Algorithm Design Practice
for Collegiate
Programming Contests
and Education

Yonghui Wu and Jiande Wang

CRC Press

Taylor & Francis Group

Algorithm Design
Practice for Collegiate
Programming Contests
and Education

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Algorithm Design
Practice for Collegiate
Programming Contests
and Education

by Yonghui Wu
and Jiande Wang

CRC Press
Taylor & Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2019 by Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, an Informa business
No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-1-4987-7663-9 (Hardback)

This book contains information obtained from authentic and highly regarded sources.
Reasonable efforts have been made to publish reliable data and information, but the author
and publisher cannot assume responsibility for the validity of all materials or the consequences
of their use. The authors and publishers have attempted to trace the copyright holders of all
material reproduced in this publication and apologize to copyright holders if permission

to publish in this form has not been obtained. If any copyright material has not been
acknowledged, please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other
means, now known or hereafter invented, including photocopying, microfilming, and
recording, or in any information storage or retrieval system, without written permission from

the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc.
(CCCQ), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit
organization that provides licenses and registration for a variety of users. For organizations
that have been granted a photocopy license by the CCC, a separate system of payment has
been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks,
and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data
A catalog record has been requested for this book

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at

hetp://www.crcpress.com

http://www.copyright.com
http://www.copyright.com
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com

Contents

Preface..ciciiniineininiiininniniiiniiniciiniinietiniiniesisistisissssstestssssssssssesses ix
Author Biographical Informationucoeeenvensensensennnesnesnessesessessensnssennenne xiii
T Practice for Ad Hoc Problemscccevereeursvssessnsrssssssssssssssssssesssssssssssansns 1
1.1 Solving Problems by Mechanism Analysis......c.ceceeerererneinncrcnennen 1
1.1.1 Factstone Benchmark.......cccoveuininieinneinncinncinnccee 1

112 Brid@e coveeeeeeeeiieieeneeereeteeecteee e 3

1.2 Solving Problems by Statistical Analysis......cccooeveeererecnieneencnnenenn 6
L2201 ADES teiiiiiiteeiteette ettt ettt ettt et et e n 6

1.2.2 Matches Game.....cceeuerueieuirieieiesieieieeie et 9

1.3 Problems...ccoiririeiieiieieieieiesese et 12

2 Practice for Simulation Problems........ccoceerersesuesessesnssessesnssessssnssasssnsns 45
2.1 Simulation of Direct Statementc..eeerveveeerrerercrerenenierererereeneenenes 45
2.1.1 The Hardest Problem Evercccccveveceneirinecnneinenennes 46

2.1.2 Rock-Paper-Scissors Tournament.........coceerevveeereereereneennes 48

2.1.3 RoDOCOdE...ciuiiiiiiiiiiiiieeee e 50

2.1.4 Eurodiffusion..c.cocoecerieeinieiereneennieccne e 56

2.2 Simulation by Sieve Method.......cccoueuererieienniiinneinccncceenes 63
22,1 The GaAMIE coveuieeiieeieeeieiieiesie ettt sae s 64

2.2.2 Game Schedule Required.......ccccoeeerinenenincnnincnnenicnne. 68

2.3 Construction SImulationcocceeecererieenenieinenneneneeneeeeseeenes 72
2.3.1 Packets oo 72

2.3.2 Paper CUttingcccvviviiviiiiiiiiiiiiiiicicc s 75

24 Problems....cccoeirieueinieieineeree s 78

3 Practice for Number Theoryccuuiiririsesusrsnnneisisisnsnssssssssesescssnssssens 929
3.1 Practice for Prime NUmDBersc.cccceoimueririnienninieinincncnccneeeens 99
3.1.1 Calculating Prime Numbers by a Sieveccccveurreinncnnnees 99

3.1.2 Testing the Primality of Large Numbers........cccoourueuennnee. 109

3.2 Practice for Indeterminate Equations and Congruence.................. 113
3.2.1 Greatest Common Divisors and Indeterminate Equations ... 113

3.2.2 Congruences and Congruence Equations.........cccoeveuennnnee. 117

<

m Contents

3.3 Multiplicative FUNCHONS.....covereeirieiririeieineeenecseeeeneeeaae 126
3.4 Problems.....ccccciiiiiiiiniciriee e 132
Practice for Combinatorics...... .153
4.1 Generating Permutations..........ccceeereereereireererenerinenneresennerenennenens 153
4.1.1 Generating the Next Permutation Based on
Lexicographic Orderc.coveivrrecnnccnericneeneneiennenenes 153
4.1.2 Generating All Permutations Based on Lexicographic
OFdEr ittt 157
4.2 Enumeration of Permutations and Combinations.........c.ceceeerueneee. 159
4.2.1 Calculating Numbers of Permutations and
CombInationseeeeeriiiereeriiieeeniieee e 159
4.2.2 Catalan Numbers, Bell Numbers and Stirling
INUMDELS .evteeeiiiiiiie et 171
4.3 Applications of the Pigeonhole Principle and the
Inclusion—Exclusion Principle........coceceveneiinineinencincnecncneans 177
4.3.1 Applications of the Pigeonhole Principle.......cc.ccoevrurueunnees 177
4.3.2 Applications of the Inclusion—Exclusion Principle............. 180
4.4 Applications of the Pélya Counting Formula........ccoeveereiennneee. 186
44.1 Necklace of Beads.....cccouveuieereenneinencinnceeeneecees 191
442 Toral TICKers.cooeueeirereirierierieenintceeneeneeese e 194
443 COlOLuiiiiiiriiicinieicinecret e 198
4.5 Problems..c.coeueerieuerinieiirieirecene et 201
Practice for Greedy Algorithms .215
5.1 Practices for Greedy Algorithms.......cccoveveeinieccneccnnccneccnnee 215
5.1.1 Pass-Muraille .oooveveerreennieirneininccenccncceneeeeeenes 216
5.1.2 Tian Ji: The Horse Racing.....c.cccovveevereinnccnnneccneenencnes 219
5.2 Greedy-Choices Based on Sorted Datac.coeveceneecenniecenenccnnnee 223
5.2.1 The Shoemaker’s Problemc..cccocvveivreinnccnniccnnnennes 223
5.2.2 0 Add All .o 226
5.2.3 Wooden Stickscoeeruirieirieieenieieeeieee e 228
5.2.4 Radar Installationcccccvevieinincinineincncncecneee 231
5.3 Greedy Algorithms Used with Other Methods to Solve
P-Problemsccooeuiiviiiiiniiiiiiiincirce e 234
5.3.1 Color a Tree ...cccvueuiirieiiiriciiicieccre s 235
5.3.2 Copying BOOKS ...c.ccevevivirieininiiiiiciiiciceee 239
5.4 Problems. ..o 242
Practice for Dynamic Programming.......ccceeeeseseesessesnssessesnesessessesnsaens 259
6.1 Linear Dynamic Programming..........ccccooviiiiniinniinininnninn, 259
6.1.1 Linear Dynamic Programming.........ccccccoceviviiiniiiniinnincns 259
6.1.2 Subset SUM c.cooviiiiiiiiiicicicee e 264

Contents =

vii

6.1.3 Longest Common Subsequence (LCS)......ccccvueuiiniiuiinnes 266
6.1.4 Longest Increasing Subsequence (LIS)ccccevevviiiiinnnee. 269
6.2 Tree-Like Dynamic Programming..........cccoeeinnuiiincccneinnnenenn, 278
6.2.1 Binary Apple Tree .cocooeoeneneininiciniccnencenceceeiens 278
6.2.2 Anniversary Partyc..cocoocevviririinienenineeeeene 281
6.3 Dynamic Programming with State Compressionc..ceceeeenee. 284
6.3.1 INULS fOr NULS.c.veeeeeriiieirceereceree e 284
6.3.2 Mondriaan’s Dreamcccocveeerenieninenieeneneeneneenenenens 288
6.4 Problems...cccciueieinieieirieee e 291
Practice for Advanced Data Structurescooeeecerscesuessersssesssssesscosases 335
7.1 SUIX ALTAYS .ottt 335
7.1.1 Doubling Algorithm Used to Calculate a Rank Array
and a Suffix Array ...coeeeeveinneeneee e 335
7.1.2 'The Longest Common Prefixccccvevinneinnrccinenccnnnnee. 339
7.1.3 Application of Suffix Arraycocecevevereninenninecnenens 341
7.2 Segment TIees ...cooiviiiiiiiiiiiiiiiicecreee e 357
7.2.1 Segment Trees.....ccvivueciiiinieiniieiricereeeeeeeeeeeeaas 357
7.2.2 Updating a Single Point in a Segment Tree......cccccrvevennnen 360
7.2.3 Updating a Subinterval in a Segment Tree....oeeverrerenennes 364
7.3 Graph Algorithmscccoiiiiiiiiii 382
7.3.1 Euler Graphs......cccccoviiiiiiiiiiniiiiiiies 382
7.3.2 Traveling Salesman Problem and Tournaments................. 391
7.3.3 Maximum Independent Sets.........ccccecuruiuiinininininiiicncnnne. 403
7.3.4 Articulation Points, Bridges, and Biconnected
COIMPONENLS «.nvnerrirreniereieeererteteresreeeresreeesessesenesrensenes 408
74 Problems. ..o 420
Practice for Computational Geometry.... . 443
8.1 DPoints, Line Segments, and Plansc.ccccevveevereinnecnnccnnenene. 443
8.1.1 Dot Product and Cross Product.......ccceververeerienienienennnn 444
8.1.2 Line Segment Intersection........cccccvueueevrieininicininicincnienenn, 453
8.1.3 Solving Polyhedron Problems by Euler’s Polyhedron
Formulaccoocoiviniiiiiiiiiicccc 465
8.2 Calculating the Area for Union of Rectangles by Sweep Line
AlgOrithms ...ceovveiiiiciiciiincec s 469
8.2.1 Sweeping in the Vertical Direction........cccceevveueevrueinennenee. 470
8.2.2 Sweeping in the Horizontal Direction........cccccevvveuirennneee. 477
8.3 Intersection of Half-Planesccoeveverenieinenneninicincniccnens 481
8.3.1 On-Line Algorithm for Intersection of Half-Planes........... 482
8.3.2 Polar Angles...ccoueuiirreiinirieiiinieieineceneeeeeeee s 489

viii ®m Contents

8.4 Convex Hull and Finding the Farthest Pair of Points........c.......... 500
8.4.1 Convex Hulloooviiiiiiiiiiiiieeecee e 500

8.4.2 Finding the Farthest Pair of Points........c.cocccvvueecinninnnes 505

8.5 Problems.....icceiieiiciieeeeeeee e s 511
9 Practice for State Space Search......ccceeerscresnncresncsesnncsesscscsnssnaens 591
9.1 Constructing a State Space Treeccccvevveirienieinincineicneene 592
9.1.1 RODOT i 594

9.1.2 The New Villa...ocooouiiiiiiiieeeeeeeeeeeeeee e 600

9.2 Optimizing State Space Search..........ccccocoveivirininiiiciicinnines 606
9.2.1 Be Wary of ROSE .cveveuerieiiirieieiniciciricceeie e 607

9.2.2 Fill oo 612

9.2.3 Package Pricing......cccccocuecinieininiininiiiinccce 616

T A I 624

9.2.5 Remmarguts’ Date....ccoceeerieuininieininieiinccneieeecee 632

9.2.6 Jaguar King.......cccoviniiiininiiiniiiiiiicincceces 637

9.3 A Game Tree Used to Solve a Game Problem.........cc..ccovveeverennnnn. 642
9.3.1 Find the Winning MoOvecccccvueueeineereneenineeenneneenes 643

9.3.2 The Pawn Chessccuveeveeeeieeeieeeeeeeeeeee et 650

T oY o) 1 s K 654
Bibliographycocciviiiiniinienienienenenenininiininenenesesesessssssssen. 677

Index ...679

Preface

Programming contests are contests solving problems by programming. Starting
in the 1990s, the ACM International Collegiate Programming Contest (ACM-
ICPC) has become a worldwide programming contest. Every year, 6 continents,
over 110 countries, 50,000 students, 5,000 coaches, and 3,000 universities par-
ticipate in ACM-ICPC local contests, preliminary contests, and regional contests
all over the world. Alongside, some international programming contests, such as
Google Code Jam, TopCoder Open Algorithm, Facebook Hacker Cup, Internet
Problem Solving Contest (IPSC), and so on, are held every year. Programmers
from all over the world, in addition to students, can participate in these contests
through the Internet.

Based on these programming contests, programming contests’ problems from
all over the world can be obtained, analyzed, and solved by students. These con-
test problems can be used not only for programming contest training, but also for
education.

In our opinion, not only programming contestants’ ability to solve problems,
but also computer students’ programming skills are based on their programming
knowledge system and programming strategies for solving problems. The program-
ming knowledge system can be summarized as: “Algorithms + Data Structures =
Programs.” It is also the foundation for the knowledge system of computer science
and engineering. Strategies for solving problems are strategies for data modeling and
algorithm design. When data models and algorithms for problems are not standard,
we need to take some strategies to solve these problems.

Based on these facts, we published a series of books, not only for systematic
programming contest training, but also for polishing computer students’ program-
ming skill better, using programming contests problems: Daza Structure Experiment
Jfor Collegiate Programming Contest and Education, Algorithm Design Experiment
Jor Collegiate Programming Contest and Education, and Programming Strategies
Solving Problems in Mainland China. And the traditional Chinese version for
Data Structure Experiment for Collegiate Programming Contest and Education and
Programming Strategies Solving Problems were also published in Taiwan. In 2016,
the first book’s English version Data Structure Practice: for Collegiate Programming
Contest and Education was published by CRC Press.

Algorithm Design Practice for Collegiate Programming Contest and Education is
the English version for Algorithm Design Experiment for Collegiate Programming

ix

X W Preface

Contest and Education. There are 9 chapters and 247 programming contest prob-
lems in this book.

Chapter 1, “Practice for Ad Hoc Problems”, focuses on solving problems that
there are no classical algorithms to solve. There are two methods to solve such
problems: the mechanism analysis method and the statistical analysis method. In
Chapter 2, “Practice for Simulation Problems”, experiments and practices for simu-
lation problems are shown. In problem descriptions, solution procedures or rules are
shown. Simulation problems are solved by implementing rules or simulating solu-
tion procedures. Chapter 3, “Practice for Number Theory”, Chapter 4, “Practice
for Combinatorics”, and Chapter 8, “Practice for Computational Geometry”, intro-
duce the mathematical background for number theory, combinatorics, and com-
putational geometry, respectively, and then show problems solved by mathematical
methods. Greedy algorithms and dynamic programming are used to solve opti-
mization problems. Chapter 5, “Practice for Greedy Algorithms”, and Chapter 6,
“Practice for Dynamic Programming”, introduce greedy algorithms and dynamic
programming respectively, and show problems solved by greedy algorithms and
dynamic programming. Chapter 7, “Practice for Advanced Data Structures’,
describes using suffix arrays, segment trees, and some graph algorithms to solve
problems. Search technologies are fundamental to computer science and technol-
ogy. Chapter 9, “Practice for State Space Search”, describes the implementation of
state space search through solving contest problems.

The features of the book are as follows:

1. The book’s outlines are based on the outlines of algorithms. Programming
contest problems and their analyses and solutions are used as experiments.
For each chapter, there is a “Problems” section to let students solve program-
ming contests’ problems, and hints for these problems are also included.

2. Problems in the book are all selected from the ACM-ICPC regional and
world finals programming contests, universities’ local contests, and online
contests, from 1990 to now.

3. Not only analyses and solutions, or hints to problems are shown, but
also test data for most of the problems are provided. Sources and IDs for
Online Judge for these problems are also provided. This can help readers
polish their programming skills better and more easily. In addition, there
are problems and test data available for download at https://www.crcpress

.com/9781498776639.

The book can be used not only as an experiment book, but also for training for
systematic programming contests.

We appreciate Professors Steven Skiena and Rezaul Chowdhury, from Stony
Brook University; C. Jinshong Hwang, Ziliang Zong, and Hongchi Shi, from Texas
State University; Normaziah Abdul Aziz, from International Islamic University
Malaysia; Abul L. Haque, from North South University; Jiannong Cao, from

https://www.crcpress.com/
https://www.crcpress.com/

Preface m xi

The Hong Kong Polytechnic University; and Rudolf Fleischer, from German
University of Technology in Oman. They provided us platforms in which English
is the native language that improved our manuscript. We also appreciate Miss Jiaqi
Chen, an undergraduate student from the Georgia Institute of Technology, who
reviewed and used several chapters in the manuscript, and pointed out some errors.

Online Judge systems for problems in this book are as follows:

System

Online Judge Systems | Abbreviations Web Sites
Peking University POJ http://poj.org/
Online Judge System
Zhejiang University Z0) http://acm.zju.edu.cn/onlinejudge/
Online Judge System
UVA Online Judge UVA http://uva.onlinejudge.org/
System http:/livearchive.onlinejudge.org/
Ural Online Judge Ural http://acm.timus.ru/
System
SGU Online Judge SGU http://acm.sgu.ru/

If you discover anything you believe to be an error, please contact us through

Yonghui Wu’s email id: yhwu@fudan.edu.cn. Your help is appreciated.

Yonghui Wu, Jiande Wang

June, 2018

http://poj.org/
http://acm.zju.edu.cn/
http://uva.onlinejudge.org/
http://livearchive.onlinejudge.org/
http://acm.timus.ru/
http://acm.sgu.ru/

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Author Biographical
Information

Yonghui Wu, Ph.D., Associate Professor, Fudan University. He acted as the coach
of Fudan University Programming Contest teams from 2001 to 2011. Under his
guidance, Fudan University qualified for ACM-ICPC World Finals every year and
won three medals (bronze medal in 2002, silver medal in 2005, and bronze medal
in 2010) in ACM-ICPC World Finals. Since 2012, he has published a series of books
for programming contest and education in simplified and traditional Chinese and
English. Since 2013, he has given lectures in Oman, Taiwan, HongKong, Macau,
Malaysia, Bangladesh, Mainland China, and the United States for program-
ming contest training. He is the chair of ACM-ICPC Asia Programming Contest
Training Committee now.

Jiande Wang, High School Senior Teacher. He is a famous coach for Olympiad in
Informatics in China. He has published 24 books for programming contests since
1990s. Under his guidance, his students won seven gold medals, three silver med-
als, and two bronze medals in International Olympiad in Informatics for China.

xiii

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Chapter 1

Practice for Ad
Hoc Problems

Ad hoc means “for the special purpose or end presently under consideration.” There
are no classical algorithms that can solve these ad hoc problems. Programmers need to
design specific algorithms to solve ad hoc problems. There are two strategies to design
algorithms for solving ad hoc problems: mechanism analysis and statistical analysis.
To solve an ad hoc problem, we need to see past its appearance and understand
its essence.
In this chapter, two kinds of analyses solving ad hoc problems are shown:

B Mechanism Analysis;
B Statistical Analysis.

1.1 Solving Problems by Mechanism Analysis

Mechanism analysis examines the characteristics and internal mechanisms of an
object to find a mathematical representation of the problem. Therefore, the key to
mechanism analysis is mathematical modeling. Solving problems by mechanism
analysis is a top-down method.

1.1.1 Factstone Benchmark

Amtel has announced that it will release a 128-bit computer chip by 2010, a 256-bit
computer by 2020, and so on, continuing its strategy of doubling the word size every
ten years. (Amtel released a 64-bit computer in 2000, a 32-bit computer in 1990,

1

2 m Algorithm Design Practice for Collegiate Programming

a 16-bit computer in 1980, an 8-bit computer in 1970, and a 4-bit computer, its first,
in 1960.)

Amtel will use a new benchmark—the Factstone—to advertise the vastly
improved capacity of its new chips. The Factstone rating is defined to be the largest
integer 7 such that 7! can be represented as an unsigned integer in a computer word.

Given a year 1960<y<2160, what will be the Factstone rating of Amtel’s most
recently released chip?

Input
There are several test cases. For each test case, there is one line of input containing y.

A line containing 0 follows the last test case.

Output

For each test case, output a line giving the Factstone rating.

Sample Input | Sample Output

1960 3
1981 8
0

Source: Waterloo local 2005.09.24
IDs for Online Judges: POJ 2661, UVA 10916

=

WP

(%
QULC .

J Analysis
For a given year, first the number of bits for the computer in this year is calculated,
and then the largest integer 7 (the Factstone rating) that ! can be represented as an
unsigned integer in a computer word is calculated.

The computer was a 4-bit computer in 1960. Amtel doubles the word size every

Y1960 J
10

ten years. That is, the number of bits for the computer in year Vis K=2 {
The largest unsigned integer for K-bit is 2“~1. If 7! is the largest unsigned integer
not greater than 2“1, then 7 is the Factstone rating in year Y. There are two cal-
culation methods.

Method 1: Calculate 7! directly. This method is slow and easily leads to overflow.
Method 2: Logarithms are used to calculate 7!. Based on the following formula:

log, n!=log, n+log, (n—1)+......+log, 1Slog2(2k—1)<K,

Practice for Ad Hoc Problems m 3

n can be calculated. Initially 7 is 1, repeat i++, and log,i is accumulated until the
sum is larger than K. Then i1 is the Factstone rating,

[
D o

#include <stdio.h>
#include <math.h>

int y,Y,1i,j,m; // Year y
double f,w; // f: the sum of accumulation for log, i
main () {
while (1 == scanf ("%d",&y) && y){ //Input test cases
w = log(4);
for (Y=1960; Y<=y; Y+=10)
w *= 2;
!
i=1; //accumulation log, i until larger than w
f = 0;

while (f < w) {
f += log((double) ++1) ;
}

printf ("%d\n",i-1) ; //Output the Factstone rating

}

if (y) printf("fishy ending %d\n",y) ;

1.1.2 Bridge

Consider that 7 people wish to cross a bridge at night. A group of at most two
people may cross at any time, and each group must have a flashlight. Only one
flashlight is available among the 7 people, so some sort of shuttle arrangement
must be arranged in order to return the flashlight so that more people may
cross.

Each person has a different crossing speed; the speed of a group is determined
by the speed of the slower member. Your job is to determine a strategy that gets all
n people across the bridge in the minimum time.

Input

The first line of input contains 7, followed by 7 lines giving the crossing times for
each of the people. There are not more than 1000 people, and nobody takes more
than 100 seconds to cross the bridge.

4 m Algorithm Design Practice for Collegiate Programming

Output

The first line of output must contain the total number of seconds required for all
n people to cross the bridge. The following lines give a strategy for achieving
this time. Each line contains either one or two integers, indicating which person or
people form the next group to cross. (Each person is indicated by the crossing time
specified in the input. Although many people may have the same crossing time, the
ambiguity is of no consequence.) Note that the crossings alternate directions, as it is
necessary to return the flashlight so that more may cross. If more than one strategy
yields the minimal time, any one will do.

Sample Input Sample Output
4 17
1 12
2 1
5 510
10 2
12

Source: POJ 2573, Z0) 1877, UVA 10037
IDs for Online Judge: Waterloo local 2000.09.30

AR

N tc
\/ Analysis

The strategy that gets all # people across the bridge in the minimum time is: fast
people should return the flashlight to help slow people.

Because a group of at most two people may cross the bridge each time, we solve the
problem by analyzing members of groups. First, 7 people’s crossing times are sorted in
descending order. Suppose that in the current sequence, A is the current fastest person’s
crossing time, B is the current second fastest person’s crossing time, « is the current
slowest person’s crossing time, and & is the current second slowest person’s crossing time.

There are two methods for making the current slowest person and the current
second slowest person to cross the bridge:

Method 1: The fastest person helps the slowest person and the second slowest
person to cross the bridge. The steps are as follows:
Step 1: The fastest person and the slowest person cross the bridge;
Step 2: The fastest person is back;
Step 3: The fastest person and the second slowest person cross the bridge;
Step 4: The fastest person is back.

It takes time 2XA+a+b.

Practice for Ad Hoc Problems m 5

Method 2: The fastest person and the second fastest person help the current
slowest person and the current second slowest person to cross the bridge.
Step 1: The fastest person and the second fastest person cross the bridge;
Step 2: The fastest person is back and returns the flashlight to the slowest

person and the second slowest person;
Step 3: The slowest person and the second slowest person cross the bridge and
give the flashlight to the second fastest person;
Step 4: The second fastest person is back.
It takes time 2XB+A+a.

Each time, we need to compare method 1 and method 2. If (2XA+a+6<2xB+A+a),
then we use method 1, else we use method 2. And each time the current slowest
person and the current second slowest person cross the bridge. Finally, there are
two cases:

Case 1: If there are only two persons who need to cross the bridge, then the two
persons cross the bridge. It takes time B.

Case 2: There are three persons who need to cross the bridge. First, the fastest
person and the slowest person cross the bridge. Then, the fastest person is
back. Finally, the last two persons cross the bridge. It takes time a+A+.

[
D o

#include<iostream>

#include<algorithm>

#include<cstdio>

#include<cstrings>

#include<cstdlib>

#include<cmath>

#include<string>

using namespace std;

int n,1i,j,k,al111111]; //n: the number of persons, al]1: n
people’s crossing times

int ans=0; // ans: the total number of seconds for all n
people to cross the bridge

int main () {

scanf ("%d", &n) ; //Input
for(i=1;i<=n;i++)scanf ("%d",a+1i) ;
if (n==1) { //only 1 person

printf ("$d\n%d\n",al1],al[l]) ;return 0;

}

6 ® Algorithm Design Practice for Collegiate Programming

int nn=n;
sort (a+1,a+n+1) ; //n people’s crossing times are sorted
in descending order
while (n>3) { //calculate the total number of seconds for
all n people to cross the bridge
if(al1]l+aln-1]1<2*a[2]) //Method 1
ans+=a[n]+al[l] *2+a[n-1];
telse{ //Method 2
ans+=al[2]+al[l]l+a[2]+aln];
}
n-=2; //the two slowest persons cross the bridge
1
if (n==2)ans+=al[2]; //only two persons need to cross the
bridge
else ans+=al[ll+al2]+al3]; //three persons need to
cross the bridge
printf ("%d\n",ans) ; //the total number of seconds for
all n people to cross the bridge
n=nn;
while (n>3) //output the strategy for achieving this
time
if(al[1]l+a[n-1]<2*a[2]) //Method 1

printf ("$d%d\n%d\n%d%d\n%d\n",al[1l],aln],all],
all]l,aln-1],al1]);
else //Method 2
printf ("%$d%d\n%d\n%d%d\n%d\n",al1l],al2],al1],
al[n-1],aln]l,al2]);

n-=2; //the two slowest persons cross the bridge
}
if (n==2)printf ("%d %d\n",all],al2]); //only two persons
need to cross the bridge
else //three persons need to cross the bridge
printf ("%d %d\n%d\n3%d %d\n",all],al3],all]l,all],al2]);
return 0;

1.2 Solving Problems by Statistical Analysis

Unlike mechanism analysis, statistical analysis begins with a partial solution to the
problem, and the overall global solution is found based on analyzing the partial
solution. Solving problems by statistical analysis is a bottom-up method.

1.2.1 Ants

An army of ants walk on a horizontal pole of length / cm, each with a constant
speed of 1 cm/s. When a walking ant reaches an end of the pole, it immediately falls
off it. When two ants meet, they turn back and start walking in opposite directions.

Practice for Ad Hoc Problems m 7

We know the original positions of ants on the pole; unfortunately, we do not know
the directions in which the ants are walking. Your task is to compute the earliest
and the latest possible times needed for all ants to fall off the pole.

Input

The first line of input contains one integer giving the number of cases that follow.
The data for each case start with two integer numbers: the length of the pole (in cm)
and 7, the number of ants residing on the pole. These two numbers are followed by
n integers giving the position of each ant on the pole as the distance measured from
the left end of the pole, in no particular order. All input integers are not bigger than
1000000, and they are separated by whitespace.

Output

For each case of input, output two numbers separated by a single space. The first num-
ber is the earliest possible time when all ants fall off the pole (if the directions of their
walks are chosen appropriately), and the second number is the latest possible such time.

Sample Input Sample Output
2 4 8

10 3 38 207

267

214 7

1112 7 13 176 23 191

Source: Waterloo local 2004.09.19
IDs for Online judges: POJ 1852, ZOJ 2376, UVA 10714

W
é\)g Analysis

The upper limit of the number of ants is 1000000. The upper limit of the number
of combinations for ants’ walking is 2'°°°**’. Therefore, the problem can’t be solved
by enumerating ants walking.
First, we analyze the case that a few ants walk on a horizontal pole (Figure 1.1).
In Figure 1.1, when two ants meet, that is, “ Mxes aem ”, they’ll turn back

and start walking in opposite directions, that is, “ as#h sces ” All ants are the
same. Therefore, all ants walk in their original directions no matter whether they
meet or not. There are two values for the time that an ant falls off the pole: the ant
walks to the left, or the ant walks to the right.

8 ®m Algorithm Design Practice for Collegiate Programming

!

3

Aaes mex

§

mer 2o
sem mer cem men
sem cem Moz men

Figure 1.1

Suppose /; is the position of ant 7 on the pole, that is, the distance measured
from the left end of the pole, 1<i<n; little is the earliest possible time when all ants
fall off the pole; and big is the latest possible time when all ants fall off the pole.
Based on these facts, the algorithm is as follows:

little=min{/;, L-1;}, big=max{/;, L-/}.

1<i<n 1<i<n

oY
% Program

#include <stdio.h>

int ¢,big,little,L,1i,3,k,n; //c: number of test cases; L:
the length of the pole; n: number of ants on the pole
main () {
scanf ("%d", &c) ; // input the number of test cases
while (c-- && (2 == scanf ("%d%d",&L,&n))) //Input the

length of the pole and the number of ants on the pole

Practice for Ad Hoc Problems m 9

big = little = 0; //Initialization
for (i=0;i<n;i++) { //Input original positions for
all ants and adjust times
scanf ("%d", &k) ;
if (k > big) big = k; //adjust the earliest
possible time

if (L-k > big) big = L-k;
if (k > L-k) k = L-k; //adjust the latest possible
time
if (k > little) little = k;
!
printf ("%d %d\n",little,big); //Output the result
!
if (¢ != -1) printf("missing input\n") ;
1

1.2.2 Matches Game

Here is a simple game. In this game, there are several piles of matches and two
players. The two players play in turn. In each turn, one can choose a pile and
take away an arbitrary number of matches from the pile (of course, the number of
matches, which is taken away, cannot be zero and cannot be larger than the number
of matches in the chosen pile). If; after a player’s turn, there is no match left, the
player is the winner. Suppose that the two players are all very clear. Your job is to
tell whether the player who plays first can win the game or not.

Input

The input consists of several lines, and in each line there is a test case. At the begin-
ning of a line, there is an integer M (1<M<20), which is the number of piles. Then
come M positive integers, which are not larger than 10000000. These M integers
represent the number of matches in each pile.

Output

For each test case, output “Yes” in a single line, if the player who play first will win;
otherwise output “No.”

Sample Input | Sample Output

2 45 45 No
3369 Yes

Source: POJ Monthly, readchild

ID for Online Judge: POJ 2234

10 ® Algorithm Design Practice for Collegiate Programming

= Analysis

The problem is a Nimm’s Game problem. Cases for the game are analyzed as
follows:

Case 1: There is only one pile of matches. The player who plays first will take
away all matches from the pile and win the game.
Case 2: There are two piles of matches. Numbers of matches in the two piles are

N, and N, respectively.

If Ni#N;, the player who plays first will take away some matches from the
larger pile to make the two piles have the same number of matches. Then,
by mimicking the player who plays second and taking the same number
of matches that he takes, just from the opposite pile, the player who plays
first will win the game.

If N=N,, the player who plays second will take the same number of matches
as the player who plays first takes, just from the opposite pile, and then
the player who plays second will win the game.

Case 3: There are more than two piles of matches.

Each natural number can be represented as a binary number. For example,
5740y=111001), that is, 570=2°+2*+2°+2°. A pile with 57 matches can be regarded
as 4 little piles, a pile with 2° matches, a pile with 2% matches, a pile with 2% matches,
and a pile with 2° matches.

Suppose there are £ piles of matches, £>2, and the numbers of matches in the
k piles are N, IV, , and N, respectively. V; can be represented as a (s+1)-digit
binary number, that is, N=7;...n7, n; is a binary digit, 0</<s, 1<i<k. If the digit
of a binary number is less than s+1, leading zeros are added.

The game state is balanced if myg+7m0+. . 4y is even, i+t +ny is even,
...... , and n+n,+.. +ny, is even, that is, 7,0 XOR 7,9 XOR...XOR 1y, is 0, ny,
XOR 751 XOR...XOR 7, is O, , and 7;, XOR 7,, XOR...XOR 7, is 0; else the
game state is unbalanced. If a player faces an unbalanced state, he can take away
some matches from a pile to make the state a balanced state. And if a player faces a
balanced state, no matter what strategies he takes, the state will become an unbal-
anced state. The final state for the game is that all binary numbers are zero, that is,
the final state is balanced. Therefore, the strategy for winning the game (Bouton’s
Theorem) is as follows:

The player who plays first will win the game if the initial state is unbalanced.
And the player who plays second will win the game if the initial state is
balanced.

Practice for Ad Hoc Problems m 11

For example, there are four piles of matches. There are 7, 9, 12, and 15 matches
in the four piles respectively. 7, 9, 12, and 15 can be represented as binary numbers
0111, 1001, 1100, and 1111. This is shown in the following list.

SizeofaPile | 22=8 | 22=4 | 2'=2 | 2°=1

7 0 1 1 1
9 1 0 0 1
12 1 1 0 0
15 1 1 1 1

Odd | Odd | Even | Odd

The initial state for the game is unbalanced. The player who plays first takes
away some matches from a pile to make the state become a balanced state. There are
many choices. For example, the player who plays first takes away 11 matches from
a pile with 12 matches to make the state become a balanced state. This is shown in
the following list.

SizeofaPile | 22=8 | 2°=4 | 2'=2 | 2°=1
7 0 1 1 1
9 1 0 0 1
121 0 0 0 1
15 1 1 1 1

The method that the player who plays first takes away some matches from a pile
to make the state become a balanced state is to select a row (a pile), and to flip val-
ues of bits in odd columns in the row. After flipping values of bits in odd columns,
the number of matches is less than the original number of matches in the row. The
number of matches that the player who plays first takes away from the correspond-
ing pile is the difference between the original number of matches and the new
number of matches. Then, the player who plays second takes away matches under
a balanced state. The state will become an unbalanced state. And the player who
plays first can make the state balance no matter how the player who plays second
takes away matches. The process is repeated until the player who plays second takes
away some matches under a balanced state last time, and then the player who plays
first can take away all remainder matches.

For the same reason, the player who plays second will win the game when the
initial state is a balanced game.

12 ®m Algorithm Design Practice for Collegiate Programming

Therefore, the algorithm is as follows:

N piles of matches are represented as /N binary numbers. If the initial state is
unbalanced, the player who plays first will win the game, else the player who plays
second will win the game.

oY
%‘Eﬁ Program

include <cstdio>
include <cstring>
include <cstdlib>
include <iostreams>
include <string>
include <cmaths>
include <algorithm>
using namespace std;
int main()

HH H H H HF H

int n;
while (~scanf ("%d", &n)) //number of piles
int a=0,b; //a: result, b: number of matches in the
current pile
for(int i=0;i<n;i++) //input numbers of matches in
all piles
scanf ("%d", &b) ;
a’=b; //XOR operations
}
printf ("$s\n",a?"Yes":"No") ; //if a isn’t balanced,
output “Yes”, else output “No”
1
return 0;

}

1.3 Problems
1.3.1 Perfection

From the article Number Theory in the 1994 Microsoft Encarta: “If 4, b, ¢ are inte-
gers such that 2 = b¢, a is called a multiple of & or of ¢, and & or ¢ is called a divisor
or factor of . If ¢ is not *1, 4 is called a proper divisor of . Even integers, which
include 0, are multiples of 2, for example, —4, 0, 2, 10; an odd integer is an integer
that is not even, for example, =5, 1, 3, 9. A perfect number is a positive integer that
is equal to the sum of all its positive, proper divisors; for example, 6, which equals
1 +2+ 3, and 28, which equals 1 + 2 + 4 + 7 + 14, are perfect numbers. A positive

Practice for Ad Hoc Problems ®m 13

number that is not perfect is imperfect and is deficient or abundant according to
whether the sum of its positive, proper divisors is smaller or larger than the number
itself. Thus, 9, with proper divisors 1, 3, is deficient; 12, with proper divisors 1, 2,
3, 4, 6, is abundant.”

Given a number, determine if it is perfect, abundant, or deficient.

Input

A list of NV positive integers (none greater than 60,000), with 1</N<100. A 0 will
mark the end of the list.

Output

The first line of output should read PERFECTION OUTPUT. The next N lines of
output should list for each input integer whether it is perfect, deficient, or abundant,
as shown in the following example. Format counts: the echoed integers should be
right-justified within the first five spaces of the output line, followed by two blank
spaces, followed by the description of the integer. The final line of output should

read END OF OUTPUT.

Sample Input Sample Output
15 28 6 56 60000 22 | PERFECTION OUTPUT
49 0 15 DEFICIENT

28 PERFECT

6 PERFECT

56 ABUNDANT
60000 ABUNDANT

22 DEFICIENT

496 PERFECT
END OF OUTPUT

Source: ACM Mid-Atlantic 1996
IDs for Online Judges: POJ 1528, ZOJ 1284, UVA 382

\% Hint

First, all proper divisors of the current integer are calculated. Then the sum of all

proper divisors is calculated.

If the current integer > the sum of all proper divisors, then output “DEFICIENT”;
If the currentinteger < the sum of all proper divisors, then output ‘ABUNDANT?;
If the current integer = the sum of all proper divisors, then output “PERFECT”.

14 ®m Algorithm Design Practice for Collegiate Programming

1.3.2 Uniform Generator

Computer simulations often require random numbers. One way to generate pseudo-
random numbers is via a function of the form:

seed (x+1)=[sem’ (x)+S TEP]%MOD where “%” is the modulus operator.

Such a function will generate pseudo-random numbers (seed) between 0 and
MOD-1. One problem with functions of this form is that they will always generate
the same pattern over and over. In order to minimize this effect, selecting the STEP
and MOD values carefully can result in a uniform distribution of all values between
(and including) 0 and MOD-1.

For example, if STEP=3 and MOD=5, the function will generate the series of
pseudo-random numbers 0, 3, 1, 4, 2 in a repeating cycle. In this example, all of
the numbers between and including 0 and MOD-1 will be generated every MOD
iterations of the function. Note that by the nature of the function to generate the
same seed(x+1) every time, seed(x) occurs means that if a function will generate
all the numbers between 0 and MOD-1, it will generate pseudo-random numbers
uniformly with every MOD iteration.

If STEP=15 and MOD=20, the function generates the series 0, 15, 10, 5 (or any
other repeating series if the initial seed is other than 0). This is a poor selection of
STEP and MOD because no initial seed will generate all of the numbers from 0
and MOD-1.

Your program will determine whether choices of STEP and MOD will generate
a uniform distribution of pseudo-random numbers.

Input

Each line of input will contain a pair of integers for STEP and MOD in that order
(1SSTEP,MOD<100000).

Output

For each line of input, your program should print the STEP value right-justified in
columns 1 through 10, the MOD value right-justified in columns 11 through 20,
and either “Good Choice” or “Bad Choice” left-justified starting in column 25.
The “Good Choice” message should be printed when the selection of STEP and
MOD will generate all the numbers between and including 0 and MOD-1 when
MOD numbers are generated. Otherwise, your program should print the mes-
sage “Bad Choice.” After each output test set, your program should print exactly
one blank line.

Practice for Ad Hoc Problems m 15

Sample Input | Sample Output

35 3 5 Good Choice
15 20 15 20 Bad Choice
63923 99999 63923 99999 Good Choice

Source: ACM South Central USA 1996
IDs for Online Judges: POJ 1597, ZO) 1314, UVA 408

“g Hint

Suppose seed; is the i-th pseudo-random number. Based on the problem descrip-
tion, the next pseudo-random number (the (#+1)-th pseudo-random number) is
seed; . =(seedtstep) %o MOD.

From seedy, the function is iterated MOD-1 times. If produced MOD-1 pseudo-
random numbers are all the numbers between 1 and MOD-1, it generates a uni-
form distribution of pseudo-random numbers; else it doesn’t generate a uniform
distribution of pseudo-random numbers.

1.3.3 WERTYU

A common typing error is to place the hands on the keyboard one row to the right
of the correct position (see Figure 1.2). So “Q” is typed as “W” and “J” is typed as
“K” and so on. You are to decode a message typed in this manner.

Input

Input consists of several lines of text. Each line may contain digits, spaces, uppercase
letters (except Q, A, Z), or punctuation shown above (except back-quote [']). Keys
labelled with words (76, BackSp, Control, etc.) are not represented in the input.

Sadzfsfalsfe]a]s] o] o] -] <|Bucksy
o] Qfwl g | |t y|uft]ole| ifaf \]
al sl mEf ol m wf &l i o] e e
2l & el vl el s ol el

Figure 1.2

16 ® Algorithm Design Practice for Collegiate Programming

Output

You are to replace each letter or punctuation symbol by the one immediately to its
left on the QWERTY keyboard shown above. Spaces in the input should be echoed
in the output.

Sample Input Sample Output

O 'S, GOMRYPFSU/ | | AM FINE TODAY.
Source: Waterloo local 2001.01.27

IDs for Online Judges: POJ 2538, ZOJ 1884, UVA 10082

\% Hint

First, the offline method is used to calculate the conversion table based on the key-
board figure. Then, for each letter, the corresponding letter in the conversion table
is output.

1.3.4 Soundex

Soundex coding groups together words that appear to sound alike based on their
. <« » <« » <« » <« » .
spelling. For example, “can” and “khawn”, “con” and “gone” would be equivalent
under Soundex coding.
Soundex coding involves translating each word into a series of digits in which
each digit represents a letter:

1 represents B, F, P, or V

2 represents C, G,], K, Q, S, X, or Z
3 represents D or T

4 represents L

5 represents M or N

6 represents R

The letters A, E, I, O, U, H, W, and Y are not represented in Soundex coding,
and repeated letters with the same code digit are represented by a single instance of
that digit. Words with the same Soundex coding are considered equivalent.

Input

Each line of input contains a single word, all uppercase, less than 20 letters long.

Practice for Ad Hoc Problems m 17

Output
For each line of input, produce a line of outpur giving the Soundex code.
Sample Input Sample Output
KHAWN 25
PFISTER 1236
BOBBY 11

Source: Waterloo local 1999.09.25
IDs for Online Judges: POJ 2608, ZO) 1858, UVA 10260

“g Hint

For each word, letters are transferred into corresponding digits from left to right.
And based on the problem description, letters A, E, I, O, U, H, W, and Y are not
represented in Soundex coding, and repeated letters with the same code digit are
represented by a single instance of that digit.

1.3.5 Minesweeper

The game Minesweeper is played on an 7 by 7 grid. In this grid are hidden 7 mines,
each at a distinct grid location. The player repeatedly touches grid positions. If a
position with a mine is touched, the mine explodes and the player loses. If a position
not containing a mine is touched, an integer between 0 and 8 appears, denoting
the number of adjacent or diagonally adjacent grid positions that contain a mine.
A sequence of moves in a partially played game is illustrated below in Figure 1.3.
Here, 7 is 8, m is 10, blank squares represent the integer 0, raised squares represent
unplayed positions, and the figures resembling asterisks represent mines. The left-
most image represents the partially played game. From the first image to the second,

Minesweeper M E3 B Minesweeper E B # Minesweeper [ME B3

Figure 1.3

18 ® Algorithm Design Practice for Collegiate Programming

the player has played two moves, each time choosing a safe grid position. From the
second image to the third, the player is not so lucky; he chooses a position with a
mine and therefore loses. The player wins if he continues to make safe moves until
only 7 unplayed positions remain; these must necessarily contain the mines.

Your job is to read the information for a partially played game and to print the
corresponding board.

Input

The first line of input contains a single positive integer #<10. The next 7 lines rep-
resent the positions of the mines. Each line represents the contents of a row using
n characters: a period indicates an unmined positon, while an asterisk indicates a
mined position. The next # lines are each 7 characters long: touched positions are
denoted by an x, and untouched positions by a period. The sample input corre-
sponds to the middle section of Figure 1.3.

Output

Your output should represent the board, with each position filled in appropriately.
Positions that have been touched and do not contain a mine should contain an inte-
ger between 0 and 8. If a mine has been touched, all positions with a mine should
contain an asterisk. All other positions should contain a period.

Sample Input | Sample Output
8 001.....
L 0013

...... * 0001

e 00011

........ 00001

........ 00123

..... .. 001.....
R E 00123

eeeee *..

XXX.o..

XXXX.

XXXX.

XXXXX

XXXXX

XXXXX

XXX.ovo

XXXXX

Source: Waterloo local 1999.10.02
IDs for Online Judges: PO]J 2612, ZO) 1862, UVA 10279

Practice for Ad Hoc Problems m 19

\% Hint

Suppose gl7][/] is the matrix for mines, and #ry[7][;] is the touch matrix, 1<7, j<n.
First we need to determine whether a mine is touched or not, that is, whether
there exists such a grid that (y[i]jl=="x'&&¢[i][j/]=="""). The mark mc=

shows whether there is a touched mine or not.

[}

"*' There exists a touched mine.
There is no touched mine.

Then calculate and output the state for every grid (7)) from left to right, and
from top to bottom, 1<z, j<n.

If grid (7)) is touched and doesn’t contain a mine (#ryld][j]== x'&&gl[j]== "),
then the number of adjacent or diagonally adjacent grid positions that contain a
mine x is calculated and is filled into (7)); else (i.e., zrylil[j]=="||gli][j]]=="*"), if grid
(4,§) contains a mine, mc is filled into (7)); else . is filled into (iy).

1.3.6 Tic Tac Toe

Tic Tac Toe is a child’s game played on a 3 by 3 grid. One player, X, starts by plac-
ing an X at an unoccupied grid position. Then the other player, O, places an O at
an unoccupied grid position. Play alternates between X and O until the grid is filled
or one player’s symbols occupy an entire line (vertical, horizontal, or diagonal) in
the grid.

We will denote the initial empty Tic Tac Toe grid with nine dots. Whenever
X or O plays, we fill in an X or an O in the appropriate position. The example in
Figure 1.4 illustrates each grid configuration from the beginning to the end of a
game in which X wins.

Your job is to read a grid and to determine whether or not it could possibly be
part of a valid Tic Tac Toe game. That is, is there a series of plays that can yield this
grid somewhere between the start and end of the game?

Input

The first line of input contains V, the number of test cases. 4N-1 lines follow,
specifying NV grid configurations separated by empty lines.

X. X0 XO XO XO XO XO
0. 0. 00. 00.
X XXX XX XXX

Figure 1.4

20 m Algorithm Design Practice for Collegiate Programming

Output

For each case, print “yes” or “no” on a line by itself, indicating whether or not the
configuration could be part of a Tic Tac Toe game.

Sample Input Sample Output

2 yes
X.0 no

OO.
XXX

OoX
XX.
(0]0]0)

Source: POJ 2361, ZOJ 1908, UVA 10363
IDs for Online Judges: Waterloo local 2002.09.21

“g Hint

Based on the problem description, a configuration for part of a valid Tic Tac Toe
game must satisfy the following properties:

1. The number of Os must be one less than or equal to the number of Xs;

2. If the number of Os is one less than the number of Xs, O doesn’t win the
game;

3. If the number of Os is equal to the number of Xs, X doesn’t win the game.

That is to say, if a configuration isn’t part of a valid Tic Tac Toe game, it must
satisfy the following properties:

1. The number of Os must be larger than the number of Xs; or

2. The number of Os is two less than the number of Xs at least; or

3. Both O and X win the game; or

4. O wins the game; and the number of Os isn’t equal to the number of Xs; or
5. X wins the game; and the number of Os is equal to the number of Xs.

Otherwise, the configuration is part of a valid Tic Tac Toe game.

1.3.7 Rock, Scissors, Paper

Bart’s sister Lisa has created a new civilization on a two-dimensional grid. At the
outset, each grid location may be occupied by one of three life forms: Rocks, Scissors,

Practice for Ad Hoc Problems m 21

or Papers. Each day, differing life forms occupying horizontally or vertically adja-
cent grid locations wage war. In each war, Rocks always defeat Scissors, Scissors
always defeat Papers, and Papers always defeat Rocks. At the end of the day, the
victor expands its territory to include the loser’s grid position. The loser vacates
the position.

Your job is to determine the territory occupied by each life form after # days.

Input

The first line of input contains 7 the number of test cases. Each test case begins
with three integers not greater than 100: 7 and ¢, the number of rows and columns
in the grid, and 7. The grid is represented by the # lines that follow, each with ¢
characters. Each character in the grid is R, S, or P, indicating that it is occupied by
Rocks, Scissors, or Papers respectively.

Output

For each test case, print the grid as it appears at the end of the #th day. Leave an
empty line between the output for successive test cases.

Sample Input Sample Output
2 RRR

331 RRR

RRR RRR

RSR

RRR RRRS

342 RRSP

RSPR RSPR

SPRS

PRSP

Source: PQOJ 2339, ZOJ 1921, UVA 10443
IDs for Online Judges: Waterloo local 2003.01.25

“g Hint

Because the two-dimensional grid is changed at the end of the day, two matrices
are used to represent yesterday’s two-dimensional grid and today’s two-dimensional

22 m Algorithm Design Practice for Collegiate Programming

grid respectively. Today’s two-dimensional grid is calculated based on yesterday’s
two-dimensional grid.

B An ‘R’ will be changed into a ‘P’ if and only if the ‘R’ is adjacent to a ‘P’
in yesterday’s two-dimensional grid. That is, if an ‘R’ is adjacent to a ‘P’ in
yesterday’s two-dimensional grid, then the ‘R’ is changed into ‘P’ in today’s
two-dimensional grid.

B An ‘S’ will be changed into an ‘R’ if and only if the ‘S’ is adjacent to an ‘R’
in yesterday’s two-dimensional grid. That is, if an ‘S’ is adjacent to an ‘R’ in
yesterday’s two-dimensional grid, then the ‘S’ is changed into ‘R’ in today’s
two-dimensional grid.

B A P’ will be changed into an ‘S’ if and only if the ‘P’ is adjacent to an ‘S’
in yesterday’s two-dimensional grid. That is, if a ‘P’ is adjacent to an ‘S’ in
yesterday’s two-dimensional grid, then the ‘P’ is changed into ‘S’ in today’s
two-dimensional grid.

For example,

R
S
P

R
R
R

S
P
R

R
R
R

S
P

U
o
N R
N @~
“ N

U
R
“
N xR
N

U

The grid as it appears at the end of the 7th day is calculated based on the above rules.

1.3.8 Prerequisites?

Freddie the freshman has chosen to take # courses. To meet the degree require-
ments, he must take courses from each of several categories. Can you assure Freddie
that he will graduate, based on his course selection?

Input

Input consists of several test cases. For each case, the first line of input contains
1<k<100, the number of courses Freddie has chosen, and 0<7<100, the number
of categories. One or more lines containing £ four-digit integers follow; each is
the number of a course selected by Freddie. Each category is represented by a line
containing 1<¢<100, the number of courses in the category; 0<r<¢, the minimum
number of courses from the category that must be taken; and the ¢ course numbers

Practice for Ad Hoc Problems m 23

in the category. Each course number is a four-digit integer. The same course may
fulfil several category requirements. Freddie’s selections, and the course numbers in
any particular category, are distinct. A line containing 0 follows the last test case.

Output

For each test case, output a line containing “yes” if Freddie's course selection meets
the degree requirements; otherwise output “no.”

Sample Input Sample Output
32 yes
0123 9876 2222 no

2 1 8888 2222

3 2 9876 2222 7654
32

0123 9876 2222

2 2 8888 2222

3 2 7654 9876 2222
0

Source: Waterloo local 2005.09.24

IDs for Online Judges: POJ 2664, UVA 10919

“g Hint

Suppose ¢; is the number of courses in the i-th category, done; is the set of courses in
the 7-th category, and 7, is the minimum number of courses from the i-th category
that must be taken, 1<i<m.

First, £ courses that Freddie has chosen to take are put into a set zake[].

Then courses that Freddie has chosen to take are analyzed. For courses in the
i-th category, if 7,<|take[1N done,|, the number of courses in the i-th category that
Freddie has chosen to take is larger than or equal to the minimum number of
courses from the i-th category that must be taken, and set the mark yes=true.

Finally, if 1<Qm{ yes;} ==true, then Freddie’s course selection meets the degree

requirements, else Freddie’s course selection doesn’t meet the degree requirements.

1.3.9 Save Hridoy

It would be great if banners with good words could inspire us all. Then we could
make large banners with good words on them to make this world beautiful. With all
good wishes, we will make such a banner today—a banner to save a life', a banner
to save humanity.

24 wm Algorithm Design Practice for Collegiate Programming

In this problem, the program-generated banners will contain the text “SAVE
HRIDOY”. We will make this banner with different text sizes and two possible
types of orientations: horizontal and vertical (see Figure 1.5). As we will make ban-
ners of different size in plain monochrome text, we will use two different ASCII
characters to denote black-and-white pixels. In this process, the smallest possible
banner (font size 1) for us in horizontal orientation is:

kkkkk | kkk ok ok _kkkkk Kk Kk _kkkkk _kkkkk _kkk _ hkkkk _*x__ _*
* L. *...*.*..-*-* * *.*. * * * * * * * *
kkkkk kkkkk Kk Kk _kkk_ kkkkk kkkkk * * * _ * * *
* * * * * * o, *---*-*.* ----- * * * * * *
hkdkkk Kk _ ok k___kkkkk__ _k__ Kk _k__kk_kkkkk _kkk__ _kkkkk _ _k__
Figure 1.5

“*” character and white

You can see that here black pixels are formed with the
pixels are marked with the “” character. In this banner, each character is repre-
sented in a (5 X 5) grid, two consecutive characters in a single word are separated
by a single vertical dotted line, and the two words are separated by three vertical
dotted lines. In the case of vertical banners (of font size 1), two consecutive letters in
a single word are separated by a horizontal dotted line, and two words are separated
by three horizontal dotted lines. Look at the second output for sample input to
know how vertical banners are formed. In the case of a banner of font size 2, each
pixel is represented by a (2 X 2) grid of pixels. So actually a banner of font size two
has double the width and double the height of a banner of font size 1.

Input

The input file contains at most 30 lines of inputs. Each line contains an integer
N (0<N<51). This value of IV denotes the font size and orientation of a banner. Input
is terminated by a line containing a single zero. This line should not be processed.

Output

If N is positive, then you have to draw a banner of horizontal orientation, and if
N is negative, then you have to draw a banner of vertical orientation. The detailed
description of output for these two types of cases is given below:

1. If Nis positive, then produce 5V lines of output. These lines actually draw
the horizontal banner. Two consecutive letters in a word are separated by N
vertical dotted lines. Two words are separated by 3/V vertical dotted lines.

2. If N is negative, then produce 5Lx10+11L lines of output, where L is the abso-
lute value of V. Two consecutive characters in a word are separated by L hori-
zontal dotted lines, and two words are separated by 3L horizontal dotted lines.

Practice for Ad Hoc Problems m 25

After the output of each test case, print two blank lines.

Sample Input

Sample Output

oON =

skokokokok

*

skokokokok

(continued)

26 ® Algorithm Design Practice for Collegiate Programming

Sample Input

Sample Output

kkkokokokskskkokokk sk skskkokokokokskokok
. . . .

coes eses essese sees esesee
kk *%
kek sk skokskokokoskkok ok ok kk sk skskokskokoskskokok ok

k% kk kk kk kk kk Kk kk Kk
k% k% k% k% k% kk
k% *
kk kk
* *
k% k% k% kk kk k%
eseses seeses sseses es sesess sesese sese
kk kok kk kk kek kk
sececses s sesess sese es eses esesesssss cecece

*%

*%
seesee esee

kk kok *; *%

*%
esse oo

kk kok 3k

cseses

kk o kk kk

nca-nca- escene a--.-n**-n-n

**********.-**-o.-.- CXTTTYY II.IIl**********li.I.l**nltlil**tl**tltl****li**
.o eoe o**---o

**********--**-o---- LXTTTYY --o-c-**********----o-**--o---**o-**--o-****--**

Source: UVA Monthly Contest August 2005
ID for Online Judge: UVA 10894

Practice for Ad Hoc Problems m 27

“g Hint

First, the offline method is used to construct a matrix F[][], representing a ban-
ner of horizontal orientation, and a matrix G[][], representing a banner of vertical
orientation (font size 1).

Then, for each test case N, F[][], or G[][] is magnified. If V is positive, then
][] is magnified NV times. That is, a horizontal banner with 5NX61N is produced,

where (7)) is FHZ_NlJ_'— 1:| H]N_1J+ 1] If NV is negative, then G[][] is magni-

fied | V| times. That is, a horizontal banner with 61VX5N is produced, where (i,)) is
o[l 5)
-N -N

1.3.10 Find the Telephone

In some places, it is common to remember a phone number by associating its digits
to letters. In this way, the expression MY LOVE means 69 5683. Of course, there
are some problems, because some phone numbers cannot form a word or a phrase
and the digits 1 and 0 are not associated to any letter.

Your task is to read an expression and find the corresponding phone number
based on the table below. An expression is composed by the capital letters (A-Z),
hyphens (-) and the numbers 1 and 0.

Letters | Number
ABC 2
DEF 3
GHI 4
JKL 5
MNO 6
PQRS 7
TUV 8
WXYZ 9

Input

The input consists of a set of expressions. Each expression is in a line by itself and
has C characters, where 1<C<30. The input is terminated by end of file (EOF).

28 ®m Algorithm Design Practice for Collegiate Programming

Output

For each expression, you should print the corresponding phone number.

Sample Input Sample Output

T-HOME-SWEET-HOME | 1-4663-79338-4663
MY-MISERABLE-JOB 69-647372253-562

Source: UFRN-2005 Contest 1

ID for Online Judge: UVA 10921

“ﬁ Hint

In an expression, characters are analyzed from left to right. If a character is a
hyphen, ‘T, or ‘0’, the character is output directly; else the number that the charac-
ter corresponds to is output.

1.3.11 2 the 9s

A well-known trick to know if an integer Vis a multiple of nine is to compute the sum
S of its digits. If § is a multiple of nine, then so is V. This is a recursive test, and the
depth of the recursion needed to obtain the answer on N is called the 9-degree of V.

Your job is, given a positive number /N, to determine if it is a multiple of nine
and, if it is, its 9-degree.

Input

The input is a file such that each line contains a positive number. A line containing the
number 0 is the end of the input. The given numbers can contain up to 1000 digits.

Output

The output of the program shall indicate, for each input number, if it is a multiple
of nine, and in case it is, the value of its 9-degree. See the sample output for an
example of the expected formatting of the output.

Sample Input Sample Output

9999999999999999999999 999999999999999999999 is a multiple of 9

and has 9-degree 3.

99999999999999999999999999999980 | 9 is a multiple of 9 and has 9-degree 1.

9999999999999999999999999999998 is not
a multiple of 9.

Source: UFRN-2005 Contest 1
ID for Online Judge: UVA 10922

Practice for Ad Hoc Problems m 29

\% Hint

For this problem, the statistical analysis method is used. First, two sample test cases
are analyzed.

1. N=999999999999999999999
a. The first level for the recursion: There are 21 digits for
999999999999999999999.
The sum of 21 digits is 9x21=189;
The second level for the recursion: The sum of three digits for 189 is
14+8+9=18;
The third level for the recursion: The sum of two digits for 18 is 9. The
recursion ends.
Therefore, 999999999999999999999 is a multiple of nine and has
9-degree 3.
2. N=9999999999999999999999999999998
b. The first level for the recursion: There are 31 digits for 99999999999999
99999999999999998. The sum of 31 digits is 30x9+8=278;
The second level for the recursion: The sum of three digits for 278 is
2+7+8=17;
The third level for the recursion: The sum of two digits for 17 is 8. 8 isn’t
a multiple of 9. The recursion ends.

Therefore, 9999999999999999999999999999998 is not a multiple of 9.

The method determining whether a positive number /V is a multiple of nine or
not is a recursive method. And the algorithm can be implemented with the above
method to solve the problem.

1.3.12 You Can Say 11

Your job, given a positive number N, is to determine whether it is a multiple of
eleven.

Input

The input is a file such that each line contains a positive number. A line contain-
ing the number 0 is the end of the input. The given numbers can contain up to
1000 digits.

30 m Algorithm Design Practice for Collegiate Programming

Output

The output of the program shall indicate, for each input number, if it is a multiple
of eleven or not.

Sample Input | Sample Output

112233 112233 is a multiple of 11.
30800 30800 is a multiple of 11.
2937 2937 is a multiple of 11.
323455693 323455693 is a multiple of 11.
5038297 5038297 is a multiple of 11.
112234 112234 is not a multiple of 11.
0

Source: UFRN-2005 Contest 2
ID for Online Judge: UVA 10929

“g Hint

Suppose the given large positive number can be represented as a high precision

number A=ay...4;;. From right to left, sums of odd positions and even posi-

tions for the number are calculated respectively. Then the difference for the two

sums is calculated. If the difference is a multiple of 11 (including 0), that is,
! !

B

ﬂz*i_z ayi1=11*k, then A is a multiple of 11. Otherwise, 4 is not a multiple
=0 =1

of 11.
Another method is to simply shift and mod. A number 4 is divisible by 11 if A
mod 11 is 0. We can shift and mod with primitive types.

1.3.13 Parity

We define the parity of an integer 7 as the sum of the bits in binary representation
computed in modulo two. As an example, the number 21=10101, has three 1s in its
binary representation, so it has parity 3 (mod 2), or 1.

In this problem, you have to calculate the parity of an integer 1</<2147483647.

Input

Each line of the input has an integer /and the end of the input is indicated by a line
where /=0 that should not be processed.

Practice for Ad Hoc Problems m 31

Output

For each integer / in the input, you should print a line “The parity of Bis P (mod 2).”,
where B is the binary representation of /.

Sample Input | Sample Output

1 The parity of 1is 1 (mod 2).
The parity of 10 is 1 (mod 2).

10 The parity of 1010 is 2 (mod 2).

21 The parity of 10101 is 3 (mod 2).

0

Source: UFRN-2005 Contest 2
ID for Online Judge: UVA 10931

“ﬁ Hint

The problem requires you to figure out how many 1’s are in a binary number for the
decimal number they give you. This is most easily done by keeping track of the 1’s
and continuously bitshifting until the number is 0. The constraints are 31 bits of all
I’s 2A31—1, so just an integer will suffice.

1.3.14 Not That Kind of Graph

Your task is to graph the price of a stock over time. In one unit of time, the stock
can cither Rise, Fall, or stay Constant. The stock’s price will be given to you as a
string of R’s, F’s, and C’s. You need to graph it using the characters /* (slash), V
(backslash) and “_’ (underscore).

Input

The first line of input gives the number of cases, N. N test cases follow. Each one
contains a string of at least 1 and at most 50 uppercase characters (R, F, or C).

Output

For each test case, output the line “Case #x:”, where x is the number of the test
case. Then print the graph, as shown in the sample output, including the x- and
y-axes. The x-axis should be one character longer than the graph, and there should
be one space between the y-axis and the start of the graph. There should be no

32 m Algorithm Design Practice for Collegiate Programming

trailing spaces on any line. Do not print unnecessary lines. The x-axis should
always appear directly below the graph. Finally, print an empty line after each

test case.
Sample Input Sample Output
TRCRFCRFFCCRRC Case #1:
| -
| AN
|/ _/

Source: Abednego’s Graph Lovers’ Contest, 2005
ID for Online Judge: UVA 10800

“g Hint

The problem explanation covers the problem with enough detail to solve it without
really needing much insight. We are given a string of characters, each of which
is R (rise), C (constant), or F (fall), and we have to draw the corresponding line.
Just make a 2D matrix of characters and draw to the matrix, and then output
the matrix.

For the problem, the two points should be noted. The stock price does not nec-
essarily start at its minimum. Don’t output spaces at the end of the line.

1.3.15 Decode the Tape

Your boss has just unearthed a roll of old computer tapes. The tapes have holes in
them and might contain some sort of useful information. It falls to you to figure
out what is written on them.

Input

The input will contain one tape.

Output

Output the message that is written on the tape.

Practice for Ad Hoc Problems m 33

Sample Input

Sample Output

| 00 0.000]|
| 000 .000|
| 00 0.00 |
lo. |

| oo .00]|

| 00 0.000|
| oooo. |
|o. |
|ocoo.o0]

| 000 .0 0|
| 00 0.0 0|
| ooo. |

| 0ooo . 00|
o |

| 00 0.000|
| 000 .00 |
| oo .0 0|

| coo.o|
lo. |

| 000 .0 |
|ooo. |

| oo .0 0|
lo. |

| 0o 0.0 |
|oo . o

| 0o00. 0 |
| oooo. of
|o. |

| oo .o |

| 00 0.000|
| oo .000|
| 00.00]

| o.0]

A quick brown fox jumps over the lazy dog.

Source: Abednego’s Mathy Contest 2005

ID for Online Judge: UVA 10878

34 m Algorithm Design Practice for Collegiate Programming

“g Hint

From the sample input, there are 10 characters .. .4 in a line in a tape, where 4, is
leading flag ‘[', 4 is a space, spaces in other positions represent 0, and ‘0’ represents 1.
27 7<i<9

That is, if the i-th is ‘0’, the position represents an integer ;= , . A line
p p g g
2°7" 2<i<5

corresponds to an ASCII code representing a character. The character string is the
message that is written on the tape.

1.3.16 Fractions Again?!

. Lo 1
[t is easy to see that for every fraction in the form = (£>0), we can always find two
positive integers x and y, x2y, such that:

1 1 1

kox y
Now our question is: can you write a program that counts how many such pairs
of x and y there are for any given k2

Input
Input contains no more than 100 lines, each giving a value of £ (0<£<10000).

Output

For each 4, output the number of corresponding (x, y) pairs, followed by a sorted
list of the values of x and y, as shown in the sample output.

Sample Input | Sample Output

2 2

12 12=1/6+1/3
12=1/4+1/4
8

112=1/156 +1/13
112 =1/84+1/14
112=1/60 +1/15
112 =1/48 +1/16
112=1/36+1/18
1/12=1/30+1/20
112 ="1/28 +1/21
112 =1/24+1/24

Source: Return of the Newbies 2005

ID for Online Judge: UVA 10976

Practice for Ad Hoc Problems ®m 35

\% Hint

For a given positive integer 4, find all pairs of positive integers x and y, x>y,

1 11
such that ;=f+f . Obviously #+1<y<2k. For every possible y, check whether
x)
—k 1 k*
the corresponding x is an integer or not. That is, because PR k=2
ky x y—k

(kx9)%(y—k)==0, then x is an integer.

1.3.17 Factorial! You Must be Kidding!!!

Arif has bought a supercomputer from Bongobazar. Bongobazar is a place in Dhaka
where secondhand goods are available. So the supercomputer he bought is also sec-
ondhand and has some bugs. One of the bugs is that the range of unsigned long
integers of this computer for a C/C++ compiler has changed. Now its new lower
limit is 10000 and the upper limit is 6227020800. Arif writes a program in C/C++
which determines the factorial of an integer. The factorial of an integer is defined
recursively as:

Factorial (0)=1
Factorial (1) = nX Factorial (n—1).

Of course, one can manipulate these expressions. For example, it can be
written as:
Factorial ()= nX (n—1) X Factorial (7—2)

This definition can also be converted to an iterative one.

But Arif knows that his program will not behave correctly in the supercom-
puter. You are to write a program which will simulate that changed behavior in a
normal computer.

Input
The input file contains several lines of input. Each line contains a single integer 7.
No integer has more than 6 digits. Input is terminated by end of file.

Output

For each line of input, you should output a single line. This line will contain a single
integer 7! if the value of 7! fits within the unsigned long integer of Arif’s computer.
Otherwise, the line will contain one of the following two words:

Overflow! //(When #! > 6227020800)
Underflow! //(When 7! < 10000)

36 ® Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output

2 Underflow!
10 3628800
100 Overflow!

Source: GWCF Contest 4 - The Decider
ID for Online Judge: UVA 10323

“ﬁ Hint

The concept behind the problem is quite simple: given 7, if 7! is greater than
6227020800, then print “Overflow!™; if 7! is less than 10000, print “Underflow!”;
otherwise print 7!.

Though a negative factorial is normally undefined, this problem stretches the
limit of well-known definitions.

For this problem, we have F(n)=nxF(n—1), and F(0)=1. With some manip-
ulations, for negative factorials, we can get: F(0)=0xF(-1), or F (—1)=$=oo
Continuing with this logic: F(-1)=—1xF(-2), or F(-2)=—F(-1). Similarly,
F(-1)=F(-3)=—F(-2) .

First, the offline method is used to calculate f7]=4!, 8</<13. Then, for each »:

if 7 is between 8 to 13, then print f[#n];
if (7214/|(n<08&8&(—n)%2==1)), then print “Overflow!”;
if (n<7||(n<0&&(—n)%2==0)), then print “Underflow!”.

1.3.18 Squares

A children’s board game consists of a square array of dots that contains lines con-
necting some of the pairs of adjacent dots. One part of the game requires that the
players count the number of squares of certain sizes that are formed by these lines.
For example, in Figure 1.6, there are three squares, two of size 1 and one of size 2.
(The “size” of a square is the number of line segments required to form a side.)

Your problem is to write a program that automates the process of counting all
the possible squares.

Input

The input file represents a series of game boards. Each board consists of a descrip-
tion of a square array of #° dots (Where 2<1<9) and some interconnecting horizontal

Practice for Ad Hoc Problems m 37

Figure 1.6

and vertical lines. A record for a single board with #° dots and m interconnecting
lines is formatted as follows:

Line 1: » the number of dots in a single row or column of the array
Line 2: m the number of interconnecting lines

Each of the next m lines are of one of two types: Hij, indicates a horizontal line
in row i which connects the dot in column j to the one to its right in column j+1;
or Vij, indicates a vertical line in column 7 which connects the dot in row j to the
one below in row j+1.

Information for each line begins in column 1. The end of input is indicated by
end of file. The first record of the sample input below represents the board of the
square above.

Output

For each record, label the corresponding output with “Problem #1”, “Problem #2”,
and so forth. Output for a record consists of the number of squares of each size
on the board, from the smallest to the largest. If no squares of any size exist, your
program should print an appropriate message indicating this. Separate output for
successive input records by a line of asterisks between two blank lines, as shown in
the sample below.

Sample Input | Sample Output

4 Problem #1

16

H11 2 square (s) of size 1
H13 1 square (s) of size 2
H 21

(continued)

38 m Algorithm Design Practice for Collegiate Programming

Sample Input | Sample Output
H23

H32 Problem #2

H 42

H 43 No completed squares can be found.
V11

V21

V22

V23

V32

V41

V42

V43

2

3

H 11

H 21

V21

Source: ACM World Finals 1989
ID for Online Judge: UVA 201

“g Hint

Since N<9, we can simply iterate all the possible squares.

We can think of vertical or horizontal lines as edges between two adjacent
points. After that, we can take a three-dimensional array (say 2[/V][V][2]) to store
the count of horizontal (2[7][7][0]) edges and vertical (a[Z][7][1]) edges. 4[7][;][0] con-
tains the number of horizontal edges at row 7 up to column j. And 4[#][;][1] contains
the number of vertical edges at column j up to row 7. Next you use a O(#°) loop to
find a square. A square of size 1 is found if there is an edge from (, ;) to (7, j+1) and
(i, j+1) to (41, j+1) and (i, j) to (i+1, j) and (i+1, j) to (i+1, j+1). We can get this
just by subtracting the values calculated above.

1.3.19 The Cow Doctor

Texas is the state with the largest number of cows in the United States: accord-
ing to the 2005 report of the National Agricultural Statistics Service, the bovine
population of Texas is 13.8 million. This is higher than the population of the

Practice for Ad Hoc Problems m 39

two runner-up states combined: there are only 6.65 million cows in Kansas and
6.35 million cows in Nebraska.

There are several diseases that can threaten a herd of cows, the most feared
being “Mad Cow Disease” or Bovine Spongiform Encephalopathy (BSE); there-
fore, it is very important to be able to diagnose certain illnesses. Fortunately, there
are many tests available that can be used to detect these diseases.

A test is performed as follows. First, a blood sample is taken from the cow, and
then the sample is mixed with a test material. Each test material detects a certain
number of diseases. If the test material is mixed with a blood sample having any of
these diseases, then a reaction takes place that is easy to observe. However, if a test
material can detect several diseases, then we have no way to decide which of these
diseases is present in the blood sample, as all of them produce the same reaction.
There are materials that detect many diseases (such tests can be used to rule out
several diseases at once), and there are tests that detect only a few diseases (they can
be used to make an accurate diagnosis of the problem).

The test materials can be mixed to create new tests. If we have a test material
that detects diseases A and B, and there is another test material that detects diseases
B and C, then they can be mixed to obtain a test that detects diseases A, B, and
C. This means that if we have these two test materials, then there is no need for a
test material that tests diseases A, B, and C—such a material can be obtained by
mixing these two.

Producing, distributing, and storing many different types of test materials is
very expensive, and in most cases, unnecessary. Your task is to eliminate as many
unnecessary test materials as possible. It has to be done in such a way that if a test
material is eliminated, then it should be possible to mix an equivalent test from
the remaining materials. (“Equivalent” means that the mix tests exactly the same
diseases as the eliminated material, not more, not less.)

Input

The input contains several blocks of test cases. Each case begins with a line con-
taining two integers: the number 1<#<300 of diseases, and the number 1<m<200
of test materials. The next 7 lines correspond to the 7 test materials. Each line
begins with an integer, the number 1<k<300 of diseases that the material can
detect. This is followed by # integers describing the # diseases. These integers are
between 1 and 7.

The input is terminated by a block with 7z=m=0.

Output

For each test case, you have to output a line containing a single integer: the maxi-
mum number of test materials that can be eliminated.

40 wm Algorithm Design Practice for Collegiate Programming

Sample Input | Sample Output
10 5 2
212 4
223

3123
41234

14

37

11

12

13

212

213

232

3123

00

Source: ACM Central Europe 2005
IDs for Online Judges: PO) 2943, UVA 3524

“g Hint by the Problemsetter

The doctor has some test materials. Each test material can test a set of diseases. A
mixture of two test materials gives a new test material that can test diseases for at
least one of the mixed materials tested.

Given is a set of test materials. Determine how many of them are redundant,
i.e., can be obtained by mixing some other test materials.

This problem is pretty straightforward. How can you check whether a given test
material M is redundant? Consider the set S of all other test materials that test a
subset of M’s diseases. M is redundant if and only if the mixture of all materials in
S tests exactly the same set of diseases as M.

It is convenient to represent the materials as bit vectors.

1.3.20 Wine Trading in Gergovia

As you may know from the comic “Asterix and the Chieftain’s Shield”, Gergovia
consists of one street, and every inhabitant of the city is a wine salesman. How does
this economy works? Simple enough: everyone buys wine from other inhabitants
of the city. Every day, each inhabitant decides how much wine he wants to buy or
sell. Interestingly, demand and supply is always the same, so that each inhabitant
gets what he wants.

Practice for Ad Hoc Problems m 41

There is one problem, however: Transporting wine from one house to another
results in work. Since all wines are equally good, the inhabitants of Gergovia don’t
care which persons they are doing trade with; they are only interested in selling or
buying a specific amount of wine. They are clever enough to figure out a way of
trading so that the overall amount of work needed for transports is minimized.

In this problem, you are asked to reconstruct the trading during one day in
Gergovia. For simplicity, we will assume that the houses are built along a straight
line with equal distance between adjacent houses. Transporting one bottle of wine
from one house to an adjacent house results in one unit of work.

Input

The input consists of several test cases.

Each test case starts with the number of inhabitants 7z (2<#<100000). The
following line contains 7 integers @; (~1000<4,<1000). If 2,20, it means that the
inhabitant living in the i-th house wants to buy 4; bottles of wine, otherwise if #,<0,
he wants to sell —4, bottles of wine. You may assume that the numbers 4; sum up
to 0.

The last test case is followed by a line containing 0.

Output

For each test case, print the minimum number of work units needed so that every
inhabitant has his demand fulfilled. You may assume that this number fits into a
signed 64-bit integer (in C/C++ you can use the data type “long long”, or in JAVA
the data type “long”).

Sample Input Sample Output
5 9

5-41-31 9000

6

—1000 —1000 —1000 1000 1000 1000

0

Source: Ulm Local 2006
ID for Online Judge: POJ 2940

“igi Hint by the Problemsetter (http://www.informatik
.uni-ulm.de/acm/Locals/2006/)

This problem is based on the so-called “Earth Mover’s Distance”, which is used to
calculate a measure of similarity between two histograms. In the one-dimensional
case, the following greedy algorithm gives optimal results:

http://www.informatik.uni-ulm.de/
http://www.informatik.uni-ulm.de/

42 m Algorithm Design Practice for Collegiate Programming

Go through the values from left to right, and try to reduce them to 0 by using
greedily the closest values. To get the required linear time complexity, notice that
only values to the right can be used to reduce the current value to 0 (since all values
to the left are already 0). Therefore, we can add the current value to the next value
and add the absolute value to the number of work units needed.

Judges’ test data consists of 25 test cases, and most of them are random-generated.

