i+(1<<(k - 1))][k-1]);
}
int query(int a, int b)    //calculate the length of maximum 
matching string for suffix[a] and suffix[b]
{
    int head = min(rank[a], rank[b])+1, 
tail=max(rank[a],rank[b]);
    if (head > tail) 
        return (int)str.size() - cor[a] + 1;
    int t = (int)(log(tail - head + 1) / log(2));
    int len = min(f[head][t], f[tail - (1 << t) + 1][t]); 
    if (len < dis[a] && len < dis[b])return len;
    len = min(dis[a], dis[b]);
    while (cor[a] + len <= (int)str.size() && cor[b] + len <= 
(int)str.size()){



356  ◾  Algorithm Design Practice for Collegiate Programming

        if(str[cor[a]+len-1]!=str[cor[b]+len-1])return len;
        if (opp[cor[a] + len] && opp[cor[b] + len])
            return len + query(opp[cor[a] + len], opp[cor[b] + 
len]);
        len ++; 
    }
    return len; 
}
void insert(char ch, int pre)    //character ch is inserted
{
    int t = (int)str.size();    //length of str
    pre = min(t + 1, pre);    //inserted position
    str = str + ' ';    //space is added to the end of the 
string
    Fdn(i, t, pre){
        str[i] = str[i - 1];
        opp[i + 1] = opp[i];    // opp[i] is the initial 
position for the current i-th character
        if (opp[i])
            cor[opp[i]] = i + 1;    // cor[k] is the current 
position for the character whose initial position is k
    }
    opp[pre] = 0;    //the current the pre-th character is the 
inserted character
    str[pre - 1] = ch;    //Insertion
    Fdn(i, pre - 1, 1){
        if (!opp[i])break;
        dis[opp[i]] = min(dis[opp[i]], pre - i);
    }
}
void init()    //Input the initial text and commands
{
    cin >> str;    // the initial text
    n = (int)str.size();    //the length of the initial text
    Fup(i, 1, n){    //Initialization
        x[i] = rank[i] = (int)str[i - 1];
        cor[i] = i;opp[i] = i;
    }
    cin >> k;    //number of commands
}
void solve()    //commands are executed one by one
{
    get_suffix_array();    //calculate Rank[]
    get_common_prefix();    //calculate height[]
    get_RMQ();    // calculate the minimal height in the 
subinterval
    memset(dis, 127, sizeof(dis));
    Fup(i, 1, k){    // commands are executed one by one
        char kind;



Practice for Advanced Data Structures  ◾  357

        cin >> kind;    // the format of a command
        if (kind == 'Q'){    //command Q
            int a, b;
            cin >> a >> b;
            int ans = query(a, b);    //calculate and output 
the length of matching
            cout << ans << endl;
        }else{    //command I
            char ch;
            int pos;
            cin >> ch >> pos;
            insert(ch, pos);    // Insert a character ch 
before the pos-th.
        }
    }
}
int main()
{
    ios::sync_with_stdio(false);
    init();    //Input initial text and commands
    solve();    //commands are executed
    return 0;
}

7.2  Segment Trees
We often meet some interval operations, such as calculating the length of the union 
of intervals or segments, and so on. A segment tree is a tree storing intervals or 
segments. Interval operations can be implemented based on segment trees. In this 
section, experiments for segment trees are given.

7.2.1  Segment Trees

A segment tree is a binary tree T (a, b), where an interval [a, b] represents the root 
for the binary tree. Suppose L=b−a. T (a, b) is defined recursively as follows:

If L>1: Interval +











,
2

a
a b  represents the left child for the root, and interval 

+





+



2

1,a b
b  is the right child for the root;

If L=1: The left child and the right child for T (a, b) are leaves [a] and [b] 
respectively.

If L=0, that is, a==b: T (a, b) is a leaf representing [a], that is, an element a.



358  ◾  Algorithm Design Practice for Collegiate Programming

In Figure 7.6, there is a segment tree whose root is [1, 10].
Leaves are all data in the interval. An internal node can be regarded not only as 

an interval, but also as the midpoint for the interval.
An array a[ ] is used to store a segment tree. If node a[i] represents an interval 

[l, r], then its left child a[2×i+1] represents the left subinterval ,
2
+











l
l r , and its 

right child a[2×i+2] represents the right subinterval 
2

1,+





+





l r
r . Therefore, 

each node stores not only an interval, but also some special data, for example, how 
many segments cover the interval, and so on.

Fundamental operations for a segment tree are as follows:

1.	A segment tree is built;
2.	A segment or an element is inserted in an interval;
3.	A segment or an element is deleted from an interval;
4.	A segment tree is updated.

1.	A segment tree is built for interval [l, r].
Based on dichotomy, interval [l, r] is divided into tot (≥2×log2(r−l)) empty 
subintervals. These subintervals aren’t covered by any segment. tot is a global 
variable, and shows how many nodes are used. Initially tot=0. A segment tree 
T(l, r) is built as follows.

void build_tree(int l, int r, int i)    //From node i, a 
segment tree is built for interval [l, r]
{
	 Data field for node i is initialized;
	 if (l==r){  //There is only one element in the interval

[1, 10]

[1, 5]

[1, 3]

[1, 2] [6, 7][3]

[1] [2]

[4] [5] [8] [9] [10]

[4, 5] [6, 8] [9, 10]

[6, 10]

Figure 7.6



Practice for Advanced Data Structures  ◾  359

		  Set the sequence number for the leaf containing the 
element;
	 }
	 int mid=(l+r) / 2;    // pointer pointing to the middle 
of the interval
	 build_tree(l, mid, i+i);    // A segment tree is built 
for the left subinterval
	 build_tree(mid+1, r, i+i+1);    // A segment tree is 
built for the right subinterval
}

2.	A segment or an element is inserted in an interval.
Suppose R is the root for a segment tree T(l, r), and R represents an interval 
[l, r]. A segment [c, d] will be inserted into the segment tree.

If interval [c, d] covers [l, r] completely, that is, ((c≤l)&&(r≤d)), then the 
number of covered segments in node R increases 1;

If interval [c, d] doesn’t cover the midpoint 
2

||
2

1≤ +





+





+ ≤





d
l r l r

c , 

then the segment is inserted into the left subtree or right subtree for node R;

If interval [c, d] covers the midpoint 
2

& &
2

1≤ +





≥ +





+





c
l r

d
l r , 

then the segment is inserted into the left subtree and right subtree for node R.
Its time complexity is O(log2n).
If an element x is inserted in segment tree T(l, r), binary search is used to 

find the position of the leaf containing x, and element x is interested into the 
leaf. Its time complexity is O(log2n).

3.	A segment or an element is deleted from an interval.
Suppose R is the root for a segment tree T(l, r) representing interval [l, r]. A 
segment [c, d] will be deleted from the segment tree. The method is similar to 
inserting a segment into the segment tree. In order to guarantee that updat-
ing the segment tree is correct, a segment [c, d] can be deleted only if there is 
at least one segment on the interval [c, d].

The method for deleting an element is similar to the method for insert-
ing an element. Obviously an element can be deleted only if the element has 
been inserted.

4.	A segment tree is updated.
There are two methods for updating a segment tree:
1.	 Updating a single point in a segment tree, that is, a segment tree is 

updated after an element is inserted or deleted.
2.	 Updating a subinterval in a segment tree, that is, a segment tree is updated 

after a segment is inserted or deleted.



360  ◾  Algorithm Design Practice for Collegiate Programming

7.2.2  Updating a Single Point in a Segment Tree

In a segment tree, a leaf node is used to a represent an integer in the interval. 
Updating a single point in a segment tree means that a segment tree is updated after 
an element x is inserted into the interval or deleted from the interval. First, binary 
search is used to find the leaf containing x. Then, statuses for all nodes in path from 
the leaf to the root are adjusted, for these nodes contain element x.

7.2.2.1  Buy Tickets

Railway tickets were difficult to buy around the Lunar New Year in China, so we must 
get up early and join a long queue…

The Lunar New Year was approaching, but unluckily the Little Cat still had 
schedules going here and there. Now, he had to travel by train to Mianyang, 
Sichuan Province, for the winter camp selection of the national team of Olympiad 
in Informatics.

It was 1 a.m. and dark outside. A chill wind from the northwest did not scare 
off the people in the queue. The cold night gave the Little Cat a shiver. Why not 
find a problem to think about? That was better than freezing to death!

People kept jumping the queue. Since it was too dark all around, such moves 
would not be discovered even by the people adjacent to the queue-jumpers. “If every 
person in the queue is assigned an integral value and all the information about those 
who have jumped the queue and where they stand after queue-jumping is given, can 
I find out the final order of people in the queue?” thought the Little Cat.

Input

There will be several test cases in the input. Each test case consists of N+1 lines 
where N (1≤N≤200,000) is given in the first line of the test case. The next N lines 
contain the pairs of values Posi and Vali in the increasing order of i (1≤i≤N). For 
each i, the ranges and meanings of Posi and Vali are as follows:

Posi∈[0, i−1]: The i-th person came to the queue and stood right behind the 
Posi-th person in the queue. The booking office was considered the 0th person 
and the person at the front of the queue was considered the first person in 
the queue.

Vali∈[0, 32767]: The i-th person was assigned the value Vali.

There are no blank lines between test cases. Proceed to the end of input.

Output

For each test case, output a single line of space-separated integers which are the 
values of people in the order they stand in the queue.



Practice for Advanced Data Structures  ◾  361

Sample Input Sample Output

4
0  77
1  51
1  33
2  69
4
0  20523
1  19243
1  3890
0  31492

77  33  69  51
31492  20523  3890  19243

Source:	 POJ Monthly, 2006.05.28, Zhu Zeyuan

IDs for Online Judges: POJ 2828

  Hint

Figure 7.7 shows how the Little Cat found out the final order of people in the queue 
described in the first test case of the sample input.

  Analysis

Initially there is an empty sequence. N persons are interested into the sequence. 
Each person has a value. Values of persons are output in the order they stand in the 
queue finally.

For each test case, N pairs of values are dealt with in reverse order, in order to 
guarantee that the inserted position can’t be changed. For example, for the second 

Booking
of�ce

Booking
of�ce

Booking
of�ce

Booking
of�ce

77 33 69 51

77 33 51

77 51

77

Final order of people in the queue

A person with value 77 comes and stands right 
behind the 0th person (the booking of�ce). 

A person with value 51 comes and stands right 
behind the �rst person in queue.

A person with value 33 comes and stands right 
behind the �rst person in queue.

A person with value 69 comes and stands right 
behind the second person in queue.

Figure 7.7



362  ◾  Algorithm Design Practice for Collegiate Programming

sample test case, the sequence of the sample input is 0 20523 1 19243 1 3890 0 
31492. These four pairs of values are dealt with in reverse order. First, the fourth pair 
(pos[4], val[4])is dealt: pos[4]=0, val[4]=31492. j= pos[4]+1=1. The fourth person will 
be inserted into the “current” j-th empty position (the “current” first empty position). 
Second, the third pair (pos[3], val[3])is dealt: pos[3]=1, val[3]=3890. j=pos[3]+1=2. 
That is, the third person will be inserted into the current j-th empty position (the cur-
rent second empty position). Third, the second pair (pos[2], val[2]) is dealt: pos[2]=1, 
val[2]=19243. j=pos[2]+1=2. That is, the third person will be inserted into the current 
j-th empty position (the current second empty position). Finally, the first pair (pos[1], 
val[1]) is dealt: pos[1]=0, val[1]=20523. j=pos[1]+1=1. That is, the first person will be 
inserted into the current first empty position. Therefore, for the second test case, the 
values of people in the order they stand in the queue are 31492 20523 3890 19243.

A segment tree is used to solve the problem. Nodes in the segment tree are used 
to store the number of empty positions in the corresponding interval. For each 
time, first the pos[i]-th empty position is searched, and then nodes’ states for repre-
senting the pos[i]-th empty position are changed.

Initially, the state value for a node is the length of interval. Leaf nodes represent 
persons.

The process is as follows.

From the n-th person, each person’s position is dealt with one by one. When the 
i-th person is inserted into the sequence, his position is the current j-th empty 
position ( j=pos[i]+1, i=n…1, pos[i]<i), and then the number of the empty 
position is recursively calculated from the root of the segment tree.

If the number of empty positions in the left subtree ≥j, recursive search is on the 
left subtree; otherwise the k-th empty position in the right subtree is calcu-
lated, k=j−(number of empty positions in the left subtree). Repeat the above 
steps until leaf node d is found, where node d represents interval [t]. Then the 
i-th person’s position is t.

Then the segment tree is adjusted. On the path from leaf node d to the root, the 
number of empty positions in each node −1.

Repeat the above steps until the first person’s position is calculated.

  Program

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <map>



Practice for Advanced Data Structures  ◾  363

#include <utility>
#include <algorithm>
#define maxn 200100    //the upper limit of number of persons
#define Fup(i, s, t) for (int i = s; i <= t; i ++)
#define Fdn(i, s, t) for (int i = s; i >= t; i --)
using namespace std;
int pos[maxn], val[maxn], size[maxn * 3], ans[maxn], 
point[maxn];    // pos[i] and val[i]: described in problem; 
ans[k]: the i-th person in the queue; point[k]: the sequence 
number for the leaf representing [k]; size[j]: number of empty 
positions in node j
int n;    //number of persons
void build_tree(int l, int r, int i)    //From node i, a 
segment tree is built for interval [l, r]
{
	 size[i] = r - l + 1;    // number of empty positions in 
node i
	 if (l==r){      // There is only one element in the 
interval. Set the sequence number for the leaf containing the 
element
		  point[l] = i;
		  return;
	 }
	 int mid = (l + r) / 2;    // pointer pointing to the middle 
of the interval
	 build_tree(l, mid, i + i);    // A segment tree is built for 
the left subinterval
	 build_tree(mid + 1, r, i + i + 1);    // A segment tree is 
built for the right subinterval
}
int require(int sum, int l, int r, int i)    //Calculate the 
sequence number of the leaf for the sum-th empty position
{
	 if (l == r)    // In the interval there is only one element, 
return the element
		  return l;
	 int mid = (l + r) / 2;    // pointer pointing to the middle
	 if (size[i + i] >= sum)    //number of empty positions in 
the left subtree ≥ sum
	     return require(sum, l, mid, i + i);
	 return require(sum - size[i + i], mid + 1, r, i + i + 1);
}
void change(int i)    //Updating the segment tree, from leaf i 
to the root, adjust number of empty positions
{
	 while (i > 0){
		  size[i] --;
		  i = i / 2;
	 }
}



364  ◾  Algorithm Design Practice for Collegiate Programming

void init()
{
	 Fup(i, 1, n)    // Input test case
		  scanf("%d%d\n", &pos[i], &val[i]);
}
void solve()    // calculate and output the values of people 
in the order they stand in the queue
{
	 memset(size, 0, sizeof(size));
	 build_tree(1, n, 1);    //construct segment tree (1, n)
	 Fdn(i, n, 1){    // n pairs of values are dealt with in 
reverse order
		  int t = require(pos[i] + 1, 1, n, 1);
		  ans[t] = i;
		  change(point[t]);    //updating segment tree
	 }
	 Fup(i, 1, n - 1)    // output the values of people in the 
order they stand in the queue
		  cout << val[ans[i]] << ' ';
	 cout << val[ans[n]] << endl;
}
int main()
{
	 while (scanf("%d\n", &n) == 1){
		  init();    //Input
		  solve();    //calculate and output the values of people 
in the order they stand in the queue
	 }
	 return 0;
}

7.2.3  Updating a Subinterval in a Segment Tree

Updating a subinterval means that data in a subsequence are modified. The method 
is similar to updating a single point in a segment tree. When a subinterval is 
updated, a segment tree must be updated from bottom to top. In order to improve 
the efficiency, a label is used.

In each node, a label is used: If the interval that the node corresponds to 
is covered completely, then the node is labeled. If a labeled node is found dur-
ing updating a subinterval, then its left child and right child are labeled, and 
the node’s label is removed. The label’s information is determined by updating a 
subinterval.

In this section, three kinds of experiments for updating a subinterval are shown.

1.	Updating data uniformly and calculating data dynamically in a subinterval;
2.	Calculating visible segments;
3.	Updating and calculating disjoint segments.



Practice for Advanced Data Structures  ◾  365

7.2.3.1 � Updating Data Uniformly and Calculating 
Data Dynamically in a Subinterval

An interval is represented as a segment tree. Updating data uniformly in a sub-
interval means that the same value is added to each number in the subinterval. 
Calculating data dynamically in a subinterval means that the sum of numbers in a 
subinterval is calculated, and so on. A node’s information includes:

1.	A label, the value of which is added to each number in the corresponding 
subinterval;

2.	The calculation result of the corresponding subinterval.

7.2.3.1.1  A Simple Problem with Integers

You have N integers, A1, A2, …, AN, and you need to deal with two kinds of 
operations. One type of operation is to add some given number to each number 
in a given interval. The other is to ask for the sum of numbers in a given interval.

Input

The first line contains two numbers N and Q. 1≤N,Q≤100000.
The second line contains N numbers, the initial values of A1, A2, …, AN. 

−1000000000≤Ai≤1000000000.
Each of the next Q lines represents an operation.

“C a b c” means adding c to each of Aa, Aa+1, …, Ab. −10000≤c≤10000.
“Q a b” means querying the sum of Aa, Aa+1, …, Ab.

Output

You need to answer all Q commands in order. One answer in a line.

Sample Input Sample Output

10  5
1  2  3  4  5  6  7  8  9  10
Q  4  4
Q  1  10
Q  2  4
C  3  6  3
Q  2  4

4
55
9
15

Hint:  The sums may exceed the range of 32-bit integers.

Source:	 POJ Monthly, 2007.11.25, Yang Yi

IDs for Online Judges: POJ 3468



366  ◾  Algorithm Design Practice for Collegiate Programming

  Analysis

A segment tree is used to solve the problem. Subintervals in the tree correspond to 
indexes of numbers, that is, [l, r] corresponds to numbers Al, Al +1, …, Ar. Obviously, 
leaves represent initial values for Al, Al +1, …, Ar from left to right. In each node, 
there are two attributes:

Attribute 1: The sum of current numbers in the subinterval s. Initially s is the 
sum of initial numbers in the subinterval.

Attribute 2: Label v, the increasement value for each number in the subinterval. 
If the operation is “C a b c”, then, for all subintervals in [a b], c×l is added to 
all sums s, where l is the length of the subinterval.

Each time, the label is used to update the segment tree. If node i isn’t labeled, 
then return; else subintervals that the left child and right child correspond to are 
covered. Sums of current numbers in subintervals for the left child and right child 
are calculated. And the left child and right child are labeled v.

Suppose the root of the segment tree is i, and corresponds to an interval [l, r].
Then the sum of current numbers in the subinterval [tl, tr] is calculated:

If (tl>r| tr<l), return 0;
If [tl, tr] covers [l, r] completely (tl≤l&&r≤tr), return the 
sum s for node i;
Node i is labeled to update the segment tree;
For the subinterval [tl, tr], the sum of current numbers in 
the left subtree s1 and the sum of current numbers in right 
subtree s2 are recursively calculated, and return s1+s2; v is 
added to each number in the subinterval [tl, tr].
If (tl>r||tr<l), then return;
If [tl, tr] covers [l, r] completely (tl≤l&&r≤tr), then v is 
added to each number in the subinterval [tl, tr], in node i, s 
and v are updated: v*(r−l+1) is added to s, v is accumulated 
in node i, and return;
For node i, the label method is used to update the segment 
tree;
For node i, the sum of current numbers in the left subtree s1 
and the sum of current numbers in right subtree s2 are 
calculated;
In node i, s =s1+s2;



Practice for Advanced Data Structures  ◾  367

  Program

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <string>
#include <map>
#include <utility>
#include <set>
#include <algorithm>
#define maxn 100010    // the upper limit of the number of 
numbers
using namespace std;
struct node {long long mark,sum;}tree[maxn*4];    // segment 
tree, for node i, the sum of numbers is tree[i].sum, and the 
label is tree[i].mark
int x[maxn];    // the sequence of initial numbers
int n, m;    //numbers of numbers and operations
void update(int l, int r, int i)    //label method is to 
update a segment tree(i is the root, corresponding to an 
interval [l, r])
{
    if (!tree[i].mark) return;    // if label i is labeled, 
then return; else subintervals that left child and right child 
correspond to are covered. Sums of current numbers in 
subintervals for left child and right child are calculated. 
And left child and right child are labeled v.
    int mid = (l + r) / 2;                         
    tree[i + i].sum += tree[i].mark * (long long)(mid - l + 1);
    tree[i + i + 1].sum += tree[i].mark * (long long)(r - mid); 
    tree[i+i].mark+=tree[i].mark;                  
    tree[i+ i+1].mark += tree[i].mark;
    tree[i].mark = 0;    //removing the label for node i
}
long long query(int tl, int tr, int l, int r, int i)    // the 
sum of current numbers in the subinterval [tl, tr] is 
calculated. (i is the root of segment tree corresponding to 
the interval [l, r], [tl, tr] is a subinterval for [l, r])
{
    if (tl > r || tr < l) 
        return 0;
    if (tl <= l && r <= tr)    // If [tl, tr] covers [l, r] 
completely, return the sum s for node i
        return tree[i].sum;



368  ◾  Algorithm Design Practice for Collegiate Programming

    update(l, r, i);    //label method is used to update the 
segment tree (i is the root of segment tree corresponding to 
the interval [l, r])
    int mid = (l + r) / 2;    //calculate sums of numbers that 
[tl, tr] contains in left subtree and right subtree, and 
return the sum of sums
    return query(tl, tr, l, mid, i + i) + query(tl, tr, mid + 
1, r, i + i + 1);
}
void add_value(int tl, int tr, int l, int r, int i, int val)   
//In segment tree (i is the root of segment tree corresponding 
to the interval [l, r]), each number in the subinterval [tl, 
tr] + val
{
    if (tl > r || tr < l)
        return;
    if (tl<=l && r<=tr){    // If [tl, tr] covers [l, r] 
completely (tl≤l&&r≤tr), then val is added to each number in 
the subinterval [l, r],
        tree[i].sum += val * (long long)(r - l + 1);
        tree[i].mark += val;    //label
        return;
    }
    update(l, r, i);    // Update the segment tree
    int mid = (l + r) / 2;
    add_value(tl, tr, l, mid, i + i, val);    //recursion for 
left and right subtree
    add_value(tl, tr, mid + 1, r, i + i + 1, val);
    tree[i].sum = tree[i + i].sum + tree[i+ i+1].sum;    
//accumulation
}
void build_tree(int l, int r, int i)    //construct a segment 
tree (i is the root of segment tree corresponding to the 
interval [l, r])
{
    if (l == r){    //leaf node
        tree[i].sum = x[l];
        return; 
    }
    int mid = (l + r) / 2;    //midpoint
    build_tree(l, mid, i + i);    // left and right subtrees
    build_tree(mid + 1, r, i + i + 1);
    tree[i].sum = tree[i + i].sum + tree[i + i + 1].sum;    
//accumulation
}
void solve()    //dealing with operations one by one
{
    memset(tree, 0, sizeof(tree));
    build_tree(1, n, 1);    //construct a segment tree
    scanf("\n");



Practice for Advanced Data Structures  ◾  369

    for (int i = 1; i <=m; i ++)    // dealing with operations 
one by one
 {             
        char ch;
        int l, r, v;
        scanf("%c", &ch);    //Input the i-th operation
        if (ch == 'Q'){    // 'Q' operation, input the 
interval [l, r]
            scanf("%d%d\n", &l, &r);
            long long ans = query(l, r, 1, n, 1); 
            printf("%lld\n", ans);
        }else{    //    'C' operation
            scanf("%d%d%d\n", &l, &r, &v); 
            add_value(l, r, 1, n, 1, v); 
        }
    }
}
int main()
{
    scanf("%d%d\n", &n, &m);    //numbers of numbers and 
operations
    for (int i = 1; i <=n; i ++)    //n initial numbers
      scanf("%d", x + i);
    solve();    // Operations are dealt with one by one
    return 0;
}

7.2.3.2  Calculating Visible Segments

Segments are inserted into an interval one by one. And later segments can cover 
previous segments. Final visible segments are required to calculate. Labels for the 
segment tree are sequence numbers for covered subintervals.

A segment tree is constructed based on the discretization on the segment 
coordinate.

7.2.3.2.1  Mayor’s Posters

The citizens of Bytetown, Alberta, could not stand that the candidates in the may-
oral election campaign have been placing their electoral posters in all places at their 
whim. The city council has finally decided to build an electoral wall for placing the 
posters and introduces the following rules:

Every candidate can place exactly one poster on the wall.
All posters are of the same height equal to the height of the wall; the width of 

a poster can be any integer number of bytes (byte is the unit of length in 
Bytetown).

The wall is divided into segments and the width of each segment is one byte.
Each poster must completely cover a contiguous number of wall segments.



370  ◾  Algorithm Design Practice for Collegiate Programming

They have built a wall 10000000 bytes long (such that there is enough place 
for all candidates). When the electoral campaign was restarted, the candidates 
were placing their posters on the wall, and their posters differed widely in width. 
Moreover, the candidates started placing their posters on wall segments already 
occupied by other posters. Everyone in Bytetown was curious whose posters will be 
visible (entirely or in part) on the last day before elections.

Your task is to find the number of visible posters when all the posters are placed, 
given the information about posters’ size, their place, and order of placement on 
the electoral wall.

Input

The first line of input contains a number c giving the number of cases that follow. 
The first line of data for a single case contains number 1≤n≤10000. The subsequent 
n lines describe the posters in the order in which they were placed. The i-th line 
among the n lines contains two integer numbers li and ri, which are the number 
of the wall segment occupied by the left end and the right end of the i-th poster, 
respectively. We know that for each 1≤i≤n, 1≤li≤ri≤10000000. After the i-th poster 
is placed, it entirely covers all wall segments numbered li, li+1, …, ri.

Output

For each input data set, print the number of visible posters after all the posters are placed.

Sample Input Sample Output

1
5
1  4
2  6
8  10
3  4
7  10

4

Source:	 Alberta Collegiate Programming Contest 2003.10.18

IDs for Online Judges: POJ 2528

Figure 7.8 illustrates the case of the sample input.

  Analysis

The wall is represented as an interval [0, 10000000]. One poster being placed 
on the wall can be regarded as a subinterval being colored. Placing the i-th 



Practice for Advanced Data Structures  ◾  371

poster can be regarded as the i-th subinterval being colored color i, 1≤i≤n. 
The final number of colors in the interval [0, 10000000] (previous colors can 
be covered by later colors) is the number of visible posters after all the posters 
are placed.

The problem is a basic problem for a segment tree. In the segment tree, each 
node stores its subinterval’s color, where colorless is represented as 0, mixed color 
is represented as −1; otherwise, the color is represented as the number of color that 
the node is colored. Then a subinterval in the segment tree is updated each time. 
Because the wall is 10000000 bytes long, and 1≤n≤10000. Discretization should 
be used. And it is not simple discretization.

The algorithm is as follows:

1.	Discretization.
The left boundaries, right boundaries, and middle positions for n posters are 
stored in array x[1…3×n]. Then x[ ] is sorted to delete repeated coordinates. 
For the i-th poster, numbers of coordinates which aren’t larger than its left 
boundary and right boundary are l[i] and r[i] respectively. Obviously, l[i] and 
r[i] constitute the i-th segment, and the color of the segment is i, 1≤i≤n.

For example, there are three posters placed on the wall. Subintervals 
[1, 5], [1, 2] and [4, 5] are covered by the three posters. After the three posters 
are placed on the wall, there are three colors in the interval [0, 10000000]. 
For the first poster, numbers of coordinates which aren’t larger than its left 
boundary and right boundary are 1 and 4. For the second poster, numbers of 
coordinates which aren’t larger than its left boundary and right boundary are 
1 and 2. And for the third poster, numbers of coordinates which aren’t larger 
than its left boundary and right boundary are 3 and 4.

1 2 3 4 5 6 7 8 9 10

The same poster

Top view

Front view

Figure 7.8



372  ◾  Algorithm Design Practice for Collegiate Programming

2.	Constructing a segment tree.
A segment is constructed, where the root is 1, and represents an interval 
[1…3n]. The label for a node is the number of color that the subinterval 
corresponds to. n segments are inserted into the segment tree one by one. And 
the segment tree is updated with the label method.

3.	Visible segments are recursively calculated.
If node i is labeled (the subinterval is covered by segments), and if the segment 

wasn’t colored before, then set the label the color and return 1; else return 
0 (in order to avoid repeated calculation);

If node i is a leaf (the node isn’t colored), return 0;
Numbers of segments in the left subinterval and right subinterval are recur-

sively calculated, and return the sum;

  Program

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#define maxn 10010    // the upper limit of the number of 
posters
using namespace std;
bool tab[maxn];    //tab[k]: the label that color k is used
int l[maxn], r[maxn], x[maxn*3], num[maxn*3], tree[maxn*12];    
//For the i-th posters, numbers of coordinates which aren’t 
larger than its left boundary and right boundary are l[i] and 
r[i] respectively; its left boundary, right boundary, and 
middle position are x[3*i−2], x[3*i−1] and x[3*i] 
respectively; after x[ ] is sorted, in x[1..j] the number of 
non-repeating coordinates is num[j]; the label for node k in 
the segment tree is tree[k], is the color for its subinterval
int c, n;    //c: number of test cases, n: number of posters

int binary_search(int sum)    //calculate different 
coordinates in interval [0..sum]
{
	 int l = 1, r = 3*n;     
	 while (r >= l){    //binary search is used to find the 
sequence number r in x[ ] whose coordinate is sum
		  int mid = (l + r) / 2;
		  if (x[mid] <= sum)
			   l = mid + 1;



Practice for Advanced Data Structures  ◾  373

		  else
			   r = mid - 1;
	 }
	 return num[r];    //the number of different coordinates in 
x[1…r]
}
void update(int i)    //Update a segment with label method
{
	 if (!tree[i])    // if label i isn’t labeled, return
		  return;
	 tree[i+i]=tree[i+i+1]=tree[i];    //the label for node i is 
given to its left and right child, and removed
	 tree[i] = 0;
}
void change(int tl, int tr, int l, int r, int i, int co)    
// In segment tree (root i, interval [l, r]), a subinterval 
[tl, tr]) whose color is co is inserted
{
	 if (tr < l || tl > r)
		  return;
	 if (tl<=l && r<=tr){    //[tl, tr] covers [l, r] completely
		  tree[i] = co;
		  return;
	 }
	 update(i);    // update the segment tree with label method
	 int mid = (l + r) / 2;    // recursions for left and right 
subtree
	 change(tl, tr, l, mid, i+i, co);
	 change(tl, tr, mid + 1, r, i + i + 1, co);
}
int require(int l, int r, int i)    //the number of visible 
posters in the interval [l, r] (i is the root of its subtree)
{
	 int mid = (l+r)/2;    //middle pointer
	 if (tree[i]){    //i has been labeled, if the segment wasn’t 
colored before, then set the label to the color and return 1, 
else return 0
		  if (!tab[tree[i]]){ 
			   tab[tree[i]] = 1;
			   return 1;
		  }
		  return 0;
	 }
	 if (l == r)    //the current vertex isn’t covered, return 0
		  return 0;
  return require(l, mid,i+i)+require(mid+1,r,i+i+1);    
//accumulate the number of visible posters in left and right 
subintervals
}
void init()    // Discretization



374  ◾  Algorithm Design Practice for Collegiate Programming

{
	 scanf("%d\n", &n);    //number of posters
	 for (int i = 1; i <=n; i ++){    //posters’ left and right 
boundaries, for the i-th poster, its left and right boundaries 
are x[3*i−2] and x[3*i−1], x[3*i] stores the middle position
		  scanf("%d%d\n", l + i, r + i);
		  x[i+ i+i-2] = l[i]; x[i+i+i-1]=r[i]; x[i+i+i]=(l[i] + 
r[i])/2;
	 }
	 sort(x + 1, x + 3 * n + 1);    //sort x[]
	 memset(num, 0, sizeof(num));
	 for (int i=1;i<=3*n;i++){    //calculate num[], where num[i] 
is the number of coordinates in x[1…i]
		  num[i] = num[i - 1];
		  if (x[i] != x[i - 1]) num[i] ++;
	 }
	 for (int i=1; i<=n; i++){    //calculate coordinates for 
left and right boundaries of each poster
		  l[i] = binary_search(l[i]);
		  r[i] = binary_search(r[i]);
	 }
}
void solve()    //calculate the number of visible posters
{
	 memset(tree, 0, sizeof(tree));
	 for (int i = 1; i<=n; i++)    //insert subintervals in the 
segment tree
		  change(l[i], r[i], 1, 3 * n, 1, i);
	 memset(tab, 0, sizeof(tab));
	 int ans = require(1,3*n,1);    // calculate and output the 
number of visible posters
	 printf("%d\n", ans);
}
int main()
{
	 scanf("%d\n", &c);    //number of test cases
	 for (int i = 1; i<=c; i++) {
		  init();    // calculate the number of visible posters
		  solve();
	 }
	 return 0;
}

7.2.3.3  Updating and Calculating Disjoint Segments

Given a segment whose length is l, if there are subintervals whose number of empty 
positions is no less than l in the segment tree, then the segment can be inserted. 
Normally there is a priority for such subintervals. For deletion operation, if there 



Practice for Advanced Data Structures  ◾  375

exists an “occupied interval” for the deleted segment in the segment tree, the seg-
ment can be deleted.

The label for a node includes:

1.	The mark for the corresponding subinterval: There are three kinds of marks—
occupied, empty, and partly occupied;

2.	The longest empty subinterval in the corresponding subinterval for the node: 
The start position pos, and the length lm;

3.	The length of the rightmost empty subinterval ls in the node’s left child and 
the length of the leftmost empty subinterval rs in the node’s right child, that 
is, the length of the subinterval crossing the left and right subintervals for the 
node is ls+rs.

7.2.3.3.1  Hotel

The cows are journeying north to Thunder Bay in Canada to gain cultural enrich-
ment and enjoy a vacation on the sunny shores of Lake Superior. Bessie, ever the com-
petent travel agent, has named the Bullmoose Hotel on famed Cumberland Street as 
their vacation residence. This immense hotel has N (1≤N≤50,000) rooms all located 
on the same side of an extremely long hallway (all the better to see the lake, of course).

The cows and other visitors arrive in groups of size Di (1≤Di≤N) and approach 
the front desk to check in. Each group i requests a set of Di contiguous rooms from 
Canmuu, the moose staffing the counter. He assigns them some set of consecutive 
room numbers r..r+Di−1 if they are available; or, if no contiguous set of rooms is 
available, politely suggests alternate lodging. Canmuu always chooses the value of 
r to be the smallest possible.

Visitors also depart the hotel from groups of contiguous rooms. Checkout i 
has the parameters Xi and Di which specify the vacating of rooms Xi ..Xi +Di−1 
(1≤Xi≤N−Di+1). Some (or all) of those rooms might be empty before the checkout.

Your job is to assist Canmuu by processing M (1≤M<50,000) checkin/checkout 
requests. The hotel is initially unoccupied.

Input

* Line 1: Two space-separated integers: N and M;
* Lines 2: M+1: Line i+1 contains a request expressed as one of two possible 

formats:
	 1.	 Two space-separated integers representing a check-in request: 1 and Di ;
	 2.	 Three space-separated integers representing a checkout: 2, Xi, and Di.

Output

* Lines 1.....: For each check-in request, output a single line with a single integer r, 
the first room in the contiguous sequence of rooms to be occupied. If the request 
cannot be satisfied, output 0.



376  ◾  Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output

10  6
1  3
1  3
1  3
1  3
2  5  5
1  6

1
4
7
0
5

Source:	 USACO 2008 February Gold

IDs for Online Judges: POJ 3667

  Analysis

For each node, there are three kinds of marks: occupied, empty, and partly occu-
pied. There are two types of operations:

Operation 1: Search the position for the foremost empty subinterval whose 
length is n;

Operation 2: Set the mark for a subinterval empty.

For each operation, the segment tree needs to be updated. The label method is 
used to update the segment tree. The label for a node includes:

mark: the state for the node’s corresponding subinterval (0: undetermined; 
1: empty; 2: occupied);

ls: the length of the rightmost empty subinterval in the node’s left child;
rs: the length of the leftmost empty subinterval in the node’s right child;
ms: the length of the longest empty subinterval in the node’s corresponding sub-

interval: and the start position for the subinterval is pos;

The three operations (update, query, and modification for a subinterval) for a 
segment tree whose root is i, and corresponding subinterval is [l, r] are as follows:

1.	Update (the label method is used).

if (mark for node i == 0) return;    // “undetermined”
if (mark for node i == 1){    //the subinterval [l, r] 
for node i is empty, r−l+1 empty positions are divided 
equally to the left and right subtrees, set marks for the 
left and right subtrees “empty”,



Practice for Advanced Data Structures  ◾  377

ls, rs and ms for the left child are 






l r- +2

2
, its pos is 

l; ls, rs and ms for right child are 






l r- +1

2
, and its pos 

is 






l r-

2
+1; mark for the left and right child is 1;

       }else{    // the subinterval [l, r] for node i is 
occupied, 0 empty positions, set marks for the left and 
right subtrees “occupied”
       ls, rs and ms for the left child are 0, its pos is 
l; ls, rs and ms for right child are 0, and its pos is 







l r-

2
+1; mark for the left and right child is 2;

       }
   Set the state for node i 0;    //Set the state for 
node i “undetermined”

2.	Query.
For node i (corresponding to the subinterval [l, r]), search whether there exist 
empty subintervals whose length is d. If there exist such subintervals, return 
the left pointer for the foremost empty subinterval.

The label method is used to update the segment tree;
      if ( ms for node i<d), return failure;
      if (ms for node i==d), return pos for node i;
      if (ms for the left subtree≥d), recursive query for 
the left subtree;
      if (rs for the left child + ls for the right 

child ≥ d), return 








l r

rs
+

2
-  for the left child +1



;

      recursive query for the right subtree;

3.	Modification.
A segment [tl, tr] is inserted into or deleted from a segment tree whose root is 
i, represent an interval [l, r].

   if ([tl, tr] isn’t in [l, r]) return;
   if ([tl, tr] covers [l, r] completely) {
      if ( Insertion){    //After insertion, mark for 
node i is “occupied”
            ls, rs, and ms for node i is set 0, pos is 
set l, and mark is set 2;
         }else{    //After deletion mark for node i is 
“empty”



378  ◾  Algorithm Design Practice for Collegiate Programming

            ls, rs, and ms for node i is set r−l+1, pos 
is set l, and mark is set 1;
            }
        return;
    }
    Label method is used to update the segment tree;
    Recursive modification for the left subtree;
    Recursive modification for the right subtree;
    ls for node i is set ls for its left child;    // ls, 
rs, ms and pos for node i is adjusted
    if (its left subtree is “empty”) ls for node i += ls 
for its right child;
    rs for node i is set rs for its right child;
    if (its right child is “empty”) rs for node i += rs 
for its left child;
    ms for node i =max(rs for its left child + ls for its 
right child, ms for its left child, ms for its right 
child);
    if ( ms for node i == ms for its left child)    //the 
longest empty subinterval is in the left subinterval
       pos for node i= pos for its left child;
    else
        if(ms for node i == rs for its left child + ls 
for its right child) // the longest empty subinterval 
crosses the left and right subintervals

           pos for node 





i
l r

rs=
+

2
-  for its left child +1;

        else pos for node i = pos for its right child;    
//the longest empty subinterval is in the right 
subinterval

  Program

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <map>
#include <utility>
#include <set>
#include <algorithm>
#define maxn 80010
using namespace std;
struct node {int ls, rs, ms, pos, mark;}tree[4*maxn];    
//segment tree, where the label for node i: tree[i].mark: the 



Practice for Advanced Data Structures  ◾  379

state for the node’s corresponding subinterval (0: 
undetermined; 1: empty; 2: occupied), tree[i].ls: the length 
of the rightmost empty subinterval in the node’s left child; 
tree[i].rs: the length of the leftmost empty subinterval in 
the node’s right child; tree[i].ms: the length of the longest 
empty subinterval in the node’s corresponding subinterval: and 
the start position for the subinterval is tree[i].pos
int n, m;    //number of rooms and requests
void build_tree(int l, int r, int i)    //construct an “empty” 
segment tree
{
    tree[i].ls=tree[i].rs=tree[i].ms=r-l+1;    // the 
subinterval [l, r] for node i is empty
    tree[i].pos = l;
    if (l == r)    //left node
        return;
    int mid = (l + r) / 2;    //Intermediate pointer 
    build_tree(l, mid, i + i);    //left subtree and right 
subtree
    build_tree(mid + 1, r, i + i + 1);
}
bool all_space(int l,int r,int i)    // if subinterval [l, r] 
for node i is empty, return 1; else return 0
{
    if (tree[i].ls==r-l+ 1)    //label “empty”
        return 1;
    return 0; 
}
void update(int l, int r, int i)    // Update
{
    if (!tree[i].mark)    //the interval for node i is 
“undetermined”
        return;
    if (tree[i].mark == 1){    //interval [l, r] for node i is 
empty, then left and right subtrees have r−l+1 empty rooms, 
left and right subtrees are empty state
        int len = r - l + 1;
        tree[i + i].ls = tree[i + i].rs = tree[i + i].ms = 
(len + 1) / 2;
        tree[i + i].pos = l;
        tree[i + i + 1].ls = tree[i + i + 1].rs = tree[i + i + 
1].ms = len /2;
        tree[i + i + 1].pos = (l + r) / 2 + 1;
        tree[i + i].mark = tree[i + i + 1].mark = 1;
    }else{    // interval [l, r] for node i is “occupied”, 
left and right subtrees are occupied
        tree[i + i].ls = tree[i + i].rs = tree[i + i].ms = 0;
        tree[i + i].pos = l;
        tree[i + i + 1].ls = tree[i + i + 1].rs = tree[i + i + 
1].ms = 0;



380  ◾  Algorithm Design Practice for Collegiate Programming

        tree[i + i + 1].pos = (l + r) / 2 + 1;
        tree[i + i].mark = tree[i + i + 1].mark = 2;
    }
    tree[i].mark = 0;    //  node i “undetermined”
}
int query(int d, int l, int r, int i) //Query. If there exist 
empty subintervals whose length is d in the segment tree (root 
i, interval [l, r]), return the left pointer for the empty 
subinterval, else return 0.
{
    update(l, r, i);
    if (tree[i].ms < d)    // there is no empty subinterval 
whose length is d
        return 0;
    if (tree[i].ms==d)    // if (ms for node i==d) return pos 
for node i
        return tree[i].pos;
    int mid = (l + r)/2;    //Intermediate pointer
    if (tree[i+i].ms>=d)    // if (ms for the left subtree≥d) 
recursion for the left subtree
        return query(d, l, mid, i + i);
    if (tree[i + i].rs + tree[i + i + 1].ls >= d)    //the 
length for empty interval covering the intermediate pointer 
≥d, return its left pointer
        return mid - tree[i + i].rs + 1;
    return query(d, mid + 1, r, i + i + 1);    // recursion 
for the right subtree;
}
void change(int tl, int tr, int l, int r, int i, bool flag)   
//Modification. Insert or delete a segment [tl, tr] into or 
from a segment tree (root i, interval [l, r])
{
    if (tl > r || tr < l)    //[tl, tr] isn’t in [l, r]
        return;
    if (tl <= l && r <= tr){    // [tl, tr] covers [l, r]
        if (flag){    //Insertion
            tree[i].ls = tree[i].rs = tree[i].ms = 0;
            tree[i].pos = l;
            tree[i].mark = 2;    //the interval for node i is 
occupied
        }else{    //delete
            tree[i].ls = tree[i].rs = tree[i].ms = r - l + 1;
            tree[i].pos = l;
            tree[i].mark = 1;    // the interval for node i is 
empty
        }
        return; 
    }
    update(l, r, i);
    int mid = (l + r) / 2;    // Intermediate pointer



Practice for Advanced Data Structures  ◾  381

    change(tl, tr, l, mid, i + i, flag);    //left subtree
    change(tl, tr, mid + 1, r, i + i + 1, flag);    //right 
subtree
    tree[i].ls = tree[i + i].ls; 
    if (all_space(l, mid, i+i))    // left subtree is empty
        tree[i].ls += tree[i + i + 1].ls;
    tree[i].rs=tree[i+i+1].rs; 
    if (all_space(mid+1, r,i+i+1))   // right subtree is empty
        tree[i].rs += tree[i + i].rs;
    tree[i].ms=max(tree[i+i].rs+tree[i+i+1].ls,max(tree[i+i].
ms,tree[i+i+1].ms));
    if (tree[i].ms == tree[i + i].ms)
        tree[i].pos = tree[i + i].pos;
    else
        if (tree[i].ms == tree[i + i].rs + tree[i + i + 1].ls)
            tree[i].pos = mid - tree[i + i].rs + 1;
        else 
            tree[i].pos = tree[i + i + 1].pos;
}
int main()
{
    scanf("%d%d\n", &n, &m);    //number of rooms and requests
      memset(tree, 0, sizeof(tree));
      build_tree(1, n, 1);    //construct an “empty” segment 
tree
      for (int i =1; i <=m; i ++) {    //requests are dealt 
with one by one
        int kind;
        scanf("%d", &kind);    //the type of requests
        if (kind == 1){    //check in
            int d;
            scanf("%d\n", &d);    //number of check-in rooms
            int ans=query(d,1,n,1);    //whether there exists 
an empty interval whose length is d, and return the left 
pointer for the interval (return 0 if there isn’t)
            printf("%d\n", ans);
            if (ans)    // there exists an empty interval 
whose length is d, segment [ans, ans+d−1] is inserted into the 
segment tree
                change(ans, ans+d-1,1,n,1,1);
        }else{    //check out
            int x, d;
            scanf("%d%d\n", &x, &d);    // d contiguous rooms 
are checked out from position x
            change(x, x+d-1,1, n,1,0);    //segment [x, x+d-1] 
is deleted
        }
    }
    return 0;
}



382  ◾  Algorithm Design Practice for Collegiate Programming

7.3  Graph Algorithms
In this section, practices for Euler graphs, Hamiltonian graphs, Maximum 
Independent Sets, Articulation Points, Bridges, and Biconnected Components are 
shown.

7.3.1  Euler Graphs

A circuit in a graph G containing all edges is called an Euler circuit of G. And the 
graph G is called an Euler graph. Similarly, a trail in a graph G containing all edges 
is called an Euler trail.

Theorem 7.3.1. A non-trivial connected graph G has an Euler circuit if and 
only if each vertex has even degree.

Proof. Suppose G has an Euler circuit x1 x2 … xm, x1= xm. And xi occurs k times 
in the sequence x1 x2 … xm, 1≤i≤m−1. Then d(xi)=2k. Therefore, each vertex has 
even degree.

Because G is connected and each vertex has even degree, there is a circuit C in 
G and the circuit C can be obtained by DFS. If C isn’t the Euler circuit, in C there 
must be a vertex vk whose degree is larger than the number of edges connected by 
vk in C. From vk a circuit C ' whose edges aren’t in C can be obtained through DFS. 
If C∪C '=G, C∪C ' is an Euler circuit. Else by the same reason, in C∪C ' there 
must be a vertex vk' whose degree is larger than the number of edges connected by 
vk' in C∪C '. And from vk' a circuit C ' whose edges aren’t in C∪C ' can be obtained 
through DFS. Then C ' is added into C∪C ', and so on until the Euler circuit is 
computed.

Obviously, the proof for necessity is also the algorithm getting the Euler circuit.
Theorem 7.3.2. A connected graph has an Euler trail from a vertex x to a vertex 

y (x≠y) if and only if x and y are the only vertices of odd degree.
Its proof is similar to the proof for Theorem 7.3.1.

7.3.1.1  Johnny’s Trip

Little Johnny has a new car. He decided to drive around the town to visit his 
friends. Johnny wanted to visit all his friends, but there were many of them. In 
each street he had one friend. He started thinking how to make his trip as short as 
possible. Very soon he realized that the best way to do it was to travel through each 
street of town only once. Naturally, he wanted to finish his trip at the same place 
where he had started, at his parents’ house.

The streets in Johnny’s town were named by integer numbers from 1 to n, 
n<1995. The junctions were independently named by integer numbers from 1 to 
m, m≤44. No junction connects more than 44 streets. All junctions in the town 
had different numbers. Each street was connecting exactly two junctions. No 
two streets in the town had the same number. He immediately started to plan his 



Practice for Advanced Data Structures  ◾  383

round trip. If there was more than one such round trip, he would have chosen the 
one which, when written down as a sequence of street numbers, is lexicographically 
the smallest. But Johnny was not able to find even one such round trip.

Help Johnny and write a program which finds the desired shortest round trip. 
If the round trip does not exist, the program should write a message. Assume that 
Johnny lives at the junction ending where the street appears first in the input with 
a smaller number. All streets in the town are two-way. There exists a way from each 
street to another street in the town. The streets in the town are very narrow, and 
there is no possibility to turn back the car once he enters a street.

Input

Input file consists of several blocks. Each block describes one town. Each line 
in the block contains three integers x, y, z, where x>0 and y>0 are the numbers 
of junctions that are connected by the street number z. The end of the block is 
marked by the line containing x=y=0. At the end of the input file there is an empty 
block, x=y=0.

Output

Output one line of each block containing the sequence of street numbers (single 
members of the sequence are separated by spaces) describing Johnny’s round trip. If 
the round trip cannot be found, the corresponding output block contains the mes-
sage “Round trip does not exist.”

Sample Input Sample Output

1  2  1
2  3  2
3  1  6
1  2  5
2  3  3
3  1  4
0  0
1  2  1
2  3  2
1  3  3
2  4  4
0  0
0  0

1  2  3  5  4  6

Round trip does not exist.

Source:	 ACM Central European Regional Contest 1995

IDs for Online Judges: POJ 1041, UVA 302



384  ◾  Algorithm Design Practice for Collegiate Programming

  Analysis

The problem requires you to calculate the Euler circuit for which the sequence of street 
numbers is lexicographically the smallest for a graph. The algorithm is as follows:

1.	An undirected graph is constructed when a town is input. Degrees for nodes, 
the smallest number for nodes S, and the number of edges n are calculated.

2.	If there exists a node whose degree is odd, there is no Euler circuit.
3.	DFS is used to find an Euler circuit from node S. In order to find the Euler 

circuit in which the sequence of street numbers is lexicographically the small-
est for a graph, for the set of unvisited edges incident to the current node, the 
edge with the smallest street number is selected. Because of recursion, the 
computed Euler circuit is in reversed order.

4.	The Euler circuit is output in reversed order.

  Program

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <string>
#include <map>
#include <utility>
#include <vector>
#include <set>
#include <algorithm>
#define maxn 2000    // The upper limit of the number of edges
#define maxm 50   // The upper limit of the number of vertices
using namespace std;
struct node{int s,t;}r[maxn];    //the sequence of edges, 
where the i-th edge is (r[i].s, r[i].t)
bool vis[maxn];    //visited marks for edges vis[ ]
int deg[maxm], s[maxn];    // degrees of nodes deg[ ], the 
sequence of edges for the Euler circuit s[ ]
int n, S, stop;   //the number of edges n, the smallest number 
for nodes S, the number of edges in the Euler circuit stop
bool exist()    // If there exists a node whose degree is odd, 
return 0; else return 1
{



Practice for Advanced Data Structures  ◾  385

   for (int i = 1; i <= maxm-1; i ++)
     if (deg[i] % 2 == 1) return 0;
   return 1;
}
void dfs(int now)    //Calculate the Euler circuit from now
{
     for (int i = 1; i <= n; i ++)    //Search an unvisited 
edge connecting now
        if (!vis[i] && (r[i].s == now || r[i].t == now)){
            vis[i] = 1;    //the i-th edge
            dfs(r[i].s + r[i].t - now); 
            s[++ stop] = i;    //add the i-th edge into the 
Euler circuit
        }
}
int main()
{
    ios::sync_with_stdio(false);
    int x, y, num;    //(x, y) is an edge, the number of edge 
is num
    while (cin>>x>>y, x>0){    //Repeat input the first edge 
(x, y) in the current test case until end
        S = min(x, y); n = 0;    //Initialization
        memset(deg, 0, sizeof(deg));
        cin >> num;    //the sequence number for edge (x, y)
        r[num].s = x; r[num].t = y;    //two nodes for the 
num-th edge
        deg[x] ++; deg[y] ++;    //degree for nodes x and y
        n = max(n, num);
        while (cin >> x >> y, x > 0){    // input edge (x, y)
            S = min(S, min(x, y));
            cin >> num;
            r[num].s=x; r[num].t=y;
            deg[x] ++; deg[y] ++;
            n = max(n, num);  
        }
        if (exist()){    //If degrees for all nodes are even, 
calculate the Euler circuit
            stop = 0;  
            memset(vis,0,sizeof(vis));    //all edges are 
unvisited
            dfs(S);    //from S, calculate the Euler circuit
            for (int i=stop;i>=2;i --) cout << s[i] << ' ';    
//Output the Euler circuit
            cout << s[1] << endl;
        }else    //there exists odd nodes
            cout << "Round trip does not exist." << endl;
    }
    return 0;
}



386  ◾  Algorithm Design Practice for Collegiate Programming

Theorem 7.3.3. A directed graph is Eulerian if and only if every graph vertex has 
equal in-degree and out-degree.

7.3.1.2  Catenyms

A catenym is a pair of words separated by a period such that the last letter of the 
first word is the same as the last letter of the second. For example, the following are 
catenyms:

dog.gopher
gopher.rat
rat.tiger
aloha.aloha
arachnid.dog

A compound catenym is a sequence of three or more words separated by periods 
such that each adjacent pair of words forms a catenym. For example:

aloha.aloha.arachnid.dog.gopher.rat.tiger

Given a dictionary of lowercase words, you are to find a compound catenym 
that contains each of the words exactly once.

Input

The first line of standard input contains t, the number of test cases. Each test case 
begins with 3≤n≤1000—the number of words in the dictionary. n distinct diction-
ary words follow; each word is a string of between 1 and 20 lowercase letters on a 
line by itself.

Output

For each test case, output a line giving the lexicographically least compound catenym 
that contains each dictionary word exactly once. Output “***” if there is no solution.

Sample Input Sample Output

2
6
aloha
arachnid
dog
gopher
rat

aloha.arachnid.dog.gopher.rat.tiger
***



Practice for Advanced Data Structures  ◾  387

Sample Input Sample Output

tiger
3
oak
maple
elm

Source:	 Waterloo local 2003.01.25

Ids for Online Judges: POJ 2337, ZOJ 1919

  Analysis

The key to the problem is data modeling: What are represented as vertices and what 
are represented as arcs?

A dictionary is represented as a digraph G, where all letters are represented as ver-
tices, that is, ‘a’ corresponds to 1, ……, and ‘z’ corresponds to 26; and each word is 
represented as an arc (u, v), where u is the number of the first letter for the word, and v is 
the number of the last letter for the word. Two corresponding words become a catenym 
if and only if the last letter of the first word is the same as the first letter of the second 
word. Therefore, the problem requires you to calculate an Euler path in the digraph G.

The algorithm is as follows:

1.	A digraph G is constructed when a dictionary is input. The in-degree and the 
out-degree for each vertex and the root of the union-find set containing the 
vertex are calculated;

2.	Arcs are sorted in lexicographical order;
3.	Search vertices in ascending order: If there are two vertices belonging to 

different union-find sets, graph G isn’t weakly connected, and there is no 
Eulerian directed path; else

4.	Search vertices in ascending order. And determine whether there is an Euler 
path in the graph or not:
If there is a vertex in which the difference between its in-degree and its out-

degree is larger than 1, there is no Euler path;
If every vertex’s in-degree is the same as its out-degree, the vertex s with the 

smallest number is as the starting point for the Euler path;
If there are only two vertices and their out-degrees and in-degrees differ by 1, 

the vertex s whose out-degree is larger than its in-degree is as the starting 
point for the Euler path;

Else there is no Eulerian directed path.
5.	DFS is used to calculate the Eulerian directed path from s.



388  ◾  Algorithm Design Practice for Collegiate Programming

  Program

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <string>
#include <map>
#include <utility>
#include <vector>
#include <set>
#include <algorithm>
#define maxn 1010
using namespace std;
struct node{int u,v;string name;}road[maxn];     //edges, the 
i-th edge is (road[i].u, road[i].v), and the word is road[i].
name
bool app[30], use[maxn];    //marks for vertices and edges are 
app[] and use[]
int ind[30], oud[30], anc[30], s[maxn];    //in-degree and 
out-degree for vertex i are ind[i] and oud[i], the root for 
its union-find set is anc[i], directed Euler path is s[]
int n, S, stop, t;    //number of edges n, the starting point 
and length for the directed Euler path are S and stop, number 
of test cases is t
bool cmp(const node &a, const node &b)   //Lexicographic order
{
    return a.name < b.name;
}
int get_father(int x)    //return the root for the union-find 
set containing x
{
    if (!anc[x])    //x doesn’t belong to any union-find set, 
return x
        return x;
    anc[x] = get_father(anc[x]);    //calculating the root for 
the union-find set containing x
    return anc[x];
}
int change(char ch)    //letter ch is transferred as its 
corresponding number
{
    return (int)ch - (int)’a’ + 1;
}



Practice for Advanced Data Structures  ◾  389

bool exist_euler_circuit()    //determine whether there exists 
an Euler path, if there is an Euler, the starting point S is 
calculated
{
    int t = 0;
    for (int i=1; i<=26; i++)    //for each vertex in the 
graph
        if (app[i]){
         if (t == 0) t = get_father(i);            
          if (get_father(i)!= t)
                return 0;
        }
    int sum = 0;    //Initialization
    S = 0;  
    for (int i = 1; i <=26; i ++)    // for each vertex in the 
graph
        if (app[i]){
            if (ind[i] != oud[i]){    //in-degree and out-
degree for vertex i are different
                if (abs(ind[i] - oud[i])>1) return 0;    
// the difference between its in-degree and its out-degree is 
larger than 1, there is no Euler path, and return 0
                sum ++;    //accumulate the number of vertices 
which its out-degree and its in-degree differs by 1
                if (oud[i]>ind[i]) S=i;    // if its out-
degree is larger than its in-degree, the node S is as the 
starting point for the Euler path
            }
        }
    if (sum == 0)    //in-degree and out-degree for each 
vertex are the same, there is a cycle, the starting vertex is 
the vertex s whose sequence number is the least
       for (int i = 1; i <=26; i ++)
            if (app[i]){
                S = i;
                break;
            }
    return 1;
}
void dfs(int now)    // from vertex now, calculate the Euler 
path s[]
{
    for (int i = 1; i <=n; i ++)    //search unvisited edges 
from now
        if (!use[i] && road[i].u == now){
            use[i] = 1;
            dfs(road[i].v);
            s[++ stop] = i;
        }
}



390  ◾  Algorithm Design Practice for Collegiate Programming

void init()    // input a dictionary, construct a directed 
graph
{
    cin >> n;    //number of words
    memset(ind, 0, sizeof(ind));    //in-degree and out-degree
    memset(oud, 0, sizeof(oud));
    memset(anc, 0, sizeof(anc));    //union-find set
    memset(app, 0, sizeof(app));
    for (int i = 1; i <=n; i ++){    //input words and 
construct a directed graph
        cin >> road[i].name;    //the i-th word
        road[i].u = change(road[i].name[0]);    //the i-th 
edge
        road[i].v = change(road[i].name[(int)road[i].name.
size() - 1]);
        app[road[i].u] = app[road[i].v] = 1;
        int u=get_father(road[i].u),v=get_father(road[i].v);    
//roots for union-find sets
        if (u != v) anc[u] = v;    // union-find sets are 
combined
        oud[road[i].u] ++; ind[road[i].v] ++;    // in-degree 
and out-degree
    }
}
void solve()    // calculate and output Euler path
{
    sort(road + 1, road + n + 1, cmp);    //sort degrees in 
Lexicographic order
    if (!exist_euler_circuit()){    //there is no Euler path
        cout << "***" << endl;
        return;
    }
    stop = 0;    //Initialize the length of Euler path
    memset(use, 0, sizeof(use));
    dfs(S);    //calculate the Euler path s[] from S
    for (int i = stop; i >= 2; i --)    //Output
        cout << road[s[i]].name << '.';
    cout << road[s[1]].name << endl;
}
int main()
{
    ios::sync_with_stdio(false);
    cin >> t;    //number of test cases
    for (int i = 1; i <=t; i ++) {    //test cases
        init();    // input a dictionary, construct a directed 
graph
        solve();    //calculate and output Euler path
    }
    return 0;
}



Practice for Advanced Data Structures  ◾  391

7.3.2  Traveling Salesman Problem and Tournaments

In a graph, a Hamiltonian path is a path that contains each vertex exactly once, and 
a Hamiltonian circuit is a circuit that contains each vertex exactly once. A graph 
that contains a Hamiltonian path is called a traceable graph. A graph that contains 
a Hamiltonian cycle is called a Hamiltonian graph.

Suppose G(V, E) is a connected graph with n vertices, n≥3, and no loops and 
multiple edges; v∈V, |V |=n, and deg(v) is the degree of v.

Theorem 7.3.4 Graph G has a Hamiltonian circuit if, for any two vertices u and 
v of G that aren’t adjacent, deg(u)+deg(v)≥n. G has a Hamiltonian path if, for any 
two vertices u and v of G that aren’t adjacent, deg(u)+deg(v)≥n−1.

Corollary. Graph G has a Hamiltonian circuit if each vertex has a degree 
greater than or equal to n/2.

The Travelling Salesman Problem (TSP) is such a problem: “Given a weighted 
complete graph, what is the shortest possible route that visits each vertex exactly 
once and returns to the original vertex?” It is an NP-hard problem.

A tournament is a directed graph without loops, in which every pair of vertices 
is connected by a single uniquely arc.

Theorem 7.3.5 In a tournament, there is a directed Hamiltonian path.
In this section, there are three kinds of problems.

Case 1: In a graph there are a few vertices. Brute-force search can be used to solve 
the traveling salesman problem, although its time complexity is O(n!×n).

Case 2: State compression is used in solving the traveling salesman problem 
when there are a few vertices in a graph.

Case 3: A Hamiltonian path is calculated in a tournament. The time complexity 
is O(n2).

7.3.2.1  Getting in Line

Computer networking requires that the computers in the network be linked.
This problem considers a “linear” network in which the computers are chained 

together so that each is connected to exactly two others, except for the two com-
puters on the ends of the chain, which are connected to only one other computer. 
A picture is shown in Figure 7.9. Here the computers are the black dots, and their 
locations in the network are identified by planar coordinates (relative to a coordi-
nate system not shown in the picture).

Distances between linked computers in the network are shown in feet in Figure 7.9.
For various reasons, it is desirable to minimize the length of cable used.
Your problem is to determine how the computers should be connected into such 

a chain to minimize the total amount of cable needed. In the installation being 
constructed, the cabling will run beneath the floor, so the amount of cable used to 
join two adjacent computers on the network will be equal to the distance between 



392  ◾  Algorithm Design Practice for Collegiate Programming

the computers plus 16 additional feet of cable to connect from the floor to the com-
puters and provide some slack for ease of installation.

Figure 7.10 shows the optimal way of connecting the computers shown above, 
and the total length of cable required for this configuration is (4+16)+(5+16)+
(5.83+16)+(11.18+16)=90.01 feet.

Input

The input file will consist of a series of data sets. Each data set will begin with a line 
consisting of a single number, indicating the number of computers in a network. 
Each network has at least two and at most eight computers. A value of 0 for the 
number of computers indicates the end of input.

After the initial line in a data set specifying the number of computers in a net-
work, each additional line in the data set will give the coordinates of a computer 
in the network. These coordinates will be integers in the range 0 to 150. No two 
computers are at identical locations and each computer will be listed once.

Output

The output for each network should include a line which tells the number of the 
network (as determined by its position in the input data), and one line for each 

(12,16)(8,16)

(8,11)

(13,8)

(24,10)

5 ft.

4 ft.

5.83 ft.

11.18 ft.

Total length of cable needed = 90.01 ft.

Figure 7.10

(8,16) (12,16)

(8,11)

(13,8)

(24,10)

5 ft.
6.40 ft.

13.42 ft.

11.18 ft.

Figure 7.9



Practice for Advanced Data Structures  ◾  393

length of cable to be cut to connect each adjacent pair of computers in the network. 
The final line should be a sentence indicating the total amount of cable used.

In listing the lengths of cable to be cut, traverse the network from one end 
to the other. (It makes no difference at which end you start.) Use a format similar 
to the one shown in the sample output, with a line of asterisks separating output for 
different networks and with distances in feet printed to two decimal places.

Sample Input Sample Output

6
5  19
55  28
38  101
28  62
111  84
43  116
5
11  27
84  99
142  81
88  30
95  38
3
132  73
49  86
72  111
0

**********************************************************
Network #1
Cable requirement to connect (5,19) to (55,28) is 66.80 feet.
Cable requirement to connect (55,28) to (28,62) is 59.42 feet.
Cable requirement to connect (28,62) to (38,101) is 56.26 feet.
Cable requirement to connect (38,101) to (43,116) is 31.81 feet.
Cable requirement to connect (43,116) to (111,84) is 91.15 feet.
Number of feet of cable required is 305.45.
**********************************************************
Network #2
Cable requirement to connect (11,27) to (88,30) is 93.06 feet.
Cable requirement to connect (88,30) to (95,38) is 26.63 feet.
Cable requirement to connect (95,38) to (84,99) is 77.98 feet.
Cable requirement to connect (84,99) to (142,81) is 76.73 feet.
Number of feet of cable required is 274.40.
**********************************************************
Network #3
Cable requirement to connect (132,73) to (72,111) is 87.02 feet.
Cable requirement to connect (72,111) to (49,86) is 49.97 feet.
Number of feet of cable required is 136.99.

Source:	 ACM/ICPC World Finals 1992

ID for Online Judge: UVA 216

  Analysis

A weighted graph is constructed as follows. Computers are represented as vertices. 
Euclidean distances between computers are as weights of edges connecting the two 
computers. Because each vertex’s degree is n−1, there must be Hamilton paths in 
the graph. The problem requires you to calculate the Hamilton path with minimal 
length. Because the upper limit of the number of vertices is eight, DFS can be used 
to solve the problem.



394  ◾  Algorithm Design Practice for Collegiate Programming

  Program

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <string>
#include <map>
#include <utility>
#include <vector>
#include <set>
#include <algorithm>
#define maxn 10
using namespace std;
bool vis[maxn];    //visited marks for vertices
int x[maxn], y[maxn], ans[maxn], t[maxn];    //computers’ 
coordinates x[] and y[], the shortest Hamiltonian path ans[], 
the current path t[]
double dis[maxn][maxn];    //distance between vertices
double Min;    //the length of the shortest path
int n, casenum;    //number of vertices n, number of test 
cases casenum
int sqr(int x)    //return x2

{
    return x * x;
}
void dfs(int sum, int now, double s)    //calculate the 
Hamiltonian path from the current state (there are sum 
vertices in the current path, the length of the current path 
is s, the last vertex in the current path is now)
{
    if (sum == n){    // the Hamiltonian path
        if (s < Min){    // the current Hamiltonian path is 
the shortest
            Min = s;
            for (int i = 1; i <=n; i ++) ans[i] = t[i];
        }
        return;    //backtracking
    }
    for (int i = 1; i <=n; i ++)    //search unvisited 
vertices
        if (!vis[i]){  
            vis[i] = 1;  //Set vertex i visited mark, (now, i) 
is added into the path



Practice for Advanced Data Structures  ◾  395

            t[sum + 1] = i;
            dfs(sum + 1, i, s + dis[now][i]);
            vis[i] = 0;    // Set vertex i unvisited mark
        }
}
void init()    // Input computers’ coordinates, construct 
distance matrix
{
    for (int i = 1; i <=n; i ++)    // Input computers’ 
coordinates
        cin >> x[i] >> y[i];
    memset(dis, 0, sizeof(dis));
    for (int i = 1; i <=n; i ++)   //distances between vertices
        for (int j= 1; j<=n; j ++)
            dis[i][j] = sqrt(sqr(x[i] - x[j]) + sqr(y[i] 
- y[j])) + 16;
}
void solve()    // calculate and output the shortest 
Hamiltonian path
{
    cout << "*************************************************
*********" << endl;
    cout << "Network #" << ++ casenum << endl;
    Min = 1e10;    //Initialization
    dfs(0, 0, 0.0);    // calculate the shortest Hamiltonian 
path
    for (int i = 1; i <=n-1; i ++)    //Output the optimal way 
of connecting the computers
        cout << "Cable requirement to connect (" << x[ans[i]] 
<< "," << y[ans[i]] << ") to (" << x[ans[i + 1]] << "," << 
y[ans[i + 1]] << ") is " << dis[ans[i]][ans[i + 1]] << " 
feet." << endl;
    cout << "Number of feet of cable required is " << Min << 
"." << endl;
}
int main()
{
    ios::sync_with_stdio(false);
    cout << fixed;
    cout.precision(2);
    while (cin >> n, n > 0){    //number of computers
        init();    //Input computers’ coordinates, construct 
distance matrix
        solve();    //calculate and output the shortest 
Hamiltonian path
    }
    return 0;
}



396  ◾  Algorithm Design Practice for Collegiate Programming

7.3.2.2  Nuts for Nuts

So, Larry and Ryan decided that some nuts don’t really taste so good, they realized 
that there are some nuts located in certain places of the island and they love them! 
Since they’re lazy, but greedy, they want to know the shortest tour that they can use 
to gather every single nut!

Can you help them?

Input

You’ll be given x and y, both less than 20, followed by x lines of y characters each 
as a map of the area, consisting sorely of “.”, “#”, and “L”. Larry and Ryan are cur-
rently located in “L”, and the nuts are represented by “#”. They can travel in all eight 
adjacent directions in one step. See below for an example. There will be at the most 
15 places where there are nuts, and “L” will only appear once.

Output

On each line, output the minimum amount of steps starting from “L”, gather all 
the nuts, and back to “L”.

Sample Input Sample Output

5  5
L....
#....
#....
.....
#....
5  5
L....
#....
#....
.....
#....

8
8

Source:	 UVa Local Qualification Contest 2005

ID for Online Judge: UVA 10944

Larry and Ryan will go south for a nut, then south again for another nut, then 
south twice for another nut, and then back where they are.

  Analysis

Nuts are represented as vertices. Nuts are numbered 1…k from top to down and 
from left to right. A k-digit binary number is used to represent whether nuts are 



Practice for Advanced Data Structures  ◾  397

gathered or not. If the i-th nut is gathered, the (i-1)-th digit is 1, else the (i-1)-th 
digit is 0. Initially the k-digit binary number is 0. And finally the k-digit binary 
number is 2k−1. Suppose the current position for Larry and Ryan is (x, y) and the 
current gathered nuts is z. The current state is represented as (x, y, z). Suppose a 
queue q is used to store states, and a hash table hash is to avoid repeated states.

Initially, the starting position for Larry and Ryan (lx, ly) and the current gath-
ered nuts 0 are added into queue q as the initial state, and hash[the initial state]=1. 
Then BFS is used until queue q is empty.

The front is popped from q and extended in eight directions to produce new 
states. If a new state isn’t in hash, then it is added into q, and hash[the new state]=1. 
If the new state is the goal state (lx, ly, 2k−1), Ryan and Larry have gathered all the 
nuts, and returned back to “L”.

The amount of steps starting from “L”, gather all the nuts, and back to “L” is 
calculated during the BFS.