1.3.21 Power et al.

Finding the exponent of any number can be very troublesome as it grows expo-
nentially. But in this problem you will have to do a very simple task. Given two
non-negative numbers 7 and 7, you have to find the last digit of 7" in the decimal
number system.

Input

The input file contains less than 100000 lines. Each line contains two integers m
and 7 (less than 10'). Input is terminated by a line containing two zeros. This line
should not be processed.

Output

For each set of input, you must produce one line of output, which contains a single

digit. This digit is the last digit of n".

Sample Input | Sample Output

22 4
25 2
00

Source: June 2003 Monthly Contest
IDs for Online Judge: UVA 10515

\% Hint

First, the regularity of the last digit of 8” is analyzed. And through it, the regularity
of the last digit of 7" is obtained.

The last digit of 8' is 8. The last digit of 8" is 4. The last digit of 8 is 2. The last
digit of 8%is 6. The last digit of 8 is 8. The last digit of 8%is 4. That is, there
are four times for one cycle. For example, for 8% because 1998 mod 4=2, the last
digit of 8" is 6.

Practice for Ad Hoc Problems m 43

Likewise, for 2, 3, and 7, there are also four times for one cycle; for 4 and 9,
there are also two times for one cycle; and the last digit of any power of 5 and 6
is itself.

Therefore, the algorithm is as follows:

Suppose the last digit of 7 is k, and the last two digits of # is d. The last digit of

4 d%4==0

m" ans= (F)%10, where p=
d%4d d%4+0

1.3.22 Connect the Cable Wires

Asif is a student of East West University, and he is currently working for the
EWUISP to meet his relatively high tuition fees. One day, as a part of his job, he
was instructed to connect cable wires to NV houses. All the houses lie in a scraight
line. He wants to use only the minimum number of cable wires required to com-
plete his task, such that all the houses receive the cable service. A house can either
get the connection from the main transmission center, or it can get it from a
house to its immediate left or right, provided the latter house is already getting
the service.

You are to write a program that determines the number of different combina-
tions of the cable wires that is possible so that every house receives the service.

Example: If there are two houses, then three combinations are possible, as shown
in Figure 1.7.

Input

Each line of input contains a positive integer N (NV<2000). The meaning of V is
described in the above paragraph. A value of 0 for /V indicates the end of input
which should not be processed.

Figure 1.7 Circles represent the transmission center and the small rectangles
represent the houses.

44 wm Algorithm Design Practice for Collegiate Programming

Output

For each line of input you have to output, on a single line, the number of possible
arrangements. You can safely assume that this number will have less than 1000
digits.

Sample Input Sample Output
1 1

2

3 8

0

Source: The Next Generation - Contest | 2005
ID for Online Judge: UVA 10862

\% Hint

Let fln) be the number of ways to connect the main transmission center and 7
houses. By removing the main transmission center and its cables to the houses,
there will be one or more connected components of houses. Let # be the number
of houses of the rightmost connected component. Then, there are £ ways to con-
nect one cable from the main transmission center to this component, and there are
f{n-k) ways to connect the main transmission center to the rest 7—# houses.

So, there are #Xf{n—k) ways to connect them all. Since the range of 4 is from
1 to 7 inclusive, by setting f{0)=1, we then have f{n)=1xf{n—1)+2xf(n—2)+..+
(n=1)xfQ1)+nxf0). fib(2xn)=fib(n+1)Xfib(n)+fib(n)xf(n—1) (Fibonacci). Therefore,
Sim)=fib(2xn).

Chapter 2

Practice for Simulation
Problems

In the real world, there are many problems that we can solve by simulating their
processes. Such problems are called simulation problems. For these problems, solu-
tion procedures or rules are shown in problem descriptions. Programs must simu-
late procedures or implement rules based on descriptions.

In this chapter, three kinds of simulations are introduced:

B Simulation of Direct Statement;
B Simulation by Sieve Method;
B Construction Simulation.

2.1 Simulation of Direct Statement

For problems for simulation of direct statement, programmers are required to solve
these problems by strictly implementing rules shown in the descriptions of the
problems. Programmers must read such problems carefully, and simulate processes
based on descriptions. A problem for simulation of direct statement becomes harder
as the number of rules increases. It causes the amount of code to increase and
become more illegible.

There are two kinds of simulations of direct statement: simulations based
on a sequence of instructions, and simulations based on a sequence of time
intervals.

45

46 m Algorithm Design Practice for Collegiate Programming

2.1.1 The Hardest Problem Ever

Julius Caesar lived in a time of danger and intrigue. The hardest situation Caesar
ever faced was keeping himself alive. In order to survive, he decided to create one of
the first ciphers. This cipher was so incredibly sound that no one could figure it out
without knowing how it worked.

You are a subcaptain of Caesar’s army. It is your job to decipher the messages
sent by Caesar and provide the text of the messages to your general. The code is
simple. For each letter in a plaintext message, you shift it five places to the right to
create the secure message (i.., if the letter is ‘A, the cipher text would be ‘F’). Since
you are creating plain text out of Caesar’s messages, you will do the opposite:

Ciphertextt ABCDEFGHIJKLMNOPQRSTUVWXYZ
Plain text VW XYZABCDEFGHIJKLMNOPQRSTU

Only letters are shifted in this cipher. Any non-alphabetical character should
remain the same, and all alphabetical characters will be uppercase.

Input

Input to this problem will consist of a (non-empty) series of up to 100 data sets.
Each data set will be formatted according to the following description, and there
will be no blank lines separating data sets. All characters will be uppercase.

A single data set has three components:

1. Start line: A single line, “START™;

2. Cipher message: A single line containing from 1 to 200 characters, inclusive,
comprising a single message from Caesar;

3. End line: A single line, “END”.

Following the final data set will be a single line, “ENDOFINPUT”.

Output

For each data set, there will be exactly one line of output. This is the original mes-
sage by Caesar.

Sample Input Sample Output

START IN WAR, EVENTS OF IMPORTANCE
NS BFW, JAJSYX TK NRUTWYFSH] FWJ ARE THE RESULT OF TRIVIAL

YM] WJXZQY TK YWNANFQ HFZXJX CAUSES

END
START

Practice for Simulation Problems

m 47

Sample Input

Sample Output

N BTZQI WFYMJW GJ KNWXY NS F
QNYYQJ NGJWNFS ANQQFLJ YMFS

I WOULD RATHER BE FIRST IN A
LITTLE IBERIAN VILLAGE THAN

XJHTSI NS WTR)

END

START

IFSLJW PSTBX KZQQ BJQQ YMFY
HFJXFW

NX RTW) IFSLJIWTZX YMFS M]

END

ENDOFINPUT

SECOND IN ROME

CAESAR IS MORE DANGEROUS
THAN HE

DANGER KNOWS FULL WELL THAT

Source: ACM South Central USA 2002
IDs for Online Judges: POJ 1298, ZOJ 1392, UVA 2540

Obviously, the problem is solved by strictly implementing the rule in the problem

description. The rule creating plain text out of Caesar’s messages is as follows:

A letter in the plain text = ‘A+(A letter in the cipher text-"A+21)%26.

oY
o o

#include <iostream>
#include <strings>
using namespace std;
int main()

{
string str; //Caesar's message
int i;
while (cin >> str) //Input Caesar's message
{
cin.ignore (INT MAX, '\n');
if (str == "ENDOFINPUT") break;
getline(cin, str, '\n');
for (1 = 0; 1 < str.length(); i++) // The rule
creating plain text
if (isalpha(str[il))
str[i] = 'A' + (str[i] - 'A' + 21) % 26;

cout << str << endl;
Caesar

// Output the original message by

48 m Algorithm Design Practice for Collegiate Programming

cin >> str; //Next Caesar's message

}

return 0;

}

2.1.2 Rock-Paper-Scissors Tournament

Rock-paper-scissors is a game for two players, A and B, who each choose, indepen-
dently of the other, one of rock, paper, or scissors. A player choosing paper wins over
a player choosing rock; a player choosing scissors wins over a player choosing paper; a
player choosing rock wins over a player choosing scissors. A player choosing the same
thing as the other player neither wins nor loses.

A tournament has been organized in which each of 7 players plays k rock-paper-

scissors games with each of the other players— 4 nn=1) games in total. Your job is
2

) w .
to compute the win average for each player, defined as T where w is the number
w+

of games won and / is the number of games lost by the player.

Input

Input consists of several test cases. The first line of input for each case contains
1<#<100, 1<k<100 as defined above. For each game, a line follows containing p,,
my, Pay My. 15p<n and 1<p,<n are distinct integers identifying two players; m, and
m, are their respective moves (“rock”, “scissors”, or “paper”). A line containing 0
follows the last test case.

Output

Output one line each for player 1, player 2, and so on, through player #, giving the
player’s win average rounded to three decimal places. If the win average is unde-
fined, output “-”. Output an empty line between cases.

Sample Input Sample Output
24 0.333

1 rock 2 paper 0.667

1 scissors 2 paper

1 rock 2 rock 0.000

2 rock 1 scissors 1.000

21

1 rock 2 paper

0

Source: Waterloo local 2005.09.17
IDs for Online Judges: POJ 2654, UVA 10903

Practice for Simulation Problems m 49

This is a problem for simulation of direct statement. In the problem description, a
player choosing paper wins over a player choosing rock; a player choosing scissors wins
over a player choosing paper; and a player choosing rock wins over a player choosing
scissors. A player choosing the same thing as the other player neither wins nor loses. A
tournament has been organized in which each of 7 players plays £ rock-scissors-paper
games with each of the other players—km games in total. For each test case,
2
cases are input one by one; and for each player, the number of games won and the
number of games lost are accumulated. Finally, the win average for each player is cal-
culated. For a player, if the number of games won and the number of games lost are

all 0, then the win average is undefined; else the win average for the player is

.«
% Program

#include <stdio.h>
#include <string.h>
int w([200], 1[200]; //For player i, the number of games won
wl[i]l, and the number of games lost 1[i]
int pl,p2,1i,j,k,m,n; // n players, m test cases, k games
for each player, pl and p2 play a game
char m1[10], m2[10]; //player pl chooses ml[]; player p2
chooses m2[]
main () {

for (m=0; l<=scanf ("%d%d",&n,&k)&& n; m++) {//n players
play k rock-scissors-paper games with each of the other

w+!

players
if (m) {
printf ("\n") ;
memset (w, 0, sizeof (w)) ; //initialization
memset (1,0,sizeocf (1)) ;
!

for (i=0; i<k*n*(n-1)/2;i++){//Input players and moves
scanf ("%$d%s%d%s", &pl,ml, &p2,m2) ;
if (!strcmp(ml,"rock") && !strcmp(m2,"scissors") ||
Istrcmp (ml, "scissors") && !strcmp(m2,"paper") ||
Istrcmp (ml, "paper") && !strcmp(m2,"rock"))
wlpll++; 1[p2]++; //pl wins and p2 loses

50 m Algorithm Design Practice for Collegiate Programming

if (!strcmp(m2,"rock") && !strcmp(ml,"scissors") ||
Istrcmp (m2, "scissors") && !strcmp(ml, "paper") ||
Istrcmp (m2, "paper") && !strcmp(ml,"rock"))
wlp2]l++; 1l[pll++; //p2 wins and pl loses
}
1
// the win average
for (i=1l;i<=n;i++)
if (w[il+1[i]) printf("%0.31f\n", (double)w([i]/
(w[i]+11[i1));
else printf ("-\n"); //
!
}

if (n) printf ("extraneous input! %d\n",n);

}
2.1.3 Robocode

Robocode is an educational game designed to help learn Java. The players write
programs that control tanks fighting with each other on a battlefield. The idea of
this game may seem simple, but it takes a lot of effort to write a winning tank’s
program. Today we are not going to write an intelligent tank, but design a simpli-
fied Robocode game engine.

Assume that the whole battlefield is 120x120 (pixels). Each tank can onfy move
in the vertical and horizontal directions on the fixed path. (There are paths every
10 pixels in the battlefield in both vertical and horizontal directions. In all, there
are 13 vertical and 13 horizontal paths available for tanks, as shown in Figure 2.1.)
The shape and size of the tank are negligible, and one tank has (x, y) (x, y € [0,
120]) representing its coordinate position and o (ot € {0, 90, 180, 270}) represent-
ing its facing direction (0t =0, 90, 180, or 270 means facing right, up, left, or down,
respectively). They have a constant speed of 10 pixels/second when they move and
they can’t move out of the boundary (on touching any boundary of the battlefield,

Y

0, 120)

0,0 120, 0X

Figure 2.1

Practice for Simulation Problems m 51

the tanks will stop moving, staying in the direction that they are currently facing).
The tank can shoot in the direction it’s facing whether it’s moving or still. The shot
moves at the constant speed of 20 pixels/second, and the size of the shot is also neg-
ligible. It will explode when it meets a tank on the path. It’s possible for more than
one shot to explode in the same place if they all reach a tank at the exact same time.
The tank being hit by the explosion will be destroyed and removed from the battle-
field at once. A shot exploding or flying out of the boundary will also be removed.

When the game begins, all the tanks are stopped at different crosses of the verti-
cal and horizontal paths. Given the initial information of all the tanks and several
commands, your job is to find the winner—the last living tank when all the com-
mands are executed (or omitted) and no shot exists in the battlefield (meaning that
no tank may die in the future).

Input

There are several test cases. The battlefield and paths are all the same for all test
cases as shown in Figure 2.1. Each test case starts with integers /V (ISN<10) and
M (1=M=<1000), separated by a blank. /V represents the number of the tanks play-
ing in the battlefield, and M represents the number of commands to control the
movement of the tanks. The following /V lines give the initial information (at time
0) of each tank, in the format:

Name x y O

The Name of a tank consists of no more than 10 letters. x, y, & are integers and
x, y€{0, 10, 20, ..., 120}, ae{0, 90, 180, 270}. Each field is separated by a blank.

The following M lines give commands in this format:

Time Name Content

Each field is separated by a blank. All the commands are given in the ascend-
ing order of T7me (0<Time<30), which is a positive integer meaning the timestamp
when the commands are sent. Name points out which tank will receive the com-
mand. The Content has different types as follows:

MOVE When receiving the MOVE command, the tank starts to move in its facing
direction. If the tank is already moving, the command takes no effect.

STOP When receiving the STOP command, the tank stops moving. If the tank
has already stopped, the command takes no effect.

TURN When receiving the TURN command, the tank changes the facing

angle direction o to be ((o + angle + 360) mod 360), regardless of whether it is
moving or not. You are guaranteed that ((a. + angle + 360) mod 360)
€40, 90, 180, 270}. The TURN command doesn’t affect the moving state
of the tank.

SHOOT | When receiving the SHOOT command, the tank will shoot one shot in
the direction it's facing.

52 m Algorithm Design Practice for Collegiate Programming

Tanks take the corresponding action as soon as they receive the commands. For
example, if the tank at (0, 0), 0=90, receives the command MOVE at time 1, it will
start moving at once and will reach (0, 1) at time 2. Notice that a tank could receive
multiple commands in one second and take the action one by one. For example, if
the tank at (0, 0), 0=90, receives a command sequence of “TURN 90; SHOOT;
TURN —90”, it will turn to the direction =180, shoot, and then turn back. If
the tank receives a command sequence of “MOVE; STOP?, it will remain in the
original position.

Some more notes you need to pay attention to:

If a tank is hit by an explosion, it will take not act on any of the commands
received at that moment. Of course, all the commands sent to the already
destroyed tank should also be omitted.

Although the commands are sent at discrete seconds, the movement and explo-
sions of tanks and shots happen in the continuous time domain.

No two tanks will meet on the path guaranteed by the input data, so you don’t
need to consider that situation.

All the input contents will be legal for you.

A test case with N=M=0 ends the input, and should not be processed.

Output

For each test case, output the winner’s name in one line. The winner is defined as
the last living tank. If there is no tank, or more than one tank living at the end,
output “NO WINNER!” in one line.

Sample Input Sample Output

22 A

A0090 NO WINNER!
B 0120180 B

1AMOVE
2ASHOOT
22

A0090

B 0120 270
1TASHOOT
2B SHOOT
26

A0090
B01200
1TAMOVE
2 ASHOOT
6 B MOVE

Practice for Simulation Problems ®m 53

Sample Input Sample Output

30 B STOP

30 B TURN 180
30 B SHOOT
00

Source: ACM Beijing 2005
IDs for Online Judges: PO) 2729, UVA 3466

Analysis
The problem is a simulation problem based on a sequence of time intervals. For
each command, 0<77ime<30 (seconds), and states may be changed after the last
command is sent. Therefore, Robocode must be simulated for 45 seconds at most.

If a tank at (0, 0) shoots at a tank at (0, 1), and the tank at (0, 1) moves to the
tank at (0, 0), then the moving tank is shot after it moves 10/3 pixels, and after
0.5 seconds. Therefore, the map should be enlarged six times, and states should be
simulated every 1/6 seconds.

Acttributes for tanks and shots are as follows: positions, directions, move (or
stop), and removed (or unremoved).

Starting at Time 0, commands are processed one by one. If the timestamp when
the current command is sent is #,, and the timestamp when the last command is
sent is #, states from # to £, must be simulated. Then attributes for the tank receiv-
ing the current command are set as follows:

If the command is the “MOVE” command, the tank receiving the command
moves in its facing direction;

If the command is the “STOP” command, the tank receiving the command
stops moving;

If the command is the “SHOOT” command and the tank receiving the com-
mand isn’t removed, then a shot is added, and its attributes are same as the
actributes of a tank, except MOVE;

If the command is TURN angle, then the tank receiving the command adjusts

its facing direction as (the original number of direction +(angle % 4) +4) %4,

90
where the number of direction is ﬂLgle .

Afterall commands are processed, states are simulated for 15 seconds continuously.

Finally, the number of living tanks at the end is calculated. If all tanks are
removed, or more than one tank lives, then output “NO WINNER!”; else output
the last living tank.

54 m Algorithm Design Practice for Collegiate Programming

oY
= -

#include <iostream>
#include <map>
#include <cstdios
#include <cstring>
#include <string.hs>
#include <strings>
using namespace std ;

const int Dirx[4] = { 10 , O, -10 , 0 } ; // Horizontal
increment and vertical increment

const int Diryv[4] = { 0, 10 , 0 , -10 } ;

#define mp make pair

int N , M , Shoot ; //N: number of tanks, M: number of
commands, N+1..Shoot: Shots

int x[1050] , y[1050] , d[1050] ; // (x[U 1, y[1)
positions for tanks and shots; d[]: their directions

bool run[1050],die[1050] ; // run[]: flags for tanks'
moving, die[]: flags for tanks' or shots' removing

string symbol [1050] ; // symbol[i]: the i-th tank's name
map<string, int> Name ; // Name[s]: the sequence number of

the tank whose name is s
void Init()

{
Name.clear () ;
for (int i = 1 ; i <= N ; i ++) //Initialization
{
cin >> symbol[i] >> x[1i] >> y[i] >> d[i] ;
x[i] *= 6 ; y[i] *= 6 ;d[i] /= 90 ; // the map is
enlarged six times, direction numbers are calculated
run[i] = false ;diel[i] = false ;
Name [symbol [1]] = 1 ;
}
Shoot = N ;
!
bool In(int x , int y) //whether (x,y) is in the

boundary or not

if (X >= 0 && X <= 6*120 && y >= 0 && y <= 6*120)
return true ;

return false ;

void RunaAll () // Situation in 1 time unit is simulated

{
for (int 1 =1 ; 1 <= N ; 1 ++) // All tanks are
simulated

Practice for Simulation Problems ®m 55

{
if (run[i] && !dieli])
{
if (In(x[1i] + DirXI[d[il] , y[i] + DirYI[d[i]l]
))
{
x[1] += DirXI[d[i]] ;y[i] += DirYI[d[i]l] ;
}
else runl[i] = false ;
!
1
for (int i=N+1 ; 1 <= Shoot ; 1 ++) //All shots are
simulated
{
if (!diel[dil)
{
if (In(x[i] + DirXI[d[il] * 2 , yI[i] +
DirY[d[i]l] * 2))
{
x[1] += DirXI[d[i]] * 2 ;y[i] += DirY[d[i]]
* 2
!
else die[i] = true ;
}
!
for (int i =1 ; 1 <= N ; 1 ++) //unremoved tank 1
{
if (die[i]) continue ;
for (int j = N+1 ; j <= Shoot ; j ++) 1f (!die[]j])
//1f tank i is shot by shot j
{
if (x[i] == x[]] && yl[il == yI[3jl1)
{
die[j] = true ; die[i] = true ;
1
!
1
!
void Solve() //Process commands and output results
{
int now = 0 ; // Since Time 0
for (int i =1 ; 1 <=M ; 1 ++) //Time, Tank,
Content for each command
{

int t ; string sym , s ; int th ;

cin >> t >> sym >> s ;

t *= 6 ; // Time *6

while (t > now) { RunAll() ; now ++ ; }
//Simulating situations now ..t

56 ® Algorithm Design Practice for Collegiate Programming

int symId = Name [sym] ; //sequence number for the
tank receiving command

if (s == "MOVE")

run [symId] = true ;
else if (s == "STOP")

run [symId] = false ;
else if (s == "SHOOT")
{
if (!die[symId])

{

Shoot ++ ;

run [Shoot] = true ;die[Shoot] = false ;
d[Shoot] = d[symId] ; x[Shoot] = x[symId] ;
y [Shoot] = yl[symId] ;

!
}
else //changing direction
{
cin >> th ; th /= 90 ;
d[symId] = (d[symId] + (th % 4) + 4) % 4 ;
!

!

for (int i = 1 ; 1 <= 15%*6
// simulating 15 seconds

int cnt = 0 ; //cnt: the number of last living tanks

for (int 1 =1 ; i <= N ; 1 ++) if (!die[i]l) cnt ++ ;

if (cnt != 1)

;1 ++) RunAll() ;

cout << "NO WINNER!\n"
else
{
for (int 1 =1 ; 1 <= N ; 1 ++) if (!'dieli])
cout << symbol[i] << "\n" ;
}
!
int main ()
{
while (cin>>N>>M && (N || M))
{
Init () ;
Solve () ;
}
!

2.1.4 Eurodiffusion

On January 1, 2002, 12 European countries abandoned their national currency
for a new currency, the euro. No more francs, marks, lires, guldens, kroner, ... only
euros, all over the eurozone. The same banknotes are used in all countries. And the
same coins? Well, not quite. Each country has limited freedom to create its own
euro coins.

Practice for Simulation Problems m 57

“Every euro coin carries a common European face. On the obverse, member
states decorate the coins with their own motif. No matter which motif is on the
coin, it can be used anywhere in the 12 member states. For example, a French citi-
zen is able to buy a hot dog in Berlin using a euro coin with the imprint of the King
of Spain.” (Source: http://europa.eu.int/euro/html/entry.html.)

On January 1, 2002, the only euro coins available in Paris were French coins.
Soon the first non-French coins appeared in Paris. Eventually, one may expect all
types of coins to be evenly distributed over the 12 participating countries. (Actually
this will not be true. All countries continue minting and distributing coins with
their own motifs. So even in a stable situation, there should be an excess of German
coins in Berlin.) So, how long will it be before the first Finnish or Irish coins are in
circulation in the south of Italy? How long will it be before coins of each motif are
available everywhere?

You must write a program to simulate the dissemination of euro coins through-
out Europe, using a highly simplified model. Restrict your attention to a single euro
denomination. Represent European cities as points in a rectangular grid. Each city
may have up to four neighbors (one to the north, east, south, and west). Each city
belongs to a country, and a country is a rectangular part of the plane. Figure 2.2
shows a map with three countries and 28 cities. The graph of countries is con-
nected, but countries may border holes that represent seas, or non-euro countries,
such as Switzerland or Denmark. Initially, each city has one million (1000000)
coins in its country’s motif. Every day a representative portion of coins, based on
the city’s beginning day balance, is transported to each neighbor of the city. A
representative portion is defined as one coin for every full 1000 coins of a motif.

Figure 2.2

http://europa.eu.int/

58 ® Algorithm Design Practice for Collegiate Programming

A city is complete when at least one coin of each motif is present in that city. A
country is complete when all of its cities are complete. Your program must deter-
mine the time required for each country to become complete.

Input

The input consists of several test cases. The first line of each test case is the number
of countries (1=¢<20). The next ¢ lines describe each country. The country descrip-
tion has the format: name x, y, x, y,, where name is a single word with 25 characters
at the most; x; y, are the lower-left city coordinates of that country (most south-
westward city) and x;, y, are the upper-right city coordinates of that country (most
northeastward city): 1<x<x,<10 and 1<y<y,<10.

The last case in the input is followed by a single zero.

Output

For each test case, print a line indicating the case number, followed by a line for
each country with the country’s name and the number of days for that country to
become complete. Order the countries by days to completion. If two countries have
identical days to completion, order them alphabetically by name.

Use the output format shown in the example.

Sample Input Sample Output
3 Case Number 1
France 1446 Spain 382
Spain3163 Portugal 416
Portugal 1122 France 1325

1 Case Number 2
Luxembourg 1111 Luxembourg 0
2 Case Number 3
Netherlands 132 4 Belgium 2
Belgium 1122 Netherlands 2
0

Source: ACM World Finals 2003 - Beverly Hills
IDs for Online Judges: UVA 2724

-

¥/, J\
N,
Analysis
In Europe there are 7 countries (1<7<20). Each country is a rectangular part of

the plane. Each city belongs to a country and is a point in the corresponding rect-
angular grid. Initially, each city has one million (1000000) coins in its country’s

Practice for Simulation Problems ®m 59

motif. Every day a representative portion of coins, based on the city’s beginning
day balance, is transported to each neighbor of the city. In a day, if a city has

x(x>103) coins of a motif, ﬂ’(d = LZ;J) coins of the motif can be transported to

each neighbor. The problem requires you to output the number of days that each
country has to become complete, that is, at least one coin of each motif is present
in every city.

The problem is a simulation problem based on a sequence of time intervals.
Because the data range is small, we can simulate the dissemination of coins every
day, and use arrays to store all information.

1. Constructing a graph for the dissemination of coins.
Cities are represented as vertices. Neighboring relations between cities are
represented as edges. The information for a vertex includes:
i. 'The country which the city belongs to;
ii. 'The state for the city, including
* Marks for all motifs, represented as a binary number with 7 digits.
Initially, the digit corresponding to its country’s motif is 1, and other
digits are 0. Obviously, when the city is complete, 7 digits are all 1,
that is, the value of the mark is 2”—1. When values of marks for all
vertices are 2"—1, the algorithm ends.
* Numbers of all motifs. Initially, each city has one million (1000000)
coins in its country’s motif, and numbers of other motifs are 0.

Each city is numbered according to the sequence of input. If there are 7
countries and cities (#<m<10?), in the first country’s rectangular grid, the
city in its lower-left corner is numbered 1; and in the last country’s rectan-
gular grid, the city in its upper-right corner is numbered 7. Based on ver-
tices’ information and relations, degrees for vertices and the adjacency list
for the graph are calculated. Suppose g[i] is the degree of vertex i (1<i<m,
0=g[i]<4); and edge[i][/] is the number of the /-th neighboring vertex for ver-
tex 7 (0<i<m—1,0</<4, 0<edge[i][/]<m—1).

2. Simulating the dissemination of coins every day based on a sequence of
time intervals.
Today’s dissemination of coins is only based on yesterday’s dissemination of
coins. Therefore, in the simulation there are two states: precursor state ol and
current state 02. And calculating 02 is only based on ol. The simulation pro-
cess of each day is as follows: Initially, f[02]<f[01], and st[02]«—st[o1]. It flips
after simulating the dissemination of coins, that is o1 <> 02 . Suppose fTol]
[][;] is the number of coins in motif j in city 7 yesterday; st{o1][7] are marks
for all motifs in city 7 yesterday; f[o2][7][7] is the number of coins in motif j
in city 7 today, s#[02][7] are marks for all motifs in city 7 today; a[k].ans is the
number of days for country 4 to become complete; and a[£].name is the name
of country £.

60 ® Algorithm Design Practice for Collegiate Programming

Initially, 01=0, 02=1. For vertex j in country 4 (0<k<n—1, the number
of the first vertex in country 4<j< (the number of the last vertex in coun-
try 4), f [01][/1[1=10°, st[o1][j]=2% and other values for f'[01] and st[01] are
all 0.

The goal for the simulation is to calculate two variables.

a. cnt: The number of current cities that become complete. Obviously,
initially ¢nz is 0. And the simulation ends when cnr==m.

b. dayly]: The number of days for city y to become complete. The
number of days for country # to become complete is the maximal
value for numbers of days for its cities to become complete, that is,
alk].ans=max . ,,ouy 1 dy[y)-

From day 0 (ans<—0), the dissemination of coins is simulated day by day until
cnt==m:

++ans;
The current state 02 is calculated based on the precursor
state ol (fl[o2]=f[ol], stlo2]l=st[ol]l) ;
Each city i(0s<ism-1) is enumerated:
{ The binary digit k whose value is 1 in st[ol] [i] is
enumerated:

The number of motif k transported to each neighborhood of

flo1][1](x] J
10°

1

city i d is calculated (d=t

if (d=0)
{ flo2] [4] [K]-=g[i]*d;

Each neighboring city y for city i is enumerated (y = edgel[4][/],0</<g[i]-1):
if city y has no motif 4, and city y will have » motifs after it has motif 4 (f'[02]
l[kl==0 && (st[o2][y] | = 2%)==2" — 1), then the number of days for city y to
become complete is ans (day[yl=ans), and the number of complete cities increases
1 (++cnt);

The number of motif £ in city y increases d (f [02][yl[£]l+=4);

}

ol & 02;

After the above simulation, number of days for cities to become complete is
day[]. Based on that, alk].ans=max . ., idaylyl; 0<k<n—1.
Finally, a[] is sorted: a[].ans is as the first key, and 4[].name is as the second

key. And ali].name and ali].ans (0<i<n—1) are output line by line.

Practice for Simulation Problems m 61

(s

#include <cstdios

#include <cstrings>

#include <algorithm>

using namespace std;

#define ms(x, y) memset(x, y, sizeof (x))

#define mc(x, y) memcpy(x, y, sizeof (x))

const int dir[4][2] = {{1, o}, {-1, o}, {o, 1}, {o, -1}};
// shift for 4 directions

struct city { // city

char name [30] ; // city name

int ans; // the number of days for the city to become
complete
}i
int cs(0);
int log2[1 << 217; // log2[2i]=1
int n, tot, full; //n: the number of countries, tot: the
number of cities, full: the mark that n countries become
complete
city al22]; //the sequence of countries
int bl[22], br[22]; // for country i, bI[i]: the first
city, br[i]l: the last city
int num[11] [11], belongl[122]; //num[x] [y] : the number of

the city at (x, y), belonglt]: the country that city t belongs

to

int gl122]; //glil: the number of neighboring cities for

city 1

int edge[122] [4]; // edgeli] [1] is the number of Ith

neighboring vertex for vertex i

int ol, o2, f£[2][122][22]; // precursor state ol and

current state o02; fl[o] [i] [j] i1s the number of coins in motif j

in city i in state o

int day[122], st[2][122]; // dayly]l: Number of days for

city y to become complete, stlo] [i] are marks for all motifs

in city 1, represented as a binary number with n digits: if

the k-th digit is 1, city i has the coin in motif k;

otherwise, city i does not have the coin in motif k; Osksn-1.

bool cmp(const city &a, const city &b) { // Compare country

a and b (the first key is the number of days for a country to

become complete, and the second key is names of countries)
return a.ans < b.ans || a.ans == b.ans && strcmp (a.name,

b.name) < 0;

}

void print () //Output the solution to the current

test case

62 ®m Algorithm Design Practice for Collegiate Programming

sort(a, a + n, cmp); //Sorting countries al]

printf ("Case Number %d\n", ++cs); //Output the number of
test cases

for (int i = 0; 1 < n; ++1) // Output countries' names

and the number of days for countries to become complete in
al]

printf (" $s $d\n", ali] .name, ali].ans);
!
int main() {
for (int i = 0; 1 < 21; ++1i) log2[l << i] = 1i;
// log,[2]=i
while (scanf("%d", &n), n) { //repeatedly input
countries' names until 0
tot=0; full=(1 << n)-1; //tot: number of cities, the
mark for a city to become complete 27-1
ms (num, OXFF) ; //num[] [] is initialized 255
for (int i=0, x1, y1, x2, y2; i<n; ++i) { // Input

countries' names and coordinates
scanf ("%$s%d%d%d%d", ali] .name, &x1, &yl, &x2, &y2);

__Xll "er __le “Yzi
bl[i] = tot; //start city for country 1
for (int x=x1; xX<=X2; ++X) //every city in the

rectangles belongs to country i
for (int yv = y1; v <= v2; ++y) {
num[x] [y] = tot; belongl[tot++] = 1i;

1
br[i] = tot; //end city for country i
!
if (n == 1) { //If there is only one country
al[0] .ans = 0;
print () ;
continue;
!

// Initialization: calculate the number of neighbors for each
city, and construct edgel 11]

ms (g, 0);
for (int i=0; 1<10;++1) //Enumeration
for (int j = 0; j < 10; ++3)
if (numf[i] [j1!= -1) //If (i, j) is a city

for (int k = 0, nx, ny; k < 4; ++k) {
nx = i + dir[k] [0], ny = j + dir[k][1];
1f (nx>=0 && nx<1l0 && ny>=0 && ny<1l0 && num[nx]

[ny]!=-1)
edge [num[i] [j]1] [glnum[i] [j]1]++] = num[nx] [ny];
1
ol =0, o2 = 1; //Initialize states
ms (£ [01], 0); ms(st[ol], 0);
for (int i = 0; 1 < n; ++1) //Enumerate each country
for (int j = bl[il; J < brlil; ++3j) { // Enumerate

city j in country i. Initially city j has 10° coins in motif 1

Practice for Simulation Problems ®m 63

flo1]l [§]1[4i] = 1000000; stlol]l [j] = 1 << i;

}

ms (day, OxFF) ;
int ans = 0, cnt = 0;
do {

++ans;

mc (f [02], floll); mc(st[o2], stloll); //calculate

the current state based on the precursor state
for (int i = 0; 1 < tot; ++1) // Enumerate city 1

for (int j=stloll [i], k, d; J; F-=1<<k){
// Enumerate motif k in city 1
k = 1log2[] - (3 & (3 - 1))];
d=f [01] [1] [k] / 1000; // The number of motif k
transported to each neighbor of city i d is calculated
if (d) { //if motif k can be transported
flo2] [i] [k] -= gli] * d;
for (int 1=0, y; l<glil; ++1){
y = edgel[i] [1];

if (flo2] [yl [k]==0 && (st[o2][y] |= 1 << k) ==
full) {
day [y] =ans;
++cnt;
}
flo2] [yl [k] += 4d; d
}
}
}
swap (ol, 02); // oleo2
} while (ent < tot); // until tot cities become
complete
// numbers of days for all countries to become complete
for (int i = 0; i < n; ++1i) { // Enumerate every
country
al[i] .ans = 0;
for (int j = bl[i]; j < br([i]l; ++j) alil .ans =
max (al[i] .ans, dayl[jl);
}
print () ; //Output the solution to the current test
case
}
return 0;
}

2.2 Simulation by Sieve Method

In some problems, constraints are given in descriptions. And these constraints con-
stitute a sieve. All possible solutions are put on the sieve to filter out solutions that
do not meet constraints. Finally, solutions settling on the sieve are solutions to the
problem. The method for solving such problems is called the simulation by sieve

64 m Algorithm Design Practice for Collegiate Programming

method. The structure and idea for the simulation by sieve method is concise and
clear, but it is also blind. Therefore, its time efficiency may not be good. The key to
the simulation by sieve method is to find the constraints. Any errors and omissions
will lead to failure. Because filtering rules do not need complex algorithm design,
such problems are usually simple simulation problems.

2.2.1 The Game

A game of Renju is played on a 19x19 board by two players. One player uses black
stones and the other uses white stones. The game begins on an empty board and
two players alternate in placing black stones and white stones. Black always goes
first. There are 19 horizontal and 19 vertical lines on the board, and the stones are
placed on the intersections of the lines.

Horizontal lines are marked 1, 2, ..., 19 from up to down, and vertical lines are
marked 1, 2, ..., 19 from left to right, as shown in Figure 2.3.

The objective of this game is to put five stones of the same color consecutively
along a horizontal, vertical, or diagonal line. So, black wins in Figure 2.3. But, a
player does not win the game if more than five stones of the same color were put
consecutively.

Given a configuration of the game, write a program to determine whether white
has won, or black has won, or nobody has won yet. There will be no input data

1 2345678 91011121314151617 1819

O (ORORON
O o
® O
OO
oo O
o-e

O 00 N AN R W N =

et e e e
O 0 N N R WD = O

Figure 2.3

Practice for Simulation Problems ® 65

where the black and the white both win at the same time. Also, there will be no
input data where the white or the black wins in more than one place.

Input

The first line of the input file contains a single integer # (1</<11), the number of
test cases, followed by the input data for each test case. Each test case consists of
19 lines, each having 19 numbers. A black stone is denoted by 1, a white stone is
denoted by 2, and 0 denotes no stone.

Output

There should be one or two line(s) per test case. In the first line of the test case
output, you should print 1 if black wins, 2 if white wins, and 0 if nobody wins
yet. If black or white won, in the second line print the horizontal line number
and the vertical line number of the leftmost stone among the five consecutive
stones. (Select the uppermost stone if the five consecutive stones are located
vertically.)

Sample Input Sample Output

[=NelleloNeNoNoNoNoNeNoNeNe N e e o R e o R
[=NeNeloleBeloloNoNeNoNeoBo RN Nl =N
OO O OO OO0 OoO 00~ NOO
[=NeNeloleBoNoloeNoNeNoNe = Sl e R i)
OO O OO OO OO0OOO_NODODOO
O OO OO OO~ NOONMOO
[=NeNeBoNoBoNoloNeNe R ===k Sl
[=NeNeBoNeoBololoNoNoNoNeoNoNeBoN-No N
[=NeNeBoNeoBololoNoNoNoNeoNoNeBoN-NoN o)

o
OO OO OO OCOOoOONNMNMNONMODONOO

o
[=NeleleleleleololoBoBoNoNoNoNel ==

o

[=NeleleleleleololoBoBoNoNoNoRoNoN oo el
[eNelelaololoNeolcloRoB ool el = =Rl lio]
[=NeleleleleleololoBoBoNoNoNoRoNoN oo el
o

[=NeleleleleleololoBoBoNoNoNoNoNoN oo el
[eNeleleololoNeolcloRoB ool el ol = =Rl lio]
[=NeleleleleleololoBoBoNoNoNoNoNoN oo el
[eNeleleololololcloBoB ool el = =Rl lio]
[=NeleleleleleololoBoBoNoNoNoNoNoN oo el

Source: ACM Tehran Sharif 2004 Preliminary
IDs for Online Judge: POJ 1970, ZOJ 2495

66 ® Algorithm Design Practice for Collegiate Programming

Direction 2: Right up

@) Direction 1: Right

Direction 3: Right down

Direction 4: Down

Figure 2.4

Initially all stones on the 19x19 board constitute a sieve. Every stone is scanned
from top to down and from left to right. If there is a stone at position (7, /), its adja-
cent stones in direction £ are analyzed (0<k<3, 0<4, j<18), as shown in Figure 2.4.

The objective of this game is to put five stones of the same color consecutively
along a horizontal, vertical, or diagonal line. Therefore, the constraint conditions
for winning a game are as follows:

1. The number at position (7, j) is different from the number at the adjacent posi-
tion in the opposite direction for direction 4;

2. From (i, j) and along direction £, five positions are in the board;

3. From (7, j) and along direction 4, numbers at five continuous positions are the
same, and the number at the sixth position is different, or the sixth position
is out of the board.

If the above constraint conditions hold, the stone at position (7, j) wins the
game. If four directions are examined and the above constraint conditions don't
hold, the stone at position (7, j) is filtered out.

If all stones are filtered out, nobody wins the game.

o
= (.

#include <iostream>

using namespace std;

const int df[4] (2] = {{o, 1}, {1, o}, {z, 1}, {-1, 1}};
//displacements for 4 directions

Practice for Simulation Problems

" 67

inline bool valid(int x, int y) //(x, y) in the board or

not

{
}

int al20] [20]; //board
int main()

{

return x >= 0 && X < 19 && y >= 0 && y < 19;

int 1, j, k, t, x, vy, u;
scanf ("%d", &t); //the number of test cases
while (t--) //Input test cases
{
for (1 = 0; 1 < 19; ++1) //Input a board
for (j = 0; j < 19; ++3j) scanf("sd", &alil [j]1);
for (3 = 0; j < 19; ++3) // Every stone (i, j) is
scanned from top to down and from left to right.
{
for (i = 0; i < 19; ++1i)
{
if (a[il [j] == 0) continue;
for (k = 0; k < 4; ++k) //4 directions are
enumerated

{

x =1 - dlkl[0]l;y = j - dlklI[1];

if (valid(x, y) && alx] [y] == ali]l [j]) continue;

x =1 + d[k]l[0] * 4;y=F + d[k][1] * 4;

if (!valid(x, y)) continue;

for (u = 1; u < 5; ++u)

{
x =1 + d[k][0] * u;y = j + d[k][1] * u;
if (alx] [yl != alil[j]l) break;

!

x = i+d[k] [0]*5;y = j+d[k] [1]*5;

if (valid(x, y) && alx] [yl == alil [j]) continue;

if (u == 5) break;

}

if (k < 4) break;

}

if (i < 19) break;

}

if (3 < 19) // five stones of the same color

consecutively along a direction from (i,j), the color wins the

game;
{
printf ("$d\n", alil [j]1);
printf("%d %d\n", i + 1, J + 1);
}
else puts("0"); // nobody wins the game

}

return 0;

}

68 ® Algorithm Design Practice for Collegiate Programming

2.2.2 Game Schedule Required

Sheikh Abdul really loves football. So you better not ask how much money he has
spent to make famous teams join the annual tournament. Of course, having spent
so much money, he would like to see certain teams play each other. He has worked
out a complete list of games that he would like to see. Now it is your task to distrib-
ute these games into rounds according to the following rules:

. In each round, each remaining team plays at most one game;
. If there is an even number of remaining teams, every team plays exactly one

N —

game;

3. If there is an odd number of remaining teams, there is exactly one team
which plays no game (it advances with a wildcard to the next round);

4. The winner of each game advances to the next round, and the loser is elimi-
nated from the tournament;

5. If there is only one team left, this team is declared the winner of the
tournament.

As can be proved by induction, in such a tournament with 7 teams, there are
exactly #z-1 games required until a winner is determined.

Obviously, after round 1, teams may already have been eliminated which
should take part in another game. To prevent this, for each game you also have to
tell which team should win.

Input

The input contains several test cases. Each test case starts with an integer 7 (2<#<1000),
the number of teams participating in the tournament. The following 7 lines
contain the names of the teams participating in the tournament. You can assume
that each team name consists of up to 25 letters of the English alphabet (2’ to 2" or
At Z).

Then follow 7-1 lines, describing the games that Sheikh Abdul would like to see
(in any order). Each line consists of the two names of the teams which take part in
that game. You can assume that it is always possible to find a tournament schedule
consisting of the given games.

The last test case is followed by a zero.

Output

For each test case, write the game schedule, distributed in rounds.

For each round, first write “Round #X” (where Xis the round number) in a line
by itself. Then write the games scheduled in this round in the form: “4 defeats B,
where 4 is the name of the advancing team and B is the name of the team being
eliminated. You may write the games of a round in any order. If a wildcard is needed

Practice for Simulation Problems ®m 69

for the round, write “4 advances with wildcard” after the last game of the round,
where A is the name of the team which gets the wildcard. After the last round, write
the winner in the format shown below. Print a blank line after each test case.

Sample Input | Sample Output

Round #1

B defeats A

C advances with wildcard
Round #2

C defeats B

Winner: C

Round #1

A defeats B

C defeats D

E advances with wildcard
Round #2

AB E defeats A

CD C advances with wildcard
AE Round #3

CE E defeats C

0 Winner: E

mMOO®>»Twm>O®P>W
O @

Source: Ulm Local 2005
IDs for Online Judges: POJ 2476, ZOJ 2801

There are 7 teams and #»—1 games. For #-1 games that Sheikh Abdul would like to
see, the two names of the teams which take part in the game are stored in 4[] and
bli] respectively, 1<i<n—1. Numbers of games that teams take part in are stored in
cntld), 1<i<n.

Constraints in the problem description constitute a sieve. Initially all teams are
put on the sieve.

Sheikh Abdul would like to see every game in each round. In a round, a team
which will take part in other games will win the game. Constraints constituting a
sieve are as follows:

Analysis

In each round, the number of games is the number of teams in the current round
divided by 2.

In each round, #-1 games that Sheikh Abdul would like to see are searched
sequentially. For game i, 1<i<n—1, if 4[] and 4[7] are in the sieve, and one

70 ® Algorithm Design Practice for Collegiate Programming

team can only take part in one game, then the game that 4[7] and 6[7] take
part in is in the round, and the team that has only one game is defeated and
filtered out. After #-1 games are searched, teams in the sieve enter the next
round.

The above process is repeated until only one team is left.

oY
% Program

#include<iostreams>

#include<cstdlib>

#include<cstdio>

#include<cstrings>

#include<cmath>

#include<algorithm>

#include<map>

using namespace std;

const int maxN=1010;

int n,a[maxN],b[maxN], cnt [maxN] ; //n: the number of teams;
teams taking part in game i are al[i] and b[i], 1l=<isn-1; the
number of games that team k is taking part in is cntl[k], 1lsksn
char name [maxN] [30] ; //teams' names

bool flag[maxN] ; //the flag indicates whether a team is in
the sieve or not

map<string, int> que;

bool cmp(int a,string s) //determine whether the name for
team a is s or not

for (int i=0;i<s.size();i++)
if (name[a] [1i] !=s[i]) return false;
return true;

1
void init () //Input a test case: n teams and n-1 games
{

que.clear();

for (int i=1;i<=n;i++) //team's name

{

scanf ("%$s",name[1]) ;

que.insert (map<string, int>::value type (name([i], 1)) ;
//teams' numbers

1

string s;

int p;

char ch;scanf ("%c", &ch) ;

for (int i=1;i<n;i++) // n-1 games

Practice for Simulation Problems m 71

scanf ("%c", &ch) ;s="";
while (ch!=' ') { s+=ch;scanf ("%c",&ch);}
p=que[s];
cnt [pl++;alil=p;
scanf ("%$c", &ch) ;s="";
while (ch!='\n') { s+=ch;scanf ("%c",&ch);}
p=que [s] ;
cnt [pl ++;b[il=p;
}
}
void work () // calculate and output the game schedule,
distributed in rounds

int rnd=1,tm=n,s=n/2,now=0; //rnd: the number of the
current round, tm: the number of teams in the sieve, s: the
number of games in a round, now: the number of hold games in a
round

memset (flag, 1, sizeof (flag)) ; // Initially all teams are
put on the sieve
while (tm!=1) // only one team left
for (int i=1;i<n;i++) // n-1 games are searched
sequentially

if (flaglalill&&flaglblil]l&&((cntlali]ll==1) || (cnt
[b[il]l==1)))//two teams are on the sieve, at least one team
can only take part in a game
{
if (now==0)printf ("Round #3%d\n",rnd);// the round
number
now++; tm--; //number of hold games in the current
round +1,
cnt[alil]l--;cent[b[i]]--;
// if only b[i] take part in one game, b[i] is defeated; if
only al[i] take part in one game, al[i] is defeated; and if ali]
and b[i] take part in one game, b[i] wins
if (ent[ali]]l) printf("$s defeats %s\n",namelali]l],
name [b[i]]) ;
else if (cnt([b[i]]) printf("%$s defeats %s\n",
name [b[i]] ,namela[il]);
elsef{
printf ("%$s defeats %$s\n",name[b[il],
name [a[i]l]);
printf ("Winner: %s\n",name([b[i]]);}
flaglalill=false;flag[b[i]l]=false;

if (now==s)
{
now=0; rnd++;s=tm/2;
for (int i=1;i<=n;i++) // wildcard for the team
that doesn't take part in a game in the round

{

72 m Algorithm Design Practice for Collegiate Programming

if (flagl[i] && cntl[il])
printf ("%s advances with wildcard\n",name[i]);
if (cnt[i]) flagl[i]=true;else flagl[il=false;

1
!
!
printf ("\n") ;
int main()
{
while (scanf ("%d",&n),n) //number of teams
{
init () ; // Input a test case: n teams and n-1 games
work () ; // calculate and output the game schedule,
distributed in rounds
}
return 0;
!

2.3 Construction Simulation

Construction simulation is a kind of relatively complex simulation method. It
requires a mathematical model to represent and solve a problem. We need to design
parameters of the model, and calculate a simulation result. Because such math-
ematical models represent objects and their relationships accurately, the efficiencies
are relatively high.

2.3.1 Packets

A factory produces products packed in square packets of the same height 4 and of the
sizes 1X1, 2X2, 3X3, 4x4, 5%5, and 6x6. These products are always delivered to cus-
tomers in the square parcels of the same height 4 as the products have and of the size
6%6. Because of the expenses, it is in the interest of the factory as well as of the cus-
tomer to minimize the number of parcels necessary to deliver the ordered products
from the factory to the customer. A good program, solving the problem of finding
the minimum number of parcels necessary to deliver the given products according
to an order, would save a lot of money. You are asked to create such a program.

Input

The input file consists of several lines specifying orders. Each line specifies one
order. Orders are described by six integers separated by one space, representing
successively the number of packets of individual size from the smallest size 1X1 to
the biggest size 6x6. The end of the input file is indicated by the line containing
six zeros.

Practice for Simulation Problems m 73

Output

The output file contains one line for each line in the input file. This line contains
the minimal number of parcels into which the order from the corresponding line
of the input file can be packed. There is no line in the output file corresponding to
the last “null” line of the input file.

Sample Input Sample Output
004001 2

751000 1

000000

Source: ACM Central Europe 1996
IDs for Online Judges: PO) 1017, ZOJ 1307, UVA 311

The simulation problem is solved by the construction method. The greedy method
is also used. Packets are packed in parcels in descending order by size. Because the
parcels’ size is 6x6, each packet sized 4x4, 5X5, or 6X6 is packed in a parcel. The

strategy is as follows:

Analysis

A packet sized 6X6 is packed in a parcel.

A packet sized 5%5 is packed in a parcel. Packets sized 1x1 are packed into the
remaining space of the parcel.

A packet sized 4x4 is packed in a parcel. Packets sized 2X2 are packed into the
remaining space of the parcel. If there is no packet sized 2x2, packets sized
1x1 are packed into the remaining space of the parcel.

Four packets sized 3X3 are packed in a parcel.

The algorithm is as follows:
Suppose the number of packets sized ixi is 4, (1<i<6).
The number of parcels in which packets sized 6X6, 55, 4x4, and 3X3 are packed
is M=as+as+ay +[d43—‘.
The number of packets sized 2x2 and which can be packed in above M par-

cels is Ly=aX5+ula; mod 4], where #[0]=0, #[1]=5, »[2]=3, and »[3]=1. If
there are any remaining packets sized 2X2 (2,>L,), they are packed in new

[”2 —L -l parcels. And M+ = lrdz;Lz-‘
9

74 m Algorithm Design Practice for Collegiate Programming

The number of packets sized 1x1 and which can be packed in above M par-
cels is Li=MX36—ax36—a;x25-a,x16-a;x9—a,x4. If there are remain-

ing packets sized 1x1 (#,>L,), they are packed in new {‘ZI_L‘—‘ parcels.
- 36

And M+=V1 ﬂ.
36

Obviously, M is the minimum number of parcels.

o
% Program

#include <iostream>
using namespace std;
int main()

{

int a[10],1i,j,sum,m,leftl,left2; // the number of packets
whose size are i*i is al[i], the number of packets is sum, the
minimal number of parcels is m; the number of parcels in which
2*2 can be packed is left2, the number of parcels in which 1*1
can be packed is leftl

int ul4]={0,5,3,1}; // ulal3]l% 4]

while (1)

{
sum=0;
for(i=1;i<=6;1i++) //Input the number of packets
{

cin>>ali];
sum+=a[i];

}

if (sum==0) break;

m=al[6]+al[5]+al4]+ (3+al[3])/4; // The number of parcels
in which packets whose size are 6*6, 5*5, 4*4, and 3*3 are
packed

left2=al4]*5+ulal3]%4]; // the number of parcels in
which 2*2 can be packed is left2

if(a[2]>1left2) //1f there are remaining 2*2 packets,

new parcels are needed
m+=(a[2] -1left2+8)/9;
leftl=m*36-a[6] *36-a[5]*25-a[4]*16-a[3]*9-a[2]*4; //
the number of parcels in which 1*1 can be packed is leftl
if(all1]l>1leftl) // If there are remaining 1*1 packets,
new parcels are needed
m+=(a[l] -1left1+35)/36;
cout<<m<<endl; // the minimal number of parcels

}

return 0;

}

Practice for Simulation Problems m 75

2.3.2 Paper Cutting

ACM managers need business cards to present themselves to their customers and
partners. After the cards are printed on a large sheet of paper, they are cut with a
special cutting machine. Since the machine operation is very expensive, it is neces-
sary to minimize the number of cuts made. Your task is to find the optimal solution
to produce the business cards.

There are several limitations you have to comply with. The cards are always
printed in a grid structure of exactly x4 cards. The structure size (number of
business cards in a single row and column) is fixed and cannot be changed due
to printing software restrictions. The sheet is always rectangular and its size
is fixed. The grid must be perpendicular to the sheet edges, that is, it can be
rotated by 90° only. However, you can exchange the meaning of rows and col-
umns and place the cards into any position on the sheet; they can even touch
the paper edges.

For instance, assume the card size is 3X4 cm, and the grid size 1x2 cards. The
four possible orientations of the grid are depicted in Figure 2.5. The minimum
paper size needed for each of them is stated.

The cutting machine used to cut the cards is able to make an arbitrary long
continuous cut. The cut must run through the whole piece of the paper; it can-
not stop in the middle. Only one free piece of paper can be cut at once—you
cannot stack pieces of paper onto each other, nor place them beside each other
to save cuts.

Input

The input consists of several test cases. Each of them is specified by six positive inte-
ger numbers, 4, B, C, D, E, and F, on one line separated by a space. The numbers
are:

A and B are the size of a rectangular grid, 1<4, B<1000; Cand D are the dimen-
sions of a card in cms, 1<C, D<1000; and E and F are the dimensions of a
paper sheet in cms, 1<E, F<1000000.

The input is terminated by a line containing six zeros.

8 x 3 cm

6 x4 cm

4 x6cm
3x8cm

Figure 2.5

76 ®m Algorithm Design Practice for Collegiate Programming

Output

For each of the test cases, output a single line. The line should contain the text:
“The minimum number of cuts is X.”, where X is the minimum number of cuts
required. If it is not possible to fit the card grid onto the sheet, output the sentence
“The paper is too small.” instead.

Sample Input | Sample Output

123494 The minimum number of cuts is 2.
123483 The minimum number of cuts is 1.
123455 The paper is too small.

333310 10 | The minimum number of cuts is 10.
000000

Source: CTU Open 2003
IDs for Online Judges: PO) 1791, ZOJ 2160

&\9 Analysis

First, the cutting machine cuts the paper to produce grids. Then it cuts grids to pro-
duce cards. Suppose AXB is the size of a rectangular grid; CxD is the size of a card;
and EXF is the size of a paper sheet. In the longitudinal direction, there are A cards
whose length is C. That is, the length is AXC in the longitudinal direction. In the
horizontal direction, there are B cards whose length is D. That is, the length is BxD
in the horizontal direction. The constraint condition is (AXC<E)&&(BxD<F).

In order to produce AXB rectangular grids, at least AXB—1 cuts are needed.
If AXC<E in the longitudinal direction, a cut is needed. And if BXD<F in the
horizontal direction, a cut is added. Therefore, the minimal number of cuts
Co=AXB—1+(AXC<E)+(BXD<F).

Grids can be turned 90°, 180° and 270°. Cases are as follows:

1. BxA is the size of a rectangular grid; CXD is the size of a card; and EXF is the
size of a paper sheet.

2. AXB is the size of a rectangular grid; DxC'is the size of a card; and ExFis the
size of a paper sheet.

3. BxA is the size of a rectangular grid; DxC'is the size of a card; and ExFis the
size of a paper sheet.

Based on the above method, the minimum numbers of cuts are C), C,,
and C;, respectively. If the constraint condition doesn’t hold, the minimum

Practice for Simulation Problems ®m 77

number of cut is eo. Obviously the minimum number of cuts is Ans=min{C,, C,,
C,, G}

If Ans=co, it is not possible to fit the card grid onto the sheet.

o
% Program

#include <stdio.h>

#include <stdlib.hs>

#include <limits.h>

#define TOOBIG INT_ MAX

int ncuts(int a,int b,int c¢,int d,int e,int £f) ;

void do_solve(int a,int b,int c,int d,int e, int f)
//enumerate four cases and calculate the minimal numbers of
cuts

{
int x,m ;
m=ncuts(a,b,c,d,e,f) ; //Case 0: C,
if ((x=ncuts(b,a,c,d,e,f))<m) m=x ; // Case 1: C,
if ((x=ncuts(a,b,d,c,e,f))<m) m=x ; // Case 2: G,
if ((x=ncuts(b,a,d,c,e,f))<m) m=x; // Case 3: G,

if (m==TOOBIG)

puts ("The paper is too small.")
else

printf ("The minimum number of cuts is " "%d.\n",m) ;
1

int ncuts(int a,int b,int c¢,int d,int e,int f)

{
if (a*c>e || b*d>f) return TOOBIG ; // constraint
condition
return a*b-1+(a*c<e)+ (b*d<f) ; // the minimal number of
cuts
!

int main()
{ int a,b,c,d,e,f ;
for(;;) {

a=0 ; b=0 ; ¢c=0 ; d=0 ; e=0 ; f=0 ;

scanf ("%d %4 %d %4 %d %4", &a, &b, &c, &4, &e, &f)
case

if (la && !'b && !c && !d && !e && !f) break

do_solve(a,b,c,d,e,f) ;

}

return 0 ;

; //a test

7

78 ® Algorithm Design Practice for Collegiate Programming

2.4 Problems

2.4.1 Mileage Bank

The Mileage program of ACM (Airline of Charming Metlion) is good for travelers
who fly frequently. Once you complete a flight with ACM, you can earn ACMPerk
miles in your ACM Mileage Bank, depending on the mileage you actually fly. In
addition, you can use the ACMPerk mileage in your Mileage Bank to exchange for
a free flight ticket from ACM in the future.

The following table helps you calculate how many ACMPerk miles you can earn
when you fly on ACM.

When you fly ACM | Class Code | You'll Earn

First Class F Actual mileage + 100% mileage bonus
Business Class B Actual mileage +50% mileage bonus
Economy Class Y

1-500 miles 500 miles

500+ miles Actual mileage

The ACMPerk mileage consists of two parts. One is the actual flight mile-
age (the minimum ACMPerk mileage for the economy class for one flight is
500 miles), and the other is the mileage bonus (its accuracy is up to one mile)
when a traveller flies in business class and first class. For example, one can earn
1329 ACMPerk miles, 1994 ACMPerk miles, and 2658 ACMPerk miles for Y, B,
or F class, respectively, for the flight from Beijing to Tokyo (the actual mileage
between Beijing and Tokyo is 1329 miles). When one flies from Shanghai to
Wuhan, one can earn ACMPerk 500 miles for economy class and ACMPerk
650 miles for business class (the actual mileage between Shanghai and Wuhan
is 433 miles).

Your task is to help ACM build a program for automatic calculation of ACMPerk

mileage.

Input

The input file contains several data cases. Each case has many flight records, each
per line. The flight record is in the following format:

OriginalCity DistanceCity ~ ActualMiles ClassCode

Each case ends with a line of one zero.
A line of one # presents the end of the input file.

Practice for Simulation Problems ®m 79

Output

Output the summary of ACMPerk mileages for each test case, one per line.

Sample Input Sample Output

Beijing Tokyo 1329 3158
F
Shanghai Wuhan 433 Y
0
#

Source: ACM Beijing 2002
IDs for Online Judges: POJ 1326, ZOJ 1365, UVA 2524

“g Hint

The problem is a simple, straightforward simulation problem. First, flight records
are input one by one. Then, based on the rule in the problem description, the sum-
mary of ACMPerk mileages is calculated.

2.4.2 Cola

You see the following special offer by a convenience store:
“A bottle of Choco Cola for every 3 empty bottles returned”

Now you decide to buy some (say N) bottles of cola from the store. You would
like to know how you can get the most cola from them.

Figure 2.6 shows the case where N=8. Method 1 is the standard way: after
finishing your eight bottles of cola, you have eight empty bottles. Take six of them
and you get two new bottles of cola. Now after drinking them, you have four empty

foaidiad - iadARA! -
g

Figure 2.6

80 m Algorithm Design Practice for Collegiate Programming

bottles, so you take three of them to get yet another new cola. Finally, you have
only two bottles in hand, so you cannot get a new cola any more. Hence, you have
enjoyed 8 + 2 + 1 = 11 bottles of cola.

You can actually do better! In method 2, you first borrow an empty bottle from
your friend (or the storekeeper??), and then you can enjoy 8 + 3 + 1 = 12 bottles of cola!
Of course, you will have to return your remaining empty bottle back to your friend.

Input

Input consists of several lines, each containing an integer N (1SN<200).

Output

For each case, your program should output the maximum number of bottles of cola
you can enjoy. You may borrow empty bottles from others, but if you do that, make
sure that you have enough bottles afterward to return to them.

Sample Input Sample Output

8 12

Source: Contest of Newbies 2006
ID for Online Judge: UVA 11150

\% Hint

Suppose 7 is the number of bottles of cola you buy from the store initially; 7 is the
number of empty bottles you borrow; cnz is the total number of bottles, initially
cnt=n+i; tor is the number of bottles of cola you can enjoy, initially for=n; and ans
is the maximum number of bottles of cola you can enjoy, initially a7s=0.

The “trick” is that borrowing more than two bottles does not help—you would
have to return the extra bottles without trading them in, and the borrowing should
be done in the beginning, since it would cascade down otherwise. Therefore, the
program only needs to simulate borrowing either 0, 1, or 2 bottles. For each case,
we simulate the process as follows:

Repeat the process until enz<3:

The number of produced empty bottles tmp=cnt%3;
The number of increased bottles of cola cnt/=3;
The number of bottles of cola you can enjoy tot+=cnt;
The number of increased empty bottles cnt+=tmp;
if (cnt=i && tot>ans) ans=tot; // you can return remaining
empty bottles back to your friend, and drink more.

We can easily take the best out of the three simulations.

Practice for Simulation Problems m 81

2.4.3 The Collatz Sequence

An algorithm given by Lothar Collatz produces sequences of integers, and is
described as follows:

Step 1: Choose an arbitrary positive integer A as the first item in the sequence.
Step 2: If A =1 then stop.

Step 3: If A is even, then replace A by A/2 and go to Step 2.

Step 4: If A is odd, then replace A by 3xA+1 and go to Step 2.

It has been shown that this algorithm will always stop (in Step 2) for initial
values of A as large as 10%, but some values of A encountered in the sequence may
exceed the size of an integer on many computers. In this problem, we want to
determine the length of the sequence that includes all values produced until either
the algorithm stops (in Step 2), or a value larger than some specified limit would be

produced (in Step 4).

Input

The input for this problem consists of multiple test cases. For each case, the input
contains a single line with two positive integers, the first giving the initial value of
A (for Step 1) and the second giving L, the limiting value for terms in the sequence.
Neither of these, A or L, is larger than 2147483647 (the largest value that can be
stored in a 32-bit signed integer). The initial value of A is always less than L. A line
that contains two negative integers follows the last case.

Output

For each input case, display the case number (sequentially numbered starting with
1), a colon, the initial value for A, the limiting value Z, and the number of terms
computed.

Sample Input | Sample Output

3100 Case 1: A=3, limit =100, number of terms =8

34100 Case 2: A =34, limit =100, number of terms =14

75 250 Case 3: A=75, limit =250, number of terms =3

27 2147483647 | Case 4: A =27, limit = 2147483647, number of terms =112
101 304 Case 5: A =101, limit =304, number of terms =26

101 303 Case 6: A =101, limit =303, number of terms =1

-1-1

Source: ACM North Central Regionals 1998
ID for Online Judge: UVA 694

82 m Algorithm Design Practice for Collegiate Programming

\% Hint

This is a “follow the instructions” problem. Given the initial value of z (for Step 1)
and the limiting value for terms in the sequence /, the number of terms ans is
calculated as follows:

ans=0;
while (a<=1&&a!=1)
ans++;
a=a&l?3*a+l:a/2;
!

if (a==1) ans++;

2.4.4 Let's Play Magic!

You have seen a card magic trick named “Spelling Bee.” The process goes as follows:

1. The magician first arranges 13 cards in a circle, as shown in Figure 2.7.
2. Starting from the marked position, he counts the cards clockwise, saying
‘A—C—E”

3. He turns the card at the “E” position, and... it is an Ace!

4. Next, he takes away the Ace and continues to count the cards, saying
“‘I—W—0.”

. He turns over the card at position “O”... it is a Two!!

6. He continues to do this with the rest of the cards from Three to King. :-)

N

Now, how does the magician arrange the cards?

lStart

here!
A Count
this
C way
4
E |
v
T
0 w
ie
A

Figure 2.7

Practice for Simulation Problems m 83

Input

Input consists of several test cases. Each case begins with an integer IV (1SN<52),
the number of cards to be used in the magic trick. The following NV lines show the
order of the turning over of the cards and the words to be spelled. None of the
words will have more than 20 characters. The format for each card is a string with
two characters: first the value, and second, the suit.

Input ends with a test case where N=0. This test case should not be processed.

Output

For each case, your program should output the initial arrangement of the cards.

Sample Input | Sample Output

13 QH4CAS 8D KH 2S5 7D 5C TH JH 3S 6C 9D
AS ACE

2S TWO

3S THREE
4C FOUR
5C FIVE

6C SIX

7D SEVEN
8D EIGHT
9D NINE
TH TEN

JH JACK
QH QUEEN
KH KING

0

Source: Return of the Newbies 2005
ID for Online Judge: UVA 10978

“§ Hint

N cards are arranged in a circle. Starting from a certain card, the magician counts
cards in a clockwise direction and spells N words. When the last letter of a word is
pronounced, he turns over the card and removes it from the circle.

Given the sequence of words, and the order in which the cards are removed,
find the initial arrangement of cards in the circle.

The algorithm simulates the magician’s actions and recovers the arrangement
of cards.

84 m Algorithm Design Practice for Collegiate Programming

2.4.5 Throwing Cards Away

Given is an ordered deck of 7 cards numbered 1 to 7 with card 1 at the top and card
n at the bottom. The following operation is performed as long as there are at least
two cards in the deck:

Throw away the top card and move the card that is now on the top of the deck
to the bottom of the deck.

Your task is to find the sequence of discarded cards and the last remaining card.

Input

Each line of input (except the last) contains a number #<50. The last line contains
0, and this line should not be processed.

Output

For each number from the input, produce two lines of output. The first line presents
the sequence of discarded cards, and the second line reports the last remaining card.
No line will have leading or trailing spaces. See the sample for the expected format.

Sample Input | Sample Output

Discarded cards: 1,3,5,7,4,2

19 Remaining card: 6

10 Discarded cards: 1,3,5,7,9, 11,13, 15,17, 19, 4, 8, 12, 16, 2, 10, 18, 14
Remaining card: 6

0 Discarded cards: 1,3,5,7,9, 2, 6,10, 8

Remaining card: 4
Discarded cards: 1,3, 5,2, 6
Remaining card: 4

Source: A Special Contest 2005
ID for Online Judge: UVA 10935

\% Hint

Simulate the problem as described. A queue is used to simulate efficiently.

2.4.6 Gift?!

There is a beautiful river in a small village. There are 7 rocks arranged in a straight
line numbered 1 to 7 from the left bank to the right bank, as shown below:

[Left Bank] — [Rock1] — [Rock2] — [Rock3] — [Rock4] ... [Rock 7] — [Right Bank]

Practice for Simulation Problems ®m 85

The distance between two adjacent rocks is exactly 1 meter, while the distance
between the left bank and rock 1, and between rock 7 and the right bank, is also
1 meter.

Frog Frank was about to cross the river. His neighbor Frog Funny came to him
and said,

“Hello, Frank. Happy Children’s Day! I have a gift for you. See it? A little parcel
on Rock 5.”

“Oh, that's great! Thank you! I'll get it.”

“Wait...This present is for smart frogs only. You can’t get it by jumping to it directly.”

“Oh? Then what should I do?”

“Jump more times. Your first jump must be from the left bank to Rock 1, then,
jump as many times as you like—no matter forward or backward, but
your #-th jump must cover 2Xi—1 meters. What’s more, once you return
to the left bank or reach the right bank, the game ends, and no more
jumps are allowed.”

“Hmmm, not easy... let me think!” answered Frog Frank. “Should I give it a try?”

Input

The input will contain no more than 2000 test cases. Each test case contains a sin-
gle line. It contains two positive integers 7 (2<1<10°), and m (2<m<n), m indicates
the number of the rock on which the gift is located. A test case in which #=0, 7=0
will terminate the input and should not be regarded as a test case.

Output

For each test case, output a single line containing “Let me try!” if it’s possible to
get to rock m; otherwise, output a single line containing “Don’t make fun of me!”.

Sample Input Sample Output

95 Don’t make fun of me!
12 2 Let me try!

00

Note: In test case 2, Frank can reach the gift in this way:
Forward (to rock 4), Forward (to rock 9), Backward (to rock 2, got the gift!)

Note that if Frank jumps forward in his last jump, he will land on the
right bank (assume that banks are large enough) and thus, he would lose
the game.

Source: OIBH Online Programming Contest 1

IDs for Online Judge: ZOJ 1229, UVA 10120

86 m Algorithm Design Practice for Collegiate Programming

\% Hint

Suppose 7 rocks are arranged in a straight line numbered 1 to 7 from the left bank
to the right bank, and m indicates the number of the rock on which the gift is
located. It can be proved, if #>50, Frog Frank can reach each rock. If #<50, we need
to determine whether Frog Frank can reach a rock or not. First, the offline method
is to determine whether Frog Frank can reach a rock or not.

. true Frank Frog can reach Rock m
d = b
ek false Frank Frog can’t reach Rock 7

(1<1<50,1<m<n).

Then, for each test case 7 and s, if #<50, output the result based on ans[#n][m].

2.4.7 A-Sequence

For this problem an A-sequence is a sequence of positive integers 4, satisfying
1<a<a,<a;<... and every a, of the sequence is not the sum of two or more distinct
earlier terms of the sequence.

You should write a program to determine if a given sequence is or is not an
A-sequence.

Input

The input consists of a set of lines; each line starts with an integer 2<D<30 that
indicates the number of integers that the current sequence has. Following this num-
ber there is the sequence itself. The sequence is composed by integers; each integer
is greater than or equal to 1 and less than or equal to 1000. The input is terminated

by end of file (EOF).

Output

For each test case in the input you should print two lines: the first line should
indicate the number of the test case and the test case itself; in the second line
you should print “This is an A-sequence.”, if the corresponding test case is an
A-sequence, or “This is not an A-sequence.”, if the corresponding test case is not
an A-sequence.

Practice for Simulation Problems m 87

Sample Input Sample Output
212 Case #1: 12
3123 This is an A-sequence.

1013161925 70100243 245306 | Case#2:123

This is not an A-sequence.

Case #3: 1316 19 25 70 100 243 245 306
This is not an A-sequence.

Source: UFRN-2005 Contest 2
ID for Online Judge: UVA 10930

“ﬁ Hint

The problem requires you to determine whether a sequence of positive integers is
an A-sequence or not. If a sequence of positive integers is an A-sequence, then the
sequence of positive integers is in the ascending order, and every element of the
sequence is not the sum of two or more distinct earlier terms of the sequence.

For a test case, positive integers are input one by one. Suppose sums of two or
more distinct earlier terms of the sequence are stored in g[]; z is the current input
integer; and /a is the previous integer.

For the current integer z, if z is the sum of two or more distinct earlier terms of
the sequence, or z</z, then the sequence isn’t an A-sequence, and exit the process.
Else, first, elements in g[] and z are analyzed: if for all g[7], g[i+z isn’t in g[], a new
element g[i]4+z is added into ¢[]; then /a=z, and the next integer z is input. After all
elements in the sequence are dealt with, the sequence is an A-sequence.

2.4.8 Building Design

An architect wants to design a very high building. The building will consist of some
floors, and each floor will have a certain size. The size of a floor must be greater
than the size of the floor immediately above it. In addition, the designer (who is
a fan of a famous Spanish football team) wants to paint the building in blue and
red, each floor a color, and in such a way that the colors of two consecutive floors
are different.

To design the building, the architect has 7 available floors, with their associated
sizes and colors. All the available floors are of different sizes. The architect wants
to design the highest possible building with these restrictions, using the available
foors.

88 m Algorithm Design Practice for Collegiate Programming

Input

The input file consists of a first line with the number p of cases to solve. The first line
of each case contains the number of available floors. Then, the size and color of each
floor appear in one line. Each floor is represented with an integer between —999999
and 999999. There is no floor with size 0. Negative numbers represent red floors
and positive numbers represent blue floors. The size of the floor is the absolute value
of the number. There are no two floors with the same size. The maximum number
of floors for a problem is 500000.

Output

For each case the output will consist of a line with the number of floors of the high-
est building with the mentioned conditions.

Sample Input Sample Output

2 2
5 5

18
17
-15
4

Source: 1V Local Contest in Murcia 2006
ID for Online Judge: UVA 11039

“ﬁ Hint

First, the sizes of the floors are sorted in descending order. Second, we set the low-
est floor for the building as blue, and design the highest possible building with the
restrictions in the problem description. The number of floors of the highest build-
ing is /. Third, we set the lowest floor for the building as red, and design the highest

Practice for Simulation Problems ®m 89

possible building with the restrictions in the problem description. The number of
floors of the highest building is /,.
Obviously, the number of floors of the highest building is max{/,, 1,}.

2.4.9 Light Bulbs

Hollywood’s newest theater, the Atheneum of Culture and Movies, has a huge
computer-operated marquee composed of thousands of light bulbs. Each row of
bulbs is operated by a set of switches that are electronically controlled by a com-
puter program. Unfortunately, the electrician installed the wrong kind of switches,
and tonight is the ACM’s opening night. You must write a program to make the
switches perform correctly.

A row of the marquee contains 7 light bulbs controlled by 7 switches. Bulbs
and switches are numbered from 1 to 7, left to right. Each bulb can be either ON
or OFF. Each input case will contain the initial state and the desired final state for
a single row of bulbs.

The original lighting plan was to have each switch control a single bulb.
However, the electrician’s error caused each switch to control two or three consecu-
tive bulbs, as shown in Figure 2.8. The leftmost switch (i=1) toggles the states of
the two leftmost bulbs (1 and 2); the rightmost switch (i=n) toggles the states of the
two rightmost bulbs (z—1 and 7). Each remaining switch (1<i<#) toggles the states
of the three bulbs with indices i—1, 7, and +1. (In the special case where there is
a single bulb and a single switch, the switch simply toggles the state of that bulb.)
Thus, if bulb 1 is ON and bulb 2 is OFF, flipping switch 1 will turn bulb 1 OFF
and bulb 2 ON. The minimum cost of changing a row of bulbs from an initial con-
figuration to a final configuration is the minimum number of switches that must
be flipped to achieve the change.

You can represent the state of a row of bulbs in binary, where 0 means the bulb is
OFF and 1 means the bulb is ON. For instance, 01100 represents a row of five bulbs
in which the second and third bulbs are both ON. You could transform this state into
10000 by flipping switches 1, 4, and 5, but it would be less costly to simply flip switch 2.

First switch Second switch Third switch nth switch
?\\ 00 AN RGN /’/?
] N s] N .] N ’]
1 . 1 N . 1 e 1
| ST | S | |
1 s N 1 -, 1 1
1 L ~o 1 // \\ 1 1
Y » AV A \J

First bulb Second bulb Third bulb (n — 1)st bulb nth bulb

Figure 2.8

90 ® Algorithm Design Practice for Collegiate Programming

You must write a program that determines the switches that must be flipped to
change a row of light bulbs from its initial state to its desired final state with minimal
cost. Some combinations of initial and final states may not be feasible. For compact-
ness of representation, decimal integers are used instead of binary for the bulb config-
urations. Thus, 01100 and 10000 are represented by the decimal integers 12 and 16.

Input

The input file contains several test cases. Each test case consists of one line. The line
contains two non-negative decimal integers, at least one of which is positive and
each of which contains at most 100 digits. The first integer represents the initial
state of the row of bulbs, and the second integer represents the final state of the row.
The binary equivalent of these integers represents the initial and final states of the
bulbs, where 1 means ON and 0 means OFF.

To avoid problems with leading zeros, assume that the first bulb in either the
initial or the final configuration (or both) is ON. There are no leading or trailing
blanks in the input lines, no leading zeros in the two decimal integers, and the
initial and final states are separated by a single blank.

The last test case is followed by a line containing two zeros.

Output

For each test case, print a line containing the case number and a decimal integer
representing a minimum-cost set of switches that need to be flipped to convert the
row of bulbs from initial state to final state. In the binary equivalent of this inte-
ger, the rightmost (least significant) bit represents the nth switch, 1 indicates that
a switch has been flipped, and 0 indicates that the switch has not been flipped. If
there is no solution, print “impossible”. If there is more than one solution, print the
one with the smallest decimal equivalent.

Print a blank line between cases. Use the output format shown in the example.

Sample Input Sample Output

12 16 Case Number 1: 8
11 Case Number 2: 0
30 Case Number 3: 1
30 5 Case Number 4: 10

7038312 7427958190 Case Number 5: 2805591535
4253404109 657546225 | Case Number 6: impossible
00

Source: ACM World Finals - Beverly Hills - 2003
ID for Online Judge: UVA 2722

Practice for Simulation Problems ®m 91

\% Hint

Every switch is either flipped or not, and can’t be flipped more. After the first
switch’s operation is determined, only the second switch’s operation can control
the first bulb. The second switch’s operation is determined. Therefore, all switches’
operation can be determined, and so on. The simulation algorithm is as follows.
First, determine whether the first switch should be flipped or not, and then every
switch is enumerated one by one to determine all operations. High precision num-
bers are used to represent the states of the row of bulbs.

2.4.10 Link and Pop—the Block Game

Recently, Robert found a new game on the Internet that is the newest version of “Link
and Pop.” The game rule is very simple. Initially, a board of size #xm is filled with 7xm
blocks. Each of these blocks has a symbol on it. All you need to do is to find a pair of
blocks with the same symbol on them, which can be linked with a line that consists of
at most three straight horizontal or vertical line segments. Note that the line segments
cannot cross the other blocks on the board (see Figure 2.9 for some examples of pos-
sible links; note that some blocks have already been removed from the board).

If you successfully find such a pair of blocks, the two blocks can be popped
(i.e., removed) together. After this, some of the blocks may be moved to new posi-
tions on the board following the rules described later. Then, you can start to find
the next pair. The game continues until there are no blocks left on the board or you
cannot find such a pair.

The blocks are moved according to the following rules. First, each block has a
static moving attribute, which is one of ‘up’, ‘down’, ‘left’, ‘right’, and ‘stand still’.
After a pair of blocks is removed, the blocks are checked one by one to see whether
they can be moved towards the direction of its moving attribute. The blocks in the
top row are checked first. Inside the same row, the blocks on the left are checked
first. If the adjacent position at the direction of the block’s moving attribute is
not occupied, the block will be moved to that position immediately. No block
can be moved beyond the boundary of the game board. Of course, a block with
actribute ‘stand still” will always stay at its original position. After all the blocks are
checked, which is called a turn of checking, another turn of checking is started.

laAfA[B]|C H
E D E G
B|E|[C|F H

Figure 2.9

92 m Algorithm Design Practice for Collegiate Programming

This continues until no more blocks can be moved to a new position following the
moving rules. Note that inside each turn of checking, each of the blocks is checked
and possibly moved only once. Blocks must not be checked and moved on its new
position in one turn of checking.

Robert felt that the game was very interesting. However, after some time of
playing, he found that when the size of the board is rather large, finding a pair of
blocks becomes a very tough job. Furthermore, he often gets a ‘Game Over’ because
no more blocks can be popped. Robert felt that it is not his fault that not all the
blocks are being popped. It is only that there is a great chance that the game cannot
be finished if the blocks are placed randomly at first. However, it will be very time-
consuming to prove this by playing the game many times. So, Robert asks you to
write a program for him that will simulate his behavior in the game and see if the
game can be finished.

In order to make such a program possible, Robert summarizes his rules of
selecting block pairs as follows. First, the pair of blocks that can be linked with
one straight line segment must be found and popped because such pairs are easy
to find. Next, if such a pair does not exist, the pairs that can be linked by two
straight line segments must be found and popped. Finally, if both the above
described pairs do not exist, the pairs that can be linked by three straight line
segments must be found and popped. If more than one pair that can be linked
with the same number of straight line segments exists, the pair that contains a
block, which is positioned at the topmost row (or leftmost if two more blocks are
positioned in the same row), will be selected first. If this rule still cannot break
the tie (more than one pair may share one block that is positioned at the most top,
left position), the other blocks in these pairs are compared according to the same
rules. Figure 2.10 shows a trace of a mini game of “Link and Pop” that follows
the above rules.

LAL|TAT|[Ce VAL AT | «Ce =12 212 |<Ce «Ce
H |[TGT|<H<|w|| H |TGT|<H<|w|| H |1GT|<H<|mW|| H |[1GT|<He
c [VFL| G c [VFi| 6 c [vFi| 6 c [VFL| 6
L 2
—c[1G1] —c[tG1 c[1G1 —C[1G1
@ =, =2 @| H—<H @l H |[<He
¢ tr] e ||| c bre] ||| ¢ [sri| 6 || || c [tFi] @
L 4
=zt 2z
» » »
sizfure] G | FLU] & BENEE LFl

Figure 2.10

Practice for Simulation Problems ®m 93

Input

The input contains no more than 30 test cases. The first line of each test case con-
tains two integers 7, m(1<n, m<30), which is the size of the board. After this line,
there will be 7 more lines. Each of these lines contains 7 strings, separated by single
spaces. Each of these strings represents one block in the initial configuration. Each
string always consists of two capital letters. The first letter is the symbol of the block.
The second letter is always one of the letters ‘U’, ‘D’, ‘L, ‘R, and ‘S’, which shows the
block’s moving attribute, that is, up, down, left, right, and stand still, respectively.
There are no blank lines between test cases. The input ends with a line of two 0’s: ‘0 0.

Output

For each test case, first output the test case number. After this line, you must output
the final configuration of the board with # lines, each containing 7 characters. If
there is a block on the position, output the symbol of the block. If there is no block on
the position, output a period instead. Do not output blank lines between test cases.

Sample Input Sample Output
33 Case 1

AD AU CL

HS GU HL

CS FD GS .F

12 Case 2

BS BL

00

Source: ACM Shanghai 2004
IDs for Online Judges: POJ 2281, ZOJ 2391, UVA 3260

\% Hint

This is a simulation problem. The time limit for the problem is ample. Therefore,
based on Robert’s rules of selecting block pairs, the solution can be obtained. The
simulation method is as follows.

First, we try to find whether there is a pair of blocks that can be linked with
one straight line segment. Second, if there is no such pair of blocks, we try to find
whether there is a pair of blocks that can be linked by two straight line segments.
Finally, if both of the above pairs do not exist, we try to find a pair that can be
linked by three straight line segments. If more than one pair that can be linked
with the same number of straight line segments exists, the pair that contains a

94 wm Algorithm Design Practice for Collegiate Programming

block, which is positioned at the topmost row (or leftmost if two more blocks are
positioned in the same row), will be selected first. If this rule still cannot break
the tie (more than one pair may share one block that is positioned at the most
top, left position), the other block in these pairs are compared according to the
same rules.

Each block has a static moving attribute, which is one of ‘up’, ‘down’, ‘left,
‘right’, and ‘stand still’. After a pair of blocks is removed, the blocks are checked
one by one to see whether they can be moved toward the direction of its moving
actribute. The blocks in the top row are checked first. Inside the same row, the
blocks on the left are checked first. If the adjacent position at the direction of the
block’s moving attribute is not occupied, the block will be moved to that position.
No block can be moved beyond the boundary of the game board. Of course, a
block with attribute ‘stand still” will always stay at its original position. After all the
blocks are checked, which is called a turn of checking, another turn of checking is
started. This continues until no more blocks can be moved to a new position fol-
lowing the moving rules.

BES is used to find the popped pair every time. A dequeue is used in BFS: if a
pair of blocks is linked with one straight line segment, it is added at the front of the
queue; and if a pair of blocks is linked with more than one straight line segment, it
is added at the rear of the queue. A pair of blocks is popped based on rules in the
problem description.

2.4.11 Packing Rectangles

Four rectangles are given. Find the smallest enclosing (new) rectangle into which
these four may be fitted without overlapping. By smallest rectangle, we mean the
one with the smallest area.

All four rectangles should have their sides parallel to the corresponding sides of
the enclosing rectangle. Figure 2.11 shows six ways to fit four rectangles together.
These six are the only possible basic layouts, since any other layout can be obtained
from a basic layout by rotation or reflection. There may exist several different
enclosing rectangles fulfilling the requirements, all with the same area. You have to

produce all such enclosing rectangles.

Figure 2.11

Practice for Simulation Problems ®m 95

Input

Your program is to read from standard input. The input consists of four lines. Each
line describes one given rectangle by two positive integers: the lengths of the sides
of the rectangle. Each side of a rectangle is at least 1 and at most 50.

Output

Your program is to write to standard output. The output should contain one line
more than the number of solutions. The first line contains a single integer: the
minimum area of the enclosing rectangles. Each of the following lines contains one
solution described by two numbers p and ¢, with p<g. These lines must be sorted in
ascending order of p, and must all be different.

Sample Input Sample Output

12 40
23 410
34 58
45

Source: 1011995
ID for Online Judges: POJ 1169

\% Hint

1. Calculating the length and width of the enclosing rectangle.
There are six ways to fit four rectangles together. These six ways are the only
possible basic layouts, since any other layout can be obtained from a basic
layout by rotation or reflection. Therefore, the key to the problem is to cal-
culate areas of rectangles for the six ways. Suppose the four rectangles are
as follows:

Rectangle w whose length and width are w; and w,, respectively;
Rectangle x whose length and width are x; and x,, respectively;
Rectangle y whose length and width are y, and y,, respectively;
Rectangle z whose length and width are 2, and z,, respectively.

The first layout is as shown in Figure 2.12. The length of the enclosing
rectangle is MAX(w,, x,, 3, 2), and the width is w,+x,+y,+z,.

96 ® Algorithm Design Practice for Collegiate Programming

_——

Length

Figure 2.12

The second layout is as shown in Figure 2.13. The length of the enclosing
rectangle is MAX(w,, x;, y,)+z,, and the width is MAX(z,, wytx,+y,).

The third layout is as shown in Figure 2.14. The length of the enclosing
rectangle is MAX(w,, x+MAX(z,,), and the width is w,+MAX(x,, z,+y,).

Width
P G
I |
I |
I |
I |
I |
I w |
: x : Length
I |
I Y |
I |
I |
I |

z
Figure 2.13
Width
|
|
|
y
z w Length
|
| x
|
|
|

Figure 2.14

Practice for Simulation Problems m 97

Width
7T A
|
y
w . Length
z
I__ 2
The fourth layout The fifth layout
Figure 2.15
Width Width
S (.
z Length | ; Length
P |_ X |
Y y o
250 >0
Figure 2.16

The fourth and the fifth layout are as shown in Figure 2.15. The com-
mon character for the two layouts is that two rectangles are stacked, and the
other two rectangles aren’t. The length of both the enclosing rectangles is
MAX(MAX(w,, x,), y+2,), and their width is w,+,+MAX(y,, z,).

The sixth layout is as shown in Figure 2.16. Every two rectangles are
stacked, where z,>w,, x,2y,, and there are two different ways. There are two
cases for the sixth layout.

Case 1: The length of both the enclosing rectangles is MAX(w+x;, z+y,), and
their widch is MAX(w,+z,, x,1y,).

Case 2: The length of both the enclosing rectangles is MAX(w+x,, z1+x,), and
their widch is MAX(w,+z,, x,1y,).

Any other case for the sixth layout that every two rectangles are stacked

can be obtained from the above two cases by rotation or reflection.

2. The minimum area of the enclosing rectangle is calculated by
enumeration.
All cases of enclosing rectangles of the above six layouts are enumerated.
For the six layouts, there are seven enclosing rectangles. And for an enclos-
ing rectangle, another enclosing rectangle will be generated if a rectangle in
the enclosing rectangle is rotated 90°. Therefore, there are 4!X7x2% enclosing
rectangles. All of these enclosing rectangles are enumerated to calculate the
minimum area of the enclosing rectangle.

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Chapter 3

Practice for
Number Theory

Number theory is a branch of pure mathematics that studies the properties of
integers. In this chapter, experiments are organized in three parts:

1. Prime Numbers;
2. Indeterminate Equations and Congruence;
3. Multiplicative Functions.

3.1 Practice for Prime Numbers

Prime numbers are natural numbers greater than 1 that have no positive divisors
other than 1 and the number itself. Natural numbers greater than 1 that are not
prime numbers are called composite numbers.

Two kinds of experiments for prime numbers are discussed next:

1. Calculating all prime numbers in an integer interval [2, 7] by a sieve.
2. Testing big prime numbers.

3.1.1 Calculating Prime Numbers by a Sieve

First, the sieve of Eratosthenes is introduced. The sieve of Eratosthenes is used to
calculate all prime numbers in an integer interval [2, 7].

99

100 ® Algorithm Design Practice for Collegiate Programming

Suppose «[] is a sieve. Initially all numbers in the interval are in the sieve. In
the sieve, the smallest number is found in ascending order, multiples of the num-
ber are composite numbers, and the sieve will filter out these numbers. Finally,
only prime numbers are in the sieve. The algorithm for the sieve of Eratosthenes
is as follows:

int i, 7, k;

for (i=2; i<=n; i++) uli]=true; // all numbers in the
interval are in the sieve
for (i=2; i<=n; 1i++) // f£ind the smallest number in the
sieve
if (ulil){
for (j=2; j*i<=n; j++) // the sieve filters out

multiples of 1
ulj*i]=false;
}

for (i=2; i<=n; i++) if (ulil) { //prime numbers in the
sieve are put into sul]
sul++num] =1;
1

The sieve of Eratosthenes is a simple algorithm to find prime numbers. Its
time complexity is O(nxlog log 7). There are other more efficient algorithms
for finding prime numbers. For example, the algorithm for Euler’s sieve is as
follows:

int i, j, num=1;
memset (u, true, sizeof (u));
for (i=2; i<=n; 1i++){ //for each number i in the integer
interval
if (uli]) sulnum++]=1i; // the smallest number in the
sieve is put into the prime list
for (j=1; j<num; j++) { //for each number in the prime
list
if (i*suljl>n) break; //1f the product of i and the
current prime is greater than n, the next integer i is
analyzed
uli*sul[jll=false; // the sieve filters out the product
of i and the current prime
if (i% suljl==0) break; // if the current prime is the
divisor for i, the next integer i is analyzed

}
}

The time complexity for Euler’s sieve is O(n).

Practice for Number Theory ®m 101

3.1.1.1 Goldbach’s Conjecture

In 1742, Christian Goldbach, an amateur German mathematician, sent a letter to
Leonhard Euler, in which he made the following conjecture:

Every even number greater than four can be written as
the sum of two odd prime numbers. For example: 8=3+5.
Both 3 and 5 are odd prime numbers. 20=3+17=7+13;
42=5+37=11+31=13+29=19+23.

Today it is still unproven whether the conjecture is right. (I have the proof, of
course, but it is too long to write it on the margin of this page.)

Anyway, your task now is to verify Goldbach’s conjecture for all even numbers
less than a million.

Input

The input file will contain one or more test cases. Each test case consists of one even
integer 7 with 6<7<1000000. Input will be terminated by a value of 0 for 7.

Output

For each test case, print one line of the form n=a+b, where 2 and 4 are odd primes.
Numbers and operators should be separated by exactly one blank line as shown in
the sample output below. If there is more than one pair of odd primes adding up to
n, choose the pair where the difference 6—a is maximized. If there is no such pair,
print a line saying “Goldbach’s conjecture is wrong.”

Sample Input Sample Output
8 8=3+5

20 20=3+17

42 42=5+37

0

Source: Ulm Local 1998
IDs for Online Judges: PO]J 2262, ZOJ 1951, UVA 543

-

A X
W C
&\/ Analysis
First, the offline method is used to calculate the prime list s#[] and prime sieve
#[] in the interval [2, 1000000]. Then, for each test case (one even integer),

for each prime number in su[] (2X%su[i]<n), if n—suld] is also a prime number (i.e.,
u[n—suli]]==true), then su[7] and n—suli] is the solution to the problem.

102 m Algorithm Design Practice for Collegiate Programming

oY
= -

#include<cmath>
#include<cstrings>
#include<cstdlib>
#include<cstdio>
using namespace std;
bool u[1111111]; //sieve
int sul1111111],num; // prime list sull, num: the length of
the sul]
void prepare(){ //Construct sul], sieve of Eratosthenes
int i,3,k;
for(i=2;1<=1000000;i++)uli] =true;
for(i=2;1<=1000000;1i++)
if(ulil){
for(j=2;3*1i<=1000000;j++)
ulj*i]=false;
1
for(i=2;i<=1000000;i++)if (ulil) {
sul[++num] =1;
!

}

int main () {

prepare () ; // Construct sull
int i,3j,k,n;
while (scanf ("%d", &n) >0&&n) //Input test cases

{

bool ok=false;
for (i=2;i<=num;i++) //search each prime number in
the prime list in ascending order

{

if (suli] *2>n)break; //search ends
if(uln-sulill){ // the even number can be
written as the sum of two odd prime numbers
ok=true;
break;

}
}

if (!ok)puts ("Goldbach's conjecture is wrong.") ;
//Output result
else printf("%$d = %4 + %d\n",n,suli],n-suli]);
!

return O;

Practice for Number Theory ® 103

3.1.1.2 Summation of Four Primes

Euler proved in one of his classic theorems that prime numbers are infinite in
number. But can every number be expressed as a summation of four positive
primes? I don’t know the answer. Perhaps you can help! I want your solution to be
very eflicient as I have a 386 machine at home. But the time limit specified is for a
Pentium III 800 machine. The definition of prime number for this problem is: “A
prime number is a positive number which has exactly two distinct integer factors.”
For example, 37 is prime as it has exactly two distinct integer factors, 37 and 1.

Input

The input contains one integer number N (V<10000000) in every line. This is the
number you will have to express as a summation of four primes. Input is terminated

by end of file.

Output

For each line of input, there is one line of output, which contains four prime num-
bers according to the given condition. If the number cannot be expressed as a sum-
mation of four prime numbers, print “Impossible.” in a single line. There can be
multiple solutions. Any good solution will be accepted.

Sample Input | Sample Output

24 31137
36 371313
46 111117 7

Source: Regionals 2001 Warmup Contest
ID for Online Judge: UVA 10168

-

\\Tiy
s 4 Analysis
The problem is solved based on Goldbach’s conjecture. The algorithm is as follows:

First, the prime list s#[] and its length 7um in the integer interval [2, 9999999]
are calculated. Then, for each test case 2V,

1. if N<12:
N<8, N can’t be expressed as a summation of four prime numbers;
N==8, N can be expressed as a summation of four prime numbers: 2 2 2 2;
N==9, N can be expressed as a summation of four prime numbers: 2 2 2 3;

104 wm Algorithm Design Practice for Collegiate Programming

N==10, N can be expressed as a summation of four prime numbers: 2 2 3 3;
N==11, N can be expressed as a summation of four prime numbers: 2 3 3 3;
N==12, N can be expressed as a summation of four prime numbers: 3 3 3 3;

2. if N>12:

First, two prime numbers are subtracted from N. If V is an even number
(N%2==0), the two prime numbers, 2 and 2, are subtracted from /V, that
is, N—=4; else the two prime numbers, 2 and 3, are subtracted from XV,
that is, N—=5. Obviously, V is an even number greater than four. Based on
Goldbach’s conjecture, every even number greater than four can be written
as the sum of two odd prime numbers. Search the prime list su[](1<i<num,
2xsuli]<n). If suln—suli]]==true, N can be expressed as a summation of two
prime numbers: su[7] and 7—sui].

Finally, output the result.

o
% Program

#include<iostreams>
#include<cstdio>
#include<cstrings>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<cstdlibs>
using namespace std;
bool u[10000001] ; //sieve
int su[5000000],num; // the prime list sul] and its length
num
void prepare () { //construct the prime list sul]l in the
interval [2, 9999999]
int i,j,num;

memset (u, true, sizeof (u)) ; //initially all numbers in the
sieve
for (i=2; 1<=9999999; i++){ //analyze all numbers in the
interval one by one

if (uli]) sul++num]=1i; //the least number is put into
the prime list

for (j=1; j<=num; j++) { //analyze every number in the

prime list
if (i*suljl>n) break;
uli*sul[jl]l=false;
if (i% suljl==0) break;

}

Practice for Number Theory ®m 105

}
}

int main ()

{

prepare () ; // construct the prime list sul] in the
interval [2, 9999999]

int n,1i,3j,k;

while(scanf(“%d",&n)>0){ // Input integer n
if (n==8) {puts("2 2 2 2");continue;}
if (n==9) {puts("2 2 2 3");continue;}

if (n==10) {puts ("2 2 3 3");continue;}
if (n==11) {puts("2 3 3 3");continue;}
if (n==12) {puts ("3 3 3 3");continue;}

e;

if (n<8) {puts ("Impossible.") ;continue; }

if (n%2==0) {printf ("2 2 ");n-=4;}

else{printf("2 3 ");n-=5;}

for (i=1;i<=num;i++) // based on Goldbach's
conjecture

{

if (suli] *2>n)break;
if(u[n—su[i]]){ //if suli] and n-suli] are two
prime numbers
printf ("%d %d\n",sulil ,n-sulil);
break;

3.1.1.3 Digit Primes

A prime number is a positive number, which is divisible by exactly two different
integers. A digit prime is a prime number whose sum of digits is also prime. For
example, the prime number 41 is a digit prime because 4+1=5 and 5 is a prime
number. The number 17 is not a digit prime because 147=8, and 8 is not a prime
number. In this problem, your job is to find out the number of digit primes within
a certain range less than 1000000.

Input

The first line of the input file contains a single integer NV (0</N<500000) that indi-
cates the total number of inputs. Each of the next /V lines contains two integers #
and % (0<4<£,<1000000).

Output

For each line of input except the first line, produce one line of output containing a
single integer that indicates the number of digit primes between # and # (inclusive).

106 ® Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output
3 1

10 20 10

10 100 576

100 10000

Note: You should at least use scanf() and printf() to take input and produce
output for this problem. cin and cout are too slow for this problem to get
it within the time limit.

Source: The Diamond Wedding Contest: Elite Panel’s 1st Contest 2003

ID for Online Judge: UVA 10533

&J Analysis

Suppose #[] is the prime sieve for the interval [2, 1100001]; #2[] are numbers
of digit primes, where #2[i] is the number of digit primes in the interval [2, i],
2<:<1100001.

First, the offline method is used to calculate #2[]. The prime sieve #[] for the
interval [2, 1100001] is calculated. For each number 7 in [2, 1100001], if 7 is a digit
prime, that is, #[i]&&u[the sum of digits for i]==true, then #2[i]=1. Then calculate
w2[d]: w2[il+=u2[i—1] (2<i<1100001). Finally, based on #2[], calculate the number
of digit primes within a certain range [7,]:22[j]-#2[i-1].

oY
= (.

#include<iostream>

#include<cstdio>

#include<cstrings>

#include<cmath>

#include<algorithm>

#include<cstdio>

#include<cstdlib>

using namespace std;

bool u[11000011]; // prime sieve

int u2[1100001]; // numbers of digit primes

Practice for Number Theory ®m 107

void prepare () { // Calculate the prime sieve ul] in
[2, 1100001]

int 1i,3,k;

for(i=2;1<1100001;i++)ulil=1; // Initially all numbers
in the sieve

for(i=2;1<1100001;i++) // the least is a prime, and its
multiples are taken out

if (ulil)

for(j=1i+1;3j<1100001;j+=1)
uljl=false;

!
bool ok (int x) { //Determine whether the sum of digits for x

is a prime
int i,3,k=0;
while (x) { // the sum of digits for x
k+=x%10;x/=10;

!

return ulk];
!
int main ()

int i,7,k;

prepare () ; // Calculate the prime sieve ul] in [2,
1100001]

for (1i=2;1<1100001;i++) // Calculate digit primes in

[2, 1100001]
if (ulil) &&(ok (1)) u2[il=1;

for(i=2;1<1100001;i++)u2[i]+=u2[i-1]; // u2[i] is the
number of digit primes in [2, 1]
scanf ("%d", &k) ; // the number of test cases
while (k--) {
scanf ("%d %d",&i,&]); //input a test case, an
interval [i, 7]
printf ("%d\n",u2[j]-u2[i-11); // the number of
digit primes within [i, 7]
!

}

3.1.1.4 Prime Gap

The sequence of #—1 consecutive composite numbers (positive integers that are not
prime and not equal to 1) lying between two successive prime numbers p and p+n is
called a prime gap of length 7. For example, <24, 25, 26, 27, 28> between 23 and
29 is a prime gap of length 6.

Your mission is to write a program to calculate, for a given positive integer 4, the
length of the prime gap that contains 4. For convenience, the length is considered
0 in case no prime gap contains 4.

108 m Algorithm Design Practice for Collegiate Programming

Input

The input is a sequence of lines each of which contains a single positive integer.
Each positive integer is greater than 1 and less than or equal to the 100000¢h prime
number, which is 1299709. The end of the input is indicated by a line containing
a single zero.

Output

The output should be composed of lines each of which contains a single non-
negative integer. It is the length of the prime gap that contains the corresponding
positive integer in the input if it is a composite number, or 0 otherwise. No other
characters should occur in the output.

Sample Input | Sample Output
10 4

11 0

27 6

2 0

492170 114

0

Source: ACM Japan 2007
IDs for Online Judges: PO) 3518, UVA 3883

Suppose anslk] is the length of the prime gap that contains 4. If £ is a prime
number, then ans[£]=0. For any two successive prime numbers p; and p,,
ans[prtl]=ans[pi+2]=.. .=ans[py—1]=p,—p:. The algorithm is as follows:

1. Calculating ans[]:

Calculating the prime sieve #[] in the interval [2, 1299709];

Enumerate every number 7 in the interval [2, 1299709]. If 7 is a prime num-
ber (u[]==true), then ans[]]=0. If 7 is a composite number, then find the
next prime number j(ulil==uli+1]==...==ulj-1]==false, u[jl==true),
anslil=ans(i+1]=ans[j—1]=j—i+1, and i=j.

2. For each test case £, output ans[#].

Practice for Number Theory ® 109

oY
= -

#include<iostreams>
#include<cstdio>
#include<cstrings>
#include<cmaths>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
using namespace std;
const int maxn=1299710;

bool u[maxn] ; //prime sieve
int ans [maxn] ; // the length of the prime gap
void prepare () {
int i,7,k;
for(i=2;i<maxn;i++)uli]=1; //Calculate prime sieve ul]

in [2, 1299710]
for(i=2;i<maxn;i++)
if(ufli]) // 1 is a prime number
for(j=2;j*i<maxn;j++) uli*j]l=0;
for (i=2;i<maxn;i++) // Enumerate every number i in the
interval
if (tulil){ // 1 is a composite number
j=1i;
while (j<maxné&&!ul[j]l) J++;
J--7
for (k=1i;k<=7j;k++) ans[k]l=j-1i+2; //calculate the
length of the prime gap
i=3;
}else ans[i]l=0; // i is a prime number
!
int main ()
{
int 1,3,k;
prepare () ;
while (scanf ("%d", &k) >0&&k>0) {
printf ("%d\n",ans[k]) ;
1

3.1.2 Testing the Primality of Large Numbers

Trial division is the simplest method to test whether a given number 7 is a prime
number or not. z is a prime number if and only if 7 is not a multiple of any
integer between 2 and +/%. But trial division is also slow for testing the primality

110 ®m Algorithm Design Practice for Collegiate Programming

of large numbers. There are two optimization methods for trial division: “Sieve +
Trial Division”, and the Miller—Rabin primality test.

“Sieve + Trial Division” is as follows. First, the prime sieve #[] and prime list
su[] for the interval [2,\/;] are calculated. The length of su[] is num. x is a prime

number if and only if x is a prime number in the interval [2,\/;] ([x]==1), or x is
not a multiple of any integer between 2 and \/; (x%su[0]#0, ..., x%su[num—1]#0).
The time complexity is OWn).

3.1.2.1 Primed Subsequence

Given a sequence of positive integers of length 7, we define a primed subsequence
as a consecutive subsequence of length at least two that sums to a prime num-
ber greater than or equal to two. For example, given the sequence: 3 5 6 3 8,
there are two primed subsequences of length 2 (5+6=11 and 3+8=11), one primed
subsequence of length 3 (6+3+8=17), and one primed subsequence of length
4 (3+5+6+3=17).

Input

Input consists of a series of test cases. The first line consists of an integer # (1<<21),
the number of test cases. Each test case consists of one line. The line begins with
the integer 7, 0<#<10001, followed by 7 non-negative numbers less than 10000
comprising the sequence. You should note that 80 percent of the test cases will have
at most 1000 numbers in the sequence.

Output

For each sequence, print the “Shortest primed subsequence is length x:”, where x
is the length of the shortest primed subsequence, followed by the shortest primed
subsequence, separated by spaces. If there are multiple such sequences, print the one
that occurs first. If there are no such sequences, print “This sequence is anti-primed.”.

Sample Input Sample Output

3 Shortest primed subsequence
islength 2:56

535638 Shortest primed subsequence
islength3:454

5645412 This sequence is anti-primed.

21 15 17 16 32 28 22 26 30 34 29

31 20 24 18 33 35 25 27 23 19 21

Source: June 2005 Monthly Contest
ID for Online Judge: UVA 10871

Practice for Number Theory ® 111

gﬁ 7/(\“‘
S/ Analysis

There are » non-negative numbers less than 10000 comprising the sequence,
0<n<10001.

First, the prime sieve #[] and prime list su[] for the interval [2, 10010] are cal-
culated. The length of su[] is num. If x is a prime number in the interval [2, 10010]
(u[x]==1), or xisn’ta multiple of any integer in su[](x%su[0]£0,.. .,x%su[num—1]#0),
then x is a prime number.

Then, based on the above, the shortest primed subsequence is calculated.

Input a sequence whose length is 7, and calculate the sum of the first 7 integers
s (1<ign, s[i+=s[i-1]):

Dynamic Programming is used to calculate the shortest primed subsequence:

Enumerate the length i(2<isn):
Enumerate the front pointer j(lsjsn-i+1):
If (s[i+j-11-s[j-1] is a prime number)
Output the subsequence from the jth integer to
the (j+i-1)th integer, and exit;
Output “This sequence is anti-primed.”;

o
o

#include<iostreams>
#include<algorithm>
#include<cmaths>
#include<cstdio>
#include<cstrings>
#include<cstdlibs>
using namespace std;
bool u[10010]; // prime sieve
int su[10010],num; //prime list and its length
void prepare () { //construct the prime list sul] in the
interval [2, 10010]
int i, j,num;
memset (u, true,sizeof (u)) ;
for(i=2;1<=10010;i++) {
if(uli]) sul++num]=1;
for (j=1;j<=num;j++) {
if (i*sul[j]>n)break;
uli*sul[jl]l=false;
if (i% suljl==0) break;

}

112 m Algorithm Design Practice for Collegiate Programming

}
}

bool pri(int x){ // If x is a prime number in the interval
[2, 10010] or (ulx]==1), or x isn't a multiple of any integer
in sul]l, return true; else return false

int 1i,3,k;

if (x<10010) return ulx];

for(i=1;i<=num;i++)

if (x%su[i]==0)return false;

return true;

int n,s[10010]; //the sum of the first i integers is s[i]
int main ()

int 1i,9,k;
prepare () ; // calculate the prime list sul]
int te;
scanf ("%d", &te) ; //number of test cases
while (te--) {
scanf ("%d", &n) ; //the length of sequence
s[0]=0;
for(i=1l;i<=n;i++) //calculate s[]

{
scanf ("%$d", &s[1]) ;
s[il+=s[i-1];
1
bool ok=false;
for(i=2;i<=n;i++) //enumerate lengths of
subsequence
for(j=1;j+i-1<=n;Jj++) //enumerate front pointers

{
k=s[i+j-11-s[j-11; //calculate the sum of
subsequences
if (pri(k)){ // if k is a prime number
ok=true;
printf ("Shortest primed subsequence is length
sd:", 1) ;
for(k=1;k<=1i;k++)printf ("
sd",s[j+k-1]-s[j+k-2]);
puts("");
break;
}
}
if (ok)break;
}
if (lok)puts ("This sequence is anti-primed.");
// there are no primed sequences

}

// system("pause") ;

Practice for Number Theory ®m 113

3.2 Practice for Indeterminate
Equations and Congruence

Experiments in this section are for the following problems: Greatest Common
Divisor (GCD), Indeterminate Equations, Congruence, and Congruence Equations.

3.2.1 Greatest Common Divisors and
Indeterminate Equations

The GCD for integers 2 and & can be found by repeated application of the divi-
sion algorithm, known as the Euclidean algorithm. The Euclidean algorithm is as
follows:

b a=0 a b=0
GCD(a,b) = { GCD(bmoda,a) Otherwise { GCD(b,amodb) Otherwise”

Proof. The key to the proof is GCD(a, 6) and GCD(b mod ,4) can be divided
by each other. 4 mod @ can be represented as an integer linear combination of

a and 6:6 mod ﬂZb—LbJXﬂ. Because 2 and 4 can be divided by GCD(a, b),
a

b—{bea can also be divided by GCD(a, b). Therefore GCD(6 mod a,4) can be

a

divided by GCD(a, b). Similarly, GCD(a, b) can also be divided by GCD(6 mod
a,a). Therefore, GCD(a, b)=* GCD(b mod a,a).

Similarly, GCD(a,) and GCD(b,a mod) can be divided by each other.

For example, GCD(319, 377)=GCD(58, 319)=GCD(29, 58)=GCD(0, 29)=29.

Theorem 3.2.1.1 (Bezout’s Theorem). If # and 4 are integers, then there are
integers x and y, such that ax+by=GCD(a, b).

Corollary 3.2.1.1 Integers 2 and & are relatively prime integers if and only if
there are integers x and y such that ax+by=1.

Given an indeterminate equation ax+by=GCD(a, b), where a and b are integers,
the Extended Euclidean algorithm can be used to calculate integer roots (x,) of
the equation.

Suppose ax+by=GCD(a, b), bxyt(a mod b)y,=GCD(b,a mod b). Because
GCD(a, b)=GCD(b,a mod b), axtby=bx,+(a mod b)y,. Because 2 mod

b:a—{%be, ax1+!7)/1=bx2+(a—L%be)y2:ﬂy2+b(x2—L%Dy2. Therefore

x1=y,, and ylzxz—{ZJXyz. Therefore (x, y1) is based on (x;, ;). Repeat the

114 m Algorithm Design Practice for Collegiate Programming

recursive process to calculate (x3, y3), (x4, 34), evnce. , until 4==0. At that time x=1,
y=0. Therefore, the Extended Euclidean algorithm is as follows:

int exgcd(int a, int b, int &x, int &y)

{
if (b==0) {x=1; y=0; return a;}
int t=exgcd(b, a%b, x, y);
int x0=x, yO=y;
x=y0; y=x0-(a/b)*y0;
return t;
}

Given an indeterminate equation ax+by=c, where 4, b, and ¢ are integer con-
stants, x and y are integer variables, x€ [x,,x,], and y€[y,,], integer roots (x, y) of the
equation are required to calculate.

Method 1: Enumeration
Enumerate each pair of (x, y) and find integer roots. That is, the indeterminate
equation should be calculated (x,—xA+1)X(y—~y+1) times.

Method 2: Extended Euclidean Algorithm

For an indeterminate equation ax+by=c, ¢ must be a multiple of GCD(g, 6). If ¢
isn’t a multiple of GCD(a,), the indeterminate equation is unsolvable; else the
Extended Euclidean algorithm is used to solve the problem.

Suppose d=GCD(a, b), a=a DIV d, b'=b DIV d, and ¢'=c DIV 4. Then the
indeterminate equation ax+by=c can be written as a'x+b'y=c' and GCD(d', b')==1.
The Extended Euclidean algorithm is used to solve #'x+6'y=1 and (x, y') is the
integer root. Suppose xo=x"Xc", yo=y'Xc". Then (xo, y,) is a solution to ax+by=c, that
is, axgtbyo=c. Based on that, a(xy+b)+b(yo—a)=c, alxyt2Xb)+b(yo—2%Xa)=c, ,
a(xg+exb)+b(yo—kxa)=c, ke Z. Therefore, general solutions to an indeterminate
equation ax+by=c are x= xyt+kXb, y= yo—kxa, ke Z.

3.2.1.1 The Equation

There is an equation ax+by+c=0. Given a, b, ¢, x1, x2, y1, y2, you must deter-
mine how many integer roots of this equation will satisfy the following conditions:
x1=x<x2, y1<y<y2. The integer root of this equation is a pair of integer numbers
(%,).

Input

Input contains integer numbers , b, ¢, x1, x2, y1, y2 delimited by spaces and line
breaks. All numbers are not greater than 10° by absolute value.

Practice for Number Theory ®m 115

Output

Write the answer to the output.

Sample Input | Sample Output

11-3 4
0 4
0 4

ID for Online Judge: SGU 106

S/ Analysis

First, for the equation ax+by+c=0, several special cases for the problem are

considered.

1. If 2==0, 6==0, and 0, then there is no solution. If z==0, $/==0, and ==0,

then the number of integer roots of an equation is (x2—x1+1)X(y2—y1+1)).

2. If 4==0, and 60, then by=c. If ¢ isn’t a multiple of 4, or ¢/b isn’t an element
in [y1,)2], then there is no solution; else for each number x in [x1,52], (x,c/6)
is an integer root.

. If b==0, and ##0, it is the same as 2.

4. If cisn’t a multiple of GCD(a, b), there is no solution.

[N

Then, the solution process is as follows:

1. The equation ax+by+c=0 is written as ax+by=—c.

2. If a is negative, the value of # needs to be flipped. And we must flip the value
of x, if we flip the value of 2. That is, the interval [x1, x2] is changed into [-x2,
—x1]. It is the same for & and .

3. The Extended Euclidean algorithm is used to calculate the initial solution x,
and yq.

4. The integer roots of this equation (x, y) are calculated: x=xo+kXxb, y=y,—kxa,
keZ. 1f xe[x1,x2] and ye[yl,)2], (x,) is an integer root.

There is a problem in division: how to transfer reals into integers? For the upper
bound, floor() is used for round down; and for the lower bound, cei/() is used for
round up. For example, if 2.5<4<5.5, £ can be 3, 4, and 5; and if =5.55k<-2.5, k
can be -3, —4, and 5.

116 ® Algorithm Design Practice for Collegiate Programming

oY
= -

#include<cstdio>
#include<cmath>
long long a,b,c,x1,x2,yyl,y2,x0,yy0; // an equation
ax+by+c=0, the interval for x is[x1l, x2], the interval for y
is [yyl, y2], initial solution (x0, yy0)
inline long long cmin(const long long &x,const long long &y)
{return x<y?x:y;}
inline long long cmax(const long long &x,const long long &y)
{return x>y?x:vy;}
long long gcd(long long a,long long b) //GCD(a, b)
{

if (b==0) return a;

return gcd(b, a % b);
}
void exgcd(long long a,long long b) // Extended Euclidean
algorithm is used to calculate the initial solution (x0, yyO0)
for ax+by=1

{
if (b==0){x0=1;yy0=0;return;}
exgcd (b, a%b);
long long t=x0; x0=yy0; yyO=t-a/b*yy0;
return;
}
int main()
{

scanf ("$I64d%164d%164d%164d%164d%164d%164d", &a, &b, &c, &x1, &
X2, &yyl, &y2) ;
// indeterminate equation: ax+by+c=0, Xlsx=x2, yylsysy2

c=-c; // ax+by+c=0 is changed to ax+by=-c

if (c<0) {a=-a; b=-b; c=-c;}

if (a<0) {a=-a; long long t=x1; x1l=-x2; x2=-t;} //adjust
intervals for x and y

if (b<0) {b=-b; long long t=yyl; yyl=-y2; y2=-t;}
if (a==0 && b==0) // special case: a==0 && b==0
{

if (c==0)

{

printf ("$I64d", (x2-x1+1)* (y2-yyl+1l)) ;
return 0;

}

printf ("0") ;return O;

Practice for Number Theory ®m 117

else if (a==0) // special case: a==0 && bz 0
{
if (c%b==0)1if (c/b<=y2 && c/b>=yyl){ printf ("$I644",x2-
x1+1) ;return 0;}
printf("o") ;
return O0;
!
else if (b==0) // special case: a0 && b==
{
if (c%a==0) if(c/a<=x2 && c/a>=x1){ printf ("%I64d",y2-
yyl+1l) ;return 0;}
printf ("0") ;return 0;
1

long long d=gcd(a,b) ; // d=GCD(a, b). If (c%d!=0), there

is no solution; else Extended Euclidean algorithm is used to
calculate the initial solution x, and yy,

if (c%d!=0) {printf ("0") ;return 0;}

a=a/d;b=b/d;c=c/4d;

exgcd(a,b) ;

x0=x0*c;yy0=yy0*c;
//the upper bound r and the lower bound 1

double tx2=x2,txl=x1,tx0=x0,ta=a,tb=b,tc=c,tyl=yyl,ty2=y2,
ty0=yyO0;

long long downl=floor (((tx2-tx0)/
tb)) ,down2=floor (((ty0-tyl)/ta));

long long r=cmin (downl, down2) ;

long long upl=ceil (((tx1-tx0)/tb)),up2=ceil (((ty0-ty2)/

ta));
long long l=cmax (upl,up2) ;
if (r<l) printf("o"); // number of solutions
else printf ("%$I64d",r-1+1);
return 0;
1

3.2.2 Congruences and Congruence Equations

Given a positive integer 7 and two integers 2 and b, if (#=—b) mod m)=0, we say a is
congruent to & modulo 7, written as #=b(mod). For example, —7=—3=1=5=9(mod 4),
—5=-1=3=7=11(mod 4). On the other hand, if ((z—6) mod m)#0, we say 2 and &
are incongruent modulo 7.

Given a set of integers Z and a positive integer 7, congruences modulo 7 satisfy
reflexive property, symmetric property, and transitive property. Therefore Z can be
divided into 7 disjoint subsets, called congruence classes modulo 7, containing
integers that are mutually congruent modulo 7.

118 ® Algorithm Design Practice for Collegiate Programming

1. Congruence Equation

A congruence of the form ax=b(mod), where and & are integers, 7 is a

positive integer, and x is an unknown integer, is called a linear congruence in

one variable. The method for calculating x is as follows:

Step 1: The Euclidean algorithm and Extended Euclidean algorithm are used
to calculate d=GCD(a, m) and (x', y') where d=ax+my', and x" is a solu-
tion to ax'=d(mod m).

Step 2: If b/ mod 4#0, there is no solution for ax=b(mod m); else there
are 4 incongruent solutions modulo 2, where the first solution

is xO:x'XLiJmodm, and the other 4-1 solutions are

xi:(xoﬂ'xw ijodm, 1<i<d1.

In order to prove the correctness of the two steps, the following three theorems
are used.
1. Theorem 3.2.2.1 If ac=bc(mod m) and GCD(c, m)=d, then aEb(modL:;D .

2. Theorem 3.2.2.2 If 4#0 and ad=bd(mod md), then a=b(mod m).
3. Theorem 3.2.2.3 If GCD(a, m)=1, there are solutions for ax+6=0(mod m).
Step 1: Suppose 4=GCD(a, m). If & mod d4=0, solutions to

Lﬂszth mod[mJ and ax=b(mod m) are the same.
d d d

Proof. Based on Theorem 3.2.2.1 and Theorem 3.2.2.2, solutions

to ax=b(mod m) and {3Jx£{§J(mod[%D are the same. Because

GCD(a, m=d>1, Lﬁ J and LmJ are relatively prime integers. Based on
d d

Theorem 3.2.2.3, there are solutions for [ZJxE{ZJ(mOd[ZJ), that is,

there is a congruence class [x], where [x]={x+kX[ZJ|k=0, 11, 2, }, and

[x] are solutions to ax=b(mod m), OSXS[ZJ .

Practice for Number Theory ® 119

Because x, x+th, x+2XLmJ, ,and x+(d—1)><th are all in [x],
d d d

0Sx+z'><{7:;J<m, 1<i<d-1; and they are incongruent modulo ; x, x+{;’”J,

x+2><{ZlJ, ,and x+(d—l)><t:;J are d incongruent solutions modulo 7

to ax=b(mod m).
Step 2: For ax=b(mod m), there are exactly 4 incongruent solutions modulo

m: x modulo 7, (x—k[%J] modulo , [x+2XLZJj modulo 7, ..., and

(x—i—(d—l)){%ﬂ modulo 7.

Proof. Suppose x+tXL%J is a solution to ax=b(mod). Because =i(mod

d),i€{0,1,2,...,d-1}, based on Theorem 3.2.2.2, tXLZJEiXLZJ(mod m) ,

that is, x+t><{:inJ is one of x, x+[:{nJ, x+2XLZJ,..., x+(d—1)><\fZJ.
Therefore, there are d incongruent solutions modulo 72, (x-i{mD modulo 7z,

(x+2><{§D modulo 7, ..., and (x+(d—1)><L:?D modulo 7.

Based on the above discussions, Theorem 3.2.2.4 holds.

Theorem 3.2.2.4 Given a positive integer 7 and two integers 2 and 6,
suppose GCD(a, m)=d. If 6 mod 4#0, then ax=b(mod m) has no solutions.
And if b mod d=0, then ax=b(mod m) has exactly 4 incongruent solutions
modulo 7.

For example, given a congruence equation 9x=8(mod 3), GCD(9,3)=3.
Because 8 mod 30, there is no solution for 9x=8(mod 3).

Given a congruence equation 9x=12(mod 15), GCD(9,15)=3. Because
12 mod 3=0, 9x=12(mod 15) has exactly three incongruent solutions
modulo 15. The Extended Euclidean algorithm is used to calculate (x', y')
where 3=9x'+15y', x'=2, y'=—1, 2 is a solution to 9x'=3(mod 15). Therefore,
xo=8 mod 15=8, x=(xy+5) mod 15=13, and x,=(xy+10) mod 15=18
mod 15=3.

120 ® Algorithm Design Practice for Collegiate Programming

2. Congruence Equations

Definition 3.2.2.1. Given an integer @ with GCD(a, m)=1, an integer solu-
tion x to ax=1(mod) is called an inverse of 2 modulo 7.

By Theorem 3.2.2.4, a Congruence Equation zx=1(mod) has solutions
if and only if GCD(a, m)=1 and all solutions are congruent modulo .

For example, solutions to 6x=1(mod 41) satisfy x=7(mod 41). Therefore,
7 is an inverse of 6 modulo 41, and all integers congruent to 7 modulo 41 are
inverses of 6 modulo 41. Because 7x6=1(mod 41), 6 and all integers congru-
ent to 6 modulo 41 are inverses of 7 modulo 41.

Theorem 3.2.2.5 (The Chinese Remainder Theorem). Let #,, #,, ..., 7,
be pairwise relatively prime positive integers. Then the system of congruences

a=a, (mod n,)
a=a, (mod n,)

a=a; (mod ny)

has a unique solution modulo n=mn,...7.

The system of congruences can be transformed as a polynomial
a=(a\Xert. . .aXc. . AapXe) mod (mxn,X...xny). Based on the polynomial, «
can be calculated. Now we prove that the system of congruences can be trans-
formed as a polynomial a=(a;Xc+...aXcH+. . +aXc) mod (mXmX. . . Xny), and
show the method for calculating ¢; (1</<k).

Proof. Because , n,, ..., 1, are pairwise relatively prime positive integers,
GCD(n;,n;)=1, i#j. Suppose ml:ﬁ, 1<i<k. GCD(n;m;)=1, 1<i<k. There exist

n;
integers #; and m,, such that mm;+nn;=1. That is, there exists an integer 7;
such that

m;my = 1(mod nj) i=1,2,...,k (1)

On the other hand, because GCD(n;n)=1 and ml:ﬁ, ni|mj, i#.
Therefore 7;

ajmjm-'jEO(mod n;) i,7=1,2, ...,k (2)

Based on (1) and (2),

aymmi + a,mmb+ . . .+ ammi= a;m;mi(mod ny),

a;mm!=a;(mod n;), i=1, 2, ..., k.

Therefore, a=aymmytaymymzt.. Aaymmmod n) is the unique solution
modulo 7 to the system of congruences.

Practice for Number Theory ®m 121

For example, 2=2(mod 3), #=4(mod 7), and 4=5(mod 8). 3, 7, and 8 are
pairwise relatively prime positive integers. n=n,Xn3=56, my=mnXn;=24, and
my=mXny=21. n=3xX7x8=168. 56x2=112=1(mod 3), 24x5=120=1(mod 7),
and 21x5=105=1(mod 8). 2x112+4x120+5%x105=1229. 2=1229 mod n=53.

Steps for calculating the system of congruences are as follows:

) n
Step 1: Calculate m,, i=1, 2, ..., k. Suppose n=mXmyX..Xn; m=—=nX
m
n n
13X Xy My =—=m X1z X745 X.. X7ps5 «evens S =—=m X, . X1 XWyq1 . X5
7y n;

n
...... s My == X.. XMy X1
7y,

Step 2: Calculate an inverse m;" of m; modulo ;, that is, mxm;'=1(mod 7)) ,
i=1, 2, ..., k. There are two methods for calculating 7z, ":

1. Congruence Equation
Because m; and #»; are relatively prime integers, that is, GCD(m;, n;)=1,
by mxmy '=1(mod 7ny); ...; mxm;'=l(mod n,); ...; mpxm; '=1(mod),
m, o, mi, ..., my" are calculated. There is exactly one solution m to
mxm; '=1(mod n,), 1<i<k.

2. Extended Euclidean algorithm
The Extended Euclidean algorithm is used to calculate x and y for
GCD(n;, m)=nXx+mxy=1, and y is m; ! (1<i<k).

Step 3: Calculate c,=mX(m; 'mod n;), 1<i<k.

Step 4: Calculate a=(a;Xcrt. . AaXeA. . +apXc)mod 7.

3.2.2.1 CLooooops
A compiler mystery: We are given a C-language style for a loop of type

for (variable=A; variable!=B; variable+=C)
statement;

that is, a loop which starts by setting a variable to value 4, and while variable is
not equal to B, repeats the statement, followed by increasing the variable by C. We
want to know how many times does the statement get executed for particular values
of A, B, and C, assuming that all arithmetic is calculated in a 4-bit unsigned integer
type (with values 0<x<2") modulo 2%

Input

The input consists of several instances. Each instance is described by a single line
with four integers A, B, C, k separated by a single space. The integer £ (1<k<32) is
the number of bits of the control variable of the loop and 4, B, C (0<A,B,C<2") are
the parameters of the loop.

The input is finished by a line containing four zeros.

122 ® Algorithm Design Practice for Collegiate Programming

Output

The output consists of several lines corresponding to the instances on the input. The
i-th line contains either the number of executions of the statement in the 7-th instance
(a single integer number) or the word FOREVER if the loop does not terminate.

Sample Input | Sample Output
33216 0

37216 2

73216 32766
34216 FOREVER
0000

Source: CTU Open 2004
IDs for Online Judges: POJ 2115, ZOJ 2305

Based on the problem description, a loop which starts by setting variable to value A
and while variable is not equal to B, repeats the statement, followed by increasing the
variable by C. All arithmetic is calculated in a &-bit unsigned integer type (with values
0<x<2% modulo 2* Therefore D=(B—A)mod 2" is equivalent to xXC=D(mod 2%).
Obviously, the number of the loop is 0 if and only if D=(B—A4)mod 2k=0.

There are solutions to xxC=D(mod2*) if and onlyif D mod GCD(C,2"==0. The
Extended Euclidean algorithm is used to calculate the minimal non-negative inte-
ger solution x to xXC—i—yXZk:GCD(C,Zk). That is, x is a solution to Cx=GCD(C,2")
(mod 2%). If (D mod GCD(C, 24))0), there is no solution to xxC=D(mod 2%), and the
program enters an endless loop; else (xxD)mod 2% is the solution to xxC=D(mod 2°);
that is, the number of executions of the statement.

o
% Program

#include<cmath>
#include<cstrings>
#include<cstdlib>
#include<cstdio>
#define 11 long long
#include<iostream>
using namespace std;

Analysis

Practice for Number Theory ®m 123

11 exgcd(1ll a,11 b,11 &x,11 &y){ //Extended Euclidean
algorithm: calculate x and y for d=GCD(a,b)=ax+by (x and y can
be 0 or negative)
if (b==0) {
x=1;y=0;return a;
}

11 t=exgcd(b,a%b,y,x) ;
y-=a/b*x;
return t;

!

11 gcd (11 a,11 b){ //BEuclidean algorithm returns GCD(a,b)
if (b==0) return a;
return gcd (b, a%b) ;

!

int main () {
int A,B,C,K;

11 i,j,ans;

while (1) {
scanf ("%$d%d%d%d", &A, &B, &C, &K) ; // a test case
if (!A&&!B&&!C&&!K)break; // four zeros, break
11 a,b,c,k;
a=A,b=B, c=C,k=K;
11 d=b-a; //d=(b-a)%2*. If d=0, the number of loops
is 0; If d%GcD(c, 2%) =20, endless loop
k=(111) <<k;
ds=k;
if (d<0)d+=k;
if (d==0) {

puts ("0") ;continue;
!
11 tem=gcd(c, k) ;
if (d%tem) {
puts ("FOREVER") ; continue;
1

c/=tem,k/=tem,d/=tem;

exgcd(c,k,ans,j) ; //solution ans to GCD(c,
k) =c*ans+k*j

ans*=(d) ;

ans%=k;

if (ans<0)ans+=k;

cout<<ans<<endl;

}

return O0;

}
3.2.2.2 Biorhythms

Some people believe that there are three cycles in a person’s life that start the day he
or she is born. These three cycles are the physical, emotional, and intellectual cycles,

and they have periods of lengths 23, 28, and 33 days, respectively. There is one peak

124 ® Algorithm Design Practice for Collegiate Programming

in each period of a cycle. At the peak of a cycle, a person performs at his or her best
in the corresponding field (physical, emotional, or mental). For example, if it is the
mental curve, thought processes will be sharper and concentration will be easier.
Since the three cycles have different periods, the peaks of the three cycles
generally occur at different times. We would like to determine when a triple peak
occurs (the peaks of all three cycles occur in the same day) for any person. For each
cycle, you will be given the number of days from the beginning of the current year
at which one of its peaks (not necessarily the first) occurs. You will also be given a
date expressed as the number of days from the beginning of the current year. Your
task is to determine the number of days from the given date to the next triple peak.
The given date is not counted. For example, if the given date is 10 and the next triple
peak occurs on day 12, the answer is 2, not 3. If a triple peak occurs on the given
date, you should give the number of days to the next occurrence of a triple peak.

Input

You will be given a number of cases. The input for each case consists of one line of
four integers p, ¢, i, and d. The values p, ¢, and i are the number of days from the
beginning of the current year at which the physical, emotional, and intellectual
cycles peak, respectively. The value is the given date and may be smaller than any
of p, ¢, or i. All values are non-negative and at most 365, and you may assume that
a triple peak will occur within 21252 days of the given date. The end of input is
indicated by a line in which p=e=i=d=-1.

Output

For each test case, print the case number followed by a message indicating the
number of days to the next triple peak, in the following form:

Case 1: the next triple peak occurs in 1234 days.

Use the plural form “days” even if the answer is 1.

Sample Input Sample Output

0000 Case 1: the next triple peak occurs in 21252 days.
000 100 Case 2: the next triple peak occurs in 21152 days.
5 20 34 325 Case 3: the next triple peak occurs in 19575 days.
4567 Case 4: the next triple peak occurs in 16994 days.

283 102 23 320 | Case 5: the next triple peak occurs in 8910 days.
203 301 203 40 | Case 6: the next triple peak occurs in 10789 days.
-1 =1 -1 -1

Source: ACM East Central North America 1999
IDs for Online Judges: POJ 1006, ZOJ 1160, UVA 756

Practice for Number Theory ®m 125

_l

N0

These three cycles are the physical, emotional, and intellectual cycles, and they
have periods of lengths 23, 28, and 33 days, respectively. These three integers are
pairwise relatively prime positive integers. Suppose x is the number of days to the
next triple peak. The system of congruences is as follows:

Analysis

x= p (mod 23)
x=e (mod 28)
X=i (mod 33)

Based on The Chinese Remainder Theorem, x is the only solution in the inter-
val [1, 23x28x33=21253]. Suppose #; and #; are the number of days to the next
triple peak and the period of length respectively, that is, a;=p, a,=¢, as=i, m=23,
n,=28, and 75=33. The system of congruences is as follows:

an,-(mod ni), (1<i<3).

The above four steps are used to calculate s=z m;*a;*(m; mod ;) , where
=1
m=28%33, m,=23%33, and m;=23%28. The Extended Euclidean algorithm is used
to calculate the inverse 72, for m; modulo 7;, that is, m,xm; '=1(mod 7,).
Suppose d is the given date. The number of days to the next triple peak is the
minimum positive integer for (s—4)mod 7, where #n=23x28x33.

D%

#include<iostreams>
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstrings>
#include<cstdlibs>
#include<strings>
using namespace std;
typedef long long 11;

Program

11 power (1l a,1ll p,11 mo) { //Calculate a% (mo)
11 ans=1;
for (;p;p>>=1)
if (p&l) {

ans*=a;

126 ® Algorithm Design Practice for Collegiate Programming

if (mo>0)ans%=mo;
1
a*=a;
if (mo>0)a%=mo;
1
return ans;
1
11 exged (1l a,1ll b,11 &x,1l &y)({ // Extended Euclidean
algorithm: calculate x for GCD(a, b)=ax+by
if (b==0) {
x=1;y=0;return a;
1
11 t=exgcd(b,a%b,y,x);
y-=a/b*x;
return t;
!
11 niyuan(1ll a,1ll p){ //calculate a'$p
11 x,vy;
exgcd(a,p,x,v); //calculate x for ax=GCD(a, p) (%$p)
return (x%p+p)%p;
1
int main()
int a,b,
while (1)
scanf ("%$d%d%d%d", &a, &b, &c, &4) ; //test case
if (a==b&&b==c&&c==d&&a==-1) break; //end case
3
//calculate an= Z(mi*ai *(mzl mod nj))-d %(23*28*33), that

i=1

b,c,d,i,j,k,u,v,te=0;
)

is, the number of days to the next triple peak

11 an=0;

an=28*33*a*niyuan (28*33,23) +23*33*b*niyuan(23*33,28) +23%*
28*c*niyuan(28*23,33) ;

an-=d;

an%=(28*33*23) ;

if (an<=0)an+=28*33*23;

printf ("Case %d: the next triple peak occurs in %d
days.\n", ++te, (int)an) ;

}
}

3.3 Multiplicative Functions

Definition 3.3.1 (Multiplicative Function). An arithmetic function fis a multipli-
cative function if flab)=fa)f(6), where 2 and & are relatively prime positive integers.
An arithmetic function f'is a completely multiplicative function if flab)=fa)f10),
where 2 and & are positive integers.

Practice for Number Theory m 127

Definition 3.3.2 (Euler Phi-Function @(n)). Suppose 7 is a positive integer.
The Euler phi-function @(#) is defined to be the number of positive integers not
exceeding 7 that are relatively prime to 7.

For example, @(1)=0(2)=1, ¢(3)=p(4)=2.

Theorem 3.3.1 If 7 is a prime number, @(n)=n—1. And if 7 is a composite num-
ber, @(n)<n—1.

For example, ¢(7)=6.

Theorem 3.3.2 (Phi-Function Formula).

1. If p is a prime and 421, then (p(pk)=pk—pk‘l.

2. If m and 7 are relatively prime numbers, @(m2)=Q () Q).

Therefore, () is a multiplicative function, but @(») isn’t a completely multi-
plicative function.

Theorem 3.3.3 A number 7 can be written as a product of primes:
m:p{“’l prz X...pr’, where p, p», ..., p, are all different primes.
QO(m)=Q(p")XQ(p2*)X..X0(p}").

For example, @(18)=0(2x3%)=¢(2)x@(3%)=3"-3=6.

Definition 3.3.3 (Reduced Residue System Modulo #). A reduced residue
system modulo 7 is a set of @(n) integers such that each element of the set is rela-
tively prime to 7, and no two different elements of the set are congruent modulo 7.

For example, if #=10, (10)=4. Each element in the set {1, 3, 7, 9} is relatively
prime to 10, and no two different elements of the set are congruent modulo 10.
Therefore, the set {1, 3, 7, 9} is a reduced residue system modulo 10. For the same
reason, the set {=3, —1, 1, 3} is also a reduced residue system modulo 10.

Theorem 3.3.4 If a set {ry, 75, ..., 7y} is a reduced residue system modulo 7,
and if 7z and & are coprime positive integers, then the set {an, ar,, ..., ary,} is also a
reduced residue system modulo 7.

For example, the set {1, 3, 7, 9} is a reduced residue system modulo 10, and 3
and 10 are coprime positive integers. Then the set {3, 9, 21, 27} is also a reduced
residue system modulo 10.

Theorem 3.3.5 (Euler’s Theorem, or Fermat—Euler Theorem). If 7 and z are
coprime positive integers, then 2*”=1(mod 7).

Proof. Suppose a set {r}, 75, ..., 74(»} is a reduced residue system whose element
doesn’t exceed 7 and is relatively prime to #. By Theorem 3.3.4, if #» and « are
coprime positive integers, then the set {ar, ar,, ..., ary,} is also a reduced residue
system modulo 7. Therefore, the least positive residue system for {an, ar,, ..., aryu}
is the set {1, 75, ..., 74y} in some order. If all elements in {an, ar,, ..., arye} and {n,
72y ...» o) are multiplied together, anar,...argm=nr, ...74, (mod). Therefore,
P To@=NT2. . .Tor (mod 7). Because 717,....7¢(, and 7 are relatively prime num-
bers, then 2*”=1 (mod 7).

For example, {1, 3, 7, 9} is a reduced residue system whose element doesn’t
exceed 10 and is relatively prime to 10. 10 and 3 are coprime positive integers.

128 ® Algorithm Design Practice for Collegiate Programming

And {3, 9, 21, 27} is also a reduced residue system modulo 10. Therefore, the
least positive residue system for {3, 9, 21, 27} is the set {1, 3, 7, 9} in some order.
3XIX21%27=1x3X7%x9 (mod 10). 1x3X7x9(mod 10)=9. #»=10, 2=3, and @(10)=4.
3*=3°19=1(mod 10).

Corollary 3.3.1. If 7 and « are coprime positive integers, then 2%”*"'=z(mod 7).

Theorem 3.3.6 (Fermat’s Little Theorem). If p is a prime number, 4 is a posi-
tive integer, and GCD(a, p)=1, then #'=1(mod). And if p is a prime and 4 is an
positive integer, 2’=a(mod p).

For example, if 4=3 and p=5, 3*=1(mod 5). And if 4=6 and p=3, 6°=6(mod 3).

Definition 3.3.4 (Order of a Modulo 7). Suppose 2 and 7 are relatively prime
integers, where 4#0 and 7#>0. The least positive integer x such that #'=1(mod 7) is
the order of 2 modulo 7, and is denoted as ord,a.

For example, suppose #=3 and 7=5. 3*=81=1(mod 5). Therefore ords3=4.

Definition 3.3.5 (Primitive Root). Suppose 2 and 7 are relatively prime inte-
gers, where #>0. If ord,a=@(n), then « is a primitive root modulo 7, and 7 has a
primitive root.

For example, 0rds3=(5)=4. 3 is a primitive root of modulo 5, and 5 has a
primitive root.

Theorem 3.3.7 If a positive integer 7 has a primitive root, then it has @(@()
different incongruent primitive roots.

3.3.1.1 Relatives

Given 7, a positive integer, how many positive integers less than 7 are relatively
prime to 7? Two integers and & are relatively prime if there are no integers x>1,
>0, z>0 such that a=xy and b=xz.

Input

There are several test cases. For each test case, standard input contains a line with
7<1,000,000,000. A line containing 0 follows the last case.

Output

For each test case there should be a single line of output answering the question
& p & q
posed above.

Sample Input | Sample Output

7 6
12 4
0

Source: Waterloo local 2002.07.01
IDs for Online Judges: POJ 2407, ZOJ 1906, UVA 10299

Practice for Number Theory ®m 129

Given a positive integer 7, the number of positive integers less than 7 are relatively
prime to 7 is the Euler phi-function @(). 7 can be written as a product of primes:
nzplqupfl X...pr’. Therefore, (p(n)=(p(plle1)X(p(p?))(...X(p(pf’), where
0P =(p—1)x ", 1<i<r.

o
= (.

#include<iostreams>
#include<cstdio>
#include<cstrings>
#include<cmaths>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
using namespace std;
typedef long long 11;

bool u[50000] ; //Prime sieve
11 su[50000] ,num; //Prime list whose length is num
11 ged (1l a,11 b){ //GCD(a, b)
if (b==0)return a;
return gcd (b, a%b) ;
}
void prepare () { //Construct prime list sul] in [2, 50000]
11 i,5,k;
for(i=2;1<50000;i4++)uli]l=1;
for (i=2;1<50000;1++)
if (ulil)
for(j=2;3*1<50000; j++)
uli*jl=0;
for (i=2;1<50000;1i++)
if (ulil)
sul[++num] =1;
}
11 phi (11l x) // Euler phi-function o (x)
{
11 ans=1;
int 1i,7,k;
for (i=1;i<=num;i++)
if (x%suli]l==0) { //the number of prime factor suli] is j

j=0;

130 ® Algorithm Design Practice for Collegiate Programming

while (x%suli]l==0) {++3;x/=suli];}
for (k=1;k<j;k++)ans=ans*su[i]%100000000711;
ans=ans* (suf[i]-1)%100000000711;

if (x==1)break;
1
if (x>1)ans=ans* (x-1)%100000000711;
return ans; // return o(x)
!
int main() {
prepare () ; // Construct prime list sul[] in [2, 50000]
int n,1i,3j,k;
11 ans=1;

while (scanf ("%d", &n) ==1&&n>0) {
//Input test cases until 0
ans=phi (n) ; //calculate and output o (n)
printf ("%d\n", (int)ans) ;

3.3.1.2 Primitive Roots

We say that integer x, 0<x<p, is a primitive root modulo odd prime p if and
only if the set {(x' mod p)|1<i<p—1} is equal to {1, ..., p—1}. For example, the
consecutive powers of 3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive
root modulo 7.

Write a program which given any odd prime 3<p<65536 outputs the number of
primitive roots modulo p.

Input

Each line of the input contains an odd prime numbers p. Input is terminated by the
end-of-file separator.

Output

For each p, print a single number that gives the number of primitive roots in a
single line.

Sample Input | Sample Output

23 10
31 8
79 24

Source: Jiayi@pku
ID for Online Judge: POJ 1284

Practice for Number Theory ® 131

Analysis

Based on the problem description, an integer x, 0<x<p, is a primitive root modulo
odd prime p if and only if the set {(x' mod p)|1<i<p—1} is equal to {1, ..., p—1}. If
2 has a primitive root, then it has @(@(p)) different primitive roots. Because p is a

prime, Q(Q(p)=¢(p—1).

o

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithms>
#include<cstdio>
#include<cstdlib>
using namespace std;
typedef long long 11;

bool u[50000] ; //prime sieve
11 su[50000],num; //prime list whose length is num
void prepare () { //Calculate prime list sul]

11 i,7,k;

for(i=2;1i<50000;i++)uli]l=1;
for(i=2;1<50000;1++)

if (ulil)

for(j=2;j*1i<50000;j++) uli*jl=0;
for (i=2;1<50000;1i++)

if(uli]) sul++num]=1i;

!
11 phi(11 x) // Euler phi-function o (x)
{

11 ans=1;

int i,7.k;

for(i=1;i<=num;i++) //Enumerate each prime

if (x%sulil==0) //if x has prime factor suli], then
©(s[il)=sulil?** (suli]l-1), and adjust ¢(x)

j=0;

while (x%suli]l==0) {++3;x/=suli];}
for(k=1;k<j;k++)ans=ans*su[i] $100000000711;
ans=ans* (suf[i]-1)%100000000711;

if (x==1)break;

132 ® Algorithm Design Practice for Collegiate Programming

if (x>1)ans=ans* (x-1)%100000000711; // (%)
return ans;
!
int main() {
prepare () ; //construct prime list sul]
int n,1i,3j,k;
11 ans=1;
while (scanf ("%d", &n)==1) { //input test case n until EOF
ans=phi (n-1) ; //the number of primitive roots for n
printf ("%d\n", (int)ans) ;
!
1

3.4 Problems
3.4.1 Prime Frequency

Given a string containing only alpha-numerals (0-9, A-Z and a-z), you have to
count the frequency (the number of times the character is present) of all the charac-
ters and report only those characters whose frequency is a prime number. A prime
number is a number which is divisible by exactly two different integers.

Some examples of prime numbers are 2, 3, 5, 7, 11, etc.

Input

The first line of the input is an integer 7' (0<7< 201) that indicates how many sets of
inputs are there. Each of the next 7'lines contains a single set of input.

The input of each test set is a string consisting of alpha-numerals only. The
length of this string is positive and less than 2001.

Output

For each set of input, produce one line of output. This line contains the serial of
output followed by the characters whose frequency in the input string is a prime
number. These characters are to be sorted in lexicographically ascending order.
Here “lexicographically ascending” means ascending in terms of the ASCII values.
Look at the output for sample input for details. If none of the character frequency
is a prime number, you should print “empty” (without the quotes) instead.

Sample Input Sample Output
3 Case 1: C
ABCC Case 2: AD
AABBBBDDDDD Case 3: empty
ABCDFFFF

Source: Bangladesh National Computer Programming Contest

ID for Online Judge: UVA 10789

Practice for Number Theory ®m 133

“g Hint

First, the offline method is used to calculate the prime sieve #[] in [2, 2200]. Second,
for each test case (a string), every character’s frequency p[] is calculated. Third, char-
acters whose frequency is a prime number are sorted in lexicographically ascending
order. If none of the character frequency is a prime number, “empty” is output.

3.4.2 Twin Primes

Twin primes are pairs of primes of the form (p, p+2). The term “twin prime” was
coined by Paul Stickel (1892-1919). The first few twin primes are (3, 5), (5, 7),
(11, 13), 17, 19), (29, 31), (41, 43). In this problem you are asked to find out the

S-th twin prime pair where § is an integer that will be given in the input.

Input

The input will contain less than 10001 lines of input. Each line contains an inte-
gers § (1<8<100000), which is the serial number of a twin prime pair. Input file is
terminated by end of file.

Output

For each line of input, you will have to produce one line of output which contains
the S-th twin prime pair. The pair is printed in the form (pi,<space>p,). Here
<space> means the space character (ASCII 32). You can safely assume that the
primes in the 100000-th twin prime pair are less than 20000000.

Sample Input Sample Output
1 (3,5)

2 5,7)

3 (11,13)

4 (17,19)

Source: Regionals Warmup Contest 2002, Venue: Southeast University, Dhaka,
Bangladesh

ID for Online Judge: UVA 10394

“g Hint

Suppose the sequence for twin primes is ans[], where ans[4] is the least prime for the
i-th twin primes, 1<i<num.

134 ® Algorithm Design Practice for Collegiate Programming

The method for calculating ans[] is as follows:

First, the sieve method is used to calculate the prime sieve «[] for the interval
[2,20000000];

Second, eachinteger iisenumerated. If7and i+2 isa twin prime ([&8&wu[i+2]),
then 7 is added into the sequence for twin primes (ans[++num]=i);

Finally, for each test case s, the twin prime (ans(s], ans[s]+2) is output.

3.4.3 Less Prime

Let 7 be an integer, 100<#<10000. Find the prime number x, x<n, so that n—pXx is
maximum, where p is an integer such that pxx<n<(p+1)xx.

Input

The first line of the input contains an integer, /, indicating the number of test
cases. For each test case, there is a line with a number /V, 100</NV<10000.

Output

For each test case, the output should consist of one line showing the prime number
that verifies the condition above.

Sample Input | Sample Output
5 2203

4399 311

614 4111

8201 53

101 3527

7048

Source: 1l Local Contest in Murcia 2005

ID for Online Judge: UVA 10852

“igi Hint

Because n—pXx is maximum (x is a prime number, p is an integer, pXx<n<(p+1)xx),
x is such a prime number that x%# is maximal for all prime numbers less than 7.
The algorithm is as follows:

First, the prime list s#[] for the interval [2, 11111] is calculated, where its length
is num. Then, for each test case #, all prime numbers less than 7 are enumerated,

Practice for Number Theory ® 135

tmp = max {n%suli]|suli] < n}. The prime number that verifies the condition above

1<i<num

is sul#] that tmp=nY%sulk].

3.4.4 Prime Words

A prime number is a number that has only two divisors: itself and the number one.
Examples of prime numbers are: 1, 2, 3, 5, 17, 101, and 10007.

In this problem, you should read a set of words. Each word is composed only by
letters in the range a-z and A-Z. Each letter has a specific value: the letter a is worth
1, letter b is worth 2, and so on until letter z, which is worth 26. In the same way,
letter A is worth 27, letter B is worth 28, and letter Z is worth 52.

You should write a program to determine if a word is a prime word or not. A
word is a prime word if the sum of its letters is a prime number.

Input

The input consists of a set of words. Each word is in a line by itself and has L letters,
where 1<2<20. The input is terminated by end of file (EOF).

Output

For each word you should print: It is a prime word., if the sum of the letters of the
word is a prime number; otherwise you should print: It is not a prime word.

Sample Input | Sample Output

UFRN Itis a prime word.
contest It is nota prime word.
AcM It is nota prime word.

Source: UFRN-2005 Contest 1
ID for Online Judge: UVA 10924

“igi Hint

First, the offline method is used to calculate a prime list #[] in the interval [2, 1010].
Second, a test case (a word whose length is 7) is input, and the sum of letters in

the word is X =) (sl/l—"a"+ sl {'a. s}, sli)— A+ 27|sli] e[A".' Z'}.
i=1
If Xis a prime number in [2, 1010], the word is a prime word; else it isn’t a prime
word.

136 ® Algorithm Design Practice for Collegiate Programming

3.4.5 Sum of Different Primes

A positive integer may be expressed as a sum of different prime numbers (primes),
in one way or another. Given two positive integers 7 and 4, you should count the
number of ways to express 7 as a sum of £ different primes. Here, two ways are
considered to be the same if they sum up the same set of the primes. For example,
8 can be expressed as 345 and 5+3, but they are not distinguished.

When 7 and £ are 24 and 3 respectively, the answer is two because there are
two sets {2, 3, 19} and {2, 5, 17} whose sums are equal to 24. There are no other sets
of three primes that sum up to 24. For =24 and k=2, the answer is three, because
there are three sets {5, 19}, {7, 17} and {11, 13}. For »=2 and /=1, the answer is one,
because there is only one set {2} whose sum is 2. For #z=1 and k=1, the answer is
zero. As 1 is not a prime, you shouldn’t count {1}. For #»=4 and #=2, the answer is
zero, because there are no sets of two different primes whose sums are 4.

Your job is to write a program that reports the number of such ways for the
given 7 and 4.

Input

The input is a sequence of datasets followed by a line containing two zeros separated
by a space. A dataset is a line containing two positive integers 7 and k separated by
a space. You may assume that #<1120 and £<14.

Output

The output should be composed of lines, each corresponding to an input dataset. An
output line should contain one non-negative integer indicating the number of ways for
n and k specified in the corresponding dataset. You may assume that it is less than 2°'.

Sample Input Sample Output
24 3 2

24 2 3

21 1

11 0

42 0

18 3 2

17 1 1

17 3 0

17 4 1

100 5 55

1000 10 200102899
1120 14 2079324314
00

Source: ACM Japan 2006

IDs for Online Judges: POJ 3132, ZOJ 2822, UVA 3619

Practice for Number Theory ®m 137

\% Hint

Suppose su[] is the prime list in the interval [2, 1200]; fI7][/] is the number of ways
to express j as a sum of 7 different primes, 1<i<14, and s»[7]<j<1199. Obviously,
/10][0]=1.

First, su[] is calculated. Its length is num.

Then, for a test case (two positive integers 7 and 4), Dynamic Programming is
used to compute the number of ways to express 7 as a sum of # different primes.

Enumerate each prime suli]l in sul] (1<i<num) :
Enumerate the number of different primes j in descending
order (j=14..1):
Enumerate the sum of the first j primes p (p=1199..sulil):
Accumulate the number of ways that sul[i] is as the j-th
prime f[j] [pl+=f[j-1] [p-sulil];

Finally, f1][#] is the solution to the problem.

3.4.6 Gerg’s Cake

Gerg is having a party, and he has invited his friends. p of them have arrived
already, but @ are running late. To occupy his guests, he tried playing some team
games with them, but he found that it was impossible to divide the p guests into
any number of equal-sized groups of more than one person.

Luckily, he has a backup plan—a cake that he would like to share between his
friends. The cake is in the shape of a square, and Gerg insists on cutting it up into
equal-sized square pieces. He wants to reserve one slice for each of the 4 missing
friends, and the rest of the slices have to be divided evenly between the p remaining
guests. He does not want any cake himself. Can he do it?

Input

The input will consist of several test cases. Each test case will be given as a non-

negative integer # and a positive integer p as specified above, on a line. Both 2 and
. . o . : . e »

p will fit into a 32-bit signed integer. The last line will contain “~1 —1” and should

not be processed.

Output

For each test case, output “Yes” if the cake can be fairly divided and “No”
otherwise.