  Program

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <string>
#include <map>
#include <utility>
#include <vector>
#include <set>
#include <algorithm>
#define maxn 22    //upper limit for the size of the map
using namespace std;
const int dx[9] = {0, 0, -1, -1, -1, 0, 1, 1, 1};    
// Horizontal displacement and vertical displacement
const int dy[9] = {0, 1, 1, 0, -1, -1, -1, 0, 1};
struct node {int x, y, get;}q[10000000];    //queue, where the 
current position is (q[].x, q[].y), and q[].get represents 
gathered nuts
bool hash[maxn][maxn][32768];    //Hash table, where hash[i]
[j][k] represents arriving at (i, j) and gathering k is the 
current gathered nuts
int land[maxn][maxn];  // If (i, j) is the i-th nut from top to 
down and from left to right, land[i][j]=2i; else land[i][j]=0
int n, m, sum, Sx, Sy;    //the size for the map is (n, m); 
the starting position for Larry and Ryan is (Sx, Sy)
void init()    //Input the map



398  ◾  Algorithm Design Practice for Collegiate Programming

{
    memset(land, 0, sizeof(land));
    sum = 1; 
    for (int i = 1; i <=n; i ++){    // If (i, j) is the i-th 
nut from top to down and from left to right, land[i][j]=2i; 
else land[i][j]=0
        char ch;
        cin.get(ch);
        for (int j = 1; j <=m; i ++) {
            cin.get(ch);
            switch (ch){
                case 'L': land[i][j]=0; Sx = i; Sy = j; break;
                case '#': land[i][j]=sum; sum *= 2; break;
                case '.': land[i][j] = 0; break;
            }
        }
    }
    for (int i = 0; i <=n+1; i ++)    //boundary value −1
        land[i][0] = land[i][m + 1] = -1;
    for (int i = 1; i <=m+1; i ++)
        land[0][i] = land[n + 1][i] = -1;
}
void solve()    //calculate and output the minimum amount of 
steps
{
    memset(hash, 0, sizeof(hash));    //initialize Hash table
    hash[Sx][Sy][0] = 1;    //Hash value for the starting 
position
    int head = 1, tail = 1, move = 0;    //Initialization
    q[1].x = Sx; q[1].y = Sy;
    q[1].get = 0; 
    bool flag = 0; 
    if (sum == 1) flag = 1;    //no nut
     while (head <= tail && !flag){    //queue is not empty, 
no Hamiltonian Circuit
        int t = tail;    //the rear for the queue
        for (int i = head; i <= tail; i ++) {    // elements 
in the queue
            int tx = q[i].x, ty = q[i].y;    //the current 
element
            for (int j = 1; j <=8;j ++) {    // 8 directions 
are searched
                int val=land[tx+dx[j]][ty+dy[j]]; 
                if (val >= 0 && !hash[tx+dx[j]][ty+dy[j]]
[q[i].get | val])    //add into the queue
                {  t ++;
                    q[t].x = tx + dx[j]; q[t].y = ty + dy[j];
                    q[t].get = q[i].get | val;
                    hash[tx+dx[j]][ty+dy[j]][q[i].get|val]=1;    
//Hash value



Practice for Advanced Data Structures  ◾  399

                    if (q[t].x==Sx && q[t].y==Sy && q[t].
get==sum-1) /
                        flag = 1;
                }
            }
        }
        head =tail+1; tail=t; 
        move ++;    //number of steps +1
    }
    cout << move << endl;    // output the minimum number of 
steps
}
int main()
{
    ios::sync_with_stdio(false);
    while (cin >> n >> m){    //sizes of maps
        init();    // Input the map
        solve();    // calculate and output the minimum number 
of steps
    }
    return 0;
}

Theorem 7.3.6 A tournament has a Hamiltonian path.
Proof. In a tournament there is a path. A vertex which is not in the path can be 

inserted into the path. Suppose there is a path a1→a2→…ai …an-1→an in the tour-
nament. A vertex an+1 which isn’t in the path can be inserted into the path:

Case 1: If (an+1, a1) is an arc, then an+1 is inserted into the path, and the path 
becomes ... ...1 1 2 1→ → → →+ −a a a a a an i n n;

Case 2: If there are arcs (ai, an+1), 1≤i≤n−1, and ai+1 is the first vertex that there 
is an arc (an+1, ai+1), then an+1 is inserted into the path and the path becomes 

... ...1 2 1 1 1→ → → → →+ + −a a a a a a ai n i n n;
Case 3: There is no such a vertex ai in the path that (an+1, ai) is an arc, 1≤i≤n. 

There must be an arc (an, an+1). Then an+1 is inserted into the path and the path 
becomes ... ...1 2 1 1→ → → →− +a a a a a ai n n n .

Therefore, a tournament has a Hamiltonian path.
Obviously, the proof is also the algorithm for getting a Hamiltonian path in a 

tournament.

7.3.2.3  Task Sequences

Tom has received a lot of tasks from his boss, which are boring to deal with by 
hand. Fortunately, Tom got a special machine called an Advanced Computing 
Machine (ACM) to help him.

ACM works in a really special way. The machine can finish one task in a short 
time; after it has finished one task, it should smoothly move to the next one; 



400  ◾  Algorithm Design Practice for Collegiate Programming

otherwise, the machine will stop automatically. You must start it up again to make 
it continue working. Of course, the machine cannot move arbitrarily from one task 
to another. So each time before it starts up, one task sequence should be well sched-
uled. Specially, a single task also can be regarded as a sequence. In the sequence, 
the machine should be able to smoothly move from one task to its successor (if a 
successor exists). After the machine has been started up, the machine always works 
according to the task sequence, and stops automatically when it finishes the last one. 
If all the tasks have not been finished, the machine has to start up again and works 
according to a new sequence. Of course, the finished tasks can’t be scheduled again.

For some unknown reason, it was guaranteed that for any two tasks i and j, the 
machine can smoothly move from i to j or from j to i or both. Because the startup 
process is quite slow, Tom would like to schedule the task sequences properly, so 
that all the tasks can be completed with a minimal number of startup times. It is 
your task to help him achieve this goal.

Input

The input contains several test cases. For each test case, the first line contains only 
one integer n, (0<n≤1,000), representing the number of tasks Tom has received. 
Then n lines follow. Each line contains n integers, 0 or 1, separated by white 
spaces. If the j-th integer in the i-th line is 1, then the machine can smoothly move 
from task i to task j; otherwise. the machine can not smoothly move from task i 
to task j. The tasks are numbered from 1 to n.

Input is terminated by end of file.

Output

For each test case, the first line of output is only one integer k, the minimal number 
of startup times needed. And 2k lines follow, to describe the k task sequences. For 
each task sequence, the first line should contain one integer m, representing the 
number of tasks in the sequence. And the second line should contain m integers, 
representing the order of the m tasks in the sequence. Two consecutive integers 
in the same line should be separated by just one white space. Extra spaces are not 
allowed. There may be several solutions, and any appropriate one is accepted.

Sample Input Sample Output

3
0  1  1
1  0  1
0  0  0

1
3
2  1  3

Source:	 ACM Asia Guangzhou 2003

IDs for Online Judges: POJ 1776, ZOJ 2359, UVA 2954



Practice for Advanced Data Structures  ◾  401

  Analysis

A directed graph G(V, E) is used to represent the problem. Tasks are represented 
as vertices, and relationships for any two tasks are represented as arcs. For any 
two tasks i and j, the machine can smoothly move from i to j or from j to i or 
both. Therefore, the directed graph is a tournament. Because a tournament has 
a Hamiltonian path, the minimal number of startup times is 1. The algorithm 
calculating the Hamiltonian path in a tournament is shown in the proof for 
Theorem 7.3.5.

Vertex 1 is as the first vertex in the Hamiltonian path. Other vertices are 
inserted into the Hamiltonian path one by one. Suppose the current inserted vertex 
is vertex k. Vertices in the current Hamiltonian path are searched one by one, and 
the current vertex is vertex i.

   If (k, i) ∉E, t=i, that is, (t, k)∈E;
   If (k, i) ∈E, then
     if vertex i is the first vertex in the current 
Hamiltonian path, (k, i) is inserted into the current 
Hamiltonian path, and vertex k is as the first vertex in the 
current Hamiltonian path;
    else (t, k) and (k, i) are inserted into the current 
Hamiltonian path;

If all vertices in the current Hamiltonian path have been searched, then (t, k) is 
inserted into the current Hamiltonian path.

  Program

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <string>
#include <map>
#include <utility>
#include <vector>
#include <set>
#include <algorithm>
#define maxn 1010



402  ◾  Algorithm Design Practice for Collegiate Programming

#define Path(i, s) for (int i = s; i; i = next[i])
using namespace std;
int pic[maxn][maxn];    // adjacency matrix
int next[maxn];    //pointers
int n;    //number of vertices
void init()    //construct an adjacency matrix
{
    memset(pic, 0, sizeof(pic));    //initialization
    string str;
    getline(cin, str);    //a blank line
    for (int i = 1; i <=n; i ++) {
       getline(cin, str);    //the i-th row
       for (int j= 1; j <=n;j ++)    // the i-th row for the 
adjacency matrix
            pic[i][j] = str[(j - 1) * 2] - '0';
    }
}
void solve()    // calculate and output the Hamiltonian Path
{
    int head = 1, t;    //Initialization
    memset(next, 0, sizeof(next));  
    for (int k = 2; k<=n; k++){    //vertex 2 ... vertex n are 
inserted into the Hamiltonian Path
        bool flag = 0;    //vertice k isn’t inserted
        for (int i = head; i; i = next[i])    //vertex i: 
vertices in the current Hamiltonian Path
            if (pic[k][i]){    //vertex k and vertex i are 
connected
                if (i==head) head=k;    //vertex i is the 
first vertex in the Hamiltonian Path
                  else next[t]=k;
                next[k] = i;    //(k, i) is inserted
                flag = 1;    // vertex k is inserted
                break;
            }else  t = i;
        if (!flag)    //(t, k) is inserted into the 
Hamiltonian Path
            next[t] = k;
    }
    cout<<'1'<<endl<<n<<endl;    // output the minimal number 
of startup times needed and the number of vertices in the 
Hamiltonian Path n
    for (int i=head; i; i=next[i]){    //output the 
Hamiltonian Path
        if (i != head) cout << ' ';
        cout << i;
    }
    cout << endl;
}
int main()



Practice for Advanced Data Structures  ◾  403

{
    ios::sync_with_stdio(false);
    while (cin >> n){    // the number of tasks (vertices)
        init();    //construct an adjacency matrix
        solve();   //calculate and output the Hamiltonian Path
    }
    return 0;
}

7.3.3  Maximum Independent Sets

In a graph G(V, E), I is a subset of vertices, that is, I⊆V. If, for every two vertices 
in I, there is no edge connecting the two vertices, I is an independent set for G. 
A maximal independent set is such an independent set that if any other vertex is 
added to the set, the set isn’t an independent set. A maximum independent set is an 
independent set of the largest possible size for a given graph G. This size is called 
the independence number of G, and denoted β(G).

The Eight Queens Chess Problem is a problem for placing eight queens on 
the board so that no one queen can be taken by any other. The problem can 
be represented as a graph. In the board, each square is represented as a vertex. 
There are 64 vertices in the graph. If two placed queens can attack each other, 
there is an edge connecting the two corresponding vertices. Therefore, solving 
the Eight Queens Chess Problem is calculating the maximum independent set 
for the graph.

In a graph G(V, E), if K is such a subset of vertices that each edge of the graph 
is incident to at least one vertex of the set, then K is a vertex cover. A minimum 
vertex cover is a vertex cover of the smallest possible size. This size is called the cover 
number of G, and denoted α(G). β(G)+α(G)=|V |.

In a graph G(V, E), a clique C is such a subset of the vertices that every two 
distinct vertices are adjacent. A maximum clique of a graph is such a clique that 
there is no clique with more vertices. The clique number ω(G) of a graph G is the 
number of vertices in a maximum clique in G.

The opposite of a clique is an independent set. Therefore, a maximum clique for 
a graph is a maximum independent set for its complement graph. And a maximum 
independent set for graph is a maximum clique for its complement graph.

Obviously, calculating an independent set for a graph can be implemented 
through calculating a maximum clique for its complement graph. When a graph is 
input, its complement graph can be constructed.

Suppose f [i] is the number of vertices for the maximum clique for the subgraph 
induced by vertex i..vertex n; get[i][] stores the number of adjacent vertices of the 
i-th vertex v for vertex v+1 .. vertex n in the current clique; max is the maximal 
number of vertices for current cliques; and dfs(s, t) is used to calculate f [ ], where 
s is the number of vertices in the clique, t is the number of adjacent vertices of the 



404  ◾  Algorithm Design Practice for Collegiate Programming

s-th vertex v for vertex v+1 .. vertex n in the current clique. Initially, vertex i is put 
into a clique, s=1, t is the number of vertices in get[1][]. The algorithm for dfs(s, t) 
is as follows:

     If s<max, then max=s, the current clique is the optimal 
solution, and return;
      Enumerate get[s][i](1≤i≤t):
        For the current adjacent vertex v, if s+f[v]<max, then 
it can’t form the maximum clique, and return;
        Vertex v is as the (s+1)-th vertex;
        Calculate the number of vertices t' that are adjacent 
to vertex v in get[s][i+1...t], and store these vertices in 
get[s+1][];
        dfs(s+1, t');

Based on dfs(s, t), the main algorithm is as follows:

    max=0;
    Enumerate vertices in descending order (vertex i=n…1):
      Vertex i is the first vertex in the clique;
      Calculate the number of vertices adjacent to vertex i 
from vertex i+1 to vertex n, and these adjacent vertices are 
stored into get[1][];
       dfs(1, t);
       f[i]=max;
   Output max(the number of vertices for the optimal 
solution);

7.3.3.1  Graph Coloring

You are to write a program that tries to find an optimal coloring for a given graph, 
as shown in Figure 7.11. Colors are applied to the nodes of the graph and the only 
available colors are black and white. The coloring of the graph is called optimal 
if a maximum of nodes is black. The coloring is restricted by the rule that no two 
connected nodes may be black.

3 6

5
2

41

Figure 7.11  An optimal graph with three black nodes.



Practice for Advanced Data Structures  ◾  405

Input

The graph is given as a set of nodes denoted by numbers 1…n, n≤100, and a set of 
undirected edges denoted by pairs of node numbers (n1, n2), n1!=n2. The input file 
contains m graphs. The number m is given on the first line. The first line of each 
graph contains n and k, the number of nodes and the number of edges, respectively. 
The following k lines contain the edges given by a pair of node numbers, which are 
separated by a space.

Output

The output should consists of 2m lines, two lines for each graph found in the input 
file. The first line should contain the maximum number of nodes that can be col-
ored black in the graph. The second line should contain one possible optimal color-
ing. It is given by the list of black nodes, separated by a blank.

Sample Input Sample Output

1
6  8
1  2
1  3
2  4
2  5
3  4
3  6
4  6
5  6

3
1  4  5

Source:	 ACM Southwestern European Regional Contest 1995

ID for Online Judge: POJ 1419, UVA 193

  Analysis

The coloring is restricted by the rule that no two connected nodes may be black. The 
coloring of the graph is called optimal if a maximum of nodes is black. Therefore, 
the problem requires you to calculate a maximum independent set for the graph.

When a graph is input, its complement graph is constructed. Then a maximum 
clique for the complement graph is calculated. The maximum clique for the com-
plement graph is a maximum independent set for the graph. The cardinal number 



406  ◾  Algorithm Design Practice for Collegiate Programming

of the maximum independent set for the graph is the maximum number of nodes 
that can be colored black in the graph. And the maximum independent set for the 
graph is one possible optimal coloring.

For each node i (i=n…1), node i is as the first node for the current clique. Then, 
for node j ( j= i+1…n), if node j and node i are adjacent, node j is put into a set, and 
cliques are calculated with the above method.

Obviously, finally the maximum clique is calculated when the loop ends.

  Program

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <string>
#include <map>
#include <utility>
#include <vector>
#include <set>
#include <algorithm>
#define maxn 105    //The upper limit for the number of nodes
using namespace std;
bool pic[maxn][maxn];    // adjacency matrix for complement 
graph
int get[maxn][maxn];    // get[k][]: nodes adjacent to the 
k-th node in the current clique
int node[maxn], ans[maxn], dp[maxn];    //node[]: current 
clique; ans[]: maximum clique; dp[i]: the number of nodes for 
the maximum clique storing node i… node n
int n, m, t, Max;    //number of nodes n, number of edge m, 
the number of nodes for the current clique Max
void dfs(int now, int sum)    // the maximum clique is 
calculated from the current state (the number of nodes for 
the current clique now, number of edges connecting the last 
node sum)
{
    if (sum == 0){    // clique, that is, a complete subgraph
        if (now>Max){    //adjust the number of nodes for the 
maximum clique
            Max = now;
            for (int i=1; i<=Max; i ++) ans[i]=node[i];
        }
        return; 



Practice for Advanced Data Structures  ◾  407

    }
    for (int i=1; i<=sum; i ++) {    //Enumeration
        int v=get[now][i], t=0;    //the other node v for the 
i-th edge, the number of edges connecting v t
        if (now+dp[v]<=Max)return;
         for (int j=i+1;j<=sum; j++)    //v is added into the 
clique
            if (pic[v][get[now][j]]) get[now+1][++t]=get[now]
[j];
        node[now+1]=v;          
        dfs(now+1, t);          
    }
}
void init()    //Input edges, construct the complement graph
{
    cin >> n >> m;    //numbers of nodes and edges
    memset(pic, true, sizeof(pic));    //initialize the 
complement graph
      for (int i = 1; i <= m; i ++){    // Input edges, 
construct the complement graph
        int a, b;
        cin >> a >> b;
        pic[a][b]=pic[b][a]=0;
    }
}
void solve()    // calculate the maximum clique for the 
complement graph (the maximum independent set for the original 
graph)
{
    Max = 0;    // the number of nodes for the current clique 
Max
    for (int i = n; i >= 1; i --){    //node i is as the first 
node for the current clique
        int sum = 0;
        for (int j=i+1; j<=n; j++)    // if node j (j=i+1…n) 
and node i are adjacent, node j is put into get[1][]
          if (pic[i][j]) get[1][++sum]=j;
        node[1] = i;    // node i is as the first node for the 
current clique
        dfs(1, sum);    //number of nodes for complete 
subgraph for node i...n Max
        dp[i] =Max;  
    }
    cout << Max << endl;    // number of nodes for the maximum 
clique
    for (int i=1; i<=Max-1;i++)    // nodes for the maximum 
clique
        cout << ans[i] << ' ';
    cout << ans[Max] << endl;
}



408  ◾  Algorithm Design Practice for Collegiate Programming

int main()
{
   ios::sync_with_stdio(false);
    cin >> t;    //number of test cases
    for (int i = 1; i <= t; i ++) {
        init();    //Input edges, construct the complement 
graph
        solve();    // calculate the maximum clique for the 
complement graph (the maximum independent set for the original 
graph)
    }
    return 0;
}

7.3.4 � Articulation Points, Bridges, and 
Biconnected Components

An articulation point in a connected graph is such a vertex that it would break the 
graph into two or more pieces if it is removed. A bridge in a connected graph is such 
an edge that it would break the graph into two or more pieces if it is removed. A 
cut, vertex cut, or separating set of a connected graph G is a set of vertices whose 
removal renders G disconnected. The connectivity or vertex connectivity κ(G) 
(where G is not a complete graph) is the size of a minimal vertex cut. A graph is 
called k-connected or k-vertex-connected if its vertex connectivity is k or greater. 
The edge cut of G is a group of edges whose total removal renders the graph 
disconnected. The edge-connectivity λ(G) is the size of a smallest edge cut, and 
the local edge-connectivity λ(u, v) of two vertices u, v is the size of a smallest 
edge cut disconnecting u from v. Again, local edge-connectivity is symmetric. 
A graph is called k-edge-connected if its edge connectivity is k or greater. The 
vertex-connectivity and the edge-connectivity of a graph show the connectivity 
of a graph.

A connected component of a graph G is a connected subgraph of G that is not 
a proper subgraph of another connected subgraph of G. In an unconnected graph, 
how many connected components without a cut vertex can be computed? Such 
connected components are called biconnected components. A connected subgraph 
without a cut vertex is also called a block.

Function low is used to get cut vertices and bridges of a connected graph, and 
biconnected components of a graph. Suppose pre[v] is the sequence number of ver-
tex v in DFS traversal. That is, pre[v] is the time that vertex v is visited. Function 
low[u] is the pre[v] of vertex v which is the earliest visited ancestor of u and u’s 
descendants. That is,

=
∈

low u pre u low s pre w
u s u w E

[ ] min { [ ], [ ], [ ]}
( , ),( , )

, where s is a child of u, 

and (u, w) is a back edge.



Practice for Advanced Data Structures  ◾  409

A vertex itself is considered as one of its ancestors. Therefore low[u]=pre[u] or 
low[u]=pre[w] can hold. low[u] is calculated as follows:

=










[ ]

[ ] is visited for the first time in DFS
min{ [ ], [ ]} ( , ) is a back edge
min{ [ ], [ ]} all edges related to u’s children are inspected

low u

pre u u
low u pre w u w

low u low s

In the algorithm, low[u] is changed until the DFS subtree whose root is u, and 
array low and array pre for u and its descendants are produced.

In DFS, edges can be classified into four types:

Branch edge T: Edge (u, v) is a branch edge, if it is the first time that v is visited 
in DFS.

Back edge B: Edge (u, v) is a back edge, if u is a descendant of v, and v has been 
visited, but all descendants of v haven’t been visited.

Forward edge F: Edge (u, v) is a forward edge, if v is a descendant of u, all 
descendants of v have been visited, and pre[u]<pre[v].

Cross edge C: All other edges (u, v). That is, u and v have no ancestor-descen-
dant relationship in a DFS tree, or u and v are in different DFS trees. All 
descendants of v have been visited and pre[u]>pre[v].

1.	Function low is used to get cut vertices in a connected graph.
We determine whether a vertex is a cut vertex or not based on the two follow-
ing properties (see Figure 7.12).
Property 1: If vertex U isn’t a root, U is a cut vertex if and only if there exists 

a child s of U, low[s]≥pre[U ]. That is to say, there is no back edge from s 
and its descendants to U ’s ancestors.

Property 1
(a)

s2’s descendants

A subtree whose
root is s1

A subtree whose
root is s2

U’s ancestors

Property 2
(b)

Chosen root
for the forest

s2

U

s1
s2

U

s1

Figure 7.12



410  ◾  Algorithm Design Practice for Collegiate Programming

In Figure 7.12(a), although in the subtree whose root is s1 there is a back 
edge to U ’s ancestor, there is no back edge to U ’s ancestor from s2 or s2’s 
descendants. If U is removed, the graph is not connected.

In an undirected graph, there are only branch edges and back edges. We 
can calculate low and pre through DFS, and find whether Property 1 holds 
or not. The process is as follows:

    If (v, w) is a branch edge T (pre[w]==−1), and if 
there is no back edge from w or w’s descendants to v’s 
ancestors (low[w]≥pre[v]), then vertex v is a cut vertex, 
and low[v]=min{low[v], low[w]}.
    If (v, w) is a back edge B (pre[w]!=−1), then 
low[v]=min{low[v], pre[w]}.
void fund_cut_point(int v)    // DFS starts from v to 
calculate a cut vertex in an undirected graph
{ int w;               
  low[v]=pre[v]= ++d;    // Initialization
  for ( w∈the set of adjacent vertices for v) &&(w!=v)// 
Search edge (v, w) for vertex v
  { if (pre[w]==-1)    //If (v, w) is branch edge T, w is 
called recursively. If w and its descendants can’t return 
to v’s ancestors, v is a cut vertex, calculate low[v]
        { fund_cut_point(w);    //w’s all children’s 
related edges
          if (low[w]>=pre[v])    // v is a cut vertex
                v is a cut vertex;
          low[v]=min{ low[v], low[w]};
        };
   else low[v]=min{ low[v], pre[w]};    // If (v, w) is a 
back edge, calculate low[v]
  }
}

Property 2: If U is selected as the root, then U is a cut vertex if and only if it 
has more than one child as in Figure 7.12(b).

In Figure 7.12(b), root U has two subtrees whose roots are s1 and s2 
respectively, and there is no cross edge C between the two trees (in an undi-
rected graph, there is no cross edge C). Therefore, the graph isn’t connected 
after vertex U is deleted, and vertex U is a cut vertex.

Based on the above two properties, the algorithm for calculating cut ver-
tices is as follows:

for(i = 0; i < n; i ++)        //Initialization
    pre[i] =-1;
low[s]=pre[s]=d=0;    // vertex s: start vertex
p=0;    // the number of children for vertex s



Practice for Advanced Data Structures  ◾  411

for (each w∈adj[s])  p++;
if (p>1)
 s is a cut vertex and exit;    //Property 2
fund_cut_point(s);    // Property 1

2.	Function low is used to get the bridge in a connected graph.
In an undirected graph, edge (u, v) is a bridge if and only if (u, v) is not in 
any simple circuit.

The method for determining whether an edge is a bridge or not is as fol-
lows. Edge (u, v) is a branch edge discovered by DFS. If there is no back edge 
connecting v and its descendants to u’s ancestors; that is, low[v]>pre[u] or 
low[v]==pre[v]; then deleting (u, v) leads to u and v unconnected. Therefore, 
edge (u, v) is a bridge.

In Figure 7.13(a), DFS is used, a DFS tree is set up, as shown in Figure 7.13(b), 
and pre and low for all vertices are shown in Figure 7.13(c). Obviously for v5, v7, 
and v12, low[v]==pre[v], and (v0, v5), (v6, v7), and (v11, v12) satisfy low[v]>pre[u] 
for edge (u, v). These edges are bridges in Figure 7.13(a).

In an undirected graph, there are only branch edges and back edges. 
DFS can be used to calculate low and pre for vertices (initial values for pre[ ] are 
−1), and calculate bridges in the undirected graph. The method is as follows:

    If (v, w) is a branch edge (pre[w]==−1), and if there 
is no back edge from w or w’s descendants to u’s 
ancestors, ((low[w]==pre[w])||(low[w]>pre[v])), then (v, 
w) is a bridge, and low[v]=min{low[v], low[w]}.

0

1 2
6 7 8

10

1211

11

12
10

8

0

4 4

9

11

10

7

6

5

2

1

0

7

9
6

2

1

0

9

5

4

3

4
3

5

0

0

0

Node number 1

7

0

2

8

0

3

3

1

4

2

1

5

1

1

6

9

0

7

10

10

8

12

10

9

4

2

10

11

10

11

5

2

12

6

6

Pre[v]

Low[v]

The nodes of the pre value and low value
(c)

Undirected graph
(a)

6
3

11

8

7

5

4

DFS tree
(b)

Note

Cross edge C

Branch T Back edge B

Forward edge F0

Figure 7.13



412  ◾  Algorithm Design Practice for Collegiate Programming

    If (v, w) is a back edge (pre[w]!=−1), then 
low[v]=min{low[v], pre[w]}.
void fund_bridge (v);    // DFS to find bridges from 
vertex v
{ int w; 
  low[v]= pre[v]=++d;
  for (each w∈ the set of adjacent vertices for v) 
&(w!=v)  // Search edge(v, w)
  { if (pre[w]==-1)                // if (v, w) is a 
branch edge
     { fund_bridge (w);
         if ((low[w]== pre[w])||( low[w]> pre[v]))
              (v, w) is a branch edge;
         low[v]=min{ low[v], low[w]};
     };
    else low[v]=min{ low[v], pre[w]};    // if (v, w) is 
a back edge
  }
}

3.	Function low is used to get biconnected components.
A biconnected component is a connected component without a cut vertex. 
Biconnected components of a graph are partitions of edges of the graph, that 
is, every edge must be in a block, and two different blocks don’t contain 
common edges. In Figure 7.14, vertex b is a common vertex for block 3 and 
block 4, vertex c is a common vertex for block 3 and block 1, and vertex e 
is a common vertex for block 2 and block 4. The three vertices are cut ver-
tices for the graph. The graph isn’t connected when one of the three vertices 
is deleted.

Cut vertices b, c, and e are common vertices for two blocks

f c

a d

e

b

gblock 2

block 3 block 4

block 1

Figure 7.14



Practice for Advanced Data Structures  ◾  413

The key to finding a block in an undirected graph is to find a cut vertex. 
DFS is used to get low and pre (initial values for pre[ ] are −1) and calculate 
blocks in the undirected graph. The process is as follows:

    For vertex v, u is the parent for v: if u is the 
root, (u, v) is the first edge for the block; else 
suppose f is u’s parent. If u is deleted, v and f aren’t 
connected, then {f, u, v} isn’t biconnected, (u, v) is 
the first edge for the new block; else (u, v) and (f, u) 
are in the same block. A stack is used to store vertices 
in the current block. Suppose that
    st is a stack, sp is the pointer pointing to the top 
of the stack;
    r is the number of blocks in the graph;
    ans is used to store blocks, where all vertices for 
the t-th block are stored in ans[t][0]...ans[t][k], and 
ans[t][k+1]=−1 (end mark for block t, 1≤t≤r);
void dfs(v)    //calculate block ans containing vertex v
{   st[sp++] = v;    //v is pushed into the stack
    pre[v]=low[v] =++d;    // set pre and low for v
    for (each w∈ the set of adjacent vertices for v) 
&(w!=v)   //search adjacent edge (v, w) for v
      {  if (pre[w]==-1) {    //(v, w) is a branch edge T
             dfs(w);
             if (low[w]< low[v])    // all children’s 
related edges for w have been checked, low[v]=min{ 
low[w], low[v]}
                    low[v]=low[w];
             if (low[w]>=pre[v]) {    //w and its 
descendants can’t return to an ancestor earlier than v, 
then v is a cut vertex, the block is sent to ans[r]
                    k = 0;
                    st[sp] = -1;
                    ans[r][0] = v;   // vertex v enters 
ans[r]
                    while (st[sp] != w)   // vertices 
above w enter ans[r]
                        ans[r] [++k] = st[--sp];
                    ans[r][++k] = -1;   // end mark for 
ans[r]
                    if (k>2)    //if number of vertices 
in the block > 2, accumulation
                        r++;
                 }
             } else if (pre[w]< low[v])    //(v, w) is 
back edge B, low[v]=min{ pre[w], low[v]}
                    low[v]= pre[w];
     }
}



414  ◾  Algorithm Design Practice for Collegiate Programming

7.3.4.1  Network

A Telephone Line Company (TLC) is establishing a new telephone cable network. 
They are connecting several places numbered by integers from 1 to N. No two places 
have the same number. The lines are bidirectional and always connect two places 
together, and in each place the lines end in a telephone exchange. There is one tele-
phone exchange in each place. From each place, it is possible to reach every other 
place through lines; however, it need not be a direct connection, it can go through 
several exchanges. From time to time, the power supply fails at a place and then the 
exchange does not operate. The officials from TLC realized that in such a case, it can 
happen that besides the fact that the place with the failure is unreachable, this can 
also cause some other places to be unable to connect to each other. In such a case, we 
will say the place (where the failure occurred) is critical. Now the officials are trying 
to write a program for finding the number of all such critical places. Help them.

Input

The input file consists of several blocks of lines. Each block describes one network. 
In the first line of each block, there is the number of places N<100. Each of the next 
at most N lines contains the number of a place followed by the numbers of some 
places to which there is a direct line from this place. These at most N lines completely 
describe the network, i.e., each direct connection of two places in the network is con-
tained at least in one row. All numbers in one line are separated by one space. Each 
block ends with a line containing just 0. The last block has only one line with N=0.

Output

The output contains for each block except the last in the input file one line contain-
ing the number of critical places.

Sample Input Sample Output

5
5  1  2  3  4
0
6
2  1  3
5  4  6  2
0
0

1
2

Source:	 ACM Central Europe 1996

Ids for Online Judges: POJ 1144, ZOJ 1311, UVA 315

You need to determine the end of one line. In order to make it easy to deter-
mine, there are no extra blanks before the end of each line.



Practice for Advanced Data Structures  ◾  415

  Analysis

A graph is constructed as follows. Places are represented as vertices. Lines between 
two places are represented as edges. Obviously, critical places are articulation points 
in a graph. The problem requires you to calculate the number of articulation points 
in a graph.

A Tarjan algorithm is used to recursively calculate dfn[ ] and low[ ] for 
vertices, and calculate the number of articulation points in a graph based on two 
properties.

  Program

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <string>
#include <map>
#include <utility>
#include <vector>
#include <set>
#include <algorithm>
#define maxn 110   //The upper limit of the number of vertices
using namespace std;
bool use[maxn];    //marks for articulation points
int pic[maxn][maxn];    // adjacency matrix
int dfn[maxn], low[maxn];    //dfn and low for vertices
int din, n, ans, s;    //visiting sequence din, number of 
vertices n, number of articulation points ans, number of 
children for the root s
void tarjan(int u)    //calculate the number of articulation 
points from vertex u
{
    dfn[u] = low[u] = ++ din;
    for (int i = 1; i <=n; i ++)    //enumerate every adjacent 
vertex for vertex u
        if (pic[u][i]){
            if (!dfn[i]){    //if (u, i) is a branch edge or a 
cross-edge



416  ◾  Algorithm Design Practice for Collegiate Programming

                tarjan(i);
                low[u]=min(low[u], low[i]);    //adjust low 
for u
                if (low[i]>=dfn[u] && !use[u]){    //there are 
no back edges for i or descendants for i to u’s ancestors
                    if (u > 1){    //if u isn’t the root, u is 
an articulation point
                        ans ++;
                        use[u] = true;
                    }else    //u is the root, the number of 
children +1
                        s ++;
                }
            }else    //(u, i) is a back edge, adjust low for u
                low[u] = min(low[u], dfn[i]);
        }
}
void init()    //Input a graph, and construct an adjacency 
matrix
{
    int u, v;    //two adjacent vertices
    memset(pic, 0, sizeof(pic));    //initialization
    while (cin >> u, u > 0){
        char ch;
        do{
            cin >> v; 
            cin.get(ch);
            pic[u][v] = pic[v][u] = 1;    // two adjacent 
vertices
        }while (ch != '\n');  
    }
}
void solve()    //calculate and output articulation points
{
    memset(dfn, 0, sizeof(dfn));    //Initialization
    memset(low, 0, sizeof(low));
    memset(use, 0, sizeof(use));
    ans = din = s= 0;
    tarjan(1);    //calculate the number of articulation 
points from the root
    if (s > 1) ans ++;    // if the root has more than one 
child, the root is an articulation point
    cout << ans << endl;    // Output the number of 
articulation points in a graph
}
int main()
{
    ios::sync_with_stdio(false);
    while (cin >> n, n > 0){    //Input the number of vertices



Practice for Advanced Data Structures  ◾  417

        init();    //Input a graph and construct its adjacency 
matrix
        solve();    //calculate and output the number of 
articulation points in a graph
    }
    return 0;
}

7.3.4.2  Road Construction

It’s almost summer time, and that means that it’s almost summer construction 
time! This year, the good people who are in charge of the roads on the tropical 
island paradise of Remote Island would like to repair and upgrade the various roads 
that lead between the various tourist attractions on the island.

The roads themselves are also rather interesting. Due to the strange customs of 
the island, the roads are arranged so that they never meet at intersections, but rather 
pass over or under each other using bridges and tunnels. In this way, each road 
runs between two specific tourist attractions, so that the tourists do not become 
irreparably lost.

Unfortunately, given the nature of the repairs and upgrades needed on each 
road, when the construction company works on a particular road, it is unusable 
in either direction. This could cause a problem if it becomes impossible to travel 
between two tourist attractions, even if the construction company works on only 
one road at any particular time.

So, the Road Department of Remote Island has decided to call upon your con-
sulting services to help remedy this problem. It has been decided that new roads 
will have to be built between the various attractions in such a way that in the final 
configuration, if any one road is undergoing construction, it would still be possible 
to travel between any two tourist attractions using the remaining roads. Your task 
is to find the minimum number of new roads necessary.

Input

The first line of input will consist of positive integers n and r, separated by a space, 
where 3≤n≤1000 is the number of tourist attractions on the island, and 2≤r≤1000 
is the number of roads. The tourist attractions are conveniently labelled from 1 to 
n. Each of the following r lines will consist of two integers, v and w, separated by a 
space, indicating that a road exists between the attractions labelled v and w. Note 
that you may travel in either direction down each road, and any pair of tourist 
attractions will have at most one road directly between them. Also, you are assured 
that in the current configuration, it is possible to travel between any two tourist 
attractions.



418  ◾  Algorithm Design Practice for Collegiate Programming

Output

One line, consisting of an integer, which gives the minimum number of roads that 
we need to add.

Sample Input 1 Sample Output 1

10  12
1  2
1  3
1  4
2  5
2  6
5  6
3  7
3  8
7  8
4  9
4  10
9  10

2

Sample Input 2 Sample Output 2

3  3
1  2
2  3
1  3

0

Source:	 Canadian Computing Competition 2007

ID for Online Judge: POJ 3352

  Analysis

Remote Island is represented as a graph. Let tourist attractions be vertices, and 
roads be edges. Because any two tourist attractions are connected, the graph is a 
connected graph. Adding roads means adding edges in the graph. The goal for add-
ing a road is “if any one road is undergoing construction, it would still be possible 
to travel between any two tourist attractions using the remaining roads.” That is to 
say, a biconnected graph is constructed by adding roads with the minimum num-
ber. The algorithm is as follows.

First, all bridges are calculated. Second, all bridges are removed. And connected 
components are biconnected components. All biconnected components are repre-
sented as vertices, and all bridges are added back. The new graph is a tree, and its 
edge-connectivity is 1.



Practice for Advanced Data Structures  ◾  419

Then the number of vertices whose degree is 1 is calculated. Suppose the num-
ber of leaves is leaf. In order to make the tree become a biconnected graph, at least 

+





1
2

leaf  edges are added into the tree.

There are two lemmas.

Lemma 1: If there exists an edge (i, j), vertex i and vertex j are in a biconnected 
component if and only if low[i]=low[j].

Lemma 2: There are n leaves in a tree. The tree will become a biconnected graph 

after adding at least 
2







n  edges.

The following algorithm is based on Lemma 1 and Lemma 2. Suppose e[][] is 
an adjacency list, e[i][0] is the number of edges connecting vertex i, and the other 
vertex for the j-th edge is e[i][j], 1≤e[i][0]≤n−1, and 1≤j≤e[i][0].

1.	Calculating low[];
2.	Calculating degrees for vertices in the contacted tree;
3.	The number of vertices whose degree is 1 is calculated, denoted as leaf. In 

order to make the tree become a biconnected graph, at least +





1
2

leaf  edges 
are added into the tree.

  Program

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <vector>
# define vi vector<int>
# define pb push_back
using namespace std;
const int maxn=1010;    //the upper limit of the number of 
vertices
vi e[maxn];    //an adjacency list for a graph
int dfsn[maxn],low[maxn],Time,deg[maxn];    // deg[]: degrees 
for vertices in a tree, Time: visited time
int n,m;
void dfs(int a,int fa){    //calculate low from branch (fa, a)
	 int q;dfsn[a]=low[a]=++Time;
	 for(int p=0;p< e[a].size();p++)
	    if(!dfsn[q=e[a][p]])
	        dfs(q,a),low[a]=min(low[a],low[q]);
	   else  if(q!=fa)low[a]=min(low[a],dfsn[q]);



420  ◾  Algorithm Design Practice for Collegiate Programming

}
void work(){
	 for(int i=1;i<=n;i++) e[i].clear();    //Initialization
	 for(int i=0;i<m;i++){    // adjacency list e is constructed
		  int a,b;
		  scanf("%d %d",&a,&b);
		  e[a].pb(b);e[b].pb(a);
	 }
	 Time=0;    // Initialization 
	 memset(dfsn,0,sizeof(dfsn));   
	 memset(deg,0,sizeof(deg));
	 dfs(1,-1);    //calculate low
	 for(int i=1;i<=n;i++)      // Calculating degrees for 
vertices in the contacted tree 
		  for(int p=0;p< e[i].size();p++) if(low[e[i][p]]!=low[i]) 
deg[low[i]]++;
	 int cnt=0;    //number of leaves
	 for(int i=1;i<=n;i++) if(deg[i]==1)cnt++;
	 printf("%d\n",(cnt+1)/2);    // the minimum number of roads
}
int main(){
	 while(~scanf("%d %d ",&n,&m))	 work();
	 return 0;
}

7.4  Problems
7.4.1  Long Long Message

Little Cat is majoring in physics in the capital of Byterland. A piece of sad news 
comes to him these days: his mother is ill. Being worried about spending so much on 
railway tickets (Byterland is such a big country, and he has to spend 16 hours on the 
train to get to his hometown), he decided only to send SMS messages to his mother.

Little Cat belongs to a family that is not rich, so he frequently visits the mobile 
service center to check how much money he has spent on SMS. Yesterday, the com-
puter of the service center was broken, and printed two very long messages. The 
brilliant Little Cat soon found out the following:

1.	All characters in messages are lowercase Latin letters, without punctuation 
and spaces.

2.	All SMS has been appended to each other—(i+1)-th SMS comes directly 
after the i-th one—that is why those two messages are quite long.

3.	His own SMS has been appended together, but possibly a great many redun-
dant characters appear leftwards and rightwards due to the broken computer. 
For example, if his SMS is “motheriloveyou”, either long message printed 
by that machine would possibly be one of “hahamotheriloveyou”, “motheril-
oveyoureally”, “motheriloveyouornot”, “bbbmotheriloveyouaaa”, etc.



Practice for Advanced Data Structures  ◾  421

4.	For these broken issues, Little Cat has printed his original text twice (so there 
are two very long messages). Even though the original text remains the same 
in two printed messages, the redundancy characters on both sides would pos-
sibly be different.

You are given those two very long messages, and you have to output the length 
of the longest possible original text written by Little Cat.

Background: The SMS in the Byterland mobile service are charged in dollars-
per-byte. That is why Little Cat is worrying about how long could the longest origi-
nal text be.

Why ask you to write a program? There are four reasons:

1.	Little Cat is so busy these days with physics lessons;
2.	Little Cat wants to keep what he said to his mother a secret;
3.	POJ is such a great Online Judge;
4.	Little Cat wants to earn some money from POJ, and try to persuade his 

mother to see the doctor.

Input

Two strings with lowercase letters on two of the input lines individually. The num-
ber of characters in each one will never exceed 100000.

Output

A single line with a single integer number—what is the maximum length of the 
original text written by the little cat?

Sample Input Sample Output

yeshowmuchiloveyoumydearmotherreallyicannotbelieve
ityeaphowmuchiloveyoumydearmother

27

Source:	 POJ Monthly, 2006.03.26, Zeyuan Zhu, “Dedicated to my great beloved 
mother.”

ID for Online Judge: POJ 2774

  Hint

Given two strings, the problem requires you to calculate the length of the longest 
common substring.

Any substring in a string is a prefix for a suffix in the string. Calculating the 
longest common substring for strings A and B is calculating the longest common 



422  ◾  Algorithm Design Practice for Collegiate Programming

prefix for suffixes for strings A and B. It is inefficient to enumerate all suffixes for 
strings A and B. String B is adjoined to the end of string A, and a character which 
doesn’t appear is inserted between A and B. For example, A=“aaaba”, B= “abaa”, 
B is adjoined to the end of A, and a character ‘$’ which doesn’t appear is inserted 
between A and B. The longest common prefix for suffixes for the new string is cal-
culated as Figure 7.15.

In Figure 7.15, “aa” is the longest common prefix for suffix(2) and suffix(9), and 
“aa” is a suffix for B and isn’t a suffix for A; “aba” is the longest common prefix for 
suffix(3) and suffix(7), and “aba” is a suffix for A and isn’t a suffix for B. The maxi-
mal value for height[] may not be the length of the longest common substring, for 
the two suffixes may be in the same string. Therefore, “aba” is the longest common 
substring for strings A and B.

The time complexity for the algorithm is O(|A|+|B|).

7.4.2  Milk Patterns

Farmer John has noticed that the quality of milk given by his cows varies from day 
to day. On further investigation, he discovered that although he can’t predict the 
quality of milk from one day to the next, there are some regular patterns in the 
daily milk quality.

To perform a rigorous study, he has invented a complex classification scheme by 
which each milk sample is recorded as an integer between 0 and 1,000,000 inclusive, 
and has recorded data from a single cow over N (1≤N≤20,000) days. He wishes to find 
the longest pattern of samples which repeats identically at least K (2≤K≤N) times. This 
may include overlapping patterns—1 2 3 2 3 2 3 1 repeats 2 3 2 3 twice, for example.

a a a b a $ a b a a

$ a b a a

a

a $ a b a a

a a

a a a b a $ a b a a

a a b a $ a b a a

$ a b a a

a b a a

b a $ a b a a

b a a

a b a

height String A

String B

1

1

2

3

0

2

Figure 7.15 



Practice for Advanced Data Structures  ◾  423

Help Farmer John by finding the longest repeating subsequence in the sequence 
of samples. It is guaranteed that at least one subsequence is repeated at least K times.

Input

Line 1: Two space-separated integers: N and K;
Line 2: N+1: N integers, one per line, the quality of the milk on day i appears 

on the i-th line.

Output

Line 1: One integer, the length of the longest pattern which occurs at least K 
times.

Sample Input Sample Output

8  2
1
2
3
2
3
2
3
1

4

Source:	 USACO 2006 December Gold

ID for Online Judge: POJ 3261

  Hint

Given a sequence of integers whose length is N, and an integer K, you are required 
to calculate the length of the longest repeating subsequences repeated at least K 
times in the sequence, and the subsequences can be overlapping.

The problem is a typical problem for suffix arrays. And dichotomy is also used 
in solving the problem.

7.4.3  Count Color

You have chosen Problem Solving and Program Design as an optional course, and 
you are required to solve all kinds of problems. Here, we get a new problem.

There is a very long board with length L centimeters, and L is a positive 
integer, so we can evenly divide the board into L segments, and they are labeled 
by 1, 2, … L from left to right, each is 1 centimeter long. Now we have to color the 



424  ◾  Algorithm Design Practice for Collegiate Programming

board—one segment with only one color. We can do the following two operations 
on the board:

1.	“C A B C” Color the board from segment A to segment B with color C.
2.	“P A B” Output the number of different colors painted between segment A 

and segment B (including).

In our daily life, we have very few words to describe a color (red, green, blue, 
yellow…), so you may assume that the total number of different colors T is very small. 
To make it simple, we express the names of colors as color 1, color 2, … color T. At the 
beginning, the board was painted in color 1. Now the rest of the problem is left to you.

Input

The first line of input contains L (1≤L≤100000), T (1≤T≤30) and O (1≤O≤100000). 
Here O denotes the number of operations. Following O lines, each contains “C A 
B C” or “P A B” (here A, B, and C are integers, and A may be larger than B) as an 
operation defined previously.

Output

Output the results of the output operation in order; each line contains a number.

Sample Input Sample Output

2  2  4
C  1  1  2
P  1  2
C  2  2  2
P  1  2

2
1

Source:	 POJ Monthly, 2006.03.26, dodo

ID for Online Judge: POJ 2777

  Hint

Initially, the board is colored with color 1. Then update operations and query opera-
tions are dealt with one by one.

Update operations: Color a subinterval with a color;
Query operations: Output the number of different colors painted in a subinterval.

Obviously, the problem is a typical problem for visible segments. Its solution is 
the same as the solution to 7.2.3.2 Mayor’s Posters. Because the upper limit of the 
number of colors is 30, a bitwise operation can be used to improve the efficiency.



Practice for Advanced Data Structures  ◾  425

7.4.4  Who Gets the Most Candies?

N children are sitting in a circle to play a game.
The children are numbered from 1 to N in clockwise order. Each of them has a 

card with a non-zero integer on it in his/her hand. The game starts from the K-th 
child, who tells all the others the integer on his card and jumps out of the circle. 
The integer on his card tells the next child to jump out. Let A denote the integer. 
If A is positive, the next child will be the A-th child to the left. If A is negative, the 
next child will be the (−A)-th child to the right.

The game lasts until all children have jumped out of the circle. During the 
game, the p-th child jumping out will get F(p) candies where F(p) is the number of 
positive integers that perfectly divide p. Who gets the most candies?

Input

There are several test cases in the input. Each test case starts with two integers 
N (0<N≤500000) and K (1≤K≤N) on the first line. The next N lines contain the 
names of the children (consisting of at most 10 letters) and the integers (non-zero 
with magnitudes within 108) on their cards in increasing order of the children’s 
numbers, a name, and an integer separated by a single space in a line with no lead-
ing or trailing spaces.

Output

Output one line for each test case containing the name of the luckiest child and the 
number of candies he/she gets. If ties occur, always choose the child who jumps out 
of the circle first.

Sample Input Sample Output

4  2
Tom 2
Jack 4
Mary -1
Sam 1

Sam 3

Source:	 POJ Monthly, 2006.07.30, Sempr

ID for Online Judge: POJ 2886

  Hint

The key to the problem is: after the i-th child jumps out of the circle, who is the 
(i+1)-th child jumping out of the circle? A segment is used to represent children. 
A child jumping out of the circle can be implemented by updating a single point 
in a segment tree.



426  ◾  Algorithm Design Practice for Collegiate Programming

First, we calculate the numbers of factors for each integer in [1, N ]. For exam-
ple, Mike is the sixth child who jumps out of the circle. He will get four candies. 
Four is the number of positive integers that perfectly divide into 6 (factors for 6 are 
1, 2, 3, and 6). It can be calculated in O(N log(N)).

Suppose the i-th child jumps out of the circle, and his position is now (in the 
circle there are n−i+1 children, before he/she jumps out of the circle). After the i-th 
child jumps out of the circle, there are n−i children in the circle. The i-th child 
jumping out of the circle is implemented by deleting the now-th element in the 
corresponding intervals. Suppose the root for the segment is i, and the interval that 
vertex i corresponds to is [l, r]; the algorithm is as follows:

    if (l == r && now == 1)  return the vertex’s sequence 
number for element l;
    if (the now-th element is in the left subinterval) 
calculate the sequence number for the now-th element is in the 
left subinterval recursively;
       else{  now←num – number of elements in the left 
subinterval;
              calculate the sequence number for the now-th 
element is in the right subinterval recursively;
           }

After finding the sequence number for the vertex for the now-th element, the 
number of elements for vertices in the path from the vertex to the root −1.

7.4.5  Help with Intervals

LogLoader, Inc. is a company specialized in providing products for analyzing logs. 
While Ikki is working on graduation design, he is also engaged in an internship at 
LogLoader. Among his tasks, one is to write a module for manipulating time inter-
vals, which have confused him a lot. Now he badly needs your help.

In discrete mathematics, you have studied several basic set operations, namely 
union, intersection, relative complementation, and symmetric difference, which 
naturally apply to the specialization of sets as intervals. For your quick reference, 
they are summarized in the table below:

Operation Notation Definition

Union A ∪ B {x : x ∈ A or x ∈ B}

Intersection A ∩ B {x : x ∈ A and x ∈ B}

Relative complementation A − B {x : x ∈ A but x ∉ B}

Symmetric difference A ⊕ B (A − B) ∪ (B − A)



Practice for Advanced Data Structures  ◾  427

Ikki has abstracted the interval operations emerging from his job as a tiny 
programming language. He wants you to implement an interpreter for him. The 
language maintains a set S, which starts out empty and is modified as specified by 
the following commands:

Command Semantics

U  T S ← S ∪ T

I  T S ← S ∩ T

D  T S ← S − T

C  T S ← T − S

S  T S ← S ⊕ T

Input

The input contains exactly one test case, which consists of between 0 and 65,535 
(inclusive) commands of the language. Each command occupies a single line and 
appears like
	 X T

where X is one of “U”, “I”, “D”, “C”, and “S”, and T is an interval in one of 
the forms (a,b),(a,b],[a,b) and [a,b](a,b∈Z, 0≤a≤b≤65,535), which take their usual 
meanings. The commands are executed in the order they appear in the input.

End of file (EOF) indicates the end of input.

Output

Output the set S as it is after the last command is executed as the union of a 
minimal collection of disjoint intervals. The intervals should be printed on one line 
separated by single spaces and appear in increasing order of their endpoints. If S is 
empty, just print “empty set” and nothing else.

Sample Input Sample Output

U [1,5]
D [3,3]
S [2,4]
C (1,5)
I (2,3]

(2,3)

Source:	 PKU Local 2007 (POJ Monthly, 2007.04.28), frkstyc

ID for Online Judge: POJ 3225



428  ◾  Algorithm Design Practice for Collegiate Programming

  Hint

In the problem, four set operations, union, intersection, relative complementation, 
and symmetric difference, are given. Initially a set S is empty. After a sequence of 
set operations, S is the union of a minimal collection of disjoint intervals.

A segment tree is used to represent the universal set. “An interval is in the set” 
is represented as 1, “An interval isn’t in the set” is represented as 0, and “Some parts 
for an interval are in the set” is represented as −1. Because there are open intervals, 
half-open intervals, and closed intervals, in the segment there are not only intervals, 
but also points, that is, the number of vertices should be doubled.

Two operations are used to simplify set operations.

Change(l, r, c): An interval [l, r] is added into the set, or taken out from the set 
(c==1, added; and c==0, taken out)

Reverse(l, r): An interval [l, r] is reversed. If the interval is in the set, then it is 
taken out; else it is added into the set.

Operation ‘U’ corresponds to Change(l, r, 1);
Operation ‘I’ corresponds to Change(1, l−1, 0) and Change(r+1, n, 0);
Operation ‘D’ corresponds to Change(l, r, 0);
Operation ‘C’ corresponds to Change (0, l−1, 0); Change(r+1, n, 0); Reverse(l, r);
Operation ‘S’ corresponds to Reverse(l, r);

7.4.6  Horizontally Visible Segments

There are a number of disjoint vertical line segments in the plane. We say that two 
segments are horizontally visible if they can be connected by a horizontal line seg-
ment that does not have any common points with other vertical segments. Three 
different vertical segments are said to form a triangle of segments if each two of 
them are horizontally visible. How many triangles can be found in a given set of 
vertical segments?

Your task is to write a program which for each data set:

reads the description of a set of vertical segments,
computes the number of triangles in this set,
writes the result.

Input

The first line of the input contains exactly one positive integer d equal to the num-
ber of data sets, 1≤d≤20. The data sets follow.

The first line of each data set contains exactly one integer n, 1≤n≤8000, equal 
to the number of vertical line segments. Each of the following n lines consists 



Practice for Advanced Data Structures  ◾  429

of exactly three non-negative integers separated by single spaces: yi', yi", xi—the 
y-coordinate of the beginning of a segment, y-coordinate of its end, and its 
x-coordinate, respectively. The coordinates satisfy 0≤yi'<yi"≤8000, 0≤xi≤8000. 
The segments are disjoint.

Output

The output should consist of exactly d lines, one line for each data set. Line i should 
contain exactly one integer equal to the number of triangles in the i-th data set.

Sample Input Sample Output

1
5
0  4  4
0  3  1
3  4  2
0  2  2
0  2  3

1

Source:	 ACM Central Europe 2001

ID for Online Judges: POJ 1436, ZOJ 1391, UVA 2441

  Hint

The solution to the problem is similar to the solution to 7.4.3 Count Color. The 
interval [l, r] on the Y-axis is regarded as a segment tree, and the projection for a 
vertical line on the Y-axis is regarded as a segment. The number of triangles is 
calculated by enumerating segments from left to right.

7.4.7  Crane

ACM has bought a new crane (crane—jeřáb). The crane consists of n segments of 
various lengths, connected by flexible joints. The end of the i-th segment is joined 
to the beginning of the i+1-th one, for 1≤i<n. The beginning of the first segment 
is fixed at point with coordinates (0, 0) and its end at point with coordinates (0, w), 
where w is the length of the first segment. All of the segments lie always in one 
plane, and the joints allow arbitrary rotation in that plane. After a series of unpleas-
ant accidents, it was decided that the software that controls the crane must contain 
a piece of code that constantly checks the position of the end of the crane and stops 
the crane if a collision should happen.



430  ◾  Algorithm Design Practice for Collegiate Programming

Your task is to write a part of this software that determines the position of the 
end of the n-th segment after each command. The state of the crane is determined 
by the angles between consecutive segments. Initially, all of the angles are straight, 
i.e., 180°. The operator issues commands that change the angle in exactly one joint.

Input

The input consists of several instances, separated by single empty lines.
The first line of each instance consists of two integers 1≤n≤10,000 and c≥0 sep-

arated by a single space—the number of segments of the crane and the number of 
commands. The second line consists of n integers l1, …, ln (1≤li≤100) separated by 
single spaces. The length of the i-th segment of the crane is li. The following c lines 
specify the commands of the operator. Each line describing the command consists 
of two integers s and a (1≤s<n, 0≤a≤359) separated by a single space—the order to 
change the angle between the s-th and the s+1-th segment to a degrees (the angle is 
measured counterclockwise from the s-th to the s+1-th segment).

Output

The output for each instance consists of c lines. The i-th of the lines consists of 
two rational numbers x and y separated by a single space—the coordinates of the 
end of the n-th segment after the i-th command, rounded to two digits after the 
decimal point.

The outputs for each two consecutive instances must be separated by a single 
empty line.

Sample Input Sample Output

2  1
10  5
1  90

3  2
5  5  5
1  270
2  90

5.00  10.00

-10.00  5.00
-5.00  10.00

Source:	 CTU Open 2005

ID for Online Judge: POJ 2991

  Hint

A segment tree is used to represent the problem. The root for the segment tree is the 
interval [1, n] representing n segments. Each node in the segment tree represents 



Practice for Advanced Data Structures  ◾  431

an interval [l, r]. In a node there are two pointers, where its left pointer points to 
the coordinates of the starting point for segment l, and its right pointer points 
to the coordinates of the end point for segment r. Obviously, after a command 
is executed, the right pointer of the root is the coordinates of the end of the n-th 
segment.

7.4.8  Is It a Tree?

A tree is a well-known data structure that is either empty (null, void, nothing) or is 
a set of one or more nodes connected by directed edges between nodes, satisfying 
the following properties:

There is exactly one node, called the root, to which no directed edges point.
Every node except the root has exactly one edge pointing to it.
There is a unique sequence of directed edges from the root to each node.

For example, consider Figure 7.16, in which nodes are represented by circles and 
edges are represented by lines with arrowheads. The first two of these are trees, but 
the last is not.

In this problem, you will be given several descriptions of collections of nodes 
connected by directed edges. For each of these, you are to determine if the collec-
tion satisfies the definition of a tree or not.

Input

The input will consist of a sequence of descriptions (test cases) followed by a pair 
of negative integers. Each test case will consist of a sequence of edge descriptions 
followed by a pair of zeros. Each edge description will consist of a pair of integers; 
the first integer identifies the node from which the edge begins, and the second 
integer identifies the node to which the edge is directed. Node numbers will always 
be greater than zero.

8 4

26

5 1 3 2

8 7 6

9 5 4

3

8 4

26

5

3

Figure 7.16



432  ◾  Algorithm Design Practice for Collegiate Programming

Output

For each test case display the line “Case k is a tree.” or the line “Case k is not a 
tree.”, where k corresponds to the test case number (they are sequentially numbered 
starting with 1).

Sample Input Sample Output

6 8    5 3   5 2   6 4   5 6   0 0

8 1   7 3   6 2   8 9   7 5   7 4   7 8   7 6   0 0
3 8   6 8   6 4   5 3   5 6   5 2   0 0
-1 -1

Case 1 is a tree.
Case 2 is a tree.
Case 3 is not a tree.

Source:	 ACM 1997 North Central Regionals

IDs for Online Judges: POJ 1308, ZOJ 1268, UVA 615

  Hint

The problem is solved based on the definition of a tree.
When edges are input, in-degrees and out-degrees for nodes are calculated. If 

there exists a node whose in-degree is larger than 1, or the number of nodes whose 
in-degree is 0 is larger than 1, the case is not a tree. After all edges are input, if there 
is no above case, the case is a tree.

7.4.9  The Postal Worker Rings Once

Graph algorithms form a very important part of computer science and have a 
lineage that goes back at least to Euler and the famous Seven Bridges of Königsberg 
problem. Many optimization problems involve determining efficient methods for 
reasoning about graphs.

This problem involves determining a route for a postal worker so that all mail is 
delivered while the postal worker walks a minimal distance, so as to rest his weary legs.

Given a sequence of streets (connecting given intersections), you are to write a 
program that determines the minimal cost tour that traverses every street at least 
once. The tour must begin and end at the same intersection.

The “real-life” analogy concerns a postal worker who parks a truck at an inter-
section and then walks all streets on the postal delivery route (delivering mail) and 
returns to the truck to continue with the next route.

The cost of traversing a street is a function of the length of the street (there is a cost 
associated with delivering mail to houses and with walking even if no delivery occurs).

In this problem, the number of streets that meet at a given intersection is called 
the degree of the intersection. There will be at most two intersections with an odd 
degree. All other intersections will have an even degree, i.e., an even number of 
streets meeting at that intersection.



Practice for Advanced Data Structures  ◾  433

Input

The input consists of a sequence of one or more postal routes. A route is composed 
of a sequence of street names (strings), one per line, and is terminated by the string 
“deadend” which is NOT part of the route. The first and last letters of each street 
name specify the two intersections for that street, and the length of the street name 
indicates the cost of traversing the street. All street names will consist of lowercase 
alphabetic characters.

For example, the name foo indicates a street with intersections f and o of length 
3, and the name computer indicates a street with intersections c and r of length 8. 
No street name will have the same first and last letter, and there will be at most one 
street directly connecting any two intersections. As specified, the number of inter-
sections with odd degree in a postal route will be at most two. In each postal route, 
there will be a path between all intersections, i.e., the intersections are connected.

Output

For each postal route, the output should consist of the cost of the minimal tour that 
visits all streets at least once. The minimal tour costs should be output in the order 
corresponding to the input postal routes.

Sample Input Sample Output

One
two
three
deadend
mit
dartmouth
linkoping
tasmania
york
emory
cornell
duke
kaunas
hildesheim
concord
arkansas
williams
glasgow
deadend

11
114

Source:	 Duke Internet Programming Contest 1992

ID for Online Judge: UVA 117



434  ◾  Algorithm Design Practice for Collegiate Programming

  Hint by the Problemsetter (http://www.algorithmist.com)

This problem reduces to a graph, by looking at each first or last character as a vertex, 
and the street name as an edge. We can reduce this problem to an Eulerian Path or 
an Eulerian Cycle problem, since each vertex will have an even number of degrees 
(except for at most two vertices).

Even though at first glance, it seems like it might need the Chinese Postman 
algorithm, but since each vertex will have an even number of degrees (except for at 
most two vertices), we can use the simpler Eulerian Path/Eulerian Cycle algorithm 
instead. If all vertices are of even degrees, then you’re done, since the solution is 
simply the Eulerian Cycle—the sum of the weights of all the edges. Otherwise, we 
will have to calculate the Eulerian Path, and then you will have to find the shortest 
path between the two odd-degree vertices. This can be done with any of the Shortest 
Path algorithms.

7.4.10  Euler Circuit

An Euler circuit is a graph traversal starting and ending at the same vertex and 
using every edge exactly once. Finding an Euler circuit in an undirected or directed 
graph is a fairly easy task, but what about graphs where some of the edges are 
directed and some undirected? An undirected edge can only be traveled in one 
direction. However, sometimes any choice of direction for the undirected edges 
may not yield an Euler circuit.

Given such a graph, determine whether an Euler circuit exists. If so, output 
such a circuit in the format specified below. You can assume that the underlying 
undirected graph is connected.

Input

The first line in the input contains the number of test cases, at most 20. Each test 
case starts with a line containing two numbers, V and E: the number of vertices 
(1≤V≤100) and edges (1≤E≤500) in the graph. The vertices are numbered from 
1 to V. Then follow E lines specifying the edges. Each such line will be in the format 
a b type where a and b are two integers specifying the endpoints of the edge. type 
will either be the character “U”, if the edge is undirected, or “D”, if the edge is 
directed. In the latter case, the edge starts at a and ends at b.

Output

If an Euler circuit exists, output an order in which the vertices can be traversed 
on a single line. The vertex numbers should be delimited with a single space, and 

http://www.algorithmist.com


Practice for Advanced Data Structures  ◾  435

the start and end vertex should be included both at the beginning and the end of 
the sequence. Since most graphs have multiple solutions, any valid solution will be 
accepted. If no solution exists, output the line “No Euler circuit exists”. Output a 
blank line between each test case.

Sample Input Sample Output

2
6  8
1  3  U
1  4  U
2  4  U
2  5  D
3  4  D
4  5  U
5  6  D
5  6  U
4  4
1  2  D
1  4  D
2  3  U
3  4  U

1  3  4  2  5  6  5  4  1

No Euler circuit exists

Source:	 2004 ICPC Regional Contest Warmup 1

ID for Online Judge: UVA 10735

  Hint by the Problemsetter (http://www.algorithmist.com)

Given a graph G, which contains both directed edges and undirected edges, find a 
closed path in it, in which each edge is included exactly once.

Recall that, when an Euler tour exists in a directed graph: the underlying undi-
rected graph is connected, and the in-degree of each vertex is equal to the out-degree.

In this problem, some of the graph’s edges may be undirected. If we can orient 
them in such a way that the in-degree of each vertex will be equal to its out-degree, 
then the problem will be reduced to finding a tour in a directed graph. Such an 
orientation can be found by solving the following bipartite matching problem.

Construct a bipartite graph H. In one partition, put all edges (both directed and 
undirected) of G, and the other partition contains G’s vertices. For every edge, we 
have to know which of its two endpoints is the head. So, connect every object (edge 
of G) in the first partition with its G’s endpoints in the second partition.

We’ll be finding a matching in this graph. If an undirected edge e = (u, v) of G 
will be matched with v, it means, that in the final directed graph, the edge e will go 
from vertex u to vertex v.

http://www.algorithmist.com


436  ◾  Algorithm Design Practice for Collegiate Programming

Each matched H ’s edge of (e, v) will contribute to the in-degree of vertex v in 
the directed graph, and unmatched edge (e, u) contributes to the out-degree of u.

Since we want to make the in-degree and out-degree of each vertex equal, 
each vertex must have an equal number of matched and unmatched edges in H. 
Additionally, each directed edge has to be matched with its respective head from G.

After finding a matching in H, satisfying the outlined constraints, we can assign 
direction to each undirected G’s edge and find that the Euler tour is the resulting 
directed graph with any standard algorithm. If a matching doesn’t exist, there will 
be no Euler tour in the original graph.

7.4.11  The Necklace

My little sister had a beautiful necklace made of colorful beads. Two successive 
beads in the necklace shared a common color at their meeting point. Figure 7.17 
shows a segment of the necklace.

But, alas! One day, the necklace was torn and the beads were scattered all over 
the floor. My sister did her best to recollect all the beads from the floor, but she 
is not sure whether she was able to collect all of them. Now, she has come to me 
for help. She wants to know whether it is possible to make a necklace using all the 
beads she has in the same way her original necklace was made, and if so, in which 
order the beads must be put.

Please help me write a program to solve the problem.

Input

The input contains T test cases. The first line of the input contains the integer T.
The first line of each test case contains an integer N (5≤N≤100), giving the 

number of beads my sister was able to collect. Each of the next N lines contains two 
integers describing the colors of a bead. Colors are represented by integers ranging 
from 1 to 50.

Output

For each test case in the input, first output the test case number as shown in the 
sample output. Then, if you apprehend that some beads may be lost, just print the 
sentence “some beads may be lost” on a line by itself. Otherwise, print N lines 
with a single bead description on each line. Each bead description consists of two 

G
re

en

R
ed

R
ed

W
hi

te

W
hi

te

G
re

e n

G
re

en

B
lu

e

Figure 7.17



Practice for Advanced Data Structures  ◾  437

integers giving the colors of its two ends. For 1≤i≤N−1, the second integer on line 
i must be the same as the first integer on line i +1. Additionally, the second integer 
on line N must be equal to the first integer on line 1. Since there are many solutions, 
any one of them is acceptable.

Print a blank line between two successive test cases.

Sample Input Sample Output

2
5
1  2
2  3
3  4
4  5
5  6
5
2  1
2  2
3  4
3  1
2  4

Case #1
some beads may be lost

Case #2
2  1
1  3
3  4
4  2
2  2

Source:	 ACM Shanghai 2000, University of Valladolid New Millenium Contest

IDs for Online Judges: UVA 10054, UVA 2036

  Hint

A graph is constructed as follows: each color is represented as a node, and each bead 
is represented as an edge. The problem requires you to determine whether the graph 
is an Euler graph or not.

The problem is similar to 7.3.1.2 Catenyms.

7.4.12  Dora Trip

Nobita is in great trouble. Today he failed to hand in his homework again, so he 
was heavily punished at school. Learning that, his mother is furious, and therefore 
assigns him many tasks to do—to buy vegetables at the market, to collect a parcel 
at the post office, and a lot more. Nobita certainly does not want to see his teacher 
on his way, nor would he like to meet Jyian, the tough bully. As usual, he asks 
Doraemon for help.



438  ◾  Algorithm Design Practice for Collegiate Programming

“Oh no!” cried Doraemon. “My door is broken, and my small propellers have all 
run out of batteries...” Well, that means Nobita has got to go without Doraemon’s 
magic tools. “Ah, I still have this. It may well be useful.” From his fourth-dimensional 
pocket, Doraemon takes out a map of their living area. He then marks on it the 
places where Nobita has to visit by asterisks (‘*’), and where Jyian or his teacher 
may appear by crosses (‘X’). Now Nobita’s job is simple—he has to find the shortest 
route, through which he would not visit any of the “crosses”, and he could finish the 
maximum number of the jobs (if not all) given by his mum. What he needs is just 
a computer program that works out the path.

Imagine that you are Nobita and write the program.

Input

The input file contains no more than 20 test cases. The details of each set are given 
as follows:

The first line of each case contains two integers r and c (1≤r,c≤20), which are 
the number of rows and columns of the map respectively. The next r lines, each with 
c characters, give the map itself. For each character, a space “ ” stands for an open 
space; a hash mark “#” stands for an obstructing wall; the capital letter “S” stands 
for the position of Nobita’s house, which is where his journey is to start and end; 
the capital letter “X” stands for a dangerous place; and an asterisk “*” stands for a 
place he has to visit. The perimeter of the map is always closed, i.e., there is no way 
to get out from the coordinate of the “S”. The number of places that Nobita has to 
visit is at most 10.

The input file is terminated by a null case where r = c = 0. This case should not 
be processed.

Output

For each test case, if Nobita cannot visit any target places at all, just print the 
line “Stay home!”. Otherwise, your program should output the lexicographically 
smallest shortest path so that the number of target places that Nobita visits is maxi-
mized. Use the letters ‘N’, ‘S’, ‘E’, and ‘W’ to denote north, south, east and west 
respectively. Note that by “north” we mean facing upwards. You can be sure that 
the length of a correct output path will never exceed 200.

Sample Input Sample Output

5  5
#####
#  S#
#  XX#
#   *#

WWSSEEWWNNEE
EEWW
Stay home!



Practice for Advanced Data Structures  ◾  439

Sample Input Sample Output

#####
5  5
#####
#*  X#
###X#
#S  *#
#####
5  5
#####
#S  X#
#   X#
#  #*#
#####
0  0

Source:	 Programming Contest for Newbies 2005

ID for Online Judge: UVA 10818

  Hint

The problem is a Traveling Salesperson problem, that is, the problem is NP-complete. 
Because the number of places that Nobita has to visit is at most 10, a simple search 
suffices.

The problem is similar to 7.3.2.2 Nuts for Nuts. Suppose Nobita’s current posi-
tion is (x, y) and the sequence of nodes that Nobita goes through is z. (x, y, z) 
constitutes a state. Initially, the position of Nobita’s house (Sx, Sy) and z=0 is as the 
initial state and added into a queue q. Then BFS is used. And hash technology is 
also used to avoid repetitions.

7.4.13  Blackbeard the Pirate

Blackbeard the Pirate has stashed up to 10 treasures on a tropical island, and now 
he wishes to retrieve them. He is being chased by several authorities, however, and 
so would like to retrieve his treasure as quickly as possible. Blackbeard is no fool; 
when he hid the treasures, he carefully drew a map of the island which contains the 
position of each treasure and the positions of all obstacles and hostile natives that 
are present on the island.

Given a map of an island and the point where he comes ashore, help Blackbeard 
determine the least amount of time necessary for him to collect his treasure.



440  ◾  Algorithm Design Practice for Collegiate Programming

Input

The input consists of a number of test cases. The first line of each test case contains 
two integers h and w giving the height and width of the map, respectively, in miles. 
For simplicity, each map is divided into grid points that are a mile square. The next 
h lines contain w characters, each describing one square on the map. Each point on 
the map is one of the following:

@	 The landing point where Blackbeard comes ashore.
~	 Water. Blackbeard cannot travel over water while on the island.
#	 A large group of palm trees; these are too dense for Blackbeard to travel 

through.
.	 Sand, which he can easily travel over.
*	 A camp of angry natives. Blackbeard must stay at least one square away or 

risk being captured by them, which will terminate his quest. Note this is one 
square in any of eight directions, including diagonals.

!	 A treasure. Blackbeard is a stubborn pirate and will not leave unless he col-
lects all of them.

Blackbeard can only travel in the four cardinal directions; that is, he cannot 
travel diagonally. Blackbeard travels at a nice slow pace of one mile (or square) per 
hour, but he sure can dig fast, because digging up a treasure incurs no time penalty 
whatsoever.

The maximum dimension of the map is 50 by 50. The input ends with a case 
where both h and w are 0. This case should not be processed.

Output

For each test case, simply print the least number of hours Blackbeard needs to col-
lect all his treasure and return to the landing point. If it is impossible to reach all 
the treasures, print out −1.

Sample Input Sample Output

7  7
~~~~~~~
~#!###~
~...#.~
~~....~
~~~.@~~
.~~~~~~
...~~~.
10  10

10
32



Practice for Advanced Data Structures  ◾  441

Sample Input Sample Output

~~~~~~~~~~
~~!!!###~~
~##...###~
~#....*##~
~#!..**~~~
~~....~~~~
~~~....~~~
~~..~..@~~
~#!.~~~~~~
~~~~~~~~~~
0  0

Source:	 A Special Contest 2005

ID for Online Judge: UVA 10937

  Hint

The problem is also a Traveling Salesperson problem. The solution to the problem is 
the same as the solution to 7.3.2.2 Nuts for Nuts. BFS, hash technology, and state 
compression are used to solve the problem.



http://taylorandfrancis.com


443

Chapter 8

Practice for Computational 
Geometry

Computational geometry is the study of geometric algorithms for solving geometric 
problems. This chapter focuses on solving the following geometric problems:

1.	Points, Line Segments, and Plans;
2.	Calculating the Area for Union of Rectangles by Sweep Line Algorithms;
3.	Intersection of Half-Planes;
4.	Convex Hulls and Finding the Farthest Pair of Points.

8.1  Points, Line Segments, and Plans
In Euclidean space, a point is represented as a two-dimensional coordinate (x, y). 
Suppose there are two points P1(P1=(x1, y1)) and P2(P2=(x2, y2)), and there is a 
line segment from P1 to P2. Such a line segment is called a directed line segment, 
denoted by 1 2P P

� ����
, where P1 is the start point, P2 is the end point, and the length of 

the line segment (i.e., its Euclidean distance) P P x x y y
� ����

= − + −( ) ( )1 2 1 2
2

1 2
2 . If P1 

is the origin (0, 0), then the directed line segment 1 2P P
� ����

 is a vector P2, the length of 
vector P2 is = +2 2

2
2
2P x y , called the magnitude of P2.

In this section, experiments for points, line segments and plans are as follows:

1.	Dot Product and Cross Product;
2.	Line Segment Intersection;
3.	Solving Polyhedron Problems by Euler’s Formula.



444  ◾  Algorithm Design Practice for Collegiate Programming

8.1.1  Dot Product and Cross Product

First, dot product and cross product are introduced.

1.	Dot product.
Suppose coordinates for points are as follows: A(x1, y1), B(x2, y2), C(x3, y3), 
D(x4, y4). Vector AB=(x2−x1, y2−y1)=(xAB, yAB), where its magnitude 

= +2 2AB x yAB AB . Vector CD=(x4−x3, y4−y3)=(xCD, yCD), where its magni-

tude = +2 2CD x yCD CD . Vectors AB and CD are shown in Figure 8.1.
The dot product of AB and CD is defined by AB CD• =xAB×xCD+yAB×yCD= 

|AB|×|CD|×cos(a), where a is the angle between vector AB and vector CD, 

= •
×





| | | |

a acos
AB CD

AB CD
, 0°≤a≤180°. Obviously, if the dot product AB CD•  

is negative, the angle a between vector AB and vector CD is an obtuse angle; 
if the dot product AB CD•  is positive, the angle a between vector AB and 
vector CD is an acute angle; and if the dot product AB CD•  is zero, vector 
AB and vector CD are vertical.

2.	Cross product.
In Figure 8.2, there are two vectors, P1 and P2.

Vector AB

Vector CD

B(x2, y2)

A(x1, y1)

C(x3, y3)

D(x4, y4)

Figure 8.1 

x

P2(x2, y2)

P1(x1, y1)

P1 + P2(x1 + x2, y1 + y2)
y

0

Figure 8.2 



Practice for Computational Geometry  ◾  445

The cross product for vector P1 and vector P2 is defined by 

P P P P= = × − × =−
1 1

2 2
1 2 2 1^ ^1 2 2 1

x y
x y

x y x y . The absolute value |P1̂ P2| is 

the area for the parallelogram whose points are (0, 0), P1(x1, y1), P2(x2, y2) and 
P1+P2(x1+x2, y1+y2). And its positive or negative value is determined as follows:

If it goes clockwise from P2 to P1, then the cross product is P1̂ P2>0;
If it goes counterclockwise from P2 to P1, then the cross product is P1̂ P2<0;
If directions for vector P2 and vector P1 are same or opposite, then the 

cross product is P1̂ P2=0.

In Figure 8.3, by moving point P0 horizontally and vertically to (0, 0), we 
can determine whether it goes clockwise or counterclockwise from P2 to P1.

Suppose vectors P1'=P1−P0 and P2'=P2−P0, where P1'=(x1', y1')=(x1−x0, 
y1−y0); P2'=(x2', y2')=(x2−x0, y2−y0); P1'̂ P2'=(P1−P0)^(P2−P0)=(x1−x0)(y2−y0)−
(x2−x0)(y1−y0).

If the cross product is positive, it goes clockwise from P P
� ����

0 2  to 0 1P P
� ����

, or the 
polar angle for P2 is larger than the polar angle for P1 with respect to point 
P0. If the cross product is negative, it goes counterclockwise from P P

� ����
0 2  to 0 1P P

� ����
, 

or the polar angle for P1 is larger than the polar angle for P2 with respect to 
point P0. And if the cross product is zero, 0 1P P

� ����
 and P P

� ����
0 2  are colinear, or the 

polar angle for P1 is the same as the polar angle for P2, with respect to point P0.
Based on the cross product P1'̂ P2'=(P1−P0)^(P2−P0)=(x1−x0)(y2−y0)−

(x2−x0)(y1−y0), we can determine whether it goes clockwise or counterclock-
wise from 0 1P P

� ����
 to P P
� ����

0 2.

If the cross product is positive, it goes counterclockwise from 0 1P P
� ����

 to P P
� ����

0 2 , 
that is, it turns left from P1 to P2 [Figure 8.4(a)].

If the cross product is negative, it goes clockwise from 0 1P P
� ����

 to P P
� ����

0 2 , that 
is, it turns right from P1 to P2 [Figure 8.4(b)].

If the cross product is 0, the P0, P1 and P2 are colinear [Figure 8.4(c)].

x

P0(x0, y0)

P2(x2, y2)

P1(x1, y1)
P1 + P2(x1 + x2, y1 + y2)

P'1 + P'2(x1 + x2 – 2x0,
 y1 + y2 – 2y0)

P'1(x1 – x0, y1 – y0)

P'2(x2 – x0, y2 – y0)

y

0 x

x'P'0(0, 0)

y

y'

0

Figure 8.3 



446  ◾  Algorithm Design Practice for Collegiate Programming

8.1.1.1  Transmitters

In a wireless network with multiple transmitters sending on the same frequencies, it 
is often a requirement that signals don’t overlap, or at least that they don’t conflict. 
One way of accomplishing this is to restrict a transmitter’s coverage area. This prob-
lem uses a shielded transmitter that only broadcasts in a semicircle.

A transmitter T is located somewhere on a 1000-square-meter grid. It broad-
casts in a semicircular area of radius r. The transmitter may be rotated any amount, 
but not moved. Given N points anywhere on the grid, compute the maximum 
number of points that can be simultaneously reached by the transmitter’s signal. 
Figure 8.5 shows the same data points with two different transmitter rotations.

All input coordinates are integers (0−1000). The radius is a positive real number 
greater than 0. Points on the boundary of a semicircle are considered within that 
semicircle. There are 1−150 unique points to examine per transmitter. No points are 
at the same location as the transmitter.

Input

Input consists of information for one or more independent transmitter problems. 
Each problem begins with one line containing the (x, y) coordinates of the trans-
mitter followed by the broadcast radius, r. The next line contains the number of 
points N on the grid, followed by N sets of (x, y) coordinates, one set per line. The 
end of the input is signaled by a line with a negative radius; the (x, y) values will 
be present but indeterminate. Figure 8.5 represents the data in the first two example 
data sets below, though they are on different scales. Figures 8.5(a) and 8.5(c) show 
transmitter rotations that result in maximal coverage.

P0

P2

P1

(a)

P0

(b)

P1

P2

P0

(c)

P1 P2

Figure 8.4 

TT

T

(a) (b) (c)

Figure 8.5 



Practice for Computational Geometry  ◾  447

Output

For each transmitter, the output contains a single line with the maximum number 
of points that can be contained in some semicircle.

Sample Input Sample Output

25  25  3.5
7
25  28
23  27
27  27
24  23
26  23
24  29
26  29
350  200  2.0
5
350  202
350  199
350  198
348  200
352  200
995  995  10.0
4
1000  1000
999  998
990  992
1000  999
100  100  −2.5

3
4
4

Source:	 ACM Mid-Central USA 2001

IDs for Online Judges: POJ 1106, ZOJ 1041, UVA 2290

  Analysis

Suppose the point for the transmitter is p0. Because the transmitter may be 
rotated any amount, and broadcasts in a semicircular area of radius r, a straight 
line connecting any point and p0 can be regarded as the lower boundary line for 
the semicircular. If the straight line containing p pi

� ����
0  is the lower boundary line 



448  ◾  Algorithm Design Practice for Collegiate Programming

for the semicircular, point pj in the semicircular area must meet the following 
conditions:

1.	pj must be in the semicircular area whose lower boundary line contains p pi

� ����
0 , 

that is, p p p pi j

� ���� � ����
≥^ 00 0 ;

2.	The distance between pj and p0 must be less than the radius, that is, p p rj

� ����
≤0 .

Each time point i is as a starting point. By using cross product, the number 
of points si in the semicircular area can be calculated. If the straight line contain-
ing p pi

� ����
0  is as the lower boundary line for the semicircular, these points are in the 

semicircular area.
Obviously, the maximum number of points that can be contained in some 

semicircle are S s
i n

i=
≤ ≤

max{ }
1

.

  Program

#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
const double epsi = 1e-10;
const double pi = acos(-1.0);
const int maxn = 50005;
struct Point {    //Struct for point calculation
	 double x, y;
	 Point(double _x = 0, double _y = 0): x(_x), y(_y) { }   
// Point vector
	 Point operator -(const Point &op2) const {    //Vector 
reduction
		  return Point(x - op2.x, y - op2.y);
	 }
	 double operator ^(const Point &op2) const {    //Cross 
product for 2 point vectors
		  return x * op2.y - y * op2.x;
	 }
};
inline int sign(const double &x) {    //return positive, 
negative, or 0 mark for x
	 if (x > epsi) return 1;
	 if (x < -epsi) return -1;
	 return 0;
}



Practice for Computational Geometry  ◾  449

inline double sqr(const double &x) {    //Calculating x2

	 return x * x;
}
inline double mul(const Point &p0,const Point &p1,const Point 
&p2) {//cross product for p p0 1

� �����
 and p p0 2

� �����

	 return (p1 - p0) ^ (p2 - p0);
}
inline double dis2(const Point &p0, const Point &p1) {    

//Calculating p p0 1

2� �����

	 return sqr(p0.x - p1.x) + sqr(p0.y - p1.y);
}
inline double dis(const Point &p0, const Point &p1) {    
//Calculating p p0 1

� �����

	 return sqrt(dis2(p0, p1));
}
int n ;
Point p[maxn], cp;    //p[ ]: the sequence of points, cp: 
transmitter
double r;    // radius
int main() {
	 while (scanf("%lf %lf %lf ", &cp.x, &cp.y, &r) && r >= 0 ) {    
//Input coordinates of the transmitter and radius
	  scanf("%d", &n);    //Number of points
	  int ans = 0;
	  for (int i=0;i<n;i++)scanf("%lf %lf",&p[i].x,&p[i].y);    
// coordinates of points
	  for (int i = 0 ; i < n ; i ++) {    //enumerating all 
points
	    int tmp = 0;    // the lower boundary line containing 
point i and the transmitter, calculating number of points that 
can be contained in some semicircle
	    for (int j = 0 ; j < n ; j ++) 
		    if (sign( dis(p[j], cp)-r)!=1)          
		    if(sign( mul(cp,p[i],p[j]))!=-1)tmp++;    // number of 
points +1
		    ans = max( ans , tmp);    // adjust the maximum number 
of points
	  }
	  printf("%d\n", ans);    //Output the result
	 }
	 return 0;
}

The absolute value of the cross product P1̂ P2 for vector P1 and P2 is the 
area of the parallelogram whose points are the origin (0, 0), P1, P2, and P1+P2 
(Figure 8.6). And the area of the triangle whose points are origin, P1 and P2 

S
P P

P P =∆
^
2(0,0)

1 2
1 2

.



450  ◾  Algorithm Design Practice for Collegiate Programming

Therefore, the cross product can be used to calculate the area of a polygon. 
Points can be sorted clockwise or counterclockwise as p pn−...0 1, and pn=p0. The 

area of the polygon is S

P Pi i

i

n

∑
=

+

=

−

^

2

1

1

2

, where vector Pi is p pi

� ����
0 , 1≤i≤n−1.

8.1.1.2  Area

You are going to compute the area of a special kind of polygon. One vertex of the 
polygon is the origin of the orthogonal coordinate system. From this vertex, you 
may go step by step to the following vertexes of the polygon until you go back to 
the initial vertex. For each step you may go North, West, South, or East with a step 
length of one unit, or go Northwest, Northeast, Southwest, or Southeast with a 
step length of the square root of two.

For example, Figure 8.7 shows a legal polygon to be computed and its area is 2.5.

Input

The first line of input is an integer t (1≤t≤20), the number of the test polygons. 
Each of the following lines contains a string composed of digits 1−9 describing how 
the polygon is formed by walking from the origin. Here 8, 2, 6, and 4 represent 

x

P2(x2, y2)

P1(x1, y1)

P1 + P2(x1 + x2, y1 + y2)
y

0

Figure 8.6 

Figure 8.7 



Practice for Computational Geometry  ◾  451

North, South, East and West, while 9, 7, 3, and 1 denote Northeast, Northwest, 
Southeast, and Southwest respectively. Number 5 only appears at the end of the 
sequence, indicating the end of walking. You may assume that the input polygon is 
valid, which means that the endpoint is always the start point and the sides of the 
polygon are not cross to each other. Each line may contain up to 1000000 digits.

Output

For each polygon, print its area on a single line.

Sample Input Sample Output

4
5
825
6725
6244865

0
0
0.5
2

Source:	 POJ Monthly, 2004.05.15 Liu Rujia@POJ

ID for Online Judge: POJ 1654

  Analysis

Suppose points for the polygon are −, ,...,0 1 1p p pn , where p0 is (0, 0) and pn=p0. Based 
on the sequence of sides for the polygon, p pi i

� �����
+1 is the i+1-th side in the polygon, 

0≤i≤n−1; and the n-th side is p pn

� ������
−1 0 . From (0, 0), the vectors for points in the poly-

gon P0, P1, …, Pn−1 with respect to point p0 are calculated
Calculate the cross product for two vectors for the front and the rear of each side 

Pi^Pi+1(0≤i≤n−1). The area for the polygon is S

P Pi i

i

n

∑
=

+

=

−

^

2

1

0

1

.

  Program

#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>



452  ◾  Algorithm Design Practice for Collegiate Programming

#include <iostream>
#include <string>
using namespace std;
const double epsi = 1e-10;
const double pi = acos(-1.0);
const int maxn = 100005;
inline int sign(const double &x) {    //positive or negative
	 if (x > epsi) return 1;
	 if (x < -epsi) return -1;
	 return 0;
}
struct Point {    //Calculation for points
	 long long x, y;
	 Point(double _x = 0, double _y = 0): x(_x), y(_y) { }   
//construct points
	 Point operator +(const Point &op2) const {    // Vector 
addition
		  return Point(x + op2.x, y + op2.y);
	 }
	 long long operator ^(const Point &op2) const {    // Cross 
product
		  return x * op2.y - y * op2.x;
	 }
};
int main() {
	 int test = 0;
	 string s;
	 long long ans;
		  scanf ("%d\n", &test );    // the number of the test 
polygons
		  for (; test; test --) {    //every polygon is dealt with
			   cin >> s;    //polygon string
			   ans = 0;
			   Point p = Point( 0 , 0) , p1;    // the origin
			   for (int i = 0 ; i < s.size() ; i ++) {
				    if ( s[i] == '1') p1 = p+Point(-1, -1);  // Southwest
				    if ( s[i] == '2') p1 = p+Point(0, -1);    // South
				    if ( s[i] == '3') p1 = p+Point(1, -1);    
// Southeast
				    if ( s[i] == '4') p1 = p + Point(-1,0);    // West
				    if ( s[i] == '5') p1 = Point(0, 0);    // the end of 
walking
				    if ( s[i] == '6') p1 = p + Point(1, 0);    // East
				    if ( s[i] == '7') p1 = p+Point(-1, 1);    
// Northwest
				    if ( s[i] == '8') p1 = p + Point(0, 1);    // North
				    if ( s[i] == '9') p1 = p + Point(1, 1);    
// Northeast 
				    ans += p ^ p1;    //Accumulation for Cross product
				    p = p1;    //continue to walk



Practice for Computational Geometry  ◾  453

			   }
			   if (ans<0 ) ans = -ans;    //absolute value for area
			   cout<<ans/2;    //output area
			   if (ans % 2 ) cout << ".5";    //odd
			   cout << endl;
		  }
	 return 0;
}

8.1.2  Line Segment Intersection

In this section we focus on the following three problems:

1.	Determining whether two line segments intersect or cross;
2.	Calculating the intersection point when two line segments intersect;
3.	Calculating the circumcenter of a triangle.

1.	Determining whether two line segments intersect or cross.
Crossing means that two points of a line segment are respectively on both 
sides of the straight line containing another line segment, or one point of 
the line segment is on the straight line. Obviously, if we need to determine 
whether line segment p p

� ����
1 2  and line segment p p

� ����
3 4  cross or not, we only need 

to determine whether the following two conditions are held or not:

a.	Line segment p p
� ����

1 2  crosses the straight line containing line segment p p
� ����

3 4 ;
b.	Line segment p p

� ����
3 4  crosses the straight line containing line segment p p

� ����
1 2 .

Two crossings are used to determine whether the above two conditions 
hold or not. Cross product is used to determine this. If we need to determine 
whether line segment p p

� ����
3 4 crosses the straight line containing line segment 

p p
� ����

1 2 , we add two auxiliary lines p p
� ����

1 3 and p p
� ����

1 4 , and then calculate two cross 
products: (P3−P1)^(P2−P1) and (P4−P1)^(P2−P1):

If one cross product is positive, and the other is negative, then p p
� ����

3 4  can’t cross 
the straight line containing line segment p p

� ����
1 2  [Figure 8.8(a)];

If two cross products are all positive or negative, then p p
� ����

3 4  can’t cross the 
straight line containing line segment p p

� ����
1 2  [Figure 8.8(b)];

If one cross product is 0, p3 or p4 is on the straight line containing line seg-
ment p p

� ����
1 2  [Figure 8.8(c)].

8.1.2.1  Pick-up Sticks

Stan has n sticks of various lengths. He throws them on the floor, one at a time and 
in a random way. After he has finished throwing the sticks, Stan tries to find the 
top-most sticks, that is those with no sticks on top of them. Stan has noticed that the 



454  ◾  Algorithm Design Practice for Collegiate Programming

last thrown stick is always on top, but he wants to find all the sticks that are on top. 
Stan’s sticks are quite thin, so thin that their thickness can be neglected (Figure 8.9).

Input

Input consists of a number of cases. The data for each case start with 1≤n≤100000, 
the number of sticks for this case. The following n lines contain four numbers each; 
these numbers are the planar coordinates of the endpoints of one stick. The sticks 
are listed in the order in which Stan has thrown them. You may assume that there 
are not more than 1000 top sticks. The input is ended by the case with n=0. This 
case should not be processed.

Output

For each input case, print one line of output listing the top sticks in the format given 
in the sample. The top sticks should be listed in order in which they were thrown.

Figure 8.9 illustrates the first case from input.

Sample Input Sample Output

5
1  1  4  2
2  3  3  1
1  -2.0  8  4
1  4  8  2
3  3  6  -2.0
3
0  0  1  1
1  0  2  1
2  0  3  1
0

Top sticks: 2, 4, 5.
Top sticks: 1, 2, 3.

Source:	 Waterloo local 2005.09.17

IDs for Online Judges: POJ 2653, ZOJ 2551

Huge input, scanf is recommended. 

P1

(a)

P3

P2

P4

(P3 – P1) ^ (P2 – P1) < 0

(P4 – P1) ^ (P2 – P1) > 0

P1

P2

(b)

P3 P4

(P3 – P1) ^ (P2 – P1) < 0

(P4 – P1) ^ (P2 – P1) < 0

P1

P4

P2

(c)

P3

(P3 – P1) ^ (P2 – P1) < 0

(P4 – P1) ^ (P2 – P1) = 0

Figure 8.8 



Practice for Computational Geometry  ◾  455

  Analysis

The sticks are listed in the order in which Stan has thrown them. Each stick i is 
enumerated in ascending order of numbers (i.e., bottom-up), 1≤i≤n:

Each stick j which is over stick i is enumerated, i+1≤j≤n. If there is a stick that 
stick i intersects with, then there is a stick on top of stick i, and stick i+1 is enumer-
ated. If there is no stick on top of stick i, stick i is a stick on top.

Two crossings are used to determine whether two sticks intersect or not. Suppose 
stick i is p pi i

� ����
1 2 , and stick j is p pj j

� �����
1 2 . If p pi i

� ����
1 2  and p pj j

� �����
1 2  intersect, the two following 

conditions must hold:

1.	 p pj j
� �����

1 2  crosses p pi i
� ����

1 2 , that is, positive and negative signs for p p p pi i i j
� ���� � ����

^1 2 1 1  and 
p p p pi i i j
� ���� � ����

^1 2 1 2  are different, or one of the two cross products is 0;

2.	 p pi i
� ����

1 2  crosses p pj j
� �����

1 2 , that is, positive and negative signs for p p p pj j j i
� ����� � ����

^1 2 1 1  and 
p p p pj j j i
� ����� � �����

^1 2 1 2  are different, or one of the two cross products is 0.

The time complexity is O(n2).

  Program

#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>

Figure 8.9 



456  ◾  Algorithm Design Practice for Collegiate Programming

#include <iostream>
using namespace std;
const double epsi = 1e-10;    // Infinitesimal
const double pi = acos(-1.0);
const int maxn = 100005;    //the upper limit of the number of 
sticks
inline int sign(const double &x) {
	 if (x > epsi) return 1;
	 if (x < -epsi) return -1;
	 return 0;
}
//structure and calculation for point
struct Point {
	 double x, y;
	 Point(double _x = 0, double _y = 0): x(_x), y(_y) { }   
//construct a point
	 Point operator +(const Point &op2) const {
		  return Point(x + op2.x, y + op2.y);
	 }
	 Point operator -(const Point &op2) const {
		  return Point(x - op2.x, y - op2.y);
	 }
	 double operator *(const Point &op2) const {
		  return x * op2.x + y * op2.y;
	 }
	 Point operator *(const double &d) const {
		  return Point(x * d, y * d);
	 }
	 Point operator /(const double &d) const {
		  return Point(x / d, y / d);
	 }
	 double operator ^(const Point &op2) const {    // cross 
product for vectors
		  return x * op2.y - y * op2.x;
	 }
	 bool operator !=(const Point &op2) const {
		  return sign (op2.x - x) != 0 || sign( op2.y - y) != 0;
	 }
};
inline double sqr(const double &x) {    //x2

	 return x * x;
}
inline double mul(const Point &p0, const Point &p1, 
const Point &p2) {
   // cross product for p p

� �����
0 1 and p p

� �����
1 2

	 return (p1 - p0) ^ (p2 - p0);
}
inline double dis2(const Point &p0, const Point &p1) {
	 return sqr(p0.x - p1.x) + sqr(p0.y - p1.y);
}



Practice for Computational Geometry  ◾  457

inline double dis(const Point &p0, const Point &p1) {   // p p
� �����
0 1

	 return sqrt(dis2(p0, p1));
}
inline int cross( const Point &p1 , const Point &p2 , const 
Point &p3 , const Point &p4 , Point &p) {    //determine 
whether p p

� �����
1 2 crosses p p

� �����
3 4

	 double a1 = mul( p1, p2 , p3), a2 = mul( p1, p2 , p4 ) ;
	 if (sign ( a1 ) ==0 && sign ( a2 ) == 0) return 2;    //if 
p p
� �����
1 2 and p p

� �����
3 4 coincide, return 2

	 if (sign ( a1 ) == sign ( a2 )) return 0;    //if p p
� �����
1 2 

doesn't cross p p
� �����
3 4, return 0

	 return 1;    // p p
� �����
1 2 crosses p p

� �����
3 4

}
int n;
Point p1[maxn] , p2[maxn] , tp;    //a sequence of coordinates 
for sticks p1[] and p2[]
int main() {
	 int test = 0;    //number of test cases
	 while ( scanf ("%d", &n ) && n ) {    //number of sticks
		  printf("Top sticks:");
		  bool fl = false ;
		  for ( int i = 1 ; i <= n ; i ++)    // a sequence of 
coordinates for n sticks
			   scanf("%lf %lf %lf %lf" , &p1[i].x , & p1[i].y , & 
p2[i].x ,& p2[i].y);
		  for ( int i = 1 ; i <= n ; i ++) {    // Each stick i is 
enumerated bottom-up, 1≤i≤n
			   bool flag = false ;
			   for (int j = i+1 ; j <= n ; j ++)    // Each stick j 
which is over stick i is enumerated
			   if ( cross ( p1[i] , p2[i] , p1[j] , p2[j] , tp ) == 1 
&& cross ( p1[j] , p2[j] , p1[i] , p2[i] , tp ) == 1) { flag = 
true; break; }
			   if (flag == false && fl == true )  printf(",");
			   if (flag == false ) printf(" %d", i ), fl = true;
		  }
		  printf(".\n");
	 }
	 return 0;
}

2. Calculating the intersection point when two line segments intersect.
The formula for cross product can be used to calculate the intersection point 
when two line segments intersect. Suppose mul(p0, p1, p2) is the cross prod-
uct for p p

� ����
0 1  and p p

� ����
0 2 , thst is, mul(p0, p1, p2)=(p1−p0)^(p2−p0). The cross 

product can be calculated as the triangle area (the shadow area) in the 
parallelogram, whose points are p0, p1, p2, and p1+p2 respectively, that is, 

S mul p p pp p p = ×∆
1
2

( , , )0 1 20 1 2  (Figure 8.10).



458  ◾  Algorithm Design Practice for Collegiate Programming

Based on this information, the intersection point when two line segments 
intersect can be calculated. For example, in Figure 8.11, point P is the inter-
section point for line segment AB and line segment CD.

DD' is a vertical line for segment line AB from point D, and CC ' is a 
vertical line for line segment AB from point C. Because ∆DD'P ∼ ∆CC 'P, 
DD
CC

DP
PC

=
'
'

. Because S DD AB
ABD = ×

∆
| ' | | |

2
, and = ×

∆
| ' | | |

2
S

CC AB
ABC ,

DP
PC

S
S

AD AB
AC AB

mul D B A
mul C B A

ABD

ACB

| |
| |

| ^ |
| ^ |

| ( , , ) |
| ( , , ) |

.
� ��� � ���
� ��� � ���= = =∆

∆

Because DP
PC

x x
x x

D p

P C
=

−
−

y y
y y

D p

P C
=

−
−

,

= × + ×
+

= × − ×
−

∆ ∆

∆ ∆
x

S x S x
S S

mul D B A x mul C B A x
mul D B A mul C B A

p
ABD c ABC D

ABD ABC

C D( , , ) ( , , )
( , , ) ( , , )

,  and

y
S y S y

S S
mul D B A y mul C B A y

mul D B A mul C B A
p

ABD c ABC D

ABD ABC

C D( , , ) ( , , )
( , , ) ( , , )

.= × + ×
+

= × − ×
−

∆ ∆

∆ ∆

8.1.2.2  Intersecting Lines

We all know that a pair of distinct points on a plane defines a line and that a pair of 
lines on a plane will intersect in one of three ways: 1) no intersection because they 

P1(x1, y1)

P0(x0, y0)

P2(x2, y2)

P1 + P2(x1 + x2, y1 + y2)

Figure 8.10 

B

C

C´

D´
P

A

D

Figure 8.11 



Practice for Computational Geometry  ◾  459

are parallel, 2) intersect in a line because they are on top of one another (i.e., they 
are the same line), 3) intersect in a point. In this problem you will use your algebraic 
knowledge to create a program that determines how and where two lines intersect.

Your program will repeatedly read in four points that define two lines in the x-y 
plane and determine how and where the lines intersect. All numbers required by 
this problem will be reasonable, say between −1000 and 1000.

Input

The first line contains an integer N between 1 and 10 describing how many pairs of 
lines are represented. The next N lines will each contain eight integers. These integers 
represent the coordinates of four points on the plane in the order x1 y1 x2 y2 x3 y3 x4 y4. 
Thus, each of these input lines represents two lines on the plane: the line through 
(x1, y1) and (x2, y2) and the line through (x3, y3) and (x4, y4). The point (x1, y1) is 
always distinct from (x2, y2). Likewise with (x3, y3) and (x4, y4).

Output

There should be N+2 lines of output. The first line of output should read 
“INTERSECTING LINES OUTPUT”. There will then be one line of output for 
each pair of planar lines represented by a line of input, describing how the lines 
intersect: “NONE”, “LINE”, or “POINT”. If the intersection is a point, then your 
program should output the x and y coordinates of the point, correct to two decimal 
places. The final line of output should read “END OF OUTPUT:”.

Sample Input Sample Output

5
0  0  4  4  0  4  4  0
5  0  7  6  1  0  2  3
5  0  7  6  3  -6  4  -3
2  0  2  27  1  5  18  5
0  3  4  0  1  2  2  5

INTERSECTING LINES OUTPUT
POINT 2.00 2.00
NONE
LINE
POINT 2.00 5.00
POINT 1.07 2.20
END OF OUTPUT

Source:	 ACM Mid-Atlantic 1996

IDs for Online Judges: POJ 1269, ZOJ 1280, UVA 378

  Analysis

The problem requires you to determine the relation between a pair of lines: they 
are parallel, they are the same line, or they intersect; and if they intersect, you need 
to output the x and y coordinates of the intersection point. One crossing is used to 



460  ◾  Algorithm Design Practice for Collegiate Programming

determine whether the two lines are parallel or the same line (whether p p
� ����

3 4  crosses 
p p
� ����

1 2  or not):

  Suppose a1=mul(p1, p2, p3), and a2=mul(p1, p2, p4).
  If (a1==0)&&(a2==0), then line segments p p

� �����
1 2 and p p

� �����
3 4 are the 

same lines;
  If positive and negative signs for a1 and a2 are same, then 
line segments p p

� �����
1 2 and p p

� �����
3 4 are parallel;

  If positive and negative signs for a1 and a2 are different, 
the x and y coordinates of the intersection point is 

calculated directly: p
a p x a p x

a a
a p y a p y

a a
. . , . . .= × − ×

−
× − ×

−






2 1
2 1

2 1
2 1

3 4 3 4

  Program

#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
const double epsi = 1e-10;    // Infinitesimal
inline int sign(const double &x) {    // positive and negative 
signs for x
	 if (x > epsi) return 1;
	 if (x < -epsi) return -1;
	 return 0;
}
struct Point {    // structure and calculation for point
	 double x, y;	
	 Point(double _x = 0, double _y = 0): x(_x), y(_y) { }  
//Construct point
	 Point operator -(const Point &op2) const {    // subtraction 
for vectors
		  return Point(x - op2.x, y - op2.y);
	 }
	 double operator ^(const Point &op2) const {    //cross 
product
		  return x * op2.y - y * op2.x;
	 }
};
inline double sqr(const double &x) {    // x2

	 return x * x;
}
inline double mul(const Point &p0,const Point &p1,const Point 
&p2){    //cross product for p p

� �����
0 1 and p p

� �����
0 2



Practice for Computational Geometry  ◾  461

	 return (p1 - p0) ^ (p2 - p0);
}
inline double dis2(const Point &p0, const Point &p1) {
	 return sqr(p0.x - p1.x) + sqr(p0.y - p1.y);
}
inline double dis(const Point &p0, const Point &p1) {    
// p p
� �����
0 1

	 return sqrt(dis2(p0, p1));
}
inline int cross( const Point &p1 , const Point &p2 , const 
Point &p3 , const Point &p4 , Point &p) {    //if p p

� �����
1 2 and p p

� �����
3 4 

are the same lines, return 2; if parallel return 0; else 
return 1 and the intersection point p
	 double a1 = mul( p1, p2 , p3), a2 = mul( p1, p2 , p4 ) ;
	 if (sign ( a1 ) ==0 && sign ( a2 ) == 0) return 2;
	 if (sign ( a1 - a2 ) == 0) return 0;
	 p.x = ( a2 * p3.x - a1 * p4.x) / ( a2 - a1 );
	 p.y = ( a2 * p3.y - a1 * p4.y) / ( a2 -a1 );
	 return 1;
}
Point p1 , p2 , p3 , p4 , p;
int main() {
	 int test = 0;
	 printf("INTERSECTING LINES OUTPUT\n");
	 scanf("%d" , & test);    //number of test cases
	 for ( ; test ; test --) {    //test cases are dealt with one 
by one
		  scanf( "%lf %lf %lf %lf %lf %lf %lf %lf" , &p1.x , 
&p1.y , &p2.x , & p2.y , &p3.x , &p3.y , &p4.x , &p4.y);    
// coordinate for p p

� �����
1 2 and p p

� �����
3 4

		  int m=cross(p1,p2,p3,p4,p);    //relationship between p p
� �����
1 2 

and p p
� �����
3 4

		  if (m == 0 ) printf("NONE\n");    //parallel
		  else if(m==2)printf("LINE\n");    //same lines
		  else printf("POINT %.2lf %.2lf\n", p.x , p.y);    // the 
intersection point p
	 }
	 printf("END OF OUTPUT");
	 return 0;
}

3. Calculating the circumcenter of a triangle.
In a triangle, the intersection point of perpendicular bisectors for three sides 
is the circumcenter of a triangle of the triangle. The distance between a point 
and the circumcenter is the radius of the circumcircle.

Suppose the three points for a triangle are p1=(x1, y1), p2=(x2, y2), and 
p3=(x3, y3), respectively; and the center of the circumcircle is p=(x, y).



462  ◾  Algorithm Design Practice for Collegiate Programming

For edge vector p p
� ����

1 2 , suppose 2 11 2
� ����� = −A x xp p , 

1 2
� �����Bp p  2 11 2

� ����� = −B y yp p , and 
� ����

� ����� =−
2
1 2

1 2
C

p p
p p ; and for edge vector p p

� ����
1 3 , suppose 3 11 3

� ����� = −A x xp p , 3 11 3
� ����� = −B y yp p , 

and C
p p

p p

� ����
� ����� = −

2
1 3

1 3
; p1 is as the origin. The intersection point of perpendicu-

lar bisectors for side p p
� ����

1 2  and side p p
� ����

1 3  in the triangle is p x y=∗ ∗ ∗( , )1 1 1 , where 
� ����� � ����� � ����� � �����

� ����� � ����� � ����� � �����
=−

× − ×
× − ×

∗
1

1 3 1 2 1 2 1 3

1 3 1 2 1 3 1 2

x
C B C B
A B B A

p p p p p p p p

p p p p p p p p

, and 
� ����� � ����� � ����� � �����

� ����� � ����� � ����� � �����
=−

× − ×
× − ×

∗
1

1 3 1 2 1 2 1 3

1 3 1 2 1 2 1 3

y
C A C A
B A B A

p p p p p p p p

p p p p p p p p
.

Therefore, the center of the circumcircle is 1 1= + ∗p p p , and the Cartesian 
coordinates of point p are x x y y+ +∗ ∗( , )1 1 1 1 .

8.1.2.3  Circle Through Three Points

Your team is to write a program that, given the Cartesian coordinates of three 
points on a plane, will find the equation of the circle through them all. The three 
points will not be on a straight line. The solution is to be printed as an equation of 
the form

	 x h y k r− + − =( ) ( )2 2 2
	 (1)

and an equation of the form

	 x y cx dy e+ + + − = 02 2
	 (2)

Input

Each line of input to your program will contain the x and y coordinates of three 
points, in the order Ax, Ay, Bx, By, Cx, Cy. These coordinates will be real numbers 
separated from each other by one or more spaces.

Output

Your program must print the required equations on two lines using the for-
mat given in the sample below. Your computed values for h, k, r, c, d, and e in 
Equations 1 and 2 above are to be printed with three digits after the decimal 
point. Plus and minus signs in the equations should be changed as needed to 
avoid multiple signs before a number. Plus, minus, and equal signs must be 
separated from the adjacent characters by a single space on each side. No other 
spaces are to appear in the equations. Print a single blank line after each equa-
tion pair.



Practice for Computational Geometry  ◾  463

Sample Input Sample Output

7.0  -5.0  -1.0  1.0  0.0  -6.0
1.0  7.0  8.0  6.0  7.0  -2.0

(x - 3.000)^2 + (y + 2.000)^2 = 5.000^2
x^2 + y^2 - 6.000x + 4.000y - 12.000 = 0

(x - 3.921)^2 + (y - 2.447)^2 = 5.409^2
x^2 + y^2 - 7.842x - 4.895y - 7.895 = 0

Source:	 ACM Southern California 1989

IDs for Online Judges: POJ 1329, UVA 190

  Analysis

On a plane, if three points aren’t on a straight line, the three points are points of a 
triangle, and the circle through the three points is a circumcircle.

For equation 1, (x−h)2+(y−k)2=r2, (h, k) is the Cartesian coordinate for the cen-
ter of the circumcircle, and r is the radius of the circumcircle.

For equation 2, x2+y2+cx+dy−e=0, c=−2×h, d=−2×k, e=h2+k2−r2.
The key to the problem is to calculate the center (h, k) of the circumcircle for 

ΔABC. Distances between the center and the points of the triangle are same. The 
radius r is the distance between the center and any point of the triangle.

  Program

#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
const double epsi = 1e-10;    //precision
inline int sign(const double &x) {    //positive or negative 
sign for x
	 if (x > epsi) return 1;
	 if (x < -epsi) return -1;
	 return 0;
}
struct Point {    // structure and calculation for point
	 double x, y;
	 Point(double _x = 0, double _y = 0): x(_x), y(_y) { }  
//point (x, y)



464  ◾  Algorithm Design Practice for Collegiate Programming

	 Point operator +(const Point &op2) const {    //Addition for 
vectors
		  return Point(x + op2.x, y + op2.y);
	 }
	 Point operator -(const Point &op2) const {    //Subtraction 
for vectors
		  return Point(x - op2.x, y - op2.y);
	 }
	 Point operator *(const double &d) const {    //vector times 
real
		  return Point(x * d, y * d);
	 }
	 Point operator /(const double &d) const {    //vector is 
divided by real
		  return Point(x / d, y / d);
	 }
	 double operator ^(const Point &op2) const {    //cross 
product for two vectors
		  return x * op2.y - y * op2.x;
	 }
};
inline double mul(const Point &p0,const Point &p1,const Point 
&p2) {//Cross product for p p

� �����
0 1 and p p

� �����
0 2

	 return (p1-p0) ^ (p2 - p0);
}
struct StraightLine {    // perpendicular bisector's structure
	 double A, B, C;    // Perpendicular Bisector, where for 
edge-vector pipj in a triangle, A=(xj−xi), B=(yj−yi), 

C
p p

i j
i j

( , )

� �����

= ≤ ≤
2

1 3

	 StraightLine(double _a=0, double _b=0, double _c=0): A(_a), 
B(_b), C(_c){ }  // perpendicular bisector is constructed
	  Point cross(const StraightLine &a) const {    
// calculating the intersection point for the perpendicular 
bisector and perpendicular bisector a
		  double xx = - (C * a.B - a.C * B) / (A * a.B - B * a.A);
		  double yy = - (C * a.A - a.C * A) / (B * a.A - a.B * A );
		  return Point(xx, yy);
	 }
};
inline double sqr(const double &x) {    // x2

	 return x * x;
}

inline double dis2(const Point &p0, const Point &p1) { // p p
� �����
0 1

2

	 return sqr(p0.x - p1.x) + sqr(p0.y - p1.y);
}
inline double dis(const Point &p0, const Point &p1) {   // p p

� �����
0 1

	 return sqrt(dis2(p0, p1));
}



Practice for Computational Geometry  ◾  465

inline double circumcenter(const Point &p1,const Point 
&p2,const Point &p3,Point &p)    //calculating the center p 
and radius for the circumcircle, p is the intersection point 
for p p

� �����
1 3 and p p

� �����
1 2

{ 
	 p=p1+StraightLine(p3.x-p1.x,p3.y-p1.y,-dis2(p3,p1)/2.0).
cross(StraightLine(p2.x-p1.x, p2.y-p1.y,-dis2(p2, p1)/2.0));    
//center of circle p
	 return dis( p , p1 );    //return radius
}
Point p1, p2, p3, p;
inline int print(double x) {    //output value x
	 if (x > 0) printf(" + %.3lf", x);
	 else printf(" - %.3lf", -x);
	 return 0;
}
int main() {
		  while (cin>>p1.x>>p1.y>>p2.x>>p2.y>>p3.x>>p3.y){    
// coordinates of three points
	    double r=circumcenter(p1,p2,p3,p);    // the center and 
radius for circumcircle p and r
		  printf("(x");    //equation 1
		  print(-p.x);
		  printf(")^2 + (y");
		  print(-p.y);
		  printf(")^2 =");
		  printf(" %.3lf", r);
		  printf("^2\n");
		  printf("x^2 + y^2");    //equation 2
		  print(-2 * p.x);
		  printf("x");
		  print(-2 * p.y);
		  printf("y");
		  print(sqr(p.x) + sqr(p.y) - sqr(r));
		  printf(" = 0\n\n");
	 }
	 return 0;
}

8.1.3 � Solving Polyhedron Problems by Euler's 
Polyhedron Formula

Euler’s Formula: If a finite, connected, planar graph is drawn in the plane without 
any edge intersections; and v is the number of vertices, e is the number of edges, and 
f is the number of faces (regions bounded by edges, including the outer, infinitely 
large region), then v−e+f =2.



466  ◾  Algorithm Design Practice for Collegiate Programming

Euler’s Polyhedron Formula: For a polyhedron, the number of vertices (corner 
points) v, plus the number of faces f, and minus the number of edges e, equals 2. 
Symbolically v−e+f =2.

8.1.3.1  How Many Pieces of Land?

You are given an elliptical-shaped piece of land (see Figure 8.12) and you are asked 
to choose n arbitrary points on its boundary. Then you connect all these points with 
each other with straight lines (that’s n×(n−1)/2 connections for n points). What is 
the maximum number of pieces of land you will get by choosing the points on the 
boundary carefully?

Input

The first line of the input file contains one integer S (0<S<3500), which indicates 
how many sets of input there are. The next S lines contain S sets of input. Each 
input contains one integer N (0≤N<231).

Output

For each set of input, you should output in a single line the maximum number of 
pieces of land possible to get for the value of N.

Sample Input Sample Output

4
1
2
3
4

1
2
4
8

Source:	 Math & Number Theory Lovers’ Contest

ID for Online Judge: UVA 10213

Figure 8.12 



Practice for Computational Geometry  ◾  467

  Analysis

The number of pieces of land is the number of faces. Euler’s Formula v−e+f  =2 is 
used to solve the problem, where v is the number of vertices, e is the number of 
edges, and f is the number of faces.

First, the number of vertices v is calculated. There are n points on the ellipse’s 
boundary. For a point x on the boundary, there are n−1 straight lines connecting 
point x and other points. For a straight line l, there are i points on the left, and 
there are n−2−i points on the right. Because all these points are connected with one 
another with straight lines, there are at most i×(n−i−2) points on a straight line. 

Each point is repeatedly counted four times. Therefore, v n
n

i n i
i

n

∑= + × − −
=

−

4
( 2).

1

3

 

Second, the number of edges e is calculated. There are n points on the elliptical 
shaped land’s boundary. There are n edges on the boundary. There are n straight 
lines connecting adjacent points. There are no intersection points on these edges. 
For other straight lines connecting points, there are i×(n−i−2) intersection points 
on a straight line. On a straight line, there are i×(n−i−2)+1 edges. Therefore, 

∑= × + × − − +
=

−

2
2

( 2) 1.
1

3

e n
n

i n i
i

n

Euler’s Formula v−e+f =2 is used to solve the problem. The maximum number 

of pieces of land = − + − +6 23 18
24

1.
4 3 2

f
n n n n

Because the upper limit for n is 231, the high-precision method is also used.

  Program

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <string>
# include <cmath>
# include <algorithm>
using namespace std;
typedef long long int64;
int64 m=1e8;    //High-precision number: a decimal number with 
8-digit
struct Bigint{    // High-precision number



468  ◾  Algorithm Design Practice for Collegiate Programming

	 int64 s[50];int l;    // High-precision number: array s[], 
length l
	 void print(){    //output the integer for s[]
		  printf("%lld",s[l]); 
		  for(int i=l-1;i>=0;i--) printf("%08lld",s[i]); 
	 }
	 void read(int64 x){    //integer x is stored in s[]
		  l=-1; memset(s,0,sizeof(s))
		  do{
			   s[++l]=x%m;
			   x/=m;
		  }while(x);
	 }
} ans,tmp,t2;
Bigint operator +(Bigint a,Bigint b){    // a[]+b[]
	 int64 d=0;  
	 a.l=max(a.l,b.l); 
	 for(int i=0;i<=a.l;i++){    //addition bitwise
		  a.s[i]+=d+b.s[i];
		  d=a.s[i]/m;a.s[i]%=m;
	 }
	 if(d)	 a.s[++a.l]=d;    //carry
	 return a;
}
Bigint operator -(Bigint a,Bigint b){    // a[]-b[]
	 int64 d=0;
	 for(int i=0;i<=a.l;i++){    //subtraction bitwise
		  a.s[i]-=d;
		  if(a.s[i]<b.s[i])a.s[i]+=m,d=1;
		  else	d=0;
		  a.s[i]-=b.s[i];
	 }
	 while(a.l&&!a.s[a.l]) a.l--;    //borrow
	 return a;
}
Bigint operator *(int b,Bigint a){    // a[]*b
	 int64 d=0;  
	 for(int i=0;i<=a.l;i++) {    //times bitwise
		  d+=a.s[i]*b;a.s[i]=d%m;
		  d/=m;
	 }
	 while(d){    //carry
		  a.s[++a.l]=d%m;
		  d/=m;
	 }
	 return a;
}
Bigint operator /(Bigint a,int b){    // a[]/b
	 int64 d=0; 
	 for(int i=a.l;i>=0;i--){  
		  d*=m;d+=a.s[i];



Practice for Computational Geometry  ◾  469

		  a.s[i]=d/b;d%=b;
	 }
	 while(a.l&&!a.s[a.l])	 a.l--;    //omit 0
	 return a;
}
Bigint operator *(Bigint a,Bigint b){    // a[]*b[]
	 Bigint c; memset(c.s,0,sizeof(c.s))
	 for(int i=0;i<=a.l;i++){ 
		  for(int j=0;j<=b.l;j++){
			   c.s[i+j]+=a.s[i]*b.s[j]; 
			   if(c.s[i+j]>m){    //carry
				    c.s[i+j+1]+=c.s[i+j]/m;
				    c.s[i+j]%=m;
			   }
		  }
	 }
	 c.l=a.l+b.l+10;
	 while(!c.s[c.l]&&c.l)c.l--;
	 while(c.s[c.l]>m){
		  c.s[c.l+1]+=c.s[c.l]/m;
		  c.s[c.l++]%=m;
	 }
	 return c;
}
int v;
void work(){
	 ans.read(v);tmp.read(24);    //ans: number of points
	 ans=ans*ans*ans*ans+23*(ans*ans)+tmp-6*(ans*ans*ans)-18*ans;    
//formula
	 ans=ans/24;    //calculate and output the number of faces
	 ans.print();printf("\n");
}
int main(){
	 int casen;scanf("%d",&casen);    //number of test cases
	 while(casen--){    //test cases are dealt with one by one
		  scanf("%d",&v);    //number of points
		  work();    //calculate and output the number of faces
	 }
	 return 0;
}

8.2 � Calculating the Area for Union of 
Rectangles by Sweep Line Algorithms

Sweep line algorithms can be used to calculate the area for the union of rectangles.
Suppose there are n rectangles R1, …, Rn in a plane. R1∪R2∪…∪Rn is the union 

of n rectangles. The area for the union of n rectangles is the area of coverage by 
these n rectangles. For example, in Figure 8.13, the shadow area is the area of 
R1∪R2∪R3, that is, the area of coverage by the three rectangles.



470  ◾  Algorithm Design Practice for Collegiate Programming

The steps for calculating the area for the union of rectangles are as follows:

1.	Discretization: The plane is divided into several strips.
2.	Sweep: A sweep algorithm is used to sweep strips. Strips are stored in a seg-

ment tree.
3.	Segment tree: Calculating the area for union of rectangles is implemented by 

insertions and deletions in the segment tree.

Sweep line algorithms are introduced through two kinds of experiments:

1.	Calculating the area for union of rectangles in the vertical direction;
2.	Calculating the area for union of rectangles in the horizontal direction.

Sweep line algorithms can also be extended to the three-dimensional space to 
calculate the volume for union of cuboids.

8.2.1  Sweeping in the Vertical Direction

Calculating the area for union of rectangles in the vertical direction is as follows. 
Discretization is on the Y-axis. The plane is divided into several vertical strips by sweep-
ing on the X-axis. A segment tree is used to accumulate areas of these vertical strips.

Discretization: Discrete points are intersection points for sides of rectangles (or 
their extended lines) and the Y-axis. In Figure 8.14, discrete points are A, B, C, and D. 

R3

R1

R2

Figure 8.13  The area of R1∪R2∪R3.

A

B

C

D

Figure 8.14  Discrete points A, B, C, and D are intersection points for sides of 
rectangles and Y-axis.



Practice for Computational Geometry  ◾  471

Segments of discrete units are distances between two adjacent discrete points in the 
ordered sequence of discrete points. For example, in Figure 8.14, the Y-axis for A is 1, 
the Y-axis for B is 2, the Y-axis for C is 3, and the Y-axis for D is 4. After the discretiza-
tion, lengths for segment AB, BC, and CD are 1.

Sweep: First, the plane is divided into vertical strips, and each vertical strip is 
one-dimensional. In Figure 8.15, the plane is divided into three vertical strips by 
straight lines l1, l2, l3, and l4.

Each vertical strip’s section can be regarded as a little modification for two adja-
cent vertical strips’ sections. In Figure 8.16, the section for vertical strip 2 = the sec-
tion for vertical strip 1 + segment AB = the section for vertical strip 3 + segment CD.

Strip 3Strip 2

l1 l2 l3 l4

Strip 1

A

B

D

C

Figure 8.15  The plane is divided into three vertical strips by straight lines l1, l2, 
l3, and l4.

Strip 3Strip 2

l1 l2 l3 l4

Strip 1

A

B

D

C

Figure 8.16 



472  ◾  Algorithm Design Practice for Collegiate Programming

Segment tree: A segment tree is a rooted binary tree, where each vertex repre-

sents an interval [a, b]. For each vertex, if (b−a)>1, suppose c a b= +



2

, and roots 

for its left subtree and right subtree represent intervals [a, c] and [c, b] respectively. 
In Figure 8.17, interval [1, 4] can be divided into intervals [1, 2] and [2, 4]. And 
interval [2, 4] can be divided into intervals [2, 3] and [3, 4].

Because vertical strips can be represented as segments, a segment tree can be 
used to store vertical strips. Calculating the area for union of n rectangles can be 
implemented by insertion and deletion in a segment tree.

8.2.1.1  Mobile Phone Coverage

A mobile phone company ACMICPC (Advanced Cellular, Mobile, and Internet-
Connected Phone Corporation) is planning to set up a collection of antennas for 
mobile phones in a city called Maxnorm. The company ACMICPC has several 
collections for locations of antennas as their candidate plans, and now they want to 
know which collection is the best choice.

For this purpose, they want to develop a computer program to find the coverage 
of a collection of antenna locations. Each antenna Ai has power ri, corresponding 
to “radius”. Usually, the coverage region of the antenna may be modeled as a disk 
centered at the location of the antenna (xi, yi) with radius ri. However, in this city, 
Maxnorm, such a coverage region becomes the square[xi−ri,xi+ri]×[yi−ri,yi+ri]. In 
other words, the distance between two points (xp, yp) and (xq, yq) is measured by the 
max norm max{|xp−xq|, |yp−yq|} , or, the norm L∞, in this city Maxnorm instead of 
the ordinary Euclidean norm − + −( ) ( ) .2 2x x y yp q p q

As an example, consider the following collection of three antennas as depicted 
in Figure 8.18:

4.0      4.0      3.0
5.0      6.0      3.0
5.5      4.5      1.0

where the i-th row represents xi, yi, ri such that (xi, yi) is the position of the i-th 
antenna and ri is its power. The area of regions of points covered by at least one 
antenna is 52.00 in this case.

[3, 4][2, 3]

[2, 4][1, 2]

[1, 4]

Figure 8.17  A segment tree representing interval [1, 4].



Practice for Computational Geometry  ◾  473

Write a program that finds the area of coverage by a given collection of antenna 
locations.

Input

The input contains multiple data sets, each representing a collection of antenna 
locations. A data set is given in the following format.

	 n
	 x1 y1 r1
	 x2 y2 r2
	 …………

	 xn yn rn

The first integer n is the number of antennas, such that 2≤n≤100. The coordi-
nate of the i-th antenna is given by (xi, yi), and its power is ri. xi, yi and ri are frac-
tional numbers between 0 and 200 inclusive.

The end of the input is indicated by a data set with 0 as the value of n.

Output

For each data set, your program should output its sequence number (1 for the first 
data set, 2 for the second, etc.) and the area of the coverage region. The area should 
be printed with two digits to the right of the decimal point, after rounding it to 
two decimal places.

The sequence number and the area should be printed on the same line with no 
spaces at the beginning and end of the line. The two numbers should be separated 
by a space.

0

4

8

y

4 8

(5.5, 4.5, 1)

(4, 4, 3)

(5, 6, 3)

x

Figure 8.18 



474  ◾  Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output

3
4.0  4.0  3.0
5.0  6.0  3.0
5.5  4.5  1.0
2
3.0  3.0  3.0
1.5  1.5  1.0
0

1  52.00
2  36.00

Source:	 ACM Asia Regional Contest Tokyo 1998

IDs for Online Judges: ZOJ 1659, UVA 688

  Analysis

Each antenna’s coverage is a square whose center is (xi, yi) and the length of its side 
is 2×ri. The area of coverage by n antennas’ locations is the area for the union of n 
corresponding squares. That is, the problem requires you to calculate the area for 
the union of n corresponding squares.

The area for the union of n corresponding squares is calculated by sweeping in 
the vertical direction. Discretization is on the Y-axis. The plane is divided into sev-
eral vertical strips by sweeping on the X-axis. A segment tree is used to accumulate 
areas of vertical strips.

  Program

#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
const double epsi = 1e-10;
const int maxn = 100 + 10;
struct Line {    //coverage area
	 double x, y1, y2;    // x-coordinate for the left or right, 
y-coordinates for the above side and below sides, 

= −





s

1 x-coordinate for the left node
1 x-coordinate for the right node



Practice for Computational Geometry  ◾  475

	 int s;
	 Line(double _a=0, double _b=0, double _c=0, int _d=0): 
x(_a),y1(_b),y2(_c),s(_d){ }
//construct a segment
	 bool operator <(const Line &op2) const {    //Sorting in 
ascending order for x-coordinates
		  return x < op2.x;
	 }
};
extern double ly[maxn << 1];    //ly[ ] stores y-coordinates 
for the above side and below sides of a square covered by 
antennas, capacity is 2maxn

class SegmentTree {    // Segment tree
	 int cover;    // the flag for an open interval
	 SegmentTree *child[2];    //left, right children pointers
	
	 void deliver() {    // the length for covered interval
		  if (cover)
			   len = ly[r]-ly[l];
		  else
			   len = child[0]->len + child[1]->len;
	 }
public:
	 int l, r;    //the interval for a segment tree
	 double len;    //the length for the current strip
	 void setup(int _l, int _r) {    //set up a segment tree for 
the interval [_l,_r]
		  l = _l, r = _r;    //initialization
		  cover = 0, len = 0;  
		  if (_l + 1 == _r) return; 
		  int mid = (l + r) >> 1;    //middle pointer
		  child[0]=new SegmentTree(),child[1]=new SegmentTree();    
//set up left and right subtrees
		  child[0]->setup(_l, mid), child[1]->setup(mid, _r);
	 }
	 void paint(const int &_l, const int &_r, const int &v) {    
//interval [_l,_r] is inserted into the segment tree for 
interval [l,r]
		  if (_l >= r || _r <= l) return; 
		  if (_l <= l && r <= _r) {
			   if (cover += v) len = ly[r]-ly[l]; else {
				    if (child[0]==NULL)len=0;else len = child[0]->len + 
child[1]->len;
			   }
			   return;
		  }
		  child[0]->paint(_l, _r, v), child[1]->paint(_l, _r, v);  
		  deliver();
	 }
	 void die() {    //deletion



476  ◾  Algorithm Design Practice for Collegiate Programming

		  if (child[0]) { 
			   child[0]->die();
			   delete child[0];
			   child[1]->die();
			   delete child[1];
		  }
	 }
};
int cs(0);    //initialize the number of test cases
int n, tot, ty;    //n: number of antennas, tot: the length 
of l[], ty: the length of ly[]
Line l[maxn << 1];    //l[] stores vertical strips
double ly[maxn << 1];    //ly[] stores y-coordinates
SegmentTree *seg_tr;    //Pointer for the segment tree
int main() {
	 while (scanf("%d", &n), n) {    // number of antennas
		  tot = ty = 0;
		  for (int i = 0; i < n; ++i) {
			   double x, y, r;
			   scanf("%lf%lf%lf", &x, &y, &r);    //the i-th antenna
			   l[tot++] = Line(x - r, y - r, y + r, 1);  //store strip
			   l[tot++] = Line(x + r, y - r, y + r, -1);
			   ly[ty++] = y-r, ly[ty++]=y + r;    
//stores y-coordinates
		  }
		  sort(l, l + tot);    //sort strips from left to right
		  sort(ly, ly + ty);    // sort y-coordinates top-down
		  ty = unique(ly, ly + ty) - ly;    //eliminate duplicate
		  double ans = 0;    //initialize the area of the coverage 
region
		  seg_tr = new SegmentTree(); 
		  seg_tr->setup(0, ty - 1);    //set up a segment for 
interval [0, ty-1]
		  for (int i = 0, j; i < tot; i = j) {    // Enumerate 
strips in l[]
			   if (i) ans += seg_tr->len * (l[i].x-l[i-1].x);    
//accumulate area of the coverage region
			   j = i;    //Enumerate strips, [l, r, k] is inserted 
into the segment tree
			   while (j < tot && fabs(l[i].x - l[j].x) <= epsi) {
		       seg_tr->paint(lower_bound(ly,ly+ty,l[j].y1)-
ly,lower_bound(ly,ly+ty,l[j].y2) -ly,l[j].s);
					     ++j;
			   }
		  }
		  seg_tr->die(); delete seg_tr;    //delete a segment
		  printf("%d %.2lf\n", ++cs, ans);    // the area of the 
coverage region
	 }
	 return 0;
}



Practice for Computational Geometry  ◾  477

8.2.2  Sweeping in the Horizontal Direction

Calculating the area for the union of rectangles in the horizontal direction is simi-
lar to calculating the area for the union of rectangles in the vertical direction. 
Discretization is on the X-axis. The plane is divided into horizontal strips by sweep-
ing on the Y-axis. A segment tree is used to accumulate areas of horizontal strips. 
The method is as follows:

Discretization: Calculate intersection points for sides of rectangles (or 
their extended lines) and X-axis, sort intersection points in ascending order of 
x-coordinates, and calculate distances between two adjacent intersection points.

Sweep: The plane is divided into horizontal strips, and a segment tree is used to 
store these horizontal strips’ cross sections.

Segment tree: Calculating the union of n rectangles’ areas can be implemented 
by insertion and deletion in a segment tree.

8.2.2.1  Atlantis

There are several ancient Greek texts that contain descriptions of the fabled island 
Atlantis. Some of these texts even include maps of parts of the island. But unfor-
tunately, these maps describe different regions of Atlantis. Your friend Bill has to 
know the total area for which maps exist. You (unwisely) volunteered to write a 
program that calculates this quantity.

Input

The input consists of several test cases. Each test case starts with a line con-
taining a single integer n (1≤n≤100) of available maps. The n following lines 
describe one map each. Each of these lines contains four numbers x1; y1; x2; y2 
(0≤x1<x2≤100000; 0≤y1<y2≤100000), not necessarily integers. The values (x1; y1) 
and (x2; y2) are the coordinates of the top-left and bottom-right corners of the 
mapped area, respectively.

The input file is terminated by a line containing a single 0. Don’t process it.

Output

For each test case, your program should output one section. The first line of each sec-
tion must be “Test case #k”, where k is the number of the test case (starting with 1). 
The second one must be “Total explored area: a”, where a is the total explored area 
(i.e., the area of the union of all rectangles in this test case), printed exact to two 
digits to the right of the decimal point.

Output a blank line after each test case.



478  ◾  Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output

2
10  10  20  20
15  15  25  25.5
0

Test case #1
Total explored area: 180.00

Source:	 ACM Mid-Central European Regional Contest 2000

IDs for Online Judges: POJ 1151, ZOJ 1128, UVA 2184

  Analysis

An available map in the problem is represented as a rectangle. The total explored 
area is the area for the union of these rectangles.

The plane is divided into several rectangles (Figure 8.19). Areas of these rect-
angles are calculated respectively. The sum of areas is the total explored area (the 
area of the union of all rectangles). This is shown in Figure 8.20.

The algorithm is as follows:
For each map, its left boundary’s x-coordinate and right boundary’s x-coordinate 

are stored in a sequence q in ascending order.
For each map, its bottom edge’s y-coordinate, top edge’s y-coordinate, and 

x-coordinates for endpoints of edges are stored in a sequence f. The flag for bottom 
edges is 1, and the flag for top edges is −1. And f is sorted in ascending order of 
y-coordinates, to make f store horizontal strips from bottom to top.

Then, each horizontal strip is taken out from f and the segment [xl, xr] 
(x-coordinates for endpoints of the edge) is inserted into the segment tree. There 
are two fields for vertices for the segment tree:

len, the length of the union of intervals;
mark: the mark of the union of intervals;

When a horizontal strip is added, the area covered by a horizontal strip is accu-
mulated into the total explored area.

x

y

Figure 8.19 



Practice for Computational Geometry  ◾  479

  Program

#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
const int maxn = 500;    //The upper limit of the number of 
maps*2
struct node {  
	 double x;    //y-coordinate for horizontal strip
	 int l, r, t;   //l, r: x-coordinates for two points in q, t: 
the flag for bottom edge and top edge
} f[maxn];    // horizontal strips
int n;    // the number of maps
double q[maxn], x1[maxn], yy1[maxn], x2[maxn], yy2[maxn];    
//q stores sorted x- coordinates, for the i-th map, the 
coordinate for the top left corner (x1[i],yy1[i]), the 
coordinate for the lower right corner (x2[i],yy2[i])
struct segment {
	 int mark; 
	 double len;    //the length of the union for intervals
} tree[maxn * 20];    //segment tree
int cmp(node a, node b) {    //Comparison function for f[]
	 return a.x < b.x;
}
int insert(const int k,const int l,const int r,const int 
lc,const int rc,const int t) {    //horizontal strip[l, r] 
is inserted into segment tree (k:root, interval [lc, rc]), 
t: mark for bottom edge and top edge 
	 if (lc<=l && r<=rc) {    //[lc, rc] covers [l, r] 
		  tree[k].mark += t;
	 } else  {  
	           if ((l+r)/2>=lc)insert(k*2,l,(l+r)/2, lc,rc,t);

x

y

Figure 8.20 



480  ◾  Algorithm Design Practice for Collegiate Programming

	           if((l+r)/2<rc) insert(k*2+1,(l+r)/ 2+1,r,lc, rc,t);
	 }
	 if (tree[k].mark == 0) tree[k].len=tree[k *2].
len+tree[k *2+1].len;
		  else tree[k].len=q[r+1]-q[l];
	 return 0;
}
int main() {
	 int test = 0;    //number of test cases
	 while (scanf("%d", &n) && n) {    //number of maps
		  double ans = 0;    // the total explored area
		  for (int i = 1; i <= n ; i ++) {    // the coordinates of 
the top-left and bottom-right corner
			   scanf("%lf %lf %lf %lf" , &x1[i], &yy1[i], &x2[i], 
&yy2[i]);
			   if (x1[i] > x2[i]) swap(x1[i], x2[i]);
			   if (yy1[i] > yy2[i]) swap(yy1[i], yy2[i]);
			   q[i * 2 - 2] = x1[i];    // x-coordinate
			   q[i * 2 - 1] = x2[i];
		  }
		  sort(q, q+n*2);    //sort in ascending order of 
x-coordinates in q
		  int m = unique(q, q+n*2)-q;    //remove duplication in q, 
m: the length of q
		  for ( int i=1;i<= n ; i ++) {    //the i-th map is stored 
in f
		    f[i*2-2].l=lower_bound(q,q+m,x1[i])-q;
		    f[i*2-2].r=lower_bound(q,q+m,x2[i])-q;
		    f[i*2-2].x=yy1[i];
		    f[i*2-2].t=1;
		    f[i*2-1].l=lower_bound(q, q + m, x1[i]) - q; 
		    f[i*2-1].r=lower_bound(q, q + m, x2[i]) - q;
		    f[i * 2 - 1].x = yy2[i];
		    f[i * 2 - 1].t = -1;
		  }
		  sort(f,f+n*2,cmp);    //f is sorted bottom up
		  for ( int i = 0 ; i < n * 2; i ++) {    //horizontal 
strips are analyzed bottom-up
		    if (i) ans += tree[1].len*(f[i].x-f[i-1].x);    
//accumulate the current strip's area
			   insert(1,0,m ,f[i].l,f[i].r-1,f[i].t);    //insert the 
strip into the segment tree
		  }
		  printf("Test case #%d\n", ++ test);    //output the total 
explored area
		  printf("Total explored area: %.2lf \n\n", ans);
		
	 }
	 return 0;
}



Practice for Computational Geometry  ◾  481

8.3  Intersection of Half-Planes
For a convex polygon, if its sides are represented by equations of lines or polar 
angles, the convex polygon can be represented by the intersection of half-planes.

A line ax+by+c=0, where a, b, and c are constants in a two-dimensional plane, 
divides the entire plane into two half-planes. A half-plane is thus defined by a line 
and one of its sides: either ax+by+c≥0 or ax+by+c≤0 [Figure 8.21(a)].

A half-plane in a bounded region, or an intersection of half-planes, can con-
stitute a convex polygon [Figure 8.21(b) and (c)]. The intersection of n half-planes 
H1∩H2∩…∩Hn is a convex polygon with at most n sides. For example, in Figure 8.21(c), 
there are five lines L1, L2, L3, L4, and L5. One side of line Li is the half-plane Hi, 1≤i≤5. 
The intersection of five half-planes is a convex polygon with five sides.

Maybe an intersection of n half-planes is unbounded. Four half-planes, x−c≤0, 
x+c≥0, y−c≤0, and y+c≥0, can be added to make the intersection bounded 
(Figure 8.22).

An intersection of n half-planes can also be a line, a vertex, or an empty set.
The intersection of two convex polygons generates a new convex polygon 

[Figure 8.23(a)]. For the new convex polygon, its points are points of intersection 
of the two convex polygons’ sides. The points are also boundary points that classify 
sides into outer sides and inner sides. Inner sides constitute the new convex polygon 

y + c ≥ 0

x – c ≤ 0x + c ≥ 0

y – c ≤ 0

Figure 8.22 

ax + by + c > 0
L2

L1

L3

L5

L4

ax + by + c > 0

(a) (b) (c)

Figure 8.21 



482  ◾  Algorithm Design Practice for Collegiate Programming

[Figure 8.23(b)]. Suppose there is a vertical sweep line sweeping from left to right. 
At any time, there are at most four points of intersection of the sweep line and the 
two convex polygons. For example, in Figure 8.23(a), the upper point and lower 
point of intersection of the sweep line and convex polygon A are Au and Al respec-
tively; and the upper point and lower point of intersection of the sweep line and 
convex polygon A are Bu and Bl respectively. Obviously, the points of intersection 
of the sweep line and the intersection of two convex polygons are Au and Bl. Sides 
containing Au, Al, Bu, and Bl are e1, e2, e3, and e4, respectively.

In this section, there are two kinds of experiments for the intersection of 
half-planes:

1.	On-Line Algorithm for Intersection of Half-Planes;
2.	Polar Angles.

8.3.1  On-Line Algorithm for Intersection of Half-Planes

Suppose the intersection of n half-planes H1∩H2∩…∩Hn is the convex polygon A. 
Originally A is the entire plane. Then, cutting lines aix+biy+ci=0 for Hi (the line 
dividing A to generate the half-plane Hi) are used to divide A one by one, and the 
part that aix+biy+ci≥0 is retained in A, 1≤i≤n. Finally, A is H1∩H2∩…∩Hn.

The key to the problem is how the cutting line aix+biy+ci=0 divides the con-
vex polygon A, and how the part that aix+biy+ci≥0 is retained in A is calculated. 
Suppose there are k points in A listed anticlockwise in a[], the current cutting line 
is p p
� ����

1 2 , and points are listed anticlockwise in b[] after A is divided by p p
� ����

1 2 . And 
b[] is calculated as follows.

b[] is initialized empty;
for (int i = 0; i<k; ++i) {    //enumerate points in a[]

 { if (
� ������ � ������
p a i p a i[ ]^ [ ] 01 2 ≥ ) {a[i] is added into b[]; continue;}    

//if 
� ������
a i p[ ] 1 and p p

� �����
1 2 are connected anticlockwise, or a[i] is 

over p p
� �����
1 2, then a[i] is retained [Figure 8.24(a)]

Outer side Outer side

Inner sideInner side

Al

(a) (b)

B

A

Bl

Bu

Au

e1e3

e3

e2

e4

e1

Figure 8.23 



Practice for Computational Geometry  ◾  483

   Calculate the left adjacent point j for point i;

   if (
� ������ � ������
p a j p a j[ ]^ [ ] 01 2 > )    //if 

� �������
a j p[ ] 1 and p p

� �����
1 2 are connected 

anticlockwise, then the intersection point for p p
� �����
1 2 and 

� ��������
a ja i[ ] [ ] 

is retained [Figure 8.24(b)].
   { the intersection point for p p

� �����
1 2 and 

� ��������
a ja i[ ] [ ] is added into 

b[]; }
   Calculate the right adjacent point j for point i;

 if (
� ������ � ������
p a j p a j[ ]^ [ ] 01 2 > ) {the intersection point for p p

� �����
1 2 and � ��������

a ja i[ ] [ ] is added into b[];}    //if 
� �������
[ ]a j p1 and p p

� �����
1 2 are connected 

anticlockwise, then the intersection point for p p
� �����
1 2 and 

� ��������
a ia j[ ] [ ] 

is retained [Figure 8.24(c)].
 }

The time complexity using a cutting line to divide the plane A to generate a 
half-plane is O(n). The intersection of n half-planes can be calculated by using the 
following method n times.

Suppose the plane A is a square whose points’ coordinates are (−103, −103), 
(103, −103), (103, 103) and (−103, 103), and the four points are stored in a[]. The 
cutting line for H1 is used to divide A to generate a convex polygon whose points 
are stored in b[], b[] is assigned to a[], and b[] is cleared out. Then the cutting line 
for H2 is used to divide A to generate a new convex polygon whose points are stored 
in b[], ......, and so on. After the cutting line for Hn is used to divide A to generate 
a convex polygon, its points are stored in b[]. The time complexity is O(n2). This 
algorithm is called the On-Line Algorithm for Intersection of Half-Planes.

8.3.1.1  Feng Shui

Feng shui is the ancient Chinese practice of placement and arrangement of space to 
achieve harmony with the environment. George has recently become interested in 
feng shui, and now wants to apply it to his home and bring harmony to it.

There is a practice which says that bare floor is bad for living areas since spiritual 
energy drains through it, so George purchased two similar round-shaped carpets 
(feng shui says that straight lines and sharp corners must be avoided). Unfortunately, 
he is unable to cover the floor entirely since the room has the shape of a convex 

p1

p2

a[i]

(a) (b) (c)

a[i]

p1 p1

p2 p2

a[i – 1]

a[i + 1]a[i]

Figure 8.24 



484  ◾  Algorithm Design Practice for Collegiate Programming

polygon. But he still wants to minimize the uncovered area by selecting the best 
placing for his carpets, and he asks you to help.

You need to place two carpets in the room so that the total area covered by both 
carpets is the maximum possible. The carpets may overlap, but they may not be cut 
or folded (including cutting or folding along the floor border)—feng shui tells you 
to avoid straight lines. See Figure 8.25.

Input

The first line of the input file contains two integer numbers n and r—the number 
of corners in George’s room (3≤n≤100) and the radius of the carpets (1≤r≤1000, 
both carpets have the same radius). The following n lines contain two integers xi 
and yi each—coordinates of the i-th corner (−1000≤xi,yi≤1000). Coordinates of all 
corners are different, and adjacent walls of the room are not colinear. The corners 
are listed in clockwise order.

Output

Write four numbers x1, y1, x2, y2 to the output file, where (x1, y1) and (x2, y2) denote 
the spots where carpet centers should be placed. Coordinates must be precise up to 
four digits after the decimal point.

If there are multiple optimal placements available, return any of them. The 
input data guarantees that at least one solution exists.

Sample Input Sample Output

5  2
−2  0
−5  3
0  8
7  3
5  0
4  3
0  0

−2  3  3  2.5

3  5  7  3

Figure 8.25 



Practice for Computational Geometry  ◾  485

Sample Input Sample Output

0  8
10  8
10  0

Source:	 ACM Northeastern Europe 2006, Northern Subregion

ID for Online Judge: POJ 3384

  Analysis

Two circles are placed in a convex polygon so that the total area covered by the two 
circles is the maximum possible. The idea for solving this problem is to push sides 
for the convex polygon inward, and a new convex polygon is generated. Obviously, 
the two circles can be placed in the convex polygon, but they may not be cut or 
folded. The on-line algorithm for the intersection of half-planes is used to solve the 
problem.

Initially, the covered area plan is an infinitely great square. Then each side p pi i

� �����
+1 

is enumerated anticlockwise, 0≤i≤n−1, pn=p0. p pi i

� �����
+1 is pushed r inward, and the 

side 
� �����

+1q qi i  is a side for the new convex polygon ( p pi i

� �����
+1 is rotated r

p pi i

� �����°×
+

90 ,
1

 and 

� �����
+1q qi i  is generated). 

� �����
+1q qi i  is used to divide plan. Repeat the step until n sides are 

dealt with. Finally, plan is the new convex polygon.
Then distances between all pairs of points for the convex polygon are enumer-

ated. Suppose the distance between a pair of points q1 and q2 is the longest. Points 
q1 and q2 are the spots where carpet centers should be placed. Obviouly, the total 
area covered by the two circles is maximal.

  Program

#include <cstdio>
#include <iostream>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <ctime>
#include <climits>
#include <utility>



486  ◾  Algorithm Design Practice for Collegiate Programming

#include <algorithm>
using namespace std;
const double epsi = 1e-10;    // infinitesimal
const double pi = acos(-1.0);    //180°

const int maxn = 100 + 10;    //the upper limit of the number 
of points
inline int sign(const double &x) {    // x is positive, 
negative, or zero
	 if (x > epsi) return 1;
	 if (x < -epsi) return -1;
	 return 0;
}
inline double sqr(const double &x) {    //x2

	 return x * x;
}
struct Point {    //Structure for points
	 double x, y;
	 Point(double _x = 0, double _y = 0): x(_x), y(_y) { } 
	 Point operator +(const Point &op2) const { 
		  return Point(x + op2.x, y + op2.y);
	 }
	 Point operator -(const Point &op2) const { 
		  return Point(x - op2.x, y - op2.y);
	 }
	 double operator *(const Point &op2) const {    //Dot Product
		  return x* op2.x + y*op2.y;
	 }
	 Point operator *(const double &d) const {
		  return Point(x * d, y * d);
	 }
	 Point operator /(const double &d) const {
		  return Point(x / d, y / d);
	 }
	 double operator ^(const Point &op2) const {    // vector 
product
		  return x * op2.y - y * op2.x;
	 }
	 bool operator ==(const Point &op2) const {    //coincidence 
or not
		  return sign(x - op2.x) == 0 && sign(y - op2.y) == 0;
	 }
};
inline double mul(const Point &p0, const Point &p1, const 
Point &p2)    // vector product for 

� �����
p p1 0 and 

� �����
p p2 0

{   
	 return (p1 - p0) ^ (p2 - p0);
}
inline double dot(const Point &p0, const Point &p1, const 
Point &p2)    // Dot Product for 

� �����
p p1 0 and 

� �����
p p2 0



Practice for Computational Geometry  ◾  487

{                                           
	 return (p1 - p0) * (p2 - p0);
}
inline double dis2(const Point &p0, const Point &p1) { // 

� �����
p p1 0

2

	 return sqr(p0.x - p1.x) + sqr(p0.y - p1.y);
}
inline double dis(const Point &p0, const Point &p1) {    
// 

� �����
p p1 0

	 return sqrt(dis2(p0, p1));
}
inline double dis(const Point &p0, const Point &p1, const 
Point &p2) {
 if(sign(dot(p1, p0, p2))<0) return dis(p0, p1);    // if the 
included angle for 

� �����
p p1 0 and p p

� �����
1 2 is larger than 90

°, then 
return 

� �����
p p1 0

 if (sign(dot(p2,p0, p1))<0) return dis(p0, p2);    // if the 
included angle for 

� �����
p p2 0 and 

� �����
p p2 1 is larger than 90