138 ® Algorithm Design Practice for Collegiate Programming

Sample Input | Sample Output
13 Yes

1024 17 Yes

2 101 No

01 Yes

-1 -1

Source: 2005 ACM ICPC World Finals Warmup 2
ID for Online Judge: UVA 10831

@ Hint by the Problemsetter (http://www
A=\ Lalgorithmist.com/index.php/Main_Page)

The summary of the problem is as follows. Given # and p, can a square cake be
divided into a+nxp equal-sized pieces?

You have to test whether there is a solution to x’=a+nxp, where 7 is an inte-
ger. Taking everything modulo p, we get x’=a(mod p). Now we use a trick to get
to Fermac’s Little Theorem: we take everything to the power (p—1)/2, so we get
»'=4"""P=1(mod p). So we only have to check whether 2*™""?=1(mod p). If it
is, there is a solution, and otherwise there isn’t. This can easily be calculated in
O(log p).

There are a few special cases, for example, 2=0(mod p), p=1 and p=2.

3.4.7 Widget Factory

The widget factory produces several different kinds of widgets. Each widget is care-
fully built by a skilled widgeteer. The time required to build a widget depends on
its type: the simple widgets need only three days, but the most complex ones may
need as many as nine days.

The factory is currently in a state of complete chaos: recently, the factory has
been bought by a new owner, and the new director has fired almost everyone. The
new staff know almost nothing about building widgets, and it seems that no one
remembers how many days are required to build each different type of widget.
This is embarrassing when a client orders widgets and the factory cannot tell the
client how many days are needed to produce the required goods. Fortunately,
there are records that say, for each widgeteer, the date when he started working
at the factory, the date when he was fired, and what types of widgets he built.
The problem is that the record does not say the exact date of starting and leaving

http://www.algorithmist.com/
http://www.algorithmist.com/

Practice for Number Theory ® 139

the job, only the day of the week. Nevertheless, even this information might be
helpful in certain cases: for example, if a widgeteer started working on a Tuesday,
built a Type 41 widget, and was fired on a Friday, then we know that it takes
four days to build a Type 41 widget. Your task is to figure out from these records
(if possible) the number of days that are required to build the different types of
widgets.

Input

The input contains several blocks of test cases. Each case begins with a line
containing two integers: the number 1<#<300 of the different types, and the
number 1<m<300 of the records. This line is followed by a description of the m
records. Each record is described by two lines. The first line contains the total
number 1<£<10000 of widgets built by this widgeteer, followed by the day of
the week when he or she started working and the day of the week he or she was
fired. The days of the week are given by the strings ‘MON’, “TUE’, “WED’,
‘THU’, ‘FRI’, ‘SAT’, and ‘SUN’. The second line contains 4 integers separated
by spaces. These numbers are between 1 and 7, and they describe the different
types of widgets that the widgeteer built. For example, the following two lines
mean that the widgeteer started working on a Wednesday, builta Type 13 widget,
a Type 18 widget, a Type 1 widget, again a Type 13 widget, and was fired on a
Sunday.

4 WED SUN
1318113

Note that the widgeteers work seven days a week, and they were working on
every day between their first and last day at the factory (if you like weekends and
holidays, then do not become a widgeteer!).

The input is terminated by a test case with 7=m=0.

Hint: Huge input file, ‘scanf’ recommended to avoid TLE.

Output

For each test case, you have to output a single line containing # integers separated
by spaces: the number of days required to build the different types of widgets.
There should be no space before the first number or after the last number, and
there should be exactly one space between two numbers. If there is more than one
possible solution for the problem, then write “Multiple solutions.” (without the
quotes). If you are sure that there is no solution consistent with the input, then
write “Inconsistent data.” (without the quotes).

140 ® Algorithm Design Practice for Collegiate Programming

Sample Input | Sample Output

23 83
2 MON THU
12 Inconsistent
data.

3 MON FRI
112

3 MON SUN
122

10 2

1 MON TUE
3

1 MON WED
3

00

Source: ACM Central Europe 2005

IDs for Online Judges: PO) 2947, UVA 3529

“§ Hint

There are NV types of widgets, and each type takes a fixed number of days (between
three and nine) to be produced. In the factory there were several workers. For each
of them, we know the information “He started on weekday X, produced ¢, widgets
of type #, ..., ¢, widgets of type # and finished on weekday ¥.” The task is to deter-
mine the production time for each of the widgets.

There may be inputs where there is no answer or more than one answer, and in
these cases you just have to output a corresponding message.

Note that if we want to know the number of days D a widget takes to be com-
pleted, it is enough to determine (D modulo 7).

Each worker’s information can be translated into a linear congruence modulo 7.
The resulting set of equations can be solved using Gaussian elimination.

Note that all operations when solving the set of equations are done modulo 7.
Seven (the number of days in a week) is a prime number. Thus Z; (the set {0, 1, 2,
3, 4, 5, 6} with addition and multiplication modulo 7) is a field. In other words,
each number other than 0 has a multiplicative inverse, and thus we can divide in
Z,. E.g., in Z; 2x4=1, so instead of dividing a number by 4, we can multiply it by 2.

3.4.8 Count the Factors

Write a program that computes the number of different prime factors in a positive
integer.

Practice for Number Theory ® 141

Input

The inpuct tests will consist of a series of positive integers. Each number is on a line
on its own. The maximum value is 1000000. The end of the input is reached when
the number 0 is met. The number 0 shall not be considered as part of the test set.

Output

The program shall output each result on a line by its own, following the format
given in the sample output.

Sample Input Sample Output
289384 289384 : 3
930887 930887 : 2
692778 692778 : 5
636916 636916 : 4
747794 747794 : 3
238336 238336 :3
885387 885387 : 2
760493 760493 : 2
516650 516650 : 3
641422 641422 :3
0

Source: 2004 Federal University of Rio Grande do Norte Classifying Contest-R
ound 2

ID for Online Judge: UVA 10699

\% Hint

First, the prime list s#[] in the interval [2, 1200] is calculated.

Then, for each test case, a positive integer x, the method by which the number
of different prime factors # for x is calculated as follows:

Initially #=0. The prime list s«[] is searched one by one. If su[i] is a prime factor
for x (x% suli]==0), then A++; and x/=suli] is repeated until (x% su[]#0). If x>1
after all elements in s«[] have been searched, 4++.

3.4.9 Prime Land

Everybody in the Prime Land is using a prime base number system. In this system,
each positive integer x is represented as follows: Let {;};2y denote the increasing
sequence of all prime numbers. We know that x>1 can be represented in only one
way in the form of product of powers of prime factors. This implies that there is an

142 ® Algorithm Design Practice for Collegiate Programming

integer 4, and uniquely determined integers ey ,es —1;.....se1,¢0,(es, >0), that
X = i X petyt X X pit X py’ . The sequence (e, ,€4,-15......€1,€y) is considered

to be the representation of x in the prime base number system.

It is really true that all numerical calculations in the prime base number system
can seem to us a little bit unusual, or even hard. In fact, the children in Prime Land
learn to add and to subtract numbers for several years. On the other hand, multi-
plication and division are very simple.

Recently, somebody has returned from a holiday in the Computer Land where small
smart things called computers have been used. It turns out that they could be used to
make addition and subtraction in the prime base number system much easier. It has
been decided to make an experiment and let a computer do the operation “minus one”.

Help people in the Prime Land and write a corresponding program for them.

For practical reasons, we will write here the prime base representation as a
sequence of such p; and ¢; from the prime base representation above, for which ¢>0.
We will keep decreasing order with regard to p;.

Input

The input file consists of lines (at least one), each of which, except the last, contains
a prime base representation of just one positive integer greater than 2 and less or
equal to 32767. All numbers in the line are separated by one space. The last line
contains number 0.

Output

The output file contains one line for each but the last line of the input file. If x is a posi-
tive integer contained in a line of the input file, the line in the output file will contain
x—1 in prime base representation. All numbers in the line are separated by one space.
There is no line in the output file corresponding to the last “null” line of the input file.

Sample Input | Sample Output

17 1 24

5121 32

509 1 591 1TB1T11171513121
0

Source: ACM Central Europe 1997
IDs for Online Judges: POJ 1365, ZOJ 1261, UVA 516

“ﬁ Hint

First, a prime list in the interval [2, 32767] is calculated.

Practice for Number Theory ®m 143

Then, for a test case (a prime base representation of a number x), x is calculated
by multiplying x = p X pi7' X oo X pi' X pg.
Finally, the prime base representation of x—1 is output.

3.4.10 Prime Factors

An integer g>1 is said to be prime if and only if its only positive divisors are itself
and one (otherwise, it is said to be composite). For example, the number 21 is com-
posite; the number 23 is prime. Note that the decomposition of a positive number
g into its prime factors, i.e., g=fiXfrX......Xf, is unique if we assert f;>1 that for all
iand f=f; for i<j.

One interesting class of prime numbers are the so-called Mersenne primes
which are of the form 2’—1. Euler proved that 2°'~1 is prime in 1772—all without
the aid of a computer.

Input

The input will consist of a sequence of numbers. Each line of input will contain one
number g in the range —2*'<¢<2”', but this number is different from —1 and 1. The
end of input will be indicated by an input line having a value of zero.

Output

For each line of input, your program should print a line of output consisting of the
input number and its prime factors. For an input number g>0, g=fixfX...... Xfrs
where each f; is a prime number greater than unity (with f<f, for i<j), the format
of the output line should be g=AxfX......xf,. Where g<0, if |g|=fiXfaX......Xf,, the
format of the output line should be g=—1xfixfXx...... Xfre

Sample Input | Sample Output
=190 -190=-1x2x5x19
=191 =191 =-1x191

=192 —192=-1x2x2x2x2x2x2x3
=193 193 =-1x193
-194 —194=-1x2x97
195 195=3x5x13

196 196=2x2x7x7
197 197 =197

198 198=2x3x3x11
199 199 =199

200 200=2x2x2x5x5
0

Source: ACM East Central Region 1997
ID for Online Judge: UVA 583

144 m Algorithm Design Practice for Collegiate Programming

“g Hint

First, a prime list in the interval [2,v 2% is calculated.
Then, for a input number x, if x is negative, the —1 coefficient should be added
before factoring; this method is similar to the 3.4.8 Count the factors method.

3.4.11 Perfect Pth Powers

We say that x is a perfect square if, for some integer &, x=b. Similarly, x is a perfect
cube if, for some integer 4, x= &’. More generally, x is a perfect p#h power if, for some
integer 4, x=b”. Given an integer x, you are to determine the largest p such that x is
a perfect pth power.

Input

Each test case is given by a line of input containing x. The value of x will have mag-
nitude of at least 2 and be within the range of a (32-bit) iz in C, C++, and Java. A
line containing 0 follows the last test case.

Output

For each test case, output a line giving the largest integer p such that x is a perfect
pth power.

Sample Input | Sample Output

17 1
1073741824 30
25 2
0

Source: Waterloo local 2004.01.31
IDs for Online Judges: POJ 1730, ZOJ 2124

\% Hint

The positive integer x is represented as the product of powers of prime factors

x=pf1p§2*---pzk. The largest integer p such that x is a perfect p#h power is

P:GCD(fl; €5 vy fk).

Practice for Number Theory ®m 145

3.4.12 Factovisors
The factorial function #! is defined thus for 7 a non-negative integer:

ol=1
n'!=nx(n-1)! (n>0)

We say that « divides & if there exists an integer 4 such that £xa=b.

Input

The input to your program consists of several lines, each containing two non-
negative integers, 7 and 7, both less than 2/31.

Output

For each input line, output a line stating whether or not 7 divides 7!, in the format
shown below.

Sample Input | Sample Output

69 9 divides 6!

6 27 27 does not divide 6!

20 10000 10000 divides 20!

20 100000 100000 does not divide 20!
1000 1009 1009 does not divide 1000!

Source: 2001 Summer keep-fit 1
ID for Online Judge: UVA 10139

“g Hint

The non-negative integer 7 is represented as the product of powers of prime factors

£
m=H pi". mdivides n! if and only if 7! can be represented as the product of pow-
i=1 ,
ers of prime factors n!=H p}"}, where {py, ps, ..., pi} is a subset for {py, ps, ..., p}}
=1
and the power for p; in {p;, p2, ..., pi} is less than or equal to the power for p, in

{1 25 - pi}-
In order to avoid “Out Of Memory Error (OOME)”, the power for p; for n! is

k
calculated directly from 7: e}=2{an(ipk+l >n).

=
We should note: 0 can’t divide 7!; and m divides 7! is true if m<n.

146 ® Algorithm Design Practice for Collegiate Programming

3.4.13 Farey Sequence

The Farey Sequence Fn for any integer 7 with #22 is the set of irreducible rational
numbers a/b with 0 <a<b<n and GCD(a, 6)=1 arranged in increasing order. The
first few are as follows:

F2={1/2}

F3=1{1/3, 1/2, 2/3}

F4=1{1/4,1/3, 1/2, 2/3, 3/4}

F5=11/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}

Your task is to calculate the number of terms in the Farey sequence Fz.

Input

There are several test cases. Each test case has only one line, which contains a posi-
tive integer 7 (2<1<10°). There are no blank lines between cases. A line with a single
0 terminates the input.

Output

For each test case, you should output one line, which contains N(7z)—the number
of terms in the Farey sequence Fn.

Sample Input Sample Output
2 1

3 3

4 5

5 9

0

Source: POJ Contest, Author: Mathematica@ZSU
ID for Online Judge: PO) 2478

“g Hint

Based on the problem description, the Farey Sequence F, for any integer # with
n=2 is the set of irreducible rational numbers 2/6 with 0<a<b<n and GCD(a, b)=1
arranged in increasing order. Suppose F[i] is the number of terms in the Farey
sequence F, and f;' is the number of terms whose denominators are 7 in the Farey

F[i]={ s

Fli-1+f 3

sequence F;. Therefore,

lATi
IN o

Practice for Number Theory ®m 147

For each term in the Farey sequence, F), its denominator 7 and numerator are
relatively prime. Therefore, f;' is Euler phi-function @(7). The offline method is used
to calculate F[]. Then for each test case (a positive integer k), F[£] is output.

3.4.14 Irreducible Basic Fractions

A fraction m/n is basic if 0<=m<n and it is irreducible if gcd(m, n)=1. Given a posi-
tive integer 7, in this problem you are required to find out the number of irreducible
basic fractions with denominator 7.

For example, the set of all basic fractions with denominator 12, before reduction
to lowest terms, is

01 2 3 4 5 6 7 8 9 10 11

1212127127127 127127127 127127127 12
Reduction yields
0 1111517 23511
12712°6°473712°2712° 37476712
Hence there are only the following four irreducible basic fractions with denomi-
nator 12:

Input

Each line of the input contains a positive integer 72(<1000000000) and the input
terminates with a value 0 for 7 (do not process this terminating value).

Output

For each 7 in the input, print a line containing the number of irreducible basic
fractions with denominator 7.

Sample Input | Sample Output

12 4
123456 41088
7654321 7251444
0

Source: 2001 Regionals Warmup Contest
ID for Online Judge: UVA 10179

148 ® Algorithm Design Practice for Collegiate Programming

“g Hint

M is irreducible if and only if gcd(m, n)=1. The number of m satisfying #n<m and
n

GCD(m, m)=1 is @(n). Therefore, the number of irreducible basic fractions with
denominator 7 is @(n).

3.4.15 LCM Cardinality

A pair of numbers has a unique LCM but a single number can be the LCM of more
than one possible pairs. For example, 12 is the LCM of (1,12), (2,12), (3,4), etc.
For a given positive integer IV, the number of different integer pairs with LCM that
is equal to N can be called the LCM cardinality of that number N. In this problem,
your job is to find out the LCM cardinality of a number.

Input

The input file contains at most 101 lines of inputs. Each line contains an integer
N (0<N<2x10°). Input is terminated by a line containing a single zero. This line
should not be processed.

Output

For each line of input except the last one, produce one line of output. This line
contains two integers N and C. Here Nis the input number and Cis its cardinality.
These two numbers are separated by a single space.

Sample Input | Sample Output
2 22

12 128

24 2411

101101291 101101291 5

0

Source: UVa Monthly Contest August 2005
ID for Online Judge: UVA 10892

“g Hint

For a given positive integer N, the number of different integer pairs with LCM is
equal to NV and can be called the LCM cardinality of that number V. Suppose A4

Practice for Number Theory ® 149

and B are a pair of integers. A and B can be represented as the product of powers

of prime factors, A=Hp,-”", and B=pr”". The LCM for A and B is N,

N=LCM(A,B)=H 27, where Vi, ¢;=max{a;, b}. This is the insight that lets us

solve the problem.
Suppose f17] is the LCM cardinality for the first 7 prime factors for /V.
For the first i1 prime factors for IV, there are two cases:

1. If Vj <i, ¢=a;=b;. If a;=c;, then 6,=0...c;, there are ¢;+1 pairs of integers (¢;,0),

(L‘,',l), LR (Q’;Ci);
2. Otherwise, there are 2Xc;+1 pairs of integers (0,¢), (1,¢), ..., (c—1,¢), (crc,—1),

veey (L'l',o)y (C,',Ci)-

Therefore, fli=(fTi—1]-1X(2XcA1)+c+1.

3.4.16 GCD Determinant

We say that a set S={x, x,, ..., x,} is factor closed if, for any x;€S and any divisor 4
of x;. we have 4€S. Let’s build a GCD matrix (S)=(s;), where 5;=GCD(x;, x,)—the
GCD of x; and x;. Given the factor closed set S, find the value of the determinant:

ng(xlyxl) ng(xl;xZ) ng(xbe) ng(xl’xn)
ged(x,x1) ged(x,xp) ged(xa,x3) o+ ged(xa,x,)
D,= ng(xa,ﬁﬁ) ged(x3, %) ng(xa’xa) ng(x3’xn)
ng(xn)xl) ng(.X'n,X'z) ng(X,,,,X3) ng(xn’xn)

Input

The input file contains several test cases. Each test case starts with an integer 7
(0<n<1000), that stands for the cardinality of S. The next line contains the num-
bers of S: xi, x5, ..., x,,. It is known that each x; is an integer, 0<x,<2x10’. The input
data set is correct and ends with an end of file.

Output
For each test case, find and print the value Dz mod 1000000007.

150 ® Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output

2
12 12
3 4
139
4

1236

Source: ACM Southeastern European Regional Programming
Contest 2008

IDs for Online Judges: POJ 3910, UVA 4190

“§ Hint

Suppose 4; is the row (ged(x;, x1) ged(x;, x2) ged(x;, x3) ... ged(x;, x,) for the matrix
D,, and a; represents gcd(x;, x;).
There is a linear transformation for the matrix D, a;, — 2 ay. Each ay
(d|b)&cse(d#b)
satisfying (4 | 6)&&(d#b) has been transformed before 4, is transformed.
0 ged(x;,x;) < x;

After a, has been transformed, 4; = .
0(x;) ged(x;,x;) = x;

First, all x; are sorted in ascending order. Second, the gcd matrix M is con-
structed as the problem description. Third, a linear transformation for the matrix is
done as above. The matrix must be an upper triangular matrix, and each element
for the diagonal line of the matrix is the Euler phi-function @(x,) for the row’s

corresponding number x;. Therefore, det(M)= H O(x;).
i=1

3.4.17 GCD and LCM Inverse

Given two positive integers 2 and b, we can easily calculate the GCD and the least
common multiple (LCM) of # and 4. But what about the inverse? That is: given

GCD and LCM, finding 4 and 4.

Input

The input contains multiple test cases, each of which contains two positive inte-
p

gers, the GCD and the LCM. You can assume that these two numbers are both

less than 2%.

Practice for Number Theory ®m 151

Output

For each test case, output # and & in ascending order. If there are multiple solutions,
output the pair with smallest a+6.

Sample Input | Sample Output

360 12 15

Source: POJ Achilles
ID for Online Judge: POJ 2429

“g Hint

For this problem, LCM=LCM(a, b), GCD=GCD(a, b), and axb=LCMXGCD with
smallest a+b.

First py= LCM is calculated. If N==1, then the pair with smallest a+& is (GCD,
GCD
LCM); else (a, b) is calculated.
LCM 'D N
Suppose a=txGCD, b= (; =NXtGC . Therefore, d:b=t:7. Obviously,

N
a+b being the smallest is equivalent to 7+~ being the smallest. The method for
calculating 7 is as follows: g
The positive integer /V is represented as the product of powers of prime factors
k

N :H pi*. Array a[] is used to represent the product of powers of prime factors for

i=1
N, where a[i]=pf(1<i<k)
The recursive function 4f5(0,1,N) is used to calculate #.

void dfs(i, t', n){ //i is the pointer for all, a:b=t', n is Leu
GCD
if (i==m+1) // all has been analyzed
if ((minx==-1) || (t'+n/t' <minx)) {
minx= t'+n/t';
t= t' ;
}
return; //backtracking
}
dfs(i+1, t'*alil, n); //a:b=t'*al[i]l, the (i+1l)-th prime
factor for N is analyzed
dfs(i+l1, t', n); // a:b=t', the (i+1l)-th prime factor
for N is analyzed

!
If #>N, then =N/t The pair with smallest a+6 is (.(xGCD, LCM/).

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Chapter 4

Practice for Combinatorics

Combinatorics is the branch of mathematics studying the enumeration, combina-
tion, and permutation of sets of elements and the mathematical relations that char-
acterize their properties. This chapter focuses on the following topics:

Generating Permutations;
Enumeration of Permutations and Combinations;
The Pigeonhole Principle and the Inclusion-Exclusion Principle;

]
]
]
B The Pdlya Counting Formula.

4.1 Generating Permutations

In this section, experiments for generating the next permutation and all permuta-
tions based on lexicographic order are shown.

4.1.1 Generating the Next Permutation Based
on Lexicographic Order

Lexicographic order refers to generating the next permutation based on the alpha-
betical order of their component elements. Suppose the current permutation is
(P)=p1...pispi...pn- The method for generating the next permutation (g) based on
lexicographic order is as follows:

Step 1: Find the longest suffix that is non-increasing by scanning the sequence

from right to left. The element immediately to the left of the suffix is called
“the first element.” If there is no such element, the sequence is non-increasing

153

154 ® Algorithm Design Practice for Collegiate Programming

and is the last permutation. That is, find such an index 7 that /=max{j|p,.<p;
2iZpin} and p,y is the first element.

Step 2: Find the rightmost successor to the first element in the suffix. Because
the first element is less than the head of the sufhix, some elements in the suffix
are greater than the first element. In the suffix, the rightmost successor to the
first element is the smallest element greater than the first element. We call the
element “the second element.” That is, find such an index j that j=max{k|£>7,

Pia1<pi-
Step 3: Swap p;; and p;, and get a new sequence py ... p;» pip,»+1 .. -P/—l
Pisteee Pu

Step 4: Reverse the subsequence after the original index of the first element. The

Pu-e P11 P10 Pirt Pi"

next permutation is (¢)=p; - pi2 p;

Suppose the current permutation is (p)=2763541. Based on lexicographic order,
the next permutation is (¢)=2764135.

1. 2763541 : Find the first element, and p;, p; is 35.

2. 2763541 : Find the second element: 4.

3. 2764531 : Swap the first element and the second element.

4. 2764135 : Reverse the subsequence after the original index of the first element.
And get the next permutation (g).

4.1.1.1 ID Codes

It is 2084 and the year of Big Brother has finally arrived, albeit a century late. In
order to exercise greater control over its citizens and thereby counter a chronic break-
down in law and order, the government decides on a radical measure—all citizens
are to have a tiny microcomputer surgically implanted in their left wrists. This com-
puter will contain all sorts of personal information, as well as a transmitter which
will allow people’s movements to be logged and monitored by a central computer.

An essential component of each computer will be a unique identification code,
consisting of up to 50 characters drawn from the 26 lowercase letters. The set of
characters for any given code is chosen somewhat haphazardly. The complicated
way in which the code is imprinted into the chip makes it much easier for the man-
ufacturer to produce codes that are rearrangements of other codes, rather than to
produce new codes with a different selection of letters. Thus, once a set of letters has
been chosen, all possible codes derivable from it are used before changing the set.

For example, suppose it is decided that a code will contain exactly three occur-
rences of “a”, two of “b”, and one of “c”; then three of the allowable 60 codes under
these conditions are:

abaabc

abaacb

ababac

Practice for Combinatorics ®m 155

These three codes are listed from top to bottom in alphabetic order. Among
all codes generated with this set of characters, these codes appear consecutively in
this order.

Write a program to assist in the issuing of these identification codes. Your pro-
gram will accept a sequence of no more than 50 lowercase letters (which may con-
tain repeated characters) and print the successor code if one exists, or print the
message “No Successor” if the given code is the last in the sequence for that set of
characters.

Input

Input will consist of a series of lines, each containing a string representing a code.
The entire file will be terminated by a line consisting of a single #.

Output

Output will consist of one line for each code read, containing the successor code or
the words “No Successor”.

Sample Input Sample Output
abaacb ababac

cbbaa No Successor
#

Source: New Zealand Contest 1991
IDs for Online Judges: POJ 1146, UVA 146

1. The successor code is the next permutation based on lexicographic order.

Therefore, the algorithm is as follows. Suppose the given code is sys5:5,......5.1.
g pp g 0

2. Find the index 7 that /=max{j|s;s}.

3. If i==0, then the given code is the last in the sequence for that set of charac-
ters, output “No Successor”, and exit; else

4. On the right of “the first element”, find the smallest character greater than it.

That is, find such an index j that j=max{k|s,_.<s;};
J J
. Swap s5;; and s, and get so...5,1 5 8 Sie1- - Sj1 St Spr1- S5
6. Reverse the substring after s, and get the successor code (9)=s,...5;2551...
g j g j

N

Si18i15j-1 -+ +Sit1 i

156 ® Algorithm Design Practice for Collegiate Programming

oY
= -

include <cstdio>
include <cstrings>
include <cstdlib>
include <iostreams
include <string>
include <cmaths>
include <algorithm>
using namespace std;
typedef long long inté64;

HH H H H HF H

char s[60];int 1; // identification codes whose length is 1
int get () { //If there is a successor code for s, output
the successor and return 1; else return 0
int i=1-1;
while (i>0&&s[i-1]>=s[i]) i--; //find the first element
if (!i) return 0; //no successor
int mp=1i; // f£ind the second element

for (int j=i+1l;j<l;j++) {
if(s[jl<=s[i-1])continue;
if(s[jl<s[mpl)mp=7;

swap (s [mp] ,s[i-11); // Swap s;; and Sp,
sort (s+i,s+1) ; // Reverse the suffix after the i-th
character
return 1;
!
int main() {
while (~scanf ("%s",s)&&s[0]!="#"){ //Input
identification codes until '#'
l=strlen(s) ; //the length of the identification
code
if(get()) printf("$s\n",s); // output the successor
else printf ("No Successor\n") ;
!
return 0;
}

Not only can lexicographic order generate the next permutation for py...p;
pi---Pw but it can also generate an r-combination of a set S of 7 elements {4,
a,..., 4,}, where 41<a,<...<a,. Suppose the current »-combination of a set § is {a4,
2> -> Ay}, where 1<ki<k,<...<k<n. Obviously, the first »-combination of a set §

Practice for Combinatorics ®m 157

of n elements is {a1, a,..., 4,}, and the last »~combination of a set § of 7 elements
is {@, 15 @oopizsen s 4}

If the current r-combination of a set S{as, 44s,..., @} iSOt {@, 1115 @yrizse >),
then the next 7-combination is calculated as follows:

Suppose 7 is the maximal index kj that #,<a,,4. Based on lexicographic
order, the next 7-combination is {#,..., @1, @js1s.-.» @ @pe}. Therefore, for an
r-combination {4, 45,. .., 4}, the algorithm for calculating the next »-combination
is as follows:

L l':max{kjlﬂ/ej<an~kr+kj })
2. a; ¢ a;y, where kj<i<kr.

4.1.2 Generating All Permutations Based
on Lexicographic Order

Based on Section 4.1.1, the method for generating all permutations for a finite set
with 7 elements is as follows:

First, sort the 7 elements in ascending order; the permutation is the first permu-
tation. Then the method generating the next permutation based on lexicographic
order is used repeatedly until the last permutation is generated.

4.1.2.1 Generating Fast, Sorted Permutation

Generating permutation has always been an important problem in computer sci-
ence. In this problem, you will have to generate the permutation of a given string in
ascending order. Remember that your algorithm must be efficient.

Input

The first line of the input contains an integer 7, which indicates how many strings to
follow. The next 7 lines contain 7 strings. Strings will only contain alpha-numerals
and never contain any space. The maximum length of the string is 10.

Output

For each input string, print all the permutations possible in ascending order. Note
that the strings should be treated as case-sensitive strings and no permutation should
be repeated. A blank line should follow each output set.

158 ® Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output

3 ab
ab ba
abc
bca abc
acb
bac
bca
cab
cba

abc
acb
bac
bca
cab
cba

Source: TCL Programming Contest, 2001
ID for Online Judge: UVA 10098

&J Analysis

Suppose the length of string s is /. Therefore, /! permutations in ascending order are
required to output. The algorithm is as follows:

The first permutation is achieved by sorting string s in ascending order. For the
current permutation s,

1. 7=max{]|sj,125j};
2. j=max{k|s1<si};
3. Swap s5;; and s, and get so...5, & 8 Siv1- - i1 i1 Spe1- S5

4. Reverse the substring after s, and get the next permutation (g)=s...5,

5]‘ S/l ‘S‘+1§ﬂ'—‘jﬂ ce oS S5

The above process is repeated until /==0. All of the permutations possible in
ascending order are generated.

o
% Program

include <cstdio>
include <cstring>

Practice for Combinatorics ® 159
include <cstdlib>
include <iostream>
include <string>
include <cmaths>
include <algorithm>
using namespace std;
typedef long long inté4;
char s[60];int 1; // the length of string s is 1
int get () { // If there is a successor for s, output the
successor and return 1; else return 0
int i=1-1; // find the first character
while (i>0&&s[i-1]>=s[i])i--;
if(!i) return O0; // no successor
int mp=1i; // find the second character
for(int j=i+1;3j<l;j++){
if(s[jl<=s[i-1])continue;
if(s[jl<s[mp])mp=7;
swap (s [mp] ,s[1-11); // Swap s;; and Sp,
sort (s+i,s+1) ; // Reverse the substring after s;
return 1;
!
int main() {
int casen;scanf ("%d", &casen) ; //number of strings
while (casen--) {
scanf ("%s",s) ; //current string
l=strlen(s) ; //the length of the current string
sort (s, s+1);
printf ("$s\n",s) ; //the first permutation
while(get ()) printf ("%$s\n",s); //all permutations
printf ("\n") ;
1
return O0;

4.2 Enumeration of Permutations and Combinations

In this section, first, experiments for calculating numbers of permutations and
combinations are shown; and then, experiments for Catalan numbers, Bell num-

bers, and Stirling numbers are shown.

4.2.1 Calculating Numbers of Permutations
and Combinations

P(n, r) is denoted as the number of r-permutations of an #z-element set.

!
Pln,) = n!
()=

n—r)!

160 m Algorithm Design Practice for Collegiate Programming

C(n, r) is denoted as the number of r-combination of an n-element set.

Cln,r)= ni" (or denote by [" J).

ri(n—r)! r

In programs, optimization methods can be used to calculate C(x, 7).

Method 1:
! —r+)X(n—r+2)x..X —-r+ —-r+
Clnr) = n :(n r+1)X(n—r+2) n_|n—r 1>< n—r+2 < 17|
ri(n—r)! 1X2X..Xr r r—1 1

Method 2: The formula for calculating binomial coefficients is used:
Cli,j)=C(i—1,7)+C(i—1,j—1), thatis,c[{][0] =1, and

cli)[j]=cli-1][j]+eli-1][j-1]-

4.2.1.1 Binomial Showdown

In how many ways can you choose 4 elements out of 7 elements, not taking order
into account? Write a program to compute this number.

Input

The input file will contain one or more test cases. Each test case consists of one line
containing two integers # (n>=1) and k (0<=k<=n). Input is terminated by two
zeros for 7 and 4.

Output

For each test case, print one line containing the required number. This number will
always fit into an integer; i.e., it will be less than 2*'.

Warning: Don’t underestimate the problem. The result will fit into an integer—
but whether all intermediate results arising during the computation will also fit into
an integer depends on your algorithm. The test cases will go to the limit.

Sample Input Sample Output
42 6

105 252

49 6 13983816

00

Source: Ulm Local 1997
IDs for Online Judges: PO]J 2249, ZOJ 1938

Practice for Combinatorics m 161

Method 1 is used to solve the problem directly:

Clnk) n! (n—k+1)x(n—k+2)X..Xn
7, = =
k\(n—k)! IX2X.. Xk
n—k+1|_ |n—k+2 n
k k-1 1

.«
% Program

include <cstdio>
include <cstring>
include <cstdlibs>
include <iostreams
include <string>
include <cmaths>
include <algorithm>
using namespace std;
typedef long long inté64;

H*+ HF H H H HF

int64 work (int64 n,inté4 k) { //Calculate C(n, k)
if (k>n/2) k=n-k; // To reduce the amount of
calculation

int64 a=1,b=1;

for(int i=1;i<=k;i++)
a*=n+l-i;
b*=1;
if (a%b==0)a/=b,b=1;

!
return a/b; //return C(n, k)
1
int main() {
int n,k;
while (~scanf ("%d %d", &n, &k) &&n) { // Input test cases
printf ("$11d\n",work(n,k)) ; // Calculate and
output C(n, k)
!
return 0;

162 ® Algorithm Design Practice for Collegiate Programming

4.2.1.2 Combinations

Computing the exact number of ways that NV things can be taken A at a time can
be a great challenge when NV and/or M become very large. Challenges are the stuff of
contests. Therefore, you are to make just such a computation, given the following:

Given: 5SN<100; 55M<100; MEN

Compute the EXACT value of: C=NV/(N-M)!M!

You may assume that the final value of Cwill fit in a 32-bit Pascal Longlnt or a
C long. For the record, the exact value of 100! is:

93,326,215,443,944,152,681,699,238,856,266,700,490,715,968,264,381,621,
468,592,963,895,217,599,993,229,915,608,941,463,976,156,518,286,253,697,920,
827,223,758,251,185,210,916,864,000,000,000,000,000,000,000,000

Input

The input to this program will be one or more lines each containing zero or more
leading spaces, a value for /V, one or more spaces, and a value for M. The last line of
the input file will contain a dummy N, M pair with both values equal to zero. Your
program should terminate when this line is read.

Output

The output from this program should be in the form:
N things taken M at a time is C exactly.

Sample Input | Sample Output

100 6 100 things taken 6 at a time is 1192052400 exactly.
205 20 things taken 5 at a time is 15504 exactly.

18 6 18 things taken 6 at a time is 18564 exactly.

00

IDs for Online Judges: POJ 1306, UVA 369

Suppose c[i][;] is C(, j).

Based on the formula calculating binomial coeflicients, c[#][jl=c[i-1][j]+c[i-1]
[7-11.

Initially, ¢[7][0]=1, 0<¢<101. Then, based on the above formula, c[][;] can be
calculated, 1<i<100, 1<7<100. Finally, for each test case N, M, output c[/V][M].

Analysis

Practice for Combinatorics ® 163

oY
= -

include <cstdio>
include <cstrings>
include <cstdlib>
include <iostreams
include <string>
include <cmaths>
include <algorithm>
using namespace std;
typedef unsigned long long inté64;
unsigned int c¢[110] [110]; //clil [7]1 is C(i, 7)
void pp () { //calculate c[][] using the formula
for (int 1=0;1i<102;i++) «c[i][0]=1;
for (int i=1;i<101;i++)
for (int j=1;3j<101;j++) cl[i]l[jl=cli-1]1[j-1]1+c[i-1]

HH H H H HF H

[31;

!
int main() {

ep () ; //offline method is used to calculate c[] []

int n,m;

while (~scanf ("%d %d",&n,&m)&&(n|m)) //Input test
cases

printf ("$d things taken %d at a time is %u

exactly.\n",n,m,c[n] [m]) ; //output C(n, m)

return 0;
!

4.2.1.3 Packing Rectangles

Four rectangles are given. Find the smallest enclosing (new) rectangle into which
these four may be fitted without overlapping. By “smallest rectangle”, we mean the
one with the smallest area.

All four rectangles should have their sides parallel to the corresponding sides
of the enclosing rectangle. Figure 4.1 shows six ways to fit four rectangles together.
These six are the only possible basic layouts, since any other layout can be obtained

L

Figure 4.1

164 m Algorithm Design Practice for Collegiate Programming

from a basic layout by rotation or reflection. Several different enclosing rectangles
fulfilling the requirements may exist, all with the same area. You have to produce
all such enclosing rectangles.

Input

Your program is to read from standard input. The input consists of four lines. Each
line describes one given rectangle by two positive integers: the lengths of the sides
of the rectangle. Each side of a rectangle is at least 1 and at most 50.

Output

Your program is to write to standard output. The output should contain one line
more than the number of solutions. The first line contains a single integer: the min-
imum area of the enclosing rectangles. Each of the following lines contains one
solution described by two numbers p and ¢ with p<g. These lines must be sorted in
ascending order of p, and the lines must all be different.

Sample Input Sample Output

12 40
23 410
34 58
45

Source: 1011995
ID for Online Judge: POJ 1169

1. Calculating widths and heights for the enclosing rectangles.

The problem description shows six ways to fit four rectangles together. The key
to the problem is to calculate the area of the enclosing rectangles for six ways.
Suppose four rectangles which will be placed into the enclosing rectangle are
represented as an array #[0...3], and for rectangle #[7], its height and width
are #[4].x and #[i].y respectively, 0</<3.

For each rectangle, there are two ways to place it into the enclosing rect-
angle: place it horizontally, or place it vertically. Obviously, if a rectangle’s
placement method is changed, we only need to exchange its height and width.

Analysis

Practice for Combinatorics ®m 165

Based on the problem description, six ways to fit four rectangles together
are analyzed as follows:

Case 1:

qo1 | ™ | a3

rectangle p

Figure 4.2

Four rectangles (#[0], #[1], #[2], and #(3]) are placed in order as shown in
Figure 4.2. For Case 1, the height and width for the enclosing rectangle p are
as follows: p.x=max{t{0].x, t[1].x, #{2].x, £[3].x}; p.y=¢[0]y+2[1].+£[2].p+2[3].y.

Case 2:

rectangle p

f3].x 131y

Figure 4.3

In the enclosing rectangle p, there are two parts: the upper part and the
lower part, as shown in Figure 4.3. In the upper part, 0], #[1], and #[2]
are placed; and in the lower part, #[3] is placed. For case 2, the height and
width for the enclosing rectangle p are as follows: p.x=max{r[0].x, #{1].x,
t2].x}42(3).y, p.y=max{t(3].x, t[0]y+2[1].y+2(2].y}.

166 ® Algorithm Design Practice for Collegiate Programming

Case 3:
X
1]
1[0] 1[3]
rectangle p
2]
y
Figure 4.4

In the enclosing rectangle p, there are two parts: the left part and the right
part, as shown in Figure 4.4. In the left part, #[2] is placed below, #[0] and #(1]
are placed up, and #[2] and #[1] are right-aligned. In the right part, #[3] is placed.
For case 3, the height and width for the enclosing rectangle p is as follows:
p-x=maximax{t[0].x, t{1].x}+2[2].x, £(3].x)}, p.y=max{t[0]y+£(1].y, [2]y}+2(3].y.

Case 4 and Case 5:
X X
— rectangle p
~ rectanglep |
1] 2] 1[0]
1[3]
10] 73]
2] 1]
y y
Figure 4.5

In the enclosing rectangle p, two rectangles, #[1]Jand #[2], are stacked
together, and two other rectangles, #[0] and #[3], are placed alone, as shown
in Figure 4.5. The height and width for the enclosing rectangle p is as follows:
p-x=max{t[1].x+£[2].x, £[0].x, #[3].x}, p.y=t[0].y+£[3].y+max(¢(1].y, £[2]}.

Practice for Combinatorics m 167

Case 6:

—

rectangle p

—_—

1[3] x rectangle p
1]

131 1]

10]
2]y I 0]
- M2l.x 21y
' I— 12].x
y y
Figure 4.6

In the enclosing rectangle p, four rectangles are placed in two rows, and
in each row there are two rectangles, where #[1].x<#[3].x<#[0].x+#[1].x and
#[0].y<#[1].y. In Figure 4.6, there are two different ways. All placements can
be calculated through rotations and reflections for the two ways. The height
and width for the enclosing rectangle p are as follows: p.x=max{¢[0].x+¢{1].x,
t2] y+#(3).x}, py=max{t[0].y+£[2].x, t[1].y+£(3]9}.

2. Enumeration is used to calculate the minimal enclosing rectangle.
The algorithm is as follows:
All possible permutations for four rectangles are enumerated (4, 4, ¢,)
(024, b, ¢, d<3, azb=c2d), and rla...d] is stored in #0...3] in order. Suppose
heights and widths for four rectangles are 7[7].x and 7[i].y, respectively, 0<i<3,
and the placements for each rectangle are enumerated, where

0 The rectangle is placed vertically.

oli] 0<i<3.

] 1 The rectangle is placed horizontally. ’

If rectangle #[7] is placed horizontally (i.e., v[i]=1, 0</<3), its height and
width are exchanged (i.e., #[].x>#[1].y).

There are four rectangles, and there are two placements for each rectan-
gle. Therefore, there are 424 different #[0...3]. And for each #0...3], there
are five enclosing rectangles (Case 1 to 5). Therefore, there are 41x24x5=1920
areas of enclosing rectangles. We can calculate the minimum area of the
enclosing rectangles as min_area.

Suppose so/n[0...ps] stores the sequence of enclosing rectangles whose
area is min_area. In the sequence, each element is described by two numbers
solnli].x and solnli].y with soln[i].x<soln[7].y. All elements are sorted in ascend-
ing order of so/n[i].x, 0<i<ps.

168 ® Algorithm Design Practice for Collegiate Programming

Initially, min_area=co, the rear pointer for so/n[] ps=0. Then, each enclos-
ing rectangle p in 7[0...3] is enumerated:
If p.x>p.y, then (p.x>p.y);
If p.xX p. y<min _area, then min_area=p.xXp.y; and pis stored
(soln[0)e— p, ps=1);
If p.xX p.y=min _area, then pis added into so/n[](soln| ps++1—p);
If p.xX p. y>min _area, then pis omitted.
After the enumeration, min_area is the minimum area of the enclosing

rectangles. All elements in array so/n are sorted, x is the first key, and y is the
second key. And all elements are different.

o
= -

#include <fstream>
#include <iostream>
#include <vector>
#include <algorithms>
using namespace std;
#define MAX Ox7fffffff

typedef struct //rectangle
{
int x;
int y;
}rec;
int min _area = MAX; //Initialization: the minimum area of
the enclosing rectangles
rec soln[1000]; //the sequence of enclosing rectangles
whose area is minimal, whose length is ps
int ps = 0;
rec r[4]; // Input 4 rectangles
rec t[4]; // 4 rectangles placed into the enclosing
rectangle
rec zero={0,0}; //Initialize height and width
int v[4]; // placements for each rectangle
inline void make (rec p) // soln[] is adjusted based on the
current enclosing rectangle p
{
if(p.x>p.vy)
{

Practice for Combinatorics ®m 169

if (min area > p.x*p.y)
{
min area = p.x*p.y;
ps = 0;
soln[ps++] = p;
}
else if (min area==p.x*p.y)

{

}
}

void search() // Enumeration calculating the area of minimal
enclosing rectangles soln[]

soln[ps++] = p;

int 1i;
for (int a=0;a<4;a++) //all permutations for 4 rectangles
(a, b, ¢, d)

for (int b=0;b<4;b++)
for (int c=0;c<4;c++)
for(int d=0;d<4;d++)
{
if(a !
if(a !
if(a !=
if (b !
if(b !
if(c !
{
for(v[0]1=0;v[0]<2;Vv[0]++) // Enumerating placements
(vertically or horizontally) for 4 rectangles
for(v[1l]1=0;vI[1]<2;vI[1]++)
for(v[2]1=0;vI[2]<2;vI[2] ++)
for(v[3]=0;vI[3]<2;VvI[3]++)

Q0 Q0o

{
tlo]l=rlal; tlll=r([bl; tl2]l=rlc]l; t[3]=rld];
for(i=0;i<4;1i++) //exchanging the height and width
for a rectangle
if(v[i] == 1)
{

A A

t[i] .x = t[i] .x t[i] .y;
tlil.x = t[i]l.x * tl[il.y;
}
rec p=zero; //Case 1
p.x = max (t[0].x,max(t[1].x,max(t[2].x,t[3].x))); //the
height and width for p

p.y = t[0]l.y + t[l].yv + t[2].y + t[3].y;

t[il.y; tlil.y = t[i].x

make (p) ; // soln[] is adjusted based on the current
enclosing rectangle p
if(p.x == 10 && p.y == 8) p=p;

p = zero; //Case 2

170 ®m Algorithm Design Practice for Collegiate Programming

p.x=max (t[0] .x, max (t[1] .x,t[2] .x))+t[3].y; // the
height and width for p

p.y = max(t[0].y+t[1] .y+t[2].y,t[3].x);

make (p) ; // soln[] is adjusted based on the current
enclosing rectangle p

if(p.x == 10 && p.y == 8) p=p;

p=zero; //Case 3

p.x=max (max (t [0] .x,t[1].x)+t[2] .x,t[3].%); // the
height and width for p

p.y = max(t[0].y+t[1].y,t[2].y)+t[3].y;

make (p) ; // soln[] is adjusted based on the current
enclosing rectangle p

if(p.x == 10 && p.y == 8) p=p;

p=zero; //Case 4 and 5

p.x=max (t[0] .x, max (t [1] .x+t [2] .x,t[3].x)); // the
height and width for p

p.y = tl[0].y + max(t[1].y,t[2].y) + t[3].y ;

make (p) ; // soln[] is adjusted based on the current
enclosing rectangle p

if(p.x == 10 && p.y == 8) p=p;

if (£[0].y>t[1].y) continue; //Case 6: If 4
rectangles can't satisfy t[1] .xs=st[3].x<t[0] .x+t[1].x and t[0].
y=<t[1l] .y, continue to enumerate
if(t[3].x > t[0].x+t[1] .x) continue;
if (£ [3] .x<t[1] .x) continue;

P = zero; //Initialization

p-x = max(t[0] .x+t[1].x,t[2].y+t[3].x); // the
height and width for p

p.y = max(t[1].y+t[3].y,t[0].y+t[2].x%);

make (p) ; // soln[] is adjusted based on the current
enclosing rectangle p

if(p.x == 6 && p.y == 6) DpP=p;

1

}

}
1

bool comp (rec a,rec b) //comparing enclosing rectangles a and
b (x is the 1st key, y is the 2nd key)

{
if (a.x<b.x) return 1;

else if(a.x == b.x && a.y<b.y) return 1;

else return 0;

!
bool comp2 (rec a,rec b) //determine whether enclosing
rectangles a and b are same
{

return a.x==b.x && a.y==b.y;
!

int main()

{

Practice for Combinatorics m 171

for (int i=0;i<4;i++) //Input heights and widths for
4 rectangles
{
cins>>r[i] .x>>r[i] .y;
!
search () ; //Calculating solnl[]

sort (&soln[0], &soln[ps], comp) ;
rec *t = unique(&soln[0], &soln[ps], comp2) ;
cout<<min area<<endl; //Output the minimum area of the
enclosing rectangles
for(rec *i=&soln[0];i!=t;i++)
cout<< (*¥i) .x<<" "<<(*1) .y<<endl;
return O;

}

4.2.2 Catalan Numbers, Bell Numbers
and Stirling Numbers

4.2.2.1 Catalan Numbers

The Catalan sequence is the sequence Gy, Ci, ..., C,, ... ; where Cy=1, C=1, and
Cn=C0 Cn,1+C1C”,2+. : .+Cn,1 C(), n=2.
Therefore, C, = M,ﬂ =0,1,2,...... ;or C, = dn=2 XC,y, n>1.
n+1l n+1

The Catalan sequence is a frequent counting sequence. For example,

1. C, is the number of stack-sortable permutations of {1, ..., 7}.

2. C, is the number of different ways that a convex polygon with 742 sides can
be cut into triangles by connecting vertices with non-crossing line segments.

3. C, is the number of rooted binary trees with 7 nodes.

4.2.2.1.1 Game of Connections

This is a small but ancient game. You are supposed to write down the numbers 1,
2,3, ..., 2n—1, 2n consecutively in clockwise order on the ground to form a circle,
and then, to draw some straight line segments to connect them into number pairs.
Every number must be connected to exactly one another. And, no two segments
are allowed to intersect.

Its still a simple game, isn’t it? But after you've written down the 2% numbers,
can you tell me in how many different ways you can connect the numbers into pairs?

Input

Each line of the input file will be a single positive number 7, except the last line,
which is a number —1. You may assume that 1<#<100.

172 ® Algorithm Design Practice for Collegiate Programming

Output

For each 7, print in a single line the number of ways to connect the 27 numbers
into pairs.

Sample Input Sample Output
2 2

3 5

-1

Source: ACM Shanghai 2004 Preliminary
IDs for Online Judges: PO) 2084, ZOJ 2424

Based on the problem description, there are 7 lines connecting 27 numbers into
pairs. For each line, there are 7 pairs of numbers on the left, and there are n—i—1
pairs of numbers on the right. Suppose C, is the number of ways to connect the 27
numbers into pairs. Cy=1, C=1, and C=C,C, +C,C,+.. +C,,Cy, n22. Therefore,
C, is a Catalan number.

The offline method is used to calculate the Catalan sequence Cy, G, ..., Cia.
Because the range of Catalan numbers is out of the range of integers in program-
ming languages, Catalan numbers are stored as high-precision numbers.

o
%@ Program

include <cstdio»>
include <cstring>
include <algorithms>
include <iostream>
using namespace std;
struct BIGNUM({ //High-precision number
short s[200],1; //the length of integer array s[] is 1
}el120]; // Catalan sequence, where c[i]=C;
BIGNUM operator* (BIGNUM a,int b){ //a<a*b, where a is an
integer array, b is a integer
for(int i=0;i<a.l;i++) a.s[i]*=Db;

for(int i=0;i<a.l;i++){ //carry

Practice for Combinatorics m 173

a.s[i+l]l+=a.s[i]/10;
a.s[11%=10;
}
while(a.s[a.1]!=0) {
a.sla.l+1]l+=a.sla.l]/10;
a.sla.1]1%=10;

a.l++;
}
return a;
!
BIGNUM operator/ (BIGNUM a,int b) { //a<a/b, where a is an
integer array, b is an integer
for(int i=a.l-1;i>0;i--){
a.s[i-1]1+=(a.s[i]l%b)*10;
a.s[il/=b;
}
a.s[0]/=b;
while(a.s[a.1l-1]1==0) a.l--; //number of digits
return a;
!
void print (BIGNUM a) { //output array a
for(int i=a.l-1;i>=0;i--){
printf ("%d",a.s[i]);
}
printf ("\n") ;
!
int n;

int main() {

c[0].1=1;c[0].s[0]=1; //The first Catalan number C,=1
for(int i=0;1i<=101;i++) //Calculate Catalan sequence
4*n-2
Cp=Cphq* n , offline method
n+1l
cli+1l=(c[i]* (4*i+2))/ (i+2);
while (~scanf ("%d", &n)) { //Input test cases
if (n<0) break;
print (c[n]) ; //Output C,
!
return 0;

4.2.2.2 Bell Numbers and Stirling Numbers

Bell numbers, By, B, ..., B,, ..., are numbers of partitions of a set, where B,

is the number of different ways to partition a set that has exactly 7 elements,

or equivalently, the number of equivalence relations on it. Obviously, By=1,
n

Bl =1. Bn+1 = ZC(%,%)B/@
k=0

174 m Algorithm Design Practice for Collegiate Programming

Stirling numbers of the first kind are the number of ways to arrange 7 objects
into £ cycles, where S(n, 0)=0, S, 1)=1, S(n, H=S(n—1, k-1)+(n-1)xS(n—1, k).

Stirling numbers of the second kind are the number of ways to partition
a set of 7 elements into £ non-empty subsets. S(z, 7=S(n, 1)=1, S(n, £=S(n-1,

k=1)+ExS(n—1, k).

Obviously, B, = 2 S(n,k), where S(n, k) is a Stirling number of the second
kind. k=1

Bell numbers and Stirling numbers of the second kind can be calculated
through constructing Bell triangle 4.

1. Put 1 on the first row. That is, [0, 0]=1.

2. For the nth row, the leftmost number is the rightmost number on the (z—1)th
row. That is, a[n, 0]=a[n—1, n—1], n=>1.

3. For the nth row, numbers not on the left column are sums of the number to
the left and the number above the number to the left. That is, a[n, m]=a[n,
m—1]+a[n—1, m—1], m, n=>1.

In a Bell triangle, the numbers on the left-hand side are the Bell numbers for
that row (see Figure 4.7). That is, B=al%, 0], 720. The sums of numbers on each row
are Stirling numbers of the second kind.

4.2.2.2.1 Bloques

Little John has /Vblocks, all of them of different sizes. He is playing to build cities
in the beach. A city is just a collection of buildings.

A single block over the sand can be considered as a building. Then John can
construct higher buildings by putting a block above any other block. At most one
block can be put immediately above any other block. However, he can stack sev-
eral blocks together to construct a building. However, it’s not allowed to put bigger
blocks on top of smaller ones, since the stack of blocks may fall. A block can be
specified by a natural number that represents its size.

1

1 2

2 3 5

5 7 10 15

15 20 27 37 52

52 67 87 114 151 203

203 255 322 409 523 674 871

877 1080 1335 1657 2066 2589 3263 4140

Figure 4.7

Practice for Combinatorics m 175

The order among buildings doesn’t matter. That is:

13
24

is the same configuration as:

31
42

Your problem is to compute the number of possible different cities using NV
blocks. We say that #(/V) gives the number of different cities of size N. If N=2, for

instance, there are only two possible cities:
City #1:
12
In this city, both blocks of size 1 and 2 are put over the sand.
City #2:

1
2

In this city a block of size 1 is over a block of size 2, and a block of size 2 is over
the sand.
So, #(2)=2.

Input

A sequence of non-negative integer numbers, each one in a different line. All of
them but the last one are natural numbers. The last one is 0 and means the end.
Each natural number is less than 900.

Output

For each natural number / in the input, you must write a line with the pair of
numbers 7, #(1).

Sample Input | Sample Output

2 2,2
3 3,5
0

Source: Contest ACM-BUAP 2005
ID for Online Judge: UVA 10844

176 ®m Algorithm Design Practice for Collegiate Programming

The problem requires you to compute the number of possible different cities using
N blocks, that is, the number of different ways to partition a set. Therefore, #(2V)
is a Bell number B,

The offline method is used to calculate Bell numbers By, B, ..., B, ... in the
range by constructing a Bell triangle. Because the range of Bell numbers is out of
the range of integers in programming languages, Bell numbers are stored as high-
precision numbers.

oY
0.,....

include <cstdio>

include <cstrings>

include <cstdlib>

include <iostreams

include <string>

include <cmaths>

include <algorithms>

using namespace std;

typedef unsigned long long inté64;

int64 m=1el0;

struct Bigint({ //High-precision number

int 1;int64 s[200]; //sl] stores a high-precision number,
each element stores a 10-digit decimal number, the length is 1

HH H H H HF H H

void read(inté64 x) { //integer x is represented by a high-
precision number s[]
=-1; memset(s,0,sizeof(s))

do {
s[++1] =x%m;
x/=m;
} while (x) ;
}
void print () { // Output sl]

printf ("$1lu",s[1]); // sl[l1]: practical number of
digit, s[l-1]..s[0]: 10 digits

for(int i=1-1;i>=0;i--) printf("%$01011lu",s[i]);
}

} dpl2] [1000],ans[1000]; //In a Bell triangle, the value
for (i, j) is dpli&l] [j]; the value for (i-1,7) is dp
[(i&1) 11 [j]1, and the Bell number for i is ans[i+1]

Practice for Combinatorics m 177

Bigint operator+ (Bigint a,Bigint &b) //Addition for high-
precision numbers a<a+b
a.l=max(a.l,b.1l);inté64 d=0;
for(int i=0;i<=a.l;i++) {
a.s[i]l+=d+b.s[1i];
d=a.s[i]/m;a.s[i] %$=m;

1
if(d)a.s[++a.1l]1=d;
return a;

1

int n;

void getans (int id, int n)
int i=id”*1;
for(int j=1;j<=n-1;i++)dplid] [j+1]1=dpl[i] [j]+dp[id] []];

1
void work(){ //Offline method: calculate Bell numbers
dpl1] [1] .read (1) ;ans[2]=dp[0] [1]=ans([1]=dp[1] [1]; //

initialize Bell triangle: B;=By=1
for(int i=2;i<=900;i++) {
getans (i&l,1) ;
dpl(i&l)*1] [1]=ans[i+1]=dp[i&l] [i];
1
!
int main() {
work () ;
while (~scanf ("%d", &n) &&n) {
printf ("%d, ",n); ans[n+1].print(); //output n and
its Bell number
printf ("\n") ;

}

return 0;

}

4.3 Applications of the Pigeonhole Principle
and the Inclusion-Exclusion Principle

This section focuses on the Pigeonhole Principle and the Inclusion—Exclusion Principle.

4.3.1 Applications of the Pigeonhole Principle

Theorem 4.3.1. If #+1 objects are put into 7 containers, then at least one container
must contain more than one object.
Theorem 4.3.2. If m objects are put into 7 containers, then at least one container

m
— mmod n=0

. . n
must contain at least £ objects, where £ =

{mJ+1 mmod n #0
n

178 ® Algorithm Design Practice for Collegiate Programming

The steps for applying the pigeonhole principle to solve problems are as
follows:

1. Determine what objects and containers are based on problem descriptions;
2. Construct containers;
3. Apply the pigeonhole principle to solve problems.

4.3.1.1 Find a Multiple

The input contains NV natural (i.e., positive integer) numbers (IV<10000). Each
of these numbers is not greater than 15000. These numbers are not necessarily
different (so it may happen that two or more of them will be equal). Your task
is to choose a few of the given numbers (1<few<N) so that the sum of chosen
numbers is a multiple for NV (i.e., Vxk=[sum of chosen numbers] for some natural
number £).

Input

The first line of the input contains the single number N. Each of the next /V lines
contains one number from the given set.

Output

In case your program decides that the target set of numbers cannot be found, it
should print the single number 0 to the output. Otherwise, it should print the
number of the chosen numbers in the first line followed by the chosen numbers
themselves (on a separate line each) in arbitrary order.

If there are more than one set of numbers with the required properties, you
should print to the output only one (preferably your favorite) of them.

Sample Input Sample Output

2
2
3

= h WN=U

Source: Ural Collegiate Programming Contest 1999

IDs for Online Judes: POJ 2356, Ural 1032

Practice for Combinatorics ®m 179

For this problem, we can prove this proposition.
For a sequence with /V natural (i.e., positive integer) numbers ay,..., ay, there
r

exists a subsequence 4, ..., 4, E a; that can be divided exactly by V.
i=l

Proof. Suppose B; = Zak, i=1,2,..,N.
k=1
If there exists a B; exactly divisible by /V, the proposition holds; else there are
N-1 remainders for B; divided by NV; i=1, 2, ..., IV.
Remainders are regarded as containers, and B; are regarded as objects. There
are IV objects are put into /N-1 containers. Based on the pigeonhole principle, there
must exist B; and B, B%N==B,%N, 1<j<i<N. Therefore, (B~B,)%/N==0, that is,

i

2 a;, can be divided exactly by NV, so the proposition holds.

k=j+1

o
% Program

include <stdio.h>
int a[10004],s[10004],mod[10004],n;

void print (int s,int t){ //Output als]..alt]
printf ("$d\n",t-s+1) ; //the number of the chosen numbers
for (int i=s;i<=t;i++) //the chosen numbers

printf ("$d\n",alil);

int main() {

scanf ("&%d", &n) ; //Input the number of positive integers N
for (int i=1;i<=n;i++){ // Remainders are regarded as
containers

scanf ("%d",a+1) ; // the i-th positive integers

s[il=s[i-1]+ali]; //the sum of the first i positive
integers

if (s[i]l%n==0) { //if the sum of the first i positive

integers can be divided exactly by N
print(1,1i);
break;

180 m Algorithm Design Practice for Collegiate Programming

}else if (!mod[s[i]l%n]) { //If the remainder never
appears, 1 is put into a container; else output the chosen
numbers

mod[s[i] %n]=1;

lelse{
print (mod([s[i]%n]l+1,1);
break;
}
!
return 0;

}

4.3.2 Applications of the Inclusion-Exclusion Principle

The inclusion—exclusion principle counts the number of elements in the union of
finite sets. The inclusion—exclusion principle is as follows:

Suppose there are finite sets A4y, ..., 4,, and § is a finite universal set containing
Ay, o A,

\Alquu...uAn\=2|4|— Yoo+ Y 40,04l

i=1 1<i<ir<n 1<i <iy<i3<n

+(=)"MNANA NN A,
=\Er@ NA,

bl

AU .4, =S| -|A U4 U....UA,|;where | 4]

indicates the cardinality of aset 4;, 1<i <z

When the inclusion—exclusion principle is used for A4, ..., 4,, there are
C(n, 2)=n(n—1)/2 two-set intersections, C(n, 3)=n(n—1)(n—2)/3! three-set intersec-
tions, and so on.

4.3.2.1 Tmutarakan Exams

The University of New Tmutarakan trains first-class specialists in mental arichmetic.
To enter the university, you should master arithmetic perfectly. One of the entrance
exams at the Divisibility Department is the following. Examinees are asked to find
k different numbers that have a common divisor greater than 1. All numbers in each
set should not exceed a given number s. The numbers # and s are announced at the
beginning of the exam. To exclude copying (the department is the most prestigious
in town), each set of numbers is credited only once (to the person who submitted
it first).

Last year, these numbers were #=25 and s=49 and, unfortunately, nobody
passed the exam. Moreover, it was proven later by the best minds of the depart-
ment that there do not exist sets of numbers with the required properties. To avoid

Practice for Combinatorics ®m 181

embarrassment this year, the dean has asked for your help. You should find the
number of sets of # different numbers, each of the numbers not exceeding s, which
have a common divisor greater than 1. Of course, the number of such sets equals
the maximum possible number of new students of the department.

Input

The input contains numbers £ and s (2<£<5<50).

Output

You should output the maximum possible number of the department’s new stu-
dents if this number does not exceed 10000, which is the maximum capacity of the
department; otherwise, you should output 10000.

Sample Input Sample Output

310 11

Source: USU Open Collegiate Programming Contest March 2001 Senior Session
ID for Online Judge: Ural 1091

S/ Analysis

Every natural number 722 is a prime number or a product of prime numbers.
Every common divisor 7 (2<i<s) is enumerated. In 1...s the number of numbers
L s—i N
that have a common divisor 7 is 4 = L J + 1. The number of £-combination of a
i

d-element set is C(d, k), and the number in each 4-combination has the common
divisor i.

If the common divisor 7 is a prime number, C(d, #) is accumulated into the
number of the department’s new students;

If the common divisor 7 is a product of two prime numbers, in the number of
the department’s new students, C(d, #) is counted twice. Based on the inclusion—
exclusion principle, C(d, k) must be subtracted from the number of the department’s
new students.

Because of the range of s, for this problem, we need not consider products of three
prime numbers. Suppose ans is the maximum possible number of the department’s
new students.

182 m Algorithm Design Practice for Collegiate Programming

For every number i in [2s]

s-1
If (i is a prime number) ans+:C(L—j—J+l,kj
i

Else if(i is a product of two prime numbers)

s-1
ans—:C(L - J+l,k);
1

Output ans (ans>10000 ? 10000 : ans).

o
= -

include <cstdio>

include <algorithm>

include <iostream>
using namespace std;
typedef long long inté4;

bool ppl60]; //prime sieve

int64 c[60] [60]; //cln] [m] is C(n, m)
int k,s;

void cal prime() { //calculate prime

pp[0l=pp[1]l=1;

for(int i=2;1<=50;1i++) {
if (pp[i])continue;
for(int j=i*2;j<=50;j+=1i)ppl[jl=1;
!

!

void cal_number(){ // The formula calculating binomial
coefficients is used to calculate c[] []
for(int i1=0;1i<=50;i++) c[i] [0]=1;
for(int i=1;i<=50;1i++)

for(int j=1;1<=50;j++) c[i] [jl=c[i-1] [jl+c[i-1]1I[j-11;
!

inline bool pxp(int a) { //determine whether a is a product
of two primes

for(int i=2;i<=50;i++) if(a%i==0&&!pplil&&!ppla/il&&il=a/1i)
return true;
return false;
}
int work () { // ans is the maximum possible number of the
department's new students
int64 ans=0; //Initialization

Practice for Combinatorics m 183

for(int i=2;i<=s;i++)

if (tpplil){ //if 1 is a prime, ans+=C({£J+l,k)

i
int cnt=0;
for(int j=i;j<=s;j+=1)cnt++;
ans+=c[cnt] [K];

lelse if (pxp (1)) { //if i is a product of two prime

s-1
numbers, ans-= C(\‘ - J+ 1, k)
i

int cnt=0;
for(int j=i;j<=s;j+=1)cnt++;
ans-=c [cnt] [k];

!

!

return ans>10000?10000:ans; //return ans
!
int main() {
cal prime() ; //construct prime sieve pl]
cal number () ; // calculate c[] []
scanf ("%d %4", &k, &s) ; //calculate the solution
cout<<work () <<endl;
return 0;
!

Derangement: A derangement is a permutation of the elements of a set, such
that no element appears in its original position. Suppose there are 7 elements 4,

ay, ..., d,, and the original position for 4; is the i-th position, 1</<x. The number of
1 1 1
derangements for 7 elements is D, = n!(l =Y + 5 + (=" —'j

Obviously, D=0, and D,=1. For 7>2, the recursion formula for numbers of
derangements is D,=(n—1)(D,»+D,-1), (n=3, 4, 5, ...).

When 7 becomes large, the range of the number of derangements for # ele-
ments may be out of the range of integers in programming languages. Under such
circumstances, the number of derangements for 7 elements are represented as a
high-precision number.

4.3.2.2 Sweet Child Makes Trouble

Children are always sweet, but they can sometimes make you feel bitter. In this
problem, you will see how Tintin, a five-year-old boy, creates trouble for his par-
ents. Tintin is a joyful boy and is always busy doing something. But what he does
is not always pleasant for his parents. He likes to play with household things like
his father’s wristwatch or his mother’s comb. When he’s finished playing, he places

184 m Algorithm Design Practice for Collegiate Programming

the item in some other place. Tintin is very intelligent and a boy with a very sharp
memory. To make things worse for his parents, he never returns the things he has
taken for playing to their original places.

Think about a morning when Tintin has managed to “steal” three household
objects. Now, in how many ways he can place those things such that nothing is
placed in their original place? Tintin does not like to give his parents that much
trouble. So, he does not leave anything in a completely new place; he merely per-
mutes the objects.

Input

There will be several test cases. Each will have a positive integer less than or equal
to 800, indicating the number of things Tintin has taken for playing. Each integer
will be in a line by itself. The input is terminated by a —1 (minus one) in a single
line, which should not be processed.

Output

For each test case, print an integer indicating in how many ways Tintin can rear-
range the things he has taken.

Sample Input Sample Output
2 1

3 2

4 9

-1

Source: The FOUNDATION Programming Contest 2004
ID for Online Judge: UVA 10497

Q\i\(/ Analysis

Because Tintin never returns the things he has taken for playing to their original
places, the problem requires you to calculate the number of derangements.

Because the number of things Tintin has taken for playing is a positive integer
less than or equal to 800, a high-precision number is used to calculate the result.
First, the offline method is used to calculate D,...Dgqo. Then, for each test case 7,
output D, directly.

Practice for Combinatorics ®m 185

oY
= -

include <cstdio>

include <cstrings>

include <cstdlib>

include <iostreams

include <string>

include <cmaths>

include <algorithm>

using namespace std;

typedef unsigned long long inté64;

HH H H H HF H

int64 m=1el0; //High-precision number array s, each element
is a 10-digit decimal number

struct Bigint({ //Struct Bigint for high-precision
calculation

int64 s[1000];int 1; // High-precision number array sl[],
its length is 1

Bigint () {1=0; memset (s, 0,sizeof(s))} //Initialization
void operator *=(int x){ //s<s*x, where x is an integer
inté4 d=0;

for(int i=0;i<=1;i++)
d+=s[i]l*x;s[i]=d%m;
d/=m;
1
while (d) {
s[++1] =d%m;
d/=m;
}
}
void print () {
printf ("%1lu",s[1]); //output
for(int i=1-1;i>=0;1i--)
printf ("$01011u",s[1]);
}
void set (inté64 a) //integer a is transferred into high-
precision array s
s[l]=a%m;a/=m;
if(a)l++,s[1l]=a%m;
}
}dp[1000]; // dpln] is D,
Bigint operator+ (Bigint b,Biginté&a) //b<b+a, where b and a
are high-precision arrays
int64 d=0;
b.l=max(b.1l,a.1);
for(int i=0;i<=b.1;i++)

{

186 m Algorithm Design Practice for Collegiate Programming

b.s[i]+=d+a.s[1i];
d=b.s[i]/m;b.s[i]%=m;

}
if(d)b.1l++,b.s[b.1]=4d;
return b;
!
int n;
int main() {
dpl[1l] .set(0);dp[2] .set (1) ; // dpl[11=0, dpl[1l]l=1
for (int i=3;1<=800;i++)dp[i]l=dp[i-2]+dp[i-1],
dpl[i]l*=(1i-1); //offline method to calculate dpl]
while (~scanf ("%d", &n) &&~n) { //input n
dp[n] .print () ;printf ("\n") ; //output D,
}
return 0;

4.4 Applications of the Pélya Counting Formula

1. Group and Permutation Group.

Definition 4.4.1 (Group). A group is a set G together with an operation,

called the group law of G, that combines any two elements # and 4 to form

another element, denoted as #*4 or ab. (G,¥), and this element must satisfy the

following four requirements:

1. Closure. For any «, beG, a*beG.

2. Associativity. For any 4, 6, ce G, (a*b)*c=a*(6*c).

3. Identity element. There exists an identity element ¢ in G, such that for
each aeG, e*a=a*e=a.

4. Inverse element. For each 4€ G, there exists an element 4 in G, such that
a*b=b*a=e, where e is the identity element.

For example, G={-1, 1}, and (G,*) is a group.

If G is a finite set, (G,*) is a finite group; else (G,*) is an infinite group.
Definition 4.4.2 (Permutation Group). A permutation group is a group
(G,*) whose elements are permutations of {4, a,, , a4,} and * is the com-
position of permutations.

Pélya’s theorem is based on permutation groups.

There are 7! permutations for {#, 4,, ..., a,}. If f is a permutation of {#,,
Ayy eneen , 4}, the permutation can be denoted by a 2-by-# array:
a ay a

fla) fla) .. f(a,)

For example, there are permutations f; and f; of {1, 2, 3, 4},

Practice for Combinatorics m 187

=~
=
Il
VR
W =
— N
N W
EENEEEN
N—
/N
N =
(SSI S
N W
—
N—
Il
VR
N =
N
W W
— N
N—

[SSIIFEEN
~—

1 2 3 4 1 2 3 4 1 2 3
fofi _[4 3 2 1 J(3 1 2 4 j_(4 2 1
Therefore, fi /L215 f1-

A permutation can be written in a product of cycles. For example,

1 2 3 4 5 _ 1 4 5 2 3 B ~
[4 31 5 2}—(14523),(5 | 4 2 3]—(154)(2)(3)_(154),

1 2 3 4 5
=(132)(4)5).
and(3 L2 s 4] (132)(45)

If there is a permutation f=(1 2...7), then f"=(1)(2)...(n)=e.

An even permutation is a permutation obtainable from an even number
of two-element swaps. And an odd permutation is a permutation obtainable
from an odd number of two-element swaps.

2. Conjugacy Class.
Suppose S, is all permutations for {1, 2, ..., n}. For example, all permutations
for {1, 2, 3, 4} are S;={(1)(2)(3)4), (12), (13), (14), (23), (24), (34), (123), (124),
(132), (134), (142), (143), (234), (243), (1234), (1243), (1324), (1342), (1423),
(1432), (12)(34), (13)(24), (14)(23)}.
A permutation Pin S, canbewrittenas P = (q1a;...a3) (016, ..by,)...(hby .. By,),

[cycles
where ktky+.. +k=n. Suppose C, is the number of cycles whose order is 4,
k=1...n, and cycles whose order is % is denoted by (k).

Therefore, S, can be categorized into D (2)...(n)". If C=0, then (;)“

can be omitted, i=1...7. Obviously, chk = n. For example, in S;, permuta-

£l
tions with the same format are shown as follows:
There are three permutations for (D°2)%(3)°4)°, or (2)*: (12)(34), (13)
(24), and (14)(23);
There are eight permutations for (1)'(3)": (123), (124), (132), (134), (142),
(143), (234), and (243);

188 ®m Algorithm Design Practice for Collegiate Programming

There are six permutations for (1)°(2)": (12), (13), (14), (23), (24), and
(34);

There is one permutation for D% DQ)B)@);

There are six permutations for (4)': (1234), (1243), (1324), (1342), (1423),
and (1432).

Definition 4.4.3 (Conjugacy Class). In S,, permutations with the same
format are called conjugacy classes.

The number of conjugacy classes in S, is equal to the number of integer
partitions of 7.

The number of permutations for a conjugacy class D (2)2...(n)"" is

n!

il 1127 0™

For example, in S, numbers of permutations for all conjugacy classes are

as follows:

4
In conjugacy class (2)? there are %2 =3 permutations. In conjugacy
X

T 3=8 permutations. In conjugacy class (1)*(2)" there
X

class (1)'(3)" there are

4!

21x2

!
are =6 permutations. In conjugacy class (1)* there are Z;zl permuta-

4!
tion. In conjugacy class (4)" there are Z=6 permutations.

Suppose G is a permutation group for {1, 2, ..., #}, and Kis a number in
{1, 2, ..., n}. Of course, G is a subgroup for §,. The stabilizer of the number
K, written Zy, is the set of all permutations of G that leave K fixed.

For example, G={e, (1 2), (3 4), (1 2)(3 4)}. Zi=fe, (3 4)}; Z=le, 3 4}
Zs=le, (1 2)}; Z=le, (1 2)}. Obviously, Z is a subgroup for G, K'is a number
in {1, 2, 3, 4}. For G, under the permutation, 1 can be permuted to 2, 2 can
be permuted to 1; and 3 can be permuted to 4, 4 can be permuted to 3. But
1 or 2 can’t be permuted to 3 or 4, and 3 or 4 can’t be permuted to 1 or 2.
Therefore, 1 and 2 are in one equivalence class, and 3 and 4 are in the other
equivalence class.

Suppose G is a permutation group for {1, 2, ..., 7}, and K is a number
in {1, 2, ..., n}. Under the permutation, {1, 2, ..., #} can be partitioned into
several equivalence classes. The equivalence class that K'belongs to is denoted
as Ey.

3. Burnside’s Lemma and Pélya Counting Formula.

Theorem 4.4.1 Suppose G is a permutation group for {1, 2, ..., n}, and K
is a number in {1, 2, ..., n}. |Ex|X|Zx|=|G].

For example, G={e, (1 2), (3 4), (1 2) (3 4)}; E=E,={1, 2}, Es=E={3, 4};
|E1|:|E2|=|E3|:|E4|:2§ Z=Z={e, (3 4)}> 23=Z4={C» (1 2k |ZI|:|ZZ|:|Z3|:
| Z4|=2. Obviously, |E\|X|Z|=| E2|X| Z.|=| E5|X| Zs|=| Ed| x| Zd=4=]| G|.

Practice for Combinatorics ®m 189

Figure 4.8

In 4, even permutations A,={(1)(2)(3)4), (1 2 3), (1 2 4), (13 2), (1 3 4),
(142),(143),(234),(243),12)(34),13)24,14)23)}. E={1,2,3,4}.
Zi={e, (2 3 4), (2 4 3)}. Obviously, |E\[X|Z|=4x3=12=|A4|.

Suppose G={0y, 0, ..., Oy} is a permutation group on {1, 2, ..., 7}, where
oy=e. 0L can be written as a product of cycles:c;(0) is the number of cycles
whose order is 1, £=1, 2, ..., m. For example, G={e, (1 2), 3 4), (1 2) (3 4)};
ou=e=(1)(2)(3)4), c1(0)=4; 0,=(1 2)=(1 2)(3)(4), c1(01)=2; 03=(3 4)=(1)(2) (3
4), c1(03)=2; 0=(1 2) (3 4), c1(0)=0.

Burnside’s Lemma. Suppose G={oy, 0y, ..., @,,} is a permutation group
on {1, 2, ..., n}, and /is the number of equivalence classes under G.

/= ﬁ[cl(al)+c1((x2)+...+cl((xm)].

Burnside’s Lemma is used to count the number of nonequivalent color-
ings of a set X under the action of a group of permutations of X. For example,
a square is divided into four little squares. Two colors are used to color four
squares. There are 16 possible colorings, as shown in Figure 4.8.

If the above squares are rotated 90°, 180°, and 270° counterclockwise,
there are three other permutations for 16 colorings.