°, then 
return 

� �����
p p2 0

 return fabs(mul(p0, p1, p2) / dis(p1, p2));    //the length 
of the vertical line from p0 to p p

� �����
1 2

}
inline Point rotate(const Point &p, const double &ang) {    
//return the point that point p is rotated degree ang
	 return Point(p.x * cos(ang) - p.y * sin(ang), p.x * 
sin(ang) + p.y * cos(ang));
}
inline void translation(const Point &p1, const Point &p2, 
const double &d, Point &q1, Point &q2) 
{    //

� �����
p p2 1 is pushed d inward and 

� �����
q q2 1 is formed

	 q1 = p1 + rotate(p2 - p1, pi / 2) * d / dis(p1, p2);
	 q2 = q1 + p2 - p1;
}
inline void cross(const Point &p1, const Point &p2, const 
Point &p3, const Point &p4, Point &q) 
{    //the intersection point q for p p

� �����
1 2 and p p

� �����
3 4

	 double s1 = mul(p1, p3, p4), s2 = mul(p2, p3, p4);
	 q.x = (s1 * p2.x - s2 * p1.x) / (s1 - s2);
	 q.y = (s1 * p2.y - s2 * p1.y) / (s1 - s2);
}
inline int half_plane_cross(Point*a, int n,Point *b, const 
Point &p1, const Point &p2) {    // points for A are listed 
anticlockwise in a[], the current cutting line is p p

� �����
1 2, and 

points are listed anticlockwise in b[] after A is divided 

by p p
� �����
1 2.

	 int newn = 0; 
	 for (int i = 0, j; i < n; ++i) {
		  if (sign(mul(a[i], p1, p2)) >= 0) {    // a[i] is added 
into b[]
			   b[newn++] = a[i];



488  ◾  Algorithm Design Practice for Collegiate Programming

			   continue;
		  }
		  j = i-1; if (j == -1) j = n-1;    //point j is the left 
adjacent point for point i
		  if (sign(mul(a[j], p1, p2))>0)    //the intersection 
point for p p

� �����
1 2 and 

� ��������
a ja i[ ] [ ] is added into b[]

			   cross(p1, p2, a[j], a[i], b[newn++]);
		  j = i + 1; if (j == n) j = 0;    // point j is the right 
adjacent point for point i
	 if (sign(mul(a[j], p1, p2)) > 0)    // the intersection 
point for p p

� �����
1 2 and 

� ��������
a ja i[ ] [ ] is added into b[]

			   cross(p1, p2, a[j], a[i], b[newn++]);
	 }
	 return newn;
}
int n;    // number of points
double r;    //radius
Point p[maxn];    //the sequence of points for a convex 
polygon
int t[2]; 
Point plane[2][maxn], q1, q2; 
int main() {
	 scanf("%d%lf", &n, &r);    // the number of corners and the 
radius of the carpets
	 for (int i = 0; i < n; ++i)    // coordinates of corners
		  scanf("%lf%lf", &p[i].x, &p[i].y);
	 p[n] = p[0]; 
	 int o1 = 0, o2;
	 t[0] = 4;    //Initially the covered area plan is a square 
initial
	 t[0] = 4;
	 plane[0][0] = Point(-1e3, -1e3);        
	 plane[0][1] = Point(1e3, -1e3);
	 plane[0][2] = Point(1e3, 1e3);
	 plane[0][3] = Point(-1e3, 1e3);
	 for (int i = 0; i < n; ++i) { 
		  o2 = o1 ^ 1;
		  translation(p[i + 1], p[i], r, q1, q2);    //

� �������
p pi i 1+  is 

pushed r inward and forms 
� �����
q q2 1

		  t[o2] = half_plane_cross(plane[o1], t[o1], plane[o2], 
q1, q2); 
		  o1 = o2; 
	 }
	 double maxd = -1, curd;
	 for (int i=0; i<t[o1];++i)    //distances between all pairs 
of points for the convex polygon are enumerated, the distance 
between a pair of points q1 and q2 is the longest
		  for (int j = i; j < t[o1]; ++j) {
			   curd = dis2(plane[o1][i], plane[o1][j]);
			   if (sign(curd - maxd) > 0) {



Practice for Computational Geometry  ◾  489

				    maxd = curd;
				    q1 = plane[o1][i], q2 = plane[o1][j]; 
			   }
		  }
	 printf("%.10lf %.10lf %.10lf %.10lf\n", q1.x, q1.y, q2.x, 
q2.y);    //q1 and q2 are the spots where carpet centers
	 return 0;
}

8.3.2  Polar Angles

In the plane, the polar angle θ is the counterclockwise angle from the x-axis to a 
line at which a point in the xy plane lies. See Figure 8.26.

For a half-plane ax+by≤(≥)c, where a=1, b∈{1, −1}, its polar angle is as follows:

The polar angle for the half-plane x−y≥c is  π1
4

 [Figure 8.27(a)];

The polar angle for the half-plane x−y≤c is  − π3
4

 [Figure 8.27(b)];

The polar angle for the half-plane x+y≥c is  − π1
4

 [Figure 8.27(c)];

The polar angle for the half-plane x+y≤c is  π3
4

 [Figure 8.27(d)].

y

x

Figure 8.26 

c

(a)

1
4

π c

(b)

3
4

π– c

(c)

1
4

π–

3
4

π

c

(d)
Planes whose polar

angles are same

(e)

Figure 8.27 



490  ◾  Algorithm Design Practice for Collegiate Programming

For the half-plane ax+by≤(≥)c, where a, b, and c are constants, its polar angle 
is atan2(b, a). If there are several half-planes whose polar angles are the same, one 
half-plane is selected based on c. For example, in Figure 8.27(e), the plane whose c 
is the least is selected.

The insection of half-planes is a convex polygon, where lines whose polar angles 

are in 1
2

, 1
2

− π π





 constitute the upper convex hull, and lines whose polar angles 

are in , 1
2

1
2

,−π − π





∪ π π





 constitute the lower convex hull (Figure 8.28).

We can calculate a convex polygon in ascending order of polar angles (i.e., 
counterclockwise). The algorithm is as follows:

Suppose array a stores boundaries (Ai, Bi, and Ci for Aix+Biy+Ci=0, 1≤i≤n) for 
n half-planes H1, H2, ……, Hn. The convex polygon for the intersection of n half-
planes H1∩H2∩…∩Hn is stored by b[ ] and c[ ], where b[ ] is a deque that stores 
straight line equations for boundaries, c[ ] stores vertices, and h and t are the front 
and rear for the deque b[ ] respectively.

Step 1: Pretreatment for a[]: Sort a[] using polars as the first key, and distances 
from the origin to boundaries as the second key. If there are more than 
one boundary with the same polar angle, the boundary with the shortest 
distance from the origin to the boundary is selected. If Ai=Bi=0, and if Ci>0, 
the line Aix+Biy+Ci=0 is removed; and if Ci≤0, the program exits.

Step 1: Step 1 is to determine the sequence for intersections of half-planes, and 
eliminate cases that intersections of half-planes don’t exist and coincide.

Step 2: The first two boundaries are added into queue b[ ] as b[0] and b[1], and 
the insection point for the two boundaries is stored into c[1], h=0, and t=1.

Step 3: Boundaries a[3]…a[n] (half-planes) are dealt with one by one:
1.	 While the deque isn’t empty, and when c[t] is substituted in boundary a[i], 

the equation is negative; then the rear for the deque is removed (t −−);
2.	 While the deque isn’t empty, and when c[h+1] is substituted in bound-

ary a[i], the equation is negative; then the front for the deque is removed 
(h++);

Lower convex hull

Upper convex hull

Figure 8.28 



Practice for Computational Geometry  ◾  491

3.	 Boundary a[i] is added into deque b[] (b[++t]=a[i]), and the insection 
point for b[t] and b[t−1] is put into c[t]. It is to guarantee Aix+Biy+Ci≥0 
when insection points in c[] are substituted in each line.

Step 4: The front and the rear for queues b[] and c[] are joined. Redundant half-
planes are removed.
1.	 While the deque isn’t empty, and when c[t] is substituted in boundary 

b[h], the equation is negative, and the rear for the deque is removed (t −−);
2.	 While the deque isn’t empty, and when c[h+1] is substituted in boundary 

b[t], the equation is negative, and the front for the queue is removed from 
the queue (h++);

3.	 If the deque is empty (h+1≥t), then the program exits; else for the convex 
polygon, p0 is the insection point for b[h] and b[t], and insection points 
p1 … pi h−  are c[h+1]…c[t], and p pi h =− +1 0.

The time complexity for the algorithm is O(nlog2n).

8.3.2.1  Art Gallery

The art galleries of the new and very futuristic building of the Center for Balkan 
Cooperation have the form of polygons (not necessarily convex). When a big exhi-
bition is organized, watching over all the pictures is a big security concern. Your 
task for a given gallery is to write a program that finds the surface of the area of 
the floor, from which each point on the walls of the gallery is visible. In Figure 8.29, 
a map of a gallery is given in some coordinate system. The area wanted is shaded on 
in the second half of the figure.

Input

The number of tasks T that your program needs to solve will be on the first row of 
the input file. Input data for each task start with an integer N, 5≤N≤1500. Each 
of the next N rows of the input will contain the coordinates of a vertex of the 
polygon—two integers that fit in 16-bit integer type, separated by a single space. 

Figure 8.29 



492  ◾  Algorithm Design Practice for Collegiate Programming

Following the row with the coordinates of the last vertex for the task comes the line 
with the number of vertices for the next test, and so on.

Output

For each test, you must write on one line the required surface—a number with 
exactly two digits after the decimal point (the number should be rounded to the 
second digit after the decimal point).

Sample Input Sample Output

1
7
0  0
4  4
4  7
9  7
13  -1
8  -6
4  -4

80.00

Source:	 ACM Southeastern Europe 2002

IDs for Online Judges: POJ 1279, ZOJ 1369, UVA 2512

  Analysis

Based on the problem description “for a given gallery, to write a program which 
finds the surface of the area of the floor, from which each point on the walls of the 
gallery is visible”, the surface of the area of the floor consists of a set of points with 
the following property:

Suppose s is a point on the boundary of the gallery, and v is a point in the set. A 
line segment connecting s and v must be in the gallery.

The gallery is a polygon. And the surface of the area of the floor is the insec-
tion of left half-planes divided by sides for the polygon. If the polygon is a convex 
polygon, the surface of the area of the floor is the polygon itself. And if the polygon 
isn’t a convex polygon, the surface of the area of the floor is a subset for the polygon, 
and may be an empty set.



Practice for Computational Geometry  ◾  493

Based on the above discussion, the algorithm is as follows:
First, the coordinates of n vertices are input, and are transferred as equations of 

n lines. Second, the plane is divided by sides for polygons anticlockwise. The insec-
tion of n half-planes is the surface of the area of the floor. Finally, the area of the 
insection of n half-planes is calculated by the formula of cross product.

  Program

#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <string>
#include <cmath>
#include <algorithm>
using namespace std;
const int maxn=2100;
const double eps=1e-10;
struct Point {    //Structure for points
	 double x, y;
	 Point(double _x = 0, double _y = 0): x(_x), y(_y) { }    
//point
	 double operator ^(const Point &op2) const {  //cross product
		  return x * op2.y - y * op2.x;
	 }
};
struct StraightLine{    //Intersection of half-planes
	 double A, B, C;    //equation of line Ax+By+C=0
	 StraightLine(double _a=0, double _b=0, double _c=0):A(_a), 
B(_b), C(_c) { }    //line
                                             
	 double f(const Point &p) const {    //point p is substituted 
in an equation of line
		  return A * p.x + B * p.y + C;
	 }
	 double rang() const{    // atan2(B, A), that is, the polar 
angle for the line
		  return atan2(B, A);
	 }
	 double d() const{    //the distance between the origin to 

line + + =
+

Ax By C
C

A B
0:

2 2

		  return C / (sqrt(A * A + B * B));
	 }



494  ◾  Algorithm Design Practice for Collegiate Programming

	 Point cross(const StraightLine &a) const {    //intersection 
point for Ax+By+C=0 and line a
		  double xx = - (C * a.B - a.C * B) / (A * a.B - B * a.A);
		  double yy = - (C * a.A - a.C * A) / (B * a.A - a.B * A );
		  return Point(xx, yy);
	 }
};
StraightLine b[maxn], SL[maxn];    // SL[]: the sequence of 
lines for half-planes, b[]: the sequence of lines for the 
current intersection of half-planes
Point c[maxn], d[maxn];    // d[]: the sequence of points for 
the intersection of half-planes,  c[]: the sequence of points 
for the current intersection of half-planes
int n;    //number of points for a polygon
inline int sign(const double &x){    // x is positive or 
negative
	 if (x > eps) return 1;
	 if (x < -eps) return -1;
	 return 0;
}
int cmp(StraightLine a, StraightLine b){    // comparing lines 
a and b, polar angles are as the first key, distances from the 
origin to lines are as the second key
	 if (sign( a.rang() - b.rang() ) != 0) return a.rang() 
< b.rang();
	 else return a.d() < b.d();
}
int half_plane_cross(StraightLine *a,  int n, Point *pt) {    
// input a sequence of lines for a polygon a, whose length 
is n. By polar angles, return a sequence of lines pt and its 
length for the inner convex polygon a
	 sort(a+1,a+n+1,cmp);    // a is sorted, where polar angles 
are as the first key, distances from the origin to lines are 
as the second key
	 int tn = 1;    // initialize the length of a
	 for (int i = 2; i <= n; i ++){    // enumerating adjacent 
sides for the polygon, sides whose polar angles are same, or 
A=B=0 and C>0, are deleted (C≤0, exit)
		  if (sign( a[i].rang() - a[i-1].rang() )!=0) a[++tn]=a[i];    
// polar angles for adjacent sides are different
		  if (sign(a[tn].A )==0 && sign( a[tn].B )==0)    // A=B=0
			   if (sign( a[tn].C )==1)   tn --;
			   else return - 1;
	 }
	 n=tn;    // the length for a
	 int h=0, t=1; 
	 b[0] = a[1];    // line 1 and line 2 are stored in b[]
	 b[1] = a[2];
	 c[1] = b[1].cross(b[0]);    //the intersection point for 
line 1 and line 2 is stored in c[]



Practice for Computational Geometry  ◾  495

	 for (int i = 3; i <= n; i ++){    // enumerate line 3…line n
		  while (h < t && sign( a[i].f(c[t] ) )<0) t -- ; 
		  while (h<t && sign(a[i].f( c[h+1] ))<0) h++ ; 
		  b[ ++ t] = a[i];   // line i is added into the rear for b
		  c[t] = b[t].cross( b[t-1] );    // the intersection for 
the two lines at the rear of b is added into c
	 }
	 while (h < t && sign( b[h].f( c[t] ) )<0) t --;  
	 while (h < t && sign( b[t].f( c[h+1] ) )<0) h ++; 
	 if (h+1 >= t) return -1;    // the queue is empty
	 pt[0] = b[h].cross( b[t] );    // the first point for the 
convex polygon
	 for(int i=h;i<t;i++) pt[i-h+1]=c[i+1]; 
	 pt[t - h + 1] = pt[0]; 
	 return t - h + 1;    // number of points for the convex 
polygon
}
int main(){
	 int x[maxn], y[maxn] ;    //the sequence of points for a 
polygon
	 double ans=0;    //initialize the area for the maximal 
convex polygon
	 int n, m;    //n: number of points for a polygon, m: number 
of points for the maximal inner convex polygon
	 int test;    //the number of test cases
	 scanf("%d", & test );    //input the number of test cases
	 for (; test ; test --){
		  scanf("%d", & n);    // input number of vertices and the 
coordinates of vertices of the polygon
		  for (int i = 1; i <= n; i ++) scanf("%d %d", & x[i], 
& y[i]);
		  x[n+1]=x[1];y[n+1]=y[1]; 
	 for(int i=1; i<=n;i++)    //calculate n equations of lines, 
where SL[i] stores A, B, C for 

� �������
p pi i1+

			   SL[i]=StraightLine(-(y[i]-y[i+1]),-(x[i+1]-x[i]),-(x[i]
*y[i+1]-x[i+1]*y[i]));      
		  m=half_plane_cross(SL,n,d);    //calculation by polar 
angles
		  ans = 0; 
		  if (m == -1) printf("0.00\n");    //if there is no convex 
polygon
		  else {   
			   for (int i = 0; i < m; i ++) ans += d[i] ^ d[i+1];
			   printf("%.2lf\n", ans / 2);    //the area for the 
maximal convex polygon
		  }
	 }
	 return 0;
}



496  ◾  Algorithm Design Practice for Collegiate Programming

8.3.2.2  Hotter Colder Game

The children’s game Hotter Colder is played as follows. Player A leaves the room 
while player B hides an object somewhere in the room. Player A re-enters at position 
(0,0) and then visits various other positions about the room. When player A visits 
a new position, player B announces “Hotter” if this position is closer to the object 
than the previous position; player B announces “Colder” if it is farther; and “Same” 
if it is the same distance.

Input

Input consists of up to 50 lines, each containing an x, y coordinate pair followed 
by “Hotter”, “Colder”, or “Same”. Each pair represents a position within the room, 
which may be assumed to be a square with opposite corners at (0,0) and (10,10).

Output

For each line of input, print a line giving the total area of the region in which the 
object may have been placed, to two decimal places. If there is no such region, 
output 0.00.

Sample Input Sample Output

10.0 10.0 Colder
10.0 0.0 Hotter
0.0 0.0 Colder
10.0 10.0 Hotter

50.00
37.50
12.50
0.00

Source:	 Waterloo local 2001.01.27

IDs for Online Judges: POJ 2540, ZOJ 1886

  Analysis

Suppose the position of the placed object is P, and player A moves into D(x2, y2) 
from C(x1, y1). The equation for the perpendicular bisector for the line segment CD 
is substituted by P(x, y).

In the current round, if player B announces “Hotter”, then for the position of 
P(x, y) |CP|>|DP| holds, that is,

	 × − × + × − × + + − − >2 ( ) 2 ( ) 0;2 1 2 1 1
2

1
2

2
2

2
2x x x y y y x y x y



Practice for Computational Geometry  ◾  497

if player B announces “Colder”, then for the position of P(x, y), |CP|<|DP| 
holds, that is,

	 × − × + × − × + + − − <2 ( ) 2 ( ) 0;2 1 2 1 1
2

1
2

2
2

2
2x x x y y y x y x y

if player B announces “Same”, then for the position of P(x, y), |CP|=|DP| holds, 
that is,

	 × − × + × − × + + − − =2 ( ) 2 ( ) 0.2 1 2 1 1
2

1
2

2
2

2
2x x x y y y x y x y

For each time player B announces, a corresponding half-plane is added.
Initially, the total area of the region in which the object may have been placed 

is [0, 10]×[0, 10]. In each round, the intersection of the current half-plane and the 
new added half-plane is calculated. If the intersection doesn’t exist, output 0.00; 
else output the area of the intersection.

In the program, the intersection of half-planes is calculated by polar angles.

  Program

#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <string>
#include <cmath>
#include <algorithm>
using namespace std;
const int maxn=21000;
const double eps=1e-10;
struct Point {    //structure for points
	 double x, y;
	 Point(double _x = 0, double _y = 0): x(_x), y(_y) { } 
	 double operator ^(const Point &op2) const {    //cross 
product
		  return x * op2.y - y * op2.x;
	 }
};
struct StraightLine{    // the intersection of half-planes
	 double A, B, C;    //equation of line Ax+By+C
	 StraightLine(double _a=0, double _b=0, double _c=0): A(_a), 
B(_b), C(_c) { }//construct equation of line
	 double f(const Point &p) const {    // the equation of line 
is substituted by point p
		  return A * p.x + B * p.y + C;
	 }



498  ◾  Algorithm Design Practice for Collegiate Programming

double rang() const{    //return the polar angle for the line
		  return atan2(B, A);
	 }	
double d() const{    //the distance from origin to line 
Ax+By+C=0
	   return C / (sqrt(A * A + B * B));
	 }	
	 Point cross(const StraightLine &a) const {   // intersection 
point
		  double xx = - (C * a.B - a.C * B) / (A * a.B - B * a.A);
		  double yy = - (C * a.A - a.C * A) / (B * a.A - a.B * A );
		  return Point(xx, yy);
	 }
};
StraightLine b[maxn], SL[maxn],S[maxn];    // SL[]: the 
sequence of lines for half-planes, S[]: stores half-planes, 
b[]: the sequence of lines for the current intersection of 
half-planes
Point c[maxn], d[maxn];    // d[]: the sequence of points for 
the intersection of half-planes,  c[]: the sequence of points 
for the current intersection of half-planes
int n;    //number of points for a polygon
inline int sign(const double &x){    //x is positive or 
negative
	 if (x > eps) return 1;
	 if (x < -eps) return -1;
	 return 0;
}
int cmp(StraightLine a, StraightLine b){    //comparing lines 
a and b, polar angles are as the first key, distances from the 
origin to lines are as the second key
	 if (sign( a.rang() - b.rang() ) != 0) return a.rang() 
< b.rang();
	 else return a.d() < b.d();
}
int half_plane_cross(StraightLine *a,  int n, Point *pt) {    
//input a sequence of lines for a polygon a, whose length 
is n. By polar angles, return a sequence of lines pt and its 
length for the inner convex polygon a
	 sort(a+1,a+n+1,cmp);    // a is sorted, where polar angles 
are as the first key, distances from the origin to lines are 
as the second key
	 int tn = 1;    //initialize the length of a 
	 for (int i = 2; i <= n; i ++){    //enumerating adjacent 
sides for the polygon, sides whose polar angles are same, or 
A=B=0 and C>0, are deleted (C≤0, exit)
		  if (sign( a[i].rang() - a[i-1].rang() )!=0) a[++tn]=a[i];    
// polar angles for adjacent sides are different
		  if (sign(a[tn].A)==0 && sign(a[tn].B)==0)    // A=B=0
			   if (sign( a[tn].C )==1)   tn --;



Practice for Computational Geometry  ◾  499

			   else return  - 1;
	 }
	 n=tn;    //the length for a
	 int h = 0 , t = 1; 
	 b[0] = a[1];    //line 1 and line 2 are stored in b[]
	 b[1] = a[2];
	 c[1] = b[1].cross(b[0]);    //the intersection point for 
line 1 and line 2 is stored in c[]
	 for (int i = 3; i <= n; i ++){    //enumerate line 3…line n
		  while (h < t && sign( a[i].f( c[t] ) )<0) t -- ; 
		  while (h<t && sign( a[i].f(c[h+1] ))<0) h++ ; 
		  b[ ++ t] = a[i];    //line i is added into the rear for b 
	 c[t] = b[t].cross( b[t-1] );    //the intersection for the 
two lines at the rear of b is added into c
	 }
	 while (h < t && sign( b[h].f( c[t] ) )<0) t --; 
	 while (h < t && sign( b[t].f( c[h+1] ) )<0) h ++; 
	 if (h+1 >= t) return -1;    //the queue is empty
	 pt[0] = b[h].cross( b[t] );    //the first point for the 
convex polygon 
	 for(int i=h;i<t;i++) pt[i-h+1]=c[i+1]; 
	 pt[t - h + 1] = pt[0];  
	 return t - h + 1;    //number of points for the convex 
polygon
}
int main(){
	 ios::sync_with_stdio(false);
	 double x1, x2, y2, y1, ans=0;
	 int n, m;    //n: number of half-planes, m: number of points 
for the intersection of half-planes
	 n=0;    //initially 4 half-planes for [0, 10]*[0, 10]
	 SL[++n] = StraightLine(0, 1, 0);
	 SL[++n] = StraightLine(1, 0, 0);
	 SL[++n] = StraightLine(0, -1, 10);
	 SL[++n] = StraightLine(-1, 0, 10);
	 double px=0,py=0,nx, ny;    //position for before moving 
(px,py) and after moving (nx,ny)
	 string c;    // player B announces
	 char s;                 
	 while (cin >> nx >> ny){   // a position where play A enters
	  cin >> c ;    // player B announces
	  if (c[0] == 'C' )    //a corresponding plane is added based 
on player B announces
		  SL[++n]=StraightLine(-2*(nx-px),-2*(ny-py),-(px*px+py*py-
nx*nx-ny*ny));
	   else if (c[0]=='H' )
		   SL[++n]=StraightLine(2*(nx-px), 2*(ny-py) ,(px*px+py*py-
nx*nx -ny*ny));
	     else SL[++n]=StraightLine(-2*(nx-px),-2*(ny-py),-
(px*px+py*py-nx* nx-ny*ny)),



500  ◾  Algorithm Design Practice for Collegiate Programming

		   SL[++n]=StraightLine(2*(nx-px),2*(ny-py),(px*px+py*py-nx
*nx-ny*ny));
		  px = nx ; py = ny ;    //(nx, ny) will be the next 
position where player A enters
		  ans=0;    //initialize the area for the intersection of 
half-planes
		  for (int i = 1 ; i <= n ; i ++) S[i] = SL[i]; 
		  m = half_plane_cross(S, n, d);    //intersection of 
half-planes
		  if (m==-1) printf("0.00\n");    //the intersection doesn't 
exist
		  else {
		       for (int i = 0; i < m; i ++) ans += d[i] ^ d[i+1];
		       printf("%.2lf\n", ans / 2);
		  }
	 }
	 return 0;
}

8.4  Convex Hull and Finding the Farthest Pair of Points
In this section, there are two kinds of experiments as follows.

1.	Convex hull: Finding the smallest convex hull containing all given points.
2.	Finding the farthest pair of points in a convex hull.

8.4.1  Convex Hull

Suppose Q is a set of n points, Q p pn= … −{ , ., }0 1 . Its convex hull CH(Q) is the 
smallest polygon P, in which each point in Q is either on the boundary of P or in its 
interior. A convex hull can be regarded as a shape formed by an elastic rubber band 
that surrounds all points. An example is shown in Figure 8.30.

p0

p12

p11 p9
p8

p7
p6

p3

p5

p4

p2

p10

p1

Figure 8.30 



Practice for Computational Geometry  ◾  501

An algorithm, Graham’s scan, computes the convex hull of a set of n points. 
Graham’s scan inputs a set Q of n points, and outputs vertices of the convex hull 
CH(Q) in counterclockwise order.

1.	First, the point in Q with the minimum y-coordinate is selected. If there are 
more than one point with the minimum y-coordinate, the leftmost point is 
selected. The selected point is denoted as p0, and p0 is as the first vertice for 
the convex hull CH(Q).

2.	Second, other points in Q are sorted by polar angle in counterclockwise order. 
By calculating the cross product (pi−p0)^(pj−p0) (i.e., Mul(pi, pj, p0)), we can 
determine whose polar angle is larger.

If (pi−p0)^(pj−p0)>0, then the polar angle for pj is larger than the polar angle 
for pi, with respect to p0; and pi is scanned before pj.

If (pi−p0)^(pj−p0)<0, then the polar angle for pj is less than the polar angle for 
pi, with respect to p0; and pj is scanned before pi.

If (pi−p0)^(pj−p0)==0, then the polar angle for pj is the same as the polar angle 
for pi, with respect to p0. The point which is farther from p0 is scanned. 
And the other points are removed.

Suppose pointers are sorted as a sequence p pn… −{ , ., }1 1 . If n≤2, the convex hull 
is empty; else the sequence p pn… −{ , ., }1 1  is scanned.

A stack S is used to store candidate vertices in computing the convex hull. 
Initially, points p0, p1, and p2 are pushed into stack S one by one. Then points 
{ , ., }3 1… −p pn  are scanned one by one. Suppose pi is the current scanned point, 
and ptop is the point at the top of the stack S. Because vertices are traversed counter-
clockwise, if ptop is a vertice of the convex hull CH(Q), a left turn should be made 
from ptop to pi. If it is a nonleft turn, ptop isn’t a vertice of the convex hull CH(Q), 
and should be popped from S. After vertices making nonleft turns are popped, pi is 
pushed into S. Then the next point pi+1 is scanned. Finally, points in S are vertices of 
the convex hull CH(Q). The sequence from the bottom to the top in S are vertices 
of the convex hull CH(Q) in counterclockwise order.

By calculating the vector product p p p pi top top top− −− −( )^ ( )1 1  (i.e., Mul(pi, ptop, 
ptop−1)), where ptop−1 is the point next to the top of S. If p p p pi top top top− − ≥− −( )^ ( ) 01 1 , 
ptop makes a nonleft turn.

8.4.1.1  Wall

Once upon a time there was a greedy king who ordered his chief architect to build a 
wall around the king’s castle. The king was so greedy that he would not listen to his 
architect’s proposals to build a beautiful brick wall with a perfect shape and nice tall 
towers. Instead, he ordered the architect to build the wall around the whole castle 
using the least amount of stone and labor, but demanded that the wall should not 
come closer to the castle than a certain distance, as shown in Figure 8.31. If the 



502  ◾  Algorithm Design Practice for Collegiate Programming

king finds that the architect has used more resources to build the wall than was 
absolutely necessary to satisfy those requirements, then the architect will lose his 
head. Moreover, he demanded that the architect introduce at once a plan of the wall 
listing the exact amount of resources that are needed to build the wall.

Your task is to help the poor architect to save his head, by writing a program 
that will find the minimum possible length of the wall that he could build around 
the castle to satisfy the king’s requirements.

The task is somewhat simplified by the fact that the king’s castle has a polyg-
onal shape and is situated on flat ground. The architect has already established 
a Cartesian coordinate system and has precisely measured the coordinates of all 
castle’s vertices in feet.

Input

The first line of the input file contains two integer numbers N and L separated 
by a space. N (3≤N≤1000) is the number of vertices in the king’s castle, and 
L (1≤L≤1000) is the minimal number of feet that the king allows for the wall to 
come close to the castle.

The next N lines describe the coordinates of the castle’s vertices in a clock-
wise order. Each line contains two integer numbers Xi and Yi separated by a 
space (−10000≤Xi,Yi≤10000) that represents the coordinates of the i-th vertex. 
All vertices are different, and the sides of the castle do not intersect anywhere 
except for vertices.

Output

Write to the output file the single number that represents the minimal possible 
length of the wall in feet that could be built around the castle to satisfy the king’s 

Figure 8.31 



Practice for Computational Geometry  ◾  503

requirements. You must present the integer number of feet to the king, because the 
floating numbers are not invented yet. However, you must round the result in such 
a way that it is accurate to 8 inches (1 foot is equal to 12 inches), since the king will 
not tolerate any larger error in the estimates.

Sample Input Sample Output

9  100
200  400
300  400
300  300
400  300
400  400
500  400
500  200
350  200
200  200

1628

Source:	 ACM Northeastern Europe 2001

IDs for Online Judges: POJ 1113, ZOJ 1465, UVA 2453

  Analysis

The shape for the king’s castle is a polygon. The architect is required to build a wall 
around the king’s castle. And the minimum number of feet that the king allows for 
the wall to come close to the castle is L.

First, a convex hull is computed by Graham’s scan. The inputs for the algo-
rithm are the castle’s vertices. The built wall is a polygon with rounded corners 
around the convex hull. Edges for the polygon are parallel to the edges of the 
convex hull. Lengths of two parallel edges are the same. And the distance for two 
parallel edges is L. For the wall, each round corner is an arc connecting two adja-
cent edges, whose radius is L, and the center of the circle is a vertex for the convex 
hull. For a round corner, the sum of the radius angle and its corresponding interior 
angle for the convex hull is 180°. Because the sum of degrees of interior angles in 
a convex polygon with n edges is (n−2)×180°, the sum of degrees of radius angles is 
360°. Therefore, the sum of the lengths of arcs is the circumference of a circle whose 
radius is L.

The minimal possible length of the wall is the girth of the convex hull + the 
circumference of a circle whose radius is L.



504  ◾  Algorithm Design Practice for Collegiate Programming

  Program

#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
const double epsi = 1e-8;    //infinitesimal
const double pi = acos(-1.0);    //Radian value for π
const int maxn = 1000 + 10;
struct Point {    //Calculation for point
	 double x, y;    // coordinate
		  Point(double _x = 0, double _y = 0): x(_x), y(_y) { } 
	 double operator ^(const Point &op2) const {    // vector 
product for two point vectors
		  return x * op2.y - y * op2.x;
	 }
};
inline int sign(const double &x) { 
	 if (x > epsi) return 1;
	 if (x < -epsi) return -1;
	 return 0;
}
inline double sqr(const double &x) {    //calculate x2

	 return x * x;
}
inline double mul(const Point &p0, const Point &p1,const Point 
&p2){// vector product for p p

� �����
0 1  and p p

� �����
0 2

	 return (p1.x-p0.x)*(p2.y-p0.y)-(p1.y-p0.y)*(p2.x-p0.x);    
//(p1 - p0) ^ (p2 - p0);
}
inline double dis2(const Point &p0, const Point &p1) {    

// p p
� �����
0 1

2

	 return sqr(p0.x - p1.x) + sqr(p0.y - p1.y);
}
inline double dis(const Point &p0, const Point &p1) {    
// p p

� �����
0 1

	 return sqrt(dis2(p0, p1));
}
int n, l;    //n: the number of vertices in the king's castle, 
l: the minimal number of feet that king allows for the wall to 
come close to the castle
Point p[maxn], convex_hull_p0;    // p[]: a sequence for 
vertices for the polygon, convex_hull_p0: the point with the 
minimum y-coordinate
inline bool convex_hull_cmp(const Point &a, const Point &b) { 



Practice for Computational Geometry  ◾  505

	 return sign(mul(convex_hull_p0, a, b))>0||sign(mul(convex_
hull_p0, a, b))==0 && dis2(convex_hull_p0, a)<dis2(convex_
hull_p0, b);
}
int convex_hull(Point *a, int n, Point *b){    // the convex 
hull b[] is computed based on a set of points a[] (number of 
points is n)
	 if (n < 3) printf("Wrong in Line %d\n", __LINE__);    //the 
number of points <3
	 for (int i = 1; i < n; ++i)    //calculating convex_hull_p0
  	  if(sign(a[i].x-a[0].x)<0||sign(a[i].x-a[0].x)==0 && 
sign(a[i].y-a[0].y)<0)swap(a[0], a[i]);
	 convex_hull_p0 = a[0];
	 sort(a, a + n, convex_hull_cmp);    //with respect to 
convex_hull_p0, a[] is sorted, polar angle is the first key, 
distance is the second key
	 int newn = 2;    // a[0], a[1] is pushed into the stack
	 b[0] = a[0], b[1] = a[1];                     
	 for (int i = 2; i < n; ++i) {    //points are dealt with one 
by one
	 while(newn>1 && sign(mul(b[newn-1],b[newn-2], a[i]))>=0)--
newn;    //pop nonleft turn points
		  b[newn++] = a[i];    //point i is pushed into the stack
	 }
	 return newn; 
}
int main() {
	 scanf("%d%d", &n, &l);    // n: the number of vertices in 
the king's castle, l: the minimal number of feet that king 
allows for the wall to come close to the castle
	 for (int i = 0; i < n; ++i)    // coordinates of castle's 
vertices
		  scanf("%lf%lf", &p[i].x, &p[i].y); 
		  n = convex_hull(p, n, p);    //calculating the convex 
hull
	 p[n] = p[0];  
		  double ans = 0;    // ans: length of the wall
	 for (int i = 0; i < n; ++i)    // the girth of the convex 
hull
		  ans += dis(p[i], p[i + 1]);
	 ans += 2 * pi * l;    // the circumference of a circle
	 printf("%.0lf\n", ans); 
		  return 0;
}

8.4.2  Finding the Farthest Pair of Points

Given a set of n points in a plane, how can we find the farthest pair of points? The 
problem can be solved by finding the convex hull of the set of n points. The farthest 



506  ◾  Algorithm Design Practice for Collegiate Programming

pair of points must be two vertices for the convex hull. The distance between the 
farthest pair of vertices for a convex hull is called the diameter of a convex hull.

For a convex hull, each pair of vertices can be enumerated to find the farthest 
pair of vertices. The method of rotating calipers is the optimal algorithm for finding 
the farthest pair of vertices of the convex hull.

Suppose P is a convex polygon with n vertices, and L is a line. If L intersects P, 
and the interior of P lies completely on one side of L, L is a line of support for P. It 
is shown in Figure 8.32. If L intersects P at a vertex v, or an edge e; v or e admits L. 
A pair of vertices pi, pj∈P is an antipodal pair if it admits parallel lines of support 
for P. In Figure 8.32, an antipodal pair admits parallel lines of support. Lines of 
support can be rotated to generate the next antipodal pair. Suppose angles that the 
lines of support at pi and pj make with edges pi pi+1 and pj pj+1 are θi and θj respectively. 
If θj<θi, and the lines of supports are rotated by angle θj, then pj+1 and pi become 
the next antipodal pair. If θj=θi, then three new antipodal pairs are generated. 
Therefore, there are three cases that lines of support interest P, shown in Figure 8.33, 
Figure 8.34, and Figure 8.35, respectively. In the case shown in Figure 8.33, there is 

pi

i

j

pi+1

pi+2

pj+2

pj+1

pj

Figure 8.32 

Figure 8.33 



Practice for Computational Geometry  ◾  507

an antipodal pair; in the case shown in Figure 8.34, there are two antipodal pairs; 
and in the case shown in Figure 8.35, there are four antipodal pairs.

The diameter of a convex polygon P is the greatest distance between parallel lines 
of support of P. The diameter of a convex polygon P is the greatest distance between 
an antipodal pair of P. Therefore we need to check each antipodal pair. Initially 
qa is the vertices for P with the minimum y-coordinate, and qb is the vertices for P 
with with the maximum y-coordinate. Obviously, qa and qb are an antipodal pair. 
Suppose dab is the distance between qa and qb; Ca is the circle of radius dab centered at 
qa, and Cb is the circle of radius dab centered at qb; La is the tangent to Ca at qa, and Lb 
is the tangent to Cb at qb; L is the line through qa and qb. By the definition of tangent 
line, La⊥L and Lb⊥L. Therefore, La and Lb are lines of support of P. La and Lb rotate 
to generate new antipodal pairs. The process that La and Lb rotate is continued until 
we come full circle to the starting position. Suppose qa and qb are the farthest pair of 
points. La and Lb are parallel lines of support that intersect qa and qb respectively. La 
and Lb can be rotated to generate each antipodal pair. This is shown in Figure 8.36.

For a convex polygon, suppose u[0] is the lowest point, and if there are more 
than one lowest point, u[0] is the rightmost point for the lowest points; and u[2] is 
the highest point, and if there are more than one highest point, u[0] is the leftmost 
point for the highest points. Obviously u[0] and u[2] is an antipodal pair. The 
algorithm calculating the distance for the farthest pair of points ret is as follows:

    Calculate the sequence of vertices for convex hull;
    Calculate u[0] and u[2], and initialize ret as p pu u[ ] [ ]

� ���������
0 2 ;

    Rotation degree sumang=0; 

Figure 8.34 

Figure 8.35 



508  ◾  Algorithm Design Practice for Collegiate Programming

qb

Lb

Cb

Ca

La

qa

P
p

L

Figure 8.36 

	 while (sumang≤2π) { 
	  calculate the current rotation degree curang to generate a 
new antipodal pair u[0] and u[2];
	  sumang+=curang;    //accumulation

	  ret=max(ret, p pu u[ ] [ ]
� ���������

0 2 );    //adjust the distance for the 
farthest pair of points ret

	 }
	 Output the distance for the farthest pair of points ret;

8.4.2.1  Beauty Contest

Bessie, Farmer John’s prize cow, has just won first place in a bovine beauty con-
test, earning the title “Miss Cow World”. As a result, Bessie will make a tour of 
N (2≤N≤50,000) farms around the world in order to spread goodwill between farm-
ers and their cows. For simplicity, the world will be represented as a two-dimensional 
plane, where each farm is located at a pair of integer coordinates (x, y), each having a 
value in the range −10,000...10,000. No two farms share the same pair of coordinates.

Even though Bessie travels directly in a straight line between pairs of farms, the 
distance between some farms can be quite large, so she wants to bring a suitcase full 
of hay with her so she has enough food to eat on each leg of her journey. Since Bessie 
refills her suitcase at every farm she visits, she wants to determine the maximum 
possible distance she might need to travel so she knows the size of suitcase she must 
bring. Help Bessie by computing the maximum distance among all pairs of farms.

Input

Line 1: A single integer, N;
Line 2: N+1: Two space-separated integers x and y specifying the coordinate of each 
farm.



Practice for Computational Geometry  ◾  509

Output

Line 1: A single integer that is the squared distance between the pair of farms that 
are farthest apart from each other.

Sample Input Sample Output

4
0  0
0  1
1  1
1  0

2

Source:	 USACO 2003 Fall

ID for Online Judge: POJ 2187

Farm 1 (0, 0) and farm 3 (1, 1) have the longest distance (square root of 2).

  Analysis

In this problem, there are N (2≤N≤50,000) points. The problem requires you to 
compute the maximum distance among all pairs of points. Obviously, the pair of 
points with the maximum distance must be two points for the convex hull. First, 
the convex hull of the set of N points is computed. Then the maximum distance 
among all pairs of points for the convex hull is computed. If each pair of points is 
enumerated, it will take more time. For this problem, rotating calipers is suitable to 
compute the maximum distance among all pairs of points for the convex hull. The 
program is shown as follows.

  Program

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <cstdlib>
using namespace std;
#define N 50005    // the upper limit for the number of points
struct point{    // p[]: a sequence of coordinates
    int x,y;
}p[N];



510  ◾  Algorithm Design Practice for Collegiate Programming

int n;    // the number of points
int stack[N],top = -1;    //stack stack[], pointer pointing to 
the top of stack top
int multi(struct point a,struct point b,struct point c){    
//cross product (b−a)^(c−a)
    return (b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x);
}
int dis(struct point a,struct point b){    //the distance 
between points a and b ab

� ��

    return (b.x-a.x)*(b.x-a.x)+(b.y-a.y)*(b.y-a.y);
}

int cmp(struct point a,struct point b){    // Comparison 
function in sorting: If three collinear(points a, b, and 
p[1]), the distance between b and p[1] is larger than the 
distance between a and p[1], ab is sorted; else ba is sorted. 
If no three collinear(points a, b, and p[1]), if the polar 
angle for ap[ ]

� �����
1  is less than the polar angle for bp[ ]

� �����
1 , ab is 

sorted; else ba is sorted.
    int tmp = multi(p[1],a,b);
    if(tmp == 0)
        return dis(p[1],a) < dis(p[1],b);
    return tmp>0;
}

int main(){
    int i,j,res=0;    // res: the maximum distance
    struct point begin;    // the point with the minimum 
y-coordinate
    scanf("%d",&n);    // number of farms
    begin.x = begin.y = 10005;    //Initialization for the 
point with the minimum y-coordinate in convex hull
    for(i = 1;i<=n;i++){    //Input every farm's coordinate
        scanf("%d %d",&p[i].x,&p[i].y);
        if(p[i].y < begin.y){    //adjust begin, note down the 
sequence number j
            begin = p[i];
            j = i;
        }else if(p[i].y==begin.y && p[i].x<begin.x){
            begin = p[i];
            j = i;
        }
    }
    if(n==2){    //output the distance between two points 
        printf("%d\n",dis(p[1],p[2]));
        return 0;
    }
    p[j] = p[1]; 
    p[1] = begin;
    sort(p+2,p+n+1,cmp);    //Sorting point 2 … point n



Practice for Computational Geometry  ◾  511

    stack[++top] = 1;    //point 1 and point 2 are pushed into 
stack, and graham is used to calculate the convex hull stack[]
    stack[++top] = 2;
    for(i = 3;i<=n;i++){
        while(top>0 && multi(p[stack[top-1]], p[stack[top]], 
p[i])<=0) top--;
        stack[++top] = i;
    } 
    // Rotating calipers are used to find the farthest pair of 
points
    j = 1;  
    stack[++top] = 1; 
    for(i = 0;i<top;i++){    //Enumerate point i
    //enumerate the farthest point j for the line segment 

p stack i p stack i[ [ ]] [ [ ]]
� ��������������������������������

+1  anticlockwise
      while(multi(p[stack[i]],p[stack[i+1]],p[stack[j+1]])>mul
ti(p[stack[i]],p[stack[i+1]], p[stack[j]])) j=(j+1)%top;     
      res=max(res,dis(p[stack[i]],p[stack[j]]));    //

calculate p stack i p stack j[ [ ]] [ [ ]]
� ����������������������������

, and adjust the maximum distance 
res
    }
    printf("%d\n",res);    //output the maximum distance
                            
}

8.5  Problems
8.5.1  Segments

Given n segments in the two-dimensional space, write a program that determines 
if there exists a line such that after projecting these segments on it, all projected 
segments have at least one point in common.

Input

Input begins with a number T showing the number of test cases and then, T test 
cases follow. Each test case begins with a line containing a positive integer n≤100 
showing the number of segments. After that, n lines containing four real numbers 
x1 y1 x2 y2 follow, in which (x1, y1) and (x2, y2) are the coordinates of the two end-
points for one of the segments.

Output

For each test case, your program must output “Yes!”, if a line with the desired prop-
erty exists and must output “No!” otherwise. You must assume that two floating-
point numbers a and b are equal if |a−b| <10-8.



512  ◾  Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output

3
2
1.0  2.0  3.0  4.0
4.0  5.0  6.0  7.0
3
0.0  0.0  0.0  1.0
0.0  1.0  0.0  2.0
1.0  1.0  2.0  1.0
3
0.0  0.0  0.0  1.0
0.0  2.0  0.0  3.0
1.0  1.0  2.0  1.0

Yes!
Yes!
No!

Source:	 Amirkabir University of Technology Local Contest 2006

ID for Online Judge: POJ 3304

  Hint

The problem description is equivalent to determining whether there is a line l inter-
secting with n segments or not. If there is a line l intersecting with n segments, let 
line m be perpendicular to line l, and line m is the line that the problem requires 
you to find.

For segment i, its endpoints are p2×i and p2×i+1, 0≤i≤n−1. Each pair of endpoints 
pi and pj (0≤i<j≤2n−1) is enumerated: if the line through pi and pj intersects with 
or coincides with n segments, then all projected segments have at least one point in 
common, and “Yes!” is output; else the next pair of points is enumerated. If there is 
no line with the desired property, “No!” is output.

8.5.2  Titanic

It is a historical fact that during the legendary voyage of “Titanic”, the wireless 
telegraph machine delivered six warnings about the danger of icebergs. Each of the 
telegraph messages described the point where an iceberg had been noticed. The first 
five warnings were transferred to the captain of the ship. The sixth one came late 
at night, and the telegraph operator did not notice that the coordinates mentioned 
were very close to the current ship’s position.

Write a program that will warn the operator about the danger of icebergs!



Practice for Computational Geometry  ◾  513

Input

The input messages are of the following format:

Message #<n>.
Received at <HH>:<MM>:<SS>.
Current ship’s coordinates are
<X1>^<X2>'<X3>" <NL/SL>
and <Y1>^<Y2>'<Y3>" <EL/WL>.
An iceberg was noticed at
<A1>^<A2>'<A3>" <NL/SL>
and <B1>^<B2>'<B3>" <EL/WL>.
===

Here <n> is a positive integer, <HH>:<MM>:<SS> is the time of the message 
reception, <X1>^<X2>'<X3>"<NL/SL> and <Y1>^<Y2>'<Y3>"<EL/WL> means 
“X1 degrees X2 minutes X3 seconds of North (South) latitude and Y1 degrees Y2 
minutes Y3 seconds of East (West) longitude.”

Output

Your program should print to the output file message in the following format:

The distance to the iceberg: <s> miles,

where <s> should be the distance between the ship and the iceberg (that is the 
length of the shortest path on the sphere between the ship and the iceberg). This 
distance should be printed up to (and correct to) two decimal digits. If this distance 
is less than (but not equal to!) 100 miles, the program should print one more line 
with the text: “DANGER!”

Sample Input Sample Output

Message #513.
Received at 22:30:11.
Current ship's coordinates are
41^46'00" NL
and 50^14'00" WL.
An iceberg was noticed at
41^14'11" NL
and 51^09'00" WL.
===

The distance to the iceberg: 52.04 miles.
DANGER!

Source:	 Ural Collegiate Programming Contest 1999

IDs for Online Judges: POJ 2354, Ural 1030



514  ◾  Algorithm Design Practice for Collegiate Programming

  Hint

For simplicity of calculations, assume that the Earth is an ideal sphere with the 
diameter of 6875 miles completely covered with water. Also, you can be sure that 
lines in the input file break exactly as shown in the input samples. The ranges of 
the ship and the iceberg coordinates are the same as the usual range for geographi-
cal coordinates, i.e., from 0 to 90 degrees inclusively for NL/SL and from 0 to 
180 degrees inclusively for EL/WL.

  Hint

The problem requires you to calculate the distance between two points on a sphere. 
The formula calculating spherical distance is used to solve the problem directly. 
If the distance is less than 100 miles, the program should print one more line with 
the text: “DANGER!”

8.5.3  Intervals

In the ceiling in the basement of a newly open developers’ building, a light source 
has been installed. Unfortunately, the material used to cover the floor is very sensi-
tive to light. It turns out that its expected lifetime is decreasing dramatically. To 
avoid this, authorities have decided to protect light-sensitive areas from strong light 
by covering them. The solution was not very easy because, as is common, in the 
basement there are different pipelines under the ceiling, and the authorities want to 
install the covers just on those parts of the floor that are not shielded from the light 
by pipes. To cope with the situation, the first decision was to simplify the real situ-
ation and, instead of solving the problem in 3-D space, to construct a 2-D model 
first (see Figure 8.37).

Floor

Ceiling

Figure 8.37 



Practice for Computational Geometry  ◾  515

Within this model, the x-axis has been aligned with the level of the floor. The 
light is considered to be a point light source with integer coordinates [bx, by]. The 
pipes are represented by circles. The center of the circle i has the integer coordi-
nates [cxi, cyi] and an integer radius ri. As pipes are made from solid material, circles 
cannot overlap. Pipes cannot reflect the light and the light cannot go through the 
pipes. You have to write a program that will determine the non-overlapping inter-
vals on the x-axis where there is, due to the pipes, no light from the light source.

Input

The input consists of blocks of lines, each of which except the last describes one 
situation in the basement. The first line of each block contains a positive integer 
number N<500 expressing the number of pipes. The second line of the block con-
tains two integers bx and by separated by one space. Each of the next N lines of the 
block contains integers cxi, cyi and ri, where cyi+ri<by. Integers in individual lines are 
separated by one space. The last block consists of one line containing n=0.

Output

The output consists of blocks of lines, corresponding to the blocks in the input 
(except the last one). One empty line must be put after each block in the output. 
Each of the individual lines of the blocks in the output will contain two real num-
bers, the endpoints of the interval where there is no light from the given point light 
source. The reals are exact to two decimal places and separated by one space. The 
intervals are sorted according to increasing x-coordinate.

Sample Input Sample Output

6
300  450
70  50  30
120  20  20
270  40  10
250  85  20
220  30  30
380  100  100
1
300  300
300  150  90
1
300  300
390  150  90
0

0.72  78.86
88.50  133.94
181.04  549.93

75.00  525.00

300.00  862.50

Source:	 ACM Central Europe 1996

IDs for Online Judges: POJ 1375, ZOJ 1309, UVA 313



516  ◾  Algorithm Design Practice for Collegiate Programming

  Hint

Suppose the point light source is node b, and the center and the radius of the circle 
i are pi and ri respectively. There are two tangent lines from node b for the circle i, 
where the x-coordinates for the intersection points for two tangent lines and X-axis 
are Li and Ri respectively.

First, for circle i, 1≤i≤n, Li and Ri are calculated. Then circles are sorted in ascend-
ing order for Li: order[0..n−1]. Finally, each circle in order[0..n−1] is analyzed one by 
one to determine the interval where there is no light from the given point light source.

8.5.4  Treasure Hunt

Archeologists from the Antiquities and Curios Museum (ACM) have flown to 
Egypt to examine the great pyramid of Key-Ops. Using state-of-the-art technology, 
they are able to determine that the lower floor of the pyramid is constructed from 
a series of straightline walls, which intersect to form numerous enclosed chambers. 
Currently, no doors exist to allow access to any chamber. This state-of-the-art tech-
nology has also pinpointed the location of the treasure room. What these dedicated 
(and greedy) archeologists want to do is to blast doors through the walls to get to 
the treasure room. However, to minimize the damage to the artwork in the inter-
vening chambers (and stay under their government grant for dynamite), they want 
to blast through the minimum number of doors. For structural integrity purposes, 
doors should only be blasted at the midpoint of the wall of the room being entered. 
You are to write a program which determines this minimum number of doors. An 
example is shown in Figure 8.38.

0
0

14

71
75

90

100
0 37 47 76 100

100
90

61

47

38

0
20 40 85 100

Figure 8.38 



Practice for Computational Geometry  ◾  517

Input

The input will consist of one case. The first line will be an integer n (0≤n≤30) 
specifying the number of interior walls, followed by n lines containing the integer 
endpoints of each wall x1 y1 x2 y2. The four enclosing walls of the pyramid have fixed 
endpoints at (0,0); (0,100); (100,100), and (100,0) and are not included in the list 
of walls. The interior walls always span from one exterior wall to another exterior 
wall and are arranged such that no more than two walls intersect at any point. You 
may assume that no two given walls coincide. After the listing of the interior walls, 
there will be one final line containing the floating-point coordinates of the treasure 
in the treasure room (guaranteed not to lie on a wall).

Output

Print a single line listing the minimum number of doors that need to be created, in 
the format shown below.

Sample Input Sample Output

7
20  0  37  100
40  0  76  100
85  0  0  75
100  90  0  90
0  71  100  61
0  14  100  38
100  47  47  100
54.5  55.4

Number of doors = 2

Source:	 ACM East Central North America 1999 

IDs for Online Judges: POJ 1066, ZOJ 1158, UVA 754

  Hint

For each interior wall, the line segment connecting the treasure and its endpoint 
can be regarded as a route for archeologists entering the treasure room. The number 
of intersection points for the line segment and interior walls is the number of doors 
which archeologists need to create for interior walls.

The i-th interior wall is represented as an edge vector p pi i

� �����
1 2 , 0≤i≤n−1, where p1i 

and p2i are endpoints for the i-th interior wall; and the floating-point coordinate of 
the treasure in the treasure room is p.

The line segment connecting the treasure and the starting point for the i-th inte-
rior wall is represented as an edge vector pp i

� ���
1 , 0≤i≤n−1. Suppose Ai is the number of 

intersection points for the line segment and interior walls. A=min{A1, A2, …, An}.



518  ◾  Algorithm Design Practice for Collegiate Programming

The line segment connecting the treasure and the terminal point for the i-th inte-
rior wall is represented as an edge vector pp i

� ����
2 , 0≤i≤n−1. Suppose Bi is the number 

of intersection points for the line segment and interior walls. B=min{B1, B2, …, Bn}.
The minimum number of doors which need to be created is min{A, B}+1.

8.5.5  Intersection

You are to write a program that has to decide whether a given line segment inter-
sects a given rectangle.

Here’s an example:

line: start point: (4,9)
end point: (11,2)
rectangle: left-top: (1,5)
right-bottom: (7,1)

The line is said to intersect the rectangle if the line and the rectangle have at 
least one point in common. The rectangle consists of four straight lines and the area 
in between, as shown in Figure 8.39. Although all input values are integer numbers, 
valid intersection points do not have to lay on the integer grid.

Input

The input consists of n test cases. The first line of the input file contains the number 
n. Each following line contains one test case of the format:

xstart ystart xend yend xleft ytop xright ybottom

where (xstart, ystart) is the start and (xend, yend) the end point of the line and (xleft, 
ytop) the top-left and (xright, ybottom) the bottom-right corner of the rectangle. The 

X(0, 0)

Y

Figure 8.39  Line segment does not intersect rectangle.



Practice for Computational Geometry  ◾  519

eight numbers are separated by a blank. The terms “top left” and “bottom right” do 
not imply any ordering of coordinates.

Output

For each test case in the input file, the output file should contain a line consisting 
either of the letter “T” if the line segment intersects the rectangle, or the letter “F” 
if the line segment does not intersect the rectangle.

Sample Input Sample Output

1
4  9  11  2  1  5  7  1

F

Source:	 ACM Southwestern European Regional Contest 1995 

IDs for Online Judges: POJ 1410, UVA 191

  Hint

Suppose the given line segment is pt pt
� ������

1 2 , where the start point for the line segment 
is pt1 and the end point is pt2. Based on the left-top and the right-bottom corners 
for the given rectangle, the left-bottom corner, the right-top corner, and four edges 
for the rectangle are calculated.

The rectangle consists of four straight lines and the area in between. If pt1 and 
pt2 are in the area for the rectangle, the line intersects the rectangle. And if the line 
segment intersects any edge for the rectangle, the line segment intersects the rect-
angle. Otherwise, the line segment doesn’t intersect the rectangle.

8.5.6  Space Ant

The most exciting space discovery occurred at the end of the 20th century. In 1999, 
scientists traced down an ant-like creature in the planet Y1999 and called it M11. 
It has only one eye on the left side of its head and has just three feet all on the right 
side of its body. It suffers from three walking limitations:

1.	It cannot turn right due to its special body structure.
2.	It leaves a red path while walking.
3.	It hates to pass over a previously red colored path, and never does that.

The pictures transmitted by the Discovery space ship depict that plants in the 
Y1999 planet grow in special points on the planet. Analysis of several thousands 



520  ◾  Algorithm Design Practice for Collegiate Programming

of the pictures have resulted in discovering a magic coordinate system governing 
the grow points of the plants. In this coordinate system with x and y axes, no two 
plants share the same x or y.

An M11 needs to eat exactly one plant in each day to stay alive. When it eats 
one plant, it remains there for the rest of the day with no move. The next day, it 
looks for another plant to eat. If it cannot reach any other plant, it dies by the end 
of the day. Notice that it can reach a plant in any distance.

The problem is to find a path for an M11 to let it live as long as possible.
Input is a set of (x, y) coordinates of plants. Suppose A with the coordinates 

(xA, yA) is the plant with the least y-coordinate. M11 starts from point (0, yA) head-
ing towards plant A. Notice that the solution path should not cross itself, and all of 
the turns should be counterclockwise. Also note that the solution may visit more 
than two plants located on a same straight line. See Figure 8.40.

Input

The first line of the input is M, the number of test cases to be solved (1≤M≤10). For 
each test case, the first line is N, the number of plants in that test case (1≤N≤50), 
followed by N lines for each plant data. Each plant data consists of three integers: 
the first number is the unique plant index (1..N), followed by two positive integers 
x and y representing the coordinates of the plant. Plants are sorted by the increasing 
order on their indices in the input file. Suppose that the values of coordinates are 
at most 100.

Output

Output should have one separate line for the solution of each test case. A solution is 
the number of plants on the solution path, followed by the indices of visiting plants 
in the path in the order of their visits.

Plant A
Starting

point

Figure 8.40 



Practice for Computational Geometry  ◾  521

Sample Input Sample Output

2
10
1  4  5
2  9  8
3  5  9
4  1  7
5  3  2
6  6  3
7  10  10
8  8  1
9  2  4
10  7  6
14
1  6  11
2  11  9
3  8  7
4  12  8
5  9  20
6  3  2
7  1  6
8  2  13
9  15  1
10  14  17
11  13  19
12  5  18
13  7  3
14  10  16

10  8  7  3  4  9  5  6  2  1  10
14  9  10  11  5  12  8  7  6  13  4  14  1  3  2

Source:	 ACM Tehran 1999 

IDs for Online Judges: POJ 1696, ZOJ 1429

  Hint

Suppose N plants are a0, a1, …, aN −1. A with the coordinates (xA, yA) is the plant with 
the least y-coordinate. M11 starts from point (0, yA) heading towards plant A. Therefore 
A is as the first plant a0. Then from ai, i≥0, the next plant is analyzed one by one: based 
on ai, the remaining plants are sorted as ai+1, …, aN −1, where the first key is the direc-
tion, and the second key is the distance between ai and the plant. The next plant is ai+1.

8.5.7  Kadj Squares

In this problem, you are given a sequence S1, S2, ..., Sn of squares of different sizes. 
The sides of the squares are integer numbers. We locate the squares on the positive x-y 



522  ◾  Algorithm Design Practice for Collegiate Programming

quarter of the plane, such that their sides make 45 degrees with x and yaxes, and one 
of their vertices is on the y=0 line. Let bi be the x coordinates of the bottom vertex of 
Si. First, put S1 such that its left vertex lies on x=0. Then, put S1, (i>1) at minimum bi 
such that

> −1b bi i  and

the interior of Si does not have intersection with the interior of S1 ... Si−1.
The goal is to find which squares are visible, either entirely or partially, when 

viewed from above. In Figure 8.41, the squares S1, S2, and S4 have this property. 
More formally, Si is visible from above if it contains a point p, such that no square 
other than Si intersects the vertical half-line drawn from p upwards.

Input

The input consists of multiple test cases. The first line of each test case is n (1≤n≤50), 
the number of squares. The second line contains n integers between 1 to 30, where 
the i-th number is the length of the sides of Si. The input is terminated by a line 
containing a zero number.

Output

For each test case, output a single line containing the index of the visible squares in 
the input sequence, in ascending order, separated by blank characters.

Sample Input Sample Output

4
3  5  1  4
3
2  1  2
0

1  2  4
1  3

Source:	 ACM Tehran 2006 

IDs for Online Judges: POJ 3347, UVA 3799

y

x

S4
S2

S1

b1 b2 b3 b4
S3

Figure 8.41 



Practice for Computational Geometry  ◾  523

  Hint

Suppose the length of one side for the i-th square is li, and projections on the x-axis 
for its left end and right end are lefi and rigi, respectively, 0≤i≤n−1. This is shown in 
Figure 8.42. If the i-th square is visible, the visible interval is [lei, rii].

Because of the precision of real numbers, the sides of squares are expanded 2 
times. Obviously, lef0=0, and rig0=2×l0.

First, for other squares, their lefi and rigi are calculated: lef rig l li
j i

j i jmax { },
0 1

= − −
≤ ≤ −

 
rigi=lefi+2×li, 1≤i≤n−1.

Then, based on lefi and rigi, visible intervals for all squares are calculated: 
le rig lefi

j i
j i=

≤ ≤ −
max { , }

0 1
, ri rig lefi

i j n
i j=

+ ≤ ≤ −
min { , }
1 1

.

Finally, every square is analyzed. If lei<rii, then the (i+1)th square is visible; else 
it is invisible.

8.5.8  Pipe

The GX Light Pipeline Company started to prepare bent pipes for the new trans-
galactic light pipeline. During the design phase of the new pipe shape, the com-
pany ran into the problem of determining how far the light can reach inside each 
component of the pipe. Note that the material which the pipe is made from is not 
transparent and is not light reflecting.

Each pipe component consists of many straight pipes connected tightly together. 
For programming purposes, the company developed the description of each com-
ponent as a sequence of points [x1; y1], [x2; y2], . . ., [xn; yn], where x1<x2<. . .<xn. These 
are the upper points of the pipe contour. The bottom points of the pipe contour 
consist of points with y-coordinate decreased by 1. To each upper point [xi; yi], there 
is a corresponding bottom point [xi; yi−1] (see Figure 8.43). The company wants to 
find, for each pipe component, the point with maximal x-coordinate that the light 
will reach. The light is emitted by a segment source with endpoints [x1; y1−1] and 
[x1;y1] (endpoints are emitting light, too). Assume that the light is not bent at the 
pipe bent points and the bent points do not stop the light beam.

lefi regi
x

Si

Sj

Figure 8.42 



524  ◾  Algorithm Design Practice for Collegiate Programming

Input

The input file contains several blocks, each describing one pipe component. Each 
block starts with the number of bent points 2≤n≤20 on a separate line. Each of the 
next n lines contains a pair of real values xi, yi separated by space. The last block is 
denoted with n=0.

Output

The output file contains lines corresponding to blocks in the input file. To each 
block in the input file, there is one line in the output file. Each such line contains 
either a real value, written with precision of two decimal places, or the message 
“Through all the pipe.”. The real value is the desired maximal x-coordinate of the 
point where the light can reach from the source for the corresponding pipe compo-
nent. If this value equals to xn, then the message “Through all the pipe.” will appear 
in the output file.

Sample Input Sample Output

4
0  1
2  2
4  1
6  4
6
0  1
2  -0.6
5  -4.45
7  -5.57
12  -10.8
17  -16.55
0

4.67
Through all the pipe.

Source:	 ACM Central Europe 1995

IDs for Online Judges: POJ 1039, UVA 303

[x1, y1]

[x2, y2]

[x3, y3]

[x4, y4]

Figure 8.43 



Practice for Computational Geometry  ◾  525

  Hint

Given a pipe component, the problem requires you to find the point with maximal 
x-coordinate that the light will reach, or the light can be through all the pipe.

There are n pairs of points: the upper point [xi, yi], and its corresponding bottom 
point [xi, yi−1], 1≤i≤n. Such a light must be through an upper point and a bottom 
point. Therefore, enumeration is used to solve the problem. Lines through an upper 
point and a bottom point are enumerated.

8.5.9  Geometric Shapes

While creating a customer logo, ACM uses graphical utilities to draw a picture that 
can later be cut into special fluorescent materials. To ensure proper processing, the 
shapes in the picture cannot intersect. However, some logos contain such intersect-
ing shapes. It is necessary to detect them and decide how to change the picture.

Given a set of geometric shapes, you are to determine all of their intersections. 
Only outlines are considered; if a shape is completely inside another one, it is not 
counted as an intersection. See Figure 8.44.

Input

The input contains several pictures. Each picture describes at most 26 shapes, each 
specified on a separate line. The line begins with an uppercase letter that uniquely 
identifies the shape inside the corresponding picture. Then there is a kind of the 
shape and two or more points, everything separated by at least one space. Possible 
shape kinds are as follows:

Square: Followed by two distinct points giving the opposite corners of the 
square.

Rectangle: Three points are given; there will always be a right angle between the 
lines connecting the first point with the second and the second with the third.

X
SB

W

F

A

Figure 8.44 



526  ◾  Algorithm Design Practice for Collegiate Programming

Line: Specifies a line segment; two distinct end points are given.
Triangle: Three points are given; they are guaranteed not to be colinear.
Polygon: Followed by an integer number N (3≤N≤20) and N points specifying 

vertices of the polygon in either clockwise or anticlockwise order. The poly-
gon will never intersect itself and its sides will have non-zero length.

All points are always given as two integer coordinates X and Y separated with a 
comma and enclosed in parentheses. You may assume that |X |,|Y |≤10000.

The picture description is terminated by a line containing a single dash (“−”). 
After the last picture, there is a line with one dot (“.”).

Output

For each picture, output one line for each of the shapes, sorted alphabetically by its 
identifier (X ). The line must be one of the following:

“X has no intersections”, if X does not intersect with any other shapes.
“X intersects with A”, if X intersects with exactly one other shape.
“X intersects with A and B”, if X intersects with exactly two other shapes.
“X intersects with A, B, . . ., and Z”, if X intersects with more than two other 

shapes.

Please note that there is an additional comma for more than two intersections. 
A, B, etc. are all intersecting shapes, sorted alphabetically.

Print one empty line after each picture, including the last one.

Sample Input Sample Output

A square (1,2) (3,2)
F line (1,3) (4,4)
W triangle (3,5) (5,5) (4,3)
x triangle (7,2) (7,4) (5,3)
S polygon 6 (9,3) (10,3) (10,4) (8,4) (8,1) (10,2)
B rectangle (3,3) (7,5) (8,3)
-
B square (1,1) (2,2)
A square (3,3) (4,4)
-
.

A has no intersections
B intersects with S, W, and x
F intersects with W
S intersects with B
W intersects with B and F
x intersects with B

A has no intersections
B has no intersections

Source:	 CTU Open 2007

ID for Online Judge: POJ 3449



Practice for Computational Geometry  ◾  527

  Hint

Enumeration is used to solve the problem. All pairs of different shapes are enumer-
ated. A square, a triangle, or a polygon is represented as a set of lines. That is, two 
shapes are intersected if and only if their lines are intersected.

8.5.10  A Round Peg in a Ground Hole

The DIY Furniture Company specializes in assemble-it-yourself furniture kits. 
Typically, the pieces of wood are attached to one another using a wooden peg that 
fits into pre-cut holes in each piece to be attached. The pegs have a circular cross 
section and so are intended to fit inside a round hole.

A recent factory run of computer desks were flawed when an automatic grind-
ing machine was mis programmed. The result is an irregularly shaped hole in one 
piece that, instead of the expected circular shape, is actually an irregular polygon. 
You need to figure out whether the desks need to be scrapped or if they can be sal-
vaged by filling a part of the hole with a mixture of wood shavings and glue.

There are two concerns. First, if the hole contains any protrusions (i.e., if there exist 
any two interior points in the hole that, if connected by a line segment, that segment 
would cross one or more edges of the hole), then the filled-in hole would not be struc-
turally sound enough to support the peg under normal stress as the furniture is used. 
Second, assuming the hole is appropriately shaped, it must be big enough to allow for 
insertion of the peg. Since the hole in this piece of wood must match up with a cor-
responding hole in other pieces, the precise location where the peg must fit is known.

Write a program to accept descriptions of pegs and polygonal holes and to 
determine if the hole is ill-formed and, if not, whether the peg will fit at the desired 
location. Each hole is described as a polygon with vertices (x1, y1), (x2,y2),…, (xn,yn). 
The edges of the polygon are (xi,yi) to (xi+1,yi+1) for i=1…n–1 and (xn,yn) to (x1, y1).

Input

Input consists of a series of piece descriptions. Each piece description consists of the 
following data:

Line 1 <nVertices> <pegRadius> <pegX> <pegY>
number of vertices in polygon, n (integer)
radius of peg (real)
X and Y position of peg (real)
n Lines <vertexX> <vertexY>

On a line for each vertex, listed in order, the X and Y position of vertex. The end 
of input is indicated by a number of polygon vertices less than three.



528  ◾  Algorithm Design Practice for Collegiate Programming

Output

For each piece description, print a single line containing the string:
“HOLE IS ILL-FORMED” if the hole contains protrusions.
“PEG WILL FIT” if the hole contains no protrusions and the peg fits in the 

hole at the indicated position.
“PEG WILL NOT FIT” if the hole contains no protrusions but the peg will not 

fit in the hole at the indicated position.

Sample Input Sample Output

5  1.5  1.5  2.0
1.0  1.0
2.0  2.0
1.75  2.0
1.0  3.0
0.0  2.0
5  1.5  1.5  2.0
1.0  1.0
2.0  2.0
1.75  2.5
1.0  3.0
0.0  2.0
1

HOLE IS ILL-FORMED
PEG WILL NOT FIT

Source:	 ACM Mid-Atlantic 2003 

IDs for Online Judges: POJ 1584, ZOJ 1767, UVA 2835

  Hint

Suppose the position for the peg is peg, its radius is r; and the sequence for vertices 
of the polygon are p0, …, pn, where pn=p0.

1.	Determine whether the hole contains protrusions or not.
Initially c0 and c1 are 0. Vertices are enumerated (0≤i≤n−1) as follows.

If 
� ������� � �������
p p p pi i i i 01 2^ <+ + , then pi+1 is a concave vertex, the 

number of concave vertices is c0++;
If 

� ������� � �������
p p p pi i i i 01 2^ >+ + , then pi+1 is a convex vertex, the number 

of convex vertices is c1++;
If (c0!=0&&c1!=0), then the hole contains protrusions.



Practice for Computational Geometry  ◾  529

2.	Determine whether the position for the peg is in the polygon or not.
The necessary condition that the peg fits in the hole is that the position for 

the peg is in the polygon. Suppose peg
� ���

 is a line segment from the origin to 
vertex peg. Initially c0 and c1 are 0. Each side p pi i1

� �����
+  (0≤i≤n−1) of the polygon 

is enumerated. If 
� ����� � ���

<+ ^ 01p p pegi i , c0++; and if  p p pegi i

� ����� � ���
>+ ^ 01 , c1++. After 

all sides are enumerated, if (c0!=0&&c1!=0), then the position for the peg 
isn’t in the polygon.

3.	Determine whether the peg fits in the hole or not.

If the position for the peg is in the polygon, then the distance from peg to 

sides for the polygon 
� ����� � �����
� �����=












≤ ≤ −

+

+
min ^

0 1

1

1
m

p peg p p
p pi n

i i i

i i

 is calculated. If r>m, then 

the peg can’t fit in the hole; else the peg can fit in the hole.

8.5.11  Triangle

A lattice point is an ordered pair (x, y) where x and y are both integers. Given the 
coordinates of the vertices of a triangle (which happen to be lattice points), you are 