1. Rotation by 0% P=(C)(C(C)(CH(C). ... (Cyg), that is, Ci(P)=16;

2. Rotation b}’ 90°: P2=(C1)_(C2)(C3C4C5Cé)(C7C8C)Clo)(CnClz)(CBCMCBClé),
that is, Ci(P,)=2;

3. Rotation by 180% Ps=(G)(C(GC)(C4Co)(CCo) (CsCio)(Ci)(Cra)(CisCos)

(Ci4Cg), that is, C(Ps)=4;

4. Rotation by 270% P=(C)(CHCCLCCo)(CCCC10)(Ch)

(C13C14Ci5Cg), that is, C(Py)=2.

Therefore, G={P,, P,, Ps, P4}, and |G|=4, the number of nonequivalent

colorings /= 2(16 +2+4+2)=06. The six corresponding nonequivalent

colorings are as shown in Figure 4.9.
The four little squares can also be numbered 1, 2, 3, and 4 respectively
(Figure 4.10).

190 m Algorithm Design Practice for Collegiate Programming

Cl C3
Figure 4.9
2|1
3|4
Figure 4.10
9
Figure 4.11
Cl
Figure 4.12

If the above square is rotated 0°, 90°, 180°, and 270° counterclockwise, a
permutation group G={P, P, P, P4} is used to represent the rotations. The
number of permutations |G|=4. Suppose ¢(P) is the number of cycles for P,
=1, 2, 3, 4. Therefore, P=(1)(2)(3)(4), c(P))=4; P,=(1 2 3 4), c(P,)=1; Ps=(1 3)
(2 4), c(P5)=2; P,=(4 32 1), c(P)=1.

Suppose m is the number of colors. If each cycle is colored with
same color in P, the number of colorings m™®) is the number of color-
ings for G under permutation P, 2[([)1) =2 =¢(B)=16, ZC(PZ) =2'=
a(P)=2 2 222 = (P =4, and 27 = 2' = (P = 2.

Pi=4 3 2 1), cycles whose order is 1 for P are (c;)(cy). That is, ¢; and ¢,
are the four little squares are colored with the same color. (See Figure 4.11.)

Ps=(1 3)(2 4), cycles whose order is 1 for P; are (c)(c;)(c11)(c12). That is,
square 1 and square 3 are colored with the same color, and square 2 and
square 4 are colored with the same color (see Figure 4.12).

Practice for Combinatorics ®m 191

1
Obviously, the number of nonequivalent colorings / =Z (2442 422421)=6.

Based on that, the Pélya Counting Formula is as follows:
Pélya Counting Formula. Let G be a permutation group {P, P, ,
P} of n elements. And m colors are used to color the 7 elements. Then the

L(QR P P
G|
(P is the number of cycles for P;, i=1.. ..

If there is a permutation group G of a set. Based on the number of per-
mutations |G|, and the number of cycles ¢(P) for each permutation P, the
Pélya Counting Formula is used to calculate the number of produced equiv-
alence classes.

number of nonequivalent colorings / = , where

4.4.1 Necklace of Beads

Beads of red, blue, or green colors are connected together into a circular necklace
of n beads (n<24) (see Figure 4.13). If the repetitions that are produced by rotation
around the center of the circular necklace or reflection to the axis of symmetry are
all neglected, how many different forms of the necklace are there?

Input

The input has several lines, and each line contains the input data 7. —1 denotes the
end of the input file.

The form with n =4 The form withn =35

Figure 4.13

192 ® Algorithm Design Practice for Collegiate Programming

Output

The output should contain the output data: the number of different forms, in each
line corresponding to the input data.

Sample Input | Sample Output

4 21
5 39
-1

Source: ACM Xi'an 2002
IDs for Online Judges: PO) 1286, UVA 2708

&& Analysis

Suppose « is the current permutation, where 4 is the number of beads in the jth
position, 1</<n.

Rotate around the center of the circular necklace and reflect to the axis of sym-
metry 7 times successively, 0<i<n—1.

1. The #-th times, a rotation: Bead j is permutated by bead (j+7)%mn+1, that s,
aljl=al(j+i)%mn+1], 1</<n. Suppose ¢; is the number of cycles for the i-th per-
mutation. The number of colorings is 3.

2. The i-th times, a reflection: Bead j and bead (#+1—) exchange each other,
that is, a[jl<>a[n+1—j], 1<j<n. Suppose ¢; is the number of cycles for the i-th
permutation. The number of colorings is 3°.

Obviously, there are 2X7n permutations. The Pélya Counting Formula is used to

n

calculate the number of different forms: / = %Z (3% +3%).

n

i=1

.«
% Program

include <cstdio>

include <cstring>
include <cstdlib>
include <iostream>

H*+ HF H H*

Practice for Combinatorics ®m 193

include <strings>

include <cmath>

include <algorithm>
using namespace std;
typedef long long inté4;

int n,vis[30],1lab[30]; // labl[]: current permutation, bead
j is permutated by bead labl[jl; vis[j]: permutation flag for j
int64 gpow(int64 a,inté4 b) { //calculate and return a°
inté4 ans=1;
while (b) {

if (b&l) ans*=a;
a*=a;b>>=1;
!

return ans;

}

int getloop () { // calculate and return the number of cycles
for the current permutation
memset (vis, 0, sizeof (vis)) ;
int cnt=0;
for(int i=1;i<=n;i++) {
if(vis[i])continue; //calculate the cycle in
which 1 is
cnt++;
int j=i;
dof{
vis[jl=1;
j=lab[j];
}while (tvis[j]);
}
return cnt; //return the number of cycles for the
current permutation

}

void work(){ // calculate the number of different forms for
n beads
if (in){
printf ("0\b") ;
return;

}

inté4 ans=0;

for(int i=0;i<n;i++) // rotations and reflections
for(int j=1;j<=n;j++) labl[jl=(j+1)%n+1; // The
i-th times, a rotation
ans+=gpow (3,getloop()) ; // the number of

colorings with 3 colors

for (int j=1;j<=n/2;j++)swap(labljl,labln+1-3j]1);
// The i-th times, a reflection

ans+=gpow (3,getloop()) ; // the number of
colorings with 3 colors

194 ®m Algorithm Design Practice for Collegiate Programming

!
ans/=(n*2) ; // the number of different forms
printf ("$11d\n",ans) ;
!
int main() {
while (~scanf ("%d", &n) &&~n) work () ; //Input n,
calculate and output
return 0;
}

4.4.2 Toral Tickets

On the planet Eisiem, passenger tickets for the new means of transportation are
planned to have the form of tores. Each tore is made of a single rectangular black
rubber sheet containing VXM squares. Several squares are marked with white, thus
encoding the ticket’s source and destination.

When the passenger buys the ticket, the ticket booking machine takes the rub-
ber sheet, marks some squares to identify the route of the passenger, and then pro-
vides it to the passenger. Next, the passenger must glue the ticket.

The ticket must be glued in as follows: First, two of its sides of greater length
are glued together, forming a cylinder. Next, cylinder base circles, each of which
has the length equal to the length of the short side of the original rubber sheet, are
glued together. They must be glued in such a way that the cells, the sides of which
are glued, first belonged to the same row of the sheet. Note that the inner and the
outer part of the sheet can be distinguished.

The resulting tore is the valid ticket.

Note that if the original sheet is square, there are two topologically different
ways to make a tore out of a rubber sheet.

Ticket material is so perfect, and gluing quality is so fine, that no one is able to
find the seam, and this leads to some problems. First, the same tore can be obtained
using different sheets. More than that, the same sheet can lead to tores that look a
bit different.

Now, the transport companies of Eisiem wonder how many different routes
they can organize, so that the following conditions are satisfied:

tickets for different routes are represented by different tores;
if some rubber sheet was marked to make the tore for some route, it cannot be
used to make the tore for another route.

Help them to calculate the number of routes they can organize.

Input

The first line of the input file contains 7 and m (1<, m<20).

Practice for Combinatorics ®m 195

Output

Output the number of routes that Eisiem transport companies can organize.

Sample Input Sample Output
22 6
23 13

Source: Petrozavodsk Summer Trainings 2003, 2003-08-23
(Andrew Stankevich’s Contest #2)

IDs for Online Judges: ZOJ 2344, SGU 208

Q\i& Analysis

In the rectangular black rubber sheet, squares are numbered 1... #Xm from top to
down, and from left to right. For the rectangle, there are nxm classes of permuta-
tions, where the case that every square is moved left 7 squares circularly, and is
moved down j squares circularly, is regarded as one class of permutations, 0</<n—1,
0<j<m—1.

A class of permutations can also be classified into following permutations.

1. Rotation by 0°: square 4 is permutated by square yXn+x;
2. Rotation by 180°: square 4 is permutated by square (m—1—y)Xn+(n—1—x);

If the rectangle is a square (m==n), there are two other permutations:

1. Rotation by 90°: square £ is permutated by square (m—1—x)xn+y;
2. Rotation by 270° square 4 is permutated by square xxn+(n—1-);

where x=(k%n+i)%n, y=(k/n+j)Yorm.

The number of cycles ¢: and 2 under permutations 1 and 2 are calculated.
y i p

;
If m==n, the number of C}]ICICS ¢; and ¢ under permutations 3 and 4 are also
calculated.

Therefore, if n#m, there are s=2XnXm permutations; and if m==n, there are
s=4Xnxm permutations. Each square can be colored with white or black. The Pélya

Counting Formula is used to calculate the number of routes that Eisiem transport

1 o2 -
companies can organize: /=— z Q27 +27+27 +27|If n==m)).

0<i<n—1,0<j<m—1

196 ® Algorithm Design Practice for Collegiate Programming

Because the upper limit for Vand M is 20, the number of routes may be out of
the range for integers. Calculation of high-precision numbers should be used. In
order to improve the time complexity, the offline method is also used.

o
= (.

include <cstdio>
include <cstrings>
include <iostreams
include <algorithm>
using namespace std;

#
#
#
#

struct BIGNUM({ // BIGNUM is used for calculation of high-
precision numbers

int s[200]; //high-precision number: s[] whose length is 1
int 1;

}ans,two[405]; // the number of routes Eisiem can organize
is ans; twol[i] is 2

inline BIGNUM operator* (BIGNUM a,int b) { //a<axb, where a
is a high-precision number, and b is an integer
for(int 1=0;i<a.l;i++)a.s[i] *=Db;
for(int i=0;i<a.l;i++) {
a.s[i+1l+=a.s[i]/10;
a.s[i1]1%=10;
!
while(a.s[a.1l]){ //carry
a.sla.l+1l]l+=a.s[a.l]/10;
a.sl[a.l]1%=10;

a.l++;
!
return a; //return a*b
!
inline BIGNUM operator+ (BIGNUM a,BIGNUM b) { //a<a+b, where

a and b are high-precision numbers
a.l=max(a.l,b.1l);
for(int 1=0;i< a.l;i++)a.s[i]l+=b.s[i];
for(int i=0;i< a.l;i++)
a.s[i+l]+=a.s[1]/10;
a.s[i]1%=10;
!
while(a.s[a.1l]){ //carry
a.sla.l+1l]l+=a.s[a.1l]1/10;
a.sla.1l]1%=10;
a.l++;

}

Practice for Combinatorics ®m 197

return a; //return a+b
!
inline BIGNUM operator/ (BIGNUM a,int b) { //a<a/b, where a
is a high-precision number, and b is an integer
for(int i=a.l-1;i>0;i--){
a.s[i-1]+=(a.s[i]l%b)*10;
a.s[i]l/=b;
}
a.s[0]/=b;
while(l!a.s[a.1l-1])a.l--;
return a; // return a/b

}

void print (BIGNUM a) { //output high-precision number a
for(int i=a.l-1;i>=0;i--){
printf ("%d",a.s[i]);
}

printf ("\n") ;

}

void cal two () { // 27
two[0] .1=1;two[0] .s[0]=1;
for(int 1=1;i<=400;1i++)
twol[il=two[i-1]%*2;

}

int n,m,p([4] [500] ,nm,vis [500]; //rectangular black rubber
sheet is n*m
int circle(int la) { //number of circles under permutation Ia
int a=0; //initialize number of circles
memset (vis, 0, sizeof (vis)) ;
for(int i=0;i<nm;i++) { //Enumeration
if(!vis[1i])a++; //1if 1 isn't permutated, number of
circles+1l
vis[i]=1; // set mark for permutation
for (int j=pl(lal [i];!vis([j];j=pl(lal [J]) //elements in
the circle are set to the permutation mark
vis[jl=1;
!
return a; //return number of circles under permutation la
!
void work () { // calculate the number of routes Eisiem can
organize
int div=0;
memset (ans.s,0,sizeof (ans.s)) ; //initialize the number of
routes 0
ans.1=0;
for(int i=0;i<n;i++) //Enumeration

for(int j=0;j<m;j++) {
for (int k=0;k<nm;k++) {

198 =

number

number

number

number

}

Algorithm Design Practice for Collegiate Programming

int x=(k%n+i)%n,y=(k/n+j) %m;

plo] [k]l=y*n+x; // Rotation by 0°
pl1] [k]=(m-1-y)*n+(n-1-x) ; // Rotation by 180°
if (n==m) { //Square, Rotation by 90° and 270°
pl2] [k]=(m-1-x) *n+y;p[3] [k] =x*n+ (n-1-y) ; }
!
div+=2; //accumulation
ans=ans+two [circle (0)]; //accumulation for the
of circles for Rotation by 0°
ans=ans+two [circle(1)]; // accumulation for the
of circles for Rotation by 180°
if (n==m) { //Square
div+=2;
ans=ans+two [circle (2)]; // accumulation for the
of circles for Rotation by 90°
ans=ans+two [circle (3)]; // accumulation for the
of circles for Rotation by 270°
!

ans=ans/div;
print (ans) ; //Output the result

}

int main() {
cal two();

while (~scanf ("%d %d", &n, &m)) { //Input test cases
if (n<m) swap (n,m) ;
nm=n*m; //number of squares
work () ; // calculate and output the number of routes
Eisiem can organize
!
return 0;
1

4.4.3 Color

Beads of 7 colors are connected together into a circular necklace of 7 beads (»
<1000000000). Your job is to calculate how many different types of the necklaces
can be produced. You should know that the necklace might not use up all the N
colors, and the repetitions that are produced by rotation around the center of the

circular necklace are all neglected.

You only need to output the answer module as a given number p.

Input

The first line of the input is an integer x (x<3500) representing the number of test
cases. The following x lines each contains two numbers 7z and P (1<2<1000000000,

1<p<30000), representing a test case.

Practice for Combinatorics ®m 199

Output

For each test case, output one line containing the answer.

Sample Input Sample Output
5 1

130000 3

230000 M

330000 70

430000 629

530000

Source: POJ Monthly, Lou Tiancheng
ID for Online Judge: POJ 2154

S/ Analysis

Method 1: Using the Pélya Counting Formula

Method 1 is analyzing each rotation, calculating the number of cycles, and
using the Pélya Counting Formula to calculate the number of nonequivalent
classes. For each rotation s, 2=a, 40 Where a; is the i-th bead, and these beads
are in a cycle. Multiples of s mod n are 0, d, 2Xd, ..., n—d, where &=GCD(n, s). The

number of cycles is % = d. Therefore, the number of different kinds of the necklace

d
n—1

1 .
ans = — E nGCD(W.z)‘
n

i=0
The time complexity is O(72xlog,7). Because the range of 7 is too large, optimi-
zation should be done.
Method 2: Euler Phi-Function @(»)

The length of each cycle is enumerated. For all 7 such that GCD(, n)=k, é

and % are relative prime, and (p(Z) numbers and Z are relative prime (@ is Euler

Phi-Function). The number of different kinds of the necklace is calculated as

ans = LZQ(%JXM = Z(p(%)xﬂ”_l_
pln

pln

200 ® Algorithm Design Practice for Collegiate Programming

The time complexity for enumerating p is O(/z). And the time complexity for
calculating the Euler Phi-Function is O(J/n). The time complexity for method 2
3

is O(nZ).
The given program uses Method 2.

o
D o

include <cstdio>
include <cstring>
include <cstdlibs>
include <iostream>
include <strings>
include <cmath>
include <algorithm>
using namespace std;
typedef long long inté4;
bool np[50000] ; //Sieve
int prime [50000],pn,1lim=50000; //Prime list primel[], its
length pn, its upper limit l1im
int n,p;
void pp(){ //calculate prime list prime[] in the interval
[2, 1im-1]
np[0]=np[1]=1;
for(int i=2;i<lim;i++) {
if (np[il) continue;
prime [pn++]=1;
for(int j=i*2;j<lim;j+=i)np[jl=1;

H*+ HF H H H HF H

!
}
int phi(int n){ // Euler Phi-Function ¢(n)%p
int ans=n;
for(int i=0;i<pné&&prime[i] *prime[i]l<=n;i++) { // Each

factor for n
if (n%prime[i] !=0) continue;
ans-=ans/prime[i];
do{
n/=prime[il] ;
}while (n%prime[i]==0) ;
1
if(n!=1)ans-=ans/n;
return ans%p;
1
int exp m(int64 a,int b){ //calculate (a°) $p
int ans=1,x=a%p;

Practice for Combinatorics ® 201

while (b) {
if (b&l)ans=(ans*x) %p;
X=(X*X) %p;

b>>=1;
!
return ans; // return (a°)%p
!
int main()
int casen;
pp () ; //Calculating prime list
scanf ("%d", &casen) ; //number of test cases
while (casen--) {
int ans=0,1i;
scanf ("%d %d",&n, &p) ; //Input a test case
for(i=1l;i*i<n;i++) { //enumerate each factor 1

n .) 2
for n, ans:[Z q’[;j*nl 1+(p(l)*nl]%p

i%<n,n%i=0
if (n%i!=0) continue;
ans+=(((phi(n/i)%p)*exp_m(n,i—l))+((phi(i)%p)*
exp m(n,n/i-1)));
ans%=p;
1

if (i*i==n) //if n==i*, then ans=(ans+@(i)*n'")%p
ans+=((phi (i) %$p) *exp m(n,i-1));
ans%=p; // the answer module a given number p

}

printf ("%d\n",ans) ; // output the answer

}

return O0;

4.5 Problems

4.5.1 Common Permutation

Given two strings of lowercase letters, @ and &, print the longest string x of lower-
case letters such that there is a permutation of x that is a subsequence of # and there
is a permutation of x that is a subsequence of b.

Input

The input file contains several lines of input. Consecutive two lines make a set of
input. That means, in the input file, lines 1 and 2 are a set of input, lines 3 and 4 are
aset of input, and so on. The first line of a pair contains @ and the second contains b.
Each string is on a separate line and consists of at most 1000 lowercase letters.

202 ®m Algorithm Design Practice for Collegiate Programming

Output

For each set of input, output a line containing x. If several x satisfy the criteria above,
choose the first one in alphabetical order.

Sample Input Sample Output
pretty e

women nw

walking et

down

the

street

Source: World Finals Warm-up Contest, University of Alberta Local Contest

ID for Online Judge: UVA 10252

\% Hint

Given two strings of lowercase letters, # and b, the problem requires you to output
the longest string « in alphabetical order such that there is a permutation of that
is a subsequence of @ and there is a permutation of x that is a subsequence of . The
algorithm is as follows:

Suppose Si=aa,...a;,, and S,=bb,...b,.

First, frequencies for each letter in S and S, are calculated. Let ¢[7] be the fre-
quency for the i-th letter in S, ¢,[7] be the frequency for the i-th letter in S,, where
1<i<26, the first letter is “a”, the second letter is “b”, ..., and the 26 letter is “z”.

Second, the common permutation for §; and S, is calculated. For each i
(1<i<206), if the i-th letter appears in S, and S, ((¢[]#0)&8&/(c,[1]#0)), the letter

appears k (=min{q 4], ¢,[7]}) times in the common permutation.

4.5.2 Anagram

You are to write a program that has to generate all possible words from a given set
of letters.

Example: Given the word “abc”, your program should—by exploring all differ-
ent combination of the three letters—output the words “abc”, “ach”, “bac”, “bca”,
<« » « »

cab”, and “cba”.

In the word taken from the input file, some letters may appear more than once.

For a given word, your program should not produce the same word more than once,
g your prog p
and the words should be output in alphabetically ascending order.

Practice for Combinatorics ®m 203

Input

The input file consists of several words. The first line contains a number giving the
number of words to follow. Each following line contains one word. A word consists
of uppercase or lowercase letters from A to Z. Uppercase and lowercase letters are
to be considered different.

Output

For each word in the input file, the output file should contain all different words
that can be generated with the letters of the given word. The words generated from
the same input word should be output in alphabetically ascending order. An upper-
case letter goes before the corresponding lowercase letter.

Sample Input Sample Output

3 Aab
aAb Aba
abc aAb
acba abA
bAa
baA
abc
acb
bac
bca
cab
cba
aabc
aacb
abac
abca
acab
acba
baac
baca
bcaa
caab
caba
cbaa

Source: ACM Southwestern European Regional Contest 1995

IDs for Online Judges: POJ 1256, UVA 195

204 ®w Algorithm Design Practice for Collegiate Programming

\% Hint

There are different strategies to solve this problem. The most efficient strategy is
sorting the letters in the input word first, and then directly producing all possible
anagrams without duplicates. A less efficient way is to first sort the letters in the
input word, and then produce all possible permutations (correctly sorted) and elim-
inate all duplicates on the fly without storing more than one word. A completely
ineflicient way is to first produce all permutations and store them in memory, and
then sort them and eliminate duplicates as the last step.

4.5.3 How Many Points of Intersection?

We have two rows. There are 2 dots on the top row and & dots on the bottom row.
We draw line segments connecting every dot on the top row with every dot on
the bottom row. The dots are arranged in such a way that the number of internal
intersections among the line segments is maximized. To achieve this goal, we must
not allow more than two line segments to intersect in a point. The intersection
points on the top row and the bottom are not included in our count; we can allow
more than two line segments to intersect on those two rows. Given the value of 2
and 4, your task is to compute P(a, b), the number of intersections in between the
two rows. For example, in Figure 4.14, =2 and 6=3. This figure illustrates that
P2, 3)=3.

Input

Each line in the input will contain two positive integers 2(0<2<20000) and
b(0<6<20000). Input is terminated by a line where both z and 4 are zero. This case
should not be processed. You will need to process at most 1200 sets of inputs.

1 2
b
a c
1 2 3

Figure 4.14

Practice for Combinatorics ®m 205

Output

For each line of input, print in a line the serial of the output, followed by the value
of P(a, b). Look at the output for sample input for details. You can assume that the
output for the test cases will fit in 64-bit signed integers.

Sample Input Sample Output

22 Case 1: 1
23 Case 2:3
33 Case 3:9
00

Source: Bangladesh National Computer Programming Contest, 2004

ID for Online Judge: UVA 10790

“§ Hint

Line segments connecting two dots on the top row and dots on the bottom
row will produce one intersection point. Based on the multiplication principle,

Pla, b)=Cla, 2)xC(b, 2).

4.5.4 Permutations

We remind you that the permutation of some final set is a one-to-one mapping of
the set onto itself. Less formally, that is a way to reorder elements of the set. For
example, one can define a permutation of the set {1,2,3,4,5} as follows:

1 2 3 4 5
P(n) =
(”)[41523j

This record defines a permutation P as follows: P(1)=4, P(2)=1, P(3)=5, etc.

What is the value of the expression P(P(1))? It’s clear that P(P(1))=P(4)=2. And
P(P(3))=P(5)=3. One can easily see that if P(n) is a permutation, then P(P(n)) is a
permutation as well. In our example (believe us):

1 2 3 4 5
4 3 1 5

P(P(n) = (

It is natural to denote this permutation by P*(n)=P(P(n)). In a general form the
definition is as follows: P(n)=P(n), P'(n)=P(P*(n)).

206 ® Algorithm Design Practice for Collegiate Programming

Among the permutations there is a very important one—that moves nothing:
1 2 3 ... =n
En(n)=
N()(1 2 3 .. nJ

It is clear that for every £ the following relation is satisfied: (Ey)'=Ey. The fol-
lowing less trivial statement is correct (we won’t prove it here, but you may prove it
to yourself incidentally):

Let P(n) be some permutation of an N elements set. Then there exists a natural
number k, so that P*=Ej,.

The least natural £ such that P*=Ey is called an order of the permutation P,

The problem that your program should solve is now formulated in a very simple
manner: “Given a permutation, find its order.”

Input

In the first line of the standard input, only a natural number NV (1SN<1000) is con-
tained, that is, a number of elements in the set that is rearranged by this permuta-
tion. In the second line, there are N natural numbers of the range from 1 up to N,
separated by a space, that define a permutation—the numbers P(1), P(2).,..., P(N).

Output

You should write only a natural number to the standard output, that is an order of
the permutation. You may consider that an answer shouldn’t exceed 10°.

Sample Input #1 Sample Output #1
5 6
41523

Sample Input #2 Sample Output #2

8 1
12345678

Source: Ural State University Internal Contest October 2000 Junior Session

ID for Online Judge: POJ 2369

“ﬁ Hint

For the permutation P(1), P(2),..., P(N), the numbers of elements in each cycle are
calculated. Obviously, the least natural 4 such that P =Ey is the Least Common
Multiple (LCM) for these numbers.

Practice for Combinatorics m 207

4.5.5 Coupons

Coupons in cereal boxes are numbered 1 to 7, and a set of one of each is required
for a prize (a cereal box, of course). With one coupon per box, how many boxes on
average are required to make a complete set of 7 coupons?

Input

Input consists of a sequence of lines each containing a single positive integer 7,
1<#<33, giving the size of the set of coupons. Input is terminated by end of file.

Output

For each input line, output the average number of boxes required to collect the
complete set of # coupons. If the answer is an integer number, output the number. If
the answer is not an integer, then output the integer part of the answer, followed by
a space, and then by the proper fraction in the format shown below. The fractional
part should be irreducible. There should be no trailing spaces in any line of output.

Sample Input Sample Output
2 3
5 5
17 11 --

12

340463

T —
720720

Source: Math Lovers’ Contest, Source: University of Alberta Local Contest

ID for Online Judge: UVA 10288

“igi Hint

There are 7 coupons. Suppose that £ coupons are collected, and Exboxes are bought.

The probability of getting a coupon in the next time is ~— k. And the probability
n

n—rk é

n n

n—k kY
En=E+ E i+ — | .
k+1 k n (i)(n)

=0

of getting two coupons two times is .-+, and so on. Therefore, there is a

formula:

208 ® Algorithm Design Practice for Collegiate Programming

The formula E k't = 1 .) (taking the derivative of two sides of the equa-
—x
£=0

oo

. c 1 n—kO . (k)" .
) xt=—— > (+1] =
tion x - x)) is used to calculate the sum of Z (i+1) ., n the

n
k=0

z
i=1

-
above formula. £,,, = E, + . Therefore, £, = ﬂxz—.

7n—

4.5.6 Pixel Shuffle

Shuffling the pixels in a bitmap image sometimes yields random-looking images.
However, by repeating the shuffling enough times, one finally recovers the original
images. This should be no surprise, since “shuffling” means applying a one-to-one
mapping (or permutation) over the cells of the image, which come in finite number,
as shown in Figure 4.15.

Your program should read a number 7, and a series of elementary transforma-
tions that define a “shuffling” @ of #xn images. Then, your program should com-
pute the minimal number 7 (7>0), such that m applications of @ always yield the
original #xn image.

For instance, if @ is counter-clockwise 90° rotation, then m=4, as shown in

Figure 4.16.
N
A A l|AARA
i
i
Figure 4.15
A<<AARNAN
A [
(a) (b) (©) (d (e)) (2)

Figure 4.16

Practice for Combinatorics m 209

Input

Input consists of two lines, and the first line is number 7 (2<n<2", 1 even). The
number 7 is the size of images. One image is represented internally by an 7x# pixel
matrix («/), where i is the row number and j is the column number. The pixel at the
upper-left corner is at row 0 and column 0.

The second line is a non-empty list of at most 32 words, separated by spaces.
Valid words are the keywords id, rot, sym, bhsym, bvsym, div, and mix, or a keyword
followed by “-”. Each keyword key designates an elementary transform (as defined
by Figure 4.17), and key-designates the inverse of the transform key. For instance,
rot- is the inverse of counterclockwise 90° rotation, that is, clockwise 90° rotation.

M~
o

Transformations of image (a l’) into image (bl_j)

id, identity. Nothing changes: bij = al:f.

rot, counter-clockwise 90° rotation

sym, horizontal symmetry: bl,j = ainflfj A

bhsym, horizontal symmetry applied to the lower
half of image: when i > n/2, then bij = al_"flfj
Otherwise b’ = a.

bvsym, vertical symmetry applied to the lower half
of image (i > n/2)

div, division. Rows 0, 2, . . ., n — 2 become rows 0,
1,...n/2-1,whilerows 1, 3, ... n — 1 become rows
n2,n2+1,...n-1.

mix, row mix. Rows 2k and 2k + 1 are interleaved.
The pixels of row 2k in the new image are

#
ni2-1 n/2=1 rd
Ao Goprr Yo Dopay -+ o > Doy ¥
while the pixels of row 2k + 1 in the new image are i
n/2 nl2 n2+1 n/2+1 n—-1 n-1
Ao Aoy @op -+ Aof41s -+ - - g > Afyy

Figure 4.17

210 m Algorithm Design Practice for Collegiate Programming

Finally, the list 4y, 4,,..., k, designates the compound transform @=kk,...,. For
. « » . . o M
instance, “bvsym rot-” is the transform that first performs clockwise 90° rotation
and then vertical symmetry on the lower half of the image.

Output

Your program should output a single line whose content is the minimal number
m (m>0) such that @” is the identity. You may assume that, for all test input, you
have m <2°'.

Sample Input 1 Sample Output 1

256 8
rot- div rot div

Sample Input 2 Sample Output 2

256 63457
bvsym div mix

Source: ACM Southwestern Europe 2005
IDs for Online Judges: POJ 2789, UVA 3510

\% Hint

The problem statements define several operations on square images. Each of the
operations is some simple permutation of the image’s pixels. The input contains a
sequence of operations. Your program should output the smallest positive K such
that applying the whole sequence of operations K times always yields the original
image.

The sequence of operations defines a (more complicated) permutation of the
image’s pixels. If you split this permutation into cycles, the answer is the LCM of
the cycle lengths.

4.5.7 The Colored Cubes

All six sides of a cube are to be coated with paint. Each side is coated uniformly
with one color. When a selection of # different colors of paint is available, how many
different cubes can you make?

Note that any two cubes are only to be called “different” if it is not possible
to rotate the one into such a position that it appears with the same coloring as
the other.

Practice for Combinatorics m 211

Input

Each line of the input file contains a single integer # (0<#<1000) denoting the
number of different colors. Input is terminated by a line where the value of #=0.
This line should not be processed.

Output

For each line of input, produce one line of output. This line should contain the
number of different cubes that can be made by using the matching number of
colors.

Sample Input | Sample Output

1
10
0

Source: 2004 ICPC Regional Contest Warmup 1
ID for Online Judge: UVA 10733

“5@; Hint

All six sides of a cube are to be colored with paints. Each side is painted uniformly
with one color. When a selection of 7 different colors of paint is available, how
many different cubes can you make?

Two cubes are considered different if it is not possible to rotate one cube into a
such position that it appears with the same coloring as the other (see Figure 4.18).

¢ (back)
f
b
d a
(left)
€
(bottom)

Figure 4.18

212 m Algorithm Design Practice for Collegiate Programming

It’s a pretty straightforward problem, if you know a bit of the Pélya-Burnside

theory of counting,.

First, you need to construct the permutation group of the cube’s rotations. In
simple terms, it’s the set of ways (permutations) in which you can relabel the cube’s

faces, and get an equivalent cube (under rotations.)

The cube (with the initial labeling as shown in Figure 4.18) has 24 such ways,
listed in the following table. The first column shows the final labeling of the cube,

and the second one gives the corresponding permutation of faces.

Cube’s arrangement Permutation Number of fixed points
abcdef @(b)(©)(d)(e)(f) n
adcbfe (a)(bd)(0)(ef) n'
aecfdb (a)(bedf)(c) n’
afcebd (a)(bfde)(c) n?
badcfe (ab)(cd)(ef) n’
bcdaef (abcd)(e)(f) n®
bedfac (abe)(cdf) n
bfdeca (abf)(cde) n?
cbadfe (ac)(b)(d)(ef) n'
cdabef (ac)(bd)(e)(f) n'
ceafbd (ac)(be)(df) n’®
cfaedb (ac)(bf)(de) n?
dabcef (adcb)(e)(f) n®
dcbafe (ad)(bc)(ef) n?
debfca (adf)(bec) n
dfbeac (ade)(bfc) n?
eafchd (aeb)(cfd) n?
ebfdca (aecf)(b)(d) n?
ecfadb (aed)(bcf) n?
edfbac (ae)(bd)(cf) n’?
faecdb (afb)(ced) n?

Practice for Combinatorics m 213

fbedac (afce)(b)(d) n’
fceabd (afd)(bce) n?
fdebca (af)(bd)(ce) n’

You can obtain all these permutations by first listing the most important
ones—rotating around the X, Y, and Z axes, and then listing all their possible
combinations.

A fixed point of a permutation is some coloring, such that the permutation
results in a cube, which has the same coloring. If each face of the cube may be
assigned one of 7 colors, and the permutation has ¢ disjoint cycles, then it has »°
fixed points (the faces of each cycle have to be colored in the same color, there are ¢
cycles, and 7 ways to choose colors for each).

By Burnside’s Lemma, the total number of distinct colorings is equal to the
arithmetic mean of the number of fixed points of permutations. That is, the answer

1
to the problem is given by Z(i’ﬁ +3xnt +12%x7° +8xn?).

If you have never heard of the Pélya-Burnside theory, there are still some other
methods to solve this problem.

For example, you could’ve guessed that the function, given that the number of
colorings is a polynomial in #; obtain its values for small 7 by brute force, and use
interpolation to find the polynomial’s coefficients.

Here’s another possible solution. Start by backtracking this subproblem: there
are six available paints, the -th of which must be used to color exactly 0<7,<6 sides
of the cube (of course n4ny+.. 41,=6); how many colorings are possible? Then use
well-known combinatorics (and probably, dynamic programming) to reduce the
original problem to subproblems of this type.

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Chapter 5

Practice for Greedy
Algorithms

Greedy algorithms are used to solve optimization problems through a sequence of
steps. At each step, greedy algorithms make the locally optimal choice in order to
find a globally optimal solution. For some problems, greedy algorithms can yield
a globally optimal solution, but for some problems, such as the traveling salesman
problem (TSP), they can’t.

This chapter organizes practices for greedy algorithms as follows:

B Practices for Greedy Algorithms;
B Greedy Choices Based on Sorted Data;
B Greedy Algorithms Used with Other Methods to Solve P-Problems.

5.1 Practices for Greedy Algorithms

Greedy algorithms are used to solve optimization problems through a sequence of
steps, and to make the choice that looks best at each step. There are some famous
greedy algorithms, such as Prim’s algorithm and Kruskal’s algorithm, used to find a
minimum spanning tree for a weighted undirected graph; Dijkstra’s algorithm, used
to get single-source shortest paths between nodes in a graph; and Huffman coding.

There are two properties for optimization problems that can be solved by greedy
algorithms:

1. Optimal substructures: Optimal solutions to problems consisting of a sequence
of their optimal solutions to subproblems (necessity).

2. The property for greedy choices: Global optimal solutions to problems can be
obtained by making a sequence of local optimal (greedy) choices (feasibility).

215

216 ® Algorithm Design Practice for Collegiate Programming

The following two experiments are practices for greedy algorithms.

5.1.1 Pass-Muraille

In modern-day magic shows, passing through walls is very popular, in which a magi-
cian performer passes through several walls in a predesigned stage show. The wall-
passer (Pass-Muraille) has a limited wall-passing energy to pass through at most 4
walls in each wall-passing show. The walls are placed on a grid-like area. An example
is shown in Figure 5.1, where the land is viewed from above. All the walls have unit
widths, but different lengths. You may assume that no grid cell belongs to two or
more walls. A spectator chooses a column of the grid. Our wall-passer starts from the
upper side of the grid and walks along the entire column, passing through every wall
on his way to get to the lower side of the grid. If he faces more than £ walls when he
tries to walk along a column, he would fail and would not present a good show. For
example, in the wall configuration shown in Figure 5.1, a wall-passer with #=3 can
pass from the upper side to the lower side by choosing any column except column 6.

Given a wall-passer with a given energy and a show stage, we want to remove the
minimum number of walls from the stage so that our performer can pass through
all the walls at any column chosen by spectators.

Input

The first line of the input file contains a single integer # (1<¢<10), the number of test
cases, followed by the input data for each test case. The first line of each test case
contains two integers 7 (1<7<100), the number of walls, and 4 (0<4<100), the max-
imum number of walls that the wall-passer can pass through, respectively. After the
first line, there are 7 lines each containing two (x, y) pairs representing coordinates
of the two endpoints of a wall. Coordinates are non-negative integers less than or
equal to 100. The upper-left of the grid is assumed to have coordinates (0, 0). The
second sample test case below corresponds to the land given in Figure 5.1.

01 2 3 4 5 6 7 8

0 N AN AW = O

Shaded cells represent the walls

Figure 5.1

Practice for Greedy Algorithms m 217

Output

There should be one line per test case containing an integer number which is the
minimum number of walls to be removed, such that the wall-passer can pass
through walls starting from any column on the upper side.

Sample Input | Sample Output
2 1
31 1
2040
0111

1222

73

0030

6181

2363
44064
0515
5676
1737

Source: ACM Tehran 2002 Preliminary
IDs for Online Judges: POJ 1230, ZOJ 1375

\% Hint

Walls are parallel to X.

&J Analysis

All columns are scanned from left to right. Removing the minimum number of
walls from the stage must guarantee removing the minimum number of walls in
scanned columns. Therefore, the optimal solution to the problem consists of its
optimal solutions to subproblems. The key to the problem is its greedy choice.

Suppose there are D walls in the current column. If DK, we needn’t remove
any wall; and if D>K, D—K walls must be removed. The greedy choice is as fol-
lows. For walls in the current column, the longest D—K walls in unscanned col-
umns are removed. Obviously, the greedy choice removes a minimum number
of walls.

218 m Algorithm Design Practice for Collegiate Programming

oY
= -

#include<iostreams>

using namespace std;

int t,n,k,x,y,x1,y2,max_x,max_y,sum_s=0; //t: number of
test cases; n: number of walls; k: at most k walls can be
passed through; x,y,x1,y2: Coordinate; max x,max y: maximal
row and column Coordinate; sum s: the minimum number of
removed walls

int map[105] [105];

int main()

{

scanf ("%d", &t) ; // number of test cases
while (t--) // all test cases are processed
{
memset (map, 0, sizeof (map)) ;
max_x=0; //Initialization
max_y=0;
sum_s=0;
scanf ("$d %d4d", &n, &k) ;
for (int i=1;i<=n;i++)
{
scanf ("%d %d %d %d", &x, &y, &x1,&y2) ;
if (x>max_ x)max X=x;
if (xlsmax x)max x=x1;
if (y>max y)max y=y;
if (x<x1)

{
}

else

{

for (int j=x;j<=x1;j++) mapl[j] [yl=1i;

for (int j=x1;j<=x;j++) mapl[j] [yl=1i;

}
}

for (int i=0;i<=max x;i++) //scan from left to right

{
int tem=0; //calculate the number of walls
in the i-th column
for (int j=0;j<=max_y;j++) if (map[i] [j]1>0)
tem++;
int offset=tem-k;
if (offset>0) // some walls are removed

{

sum_s+=offset;

Practice for Greedy Algorithms ®m 219

while (offset--)

{
int max_ s=0,max bh;
for (int k=0;k<=max y;k++) //search

{
if (map([i] [k]>0)
//calculate length of wall in unscanned columns

{
int tem s=0;
for (int z=i+l;z<=max Xx;
Z++)
if (maplz] [k]l==map[i] [k])
tem s++;
else Dbreak;
if (max_s<tem_s) //record
{
max s=tem s; max bh=k;
}
!
}
for (int a=ij;a<=i+max_s;a++) map [a]
[max_bh]=0; // some walls are removed
}
}
!
printf ("$d\n",sum_s) ; //output the result

}

return O;

5.1.2 Tian Ji: The Horse Racing

Here is a famous story from Chinese history.

About 2300 years ago, General Tian Ji was a high official
in the country Qi. He likes to play horse racing with the
king and others.

Both Tian and the king have three horses in different
classes, namely, regular, plus, and super. The rule is to have
three rounds in a match; each of the horses must be used in
one round. The winner of a single round takes two hundred
silver dollars from the loser.

Being the most powerful man in the country, the king
has such nice horses that in each class, his horse is better
than Tian’s. As a result, each time the king takes six hun-
dred silver dollars from Tian.

220 ®m Algorithm Design Practice for Collegiate Programming

Figure 5.2

Tian Ji was not happy about that, until he met Sun Bin,
one of the most famous generals in Chinese history. Using a
licele trick that he learned from Sun, Tian Ji brought home
two hundred silver dollars and such a grace in the next match.

It was a rather simple trick (Figure 5.2). Using his regular class horse race against
the super class from the king, they will certainly lose that round. But then his plus
beat the king’s regular, and his super beat the king’s plus. What a simple trick. And
what do you think of Tian Ji, the high-ranked official in China?

Wherever Tian Ji lives nowadays, he will certainly laugh at himself. Even
more, if he were sitting in the ACM contest right now, he may discover that the
horse racing problem can be simply viewed as finding the maximum matching
in a bipartite graph. Draw Tian’s horses on one side, and the king’s horses on the
other. Whenever one of Tian’s horses can beat one from the king, we draw an
edge between them, meaning we wish to establish this pair. Then, the problem
of winning as many rounds as possible is just to find the maximum matching in
this graph. If there are ties, the problem becomes more complicated; he needs to
assign weights 0, 1, or —1 to all the possible edges, and find a maximum weighted
perfect matching.

However, the horse racing problem is a very special case of bipartite matching.
The graph is decided by the speed of the horses—a vertex of higher speed always
beats a vertex of lower speed. In this case, the weighted bipartite matching algo-
rithm is too advanced a tool to deal with the problem.

In this problem, you are asked to write a program to solve this special case of
matching problem.

Input

The input consists of up to 50 test cases. Each case starts with a positive integer
7 (n<1000) on the first line, which is the number of horses on each side. The next #
integers on the second line are the speeds of Tian’s horses. Then the next 7 integers
on the third line are the speeds of the king’s horses. The input ends with a line that
has a single “0” after the last test case.

Practice for Greedy Algorithms m 221

Output

For each input case, output a line containing a single number, which is the maxi-
mum money Tian Ji will get, in silver dollars.

Sample Input | Sample Output

3 200
92 83 71 0
95 87 74 0
2

20 20
20 20
2

20 19
22 18
0

Source: ACM Shanghai 2004

IDs for Online Judges: PO) 2287, ZO) 2397 UVA 3266

L5
*\

NUC)
S/ Analysis

The problem can be solved by several different methods. Maximum matching in
a bipartite graph or dynamic programming can be used to solve the problem, but
using a greedy algorithm to solve the problem is simple and efficient. The greedy
algorithm is as follows:

First, the speeds of Tian’s horses and the speeds of the king’s horses are sorted
in ascending order respectively. Suppose the sequence for speeds of Tian’s current
horses in ascending order is A=4,...a,; and the sequence for the speeds of the king’s
current horses are sorted in ascending order is B=b;...5,.

Second, greedy choices are as follows:

1. If Tian’s current slowest horse is faster than the king’s current slowest horse, that
is, 4>b;; then Tian’s current slowest horse races against the king’s current slow-
est horse, that is, 4; is compared with 4. Because 4, is less than any elements in
A and the king’s current slowest horse can be defeated by any Tian’s remainder
horse, the king’s current slowest horse is defeated by Tian’s current slowest horse.

2. If Tian’s current slowest horse is slower than the king’s current slowest horse,
that is, 2;<b;; then Tian’s current slowest horse races against the king’s current
fastest horse, that is, 4; is compared with 4,. Because 4, is less than any elements
in B and Tian’s current slowest horse can be defeated by any king’s remainder
horse, Tian’s current slowest horse is defeated by the king’s current fastest horse.

222 ®m Algorithm Design Practice for Collegiate Programming

3. If Tian’s current fastest horse is faster than the king’s current fastest horse,
that is, 2,>6,; then Tian’s current fastest horse races against the king’s current
fastest horse, that is, 4, is compared with 4,. Because 4, is larger than any ele-
ments in B and Tian’s current fastest horse can defeat any king’s remainder
horse, Tian’s current fastest horse defeats the king’s current fastest horse.

4. If Tian’s current fastest horse is slower than the king’s current fastest horse,
that is, 2,<b,; then Tian’s current slowest horse races against the king’s cur-
rent fastest horse, that is, 4, is compared with 4,. Because 4, is larger than
any elements in 4 and the king’s current fastest horse can defeat any Tian’s
remainder horse, the king’s current fastest horse defeats Tian’s current slow-
est horse.

5. If (a;==0)) and (2,>b,), then it is suitable that Tian’s current fastest horse
races against the king’s current fastest horse, that is, 4, is compared with 4,

6. If (@,==b,), then there exists an optimal solution that , is compared with 4,.

The above process repeats until the horse racing ends. Tian’s current fastest
or slowest horse races against the king’s current fastest or slowest horse each time
based on the above greedy choices. Optimal solutions to subproblems constitute the
global optimal solution to the problem.

oY
% Program

#include<cstdio>

#include<cstring>

#include<algorithm>

using namespace std;

int a[1010],b[1010]; //Speeds of Tian’s horses and the
king’s horses

int main()

{
int n;
while (scanf ("%d", &n) ,n) //number of Tian’s horses (the
king’s horses)
{
for(int i=1; i<=n; i++) scanf("%d",&ali]); // Input
speeds of Tian’s horses
for(int i=1; i<=n; i++4) scanf("%d",&bl[i]); // Input
speeds of the king’s horses
sort (a+1l,a+1+n) ; //Sorting speeds in ascending
order

sort (b+1,b+1+n) ;
int tl=1,tr=n,qgl=1,qgr=n; //Initialization
int sum=0;

Practice for Greedy Algorithms m 223

while (tl<=tr) // the horse racing doesn’t end
{
if (altll<blgl]l) // Tian’'s slowest horse is
slower than the king’s slowest horse
{
gr--;tl++;sum=sum-200;
1
else if(altl]l==blgl]) // Speeds of the two
slowest horses are same
{
while (tl<=tr&&gl<=qr)
{
if (altr]l>blgr]) //Tian’'s fastest horse
is faster than the king’s fastest horse
{
sum+=200;tr--;qgr--;
!
else // Tian’'s slowest horse races
against the king’s fastest horse
{
if (altll<blgr]) sum-=200;
tl++;qr--; break;
1
!
!
else // Tian’s slowest horse is faster than the
king’s slowest horse
{
tl++;gl++;sum=sum+200;
!
1
printf ("%d\n", sum) ; //Output the result
!
return 0;

5.2 Greedy-Choices Based on Sorted Data

The key to a greedy algorithm is its greedy choices. Sometimes the greedy choices
must be based on sorted data. First, data are sorted. Then greedy choices are made
based on the sorted data.

5.2.1 The Shoemaker’s Problem

A shoemaker has N jobs (orders from customers) which he must make. The shoe-
maker can work on only one job in each day. For each i-th job, the integer 7;
(1<T<1000) indicates the time in days it takes the shoemaker to finish the job.

224 m Algorithm Design Practice for Collegiate Programming

For each day of delay before starting to work for the i-th job, the shoemaker must
pay a fine of S; (1<5,<10000) cents. Your task is to help the shoemaker, by writing
a program to find the sequence of jobs with minimal total fine.

Input

The input begins with a single positive integer on a line by itself, indicating the
number of the cases following, each of them as described below. This line is fol-
lowed by a blank line, and there is also a blank line between two consecutive
inputs.

The first line of input contains an integer /V (1SN<1000). The next /Vlines each
contain two numbers: the time and the fine of each task in order.

Output

For each test case, the output must follow the description below. The outputs of two
consecutive cases will be separated by a blank line.

Your program should print the sequence of jobs with minimal fine. Each job
should be represented by its number in input. All integers should be placed on only
one output line and separated by one space. If multiple solutions are possible, print
the first lexicographically.

Sample Input | Sample Output

1 2134

4
34
1 1000
22
55

Source: Second Programming Contest of Alex Gevak, 2000

ID for Online Judge: UVA 10026

-

AN
w49
~ \/ Analysis
“For each day of delay before starting to work for the 7, job, the shoemaker must
pay a fine of §; cents” means “For each day of delay after starting to work for the 7,

job, the shoemaker must pay a fine of S,/ 7; cents”. 5;/7; is the measurement of influ-
ence for the 7y, job, 1<i<n. Therefore, in order to pay a minimal fine, the job whose

Practice for Greedy Algorithms ®m 225

measurement of influence is higher must be finished earlier. The greedy algorithm
is as follows:

The metric for jobs is their measurement of influence. The # jobs are sorted
using their measurement of influence as the first key (in ascending order), and the
numbers of jobs as the second key (in descending order). The sorted sequence is the
sequence of jobs with minimal fine.

o
D o

#include<iostreams

#include<cstdlibs>

#include<cstdio>

#include<cmaths>

#include<cstrings>

#include<algorithm>

using namespace std;

const int maxN=1010; // the upper limit of the number of
jobs

struct job

{

double a; // measurement of influence for the job
int num; // the number of a job
} plmaxN] ; // the sequence of jobs with minimal fine
int n;
void init ()
{
double al,a2;
scanf ("%d", &n) ; // n jobs
for (int i=1;i<=n;i++) // the time and fine of each task
{
scanf ("$1£%1f", &al, &a2) ;
plil .a=a2/al;pli] .num=1i; // Calculate S;/T;, and record
the number
!
1
bool cmp (job x,job vy) // sort two jobs using their

measurement of influence as the first key (in ascending
order), and numbers of jobs as the second key (in descending
order)
{
if ((x.a>y.a)||((x.a==y.a)&&(x.num<y.num))) return true;
return false;

}

void work ()

226 ® Algorithm Design Practice for Collegiate Programming

{

sort (p+1,p+n+1, cmp) ; // sort n jobs using their
measurement of influence as the first key (in ascending
order), and numbers of jobs as the second key (in descending
order)

for (int i=1;i<n;i++) printf("%d ",pl[i] .num) ; // Output
the result

printf ("$d\n",p[n] .num) ;

}

int main()

{
int t;
scanf ("%d", &t) ; //the number of test cases
for (int i=1;i<=t;i++) // deal with each test case

{
if (i>1) printf("\n");
init () ;
work () ;

}

return O;

5.2.2 Add All

The problem name reflects your task; just add a set of numbers. But you may feel
that it is not interesting to write a C/C++ program just to add a set of numbers.
Such a problem will simply question your erudition. So, let’s add some flavor of
ingenuity to it.

The addition operation requires cost now, and the cost is the summation of
those two numbers to be added. So, to add 1 and 10, you need a cost of 11. If you
want to add 1, 2 and 3, there are several ways:

1+2=3,cost=3 | 1+3=4, cost=4 2+3=5, cost=5
34+3=06,cost=6 | 2+4=06,cost=6 | 1+5=06, cost=6
Total =9 Total =10 Total=11

I hope you have already understood your mission, to add a set of integers so that
the cost is minimal.

Input

Each test case will start with a positive number, NV (2<N<5000) followed by N posi-
tive integers (all are less than 100000). Input is terminated by a case where the value
of N is zero. This case should not be processed.

Practice for Greedy Algorithms m 227

Output
For each case, print the minimum total cost of addition in a single line.
Sample Input | Sample Output
3 9
123 19
4
1234
0

Source: UVa Regional Warmup Contest 2005
ID for Online Judge: UVA 10954

Initially there is a set of 7 positive numbers. Each time, two positive numbers are
deleted from the set, and the sum of the two numbers is added into the set. The
process repeats 7—1 times. The final sum is the total cost of addition. The problem
requires you to calculate the minimum total cost of the addition.

Obviously, in order to get the minimum total cost of addition, the greedy choice
is to select two minimal positive numbers each time. Therefore a min heap is suitable
to represent the set.

(s

#include<iostreams>
#include<cstdio>
#include<cstdlib>
#include<cmaths>
#include<cstrings>
#include<algorithm>
using namespace std;

const int maxN=5010; //the upper limit of the size of the set
int n,a[maxN] ; // n: the size of the heap, all: min heap
void sift (int 1) // the subtree with root i is adjusted as

a min heap

{

228 ®m Algorithm Design Practice for Collegiate Programming

alo0]l=alil;
int k=i<<1;
while (k<=n)
{
if ((k<n)&&(alk]>alk+1])) k++;
if (al0l>alk]) { alil=alk];i=k;k=i<<1;} else k=n+1;

!
alil=alo0];
!
void work () //Calculate and output the result
{
for (int i=n >> 1;1i;i--) sift(i); // set up a min heap
long long ans=0;
while (n!=1)
{
swap(a[l],aln--]1);
sift (1) ; // adjust the heap
alll+=aln+1];
ans+=al[1l];
sift (1) ; // adjust the heap
1
cout << ans << endl; //Output the result
1
int main()
{
while (scanf ("%d",&n),n)
{
for (int i=1;i<=n;i++) scanf ("%d",&ali]l); // Input n
positive numbers
work () ; // calculate and output the minimum total cost
of addition
}
return 0;
!

5.2.3 Wooden Sticks

There is a pile of 7 wooden sticks. The length and weight of each stick are known
in advance. The sticks are to be processed by a woodworking machine in one-by-
one fashion. It needs some time, called setup time, for the machine to prepare for
processing a stick. The setup times are associated with cleaning operations and
changing tools and shapes in the machine. The setup times of the woodworking
machine are given as follows:

1. The setup time for the first wooden stick is one minute.

2. Right after processing a stick of length / and weight w, the machine will
need no setup time for a stick of length /' and weight »' if /</' and w<w'.
Otherwise, it will need one minute for setup.

Practice for Greedy Algorithms m 229

You are to find the minimum setup time to process a given pile of 7 wooden
sticks. For example, if you have five sticks whose pairs of length and weight are (9, 4) ,
(2,5,(,2),(5,3),and 4, 1), then the minimum setup time should be two
minutes since there is a sequence of pairs (4, 1), (5,3),9,4),(1,2),(2,5).

Input

The input consists of 7 test cases. The number of test cases (77) is given in the first
line of the input file. Each test case consists of two lines: The first line has an integer
n, 1<#<5000, that represents the number of wooden sticks in the test case, and the
second line contains 27 positive integers 4, wy, b, ws,...... s by w,, cach of magni-
tude at most 10000, where /; and w; are the length and weight of the ith wooden
stick, respectively. The 27 integers are delimited by one or more spaces.

Output
The output should contain the minimum setup time in minutes, one per line.
Sample Input Sample Output
3 2
5 1
4952213514 3
3
221122
3
132231

Source: ACM Taejon 2001
IDs for Online Judges: POJ 1065, ZOJ 1025, UVA 2322

&& Analysis

Right after processing a stick of length /and weight w, the machine will need no
setup time for a stick of length /' and weight «' if /</' and w<w'. Otherwise, it will
need one minute for setup. In order to reduce the setup time, the strategy for greedy
choice is as follows:

For unprocessed sticks, the stick with minimal length is selected first. If there
are more than one stick with minimal length, the stick with minimal weight is
selected.

230 ® Algorithm Design Practice for Collegiate Programming

First, all sticks are sorted. A stick is represented as (/, w), where /is its length,
and w is its weight. Sticks are sorted using / as the first key and w as the second key.
That is, (/1,w1)<(22,w2), if 1<2||(/1==12&&wl<w?2).

After sorting sticks, the greedy choice is processed as follows:

Initially, setup time ¢=0, and stick 0 is as the first unprocessed stick in the
sequence. Then the following steps repeat.

Step 1: In the sequence, all unprocessed sticks after stick 0 which can be pro-
cessed without setup time are set as processed. That is to say, the machine will
need no setup time for these sticks, if stick 0 is processed.

Step 2: Setup time c++.

Step 3: Search the first unprocessed stick in the sequence. If there is no unpro-
cessed stick, then output the minimum setup time; else set the first unprocessed
stick as stick 0, and return to Step 1.

oY
0.,....

#include <iostream>
using namespace std;
const int N = 5000;

struct node(// Struct of stick
node& operator=(node &n) {
l=n.1l, w=n.w, isUsed=n.isUsed; //the length,

weight, flag that is processed or not for stick n
return *this;

1
bool operators (node &n){ //compare sticks
return 1>n.1l || (l==n.l && w>n.w);
1
void swap (node &n) { //exchange sticks
node tmp=*this;
*this=n;
n=tmp;
1
int 1, w;
bool isUsed;
IAINT ; //sequence of sticks A[]
int main()
{
int t, n, i, j, k;
cin >> t; //number of test cases
for (1i=0;i<t;i++) { // test cases are processed one by one

cin >> n;

Practice for Greedy Algorithms m 231

for(j=0;j<n;j++) { //Input length, weight for all
sticks
cin >> A[j].1 >> A[]].w;
A[j] .isUsed=false;
}
for(j=1;j<n;j++) //Sorting A
for(k=1;k<=n-j;k++)
if (A[k-1] > A[k])
A[k-1] .swap(A[k]) ;
node cur = A[0]; // stick 0 is as the last
processed stick cur
A[0] .isUsed=true;

int c=0; //Initialize setup time
while (true) {
for(j=1;j<n;j++) //set sticks whose lengths and

weights are larger than the current stick as processed
if (A[j] .isUsed==false)
if(A[§].1 >= cur.l && A[j].w >= cur.w)
A[j] .isUsed=true;
cur = A[j];
}
C++; //setup time+1
for(j=1;j<n;j++) if(A[j].isUsed==false){ //Search
the first unprocessed stick

cur = A[j];
A[j] .isUsed=true;
break;
1
if (j==n) break; //all sticks are processed
!
cout << ¢ << endl; // output the minimum setup time
!
return 0;

5.2.4 Radar Installation

Assume the coast is an infinite straight line. Land is on one side of the coast, and the
sea is on the other. Each small island is a point located on the seaside. And any radar
installation, located on the coast, can only cover 4 distance, so an island in the sea
can be covered by a radius installation, if the distance between them is at most 4.

We use the Cartesian coordinate system, defining the coast as the x-axis. The
seaside is above the x-axis, and the land side is below. Given the position of each
island in the sea, and given the distance of the coverage of the radar installation,
your task is to write a program to find the minimal number of radar installations
to cover all the islands. Note that the position of an island is represented by its x—y
coordinates.

232 m Algorithm Design Practice for Collegiate Programming

Input

The input consists of several test cases. The first line of each case contains two
integers 7 (1<7<1000) and d, where # is the number of islands in the sea and 4 is
the distance of coverage of the radar installation. This is followed by # lines, each
containing two integers representing the coordinate of the position of each island.
Then a blank line follows to separate the cases. The input is terminated by a line
containing a pair of zeros.

Output

For each test case, output one line consisting of the test case number followed by
the minimal number of radar installations needed. “—1” installation means no solu-
tion for that case.

Sample Input | Sample Output
32 Case 1: 2

12 Case 2: 1

=31

21

12

02

00

Source: ACM Beijing 2002
IDs for Online Judge: POJ 1328, ZOJ 1360, UVA 2519

Analysis
Each small island is represented as a segment on the coast. If a radar locates on the
segment, the island can be covered by the radar. Suppose the Cartesian coordinate
for the island is (x, y). If a radar locates on the coast from (x—4, 0) to (x+4, 0), where
h=4d*—y* , the island can be covered. Therefore, the island is represented as a
segment from (x—4, 0) to (x+5, 0). It can be shown as in Figure 5.3.

Suppose there are 7 islands. First, 7 islands are represented as 7 segments.
Second, right endpoints are as the first key (in ascending order), left endpoints are
as the second key (in ascending order), and the 7 segments are sorted. Finally, all
sorted segments are scanned one by one. If the current segment isn’t covered by a
radar, a radar locates at the right endpoint for the segment.

Practice for Greedy Algorithms ®m 233

(x—h,0) (x, 0) (x+h,0)

d d h= dZ_yZ

island (x, y)

Figure 5.3

o
o o

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmaths>
using namespace std;

const int maxn = 1010; //the upper limit of number of segments
struct tt {

double 1,r; // left, right pointer
} plmaxn]; // the sequence of segments, where the i-th
island is represented as segment [p[i].1, pl[i].r]
int n,d; //n: number of islands, any radar covers d distance
bool flag;
void init() //Input positions of islands, and calculate

corresponding segments
flag = true;
int i;
double x,vy;
for(i = 1 ; i <=n ; ++1i){
scanf ("$1£%1£f", &x, &y) ;
if(d < y){ // if d<y, no solution
flag = false;
}

double h = sqgrt (d*d - y*y);
plil.1 - h;
plil.r + h;

I
XX

}

bool cmp (tt a, tt b){ //compare segment a and segment b
if(b.r - a.r > 10e-7){
return true;
}

if(abs(a.r - b.r) < 10e-7 && (b.1 - a.l > 10e-7)) {

234 ®m Algorithm Design Practice for Collegiate Programming

return true;

!
return false;
!
void work () { //Calculate and output the minimal number of
radar installations needed
if(d == -1){ printf("-1\n"); return ; }
sort (p+1,p+1+n,cmp) ; // Sorting segments
int ans = 0; // Initialize the minimal number of radar
installations needed
double last = -10000.0; //Initialize the position of radar
installation
int 1i;
for(i =1 ; i <=n ; ++1i){ // search segments one by one
if (p[i].1 <= last){ //there is a radar on the segment
if (p[i]l.r <= last){
last = pl[i].r;
!

continue;

!

ans++; // a radar is installed on the right endpoint

last = pl[i].r;
1
printf ("%d\n", ans) ; //Output
!

int main() {
int counter = 1;

while (scanf ("%d%d", &n, &d) ! =EOF,n| |d) { // Input test cases
printf ("Case %d: ",counter++) ; // the number of test cases
init () ;
if (1flag) {
printf ("-1\n") ;
}elsef
work () ;
1
!
return O;
!

5.3 Greedy Algorithms Used with Other
Methods to Solve P-Problems

In the real world, problems that we can solve can be classified into two classes:

P-Problems: P-Problems are polynomially solvable problems. That is, a P-Problem
can be solved by an algorithm whose running time is bounded by a polynomial.
NP-Complete Problems: NP-Complete Problems cannot be solved in polyno-

mial time.

Practice for Greedy Algorithms ®m 235

In this section, practices for greedy algorithms used with other methods to solve
P-Problems are shown.

5.3.1 Color a Tree

Bob is very interested in the data structure of a tree. A tree is a directed graph in
which a special node is singled out, called the “root” of the tree, and there is a
unique path from the root to each of the other nodes.

Bob intends to color all the nodes of a tree with a pen. A tree has NV nodes, and
these nodes are numbered 1, 2, ..., N. Suppose coloring a node takes one unit of time,
and after finishing coloring one node, he is allowed to color another. Additionally,
he is allowed to color a node only when its father node has been colored. Obviously,
Bob is only allowed to color the root on the first try.

Each node has a “coloring cost factor”, C,. The coloring cost of each node
depends both on C; and the time when Bob finishes the coloring of this node. At
the beginning, the time is set to 0. If the finishing time of coloring node 7 is £, then
the coloring cost of node i is C;xF,.

For example, a tree with five nodes is shown in Figure 5.4. The coloring cost
factors of each node are 1, 2, 1, 2, and 4. Bob can color the tree in the order 1, 3, 5,
2, 4, with the minimum total coloring cost of 33.

Given a tree and the coloring cost factor of each node, please help Bob to find
the minimum possible total coloring cost for coloring all the nodes.

Input

The input consists of several test cases. The first line of each case contains two
integers N and R (1SN<1000, 1SR<N), where NV is the number of nodes in the tree
and R is the node number of the root node. The second line contains NV integers,
the i-th of which is C; 1C<500), the coloring cost factor of node 7. Each of the
next V-1 lines contains two space-separated node numbers V; and V), which are
the endpoints of an edge in the tree, denoting that V] is the father node of V,. No
edge will be listed twice, and all edges will be listed.

Figure 5.4

236 ®m Algorithm Design Practice for Collegiate Programming

A test case of N=0 and R=0 indicates the end of input, and should not be
processed.

Output

For each test case, output a line containing the minimum total coloring cost
required for Bob to color all the nodes.

Sample Input | Sample Output

33
124

O WIN A =2 U
S Ul h WDNDN =

Source: ACM Beijing 2004
IDs for Online Judge: POJ 2054, ZOJ 2215, UVA 3138

=y Analysis

For each node, the coloring cost is based on its coloring cost factor and the time at
which Bob finishes coloring it. The coloring cost factor for each node is given. The
key to the problem is determining the sequence coloring nodes.

Because Bob is allowed to color a node only when the node’s father has been
colored, the pointer pointing to its father for each node should be set up when edges
are input. A DES is used to calculate pointers pointing to its father for each node.

The sequence coloring nodes can be regarded as a merger process. For a father-
child relationship (4, x), node x can be colored only after its father 4 is colored.
If there are several children, the sequence coloring nodes should be determined.

Suppose nowld] is the average for coloring cost factors for nodes which are
merged into node 7, and ¢z#[7] is the number of nodes which are merged into node 7.
Initially nowl[i]= the coloring cost factor for node 7, cn{i]=1(1<i<n). After node x

_ nowlk]X cnt[k]+ now[x] X cnt|x]
cnt[k]+ cnt[x]
and cntlkl=cntlk]+cnt[x]. Such a merge process is performed #—1 times. Each time,

>

is colored, it is merged into node 4, now(k]

the criteria for the merger is selecting a uncolored node whose 7ow value is maxi-
mal. Obviously, it is a greedy strategy. The implementation process is as follows.

Practice for Greedy Algorithms ®m 237

n—1 merger processes are run:

Selecting an unmerged node 4 (isn’t the root) whose now value is maximal;

Setting the merger mark for node 4;

Determining the sequence for coloring node 4 and its father f;

Searching node fwhich is the nearest for # and isn’t merged based on the father
pointer for 4, and adjusting now|[f] and cne(f1;

From the root, based on the coloring sequence, calculating the minimum total
coloring cost required for Bob to color all the nodes.
"
ans = Zi X the coloring cost factor for node 7 in the coloring sequence.

i=1

o
= (.

#include<iostream>

#include<cstdlib>

#include<cstdio>

#include<cmaths>

#include<cstrings>

#include<algorithm>

using namespace std;

const int maxN=1100; // the upper limit for the number of nodes
int root,n, fa[maxN], 1l [maxN] , next [maxN], cnt [maxN] , ¢ [maxN] , e [maxN]
[maxN] ;

// root: the root of the tree; n: the number of nodes; fal]:
each node’s father; next[]: the coloring sequence, where the
node is colored after node x is colored is node next[x]; cnt[]:
the number of merged nodes for each node; c[]1: coloring cost
factor; el][1: the adjacency matrix for the tree

double now[maxN] ; //now[1: coloring costs for nodes after
merger
void init () // Input coloring cost factors for n nodes and
edges, and construct e[][]
{

int x,y;

memset (e, 0,sizeof (e)) ;

for (int i=1;i<=n;i++) scanf ("%d",&cl[i]) ;

for (int i=1;i<n;i++) { scanf ("%d%d",s&x,&y) ;e [x] [++e[x]
[0]1]1=y;ely] [++ely] [0]]=x;}
1
void dfs(int x) //calculating the pointer pointing to its
father for each node

238 ®m Algorithm Design Practice for Collegiate Programming

int y;
for (int i=1;i<=e[x] [0];i++) // for each child of x,
setting its father pointer x
{
y=e[x] [i];
if (falyl==0) { falyl=x;dfs(y);}
}
}
void addedge (int x,int y) //determine the coloring sequence
for x and y, that is, y is colored after x is colored
{
while (next[x]) x=next[x];
next [x] =y;
}
void work () //calculate and output the minimum total
coloring cost

{

memset (fa, 0,sizeof (fa)) ; //initialization

fal[root]=-1;

dfs(root); // Traverse the tree whose root is root, and
determine father-children relationships

for (int i=1;i<=n;i++) nowl[il=c[i]; // initialization

bool flag[maxN] ; // marks for merging nodes

int k, £;

double max;

memset (flag,1,sizeof (flag)); memset (next,0,sizeof (next));

for (int i=1;i<=n;i++) cnt[i]l=1;

for (int i=1;i<n;i++) // n-1 merger processes

{

max=0; // Selecting an unmerged node k (isn’t the

root) whose now value i1s maximal
for (int j=1;j<=n;j++) if ((j!=root)&&(flag[j]) && (max<now
[31)) { max=nowl[j];k=7;}

f=fa (k] ;addedge (£, k) ; // Determining the sequence
for coloring node k and its father f£;
while (!flagl[f]) f=falf]; // Searching node f which is

the nearest for k and isn’t merged based on the pointer
pointing to the father for k, that is, the father node for k
after merger
flaglk]=false; // Set the merger mark for node k
now[f] = (now[f] *cnt [£] +now [k] *cnt [k]) / (cnt [£] +ent [k]) ;
// adjusting nowl[f]
cnt [£] +=cnt [k] ; // adjusting cnt[f]
}
int p=root,ans=0; // calculate minimum total coloring cost
for (int i=1;i<=n;i++)
{
ans+=1i*c [p] ;p=next [p];

}

Practice for Greedy Algorithms ®m 239

printf ("%d\n",ans) ; // output the minimum total coloring
cost
1
int main()
{
while (scanf ("%d%d", &n, &root) ,n+root) //Input
{
init () ;
work () ; // calculate and output the minimum total
coloring cost
}
return 0;
!

5.3.2 Copying Books

Before the invention of book printing, it was very hard to make a copy of a
book. All the contents had to be rewritten by hand by so-called scribers. The
scriber was given a book, and after several months he finished creating a copy of it.
One of the most famous scribers lived in the 15th century and his name was
Xaverius Endricus Remius Ontius Xendrianus (Xerox). Anyway, the work was
very annoying and boring. And the only way to speed it up was to hire more
scribers.

Once upon a time, there was a theater ensemble that wanted to play famous
antique tragedies. The scripts of these plays were divided into many books, and
actors needed more copies of them, of course. So they hired many scribers to make
copies of these books. Imagine you have m books (numbered 1, 2 ...) that may
have different numbers of pages (p1, o, -..... , P»)> and you want to make one copy
of each of them. Your task is to divide these books among # scribers, #<m. Each
book can be assigned to a single scriber only, and every scriber must get a con-
tinuous sequence of books. That means, there exists an increasing succession of
numbers 0=b,<6<b,<...<b;<b=m such that the i-th scriber gets a sequence of
books with numbers between 4,_+1 and 4,. The time needed to make a copy of all
the books is determined by the scriber who was assigned the most work. Therefore,
our goal is to minimize the maximum number of pages assigned to a single scriber.
Your task is to find the optimal assignment.

Input

The input consists of N cases. The first line of the input contains only positive
integer V. Then follow the cases. Each case consists of exactly two lines. At
the first line, there are two integers m and 4, 1<£<m<500. At the second line,
there are integers py, ps, ... p.. separated by spaces. All these values are positive and
less than 10000000.

240 ®m Algorithm Design Practice for Collegiate Programming

Output

For each case, print exactly one line. The line must contain the input succession
21> P2 -+~ pm divided into exactly £ parts, such that the maximum sum of a single
part should be as small as possible. Use the slash character () to separate the parts.
There must be exactly one space character between any two successive numbers and
between the number and the slash.

If there is more than one solution, print the one that minimizes the work
assigned to the first scriber, and then to the second scriber, etc. But each scriber
must be assigned at least one book.

Sample Input Sample Output

2 100 200 300 400 500 / 600 700 / 800 900
93 100 /100 /100 /100 100

100 200 300 400 500 600 700 800 900

54

100 100 100 100 100

Source: ACM Central European Regional Contest 1998
IDs for Online Judge: POJ 1505, ZO) 2002, UVA 714

Analysis

Binary search can be used to solve the problem. If the current maximum number of pages
assigned to a single scriber x is feasible, we can reduce it; otherwise, we can increase it.

The key to the problem is to determine whether the current maximum number
of pages assigned to a single scriber x is feasible or not. Because numbers of pages
assigned to scribers are increasing from left to right, the greedy strategy is as fol-
lows. From back to front, every book is scanned, and the criteria that the current
book can be assigned to the current scriber is that after the book is assigned to the
scriber, the sum of numbers of pages assigned to the scriber isn’t more than x, and
every remainder scriber can be assigned at least one book. If the current book meets
the criteria, the book is assigned to the current scriber; else the book is assigned to a
new scriber, and the new scriber becomes the current scriber. A slash character (/)
is used to separate the two scribers’” work.

Obviously, if £ scribers can’t finish copies for 7 books, then the current maxi-
mum number of pages assigned to a single scriber x isn’t feasible; else the current
maximum number of pages assigned to a single scriber x is feasible.

Binary search is used to find the minimal maximum number of pages assigned
to a single scriber min. The above greedy algorithm is used to find the optimal
assignment.

Practice for Greedy Algorithms ® 241

oY
= -

#include<iostreams>
#include<cstdlib>
#include<cstdio>
#include<cmaths>
#include<cstrings>
#include<algorithm>
using namespace std;

const int maxN=510; //the upper limit of the number of
books
int n,m,a[maxN] ; //n books, m scribers, al]:the sequence of
books
long long sum; // sum of pages
bool flag[maxN] ; // flag to separate books
void init () //Input the current test case
{
sum=0;
scanf ("$d%d", &n, &m) ; // Input numbers of books and scribers
for (int i=1;i<=n;i++) // Input the numbers of pages, and
sum

{

}
}
bool judge (long long lmt) // determine whether the current
maximum number of pages assigned to a single scriber Imt is
feasible or not
{ // determine whether the i-th book needs a new scriber or
not: isn’t more than Imt, every remainder scriber can be
assigned at least one book

// from back to front
memset (flag, 0, sizeof (flag)) ;

scanf ("%d", &a[i]) ;sum+=al[i];

int cnt=m; // start from the mth scriber

long long now=0; //number of pages for the current
scriber

for (int i=n;i;i--) // scan books

{
if ((now+a[il>1lmt) || (i<cnt)) // large than Imt, or
every remainder scriber can’t be assigned at least one book
{
now=a[i] ;ent--;flagli]=true; // add a new scriber
if (cnt==0) return false; //need more scribers, for
Imt

242 m Algorithm Design Practice for Collegiate Programming

else now+=alil; // accumulation
!
return true; // Imt is feasible
!
void work () //calculate and output the solution to the

current test case

{

long long 1=0,r=sum,mid; // initial interval [1, sum],
middle pointer mid
for (int i=1;i<=n;i++) if (l<ali]) 1l=alil; // the maximal
number of pages in these books
while (1l!=r) //Binary search in [1, r]
{
mid= (l+r)>>1; // middle pointer mid
if (judge (mid)) r=mid;else l=mid+1; // if mid is
feasible, left subinterval; else right subinterval
!
judge (1) ; //calculate
for (int i=1;i<=n;i++) // output
{

printf ("%d",alil) ;
if (i<n) printf(" ");
if (flaglil) printf("/ ");

}

printf ("\n") ;

}

int main ()

int t;
scanf ("%d", &t) ; // the number of test cases
for (int i=1;i<=t;i++) // deal with every test case

{
init () ; // the i-th test case
work () ; //calculate and output the solution to the
i-th test case

}

return O;

}

5.4 Problems
5.4.1 Stripies

Our chemical biologists have invented a new very useful form of life called stripies
(in fact, they were first called in Russian “polosatiki”, but the scientists had to invent
an English name to apply for an international patent). The stripies are transparent

Practice for Greedy Algorithms ®m 243

amorphous amoebiform creatures that live in flat colonies in a jelly-like nutrient
medium. Most of the time the stripies are moving. When two of them collide, a
new stripie appears instead. Long observations made by our scientists enabled them
to establish that the weight of the new stripie isn’t equal to the sum of the weights
of the two disappeared stripies that collided; nevertheless, they soon learned that
when two stripies of weights 72, and m, collide, the weight of the resulting stripie
equals 2Xsqrt(m,Xm,). Our chemical biologists are very anxious to know to what
limits the total weight of a given colony of stripies can decrease.

You are to write a program that will help them to answer this question. You may
assume that three or more stripies never collide together.

Input

The first line of the input contains one integer /V (1SN<100)—the number of strip-
ies in a colony. Each of the next NV lines contains one integer ranging from 1 to
10000—the weight of the corresponding stripie.

Output

The output must contain one line with the minimal possible total weight of the
colony with the accuracy of three decimal digits after the point.

Sample Input | Sample Output

3 120.00
72
30
50

Source: ACM Northeastern Europe 2001, Northern Subregion
IDs for Online Judge: POJ 1862, ZOJ 1543, Ural 1161

“§ Hint

Suppose that the weights of 7 stripies are my, my, ..., m,, respectively. After n—1
collisions, the total weight of the colony is as follows.

1 1
v 1 =
W=2"1[(m1m2)2 lm3 o

271—2

244 wm Algorithm Design Practice for Collegiate Programming

Obviously, if 7y, m,, ..., m, are sorted in ascending order, the total weight of
the colony Wis minimal.

5.4.2 The Product of Digits

Your task is to find the minimal positive integer number Q so that the product of
the digits of Q is exactly equal to V.

Input

The input contains the single integer number N (0<SN<10°).

Output

Your program should print to the output only the number Q. If such a number does
not exist, print —1.