to count the number of lattice points which lie completely inside of the triangle 
(points on the edges or vertices of the triangle do not count).

Input

The input test file will contain multiple test cases. Each input test case consists of 
six integers x1, y1, x2, y2, x3, and y3, where (x1, y1), (x2, y2), and (x3, y3) are the coor-
dinates of vertices of the triangle. All triangles in the input will be non-degenerate 
(will have positive area), and −15000≤ x1, y1, x2, y2, x3, y3 ≤15000. The end-of-file is 
marked by a test case with x1 =  y1 = x2 = y2 = x3 = y3 = 0 and should not be processed.

Output

For each input case, the program should print the number of internal lattice points 
on a single line.

Sample Input Sample Output

0  0  1  0  0  1
0  0  5  0  0  5
0  0  0  0  0  0

0
6

Source:	 Stanford Local 2004 

ID for Online Judge: POJ 2954



530  ◾  Algorithm Design Practice for Collegiate Programming

  Hint

Suppose p1, p2, and p3 are vertices of a triangle. Then the area for the triangle is 

S
p p p p p p



=
+ +^ ^ ^

2
1 2 2 3 3 1 . Suppose g p pi j

� ����
( )  is the number of points on pi, 

pj, and p pi j

� ����
.

	

� ����

( )
=

− − =

− − =

− −











( )

. . . . 0

. . . . 0

gcd . . , . . otherwise

.g p p

p y p y p x p x

p x p x p y p y

p y p y p x p x

i j

i j i j

i j i j

i j i j

.

Based on Pick’s theorem, the area for a triangle S∆= the number of internal 

lattice points g p p g p p g p p
� ���� � ���� � ����

+ + + −( ) ( ) ( )
2

11 2 2 3 3 1 . Therefore, the number of internal 

lattice points 
� ���� � ���� � ����

= − + + +∆
( ) ( ) ( )

2
11 2 2 3 3 1S

g p p g p p g p p .

8.5.12  Ants

Young naturalist Bill studies ants in school. His ants feed on plant-louses that live 
on apple trees. Each ant colony needs its own apple tree to feed itself.

Bill has a map with coordinates of n ant colonies and n apple trees. He knows 
that ants travel from their colony to their feeding places and back using chemically 
tagged routes. The routes cannot intersect each other, or ants will get confused and 
get to the wrong colony or tree, thus spurring a war between colonies.

Bill would like to connect each ant colony to a single apple tree so that all n 
routes are non-intersecting straight lines. In this problem, such a connection is 
always possible. Your task is to write a program that finds such a connection.

In Figure 8.45, ant colonies are denoted by empty circles and apple trees are 
denoted by filled circles. One possible connection is denoted by lines.

Input

The first line of the input file contains a single integer number n (1≤n≤100)—the 
number of ant colonies and apple trees. It is followed by n lines describing n ant 
colonies, followed by n lines describing n apple trees. Each ant colony and apple 
tree is described by a pair of integer coordinates x and y (−10,000≤x, y≤10,000) on a 
Cartesian plane. All ant colonies and apple trees occupy distinct points on a plane. 
No three points are on the same line.



Practice for Computational Geometry  ◾  531

Output

Write to the output file n lines with one integer number on each line. The number 
written on the i-th line denotes the number (from 1 to n) of the apple tree that is 
connected to the i-th ant colony.

Sample Input Sample Output

5
-42  58
44  86
7  28
99  34
-13  -59
-47  -44
86  74
68  -75
-68  60
99  -60

4
2
1
5
3

Source: ACM Northeastern Europe 2007

IDs for Online Judges: POJ 3565, UVA 4043

  Hint

Suppose ai is the position for ant colony i, bj is the position for apple tree j, and 1≤i, 
j≤n. Set x consisits of n ant colonies, and set y consisits of n apple trees. The weight 
of edge (ai, bj) is a bi j

� ���
− . Then a KM algorithm is used to calculate the maximum 

matching.

4

5
3

3

2
2

14

5
1

Figure 8.45 



532  ◾  Algorithm Design Practice for Collegiate Programming

8.5.13  The Doors

You are to find the length of the shortest path through a chamber containing 
obstructing walls. The chamber will always have sides at x=0, x=10, y=0, and y=10. 
The initial and final points of the path are always (0, 5) and (10, 5). There will 
also be from 0 to 18 vertical walls inside the chamber, each with two doorways. 
Figure 8.46 illustrates such a chamber and also shows the path of minimal length.

Input

The input data for the illustrated chamber would appear as follows:

2
4 2 7 8 9
7 3 4.5 6 7

The first line contains the number of interior walls. Then there is a line for each 
such wall, containing five real numbers. The first number is the x coordinate of the 
wall (0<x<10), and the remaining four are the y coordinates of the ends of the door-
ways in that wall. The x coordinates of the walls are in increasing order, and within 
each line, the y coordinates are in increasing order. The input file will contain at least 
one such set of data. The end of the data comes when the number of walls is −1.

Output

The output should contain one line of output for each chamber. The line should 
contain the minimal path length rounded to two decimal places past the decimal 
point, and always showing two decimal places past the decimal point. The line 
should contain no blanks.

10

2

7

8

9

3

4.5

5

7

6

740
0

5

10

Figure 8.46 



Practice for Computational Geometry  ◾  533

Sample Input Sample Output

1
5  4  6  7  8
2
4  2  7  8  9
7  3  4.5  6  7
-1

10.00
10.06

Source: ACM Mid-Central USA 1996 

IDs for Online Judges: POJ 1556, ZOJ 1721, UVA 393

  Hint

There are 4n+2 vertices, where p0=(0, 5), p4×n+1=(10, 5), p pi i

� �����������
× − × −4 3 4 2  is the first door 

for the i-th wall, and p pi i

� ���������
× − ×4 1 4  is the second door for the i-th wall (1≤i≤n).

The distance between each pair of vertices pi and pj is calculated (0≤i<4×n+1, 
i<j≤4×n+1), d p pij i j

� ����
= . If the intersection point for p pi j

� ����
 and the k-th wall 

(pi.x≤p4×k.x≤pj.x) isn’t at p pk k

� ������������
× − × −4 3 4 2  or p pk k

� ����������
× − ×4 1 4 , then dij=∞.

Then the Floyd algorithm is used to calculate the shortest distance between 
each pair of vertices dij.

Finally, d0,4n+1 is the minimal path length.

8.5.14  Toys

Calculate the number of toys that land in each bin of a partitioned toy box.
Mom and dad have a problem—their child John never puts his toys away when 

he is finished playing with them. They gave John a rectangular box to put his toys 
in, but John is rebellious and obeys his parents by simply throwing his toys into the 
box. All the toys get mixed up, and it is impossible for John to find his favorite toys.

John’s parents came up with the following idea. They put cardboard partitions 
into the box. Even if John keeps throwing his toys into the box, at least toys that 
get thrown into different bins stay separated. Figure 8.47 shows a top view of an 
example toy box.

Figure 8.47 



534  ◾  Algorithm Design Practice for Collegiate Programming

For this problem, you are asked to determine how many toys fall into each par-
tition as John throws them into the toy box.

Input

The input file contains one or more problems. The first line of a problem consists 
of six integers, n m x1 y1 x2 y2. The number of cardboard partitions is n (0<n≤5000) 
and the number of toys is m (0<m≤5000). The coordinates of the upper-left corner 
and the lower-right corner of the box are (x1, y1) and (x2, y2), respectively. The fol-
lowing n lines contain two integers per line, Ui Li, indicating that the ends of the 
i-th cardboard partition is at the coordinates (Ui, y1) and (Li, y2). You may assume 
that the cardboard partitions do not intersect each other and that they are specified 
in sorted order from left to right. The next m lines contain two integers per line, xj yj 
specifying where the j-th toy has landed in the box. The order of the toy locations 
is random. You may assume that no toy will land exactly on a cardboard partition 
or outside the boundary of the box. The input is terminated by a line consisting of 
a single 0.

Output

The output for each problem will be one line for each separate bin in the toy box. 
For each bin, print its bin number, followed by a colon and one space, followed by 
the number of toys thrown into that bin. Bins are numbered from 0 (the leftmost 
bin) to n (the rightmost bin). Separate the output of different problems by a single 
blank line.

Sample Input Sample Output

5  6  0  10  60  0
3  1
4  3
6  8
10  10
15  30
1  5
2  1
2  8
5  5
40  10
7  9
4  10  0  10  100  0
20  20
40  40
60  60

0: 2
1: 1
2: 1
3: 1
4: 0
5: 1

0: 2
1: 2
2: 2
3: 2
4: 2



Practice for Computational Geometry  ◾  535

Sample Input Sample Output

80  80
5  10
15  10
25  10
35  10
45  10
55  10
65  10
75  10
85  10
95  10
0

Source: ACM Rocky Mountain 2003 

IDs for Online Judges: POJ 2318, UVA 2910 

  Hint

Suppose the coordinates of the ends of the i-th cardboard partition are p'i and p"i 
respectively, 0≤i≤n−1; and the coordinates of the upper-right corner and the lower-
right corner of the box are p'n and p"n respectively.

For each input toy, dichotomy is used to calculate the bin ret in which John 
throws the toy. After m toys are input, the numbers of toys thrown into each bin 
are calculated.

8.5.15  Area

Being well known for its highly innovative products, Merck would definitely be a 
good target for industrial espionage. To protect its brand new research and devel-
opment facility, the company has installed the latest system of surveillance robots 
patrolling the area. These robots move along the walls of the facility and report 
suspicious observations to the central security office. The only flaw in the system 
a competitor agent could find is the fact that the robots radio their movements 
unencrypted. Not being able to find out more, the agent wants to use that informa-
tion to calculate the exact size of the area occupied by the new facility. It is public 
knowledge that all the corners of the building are situated on a rectangular grid and 
that only straight walls are used. Figure 8.48 shows the course of a robot around 
an example area.

You are hired to write a program that calculates the area occupied by the new 
facility from the movements of a robot along its walls. You can assume that this 



536  ◾  Algorithm Design Practice for Collegiate Programming

area is a polygon with corners on a rectangular grid. However, your boss insists that 
you use a formula that he is proud to have found somewhere. The formula relates 
the number I of grid points inside the polygon, the number E of grid points on the 
edges, and the total area A of the polygon. Unfortunately, you have lost the sheet 
on which he had written down that simple formula for you, so your first task is to 
find the formula yourself.

Input

The first line contains the number of scenarios.
For each scenario, you are given the number m, 3≤m<100, of movements of 

the robot in the first line. The following m lines contain pair “dx dy” of integers, 
separated by a single blank, satisfying −100≤dx, dy≤100 and (dx, dy)!=(0, 0). Such 
a pair means that the robot moves on to a grid point dx units to the right and dy 
units upwards on the grid (with respect to the current position). You can assume 
that the curve along which the robot moves is closed and that it does not intersect 
or even touch itself except for the start and end points. The robot moves anticlock-
wise around the building, so the area to be calculated lies to the left of the curve. 
It is known in advance that the whole polygon would fit into a square on the grid 
with a side length of 100 units.

Output

The output for every scenario begins with a line containing “Scenario #i:” where 
i is the number of the scenario starting at 1. Then print a single line containing 
I, E, and A, the area A rounded to one digit after the decimal point. Separate the 
three numbers by two single blanks. Terminate the output for the scenario with 
a blank line.

Figure 8.48 



Practice for Computational Geometry  ◾  537

Sample Input Sample Output

2
4
1  0
0  1
-1  0
0  -1
7
5  0
1  3
-2  2
-1  0
0  -3
-3  1
0  -3

Scenario #1:
0 4 1.0

Scenario #2:
12 16 19.0

Source: ACM Northwestern Europe 2001

IDs for Online Judges: POJ 1265, ZOJ 1032, UVA 2329

  Hint

Given a polygon on a rectangular grid, the number I of grid points inside the poly-
gon, the number E of grid points on the edges, and the total area A of the polygon 
are required to be calculated.

Based on Pick’s theorem, the total area A of the polygon is I+E/2−1. The total 
area A of the polygon is the sum of all cross products for vectors from the origin to 
each pair of adjacent vertices. E=gcd(abs(x2−x1), abs(y2−y1)). Finally I is calculated.

8.5.16  Line of Sight

An architect is very proud of his new home and wants to be sure that it can be 
seen by people passing by his property line along the street. The property contains 
various trees, shrubs, hedges, and other obstructions that may block the view. For 
the purpose of this problem, model the house, property line, and obstructions as 
straight lines parallel to the x axis, as shown in Figure 8.49.

To satisfy the architect’s need to know how visible the house is, you must write a 
program that accepts as input the locations of the house, property line, and surround-
ing obstructions and calculates the longest continuous portion of the property line 
from which the entire house can be seen, with no part blocked by any obstruction.



538  ◾  Algorithm Design Practice for Collegiate Programming

Input

Because each object is a line, it is represented in the input file with a left and right 
x coordinate followed by a single y coordinate:

<x1><x2><y>

where x1, x2, and y are non-negative real numbers. x1<x2.
An input file can describe the architecture and landscape of multiple houses. 

For each house, the first line will have the coordinates of the house. The second line 
will contain the coordinates of the property line. The third line will have a single 
integer that represents the number of obstructions, and the following lines will have 
the coordinates of the obstructions, one per line.

Following the final house, a line “0 0 0” will end the file.
For each house, the house will be above the property line (house y>property 

line y). No obstruction will overlap with the house or property line, e.g., if obstacle 
y = house y, you are guaranteed that the entire range obstacle [x1, x2] does not inter-
sect with house [x1, x2].

Output

For each house, your program should print a line containing the length of the lon-
gest continuous segment of the property line from which the entire house can be 
seen to a precision of two decimal places. If there is no section of the property line 
where the entire house can be seen, print “No View”.

Sample Input Sample Output

2  6  6
0  15  0
3
1  2  1
3  4  1
12  13  1
1  5  5

8.80
No View

House

Tree

Property line

Hedge

Figure 8.49 



Practice for Computational Geometry  ◾  539

Sample Input Sample Output

0  10  0
1
0  15  1
0  0  0

Source: ACM Mid-Atlantic 2004 

IDs for Online Judges: POJ 2074, ZOJ 2325, UVA 3112

  Hint

The key to the problem is to calculate the line equation through two points and the 
intersection point for two lines.

On the property line, each obstruction corresponds to a line segment where the 
house can’t be seen, as dotted lines in Figure 8.50. All corresponding dotted lines 
are sorted and scanned to calculate the result.

8.5.17  An Easy Problem?!

It’s raining outside. Farmer Johnson’s bull, Ben, wants some rain to water his flow-
ers. Ben nails two wooden boards on the wall of his barn. Shown in Figure 8.51, 
the two boards on the wall just look like two segments on the plane, as they have 
the same width.

Your mission is to calculate how much rain these two boards can collect.

Input

The first line contains the number of test cases.

Hedge
Tree

House

Property line

Figure 8.50 



540  ◾  Algorithm Design Practice for Collegiate Programming

Each test case consists of eight integers not exceeding 10,000 by absolute value, 
x1, y1, x2, y2, x3, y3, x4, y4. (x1, y1), (x2, y2) are the endpoints of one board, and (x3, y3), 
(x4, y4) are the endpoints of the other one.

Output

For each test case, output a single line containing a real number with precision up 
to two decimal places—the amount of rain collected.

Sample Input Sample Output

2
0  1  1  0
1  0  2  1

0  1  2  1
1  0  1  2

1.00
0.00

Source: POJ Monthly, 2006.04.28, Dagger@PKU_RPWT 

ID for Online Judge: POJ 2826 

  Hint

Two wooden boards (line segments) constitute a container. The problem requires 
you to calculate the amount of rain that the container can collect.

Cases are shown in Figure 8.52.

Figure 8.51 

The shaded area is collected rain.

Figure 8.52 



Practice for Computational Geometry  ◾  541

Suppose two wooden boards (line segments) are p p
� ����

1 2  and p p
� ����

3 4  respectively, 
where p1.y≥p2.y, p3.y≥p4.y, and p1.y≥p3.y.

If there is no intersection point for p p
� ����

1 2  and p p
� ����

3 4 , the rain can’t be collected;
Suppose the intersection point for p p

� ����
1 2  and p p

� ����
3 4  is p, and the intersection point 

for p p
� ����

1 2  and the horizontal line is tp (as shown in Figure 8.53). If signs for pp pp
� ��� � ���

^1 3  
and p p p p
� ������������ � ����

+( (0,1))^1 1 1 3  are the same, or p p
� �������������

+( (0,1))1 1  and p p
� ����

1 3  coincide, then the 
rain can’t be collected; else the amount of collected rain is S tpp p∆ 3 .

8.5.18  Road Accident

Two cars crashed on the road, receiving some damage each, and raising the usual 
question: “Who to blame?” To answer this question, it is essential to thoroughly 
reconstruct the sequence of events. By gathering witness testimonies and analyzing 
tire tracks, positions and speeds of cars just before the impact were determined. 
From these positions until the crash the cars moved straight forward.

Your program must, given the available data, calculate for each car what part of it 
first came into contact with the other car. Parts are numbered as shown in Figure 8.54.

The shaded area is collected rain.The rain can’t be collected.

p3

p1

p1

p3

p2

p

tp

p4

p

tp

p2

p1 + (0, 1)
p1 + (0, 1)

p4

Figure 8.53 

22

2

3

w2
(x2, y2)

(u2, v2)

(x1, y1)

(u1, v1)

3

1

3

4

4

4

1

23

4 1

1

w1

s1

s2

Figure 8.54 



542  ◾  Algorithm Design Practice for Collegiate Programming

Input

The input file contains twelve floating-point numbers: x1 y1 u1 v1 w1 s1 x2 y2 u2 v2 w2 
s2, where (x, y) and (u, v)—coordinates of back-left and forward-left corners of the 
car, w—width of the car, s—speed of the car.

Constraints

1≤xi,yi,ui,vi,wi≤106,0≤si≤106. Input data is such that a crash certainly happens. 
Initially cars don’t have common points.

Output

The output file must contain two integers: p1 p2, where p is the number of the part 
which first contacted the other one (if two parts came into contact simultaneously, 
output the lesser of the part numbers).

Sample Input 1 Sample Output 1

1.0  2.0  10.0  2.0  1.0  10.0
50.0  1.0  40.0  1.0  1.0  20.0

2  2

Sample Input 2 Sample Output 2

1  1  10  1  1  20
40  1  50  1  1  10

2  1

Source:	 ACM Northeastern Europe 2005, Far-Eastern Subregion 

ID for Online Judge: POJ 3433

  Hint

Two cars go at their speeds. Suppose one car stops, and the other car goes at a rela-
tive speed (see Figure 8.55).

Then the moving trail is determined. There are three cases: The first car’s point 
comes into contact with the second car’s side; the second car’s point comes into 
contact with the first car’s side; or two cars’ points crash together.

8.5.19  Wild West

Once upon a time in the west... The quiet life of the villages on the western frontier 
are often stirred up by the appearance of mysterious strangers. A stranger might 



Practice for Computational Geometry  ◾  543

be a bounty hunter looking for a notorious villain, or he might be a dangerous 
criminal escaping the hand of justice. The number of strangers has become so large 
that they formed the Mysterious Strangers’ Union. If you want to be a mysterious 
stranger, then you have to apply to the Union, and you have to pass three exams 
that test the three most important skills: shooting, fist-fighting, and harmonica 
playing. For each skill, the Admission Committee gives a score between 1 (worst) 
and m (best). Interestingly enough, there are no two members in the Union having 
exactly the same skills: for every two members,s there is always at least one skill for 
which they have different scores. Furthermore, it turns out that for every possible 
combination of scores, there is exactly one member having these scores. This means 
that there are exactly m3 strangers in the union.

Recently, some members left the Union and they formed the Society of Evil 
Mysterious Strangers. The aim of this group is to commit as many evil crimes as pos-
sible, and they are quite successful at it. Therefore, the Steering Committee of the Union 
decided that a Hero is needed who will destroy this evil society. A Hero is a mysterious 
stranger who can defeat every member of the Society of Evil Mysterious Strangers. 
A Hero can defeat a member if the Hero has a higher score in at least one skill. 
For example, if the evil society has two members:

◾◾ Colonel Bill, with a score of 7 for shooting, 5 for knife throwing and 3 for 
harmonica playing, and

◾◾ Rabid Jack, with a score 10 for shooting, 6 for knife throwing and 8 for har-
monica playing

Then a Hero with score 8 for shooting, 7 for knife throwing, and 3 for har-
monica playing can defeat both of them. However, someone with a score of 8 for 
shooting, 6 for knife throwing, and 8 for harmonica playing cannot be the Hero. 
Moreover, the Hero cannot be a member of the evil society.

2

w2

3

1

4

23

4 1

w1

(x2, y2)

(u2, v2)
(u1, v1)

(x1, y1)

s

Figure 8.55 



544  ◾  Algorithm Design Practice for Collegiate Programming

Your task is to determine whether there is a member in the Union who can be 
the Hero. If so, then you have to count how many members are potential heroes.

Input

The input contains several blocks of test cases. Each block begins with a line con-
taining two integers: the number 1≤n≤100000 of members in the Society of Evil 
Mysterious Strangers and the maximum value 2≤m≤100000 of the scores. The next 
n lines describe these members. Each line contains three integers between 1 and m: 
the scores for the three skills.

The input is terminated by a block with n=m=0.

Output

For each test case, you have to output a single line containing the number of members 
in the Union who satisfy the requirements for becoming a Hero. If there is no such 
member, then output ‘0’. It can be assumed that the output is always at most 1018.

Sample Input Sample Output

3  10
2  8  5
6  3  5
1  3  9
1  3
2  2  2
1  10000
2  2  2
0  0

848
19
999999999992

Source:	 ACM Central Europe 2005 

IDs for Online Judges: POJ 2944, UVA 3525

  Hint

There are M 3 gunmen characterized by three different skills, each ranging from 
1 to M. A subset containing N of these gunmen are The Bad Guys. We want to 
select one of the other gunmen to be a Hero. The Hero must beat each of the Bad 
Guys in at least one skill (not necessarily the same skill for all Bad Guys).

The task is to compute the number of gunmen that can be selected to be the 
Hero.



Practice for Computational Geometry  ◾  545

Consider a Bad Guy with skills [a, b, c]. The set of gunmen that can’t beat him is 
a cuboid with opposite corners [1,1,1] and [a, b, c]. The union U of all these cuboids 
is exactly the set of gunmen that can’t be heroes. Thus the answer is M 3 minus the 
volume of U.

We can compute the volume of U in O(M logM) by sweeping in one direction 
and maintaining the intersection of the sweeping plane and U in some tree-like 
structure.

In C++, STL sets can be used, so there is no need to implement the tree-like 
structure.

8.5.20  The Skyline Problem

You are to design a program to assist an architect in drawing the skyline of 
a city, given the locations of the buildings in the city. To make the problem 
tractable, all buildings are rectangular in shape and they share a common 
bottom (the city they are built in is very flat). The city is also viewed as two-
dimensional. A building is specified by an ordered triple (Li, Hi, Ri) where Li 
and Ri are left and right coordinates, respectively, of building i and Hi is the 
height of the building. In Figure 8.56, buildings are shown on the left with 
triples (1,11,5), (2,6,7), (3,13,9), (12,7,16), (14,3,25), (19,18,22), (23,13,29), 
(24,4,28), and the skyline, shown on the right, is represented by the sequence: 
(1, 11, 3, 13, 9, 0, 12, 7, 16, 3, 19, 18, 22, 3, 23, 13, 29, 0).

Input

The input is a sequence of building triples. All coordinates of buildings are positive 
integers less than 10,000, and there will be at least one and at most 5,000 build-
ings in the input file. Each building triple is on a line by itself in the input file. All 
integers in a triple are separated by one or more spaces. The triples will be sorted 
by Li, the left x-coordinate of the building, so the building with the smallest left 
x-coordinate is first in the input file.

0 5 10 15 20 25 30 0 5 10 15 20 25 30

Figure 8.56 



546  ◾  Algorithm Design Practice for Collegiate Programming

Output

The output should consist of the vector that describes the skyline as shown in 
Figure 8.56. In the skyline vector (v1, v2, v3, …, vn−2, vn−1, vn), the vi such that i is an 
even number represents a horizontal line (height). The vi such that i is an odd number 
represents a vertical line (x-coordinate). The skyline vector should represent the “path” 
taken, for example, by a bug starting at the minimum x-coordinate and traveling hori-
zontally and vertically over all the lines that define the skyline. Thus the last entry in 
the skyline vector will be a 0. The coordinates must be separated by a blank space.

Sample Input Sample Output

1  11  5
2  6  7
3  13  9
12  7  16
14  3  25
19  18  22
23  13  29
24  4  28

1  11  3  13  9  0  12  7  16  3  19  18  22  3  23  13  29  0

Source:	 Internet Programming Contest 1990

ID for Online Judge: UVA 105

  Hint

The sweep line method is used to solve the problem.
Suppose the current building is represented by an ordered triple (left, height, 

right), the right border for the skyline is rightmost, and for each point i on the bot-
tom, a[i] is its height for the current skyline, 1≤i≤rightmost.

After a building triple is input, a[i] in the interval (left≤i≤right) and rightmost 
are adjusted: a[i]=max{a[i], height}(left≤i≤right); rightmost=max{rightmost, right}.

Then the sweep line method is used to enumerate points on the bottom. If 
a[i]≠a[i−1], then output i and a[i]. Finally, rightmost+1 and 0 are output.

8.5.21  Lining Up

“How am I ever going to solve this problem?” said the pilot.
Indeed, the pilot was not facing an easy task. She had to drop packages at spe-

cific points scattered in a dangerous area. Furthermore, the pilot could only fly over 
the area once in a straight line, and she had to fly over as many points as possible. 
All points were given by means of integer coordinates in a two-dimensional space. 



Practice for Computational Geometry  ◾  547

The pilot wanted to know the largest number of points from the given set that all 
lie on one line. Can you write a program that calculates this number?

Your program has to be efficient!

Input

The input consists of several cases. The first line of each case is an integer N 
(1<N<700), and then follow N pairs of integers. Each pair of integers is separated 
by one blank and ended by a newline character. The input ended by N=0.

Output

Output one integer for each input case, representing the largest number of points 
that all lie on one line.

Sample Input Sample Output

1  1
2  2
3  3
9  10
10  11

3

Source: ACM 1994 East-Central Regionals

IDs for Online Judges: POJ 1118, UVA 270

  Hint

Given n distinct points in a two-dimensional plane, find the maximum number of 
points which lie in an arbitrary line.

An algorithm whose time complexity is O(n2lg(n)) is as follows:
The initial step to solve this problem is by sorting the points based on their 

y-coordinates in ascending order. In case of ties, sort the points based on their 
x-coordinates in ascending order.

The next step is to give each point a turn to become a pivot point. In each turn, 
create a new set based on the remaining points (the ones which have greater indices 
than the pivot point index) and sort these points angularly with respect to the pivot 
point. Using the fact that this new set is sorted angularly, a simple O(n) algorithm 
can be devised to find the maximum number of points on a line whose bottom-left 
endpoint is the pivot.



548  ◾  Algorithm Design Practice for Collegiate Programming

One may ask why the points whose indices are less than pivot point are omitted 
during each pivot turn. Those points can be safely ignored without worrying that the 
final result won’t be optimal. When an earlier point is a part of the optimal line, then 
the optimal result should have already been computed in an earlier pivot turn (remem-
ber the fact that the points were initially sorted based on their Cartesian coordinates).

8.5.22  Triathlon

A triathlon is an athletic contest consisting of three consecutive sections that should 
be completed as fast as possible as a whole. The first section is swimming, the 
second section is riding a bicycle, and the third one is running.

The speed of each contestant in all three sections is known. The judge can choose 
the length of each section arbitrarily provided that no section has zero length. As a 
result, sometimes she could choose their lengths in such a way that some particular 
contestant would win the competition.

Input

The first line of the input file contains integer number N (1≤N≤100), denoting the 
number of contestants. Then N lines follow, and each line contains three integers 
Vi, Ui, and Wi (1≤Vi, Ui, Wi≤10000), separated by spaces, denoting the speed of i-th 
contestant in each section.

Output

For every contestant, write to the output file one line, that contains the word “Yes” 
if the judge could choose the lengths of the sections in such a way that this par-
ticular contestant would win (i.e., she is the only one who would come first), or the 
word “No” if this is impossible.

Sample Input Sample Output

9
10  2  6
10  7  3
5  6  7
3  2  7
6  2  6
3  5  7
8  4  6
10  4  2
1  8  7

Yes
Yes
Yes
No
No
No
Yes
No
Yes

Source:	 ACM Northeastern Europe 2000

IDs for Online Judges: POJ 1755, ZOJ 2052, UVA 2218, URAL 1062 



Practice for Computational Geometry  ◾  549

  Hint

Suppose lengths of swimming, riding bicycle, and running are A, B and C (A, B, 
C>0) respectively. If the i-th contestant can win, for any other contestant j (i≠ j), 
A
v

B
u

C
w

A
v

B
u

C
wi i i j j j

+ + < + + .

	

A
v

B
u

C
w

A
v

B
u

C
wi i i j j j

+ + < + +

	 v
A
C u

B
C w v

A
C u

B
C wi i i j j j

⇒ × + × + < × + × +1 1 1 1 1 1

	
v v

A
C u u

B
C w wj i j i j i

1 1 1 1 1 1 0.⇒ −






× + −






× + −






<

If A
C

 and B
C

 are regarded as variables x and y respectively, the above formula is 

an inequality representing a half-plane. If the intersection of half-planes is a convex 
polygon, then the i-th contestant can win. The algorithm is as follows:

For the i-th contestant (1≤i≤n), there are n+2 line equations (Akx+Bky+Ck=0) 
representing half-planes H1, H2, ..., Hn+2, where the first n−1 line equations repre-
sent that the i-th contestant defeats the j-th contestant: Ak u u w wj i j i( )= − − − ,1 1 1 1  
Bk v v w wj i j i( )= − − − ,1 1 1 1  Ck w wj i

= − ,1 1  1≤j≤n, j≠i, and 1≤k≤n−1; and the last three 
line equations represent x=0 (An=1, Bn=0, Cn=0), y=0 (An+1=0, Bn+1=1, Cn+1=0), and 
x+y=1 (An+2=−1, Bn+2=−1, Cn+2=1).

If the intersection of n+2 half-planes H1∩H2∩…∩Hn+2 is a convex polygon, 
then the i-th contestant can win; else the i-th contestant can’t win.

8.5.23  Rotating Scoreboard

This year, ACM/ICPC World finals will be held in a hall in the form of a 
simple polygon. The coaches and spectators are seated along the edges of the 
polygon. We want to place a rotating scoreboard somewhere in the hall such 
that a spectator sitting anywhere on the boundary of the hall can view the 
scoreboard (i.e., his line of sight is not blocked by a wall). Note that if the line 
of sight of a spectator is tangent to the polygon boundary (either in a vertex or 
in an edge), he can still view the scoreboard. You may view spectator’s seats as 
points along the boundary of the simple polygon, and consider the scoreboard 



550  ◾  Algorithm Design Practice for Collegiate Programming

as a point as well. Your program is given the corners of the hall (the vertices of 
the polygon), and must check if there is a location for the scoreboard (a point 
inside the polygon) such that the scoreboard can be viewed from any point on 
the edges of the polygon.

Input

The first number in the input line, T, is the number of test cases. Each test case is 
specified on a single line of input in the form n x1 y1 x2 y2 ... xn yn where n (3≤n≤100) 
is the number of vertices in the polygon, and the pair of integers xi yi sequence speci-
fies the vertices of the polygon sorted in order.

Output

The output contains T lines, each corresponding to an input test case in that order. 
The output line contains either “YES” or “NO” depending on whether the score-
board can be placed inside the hall conforming to the problem conditions.

Sample Input Sample Output

2
4  0  0  0  1  1  1  1  0
8  0  0    0  2    1  2    1  1    2  1    2  2    3  2    3  0

YES
NO

Source:	 ACM Tehran 2006 Preliminary

ID for Online Judge:  POJ 3335

  Hint

The hall is in the form of a simple polygon. The rotating scoreboard is placed some-
where in the hall such that a spectator sitting anywhere on the boundary of the hall 
can view the scoreboard. That is, the rotating scoreboard is placed at the core for the 
simple polygon. This problem is similar to 8.3.2.1 Art Gallery.

8.5.24  How I Mathematician Wonder What You Are!

After counting so many stars in the sky in his childhood, Isaac, now an astronomer 
and a mathematician, uses a big astronomical telescope and lets his image process-
ing program count stars. The hardest part of the program is to judge if a shining 
object in the sky is really a star. As a mathematician, the only way he knows is to 
apply a mathematical definition of stars.



Practice for Computational Geometry  ◾  551

The mathematical definition of a star shape is as follows: A planar shape F is 
star-shaped if and only if there is a point C∈F such that, for any point P∈F, the line 
segment CP is contained in F. Such a point C is called a center of F. To get accus-
tomed to the definition, let’s see some examples in Figure 8.57.

The first two are what you would normally call stars. According to the above 
definition, however, all shapes in the first row are star-shaped. The two in the sec-
ond row are not. For each star shape, a center is indicated with a dot. Note that a 
star shape in general has infinitely many centers. For example, for the third quad-
rangular shape, all points in it are centers.

Your job is to write a program that tells whether a given polygonal shape is star-
shaped or not.

Input

The input is a sequence of datasets followed by a line containing a single zero. Each 
dataset specifies a polygon, and is formatted as follows:

n
x1    y1

x2    y2

    …
xn    yn

The first line is the number of vertices, n, which satisfies 4≤n≤50. Subsequent 
n lines are the x- and y-coordinates of the n vertices. They are integers and satisfy 
0 ≤xi≤10000 and 0 ≤yi≤10000 (i=1, …, n). Line segments (xi, yi)–(xi + 1, yi + 1) 
(i=1, …, n−1) and the line segment (xn, yn)–(x1, y1) form the border of the polygon 
in the counterclockwise order. That is, these line segments see the inside of the 
polygon in the left of their directions.

Figure 8.57 



552  ◾  Algorithm Design Practice for Collegiate Programming

You may assume that the polygon is simple, that is, its border never crosses or 
touches itself. You may also assume that no three edges of the polygon meet at a 
single point even when they are infinitely extended.

Output

For each dataset, output “1” if the polygon is star-shaped and “0” otherwise. Each 
number must be in a separate line, and the line should not contain any other 
characters.

Sample Input Sample Output

6
66  13
96  61
76  98
13  94
4  0
45  68
8
27  21
55  14
93  12
56  95
15  48
38  46
51  65
64  31
0

1
0

Source:	 ACM Japan 2006 

IDs for Online Judges: POJ 3130, ZOJ 2820, UVA 3617

  Hint

Based on the definition of a star shape (a planar shape F is star-shaped if and only 
if there exists a point C∈F such that, for any point P∈F, the line segment CP is 
contained in F. Such a point C is called a center of F.). If a planar shape F is star-
shaped, then there must exist a core for F, and centers of F constitute the core; and 
if there is no core, then F isn’t star-shaped. The intersection of half-planes is used to 
calculate the core for a planar shape F. The solution is the same as 8.5.23 Rotating 
Scoreboard.



Practice for Computational Geometry  ◾  553

8.5.25  Video Surveillance

A friend of yours has taken the job of security officer at the Star-Buy Company, a 
famous department store. One of his tasks is to install a video surveillance system 
to guarantee the security of the customers (and the security of the merchandise, 
of course) on all of the store’s countless floors. As the company has only a limited 
budget, there will be only one camera on every floor. But these cameras may turn 
around to look in every direction.

The first problem is to choose where to install the camera for every floor. The 
only requirement is that every part of the room must be visible from there. In 
Figure 8.58, the left floor can be completely surveyed from the position indicated 
by a dot, while for the right floor, there is no such position, the given position fail-
ing to see the lower-left part of the floor.

Before trying to install the cameras, your friend first wants to know whether 
there is indeed a suitable position for them. He therefore asks you to write a pro-
gram that, given a ground plan, determines whether there is a position from which 
the whole floor is visible. All floor ground plans form rectangular polygons, whose 
edges do not intersect each other and touch each other only at the corners.

Input

The input contains several floor descriptions. Every description starts with the 
number n of vertices that bound the floor (4≤n≤100). The next n lines contain two 
integers each, the x and y coordinates for the n vertices, given in clockwise order. 
All vertices will be distinct and at corners of the polygon. Thus the edges alternate 
between horizontal and vertical.

A zero value for n indicates the end of the input.

Output

For every test case, first output a line with the number of the floor, as shown in the 
sample output. Then print a line stating “Surveillance is possible.” if there exists 

Invisible

Figure 8.58 



554  ◾  Algorithm Design Practice for Collegiate Programming

a position from which the entire floor can be observed, or print “Surveillance is 
impossible.” if there is no such position.

Print a blank line after each test case.

Sample Input Sample Output

4
0  0
0  1
1  1
1  0
8
0  0
0  2
1  2
1  1
2  1
2  2
3  2
3  0
0

Floor #1
Surveillance is possible.

Floor #2
Surveillance is impossible.

Source:	 ACM Southwestern European Regional Contest 1997 

IDs for Online Judges: POJ 1474, ZOJ 1248, UVA 588

  Hint

The only requirement for installing the camera is that every part of the room must 
be visible from the camera. A ground plan is a polygon. If there exists a core for the 
polygon, the camera can be installed in the core. The intersection of half-planes is 
used to determine whether there exists a core for the polygon. The solution is the 
same as 8.5.23 Rotating Scoreboard.

8.5.26  Most Distant Point from the Sea

The main land of Japan, called Honshu, is an island surrounded by the sea. In such 
an island, it is natural to ask a question: “Where is the most distant point from the 
sea?” The answer to this question for Honshu was found in 1996. The most distant 
point is located in former Usuda Town, Nagano Prefecture, whose distance from 
the sea is 114.86 km.

In this problem, you are asked to write a program which, given a map of an 
island, finds the most distant point from the sea in the island, and reports its 



Practice for Computational Geometry  ◾  555

distance from the sea. In order to simplify the problem, we only consider maps 
representable by convex polygons.

Input

The input consists of multiple datasets. Each dataset represents a map of an island, 
which is a convex polygon. The format of a dataset is as follows:

n
x1    y1

    ⋮
xn    yn

Every input item in a dataset is a non-negative integer. Two input items in a line 
are separated by a space. n in the first line is the number of vertices of the polygon, 
satisfying 3≤n≤100. Subsequent n lines are the x- and y-coordinates of the n verti-
ces. Line segments (xi, yi)–(xi+1, yi+1) (1≤i≤n−1) and the line segment (xn, yn)–(x1, y1) 
form the border of the polygon in counterclockwise order. That is, these line seg-
ments see the inside of the polygon in the left of their directions. All coordinate 
values are between 0 and 10000, inclusive.

You can assume that the polygon is simple, that is, its border never crosses or 
touches itself. As stated above, the given polygon is always a convex one.

The last dataset is followed by a line containing a single zero.

Output

For each dataset in the input, one line containing the distance of the most distant 
point from the sea should be output. An output line should not contain extra char-
acters such as spaces. The answer should not have an error greater than 0.00001 
(10−5). You may output any number of digits after the decimal point, provided that 
the above accuracy condition is satisfied.

Sample Input Sample Output

4
0  0
10000  0
10000  10000
0  10000
3
0  0
10000  0

5000.000000
494.233641
34.542948
0.353553

(Continued)



556  ◾  Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output

7000  1000
6
0  40
100  20
250  40
250  70
100  90
0  70
3
0  0
10000  10000
5000  5001
0

Source:	 ACM Japan 2007 

IDs for Online Judges: POJ 3525, UVA 3890

  Hint

Given a convex polygon (a map of an island), the problem requires you to find the 
most distant point from the sides of the convex polygon, and report its distance 
from sides, that is, the radius for the largest circle in the convex polygon.

The problem can be solved by the intersection of half-planes and dichotomy. 
The algorithm is as follows:

Suppose line equations for n sides for the convex polygon are Aix+Biy+Ci=0, 
where Ai=yi+1−yi, Bi=xi+1−xi, and Ci=xi×yi+1−xi+1×yi, (1≤i≤n−1); and An=y1−yn, 
Bn=x1−xn, and Cn=xn×y1−x1×yn.

Suppose the interval for the distance is [l, r]. Initially the interval is [0, 20000]. 
Dichotomy is used to calculate the most distance. Suppose mid l r= + .2  Sides for 
the convex polygon are pushed inward mid: For each line equation for a side for 
the convex polygon, Aix+Biy+Ci=0, Ai and Bi aren’t changed, and Ci is decreased 
mid A Bi i× +2 2 .

If there is an intersection of n half-planes, then the circle with radius mid can be 
in the convex polygon, and the right subinterval is searched (l=mid); else the left sub-
interval is searched (r=mid). Repeat the above process until l=r. And l is the distance.

8.5.27  Uyuw’s Concert

Prince Remmarguts solved the chess puzzle successfully. As a reward, Uyuw 
planned to hold a concert in a huge piazza named after its great designer Ihsnayish.



Practice for Computational Geometry  ◾  557

The piazza in United Delta of Freedom’s (UDF) downtown was a square of 
[0, 10000]×[0, 10000]. Some basket chairs had been standing there for years, but 
in a terrible mess. Look at the graph in Figure 8.59.

In this case we have three chairs, and the audiences face the direction as the 
arrows in Figure 8.59 have pointed out. The chairs were old and too heavy to be 
moved. Princess Remmarguts told the piazza’s current owner, Mr. Uw, to build 
a large stage inside it. The stage must be as large as possible, but he should also 
make sure the audience in every position of every chair would be able to see the 
stage without turning aside (that means the stage is in the forward direction of 
their own).

To make it simple, the stage could be set highly enough to make sure that even 
if thousands of chairs were in front of you, as long as you were facing the stage, you 
would be able to see the singer/pianist—Uyuw.

Being a mad idolater, can you tell them the maximal size of the stage?

Input

In the first line, there’s a single non-negative integer N (N≤20000), denoting the 
number of basket chairs. Each of the following lines contains four floating numbers 
x1, y1, x2, y2, which means there’s a basket chair on the line segment of (x1, y1)–(x2, y2), 
and facing to its LEFT (that a point (x, y) is at the LEFT side of this segment means 
that (x–x1)×(y–y2)–(x–x2)×(y–y1)≥0).

Output

Output a single floating number, rounded to one digit after the decimal point. This 
is the maximal area of the stage.

Figure 8.59 



558  ◾  Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output

3
10000  10000  0  5000
10000  5000  5000  10000
0  5000  5000  0

54166666.7

Source:	 POJ Monthly, Zeyuan Zhu

ID for Online Judge: POJ 2451

  Hint

Lines on which n basket chairs are can be regarded as n half-planes. There are four 
additional half-planes: x =0, x =10000, y=0, and y=10000. The intersection of n+4 
half-planes constitute a polygon. The polygon is the stage. And the audience in 
every position of the sides of the polygon can see the stage.

8.5.28  Moth Eradication

Entomologists in the Northeast have set out traps to determine the influx of Jolliet 
moths into the area. They plan to study eradication programs that have some poten-
tial to control the spread of the moth population.

The study calls for organizing the traps in which moths have been caught into 
compact regions, which will then be used to test each eradication program. A region 
is defined as the polygon with the minimum length perimeter that can enclose all 
traps within that region. For example, the traps (represented by dots) of a particular 
region and its associated polygon are shown in Figure 8.60.

You must write a program that can take as input the locations of traps in a 
region and output the locations of traps that lie on the perimeter of the region as 
well as the length of the perimeter.

Figure 8.60 



Practice for Computational Geometry  ◾  559

Input

The input file will contain records of data for several regions. The first line of each 
record contains the number (an integer) of traps for that region. Subsequent lines 
of the record contain two real numbers that are the x- and y-coordinates of the 
trap locations. Data within a single record will not be duplicated. End of input is 
indicated by a region with 0 traps.

Output

Output for a single region is displayed on at least three lines:

First line: The number of the region. (The first record corresponds to Region 
#1, the second to Region #2, etc.)

Next line(s): A listing of all the points that appear on the perimeter of the 
region. The points must be identified in the standard form 
“(x-coordinate, y-coordinate)” rounded to a single decimal place. 
The starting point for this listing is irrelevant, but the listing must 
be oriented clockwise and begin and end with the same point. For 
collinear points, any order which describes the minimum length 
perimeter is acceptable.

Last line: The length of the perimeter of the region rounded to 2 decimal places.

One blank line must separate the output from consecutive input records.

Sample Input Sample Output

3
1  2
4  10
5  12.3
6
0  0
1  1
3.1  1.3
3  4.5
6  2.1
2  -3.2
7
1  0.5
5  0
4  1.5
3  -0.2

Region #1:
(1.0,2.0)−(4.0,10.0)−(5.0,12.3)−(1.0,2.0)
Perimeter length = 22.10

Region #2:
(0.0,0.0)−(3.0,4.5)−(6.0,2.1)−(2.0,−3.2)−(0.0,0.0)
Perimeter length = 19.66

Region #3:
(0.0,0.0)−(2.0,2.0)−(4.0,1.5)−(5.0,0.0)−(2.5,−1.5)−(0.0,0.0)
Perimeter length = 12.52

(Continued)



560  ◾  Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output

2.5  -1.5
0  0
2  2
0

Source:	 ACM World Finals 1992 

ID for Online Judge: UVA 218

  Hint

Given n points in the plane, the smallest perimeter polygon containing all of the 
given points is required to be found. It is a straightforward planar Convex Hull 
problem. An O(nlogn) solution can solve it.

8.5.29  Bridge Across Islands

Thousands and thousands of years ago, there was a small kingdom located in the 
middle of the Pacific Ocean. The territory of the kingdom consists of two separated 
islands. Due to the impact of the ocean current, the shapes of both the islands became 
convex polygons. The king of the kingdom wanted to establish a bridge to connect 
the two islands. To minimize the cost, the king asked you, the bishop, to find the 
minimal distance between the boundaries of the two islands, as shown in Figure 8.61.

Input

The input consists of several test cases.
Each test case begins with two integers N, M. (3≤N, M≤10000)
Each of the next N lines contains a pair of coordinates, which describes the 

position of a vertex in one convex polygon.

Figure 8.61 



Practice for Computational Geometry  ◾  561

Each of the next M lines contains a pair of coordinates, which describes the 
position of a vertex in the other convex polygon.

A line with N = M = 0 indicates the end of input.
The coordinates are within the range [−10000, 10000].

Output

For each test case, output the minimal distance. An error within 0.001 is acceptable.

Sample Input Sample Output

4 4
0.00000  0.00000
0.00000  1.00000
1.00000  1.00000
1.00000  0.00000
2.00000  0.00000
2.00000  1.00000
3.00000  1.00000
3.00000  0.00000
0  0

1.00000

Source: 	POJ Founder Monthly Contest, 2008.06.29, Lei Tao 

ID for Online Judge: POJ 3608

  Hint

Suppose the first convex polygon is p1, and the second convex polygon is p2. The 
problem requires you to calculate the minimal distance between the two convex 
polygons.

Because p1 and p2 are separated, the algorithm for rotating calipers is used to 
solve the problem.

8.5.30  Useless Tile Packers

Yes, as you have guessed, the Useless Tile Packers (UTP) pack tiles. The tiles are 
of uniform thickness and have a simple polygonal shape. For each tile, a con-
tainer is custom-built. The floor of the container is a convex polygon, and under 
this constraint, it has the minimum possible space inside to hold the tile it is 
built for. But this strategy leads to wasted space inside the container, as shown 
in Figure 8.62.



562  ◾  Algorithm Design Practice for Collegiate Programming

The UTP authorities are interested to know the percentage of wasted space for 
a given tile.

Input

The input file consists of several data blocks. Each data block describes one tile.
The first line of a data block contains an integer N (3≤N≤100) indicating the 

number of corner points of the tile. Each of the next N lines contains two integers 
giving the (x, y) coordinates of a corner point (determined using a suitable origin 
and orientation of the axes) where 0≤x, y≤1000. Starting from the first point given 
in the input, the corner points occur in the same order on the boundary of the tile 
as they appear in the input. No three consecutive points are colinear.

The input file terminates with a value of 0 for N.

Output

For each tile in the input, output the percentage of wasted space rounded to two 
digits after the decimal point. Each output must be on a separate line. Print a blank 
line after each output block.

Sample Input Sample Output

5
0  0
2  0
2  2
1  1
0  2
5
0  0
0  2

Tile #1
Wasted Space = 25.00 %

Tile #2
Wasted Space = 0.00 %

Wasted
space

Tile

Container

Figure 8.62 



Practice for Computational Geometry  ◾  563

Sample Input Sample Output

1  3
2  2
2  0
0

Source:	 BUET/UVA Occidental (WF Warmup) Contest 1, 2001 

ID for Online Judge: UVA 10065

  Hint

The floor of the container is a convex polygon, and under this constraint it has the 
minimum possible space inside to hold the tile it is built for. It is a straightforward 
Convex Hull problem.

The convex hull algorithm (choose one of them) is applied to calculate the area 
of the convex hull. Then the area that the points cover is calculated. Finally, the 
percentage of wasted space is calculated.

8.5.31  Nails

Arash is tired of working hard, so he wants to surround some nails on the wall of 
his room by a rubber ribbon to make fun of it! Now, he wants to know what will be 
the final length of the rubber ribbon after surrounding the nails. You must assume 
that the radius of nails and rubber ribbon is negligible.

Input

The first line of input gives the number of cases, N. N test cases will follow. Each 
test case starts with a line containing two integers, the initial length of rubber rib-
bon and the number of nails 0<n≤100, respectively. Each of the next n lines con-
tains two integers denoting the location of a nail. There will be a blank line after 
each test case.

Output

Your program must output the final length of rubber ribbon precise to five decimal 
digits.



564  ◾  Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output

2
2  4
0  0
0  1
1  0
1  1

5  4
0  0
0  1
1  0
1  1

4.00000
5.00000

Source:	 Annual Contest 2006 Qualification Round 

ID for Online Judge: UVA 11096

  Hint

The problem requires you to find the length of an elastic band around a set of nails 
on a 2-D surface. You need to find the convex hull and calculate its perimeter.

The initial length of the elastic is given; remember that it might be longer than 
the convex perimeter. Also remember to output in the correct format (to five deci-
mal places).

8.5.32  Scrambled Polygon

A closed polygon is a figure bounded by a finite number of line segments. The 
intersections of the bounding line segments are called the vertices of the polygon. 
When one starts at any vertex of a closed polygon and traverses each bounding line 
segment exactly once, one comes back to the starting vertex.

A closed polygon is called convex if the line segment joining any two points of 
the polygon lies in the polygon. Figure 8.63 shows a closed polygon which is convex 
and one which is not convex. (Informally, a closed polygon is convex if its border 
doesn’t have any “dents”.)

The subject of this problem is a closed convex polygon in the coordinate plane, 
one of whose vertices is the origin (x=0, y=0). Figure 8.64 shows an example. Such 
a polygon will have two properties significant for this problem.

The first property is that the vertices of the polygon will be confined to three 
or fewer of the four quadrants of the coordinate plane. In the example shown in 
Figure 8.64, none of the vertices are in the second quadrant (where x<0, y>0).



Practice for Computational Geometry  ◾  565

To describe the second property, suppose you “take a trip” around the polygon: 
start at (0, 0), visit all other vertices exactly once, and arrive at (0, 0). As you visit 
each vertex (other than (0, 0)), draw the diagonal that connects the current vertex 
with (0, 0), and calculate the slope of this diagonal. Then, within each quadrant, 
the slopes of these diagonals will form a decreasing or increasing sequence of num-
bers, i.e., they will be sorted. Figure 8.65 illustrates this point.

Input

The input lists the vertices of a closed convex polygon in the plane. The number 
of lines in the input will be at least three but no more than 50. Each line contains 
the x and y coordinates of one vertex. Each x and y coordinate is an integer in the 
range −999..999. The vertex on the first line of the input file will be the origin, i.e., 

B

(a) Convex (b) Not convex

C

D

E

F

A A

F

B

E

D

C

Figure 8.63 

(–10, –60)

(–30, –50)

(–30, –40)

(50, –60)

(70, –50)

(90, –20)

(90, 10)

(80, 20)

(60, 30)

(0, 0)

Figure 8.64 



566  ◾  Algorithm Design Practice for Collegiate Programming

x=0 and y=0. Otherwise, the vertices may be in a scrambled order. Except for the 
origin, no vertex will be on the x-axis or the y-axis. No three vertices are colinear.

Output

The output lists the vertices of the given polygon, one vertex per line. Each vertex 
from the input appears exactly once in the output. The origin (0,0) is the vertex on 
the first line of the output. The order of vertices in the output will determine a trip 
taken along the polygon’s border, in the counterclockwise direction. The output 
format for each vertex is (x, y) as shown below.

Sample Input Sample Output

0  0
70  −50
60  30
−30, −50
80  20
50  −60
90  −20
−30  −40
−10, −60
90  10

(0,0)
(−30,−40)
(−30,−50)
(−10,−60)
(50,−60)
(70,−50)
(90,−20)
(90,10)
(80,20)
(60,30)

Source:	 ACM Rocky Mountain 2004 

IDs for Online Judges: POJ 2007, ZOJ 2352, UVA 3052

Slope = 1.333

Slope = 1.667
Slope = 6

Slope = –1.2

Slope = –0.714

Slope = –0.222

Slope = 0.111

Slope = 0.25

Slope = 0.5

Figure 8.65 



Practice for Computational Geometry  ◾  567

  Hint

The problem requires you to “take a trip” around the polygon: starting at (0, 0), 
visiting all other vertices exactly once in the counterclockwise direction, and finally 
arriving at (0, 0).

The problem is solved by sorting polar angles. A cross product is used to sort 
polar angles. The program segments are as follows.

    double cross(point p0, point p1, point p2)
    {
        return (p1.x−p0.x)×(p2.y−p0.y)−(p2.x−p0.x)×(p1.y−p0.y);
    }
    bool cmp(const point &a, const point &b)// sorting in the 
counterclockwise direction
    {
        point origin;    // the origin
        origin.x = origin.y = 0;
        return cross(origin, b, a)<EPS;
    }

8.5.33  Grandpa’s Estate

Being the only living descendant of his grandfather, Kamran the Believer inher-
ited all of the grandpa’s belongings. The most valuable one was a piece of con-
vex polygon-shaped farm in the grandpa’s birth village. The farm was originally 
separated from the neighboring farms by a thick rope hooked to some spikes (big 
nails) placed on the boundary of the polygon. But, when Kamran went to visit his 
farm, he noticed that the rope and some spikes are missing. Your task is to write a 
program to help Kamran decide whether the boundary of his farm can be exactly 
determined only by the remaining spikes.

Input

The first line of the input file contains a single integer t (1≤t≤10), the number of test 
cases, followed by the input data for each test case. The first line of each test case 
contains an integer n (1≤n≤1000), which is the number of remaining spikes. Next, 
there are n lines, one line per spike, each containing a pair of integers, which are the 
x and y coordinates of the spike.

Output

There should be one output line per test case containing “YES” or “NO” depending 
on whether the boundary of the farm can be uniquely determined from the input.



568  ◾  Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output

1
6
0  0
1  2
3  4
2  0
2  4
5  0

NO

Source:	 ACM Tehran 2002 Preliminary

ID for Online Judge: POJ 1228, ZOJ 1377

  Hint

Given a set of points, these points are on the boundary of the convex polygon-
shaped farm. The problem requires you to determine whether the convex hull is a 
stable convex hull. A convex hull isn’t stable if a larger convex polygon can be gotten 
by adding some points, and the larger convex polygon’ sides contains the given set 
of points. Therefore, if a convex hull is stable, then there are at least three points 
on each side. If there are only two points on a side, a larger convex polygon can be 
gotten by adding a point.

The algorithm is as follows. First, a convex hull is calculated for the set of spikes. 
If the number of spikes is less than six, the boundary of the farm can’t be deter-
mined. Second, if there are at least three spikes on each side for the convex hull, 
the boundary of the farm can be determined; else the boundary of the farm can’t 
be determined.

8.5.34  The Fortified Forest

Once upon a time, in a faraway land, there lived a king. This king owned a small 
collection of rare and valuable trees, which had been gathered by his ancestors on 
their travels. To protect his trees from thieves, the king ordered that a high fence be 
built around them. His wizard was put in charge of the operation.

Alas, the wizard quickly noticed that the only suitable material available to 
build the fence was the wood from the trees themselves. In other words, it was 
necessary to cut down some trees in order to build a fence around the remaining 
trees. Of course, to prevent his head from being chopped off, the wizard wanted to 
minimize the value of the trees that had to be cut. The wizard went to his tower and 



Practice for Computational Geometry  ◾  569

stayed there until he had found the best possible solution to the problem. The fence 
was then built and everyone lived happily ever after.

You are to write a program that solves the problem the wizard faced.

Input

The input contains several test cases, each of which describes a hypothetical for-
est. Each test case begins with a line containing a single integer n, 2≤n≤15, the 
number of trees in the forest. The trees are identified by consecutive integers 1 to 
n. Each of the subsequent n lines contains four integers xi, yi, vi, li that describe a 
single tree. (xi, yi) is the position of the tree in the plane, vi is its value, and li is the 
length of fence that can be built using the wood of the tree. vi and li are between 
0 and 10,000.

The input ends with an empty test case (n=0).

Output

For each test case, compute a subset of the trees such that, using the wood from 
that subset, the remaining trees can be enclosed in a single fence. Find the subset 
with minimum value. If more than one such minimum-value subset exists, choose 
the one with the smallest number of trees. For simplicity, regard the trees as having 
zero diameter.

Display, as shown below, the test case numbers (1, 2, ...), the identity of each tree 
to be cut, and the length of the excess fencing (accurate to two fractional digits).

Display a blank line between test cases.

Sample Input Sample Output

6
0    0    8    3
1    4    3    2
2    1    7    1
4    1    2    3
3    5    4    6
2    3    9    8
3
3    0  10    2
5    5  20  25
7  −3  30  32
0

Forest 1
Cut these trees: 2 4 5
Extra wood: 3.16

Forest 2
Cut these trees: 2
Extra wood: 15.00

Source: ACM World Finals 1999 

IDs for Online Judges: POJ 1873, UVA 811



570  ◾  Algorithm Design Practice for Collegiate Programming

  Hint

The problem requires you to compute such a subset of the trees that, using the wood 
from that subset, the remaining trees can be enclosed in a single fence; and the 
subset must be with minimum value.

The fence built around the remaining trees is the convex hull containing all 
remaining trees. The search with state compression is used to find which trees 
will be cut, and which trees will remain. A binary number i with n digits is 
used to represent n trees, 0≤i≤2n−1, where a digit being 0 means that the cor-
responding tree will be cut, and a digit being 1 means that the corresponding 
tree will remain. Suppose Pk is the k-th tree’s position, 1≤k≤n; pt[] is used to 
store remaining trees (i.e., sequence numbers for digits being 1 in i+1), and the 
number of remaining trees is tt; sums of cut trees’ values and lengths are valu 
and len respectively; the set of points of the convex hull for pt[] is h, and the 
perimeter for the convex hull is ll; ans is the sum of the current cut trees’ values, 
anst is the number of cut trees, ansi is the state for trees, and lef is the length of 
the excess fencing.

The algorithm is as follows:
All states i for trees are enumerated, (0≤i≤2n−1):

1.	In state i, remaining trees are stored in pt[]. Then the sums of cut trees’ values 
and lengths as valu and len are calculated;

2.	The convex hull for remaining trees pt[] and the perimeter for the convex hull 
ll is calculated;

3.	If the sum of the cut trees’ lengths can enclose remaining trees (ll≤len), the 
current best solution should be adjusted:

  If (valu<ans), then ans=valu, anst=n−tt, ansi=i, and the 
length of the excess fencing is calculated (lef=len−ll);
  If (valu==ans) and (n−tt<anst), then anst=n−tt, ansi=i, and 
the length of the excess fencing is calculated (lef=len−ll).

Finally, output the result.

8.5.35  The Picnic

The annual picnic of the Zeron company will take place tomorrow. This year they 
have agreed on the Gloomwood Park as the place to be. The girl responsible for 
the arrangement, Lilith, thinks it would be nice if everyone is able to watch every-
one else during the occasion. From geometry class, she remembers that a region 
in the plane with the property that a straight line between any two points in the 
region, lies entirely in the region, is called convex. So that is what she is looking for. 



Practice for Computational Geometry  ◾  571

Unfortunately, this seems hard to fulfill, since Gloomwood Park has many opaque 
obstacles, such as large trees, rocks, and so on.

Because the staff of the Zeron company is large, Lilith has a rather intricate prob-
lem to solve: finding a location to hold them all. Therefore, some of her friends help 
her to draw a map of the whereabouts of the largest obstacles. To mark out the place, 
she will use a ribbon stretched around the obstacles on the circumference of the cho-
sen region. The opaque obstacles should be thought of as points of zero extension.

Figure 8.66 shows the Gloomwood Park from above with black dots represent-
ing obstacles. The picnic area is the region whose circumference is dashed.

Input

The first line of the input contains a single positive integer n, specifying the number 
of test scenarios to follow. Each test scenario begins with a line containing an inte-
ger m, the number of obstacles in the park (2<m<100). The next line contains the 
coordinates of the m obstacles, in the order x1 y1 x2 y2 x3 y3 . . . .. All coordinates are 
integers in the range [0, 1000]. Each scenario has at least three obstacles that are not 
on a straight line, and no two obstacles have the same coordinates.

Output

For each test scenario, one line of output should be generated, stating the area 
with one decimal of the largest convex polygon having obstacles as corners, but no 
enclosed obstacles.

Sample Input Sample Output

1
11
3  3  8  4  12  2  22  3  23  5  24  7  27  12  18  12  13  13  6  10  9  6

129.0

Source:	 ACM Northwestern Europe 2002

IDs for Online Judges: POJ 1259, ZOJ 1562, UVA 2674

Figure 8.66 



572  ◾  Algorithm Design Practice for Collegiate Programming

  Hint

Given a set of vertices, the problem requires you to calculate the largest convex 
polygon whose vertices are a subset of the set of vertices, and in which there is no 
vertex. Suppose the given set of vertices is {pi|0≤i≤n−1}; and f [j][k] is the area of the 
largest convex polygon having vertex k and vertex j.

Each vertex pi in the convex hull is enumerated:
For the convex hull, vertex pi is as the bottom vertex, and tp[0…m−1] is the 

sequence for vertices in counterclockwise direction.
In tp[] all intervals [k, j] (0≤k≤j−1, 1≤j≤m) are enumerated:

1.	If pk+1…pj−1 aren’t on the inside of the convex hull having vertex pi, ver-
tex tp[k] and tp[j] (((mul(tp[k], tp[j], tp[l])≤0)||(mul(p[i], tp[k], tp[l])=0)), 

k+1≤l≤j−1), then the area f j k
p tp p tpi k i j

� ���� � ����
=[ ][ ]

^
2

 is calculated.

2.	If pk+1…pj−1 are on the right of tp tpk j

� �����
 and tpl, tpk, and tpj are sorted in coun-

terclockwise direction, then neither the convex polygon having vertices 

pi, tpk, and tpj s
p tp p tpi j i kits area is 1

^
2

� ���� � ����
=







 nor the convex polygon hav-

ing vertices pi, tpk, and tpl (its area is s2=f [k][l]) contain pk+1… pj−1 , then 
f [j][k]=max{f [j][k], s1+s2}.

Then the area ans is adjusted: ans=max{f [j][k], ans}.
Finally, ans is the area of the largest convex polygon in which there are no 

vertices.

8.5.36  Triangle

Given n distinct points on a plane, your task is to find the triangle that has the 
maximum area, whose vertices are from the given points.

Input

The input consists of several test cases. The first line of each test case con-
tains an integer n, indicating the number of points on the plane. Each of the 
following n lines contains two integers xi and yi, indicating the i-th points. 
The last line of the input is an integer −1, indicating the end of input, which 
should not be processed. You may assume that 1≤n≤50000 and −104≤xi,yi≤104 
for all i=1 . . . n.



Practice for Computational Geometry  ◾  573

Output

For each test case, print a line containing the maximum area, which contains two 
digits after the decimal point. You may assume that there is always an answer which 
is greater than zero.

Sample Input Sample Output

3
3  4
2  6
2  7
5
2  6
3  9
2  0
8  0
6  5
−1

0.50
27.00

Source:	 ACM Shanghai 2004 Preliminary 

IDs for Online Judges: POJ 2079, ZOJ 2419

  Hint

First, the set of n vertices for the convex hull based on the given set of points are cal-
culated p p pn… −{ , , , }0 1 1 . Obviously, vertices for the triangle with the maximum 
area are vertices for the convex hull.

Each vertex pi is enumerated, 0≤i≤n−1:
The other two vertices pk and pj for the triangle are calculated as follows:.
Initially k is (i+1)%n;
The length _j of i−j is enumerated, and j is calculated (for (int _j=1, j=(_j+i)%n; 

_j<n−1; _j++, j=(_j+i)% n ))), and pk is calculated based on pi and pj: k is calculated 
by “rotating” in counterclockwise direction until p p p pj i k n k

� ���� � ���������
≤+^ 0.( 1)%  The area 

for the triangle whose vertices pi, pj, and pk S
p p p p

p p p
i j i k

i j k

� ���� � ����

∆ =
^

2
.  The maximum 

area for the triangle is adjusted ans ans S p p pi j k= ∆max{ , }.
Finally, ans is the maximum area for the triangle.



574  ◾  Algorithm Design Practice for Collegiate Programming

8.5.37  Smallest Bounding Rectangle

Given the Cartesian coordinates of n (>0) two-dimensional points, write a program 
that computes the area of their smallest bounding rectangle (smallest rectangle 
containing all the given points).

Input

The input file may contain multiple test cases. Each test case begins with a line 
containing a positive integer n (<1001) indicating the number of points in this test 
case. Then follow n lines, each containing two real numbers giving respectively the 
x- and y-coordinates of a point. The input terminates with a test case containing a 
value 0 for n which must not be processed.

Output

For each test case in the input, print a line containing the area of the smallest 
bounding rectangle rounded to the fourth digit after the decimal point.

Sample Input Sample Output

3
−3.000  5.000
7.000  9.000
17.000  5.000
4
10.000  10.000
10.000  20.000
20.000  20.000
20.000  10.000
0

80.0000
100.0000

Source:	 2001 Regionals Warmup Contest

ID for Online Judge: UVA 10173

  Hint

The problem requires you to calculate the area of the smallest rectangle contain-
ing all given points. First, the convex hull containing all given points is calculated. 
Then the method of rotating calipers is used to calculate the area of the smallest 
rectangle containing all given points:

The rightmost point and the leftmost point are calculated to guarantee the 
minimal width covering all points;



Practice for Computational Geometry  ◾  575

The lowest point and the highest point are calculated to guarantee the minimal 
height covering all points;

The area of the smallest rectangle containing all given points is calculated 
through adjustment in the procedure of rotating calipers.

8.5.38  Exocenter of a Triangle

Given a triangle ABC, the Extriangles of ABC are constructed as follows:

On each side of ABC, construct a square (ABDE, BCHJ, and ACFG in 
Figure 8.67).

Connect adjacent square corners to form the three Extriangles (AGD, BEJ, and 
CFH in Figure 8.67).

The Exomedians of ABC are the medians of the Extriangles, which pass 
through vertices of the original triangle, extended into the original triangle 
(LAO, MBO, and NCO in Figure 8.67). As the figure indicates, the three 
Exomedians intersect at a common point called the Exocenter (point O in 
Figure 8.67).

This problem is to write a program to compute the Exocenters of triangles.

Input

The first line of the input consists of a positive integer n, which is the number of 
datasets that follow. Each dataset consists of three lines; each line contains two 
floating-point values which represent the (two-dimensional) coordinate of one ver-
tex of a triangle. So, there are a total of (n×3)+1 lines of input. Note: All input 

D E

A B

M

J

O

C

H

NF

G

L

Figure 8.67 



576  ◾  Algorithm Design Practice for Collegiate Programming

triangles will be strongly non-degenerate in that no vertex will be within one unit 
of the line through the other two vertices.

Output

For each dataset, you must print out the coordinates of the Exocenter of the input 
triangle correct to four decimal places.

Sample Input Sample Output

2
0.0  0.0
9.0  12.0
14.0  0.0
3.0  4.0
13.0  19.0
2.0  −10.0

9.0000  3.7500
−48.0400  23.3600

Source: ACM Greater New York 2003 

IDs for Online Judges: POJ 1673, ZOJ 1821, UVA 2873

  Hint

The problem is solved based on the definition of exocenters of triangles.
Let p a
� ���

1  be a vertical line through p1 for p p
� ����

2 3 , and the intersection point for 
p a
� ���

1  and p p
� ����

2 3  is a. And let p b
� ���

2  be a vertical line through p2 for p p
� ����

1 3 , and the 
intersection point for p b

� ���
2  and p p

� ����
1 3  is b. The intersection point o for p pa

� ����
1  and 

p pb

� ����
2  (the orthocenter of a triangle) is the exocenter of the triangle (Figure 8.68).

p3

p2

o

p1
b

a

Figure 8.68 



Practice for Computational Geometry  ◾  577

For a triangle, its exocenter is its orthocenter. The proof is as follows.
In Figure 8.67, ∆FCN is rotated clockwise 90°. Line segment AC and line seg-

ment CF coincide. Line segment OC is lengthened. And the intersection point of 
the lengthened line and AB is point P (Figure 8.69).

Because BC=CH and AN=NH, CN AB. Because ∠NCP=90°, ∠APC=90°.
Similarly for the other two sides, we can prove, for a triangle, that its exocenter 

is its orthocenter.

8.5.39  Picture

A number of rectangular posters, photographs, and other pictures of the same shape 
are pasted on a wall. Their sides are all vertical or horizontal. Each rectangle can be 
partially or totally covered by the others. The length of the boundary of the union 
of all rectangles is called the perimeter.

Write a program to calculate the perimeter. An example with seven rectangles 
is shown in Figure 8.70.

The corresponding boundary is the whole set of line segments drawn in 
Figure 8.71.

The vertices of all rectangles have integer coordinates.

Input

Your program is to read from standard input. The first line contains the number of 
rectangles pasted on the wall. In each of the subsequent lines, one can find the integer 

C

N

A

P
O

BH

Figure 8.69 

Figure 8.70 



578  ◾  Algorithm Design Practice for Collegiate Programming

coordinates of the lower-left vertex and the upper-right vertex of each rectangle. The 
values of those coordinates are given as ordered pairs consisting of an x-coordinate 
followed by a y-coordinate. 0≤number of rectangles<5000. All coordinates are in 
the range [−10000,10000], and any existing rectangle has a positive area.

Output

Your program is to write to standard output. The output must contain a single 
line with a non-negative integer which corresponds to the perimeter for the input 
rectangles.

Sample Input Sample Output

7
−15  0  5  10
−5  8  20  25
15  −4  24  14
0  −6  16  4
2  15  10  22
30  10  36  20
34  0  40  16

228

Source: IOI 1998 

ID for Online Judge: POJ 1177

  Hint

The problem is solved by the Sweep Line Algorithm.
First, discretization is on the X-axis. The plane is divided into several horizontal 

strips by sweeping on the Y-axis. A segment tree is used to accumulate lengths of 
these horizontal strips s1.

Figure 8.71 



Practice for Computational Geometry  ◾  579

Second, discretization is on the Y-axis. The plane is divided into several vertical 
strips by sweeping on the X-axis. A segment tree is used to accumulate lengths of 
these vertical strips s2.

Obviously, the result is s1+s2.

8.5.40  Fill the Cisterns! (Water Shortage)

During the next century, certain regions on earth will experience severe water 
shortages. The old town of Uqbar has already started to prepare itself for the worst. 
Recently they created a network of pipes connecting the cisterns that distribute 
water in each neighborhood, making it easier to fill them at once from a single 
source of water. But in case of a water shortage, the cisterns above a certain level 
will be empty since the water will go to the cisterns below, as shown in Figure 8.72.

You have been asked to write a program to compute the level to which cisterns 
will be filled with a certain volume of water, given the dimensions and position of 
each cistern. To simplify, we will neglect the volume of water in the pipes.

Write a program which for each data set:

reads the description of cisterns and the volume of water, computes the level to 
which the cisterns will be filled with the given amount of water, writes the result.

5 m

15 m

19 m
8 m

6 m

1 m

1 m

1 m

2 m
4 m

8 m

2 m

11 m

17 m

7 m
5 m

5 m

V = 78 m3

Figure 8.72 



580  ◾  Algorithm Design Practice for Collegiate Programming

Input

The first line of the input contains the number of data sets k, 1≤k≤30. The data sets 
follow.

The first line of each data set contains one integer n, the number of cisterns, 
1≤n≤50000. Each of the following n lines consists of four non-negative inte-
gers, separated by single spaces: b, h, w, d—the base level of the cistern, and its 
height, width, and depth in meters, respectively. The integers satisfy 0≤b≤106 and 
1≤h×w×d≤40000. The last line of the data set contains an integer V—the vol-
ume of water in cubic meters to be injected into the network. Integer V satisfies 
1≤V≤2×109.

Output

The output should consist of exactly d lines, one line for each data set.
Line i, 1≤i≤d, should contain the level that the water will reach, in meters, 

rounded up to two fractional digits, or the word “OVERFLOW”, if the volume of 
water exceeds the total capacity of the cisterns.

Sample Input Sample Output

3
2
0  1  1  1
2  1  1  1
1
4
11  7  5  1
15  6  2  2
5  8  5  1
19  4  8  1
132
4
11  7  5  1
15  6  2  2
5  8  5  1
19  4  8  1
78

1.00
OVERFLOW
17.00

Note:	 Descriptions for Problem F Fill the Cisterns! in ACM Central 
Europe 2001 and Problem D Water Shortage are similar.

Source:	 ACM Central Europe 2001, ACM Southwestern Europe 2001

IDs for Online Judges: POJ 1434, ZOJ 1389, UVA 2428



Practice for Computational Geometry  ◾  581

  Hint

For the i-th cistern, its base level, height, width, and depth are bi, hi, wi, and di, 
respectively, 0≤i≤n−1.

First, we need to calculate how much water is in the n cisterns if the height of 
the water level is m. Suppose the amount of water is vm.

For the i-th cistern (0≤i≤n−1), if its base level bi ≤ the water level m, then the 
water level for the i-th cistern tmp=min{ m−bi, hi}, and vm+=tmp×wi×di.

Dichotomy is used to calculate the level that the water will reach. Suppose the 
interval for the water level is [l, r]. Initially, the interval for the water level is [0, 
∞]. Let mid=(l+r)/2, and calculate the amount of filled water vmid that makes the 
water level to be mid. If vmid≥V (the volume of water in cubic meters to be injected 
into the network), then the left subinterval is searched; else the right subinterval 
is searched. Repeat the procedure until the search ends and l is the level that the 
water will reach.

8.5.41  Area of Simple Polygons

There are N, 1≤N≤1,000 rectangles in the 2-D xy plane. The four sides of a rect-
angle are horizontal or vertical line segments. Rectangles are defined by their lower-
left and upper-right corner points. Each corner point is a pair of two non-negative 
integers in the range of 0 through 50,000 indicating its x and y coordinates.

Assume that the contour of their union is defined by a set S of segments. We 
can use a subset of S to construct simple polygon(s). Please report the total area of 
the polygon(s) constructed by the subset of S. The area should be as large as pos-
sible. In a 2-D xy plane, a polygon is defined by a finite set of segments such that 
every segment extreme (or endpoint) is shared by exactly two edges, and no subsets 
of edges have the same property. The segments are edges and their extremes are the 
vertices of the polygon. A polygon is simple if there is no pair of nonconsecutive 
edges sharing a point.

Example: Consider the following three rectangles:

rectangle 1: <(0, 0) (4, 4)>,
rectangle 2: <(1, 1) (5, 2)>,
rectangle 3: <(1, 1) (2, 5)>.

The total area of all simple polygons constructed by these rectangles is 18.

Input

The input consists of multiple test cases. A line of four −1’s separates each test 
case. An extra line of four −1’s marks the end of the input. In each test case, the 



582  ◾  Algorithm Design Practice for Collegiate Programming

rectangles are given one by one in a line. In each line for a rectangle, four non-
negative integers are given. The first two are the x and y coordinates of the lower-left 
corner. The next two are the x and y coordinates of the upper-right corner.

Output

For each test case, output the total area of all simple polygons in a line.

Sample Input Sample Output

0  0  4  4
1  1  5  2
1  1  2  5
−1  −1  −1  −1
0  0  2  2
1  1  3  3
2  2  4  4
−1  −1  −1  −1
−1  −1  −1  −1

18
10

Source:	 ACM Taiwan 2001 

IDs for Online Judges: POJ 1389, UVA 2447

  Hint

First, the convex hull containing all rectangles’ points are calculated. Then 
the method of rotating calipers is used to calculate the total area of all simple 
polygons.

8.5.42  Squares

A square is a four-sided polygon whose sides have equal length and adjacent sides 
form 90-degree angles. It is also a polygon such that rotating about its center by 
90 degrees gives the same polygon. It is not the only polygon with the latter prop-
erty, however, as a regular octagon also has this property.

So we all know what a square looks like, but can we find all possible squares that 
can be formed from a set of stars in a night sky? To make the problem easier, we will 
assume that the night sky is a two-dimensional plane, and each star is specified by 
its x and y coordinates.



Practice for Computational Geometry  ◾  583

Input

The input consists of a number of test cases. Each test case starts with the integer 
n (1≤n≤1000) indicating the number of points to follow. Each of the next n lines 
specify the x and y coordinates (two integers) of each point. You may assume that 
the points are distinct and the magnitudes of the coordinates are less than 20000. 
The input is terminated when n=0.

Output

For each test case, print on a line the number of squares one can form from the 
given stars.

Sample Input Sample Output

4
1  0
0  1
1  1
0  0
9
0  0
1  0
2  0
0  2
1  2
2  2
0  1
1  1
2  1
4
−2  5
3  7
0  0
5  2
0

1
6
1

Source: ACM Rocky Mountain 2004 

IDs for Online Judges: POJ 2002, ZOJ 2347, UVA 3047

  Hint

Suppose m is the container storing coordinates for all given stars; where the i-th 
star’s coordinate is (ai, bi), 0≤i≤n−1. Initially ans=0.



584  ◾  Algorithm Design Practice for Collegiate Programming

After the i-th star’s coordinate (ai, bi) is input, the first i−1 stars’ coordinates (aj, 
bj), 0≤j≤i−1, are enumerated:

If (ai+bi−bj, bi+aj−ai) and (bi+aj−bj, aj+bj−ai) are in the container m, then ans++;
If (ai+bj−bi, bi−aj+ai) and (aj+bj−bi, ai+bj−aj) are in the container m, then ans++;

Finally, the number of squares one can form from the given stars is ans
2

.

8.5.43  That Nice Euler Circuit

Little Joey invented a Scrabble machine that he called Euler, after the great math-
ematician. In his primary school, Joey heard about the nice story of how Euler 
started the study about graphs. The problem in that story was—let me remind 
you—to draw a graph on a paper without lifting your pen, and finally return to 
the original position. Euler proved that you could do this if and only if the (planar) 
graph you created has the following two properties: (1) The graph is connected; and 
(2) Every vertex in the graph has even degree.

Joey’s Euler machine works exactly like this. The device consists of a pencil 
touching the paper, and a control center issuing a sequence of instructions. The 
paper can be viewed as the infinite two-dimensional plane; that means you do not 
need to worry whether the pencil will ever go off the boundary.

In the beginning, the Euler machine will issue an instruction of the form 
(X0, Y0) which moves the pencil to some starting position (X0, Y0). Each subsequent 
instruction is also of the form (X ', Y '), which means to move the pencil from the 
previous position to the new position (X ', Y '), thus drawing a line segment on the 
paper. You can be sure that the new position is different from the previous position 
for each instruction. At last, the Euler machine will always issue an instruction 
that moves the pencil back to the starting position (X0, Y0). In addition, the Euler 
machine will definitely not draw any lines that overlay other lines already drawn. 
However, the lines may intersect.

After all the instructions are issued, there will be a nice picture on Joey’s paper. 
You see, since the pencil is never lifted from the paper, the picture can be viewed 
as an Euler circuit.

Your job is to count how many pieces (connected areas) are created on the paper 
by those lines drawn by Euler.

Input

There are no more than 25 test cases. Each case starts with a line containing an 
integer N>=4, which is the number of instructions in the test case. The following 
N pairs of integers give the instructions and appear on a single line separated by 
single spaces. The first pair is the first instruction that gives the coordinates of the 



Practice for Computational Geometry  ◾  585

starting position. You may assume there are no more than 300 instructions in each 
test case, and all the integer coordinates are in the range (−300, 300). The input is 
terminated when N is 0.

Output

For each test case, there will be one output line in the format:

Case x: There are w pieces.
where x is the serial number starting from 1.

Note: Figure 8.73 illustrates the two sample input cases.

Sample Input Sample Output

5
0  0  0  1  1  1  1  0  0  0
7
1  1  1  5  2  1  2  5  5  1  3  5  1  1
0

Case 1: There are 2 pieces.
Case 2: There are 5 pieces.

Source: ACM Shanghai 2004

IDs for Online Judges: POJ 2284, ZOJ 2394, UVA 3263

  Hint

The problem is solved by Euler’s formula: for any convex polyhedron, the number 
of vertices and faces together is exactly two more than the number of edges. That 
is, V−E+F=2.

First, the number of vertices V is calculated. We calculate coordinates for inter-
section points, sort all points, and eliminate recurring points.

Then the number of edges E is calculated. Initially, E is the number of input 
edges (N−1). Then, for each vertex v, if v is on a line segment and isn’t an endpoint 
for the line segment, E++.

Finally, the number of faces F is calculated and output.

Figure 8.73 



586  ◾  Algorithm Design Practice for Collegiate Programming

8.5.44  Can’t Cut Down the Forest for the Trees

Once upon a time, in a country far away, there was a king who owned a forest of 
valuable trees. One day, to deal with a cash flow problem, the king decided to cut 
down and sell some of his trees. He asked his wizard to find the largest number of 
trees that could be safely cut down.

All the king’s trees stood within a rectangular fence, to protect them from 
thieves and vandals. Cutting down the trees was difficult, since each tree needed 
room to fall without hitting and damaging other trees or the fence. Each tree could 
be trimmed of branches before it was cut. For simplicity, the wizard assumed that 
when each tree was cut down, it would occupy a rectangular space on the ground, 
as shown in Figure 8.74. One of the sides of the rectangle is a diameter of the origi-
nal base of the tree. The other dimension of the rectangle is equal to the height of 
the tree.

Many of the king’s trees were located near other trees (that being one of the 
tell-tale signs of a forest.) The wizard needed to find the maximum number of trees 
that could be cut down, one after another, in such a way that no fallen tree would 
touch any other tree or the fence. As soon as each tree falls, it is cut into pieces and 
carried away so it does not interfere with the next tree to be cut.

Input

The input consists of several test cases each describing a forest. The first line of each 
description contains five integers, xmin, ymin, xmax, ymax, and n. The first four 
numbers represent the minimal and maximal coordinates of the fence in the x- and 
y-directions (xmin<xmax, ymin<ymax). The fence is rectangular and its sides are 
parallel to the coordinate axes. The fifth number n represents the number of trees 
in the forest (1≤n≤100).

The next n lines describe the positions and dimensions of the n trees. Each 
line contains four integers, xi, yi, di, and hi, representing the position of the 

Height

Space occupied
by tree after cuttingCircular base:

the original
position of
the tree

Figure 8.74 



Practice for Computational Geometry  ◾  587

tree’s center (xi, yi), its base diameter di, and its height hi. No tree bases touch 
each other, and all the trees are entirely inside the fence, not touching the fence 
at all.

The input is terminated by a test case with xmin=ymin=xmax=ymax=n=0. This test 
case should not be processed.

Output

For each test case, first print its number. Then print the maximum number of trees 
that can be cut down, one after another, such that no fallen tree touches any other 
tree or the fence. Follow the format in the sample output given below. Print a blank 
line after each test case.

Sample Input Sample Output

0  0  10  10  3
3  3  2  10
5  5  3  1
2  8  3  9
0  0  0  0  0

Forest 1
2 tree(s) can be cut

Source: ACM World Finals 2001 

ID for Online Judge: UVA 2235

  Hint

The polar angle for the central axis of a rectangle is used to represent the state that 
a tree is cut down, as shown in Figure 8.75.

Figure 8.75 



588  ◾  Algorithm Design Practice for Collegiate Programming

Other trees or the fence may prevent a tree from falling. Because the number 
of trees in the forest n≤100, each tree is enumerated. We calculate the range for the 
polar angle that the tree can’t be cut down.

In Figure 8.76, for the i-th tree, its radius of the original base of the tree is ri, 
the length of its central axis is hi, the length for the line segment from the centre 
of the circle to the another endpoint for the rectangle is di, and the included angle 
for the line segment and its central axis is bi. States that trees or the fence prevent a 
tree from falling are as follows.

There are two states that the fence can prevent a tree from falling.

Case 1: The distance between the center of a circle and the fence is in [0, hi].
The range for the included angle for two dotted lines (the polar angle for the 

central axis of a rectangle) is mid b mid bd
dist i

d
dist i

i i( ))( ) ( )(− + + +





− −cos , cos1 1  

(as shown in Figure 8.77), where the distance between the center of a circle and 
the fence is dist, and the polar angle for the vertical line is mid.

hi
di

ri bi = tan–1( )ri
hi

Figure 8.76 

hihi
di

Fence

bi

dist

Figure 8.77 



Practice for Computational Geometry  ◾  589

Case 2: The distance between the center of a circle and the fence is [hi, di].
The rectangle (tree) can also be perpendicular to the fence. When the tree is 
rotated, it can touch the fence (Figure 8.78). Then the polar angle for the central 

axis of a rectangle is mid b mid bd
dist i

d
dist i

i icos , cos1 1( ) ( )− + + + 
− − .

For tree j, there are two cases that tree j prevents tree i fall.
Case 1: It is similar to the above Case 1 (Figure 8.79):

Suppose the distance between centers of two circles is dist, and the 
polar angle for j with respect to i is mid. If the height of the tree exceeds 

dist r ri j+ +( )2 2 , then h dist r ri i j= + +( )2 2 . The range for the polar angle 

for the central axis of a rectangle that will prevent the tree from falling is 
mid b mid bd

dist i
d
dist i

i icos , cos1 1( ) ( )− + + + 
− − .

Case 2: It is similar to the above Case 2.

Figure 8.78 

Figure 8.79 



http://taylorandfrancis.com


591

Chapter 9

Practice for State 
Space Search

Search technologies are fundamental technologies in computer science and 
technology.

In data structure, search spaces are static, and a search algorithm is used to find 
items with specified properties among a collection of items. There are three kinds 
of static search methods for data structure: Sequential Search, Binary Search, and 
Binary Search Trees (BST).

Sometimes search spaces are dynamic. Searched objects (also called states) are 
generated during the search.

Classical algorithms for trees and graphs are based on explicit graph models and 
tree models. But sometimes graph models and tree models are implicit.

In this chapter, we’re back to the starting point: how to represent a search prob-
lem? And practices for state space search are shown.

A search problem can be represented as a state space. And a state space can be 
represented as an implicit tree or an implicit graph. States are represented as ver-
tices. There are operations that lead from one state to other states. The goal for a 
search problem is to find a path from an initial state to a set of goal states. During 
the search, a search tree or a search graph is generated in the state space, called a 
search space. That is, a search space is a part of a state space.

DFS and BFS are the most widely used dynamic search algorithms.
A search problem can be analyzed from different viewpoints:

1.	The state space.
Is the state space limited or unlimited?
Is the state space static or generated dynamically? For example, in AI, searched 

objects (states) are generated during the search.



592  ◾  Algorithm Design Practice for Collegiate Programming

2.	The search goal.
Is the search goal clear or unclear in the state space? For example, in a game 

of chess, the search goal is unclear.
Does the problem require you to calculate the goal and/or the paths to the 

goal?
3.	Search.

Are there any constraints or not for the search? For example, in the Eight 
Queens’ problem, there are constraints among queens, and backtracking 
is used to find solutions.

Is the search data-driven or goal-driven? Data-driven search is also 
called forward search. Goal states are searched from current states. 
Conversely, the search is a goal-driven search, also called backward 
search.

Is the search unidirectional search or bidirectional search? If only data-
driven search or only goal-driven search is used, the search is unidirec-
tional search. And if data-driven search and goal-driven search are used 
together, the search is bidirectional search.

Is the search a game search (i.e., there is an opponent) or not? A two-person 
zero-sum game is a game search, such as Weiqi, Chinese Chess, Chess, 
and so on.

Is the search a blind search or a heuristic search? Heuristic search is using 
problem-specific knowledge to find solutions.

9.1  Constructing a State Space Tree
A state space consists of a set of states and a set of operations. A state is a situa-
tion for a problem. A state can be a situation in a game of chess, or a situation 
that cars move, stop, or turn on a road, and so on. For a problem, there is one 
initial state or more than one initial state. An operation is applied to a state of the 
problem to get a new state. The relationship between states can be discrete, such 
as a game of chess; or continuous, such as cars on a road. In a game of chess, a 
chesspiece can be moved into another square to change the current state. On the 
road, cars can move, stop, or turn to change the current state. Operations applied 
to states can be represented as a successor function. If there is only one initial 
state, the state space is represented as a tree, called a state space tree. And if there 
are more than one initial state, the state space is represented as a graph, called a 
state space graph.

If there is only one initial state, the state space search is to find a path from an 
initial state to a set of goal states.

There are costs for transformations from a state to other states.
Figure 9.1 shows a state space tree.



Practice for State Space Search  ◾  593

Therefore, to solve a problem of state space search, we need to define states, a 
successor function, costs, and a state space. For example, in a game of chess:

States: Chessboards according to rules;
A successor function: Rules moving a chesspiece;
Costs: The cost for a state transformation is 1, and represents moving a chess-

piece one time;
A State Space: A set of chessboards according to rules.

For the problem of calculating single-source shortest paths in a graph, states, a 
successor function, costs, and a state space are as follows:

States: all vertices in the graph;
A successor function: all edges in the graph;
Costs: Weights of edges;
A State Space: A set of reachable vertices.

A state space tree is used to represent transformations from an initial state to 
a set of goal states, and calculate costs for transformations. There are two kinds of 
cost calculations:

1.	Evaluating Function g(x): The cost from the initial state to the current state x;
2.	Heuristic Function h(x): The estimated cost from the current state x to goal 

states.

State A

State B

Level 0

Level 1

Level 2 State E State F State D State G State A State H

State C State D

2 11

1

3
1 1

1 1111
2

2 2
3

1 11
12

2

1 3 2 3 3

Figure 9.1 



594  ◾  Algorithm Design Practice for Collegiate Programming

Therefore, if a state space is regarded as a graph, a state space tree can be regarded 
as a problem for the shortest path.

9.1.1  Robot

The Robot Moving Institute is using a robot in their local store to transport dif-
ferent items. Of course, the robot should spend only the minimum time necessary 
when traveling from one place in the store to another. The robot can move only 
along a straight line (track). All tracks form a rectangular grid, as shown in Figure 9.2. 
Neighboring tracks are one meter apart. The store is a rectangle N×M meters and 
it is entirely covered by this grid. The distance of the track closest to the side of the 
store is exactly one meter. The robot has a circular shape with diameter equal to 
1.6 meters. The track goes through the center of the robot. The robot always faces 
north, south, west, or east. The tracks are in the south-north and in the west-east 
directions. The robot can move only in the direction it faces. The direction in which 
it faces can be changed at each track crossing. Initially, the robot stands at a track 
crossing. The obstacles in the store are formed from pieces occupying 1m×1m on 
the ground. Each obstacle is within a 1×1 square formed by the tracks. The move-
ment of the robot is controlled by two commands—GO and TURN.

The GO command has one integer parameter n in {1, 2, 3}. After receiving this 
command, the robot moves n meters in the direction it faces.

The TURN command has one parameter, which is either left or right. After 
receiving this command, the robot changes its orientation by 90° in the direction 
indicated by the parameter.

The execution of each command lasts one second.
Help researchers of RMI to write a program which will determine the minimal 

time in which the robot can move from a given starting point to a given destination.

Figure 9.2  The circle is the Robot, the black squares are obstacles, and the 
heavy lines are the path that the Robot moves through.



Practice for State Space Search  ◾  595

Input

The input consists of blocks of lines. The first line of each block contains two 
integers M≤50 and N≤50, separated by one space. In each of the next M lines 
there are N numbers one or zero separated by one space. One represents obstacles 
and zero represents empty squares. (The tracks are between the squares.) The 
block is terminated by a line containing four positive integers B1 B2 E1 E2, each 
followed by one space and the word indicating the orientation of the robot at the 
starting point. B1 and B2 are the coordinates of the square in the north-west cor-
ner of which the robot is placed (starting point). E1 and E2 are the coordinates 
of square to the north-west corner of which the robot should move (destination 
point). The orientation of the robot when it has reached the destination point 
is not prescribed. We use (row, column)-type coordinates, i.e., the coordinates 
of the upper left (the most north-west) square in the store are 0,0 and the lower 
right (the most south-east) square are M−1, N−1. The orientation is given by the 
words north or west or south or east. The last block contains only one line with 
N=0 and M=0.

Output

The output contains one line for each block except the last block in the input. The 
lines are in the order corresponding to the blocks in the input. The line contains 
a minimal number of seconds in which the robot can reach the destination point 
from the starting point. If there does not exist any path from the starting point to 
the destination point, the line will contain −1.

Sample Input Sample Output

9  10
0  0  0  0  0  0  1  0  0  0
0  0  0  0  0  0  0  0  1  0
0  0  0  1  0  0  0  0  0  0
0  0  1  0  0  0  0  0  0  0
0  0  0  0  0  0  1  0  0  0
0  0  0  0  0  1  0  0  0  0
0  0  0  1  1  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0
1  0  0  0  0  0  0  0  1  0
7  2  2  7  south
0  0

12

Source:	 ACM Central Europe 1996

IDs for Online Judges: POJ 1376, ZOJ 1310, UVA 314



596  ◾  Algorithm Design Practice for Collegiate Programming

  Analysis

First, for a test case, in the area whose coordinate for the upper-left corner is (0, 0), 
and the coordinate for the lower-right corner is (M−1, N-1), we find grids that the 
Robot can’t move through. The Robot has a circular shape with diameter equal to 
1.6 meter, and row 0, row M−1, column 0, and column N-1 are boundaries for the 
Robot. Therefore, in the area whose coordinate for the upper-left corner is (1, 1), 
and the coordinate for the lower-right corner is (M−2, N-2), if there is an obstacle 
at (i, j), the Robot can’t move through (i−1, j), (i. j−1), and (i−1, j−1). That is, (i−1, j), 
(i. j−1), and (i−1, j−1) should also be set as obstacles. See Figure 9.3.

State (x, y, s, step): The current coordinate (x, y) at which the Robot is, the 
current orientation s that the Robot faces; and the number of commands that has 
been executed is step.

A successor function move[ ][ ][ ]: After the Robot moves j meters in direc-
tion i, the horizontal increment is move[i][j][0] meters, the vertical increment is 
move[i][j][1] meters, and the orientation is move[i][j][2]. That is, the Robot moves 
from (x, y), and moves j meters in direction i, then the coordinate for the Robot is 
(x+move[i][j][0], y+move[i][j][1]), and the orientation that the Robot faces is move[i]
[j][2]. In order to avoid repeated searches, if the coordinate and the orientation 
hasn’t appeared before, then the command is valid, a new state is generated, and 
the number of commands for the new state equals the number of commands for the 
previous state + 1; else the state is omitted.

Obviously, move[ ][ ][ ] are contestant arrays.

Byte move[4][5][4] = {    // the Robot moves j meters in 
direction i the horizontal increment is move[i][j][0] meters, 
the vertical increment is move[i][j][1] meters, and the 
orientation is move[i][j][2]

	 {{0, 0, 1}, {0, 0, 2}, {1, 0, 0}, {2, 0, 0}, {3, 0, 0}},
	 {{0, 0, 0}, {0, 0, 3}, {0, 1, 1}, {0, 2, 1}, {0, 3, 1}},

Row n – 1

Row 0

Column 0 Column n –1
Obstacle

(i – 1, j)
(i – 1, j – 1)

(i, j – 1)

(m – 1, n – 1)

Robot

r = 0.8

(0, 0)

Figure 9.3 



Practice for State Space Search  ◾  597

	 {{0, 0, 0}, {0, 0, 3}, {0, -1, 2}, {0, -2, 2}, {0, -3, 2}},
	 {{0, 0, 1}, {0, 0, 2}, {-1, 0, 3}, {-2, 0, 3}, {-3, 0, 3}},
};

State Space: A set of state graphs generated by legal commands.
Costs: The cost that the Robot executes one command is 1, represented as an 

edge in the graph. The number of edges in the path is the number of commands 
that the Robot executes from the starting point to the destination point, and is also 
the minimal number of seconds in which the Robot can reach the destination point 
from the starting point.

Obviously, BFS is suitable to calculate the best path in such a state space. The 
algorithm is as follows.

First, the coordinate for the Robot’s starting point, the current orientation that 
the Robot faces; and the number 0 are as the first state. The first state is added into 
the queue. Then the front for the queue is removed until the queue is empty or the 
destination point is reached.

Each time the front is removed from the queue, the numbers of meters i (0≤i≤4) 
that the Robot moves are enumerated to calculate the reached coordinate (x', y') 
and the orientation s':

If (x', y') is an obstacle, then the new state is invalid;
If (x', y') is the destination point, then the minimal number of seconds in which 

the Robot can reach the destination point from the starting point is the num-
ber of commands for the previous state +1, and return successfully;

Otherwise, if (x', y') and s' haven’t been visited, the visited mark is set, the num-
ber of executed commands step'= the number of executed commands for the 
previous state step+1, and the new state containing (x', y'), s' and step' is added 
into the queue.

The cost for the execution of one command is 1 second. BFS is done layer by 
layer. If the destination point is reached, the number of executed commands is the 
minimal number of seconds in which the robot reaches the destination point from 
the starting point.

  Program

#include <iostream>
#include <queue>
using namespace std;
typedef int Byte;
struct Node {    //State



598  ◾  Algorithm Design Practice for Collegiate Programming

	 Byte x, y, s, step;    // current coordinate (x, y), the 
current orientation s, and the number of commands has been 
executed step
};
Node Qt[300000], start, end;    //Queue Qt[ ], starting point 
start, destination point end
bool used[51][51][4];    //memorized state list, used[x][y]
[d]: the Robot has visited (x, y) in direction d
bool map[51][51];    //the matrix representing the store
Byte move[4][5][4] = {    // the Robot moves j meters in 
direction i the horizontal increment is move[i][j][0] meters, 
the vertical increment is move[i][j][1] meters, and the 
orientation is move[i][j][2]
	 {{0, 0, 1}, {0, 0, 2}, {1, 0, 0}, {2, 0, 0}, {3, 0, 0}},
	 {{0, 0, 0}, {0, 0, 3}, {0, 1, 1}, {0, 2, 1}, {0, 3, 1}},
	 {{0, 0, 0}, {0, 0, 3}, {0, −1, 2}, {0, −2, 2}, {0, −3, 2}},
	 {{0, 0, 1}, {0, 0, 2}, {−1, 0, 3}, {−2, 0, 3}, {−3, 0, 3}},
};
int n, m;    // The size of the matrix is n*m
int SearchAns() {    //BFS is used to calculate and return the 
minimal number of seconds in which the Robot can reach the 
destination point from the starting point
	 if (start.x == end.x && start.y == end.y) return 0;        
// starting point and destination point are same, return 0
	 Node *cur = Qt, *next = Qt;    // Initialize pointers 
pointing to the front and rear for the queue
	 int i;
	 memset(used, 0, sizeof(used));    //all states havn't been 
visited
	 start.step = 0;
	 used[start.x][start.y][start.s] = 1;    // starting point 
has been visited
	 *next++ = start;    // starting point is added into the 
queue
	 while (cur!=next) {    // while the queue isn't empty
		  for (i = 0; i < 5; i++) {    //enumerating the number of 
meters
		    next->x=cur->x+move[cur->s][i][0];    // coordinate 
that the Robot moves i meters is (next->x, next->y), and the 
orientation is next->s
		    next->y = cur->y + move[cur->s][i][1];
		    next->s = move[cur->s][i][2];
		    if (map[next->x][next->y]) break;    // Obstacle
		    if (next->x == end.x && next->y == end.y) return cur-
>step + 1;    // destination point
		    if (!used[next->x][next->y][next->s])  // a new state 
is generated
			   {        
				    used[next->x][next->y][next->s] = 1;
				    next->step = cur->step + 1;



Practice for State Space Search  ◾  599

				    next++;    // the new state is added into the queue
			   }
		  }
		  cur++;    // the front is removed from the queue
	 }
	 return -1;    //there is no path reaching the destination 
point from the starting point, return −1
}
int main() {
	 int i, j, t, t1, t2, t3, t4;    // starting point (t1, t2), 
destination point (t3, t4)       
	 char buf[10];    //orientation string
	 memset(map[0], 1, sizeof(map[0]));
	 while(scanf("%d%d", &n, &m)!= EOF){    //input the size of 
the store until 0 0
		  if (n == 0 && m == 0) break;
		  for (i = 1; i <= n; i++) {    // input each row
			   memset(map[i], 0, sizeof(map[i]));   
			   map[i][0]=map[i][m]=1;    // for row i, column 0 and 
column m are obstacles
			   for(j=1;j<=m;j++){    // input row i
				    scanf("%d", &t);
				    if (t == 1)   //if (i, j) is an obstacle, then (i−1, j), 
(i. j−1), and (i−1, j−1) are obstacles
					     map[i][j]=map[i-1][j]=map[i][j-1]=map[i-1][j-1]=1;
			   }
		  }
		  memset(map[n], 1, sizeof(map[n]));    //column n are 
obstacles
		      scanf("%d%d%d%d%s",&t1,&t2,&t3,&t4,buf);   // starting 
point (t1, t2), destination point (t3, t4), the orientation 
that the Robot faces at starting point buf
		  start.x=t1; start.y=t2; end.x=t3; end.y=t4;  
		  if (buf[0] == 's') start.s = 0;    // the orientation 
numbers
		  else if (buf[0] == 'e') start.s = 1;  
		  else if (buf[0] == 'w') start.s = 2;
		  else if (buf[0] == 'n') start.s = 3;
		  printf("%d\n", SearchAns());    //calculation and output 
the result
	 }
	 return 0;
}

In state space search, generated states need to be stored in a queue. Sometimes 
states should be compressed to store. In 9.1.2 The New Villa, states are stored as 
binary numbers.



600  ◾  Algorithm Design Practice for Collegiate Programming

9.1.2  The New Villa

Mr. Black recently bought a villa in the countryside. Only one thing bothers him: 
although there are light switches in most rooms, the lights they control are often in 
other rooms than the switches themselves. While his estate agent saw this as a fea-
ture, Mr. Black has come to believe that the electricians were a bit absent-minded 
(to put it mildly) when they connected the switches to the outlets.

One night, Mr. Black came home late. While standing in the hallway, he noted 
that the lights in all other rooms were switched off. Unfortunately, Mr. Black was 
afraid of the dark, so he never dared to enter a room that had its lights out and 
would never switch off the lights of the room he was in.

After some thought, Mr. Black was able to use the incorrectly wired light 
switches to his advantage. He managed to get to his bedroom and to switch off all 
lights except for the one in the bedroom.

You are to write a program that, given a description of a villa, determines how 
to get from the hallway to the bedroom if only the hallway light is initially switched 
on. You may never enter a dark room, and after the last move, all lights except 
for the one in the bedroom must be switched off. If there are several paths to the 
bedroom, you have to find the one which uses the smallest number of steps, where 
“move from one room to another”, “switch on a light” and “switch off a light” each 
count as one step.

Input

The input file contains several villa descriptions. Each villa starts with a line con-
taining three integers r, d, and s. r is the number of rooms in the villa, which will be 
at most 10. d is the number of doors/connections between the rooms, and s is the 
number of light switches in the villa. The rooms are numbered from 1 to r; room 
number 1 is the hallway, and room number r is the bedroom.

This line is followed by d lines containing two integers i and j each, specifying 
that room i is connected to room j by a door. Then follow s lines containing two 
integers k and l each, indicating that there is a light switch in room k that controls 
the light in room l.

A blank line separates the villa description from the next one. The input file 
ends with a villa having r=d=s=0, which should not be processed.

Output

For each villa, first output the number of the test case (‘Villa #1’, ‘Villa #2’, etc.) in 
a line of its own.

If there is a solution to Mr. Black’s problem, output the shortest possible 
sequence of steps that leads him to his bedroom and only leaves the bedroom light 
switched on. (Output only one shortest sequence if you find more than one.) Adhere 
to the output format shown in the sample below.



Practice for State Space Search  ◾  601

If there is no solution, output a line containing the statement “The problem 
cannot be solved.”

Output a blank line after each test case.

Sample Input Sample Output

3  3  4
1  2
1  3
3  2
1  2
1  3
2  1
3  2

2  1  2
2  1
1  1
1  2

0  0  0

Villa #1
The problem can be solved in 6 steps:
– Switch on light in room 2.
– Switch on light in room 3.
– Move to room 2.
– Switch off light in room 1.
– Move to room 3.
– Switch off light in room 2.

Villa #2
The problem cannot be solved.

Source:	 ACM Southwestern European Regional Contest 1996

IDs for Online Judges: POJ 1137, ZOJ 1301, UVA 321

  Analysis

Suppose the interval for the room numbers is [0, r−1].
State u: A state u is represented as a r+4-digit binary number, where the last 

four digits for u (u%16) represents the current room number, and the r−digit prefix 
for u (u/16) represents the current lights’ status for all rooms: one binary digit rep-
resents one room’s light: 1 represents that the light is on, and 0 represents that the 
light is off; for the upper limit for the number of rooms is 10. The initial state u0=24. 
That is, the light in the hallway (room 0) is on, and lights in other rooms are off. 
The goal state utarget=(1<<(r+4−1))+r−1. That is, the light in in the bedroom (room 
r−1) is on, and lights in other rooms are off.

Successor Function (the rule generating a new state u_new): For state u, 
there are three operations:

1.	Operation 1—Moving. If there is a door between the current room (room 
u%16) and room i whose light is on, then Mr. Black enters room i, and the new 
state u_new=u− u%16+i is generated. That is, room i becomes the current room.



602  ◾  Algorithm Design Practice for Collegiate Programming

2.	Operation 2—Switching off a light. If there is a light switch in the current 
room (room u%16) that controls the light in room i and the light in room i 
is on (the binary digit corresponding to room i in u/16 u4+i==1), then a new 
state is generated u_new=u−24+i. That is, the light in room i is switched off.

3.	Operation 3—Switching on a light. If there is a light switch in room u%16 
that controls the light in room i and the light in room i is off (the binary 
digit corresponding to room i in u/16 u4+i==0), then a new state is generated 
u_new=u+24+i. That is, the light in room i is switched on.

The generated state u_new is valid if the operation meets two following 
conditions.

In order to avoid repeated searches, u_new hasn’t been visited before;  In u_new, 
the light in the current room must be on (((u_new/16)&(2u_new%16))==1).

State Space: From the initial state, new states are generated to construct a state 
space tree.

Cost: In the state space tree, the cost for each edge is 1.
The problem requires you to calculate the shortest possible sequence of steps. 

The upper limit for the number of states is 1024×10. For each state, the upper limit 
of the number of operations is 30 (10 moving methods + 10 switching on lights + 10 
switching off lights). Therefore, BFS is suitable to solve the problem.

  Program

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
using namespace std;
#define maxn 15    // The upper limit for the size of a matrix
#define maxs 20010    // The upper limit for states
#define MOVETO 20    // moving
#define SWITCHON 10    // switching on lights
#define SWITCHOFF 0    // switching off lights
int r;    // the number of rooms
int control[maxs];    //state transformation: state u is 
generated by control[u]  
int op[maxs];    //op[i] stores control information for state i: 
the number of room that Mr. Black will enter or control its light



Practice for State Space Search  ◾  603

bool visited[maxs];    // visited[i]: visited mark for state i
bool g[maxn][maxn], light[maxn][maxn];    //adjacency matrix 
g[ ][ ] for rooms, where g[i][j]==true represents there is a 
door between room i and room j; adjacency matrix light[ ][ ] 
represents controlling lights, where light[i][j]==true 
represents there is a switch in room i controling the light in 
room j
bool init()    //If the input is a test case, input and return 
true; else return false 
{
    int t1, t2, d, s;
    scanf("%d%d%d", &r, &d, &s);    // the number of rooms r, 
the number of doors d, and the number of switches s
    if (r==0) return false;    //Input end mark
    memset(g, false, sizeof(g));    //Initialize adjacency 
matrix g[ ][ ] for rooms
    for (int i=0; i<d; i++)    // constructing g[ ][ ]
    {
        scanf("%d%d", &t1, &t2);    //a door between room t1 
and room t2
        t1--; t2--;
        g[t1][t2]=g[t2][t1]=true;
    }
    memset(light, false, sizeof(light));    // Initialize 
adjacency matrix light
    for (int i=0; i<s; i++)    // constructing light[ ][ ]
    {
        scanf("%d%d", &t1, &t2);    //a switch in room t1 
controls the light in room t2
        t1--; t2--;
        light[t1][t2]=true;
    }
    return true;
}
bool checkstay(int u)    //In state u, the light in the 
current room is on, return true; else return false
{
    int pos=u%16; int tmp=u/16;    //In state u, the current 
room number pos, and its light tmp
    int j=1<<pos;              
    if (tmp&j) return true;    // the light in room pos is on, 
return true; else return false
    return false;
}
int bfs()    //BFS is used to calculate and return the 
shortest possible sequence of steps that leads Mr. Black to 
his bedroom and only leaves the bedroom light switched on; if 
there is no solution, return −1
{
    queue<int> q;    // state queue q



604  ◾  Algorithm Design Practice for Collegiate Programming

    queue<int> step;    // the queue storing the number of 
step step
    int target =(1<<(r+4-1))+r-1;    //goal state 2r-1+4+r−1
    int u=(1<<4), k=0;    //initial state u=24, the number of 
steps is 0
    int u_new, uu, pos;
    memset(visited, 0, sizeof(visited));    //all states are 
unvisited
    memset(control, 255, sizeof(control));    // all states' 
fathers are empty
    visited[u]=true; q.push(u);    // initial state u is added 
into queue q 
    step.push(k);    //the number of steps is k is added into 
queue step
    while (!q.empty())
    {
        u=q.front(); q.pop();    //the front u is popped from 
queue q
        k=step.front(); step.pop();    // the number of steps 
is k, is popped from queue step
        pos=u%16; uu=u>>4;    //current room pos and lights 
for all rooms uu
        if (u==target){return k;}    //if u is a goal state
        for (int i=0; i<r; i++)    //move operation: 
enumerating each room i
        {
         if (g[pos][i])      //a door between room pos and 
room i
         {
           u_new=u-pos+i;    //calculate new state u_new
           if (!visited[u_new] && checkstay(u_new)) //if u_new 
hasn't been and is valid
           {
            q.push(u_new); step.push(k+1);    // state u_new 
is added into q, the number of steps is added into step
            visited[u_new]=true;    //Set visited mark for 
u_new
            control[u_new]=u;    //u_new is generated from u
            op[u_new]=MOVETO+i;    //state u_new, Mr. Black 
enters room i
           }
         } 
       }
        for (int i=0, j=(1<<4); i<r; i++, j=j<<1, uu=uu>>1) //
switch off lights: enumerate each room i
         if (light[pos][i])    //in room pos a switch controls 
the light in room i
         {
          if (uu&1)    //If the light is on, turn it off



Practice for State Space Search  ◾  605

          {
           u_new=u-j;    //calculate state u_new
           if (!visited[u_new] && checkstay(u_new)   //u_new 
hasn't been visited, and is valid
           {
            q.push(u_new);    //u_new is added into q
step.push(k+1);    //the number of steps is added into step
visited[u_new]=true;    //set u_new visited mark
            control[u_new]=u; 
            op[u_new]=SWITCHOFF+i;    //state u_new turns the 
light in room i off
            }
           }
           else    //turn on the light in room i
              {
               u_new=u+j;    //new state u_new
               if (!visited[u_new] && checkstay(u_new))      
// u_new hasn't been visited, and is valid
               {
                q.push(u_new);    // u_new is added into q
step.push(k+1);    // the number of steps is added into step
visited[u_new]=true;    // set u_new visited mark
                control[u_new]=u;
                op[u_new]=SWITCHON+i;    // state u_new turns 
the light in room i on
               }
              }
            }
    }
    return -1;    //return no solution
}
void dfsprint(int u)    //from goal state u, output the 
shortest possible sequence of steps
{
    int u_new;
    if (u==(1<<4)) return; 
u_new=control[u]; 
dfsprint(u_new); 
//Backtracking: if op[u]>=20, then Move to room op[u]−20+1; if 
op[u] is in [19,10], then switch on light in room op[u]−10+1; 
if op[u] is in [9,0], Switch off light in room op[u] +1
    if (op[u]>=MOVETO) printf("- Move to room %d.\n", 
op[u]-MOVETO+1); 
     else if (op[u]>=SWITCHON) printf("- Switch on light in 
room %d.\n", op[u]-SWITCHON+1);
     else if (op[u]>=SWITCHOFF) printf("- Switch off light in 
room %d.\n", op[u]-SWITCHOFF+1);
}
void print(int cs, int steps)    //calculate and output the 
cs-th test case



606  ◾  Algorithm Design Practice for Collegiate Programming

{
   printf("Villa #%d\n", cs);    // the number of test cases
   if (steps==-1)    // no solution
        printf("The problem cannot be solved.\n");
    else                   
    {
      printf("The problem can be solved in %d steps:\n", 
steps);   
     dfsprint((1<<(r+4-1))+r-1);    // from goal state output 
the shortest possible sequence of steps
    }
    printf("\n");
}
int main()  
{
    int steps;    //the number of the shortest possible 
sequence of steps
    for (int cs=1; ;cs++)     // deal with test cases
    {
        if (!init()) break;    // Input a villa
        steps=bfs();    //BFS is used to calculate the number 
of the shortest possible sequence of steps
        print(cs, steps);    //calculate and output the cs-th 
test case
    }
    return 0;
}

9.2  Optimizing State Space Search
For 9.1.1 Robot and 9.1.2 The New Villa, searches aren’t blind. In constructing a 
state space tree and finding the best path in the state space tree, some optimization 
strategies can be taken to improve the algorithm efficiency. In state space search, 
there are six kinds of optimization strategies, as follows:

1.	Branching;
2.	Memorization;
3.	Indexing;
4.	Pruning;
5.	Bounding;
6.	A* algorithm;

Strategy 1: Branching
A state space can be very large. And there is no need to construct a state space 
before the state space search begins. Branching means that a state space is 
searched as its state space tree is constructed. For 9.1.1 Robot and 9.1.2 



Practice for State Space Search  ◾  607

The New Villa, branching is used to solve problems. Branching is used in 
almost all state space searches.
Strategy 2: Memorization
In state space searches, searched states need to be memorized to avoid being 
repeatedly searched. For 9.1.1 Robot and 9.1.2 The New Villa, used[ ][ ][ ] 
and visited[ ] are used to store searched states respectively.
Strategy 3: Indexing
In state space searches, indexing means searched states are numbered. For 
9.1.2 The New Villa, binary numbers are used to represent states.

The goal of using memorization and indexing is to improve efficiencies for 
state space searches. Memorization and indexing are always combined with 
pruning, bounding, and A* algorithm.
Strategy 4: Pruning
Pruning means removing some branches (subtrees) in state space searches to 
improve search efficiencies. For 9.1.1 Robot and 9.1.2 The New Villa, if the 
current state has been visited before, it is pruned. Pruning can be combined 
with memorization and indexing. And for 9.1.2 The New Villa, the adjacent 
room whose light is off is also pruned.

9.2.1  Be Wary of Rose

You’ve always been proud of your prize rose garden. However, some jealous fellow 
gardeners will stop at nothing to gain an edge over you. They have kidnapped, 
blindfolded, and handcuffed you, and dumped you right in the middle of your 
treasured roses! You need to get out, but you’re not sure how you can do it without 
trampling any precious flowers.

Fortunately, you have the layout of your garden committed to memory. It is an 
N×N collection of square plots (N odd), some containing roses. You are standing on 
a square marble plinth in the exact center. Unfortunately, you are quite disoriented, 
and have no idea which direction you’re facing! Thanks to the plinth, you can ori-
ent yourself facing one of North, East, South, or West, but you have no way to 
know which.

You must come up with an escape path that tramples the fewest possible roses, 
no matter which direction you’re initially facing. Your path must start in the center, 
consist only of horizontal and vertical moves, and end by leaving the grid.

Input

Every case begins with N, the size of the grid (1≤N≤21), on a line. N lines with N 
characters each follow, describing the garden: “.” indicates a plot without any roses, 
“R” indicates the location of a rose, and “P” stands for the plinth in the center.

Input will end on a case where N=0. This case should not be processed.



608  ◾  Algorithm Design Practice for Collegiate Programming

Output

For each case, output a line containing the minimum guaranteed number of roses 
you can step on while escaping.

Sample Input Sample Output

5
.RRR.
R.R.R
R.P.R
R.R.R
.RRR.
0

At most 2 rose(s) trampled.

IDs for Online Judges: UVA 10798

  Analysis

According to the problem description, you are blindfolded; you have the layout of 
your garden committed to memory; you are standing on a square marble plinth in 
the exact center; and you are quite disoriented: you can orient yourself facing one 
of North, East, South, or West, but you have no way to know which.

Your garden is an N×N collection of square plots (N is odd). Because of sym-
metry, the current square plot on which you are standing is a square plot (x, y), or 
(n−1−y, x), or (y, n−1−x) or (n−1−x, n−1−y). And (x, y), (n−1−y, x), (y, n−1−x) and 
(n−1−x, n−1−y) constitute a square whose center is the square marble plinth in the 
exact center. Suppose you move into an adjacent square plot (x', y') from (x, y) in 
direction 1, (x, y) and (x', y') are adjacent, either | x − x'|==1 or | y − y'==1. Also 
because of symmetry, moves from three square plots in other three directions are 
similar. In Figure 9.4, you move into (x', y') from (x, y), or move from (n−1−y, x), 
(y, n−1−x) and (n−1−x, n−1−y) into (n−1−y', x'), (y', n−1−x') and (n−1−x', n−1−y') 
respectively. Obviously, (n−1−y, x) and (n−1−y', x') are adjacent, (y, n−1−x) and (y', 
n−1−x') are adjacent, and (n−1−x, n−1−y) and (n−1−x', n−1−y') are adjacent. And 
(x', y'), (n−1−y', x'), (y', n−1−x') and (n−1−x', n−1−y') constitute a new square whose 
center is the square marble plinth in the exact center. The four adjacent square plots 
represent your four moving directions.

Based on the above information, the successor function is as follows:

Suppose you move into an adjacent square plot (x', y') from 
(x, y) in direction 1. Because of symmetry, if

(x', y') contains a rose, then the number of roses you step 
on in direction one into (x', y') = the number of roses 
you step on when you move into (x, y) + 1;



Practice for State Space Search  ◾  609

(y', n-1-x') contains a rose, then the number of roses you 
step on in direction two into (y', n-1-x') = the number 
of roses you step on when you move into (y, n-1-x) +1;

(n-1-x', n-1-y') contains a rose, then the number of roses 
you step on in direction three into (n-1-x', n-1-y') = 
the number of roses you step on when you move into (n-1-x, 
n-1-y) + 1;

(n-1-y', x') contains a rose, then the number of roses you 
step on in direction four into (n-1-y', x') = the number 
of roses you step on when you move into (n-1-y, x) + 1;

Obviously, the maximum number of roses val you step on when you move into 
(x', y') in four directions (up, left, down, right) is the upper limit of the number of 
roses you step on when you move into (x', y').

Memorization BFS is used to calculate the minimum guaranteed number of 
roses you step on while escaping. The greedy method is used. Each time, the state 
with minimum val is removed from the priority queue. Therefore, the priority 
queue is a min heap in which val is the priority.

Memorization is used in the search. In states there are the current position (x, y), 
the number of roses you can step on in four directions (up, left, down, right) and 
its maximum value val; and a Boolean array vis[x][y][d1][d2][d3][d4] is used to mark 
whether the state that (x, y) is the position and the number of roses you step on are 
d1, d2, d3, and d4 respectively has been searched before. If a generated state has been 
searched before, the state is pruned.

Obviously, if ((x==0)||(x==n−1)||(y==0)||(y==n−1)), then you have escaped 
from the garden, and f [x, y] is the minimum guaranteed number of roses you can 
step on while escaping.

(n – 1, n – 1)

(y´, n – 1 – x)
(y´, n – 1 – x´)

(n – 1 – y´, x´)
n – 1 – y, x

(0, 0)

(n – 1– x´, n – 1 – y´)
(n – 1– x, n – 1 – y)

(x, y)
(x´, y´)

Figure 9.4 



610  ◾  Algorithm Design Practice for Collegiate Programming

  Program

#include <cstdio>  
#include <cstring>  
#include <algorithm>  
#include <queue>  
using namespace std;  
const int N = 21;    //the upper limit of your garden size 
const int d[4][2]={{1, 0}, {-1, 0}, {0, -1}, {0, 1}};    //four 
directions: horiztontal and vertical
int n, vis[N][N][11][11][11][11];    //memorization list, 
where vis[x][y][d1][d2][d3][d4] is the mark that when you move 
into (x, y), the number of roses you step on are d1, d2, d3, 
and d4 respectively in directions (up, left, down, right) 
char g[N][N];    //the graph for the garden
struct State {    // definition for State
    int x, y, val;    //the current square plot(x, y), the 
maximum number of roses val you step on when you move into 
(x', y') in four directions
    int up, left, down, right;    // the number of roses you 
step on in 4 directions
    State() {x= y=up=left=down=right=0;}    //Initial state 
(starting position (0, 0), numbers of roses you step on in 
4 directions are 0)
    State(int x, int y, int up, int left, int down, int right) 
{    //current state
        this->x = x;  
        this->y = y;  
        this->up = up;  
        this->left = left;  
        this->down = down;  
        this->right = right;  
        val = max(max(max(up,left), down), right);  
    }  
    bool operator<(const State& c)const {    //priority for 
states: val
        return val > c.val;  
    }  
} s;    //state s 
void init() {    //Input the garden
    for (int i = 0; i < n; i++) {  
        scanf("%s", g[i]); 
        for (int j = 0; j < n; j++)    // the plinth in the 
center
          if (g[i][j] == 'P') s.x = i, s.y = j;  
    }  



Practice for State Space Search  ◾  611

}  
int bfs() {    //memorization BFS: calculate the minimum 
guaranteed number of roses you step on while escaping
    memset(vis, 0, sizeof(vis));    //Initialization
    priority_queue<State> Q;    //priority queue Q storing 
states: number of roses you step on val is priority
    Q.push(s);    //initial state is added into the queue
    vis[s.x][s.y][0][0][0][0]=1;    //initialize memorization 
list 
    while (!Q.empty()) {    // remove the front u from the 
queue
        State u = Q.top();                
        Q.pop();  
        if (u.x==0||u.x==n-1||u.y==0||u.y==n-1)return u.val;    
//if escaping, return the minimum number of roses you step on 
        for (int i = 0; i < 4; i++) {    //enumerating 4 
directions
            int xx = u.x + d[i][0];    //calculate the 
adjacent square plot (xx, yy) in direction i
            int yy = u.y + d[i][1];  
            int up = u.up;    // the number of roses you step 
on in the original 4 directions
            int left = u.left;  
            int down = u.down;  
            int right = u.right;  
            if (g[xx][yy] == 'R') up++;    //accumulation for 
4 directions
            if (g[n - 1 - yy][xx] == 'R') left++;  
            if (g[n - 1 - xx][n - 1 - yy] == 'R') down++;  
            if (g[yy][n - 1 - xx] == 'R') right++;  
            if (!vis[xx][yy][up][left][down][right]) {    //if 
the new state hasn't been visited, add it into the 
memorization list and queue
                vis[xx][yy][up][left][down][right] = 1;  
                Q.push(State(xx, yy, up, left, down, right));  
            }  
        }  
    }  
}  
int main() {  
    while (~scanf("%d", &n) && n) {    //Input the size of 
garden N
        init();    // Input garden and the plinth in the 
center
        printf("At most %d rose(s) trampled.\n",bfs());      
//Calculating and output the result
    }  
    return 0;  
}  



612  ◾  Algorithm Design Practice for Collegiate Programming

Strategy 5: Bounding
Before enumerating the candidate solutions of a branch, the branch is checked 
against upper and lower estimated bounds on the optimal solution, and it is 
discarded if it cannot produce a better solution than the best one found so far 
by the algorithm.

9.2.2  Fill

There are three jugs with a volume of a, b, and c liters. (a, b, and c are positive inte-
gers not greater than 200). The first and the second jug are initially empty, while the 
third is completely filled with water. It is allowed to pour water from one jug into 
another until either the first one is empty or the second one is full. This operation 
can be performed zero, one, or more times.

You are to write a program that computes the least total amount of water that 
needs to be poured; so that at least one of the jugs contains exactly d liters of water 
(d is a positive integer not greater than 200). If it is not possible to measure d liters 
this way, your program should find a smaller amount of water d '<d which is closest 
to d and for which d ' liters could be produced. When d ' is found, your program 
should compute the least total amount of poured water needed to produce d ' liters 
in at least one of the jugs.

Input

The first line of input contains the number of test cases. In the next T lines, T test 
cases follow. Each test case is given in one line of input containing four space-
separated integers—a, b, c, and d.

Output

The output consists of two integers separated by a single space. The first integer 
equals the least total amount (the sum of all waters you pour from one jug to 
another) of poured water. The second integer equals d, if d liters of water could be 
produced by such transformations, or it equals the closest smaller value d ' that your 
program has found.

Sample Input Sample Output

2
2  3  4  2
96  97  199  62

2  2
9859  62

Source:	 Bulgarian National Olympiad in Informatics 2003

IDs for Online Judges: UVA 10603



Practice for State Space Search  ◾  613

  Analysis

Suppose that volumes for three jugs are A, B, and C liters respectively. Finally, one 
of the jugs contains exactly D liters of water.

State (a, b, c, tot): In the current three jugs, there are a, b, and c liters of water 
respectively. And the current total amount of poured water is tot liters.

Successor function: There are six cases that you pour water from one jug into 
another.

Case 1: If all water in jug 1 can be poured into jug 2 (a<B−b), then all water in 
jug 1 is poured into jug 2, and a new state (0, b+a, c, tot+a) is generated; else 
water in jug 1 is poured into jug 2 until jug 2 is full, and a new state (a−(B−b), 
B, c, tot+(B−b)) is generated.

Case 2: If all water in jug 1 can be poured into jug 3 (a<C−c), then all water in 
jug 1 is poured into jug 3, and a new state (0, b, c+a, tot+a) is generated; else 
water in jug 1 is poured into jug 3 until jug 3 is full, and a new state (a−(C−c), 
b, C, tot+(C−c)) is generated.

Case 3: If all water in jug 2 can be poured into jug 1 (b<A−a), then all water in jug 
2 is poured into jug 1, and a new state (a+b, 0, c, tot+b) is generated; else water 
in jug 2 is poured into jug 1 until jug 1 is full, and a new state (A, b−(A−a), 
c, tot+(A−a)) is generated.

Case 4: If all water in jug 2 can be poured into jug 3 (b<C−c), then all water 
in jug 2 is poured into jug 3, and a new state (a, 0, c+b, tot+b) is generated; 
else water in jug 2 is poured into jug 3 until jug 3 is full, and a new state 
(a, b−(C−c), C, tot+(C−c)) is generated.

Case 5: If all water in jug 3 can be poured into jug 1 (c<A−a), then all water in 
jug 3 is poured into jug 1, and a new state (a+c, b, 0, tot+c) is generated; else 
water in jug 3 is poured into jug 1 until jug 1 is full, and a new state (A, b, 
c−(A−a), tot+(A−a)) is generated.

Case 6: If all water in jug 3 can be poured into jug 2 (c<B−b), then all water in 
jug 3 is poured into jug 2, and a new state (a, b+c, 0, tot+c) is generated; else 
water in jug 3 is poured into jug 2 until jug 2 is full, and a new state (a, B, 
c−(B−b), tot+(B−b)) is generated.

State Space: Generated states constitute the state space.
Cost: The amount of poured water each time is as a weight of the correspond-

ing edge in the graph. The problem requires you to calculate the path with the 
minimum sum of weights from the initial state (0, 0, C, 0) to the goal state (One of 
the jugs contains exactly d liters of water or d' liters of water. If it is not possible to 
measure d liters this way, we should find a smaller amount of water d'<d, which is 



614  ◾  Algorithm Design Practice for Collegiate Programming

closest to d and for which d' liters could be produced.) Obviously the problem is a 
problem of finding a shortest path. BFS is suitable to solve the problem.

	 Suppose QA, QB, QC are queues storing the current amount of 
water in the three jugs respectively; QTOT is the queue 
storing the current total amount of poured water.
	 dp[ ][ ][ ] is the matrix storing upper limits for the 
total amount of poured water, where dp[a][b][c] is the upper 
limit for the total amount of poured water when the amount of 
water in the three jugs are a, b, and c respectively. Initially 
dp[ ][ ][ ] is ∞.
	 res[ ] is the goal matrix, where res[D] is the least total 
amount of poured water when at least one of the jugs contains 
exactly D liters of water. Initially res[ ] is ∞.
	 dp[ ][ ][ ] and res[ ] are used in bounding. There are two 
boundings: If (tot≥res[D]) or (tot≥dp[a][b][c]), then the case 
needn't be considered.

BFS is as follows:

An initial state (0, 0, C, 0) is added into queues QA, QB, QC 
and QTOT respectively;
  Repeat the following process until queue QA is empty:
     Remove fronts for queues QA, QB, QC and QTOT, and 
constitute a new state (a, b, c, tot);
     if ((tot<res[D])&&(tot<dp[a][b][c])) 
       {
         dp[a][b][c]=tot;    //adjust dp[a][b][c]
         res[a]=min(res[a], tot); res[b]=min(res[b], tot); 
res[c]=min(res[c], tot);
         Simulating the above six cases;
         if a state satisfies the condition, then the state is 
added into queues QA, QB, QC and QTOT; 
       }

When BFS ends, from D, the first res[D']≠∞ is searched in descending order. 
That is, res[D'] is the least total amount of poured water.

  Program

#include <stdio.h>
#include <queue>
using namespace std;
#define min(x, y) ((x) < (y) ? (x) : (y)) 



Practice for State Space Search  ◾  615

#define oo 0xfffffff    //Define ∞
int A, B, C, D, JUG[3];    // A, B, C: three jugs' volumes, 
one of the jugs contains exactly D liters of water finally
int dp[201][201][201], res[201];    // in the current three 
jugs there are a, b, and c liters of water; the upper limit 
for poured water is dp[a][b][c]; if one of the jugs contains 
exactly D liters of water finally, res[D] is minimal poured 
water
queue<int> QA, QB, QC, QTOT;    // QA, QB, QC are queues 
storing the current amount of water in the three jugs 
respectively; QTOT is the queue storing the current total 
amount of poured water
void pushNode(int a, int b, int c, int tot) {    // the 
current amount of water in the three jugs a, b, c is added 
into queues OA, OB, OC, total amount of poured water tot is 
added into queue OTOT
    QA.push(a), QB.push(b), QC.push(c), QTOT.push(tot);
}
void update(int a,int b,int c,int tot){    //6 cases pouring 
water from one jug into another is simulated
    if(tot >= res[D]) return;    // Bounding: If (tot≥res[D]) 
or (tot≥dp[a][b][c]), then the case needn't be considered.
    if(tot >= dp[a][b][c]) return;
    dp[a][b][c]=tot;    //the upper limit for the total amount 
of poured water tot when three jugs have a, b, and c liters of 
water
    res[a] = min(res[a], tot);    // the total amount of 
poured water can't exceed tot when three jugs have a, b, and c 
liters of water
    res[b] = min(res[b], tot);
res[c] = min(res[c], tot);
//case 1
    if(a< B-b) pushNode(0, b+a, c, tot+a); 
      else pushNode(a-(B-b), B, c, tot+(B-b));
//case 2
    if(a < C-c) pushNode(0, b, c+a, tot+a);
else pushNode(a-(C-c), b, C, tot+(C-c));
//case 3
    if(b < A-a) pushNode(a+b, 0, c, tot+b);
      else pushNode(A, b-(A-a), c, tot+(A-a));
//case 4
    if(b < C-c) pushNode(a, 0, c+b, tot+b);
       else pushNode(a, b-(C-c), C, tot+(C-c));
//case 5
    if(c < A-a) pushNode(a+c, b, 0, tot+c);
      else pushNode(A, b, c-(A-a), tot+(A-a));
//case 6
    if(c < B-b) pushNode(a, b+c, 0, tot+c);
      else pushNode(a, B, c-(B-b), tot+(B-b));
}



616  ◾  Algorithm Design Practice for Collegiate Programming

void bfs(int a,int b,int c,int tot){    //BFS calculate the 
result
    QA.push(a), QB.push(b),QC.push(c), QTOT.push(tot);  //initial 
state is added into the queue
    while (!QA.empty()) {
        a = QA.front(), QA.pop();    //fronts of queues are 
removed
        b = QB.front(), QB.pop();
        c = QC.front(), QC.pop(); 
        tot = QTOT.front(), QTOT.pop();
        update(a, b, c, tot);    //6 cases pouring water from 
one jug into another is simulated
    } 
}
int main() {
    int t;
    scanf("%d", &t);    //number of test cases
    while(t--) {    //each test case is dealt with
        int i, j, k;
        scanf("%d %d %d %d",&A,&B,&C,&D);    //input a test 
case
        for(i = 0; i <= A; i++)    //initialization
            for(j = 0; j <= B; j++)
                for(k = 0; k <= C; k++) dp[i][j][k] = oo;
        JUG[0]=A, JUG[1]=B, JUG[2]=C; 
        for(i=0;i<=D;i++)res[i]=oo; 
        bfs(0, 0, C, 0);    //BFS from initial state
        while(res[D] == oo) D--;    //from D, find the first 
res[D]≠∞ in descending order
        printf("%d %d\n", res[D], D);    //output the result
    }
    return 0;
}

9.2.3  Package Pricing

The Green Earth Trading Company sells four different sizes of energy-efficient 
fluorescent light bulbs for use in home lighting fixtures. The light bulbs are expen-
sive, but last much longer than ordinary incandescent light bulbs and require much 
less energy. To encourage customers to buy and use the energy-efficient light bulbs, 
the company catalog lists special packages which contain a variety of sizes and 
numbers of the light bulbs. The price of a package is always substantially less than 
the total price of the individual bulbs in the package. Customers typically want to 
buy several different sizes and numbers of bulbs. You are asked to write a program 
to determine the least expensive collection of packages that satisfy any customer’s 
request.



Practice for State Space Search  ◾  617

Input

The input file is divided into two parts. The first one describes the packages which are 
listed in the catalogue. The second part describes individual customer requests. The four 
sizes of light bulbs are identified in the input file by the characters “a”, “b”, “c”, and “d”.

The first part of the input file begins with an integer n (1≤n≤50) indicating the 
number of packages described in the catalog. Each of the n lines that follows is a 
single package description. A package description begins with a catalog number 
(a positive integer) followed by a price (a real number), and then the sizes and cor-
responding numbers of the light bulbs in the package. Between one and four dif-
ferent sizes of light bulbs will be listed in each description. The listing format for 