Sample Input | Sample Output

10 25
Source: USU Local Contest 1999

IDs for Online Judge: Ural 1014

“ﬁ Hint

The criteria for factorization of /Vis to produce factors as big as possible.
There are two special cases: If N==0, then Q=0; and if N==1, then Q=1.
Otherwise, the greedy strategy is used as follows. V is factorized from 9 to 2.
First, factors 9 are produced, as many as possible; second, factors 8 are produced,
as many as possible; ; and so on. If the final result for the factorization is not 1,
then there is no solution; else Q is the positive integer that lists the factors from
small to large.

5.4.3 Democracy in Danger

In one of the countries of the Caribbean basin, all decisions were accepted by the
simple majority of votes at the general meeting of citizens (fortunately, there were
not many of them). One of the local parties, aspiring to come to power as lawfully
as possible, got its way in putting into effect some reform of the election system.

Practice for Greedy Algorithms ® 245

The main argument was that the population of the island recently had increased,
and it was no longer easy to hold general meetings.

The essence of the reform is as follows. From the moment of the reform coming
into effect, all the citizens were divided into K (maybe not equal) groups. Votes on
every question were to be held then in each group; moreover, the group was said
to vote “for” if more than half of the group had voted “for”; otherwise, it was said
to vote “against”. After the voting in each group, a number of the group that had
voted “for” and “against” was calculated. The answer to the question was positive if
the number of groups that had voted “for” was greater than the half of the general
number of groups.

At first the inhabitants of the island accepted this system with pleasure. But
when the first delights dispersed, some negative properties became obvious. It
appeared that supporters of the party that had introduced this system could influ-
ence the formation of groups of voters. Due to this, they had an opportunity to put
into effect some decisions without a majority of voters voting “for” it.

Let’s consider three groups of voters, containing five, five, and seven persons,
respectively. Then it is enough for the party to have only three supporters in each
of the first two groups. So it would be able to put into effect a decision with the
help of only six votes “for” instead of the nine that would be necessary in the case
of general votes.

You are to write a program which would determine according to the given
partition of the electors the minimal number of supporters of the party, sufficient
for putting into effect of any decision, with some distribution of those supporters
among the groups.

Input

In the first line, only an odd integer K—a quantity of groups—is written (1<K<101).
In the second line, there are written K odd integers, separated with a space. Those
numbers define a number of voters in each group. The population of the island does
not exceed 9999 persons.

Output

You should write a minimal quantity of supporters of the party that can put into
effect any decision.

Sample Input | Sample Output

3 6
575

Source: Autumn School Contest 2000

IDs for Online Judge: Ural 1025

246 m Algorithm Design Practice for Collegiate Programming

“g Hint

K groups are sorted in ascending order of the numbers of voters in groups. There are

K groups. Therefore, the party needs 5 +1 groups voting “for”. If there are 7

voters in a group, the party needs L§J+l supporters in the group. Therefore, the

minimal quantity of supporters of the party is that there are just over half

supporters for the party in the first S +1 groups.

5.4.4 Box of Bricks

Little Bob likes playing with his box of bricks. He puts the bricks one upon another
and builds stacks of different heights. “Look, I've built a wall!”, he tells his older sis-
ter Alice. “Nah, you should make all stacks the same height. Then you would have
a real wall”, she retorts. After a little consideration, Bob sees that she is right. So he
sets out to rearrange the bricks, one by one, such that all stacks are the same height
afterwards. But since Bob is lazy, he wants to do this with the minimum number of
bricks moved, as shown in Figure 5.5. Can you help?

Input

The input consists of several data sets. Each set begins with a line containing the
number 7 of stacks Bob has built. The next line contains 7 numbers, the heights 4;
of the 7 stacks. You may assume 1<#<50 and 1<4,<100.
The total number of bricks will be divisible by the number of stacks. Thus, it
is always possible to rearrange the bricks such that all stacks have the same height.
The inputis terminated by a set starting with #=0. This set should not be processed.

Output

For each set, first print the number of the set, as shown in the sample output. Then
. e L N . L

print the line “The minimum number of moves is £.”, where #4 is the minimum num-

ber of bricks that have to be moved in order to make all the stacks the same height.

5HoHH —~ HHHEEE

Figure 5.5

Practice for Greedy Algorithms ®m 247

Output a blank line after each set.

Sample Input | Sample Output

6 Set #1
524175 The minimum number of moves is 5.
0

Source: ACM Southwestern European Regional Contest 1997

IDs for Online Judge: POJ 1477, ZOJ 1251, UVA 591

“g Hint

Suppose the average value of avg =

n

S

i=1

. That is, avg is the heights of the 7 stacks

after the bricks are moved.
The criteria that bricks in the 7-th stack should be moved is as follows. If />avg,
then h—avg bricks should be moved in the stack. Therefore, the minimum number

of bricks that have to be moved is ans = 2 (b — avglh; > avg) .

i=1

5.4.5 Minimal Coverage

Given several segments of line (in the X axis) with coordinates [Z;, R], you are to
choose the minimal number of them, such that they would completely cover the
segment [0, M].

Input

The first line is the number of test cases, followed by a blank line.

Each test case in the input should contain an integer M (1<M<5000), followed
by pairs “L; R,”(|L}, |R|<50000, i<100000), each on a separate line. Each test case
of input is terminated by pair “0 0”.

Each test case will be separated by a single line.

Output

For each test case, in the first line of output, your program should print the mini-
mal number of line segments which can cover segment [0, M]. In the following

248 m Algorithm Design Practice for Collegiate Programming

lines, the coordinates of segments, sorted by their left end (Z;), should be printed
in the same format as in the input. Pair “0 0” should not be printed. If [0, M]
cannot be covered by given line segments, your program should print “0” (without
quotes).

Print a blank line between the outputs for two consecutive test cases.

Sample Input | Sample Output
2 0
1 1
-10 01
-5 -3

25

00

1

-10

01

00

Source: USU Internal Contest March’2004
IDs for Online Judge: UVA 10020, Ural 1303

“g Hint

All segments are sorted in ascending order of left ends as the first key, and right
ends as the second key (LEL||(L; == L) &&(R<R;;))), 1<i<the number of
segments —1).

The criteria for selecting segments is selecting a segment whose right end is the
farchest among segments whose left ends are covered.

The greedy algorithm is as follows:

Suppose that now is the end position that the current segment covers; and /ez is
the farthest position that a segment 4 whose left end is covered can reach. Initially
ans=now=I[len=0.

Every segment in the sorted sequence is analyzed one by one:

if ((L; =now)&&(len<R;)) {len= R;; k=1i;}
if ((L;,; >now)&&(now<len)) {now=len; segment k is as a
new covered segment;}
if (now=m) output the result and exit;
If now<m after all segments are analyzed, then [0, M] cannot
be covered by given segments.

Practice for Greedy Algorithms ®m 249

5.4.6 Annoying Painting Tool

Perhaps you wonder what an annoying painting tool is? First of all, the painting
tool we speak of supports only black and white. Therefore, a picture consists of a
rectangular area of pixels, which are either black or white. Second, there is only one
operation that can change the color of pixels:

Select a rectangular area of 7 rows and ¢ columns of pixels, which is completely
inside the picture. As a result of the operation, each pixel inside the selected rect-
angle changes its color (from black to white, or from white to black).

Initially, all pixels are white. To create a picture, the operation described above
can be applied several times. Can you paint a certain picture which you have in mind?

Input

The input contains several test cases. Each test case starts with one line containing
four integers n, m, 1, and ¢. (1<r<n<100, 1<c<m<100), The following # lines each
describe one row of pixels of the painting you want to create. The #-th line consists
of m characters describing the desired pixel values of the é-th row in the finished
painting (‘0” indicates white, ‘1" indicates black).

The last test case is followed by a line containing four zeros.

Output

For each test case, print the minimum number of operations needed to create the
painting, or —1 if it is impossible.

Sample Input

Sample Output

3311
010

101

010
4321
011

110

011

110
3422
0110
0111
0000
0000

4
6
-1

Source: Ulm Local 2007
IDs for Online Judge: POJ 3363

250 ®m Algorithm Design Practice for Collegiate Programming

“g Hint

The first thing to realize is that in an optimal solution, the painting operation is
never applied more than once at the same position. Also, it doesn’t matter in which
order the operations are done; therefore, we can do the painting operations from
top to bottom, and from left to right.

Using these ideas, we can easily check if a painting operation at some position is
required or not. Since the pixel in the top left corner of a selected area for the paine
ing operation will not be changed by later operations, we just check if it already
has the required color. If its color still needs to be changed, we have to apply the
painting operation.

After we have applied all the painting operations, we need to check the pixels in
the rightmost 7—c columns and bottom 7—7 rows to see if they have their required
color. If one of these pixels doesn’t have its required color, it is impossible to create
the painting.

Since the size of the picture is at most 100x100, a naive implementation with
O(n"4) runs in time. There exists an optimal solution which runs in O(nxm). The
idea is to store how many operations have been applied with the top left corner in
one of the first i rows and j columns. With this stored data, it is possible to answer
in constant time how many operations covering a pixel have been applied.

5.4.7 Troublemakers

Every school class has its troublemakers—those kids who can make the teacher’s
life miserable. On his own, a troublemaker is manageable, but when you put certain
pairs of troublemakers together in the same room, teaching a class becomes very
hard. There are # kids in Mrs. Shaida’s math class, and there are m pairs of trouble-
makers among them. The situation has gotten so bad that Mrs. Shaida has decided
to split the class into two classes. Help her do it in such a way that the number of
troublemaker pairs is reduced by at least a half.

Input

The first line of input gives the number of cases, N. N test cases follow. Each one
starts with a line containing # (0<#<100) and m (0<m<5000). The next m lines
will contain a pair of integers # and » meaning that when kids # and v are in the
same room, they make a troublemaker pair. Kids are numbered from 1 to #.

Output

For each test case, output one line containing “Case #x:” followed by L—the num-
ber of kids who will be moved to a different class (in a different room). The next line

Practice for Greedy Algorithms m 251

should list those kids. The total number of troublemaker pairs in the two rooms
must be at most 7/2. If that is impossible, print “Impossible.” instead of L and an
empty line afterwards.

Sample Input | Sample Output
2 Case #1: 3
43 134
12 Case #2: 2
23 12

34

46

12

13

14

23

24

34

Source: Abednego’s Graph Lovers’ Contest, 2006
IDs for Online Judge: UVA 10982

“g Hint

A graph is used to represent the problem, where kids in Mrs. Shaida’s math class
are represented as vertices, and there are edges between each pair of troublemakers.
Mrs. Shaida splits the class into two classes, s[0] and s[1], where the number of kids
in s[1] is less than the number of kids in s[0].

The method that Mrs. Shaida uses to split the class into two classes is as
follows:

For kid 7 (1</<n), numbers of kids among kid 1 to kid /—1 who constitute a pair
of troublemakers with kid 7 in s[0] and s[1] are calculated. If such a number in s[1] is
less than such a number in s[0], the kid 7 is moved to s[1]; else the kid 7 stays in s[0].

The greedy algorichm is as follows.

For (i=1; isn; 1i++)

Calculate the numbers of vertices which connect with
vertice 1 in s[0] and s[1l] from vertice 1 to vertice i-1;

if (the number of such vertices in s[1l]<the number of
such vertices in s[0])

vertice 1 is moved to s[1];

Finally, vertices in s[1l] corresponds to kids moved to a
different class (in a different room) .

252 m Algorithm Design Practice for Collegiate Programming

Figure 5.6

5.4.8 Constructing BST

BST (Binary Search Tree) is an efficient data structure for searching. In a BST, all
the elements of the left subtree are smaller, and those of the right subtree are greater
than the root. A typical example of BST is as shown in Figure 5.6.

Normally, we construct BST by successively inserting an element. In that case,
the ordering of elements has great impact on the structure of the tree. Look at the
following cases in Figure 5.7.

In chis problem, you have to find the order of 1 to NV integers such that the BST
constructed by them has a height of at most H. The height of a BST is defined by
the following relation:

1. A BST having no node has height 0.
2. Otherwise, it is equal to the maximum of the height of the left subtree and
right subtree plus 1.

Again, several orders can satisfy the criterion. In that case, we prefer the
sequence where smaller numbers come first. For example, for N=4, H=3, we want
the sequence 1 3 2 4 rather than2 143 0r321 4.

Input

Each test case starts with two positive integers N (1SN<10000) and H (1SH<30).
Input is terminated by V=0, H=0. This case should not be processed. There can be

at most 30 test cases.

Order: 4321 Order: 1234 Order: 342 1 or Order: 2143 or
3214o0r 243 1or
3241 2413

Figure 5.7

Practice for Greedy Algorithms ®m 253

Output

The output of each test case should consist of a line starting with “Case #: ” where
is the test case number. It should be followed by the sequence of V integers in
the same line. There must not be any trailing space at the end of the line. If it is
not possible to construct such a tree, then print “Impossible.”. (without the quotes).

Sample Input | Sample Output

43 Case1:13 2 4

41 Case 2: Impossible.
63 Case3:312546
00

Source: ACM ICPC World Finals Warmup 1, 2005
IDs for Online Judge: UVA 10821

“igi Hint

The problem requires you to output the Pre-order Traversal of a BST. Because
smaller numbers come first in the sequence, the number for the root is as small as
possible.

A BST with the height of at most / is constructed by the order of 1 to V
integers. The number of nodes in its left subtree and right subtree is no more than
2771, The criteria for the number of the root is as follows:

If the right subtree is a full subtree, the number for the root is N-(277-1); else
the number for the root is 1.

Then the problem is transferred and a BST with the height of at most H-1 is
constructed by the order of 1 to ro0r—1 integers, the BST is as the left subtree; and
a BST with the height of at most A-1 is constructed by the order of ro0#+1 to IV, the
BST is as the right subtree.

Obviously the greedy algorithm is a recursive algorithm.

o
% Program

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>

254 ®m Algorithm Design Practice for Collegiate Programming

#include<cstring>

#include<algorithm>

using namespace std;

const int maxN=31;

int n,h,cnt, s [maxN] ; //s[i]l: the number of nodes for a full
binary treeth height i1

//function work is an in order traversal for a BST with height
at most h, nodes from 1 to r

void work (int 1,int r,int h)

{

int m=max(l,r-s[h-1]); //the number of root is as small
as possible

printf ("%$d",m) ;

if (++cnt<n) printf (" ");

if (l<m) work(l,m-1,h-1); // recursion for the left
subtree
if (r>m) work (m+l,r,h-1); // recursion for the right
subtree
1
int main()
{
for (int 1=0;1<=30;i++) s[i]l=(1<<i)-1;
int t=0;
while (scanf ("%d%d", &n, &h),n+h)
{
cnt=0;
printf ("Case %d: ", ++t);
if (s[hl<n) printf ("Impossible.") ;else work(1l,n,h);
printf ("\n") ;
!
return 0;
}

5.4.9 Gone Fishing

John is going on a fishing trip. He has 4 hours available (1<4<16), and there are 7
lakes in the area (2<#<25), all reachable along a single, one-way road. John starts at
lake 1, but he can finish at any lake he wants. He can only travel from one lake to
the next one, but he does not have to stop at any lake unless he wishes to. For each
=1, ..., n —1, the number of five-minute intervals it takes to travel from lake 7 to
lake 7+1 is denoted 7 (0<#<192). For example, ;=4 means that it takes 20 minutes
to travel from lake 3 to lake 4. To help plan his fishing trip, John has gathered
some information about the lakes. For each lake 7, the number of fish expected
to be caught in the initial five minutes, denoted as f; (f;20), is known. Each five
minutes of fishing decreases the number of fish expected to be caught in the next
five-minute interval by a constant rate of 4; (420). If the number of fish expected
to be caught in an interval is less than or equal to 4, there will be no more fish left

Practice for Greedy Algorithms ®m 255

in the lake in the next interval. To simplify the planning, John assumes that no
one else will be fishing at the lakes to affect the number of fish he expects to catch.

Write a program to help John plan his fishing trip to maximize the number of
fish expected to be caught. The number of minutes spent at each lake must be a
multiple of five.

Input

You will be given a number of cases in the input. Each case starts with a line con-
taining . This is followed by a line containing 4. Next, there is a line of # integers
specifying f; (1<i<n), then a line of 7 integers 4; (1<i<n), and finally, a line of » —1
integers # (1<i<n — 1). Input is terminated by a case in which 7=0.

Output

For each test case, print the number of minutes spent at each lake, separated by
commas, for the plan achieving the maximum number of fish expected to be caught
(you should print the entire plan on one line, even if it exceeds 80 characters). This
is followed by a line containing the number of fish expected.

If multiple plans exist, choose the one that spends as long as possible at lake 1, even
if no fish are expected to be caught in some intervals. If there is still a tie, choose the one
that spends as long as possible at lake 2, and so on. Insert a blank line between cases.

Sample Input | Sample Output

2 45,5

1 Number of fish expected: 31
10 1
25 240, 0,0, 0

2 Number of fish expected: 480
4
4 115, 10, 50, 35

10 15 20 17 | Number of fish expected: 724
0343
123

4

4

10 15 50 30
0343
123

0

Source: ACM East Central North America 1999
IDs for Online Judge: POJ 1042, UVA 757

256 ®m Algorithm Design Practice for Collegiate Programming

“g Hint

Obviously, in the solution there is no turning back. That is, in John’s fishing trip, if
John fishes at a lake and leaves the lake, he can’t go back to the lake.

Suppose John finishes the trip at lake ed. How can we calculate the maximum
number of fish expected to be caught at lake ed?

The criteria for selecting a lake is as follows:

If the time is allowed, the lake in which there are a maximum number of fish is
selected.

The greedy algorithm is as follows:
Initially, for lake 7, the number of fish expected to be caught f2[7] is the number
of fish expected to be caught in the initial five minutes £, and the time that John
ed

fishes at the lake #[7] is 0, 1<i<ed. The time that John can fish is /2= h— 2@ ,
i=1
for there is no turning back in his fishing trip. The current number of fish to be
caught now=0.
Then, for each terminal ed, repeat the following steps until 42<0:

Search a lake p in which there are a maximum number of fish,
that is, f2[p]=max {f2[i]1};
ised

l<is<e
h2-=5;
tt[pl+=5;
now+=1£2 [p] ;
the number of fish to be caught in lake p is adjusted
f2 [pl =max (f2 [pl-d,, 0);
Finally, if (ans<now), then ans=now, and ans tt[] is adjusted;

Obviously, after every terminal ed is enumerated (1<ed<n), the number of min-
utes spent at each lake, and the plan for achieving the maximum number of fish
expected to be caught can be computed. That is, ans is the maximum number of
fish expected to be caught, and ans_r#{ | is the number of minutes spent at each lake.

o
= (.

#include<iostream>
#include<cstdio>
#include<cstdlib>

Practice for Greedy Algorithms m 257

#include<cmath>
#include<cstrings>
#include<algorithm>
using namespace std;
const int maxN=30;
int n,h, f [maxN],d[maxN], t [maxN] ;
int £2[maxN],tt[maxN],ans,ans_tt [maxN] ; //£2 is the same as
f, tt is the time that John fishes at the lake; ans tt is the
tt when ans is maximal
void init ()
{
// Initialization
ans=-1;
memset (t,0,sizeof (t));
memset (£,0,sizeocf (f));
memset (d,0,sizeof (d)) ;
memset (ans_tt,0,sizeof (ans_tt)) ;
//Input
scanf ("%d", &h) ;h*=60; //h is transferred into minutes
for (int i=1;i<=n;i++) scanf ("%d",&f[i]);
for (int i=1;i<=n;i++) scanf ("%d",&d[i]) ;
for (int i=1;i<n;i++) {scanf("%d",&tl[i]);tl[il+=t[i-1]1;}
1
//function work : calculate the maximum number of fish
expected to be caught at lake ed
void work (int ed)
{
memcpy (£2, £, sizeocf (f)) ;
memset (tt,0,sizeof (tt));

int now=0,h2=h; //now: the current number of fish to be
caught; h2: the time that John can fish
h2-=t [ed-1]*5; // the number of minutes spent from lake 1
to lake ed
f2[0]=-1;
while (h2>0) // each while corresponds to five minutes of
fishing
{
int p=0;
h2-=5; // spend 5 minutes
for (int i=1;i<=ed;i++) // search a lake p in which

there are maximum number of fish
if (£2[pl<f2[i]l) p=i;
tt [pl +=5;
now+=£2 [p] ; £2 [pl =max (£2 [p] -d[p],0) ; // accumulation
!
if (ans<now) { ans=now;memcpy (ans tt,tt,sizeof (tt));}
1
//output the result
void print ()

{

258 ® Algorithm Design Practice for Collegiate Programming

for (int i=1;i<=n;i++)
{
printf ("%d",ans tt[i]);
if (i<n) printf(", ");
1
printf ("\nNumber of fish expected: %d\n\n",ans);

}

int main()

{
while (scanf ("%d",&n),n)
{
init () ;
for (int i=1;i<=n;i++) // every terminal is enumerated
work (i) ;
print () ;

}

return 0;

Chapter 6

Practice for Dynamic
Programming

Dynamic programming (DP) is used to solve optimization problems. DP breaks an
optimization problem into a sequence of related subproblems, solves these subprob-
lems just once, stores solutions to subproblems, and constructs an optimal solution
to the problem, based on solutions to subproblems. The method for storing solu-
tions to subproblems is called memorization. When the same subproblem occurs,
its solution can be used directly.

There are two characteristics for a problem solved by DP:

1. Optimization. An optimal solution to a problem consists of optimal solutions
to subproblem:s.

2. No aftereffect. A solution to a subproblem is only related to solutions to its
direct predecessors.

In this chapter, DP experiments are organized as follows:

B Linear Dynamic Programming;
B Tree-Like Dynamic Programming;
B Dynamic Programming with State Compression.

6.1 Linear Dynamic Programming

6.1.1 Linear Dynamic Programming

Basic concepts for DP and the method for linear DP are as follows.
Stage % and State s;: The solution to a problem is divided into # orderly and
related stages. In a stage there are several states. State s is a state in stage 4.

259

260 ® Algorithm Design Practice for Collegiate Programming

1
4 7/@<
5

Figure 6.1

For example, Figure 6.1 shows a solution to a problem that is divided into five
orderly and related stages. State 1 is called the initial state, in stage 1. State 10 is
called the goal state, in stage 5. In stage 3 there are three states: state 4, state 5, and
state 6.

Decision #;, and Available Decision Set D,(s;): The choice from a state in
stage k—1 (the current stage) to a state in stage # (the next stage) is called decision
u;.. Normally, a state can be reachable through more than one decision from the last
stage, and such decisions constitute an available decision set D)(s).

For example, there are two decisions reaching state 5: 2—5, 3—5, D;(5)=1{2, 3}.
A decision sequence from the initial state to the goal state is called a strategy. For
example, 1-3—5—8—10 is a strategy.

Successor Function and Optimization: A successor function is used to
describe the transition from stage 4#—1 to stage 4. The DP method is used to solve
some optimization problems. Successor functions are used to find a solution with
the optimal (minimum or maximum) value to a problem. A successor function can
be formally defined as follows:

fis)=opt g(firr (TeCsurm)) s)

up €Dp (5t)

where Ty(s;, %) is a state s, in stage #/—1 which relates to state s, through deci-
sion #, and f—1(Z} (s¢,)) is an optimal solution, g(x,) is a function for value
x and decision #, thatis, g(f4-1(7}(s;,%) is a function from state s5;; to state s
through decision w; opr means optimization; and fi(s) is an initial value. Because
u;, is one decision in a decision set Dy(sy), all decisions are enumerated to get
the optimal solution to 5;. From the initial state, successor functions are used to
get the optimal solution £, (goal state) to the problem finally.

If the stages are in linear order, linear DP is used to solve the problem.

for (every stage i is processed in linear order)

{

for (every state j in stage i is enumerated (jeS;))
{ for (every state k in stage i-1 which is related to state
j is enumerated (keS;.,))

Practice for Dynamic Programming ® 261

{ calculate fi(j) = opt g(fi(k), w); }

uy €Dk (k)

6.1.1.1 Brackets Sequence
Let us define a regular brackets sequence in the following way:
1. An empty sequence is a regular sequence.

2. If S is a regular sequence, then (S) and [S] are both regular sequences.
3. If A and B are regular sequences, then AB is a regular sequence.

For example, all of the following sequences of characters are regular brackets
sequences:

0., o, 0), (M, O, O00]

And all of the following character sequences are not:

> <

Some sequence of characters ‘C,), [, and ‘" is given. You are to find the short-
est possible regular brackets sequence that contains the given character sequence
as a subsequence. Here, a string 4; 4, ... a, is called a subsequence of the string
by b, ... b, if there exist such indices 1<i<#,<.. .<i,<m, that a=b, for all 1<j<n.

Input

The input file contains at most 100 brackets (characters ‘(,), [and ') that are
situated on a single line without any other characters among them.

Output

Write to the outpur file a single line that contains some regular brackets
sequence that has the minimal possible length and contains the given sequence
as a subsequence.

Sample Input Sample Output

(Id 0101
Source: ACM Northeastern Europe 20071

IDs for Online Judges: POJ 1141, ZOJ 1463, Ural 1183, UVA 2451

262 m Algorithm Design Practice for Collegiate Programming

R S
&\9 Analysis

Suppose stage 7 is the length of subsequence, 1<r<n; and state 7 is the pointer

pointing to the front of the current subsequence, 0<i<n—7r. Based on 7 and 7, the

pointer j pointing to the rear of the current subsequence can be calculated, j=i+r—1.

Suppose dpli, 7] is the minimal number of characters that must be inserted into
5 Obv10usly, if the length of subsequence is 1, dpls, 7]=1, 0<i<strlen(s).

If (== &&(s=="1)[|(s=="(N&&(s==")")), then the minimal number of
characters that must be inserted into s;...s; is the minimal number of characters
that must be inserted into s;;...s;, that is, dpli, jl=dpli+1, j—1]; otherwise s;...s;

is divided into two parts, and we need to determine the pointer £ (i<k<j) so that
dpli, j1= 1rr}ein(dp[z',/e] +dplk+1, f]).
<k<j

Based on the above, a memorized list pazh[][] is used to store all solutions to
subproblems:

T =D& == (== & &s; ==1))
pathlij1=4 dpli, 1= (a,’p[z k1+ dpll+1, 7))

After the memorized list pazh[][] is calculated through DP, the regular brack-
ets sequence that has the minimal possible length and contains the given sequence
as a subsequence can be obtained through recursion.

O%

#include<cstdio>
#include<cstrings>

const int N=100;

char str[N]; //Input String
int dp[N] [N];

int path[N] [N] ;

Program

void oprint (int i,int j) //output regular brackets sequence
containing subsequence strl[i, 7l
{
if (i>3)
return;
if (i==3) //there is only one character for subsequence
str[i, 7l
{

if (str[il=="["]||strlil=="1")

Practice for Dynamic Programming ® 263

printf (" [1");
else
printf("()");
1
else if (path[i] [j]1==-1) // strli]l and str[j] are matched
brackets
{
printf ("sc",str([i]);
oprint (i+1,3j-1);
printf ("$c",str(j]);
!
else // otherwise
{
oprint (i,path[i] [j1);
oprint (path[il [§1+1,73);
!
1
int main(void)
{
while (gets (str))
{
int n=strlen(str);
if (n==0)
{
printf ("\n") ;
continue;
!
memset (dp, 0, sizeof (dp)) ;
for(int i=0;i<n;i++)
dpli]l [i1=1;
for(int r=1;r<n;r++) //Stage: r is the length of
subsequences
{
for(int i=0;i<n-r;i++) //State: fronts of
subsequences are enumerated
{
int j=i+r; // rears of subsequences
dp[i] [j]1=0x7fffffff; // Initialization
if ((strlil=='(' && strljl==")") || (str[il=='['
&& str[jl=='1")) // strli]l and str[j] are matched

dp[i] [j1=dp[i+1] [J-1];
pathl[i] [§]1=-1;
!

for(int k=i; k<j; k++) // k is enumerated

{

if (dpli] [j]1>dpli] [k]+dp[k+1][]])

dp[i] [j1=dp[i] [k]+dp[k+1] [3];
path[i] [j]=k;

264 ® Algorithm Design Practice for Collegiate Programming

!
!
1
!

oprint (0,n-1) ; // Output the regular brackets sequence

printf ("\n") ;
1
return 0;

}

There are three classical problems solved by DP method: Subset Sum; Longest
Common Subsequence (LCS); and Longest Increasing Subsequence(LIS).

6.1.2 Subset Sum

Suppose S={x1, x2, ..., x,} is a set of non-negative integers, and cis a non-negative
integer. The Subset Sum problem is to determine whether there is a subset of the
given set with the sum equal to given c.

Coin counting is a classical problem for Subset Sum. Given a set of # non-
negative integers {2, 4, ..., 4,} and a non-negative integer 7; coin counting is
to determine how many solutions to k@i tk,art.. A4, a,=1, where by, ks, ..., k,
are non-negative integers. DP can be used to solve the problem. Suppose ¢(, ;) is
the number of solutions to k@ +k,art.. Aka=j, k>0. Obviously the goal for coin
counting is to calculate ¢(7z, T). In order to calculate ¢(4, j), stage 7 is the first and 7
integers are used, 1<i<p; states are ki@ tkrart.. +k; a=j, 4, 5j<T. The successor func-
tion is as follows:

1 i=0
i1
(i, j) = . . .
ch,j—a;) izl j2a
k=1

The final solution is ¢(, T).

6.1.2.1 Dollars

New Zealand currency consists of $100, $50, $20, $10, and $5 notes and $2, $1,
50c, 20c, 10c and 5c coins. Write a program that will determine, for any given
amount, in how many ways that amount may be made up. Changing the order of
listing does not increase the count. Thus 20c may be made up in four ways: 1x20c,
2x10c¢, 10c+2X5¢, and 4X5c.

Practice for Dynamic Programming ® 265

Input

Input will consist of a series of real numbers no greater than $50.00 each on a sepa-
rate line. Each amount will be valid, that is, it will be a multiple of 5¢. The file will
be terminated by a line containing zero (0.00).

Output

Output will consist of a line for each of the amounts in the input, each line consist-
ing of the amount of money (with two decimal places and right-justified in a field
of width 5), followed by the number of ways in which that amount may be made
up, right-justified in a field of width 12.

Sample Input | Sample Output

0.20 0.20 4
2.00 2.00 293
0.00

Source: New Zealand Contest 1991
IDs for Online Judge: UVA 147

-

i%ﬁff(\

>/ Analysis

First, DP is used to calculate all solutions to the problem in the range. The 5¢ coin
is the smallest coin. Other notes and coins for New Zealand currency are multiples
for the 5c¢ coin. Therefore, the 5c coin is used as the unit for notes and coins for
New Zealand currency. Suppose 6[7] is the number of 5¢ coins for the 7-th currency,
0<i<10; al,] is the number of ways in which j 5¢ coins may be made up using the
first #-th currencies, 0<i<10, 0</<6000.

Obviously, the number of ways in which j 5¢ coins may be made up only using
5c coin is 1, that is, 2[0, j]=1, 0</<6000. If the amount is equal to a coin or a note,
there is a way that the amount may be made up using the coin or the note.

For 10 cents, there are two ways. 10 cents are made up using 5c coins or a 10c coin.

For 15 cents, the first way is that 15¢ cents are made up only using 5c¢ coins.
Then we calculate the number of ways in which 15 cents are made up using 5c coin
and 10c coin (the way only using 5¢ coin needn’t be considered). First a 10c coin is
used (at least one 10c coin is used), and then a 5c coin is used. Therefore, there are
two ways for 15 cents.

For 20 cents, the first case is that only 5c coins are used. For the second case, a
10c coin is used first (at least one 10c coin is used), and for the remaining 10 cents,
there are two ways. The final case is that only the 20c coin is used. Therefore, there
are four ways.

266 ® Algorithm Design Practice for Collegiate Programming

Based on the above, the number of ways in which j 5¢ coins may be made
up using the first i-th currencies is based on the number of ways in which
j—bli] 5¢ coins may be made up using the first (7—1)th currencies. That is,

i1

alisj)= Y alk, j—blillj 2 b1,

=0
Then, for each test case, the solution can be computed based on array 4. For a
real number 7, the solution is 2[10, | 72X 20 | 1.

The problem can also be solved by generation function.

oY

#include <iomanip>
#include <iostream>
using namespace std;
int main(void)

int b[] = {l, 2, 4, 10, 20, 40, 100, 200, 400, 1000, 2000};
//5¢c coin is used as the unit for notes and coins for
New Zealand currency

long long al6001] = {1}; // the number of ways in which n
5c coins may be made up using notes and coins for New Zealand
currency is aln]

//Off-1line method, DP

for (int i = 0; i < 11; i++){ // Enumerate all coins and
notes
for (int j = blil; j < 6001; j++) { // Enumerate
aljl += alj - blill;

!
1
cout << fixed << showpoint << setprecision(2);
for (float fIn; cin >> fIn && fIn != 0; cout << endl) {

cout << setw(6) << fIn << setw(1l7) << al(int) (fIn * 20 +
0.5f)];

}

return O;

6.1.3 Longest Common Subsequence (LCS)

For a sequence, elements in its subsequence appear in the same relative order, and
are not necessarily contiguous. For example, for the string “abedefg”, “abc”, “abg”,
“bdf”, and “aeg” are all subsequences. And for strings “HIEROGLYPHOLOGY”
and “MICHAELANGELQ”, string “HELLO” is a common subsequence.

Practice for Dynamic Programming ® 267

Given two sequences of items, the Longest Common Subsequence (LCS) is to
find the longest subsequence in both of them.

The LCS problem can be solved in terms of smaller subproblems. Given two
sequences x and y, of length 7 and 7 respectively, the longest common subsequence
z of x and y is found as follows:

Suppose sequence x=<xj, x5, .., x,>, and the i-th prefix xj==<x, x, .., x>,
i=0,1,..,m; sequence y=<y;, %, .., J,> and the i-th prefix yi==<y, 3, .., 3>
i=0,1,..,n; and sequence z=<z, 2, .., > is an LCS for x and y. For example, if
x=<A,B,C,B,D,A,B>, then xj=<A,B,C,B>, and x; is an empty sequence.

Stage and state are pointer 7 for prefix of x and pointer j for prefix of y respec-
tively. And x;_, and y,_, have been calculated through LCS. Decisions are made
based on the following properties.

Property 1: If x,=y,, then zx=x,=y, and z_; is an LCS for x,,_; and y,..
Property 2: If x,,#y,, then zx#x,,, and z is an LCS for x,,_; and y.
Property 3: If x,,#y,, then z;#y,, and z is an LCS for x and y,.:.

Suppose c[4, j] is the length of LCS for x; and y;.

0 i=0orj=0
C[z,]]: C[l_l,]_1]+1 Z,]>Oandx, 2}/]
max{c[z, j—1],c[i =1, f1} i,j>0and x; # y;

The time complexity for calculating [, ;] is o).

6.1.3.1 Longest Match

A newly opened detective agency is struggling with their limited intelligence to find
out a secret information for passing technique among its detectives. Since they are
new in this profession, they know well that their messages will easily be trapped
and hence modified by other groups. They want to guess the intentions of other
groups by checking the changed sections of messages. First, they have to get the
length of the longest match. You are going to help them.

Input

The input file may contain multiple test cases. Each case will contain two succes-
sive lines of string. Blank lines and non-letter printable punctuation characters may
appear. Each line of string will be no longer than 1000 characters. The length of
each word will be less than 20 characters.

Output

For each case of input, you have to outpur a line starting with the case number
right-justified in a field width of two, followed by the longest match, as shown

268 ® Algorithm Design Practice for Collegiate Programming

in the sample output. In the case of at least one blank line for each input, output
“Blank!”. Consider the non-letter punctuation characters as white spaces.

Sample Input Sample Output
This is a test. 1. Length of longest match: 1
test 2. Blank!
Hello! 3. Length of longest match: 2
The document provides late-breaking

information late breaking.

Source: TCL Programming Contest 2001
IDs for Online Judge: UVA 10100

-

i\ Vi
&& Analysis

Consecutive letters in a string are regarded as a word. Words in two strings are got-
ten one by one, where words in the first string are stored in 71.word[1]...T1.word[n],
and words in the second string are stored in 72.word[1]...T2.word[m).

Then every word is regarded as a “character”. The LCS algorithm is used to
calculate the Longest Common Subsequence (LCS). The length of the subsequence
is the length of the longest match.

#include<iostream>
#include<cstring>
#include<cstdio>
#include<string>
#include<algorithm>
#define N (1024)
using namespace std;

struct text({ // two successive lines of string

int num; // number of words

string word[1024]; // words
e1,t2;
string sl,s2;
int f£[N] [N]; //the number of matched words for the first
i-th words in sl and the first j-th words in s2 is f[i, 7]
void devide (string s, text &t) // sequence of words t.word[]

whose length is t.num is taken out from s

{

Practice for Dynamic Programming ® 269

int l=s.size(); //the length of s
t.num=1;
for(int 1=0;1i<1000;i++) t.word[i] .clear();
for (int 1=0;i<l;++1)
if ('A'<=s[i] && s[i]l<='Z2' || 'a'<=s[i] && sl[il<='z'||'0"
<=s[1]&&s[i]l<='9")
t.word[t.num] +=s[i];
else ++t.num;
int now=0;
for(int i=1;i<=t.num;i++)if(!t.word[i] .empty())
t.word [++now] =t .word [i] ;
t . num=now;

1
int main(void)
{
int test=0; //Initialization: the number of test cases
while (!cin.eof())
{
++test;
getline(cin,sl) ; // Input string sl
devide (sl,tl) ;
getline(cin,s2); //Input string s2
devide (s2,t2);
printf ("%$2d. ",test);
if (sl.empty() || s2.empty())
{
printf ("Blank!\n") ;
continue;
!
memset (£,0,sizeocf (£f));
for (int i=1;i<=tl.num;++1i) // words in sl
for (int j=1;j<=t2.num;++3j) //words in s2
{ //Calculation
flil [jl=max(£[i-1] [j],£[1]1[J-11);
if (tl.word[i]l==t2.word[j])
£lil [jl=max(£[i] [3],£[1i-1]1[J-11+1);
!
printf ("Length of longest match: %d\n",f[tl.num]
[t2.num]) ; // Output result
}
return 0;
!

6.1.4 Longest Increasing Subsequence (LIS)

The Longest Increasing Subsequence (LIS) problem is to find the longest increas-
ing subsequence of a given sequence. Given a real sequence A=<ay, a,, ..., a,>, the
Longest Increasing Subsequence for A4 is such a longest subsequence L=<ay,, 44, ...,
A, where ki<ky<.. <k, and ay<ap<..<a,.

270 m Algorithm Design Practice for Collegiate Programming

There are three DP methods to calculate LIS.
Method 1: A LIS problem is transformed into an LCS problem.
A LIS problem can be transformed into an LCS problem. Suppose X=<é,,
by, ..., b,> is a sorted sequence in ascending order for A=<a,, a,, ..., a,>.
Obviously the LCS for X and A is the LIS for A.
The time complexity for sorting A is O(nlog, (). The time complexity for
calculating the LCS for Xand 4 is O(1?). Therefore, the time complexity for
Method 1 is O(nlogz(n)+n2).
Method 2: DP method.
Suppose f{é) is the length of the LIS for the subsequence in 4 whose rear is
a;. Obviously,

£(1)=1
£(1) =max {f(j) |aj<ai}+1
1<j<i-1

f(n) is the length of the LIS for A. Obviously, the time
complexity using the DP method is O(n?).

Method 3: Dichotomy.

For Method 2, in order to calculate f{7), the maximal f{;)(j<7) must be found.
Array B is used to store the rear for LIS of subsequences, that is, B[f{;)]=4;.
When f{7) is calculated, dichotomy is used to find j in array B where j<i and
B[f(j)l=a<a;. Then B[f]jl+1]=a,.

Experiments for the three DP methods are as follows.

6.1.4.1 History Grading

Many problems in computer science involve maximizing some measure according
to constraints. Consider a history exam in which students are asked to put several
historical events into chronological order. Students who order all the events cor-
rectly will receive full credit, but how should partial credit be awarded to students
who incorrectly rank one or more of the historical events?

Some possibilities for partial credit include:

1. One point for each event whose rank matches its correct rank;
2. One point for each event in the longest (not necessarily contiguous) sequence
of events which are in the correct order relative to each other.

For example, if four events are correctly ordered 1 2 3 4, then the order 1 3 2
4 would receive a score of 2 using the first method (events 1 and 4 are correctly
ranked) and a score of 3 using the second method (event sequences 1 24 and 1 3 4
are both in the correct order relative to each other).

In this problem, you are asked to write a program to score such questions using
the second method.

Practice for Dynamic Programming m 271

Given the correct chronological order of 7 events 1, 2, ..., m as ¢, &3, ..., ¢,
where 1<¢;<n denotes the ranking of event i in the correct chronological order and
a sequence of student responses 7, 7, ..., , where 1<7,<n denotes the chronological
rank given by the student to event 7; determine the length of the longest (not neces-
sarily contiguous) sequence of events in the student responses that are in the correct
chronological order relative to each other.

Input

The first line of the input will consist of one integer 7 indicating the number of
events with 2<7<20. The second line will contain 7 integers, indicating the correct
chronological order of 7 events. The remaining lines will each consist of 7 inte-
gers with each line representing a student’s chronological ordering of the 7 events.
All lines will contain 7z numbers in the range [1..7], with each number appearing
exactly once per line, and with each number separated from other numbers on the
same line by one or more spaces.

Output

For each student ranking of events, your program should print the score for that
ranking. There should be one line of output for each student ranking.

Sample Input 1 Sample Output 1

4 1
4231
1324 3
3214
2341

Sample Input 2 Sample Output 2

10 6
31249510687 5
12345678910 10
4723169158 9
31249510687
21013849576

Source: Internet Programming Contest 1991

IDs for Online Judge: UVA 111

272 m Algorithm Design Practice for Collegiate Programming

N N
i\ \ ')J)
5\9 Analysis
Suppose s#[] is the correct chronological order of 7 events, where s#{#] is the #th
event in the chronological order; ed[] is the current student’s chronological order-
ing of the 7 events, where ed([4] is the #-th event in the current student’s chronologi-
cal order.

Obviously, the Longest Common Subsequence (LCS) for s#[] and ed[] is the
Longest Increasing Subsequence (LIS) for ed[], where its length is the score for that
ranking. Method 1 is used to solve the problem.

o
% Program

#include<iostream>
#include<cstrings>

#include<cstdio>

using namespace std;

int n; //number of events

int £[30] [30];

int st [30]; // stlt]l is the t-th event in the chronological
order

int ed[30]; // ed[t] is the t-th event in the current

student's chronological order
int tmp[30];
int main(void)

{
freopen("111.in","r",stdin) ;
freopen ("HG.out", "w", stdout) ;
scanf ("%d", &n) ; // Input number of events
for(int i=1;i<=n;++1) // Input the correct chronological
order of n events
{
cin >> tmpl[i];
stltmp[il]l=1i;
!
while(!cin.eof ()) //Input students' chronological
ordering of the n events
{
for(int i=1;i<=n;++1) // Input current student's

chronological ordering of the n events

{

Practice for Dynamic Programming ™ 273

cin >> tmpl[i];
ed[tmp[il]=1;
!
if (cin.eof ()) break;
memset (f,0,sizeof (f)) ;

for(int i=1;i<=n;++1i) //Calculate the LCS for st]
and ed|[]
for (int j=1;j<=n;++73)
{

£l1i] [J1=max (£[i-1][3],£[1i] [F-11);
if (st[i]l==ed[]])
£li] [J1=max (£[1i] [J],£[1i-1][J-11+1);
}

cout << f[n] [n] << endl; //Output the current
student’s score

}

return 0;

}

6.1.4.2 Ski

Michael likes to ski. Skiing is really exciting for him. In order to get speed,
the ski area must be down. When he skis down to the bottom, he has to walk
up the hill again or wait for the lift to carry him. Michael wants to know the
longest skidway in a ski area. The ski area is given by a two-dimensional array.
Each digit of the array represents the height of the point. There is an example
as follows:

1 2 3 4
16 17 18 19
15 24 25 20
14 23 22 21
13 12 11 10

\O 0o N O\ W

From a point, he can ski to one of four adjacent points (up, down, left,
and right), if and only if the height of an adjacent point is less than the height
of the point. In the above example, a viable skidway is 24—17—16—1. Obviously
25-24-23—..—3-2-1 is the longest viable skidway.

Input

Row R and column C for the ski area are shown in the first line (1<R,C<100). Then
there are R rows, and in each row there are C integers representing the height of
points A, where 0</<10000.

274 ®w Algorithm Design Practice for Collegiate Programming

Output
Output the length of the longest viable skidway that Michael can ski.

Sample Input Sample Output

55 25
12345

16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
1312 11 10 9

Source: SHTSC 2002 (Problemsetter: Yongji Zhou)
IDs for Online Judge: POJ 1088

=

X ()

6\9 Analysis

The problem requires you to calculate the length of the longest viable skidway whose
points are adjacent and in descending order. The skidway is the Longest Decreasing
Subsequence, if heights are as keys. Method 2 is used to solve the problem. Suppose
ST] is visited marks, if point (x, y) is in the skidway, then flx][y]=true; and [][]
is the successor function, where ¢[x][y] is the longest viable skidway which starts
from (x,):

1 Initialization

f[x][y]={

max{c[xx][yy]+1} (xx, yy) is adjacent to (x, y), unvisited, and lower.’

Because the start point isn’t given in the problem, the length of the longest
viable skidway @7s=max 1<,<,,1<,<m {c[x] [y]}.

.«
%@ Program

#include<cstdio>

using namespace std;

int n,m,s1([5],s2[5],1i,],ans; //size of the ski area is n*m;
the length of the longest viable skidway is ans

int a[105] [105],c[105] [105]; // adjacency matrix for ski

area al][], state transition equation c[][]
bool £[105] [105]; //visited mark

Practice for Dynamic Programming ® 275

void work (int x,int y){ //recursively calculate the length
of the longest viable skidway c[x] [y] starting from (x, y)
int i,xx,VY;
f [x] [yl =true; //Set visited mark for (x, y)
c[x] [yl=1; // Initialization
for (i=1;i<=4;i++){ // 4 adjacent points
xx=x+s81[1] ;yy=y+s2[i]; // (xx, yy):
adjacent point in direction I
if (alxx] [yyl<alx]
[y] &&xx>088xx<=n&&yy>0&&yy<=m) { // (xx, yy) is in the area,
can be skied down from (x, y), isn’t visited
if (Mf [xx] [yy]l) work (xx,vyy);
// adjustment
c[x] [yl=clx] [y]l>(c[xx] [yyl+1)?c[x] [y] : (c[xx]
lyyl+1);}

!
int main() {
s1[1]1=-1; s2[1]1=0;
s1[2]=1; s2[2]=0;
s1([3]=0; s2[3]=-1;
s1[4]1=0; s2[4]=1;
scanf ("%d%d", &n, &m) ; //numbers of rows and columns
for (i=1;i<=n;i++) // heights of points
for (j=1;j<=m;j++)scanf ("%d",&al[i] [j]);
ans=0; // Initialization
for (i=1;i<=n;i++)
for (j=1;j<=m;j++)
if (1£[1]1[3]) {work(i,j); ans=ans>c[i] [j]l?ans:c[i] [§];}
printf ("%d\n",ans) ; // output result
return 0;

}
6.1.4.3 Wavio Sequence

A Wavio sequence is a sequence of integers. It has some interesting properties:

B Wavio is of odd length, i.e., L=2Xn+1.

B The first (n+1) integers of Wavio sequence make a strictly increasing sequence.
B The last (n+1) integers of Wavio sequence make a strictly decreasing sequence.
B No two adjacent integers are same in a Wavio sequence.

For example 1, 2, 3, 4, 5, 4, 3, 2, 0 is a Wavio sequence of length 9. But 1, 2, 3,
4,5, 4, 3,2, 2 is not a valid Wavio sequence. In this problem, you will be given a
sequence of integers. You have to find out the length of the longest Wavio sequence
which is a subsequence of the given sequence. Consider the given sequence as:

1232123432154123221.

Here the longest Wavio sequenceis: 123454 3 2 1. So, the output will be 9.

276 ® Algorithm Design Practice for Collegiate Programming

Input

The input file contains less than 75 test cases. The description of each test case is
given below. Input is terminated by end of file.

Each set starts with a positive integer, N(1<N<10000). In the next few lines
there will be V integers.

Output

For each set of input, print the length of the longest Wavio sequence in a line.

Sample Input Sample Output

10 9
12345432110
19 1
1232123432154123221
5

12345

Source: The Diamond Wedding Contest: Elite Panel’s 1st Contest 2003
IDs for Online Judge: UVA 10534

=

Wi
Q\ﬁ\(/ Analysis

Suppose the sequence of integers is A=a;...a,; LIS[#] is the length of the Longest
Increasing Subsequence in [a;...4)]; and LDS[k] is the length of the Longest
Decreasing Subsequence in [4;...4,].

First, Method 3 is used to calculate the length of the Longest Increasing
Subsequence in the prefix for A. If the prefix’s rear is a;, the length is fi], 1<i<k.
Therefore, LIS[k]= {E_:i)z{f[i]}.

Second, Method 3 is used to calculate the length of the Longest Decreasing
Subsequence in the postfix for A. If the postfix’s front is a;, the length is f17], #<i<n.
Therefore, LDS[\]= inax{f[i]}.

If £ is the pointer pointing to the middle of a Wavio sequence, that is, the
number of integers in the left half and the number of integers in the right half is
min{LIS[k], LDS[k]}. The length of the Wavio sequence is ans[£]=2xXmin{LIS[#],
LDS[F]}-1.

The length of the longest Wavio sequence is ans = mkax{ﬂm[/e]}.
1<k<n

Practice for Dynamic Programming ® 277

(s

#include<cstdio>

#include<cstring>

using namespace std;

const int MAXN = 10010,INF = 2147483647;

int N,A[MAXN],F [MAXN],G[MAXN], L [MAXN] ; // N: the number of
integers, A[] is the given sequence, L[]: increasing
sequence, F[] is as LIS[], G[] is as LDS[]

int binary(int 1,int r,int x) // return the number of
elements in L[I1, r] which are less than x
{

int mid;

1l =0; r=N;
while (1l<r)

{
mid = (l+4r)>>1;
if (L[mid+1l]l>=x) r = mid; else 1 = mid+1l;
1
return 1;
1
inline int min(int x,int y) { return (x<y) ? (x) : (y); }

// return min{x, y}
int main()

int i,j,k,Ans;
while (scanf ("%d",&N) != EOF)
{
for (i=1;1i<=N;i++) scanf ("%d",A+1i); // Input N
integers

for (i=1;i<=N;i++) L[i]=INF; L[0]=-INF-1;
// Initialization
for (i=1;i<=N;i++) //Right to left in array A

{

F[i]=binary(1,N,A[i])+1;
if (A[i]1<LI[F[i]]) LIF[i]1=AT[i];
!
for (i=1;i<=N;i++) L[i]=INF; L[0]=-INF-1; //
Initialization
for (i=N;i>=1;1i--) // Left to right in array A
{
G[i]l=binary(1,N,A[i])+1;
if (A[i] < LI[GI[i]]) LIG[i]l]l=A[i];
}

Ans=0;

278 m Algorithm Design Practice for Collegiate Programming

for (i=1;i<=N;i++) // every element in A[] as the
middle, and adjust
if ((k = min(F[i],G[i])) > Ans) Ans = k;
printf ("%d\n",Ans*2-1) ; // Output the result

}

return O0;

}

6.2 Tree-Like Dynamic Programming

If the background or the relationships between stages for a DP problem are repre-
sented as a tree, tree-like DP can be used to solve such problems.

Tree-like DP is different from linear DP:

1. The calculation sequences are different. There are two calculation sequences
for linear DP: forward and backward. The calculation sequence for tree-like
DP is normally from leaves to the root, and the root is the solution.

2. The calculation methods are different. A traditional iteration method is used
in linear DP. The recursive method is used in tree-like DP, for tree-like DP is
normally implemented by memorized search.

In this section, two problems for tree-like DP are shown.

6.2.1 Binary Apple Tree

Let’s imagine how an apple tree looks in the binary computer world. You're right,
it looks just like a binary tree, i.c., any biparous branch splits up to exactly two
new branches. We will enumerate by integers the root of a binary apple tree, points
of branching, and the ends of twigs. In this way, we may distinguish different
branches by their ending points. We will assume that the root of the tree always
is numbered by 1, and all numbers used for enumerating are numbered in range
from 1 to IV, where NV is the total number of all enumerated points. For instance,
in Figure 6.2, Nis equal to 5. Figure 6.2 is an example of an enumerated tree with
four branches.

As you may know, it’s not convenient to pick an apple from a tree when there
are too many branches. That’s why some of them should be removed from a tree.
But you are interested in removing branches in order to achieve a minimal loss of

2 5
\/

3 4
\1/

Figure 6.2

Practice for Dynamic Programming ™ 279

apples. So you are given numbers of apples on a branch and the number of branches
that should be preserved. Your task is to determine how many apples can remain on
a tree after the removal of excessive branches.

Input

The first line of input contains two numbers: N and Q (2<N<100; 1<Q<N-1).
N denotes the number of enumerated points in a tree. Q denotes the number of
branches that should be preserved. The next N—1 lines contain descriptions of
branches. Each description consists of three integer numbers divided by spaces. The
first two of them define a branch by its ending points. The third number defines the
number of apples on this branch. You may assume that no branch contains more
than 30000 apples.

Output

Output should contain only the number—the number of apples that can be pre-
served. And don’t forget to preserve the tree’s root.

Sample Input Sample Output

52 21
131
1410
2320
3520

Source: Ural State University Internal Contest '99 #2
IDs for Online Judge: Ural 1018

N 4 Analysis

In this problem, the apple tree is a weighted binary tree. The problem requires you
to get such a subtree with Q branches (i.e., Q+1 points) whose weight is maximal.
For each internal point, there are three choices: pruning its left subtree, pruning its
right subtree, or pruning some points in its left subtree and its right subtree; to get
a subtree with maximal weight.

Suppose glx][4] is the maximal weight for the subtree with root x in which there
are 4 points (including the weight of the branch from root x to its parent). For each

280 ®m Algorithm Design Practice for Collegiate Programming

leaf, DP is used in the order of post-order traversal. The successor function for DP
is as follows:

If x is a leaf, then g[x][k]= the weight of the edge from x to its parent; else all
cases where #—1 nodes are distributed in its left subtree and its right subtree are
enumerated, and the best case is found. That is,

0 k=0
the weight of the edge from x to its parent x is a leaf
glx]lk]= the weight of the edge from x to its parent + x isn't a leaf
max {glthe left child for x][7]+
0<k<k-1
glthe right child for x][k—7—1]}

DP is used bottom-up until the root. Finally, ans=g[roo#][Q+1].

oY
%@ Program

#include <cstdios

#include <cstdlib>

#include <cstring>

#define Max(a,b) ((a)>(b)?(a): (b))

#define N (256)

using namespace std;

int n,m,ne,x,vy,z; //n: number of points, m: amount of
preserve branches, that should be preserved, ne: the number of
a branch, (x,y): a branch, z: weight

int id[N],w[N],v[N], next [N], head[N],1ch[N],rch[N], f[N];

int g[N] [N]; // Successor Function

void add(int x,int y,int z) //add branch (x, y) with weight
z into adjacency list

{

id[++nel =y; wlne]l=z; next[ne]l=head[x]; head[x]=ne;
}
void dfs(int x) //a binary tree is constructed from point x
{

for (int p=head[x] ;p;p=next [p]l) //search every branch p
connecting x

if (idlpl!=£f([x])

{

if (!lch([x]) lch[x]=id[p]; else rch[x]=1idl[p];
flid[pl]l=x;

Practice for Dynamic Programming ® 281

v[id[pll=wlp]l;

dfs (idlpl) ;

1
1
int dp(int x,int k) //from x, the subtree with k points and
maximal number of apples
{

if (!k) return 0; //subtree is empty

if (glx] [k]l>=0) return glx] [k]; // return the result

if (!lch[x]) return (glx] [k]l=vIx]); // x is a leaf

for (int i=0;i<k;++1) // calculate the best case

glx] [k]1=Max(g[x] [k] ,dp(lch[x],i)+dp(xrch[x], k-i-1));
glx] [kl +=vI[x];
return gl[x] [k];

}

int main()

{

scanf ("%$d%d", &n, &m) ;
for (int i=1;i<n;++1)

{

dfs (1) ;

memset (g, 255, sizeocf (g)) ;
printf ("$d\n",dp(1,m+1)) ;
return O0;

6.2.2 Anniversary Party

The president of the Ural State University is planning an eightieth anniversary
party. The university has a hierarchical structure of employees; that is, the supervi-
sor relation forms a tree rooted at the president. Employees are numbered by integer
numbers in a range from 1 to N. The personnel office has ranked each employee
with a conviviality rating. In order to make the party fun for all attendees, the
president does not want both an employee and his or her immediate supervisor to
actend.

Your task is to make up a guest list with the maximal conviviality rating of the
guests.

Input

The first line of the input contains a number N. 1SN<6000. Each of the sub-
sequent /V lines contains the conviviality rating of the corresponding employee.

282 ®m Algorithm Design Practice for Collegiate Programming

Conviviality rating is an integer number in a range from —128 to 127. After that,
the supervisor relation tree goes. Each line of the tree specification has the form

<L><K>

which means that the K~th employee is an immediate supervisor of the L-th
employee. Input is ended with the line

00

Output

The output should contain the maximal total rating of the guests.

Sample Input Sample Output

5

B T T e e e N |

NN =
A A W W

N
[$)}

o W
[«=>RNS) |

Source: Ural State University Internal Contest October 2000 Students Session

IDs for Online Judge: POJ 2342, Ural 1039

R

VNT
QRx\)(/ Analysis

The supervisor relation in Ural State University forms a tree rooted at the president.
For each internal node # in the tree, there are two possible conviviality ratings of
the subtree rooted at u:

1. Conviviality rating including node #;
2. Conviviality rating not including node #.

If the maximal conviviality rating of the subtree doesn’t include node #, then the
maximal conviviality rating of the subtree is the sum of the maximal conviviality

Practice for Dynamic Programming ™ 283

ratings of all subtrees for node # (subtrees root at #’s children), and for such sub-
trees, their maximal conviviality ratings also have two cases: including their roots
or not including their roots.

If the maximal conviviality rating of the subtree includes node # is the maximal
conviviality rating of the subtree doesn’t include node # plus conviviality rating for
node #. Suppose F[u][0] is the maximal conviviality rating of the subtree rooted
at # which doesn’t include node #; and F[u][1] is the maximal conviviality rating
of the subtree rooted at # which includes node #. Initially, F[#][0]=0, Flu«][1]=x,
1<u<n. Then from leaf nodes, based on post-order traversal, the successor function
is calculated as follows:

Flul o) = Y wax{Flv] 0], FIv] (1]} ;

veu's children

F[u] [1] = F[u] [1] (the conviviality rating of u)+F[u] [0].

The successor function is calculated until rooz. Finally, ans=max{F[roo][0],

Flroot][1]}.

oY
o

#include<cstdio>

#include<cstrings>

using namespace std;

const int MAXN = 6010; //the upper limit of the number
of nodes

int N, root,Ri [MAXN], F[MAXN] [2], son [MAXN] , bro [MAXN] ;

// successor function FI[] []

bool is son[MAXN] ;

void init () //Input and construct the adjacency list for
the tree
{

int i,7,k;

scanf ("%d", &N) ; //number of employees

for (i=1;i<=N;i++) scanf ("%d",Ri+i); // the

conviviality rating of employee
memset (son, 0, sizeof (son)) ;

memset (is_son, 0,sizeof (is_son)) ;
for (i=1;i<N;i++)

{
scanf ("%d%d", &7, &k) ; //k is the immediate supervisor
for j
bro[j] =sonl[k]; sonlk] = j; //7 is added into the

adjacency list for k

284 ®m Algorithm Design Practice for Collegiate Programming

is son[j] = true; // 7 has parent
!
for (i=1;i<=N;i++)
if (!is _son[i]) root = i;
!
inline int max(int x,int y) { return (x>y)?(x):(y); }
void DP(int u) // Dynamic Programming on a Tree, Fl[u] [0]
and F[u] [1] are calculated
{
int v;
Flul [0] = 0; F[u]l [1] = Ril[ul; // Initialization
for (v=son([ul; v; v=brolv]) //u’'s every subtree
{
DP (V) ;
Flu] [0] +=max (F[v] [0] ,F[v] [1]);
Flu] [1]1+=F[v] [0];
!
!
void solve () //Calculate the maximal total rating and
output
{
DP (root) ;
printf ("$d\n",max (F[root] [0],F[root] [1])) ;
}
int main()
{
init () ;
solve () ;
return O;
!

6.3 Dynamic Programming with State Compression

In some problems, each constituent part for a state can be represented as 0 or 1, and
states can be represented as strings for 0 and 1. For example, grids in a chessboard
can be represented by a string. And states for a chessboard can be represented as
strings. We call this state compression. DP with state compression can be imple-
mented by bitwise operations.

6.3.1 Nuts for Nuts

Ryan and Larry decided that some nuts don’t really taste so good, but they realized
that there are some nuts located in certain places of the island.. and they love them!
Since they’re lazy, but greedy, they want to know the shortest tour that they can use
to gather every single nut!

Can you help them?

Practice for Dynamic Programming ™ 285

Input

You'll be given x, and y, both less than 20, followed by x lines of y characters each
as a map of the area, consisting solely of “”, “#”, and “L”. Larry and Ryan are cur-
rently located in “L”, and the nuts are represented by “#”. They can travel in all eight
adjacent directions in one step. See below for an example. There will be at most
15 places where there are nuts, and “L” will only appear once.

Output

On each line, output the minimum number of steps starting from “L”, gather all
the nuts, and back to “L.

Sample Input Sample Output
55 8
L.... 8
#...

#...

#....

55

L....

#...

#...

#...

Source: UVA Local Qualification Contest, 2005
IDs for Online Judge: UVA 10944

= Analysis

The places where Ryan and Larry and all nuts locate are as vertices. Their coordi-
nates are recorded, where (xo, yo) is the place where Larry and Ryan are currently
located, and (x;, y;) is the place where the i-th nut is located, 1<i<n. Map[][] is used
to represent distances between vertices, where Mapli][j] = max{ ,‘ Vi — yj‘}
for vertex 7 and vertex .

The state that nuts are gathered is represented as a 7 bit binary number (4, , ...,
bo), where 5=0 means the (7+1)-th nut isn’t gathered, and 4=1 means the (#+1)-th
nut is gathered. Suppose j is the current state value that nuts are gathered, where

x,»—xj

286 ® Algorithm Design Practice for Collegiate Programming

nut 7 is the nut that is gathered finally, and the minimum number of steps is f17][/].
Obviously the minimum number of steps that Ryan and Larry gather for every nut
is 1] [Zi_l]zmap[O] [](1<i<n). Suppose the state the nuts are gathered currently is
Jj» where the number of gathered nuts is 7, and the minimum number of steps is f17](/].
Obviously, the minimum number of steps that Ryan and Larry gather for each nut is
[l [Zi_l]:map[O] [7], 1<i<n. The successor function is analyzed as follows:

Stage 7; states are enumerated in ascending order, 0</<2"-1;

State j; The last gathered nut j in stage i is enumerated, 1<j<n, i & 277" # 0;

Decision 4: Nut 4 which isn’t in stage 7 is enumerated 1< £ <7,i & 21 ==),
and determine whether gathering nut # is better. If gathering nut # is better,

SR+ 2k is adjusted, that is,

FURNA25 T=mind f 111425, £1j11i1+mapl j111}

After n nuts are gathered, if nut 7 is the last gathered nut, the minimum number
of steps to reach the position of nut 7 is f7][2"—1], the number of steps back to “L”
is map[0][7]. The number of steps is f1[2"—1]4+map[0][i].
Finally, all results are compared #(1<i<n), the minimum number of steps start-
ing from “L”, gather all the nuts, and back to “L” is:
ans=min{ f[7][2" —1]+map[0][7]}.

1<i<n

o
D o

#include <cstdio>

#include <cstring>

#define Max(a,b) ((a)>(b)?(a): (b))
#tdefine Inf (1<<20)

#define N (30)

#define M (65536)

using namespace std;

int f[N] [M]; // nuts are gathered currently is j, where the
number of gathered nuts is i, and the minimum number of steps
is £[1i] [7]

char s[N]; //current row

int map [N] [N]; // distance between vertice i and vertex j
is mapl[i, 7]

int x[N],yI[N]; //The sequence of vertices’ coordinates

int num,n,m,ans,maxz; //num: number of nuts, n*m: the size

of the map, ans: the minimum amount of steps starting from

Practice for Dynamic Programming ®m 287

“L”, gather all the nuts, and back to “L”, maxz: the state
that all nuts are gathered

int Abs(int x) { if (x>0) return x; return -x; } //|x]|
void Update (int &x,int y) { if (x>y) x=y; } // xemax{x, y}

int main ()

{

while (scanf ("%d%d", &n, &m) !=EOF) //Input the size of the
map
{
num=0;
for (int i=0;i<n;++1) // Input every row, calculate

the number of nuts, set up the sequence of vertices’
coordinates, where (x[0], y[0]) is the position where Larry
and Ryan are currently located, (x[l..num], y[l..num]) are
positions for num nuts
{
scanf ("%s",s) ;
for (int j=0;j<m;++3)

if (s[jl=="#') { x[++numl=i; y[numl=7; } else
if (s[jl=='L") { x[0]l=i; yl[0]l=3; }
!
if (!num) {printf("0\n"); continue; }
for (int i=0;i<=num;++1) //Calculate distances between
vertices

for (int j=0;j<=num;++3j)
map [1] [j]=Max (Bbs (x[i]-x[j]1),Rbs(y[i]l-y[j1));

maxz=(l<<num) -1; // Calculate the state that all nuts
are gathered

for (int i=0;i<=maxz;++1i) // Initialize successor
function

for (int j=0;j<=num;++3j) £[j] [i]=Inf;
for (int i=1;i<=num;++1i) £[i] [1<<(i-1)]=map(0] [i];
for (int i=0;i<maxz;++1i) // states are enumerated

{

for (int j=1;j<=num;++j) if (i & (1<<(j-1))) // The
last gathered nut j in stage i is enumerated
for (int k=1;k<=num;++k) // Nut k which isn’t in
stage 1 1s enumerated, and adjusted
if (1 (1 & (1<<(k-1))))Update (f[k] [i+(1<<(k-1))],

£131 [i]l+map (3] [k]);

ans=Inf;
for (int i=1;i<=num;++1i) // Enumerate the last
gathered nut i, and adjust
Update (ans, £ [1] [maxz] +map [i] [0]) ;
printf ("%d\n",ans) ; // Output the result

}

return 0;

}

288 ®m Algorithm Design Practice for Collegiate Programming

Figure 6.3

6.3.2 Mondriaan’s Dream

Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One
night, after producing the drawings in his “toilet series” (where he had to use his
toilet paper to draw on, for all of his paper was filled with squares and rectangles),
he dreamt of filling a large rectangle with small rectangles of width 2 and height 1
in varying ways (see Figure 6.3).

Expert as he was in this material, he saw at a glance that he will need a com-
puter to calculate the number of ways to fill the large rectangle whose dimen-
sions were integer values, as well. Help him, so that his dream won’t turn into a
nightmare!

Input

The input file contains several test cases. Each test case is made up of two integer
numbers: the height 4 and the width w of the large rectangle. Input is terminated
by /=w=0. Otherwise, 1<=54, w<=11.

Output

For each test case, output the number of different ways the given rectangle can be
filled with small rectangles of size 2 times 1. Assume that the given large rectangle
is oriented, i.e., count symmetrical tilings multiple times (see Figure 6.4).

Figure 6.4

Practice for Dynamic Programming ™ 289

Sample Input Sample Output
12 1

13 0

14 1

22 2

23 3

24 5

21 144

41 51205

00

Source: Ulm Local 2000
IDs for Online Judges: POJ 2411, ZOJ 1100

-

3 N7 J\
Q%\)(/ Analysis

Assume that you could calculate the number of different paintings for a rectangle
with ¢ columns and 7 rows where the first 7—1 rows are completely filled and the last
row has any of 2° possible patterns. Then, by trying all variations of filling the last
row where small rectangles may be spilled into a further row, you can calculate the
number of different paintings for a rectangle with 7+1 rows where the first » rows
are completely filled and the last row again has any pattern.

This straightforwardly leads to a DP solution. All possible ways of filling a row,
part of which may already be occupied and spilling into the next row and creating a
new pattern, are generated by backtracking over a row. Viewing these as transitions
from a pattern to another pattern, their number is given by the recursive equation
T, = 2T, +T,,. Its solution is asymptotically exponential with a base of sgr#(2)+1,
which is not a problem for c<=11.

If both 4 and w are odd, the result is 0. Since the number of paintings is a sym-
metric function, the number of columns should be chosen as the smaller of the two
input numbers whenever possible to improve runtime behaviour substantially.

Judges’ test data includes all 121 legal combinations of 4 and w.

Since the size of the painting could be as large as 110, a simple backtracking
solution won’t do, not even with using five hours of contest time to precalculate
the results. Once the DP algorithm is implemented, a quick review of the results
should reveal that they don’t fit into 32-bit inzs. There are four ways to solve this
problem: try double (which works actually), implement 64-bit arithmetics (only
addition is needed), implement arbitrary precision arithmetics, or switch to Java
and use Biglnteger. A more efficient algebraic solution was not known to the judges.

290 ®m Algorithm Design Practice for Collegiate Programming

oY
= -

#include <stdio.h>
static double cnt[12] [1<<11];
static int trans[16384] [2];
int rows, cols, ntrans;
/* there are ((sqgrt(2)+1)”"c - (sgrt(2)-1)"c) * (sqgrt(2)+2) / 4
transitions
* which is the solution to T {c} = 2 * T {c-1} + T {c-2}

*/
void backtrack (int n, int from, int to)
{
if (n > cols) return;
if (n == cols)

{

trans [ntrans] [0] = from;
trans [ntrans] [1] = to;
++ntrans;

return;

}

backtrack (n+2, from<<2, to<<2);
backtrack (n+l, from<<l, (to<<l)|1);
backtrack (n+1l, (from<<l)|1l, to<<l);

!
int main ()
{
int r, t;
FILE* in = fopen ("dream.in", "xr");
while (fscanf (in, " %d %d ", &rows, &cols) == 2)
{
if (rows == || cols == 0) break;
if (rows < cols) { t = rows; rows = cols ; cols = t; }

/* calculate map of possible transitions by linear
backtracking */

ntrans = 0;
backtrack (0, 0, 0);
for (r=0 ; r<=rows ; r++)
for (t=0 ; t<(l<<cols) ; t++)

cnt [r] [t] = O;

cnt [0] [0] = 1;

for (r=0 ; r<rows ; r++) /* the r topmost rows are already

filled */
for (t=0 ; t<ntrans ; t++) /* perform all transitions */

cnt [r+1] [trans [t] [1]1] += cnt(r] [trans[t] [0]];

printf ("%.0f\n", cnt[rows] [0]);

!

return O;

}

Practice for Dynamic Programming ®m 291

Figure 6.5

6.4 Problems
6.4.1 Tri Tiling

In how many ways can you tile a 3X7 rectangle with 2x1 dominoes?
Figure 6.5 shows a sample tiling of a 3X12 rectangle.

Input

Input consists of several test cases followed by a line containing —1. Each test case
is a line containing an integer 0<#<30.

Output

For each test case, output one integer number giving the number of possible tilings.

Sample Input Sample Output

2 3

8 153
12 2131
-1

Source: Waterloo local 2005.09.24
IDs for Online Judges: PO) 2663, ZOJ 2547, UVA 10918

“ﬁ Hint

Suppose the state for column 7 is represented as a binary number j (0<i<n—1, 0</<7),
where 0 represents the square that is occupied by a domino, and 1 represents the
square that isn’t occupied by a domino. Obviously, the state for (0, i) is c=j&]1; the

state for (1, i) is b = LéJ &1; and the state for (2, i) is 2 = {QJ

Suppose dp[d][;] is the number of possible tilings for the first 7 columns whose
state is j. Obviously, dp[0][0]=1. From left to right, DP is used as follows.

If (1, i) and (2, 1) are occupied by dominoes (!a&&!b==1),
then dpli+1] [!cl+=dpli] [j];

292 m Algorithm Design Practice for Collegiate Programming

If (0, i) and (1, i) are occupied by dominoes (!b&&!c==1),
then dpl[i+1] [(!a)*4]l+=dpli] [F];
dpl[i+1] [(!a) x4+ (!b)x2+(!c)]l+=dpl[i] [J];

Finally, dp[n][0] is the solution to the problem.

6.4.2 Marks Distribution

In an examination. one student appeared in IV subjects and has got total T marks.
He has passed in all the IV subjects where the minimum mark for passing in each
subject is P You have to calculate the number of ways the student can get the
marks. For example, if N=3, T=34 and P=10, then the marks in the three subjects
could be as follows:

Subject 1 Subject 2 Subject 3
1 14 10 10
2 13 11 10
3 13 10 11
4 12 11 11
5 12 10 12
6 11 11 12
7 1 10 13
8 10 11 13
9 10 10 14
10 11 12 11
1 10 12 12
12 12 12 10
13 10 13 11
14 11 13 10
15 10 14 10

So there are 15 solutions. So F (3, 34, 10)=15.

Input

In the first line of the input, there will be a single positive integer K followed by
K lines, each containing a single test case. Each test case contains three positive

Practice for Dynamic Programming ® 293

integers denoting N, T, and P respectively. The values of N, T. and P will be
at most 70. You may assume that the final answer will fit in a standard 32-bit
integer.

Output
For each input, print in a line the value of F (N, T; P).

Sample Input Sample Output

2 15
334 10 15
334 10

Source: 4th 1IUC Inter-University Programming Contest, 2005
ID for Online Judge: UVA 10910

“igi Hint

Suppose dpli[j] shows the number of ways the student passes 7 sub-

jects and gets total j marks. Therefore, dp[l][j]=1, where P</<T; and
P

dpli][j]= Zd[z’— 1[j—kl|j—k = P, where 2<i<N, P</<T. Finally, dp[N][T] is
k=P

the solution to the problem.

6.4.3 Chocolate Box

Recently one of my friends, Tarik, became a member of the food committee of an
ACM regional competition. He has been given m distinguishable boxes, and he
has to put 7 types of chocolates in the boxes. The probability that one chocolate is
placed in a certain box is 1/7. What is the probability that one or more boxes are
empty? At first he thought it was an easy task. But soon he found that it was much
harder. So, he falls into great trouble and asks you to help him in this task.

Input

Each line of the input contains two integers # indicating the total number of distin-
guishable types of chocolate and m indicating the total number of distinguishable
boxes (m<n<100). A single line containing —1 denotes the end.

294 ®m Algorithm Design Practice for Collegiate Programming

Output

For each of the cases, you should calculate the probability corrected to seven deci-
mal places. The output formart is shown below.

Sample Input Sample Output

50 12 Case 1: 0.1476651
50 12 Case 2: 0.1476651
-1

Source: The FOUNDATION Programming Contest 2004
ID for Online Judge: UVA 10648

“g Hint

Suppose dp[](j] is the probability that j boxes have chocolates after the i-th chocolate
is placed. Initially, dp[1][1]=1. And dpli][jl=dp[i=11[j1Xf))+dp[-1][j-11xLf(m—j+1),

where f (x) = , represents the probability that one chocolate is placed in x boxes,
m

2<i<n, 1<j<m.
The solution is 1—dp[n][m].

6.4.4 A Spy in the Metro

Secret agent Maria was sent to Algorithms City to carry out an especially dangerous
mission. After several thrilling events, we find her in the first station of Algorithms
City Metro, examining the time table. The Algorithms City Metro consists of a
single line with trains running both ways, so its timetable is not complicated.

Maria has an appointment with a local spy at the last station of Algorithms City
Metro. Maria knows that a powerful organization is after her. She also knows that
while waiting at a station, she is at great risk of being caught. To hide in a running
train is much safer, so she decides to stay in running trains as much as possible, even
if this means traveling backward and forward. Maria needs to know a schedule
with minimal waiting time at the stations that gets her to the last station in time
for her appointment. You must write a program that finds the total waiting time in
a best schedule for Maria.

The Algorithms City Metro system has NV stations, consecutively numbered
from 1 to V. Trains move in both directions: from the first station to the last station
and from the last station back to the first station (see Figure 6.6). The time required

Practice for Dynamic Programming ® 295

First station Second station Nth station

Figure 6.6

for a train to travel between two consecutive stations is fixed since all trains move at
the same speed. Trains make a very short stop at each station, which you can ignore
for simplicity. Since she is a very fast agent, Maria can always change trains at a sta-
tion even if the trains involved stop in that station at the same time.

Input

The input file contains several test cases. Each test case consists of seven lines with
information as follows.

B Line 1. The integer NV (2<N<50), which is the number of stations.

B Line 2. The integer 7 (0<7X200), which is the time of the appointment.

B Line 3. N-1 integers: #, #, ... £y (15£520), representing the travel times
for the trains between two consecutive stations: # represents the travel time
between the first two stations, ¢, the time between the second and the third
station, and so on.

B Line 4. The integer M, (1<M,<50), representing the number of trains depart-
ing from the first station.

B Line 5. M, integers: dy,d>,...,dp,(0< d; <250and d; < d.,), representing
the times at which trains depart from the first station.