these size-number pairs is a blank, a character (“a”, “b”, “c”, or “d”) representing a 
size, another blank, and then an integer representing the number of light bulbs of 
that size in the package. These size-number pairs will not appear in any particular 
order, and there will be no duplicate sizes listed in any package. The following line 
describes a package with catalog number 210 and price $76.95 which contains 
three size “a” bulbs, one size “c” bulb, and four size “d” bulbs.

210 76.95 a 3 c 1 d 4

The second part of the input file begins with a line containing a single positive 
integer m representing the number of customer requests. Each of the remaining m 
lines is a customer request. A listing of sizes and corresponding numbers of light 
bulbs constitutes a request. Each list contains only the size-number pairs, formatted 
the same way that the size-number pairs are formatted in the catalogue descrip-
tions. Unlike the catalogue descriptions, however, a customer request may contain 
duplicate sizes. The following line represents a customer request for one size “a” 
bulb, two size “b” bulbs, two size “c” bulbs, and five size “d” bulbs.

a 1 d 5 b 1 c 2 b 1

Output

For each request, print the customer number (1 through m, 1 for the first customer 
request, 2 for the second, ……, m for the m-th customer), a colon, the total price of 
the packages which constitute the least expensive way to fill the request, and then 
the combination of packages that the customer should order to fill that request.

Prices should be shown with exactly two significant digits to the right of the 
decimal. The combination of packages must be written in ascending order of cata-
log numbers. If more than one of the same type package is to be ordered, then the 
number ordered should follow the catalog number in parentheses. You may assume 
that each customer request can be filled. In some cases, the least expensive way to 
fill a customer request may contain more light bulbs of some sizes than necessary to 



618  ◾  Algorithm Design Practice for Collegiate Programming

fill the actual request. This is acceptable. What matters is that the customers receive 
at least what they request.

Sample Input Sample Output

5
10  25.00  b  2
502  17.95  a  1
3  13.00  c  1
55  27.50  b  1  d  2  c  1
6  52.87  a  2  b  1  d  1  c  3
6
d  1
b  3
b  3  c  2
b  1  a  1  c 1 d 1 a 1
b  1  b  2  c  3  c  1  a  1  d  1
b  3  c  2  d  1  c  1  d  2  a  1
0

Input set #1:
1:   27.50  55
2:   50.00  10(2)
3:   65.50  3  10  55
4:   52.87  6
5:   90.87  3 6  10
6:   100.45  55(3)  502

Source:	 ACM World Finals 1994

IDs for Online Judges: POJ 1889, UVA 233

DFS is used to calculate the least expensive way to fill the request and the 
combination of packages that the customer should order to fill that request. The 
following strategies are used in the search.

1.	Memorization: Current states are memorized. States constitute the current 
number of stored package st, the total price now, the combination of pack-
ages nowmet[ ], and the remainder requirement for four sizes of light bulbs 
need[ ]. In order to avoid overflow, st and now are as parameters for DFS, and 
nowmet[ ] and need[ ] are as global variables. Initially, nowmet[ ] is set 0, need[ ] 
is a customer’s request, st=0, and now=0.

2.	Bounding: The current total price is checked. The key to the problem is to 
determine whether the current price is better. If the current total price isn’t 
better, then it backtracks.

The problem shows n packages’ descriptions: their prices and num-
bers of four sizes of light bulbs. Obviously, the interval of the price for 

the i-th light bulb in package j is in 








0,

the price for package j
the number of the i-th light bulbs

, 

≤ ≤ − ≤ ≤0 1, 0 3j n i . That is, the upper limit of the price for the i-th light bulb 

in package j is 
the price for package j

the number of the i-th light bulbs
.



Practice for State Space Search  ◾  619

For each size of light bulb, packages are sorted in ascending order of the 
upper limits of its prices. Suppose rankby[i][j] stores the number of package stor-
ing the light bulb with size i whose price is ranked j; minave[i][j] stores the least 
upper limit of prices for light bulb with size i from package j to package n. And 
rankby[ ][ ] and minave[ ][ ] are calculated when a test case is input.

There are two boundings:
Bounding 1: If the current total price now is higher than the current 

cheapest price ans, it backtracks directly;
Bounding 2: Four sizes of light bulbs are searched. If now+minave[i]

[st]×need[i] > ans (0≤i≤3) for four sizes of light bulbs, then it backtracks.
3.	Optimized search strategy: A greedy algorithm is used. The size of bulb 

which is demanded most is searched, that is, [ ] max [ ]
0 3

need br need i
i

{ }=
≤ ≤

. In 

order to buy light bulbs with the cheapest price, based on the ascending order 
for the upper limit of prices, in st the first package p which meets the cus-
tomer’s requirement is searched and is put into the current combination, that 
is, (p=rankby[br][i])&&(p>st)&&(need[j]>0)&&(there exist light bulbs with 
size j in package p), 0≤i≤n−1.

DFS is implemented by search(st, now):

	 If now > ans, it backtracks directly (bounding 1);
	 If need[0]<=0 && need[1]<=0 && need[2]<=0 && need[3]<= 0, 
then ans=now; memcpy(met, nowmet, sizeof(met)), and it 
backtracks;
	 If now+minave[i][st]*need[i] > ans (0≤i≤3) for four sizes of 
light bulbs, then it backtracks ( bounding 2);
	 Calculate such size br for a light bulb that 

[ ] max [ ]
0 3

{ }=
≤ ≤

need br need i
i

;

	 Select the suitable package p (p=rankby[br][i])&&(p>st)
&&(need[j]>0)&&(there exist light bulbs with size j in 
package p), 0≤i≤n−1;
	 Add a package p: ++nowmet[p]; need[j] – the number of light 
bulbs with size j in package p (0≤j≤3);
	 search(p, now + the price for package p);
	 recover need[ ] and nowmet[ ] before the recursion;

  Program

#include <cstdio>
#include <cstring>
#include <iostream>



620  ◾  Algorithm Design Practice for Collegiate Programming

#include <vector>
#include <algorithm>
#include <utility>
#include <sstream>
#include <map>
using namespace std;
struct pacnode    //package struct
{
	 int q[4];    //number of bulbs q[i] with size i
	 double price;    //price
	 int id;    // catalog number
}pac[60];    //packages
int n, met[60], nowmet[60], need[4], rankby[4][60]; 
double ans, ave[4][60], minave[4][60]; 
void init();    // packages' information
void work();    //current customer's request
void search(int st, double now);    //DFS is used to calculate 
the result, the st-th package, the current price now
int main()
{
	 int testno = 0;
	 while (true)    //number of packages n
	 {
		  if (scanf("%d", &n) == EOF) break;
		  if (n == 0) break;
		  init();    //n packages' information
		  ++testno;    //number of the test case 
		  printf("Input set #%d:\n", testno);
		  int m;
		  scanf("%d\n", &m);    //number of customers
		  for (int i = 0; i < m; ++i)   //customers' requests
		  {
			   printf("%d:", i + 1);    //number of the customer
			   work();    //deal with the request for customer i
		  }
	 }
	 return 0;
}
void init()    // n packages' information
{
	 for (int i = 0; i < n; ++i)    // n packages' information
	 {
		  scanf("%d%lf", &pac[i].id, &pac[i].price);    // catalog 
number and price for package i
			   memset(pac[i].q, 0, sizeof(pac[i].q));
			   char tmp[1000];
			   gets(tmp);    // numbers and sizes for bulbs in package i
			   istringstream in(tmp); 
			   while (true)   //size kind and number x



Practice for State Space Search  ◾  621

			   {
				    char kind;
				    int x;
				    if (in >> kind >> x == NULL) break;
				    pac[i].q[kind - 97] += x;    //the number of bulbs 
with size kind in package i
			   }
	 }
	 for (int i = 0; i < 4; ++i)      //calculate ave[ ][ ] by 
enumerating sizes and packages
		  for (int j = 0; j < n; ++j)
			   if (pac[j].q[i] == 0) ave[i][j] = 1e100;
			   else ave[i][j] = pac[j].price / pac[j].q[i];
	 for (int i = 0; i < 4; ++i)   //enumerate size i, sorting 
packages x[ ], the upper limit for the price is as the first 
key, number of packages is the second key
	 {
		  pair<double, int> x[60];    // x[ ]: a pair of elements
		  for (int j = 0; j < n; ++j)
		  {
			   x[j].first = ave[i][j]; x[j].second = j;
		  }
		  sort(x, x + n);
//calculate rankby[i][j] and minave[i][j]
		  for (int j = 0; j < n; ++j) rankby[i][j] = x[j].second;
		  minave[i][n - 1] = ave[i][n - 1];
		  for (int j = n - 2; j >= 0; --j) minave[i][j] = 
min(minave[i][j + 1], ave[i][j]);
	 }	
}
void work()    // current customer's request
{
	 memset(need, 0, sizeof(need));
	 char tmp[1000];
	 gets(tmp); 
	 istringstream in(tmp); 
	 while (true)    //size kind, number x
	 {
		  char kind;
		  int x;
		  if (in >> kind >> x == NULL) break;
		  if (kind == 'a') need[0] += x;    //4 bulbs' numbers
		  else if (kind == 'b') need[1] += x;
		  else if (kind == 'c') need[2] += x;
		  else if (kind == 'd') need[3] += x;
	 }
	 memset(nowmet, 0, sizeof(nowmet)); ans = 1e100;  //Initialize: 
ans=∞ 
	 search(0, 0.0);    // DFS is used to calculate the result, 
the 0-th package, the current price 0



622  ◾  Algorithm Design Practice for Collegiate Programming

	 printf("%8.2lf", ans);    // the least expensive way to fill 
the request
	 vector<pair<int, int> > oa;
	 for (int i = 0; i < n; ++i)  // the combination of packages 
is stored in oa
		  if (met[i] != 0) oa.push_back(make_pair(pac[i].id, 
met[i]));
	 sort(oa.begin(), oa.end());    //sorting oa
	 for (int i = 0; i < oa.size(); ++i)  //output the 
combination of packages
		  if (oa[i].second != 1) printf(" %d(%d)", oa[i].first, 
oa[i].second); 
		  else printf(" %d", oa[i].first); 
	 printf("\n");
}
void search(int st, double now)   // DFS is used to calculate 
the result, the st-th package, the current price now 
{
	 if (now > ans) return;    // the current price is higher 
than the current cheapest price (bounding 1), 
	 if (need[0] <= 0 && need[1] <= 0 && need[2] <= 0 && need[3] 
<= 0) //fill the request, adjust the current price, and 
current package into the combination
	 {
		  ans = now; memcpy(met, nowmet, sizeof(met)); return;
	 }	
	 for (int i = 0; i < 4; ++i)  //search all sizes, after 
adding it, the price is higher than ans 
		  if (now + minave[i][st] * need[i] > ans) return;
	 int br = 0;    // The size br of bulb which is demanded most
	 for (int i = 1; i < 4; ++i)
		  if (need[i] > need[br]) br = i;
	 for (int i = 0; i < n; ++i) //search the bulb with size br 
in n packages in ascending order of price
	 {
		  int p = rankby[br][i];    //package p
		  if (p < st) continue;    // package p has been searched
		  bool use = false;    //determine whether package p fills 
the request
		  for (int j = 0; j < 4; ++j)
			   if (need[j] > 0 && pac[p].q[j] > 0)
			   {
				    use = true; break;
			   }
		  if (!use) continue;    // package p can't fill the 
request
		  ++nowmet[p];    // package p is added into the 
combination, and adjust remainder request
		  for (int j = 0; j < 4; ++j) need[j] -= pac[p].q[j];



Practice for State Space Search  ◾  623

		  search(p, now + pac[p].price); 
		  --nowmet[p]; 
		  for (int j = 0; j < 4; ++j) need[j] += pac[p].q[j];
	 }
}

Strategy 6: Heuristic Search (A* Search)
Heuristic search is suitable to find the best path. The most widely known 
heuristic search is A* search. A* search evaluates vertices by combining g(v), 
the minimal cost to reach vertex v from the initial vertex; h(v), the estimated 
minimal cost to get from vertex v to the goal vertex; and f(v)=g(v)+h(v), f(v) is 
the estimated minimal cost through vertex v.

Obviously, for initial state (vertex) s, f(s)=0+h(s)=h(s).
That is, if we try to find the best solution, it is reasonable to find the vertex 

v with the lowest value f(v). Therefore, A* search is also called best-first search.
Heuristic search is implemented by BFS. Two lists are constructed:

OPEN is used to store states to be extended. And OPEN is a priority queue. 
For an element v in OPEN, and f(v) is the key for the priority queue.

CLOSED is used to store visited states. That is, states that have been 
deleted from OPEN.

The reason why two lists are constructed is that we need to determine 
whether the current state is unvisited, visited, or generated. Based on that, the 
methods calculating f [v] are different: if state v is unvisited, f [v] is calculated 
by f(v)=g(v)+h(v); else f [v] is adjusted. The process for A* search is as follows:.

	 For the initial state s, f(s)=h(s), and state s is 
added into OPEN; 
	 Each time the state u with the minimal f is removed 
from OPEN, and its successor state v is extended: if v is 
in the queue and the g(v) from u to v is better than the 
previous g(v), then the f(v) should be adjusted, and v is 
set as the successor state for u; if v isn't in the 
queue, then f(v)=g(v)+h(v), v is set as the successor 
state for u and added into OPEN.

The above process is repeated until the goal state is reached or OPEN is 
empty.

If OPEN is empty, the search fails; else the best path is found.
Two aspects should be noted:

1.	The selection for the estimated cost h(v) is the key to find the best path.
2.	There is a balance between the computation of h(v) and the efficiency 

solving a problem.



624  ◾  Algorithm Design Practice for Collegiate Programming

9.2.4  Eight

The 15-puzzle has been around for over 100 years; even if you don’t know it by that 
name, you’ve seen it. It is constructed with 15 sliding tiles, each with a number 
from 1 to 15 on it, and all packed into a 4×4 frame with one tile missing. Let’s call 
the missing tile “x”; the object of the puzzle is to arrange the tiles so that they are 
ordered as shown in Figure 9.5 where the only legal operation is to exchange “x” 
with one of the tiles with which it shares an edge. As an example, the following 
sequence of moves shown in Figure 9.6 solves a slightly scrambled puzzle.

The letters in the previous row indicate which neighbor of the “x” tile is swapped 
with the “x” tile at each step; legal values are “r”, “l”, “u”, and “d”, for right, left, up, 
and down, respectively.

Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for 
distributing an unsolvable version of the puzzle, and frustrating many people. In 
fact, all you have to do to make a regular puzzle into an unsolvable one is to swap 
two tiles (not counting the missing “x” tile, of course).

In this problem, you will write a program for solving the less well-known 8-puzzle, 
composed of tiles on a three by three arrangement.

Input

You will receive, in “eight.inp”, a description of a configuration of the 8-puzzle. The 
description is just a list of the tiles in their initial positions, with the rows listed from 
top to bottom, and the tiles listed from left to right within a row, where the tiles are 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 x

Figure 9.5 

1 2 3 4

5 6 7 8

9 x 10 12

13 14 11 15

1 2 3 4

5 6 7 8

9 10 x 12

13 14 11 15

1 2 3 4

5 6 7 8

9 10 11 12

13 14 x 15

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 x

R D R

Figure 9.6 



Practice for State Space Search  ◾  625

represented by numbers 1 to 8, plus “x”. For example, see the puzzle shown in Figure 9.7 
is described by this list:

1 2 3 × 4 6 7 5 8

Output

You will print to standard output either the word “unsolvable”, if the puzzle has 
no solution, or a string consisting entirely of the letters “r”, “l”, “u”, and “d” that 
describes a series of moves that produce a solution. The string should include no 
spaces and start at the beginning of the line.

Sample Input Sample Output

2  3  4  1  5  ×  7  6  8 ullddrurdllurdruldr

Source: ACM South Central USA 1998

IDs for Online Judges: POJ 1077, ZOJ 1217, UVA 652

  Analysis

An 8-puzzle is a 3×3 matrix, where its elements are 1 to 9 respectively, and 9 repre-
sents “x”. An 8-puzzle can be represented as a permutation for 1…9, where the k-th 

element in the permutation is the element whose position is 
3

, %3k
k











 in the 
matrix, 0≤k≤8.

States: A permutation for 1…9 can be regarded as a state. The number of states 
is 9!=362880. In order to save memory, the alphabet order for permutations is used 
as the index for states:

1,2,3.4,5,6,7,8,9: 0
……
9,8,7.6,5,4,3,2,1: 362879

1 2 3

x 4 6

7 5 8

Figure 9.7 



626  ◾  Algorithm Design Practice for Collegiate Programming

Obviously, 0 represents the goal state.
Heuristic Function f (u): The cost to the goal state, from the initial state and 

through state u, f (u)=d(u)+h(u), where d(u) is the minimal number of moves from 
the initial state to state u, and h(u) is the estimated cost from state u to the goal 

state: ( ) ' '
1

8

h u x x y yi i i i

i
∑= − + −

=

 (the position for number i in state u is (xi, yi), 

and in the goal state is (xi', yi')).
Obviously, for the initial state s, f (s)=h(s).
Successor Function: If the position for “x” in state u is (x, y), that is, the number 

in the position is 9, and k (1≤k≤8) is the number in one adjacent position (x', y'), then 
numbers in (x, y) and (x', y') are exchanged and a new state v is generated.

State Space: Generated states constitute the state space.
Cost: In the state space tree, the cost for generating a new state is 1.
The problem requires you to calculate the path with the minimal cost from 

the initial state to the goal state. Obviously, BFS is suitable to solve the problem. A 
priority queue in which the heuristic function f ( ) is used as the key is used to store 
states, and each time the state with the minimal f ( ) is selected.

Suppose d(u) is the length of the path from the initial state to state u. If state v is 
generated from state u, and d(u)+1<d(v), then d(v) should be adjusted: d(v)= d(u)+1, 
state u is set as the precursor state for state v, and state v is added into the queue. 
Therefore, the key is to calculate the estimated cost from the initial state through 
state v to the goal state f (v). The heuristic function f( ) is as the key for the priority 
queue. There are three cases:

Case 1: State v hasn’t been visited before: f (v)=d(v)+h(v).
Case 2: State v has been in the queue: There is a f (v) for v. If the estimated 

cost should be adjusted, that is, the path to state v is adjusted through state 
u, f (v)=f (v)−d(v)+d(u)+1.

Case 3: State v has been visited and removed from the queue: If the estimated 
cost should be adjusted, f (v) = f (v)−d(v)+d(u)+1. The reason is the same as case 2.

A* algorithm is as follows:

Suppose the precursor state for the initial state s is −1;
 d[s]=0; f[s]=h[s];
 State s is added into the priority queue q; Set s the flag 
entering q, and set flags not entering q for other states;
   while ( the priority queue q isn't empty)
   {           
        the state u with the minimal f[ ] in the priority 
queue q is selected;
        if u is the goal state (the alphabet order is 0) 
return the result;
        State u is removed from q;



Practice for State Space Search  ◾  627

        Calculate the position (x, y) for 'x' in state u;
        for(int i=0; i<4; ++i){    // four search directions
          calculate the adjacent cell (a, b) for (x, y) in 
direction i;
           If ((a, b) is in the puzzle){  
              9 in (x, y) and the number in (a, b) are 
exchanged, and a new state v is generated;
              If (d[u] + 1) < d[v])
               { d[v]=d[u]+1;
               State u is set as the precursor state for state 
v, and direction i is recorded;
               The heuristic function f[v] is adjusted based 
on above three cases;
               State v is added into q; set v the flag 
entering q;
               }
             } 
       Set the search flags for the four directions for state u;
    }
    if (the goal state has been visited (the alphabet order 
is 0))
       Output a series of moves that produce a solution;
    else output "unsolvable";

  Program

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<queue>
using namespace std;
int fac[] = { 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880 };    
// fac[i]=i!   ..
int order(const char *s, int n) {    // the alphabet order for 
permutations s

( [ ] 1)!*(the number of elements after [ ] and less than
0

1

k s i s is

i

n

∑= −
=

−

s[i]),
0≤ks≤n!−1
    int i, j, temp, num;
    num = 0;    // the alphabet order 0
    for (i = 0; i < n-1; i++) {    //from right to left, 
enumeration



628  ◾  Algorithm Design Practice for Collegiate Programming

        temp = 0;    //the number of elements after s[i] and 
less than s[i] temp
        for (j = i + 1; j < n; j++) {
          if (s[j] < s[i]) temp++;
        }
        num += fac[s[i] -1] * temp;    //accumulating 
(s[i]−1)!*temp
    }
    return num;    //return the alphabet order for 
permutations for s
}
bool is_equal(const char *b1, const char *b2){    // permutations 
b1 and b2 are equal or not
    for(int i=0; i<9; i++)  //scan 9 positions
        if(b1[i] != b2[i])
            return false;
    return true;    //b1 and b2 are equal
}
struct node{    //States
    char board[9];    //permutation
    char space;    //position for space 
};
const int TABLE_SIZE = 362880;    //the upper limit for the 
number of states 9!
int hash(const char *cur){    // the alphabet order for 
permutation cur
    return order(cur, 9);
}
void get_node(int num, node &tmp) {    //map alphabet order 
num to state tmp
    int n=9;    //the length for the permutation
    int a[9]; 
    for (int i = 2; i <= n; ++i) {
        a[i - 1] = num % i;
        num = num / i;
        tmp.board[i - 1] = 0; 
    }
    tmp.board[0] = 0;
    int rn, i;
    for (int k = n; k >= 2; k--) { 
        rn = 0;  
        for (i = n - 1; i >= 0; --i) {
            if (tmp.board[i] != 0) continue;
            if (rn == a[k - 1]) break;
            ++rn;
        }
        tmp.board[i] = k; 
    }
    for (i = 0; i < n; ++i) 
        if (tmp.board[i] == 0) {



Practice for State Space Search  ◾  629

            tmp.board[i] = 1;
            break;
        }
    tmp.space = n - a[n-1] -1; 
}
int goal_state[9][2] = {{0,0}, {0,1}, {0,2}, {1,0}, {1,1}, 
{1,2}, {2,0}, {2,1}, {2,2}};    //In the goal state, number i 
is at (goal_state[i][0], goal_state[i][1])
int h(const char *board){    // calculate h(board): the 
estimated cost from state board to the goal state
 int k;
 int hv = 0;    //sum of distances
 for(int i=0; i<3; ++i)    //search each position (i, j)
  for(int j=0; j<3; ++j){
   k = i*3+j;  
   if(board[k]!=9){    //the number in position isn't 9
     hv += abs(i - goal_state[board[k]-1][0]) +abs(j - goal_
state[board[k] -1][1]);
   }
  }
return hv;    //return the sum of distances
}
int f[TABLE_SIZE], d[TABLE_SIZE];    // Heuristic Function 
f[u]: the cost to the goal state, from the initial state and 
through state u, d[u]: the minimal number of moves from the 
initial state to state u,  (u is the alphabet order for 
permutations)
struct cmp{    //Comparison function for the priority queue: 
Heuristic Function f[u] is the key, sorting in ascending 
order
    bool operator () (int u, int v){
        return f[u] > f[v];
    }
};

// [ ]
0 hasn't been visited
1 is in the queue
2 has been removed from the queue

=








color u
u

u
u

, in the 

best path the precursor for u is parent[u], the direction 
enter u is move[u], u is the alphabet order for states
char color[TABLE_SIZE];         
int parent[TABLE_SIZE];         
char move[TABLE_SIZE];        
int step[4][2] = {{-1, 0},{1, 0}, {0, -1}, {0, 1}};          
//direction i (step[i][0], step[i][1])
void A_star(const node & start){    //from the initial state 
start, A* algorithm is used to calculate a series of moves
    int x, y, k, a, b;
    int u, v;



630  ◾  Algorithm Design Practice for Collegiate Programming

    priority_queue<int, vector<int>, cmp> open;    //priority 
queue open(Heuristic Function f[u] is the key, sorting in 
ascending order)
    memset(color, 0, sizeof(char) * TABLE_SIZE);    //there is 
one state in the queue
    u = hash(start.board); 
    parent[u] = -1;    //the precursor for u is empty
    d[u] = 0;    //number of moves for u is 0
    f[u] = h(start.board);    // Heuristic Function f[u]
    open.push(u); color[u] = 1;    //u is added into the 
priority queue
    node tmp, cur;    //the front for the queue cur, generated 
state tmp
    while(!open.empty()){    //while the queue isn't empty, u 
is the state with the minimal f[u]
        u = open.top();
        if(u == 0) return;    //u is the goal state
        open.pop();
        get_node(u, cur);    // the alphabet order u 
corresponds to state cur
        k = cur.space;    //in state cur, the space position 
(x, y)
        x = k / 3; y = k % 3;
        for(int i=0; i<4; ++i){    //search 4 directions
            a=x+step[i][0]; b=y+step[i][1];    //the adjacent 
position (a, b) for (x, y) in direction i
            if(0<=a && a<=2 && 0<=b && b<=2){    //(a, b) is 
the puzzle
                tmp = cur;    //the space at (x, y) and the 
number at (a, b) are exchanged, and the state tmp is generated
                tmp.space = a*3 + b;
                swap(tmp.board[k], tmp.board[tmp.space]);
                v = hash(tmp.board);    // the alphabet order 
v for state tmp
                if(color[v]==1 &&(d[u]+1)<d[v]){    //v is in 
the queue, and d[u]+1<d[v], (u, v) is adjusted in the best 
path
                    move[v] = i;    //the direction i entering v
                    f[v]=f[v]-d[v]+d[u]+1; 
                    d[v] = d[u] + 1; 
                    parent[v] = u; 
                    open.push(v);    //v is added into the 
queue
                }
                else if(color[v]==2 && (d[u]+1)<d[v]){    //4 
directions for v have been searched, and d[u]+1<d[v], (u, v) 
is adjusted in the best path
                    move[v] = i;   /the direction i entering v
                    f[v]=f[v]-d[v]+d[u]+1; 



Practice for State Space Search  ◾  631

                    d[v] = d[u] + 1; 
                    parent[v] = u; 
                    open.push(v);    //v is added into the 
queue again
                    color[v] = 1;    //v is in the queue
                }
                else if(color[v] == 0){    // v hasn't been 
visited
                    move[v] = i;    //direction i entering v
                    d[v] = d[u] + 1;
                    f[v]=d[v]+h(tmp.board); 
                    parent[v] = u;
                    open.push(v);    //v is added into the 
queue
                    color[v] = 1;    //v is in the queue
                }
            }
        }
        color[u] = 2;    //4 directions for u have been searched 
    }
}
void print_path(){    // output a series of moves
    int n, u;
    char path[1000];    // a series of moves
    n = 1;    //number of moves 
    path[0] = move[0];  
    u = parent[0];    //the precursor for the goal state u
    while(parent[u] != -1){    //from the goal state to the 
initial state
        path[n] = move[u];    //the direction entering state u
        ++n;    //number of moves
        u = parent[u];    //the precursor
    }
    for(int i=n-1; i>=0; --i){    //output a series of moves 
from the initial state
        if(path[i] == 0) printf("u");
        else if(path[i] == 1) printf("d");
             else if(path[i] == 2) printf("l");
                 else printf("r");
    }
}
int main(){
    //freopen("in", "r", stdin);
    node start;    //initial state
    char c;    //input character
for(int i=0; i<9; ++i){    //input 9 characters, the initial 
state start is constructed
    cin>>c; 
        if(c == 'x'){    //the i-th character “x” is 9, it's a 
space



632  ◾  Algorithm Design Practice for Collegiate Programming

                start.board[i] = 9;
                start.space = i;
        }
        else  start.board[i]=c-'0'; 
    }
    A_star(start);    // A* algorithm is used to calculate a 
series of moves
    if(color[0]!= 0)print_path();    // if the goal state has 
been visited, output a series of moves; else output "unsolvable—"
      else printf("unsolvable");
    return 0;
}

9.2.5  Remmarguts’ Date

“A good man never makes girls wait or breaks an appointment!” said the mandarin 
duck father. Softly touching his little ducks’ heads, he told them a story.

“Prince Remmarguts lives in his kingdom UDF—United Delta of Freedom. 
One day their neighboring country sent them Princess Uyuw on a diplomatic 
mission.”

“Erenow, the princess sent Remmarguts a letter, informing him that she would 
come to the hall and hold commercial talks with UDF if and only if the prince 
would go and meet her via the K-th shortest path. (In fact, Uyuw does not want to 
come at all).”

Being interested in the trade development and in such a lovely girl, 
Prince Remmarguts really became enamored. He needs you—the prime 
minister’s—help!

Details: UDF’s capital consists of N stations. The hall is numbered S, while 
the station numbered T denotes the prince’s current place. M muddy directed 
sideways connect some of the stations. Remmarguts’ path to welcome the prin-
cess might include the same station twice or more than twice, even it is the sta-
tion with number S or T. Different paths with the same length will be considered 
disparate.

Input

The first line contains two integer numbers N and M (1≤N≤1000, 0≤M≤100000). 
Stations are numbered from 1 to N. Each of the following M lines contains three 
integer numbers A, B and T (1≤A, B≤N, 1≤T≤100). It shows that there is a directed 
sideway from the A-th station to the B-th station with time T.

The last line consists of three integer numbers S, T, and K (1≤S, T≤N, 
1≤K≤1000).



Practice for State Space Search  ◾  633

Output

A single line consisting of a single integer number: the length (time required) to 
welcome Princess Uyuw using the K-th shortest path. If K-th shortest path does not 
exist, you should output “−1” (without quotes) instead.

Sample Input Sample Output

2  2
1  2  5
2  1  4
1  2  2

14

Source: POJ Monthly, Zeyuan Zhu

ID for Online Judge: POJ 2449

  Analysis

The problem can be represented as a weighted directed graph G. Stations in UDF 
are represented as vertices, muddy directed sideways connecting some of the sta-
tions are represented as arcs, and the time cost on a sideway is represented as the 
weight for the corresponding arc.

The problem requires you to calculate the length of the K-th shortest path from 
the starting point to the terminal point in G.

The naive algorithm solving the problem is using BFS from the starting point. 
When the terminal point is searched K times, the length of the path is the time 
required to welcome Princess Uyuw using the K-th shortest path. If K is larger 
or the number of vertices is more, the solution will consume more memory than 
permitted.

The method to solve the problem is using algorithm calculating the single-
source shortest paths and A* search.

Step 1: For G, its converse digraph G’ is constructed. Then the terminal point T 
is as the single-source, and an SPFA algorithm is used to calculate the lengths 
of the shortest paths from the terminal point T to other vertices. It is used for 
the estimated cost.

=





[ ]

the length of the shortest path from vertex to is reachable from
∞ isn’t reachable from

H i
i T T i

T i

Step 2: A* search is used to calculate the length of the K-th shortest path.



634  ◾  Algorithm Design Practice for Collegiate Programming

A* search can be used to calculate the shortest path. Therefore the K-th shortest 
path can be calculated in the K-th times.

The key to A* search is to design the function for the estimated cost F[i]: 
F[i]=G[i]+H[i], where G[i] is the length of the shortest path from the starting point 
S to vertex i, and H[i] is the length of the shortest path from vertex i to the terminal 
point T, calculated in Step 1. Therefore, the estimated cost F[i] is the length of the 
shortest path from S to T, through vertex i.

Each time the minimal value is gotten out from F[ ]. Therefore F[ ] is stored as 
a priority queue.

Initially the starting point S is added into the priority queue F[ ]. Then A* 
search is used. Each time, the vertex with the minimal value is obtained from 
F[ ]. For each adjacent vertex i, G[i] is calculated, F[i] is calculated based on 
H[i], and the number of times that Prince Remmarguts goes through vertex i is 
accumulated.

1.	For each vertex, the number of paths that Prince Remmarguts goes through 
it is at most K.

2.	If T isn’t reachable from some vertices, in H[ ] the vertices’ values are ∞.

  Program

#include<stdio.h>
#include<iostream>
#include<queue>
#include<vector>
using namespace std;
#define inf 99999999
#define N 1100
typedef struct nnn    //the struct for priority queue
{
  int F,G,s;    //vertex s, G: the length from the starting 
point to s, F; the length of the path through s
  friend bool operator<(nnn a,nnn b)   //the priority for the 
priority queue 
  {
    return a.F>b.F;   
  }
}PATH;                    
typedef struct nn                // adjacency list
{
  int v,w;    //adjacent vertex v, the length of the arc w
}node; 



Practice for State Space Search  ◾  635

vector<node>map[N],tmap[N];    // adjacency list map[ ], 
associated adjacency list tmap[ ], where map[i] and tmap[i] 
stores adjacent vertices for vertex i
int H[N];    // H[ ]: lengths of the shortest paths from the 
terminal point T to other vertices
void findH(int s)    //SPFA algorithm to calculate H[ ]
{
  queue<int>q; 
  int inq[N]={0}; 
  q.push(s); inq[s]=1; H[s]=0;    //s is added into queue q
  while(!q.empty())    //the front s for q is removed
  {
    s=q.front(); q.pop(); inq[s]=0;
    int m=tmap[s].size();    //out-degree for s
    for(int i=0;i<m;i++)    //enumerate arcs from s
    {
      int j=tmap[s][i].v;    //for s, the other vertex j for 
the i-th arc
      if(H[j]>tmap[s][i].w+H[s])
      {
        H[j]=tmap[s][i].w+H[s];    //H[j]
        if(!inq[j]) inq[j]=1,q.push(j);    //j isn't an 
element in the queue, is added into the queue
      }
    }
  }
}
int Astar(int st,int end,int K)    // calculate the length of 
the K-th shortest path from the starting point st to the 
terminal point end
{
  priority_queue<PATH>q;    //priority queue q, elements' type 
is PATH
  PATH p,tp; 
  int k[N]={0};    //k[ ]: the number of times through 
vertices
  findH(end);    //calculate H[ ]
  if(H[st]==inf)return -1;    //end is reachable from st
  p.s=st; p.G=0; p.F=H[st];    // p is added into the priority 
queue
  q.push(p);                
  while(!q.empty())    //the priority queue isn't empty
  {
    p=q.top(); q.pop();
    k[p.s]++;    //the number of times through the vertex +1
    if(k[p.s]>K)continue;    // the number of times through 
the vertex at most K
    if(p.s==end&&k[end]==K) return p.F;    // the number of 
times arriving at the terminal point is K, return the length 
of the path



636  ◾  Algorithm Design Practice for Collegiate Programming

    int m=map[p.s].size();    //degree for p.s
    for(int i=0;i<m;i++)    //arcs from p.s are enumerated
    {
      int j=map[p.s][i].v;    //vertex j for the i-th arc
      if(H[j]!=inf)    //the terminal point is reachable from j
      {
        tp.G=p.G+map[p.s][i].w;
        tp.F=H[j]+tp.G;
        tp.s=j;
        q.push(tp);
      }
    }
  }
  return -1;
} 
int main()
{
  int n,m,S,T,K,a,b,t;
  node p;
  scanf("%d%d",&n,&m);    //numbers of vertices and edges
  for(int i=1;i<=n;i++)
    {
      map[i].clear(); tmap[i].clear(); H[i]=inf;  //Initialize 
adjacency list and H[]
    }
    while(m--)    // m muddy directed sideways
    {
      scanf("%d%d%d",&a,&b,&t);    // arc (a,b) with length t 
is stored in map[a]
      p.v=b; p.w=t; map[a].push_back(p);    //flip arc (b,a) 
with length t is stored in map[b]
      p.v=a; tmap[b].push_back(p);
    }
    scanf("%d%d%d",&S,&T,&K);    // the starting point, the 
terminal point, and K
    if(S==T)K++;    // the starting point and the terminal 
point are same
    printf("%d\n",Astar(S,T,K));
}

Iterative deepening A* Algorithm (IDA* Algorithm)

Iterative deepening A* (IDA*) is a graph traversal and path search algorithm that 
can find the shortest path between a designated start node and any member of a set 
of goal nodes in a weighted graph. It is a variant of iterative deepening depth-first 
search that borrows the idea to use a heuristic function to evaluate the remain-
ing cost to get to the goal from the A* search algorithm. Since it is a depth-first 
search algorithm, its memory usage is lower than in A*, but unlike ordinary itera-
tive deepening search, it concentrates on exploring the most promising nodes and 



Practice for State Space Search  ◾  637

thus doesn’t go to the same depth everywhere in the search tree. Unlike A*, IDA* 
doesn’t utilize dynamic programming and therefore often ends up exploring the 
same nodes many times.

The keys to the IDA* algorithm are bounding and pruning.

9.2.6  Jaguar King

In a deep forest, a war is going to begin. Like other animals, the jaguars are pre-
paring for this ultimate battle. Though they are mighty strong and lightning fast, 
they have an extra advantage over other animals. It’s their wise and brave king, the 
Jaguar King.

The king knows that only speed and strength is not enough for winning the 
war. They have to make a perfect formation. The king has set up a nice formation 
and placed all the Jaguar Warriors according to that formation. There are N posi-
tions for N jaguar warriors (including the king). The king is marked by 1 and the 
other jaguar warriors are marked by a number from 2 to N. The warriors are placed 
according to their number.

But then the king realizes that to make the formation perfect and effective, 
some positions should have stronger jaguars and some should have faster jaguars. 
Since the strength and speed of all the jaguars are not equal, the king decided to 
change the positions of some jaguars. The wise king knows the ability of each and 
every jaguar, so his decision is perfect, but the problem is how to change the jaguars.

One of the wise jaguars has given an idea. The idea is simple. All the jaguars 
will wait for the king’s signal, all eyes upon the king. Suppose the king is in the 
i-th position. The king jumps to the j-th position, and when the jaguar at the j-th 
position sees the king coming, he immediately jumps to the i-th position. The king 
repeats this procedure until they are formatted like the new formation. Now there 
is another problem. Collision can occur while jumping. So, some wise jaguars have 
made a jumping scheme so that no collision can occur. The scheme is noted below.

	 If the king is in the i-th position 
	 If (i % 4=1) The king can jump to position (i+1), (i+3), 
(i+4), (i−4) 
	 If (i % 4=2) The king can jump to position (i+1), (i−1), 
(i+4), (i−4)
	 If (i % 4=3) The king can jump to position (i+1), (i−1), 
(i+4), (i−4) 
	 If (i % 4=0) The king can jump to position (i−3), (i−1), 
(i+4), (i−4)

Any position is valid if it lies in between 1 and N.
Actually the king can jump much higher between these positions so, no collision 

can occur. Now you are one of the prisoners (actually they kept you to eat after the war). 
You now have a chance to get out alive. You know all their ideas and the new formation. 



638  ◾  Algorithm Design Practice for Collegiate Programming

If you can tell the king the minimum number of times the king has to jump to gain the 
new formation, they could be generous and release you.

Input

The input file contains several sets of inputs. The total number of sets will be less 
than 50. The description of each set is given below:

Each set starts with one integer N (4≤N≤40) which indicates the total number 
of jaguar warriors. You can assume that N is a multiple of 4. The next line will 
contain N numbers which indicates the final formation of the jaguars. Consecutive 
numbers will be separated by a single space.

The input will be terminated by the set where N=0. And this set should not be 
processed.

Output

For each set in the input, you should first print the set number starting from 1. And 
the next line should be the minimum number of times the king has to jump to gain 
the new formation.

Check the sample input-output for more details. Output should be formatted 
like the sample output.

Hope you get out alive.

Sample Input Sample Output

4
1  2  3  4
4
4  2  3  1
8
5  2  3  4  8  6  7  1
8
5  2  8  3  6  7  1  4
0

Set 1:
0
Set 2:
1
Set 3:
2
Set 4:
7

Source: Next Generation Contest III

ID for Online Judge: UVA 11163

  Analysis

Initially N jaguars are placed at N positions in a queue, N%4==0. The king is placed 
at position 1. Other jaguars are marked by a number from 2 to N. The jaguars are 



Practice for State Space Search  ◾  639

placed according to their number. Only the king can exchange its position with 
another jaguar. Suppose the king’s current position is i:

If (i % 4==1), then the king can jump to position (i+1), (i+3), (i+4), (i−4);
If (i % 4==2) , then the king can jump to position (i+1), (i−1), (i+4), (i−4);
If (i % 4==3), then the king can jump to position (i+1), (i−1), (i+4), (i−4);
If (i % 4 = 0), then the king can jump to position (i−3), (i−1), (i+4), (i−4).

Given the final formation of the jaguars, the minimum number of times the 
king jumps to gain the final formation is required to calculate.

An array dx[i][j] is used to represent the above rule, where i is the remainder 
that the king’s current position is divided by 4 (0≤i≤3), and each remainder is a 
kind of the king’s jumping; and j is the sequence number for the kind of the king’s 
jumping (0≤j≤3). That is, int dx[4][4] = {{−3, −1, +4, −4}, {+1, +3, +4, −4}, {+1, −1, 
+4, −4}, {+1, −1, +4, −4}}. Therefore, if the king’s current position is k, the king can 
jump to four positions, where the j-th position is k+dx[k %4][j], 0≤j≤3.

The estimated cost for the IDA* algorithm is F(v)=G(v)+H(v). F(v) is the esti-
mated number of times that the king jumps to gain the final formation through 
the current state v. G(v) is the number of times that the king jumps to the cur-
rent state v from the initial formation. Initially, the king’s state is x, G(x)=0. 
And H(v) is the estimated cost that the king jumps to gain the final formation 
from the state v. H(v) is the sum of the numbers of times that n−1 jaguars (not 
the king) jump to their current positions from their final positions using rule 
dx[i %4][0..3], for n−1 jaguars (not the king) jump in the opposite directions for 
the king’s jumping. A Floyd algorithm is used to calculate H(x) before the IDA* 
algorithm is used.

In the IDA* algorithm, states are represented as (x, prev, dep, hv); where x is 
the current position for the king; prev is the precursor position for the king, that 
is, the king jumps to position x from position prev, and initially prev=−1; dep is 
the number of times the king jumps to position x, that is, dep is G(x), and initially, 
dep=0; and hv is the estimated number of times that the king jumps to gain the 
final formation from the position x, that is, hv is H(v).

In the program, the function IDA(x, prev, dep, hv) is used to calculate the mini-
mum number of times mxdep the king jumps to gain the final formation. In order 
to improve the efficiency, the following optimization strategies are used:

1.	Bounding. The current minimum number of times mxdep that the king 
jumps to gain the final formation is as the bounding. Based on the estimated 
cost, if the king can jump to gain the final formation through the current 
state, the estimated cost is dep+hv. Obviously, if dep+hv>mxdep, it can’t be a 
solution.

2.	The king can’t return to prev from x. That is, the endless loop needs to be 
avoided.



640  ◾  Algorithm Design Practice for Collegiate Programming

3.	There are at most four positions to which the king can jump. Therefore, there 
are at most four generated states. The function IDA(x, prev, dep, hv) returns 
the minimal value submxdep that is min {numbers of times for the king’s 
jumping to gain the final formation in four directions}.

The function mxdep =IDA(x, prev, dep, hv) is as follows:

if (hv==0) return the number of times the king jumps dep and 
the successful mark;
if (dep+hv> mxdep) it can't be a solution;
submxdep=∞;
Four positions that the king can jump are enumerated tx(tx = 
x+dx[x%4][i], 0≤i≤3):
 {  
   if (tx is in the bound)&&(tx≠prev) 
    { the number of times the king jumps to gain the final 
formation is calculated;
      The generated state (tx, x, dep+1, shv) is recursively 
calculated, and the number of times the king jumps is tmp;
      submxdep= min(submxdep, tmp);
     }
 };
Return submxdep;
IDA (x, −1, 0, E(s)) is called to calculate the number of 
times the king jumps mxdep until the final formation is gained.

The size of the problem isn’t large (4≤N≤40).

  Program

#include <stdio.h>
#include <algorithm>
#include <string.h>
using namespace std;
int g[45][45];    // g[i][j]: the length of the shortest path 
between position i and position j
int dx[4][4] = {{-3,-1,+4,-4},{+1,+3,+4,-4},{+1,-1,+4,-4}, 
{+1,-1,+4,-4}};    // if the king's current position is k, the 
king can jump to 4 positions, where the j-th position is 
k+dx[k %4][j]
int A[45], n;    // A[i] is the number of the jaguar at 
position i in the final formation, the numder of jaguars n
void build() {    //using Floyd algorithm to calculate g[ ][ ]
    int i, j, k;
    for(i = 1; i <= 40; i++) {    //initialize g[ ][ ]



Practice for State Space Search  ◾  641

        for(j = 1; j <= 40; j++) g[i][j] = 0xfffffff;
        g[i][i] = 0;             
    }
    for(i = 1; i <= 40; i++)    //each position i is 
enumerated
        for(j = 0; j < 4; j++)    //4 positions can be jumped
            if(i+dx[i%4][j]>0 && i+dx[i%4][j]<=40)   // in the 
bound
                g[i][i+dx[i%4][j]] = 1;
    for(k = 1; k <= 40; k++)  
        for(i = 1; i <= 40; i++) 
            for(j = 1; j <= 40; j++)  
                g[i][j] = min(g[i][j], g[i][k]+g[k][j]);     
//adjust the length of the shortest path from i to j
} 
int H() {    //accumulate the minimal numbers of times that 
n−1 jaguars (not the king) jump to initial positions from 
final positions
    int i, sum = 0;    //initialize the sum of the minimal 
numbers of times sum 0
    for(i=1; i <= n; i++){    //enumerate each jaguar (not the 
king) position in the final formation, and accumulate
        if(A[i] == 1) continue;  
        sum += g[i][A[i]]; 
    }
    return sum;
} 
int singleH(int pos) {    // the minimal numbers of times that 
jaguar at pos jumps to A[pos]
    return g[pos][A[pos]];
} 
int mxdep, solved;    //mxdep, the minimum number of times the 
king jumps to gain the final formation
int IDA(int x, int prev, int dep, int hv) {    // IDA(x, prev, 
dep, hv) is defined in the analysis
    if(hv == 0){    //return the minimum number of times the 
king jumps to gain the final formation 
        solved = dep;
        return dep;
    }
    if(dep+hv>mxdep) return dep+hv;    //it isn't the solution
    int i, tx;
    int submxdep = 0xfffffff, shv, tmp; 
    for(i = 0; i < 4; i++) {    // 4 positions to which the 
king can jump
     tx = x+dx[x%4][i];    //the i-th position tx
     if(tx==prev || tx<=0 || tx>n) continue;    // (tx isn't 
in the bound) or (tx=prev), the next position
     shv=hv;          /hv+dist[x][tx]-dist[x][A[tx]]
     shv -= singleH(tx);



642  ◾  Algorithm Design Practice for Collegiate Programming

     swap(A[x], A[tx]); 
     shv += singleH(x); 
     tmp = IDA(tx, x, dep+1, shv);    //the king jumps from tx
     if(solved)return solved;    //gain the final formation
     swap(A[x], A[tx]); 
     submxdep=min(submxdep,tmp);    //adjust the current 
minimal number of times
    }
    return submxdep;    //return the current minimal number of 
times
}
int main() {
    int i, j, k, x;
    int cases = 0;    //the number of test cases
    build();    // Floyd algorithm is used to calculate the 
matrix for the length of shortest path g[ ][ ]
    while(scanf("%d", &n) == 1 && n) {    // the total number 
of jaguar warriors
        for(i=1; i<=n; i++) scanf("%d", &A[i]);    // the 
final formation of the jaguars 
        printf("Set %d:\n", ++cases);    //output the number 
of test cases
        int initH = H();    // accumulate the minimal numbers 
of times that n−1 jaguars (not the king) jump to initial 
positions from final positions
        if(initH == 0) puts("0");    //initial formation is 
the final formation, the king needn't jump
         else {
               solved = 0;    //initialize the minimal numbers 
of times the king jumps
               mxdep = initH;    //initialize
               for(i = 1; i <= n; i++) if(A[i] == 1) x=i; 
               while(solved==0) mxdep=IDA(x,-1,0,initH); 
               printf("%d\n", solved); 
        }
    }
    return 0;
}

9.3  A Game Tree Used to Solve a Game Problem
In holographic, zero-sum, turn-taking, and two-player games, the Game Tree and 
the Minimax Algorithm are used to find the best steps.

“Holographic” means the game’s information is clear to two players. For example, 
Chinese Chess, Chess, and Weiqi are holographic games.

“Zero-sum” means the sum of interests of two players is 0: either A defeats B, 
B defeats A, or A and B end in a draw.



Practice for State Space Search  ◾  643

The state space for a game can be represented as a game tree, where nodes rep-
resent states, and edges represent moves between states. The root for a game tree is 
the initial state. For a node in a game tree, its children are states generated by next 
possible moves. Leaves are goal states for a game.

For two players, “Minimax” means that one player makes a move to maxi-
mize his or her utility, and minimize the utility for his or her opponent. The 
Minimax algorithm is to calculate the minimal or maximal value, that is, the 
best move, based on the current state. If the size for the game tree isn’t large, 
DFS can be used to get all possible moves, and to calculate the best move for 
the current state. Otherwise, pruning should be used to eliminate some parts of 
the tree.

9.3.1  Find the Winning Move

4×4 tic-tac-toe is played on a board with four rows (numbered 0 to 3 from top to 
bottom) and four columns (numbered 0 to 3 from left to right). There are two play-
ers, x and o, who move alternately, with x always going first. The game is won by the 
first player to get four of his or her pieces on the same row, column, or diagonal. If 
the board is full and neither player has won, then the game is a draw.

Assuming that it is x’s turn to move, x is said to have a forced win if x can make 
a move such that no matter what moves o makes for the rest of the game, x can win. 
This does not necessarily mean that x will win on the very next move, although 
that is a possibility. It means that x has a winning strategy that will guarantee an 
eventual victory regardless of what o does.

Your job is to write a program that, given a partially completed game with x to 
move next, will determine whether x has a forced win. You can assume that each 
player has made at least two moves, that the game has not already been won by 
either player, and that the board is not full.

Input

The input file contains one or more test cases, followed by a line beginning with a 
dollar sign that signals the end of the file. Each test case begins with a line contain-
ing a question mark and is followed by four lines representing the board; format-
ting is exactly as shown in the example. The characters used in a board description 
are the period (representing an empty space), lowercase x, and lowercase o.

Output

For each test case, output a line containing the (row, column) position of the first 
forced win for x, or ‘#####’ if there is no forced win. Format the output exactly as 
shown in the example.



644  ◾  Algorithm Design Practice for Collegiate Programming

For this problem, the first forced win is determined by board position, not 
the number of moves required for victory. Search for a forced win by examining 
positions (0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), ..., (3, 2), (3, 3), in that order, 
and output the first forced win you find. In the second test case below, note that 
x could win immediately by playing at (0, 3) or (2, 0), but playing at (0, 1) will 
still ensure victory (although it unnecessarily delays it), and position (0, 1) comes 
first.

Sample Input Sample Output

?
....
.xo.
.ox.
....
?
o...
.ox.
.xxx
xooo
$

#####
(0,1)

Source:	 University of Valladolid Local Contest

IDs for Online Judges: UVA 10111

  Analysis

There are 16 squares in a 4×4 tic-tac-toe. There are three possibilities: empty, occu-
pied by x, and occupied by o. Therefore, state compression can be used to represent 
states. A 16-digit ternary number state is used to represent a state for a 4×4 tic-tac-toe. 
In state, the i×4+ j-th digit represents square (i, j):

If square (i, j) is “x”, then the i×4+ j-th digit for state is 1. That is, state 
|= 1UL<<((i×4+ j)×2);

If square (i, j) is “o”, then the i×4+ j-th digit for state is 2. That is, state 
|= 2UL<<((i×4+ j)×2);

If square is “.”, then the i×4+ j-th digit for state is 0.

For two players, x and o, there are 10 situations for winning a game, respec-
tively: four situations getting four pieces on the same row, four situations getting 
four pieces on the same column, and two situations getting four pieces on the 



Practice for State Space Search  ◾  645

same diagonal. For x, 10 situations winning a game are stored in xw[10]. For o, 
10 situations winning a game are stored in ow[10].

Four pieces on the same row or column:

  Four pieces on the same row (0≤i≤3):
        for(j = 0; j < 4; j++) { 
            xw[n] |= 1UL<<((i*4+j)*2);    //For x, the 
i-th row is 1, x wins the game.
            ow[n] |= 2UL<<((i*4+j)*2);    //For o, the 
i-th row is 1, o wins the game.
        }
        n++;  

Four pieces on the same column (0≤ j≤3):

        for(j = 0; j < 4; j++) {            
            xw[n] |= 1UL<<((j*4+i)*2);    //For x, the 
i-th column is 1, x wins the game.
            ow[n] |= 2UL<<((j*4+i)*2);    //For o, the 
i-th column is 1, o wins the game.
        }
        n++;

Four pieces on the left diagonal:

for(i = 0; i < 4; i++) {  
        xw[n] |= 1UL<<((i*4+i)*2);    //For x, the left 
diagonal is 1, x wins the game.
        ow[n] |= 2UL<<((i*4+i)*2);    // For o, the left 
diagonal is 1, o wins the game.
    }
    n++; 

Four pieces on the right diagonal:

for(i = 0; i < 4; i++) {  
        xw[n] |= 1UL<<((i*4+3-i)*2);    // For x, the 
right diagonal is 1, x wins the game.
        ow[n] |= 2UL<<((i*4+3-i)*2);    // For o, the 
right diagonal is 1, o wins the game.
    }
    n++;

In order to avoid repeated searches, for each state, a mark R[ ] is set. If turn will 
win board node, then R[node]=1; else R[node]=0.

Because the size for the board is small, the search depth is limited. Assuming 
that it is x’s turn to move, x is said to have a forced win if x can make a move such 
that no matter what moves o makes for the rest of the game, x can win.



646  ◾  Algorithm Design Practice for Collegiate Programming

A recursive function dfs(node, rx, ry, turn) is used to calculate the result for turn; 
where node represents the board, initially node is a test case; turn: 1 represents x, and 
2 represents o. Obviously, after turn makes a move, 3-turn makes the next move; initially 
turn is 1; (rx, ry) is a position of the forced win; initially (rx, ry) is (−1,−1). dfs(node, rx, ry, 
turn) returns the result for turn. If the result is 0, then turn is defeated; and if the result 
is 1, then turn must win, and the position of the forced win (rx, ry) is also returned.

dfs(node, rx, ry, turn);
{
  if ( board node has appeared before) return R[node];
  if (board node is a situation winning a game) return 0 (turn 
is defeated);
  for each empty square(i, j) (0≤i, j≤3, node>>((i*4+j)*2))&3==0)
   { dfs(node', rx, ry, 3-turn);    //turn selects (i, j), the 
new board node'=node|(turn<<((i*4+j)*2)), then 3-turn makes 
the next move
     if (dfs returns 0){    //3-turn is defeated, turn wins node'
        (i, j) is as the position of the first forced win 
(rx, ry); 
        R[node']=1;    //board node' wins
        return 1;    //turn wins
     }
   }
   return 0;    //turn is defeated
 }

  Program

#include <stdio.h>
#include <string.h>
#include <map>
using namespace std;
map<unsigned int, int> R;    // mark R[ ], where R[x] is for 
board x
unsigned int ow[10] = {}, xw[10] = {};    //xw[10]: 10 
situations that x wins the game, ow[10]: 10 situations that o wins 
the game
int check(unsigned int node) {    //the result for board node, 

check(node)=
0  

1    
2    







undetermined
x wins
o wins

    int i;
    for(i = 0; i < 10; i++)    //x wins, return 1



Practice for State Space Search  ◾  647

     if((node&xw[i]) == xw[i]) return 1;
    for(i = 0; i < 10; i++)    // o wins, return 2
     if((node&ow[i]) == ow[i]) return 2;
    return 0;    //undetermined
}
int dfs(unsigned int node, int &rx, int &ry, unsigned int 
turn) {    //node is the current board, returns the result for 
turn. If the result is 0, then there is no forced win for 
turn; else turn must win, and the position of the first forced 
win (rx, ry) is also returned 
    if (R.find(node)!=R.end()) return R[node];// board node 
has appeared before
    int f=check(node);    //if board node can determine the 
result, return 0
    if (f) return 0; 
    int i, j;
    int &ret = R[node]; 
    for(i = 0; i < 4; i++) {    //From top to down, from left 
to right, search empty square
     for(j = 0; j < 4; j++) {
      if((node>>((i*4+j)*2))&3) continue;//if (i, j) isn't 
empty, continue to search; else turn makes a move at (i, j), 
new board node|(turn<<((i*4+j)*2)), 3-turn makes the next move
      f = dfs(node|(turn<<((i*4+j)*2)), rx, ry, 3-turn);  // new 
board
      if(f == 0)             {    // if in new board turn 
wins, (i, j) is the position of the first forced win
      rx = i, ry = j;
      ret = 1;  
      return 1;    //return the mark that turn wins
     }
    }
   }
   return 0;    // return the mark that turn is defeated
}
int main() {
    char end[10], g[10][10];
    int i, j, n = 0; 
    //x->1, o->2  
    for(i = 0; i < 4; i++) {    //4 situations getting pieces 
on the same row, 4 situations getting pieces on the same 
column
        for(j = 0; j < 4; j++) {   
            xw[n] |= 1UL<<((i*4+j)*2);    //For x, the i-th 
row is 1, x wins the game.
            ow[n] |= 2UL<<((i*4+j)*2);    // For o, the i-th 
row is 1, o wins the game.
        }
        n++;                       
        for(j = 0; j < 4; j++) {       



648  ◾  Algorithm Design Practice for Collegiate Programming

            xw[n] |= 1UL<<((j*4+i)*2);    // For x, the i-th 
column is 1, x wins the game.
            ow[n] |= 2UL<<((j*4+i)*2);    // For o, the i-th 
column is 1, o wins the game.
    }
    n++;
    }
    for(i = 0; i < 4; i++) {    // left diagonal
        xw[n] |= 1UL<<((i*4+i)*2);    // For x, the left 
diagonal is 1, x wins the game.
        ow[n] |= 2UL<<((i*4+i)*2);    // For o, the left 
diagonal is 1, o wins the game.
    }
    n++;
    for(i = 0; i < 4; i++) {    // right diagonal
        xw[n] |= 1UL<<((i*4+3-i)*2);    // For x, the right 
diagonal is 1, x wins the game.
        ow[n] |= 2UL<<((i*4+3-i)*2);    // For o, the right 
diagonal is 1, o wins the game.
    }
    n++;
    while(scanf("%s", end)==1) {    //Input test cases until 
end mark "$"
        if(end[0] == '$') break;
        for(i = 0; i < 4; i++) scanf("%s", g[i]);    //4 rows
        unsigned int state = 0;    // initial state 0
        for(i = 0; i < 4; i++) {    //From top to down, and 
from left to right construct the initial state
            for(j = 0; j < 4; j++) {
                if(g[i][j] == '.') {}    //(i, j) is ".", then 
omit
                else if(g[i][j] == 'x')    //if (i, j) is "x", 
then the i*4+j−th digit for state is 1
                    state |= 1UL<<((i*4+j)*2);
                else    // if (i, j) is "o", then the i*4+j−th 
digit for state is 2
                    state |= 2UL<<((i*4+j)*2);
            }
        }
        int rx = -1, ry = -1;    // initialize the position of 
the first forced win for x
        int f = dfs(state, rx, ry, 1);      
        if(f == 0)    //no forced win for x
            puts("#####");
        else
            printf("(%d,%d)\n", rx, ry);    // the position of 
the first forced win for x (rx, ry)
    }
    return 0;
}



Practice for State Space Search  ◾  649

There are some games whose search depths are larger. Therefore, we need to 
restrict the search. For the current state, a score is evaluated. The method for evalu-
ating such scores is called an evaluation function. Suppose there are two players A 
and B for a game. A makes the first move. In the game tree, nodes that specify A’s 
moves are called “MAX nodes”, for A always moves to a state with the maximum 
score. And nodes that specify B’s moves are called “MIN nodes”, for B always 
moves to a state with the minimum score. That is to say, both A and B play opti-
mally (Figure 9.8).

In order to get the result more quickly, a kind of heuristic method, called α−β 
(alpha-beta) pruning, is used in DFS in a game tree.

For a MAX node in the game tree, the value of the best choice (i.e., the maxi-
mum score) is obtained from leaves through DFS, called the value of α.

For a MIN node in the game tree, the value of the best choice (i.e., the mini-
mum score) is obtained from leaves through DFS, called the value of β.

The DFS updates values of α and value of β as it goes along and prunes remain-
ing branches at a node as soon as the value of the current node is known to be worse 
than the current α or β value for MAX node or MIN node respectively.

α pruning: When DFS is used in a game tree, the score from leaves in the 
leftmost branch to a MAX node A is denoted as α. And the score α is as the lower 
bound for A’s score.

Then DFS is used for other children for A. If after a round (two moves), a score 
is lower than α, the corresponding branch (the subtree whose root is the child 
for A) is pruned [Figure 9.9(a)]. In Figure 9.9(b), scores are in an ascending order 
from left to right, and no branch is pruned.

A

A A A

B B B B

9

1

MAX nodes

MAX nodes

MAX nodes (A) MIN nodes (B) in a game tree 

Values for the
evaluation function

MIN nodes

3 –5

–5 2 9 –2

Figure 9.8 

(a) (b)

Pruning
MAX nodes

MIN nodes

MAX nodes

MAX nodes

MIN nodes

MAX nodes5 8 4

4 421

4 4

6 2 3 3 8 1 6 2 9 5 7 4

Figure 9.9 



650  ◾  Algorithm Design Practice for Collegiate Programming

β pruning: By the same reason, the score from leaves in the leftmost branch 
to a MIN node B is denoted as β. Obviously, the score β is as the upper bound for 
B’s score.

Then DFS is used for other children for B. If after a round (two moves), a score 
is higher than β, the corresponding branch (the subtree whose root is the child 
for B) is pruned. See Figure 9.10.

9.3.2  The Pawn Chess

Consider the following mini-version of chess: We have a 4×4 chessboard, with four 
white pawns on the first rank (bottom line in the input) and four black pawns on 
the last rank. The goal is for the player to get one of his pawns to the other end of 
the board (last rank for the white player, first rank for the black player), or to stale-
mate his opponent. A player is stalemated if he has no legal moves when it’s his turn 
to move (this includes having no pawns left).

The pawns move as in ordinary chess, except that they can never move two 
steps. That is, a pawn may move one step forward (toward the opposite rank), 
assuming that this square is empty. A pawn can also capture a pawn of the oppo-
site color if it’s one step ahead and to the left or right. Captured pieces are removed 
from the game.

Given the position of the pawns on a chessboard, determine who will win the 
game, assuming both players play optimally. You should also determine the num-
ber of moves the game will last before it’s decided (assuming the player who will 
win tries to win as fast as possible and the player to lose will lose as slowly as pos-
sible). It will always be white’s turn to move from the given position.

Input

The first line in the input contains the number of test cases (at most 50). Each 
case contains four lines describing the chessboard, preceded by a blank line. The 
first of the four lines will be the last rank of the chessboard (the starting point for 
the black pawns). Black pawns will be denoted with a ‘p’, white pawns with a ‘P’, 
and empty squares with a ‘.’. There will be between one and four pawns of each 
color. The initial position will not be a final game position, and white will always 

MIN nodes

MIN nodes

Best
choice

Pruning
Pruning

Best
choice

MAX nodes

MIN nodes

MIN nodes

MAX nodes

1 7 4 2 9

7

7

8 8 3 5 7 9 426

4

48

1

Figure 9.10 



Practice for State Space Search  ◾  651

have at least one legal move. Note that the input position may not necessarily be 
one that could have arisen from legal play from the games starting position.

Output

For each test case, output a line containing the text white (xx) if white will 
win, or black (xx) if black will win. Replace xx with the number of moves 
(which will always be an odd number if white wins and an even number if 
black wins).

Sample Input Sample Output

2
.ppp
....
.PPP
....
...p
...p
pP.P
...P

white (7)
black (2)

Source:	 ACM ICPC World Finals Warmup 2 (2004–2005)

IDs for Online Judges: UVA 10838

  Analysis

The problem requires you to calculate the winner and its number of moves. It 
is a game problem. And α−β (alpha-beta) pruning is used to improve the search 
efficiency.

DFS is used to construct a game tree, where nodes represent states for the 4×4 
chessboard, and the root is the input test case. Goal states, that is, leaves, are states 
that one player uses to get one of his pawns to the other end of the board (last rank 
for the white player, first rank for the black player), or to stalemate his opponent. 
Middle games are internal nodes.

The level number for the root of the game tree is depth=36. As it moves 
down one level, −−depth. At even levels, it is white’s turn to move. And at 
odd levels, it is black’s turn to move. The game tree is constructed top-down. 
Based on game theory, at even levels, states of the maximum score should be 
calculated; and at odd levels, states of the minimum score should be calculated. 
Suppose



652  ◾  Algorithm Design Practice for Collegiate Programming

alpha(v) is the maximum number of moves for white from v to leaves. That 
is, alpha(v)= ∈max {the number of moves from   to leafs}u v ’s children u . The initial 
value for alpha is −9999.

beta(v) is the minimum number of moves for black from v to leaves. 
beta(v)= ∈min {               }. v ’s children the number of moves from u to leafsu  The initial value 
for beta is 9999.

The value of alpha (or the value of beta) for each node is gotten from leaves. 
Therefore, when it is white’s turn to move, return the value of alpha for the internal 
nodes; and return −depth for leaves. And when it is black’s turn to move, return the 
value of beta for internal nodes; and return depth for leaves.

During the process calculating alpha(v) and beta(v), if for a parent node v, 
alpha(v) is calculated; for its children, the minimal beta is calculated. If u is a child 
for v, beta(u) is p; and u' is another child for v; u'' is a child for u', and return q<p, 
then the subtree whose root is u' can be pruned.

Repeat the process until a goal state is reached.
If the recursion result is a positive number, white wins, and the number of 

moves is 36 - the recursion result. And if the recursion result is a negative number, 
black wins, and the number of moves is 36 + the recursion result.

  Program

#include <stdio.h>
#include <algorithm>
using namespace std;
struct state {    // the chessboard
	 char g[4][5];    // the chessboard
	 int isEnd() {    // if the chessboard is the final state, 
return 1; else return 0
		  int b = 0, w = 0;
		  for (int i = 0; i < 4; i++) {    //the number of white w 
and the number of black b
			   for (int j = 0; j < 4; j++)  {
				    if (g[i][j] == 'p') b++;
				    if (g[i][j] == 'P') w++;
			   }
		  }
		  if (b == 0 || w == 0)	return 1;    // having no pawns 
left, return 1
		  for (int i = 0; i < 4; i++) {    // get one of his pawns 
to the other end of the board, return 1
			   if (g[0][i] == 'P') return 1;



Practice for State Space Search  ◾  653

			   if (g[3][i] == 'p') return 1;
		  }
		  return 0;    //else return 0
	 }
};
int alpha_beta(state board,int depth,int alpha,int beta) {  //the 
current state for the chessboard board, level depth, alpha and 
beta is as the definition
 if (board.isEnd())return depth%2==0 ?-depth:depth;    //if 
the current state for the chessboard is a final state, if 
depth is even (white) return −depth; else (black) return depth
	 int movable = 0;    //initialize the moveable sign
	 if (depth% 2 == 0) {    // it is white's turn to move
	  for (int i = 1; i < 4; i++)  {    // each pawn's position 
is searched
	   for (int j = 0; j < 4; j++) {
		  if (board.g[i][j] == 'P') {    // at (i, j) there is a 'P'
		   for (int k = j - 1; k <= j + 1; k++) {    //3 moveable 
positions for (i, j) are searched
		    if (k < 0 || k >= 4) continue;    // the position is 
out of the chessboard
		    if ((k != j && board.g[i-1][k] == 'p') || (k == j && 
board.g[i-1][k] == '.')) {
			   state s=board;    // new state for chessboard s: (i, j) 
is empty, 'p' is moved to (i-1, k)
			   s.g[i][j] = '.', s.g[i-1][k] = 'P';           
			   alpha=max(alpha,alpha_beta(s,depth-1,alpha,beta));    
// recursion, calculate alpha
			   if (beta<=alpha) return alpha;
			   movable = 1;    // the sign for move
		    }
		   }
	   }
	  }
	  }
	  if (!movable)return -depth;    // leaf (white has no legal 
moves), return −depth
return alpha;    //return alpha
	  } else {    // it is black's turn to move
	   	  for (int i = 0; i < 3; i++)  {    //each pawn's 
position is searched
			   for (int j = 0; j < 4; j++) {
			    if (board.g[i][j] == 'p') {    //at (i, j) there is a 'p'
			     for (int k=j-1; k<=j+1; k++) {    //3 moveable 
positions for (i, j) are searched
			     if (k < 0 || k >= 4)continue;    //the position is 
out of the chessboard
			     if ((k != j && board.g[i+1][k] == 'P') || (k == j && 
board.g[i+1][k] == '.')) {



654  ◾  Algorithm Design Practice for Collegiate Programming

				     state s=board;   //new state for chessboard s: (i, j) 
is empty, ‘p’ is moved to (i+1, k)
				     s.g[i][j] = '.', s.g[i+1][k] = 'p';
				     beta=min(beta,alpha_beta(s,depth-1,alpha,beta));    
//recursion, calculate beta
				     if (beta <= alpha) return beta;
				     movable = 1;    //the sign for move
			     }
			    }
			   }
		   }
		  }
	   if(!movable)return depth;    //leaf (black has no legal 
moves), return depth
	   return beta;    //return beta
	 }
}
int main() {
	 int testcase;
	 scanf("%d", &testcase);    //number of test cases
	 while (testcase--) { 
		  state init;    //initial chessboard
		  for (int i = 0; i < 4; i++) scanf("%s", init.g[i]);  
		  int ret = alpha_beta(init, 36, -9999, 9999);
		  if (ret >= 0) printf("white (%d)\n", 36-ret);    // the 
number of moves (white wins)
		    else printf("black (%d)\n", 36+ret);    // the number 
of moves (black wins)
	 }
	 return 0;
}

9.4  Problems
9.4.1  The Most Distant State

The 8puzzle is a square tray in which eight square tiles are placed. The remain-
ing ninth square is uncovered. Each tile has a number on it. A tile that is 
adjacent to the blank space can be slid into that space. A game consists of a 
starting state and a specified goal state. The starting state can be transformed 
into the goal state by sliding (moving) the tiles around. The 8puzzle problem 
asks you to do the transformation in a minimum number of moves, as shown 
in Figure 9.11.

However, our current problem is a bit different. In this problem, given an 
initial state of the puzzle, you are asked to discover a goal state which is the most 
distant (in terms of number of moves) of all the states reachable from the given 
state.



Practice for State Space Search  ◾  655

Input

The first line of the input file contains an integer representing the number of test 
cases to follow. A blank line follows this line.

Each test case consists of three lines of three integers each, representing the 
initial state of the puzzle. The blank space is represented by a 0 (zero). A blank line 
follows each test case.

Output

For each test case, first output the puzzle number. The next three lines will contain 
three integers each representing one of the most distant states reachable from the 
given state. The next line will contain the shortest sequence of moves that will trans-
form the given state to that state. The move is actually the movement of the blank 
space represented by four directions : U (Up), L (Left), D (Down), and R (Right). 
After each test case, output an empty line.

Sample Input Sample Output

1    
2  6  4
1  3  7
0  5  8

Puzzle #1
8  1  5
7  3  6
4  0  2
UURDDRULLURRDLLDRRULULDDRUULDDR

Source:	 BUET/UVA World Finals Warm-up

ID for Online Judge: UVA 10085

  Hint

The problem is a special 8-puzzle. Normally the 8-puzzle requires you to calcu-
late the minimum number of moves from a starting state to a goal state. In this 
problem, there is a starting state, but there isn’t a specified goal state. You need to 
discover a goal state which is the most distant (in terms of number of moves) of all 
the states reachable from the starting state.

2

1

7

8

6

3

4

5

1

8

7

2

6

3

4

5

Start Goal

Figure 9.11 



656  ◾  Algorithm Design Practice for Collegiate Programming

Normally the 8-puzzle is solved by BFS. In this problem, a while repetition ends 
when the queue is empty, to guarantee that the most distant of all the states reach-
able from the starting state can be calculated.

A queue q is used to store states. The type for a state is struct, including: a state 
for the current nine squares ch[3][3], represented as a nine-digit novenary number; 
the position for the square containing 0 (x, y); and the sequence of moves that trans-
forms from the starting state to the current state str;

Suppose m[] is used to show whether a state has been visited or not. That is, 

[ ]
1 state has appeared before
0 state hasn’t appeared before

m p
p

p
=






. It can be defined as map<long 

long,int> m;
Function hash(p) is used to determine whether a state has visited or not.

int hash(p) {  
    long long cnt, k;  
    cnt=k=0;  
    for(int i=0; i<N; i++))    // calculate the value cnt for 
state p
     for(int j=0; j<N; j++) cnt+=p.ch[i][j]*pow(9, k++);  
    if (!m[cnt]) {    //if cnt hasn't appeared
        m[cnt]=1;  
        return 1;  
    }  
    return 0;
}  

BFS is used to solve the problem.

void bfs() {  
  initial state st is pushed into the queue q;
  while (q isn't empty) {
   the front st is poped from the queue;
   Four directions are enumerated (0≤i≤3):
     {
   Calculate the position (x1, y1) which the blank space can 
be slid into from (st.x, st.y) in direction i;
    if ((x1, y1) is out of the puzzle) continue;
    st1=st;    //new state st1 
    st1.ch[st1.x][st1.y]=st1.ch[x1][y1]; st1.ch[x1][y1]=0;  
    st1.x=x1; st1.y=y1;  
    st1.str+= the character for direction i;    
    if (hash(st1)) q.push(st1);    //if st1 hasn't been 
visited, push st1 into the queue
    }  
  }  
}  



Practice for State Space Search  ◾  657

The main program is as follows:

1.	Initialization;
m.clear();
st.str is empty;
Set st visited mark (hash(st));

2.	bfs(): search all reachable states;
3.	For the last state st removed from the queue, output st.ch[3][3] and st.str.

9.4.2  15-Puzzle Problem

The 15-puzzle is a very popular game; even if you don’t know it by that name, 
you’ve seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 
15 on it, and all packed into a 4×4 frame with one tile missing. The object of the 
puzzle is to arrange the tiles so that they are ordered as shown in Figure 9.12.

Here the only legal operation is to exchange a missing tile with one of the tiles 
with which it shares an edge. As an example, in Figure 9.13, the following sequence 
of moves changes the status of a puzzle.

The letters in the previous row indicate which neighbor of the missing tile is 
swapped with it at each step; legal values are ‘R’, ‘L’, ‘U’, and ‘D’, for “RIGHT”, 
“LEFT”, “UP”, and “DOWN”, respectively.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Figure 9.12 

The missing Tile moves
to right. Denoted by R.

The missing Tile moves
upwards. Denoted by U.

The missing Tile moves
to the left. Denoted by L.

A random puzzle position

2 12 11 14

6 15 10 5

3 9 13

8 7 1 4

2 12 11 14

6 15 10 5

3 9 13

8 7 1 4

2 12 11 14

6 15

10

5

3 9 13

8 7 1 4

2 12 11 14

6 15

10

5

3 9 13

8 7 1 4

Figure 9.13 



658  ◾  Algorithm Design Practice for Collegiate Programming

Given an initial configuration of a 15-puzzle, you will have to determine the 
steps that would make you reach the final stage. The input for 15-puzzles requires 
at most 45 steps to be solved with our judge solution. So you will not be allowed 
to use more than 50 steps to solve a puzzle. If the given initial configuration is not 
solvable, you just need to print the line “This puzzle is not solvable.”

Input

The first line of the input contains one integer N, which indicates how many sets of 
puzzles will be given as input. The next 4N lines contain N sets of inputs. It means 
four lines make one set of input. Zero denotes the missing tile.

Output

For each set of input, you will have to give one line of output. If the input puzzle is 
not solvable, then print the line “This puzzle is not solvable.” If the puzzle is solv-
able, then print the move sequence as described above to solve the puzzle.

Sample Input Sample Output

2
2  3  4  0
1  5  7  8
9  6  10  12
13  14  11  15
13  1  2  4
5  0  3  7
9  6  10  12
15  8  11  14

LLLDRDRDR
This puzzle is not solvable.

Source:	 2001 Regionals Warmup Contest

ID for Online Judge: UVA 10181

  Hint

The initial state is 16 sliding tiles, numbered from 0 to 15, are packed into a 4×4 
frame. (The tile numbered 0 means there is no tile at the position). The goal state is 
as shown in Figure 9.12. Only the tile numbered 0 can be exchanged with the tile 
with which it shares an edge. It can be regarded as the tile moving horizontally or 
vertically. The problem requires you to calculate the steps from the initial state to 
the goal state.

Tiles’ positions are also numbered from 0 to 15. A position (x, y)=(p/4, p%4), 
0≤p≤15.



Practice for State Space Search  ◾  659

First, we determine whether a puzzle is solvable or not.
If the title numbered 0 is moved horizontally, the sequence for the other 15 

numbers can’t be changed. And if the tile number 0 is moved vertically, the inverse 
number’s parity for the sequence for other 15 numbers will be changed (+−3 or 
+−1). And the tile numbered 0 should be moved to the lower right corner. If a 
puzzle is solvable, the parity for the inverse number for the sequence for 15 numbers 
plus the number of rows at which the title numbered 0 is the same as the parity for 
the inverse number for the sequence for 15 numbers in the goal state. The inverse 
number for the sequence for 15 numbers in the goal state is an even.

Therefore, if the inverse number for the sequence for 15 numbers plus the num-
ber of rows at which the tile numbered 0 is an even, the puzzle is solvable; else the 
puzzle is not solvable.

For example, in Figure 9.14, the tile numbered 0 is at the end of the fourth row. 
The first tile is numbered 13, and the number of tiles whose number is less than 13 
after the first title is 12. The first tile is denoted as 12(13). The second tile is num-
bered 10, and the number of tiles whose number is less than 10 after the second title 
is 9. The second title is denoted as 9(10). Similarly, other titles are denoted as 9(11), 
5(6), 4(5), 4(7), 3(4), 3(8), 0(1), 3(12), 3(14), 2(9), 1(3), 1(15), and 0(2).

The inverse number for the sequence for 15 numbers is 12+9+9+5+4+4+3+3+ 
0+3+3+2+1+1+0=59. Because 59+4=63 is an odd, this puzzle is not solvable.

The function to determine whether a puzzle is solvable or not is as follows:

bool solvable ( )    //Whether the puzzle is solvable or not
{
    int cnt = 0;
    for (int i = 0; i < 16; ++i){    //each position
      if (puz[i]==0) cnt+=3-i/4;    // the row at which the 
title numbered 0 is (puz[i]; the number at poistion i)
         else{
              for (int j=0; j<i; ++j)  // inverse number
                if (puz[j] && puz[j] > puz[i]) cnt++;
        }
    }
    return !(cnt&1);    //even, return true; else return false
}

There are three algorithms for solving the problem.

13 10 11 6

5 7 4 8

1 12 14 9

3 15 2 0

Figure 9.14 



660  ◾  Algorithm Design Practice for Collegiate Programming

Solution 1. DFS Algorithm
In DFS, there may be many produced states. The maximal search depth 
should be fixed. The input 15-puzzles requires at most 45 steps to be solved 
with our judge solution. Therefore the maximal search depth can be set to 50.

The key to DFS is to determine efficiently whether a state has been visited 
or not. In this problem, a state is represented as a hexadecimal number. A tile 
is represented as a digit for the hexadecimal number. All tiles are sorted from 
left to right and from top to bottom. For example, Figure 9.14 is represented 
as a hexadecimal number:

13×1615+10×1614+11×1613+6×1612+5×1611+7×1610+4×169+8×168

+1×167+12×166+14×165+9×164+3×163+15×162+2×161+0×160

=(DAB657481CE93F20)16=(15759879913263939360)10.

If two states’ values are same, the two states are same. Hash technology is 
used to determine whether two states are same or not.

For this problem, the DFS algorithm is as follows, where path[] is the 
sequence for steps moving the tile whose number is 0.

void dfs(p, d) // p is the position for the tile whose 
number is 0, and the state with search depth d
{
    if (d>50) return fail;
    if (puz[] is the goal state) output path[] and return;
    (x, y) is the position for the title whose number is 0;                  
    4 directions are enumerated (0≤i≤3):
     {
        (x', y') is the new position for the title whose 
number is 0 moving in direction i and p' is the position 
value;
        if ((x', y') is in the puzzle){
        puz[p] and puz[p'] are exchanged;
        Calculate the state value s for puz[] and the hash 
function h(s);
        if ( in hash table hash[h(s)] there is no state 
whose value is s) {
                path[d]= the value for direction i;    //the 
value for the dth step 
                dfs(p', d+1,);    //recursion for the next 
step
                puz[p] and puz[p'] are exchanged;    //the 
state before the recursion
                path[d] = ‘ ‘;
        }
       }
     }
}



Practice for State Space Search  ◾  661

The main program is as follows:

     Input the initial state for the puzzle puz[], and 
calculate the position value p for the title whose number is 0;
     if (solvable()) dfs(p, 0);    //if the puzzle is 
solvable
         else output "This puzzle is not solvable.";

Solution 2. BFS Algorithm
BFS is to try to find a shortest path. If there exists a path from the initial state 
to the goal state, BFS can find the shortest path from the initial state to the goal 
state. The difference between DFS and BFS is that DFS uses the system stack (the 
stack in a recursion) to store visited states, and BFS uses a queue to store visited 
states.

For this problem, the BFS algorithm is as follows, where ch[][] represents 
states for the puzzle, (x, y) is the position for the title whose number is 0, and str 
is the move sequence.

The initial state st: the input puzzle st.ch[][], the 
initial position for the title whose number is 0 (st.x, 
st.y), and st.str=' ';
if (the puzzle isn't solvable) output "This puzzle is not 
solvable.";
  else { 
            st is added into q;
          while(q isn't empty) {
          the front st for q is removed;
              if (st is the goal state){ output st.str; 
break;};
              Four directions are enumerated (0≤i≤3):
              {
              the title whose number is 0 moves to (x1, y1) 
from (st.x, st.y) in direction i;
              if ((x1, y1) is out of the puzzle) continue;
              st1=st;    //new state st1 
              st1.ch[st1.x][st1.y]=st1.ch[x1][y1]; 
st1.ch[x1][y1]=0;  
              st1.x=x1; st1.y=y1;  
              st1.str+= the value representing direction i;    
              if (there is no state st in the hash table) 
st1 is added into the hash table and q;
              }
          }
       }

When the number of steps is less than 15, BFS and DFS can get the solution 
to the problem quickly. As the number of steps increases, the spent time and 
memory for BFS and DFS will increase.



662  ◾  Algorithm Design Practice for Collegiate Programming

Solution 3: IDA* Algorithm
1.	Heuristic Function

In this problem, the heuristic function is used to restrain the search depth. 
The heuristic function f  *(n)=g*(n)+h*(n), where g*(n) is the minimal number 
of steps moving from the initial puzzle to the current puzzle n; h*(n) is the 
minimal number of steps moving from the current puzzle n to the goal puzzle; 
that is, the sum of Manhattan Distances from all numbers’ current positions 
to their goal positions. The function h*(n) is as follows:

int h( )
{
    int s = 0;
    for (int i = 0; i < 16; ++i){    //each position is 
enumerated
        x is the number at position i;
        if (x == 0) continue;
        s+= abs(i/4 - the row number for x in the goal 
state)+abs(i%4 - the column number for x in the goal state);
    }
    return s;
}

2.	Determine whether the current puzzle is solvable or not under the limited 
search depth.

There is no function to determine repetitions in the IDA* algorithm. In 
IDA* algorithm, each search step can’t move in the opposite direction.

The Boolean function dfs( p, pre, g, maxd) is used to determine whether 
the current puzzle is solvable or not under the limited search depth, where p 
is the position for the title whose number is 0, pre: the last moving direction, 
g is the current search depth, and maxd is the limit for the search depth.

bool dfs(p, pre, g, maxd) 
{
    if(g+h()>maxd)return false;    //the search depth 
will exceed the limit
    if(g == maxd)    //the search depth reaches the 
limit, return the comparison result for the current and 
the goal puzzle
        return memcmp(the current puzzle, the goal 
puzzle, sizeof(the goal puzzle))==0;
    calculate the position (x, y) for the tile whose 
number is 0, that is x=p/4, y=p%4
    Four directions are enumerated (0≤j≤3):
        If (pre+j==3) continue;    //j is the opposite 
direction for the previous move (x', y') is the new 
position for the tile whose number is 0 in direction j 
and its position value is p';



Practice for State Space Search  ◾  663

        if ((x', y')  in the puzzle){  
            the number at position p and the number at 
position p' are exchanged;
            path[g]= the character for direction j;  //the 
character for the gth step
            if(dfs(p', j, g+1, maxd))return true;  //if the 
puzzle is solvable
            the number at position p and the number at 
position p' are exchanged;    //recovering the state 
before the recursion
        }
    }
    return false;
}

3.	The main program.
The above function dfs(p, pre, g, maxd) is the kernel program for the IDA* 

algorithm. Based on that, the main program is as follows:

A puzzle is input, and the position value p for the title 
whose number is 0; 
      if(solvable()){
                  int maxd = 0;    //initialize the 
search depth
                  for(;!dfs(p,-1,0,maxd); ++maxd);  //find 
the solution as the search depth increases 
                  path[maxd]=0,                  
                  output the move sequence path[];
        }
        else  output "This puzzle is not solvable.";

The IDA* algorithm is more efficient than DFS or BFS.

9.4.3  Addition Chains

An addition chain for n is an integer sequence <a0, a1, a2, ..., am> with the following 
four properties:

a0=1
am=n
a0<a1<a2<...<am-1<am

For each k (1≤k≤m) there exist two (not necessarily different) integers i and 
j (0≤i, j ≤k−1) with ak=ai+aj

You are given an integer n. Your job is to construct an addition chain for n with 
minimal length. If there is more than one such sequence, any one is acceptable.



664  ◾  Algorithm Design Practice for Collegiate Programming

For example, <1,2,3,5> and <1,2,4,5> are both valid solutions when you are 
asked for an addition chain for 5.

Input

The input file will contain one or more test cases. Each test case consists of one line 
containing one integer n (1≤n≤100). Input is terminated by a value of zero (0) for n.

Output

For each test case, print one line containing the required integer sequence. Separate 
the numbers by one blank.

  Hint

The problem is a little time-critical, so use proper break conditions where necessary 
to reduce the search space.

Sample Input Sample Output

5
7
12
15
77
0

1  2  4  5
1  2  4  6  7
1  2  4  8  12
1  2  4  5  10  15
1  2  4  8  9  17  34  68  77

Source:	 Ulm Local Contest 1997

IDs for Online Judges: POJ 2248, UVA 529

  Hint

Given an integer n, the problem requires you to construct an addition chain for n 
with minimal length.

Obviously, it is inefficient that only DFS is used. IDA* (DFS + pruning) is 
used to solve the problem. Suppose best is the current length of the addition chain. 
Initially best=∞. In array d[], d[i] is the maximal number of integers that can be 
added into the addition chain after integer i.

The addition chain is constructed from a0=1. In order to make the length of the 
addition chain minimal, each time the maximum that can be added into is 



Practice for State Space Search  ◾  665

considered first. That is, if the length of the addition chain is k+1, and the current 
maximum in the addition chain is ak, then the possible maximum for ak+1 is 
ak+ak=2ak. Therefore, the upper limit for the length of the addition chain after ak is 

extended is k+d[ak]. Therefore, = ≤ ≤
+ ≤ ≤ −




[ ]

0 2 *
1 [2 * ] 1 1

d i
n i n

d i i n
.

The IDA* process solving the problem is as follows:

void DFS(k)    //extend the addition chain from a[k] 
{
   if (k+d[a[k]]>=best) return;    //The minimal addition 
chain can't be generated from a[k], backtracking
   if (a[k]==n)    // The addition chain is generated
    {
      best = k;
      a[]is stored in b[]; ;
      return;
    }
  for (i=k; i>=0; i--)    //Enumerate each pair of a[i] and 
a[j] from a[k] to a[0]
    for (j=k; j>=i; j--)
      {
	     a[k+1]=a[i]+a[j];    // a[k+1] is the sum of a[i] and a[j]
	     if (a[k+1]>a[k] && a[k+1]<=n)  DFS(k+1);    //if a[k+1] 
meets requirements, the addition chain is extended from a[k+1]
      }
}

The main program is as follows:

d[] is constructed;
    best =∞; a[0] = 1; 
    DFS(0);    // the addition chain is extended from a[0]
    Output b[0]…b[best];

9.4.4  Bombs! No, They Are Mines!!

It’s the year 3002. The robots of “ROBOTS ‘R US (R:US)” have taken control 
over the world. You are one of the few people who remain alive only to act as their 
guinea pigs. From time to time, the robots use you to find if they have been able to 
become more intelligent. You, being the smart guy, have always been successful in 
proving to be more intelligent.

Today is your big day. If you can beat the fastest robot in the IRQ2003 land, 
you’d be free. These robots are intelligent. However, they have not been able to 
overcome a major deficiency in their physical design—they can only move in four 
directions: Forward, Backward, Upward, and Downward. And they take one unit 



666  ◾  Algorithm Design Practice for Collegiate Programming

of time to travel one unit of distance. As you have only one chance, you’re planning 
it thoroughly. The robots have left one of the fastest robots to guard you. You’d need 
to program another robot which would carry you through the rugged terrain. A 
crucial part of your plan requires you to find how much time the guard robot would 
need to reach your destination. If you can beat him, you’re through. See Figure 9.15.

We must warn you that the IRQ2003 land is not a pleasant place to roam. The 
R:US have dropped numerous bombs while they invaded the human land. Most 
of the bombs have exploded. Still some of the bombs remain, acting as land mines. 
We have managed to get a map that shows the unsafe regions of the IRQ2003 land; 
unfortunately your guard has a copy of the map, too. We know that at most 40 percent 
of the area can be unsafe. If you are to beat your guard, you’d have to find his fastest 
route long before he finds it.

Input

Input consists of several test cases. Each test begins with two integers R (1≤R≤1000), 
C (1≤C≤1000)—they give you the total number of rows and columns in the grid 
map of the land. Then follow the grid locations of the bombs. It starts with the 
number of rows, (0≤rows≤R) containing bombs. For each of the rows, you’d have 
one line of input. These lines start with the row number, followed by the number 
of bombs in that row. Then you’d have the column locations of that many bombs 
in that row. The test case ends with the starting location (row, column) followed by 
your destination (row, column). All the points in the region are in the range (0,0) 
to (R−1, C−1). Input ends with a test case where R=0 and C=0, and you must not 
process this test case.

Figure 9.15 

S

D
Sample input scenario
S: source, D: destination



Practice for State Space Search  ◾  667

Output

For each test case, print the time the guard robot would take to go from the starting 
location to the destination.

Sample Input Sample Output

10  10
9
0  1  2
1  1  2
2  2  2  9
3  2  1  7
5  3  3  6  9
6  4  0  1  2  7
7  3  0  3  8
8  2  7  9
9  3  2  3  4
0  0
9  9
0  0

18

Source:	 UVA Local and May Monthly Contest (2004)

ID for Online Judge: UVA 10653

  Hint 

Given an R×C grid map of the land, a robot can only move in four directions: 
Forward, Backward, Upward, and Downward. There are bombs in some grids and 
the robot can’t move into the grids. The problem requires you to calculate the short-
est path from the starting location to the destination.

BFS is used to calculate the shortest path. A state is represented as (x, y, s), where 
your current location is (x, y), and the distance from the starting location to (x, y) 
is s; and the visited sequence is represented as Vist[][], where Vist[x][y] is the mark 
that (x, y) is visited.

The process for BFS is as follows:

   The initial state (the starting location, 0) is added into 
the queue;
   Vist[the starting location]=1;
	 while (the queue isn't empty) {
		  The front for the queue p is removed from the queue;
		  4 directions are enumerated (0≤i≤3):



668  ◾  Algorithm Design Practice for Collegiate Programming

		   {   a new state q is generated: the new location (q.x, 
q.y) and the distance q.s(=p.s+1);
if ((q.x, q.y) is in the grid map)&&(! Vist[q.x][q.y])&&( there 
is no bomb at (q.x, q.y)){
				    Vist[q.x][q.y]=1;
         The new state q is added into the queue;
			    }
			    if ((q.x,q.y) is the destination) return q.s;
		  } 
	 }

9.4.5  Jugs

In the movie “Die Hard 3”, Bruce Willis and Samuel L. Jackson were confronted 
with the following puzzle. They were given a three-gallon jug and a five-gallon jug 
and were asked to fill the five-gallon jug with exactly four gallons. This problem 
generalizes that puzzle.

You have two jugs, A and B, and an infinite supply of water. There are three 
types of actions that you can use: (1) you can fill a jug, (2) you can empty a jug, 
and (3) you can pour from one jug to the other. Pouring from one jug to the other 
stops when the first jug is empty or the second jug is full, whichever comes first. For 
example, if A has five gallons and B has six gallons and a capacity of eight gallons, 
then pouring from A to B leaves B full and three gallons in A.

A problem is given by a triple (Ca, Cb, N), where Ca and Cb are the capacities 
of the jugs A and B, respectively, and N is the goal. A solution is a sequence of steps 
that leaves exactly N gallons in jug B. The possible steps are

	 fill A 
	 fill B 
	 empty A 
	 empty B 
	 pour A B 
	 pour B A 
	 success

where “pour A B” means “pour the contents of jug A into jug B”, and “success” 
means that the goal has been accomplished.

You may assume that the input you are given does have a solution.

Input

Input to your program consists of a series of input lines each defining one puzzle. 
Input for each puzzle is a single line of three positive integers: Ca, Cb, and N. 
Ca and Cb are the capacities of jugs A and B, and N is the goal. You can assume 
0<Ca≤Cb and N≤Cb≤1000 and that A and B are relatively prime to one another.



Practice for State Space Search  ◾  669

Output

Output from your program will consist of a series of instructions from the list of the 
potential output lines which will result in either of the jugs containing exactly N gallons 
of water. The last line of output for each puzzle should be the line “success”. Output lines 
start in column 1 and there should be no empty lines nor any trailing spaces.

Sample Input Sample Output

3  5  4
5  7  3

fill B
pour B A
empty A
pour B A
fill B
pour B A
success
fill A
pour A B
fill A
pour A B
empty B
pour A B
success

Source: ACM South Central USA 1997 

ID for Online Judges: POJ 1606, UVA 571

  Hint

There are two methods to solve the problem.

Solution 1. Mathematic method.
An equation ax−by=c is used to represent the problem, where a and b are the 
capacities of the jugs A and B respectively; x and y are the numbers pouring 
water to jugs A and B respectively; and finally c gallons of water is left in jug B.

Each time, first water is poured into the jug with small capacity. Then water 
is poured into the jug with larger capacity. The solution with minimum integers 
is the solution to the problem. The equation can be solved by simulation.

  Initially the two jugs A and B are empty; 
   while (water in jug B isn't N gallons) 
  {
     if (jug B is full){
      empty jug B;



670  ◾  Algorithm Design Practice for Collegiate Programming

      Output "empty B";
      }
   else if (jug A is empty) 
       {
           fill jug A;
           output "fill A";
          }
          else    
          {
            pour water from jug A to jug B;
              jug A is empty;
              if (water in jug B is more than its capacity)
              {
                extra water is poured into jug A;
                jug B is full;
            }
           Output "pour A B";
        }
     }
  Output "success";
 }

Solution 2. BFS
1.	The struct for a vertex p includes:

A state (a, b, opr); where p.a and p.b are the current amount of water in 
jug A and jug B respectively, and p.opr are six actions numbered 0∼5, 
and represent “fill A”, “fill B”, “empty A”, “empty B”, “pour A B”, and 
“pour B A” respectively;

A precursor pointer p.pre pointing to the state generating p. When the 
goal state (a, n, opr) is reached, a series of instructions can be output 
through p.pre:

   void Outpath(p);
    {
       if (p.pre != NULL) Outpath(*(p.pre));
       output the instruction whose index is p.opr;
   }

➀ The visited mark vis[][], where vis[a][b] shows the state that there are a gal-
lons and b gallons water in jug A and jug B respectively has been visited;

2.	States are added into the queue:
Push (&t, h, a, b, opr) is used to add the state (a, b, opr) into the queue, 
where t is the pointer pointing to the rear, h is the pointer pointing to the 
front, and vis[a][b]=1, t++.

3.	BFS is used to calculate a series of instructions



Practice for State Space Search  ◾  671

The initial state p (p.a=p.b=0, p.opr=−1) is added into the 
queue, and the precursor pointer p.pre is set as empty, vis[0]
[0] = 1;
 while (the queue isn't empty)
 {
     p is the front for the queue;
     if (p.b==n)
   {
   Outpath (p)    //output the series of instructions
     output "success";
      return;
   }
   if (!vis[ca][p.b]) Push(t, h, ca, p.b, 0);    //if jug A 
isn't full, fill A
   if (!vis[p.a][cb]) Push(t, h, p.a, cb, 1);    //if jug B 
isn't full, fill B
   if (!vis[0][p.b]) Push(t, h, 0, p.b, 2);    // if jug A 
isn't empty, empty A
   if (!vis[p.a][0]) Push(t, h, p.a, 0, 3);    // if jug B 
isn't full, empty B
   ta=p.a; tb=p.b;
 // pour A B
  if (ta+tb<=cb) {tb+= ta; ta = 0; }   
      else ta-=(cb - tb); tb=cb;
  if (!vis[ta][tb]) Push(t, h, ta, tb, 4);
// pour B A
  if (ta+tb<=ca){ta+=tb; tb=0; }
else{tb-=(ca-ta); ta=ca; };
  if (!vis[ta][tb]) Push(t, h, ta, tb, 5);  
h ++;    //the front is removed from the queue
}

9.4.6  Knight's Tour Problem

You must have heard of the Knight’s Tour problem. In that problem, a knight is 
placed on an empty chess board and you are to determine whether it can visit each 
square on the board exactly once.

Let’s consider a variation of the Knight’s Tour problem. In this problem, a 
knight is place on an infinite plane and it’s restricted to make certain moves. For 
example, it may be placed at (0, 0) and can make two kinds of moves: Denote its 
current place as (x; y), it can only move to (x+1; y+2) or (x+2; y+1). The goal of this 
problem is to make the knight reach a destination position as quickly as possible 
(i.e., make as few moves as possible).

Input

The first line contains an integer T (T<20) indicating the number of test cases.



672  ◾  Algorithm Design Practice for Collegiate Programming

Each test case begins with a line containing four integers: fx fy tx ty (−5000≤fx, 
fy, tx, ty≤5000). The knight is originally placed at ( fx, fy) and (tx, ty) is its destination.

The following line contains an integer m (0<m≤10), indicating how many kinds 
of moves the knight can make.

Each of the following m lines contains two integers mx my (−10≤mx, my≤10; 
|mx|+|my|>0), which means that if a knight stands at (x, y), it can move to (x+mx, y+my).

Output

Output one line for each test case. It contains an integer indicating the least number 
of moves needed for the knight to reach its destination. Output “IMPOSSIBLE” if 
the knight may never gets to its target position.

Sample Input Sample Output

2
0  0  6  6
5
1  2
2  1
2  2
1  3
3  1
0  0  5  5
2
1  2
2  1

3
IMPOSSIBLE

Source:	 ACM 2010 Asia Fuzhou Regional Contest

IDs for Online Judges: POJ 3985, UVA 5098

  Hint

Given an infinite chess board, an initial position and a destination, and some kinds 
of moves the knight can make, you are required to calculate the least number of 
moves for the knight from the initial position to the destination.

The algorithm is achieved by combining BFS and pruning.
The structure for elements in the queue is struct, and contains the knight’s cur-

rent coordinate (x, y); and the distance s, from the knight’s initial coordinate to 
knight’s current coordinate.



Practice for State Space Search  ◾  673

Each time the front of the queue is removed, and m kinds of moves are enumer-
ated. If the knight’s new coordinate (x, y) is legal and isn’t in the queue, then the 
new element q(q.x=x', q.y=y', q.s=p.s+1) is added into the queue, else the branch is 
pruned.

Suppose the longest moving distance max
1

2 2d m m
i m

x yi i{ }( )= +
≤ ≤

; the initial position 

is (sx, sy) and the destination is (tx, ty); a=ty−sy; b=sx−tx; and c=sy×tx−sx×ty.
We analyze cases that the knight’s new coordinate (x, y) are legal or not as 

follows:

Case 1: If the square of the Euclidean distance between (x, y) and the initial 
position (sx, sy) ((x−sx)2+(y−sy)2) isn’t larger than d, then (x, y) is legal;

Case 2: If the square of the Euclidean distance between (x, y) and the destina-
tion (tx, ty) ((x−tx)2+(y−ty)2) isn’t larger than d, then (x, y) is legal;

Case 3: If (x, y) deviates from the initial position (sx, sy), that is, (tx−sx)× 

(x−sx)+(ty−sy)×(y−sy)<0, then (x, y) isn’t legal;
Case 4: If (x, y) deviates from the destination (tx, ty), that is, (sx−tx)×(x−tx)+ 

(sy−ty)×(y−ty)<0, then (x, y) isn’t legal;
Case 5: If the distance between (x, y) and the line segment (sx, sy)→(tx, ty) isn’t 

more than d, that is, (a×x+b×y+c)2/(a2+b2)≤d, then (x, y) is legal; else (x, y) 
isn’t legal.

Therefore, the algorithm based on the above analysis is as follows:

if (case 1) then (x, y) is legal
else if (case 2) then (x, y) is legal
     else if (case 3) then (x, y) isn't legal
           else if (case 4) then (x, y) isn't legal
                else if (case 5) then (x, y) is legal
                      else (x, y) isn't legal;

Hash technology is used to avoid repetitions. The hash function is 
h(x,y)=((x<<15)^y)% 999997+999997)% 999997, where (x<<15)^y) is a 32-digit 
binary number, the first 16 digits is x, the last 16 digits is y, and h(x, y) is a positive 
integer. For each searched (x, y), we search whether there exists (x, y) in the hash 
table head[h(x, y)].

9.4.7  Playing with Wheels

In this problem we will be considering a game played with four wheels. Digits 
ranging from 0 to 9 are printed consecutively (clockwise) on the periphery of each 
wheel. The topmost digits of the wheels form a four-digit integer. For example, in 
Figure 9.16, the wheels form the integer 8056. Each wheel has two buttons associ-
ated with it. Pressing the button marked with a left arrow rotates the wheel one digit 



674  ◾  Algorithm Design Practice for Collegiate Programming

in the clockwise direction and pressing the one marked with the right arrow rotates 
it by one digit in the opposite direction.

The game starts with an initial configuration of the wheels. Suppose that in the 
initial configuration the topmost digits form the integer S1S2S3S4. You will be given 
some (say, n) forbidden configurations Fi1Fi2Fi3Fi4  (1≤i≤n) and a target configura-
tion T1T2T3T4. Your job will be to write a program that can calculate the minimum 
number of button presses required to transform the initial configuration to the 
target configuration by never passing through a forbidden one.

Input

The first line of the input contains an integer N giving the number of test cases to 
follow.

The first line of each test case contains the initial configuration of the wheels 
specified by four digits. Two consecutive digits are separated by a space. The next 
line contains the target configuration. The third line contains an integer n giving 
the number of forbidden configurations. Each of the following n lines contains a 
forbidden configuration.

There is a blank line between two consecutive input sets.

Output

For each test case in the input, print a line containing the minimum number 
of button presses required. If the target configuration is not reachable, then 
print −1.

Figure 9.16 

8

3 52 44 6

5
6

1
0 2 7 8

0
91

8

1 02

93

0 5 6



Practice for State Space Search  ◾  675

Sample Input Sample Output

2
8  0  5  6
6  5  0  8
5
8  0  5  7
8  0  4  7
5  5  0  8
7  5  0  8
6  4  0  8
0  0  0  0
5  3  1  7
8
0  0  0  1
0  0  0  9
0  0  1  0
0  0  9  0
0  1  0  0
0  9  0  0
1  0  0  0
9  0  0  0

14
−1

Source:	 BUET/UVA Occidental (WF Warmup) Contest 1

ID for Online Judge: UVA 10067

  Hint

The problem can be represented as a connected graph, where each four-digit integer 
is represented as a vertex. Because each integer can become eight other integers 
through pressing buttons, the degree for each vertex is 8. In the graph, the weight of 
edges is 1. The initial configuration is as the initial state. And the target configura-
tion is the goal state.

If we press a button marked with a left arrow, the corresponding digit becomes 
(the original digit +1)%10; and if we press a button marked with a right arrow, the 
corresponding digit becomes (the original digit +9)%10.

Because there are many test cases, the offline method can be used. First, the 
graph is constructed. Then, for each test case, vertices for forbidden configurations 
and their edges are deleted from the graph. Finally, the shortest path from the ini-
tial configuration’s vertex to the target configuration’s vertex is calculated by BFS 
or SPFA. If there is such a path, the length of the path is the minimum number of 
button presses required; else the target configuration is not reachable.



http://taylorandfrancis.com


677

Bibliography

	 1.	 Wu Yonghui, Wang Jiande. Data Structure Practice: for Collegiate Programming 
Contest and Education (Second Edition). (Traditional Chinese Version). GOTOP 
Information Inc. 2017.

	 2.	 Wu Yonghui, Wang Jiande. Data Structure Practice: for Collegiate Programming 
Contest and Education. (English Version). CRC Press. 2016.

	 3.	 Wu Yonghui, Wang Jiande. Data Structure Practice: for Collegiate Programming 
Contest and Education (Second Edition). (Simplified Chinese Version). China 
Machine Press. 2016.

	 4.	 Wu Yonghui, Wang Jiande. Programming Strategies Solving Problems: for Collegiate 
Programming Contest and Education. (Simplified Chinese Version). China Machine 
Press. 2015.

	 5.	 Wu Yonghui, Wang Jiande. Programming Strategies Solving Problems: for Collegiate 
Programming Contest and Education. (Traditional Chinese Version). GOTOP 
Information Inc. 2015.

	 6.	 Wu Yonghui, Wang Jiande. Algorithm Design Experiment: for Collegiate 
Programming Contest and Education. (Simplified Chinese Version). China Machine 
Press. 2013.

	 7.	 Wu Yonghui, Wang Jiande. Solutions and Analyses to ACM-ICPC World Finals 
(2004–2011). (Simplified Chinese Version). China Machine Press. 2012.

	 8.	 Wu Yonghui, Wang Jiande. Data Structure Experiment: for Collegiate Programming 
Contest and Education. (Simplified Chinese Version). China Machine Press. 2012.

	 9.	 Wu Yonghui, Wang Jiande. Data Structure Experiment: for Collegiate Programming 
Contest and Education. (Traditional Chinese Version) GOTOP Information Inc. 2012.



http://taylorandfrancis.com


679

Index

A

ad hoc problems
connect the cable wires, 43–44
cow doctor, 38–40
decode the tape, 32–34
defined, 1
factorials, 35–36
find the telephone, 27–28
fractions, 34–35
mechanism analysis, 1–6
Minesweeper, 17–19
parity, 30–31
perfection, 12–13
power, 42–43
prerequisites, 22–23
Rock, Scissors, Paper, 20–22
Save Hridoy, 23–27
Soundex, 16–17
squares, 36–38
statistical analysis, 6–12
stock graph, 31–32
Tic Tac Toe, 19–20
2 the 9s, 28–29
uniform generator, 14–15
WERTYU, 15–16
wine trading, 40–42
you can say 11, 29–30

add all (greedy algorithm), 226–228
analysis, 227
program, 227–228

addition chains (state space search), 663–665
hint, 664–665
IDA* algorithm for, 665

always on the run (dynamic programming), 
313–315

hint, 314–315
anagram, 202–204

hint, 204

ancestor, 408–411
anniversary party (dynamic programming), 

281–284
analysis, 282–283
program, 283–284

annoying painting tool (greedy algorithm), 
249–250

hint, 250
ants (computational geometry), 

530–531
hint, 531

ants (statistical analysis), 6–9
analysis, 7–8
program, 8–9

area, 450–453
analysis, 451
program, 451–453

area (computational geometry), 
535–537

hint, 537
area for union of rectangles, 469–480
area of simple polygons (computational 

geometry), 581–582
hint, 582

art gallery (polar angles), 491–495
analysis, 492–493
program, 493–495

articulation points, 408–420. See also graph 
algorithms

A-sequence (simulation problem), 86–87
hint, 87

Atlantis (sweep line algorithm), 477–480
analysis, 478
program, 478–480

B

back edge, 409
backward search, 592



680  ◾  Index

batch scheduling (dynamic programming), 
331–332, 332–334

hint, 333–334
beauty (farthest pair of points), 508–511

analysis, 509
program, 509–511

Bell numbers, 173–177
biconnected components, 408–420. See also 

graph algorithms
biconnected graph, 418–419
binary apple tree (dynamic programming), 

278–281
analysis, 279–280
program, 280–281

binary search, 240, 591
binary search tree (BST), 252–254, 591
binomial showdown, 160–161, 161

analysis, 161
biorhythms, 123–126

analysis, 125
program, 125–126

bipartite graph, 220–221, 330, 435
Blackbeard the Pirate (traveling salesman 

problem), 439–441
hint, 441

block game (simulation problem), 91–94
hint, 93–94

Bloques , 174–177
analysis, 176
program, 176–177

bounding, 612, 618–619
box of bricks (greedy algorithm), 246–247

hint, 247
brackets sequence (linear dynamic 

programming)
analysis, 262
program, 262–264

branch edge, 409
branching, 606–607
Breadth-First Search (BFS), 614, 656, 661, 

667–668, 670–671
bridge (mechanism analysis), 3–6

analysis, 4–5
program, 5–6

bridge across islands (computational geometry), 
560–561

hint, 561
bridges, 408–420. See also graph algorithms
BST construction (greedy algorithm), 

252–254
hint, 253
program, 253–254

building design (simulation problem), 87–89
hint, 88–89

Burnside’s lemma and, 188–191

C

C looooops, 121–123
analysis, 122
program, 122–123

card magic trick (simulation problem), 82–83
hint, 83

Cartesian coordinates, 231, 232, 462, 462–463, 
502, 548, 574

Catalan numbers, 171–173
catenyms, 385–391

analysis, 387
compound, 386
definition of, 386
program, 388–390

Chinese postman algorithm, 434
Chinese remainder theorem, 120, 125
chocolate box (dynamic programming), 

293–294
hint, 294

cipher (simulation of direct statement), 46–48
analysis, 47
program, 47–48

circle through three points, 462–465
analysis, 463
program, 463–465

circuit, 327–328
circumcenter, 461–462
circumcircle, 461–462, 463
circumference, 503, 571
cliques, 403–404
closed intervals, 428
closed polygon, 564
cola bottle (simulation problem), 79–80

hint, 80
Collatz sequence (simulation problem), 81–82

hint, 82
color (Pólya counting formula), 198–201

analysis, 199–200
program, 200–201

color a tree (greedy algorithm), 235–239
analysis, 236–237
program, 237–239

colored cubes, 211–213
hint, 212–213

combinations, 162–163
analysis, 162
program, 163



Index  ◾  681

combinatorics, 153–213
Bell numbers, 173–177
Catalan numbers, 171–173
defined, 153
enumeration of permutations and 

combinations, 159–177
generating permutations, 153–159
inclusion-exclusion principle, 180–186
pigeonhole principle, 178–180
Pólya counting formula, 186–201
program, 176–177
Stirling numbers, 173–177

common permutation, 201–202
hint, 202

common subsequence (dynamic programming), 
299–300

hint, 300
common substrings (suffix array), 347–351

analysis, 347–348
program, 348–351

completely multiplicative function, 126–127
composite numbers, 99–100, 107, 108
composition of permutations, 143, 186, 187
compound catenyms, 386
computational geometry, 443–589

convex hull, 500–505
cross product, 444–445
dot product, 444
finding the farthest pair of points, 505–511
intersection of half-planes, 481–500
line segment intersection, 453–465
line segments, 443
plans, 443
points, 443
solving polyhedron problems by Euler’s 

polyhedron formula, 465–469
sweep line algorithm, 469–480

congruences and congruence equations, 117–126
biorhythms, 123–126
C looooops, 121–123
Chinese remainder theorem, 120
theorems, 118–120

conjugacy class, 188
connect the cable wires (ad hoc problem), 

43–44
hint, 44

connected components, 408, 418
connected graph, 382, 391, 408, 409, 411, 418, 

675
construction simulation, 72–77

packets, 72–74
paper cutting, 75–77

converse digraph, 633
convex, 564
convex hull, 500–505
convex polygon, 481–483, 485, 490–491, 492, 

503, 506–507, 549, 555–556, 560–
561, 563, 564–565, 568, 571–572

coordinates
Cartesian, 231, 232, 462, 462–463, 502, 

548, 574
defined, 216
discretization, 371
dot product, 444
floating-point, 517
geographic, 514
integer, 392, 446, 515, 526, 530, 546, 565
network, 391–392
orthogonal, 450
planar, 391, 454, 454–459
for points, 444
segment, 369, 430–431
two-dimensional, 443
of vertices, 529, 551, 553

copying book (greedy algorithm)
analysis, 240
program, 239–242, 241–242

count color (segment trees), 423–424
hint, 424

count the factors (number theory problem), 
140–141

hint, 141
coupons, 207–208

hint, 207–208
cow doctor (ad hoc problem), 38–40

hint, 40
crane (segment trees), 429–431

hint, 430–431
cross product, 444–445

D

data structures, 335–441
graph algorithms, 382–420
segment trees, 357–381
suffix arrays, 335–357

decode the tape, 32–34
hint, 34

democracy in danger (greedy algorithm), 
244–246

hint, 246
Depth-First Search (DFS), 618, 618–619, 

649–650, 660–661
derangements, 183



682  ◾  Index

descendants, 408–411
dichotomy, 270
digit primes, 105–107. See also prime numbers

analysis, 106
program, 106–107

digraph, 387
direct statement, simulation by, 63–72
discretization, 371, 470–471, 477
disjoint segments, 374–381, 428–429
divisor, 12–13
dollars (dynamic programming), 264–266

analysis, 265–266
program, 265–266

doors (computational geometry), 532–533
hint, 533

Dora trip (traveling salesman problem), 437–439
hint, 438, 439

dot product, 444–445
doubling algorithm, 335–339. See also suffix 

arrays
dynamic programming (DP), 259–334

linear, 259–278
problem characteristics, 259
with state compression, 284–334
tree-like, 278–284

E

edge, 409
edge vector, 462, 517–518
eight (state space search), 624–632

analysis, 625–627
program, 627–632

Eight Queens Chess Problem, 403
enumeration, 114
enumeration of permutations and combinations, 

159–177
calculating numbers of permutations and 

combinations, 159–171
escape path (state space search), 607–612

analysis, 608–609
program, 610–612

Euclidean algorithm, 113–114, 118
Euclidian distance, 393, 673
Euclidian norms, 472–476
Euclidian space, 443
Euler, Leonhard, 101
Euler circuit, 434–436, 584–585

defined, 382
hint, 435–436, 585

Euler graphs, 382–390. See also graph 
algorithms

Euler phi-function ϕ, 127, 199–200
Eulerian cycle, 387, 434
Eulerian digraph, 387
Eulerian path, 387, 434
Euler’s polyhedron formula, 465–469
Euler’s theorem, 127–128
Eurodiffusion (simulation of direct statement), 

56–63
analysis, 58–60
based on sequence of time intervals, 59
graph for coin dissemination, 59
program, 61–63

evaluating function, 593
exocenter of a triangle (computational 

geometry), 575–577
hint, 576–577

extended Euclidean algorithm, 113–114, 118
extended line, 470, 477

F

factorials (ad hoc problem), 35–36
hint, 36

factorization, 244
factovisors, 145

hint, 145
Factstone benchmark (mechanism analysis), 1–3

analysis, 2–3
program, 3

Farey sequence, 146–147
hint, 146–147

farthest pair of points, 505–511
fast, sorted permutation

analysis, 158
program, 158–159

feng shui (intersection of half-planes), 483–489
analysis, 485
program, 485–489

Fermat-Euler theorem, 127–128
Fermat’s little theorem, 128
15-puzzle problem, 657–663

BFS algorithm, 661
DFS algorithm, 660–661
hint, 658–659
IDA* algorithm, 662–663
solutions, 659–663

fill (state space search), 612–616
analysis, 613–614
program, 614–616

fill the cisterns (computational geometry), 
579–581

hint, 581



Index  ◾  683

find a multiple, 178–180
analysis, 179
program, 179–180

find the telephone (ad hoc problem)
hint, 28

fishing trip (greedy algorithm), 254–258
hint, 256
program, 256–258

fortified forest (computational geometry), 
568–571

hint, 570
forward edge, 409
forward search, 592
fractions (ad hoc problem), 34–35

hint, 35
function run fun (dynamic programming), 

308–309
hint, 309

G

game of connections, 171–173
analysis, 172
program, 172–173

game schedule (simulation by sieve method), 
68–72

analysis, 69–70
program, 70–72

game tree, 642–654
GCD and LCM inverse, 150–151

hint, 151
GCD determinant, 149–150

hint, 149–150
generation function, 266
geometric shapes (computational geometry), 

525–527
hint, 527

Gerg’s cake (number theory problem), 137–138
hint, 138

getting in line (traveling salesman problem), 
391–395

analysis, 393
program, 394–395

goal state, 260, 397, 591–593, 601, 623, 626, 
651–652, 654, 658–659

Goldbach, Christian, 101
Goldbach’s conjecture, 101–102. See also prime 

numbers
Graham’s scan, 501
grandpa’s estate (computational geometry), 

567–568
hint, 568

graph algorithms, 382–420
articulation points, 408–420
biconnected components, 408–420
bridges, 408–420
Euler graphs, 382–390
maximum independent sets, 403–408
traveling salesman problem and 

tournaments, 391–403
graph coloring (maximum independent set), 

404–408
analysis, 405–406
program, 406–408

greatest common divisors (GCD), 113–117
analysis, 115
enumeration method, 114
extended Euclidean algorithm, 114
inverse, 150–151
program, 116–117

greedy algorithms, 215–258
defined, 215
greedy choices based on sorted data, 222–234
Pass-Muraille, 215–219
program, 218–219, 233–234
Tian Ji: horse racing, 219–223
used with other methods to solve 

P-Problems, 234–258
greedy choices, 215

based on sorted data, 222–234
group, 186

H

half-open intervals, 428
half-planes, intersection of, 481–500
Hamilton path, 326–328
Hamiltonian circuit, 391
Hamiltonian graph, 391
Hamiltonian path, 391
help with intervals (segment trees), 426–428

hint, 428
heuristic function, 593, 626
heuristic search, 623
hie with the pie (dynamic programming), 

328–330
hint, 329–330

history grading (dynamic programming), 
270–273

analysis, 272
program, 272–273

horizontally visible segments (segment trees), 
428–429

hint, 429



684  ◾  Index

hotel (segment trees), 375–381
analysis, 376, 376–378
program, 378–381

hotter colder game (polar angles), 496–500
analysis, 496–500

Hufman coding, 215

I

ID codes, 154–157
analysis, 155
program, 156–157

IDA* algorithm, 636–637, 662–663, 665
included angle, 588
inclusion-exclusion principle, 180–186. See also 

combinatorics
independent sets, 403
indeterminate equations and congruence, 

113–126. See also number theory
congruences and congruence equations, 

117–126
greatest common divisors, 113–117

indexing, 607
induced subgraph, 403
initial state, 10–12, 89–90, 260, 397, 439, 

592–593, 601, 602, 614, 623, 626, 
643, 654–655, 658, 661, 671, 675

integer factors, 103
intersecting lines, 458–461

analysis, 459–460
program, 460–461

intersection, 518
hint, 519

intersection of half-planes
on-line algorithm for, 482–489
polar angles, 489–500

intersection point, 204–205, 457–458, 477, 
516, 517–518, 533, 539, 576

intersections, 433
intervals (computational geometry), 514–516

hint, 516
inverse number, 659
irreducible basic fractions, 147–148

hint, 147–148
is bigger smarter? (dynamic programming), 

305–306
islands and bridges (dynamic programming), 

326–328
hint, 327–328

iterations, 14, 278
iterative deepening A* (IDA*) algorithm, 

636–637, 662–663, 665

J

Jaguar King (state space search), 637–642
analysis, 638–640
program, 640–642

Johnny’s trip (Euler graphs), 382–385
analysis, 384
program, 384–385

jugs (state space search), 668–671
BFS algorithm for, 670–671
hint, 669–671
mathematic method for, 669–670

K

Kadj (computational geometry), 521–523
hint, 523

Knight’s Tour problem (state space search), 
671–673

hint, 672–673
Kruskal’s algorithm, 215

L

lattice point, 529
lazy cows (dynamic programming), 300–301

hint, 301
LCM cardinality, 148–149

hint, 148–149
leaf, 280, 283, 325, 357, 359–360, 362, 419, 

652
least common multiple (LCM), 148–149

hint, 148–149
inverse, 150–151

left subtree, 252, 253, 279–280, 359, 362, 366, 
377–381, 472

less prime, 134–135
hint, 134–135

lexicographic order, 153–157, 336
light bulbs (simulation problem), 89–91

hint, 91
line, 526
line of sight (computational geometry), 537–539

hint, 539
line segments, 443. See also computational 

geometry
intersection, 453–465

linear dynamic programming, 259–278. See 
also dynamic programming; tree-like 
dynamic programming

available decision set Dk(sk), 260
brackets sequence, 261–264



Index  ◾  685

decision uk, 260
longest common subsequence, 266–269
longest-increasing subsequence, 269–278
stage k and state sk, 259–260
subset sum, 264–266
successor function and optimization, 260

lining up (computational geometry), 546–548
hint, 547–548

link and pop game (simulation problem), 91–94
hint, 93–94

long long message (suffix array), 420–422
hint, 421–422

longest common prefix, 339–340. See also suffix 
arrays

longest common subsequence (LCS), 266–269, 
301–302

hint, 302
longest match (dynamic programming), 

267–269
analysis, 268
program, 268–269

longest-increasing subsequence (LIS), 269–278
calculation methods, 270
dichotomy, 270
DP method, 270
transforming LIS problem into LCS 

problem, 270

M

Manhattan distance, 662
many a little makes a mickle (dynamic 

programming), 321–323
hint, 323

marks distribution (dynamic programming), 
292–293

hint, 293
Martian mining (dynamic programming), 

315–317
hint, 317

matches game (statistical analysis), 9–12
analysis, 10–12
program, 12

maximal subrectangle (dynamic programming), 
309–311

hint, 310–311
maximum clique, 403, 406
maximum independent sets, 403–408. See also 

graph algorithms
mayor’s posters (segment trees), 369–374

analysis, 370–372
program, 372–374

mechanism analysis, 1–6
bridge, 3–6
Factstone benchmark, 1–3

memorization, 607, 618
memorized search, 278, 309
Mersenne primes, 143. See also prime numbers
mileage (simulation problem), 78–79

hint, 79
milk patterns (suffix array), 422–423

hint, 423
Miller-Rabin primality test, 110
Minesweeper (ad hoc problem), 17–19

hint, 19
minimal coverage (greedy algorithm), 247–248

hint, 248
mobile phone coverage (sweep line algorithm), 

472–476
analysis, 474
program, 475–476

Mondriaan’s dream (dynamic programming), 
288–290

analysis, 289
program, 290

most distant point from sea (computational 
geometry), 554–556

hint, 556
most distant state (state space search), 

654–657
hint, 655–657
program, 656–657

moth eradication (computational geometry), 
558–560

hint, 560
multiple of 11 (ad hoc problem), 29–30

hint, 30
multiplication principle, 205
multiplicative functions, 126–132. See also 

number theory
definitions, 126–127
Euler phi-function ϕ, 127
Euler’s theorem, 127–128
Fermat-Euler theorem, 127–128
Fermat’s little theorem, 128
phi-function formula, 127
primitive root, 128
primitive roots, 130–132
reduced residue system modulo n, 127
relatives, 128–130

multiplicative inverse, 140
musical theme (suffix array), 341–346

analysis, 342–343
program, 343–346



686  ◾  Index

N

nails (computational geometry), 563–564
hint, 564

necklace (graph algorithm), 436–437
hint, 437

necklace of beads (Pólya counting formula), 
191–194

analysis, 192
program, 192–194

network (graph algorithm), 414–417
analysis, 415
program, 415–417

new villa (state space search), 600–606
analysis, 601–602
program, 602–606

9-degree of N, 28–29
NP-Complete Problems, 234
number theory, 12, 99–151

indeterminate equations and congruence, 
113–126

multiplicative functions, 126–132
prime numbers, 99–112

nuts for nuts (dynamic programming), 
284–287

analysis, 285–286
program, 286–287

nuts for nuts (traveling salesman problem), 
396–399

analysis, 396–397
program, 397–399

O

obtuse angle, 444
open intervals, 428
optimal solution, 75, 215, 217, 222, 250, 259–260
optimal substructures, 215
optimization problems, 215, 259, 260, 432
origin, 443, 449–450, 529, 537, 564–567, 566
orthocenter, 576–577

P

package pricing (state space search), 616–623
program, 619–623

packets (construction simulation), 72–74
analysis, 73–74
program, 74

packing rectangles (combinatorics), 163–171
analysis, 164–168
minimal enclosing rectangle, 167–168

program, 168–171
widths and heights for enclosing rectangles, 

164–167
packing rectangles (simulation problem), 

94–97
calculation of area by enumeration, 97
calculation of length and width, 97
hint, 95–97

palindrome (dynamic programming), 302–303
hint, 303

paper cutting (construction simulation), 75–77
program, 77

parallelogram, 445, 449, 457
parity, 30–31

hint, 31
Pass-Muraille (greedy algorithm), 215–219

analysis, 217
hint, 217
program, 218–219

pawn chess (game tree), 650–654
analysis, 651–652
program, 652–654

perfect numbers, 12–13
perfect pth powers

hint, 144
perfection (ad hoc problem), 12–13

hint, 13
permutation group, 186–188
permutations, 205–206. See also combinatorics

hint, 206
permutations, generating, 153–159

all permutations based on lexicographic 
order, 157–159

fast, sorted permutation, 157–159
next permutation based on lexicographic 

order, 153–157
perpendicular bisector, 461, 496
phi-function formula, 127
pick up (line segment intersection), 453–457

analysis, 455
program, 455–457

picnic (computational geometry), 570–572
hint, 572

picture (computational geometry), 577–579
hint, 578–579

pieces of land (polyhedron), 466–469
analysis, 467
program, 467–469

pigeonhole principle, 178–180. See also 
combinatorics

pipe (computational geometry), 523–525
hint, 525



Index  ◾  687

pixel shuffle, 208–210
hint, 210

planar graph, 465, 584
plane, 428, 458–459, 462, 463, 469–471, 474, 

477, 478, 481, 483, 489, 508, 522, 
547, 560, 572, 578–579

plans, 443
playing with wheels (state space search), 

673–675
hint, 675

points, 443. See also computational geometry
points of intersection, 204–205

hint, 205
polar angles, 489–500. See also computational 

geometry
Pólya counting formula, 186–201. See also 

combinatorics
Burnside’s lemma and, 188–191
conjugacy class, 188
defined, 191
group, 186
permutation group, 186–188

polygon, 526
area of, 581–582

polyhedron, 465–469
positive integers, 12–13
postal worker rings once (graph algorithm), 

432–434
hint, 434

power (ad hoc problem)
hint, 42–43

P-Problems, 234
prerequisites (ad hoc problem)

hint, 23
primality test, 109–112
prime factors

hint, 144
prime frequency, 132–133

hint, 132
prime gap, 107–109

analysis, 108
program, 109

prime land (number theory problem), 142–143
hint, 142–143

prime numbers, 99–112. See also number theory
calculating by sieve, 99–109
digit primes, 105–107
Goldbach’s conjecture, 101–102
less prime, 134–135
Mersenne primes, 143
prime factors, 143–144
prime frequency, 132–133

prime gap, 107–109
prime words, 135
primed subsequence, 110–112
sum of different primes, 136–137
summation of four primes, 103–105
testing the primality of large numbers, 

109–112
twin primes, 133–134

prime words, 135
hint, 135

primed subsequence, 110–112
analysis, 111
program, 111–112

primitive roots, 128, 130–132
analysis, 131
program, 131–132

Prim’s algorithm, 215
product of digits (greedy algorithm), 244

hint, 244
programs

add all (greedy algorithm), 227–228
anniversary party (dynamic programming), 

283–284
ants (statistical analysis), 8–9
area, 451–453
art gallery (polar angles), 493–495
Atlantis (sweep line algorithm), 478–480
beauty (farthest pair of points), 509–511
binary apple tree (dynamic programming), 

280–281
biorhythms, 125–126
Bloques, 176–177
brackets sequence (linear dynamic 

programming), 262–264
bridge (mechanism analysis), 5–6
BST construction (greedy algorithm), 

253–254
C looooops, 122–123
catenyms, 388–390
cipher (simulation of direct statement), 

47–48
circle through three points, 463–465
color (Pólya counting formula), 200–201
color a tree (greedy algorithm), 237–239
combinations, 163
combinatorics, 176–177
common substrings (suffix array), 348–351
copying book (greedy algorithm), 239–242, 

241–242
digit primes, 106–107
dollars (dynamic programming), 265–266
eight (state space search), 627–632



688  ◾  Index

programs (continued)
escape path (state space search), 610–612
Eurodiffusion (simulation of direct 

statement), 61–63
Factstone benchmark (mechanism analysis), 

3
fast, sorted permutation, 158–159
feng shui (intersection of half-planes), 

485–489
fill (state space search), 614–616
find a multiple, 179–180
fishing trip (greedy algorithm), 256–258
game of connections, 172–173
game schedule (simulation by sieve method), 

70–72
getting in line (traveling salesman problem), 

394–395
graph coloring (maximum independent set), 

406–408
greatest common divisors (GCD), 116–117
greedy algorithms, 218–219, 233–234
history grading (dynamic programming), 

272–273
hotel (segment trees), 378–381
ID codes, 156–157
intersecting lines, 460–461
Jaguar King (state space search), 640–642
Johnny’s trip (Euler graphs), 384–385
longest match (dynamic programming), 

268–269
matches game (statistical analysis), 12
mayor’s posters (segment trees), 372–374
mobile phone coverage (sweep line 

algorithm), 475–476
Mondriaan’s dream (dynamic 

programming), 290
most distant state (state space search), 

656–657
musical theme (suffix array), 343–346
necklace of beads (Pólya counting formula), 

192–194
network (graph algorithm), 415–417
new villa (state space search), 602–606
nuts for nuts (dynamic programming), 

286–287
nuts for nuts (traveling salesman problem), 

397–399
package pricing (state space search), 

619–623
packets (construction simulation), 74
packing rectangles (combinatorics), 

168–171

paper cutting (construction simulation), 77
Pass-Muraille (greedy algorithm), 218–219
pawn chess (game tree), 652–654
pick up (line segment intersection), 

455–457
pieces of land (polyhedron), 467–469
prime gap, 109
primed subsequence, 111–112
primitive roots, 131–132
radar installation (greedy algorithm), 

233–234
relatives, 129–130
Remmarguts’ date (state space search), 

634–636
Renju game (simulation by sieve method), 

66–67
road construction (graph algorithm), 

419–420
Robocode (simulation of direct statement), 

54–56
robot (state space search), 596–599
rock-paper-scissors (simulation of direct 

statement), 49–50
shoemaker’s problem (greedy algorithm), 

225–226
simple problem with integers (segment 

trees), 367–369
ski (dynamic programming), 274–275
summation of four primes, 104–105
sweet child makes trouble (inclusion-

exclusion principle), 185–186
task sequences (traveling salesman problem), 

401–403
text checking (suffix array), 353–357
Tian Ji: horse racing (greedy algorithm), 

222–223
ticket buying (segment trees), 362–364
Tmutarakan exams (inclusion-exclusion 

principle), 182–183
toral tickets (Pólya counting formula), 

196–198
transmitter, 448–450
wall (convex hull), 504–505
Wavio sequence (dynamic programming), 

277–278
winning move (game tree), 646–650
wooden sticks (greedy algorithm), 230–231

promising teams (dynamic programming), 
320–321

hint, 321
pruning, 607, 649–650

pseudo-random numbers, 14–15



Index  ◾  689

Q

QWERTY keyboard, 15–16

R

radar installation (greedy algorithm), 231–234
analysis, 232
program, 233–234

radius, 446–448, 463, 472, 484, 503, 516, 556
rain collection (computational geometry), 

539–541
hint, 540–541

rank arrays, 335–339
rectangle, 525

area for union of, 469–480
rectangles (simulation problem), 94–97

calculation of area by enumeration, 97
calculation of length and width, 97
hint, 95–97

reduced residue system modulo n, 127
relatively prime integers, 113, 118, 120–121, 

126–129, 668
relatives, 128–130

analysis, 129
program, 129–130

remainder, 86, 179, 639
Remmarguts’ date (state space search), 632–637

analysis, 633–634
program, 634–636

Renju game (simulation by sieve method), 
64–67

analysis, 66
program, 66–67

rivers (dynamic programming), 323–326
hint, 325–326

road accident (computational geometry), 
541–542

constraints, 542
hint, 542

road construction (graph algorithm), 417–420
analysis, 418–419
program, 419–420

robbery (dynamic programming), 311–313
hint, 312–313

Robocode (simulation of direct statement), 
50–56

analysis, 53
program, 54–56

robot (state space search), 594–599, 665–668
analysis, 596–597
BFS algorithm for, 667–668

hint, 667
program, 596–599

Rock, Scissors, Paper (ad hoc problem), 
20–22

hint, 21–22
rock-paper-scissors (simulation of direct 

statement), 48–50
analysis, 49
program, 49–50

rocks (simulation problem), 84–86
hint, 86

rotating caliper, 506, 509, 561, 574–575, 582
rotating scoreboard (computational geometry), 

549–550
hint, 550

round pet in a ground hole (computational 
geometry), 527–529

hint, 528–529

S

Save Hridoy (ad hoc problem), 23–27
hint, 27

scrambled polygon (computational geometry), 
564–567

hint, 567
search space, 591
segment trees, 357–381

calculating the area for union of rectangles, 
470, 472, 477

calculating visible segments, 369–374
constructing, 372
definition of, 357
disjoint segments, 374–381
fundamental operations for, 358–359
subintervals, 364–381
updating and calculating disjoint segments, 

374–381
updating data uniformly and calculating 

data dynamically in subinterval, 
365–369

updating single points in, 360–364
updating subintervals in, 364–381

segments, 511–512
hint, 512

sequential search, 591
Seven Bridges of Konigsberg problem, 432
shoemaker’s problem (greedy algorithm), 

223–226
analysis, 224–225
program, 225–226

sieve + trial division, 110



690  ◾  Index

sieve method, 134
simulation by, 63–72

sieve of Eratosthenes, 99–109
simple problem with integers (segment trees), 

365–369
analysis, 366
program, 367–369

simulation by sieve method
game schedule, 68–72
Renju game, 64–67

simulation of direct statement, 45–63
cipher, 46–48
Eurodiffusion, 56–63
kinds of, 45
Robocode, 50–56
rock-paper-scissors, 48–50

simulation problems, 45–98
construction simulation, 72–77
simulation by sieve method, 63–72
simulation of direct statement, 45–63

ski (dynamic programming), 273–275
analysis, 274
program, 274–275

skyline problem (computational geometry), 
545–546

hint, 546
smallest bounding rectangle (computational 

geometry), 574–575
hint, 574–575

Soundex (ad hoc problem), 16–17
hint, 17

space ant (computational geometry), 
519–521

hint, 521
a spy in the metro (dynamic programming), 

294–297
hint, 296–297

square, 525
squares (ad hoc problems), 36–38

hint, 38
squares (computational geometry), 582–584

hint, 583–584
Stäckel, Paul, 133
stacking boxes (dynamic programming), 

306–308
hint, 308

stages, 259–260, 262, 264, 267, 297
star shape (computational geometry), 

550–552
hint, 552

state, 592, 593
state space, 591–594

state space search, 591–675
defined, 591–592
game tree, 642–654
optimization strategies, 606–607
optimizing, 606–652
state space tree, 592–606

state space tree, 592–606
state transition equation, 274
statistical analysis, 6–12

ants, 6–9
matches game, 9

Stirling numbers, 173–177
stock graph (ad hoc problem)

hint, 32
straight line, 41, 43, 84, 86, 92, 93, 453, 466, 

467, 471, 508, 519, 520, 537, 546, 
570, 571

string morphing (dynamic programming), 
318–320

hint, 320
string to palindrome (dynamic programming), 

317–318
hint, 318

stripies (greedy algorithm), 242–244
hint, 243–244

subgraph, 403, 406, 408
subintervals, 364–381
subset sum, 264–266
successor function, 260, 593, 601–602, 613, 626
suffix, 153–154, 335
suffix arrays, 335–357

application of, 341–357
doubling algorithm, 335–339
longest common prefix, 339–340

sum of different primes, 136–137
hint, 137

summation of four primes, 103–105
analysis, 104
program, 104–105

sweep, 470, 471, 477
sweep line algorithm, 469–480

sweeping in horizontal direction, 477–480
sweeping in vertical direction, 470–477

sweet child makes trouble (inclusion-exclusion 
principle), 183–186

analysis, 184
program, 185–186

T

tangent line, 507, 516
Tarjan algorithm, 415



Index  ◾  691

task sequences (traveling salesman problem), 
399–403

analysis, 401
program, 401–403

text checking (suffix array), 351–357
analysis, 352–353
program, 353–357

throwing cards away (simulation problem), 84
hint, 84

Tian Ji: horse racing (dynamic programming), 
330–332

hint, 331–332
Tian Ji: horse racing (greedy algorithm), 

219–223
analysis, 221–222
program, 222–223

Tic Tac Toe (ad hoc problem), 19–20
hint, 20

ticket buying (segment trees), 360–364
analysis, 361–362
hint, 361
program, 362–364

Titanic (computational geometry), 512–514
hint, 514

Tmutarakan exams (inclusion-exclusion 
principle), 180–183

analysis, 181–182
program, 182–183

toral tickets (Pólya counting formula), 194–198
analysis, 195–196
program, 196–198

tournaments, 391–403
toys (computational geometry), 533–535

hint, 535
transmitter, 446–450

analysis, 447–448
program, 448–450

traveling salesman problem and tournaments, 
391–403. See also graph algorithms

treasure hunt (computational geometry), 
516–518

hint, 517–518
tree

hint, 431–432, 432
tree-cutting (computational geometry), 

586–589
hint, 587–589

tree-like dynamic programming, 278–284. See 
also dynamic programming; linear 
dynamic programming

tri tiling (dynamic programming), 291–292
hint, 291–292

triangle, 526
triangle (computational geometry), 529–530, 

572–573
hint, 530, 573

triathlon (computational geometry), 548–549
hint, 549

troublemakers (greedy algorithm), 250–252
hint, 251–252

twin primes, 133–134
definition, 133
hint, 133–134

2 the 9s, 28–29
hint, 29

typing errors, 15–16

U

uniform generator (ad hoc problem), 14–15
useless tile packers (computational geometry), 

561–563
hint, 563

Uyuw’s concert (computational geometry), 
556–558

hint, 558

V

vacation (dynamic programming), 303–305
hint, 305

vector product, 501, 504
vectors, 444–445, 451, 462, 517–518, 546
vertex, 401, 403–404
vertex cover, 403
video surveillance (computational geometry), 

553–554
hint, 554

visible segments, 369–374

W

a walk through the forest (dynamic 
programming), 297–299

hint, 299
wall (convex hull), 501–505

analysis, 503
program, 504–505

Wavio sequence (dynamic programming), 
275–278

analysis, 276
program, 277–278

WERTYU (ad hoc problem), 15–16
hint, 16



692  ◾  Index

who gets the most candies? (segment trees), 
425–426

hint, 425–426
widget factory (number theory problem), 

138–140
hint, 140

Wild West (computational geometry), 542–545
hint, 544–545

wind trading (ad hoc problem), 40–42
hint, 41–42

winning move (game tree), 643–650
analysis, 644–646
program, 646–650

wooden sticks (greedy algorithm), 228–231
analysis, 229–230
program, 230–231


	Cover

	Half Title

	Title Page
	Copyright Page
	Contents
	Preface
	Author Biographical Information
	1.
Practice for Ad Hoc Problems
	1.1.
Solving Problems by Mechanism Analysis
	1.1.1. Factstone Benchmark
	1.1.2. Bridge

	1.2.
Solving Problems by Statistical Analysis
	1.2.1. Ants
	1.2.2. Matches Game

	1.3.
Problems

	2.
Practice for Simulation Problems
	2.1.
Simulation of Direct Statement
	2.1.1. The Hardest Problem Ever
	2.1.2. Rock-Paper-Scissors Tournament
	2.1.3. Robocode
	2.1.4. Eurodiffusion

	2.2.
Simulation by Sieve Method
	2.2.1. The Game
	2.2.2. Game Schedule Required

	2.3.
Construction Simulation
	2.3.1. Packets
	2.3.2. Paper Cutting

	2.4.
Problems

	3.
Practice for Number Theory
	3.1.
Practice for Prime Numbers
	3.1.1. Calculating Prime Numbers by a Sieve
	3.1.2. Testing the Primality of Large Numbers

	3.2.
Practice for Indeterminate Equations and Congruence
	3.2.1. Greatest Common Divisors and Indeterminate Equations
	3.2.2. Congruences and Congruence Equations

	3.3.
Multiplicative Functions
	3.4.
Problems

	4. Practice for Combinatorics
	4.1.
Generating Permutations
	4.1.1. Generating the Next Permutation Based on Lexicographic Order
	4.1.2. Generating All Permutations Based on Lexicographic Order

	4.2.
Enumeration of Permutations and Combinations
	4.2.1.
Calculating Numbers of Permutations and Combinations
	4.2.2.
Catalan Numbers, Bell Numbers and Stirling Numbers

	4.3. Applications of the Pigeonhole Principle and the Inclusion–Exclusion Principle
	4.3.1.
Applications of the Pigeonhole Principle
	4.3.2.
Applications of the Inclusion–Exclusion Principle

	4.4.
Applications of the Pólya Counting Formula
	4.4.1.
Necklace of Beads
	4.4.2.
Toral Tickets
	4.4.3.
Color

	4.5.
Problems

	5.
Practice for Greedy Algorithms
	5.1.
Practices for Greedy Algorithms
	5.1.1.
Pass-Muraille
	5.1.2.
Tian Ji: The Horse Racing

	5.2.
Greedy-Choices Based on Sorted Data
	5.2.1.
The Shoemaker’s Problem
	5.2.2.
Add All
	5.2.3.
Wooden Sticks
	5.2.4.
Radar Installation

	5.3.
Greedy Algorithms Used with Other Methods to Solve P-Problems
	5.3.1.
Color a Tree
	5.3.2.
Copying Books

	5.4.
Problems

	6. Practice for Dynamic Programming
	6.1.
Linear Dynamic Programming
	6.1.1. Linear Dynamic Programming
	6.1.2. Subset Sum
	6.1.3. Longest Common Subsequence (LCS)
	6.1.4. Longest Increasing Subsequence (LIS)

	6.2.
Tree-Like Dynamic Programming
	6.2.1. Binary Apple Tree
	6.2.2. Anniversary Party

	6.3.
Dynamic Programming with State Compression
	6.3.1. Nuts for Nuts
	6.3.2. Mondriaan’s Dream

	6.4.
Problems

	7.
Practice for Advanced Data Structures
	7.1.
Suffix Arrays
	7.1.1.
Doubling Algorithm Used to Calculate a Rank Array and a Suffix Array
	7.1.2.
The Longest Common Prefix
	7.1.3.
Application of Suffix Array

	7.2.
Segment Trees
	7.2.1.
Segment Trees
	7.2.2.
Updating a Single Point in a Segment Tree
	7.2.3.
Updating a Subinterval in a Segment Tree

	7.3.
Graph Algorithms
	7.3.1.
Euler Graphs
	7.3.2.
Traveling Salesman Problem and Tournaments
	7.3.3.
Maximum Independent Sets
	7.3.4.
Articulation Points, Bridges, and Biconnected Components

	7.4.
Problems

	8.
Practice for Computational Geometry
	8.1.
Points, Line Segments, and Plans
	8.1.1.
Dot Product and Cross Product
	8.1.2.
Line Segment Intersection
	8.1.3.
Solving Polyhedron Problems by Euler's Polyhedron Formula

	8.2.
Calculating the Area for Union of Rectangles by Sweep Line Algorithms
	8.2.1.
Sweeping in the Vertical Direction
	8.2.2.
Sweeping in the Horizontal Direction

	8.3.
Intersection of Half-Planes
	8.3.1.
On-Line Algorithm for Intersection of Half-Planes
	8.3.2.
Polar Angles

	8.4.
Convex Hull and Finding the Farthest Pair of Points
	8.4.1.
Convex Hull
	8.4.2.
Finding the Farthest Pair of Points

	8.5.
Problems

	9.
Practice for State Space Search
	9.1.
Constructing a State Space Tree
	9.1.1.
Robot
	9.1.2.
The New Villa

	9.2.
Optimizing State Space Search
	9.2.1.
Be Wary of Rose
	9.2.2.
Fill
	9.2.3.
Package Pricing
	9.2.4.
Eight
	9.2.5.
Remmarguts’ Date
	9.2.6.
Jaguar King

	9.3.
A Game Tree Used to Solve a Game Problem
	9.3.1.
Find the Winning Move
	9.3.2.
The Pawn Chess

	9.4.
Problems

	References
	Index