B Line 6. The integer M, (1<M,<50), representing the number of trains depart-
ing from the Nth station.

B Line 7. M, integers: e),e,...ear, (0 < ¢; £250and ¢; < ¢;4,) representing the
times at which trains depart from the Nth station.

The last case is followed by a line containing a single zero.

Output

For each test case, print a line containing the case number (starting with 1) and
an integer representing the total waiting time in the stations for a best schedule, or
the word “impossible” in case Maria is unable to make the appointment. Use the
format of the sample output.

296 ®m Algorithm Design Practice for Collegiate Programming

Sample Input

Sample Output

4
55

51015

4

051020

4

051015

4

18

123

5
0361012
6
03571215
2

30

20

1

20

7
1357111317
0

Case Number 1: 5
Case Number 2: 0
Case Number 3: impossible

Source: ACM World Finals 2003

IDs for Online Judges: UVA 2728

“g Hint

First, the time that each train departing from the first station arrives at each station
x1[][] and the time that each train departing from the N-th station arrives at each
station x2[][] are calculated, where the time that the 7-th train departing from the
first stationt arrives at the j-th station is x1[7][/]:

x1lZ][j]=

the time at which the i-th train departs j=1
from the first station

x1[i][j-1]+ the travel time between the (j-1)-th j>1
station and the j-th station

Practice for Dynamic Programming ®m 297

and the time that the /-th train departing from the N-th stationt arrives at the j-th
station is x2[][f]:

the time at which the i-th train departs j=n
from the N-th station

x2[i][j1= x2[i][j+1]+the travel time between the (j+1)-th j<n

station and the j-th station

States are minimal waiting times at each point in time for each station. Because
for the previous point in time, the waiting time must also be minimal, DP is used
to solve the problem.

Suppose f1/1[#] is the minimal waiting time that Maria arrives at the 4-th station
at point in time j. Obviously, f10][1]=0

Stage i: A stage is a point in time before the time of the appointment, 0</<7-1;

State 4: each station is enumerated, 0<ASN;

Decision: There are two kinds of decisions, forward and backward:

Forward: Each forward train j which arrives at the 4-th station after point in
time 7 is enumerated (1<j<the number of trains departing from the first
station, 7<x1[j][£]). The minimal waiting time that train j arrives at the
(k+1)-th station is flxl[f][e+1]][k+1]=min{fTx1[j][e+1]][k+1], f1:][k]+x1[/]
[k]—i}.

Backward: Each backward train j which arrives at the 4-th station after point
in time 7 is enumerated (1</<the number of trains departing from the N-
th station, 7<x2[j][4]). The minimal waiting time that train] arrives at the
(k=1)-th station is flx2[j][,—1]][k—1]=min{fTx2[;][4 1], flillkl4+x1[j
[#]-3}

Because the time that trains arrive at the (£#+1)-th station or the (4—1)-th station
may be after 7, we need to adjust: fli+1][£]=min{fTi+1][£], f1z][4]+1}

Obviously, if f[7][NV] is the initial value before DP, Maria is unable to make
the appointment; otherwise, f[7][/V] is the total waiting time in the stations for a

best schedule.

6.4.5 A Walk Through the Forest

Jimmy experiences a lot of stress at work these days, especially since his accident
made working difficult. To relax after a hard day, he likes to walk home. To make
things even nicer, his office is on one side of a forest, and his house is on the other.
A nice walk through the forest, seeing the birds and chipmunks, is quite enjoyable.

298 ®m Algorithm Design Practice for Collegiate Programming

The forest is beautiful, and Jimmy wants to take a different route every day.
He also wants to get home before dark, so he always takes a path to make progress
towards his house. He considers taking a path from A to B to be progress if there
exists a route from B to his home that is shorter than any possible route from A.
Calculate how many different routes through the forest Jimmy might take.

Input

Input contains several test cases followed by a line containing 0. Jimmy has num-
bered each intersection or joining of paths starting with 1. His office is numbered
1, and his house is numbered 2. The first line of each test case gives the num-
ber of intersections N, 1</N<1000, and the number of paths M. The following M
lines each contain a pair of intersections # & and an integer distance 1<4<1000000
indicating a path of length & between intersection # and a different intersection
b. Jimmy may walk a path any direction he chooses. There is at most one path
between any pair of intersections.

Output

For each test case, output a single integer indicating the number of different routes
through the forest. You may assume that this number does not exceed 2147483647.

Sample Input Sample Output

2
4

SO UTOO NN W= 2O 2 W= U
NN NUORARNDRWOINDNUU AW
N\ QU QU (I (I

Source: Waterloo local 2005.09.24
IDs for Online Judges: POJ 2662, UVA 10917

Practice for Dynamic Programming ® 299

\% Hint

First, a weighted graph is constructed. Each intersection is represented as a vertex.
Each path is represented as an edge. And the length for a path is represented as the
weight of the corresponding edge. Jimmy’s office is as vertex 1, and Jimmy’s house
is as vertex 2.

Second, Dijkstra’s algorithm is used to calculate the shortest path dist[] from
each vertex to vertex 2, where dist[7] is the length of the shortest path form vertex 7
to vertex 2. Suppose fx] is the number of paths from vertex x to vertex 2:

1 x=2
flxl= Z(fli1]G.x) € E & &distl[i] < dist[x]) x#2

i=1

Finally, f11] is the number of different routes through the forest.

6.4.6 Common Subsequence

A subsequence of a given sequence is the given sequence with some elements (pos-
sibly none) left out. Given a sequence X=<x;, x,,..., x,,>, another sequence Z=<z,
Z2,..., 2> Is a subsequence of X if there exists a strictly increasing sequence <7, 7,
..., ig>of indices of Xsuch thatforall =1, 2, ..., , ;= For example, Z=<a, b, f, c>
is a subsequence of X=<a, b, ¢, f; b, c> with index sequence <1, 2, 4, 6>. Given two
sequences X and Y] the problem is to find the length of the maximum-length com-
mon subsequence of Xand Y.

Input

The program input is from the standard input. Each data set in the input contains
two strings representing the given sequences. The sequences are separated by any
number of white spaces. The input data are correct.

Output

For each set of data, the program prints on the standard output the length of the
maximum-length common subsequence from the beginning of a separate line.

300 ® Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output
abcfbc abfcab 4
programming contest 2
abcd mnp 0

Source: ACM Southeastern Europe 2003
IDs for Online Judges: PO) 1458, ZOJ 1733, UVA 2759

“§ Hint

The problem is an LCS problem.

6.4.7 Lazy Cows

Farmer John regrets having applied high-grade fertilizer to his pastures since the
grass now grows so quickly that his cows no longer need to move around when
they graze. As a result, the cows have grown quite large and lazy... and winter is
approaching,.

Farmer John wants to build a set of barns to provide shelter for his immobile
cows, and he believes that he needs to build his barns around the cows based on
their current locations since they won’t walk to a barn, no matter how close or
comfortable.

The cows’ grazing pasture is represented by a 2xB (1<B<15,000,000) array of
cells, some of which contain a cow and some of which are empty. N (1<N<1000)
cows occupy the cells in this pasture:

cow cow cow cow cow

cow cow cow

Ever the frugal agrarian, Farmer John would like to build a set of just K (1<K<N)
rectangular barns (oriented with walls parallel to the pasture’s edges) whose total
area covers the minimum possible number of cells. Each barn covers a rectangular
group of cells in their entirety, and no two barns may overlap. Of course, the barns
must cover all of the cells containing cows.

By way of example, in the picture above, if K=2. then the optimal solution con-
tains a 2x3 barn and a 1x4 barn and covers a total of 10 units of area.

Input
Line 1: Three space-separated integers, N, K, and B.

Practice for Dynamic Programming ® 301

Lines 2. N+1: Two space-separated integers in the range (1,1) to (2,B) giv-
ing the coordinates of the cell containing each cow. No cell contains more than
one cCow.

Output

Line 1: The minimum area required by the X barns in order to cover all of the
cows.

Sample Input Sample Output

10

N NN = 2 2 o
A WN OCONOODNN
el

Source: USACO 2005 USOpen Gold
ID for Online Judge: POJ 2430

“§ Hint

This is a problem for DP with state compression. Suppose dp[i][j][#] represents the
best solution that the first i columns is covered by ; barns, and the current state is
k; where /==1 means only the first row is covered by a barn, #==2 means only the
second row is covered by a barn, #==3 means the first row and the second row is
covered by a barn, and #==4 means the first row and the second row are covered
by two different barns.

6.4.8 Longest Common Subsequence

Given two sequences of characters, (Figure 6.7), print the length of the longest
common subsequence of both sequences. For example, the longest common subse-
quence of the following two sequences:

abcdgh

aedfhr

is adh of length 3.

302 m Algorithm Design Practice for Collegiate Programming

e 1 N B W UEY
. luw Al w Malla Uy

Figure 6.7

Input

The input consists of pairs of lines. The first line of a pair contains the first string
and the second line contains the second string. Each string is on a separate line and
consists of at most 1,000 characters.

Output

For each subsequent pair of input lines, output a line containing one integer num-
ber which satisfies the criteria stated above.

Sample Input Sample Output
alb2c3d4e 4
zz1yy2xx3wwavv 3

abcdgh 26

aedfhr 14

abcdefghijklmnopqrstuvwxyz
a0b0c0d0e0f0g0h0i0j0k0I0m0ON000p0q0r0s0t0u0vOow0x0y0z0
abcdefghijklmnzyxwvutsrqpo
opgrstuvwxyzabcdefghijklmn

Source: November 2002 Monthly Contest
ID for Online Judge: UVA 10405

\g Hint

This problem is a classical LCS problem.

6.4.9 Make Palindrome

By definition, a palindrome is a string which is not changed when reversed.
“MADAM?” is a nice example of a palindrome. It is an easy job to test whether a given
string is a palindrome or not. But it may not be so easy to generate a palindrome.

Practice for Dynamic Programming ® 303

Here we will make a palindrome generator that will take an input string and
return a palindrome. You can easily verify that for a string of length %’, no more
than (n—1) characters are required to make it a palindrome. Consider “abcd” and
its palindrome “abcdcba” or “abc” and its palindrome “abceba”. But life is not so
easy for programmers!! We always want optimal cost. And you have to find the
minimum number of characters required to make a given string into a palindrome
if you are allowed to insert characters at any position of the string.

Input

Each input line consists only of lowercase letters. The size of the input string will be
at most 1000. Input is terminated by EOF.

Output

For each input, print the minimum number of characters and such a palindrome
separated by one space in a line. There may be many such palindromes. Any one
will be accepted.

Sample Input Sample Output

abcd 3 abcdcba

aaaa 0 aaaa

abc 2 abcba

aab 1 baab

abababaabababa 0 abababaabababa
pgrsabcdpqrs 9 pgrsabcdpqrgpdcbasrqp

Source: The Real Programmers’ Contest -2 -A BUET Sprinter Contest 2003
ID for Online Judge: UVA 10453

\% Hint

First, the longest common subsequence of the string and its reverse are calculated.
This will give you the optimal overlap in the palindrome. Then the rest of the char-
acters are added into the string to make the shortest palindrome.

6.4.10 Vacation

You are planning to take some rest and to go on vacation, but you really don’t know
which cities you should visit. So, you ask your parents for help. Your mother says
“My son, you MUST visit Paris, Madrid, Lisbon, and London. But it’s only fun

304 ®m Algorithm Design Practice for Collegiate Programming

in this order.” Then your father says: “Son, if youre planning to travel, go first to
Paris, then to Lisbon, then to London and then, at last, go to Madrid. I know what
I’'m talking about.”

Now you're a bit confused, as you didn’t expect this situation. You're afraid that
you’ll hurt your mother if you follow your father’s suggestion. But you're also afraid
to hurt your father if you follow your mother’s suggestion. But it can get worse,
because you can hurt both of them if you simply ignore their suggestions!

Thus, you decide that you'll try to follow their suggestions in the best way that
you can. So, you realize that the “Paris-Lisbon-London” order is the one which
better satisfies both your mother and your father. Afterwards, you can say that you
could not visit Madrid, even though you would’ve liked it very much.

If your father suggested the “London-Paris-Lisbon-Madrid” order, then
you would have two orders, “Paris-Lisbon” and “Paris-Madrid”, which would
better satisfy both of your parents’ suggestions. In this case, you could only
visit two cities.

You want to avoid problems like this one in the future. And what if their travel
suggestions were bigger? Probably you would not find the better way very easily. So,
you decided to write a program to help you in this task. You’ll represent each city
by one character, using uppercase letters, lowercase letters, digits, and the space.
Thus, you can have at most 63 different cities to visit. But it’s possible that you’ll
visit some city more than once.

If you represent Paris with “a”, Madrid with “b”, Lisbon with “c”, and London
with “d”, then your mother’s suggestion would be “abed” and your father’s sugges-
tion would be “acdb” (or “dacb”, in the second example).

The program will read two travel sequences, and it must answer how many
cities you can travel to such that you'll satisfy both of your parents and its
maximum.

Input

The input will consist of an arbitrary number of city sequence pairs. The end of
input occurs when the first sequence starts with an “#” character (without the
quotes). Your program should not process this case. Each travel sequence will be
on a line alone and will be formed by legal characters (as defined above). All travel
sequences will appear in a single line and will have at most 100 cities.

Output
For each sequence pair, you must print the following message in a line alone:

Case #d: you can visit at most X cities.

Where d stands for the test case number (starting from 1) and K is the maxi-
mum number of cities you can visit such that you'll satisfy both your father’s sug-
gestion and your mother’s suggestion.

Practice for Dynamic Programming ® 305

Sample Input | Sample Output

abcd Case #1: you can visit at most 3 cities.
acdb Case #2: you can visit at most 2 cities.
abcd

dacb

#

Source: 2001 Universidade do Brasil (UFR)). Internal Contest Warmup
ID for Online Judge: UVA 10192

“ﬁ Hint

Your mother’s suggestion is the first string, and your father’s suggestion is the second
string. The Longest Common Subsequence (LCS) for the two strings are cities that
you’ll visit to satisfy both your father’s suggestion and your mother’s suggestion.

6.4.11 Is Bigger Smarter?

Some people think that the bigger an elephant is, the smarter it is. To disprove this,
you want to take the data on a collection of elephants and put as large a subset of
this data as possible into a sequence so that the weights are increasing, but the IQs
are decreasing.

The input will consist of data for a group of elephants, one elephant per line,
terminated by the end-of-file. The data for a particular elephant will consist of a
pair of integers: the first representing its size in kilograms and the second represent-
ing its IQ in hundredths of IQ points. Both integers are between 1 and 10000. The
data will contain information for at most 1000 elephants. Two elephants may have
the same weight, the same IQ), or even the same weight and IQ.

Say that the numbers on the i-th data line are W1[7] and S[i]. Your program should
output a sequence of lines of data; the first line should contain a number #7; the
remaining 7 lines should each contain a single positive integer (each one representing
an elephant). If these 7 integers are 4[1], 2[2],..., 4[#], then it must be the case that

wlallll<wlal2]ll<...<W[aln]]
and
Slallll>S[al2]]>...>Slaln]].

In order for the answer to be correct, 7 should be as large as possible. All
inequalities are strict: weights must be strictly increasing, and IQs must be strictly

306 ® Algorithm Design Practice for Collegiate Programming

decreasing. There may be many correct outputs for a given input, but your program
only needs to find one.

Sample Input Sample Output

6008 1300
6000 2100
500 2000
1000 4000
1100 3000
6000 2000
8000 1400
6000 1200
2000 1900

N © Uk~ A

Source: The “silver wedding” Contest 2001
ID for Online Judge: UVA 10131

“g Hint

It is a standard DP (Longest Increasing Subsequence) problem. First, 7 elephants
are sorted. The weight is as the first key. And the IQ is as the second key. Then the
Longest Increasing Subsequence (LIS) for the sorted sequence is calculated.

6.4.12 Stacking Boxes

Some concepts in mathematics and computer science are simple in one or two
dimensions but become more complex when extended to arbitrary dimensions.
Consider solving differential equations in several dimensions and analyzing the
topology of an 7-dimensional hypercube. The former is much more complicated
than its one-dimensional relative, while the latter bears a remarkable resemblance
to its “lower-class” cousin.

Consider an n-dimensional “box” given by its dimensions. In two dimensions
the box (2,3) might represent a box with length two units and width three units.
In three dimensions the box (4,8,9) can represent a box 4x8x9 (length, width,
and height). In six dimensions it is, perhaps, unclear what the box (4,5,6,7,8,9)
represents; but we can analyze the properties of the box, such as the sum of its
dimensions.

In this problem you will analyze a property of a group of #-dimensional boxes.
You are to determine the longest nesting string of boxes, that is a sequence of boxes
by, b,, ..., b, such that each box &; nests in box b, (1<i<k).

Practice for Dynamic Programming ® 307

A box D=, 4,, , d,) nests in a box E=(e,, ¢, , e, if there is some
rearrangement of the 4; such that when rearranged, each dimension is less than the
corresponding dimension in box E. This loosely corresponds to turning box D to
see if it will fit in box E. However, since any rearrangement suffices, box D can be
contorted, not just turned (see examples below).

For example, the box D=(2,6) nests in the box £=(7,3) since D can be rear-
ranged as (6,2) so that each dimension is less than the corresponding dimension in
E. The box D=(9,5,7,3) does NOT nest in the box £=(2,10,6,8), since no rearrange-
ment of D results in a box that satisfies the nesting property, but £=(9,5,7,1) does
nest in box £ since F can be rearranged as (1,9,5,7), which nests in E.

Formally, we define nesting as follows: box D=(d}, d,, , d,) nests in box
E=(e, e , ¢,) if there is a permutation & of 1..7 such that (4, 4, s B)
“fits” in (e, €3, ,), 1e., if dyy<e, for all d,;<e,.

Input

The input consists of a series of box sequences. Each box sequence begins with a line
consisting of the number of boxes # in the sequence followed by the dimensionality
of the boxes, 7 (on the same line).

This line is followed by £ lines, one line per box with the # measurements of
each box on one line separated by one or more spaces. The line in the sequence
(1<i<k) gives the measurements for the box.

There may be several box sequences in the input file. Your program should pro-
cess all of them and determine, for each sequence, which of the £ boxes determine
the longest nesting string and the length of that nesting string (the number of boxes
in the string).

In this problem, the maximum dimensionality is 10 and the minimum dimen-
sionality is 1. The maximum number of boxes in a sequence is 30.

Output

For each box sequence in the input file, output the length of the longest nest-
ing string on one line, followed on the next line by a list of the boxes that
comprise this string in order. The “smallest” or “innermost” box of the nesting
string should be listed first, and the next box (if there is one) should be listed
second, etc.

The boxes should be numbered according to the order in which they appeared
in the input file (the first box is box 1, etc.).

If there is more than one longest nesting string, then any one of them can be
output.

308 ® Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output
52 5

37 31245

8 10 4

52 7256

9 11

21 18

86

522013010
231579113

40 50 34 24 14 4
910 11 12 13 14
31418 8 27 17
44 32 13 19 41 19
123456

80 37 47 18 21 9

Source: Internet Programming Contest 1990

ID for Online Judge: UVA 103

“§ Hint

This problem is a Longest Increasing Subsequence problem. The problem requires
you to check whether box 4 fits in box 4.
First, for each box, its dimension (s, 5,, 53, ..., 5,) is sorted such that 5;<; for all i<;.
Second, boxes are sorted. For two boxes # and &, a<b if 2,<b, for all ;.
Finally, the Longest Increasing Subsequence algorithm is used.
The time complexity for the problem is O(1’).

6.4.13 Function Run Fun

We all love recursion! Don’t we? Consider a three-parameter recursive function

wla, b, c):

1 a<=0orb<=00rc<=0
w(20,20,20) a>200rb>200rc>20
wlab,c)= w(a,b,c=1)+ wlarb—1,c~1) = wlarb—1,c) a<bandb<c
w(a—1,b,c)+w(a—1,b—1,c)+w(a—Lb,c—1)—w(a—1,b—1,c-1) otherwise

This is an easy function to implement. The problem is, if implemented directly,
for moderate values of @, 4, and ¢ (e.g., =15, 6=15, ¢=15), the program takes hours
to run because of the massive recursion.

Practice for Dynamic Programming ™ 309

Input

The input for your program will be a series of integer triples, one per line, until
the end-of-file flag of =1 —1 —1. Using the above technique, you are to calculate
w(a, b, ¢) efliciently and print the result.

Output

Print the value for w(a, b, ¢) for each triple.

Sample Input Sample Output

111 w(l,1,1)=2

222 w(2,2,2) =4

10 4 6 w(10, 4, 6) =523

50 50 50 w(50, 50, 50) = 1048576
-1718 w(=1,7,18) =1

-1 -1 -1

Source: ACM Pacific Northwest 1999
IDs for Online Judge: POJ 1579, ZO) 1168

“g Hint

A memorized search is used to solve the problem. Suppose #[][][] is the memorized
list, where a[x][y][z] stores the result for w(x, y, 2).

For w(x, y, z),

If (x<0||y=0||z<0), return 1;

If (x>20]||y>20||2z>20), return w(20, 20, 20);

If (x<y&&y<z), then alx] [y] [z] memorizes w(x, y, z-1)+w(x,
y-1, z-1)-w(x, y-1, z); else alx] [yl [z] memorizes w(x-1, Yy,
z)+w(x-1, y-1, z)+w(x-1, y, z-1)-w(x-1, y-1, z-1).

6.4.14 To the Max

Given a two-dimensional array of positive and negative integers, a subrectangle
is any contiguous subarray of size 1X1 or greater located within the whole array.
The sum of a rectangle is the sum of all the elements in that rectangle. In this
problem, the subrectangle with the largest sum is referred to as the maximal
subrectangle.

310 ® Algorithm Design Practice for Collegiate Programming

As an example, the maximal subrectangle of the array:

0o -2 -7 0

9 2 -6 2
—4 1 —4 1
-1 8 0o =2
is in the lower left corner:
9 2
-4 1
-1 8

and has a sum of 15.

Input

The input consists of an NXV array of integers. The input begins with a single posi-
tive integer V on a line by itself, indicating the size of the square two-dimensional
array. This is followed by VA2 integers separated by white space (spaces and new
lines). These are the N*2 integers of the array, presented in row-major order; that
is, all numbers in the first row, left to right, then all numbers in the second row,
left to right, etc. NV may be as large as 100. The numbers in the array will be in the
range [-127,127].

Output

Output the sum of the maximal subrectangle.
Sample Input Sample Output
4 15
0-2-7092-62
4141 -1
802

Source: ACM Greater New York 2001
IDs for Online Judges: POJ 1050, ZOJ 1074, UVA 2288

“ﬁ Hint

Suppose max is the sum of the maximal subrectangle, initially 724x=—10000; and
array m is the input array.

Practice for Dynamic Programming ®m 311

First, array m is input. For row 7, ma; is the maximum for sums of continuous
integers, 1</</V. And after array m is input, the maximum max for all maximums

for sums of continuous integers for each row is computed, max = max{ma,} .
1<isN

Second, from the first row, a for repetition statement deals with every row top-
down. For the current row, integers for its below rows are added into its correspond-
ing columns. The maximum for sums of continuous integers in the current row is
calculated. That is, row by row, for each row, its below row is added into the row.
And max is adjusted after a row is added into the current row, if it isn’t the maximal
value. After the for repetition, max is the sum of the maximal subrectangle.

6.4.15 Robbery

Inspector Robstop is very angry. Last night, a bank has been robbed and the robber
has not been caught. And this has happened already for the third time this year,
even though he did everything in his power to stop the robber: as quickly as possi-
ble, all roads leading out of the city were blocked, making it impossible for the rob-
ber to escape. Then, the inspector asked all the people in the city to watch out for
the robber, but the only messages he received were of the form “We don’t see him.”

Buct this time, he has had enough! Inspector Robstop decides to analyze how
the robber could have escaped. To do that, he asks you to write a program which
takes all the information the inspector could get about the robber in order to find
out where the robber has been at which time.

Coincidentally, the city in which the bank was robbed has a rectangular shape.
The roads leaving the city are blocked for a certain period of time # and during that
time, several observations of the form “The robber isn’t in the rectangle R; at time
T are reported. Assuming that the robber can move at most one unit per time step,
your program must try to find the exact position of the robber at each time step.

Input

The input contains the description of several robberies. The first line of each descrip-
tion consists of three numbers W, H, ¢t 1<W, H, t<100) where Wis the width, H is
the height of the city, and 7 is the time during which the city is locked.

The next line contains a single integer 7 (0<1#<100), the number of messages the
inspector received. The next # lines (one for each of the messages) consist of five inte-
gers 4, L, T}, R;, B, each. The integer is the time at which the observation has been
made (1=£<%), and L,, T}, R;, B, are the left, top, right, and bottom respectively of
the (rectangular) area which has been observed. (1SL<R<W, 1<T<B<H; the point
(1, 1) is the upper left-hand corner, and (W, H) is the lower right-hand corner of the
city.) The messages mean that the robber was not in the given rectangle at time #.

The input is terminated by a test case starting with W=H=¢=0. This case should
not be processed.

312 ® Algorithm Design Practice for Collegiate Programming

Output

For each robbery, first output the line “Robbery #£:”, where £ is the number of the
robbery. Then, there are three possibilities:

1. If it is impossible that the robber is still in the city considering the messages,
output the line “The robber has escaped.”

2. If it is impossible that the robber is still in the city considering the messages,
output the line “The robber has escaped.” In all other cases, assume that the
robber really is in the city. Output one line of the form “Time step #: The
robber has been at x, y.” for each time step, in which the exact location can
be deduced. (x and y are the column and row of the robber in time step £
Output these lines ordered by time

3. If nothing can be deduced, output the line “Nothing known.” and hope that
the inspector will not get even more angry.

Output a blank line after each processed case.

Sample Input Sample Output

445 Robbery #1:

4 Time step 1: The robber has been at 4,4.
11143 Time step 2: The robber has been at 4,3.
11134 Time step 3: The robber has been at 4,2.
41134 Time step 4: The robber has been at 4,1.
44244

10 10 3 Robbery #2:

1 The robber has escaped.

21110 10

000

Source: ACM Mid-Central European Regional Contest 1999
IDs for Online Judges: POJ 1104, ZOJ 1144, UVA707

“§ Hint (given by the problemsetter)

We are told that there is a robber capable of moving one unit per time in a rectangu-
lar gridlike city. Furthermore, we are given subrectangles of the city that we know
the robber was not in at different points in time. We have to determine where the
robber could possibly be at each time slice in a given range.

Memoization is particularly well-suited for this problem. Maintain a three-
dimensional table indexed by width, height, and time holding three possible values:
yes the robber could be there, no the robber cannot be there, and uncomputed.

Practice for Dynamic Programming ® 313

Initialize the table to uncomputed for all possible values. Then read the witness input
and mark every rectangle given by them to vacant. Now we can use memoization
to decide which paths lead to a valid city block after the time is over. Start from the
time #, and work back to time 1. A given position (width, height, time) can be reached
only if at least one of its at most five predecessors can be reached (width*1, heightt1,
time=1) and (width, height, time—1). Obviously, time=1 is the base case for the recur-
sion. Don’t be greedy; explore all five options, even if the first one works, since we
not only want to determine if the position is feasible, but also if it is unique.

After trying all paths starting at the end time, we can then perform the output.
If there are no places at the finishing time where the robber can be, output that the
robber must have escaped. Otherwise, for each time that there is only one position,
output that position. Finally, if nothing was printed, output “Nothing known.”

6.4.16 Always on the Run

Screeching tires. Searching lights. Wailing sirens. Police cars everywhere. Trisha
Quickfinger did it again! Stealing the “Mona Lisa” had been more diflicult than
planned, but being the world’s best art thief means expecting the unexpected. So
here she is, with the wrapped frame tucked firmly under her arm, running to catch
the northbound metro to the Chatles de Gaulle airport.

But even more important than actually stealing the painting is to shake off the
police that will soon be following her. Trisha’s plan is simple: for several days she
will be flying from one city to another, making one flight per day. When she is rea-
sonably sure that the police have lost her trail, she will fly to Atlanta and meet her
“customer” (known only as Mr. P.) to deliver the painting.

Her plan is complicated by the fact that nowadays, even when you are stealing
expensive art, you have to watch your spending budget. Trisha therefore wants to
spend the least money possible on her escape flights. This is not easy, since airline
prices and flight availability vary from day to day. The price and availability of an
airline connection depends on the two cities involved and the day of travel. Every
pair of cities has a “flight schedule” which repeats every few days. The length of the
period may be different for each pair of cities and for each direction.

Although Trisha is a good at stealing paintings, she easily gets confused when
booking airline flights. This is where you come in.

Input

The input contains the descriptions of several scenarios in which Trisha tries to escape.
Every description starts with a line containing two integers 7 and 4. 7 is the number
of cities through which Trisha’s escape may take her, and 4 is the number of flights she
will take. The cities are numbered 1, 2, ..., 7, where 1 is Paris, her starting point, and
n is Atlanta, her final destination. The numbers will satisfy 2<#<10 and 1<£<1000.
Next you are given n(z —1) flight schedules, one per line, describing the connec-
tion between every possible pair of cities. The first 7z —1 flight schedules correspond

314 ®m Algorithm Design Practice for Collegiate Programming

to the flights from city 1 to all other cities (2, 3, ..., #), the next # —1 lines to those
from city 2 to all others (1, 3, 4, ..., #), and so on.

The description of the flight schedule itself starts with an integer , the length
of the period in days, with 1<4<30. Following this are 4 non-negative integers,
representing the cost of the flight between the two cities on days 1, 2, ..., 4. A cost
of 0 means that there is no flight between the two cities on that day.

So, for example, the flight schedule “3 75 0 80” means that on the first day the flight
costs 75, on the second day there is no flight, on the third day it costs 80, and then the
cycle repeats: on the fourth day the flight costs 75, there is no flight on the fifth day, etc.

The input is terminated by a scenario with the formula #=£=0.

Output

For each scenario in the inpu, first output the number of the scenario, as shown in
the sample output. If it is possible for Trisha to travel £ days, starting in city 1, each
day flying to a different city than the day before, and finally (after 4 days) arriving
in city 7, then print “The best flight costs x.”, where x is the least amount that the
k flights can cost.

If it is not possible to travel in such a way, print “No flight possible.”.

Print a blank line after each scenario.

Sample Input Sample Output

36 Scenario #1

2130150 The best flight costs 460.
375080
71201100100 110120 0 Scenario #2
46070 60 50 No flight possible.
30135140
27080

23

2070

180

00

Source: ACM Southwestern European Regional Contest 1997

IDs for Online Judges: POJ 1476, ZOJ 1250, UVA 590

“g Hint

A thief wants to find the cheapest way of travelling to a certain city in exactly &
days. She must make exactly one flight each day.

Practice for Dynamic Programming ® 315

Suppose cost[4][4] is the cost to travel to city 2 on & day. Then cost[a][6] could
be calculated as the minimum of cost[m][6—1] + cost to travel from city m to city 4.

6.4.17 Martian Mining

The NASA Space Center, Houston, is less than 200 miles from San Antonio, Texas
(the site of the ACM Finals this year). This is the place where the astronauts are
trained for Mission Seven Dwarfs, the next giant leap in space exploration. The
Mars Odyssey program revealed that the surface of Mars is very rich in yeyenum
and bloggium. These minerals are important ingredients for certain revolutionary
new medicines, but they are extremely rare on Earth. The aim of Mission Seven
Dwarfs is to mine these minerals on Mars and bring them back to Earth.

The Mars Odyssey orbiter identified a rectangular area on the surface of Mars
that is rich in minerals. The area is divided into cells that form a matrix of 7 rows
and m columns, where the rows go from east to west and the columns go from
north to south. The orbiter determined the amount of yeyenum and bloggium in
each cell. The astronauts will build a yeyenum refinement factory west of the rect-
angular area and a bloggium factory to the north. Your task is to design the con-
veyor belt system that will allow them to mine the largest amount of minerals.

There are two types of conveyor belts: the first moves minerals from east to
west, and the second moves minerals from south to north. In each cell, you can
build either type of conveyor belt, but you cannot build both of them in the same
cell. If two conveyor belts of the same type are next to each other, then they can
be connected. For example, the bloggium mined at a cell can be transported to the
bloggium refinement factory via a series of south-north conveyor belts.

The minerals are very unstable, thus they have to be brought to the factories
on a straight path without any turns. This means that if there is a south-north
conveyor belt in a cell, but the cell north of it contains an east-west conveyor belt,
then any mineral transported on the south-north conveyor belt will be lost (see
Figure 6.8). The minerals mined in a particular cell have to be put on a conveyor

Bloggium refinery

1
—

Yeyenum refinery

=
=

Figure 6.8

316 ® Algorithm Design Practice for Collegiate Programming

belt immediately, in the same cell (thus they cannot start the transportation in an
adjacent cell). Furthermore, any bloggium transported to the yeyenum refinement
factory will be lost, and vice versa.

Your program has to design a conveyor belt system that maximizes the total
amount of minerals mined, i.e., the sum of the amount of yeyenum transported
to the yeyenum refinery and the amount of bloggium transported to the blog-
gium refinery.

Input

The input contains several blocks of test cases. Each case begins with a line
containing two integers: the number 1<7<500 of rows, and the number
1<m<500 of columns. The next 7 lines describe the amount of yeyenum that
can be found in the cells. Each of these 7 lines contains m integers. The first
line corresponds to the northernmost row; the first integer of each line cor-
responds to the westernmost cell of the row. The integers are between 0 and
1000. The next # lines describe in a similar fashion the amount of bloggium
found in the cells.
The input is terminated by a block with 7z=m=0.

Output

For each test case, you have to output a single integer on a separate line: the maxi-
mum amount of minerals that can be mined.

Sample Input Sample Output

4 4 98
00109
13100
4213

11200
10000
11130
0055

510 10 10
00

Source: ACM Central Europe 2005
IDs for Online Judges: POJ 2948, UVA 3530

Practice for Dynamic Programming ®m 317

\% Hint

Suppose the matrix that describes the amount of yeyenum is A[][], and the matrix
that describes the amount of bloggium is B[][]. F[i][j] is the maximum amount
of minerals that can be mined in the matrix whose upper-left corner is (0,0) and
lower-right corner is (7, j), 0<i<n—1,05<m—1.

Flilj] is calculated from top to down, and from left to right, 0<i<n—1,
0</<m—1. That is, before F[i[j] is calculated, F[~=1][j] and F[{][j-1] are cal-
culated. At (i, j), the astronauts can build a south-north conveyor belt for blog-
gium, or they can build a east-west conveyor belt for yeyenum. Therefore,

Flil[j]= M. ZB Fli—1][ZA

koO ko0
Obviously, F[n—1][m—1] is the maximum amount of minerals that can be mined.

6.4.18 String to Palindrome

In this problem you are asked to convert a string into a palindrome with a mini-
mum number of operations. The operations are described below.
Here you’d have the ultimate freedom. You are allowed to:

B Add any character at any position
B Remove any character from any position
B Replace any character at any position with another character

Every operation you do on the string would count for a unit cost. You'd have to
keep that as low as possible.

For example, to convert “abceda” you would need at least two operations if we
allowed you only to add characters. But when you have the option to replace any
character, you can do it with only one operation. We hope you would be able to use
this feature to your advantage.

Input

The input file contains several test cases. The first line of the input gives you the
number of test cases, 7 (1<7510). Then 7 test cases will follow, each in one line.
The input for each test case consists of a string containing lowercase letters only.
You can safely assume that the length of this string will not exceed 1000 characters.

Output

For each set of input, print the test case number first. Then print the minimum
number of characters needed to turn the given string into a palindrome.

318 ® Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output
6 Case1: 5
tanbirahmed Case 2: 7
shahriarmanzoor Case3: 6
monirulhasan Case 4: 8
syedmonowarhossain Case5: 8
sadrulhabibchowdhury Case 6: 8
mohammadsajjadhossain

Source: 2004-2005 ICPC Regional Contest Warmup 1
ID for Online Judge: UVA 10739

“g Hint

Suppose s;...s, is a string, and f17][;] is the minimum number of characters needed
to turn s;...s; into a palindrome, 1<i</<n.

If s;==s5;, then f[i] [j1=f[i+1][7-1];
If s;#s;, there are three possibilities:

s; 1s inserted into the i-th position, or s; is
deleted, that is, fl[i+1][j]l+1;

s; 1s inserted into the j-th position, or s; is
deleted, that is, f[i][j-11+1;

s; 1s replaced by sj, or s; is replaced by s;, that
is, fli+1]1[7-11+1;
and £[i] [Fl=min(£[i+1] [7], £[i][j-11, £[i+1]1[7-11)+1.

The length of the current substring / is the current stage, 2</<n. The front
pointer i (1<i<p—H1) for the substring is the current state. The rear pointer is
j=i+1-1. Based on the above successor function, f17][j] is calculated.

Finally, f{1][#] is the minimum number of characters needed to turn the given
string into a palindrome.

6.4.19 String Morphing

There is a special multiplication operator such that

> Right , b c
a b b a
b c b a
c a c c

Practice for Dynamic Programming ®m 319

Thus ab=b, ba=c, bc=a, cb=c, ...

For example, you are given the string bbbba and the character a,

(b(bb)) (ba)=(bb) (ba) [as bb = b]
= b(ba) [as bb = b]
= bc [as ba = c]
= a [as bc = al

By adding suitable brackets, 66bba can produce 4 according to the above mul-
tiplication table.

You are asked to write a program to show the morphing steps of a string into an
expected character, or otherwise, output “None exist!” if the given string cannot be
morphed as expected.

Input

The first line of the input file gives the number of test cases. Each case consists of
two lines. The first line is the starting string, which has at most 100 characters. The
second line is the target character. All characters in the input are within the range
of a—c.

Output

For each test case, your output should consist of several lines, showing the morph-
ing steps of a string into the character. In case there are more than one solution,
always try to start the morphing from the left. Print a blank line between consecu-
tive sets of output.

Sample Input Sample Output
2 bbbba
bbbba bbba
a bba
bbbba bc
a a
bbbba
bbba
bba
bc
a

Source: Second Programming Contest for Newbies 2006

ID for Online Judge: UVA 10981

320 m Algorithm Design Practice for Collegiate Programming

“g Hint

First, the relationships between letters and numbers are as follows: 2=0, /=1, =2.
The table for a special multiplication operator is shown in the following table.

Left o 0 ! 2
0 1 1 0
1 2 1 0
2 0 2 2

Suppose F[i][j][#] shows whether the interval [7, j] can can produce # or not.
Obviously F[4][i][str[i]—"a']=true. Suppose Fm is used to store how the result is pro-
duced, where Fml[i][j][#][0] stores the intermediate pointer producing #; the result
for the left subinterval [7, Fm[4][;][[0]] is stored in Fm[i][;][z][1], and the result for
the right subinterval [Fm[:][j][£][0]+1, j] is stored in Fm[d][j][A[2], 1<i<j<n, 0<e<2.

DP is used to calculate F[][][] and Fm[][][], where stage /is the length of the
substring, 2</<n; stage i is the front pointer for the current substring, 1<i<n—/+1;
the rear pointer j=i+/~1; and decision (i<k<j-1) is the intermediate pointer such
that the left subinterval [7, 4] produces 2 and the right subinterval [£+1, j] produces
b, (0=4,6<2, F[i][kl[a]&& Flk+1][jl[6]=true). The result # (==mulla][b]) is stored.
Fml[i)[j1[21[0]=k, Fmld[jl[e][1]=a, Fmlil[j][#] [2]=b, and F[4][;][¢] = true.

Suppose ¢ is the expected character. If f]1][n][f]==false, then output “None
exist!”; else output the morphing steps of a string into the character based on Fm.

6.4.20 End Up with More Teams

The prestigious ICPC is here again. The coaches are busy selecting teams. This year,
they have adopted a new policy. Contrary to the traditional selection process, where
few individual contests are held and the top three are placed in one team and the
next three in another and so on, this year the coaches decided to place members
in such a way that the total number of promisingteams is maximized. Promising
teams are defined as a team having ability points of its members adding up to 20 or
greater. Here the ability point of a member denotes his capability as a programmer,

the higher the better.

Input

There will be as many as 100 cases in the input file. Each case of input has two
lines. The first line contains a positive integer, where # indicates the number

Practice for Dynamic Programming ®m 321

of contestants available for selection. The next line will contain #z positive
integers, each of which will be at most 30. End of input is indicated by a value
of 0 for .

Output

For every case of input, there will be one line of output. This line should contain
the case number followed by the maximum number of promising teams that can be
formed. Note that it is not mandatory to assign everyone in a team. In case you
don’t know, each team consists of exactly three members.

Constraint: #<15

Sample Input Sample Output

9 Case1: 3
2220910 19 30 2 4 1 Case2: 0
6
2
15 3
0

Source: 1IUPC 2006
ID for Online Judge: UVA 11088

“§ Hint

Suppose S is a sequence of contestants’ ability points, and bes#(S) is the maximum
number of promising teams that can be formed.
The problem is solved with its subproblem as such:

If (]|S]<3)
best (S)=0;

1 a;+aj+ar=20
0 otherwise ’

else best(S={a;,a,,....,an}) = max(best[s— a;—aj—ay)+ {
1,7,k

6.4.21 Many a Little Makes a Mickle

A long string does not look so long if we can identify a few short substrings that
were used (possibly more than once) in some permutation to construct the longer
string. Your task is to find if a given (long) string can be made up by choosing some
(shorter) strings from a given collection.

322 m Algorithm Design Practice for Collegiate Programming

You should note that:

1. All the strings are composed of ASCII characters in the range 33 to 127.

2. Any of the short strings or their reversed forms can be used any number of
times to construct the long string.

3. Each use of a short string or its reverse would be counted as one occurrence
of that short string.

When you construct the longer string from these short strings, you should
ensure that it is done by keeping the total occurrences of the short strings to a
minimum.

For example, if we want to construct the string “aabbabbabbbb” from the set
{“a”, “bb”, “abb”}, there can be many ways to achieve the goal. “a-abb-abb-abb-bb”
and “a-abb-a-bba-bb-bb” are two such valid constructions. However, we would pre-
fer “a-abb-abb-abb-bb” (five substrings) over “a-abb-a-bba-bb-bb” (six substrings)
because it uses a lesser number of substrings. You would only need to find the
minimum number of substrings that could be used to construct the given string.

Input

The first line of the the input contains § (5<51), the number of data sets. Then
S number of data sets follows. The first line of each data set contains the long
string, P (0</ength(P)<10001). The next line contains the number of short strings,
N (0<N<51) to choose from. Each of the next IV lines contain the short string
P; (0<length(P)<101) [i=1,2,3?N]. You can safely assume that there is no blank/
empty line in the input file.

Output

For each data set print exactly one line of output.

Either Set S: G

Or S: Not possible.

If it is possible to construct the string using the given strings, then print the first
line; otherwise, print the second line. Here S is the serial of data set (sequentially
from 1 to §) and Cis the minimum number of times the substrings were used to
construct P. For clarification see the sample output below.

Sample Input Sample Output

2 Set1: 5.
aabbabbabbbb Set 2: Not possible.
3

a

Practice for Dynamic Programming ™ 323

Sample Input Sample Output

bb

abb
ewu**bbacsecsc
4

ewu

bba

cse

csc

Source: Next Generation Contest 1

ID for Online Judge: UVA 10860

\% Hint

A graph is constructed as follows. Spaces between the characters are as vertices, and
the characters are edges. Therefore, two vertices are connected if the string between
them is located in given shorter strings (or the reverse). Then it’s just a standard DP
problem or a standard Shortest Path problem.

The graph is constructed in O(n°m), where 7 is the length of the longer string,
and 2 is the length of the shorter string. The problem is strictly O(%’m) as that is
the amount of data we’re given.

6.4.22 Rivers

Nearly all of the Kingdom of Byteland is covered by forests and rivers. Small riv-
ers meet to form bigger rivers, which also meet and, in the end, all the rivers flow
together into one big river. The big river meets the sea near Bytetown.

There are 7 lumberjacks’ villages in Byteland, each placed near a river.
Currently, there is a big sawmill in Bytetown that processes all trees cut in the
Kingdom. The trees float from the villages down the rivers to the sawmill in
Bytetown. The king of Byteland decided to build # additional sawmills in vil-
lages to reduce the cost of transporting the trees down river. After building the
sawmills, the trees need not float to Bytetown, but can be processed in the first
sawmill they encounter down river. Obviously, the trees cut near a village with
a sawmill need not be transported by river. It should be noted that the rivers in
Byteland do not fork. Therefore, for each village, there is a unique way down river
from the village to Bytetown.

The king’s accountants calculated how many trees are cut by each village per year.
You must decide where to build the sawmills to minimize the total cost of transport-
ing the trees per year. River transportation costs one cent per kilometre, per tree.

324 m Algorithm Design Practice for Collegiate Programming

Write a program that:

B reads from the standard input the number of villages, the number of addi-
tional sawmills to be built, the number of trees cut near each village, and
descriptions of the rivers,

B calculates the minimal cost of river transportation after building additional
sawmills,

B writes the result to the standard output.

Figure 6.9 illustrates the example input data. Village numbers are given inside
circles. Numbers below the circles represent the number of trees cut near villages.
Numbers above the arrows represent the rivers’ lengths.

The sawmills should be built in villages 2 and 3.

Input

The first line of input contains two integers: #—the number of villages other
than Bytetown (2<#<100), and k—the number of additional sawmills to be built
(1<k<50 and £<n). The villages are numbered 1,2, . . ., #, while Bytetown has
number 0.

Each of the following 7 lines contains three integers, separated by single spaces.
Line 7+1 contains:

W,—the number of trees cut near village 7 per year (0<W;<10000);
V,—the first village (or Bytetown) down river from village 7 (0<V<n);
D,—the distance (in kilometres) by river from village 7 to V; (1<D,<10000);

It is guaranteed that the total cost of floating all the trees to the sawmill in
Bytetown in one year does not exceed 2000000000 cents.
In 50 percent of test cases, 7 will not exceed 20.

Bytetown

Figure 6.9

Practice for Dynamic Programming ® 325

Output

The first and only line of the output should contain one integer: the minimal cost
of river transportation (in cents).

Sample Input Sample Output

42 4
101
1110
1025
123

Source: 1012005, Day 2

IDs for Online Judges: BZOJ 1812 http://www.
lydsy.com/JudgeOnline/problem.php?id=1812

“§ Hint

A directed graph is constructed as follows. 7 villages are represented as vertices
(numbered from 1 to 7), and the number of trees cut near village 7 per year is the
weight for vertex 7; there is an edge from a village to its first village (or Bytetown)
down river, and the distance between the two villages is the weight for the edge;
and Bytetown is vertex 0. The problem requires you to select 4 villages to build
sawmills to reduce the cost of transporting the trees down river. That is, # villages
constitute a set A. For each vertex 7 (i¢ A), there is a vertex j (jeA) such that there is a
path from vertex 7 to 7, and the path is also the shortest path from vertex 7 to vertices
in A, that is, in the path there are no other vertices in A. The length of the path X
the weight of vertex 7 is the cost of transporting the trees for village 7. The problem
requires you to calculate the minimal cost of river transportation. Obviously, the
problem is a problem for DP on a tree.

For vertex 7, its parent pointer is pa(i], its right child is ¢4[i], and its left sibling
is 6[7], 1<i<n.

The current vertex is cur, and its parent is 7. In the subtree whose root is cur, /
sawmills are built. The minimal cost of river transportation is flcur][r][/]. A recur-
sive function dfs(cur, r, [, ror) calculates fleur][r][/], where tor is the length of the
path from 7 to the nearest sawmill.

The end condition of recursion: If cur is a leaf (cur==-1), if there is no sawmill
to be built (==0), return 0; else return eo.

If cur isn’t a leaf, there are two choices;

1. At vertex cur a sawmill is built.
The rest /~1 sawmills are built in the subtree for cur (the length of the path
from vertex cur to the nearest sawmill is 0), and the subtree for cur’s left

http://www.lydsy.com/
http://www.lydsy.com/

326 ® Algorithm Design Practice for Collegiate Programming

sibling (the length of the path from 7 to the nearest sawmill is still 707). The
minimal cost of river transportation is

D1= min {dﬁ(cb[cur], cur, i, 0)+dﬁ(b[cur], r, [—1—i, tot)};
0<i</-1

2. At vertex cur there is no sawmill.
The cost of river transportation from vertex cur to the nearest sawmill is
(tortd[cur])xwlcur]. [sawmills are buile in the subtree for cur (the length of
the path from vertex cur to the nearest sawmill is zot4d[cur]), and the subtree
for cur’s left sibling (the length of the path from 7 to the nearest sawmill is still
tot). The minimal cost of river transportation is:

D2=min{cﬁ§(c/1[cur], 7, i, tot+d[cur])+dﬁ(/7[cur], r, —i, tot)}

0<i<

+(t0t+d[cur])><w[cur].

Obviously, flcur][7][/]=min{D1, D2}.
The solution to the problem is 4fs(ch[0], 0, #, 0).

6.4.23 Islands and Bridges

Given a map of islands and bridges that connect these islands, a Hamilton path, as
we all know, is a path along the bridges such that it visits each island exactly once.
On our map, there is also a positive integer value associated with each island. We
call a Hamilton path the best triangular Hamilton path if it maximizes the value
described below.

Suppose there are 7 islands. The value of a Hamilton path C,C,...C, is calcu-
lated as the sum of three parts. Let V; be the value for the island C. As the first
part, we sum over all the V; values for each island in the path. For the second part,
for each edge C;C,,; in the path, we add the product VxV,,;. And for the third part,
whenever three consecutive islands C,C;,,Cy, in the path forms a triangle in the
map, i.e., there is a bridge between C; and C,, we add the product VXV, XV,.

Most likely, but not necessarily, the best triangular Hamilton path you are
going to find contains many triangles. It is quite possible that there might be more
than one best triangular Hamilton path; your second task is to find the number of
such paths.

Input

The input file starts with a number ¢ (4<20) on the first line, which is the number
of test cases. Each test case starts with a line with two integers 7 and m, which are
the number of islands and the number of bridges in the map, respectively. The next
line contains 7 positive integers, the i-th number being the V; value of island .
Each value is no more than 100. The following 7 lines are in the form x y, which

Practice for Dynamic Programming ® 327

indicates that there is a (two-way) bridge between island x and island y. Islands are
numbered from 1 to 7. You may assume there will be no more than 13 islands.

Output

For each test case, output a line with two numbers, separated by a space. The first
number is the maximum value of a best triangular Hamilton path; the second
number should be the number of different best triangular Hamilton paths. If the
test case does not contain a Hamilton path, the output must be 0 0.

Note: A path may be written down in the reverse order. We still think it is the
same path.

Sample Input Sample Output
2 22 3
33 69 1
222

12

23

31

46

1234

12

13

14

23

24

34

Source: ACM Shanghai 2004
IDs for Online Judges: POJ 2288, ZOJ 2398, UVA 3267

\% Hint

A graph is constructed as follows. Islands are represented as vertices, bridges are
represented as edges, and positive integers associated with islands are represented as
weights associated with corresponding vertices. A state for a circuit is represented as
a binary number with 7 digits &, ...d,. If vertex 7 is in the circuit, d;,,=0; other-
wise di;=1. A circuit is marked by its last edge and its state. Suppose f1][][] and
way[][1[] are used to store the best triangular Hamilton path, where the last edge in
the circuit is (7, 7), and the the state value for the circuit is £ The value of the circuit
whose state is £ is f1Z][j][#], and the number of edges in the circuit is way[#][;][£].

328 m Algorithm Design Practice for Collegiate Programming

Queues Q1[], Q2[], and Q3[] are used to store the two vertices for the last
edge and the state for the circuit respectively; and ZN[][][] is used to store marks
that the circuit exists.

Initially, f21[0] [27'] = the weight of vertex 7 ; way[i][0][27']=1;
INTA][0][2""] = true; 4, 0 and 2" are stored in Q1[], Q2[], and Q3[] respectively,
1<i<n.

BES is used for states’ transition and to calculate all circuits:

B Delete fronts of queues (last edge (y, x) and state 2), each unvisited vertex xz
which is adjacent to vertex x ((x,xz) € E, 2 & (2¥7") == 0) is analyzed:

B Edge (x, x#) is added into the circuit. The state for the circuit becomes
zt = z+ 27", The value of the circuit is adjusted as mmp=f1x][y][z]+the weight
of vertex x#+the weight of vertex xXxthe weight of vertex xz. If vertices y, x, and
xt constitute a triangle (y&&«(y, x1)€ E), tmp=tmp+the weight of vertex yx
the weight of vertex xx the weight of vertex xz;

B If the value of the current Hamilton path is maximal (¢gmp>f1x#][x][2#]), then
[flxt][x][zt]=tmp, and the number of edges is noted (way[x?][x][zf]=way[x][y][z]).
If (IN1x#][x][zt]==false), then edge (x, xz) and z# is added into queues Q1[]
Q2[], and Q3[] respectively, and /N [xz][x][zt]=true;

B Ifthe value of the current Hamilton path is the same as fx#][x][z#] (tmp==fTx1]
[x][z2]), then way|xt][x][zt]=way|xt][x] [zl +way|x][y][z];

Repeat the above process until queues are empty.
Obviously, all Hamilton paths are enumerated, and the maximum value of a

best triangular Hamilton path is max = max { f[][j][2" —1]}.
1<i<n,0< j<n,i# j

The number of different best triangular Hamllton paths is calculated as follows.

ans = z (wayld1[112" —11] fI4] 1]} = max).

1<i<n,0< j<n,1#j

If the number of vertices 7>1, the number of different best triangular Hamilton
paths is ans/2 (because of the symmetry in an undirected graph); if 7==1, the num-
ber of different best triangular Hamilton paths is azs.

6.4.24 Hie with the Pie

The Pizazz Pizzeria prides itself in delivering pizzas to its customers as fast as pos-
sible. Unfortunately, due to cutbacks, they can afford to hire only one driver to do
the deliveries. He will wait for one or more (up to ten) orders to be processed before
he starts any deliveries. Needless to say, he would like to take the shortest route in
delivering these goodies and returning to the pizzeria, even if it means passing the
same location(s) or the pizzeria more than once on the way. He has commissioned
you to write a program to help him.

Practice for Dynamic Programming ® 329

Input

Input will consist of multiple test cases. The first line will contain a single integer 7
indicating the number of orders to deliver, where 1<1<10. After this will be 741 lines
each containing 7+1 integers indicating the times to travel between the pizzeria (num-
bered 0) and the 7 locations (numbers 1 to 7). The j-th value on the i-th line indicates
the time to go directly from location 7 to location j without visiting any other locations
along the way. Note that there may be quicker ways to go from i to j via other loca-
tions, due to different speed limits, traffic lights, etc. Also, the time values may not be
symmetric, i.e., the time to go directly from location 7 to j may not be the same as the
time to go directly from location j to 7. An input value of #=0 will terminate input.

Output

For each test case, you should output a single number indicating the minimum
time to deliver all of the pizzas and return to the pizzeria.

Sample Input Sample Output
3 8

011010

1012

10 1 0 10

102100

0

Source: ACM East Central North America 2006
IDs for Online Judges: POJ 3311, UVA 3725

“§ Hint

Suppose the state for the path is represented as a binary number D=d,,...dq, where

1 Vertex i is on the path
d;= o (0<i<n);
0 Vertex i isn’t on the path

S1il[#] is the minimum time that the pizzeria (numbered 0) is the start, the state
for the path is 4, and 7 is the end (0<i<n, 0<k<2"'-1).

First, the Floyd algorithm is used to calculate the shortest paths between any two
vertices in the directed graph map[][]. Obviously, initially f [i][2i_1]=m¢z])[0] (£].
Then Dynamic Programming of State Compression is used to calculate £][:

All possible states of paths 7 are enumerated (0<i<2");

330 m Algorithm Design Practice for Collegiate Programming

Vertices j and 4 are enumerated (1<j, #<n), where vertice j is in the state of
the path (:8(2/™)=1), and vertice % isn’t in the state of the path (& (2¥1H=0);
FlRli+2 1=Min{ fTk][i+2""], F1j]1[i]+mapl j][£]} is calculated.

Obviously, the minimum time to deliver all of the pizzas and return to the piz-
zeria is angyin{f[i] (2" —1]+mapli][0]} .

6.4.25 Tian Ji: The Horse Racing

Here is a famous story from Chinese history.

About 2300 years ago, General Tian Ji was a high official in the country Qi. He
likes to play horse racing with the king and others.

Both Tian and the king have three horses in different classes, namely, regular,
plus, and super. The rule is to have three rounds in a match; each of the horses must
be used in one round. The winner of a single round takes two hundred silver dollars
from the loser.

Being the most powerful man in the country, the king has such nice horses that
in each class, his horse is better than Tian’s. As a result, each time the king takes six
hundred silver dollars from Tian.

Tian Ji was not happy about that, until he met Sun Bin, one of the most famous
generals in Chinese history. Using a little trick he learned from Sun, Tian Ji brought
home two hundred silver dollars in the next match.

It was a rather simple trick. Using his regular class horse race against the super
class from the king, they will certainly lose that round. But then his plus beat the
king’s regular, and his super beat the king’s plus (see Figure 6.10). What a simple
trick. And what do you think of Tian Ji, the high-ranked official in China?

Where Tian Ji lives nowadays, he will certainly laugh at himself. Even more, if
he were sitting in the ACM contest right now, he may discover that the horse rac-
ing problem can be simply viewed as finding the maximum matching in a bipartite
graph. Draw Tian’s horses on one side, and the king’s horses on the other. Whenever
one of Tian’s horses can beat one from the king, we draw an edge between them,
meaning we wish to establish this pair. Then, the problem of winning as many rounds
as possible is just to find the maximum matching in this graph. If there are ties,

A
92 “W -200 95
W
83 M —-200 87
71 M -200 74

Figure 6.10

Practice for Dynamic Programming ™ 331

the problem becomes more complicated; he needs to assign weights 0, 1, or —1 to all
the possible edges, and find a maximum weighted perfect matching,.

However, the horse racing problem is a very special case of bipartite matching.
The graph is decided by the speed of the horses—a vertex of higher speed always
beats a vertex of lower speed. In this case, the weighted bipartite matching algo-
rithm is too advanced a tool to deal with the problem.

In this problem, you are asked to write a program to solve this special case of
matching problem.

Input

The input consists of up to 50 test cases. Each case starts with a positive integer 7
(n<1000) on the first line, which is the number of horses on each side. The next »
integers on the second line are the speeds of Tian’s horses. Then the next 7 integers
on the third line are the speeds of the king’s horses. The input ends with a line that
has a single “0” after the last test case.

Output

For each input case, output a line containing a single number, which is the maxi-
mum money Tian Ji will get, in silver dollars.

Sample Input Sample Output

3 200
92 83 71 0
95 87 74 0
2

20 20
20 20
2

20 19
22 18
0

Source: ACM Shanghai 2004
IDs for Online Judge: POJ 2287, ZOJ 2397, UVA 3266

“igi Hint

The speeds of Tian’s horses and the speeds of the king’s horses are sorted in descend-
ing order respectively. If the king’s horses participating in the horse racing are in
this order, then Tian will let the current slowest horse or the current fastest horse

332 m Algorithm Design Practice for Collegiate Programming

participate in the horse racing each time. If the king’s current fastest horse can defeat
Tian’s any current horse, it defeats Tian’s current slowest horse. If the king’s current
fastest horse can be defeated, Tian’s current fastest horse defeating it is suitable.

Suppose f1i][j] is the maximum silver dollars Tian will get when Tian can use
horse from number 7 to number j, and the king’s current horse is horse j—i+1.
Obviously, f11][#] is the solution to the problem.

£li] [jl1=max (£[i+1] [jl+cmp(alil, blj-i+1]1), flil
[j-1]+cmp(alj]l, blj-i+1]))

where 4[] is Tian’s horse, 4[] is the king’s horse, and ¢mp is the result that the two
horses race.

6.4.26 Batch Scheduling

There is a sequence of N jobs to be processed on one machine. The jobs are num-
bered from 1 to MV, so that the sequence is 1, 2,..., V. The sequence of jobs must be
partitioned into one or more batches, where each batch consists of consecutive jobs
in the sequence. The processing starts at time 0. The batches are handled one by
one starting from the first batch as follows. If a batch & contains jobs with smaller
numbers than batch ¢, then batch & is handled before batch ¢. The jobs in a batch
are processed successively on the machine. Immediately after all the jobs in a batch
are processed, the machine outputs the results of all the jobs in that batch. The
output time of a job j is the time when the batch containing j finishes.

A setup time S is needed to set up the machine for each batch. For each job 7,
we know its cost factor F; and the time 7} required to process it. If a batch contains
the jobs x, x+1,... , x+4, and starts at time #, then the output time of every job in
that batch is #4+5+(74 Tos1+..4+T4). Note that the machine outputs the results of all
jobs in a batch at the same time. If the output time of job i is O, its cost is OXF,
For example, assume that there are five jobs, and the setup time S=1, (T3, 75, T3,
Ti, T5) = (1, 3, 4, 2, 1), and (£, F,, Fs, Fy, F5) = (3, 2, 3, 3, 4). If the jobs are par-
titioned into three batches {1, 2}, {3}, {4, 5}, then the output times (O,, O,, O;, Oy,
05)=(5, 5, 10, 14, 14) and the costs of the jobs are (15, 10, 30, 42, 56), respectively.
The total cost for a partitioning is the sum of the costs of all jobs. The total cost for
the example partitioning above is 153.

Input

Your program reads from standard input. The first line contains the number of
jobs IV, 1<N<10000. The second line contains the batch setup time S which is an
integer, 0<5<50. The following V lines contain information about the jobs 1, 2,...,
N in that order as follows. First on each of these lines is an integer 7}, 1<7<100,
the processing time of the job. Following that, there is an integer F;, 1<F<100, the
cost factor of the job.

Practice for Dynamic Programming ™ 333

Output

Your program writes to standard output. The output contains one line, which con-
tains one integer: the minimum possible total cost.

Sample Input Sample Output
5 153

1

13

32

43

23

14

Source: 1012002
IDs for Online Judge: POJ 1180

“igi Hint (given by the problemsetter)

This problem can be solved using DP. Let C; be the minimum total cost
of all partitionings of jobs /;, fi..., J, into batches. Let Ci(4) be the mini-
mum total cost when the first batch is selected as {/i» Ji+15---> -1}, That is,
Ci(k)=Co +(S+T;+ T +.. AT)X(F+ iy +.. 4+ F,).

Then we have that C=min {C/(k)|k=i+1, ..., n+1} for 1<i<n, and C,,,=0.

The time complexity of the above algorithm is o).

Investigating the property of C(k), this problem can be solved in O(#) time.

From C, (k)=Cy H(S+T;+ T +.. ATy)X(E+F+... +F,),
we have that for i<k</,C; (/e)SCi ()

SC-Co+T+Th+.. AT)X(F+Fy+... +F,)20
S(C=C)(T+Ten+... +T10)S(F+Fy+.. +F,)

Let g(£,0)=(Co=C)) (T +Tpn+..+T-) and £ (i)=(F+F+..+F,)

Property 1: Assume that g(k, /)<f(i) for 1<i<k</. Then C,(k)<C(/).

Property 2: Assume g(j, k)<g(k, /) for some 1<j<k</<n. Then for each i with
1<i<j, C(j)<Ci(k) or C()<Ck).

Property 2 implies that if g(j, £)<g(#, /) for j<k<l, C, is not needed for comput-
ing F,. Using this property, a linear time algorithm can be designed, which is given
in the following.

334 m Algorithm Design Practice for Collegiate Programming

The algorithm calculates the values C; for i = » down to 1. It uses a queue-like
list Q= (i, ioyy ... , i, 7y) with tail 7, and head 7; satisfying the following properties:

i <iy <...<iy<i; and g, i) > gy iy)>. ... > g(iy,4)) v (1)

When C; is calculated,

1. // Using f{#), remove the unnecessary element at head of Q.

If f(i)=g(i,, 1i,), delete i, from Q since for all hs<i,
f(h)=f(1)=2g9(i,, 1) and Cp(i,)=Cy(i,) by Property 1.
Continue this procedure until for some t=1, g(i,,

I,00) >9 1y g, Ipp) >0 o et >g(1e,q, 1¢)>f(1).

Then by Property 1, C;(i,..)>C;(i,) for v=t, ... , r-1 or
r=t and Q contains only 1i..

Therefore, C;(i.) is equal to min{C;(k) |k=i+1, ... , n+l}.

2./ When inserting 7 at the tail of Q, maintain Q for the condition (1) to be
satisfied.

If g(i, i,)=g(i,, i,;), delete i, from Q by Property 2.
Continue this procedure until g(i, 1i,)>g(i,, I,4).
Append 1 as a new tail of Q.

Each 7is inserted into Q and deleted from Q at most once. In each insertion and
deletion, it takes a constant time. Therefore, the time complexity is O(n).

Chapter 7

Practice for Advanced
Data Structures

In this chapter, experiments for some frequently used data structures are discussed
as follows:

B In linear lists, experiments for suffix arrays are shown;
B In trees, practices for segment trees are given;
B In graphs, some special graph algorithms are introduced.

7.1 Suffix Arrays

A string is a sequence of characters. A suflix for a string is a substring from a charac-
ter in the string to the end of the string. A suffix array is a sorted array of all suffixes
of a string, and is used in full text indices, data compression algorithms, and so on.

7.1.1 Doubling Algorithm Used to Calculate
a Rank Array and a Suffix Array

Suppose S is a string, where its length is length(S), the i-th character in S is S[i,
S[i...j] is the substring from S[i] to S[j] in S, and 1<i<j<length(S). The suffix array
of § is an array whose elements are suffixes from the i-th character, 1<i<lengrh(S),
represented as Suffix(S, i), that is, Suffix(S, 7)=Si..length(S)]. For convenience, for
a string S, the suffix from the i-th character can be written as Suffix(i). Figure 7.1
is an example.

335

336 m Algorithm Design Practice for Collegiate Programming

[ala|]b|]a]a]a]a]hb | Stings
|I|sufﬁx(8)

[a [b] suffix?)

[a [a [b]| suffix6)

[a] a] a] b | suffix®

[a] a]a]alb] suffix@
[b[alaflal]al]hb] suffix®
[a[b|lafa]al]al]b]suffix2
[a]Ja|b]ala]lal]alb]|sufix

Figure 7.1

All suffixes for a string can be sorted in lexicographic order. For a string whose
length is 7, there are 7 different suffixes. A suffix array SA and a rank array Rank
are used to represent sorting the 7 suffixes.

Suffix Array SA: SA is an integer array storing a permutation of 1, 2, ..., 7, and
Suffix(SA[i])<Suffix(SA[i+1]), 1<i<n. For a string S, » suffixes are sorted in
lexicographic order, and SA[7] stores the starting position for the i-th suffix.
That is, a sufhix array SA represents which is the i-th suffix in lexicographic order.

Rank Array Rank: Rank is an integer array with respect to SA. If SA[7]=j, then
Rank[j]=i. That is, Rank represents which position a suffix is in.

Therefore, calculating a suffix array SA is the inverse operation for calculating a
rank array Rank, Rank=SA"". For example, for a string “aabaaaab”, its suffix array
SA and rank array Rank are shown in Figure 7.2.

Doubling the algorithm is used to calculate a rank array Rank for a string. In
order to calculate Rank conveniently, the least character which doesn’t appear in
the string is added to the end of the substring to make the length of the substring
become an integer power of 2.

Doubling the algorithm is as follows. Substrings starting from every character
with length 2 are sorted in lexicographic order, £20. Power £ is increased by 1 each
time. That is, the length of sorted substrings is doubled each time. And each time,
sorting substrings is based on the last Rank. Suppose the key xy is the value for
the current Rank for the substring whose starting position is 7 (1<7<#), and whose
length is 2% where

x is the rank for its left substring, that is, its starting position is 7, and its length
is 2¢71, that is, x is Rank[i] for the last Rank;
. k-1 .
y is the rank for its right substring, that is, its starting position is 742°", and its
length is 2% that is, yis Rank[i+2"7'] for the last Rank.

Practice for Advanced Data Structures m 337

Rank = 4 6 8 1 2 3 5 7
[al,a b [aJfal,a]alb]

sa[ll=4 [a|]]la [[a [J"a [[b]

sa21=5 [a[]]la [[a | b 7

sa3]1=6 | a|[[a [|b T—

sa[4]=1 | a ' [[a [[b | a [a] a | a|[] b]]

sa51=7 [_a [[b

saf6]=2 [a ['b [[a | a | a [a | b |

sa[71=8 [b

sa[8]1=3 [b [a [Ta | a [a | b |

Array SA and Array Rank for ‘“aabaaaab”

Figure 7.2

Values xy representing substrings whose length is 2* constitute an array xy[].
And Rank for substrings whose length is 2% is calculated through sorting xy. When
2*>n, Rank is the rank array. For example, there is a string S=“aabaaaab”.

k=0, substrings whose starting position is every character and length is 2°=1 are
sorted. Rank[1..8]={1,1,2,1,1, 1, 1, 2}.

k=1, substrings whose starting position is every character and length is 2'=2 are
sorted. That is, based on the previous rank values x and y, key xy[1..8]={11,12,
21,11,11,11,12,20}. And Rank[1..8]={1, 2,4, 1, 1, 1, 2, 3}.

k=2, substrings whose starting position is every character and length is 22=4 are
sorted. Key xy[1..8]={14, 21, 41, 11, 12, 13, 20, 30}. And Rank[1..8]={4, 6, 8,
1,2,3,5 7}

/=3, substrings whose starting position is every character and length is 2°=8 are
sorted. Key xy[1..8]={42, 63, 85, 17, 20, 30, 50, 70}. And Rank(1..8]={4, 6,
8,1,2,3,5, 7}

The process for doubling the algorithm is shown in Figure 7.3.
The program segment gez_suffix_array() calculating rank array Rank[] and suf-
fix array SA[] is as follows:

struct node{int now, next}d[maxn]; // linear 1list,
where d[].now is the sequence number for an element, and
d[].next is the successor pointer

int vall[maxn] [2], clmaxn], Rank[maxn], SA[maxn], posl[maxn],
x [maxn] ; // x[1 is the string; vall 1[1 are keys, where x
is vall 1[1], and y is vall 1[2]; c[] stores elements’ front

338 m Algorithm Design Practice for Collegiate Programming

Sorting 1
rank [1 [1T [2] 1] 1] 1] 17 2]Lengthis1

xyl[tiJi2fJ21]JraJriJii]J1r2]20]
Sorting 2
rank [1 [2] 4] 1 [1] 1] 2] 3 |Lengthis2

xy[14]21J41]11]J12]13]20]30]
Sorting 3

rank [4 | 6 | 8 [1 [2]3] 5] 7 |Lengthis4
[—T—]
—

|l —T1 —1
xyl42]63]85][17]20]30]50]70]

Sorting 4

rank [4 | 6 | 8 [1 [2] 3] 5] 7 |Lengthis5

Figure 7.3

pointers in d[]1; Rank[] stores suffixes’ rank, SA[] stores
starting position for suffixes

int n; // the length of the string
void get suffix array() //Calculating Rank[] and SA[]
{
int t = 1; //Initialize the length of a substring
while (t/2<=n){ //calculating Rank[] for substrings

whose length is t
for (int i=1; i<=n; i++)
vall[i] [0]=Rank[i]; //left substring (start position 1,
length t/2)
vall[i]l [11=(((i+t/2<=n)?Rank[i+t/2]:0));//right
substring (start position i+t/2, length t/2)

poslil=1i;
!
radix sort(l, n); //valll [0] and vall[] [1] are
combined into xy, calculate Rank[] that substring’s length is t
t *= 2;
1
for (int 1i=1; i<=n; i++) SA[Rankl[i]]=1; //Calculate
SA[] based on RankI[]

}

// radix sort(l, n) used to sort key xy

void radix sort(int 1, int r) // wvalll[0] and vall]I[1l] are
combined into xy, calculate Rank[l..r] that substring’s length
is t

Practice for Advanced Data Structures ®m 339

{
for (int k =1; k>=0;k --)
{
memset (¢, 0, sizeof(c));
for (int i=r; i>=1; 1 --)
add_value (val([pos[i]] [k], pos[il, 1);
int £t = 0;
for (int 1 =0; 1<=20000; 1 ++)
for (int j=clil; j; j=dl[j] .next) pos[++tl=d[j] .now;
}
int t=0;

for (int i=1; i<=n; 1 ++) {
if (vallpos[i]][0]!=vallpos[i-1]1][0]]|]|vallpos(i]l]
[1]!=vallpos[i-1]11[1]) t++;
Rank[pos[i]] = t;

}
1
void add value(int u, int v, int 1)
{
d[i] .next=clul; clul=1i;
d[i] .now=v;
}

The time complexity of doubling the algorithm is O(#*log,n).

7.1.2 The Longest Common Prefix

The algorithm calculating the longest common prefix is also important in process-
ing strings.

Property 7.1.1 Suppose beight[d] is the length of the longest common prefix for
suffix(SA[i—1]) and suffix(SA[7]), that is, the length of the longest common prefix for
two adjacent suffixes in SA. For j and 4, if Rank[jl<Rank[#], there is the following
property:

The length of the longest common prefix for suffix(j) and suffix(k) is
the minimum for {height[Rankljl+1], height[Rank(jl+2], height|Rank[j]+3], . . .,
height|Rank[k]]}.

For example, for a string “aabaaaab”, the length of the longest common prefix
for suffixes “abaaaab” and “aaab” is calculated as shown in Figure 7.4.

In Figure 7.4, the rank for suffix “abaaaab” is 6, that is, SA[6]=2, and Rank[2]=6;
the rank for suffix “aaab” is 2, that is, SA[2]=5, and Rank[5]=2. The length of
the longest common prefix for suffix “abaaaab” and suflix “aaab” is min{height[3],
height|4), height[5], height[6l}=min{2, 3, 1, 2}=1.

Calculating the longest common prefix for suffixes is to calculate the minimum
in an interval. The longest common prefix for suffix(j) and suffix(k) is the minimum
in an interval [Rank[j]+1 ... Rank[k]].

340 m Algorithm Design Practice for Collegiate Programming

Lala'[b]a]afaflalb]
height
3<|a|a|a|a|b|sa[1]=4
|a|a|a|b|% sa[2]=5
2K

l3)6

|a|a|b|a|a|a|a|b|sa[4]=l

a0 Jsaisir

[a b] afa]a]al]b]<«—sa6=2

[b]sal71=8

[b] a]a]a] al]b |sa8=3

3K
1<
2|<
0 <
1<

Figure 7.4

The key to the problem is how to calculate array height[] effectively. If
height[2], height|3], ..., and height[n] are calculated one by one, the time com-
plexity is O@7%. In order to calculate array height]] effectively, h[4] is defined:
hlil=height| Rankld]].

Property 7.1.2 h[i]=h[i-1]-1.
Based on A[1], 4[2],..., hlnl, array height[] can be calculated. Its time complex-
ity is O(n). The program segment is as follows:

void get common prefix() //Calculating the array for the
longest common prefix height[]
{

memset (h, 0, sizeof (h));
for (int i=1; i<=n; i++) { // Recursion: calculating h[]
if (Rank[i]==1)
h[il=0;
else(
int now=0;
if (i>1 && h[i-1]1>1)now=h[i-1]-1;
while (now+i<=n&&now+sal[Rank[i] -1] <=n&&x[now+1i] ==x[now
+sal[Rank[i]-111)
now ++;
h[i] = now;
1
!
for (int i =1; i <= n; i ++) height[Rank[i]]l=h[i];
//Based on h[1, height[] is calculated

}

Practice for Advanced Data Structures m 341

7.1.3 Application of Suffix Array

The reasons why suffix arrays can be widely used in string processing are as
follows:

1. Based on the rank array Rank[| and the array for the longest common
prefix height[], brute-force searches can be avoided and algorithms can be
optimized;

2. The efficiency for calculating the rank array Rank[] and the array for the
longest common prefix beight| | can be improved. Calculating a rank array
Rank[] and the array for the longest common prefix height|] can also be
implemented as standard program segments.

In 7.1.3.1 Musical Theme, gez_suffix_array() is to calculate the rank array
Rank[]. And in 7.1.3.2 Common Substrings, ger_common_prefix() is to calculate
the array for the longest common prefix height|].

7.1.3.1 Musical Theme

A musical melody is represented as a sequence of N (1SN<20000) notes that are
integers in the range 1..88, each representing a key on the piano. It is unfortunate
but true that this representation of melodies ignores the notion of musical timing;
bu, this programming task is about notes and not about timings.

Many composers structure their music around a repeating “theme”, which, being
a subsequence of an entire melody, is a sequence of integers in our representation.
A subsequence of a melody is a theme if it:

Is at least five notes long

Appears (potentially transposed—see below) again somewhere else in the piece
of music

Is disjoint from (i.e., non-overlapping with) at least one of its other appearance(s)

Transposed means that a constant positive or negative value is added to every
note value in the theme subsequence.

Given a melody, compute the length (number of notes) of the longest theme.

One-second time limit for this problem’s solutions!

Input

The input contains several test cases. The first line of each test case contains the
integer N. The following /V integers represent the sequence of notes.

The last test case is followed by one zero.

Use scanf instead of cin to reduce the read time.

342 m Algorithm Design Practice for Collegiate Programming

Output

For each test case, the output file should contain a single line with a single integer
that represents the length of the longest theme. If there are no themes, output 0.

Sample Input Sample Output

30 5
25273034 3945 52 60 69 79 69 60 52 45
39343026221882 78747066 67 64
60 65 80

0

Source: LouTiancheng@PO)]
IDs for Online Judges: PO) 1743

= Analysis

One application of suffix arrays is to compute the length of the longest disjoint
repeating substrings in a string. First, we need to determine two substrings whose
length is 4 are the same and disjoint. The length of the longest common prefix,
array height|], is used to solve the problem. Sorted suflixes are divided into several
groups, where in each group suflixes’” beight aren’t less than a number. For example,
there is a string “aabaaaab”. If #=2, suffixes for “aabaaaab” are divided into four
groups, as shown in Figure 7.5.

heliht< a | a | a| a] b |sall=4 Group 1
2 ¢ a | a] a] b |sa2]=5
a | a | b |sa3]=6
3< a [a]b]a]al]al]al]b]|sads=l

ZlIl sa[5]=7 Group 2

a [b] a]al]al]al]b |sae=2

b |sa[7]=8 Group 3

b | a | a | a | a | b |sa[8]:3Group4

Figure 7.5

Practice for Advanced Data Structures m 343

In group 1: height[2]=3, height[3]=2, and height|4]=3. In the group suffixes’
height aren’t less than 2. The difference between the maximum and the mini-
mum for suffixes’ SA4 is SA[3]—-SA[4]=5.

In group 2: height[5]=1, and height{6]=2. In the group suflixes’ height aren’t less
than 1. The difference between the maximum and the minimum for suffixes’
SA is SA[5]-SA[6]=5.

In group 3: height[7]=0. In the group, the difference between the maximum
and the minimum for suffixes’ S4 is 0.

In group 4: height[8]=1. In the group, the difference between the maximum and
the minimum for suffixes’ $4 is 0.

Obviously, the two suffixes whose suffixes’ beight are less than £ must be in a
group. Then, for each group, we need to determine whether the difference between
the maximum and the minimum for suffixes’ A4 is less than % or not. If the differ-
ence is less than £, then there exist two suffixes whose length of the longest disjoint
repeating substrings is less than 4; else there isn’t such a pair of suffixes. For example,
in group 1, there exist two suffixes whose length of the longest disjoint repeating
substrings is less than 3 (beight[2]=height[4]=3), and the difference between the
maximum and the minimum for suffixes’ 4 is SA[3]—SA[4]=6—1=5>3. Therefore,
the longest disjoint repeating substring is “aab”, and it appears two times.

The algorithm is as follows:

First, a string # is input and pretreated. Because of transposition, the current number
subtracts the previous number. A new string whose length is #—1 is generated.
Second, for the new string, the longest common prefix, array height|], is calculated.

Then, the longest repeating substring is calculated.

Finally, if the length of the longest repeating substrings is less than 5, there is
no theme; else the length of the longest theme is the length of the longest repeat-
ing substring s+1, for the longest repeating substrings can’t be adjacent, and can be
overlapped. If the longest repeating substrings are adjacent in the new string, then
they are overlapped in the original string.

The time complexity for the algorithm is O(n*log,n).

o

#include <iostream>
#include <cstdio>
#include <cmaths>
#include <cstdlib>
#include <cstring>
#include <strings>

344 m Algorithm Design Practice for Collegiate Programming

#include <map>
#include <utilitys>
#include <vector>
#include <set>
#include <algorithms>
#define maxn 20010 //the upper limit of the length for the
sequence of notes
#define Fup(i,s,t) for (int i=s; i <=t; 1 ++) //Increasing
loop
#define Fdn(i,s,t) for (int i = s; 1 >= t; i --) //Descending
loop
#define Path(i,s) for (int i=s; 1i; i=d[i] .next) //Singly
Linked List d[]
using namespace std;
struct node {int now, next;}d[maxn]; // dll, where dI[].now
is the sequence number for an element, and d[].next is the
successor pointer
int val [maxn] [2], c[maxn], rank[maxn], sal[maxn], pos[maxn],
h[maxn], height [maxn], x[maxn]; //x[1: the sequence of
notes is transposed; vall]l[]l: keys, where x is vall[][0], y is
vall[]l[1]; c[] stores elements’ front pointers in d[]1; Rank[]
stores suffixes’ rank; SA[] stores the starting position for
suffixes; height[] is the array for the longest common prefix;
h(il=height[Rank[i]]
int n; // the length of the sequence of notes
void add_value(int u, int v, int i) //add an element into d[]
{

d[i] .next = c[ul; clul = 1i;

d[i] .now = v;
!
void radix_sort (int 1, int r) // vallll[0] and vall][1]
are combined into xy, calculate Rank[Il..r] that substring’s
length is t

{
Fdn(k, 1, 0){
memset (¢, 0, sizeof (c));
Fdn(i, r, 1) add value(vallpos[il] [k], pos[il, 1i);
int t = 0;
Fup (i, 0, 20000)
Path(j, cl[il])
pos[++ t] = d[j] .now;
1
int t = 0;
Fup(i, 1, n){
if (vall[pos([i]][0] != vallpos[i - 1]]1([0] ||
val [pos[i]] [1] != vall[pos[i - 111]1I[11)
t ++;
rank [pos[i]] = t;
!

Practice for Advanced Data Structures ®m 345

bool exist (int len) //If there are disjoint repeating
substrings whose length is len, return 1; else return 0

{

int Min = n + 1, Max = 0; // the maximum and the
minimum for suffixes’ SA is initialized
Fup(i, 1, n) //Rank 1s in ascending order
if (height[i] < len){ //if heightl[i]l<len, and the

difference between the maximum and the minimum for suffixes’
SA isn’t less than len, return 1
if (Max - Min >= len)

return 1;
Min = Max = salil;
telse{ //adjust the maximum and the minimum for
suffixes’ SA
Min = min(Min, salil);
Max = max (Max, salil);

!
if (Max - Min >= len) //if the difference between the
maximum and the minimum for suffixes’ SA isn’t less than len,
return 1; else return 0
return 1;
return O0;

1
void get suffix array() // get suffix array() is in 7.1.1
{
int t = 1;
while (¢t / 2 <= n){
Fup(i, 1, n){
val([i] [0]=rank[i];
val[i]l[1] = (((1i + t / 2 <= n) ? rank[i + t / 2]

pos[i] = i;
!
radix_sort (1, n);
t *= 2;
1
Fup(i, 1, n) salrank[i]] = 1i;
!
void get common prefix() // get _common prefix() is in 7.1.2
{
memset (h, 0, sizeof(h));
Fup(i, 1, n){

if (rank[i] == 1)
h[i] = 0;
else{
int now = 0;
if (1 > 1 && h[i - 1] > 1)

now hii - 1] - 1;
while (now + i <= n && now + salrank[i] - 1] <= n

&& x[now + i] == x[now + sal[rank[i] - 1]])

346 m Algorithm Design Practice for Collegiate Programming

now ++;
hl[i] = now;
1
!
Fup(i, 1, n) height[rank[i]] = h[i];

}

int binary search(int 1, int r) //using binary search to
calculate the length of the longest disjoint repeating
substring
{
while (1 <= r){
int mid = (1 + r) / 2;
if (exist (mid)) //1f there exists a disjoint
repeating substring whose length is mid, search the left
interval; else search the right interval
1l = mid + 1;
else
r = mid - 1;

}

return r; //return the length
!
void solve () //compute and output the length of the longest
theme
{

Fup(i, 1, n - 1) //For two adjacent notes, subtract the
previous note from the current note, a new string is formed

rank[i] = x[i]l= x[1i + 1] - x[i] + 88;

n --; //the length of the new string

get _suffix array(); //calculate Rank][]

get_common prefix() ; // calculate height/[]

int ans = binary search(0, n) + 1; // using binary

search to calculate the length of the longest disjoint
repeating substring

ans = ((ans < 5) ? 0 : ans); // at least five notes
long

printf ("$d\n", ans); //output the length of the longest
theme
!
int main()

{
while (scanf("%d\n", &n), n > 0){
Fup (i, 1, n)scanf("sd", &xI[i]); // the sequence of
notes
solve () ; // calculate output the length of the
longest theme

}

return O;

Practice for Advanced Data Structures m 347

7.1.3.2 Common Substrings
A substring of a string 7 is defined as:
T(ik) =TT Tiupr, 1Si<i+k—1<[T |
Given two strings A, B and one integer K, we define S, a set of triples (4, 7, 4):
S={G, j, HIk=K, AG,))=B(j, k)}.

You are to give the value of || for specific 4, B and K.

Input

The input file contains several blocks of data. For each block, the first line contains
one integer K, followed by two lines containing strings A and B, respectively. The
input file is ended by K=0. 1<|A4|, B|SIOS, 1<K<minf|A|,|B|}. Characters of A and B
are all Latin letters.

Output

For each case, output an integer |S |

Sample Input Sample Output

2 22
aababaa 5
abaabaa
1

XX

XX

0

Source: POJ Monthly, 2007.10.06, wintokk

ID for Online Judge: POJ 3415

&J Analysis

The problem requires you to calculate the number of common substrings whose
length isn’t less than 4 for two strings A, B.

In the previous problem, array height[] is the length of the longest common
prefix for two suffixes whose ranks are adjacent. In this problem, array height| |
is the number of common substrings whose length isn’t less than £ for the longest
common prefix for two suffixes whose ranks are adjacent. If height[i]—k+1>0, then

348 m Algorithm Design Practice for Collegiate Programming

there are height[i]—k+1 common substrings whose length is % for two suffixes whose
ranks are 7 and i—1 respectively, and height|i]<—height[i]—k+1; else there are no com-
mon substrings whose length is # for the two suffixes. Therefore, the idea for solving
the problem is as follows.

Calculate the length of the longest common prefix for all suffixes for strings 4,
B, and accumulate the number of common substrings whose length isn’t less than 4.

The algorithm is as follows. Strings A and B adjoin. And a character (e.g., “$”)
which doesn’t appear is inserted into the string to separate Strings A and B. Based
on array height|], strings are divided into several groups. For each group, the num-
ber of common substrings whose length isn’t less than £ is calculated. For each
suflix for B, calculate the number of common substrings whose length isn’t less
than 4 for the longest common prefix for all suffixes for A. And for each suffix
for A, calculate the number of common substrings whose length isn’t less than # for
the longest common prefix for all suffixes for B.

oY
= (.

#include <iostream>

#include <cstdio>

#include <cmath>

#include <cstdlibs>

#include <cstrings>

#include <strings>

#include <map>

#include <utilitys>

#include <vector>

#include <set>

#include <algorithm>

#define maxn 200010

#define Fup(i, s, t) for (int = 8; 1 <= t; 1 ++)

#define Fdn (i, s, t) for (int =8; 1 >=t; 1 --)

#define Path(i, s) for (int i = s; 1i; 1 = d[i] .next)

using namespace std;

struct node {int now, next;}d[maxn]; // dll, where dI[].now
is the sequence number for an element, and d[].next is the
successor pointer

int val [maxn] [2], c[maxn], rank[maxn], sal[maxn], pos[maxn],
h[maxn] , height[maxn], x[maxn], stal[maxn], numl[maxn],

num2 [maxn] ; //x[] is a combined array; valll[] are keys,
where x is vall[] [0], and y is vall]l[1]; cl[] stores front
pointers for elements in d[]; Rank[], SA[] and height[] have
been defined; hli]l=height[Rank[i]l]; hli]l=height[Rank[il];
string S, s; // two strings for a test case

(SRS

Practice for Advanced Data Structures ®m 349

int n, k;
void add_value(int u, int v, int i) // add an element into d[]

{

d[i] .next = clul; clu]l = i;
d[i] .now = v;
!
void radix sort (int 1, int r) // vall]l[0] and vall] [1] are

combined into xy, calculate Rank[Il..r] that substring’s length
is t

{
Fdn(k, 1, 0){
memset (¢, 0, sizeof (c));
Fdn(i, r, 1)
add_value (val [pos[i]] [k], pos[i]l, 1i);
int t = 0;
Fup(i, 0, 200000)
Path(j, cli])
pos[++ t] = d[j] .now;
!
int t = 0;
Fup(i, 1, n){
if (vallpos[i]][0] != vallpos[i - 11]1([0] ||
val [pos[i]l][1] != vallpos[i - 111I[11])
t ++;
rank [pos[i]] = t;
1
!

void get_suffix_array() //calculate Rank[] and SA[]

{
int t = 1;
while (t / 2 <= n){
Fup(i, 1, n){

val[i] [0] = rank[il];
vall[il[1] = (((i + £ / 2 <= n) ? rank[i + t / 2]
0));
pos[i] = i;
}
radix_sort (1, n);
t *= 2;
}
Fup(i, 1, n)
salrank[i]l] = i;
}
void get_common prefix() //Calculating the array for the
longest common prefix height[]
{

memset (h, 0, sizeof (h));
Fup(i, 1, n){
if (rank[i] == 1)
h[i] = 0;

350 m Algorithm Design Practice for Collegiate Programming

else(
int now = 0;
if (1 > 1 && h[i - 1] > 1)
now = h[i - 1] - 1;

while (now + i <= n && now + sal[rank[i] - 1] <= n
&& x[now + i] == x[now + salrank[i] - 111)
Nnow ++;
h[i] = now;
1
}
Fup(i, 1, n)
height [rank[i]] = h[i];
}
void get ans() //calculate the number of common substrings
whose length isn’t less than k
{
Fup (i, 2, n)
height[i] -= k - 1;
long long suml = 0, sum2 = 0, ans = 0;
int top = 0;
Fup(i, 2, n)
if (height[i] <= 0){
top = suml = sum2 = 0;
}elsef
sta[++ top] = height[i];
if (sali - 1] <= (int)S.size()){
numl [top] = 1; num2[top] = 0;
suml += (long long)staltopl];
telse{
numl [top] = 0; num2[top] = 1;
sum2 += (long long)staltop];
}
while (top > 0 && staltop] <= staltop - 11){
suml = suml - (long long)staltop - 1] *
numl [top - 1] + (long long)staltop] * numl[top - 1];
sum2 = sum2 - (long long)staltop - 1] *
num2 [top - 1] + (long long)staltop] * num2[top - 1];
numl [top - 1] += numl[top];
num2 [top - 1] += num2 [top];
stal[top - 1] = staltop];
top --;
1
if (sali]l <= (int)S.size())
ans += sum2;
else
ans += suml;
}
cout << ans << endl;
}
void init () //Input the current test case (two strings) and

are combined into array xI[]

Practice for Advanced Data Structures m 351

{
cin >> S >> s;
n = (int)S.size() + s.size() + 1;
string str = S + 'S$' + s;
Fup(i, 1, n)
x[i] = rank[i] = (int)str[i - 1];
1
void solve () //calculate the number of common substrings
whose length isn’t less than k
{
get suffix array();
get common prefix() ;
get _ans () ;
!
int main()
{
ios::sync _with stdio(false);
while (cin >> k, k > 0){
init () ;
solve () ;
!
return O0;
1

7.1.3.3 Checking the Text

Wind’s birthday is approaching. In order to buy a really fantastic gift for her, Jiajia
has to take a boring, yet money-making job—a text checker.

This job is very humdrum. Jiajia will be given a string of text consisting of
English letters, and he must count the maximum number of letters that can be
matched, starting from position two of the current text simultaneously. The match-
ing proceeds from left to right, one character by one.

Even worse, sometimes the boss will insert some characters before, after, or
within the text. Jiajia wants to write a program to do his job automatically, but this
program should be fast enough, because there are only a few days before Wind’s

birthday.

Input

The first line of input file contains initial text.
The second line contains the number of commands 7. And the following 7 lines
describe each command. There are two formats of commands:

I ¢/ p: Insert a character ¢b before the p-th. If p is larger than the current length
of text, then insert at end of the text.

Q 7j: Ask the length of matching started from the -th and j-th character of the
initial text, which doesn’t include the inserted characters.

352 m Algorithm Design Practice for Collegiate Programming

You can assume that the length of initial text will not exceed 50000, the num-
ber of I commands will not exceed 200, and the number of Q commands will not
exceed 20000.

Output

Print one line for each Q command, containing the max length of matching.

Sample Input | Sample Output
abaab 0

5 1

Q12 0

Q13 3

l a2

Q12

Q13

Source: POJ Monthly, 2006.02.26, zgl & twb
ID for Online Judge: POJ 2758

%g\ |
>/ Analysis

Jiajia will be given a string of text consisting of English letters, and he must count
the maximum number of letters that can be matched, starting from position two
of the current text simultancously. That is, given a string, the longest common
prefix is required to calculate. Based on the definition of the longest common
prefix, the longest common prefix for suffix(j) and suffix(k) (Rank|jl<Rank(k]) is
min{height[Rank[jl+1], height|[Rank[jl+2], ..., height|Rank[k]]}, 1<j<k<length(S).

Dynamic programming is used to calculate the minimal values of height[] for
all subintervals. A two-dimensional array f'is used to store results, where f17, j]
stores the minimal height in the subinterval [f, j+2i—1].

Therefore, for suffixes suffix[a] and suffix[], the max length of matching is
the minimal values of height[] for the rank interval [/, 7], where =min(Ranklal,
Rank[b))+1, r=max(Rank|a], Rank[b)).

Suppose cor[k] is the current position for the character whose initial position is
k; dislk] is the distance between the character whose initial position is 4, and the
recently inserted character right; oppld] is the initial position for the current i-th
character.

Practice for Advanced Data Structures ®m 353

1. If Ranks for suffix[a] and suffix[b] are same (/>7), the max length of matching
is the length of the suflix suffix[a], that is, the length of string s—cor[a]+1;

2. If there is no inserted character in the max matching (the minimal values of
height]] for the rank interval [/, 7] is less than dis[a] and dis[6]), the max length
of matching is the minimal values of height[] for the rank interval [/, 7];

3. Otherwise, the max length of matching is len=min(dislal, dis[b]) at least.
Then the max length of matching /en is calculated through a loop statement,
and the condition for the loop statement is cor[a]+len<the length of the string
s&8& corlb]+Hen<the length of the string s.

If (the (cor{a]+len—1)-th character in s#the (str[cor[b]+len—1])-th character in s),
then the max length of matching is len; else if the (cor[a]+len)-th character in s and
the (szr[cor[b]+len])-th character in s aren’t inserted characters, then the max length
of matching is /en+ the max length of matching for suffix[opplcor[al+len] and suffix
[opplcor[b]+len]]; else len++, and continue to loop.

When the loop ends, /e is the max length of matching.

o
= (.

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlibs>
#include <cstrings>
#include <strings>
#include <map>
#include <utilitys>
#include <vector>
#include <set>
#include <algorithm>

#define maxn 50210 //the upper limit of the length of the
text

#define Fup(i, s, t) for (int i = s; 1 <= t; 1 ++)
//Increasing loop

#define Fdn(i, s, t) for (int i = s; i >= t; i --)
//Descending loop

#define Path(i, s) for (int i = s; i; 1 = d[i] .next)

//Singly Linked List d[]

using namespace std;

struct node {int now, next;}d[maxn]; // dl], where dI[].now
is the sequence number for an element, and d[].next is the
successor pointer

354 m Algorithm Design Practice for Collegiate Programming

int f [maxn] [20]; // fli, j]l stores the minimal height in
the subinterval [j, j+2'-1]

int val [maxn] [2], c[maxn], rank[maxn], sal[maxn], pos[maxn],
h[maxn] , height[maxn], x[maxn], cor[maxn], dis[maxn],

opp [maxn] ; //x[]1: character array; valllll, x is wvall[]l[0],
y is vall]l[1]; Rank[], SA[] and height[] have been defined;
h[i]l=height[Rank[i]]; corl[k] is the current position for the
character whose initial position is k; disl[k] is the distance
between the character whose initial position is k and the
recently inserted character right; oppl[i] is the initial
position for the current i-th character

string str;

int n, k; //length of string, number of commands
void add value(int u, int v, int i) //add an element into d[i]
{
d[i] .next = c[ul; clu] = 1i;
d[i] .now = v;
!
void radix_sort (int 1, int r) //vall]l [0] and vall] [1] are

combined to constitute xy, and calculate Rank[l..r] when the
length is t

{
Fdn(k, 1, 0){ //sort y and x
memset (¢, 0, sizeof(c));
Fdn(i, r, 1) add value(vall[pos[il] [k], pos[il, 1);
int t = 0;
Fup(i, 0, 50000)
Path(j, cli])
pos [++ t] = d[j] .now;
!
int t = 0;
Fup(i, 1, n){
if (vallpos[il]l[0] != val[pos[i - 111 (0] ||
val [pos[i]] [1] != wvall[pos[i - 111I[11)
t ++;
rank [pos[i]] = t;
}
!

void get suffix array() //calculating Rank[] and SAI[]
{
int t = 1; //initialize the length of the substring
while (t / 2 <= n){ //while the string can be divided
into left and right substrings, Rank[] for substrings whose
length is t is calculated
Fup(i, 1, n){

val[i] [0]=rank[i]; //rank for left substring
(starting position is i, length is t/2)

val[i] [1] = (((1 + £t / 2 <= n) ? rank[i + t / 2]
0)); ///rank for right substring (starting position is

i+t/2, length is t/2)

Practice for Advanced Data Structures ®m 355

pos[i] = i;
1
radix_sort (1, n); //vall]l [0] and vall] [1] are
combined to xy, and calculate Rank[] with length t
t *= 2; //the length of substring *2
!
Fup(i, 1, n) salrank[il] = 1i; //SA[]
!
void get common prefix() //Calculate the longest common
prefix height/[]
{
memset (h, 0, sizeof (h));
Fup(i, 1, n){
if (rank[i] == 1)
h[i] = 0;
elsef
int now = 0;
if (1 > 1 && h[i - 1] > 1)
now = h{i - 1] - 1;
while (now + 1 <= n && now + sal[rank[i] - 1] <= n
&& x[now + i] == x[now + salrank[i] - 1]])
Now ++;
hl[i] = now;
!
!
Fup(i, 1, n) height[rank[i]] = h[il; //calculate
height[] based on hl]
1

void get RMQ() //calculate f[][], f[i, j] stores the minimal
height in the subinterval [j, j+2%-1]
{

Fup(i, 1, n)f[i]l [0] = height[i];

Fup(k, 1, (int) (log(n) / log(2))) //length is
enumerated (integral power of 2)

Fup(i, 1, n - (1 << k) + 1)
fli] [k]l=min(£[1] [k-1],£[i+(1<<(k - 1))]1[k-11);

!

int query(int a, int b) //calculate the length of maximum
matching string for suffix[al and suffix[b]

{

int head = min(rankl[a], rank[b])+1,
tail=max (rank([a], rank[b]) ;
if (head > tail)

return (int)str.size() - corla] + 1;
int t = (int) (log(tail - head + 1) / log(2));
int len = min(f [head] [t], fltail - (1 << t) + 11I[t]);

if (len < dis[a] && len < dis[b])return len;

len = min(disl[al, disl[b]l);

while (cor[a]l + len <= (int)str.size() && cor[b] + len <=
(int)str.size()) {

356 m Algorithm Design Practice for Collegiate Programming

if (str[cor[a]+len-1] !=str[cor[b]+len-1])return len;
if (opplcor[al + len] && opplcor([b] + len])
return len + query (opplcor[a] + len], opplcor[b] +
len]);

}

return len;

len ++;

}

void insert (char ch, int pre) //character ch is inserted

{

int t = (int)str.size(); //length of str

pre = min(t + 1, pre); //inserted position

str = str + ' '; //space is added to the end of the
string

Fdn (i, t, pre){
str[i]l = str[i - 1];

oppli + 1] = opplil; // oppli] is the initial
position for the current i-th character
if (opplil)
corfoppl[i]] =1 + 1; // corlk] is the current

position for the character whose initial position is k

}

opp [pre] = 0; //the current the pre-th character is the
inserted character
str[pre - 1] = ch; //Insertion

Fdn(i, pre - 1, 1){
if (loppl[il)break;
dis[opp[i]l] = min(dis[opp[i]], pre - 1);
!
!
void init () //Input the initial text and commands
{
cin >> str; // the initial text
n = (int)str.size(); //the length of the initial text
Fup(i, 1, n){ //Initialization
x[1] = rank[i] = (int)str[i - 171;
cor[i] = i;o0ppli] = i;
!

cin >> k; //number of commands

}

void solve () //commands are executed one by one

{

get_suffix array(); //calculate Rankl[]

get common prefix() ; //calculate height|[]

get RMQ() ; // calculate the minimal height in the
subinterval

memset (dis, 127, sizeof (dis));

Fup(i, 1, k){ // commands are executed one by one

char kind;

Practice for Advanced Data Structures m 357

cin >> kind; // the format of a command
if (kind == 'Q"){ //command Q
int a, b;
cin >> a >> b;
int ans = query(a, Db); //calculate and output

the length of matching
cout << ans << endl;

telse{ //command I
char ch;
int pos;
cin >> ch >> pos;
insert (ch, pos); // Insert a character ch
before the pos-th.
1
1
}
int main()
{
ios::sync_with stdio(false);
init () ; //Input initial text and commands
solve () ; //commands are executed
return O0;
1

7.2 Segment Trees

We often meet some interval operations, such as calculating the length of the union
of intervals or segments, and so on. A segment tree is a tree storing intervals or
segments. Interval operations can be implemented based on segment trees. In this
section, experiments for segment trees are given.

7.2.1 Segment Trees

A segment tree is a binary tree 7 (4, 6), where an interval [4, 4] represents the root
for the binary tree. Suppose L=b—a. T (a, b) is defined recursively as follows:

If L>1: Interval |:¢z, [TH represents the left child for the root, and interval

H d; b J +1, b:| is the right child for the root;

If L=1: The left child and the right child for 7" (a, 4) are leaves [4] and [4]
respectively.
If L=0, that is, a==b: T (a, b) is a leaf representing [4], that is, an element a.

358 m Algorithm Design Practice for Collegiate Programming

[1, 10]

/\

[1,5] [6, 10]

N N

[L, 3] [4, 5] [6, 8] [9, 10]

SN /N /N /N

(.21 3] [4] 51 [6.71 [8] (o1 [10

/N

(1] [2]

Figure 7.6

In Figure 7.6, there is a segment tree whose root is [1, 10].

Leaves are all data in the interval. An internal node can be regarded not only as
an interval, but also as the midpoint for the interval.

An array 4[] is used to store a segment tree. If node 4[] represents an interval

[/, 7], then its left child a[2Xxi+1] represents the left subinterval [Z ,L ! ; 4 H , and its

right child #[2xi+2] represents the right subinterval HTJ%—L;’] Therefore,

each node stores not only an interval, but also some special data, for example, how
many segments cover the interval, and so on.
Fundamental operations for a segment tree are as follows:

1. A segment tree is built;

2. A segment or an element is inserted in an interval;
3. A segment or an element is deleted from an interval;
4. A segment tree is updated.

1. A segment tree is built for interval [/, 7].
Based on dichotomy, interval [/, 7] is divided into 7o (=2Xxlog,(r—/)) empty
subintervals. These subintervals aren’t covered by any segment. ot is a global

variable, and shows how many nodes are used. Initially 70/=0. A segment tree
T(l, 7) is built as follows.

void build tree(int 1, int r, int 1) //From node i, a
segment tree is built for interval [1, r]
{

Data field for node i is initialized;
if (l==r){ //There is only one element in the interval

Practice for Advanced Data Structures ®m 359

Set the sequence number for the leaf containing the
element;

}

int mid=(l+r) / 2; // pointer pointing to the middle
of the interval

build tree(l, mid, i+i); // A segment tree is built
for the left subinterval

build tree(mid+l, r, i+i+1); // A segment tree is
built for the right subinterval

}

2. A segment or an element is inserted in an interval.
Suppose R is the root for a segment tree 7(/, 7), and R represents an interval
[/, 7]. A segment [¢, d] will be inserted into the segment tree.
If interval [¢, 4] covers [/, 7] completely, that is, ((c</)&&(r<d)), then the

number of covered segments in node R increases 1;

If interval [¢, d] doesn’t cover the midpoint (d < VZVJ [| V?’J +1< cj,

then the segment is inserted into the left subtree or right subtree for node &;

If interval [¢, 4] covers the midpoint [CSV;?J&&J ZV—;’”J+IJ,

then the segment is inserted into the left subtree and right subtree for node R.
Its time complexity is O(log,n).
If an element x is inserted in segment tree 7(/, 7), binary search is used to
find the position of the leaf containing x, and element x is interested into the
leaf. Its time complexity is O(logy7n).

3. A segment or an element is deleted from an interval.

Suppose R is the root for a segment tree 7(/, 7) representing interval [/, 7]. A
segment [, d] will be deleted from the segment tree. The method is similar to
inserting a segment into the segment tree. In order to guarantee that updat-
ing the segment tree is correct, a segment [¢, 4] can be deleted only if there is
at least one segment on the interval [¢, 4].

The method for deleting an element is similar to the method for insert-
ing an element. Obviously an element can be deleted only if the element has
been inserted.

4. A segment tree is updated.
There are two methods for updating a segment tree:
1. Updating a single point in a segment tree, that is, a segment tree is
updated after an element is inserted or deleted.
2. Updating a subinterval in a segment tree, that is, a segment tree is updated
after a segment is inserted or deleted.

360 ®m Algorithm Design Practice for Collegiate Programming

7.2.2 Updating a Single Point in a Segment Tree

In a segment tree, a leaf node is used to a represent an integer in the interval.
Updating a single point in a segment tree means that a segment tree is updated after
an element x is inserted into the interval or deleted from the interval. First, binary
search is used to find the leaf containing x. Then, statuses for all nodes in path from
the leaf to the root are adjusted, for these nodes contain element x.

7.2.2.1 Buy Tickets

Railway tickets were difficult to buy around the Lunar New Year in China, so we must
get up early and join a long queue. ..

The Lunar New Year was approaching, but unluckily the Little Cat still had
schedules going here and there. Now, he had to travel by train to Mianyang,
Sichuan Province, for the winter camp selection of the national team of Olympiad
in Informatics.

It was 1 a.m. and dark outside. A chill wind from the northwest did not scare
off the people in the queue. The cold night gave the Little Cat a shiver. Why not
find a problem to think about? That was better than freezing to death!

People kept jumping the queue. Since it was too dark all around, such moves
would not be discovered even by the people adjacent to the queue-jumpers. “If every
person in the queue is assigned an integral value and all the information about those
who have jumped the queue and where they stand after queue-jumping is given, can
I find out the final order of people in the queue?” thought the Little Cat.

Input

There will be several test cases in the input. Each test case consists of N+1 lines
where /V (1SN<200,000) is given in the first line of the test case. The next NV lines
contain the pairs of values Pos; and Va/; in the increasing order of 7 (1</<N). For
each 7, the ranges and meanings of Pos; and Va/; are as follows:

Pos;e[0, i—1]: The i-th person came to the queue and stood right behind the
Pos-th person in the queue. The booking office was considered the Oth person
and the person at the front of the queue was considered the first person in
the queue.

Val,€[0, 32767]: The i-th person was assigned the value Val,.

There are no blank lines between test cases. Proceed to the end of input.

Output

For each test case, output a single line of space-separated integers which are the
values of people in the order they stand in the queue.

Practice for Advanced Data Structures ®m 361

Sample Input | Sample Output

77 33 69 51

77 31492 20523 3890 19243
51
33
69

20523
19243
3890

31492

O =) O hRN=_ = O H

Source: POJ Monthly, 2006.05.28, Zhu Zeyuan
IDs for Online Judges: PO) 2828

“ﬁ Hint

Figure 7.7 shows how the Little Cat found out the final order of people in the queue
described in the first test case of the sample input.

Initially there is an empty sequence. NV persons are interested into the sequence.
Each person has a value. Values of persons are output in the order they stand in the
queue finally.

For each test case, IV pairs of values are dealt with in reverse order, in order to
guarantee that the inserted position can’t be changed. For example, for the second

Booking 77 <::":"] A person with value 77 comes and stands right
office behind the Oth person (the booking office).

Booking 771 51 <::":"] A person with value 51 comes and stands right
office behind the first person in queue.

Booking 77133 | 51 <::":"] A person with value 33 comes and stands right
office behind the first person in queue.

Booking 77133 69 | 51 <::":"] A person with value 69 comes and stands right
office behind the second person in queue.

\> | Final order of people in the queue |

Figure 7.7

362 m Algorithm Design Practice for Collegiate Programming

sample test case, the sequence of the sample input is 0 20523 1 19243 1 3890 0
31492. These four pairs of values are dealt with in reverse order. First, the fourth pair
(pos[4], vall4))is dealt: pos[4]=0, val[4]=31492. j= pos[4]+1=1. The fourth person will
be inserted into the “current” j-th empty position (the “current” first empty position).
Second, the third pair (pos(3], val[3])is dealt: pos[3]=1, val[3]=3890. j=pos[3]+1=2.
That is, the third person will be inserted into the current j-th empty position (the cur-
rent second empty position). Third, the second pair (pos(2], va/[2]) is dealt: pos[2]=1,
val[2]=19243. j=pos[2]+1=2. That is, the third person will be inserted into the current
Jj-th empty position (the current second empty position). Finally, the first pair (pos(1],
val[l]) is dealt: pos[1]=0, val[1]=20523. j=pos[1]+1=1. That is, the first person will be
inserted into the current first empty position. Therefore, for the second test case, the
values of people in the order they stand in the queue are 31492 20523 3890 19243.

A segment tree is used to solve the problem. Nodes in the segment tree are used
to store the number of empty positions in the corresponding interval. For each
time, first the pos[i]-th empty position is searched, and then nodes’ states for repre-
senting the pos[i]-th empty position are changed.

Initially, the state value for a node is the length of interval. Leaf nodes represent
persons.

The process is as follows.

From the 7-th person, each person’s position is dealt with one by one. When the
i-th person is inserted into the sequence, his position is the current j-th empty
position (j=pos[il+1, i=n...1, pos[i]<i), and then the number of the empty
position is recursively calculated from the root of the segment tree.

If the number of empty positions in the left subtree 2j, recursive search is on the
left subtree; otherwise the 4-th empty position in the right subtree is calcu-
lated, £#=j—(number of empty positions in the left subtree). Repeat the above
steps until leaf node 4 is found, where node 4 represents interval [7]. Then the
i-th person’s position is 7.

Then the segment tree is adjusted. On the path from leaf node 4 to the root, the
number of empty positions in each node —1.

Repeat the above steps until the first person’s position is calculated.

o
= (.

#include <iostream>
#include <cstdio>
#include <cstring>
#include <strings>
#include <map>

Practice for Advanced Data Structures ®m 363

#include <utility>

#include <algorithm>

#define maxn 200100 //the upper limit of number of persons
#define Fup(i, s, t) for (int i = s; 1 <= t; 1 ++)

#define Fdn(i, s, t) for (int 1 = s; 1 >= t; 1 --)

using namespace std;

int pos[maxn], val[maxn], size[maxn * 3], ans[maxn],

point [maxn] ; // posl[i] and vall[i]l: described in problem;
ans[k]: the i-th person in the queue; point[k]: the sequence
number for the leaf representing [k]; size[j]: number of empty
positions in node j

int n; //number of persons

void build tree(int 1, int r, int i) //From node 1, a
segment tree is built for interval [1, r]

{

gizel[i] = r - 1 + 1; // number of empty positions in
node 1
if (l==1){ // There is only one element in the

interval. Set the sequence number for the leaf containing the
element
point [1] = 1i;

return;
!
int mid = (1 + r) / 2; // pointer pointing to the middle
of the interval
build tree(l, mid, 1 + 1i); // A segment tree is built for
the left subinterval
build tree(mid + 1, r, 1 + 1 + 1); // A segment tree is

built for the right subinterval

}

int require(int sum, int 1, int r, int i) //Calculate the
sequence number of the leaf for the sum-th empty position

{
if (1 == 1) // In the interval there is only one element,
return the element
return 1;
int mid = (1 + r) / 2; // pointer pointing to the middle
if (sizel[i + 1] >= sum) //number of empty positions in
the left subtree = sum
return require(sum, 1, mid, i + 1i);
return require(sum - size[i + i], mid + 1, ¥, i + i + 1);
}
void change (int 1) //Updating the segment tree, from leaf 1
to the root, adjust number of empty positions
{
while (i > 0){
gizel[i] --;
i=1i/2;

364 ®m Algorithm Design Practice for Collegiate Programming

void init ()

{
Fup(i, 1, n) // Input test case
scanf ("%$d%d\n", &pos[i], &vall[il);
!
void solve () // calculate and output the values of people
in the order they stand in the queue
{
memset (size, 0, sizeof (size));
build tree(l, n, 1); //construct segment tree (1, n)
Fdn(i, n, 1){ // n pairs of values are dealt with in

reverse order
int t = require(pos[i] + 1, 1, n, 1);

ans[t] = i;
change (point [t]) ; //updating segment tree
Fup(i, 1, n - 1) // output the values of people in the

order they stand in the queue
cout << vallans[i]] << ' ';
cout << vallans[n]] << endl;

1
int main()
{
while (scanf ("%d\n", &n) == 1){
init () ; //Input
solve () ; //calculate and output the values of people
in the order they stand in the queue
}
return 0;
}

7.2.3 Updating a Subinterval in a Segment Tree

Updating a subinterval means that data in a subsequence are modified. The method
is similar to updating a single point in a segment tree. When a subinterval is
updated, a segment tree must be updated from bottom to top. In order to improve
the efficiency, a label is used.

In each node, a label is used: If the interval that the node corresponds to
is covered completely, then the node is labeled. If a labeled node is found dur-
ing updating a subinterval, then its left child and right child are labeled, and
the node’s label is removed. The label’s information is determined by updating a
subinterval.

In this section, three kinds of experiments for updating a subinterval are shown.

1. Updating data uniformly and calculating data dynamically in a subinterval;
2. Calculating visible segments;
3. Updating and calculating disjoint segments.

Practice for Advanced Data Structures ®m 365

7.2.3.1 Updating Data Uniformly and Calculating
Data Dynamically in a Subinterval

An interval is represented as a segment tree. Updating data uniformly in a sub-
interval means that the same value is added to each number in the subinterval.
Calculating data dynamically in a subinterval means that the sum of numbers in a
subinterval is calculated, and so on. A node’s information includes:

1. A label, the value of which is added to each number in the corresponding
subinterval;
2. 'The calculation result of the corresponding subinterval.

7.2.3.1.1 A Simple Problem with Integers

You have N integers, Ay, A, ..., Ay, and you need to deal with two kinds of
operations. One type of operation is to add some given number to each number
in a given interval. The other is to ask for the sum of numbers in a given interval.

Input

The first line contains two numbers N and Q. 1<V,Q<100000.

The second line contains N numbers, the initial values of A4,, A,, ..., An.
—-1000000000<A4,<1000000000.

Each of the next Q lines represents an operation.

“C a b ¢” means adding ¢ to each of 4,, Ay, ..., Ay ~10000<<10000.
“Q a b” means querying the sum of A,, A1, ..., Ap

Output
You need to answer all Q commands in order. One answer in a line.
Sample Input Sample Output
10 5 4
12345678910 55
Q44 9
Q110 15
Q24
C363
Q24

Hint: The sums may exceed the range of 32-bit integers.
Source: POJ Monthly, 2007.11.25, Yang Yi
IDs for Online Judges: PO) 3468

366 m Algorithm Design Practice for Collegiate Programming

A segment tree is used to solve the problem. Subintervals in the tree correspond to
indexes of numbers, that s, [/, 7] corresponds to numbers A, Ay, ..., A, Obviously,
leaves represent initial values for A;, A4y, ..., A, from left to right. In each node,
there are two attributes:

Attribute 1: The sum of current numbers in the subinterval s. Initially s is the
sum of initial numbers in the subinterval.

Attribute 2: Label 2, the increasement value for each number in the subinterval.
If the operation is “C 2 & ¢”, then, for all subintervals in [z &], cx/is added to
all sums 5, where /is the length of the subinterval.

Each time, the label is used to update the segment tree. If node 7 isn’t labeled,
then return; else subintervals that the left child and right child correspond to are
covered. Sums of current numbers in subintervals for the left child and right child
are calculated. And the left child and right child are labeled ».

Suppose the root of the segment tree is 7, and corresponds to an interval [/, 7].

Then the sum of current numbers in the subinterval [#/, #7] is calculated:

If (tlsr| tr<l), return 0;

If [tl, tr] covers [1l, r] completely (tls<l&&rstr), return the
sum s for node 1i;

Node i is labeled to update the segment tree;

For the subinterval [tl, tr], the sum of current numbers in
the left subtree s; and the sum of current numbers in right
subtree s, are recursively calculated, and return s;+s,; v is
added to each number in the subinterval [tl, tr].

If (tlsr||tr<l), then return;

If [tl, tr] covers [l1, r] completely (tls<l&&rs<tr), then v is
added to each number in the subinterval [tl, tr], in node i, s
and v are updated: v*(r-1+1) is added to s, v is accumulated
in node i, and return;

For node i, the label method is used to update the segment
tree;

For node i, the sum of current numbers in the left subtree s;
and the sum of current numbers in right subtree s, are
calculated;

In node 1, s =85,+8,;

Practice for Advanced Data Structures ®m 367

oY
= -

#include <iostream>
#include <cstdio>
#include <cmaths>
#include <cstdlib>
#include <cstring>
#include <strings>
#include <map>
#include <utility>
#include <set>
#include <algorithms>

#define maxn 100010 // the upper limit of the number of
numbers

using namespace std;

struct node {long long mark,sum;}tree[maxn*4]; // segment

tree, for node i, the sum of numbers is treel[i] .sum, and the
label is treeli] .mark

int x[maxn] ; // the sequence of initial numbers
int n, m; //numbers of numbers and operations
void update(int 1, int r, int i) //label method is to

update a segment tree(i is the root, corresponding to an
interval [1, r])

{

if (!tree[i] .mark) return; // if label i is labeled,
then return; else subintervals that left child and right child
correspond to are covered. Sums of current numbers in
subintervals for left child and right child are calculated.
And left child and right child are labeled v.

int mid = (1 + r) / 2;

tree[i + i].sum += tree[i] .mark * (long long) (mid - 1 + 1);

tree[i + 1 + 1] .sum += tree[i] .mark * (long long) (r - mid);

tree[i+1i] .mark+=tree[i] .mark;

tree[i+ i+1] .mark += tree[i] .mark;

tree[i] .mark = 0; //removing the label for node 1
}
long long query(int tl, int tr, int 1, int r, int i) // the
sum of current numbers in the subinterval [tl, tr] is
calculated. (i is the root of segment tree corresponding to
the interval [1, r], [tl, tr] is a subinterval for [1, r])

{

if (¢l > r || tr < 1)
return O0;
if (£l <= 1 && ¥ <= tr) // If [tl, tr] covers [1, r]

completely, return the sum s for node i
return tree[i] .sum;

368 m Algorithm Design Practice for Collegiate Programming

update(l, r, 1); //label method is used to update the
segment tree (i is the root of segment tree corresponding to
the interval [1, r])

int mid = (1 + r) / 2; //calculate sums of numbers that
[tl, tr] contains in left subtree and right subtree, and
return the sum of sums

return query(tl, tr, 1, mid, i + i) + query(tl, tr, mid +
1, r, i + 1 + 1);
!
void add value(int tl, int tr, int 1, int r, int i, int wval)
//In segment tree (i is the root of segment tree corresponding
to the interval [1, r]), each number in the subinterval [tI,
tr] + val

{

if (¢l > r || tr < 1)
return;
if (tl<=1l && r<=tr){ // If [tl, tr] covers [1, r]

completely (tls<l&&rstr), then val is added to each number in
the subinterval [I1, r],
tree[i] .sum += val * (long long) (r - 1 + 1);

tree[i] .mark += val; //label
return;
!
update(l, r, 1); // Update the segment tree
int mid = (1 + r) / 2;
add value(tl, tr, 1, mid, i + i, val); //recursion for

left and right subtree

add value(tl, tr, mid + 1, r, 1 + i + 1, val);

tree[i] .sum = tree[i + i].sum + treel[i+ i+1].sum;
//accumulation
!
void build tree(int 1, int r, int 1) //construct a segment
tree (i is the root of segment tree corresponding to the
interval [1, r])

{

if (1 == r){ //leaf node
tree[i] .sum = x[1];
return;
!
int mid = (1 + r) / 2; //midpoint
build tree(l, mid, i + 1i); // left and right subtrees

build tree(mid + 1, r, i + 1 + 1);
tree[i] .sum = tree[i + i].sum + tree[i + 1 + 1].sum;
//accumulation

}

void solve () //dealing with operations one by one

{
memset (tree, 0, sizeof (tree));
build tree(1l, n, 1); //construct a segment tree
scanf ("\n") ;

Practice for Advanced Data Structures ®m 369

for (int i = 1; 1 <=m; 1 ++) // dealing with operations
one by one
{
char ch;
int 1, r, v;
scanf ("%c", &ch); //Input the i-th operation
if (ch == 'Q"){ // 'Q' operation, input the

interval [1, r]
scanf ("$d%d\n", &l, &r);
long long ans = query(l, r, 1, n, 1);
printf ("$11d\n", ans);
}elsef // 'C' operation
scanf ("%$d%d%d\n", &1, &r, &v);
add value(l, r, 1, n, 1, v);

1
}
!
int main()
{
scanf ("%$d%d\n", &n, &m); //numbers of numbers and
operations
for (int i = 1; 1 <=n; i ++) //n initial numbers
scanf ("%d", x + 1i);
solve() ; // Operations are dealt with one by one
return 0;
!

7.2.3.2 Calculating Visible Segments

Segments are inserted into an interval one by one. And later segments can cover
previous segments. Final visible segments are required to calculate. Labels for the
segment tree are sequence numbers for covered subintervals.

A segment tree is constructed based on the discretization on the segment
coordinate.

7.2.3.2.1 Mayor’s Posters

The citizens of Bytetown, Alberta, could not stand that the candidates in the may-
oral election campaign have been placing their electoral posters in all places at their
whim. The city council has finally decided to build an electoral wall for placing the
posters and introduces the following rules:

Every candidate can place exactly one poster on the wall.

All posters are of the same height equal to the height of the wall; the width of
a poster can be any integer number of bytes (byte is the unit of length in
Bytetown).

The wall is divided into segments and the width of each segment is one byte.

Each poster must completely cover a contiguous number of wall segments.

370 ®m Algorithm Design Practice for Collegiate Programming

They have built a wall 10000000 bytes long (such that there is enough place
for all candidates). When the electoral campaign was restarted, the candidates
were placing their posters on the wall, and their posters differed widely in width.
Moreover, the candidates started placing their posters on wall segments already
occupied by other posters. Everyone in Bytetown was curious whose posters will be
visible (entirely or in part) on the last day before elections.

Your task is to find the number of visible posters when all the posters are placed,
given the information about posters’ size, their place, and order of placement on
the electoral wall.

Input

The first line of input contains a number ¢ giving the number of cases that follow.
The first line of data for a single case contains number 1<7<10000. The subsequent
n lines describe the posters in the order in which they were placed. The /-th line
among the 7 lines contains two integer numbers /; and 7, which are the number
of the wall segment occupied by the left end and the right end of the i-th poster,
respectively. We know that for each 1<i<n, 1</<7,<10000000. After the i-th poster
is placed, it entirely covers all wall segments numbered Z, /.., ..., 7;.

Output

For each input data set, print the number of visible posters after all the posters are placed.

Sample Input Sample Output

1 4
5

14

26

8 10
34

7 10

Source: Alberta Collegiate Programming Contest 2003.10.18
IDs for Online Judges: POJ 2528

Figure 7.8 illustrates the case of the sample input.

s 4 Analysis

The wall is represented as an interval [0, 10000000]. One poster being placed
on the wall can be regarded as a subinterval being colored. Placing the i-th

Practice for Advanced Data Structures m 371

Top view |

Front view

_/

The same poster

Figure 7.8

poster can be regarded as the i-th subinterval being colored color 7, 1<i<n.
The final number of colors in the interval [0, 10000000] (previous colors can
be covered by later colors) is the number of visible posters after all the posters
are placed.

The problem is a basic problem for a segment tree. In the segment tree, each
node stores its subinterval’s color, where colorless is represented as 0, mixed color
is represented as —1; otherwise, the color is represented as the number of color that
the node is colored. Then a subinterval in the segment tree is updated each time.
Because the wall is 10000000 bytes long, and 1<#<10000. Discretization should
be used. And it is not simple discretization.

The algorithm is as follows:

1. Discretization.

The left boundaries, right boundaries, and middle positions for 7 posters are
stored in array x[1...3X#n]. Then x[] is sorted to delete repeated coordinates.
For the i-th poster, numbers of coordinates which aren’t larger than its left
boundary and right boundary are /[7] and #{7] respectively. Obviously, /[7] and
rl7] constitute the #-th segment, and the color of the segment is 7, 1<i<n.

For example, there are three posters placed on the wall. Subintervals
(1, 5], [1, 2] and [4, 5] are covered by the three posters. After the three posters
are placed on the wall, there are three colors in the interval [0, 10000000].
For the first poster, numbers of coordinates which aren’t larger than its left
boundary and right boundary are 1 and 4. For the second poster, numbers of
coordinates which aren’t larger than its left boundary and right boundary are
1 and 2. And for the third poster, numbers of coordinates which aren’t larger
than its left boundary and right boundary are 3 and 4.

372 m Algorithm Design Practice for Collegiate Programming

2. Constructing a segment tree.
A segment is constructed, where the root is 1, and represents an interval
[1...3%]. The label for a node is the number of color that the subinterval
corresponds to. 7 segments are inserted into the segment tree one by one. And
the segment tree is updated with the label method.

3. Visible segments are recursively calculated.
If node 7 is labeled (the subinterval is covered by segments), and if the segment
wasn’t colored before, then set the label the color and return 1; else return
0 (in order to avoid repeated calculation);
If node i is a leaf (the node isn’t colored), return 0;
Numbers of segments in the left subinterval and right subinterval are recur-
sively calculated, and return the sum;

o
= -

#include <iostream>
#include <cstdio>
#include <cstring>
#include <strings>
#include <algorithms>

#define maxn 10010 // the upper limit of the number of
posters

using namespace std;

bool tab[maxn] ; //tablk]: the label that color k is used

int 1[maxn], r[maxn], x[maxn*3], num[maxn*3], tree[maxn*12];
//For the i-th posters, numbers of coordinates which aren’t
larger than its left boundary and right boundary are 1[i] and
r[i] respectively; its left boundary, right boundary, and
middle position are x[3*i-2], x[3*i-1] and x[3*i]
respectively; after x[] is sorted, in x[1..7j] the number of
non-repeating coordinates is num[j]l; the label for node k in
the segment tree is treelk], is the color for its subinterval
int ¢, n; //c: number of test cases, n: number of posters

int binary search(int sum) //calculate different
coordinates in interval [O0..sum]
{
int 1 = 1, r = 3*n;
while (r >= 1){ //binary search is used to find the
sequence number r in x[] whose coordinate is sum
int mid = (1 + r) / 2;
if (x[mid] <= sum)
1l = mid + 1;

Practice for Advanced Data Structures ®m 373

else
r = mid - 1;
!
return numl[r] ; //the number of different coordinates in
x[1..r]
1
void update (int 1) //Update a segment with label method
{
if (!tree[i]) // 1f label i isn’t labeled, return
return;
tree[i+i]=tree[i+i+1l]=tree(i]; //the label for node 1 is
given to its left and right child, and removed
tree[i] = 0;

!
void change (int tl, int tr, int 1, int r, int i, int co)
// In segment tree (root i, interval [1, r]), a subinterval
[tl, tr]) whose color is co is inserted
{
if (tr < 1 || tl > r)
return;
if (tl<=1 && r<=tr) //[tl, tr] covers [1, r] completely
treel[i] = co;
return;
!
update (1) ; // update the segment tree with label method
int mid = (1 +) / 2; // recursions for left and right
subtree
change (tl, tr, 1, mid, i+i, co);
change (tl, tr, mid + 1, r, i + i + 1, co);
!
int require(int 1, int r, int i) //the number of visible
posters in the interval [1, r] (i is the root of its subtree)
{
int mid = (l+x)/2; //middle pointer
if (treelil) //i has been labeled, if the segment wasn’t
colored before, then set the label to the color and return 1,
else return 0
if (!tabltreelil]){
tab[tree[i]] = 1;
return 1;

}

return 0;
1
if (1 == 1) //the current vertex isn’t covered, return O
return 0;
return require(l, mid,i+i)+require (mid+1l,r,i+i+1);
//accumulate the number of visible posters in left and right
subintervals

}

void init () // Discretization

374 m Algorithm Design Practice for Collegiate Programming

{

scanf ("%d\n", &n); //number of posters
for (int i = 1; i <=n; i ++){ //posters’ left and right
boundaries, for the i-th poster, its left and right boundaries
are x[3*i-2] and x[3*i-1], x[3*i] stores the middle position
scanf ("%$d%d\n", 1 + i, r + 1);

x[i+ i+1-2] = 1[i]; x[i+i+i-1]=r[i]; x[i4i+il=(1[i] +
r[il)/2;
1
sort(x + 1, X + 3 *n + 1); //sort xI[]
memset (num, 0, sizeof (num)) ;
for (int i=1;i<=3*n;i++) { //calculate num[], where numl[i]
is the number of coordinates in x[1..1]
num[i] = num[i - 17;
if (x[i] != x[1i - 1]) num[i] ++;
!
for (int i=1; i<=n; i++) { //calculate coordinates for
left and right boundaries of each poster
1[i] = binary search(1l[i]);
r[i] = binary search(r([i]);
1
!
void solve () //calculate the number of visible posters
{

memset (tree, 0, sizeof (tree));

for (int i = 1; i<=n; i++) //insert subintervals in the
segment tree

change (1[i], r[i], 1, 3 * n, 1, 1i);

memset (tab, 0, sizeof (tab));

int ans = require(1l,3*n,1); // calculate and output the
number of visible posters

printf ("%d\n", ans);

!
int main()
{
scanf ("$d\n", &c); //number of test cases
for (int i = 1; i<=c; i++) {
init () ; // calculate the number of visible posters
solve() ;
}
return 0;
!

7.2.3.3 Updating and Calculating Disjoint Segments

Given a segment whose length is /, if there are subintervals whose number of empty
positions is no less than /in the segment tree, then the segment can be inserted.
Normally there is a priority for such subintervals. For deletion operation, if there

Practice for Advanced Data Structures m 375

exists an “occupied interval” for the deleted segment in the segment tree, the seg-
ment can be deleted.

The label for a node includes:

1. The mark for the corresponding subinterval: There are three kinds of marks—
occupied, empty, and partly occupied;

2. The longest empty subinterval in the corresponding subinterval for the node:
The start position pos, and the length /m;

3. The length of the rightmost empty subinterval /s in the node’s left child and
the length of the leftmost empty subinterval 7s in the node’s right child, that
is, the length of the subinterval crossing the left and right subintervals for the
node is /s+7s.

7.2.3.3.1 Hotel

The cows are journeying north to Thunder Bay in Canada to gain cultural enrich-
ment and enjoy a vacation on the sunny shores of Lake Superior. Bessie, ever the com-
petent travel agent, has named the Bullmoose Hotel on famed Cumberland Street as
their vacation residence. This immense hotel has NV (1<N<50,000) rooms all located
on the same side of an extremely long hallway (all the better to see the lake, of course).

The cows and other visitors arrive in groups of size D, (1<D,<N) and approach
the front desk to check in. Each group 7 requests a set of D, contiguous rooms from
Canmuu, the moose staffing the counter. He assigns them some set of consecutive
room numbers r../+D~1 if they are available; or, if no contiguous set of rooms is
available, politely suggests alternate lodging. Canmuu always chooses the value of
7 to be the smallest possible.

Visitors also depart the hotel from groups of contiguous rooms. Checkout 7
has the parameters X; and D; which specify the vacating of rooms X; ..X; +D,—1
(1SX;<N-D+1). Some (or all) of those rooms might be empty before the checkout.

Your job is to assist Canmuu by processing M (1<A/<50,000) checkin/checkout
requests. The hotel is initially unoccupied.

Input

* Line 1: Two space-separated integers: NV and M;
* Lines 2: M+1: Line i+1 contains a request expressed as one of two possible
formats:
1. Two space-separated integers representing a check-in request: 1 and D;;
2. 'Three space-separated integers representing a checkout: 2, X}, and D;,.

Output

* Lines 1.....: For each check-in request, output a single line with a single integer 7,
the first room in the contiguous sequence of rooms to be occupied. If the request
cannot be satisfied, output 0.

376 ® Algorithm Design Practice for Collegiate Programming

Sample Input | Sample Output
10 6 1

13 4

13 7

13 0

13 5

255

16

Source: USACO 2008 February Gold
IDs for Online Judges: POJ 3667

=

§ ;%J\\
Q%& Analysis

For each node, there are three kinds of marks: occupied, empty, and partly occu-
pied. There are two types of operations:

Operation 1: Search the position for the foremost empty subinterval whose
length is 7;
Operation 2: Set the mark for a subinterval empty.

For each operation, the segment tree needs to be updated. The label method is
used to update the segment tree. The label for a node includes:

mark: the state for the node’s corresponding subinterval (0: undetermined;
1: empty; 2: occupied);

Is: the length of the rightmost empty subinterval in the node’s left child;

7s: the length of the leftmost empty subinterval in the node’s right child;

ms: the length of the longest empty subinterval in the node’s corresponding sub-
interval: and the start position for the subinterval is pos;

The three operations (update, query, and modification for a subinterval) for a
segment tree whose root is 7, and corresponding subinterval is [/, 7] are as follows:

1. Update (the label method is used).

if (mark for node i == 0) return; // “undetermined”

if (mark for node 1 == 1){ //the subinterval [1, r]
for node i is empty, r-1+1 empty positions are divided
equally to the left and right subtrees, set marks for the
left and right subtrees “empty”,

Practice for Advanced Data Structures m 377

1-r+2
1ls, rs and ms for the left child are LJ, its pos is
2

I-r+1
1; 1s, rs and ms for right child are LJ, and its pos

2
, 1-r , . .
is | — [+1; mark for the left and right child is 1;
2
}else{ // the subinterval [1, r] for node i is

occupied, 0 empty positions, set marks for the left and
right subtrees “occupied”

1s, rs and ms for the left child are 0, its pos is
1; 1s, rs and ms for right child are 0, and its pos is

1l-r
L J+1; mark for the left and right child is 2;
2

}

Set the state for node i 0; //Set the state for
node i “undetermined”

. Query.

For node 7 (corresponding to the subinterval [/, 7]), search whether there exist
empty subintervals whose length is 4. If there exist such subintervals, return
the left pointer for the foremost empty subinterval.

The label method is used to update the segment tree;

if (ms for node i<d), return failure;

if (ms for node i==d), return pos for node 1i;

if (ms for the left subtree=d), recursive query for
the left subtree;

if (rs for the left child + 1s for the right

1+r

2

child = d), return [{ J—rs for the left child +1j;

recursive query for the right subtree;

. Modification.
A segment [#/, #r] is inserted into or deleted from a segment tree whose root is
i, represent an interval [/, 7].

if ([tl, tr] isn’t in [1, r]) return;
if ([tl, tr] covers [1, r] completely) {
if (Insertion){ //After insertion, mark for
node i is “occupied”
ls, rs, and ms for node i is set 0, pos is
set 1, and mark is set 2;
}else{ //After deletion mark for node i is
“empty”

378 m Algorithm Design Practice for Collegiate Programming

l1s, rs, and ms for node i is set r-1+1, pos
is set 1, and mark is set 1;

}

return;

}

Label method is used to update the segment tree;

Recursive modification for the left subtree;

Recursive modification for the right subtree;

ls for node i is set 1s for its left child; // 1s,
rs, ms and pos for node i is adjusted

if (its left subtree is “empty”) 1ls for node i += ls
for its right child;

rs for node i is set rs for its right child;

if (its right child is “empty”) rs for node i += rs
for its left child;

ms for node 1 =max(rs for its left child + 1s for its
right child, ms for its left child, ms for its right
child) ;

if (ms for node i == ms for its left child) //the
longest empty subinterval is in the left subinterval

pos for node i= pos for its left child;
else
if (ms for node i == rs for its left child + Is

for its right child) // the longest empty subinterval
crosses the left and right subintervals

1+r
pos for node i={————J—rs for its left child +1;
2
else pos for node i = pos for its right child;
//the longest empty subinterval is in the right
subinterval

oY
% Program

#include <iostream>

#include <cstdio>

#include <cstring>

#include <strings>

#include <map>

#include <utilitys>

#include <set>

#include <algorithm>

#define maxn 80010

using namespace std;

struct node {int ls, rs, ms, pos, mark;}tree[4*maxn];
//segment tree, where the label for node i: treeli] .mark: the

Practice for Advanced Data Structures ®m 379

state for the node’s corresponding subinterval (0:
undetermined; 1: empty; 2: occupied), treel[i].ls: the length
of the rightmost empty subinterval in the node’s left child;
tree[i] .rs: the length of the leftmost empty subinterval in
the node’s right child; treel[i] .ms: the length of the longest
empty subinterval in the node’s corresponding subinterval: and
the start position for the subinterval is treeli].pos

int n, m; //number of rooms and requests

void build tree(int 1, int r, int 1) //construct an “empty”
segment tree

{

tree[i] .ls=tree[i] .rs=tree[i] .ms=r-1+1; // the
subinterval [1, r] for node i is empty

treel[i] .pos = 1;

if (1 == r) //left node

return;

int mid = (1 + r) / 2; //Intermediate pointer

build tree(l, mid, i + i); //left subtree and right
subtree

build tree(mid + 1, r, i + 1 + 1);
}
bool all space(int 1,int r,int 1) // if subinterval [1, r]
for node i is empty, return 1; else return 0

{

if (tree[i] .ls==r-1+ 1) //label “empty”
return 1;
return 0;

}

void update(int 1, int r, int 1) // Update

{

if (!tree[i] .mark) //the interval for node 1 is
“undetermined”
return;
if (tree[i] .mark == l){ //interval [1, r] for node i is

empty, then left and right subtrees have r-I1+1 empty rooms,
left and right subtrees are empty state
int len = r - 1 + 1;

tree[i + 1].1ls = tree[i + i].rs = treel[i + i].ms =
(len + 1) / 2;

tree[i + 1] .pos = 1;

tree[i + i + 1].1ls = tree[i + 1 + 1].rs = treel[i + 1 +

1] .ms = len /2;
tree[i + 1 + 1].pos = (L +) / 2 + 1;

tree[i + i] .mark = tree[i + i + 1].mark = 1;
}elsef // interval [1, r] for node i is “occupied”,
left and right subtrees are occupied
tree[i + i].ls = tree[i + 1i].rs = tree[i + 1i].ms = 0;
tree[i + 1] .pos = 1;
tree[i + 1 + 1].1ls = tree[i + 1 + 1].rs = treel[i + i +

1] .ms = 0;

380 ®m Algorithm Design Practice for Collegiate Programming

tree[i + 1 + 1]l.pos = (1 +) / 2 + 1;
tree[i + i] .mark = treel[i + 1 + 1] .mark = 2;
tree([i] .mark = 0; // node 1 “undetermined”

1
int query(int d, int 1, int r, int i) //Query. If there exist
empty subintervals whose length is d in the segment tree (root
i, interval [I1, r]), return the left pointer for the empty
subinterval, else return O.

{

update (1, r, 1i);

if (treel[i] .ms < d) // there is no empty subinterval
whose length is d
return 0;
if (treeli] .ms==d) // 1if (ms for node i==d) return pos

for node 1
return treel[i] .pos;
int mid = (1 + r)/2; //Intermediate pointer
if (tree[i+i] .ms>=d) // if (ms for the left subtree=d)
recursion for the left subtree
return query(d, 1, mid, i + 1i);
if (tree[i + i].rs + treel[i + 1 + 1].1ls >= 4d) //the
length for empty interval covering the intermediate pointer
=d, return its left pointer
return mid - treel[i + i].rs + 1;
return query(d, mid + 1, r, i + 1 + 1); // recursion
for the right subtree;
!
void change (int tl, int tr, int 1, int r, int i, bool flag)
//Modification. Insert or delete a segment [tl, tr] into or
from a segment tree (root i, interval [1, z])

{

if (1 > r || tr < 1) //[tl, tr] isn’t in [1, r]
return;
if (tl <= 1 && v <= tr){ // [tl, tr] covers [1, r]
if (flag) //Insertion
tree[i] .1ls = tree[i]l.rs = tree[i] .ms = 0;
tree[i] .pos = 1;
tree([i] .mark = 2; //the interval for node i is
occupied
}elsef //delete
tree[i] .1s = tree[i] .rs = treel[il.ms = v - 1 + 1;
tree[i] .pos = 1;
tree[i] .mark = 1; // the interval for node 1 is
empty

}

return;

!
update(l, r, 1i);
int mid = (1 +) / 2; // Intermediate pointer

Practice for Advanced Data Structures m 381

change (t1l, tr, 1, mid, 1 + i, flag); //left subtree

change (tl, tr, mid + 1, r, i + i + 1, flag); //right
subtree

tree[i] .1s = treel[i + 1i].1ls;

if (all space(l, mid, i+i)) // left subtree is empty

tree[i] .1s += treel[i + 1 + 1].1ls;
tree[i] .rs=tree[i+1i+1] .rs;
if (all _space(mid+l, r,i+i+1)) // right subtree is empty
tree[i] .rs += treel[i + 1i].rs;
tree[i] .ms=max (tree[i+i] .rs+tree[i+i+1l] .1ls, max(tree[i+i].
ms,tree[i+i+1] .ms));

if (tree[i] .ms == tree[i + 1i].ms)
tree[i] .pos = treel[i + 1i].pos;
else
if (treel[i] .ms == tree[i + i].rs + treeli + i + 1].1s)
tree[i] .pos = mid - tree[i + i]l.rs + 1;
else

tree[i] .pos = tree[i + 1 + 1] .pos;

}

int main()

{

scanf ("$d%d\n", &n, &m); //number of rooms and requests
memset (tree, 0, sizeof (tree));
build tree(1l, n, 1); //construct an “empty” segment
tree
for (int i =1; 1 <=m; 1 ++) { //requests are dealt
with one by one
int kind;
scanf ("%d", &kind) ; //the type of requests
if (kind == 1){ //check in
int d;
scanf ("$d\n", &d4d); //number of check-in rooms
int ans=query(d,1,n,1); //whether there exists

an empty interval whose length is d, and return the left
pointer for the interval (return 0 if there isn’t)
printf ("$d\n", ans);
if (ans) // there exists an empty interval
whose length is d, segment [ans, ans+d-1] is inserted into the
segment tree
change (ans, ans+d-1,1,n,1,1);

}elsef //check out
int x, d;
scanf ("$d%d\n", &x, &d); // d contiguous rooms
are checked out from position x
change (x, x+d-1,1, n,1,0); //segment [x, x+d-1]

is deleted
1
}

return 0;

382 m Algorithm Design Practice for Collegiate Programming

7.3 Graph Algorithms

In this section, practices for Euler graphs, Hamiltonian graphs, Maximum
Independent Sets, Articulation Points, Bridges, and Biconnected Components are
shown.

7.3.1 Euler Graphs

A circuit in a graph G containing all edges is called an Euler circuit of G. And the
graph G'is called an Euler graph. Similarly, a trail in a graph G containing all edges
is called an Euler trail.

Theorem 7.3.1. A non-trivial connected graph G has an Euler circuit if and
only if each vertex has even degree.

Proof. Suppose G has an Euler circuit x; x; ... x,,, 6= x,,. And x; occurs k times
in the sequence x; x; ... x,,, 1<i<m—1. Then d(x;)=2k. Therefore, each vertex has
even degree.

Because G is connected and each vertex has even degree, there is a circuit Cin
G and the circuit C can be obtained by DFS. If Cisn’t the Euler circuit, in C there
must be a vertex v, whose degree is larger than the number of edges connected by
v, in C. From v a circuit C' whose edges aren’t in C can be obtained through DFS.
If CuC'=G, CUC" is an Euler circuit. Else by the same reason, in CUC" there
must be a vertex v, whose degree is larger than the number of edges connected by
v, in CUC". And from v, a circuit C' whose edges aren’t in CUC" can be obtained
through DFS. Then C' is added into CUC', and so on until the Euler circuit is
computed.

Obviously, the proof for necessity is also the algorithm getting the Euler circuit.

Theorem 7.3.2. A connected graph has an Euler trail from a vertex x to a vertex
y (x#y) if and only if x and y are the only vertices of odd degree.

Its proof is similar to the proof for Theorem 7.3.1.

7.3.1.1 Johnny’s Trip

Little Johnny has a new car. He decided to drive around the town to visit his
friends. Johnny wanted to visit all his friends, but there were many of them. In
each street he had one friend. He started thinking how to make his trip as short as
possible. Very soon he realized that the best way to do it was to travel through each
street of town only once. Naturally, he wanted to finish his trip at the same place
where he had started, at his parents’ house.

The streets in Johnny’s town were named by integer numbers from 1 to 7,
7<1995. The junctions were independently named by integer numbers from 1 to
m, m<44. No junction connects more than 44 streets. All junctions in the town
had different numbers. Each street was connecting exactly two junctions. No
two streets in the town had the same number. He immediately started to plan his

Practice for Advanced Data Structures m 383

round trip. If there was more than one such round trip, he would have chosen the
one which, when written down as a sequence of street numbers, is lexicographically
the smallest. But Johnny was not able to find even one such round trip.

Help Johnny and write a program which finds the desired shortest round trip.
If the round trip does not exist, the program should write a message. Assume that
Johnny lives at the junction ending where the street appears first in the input with
a smaller number. All streets in the town are two-way. There exists a way from each
street to another street in the town. The streets in the town are very narrow, and
there is no possibility to turn back the car once he enters a street.

Input

Inpuc file consists of several blocks. Each block describes one town. Each line
in the block contains three integers x, 7, z, where x>0 and y>0 are the numbers
of junctions that are connected by the street number z. The end of the block is
marked by the line containing x=y=0. At the end of the input file there is an empty
block, x=y=0.

Output

Output one line of each block containing the sequence of street numbers (single
members of the sequence are separated by spaces) describing Johnny’s round trip. If
the round trip cannot be found, the corresponding output block contains the mes-
sage “Round trip does not exist.”

Sample Input | Sample Output

1 123546

Round trip does not exist.

A WO N

ON 2N _2OWN=_WN =
O WWNO = WDN = WN
AW DN =2

o
o

Source: ACM Central European Regional Contest 1995
IDs for Online Judges: POJ 1041, UVA 302

384 m Algorithm Design Practice for Collegiate Programming

The problem requires you to calculate the Euler circuit for which the sequence of street
numbers is lexicographically the smallest for a graph. The algorithm is as follows:

1. An undirected graph is constructed when a town is input. Degrees for nodes,
the smallest number for nodes S, and the number of edges 7 are calculated.

2. If there exists a node whose degree is odd, there is no Euler circuit.

3. DFS is used to find an Euler circuit from node S. In order to find the Euler
circuit in which the sequence of street numbers is lexicographically the small-
est for a graph, for the set of unvisited edges incident to the current node, the
edge with the smallest street number is selected. Because of recursion, the
computed Euler circuit is in reversed order.

4. The Euler circuit is output in reversed order.

o
% Program

#include <iostream>

#include <cstdios

#include <cmaths>

#include <cstdlibs>

#include <cstring>

#include <strings>

#include <map>

#include <utilitys>

#include <vectors>

#include <set>

#include <algorithm>

#define maxn 2000 // The upper limit of the number of edges
#define maxm 50 // The upper limit of the number of vertices
using namespace std;

struct node{int s, t;}r[maxn]; //the sequence of edges,
where the i-th edge is (r[il.s, rl[il.t)

bool vis[maxn] ; //visited marks for edges vis[]

int degl[maxm], s[maxn]; // degrees of nodes degl[], the
sequence of edges for the Euler circuit s[]

int n, S, stop; //the number of edges n, the smallest number
for nodes S, the number of edges in the Euler circuit stop
bool exist () // If there exists a node whose degree is odd,
return 0; else return 1

{

Practice for Advanced Data Structures m 385

for (int 1 = 1; 1 <= maxm-1; 1 ++)
if (deg[i] % 2 == 1) return 0;
return 1;
!
void dfs (int now) //Calculate the Euler circuit from now
{
for (int 1 = 1; 1 <= n; 1 ++) //Search an unvisited
edge connecting now
if (!vis[i] && (r[il.s == now || r[il.t == now)){
vis[i] = 1; //the i-th edge
dfs(r[i].s + r[i].t - now);
s[++ stopl = i; //add the i-th edge into the

Euler circuit
int main()

{

ios::sync_with stdio(false);

int x, y, num; //(x, y) is an edge, the number of edge
is num
while (cin>>x>>y, x>0){ //Repeat input the first edge
(x, y) in the current test case until end
S = min(x, y); n = 0; //Initialization
memset (deg, 0, sizeof (deg)) ;
cin >> num; //the sequence number for edge (x, y)
r[num] .s = X; rlnum] .t = y; //two nodes for the
num-th edge
deg[x] ++; deglyl ++; //degree for nodes x and y
n = max(n, num) ;
while (cin >> x >> vy, x > 0){ // input edge (x, y)
S = min(S, min(x, y));

cin >> num;

r [num] .s=x; r[num].t=y;
deg[x] ++; deglyl ++;

n = max(n, num);

}

if (exist()) { //If degrees for all nodes are even,
calculate the Euler circuit
stop = 0;
memset (vis, 0, sizeof (vis)) ; //all edges are
unvisited
dfs (S) ; //from S, calculate the Euler circuit
for (int i=stop;i>=2;i --) cout << s[i] << ' ';

//Output the Euler circuit
cout << s[l] << endl;
}else //there exists odd nodes
cout << "Round trip does not exist." << endl;

}

return O;

386 m Algorithm Design Practice for Collegiate Programming

Theorem 7.3.3. A directed graph is Eulerian if and only if every graph vertex has
equal in-degree and out-degree.

7.3.1.2 Catenyms

A catenym is a pair of words separated by a period such that the last letter of the
first word is the same as the last letter of the second. For example, the following are
catenyms:

dog.gopher
gopher.rat
rat.tiger

aloha.aloha
arachnid.dog

A compound catenym is a sequence of three or more words separated by periods
such that each adjacent pair of words forms a catenym. For example:

aloha.aloha.arachnid.dog.gopher.rat.tiger

Given a dictionary of lowercase words, you are to find a compound catenym
that contains each of the words exactly once.

Input

The first line of standard input contains #, the number of test cases. Each test case
begins with 3<#<1000—the number of words in the dictionary. 7 distinct diction-
ary words follow; each word is a string of between 1 and 20 lowercase letters on a
line by itself.

Output

For each test case, output a line giving the lexicographically least compound catenym
that contains each dictionary word exactly once. Output “***” if there is no solution.

Sample Input | Sample Output

2 aloha.arachnid.dog.gopher.rat.tiger
6 * %k %k

aloha
arachnid
dog
gopher
rat

Practice for Advanced Data Structures m 387

Sample Input

Sample Output

tiger
3

oak
maple
elm

Source: Waterloo local 2003.01.25

Ids for Online Judges: POJ 2337, ZO) 1919

5/ \

M_l

S

N 4e
\/ Analysis

The key to the problem is data modeling: What are represented as vertices and what
are represented as arcs?

A dictionary is represented as a digraph G, where all letters are represented as ver-
tices, that is, @’ corresponds to 1, , and 7 corresponds to 26; and each word is
represented as an arc (, v), where is the number of the first letter for the word, and v is
the number of the last letter for the word. Two corresponding words become a catenym
if and only if the last letter of the first word is the same as the first letter of the second
word. Therefore, the problem requires you to calculate an Euler path in the digraph G.

The algorithm is as follows:

1. A digraph G is constructed when a dictionary is input. The in-degree and the
out-degree for each vertex and the root of the union-find set containing the
vertex are calculated;

2. Arcs are sorted in lexicographical order;

3. Search vertices in ascending order: If there are two vertices belonging to
different union-find sets, graph G isn’t weakly connected, and there is no
Eulerian directed path; else

4. Search vertices in ascending order. And determine whether there is an Euler
path in the graph or not:

If there is a vertex in which the difference between its in-degree and its out-
degree is larger than 1, there is no Euler path;

If every vertex’s in-degree is the same as its out-degree, the vertex s with the
smallest number is as the starting point for the Euler path;

If there are only two vertices and their out-degrees and in-degrees differ by 1,
the vertex s whose out-degree is larger than its in-degree is as the starting
point for the Euler path;

Else there is no Eulerian directed path.

5. DES is used to calculate the Eulerian directed path from s.

388 ®m Algorithm Design Practice for Collegiate Programming

oY
= -

#include <iostream>

#include <cstdio>

#include <cmaths>

#include <cstdlibs>

#include <cstring>

#include <strings>

#include <map>

#include <utilitys>

#include <vectors>

#include <set>

#include <algorithm>

#define maxn 1010

using namespace std;

struct node{int u,v;string name; }road[maxn] ; //edges, the
i-th edge is (road[i] .u, road[i].v), and the word is road[i].
name

bool appl[30], usel[maxn]; //marks for vertices and edges are
appl]l and usel]

int ind[30], oud[30], anc[30], s[maxn]; //in-degree and
out-degree for vertex i are ind[i] and oud[i], the root for
its union-find set is anc[i], directed Euler path is s[]

int n, S, stop, t; //number of edges n, the starting point

and length for the directed Euler path are S and stop, number
of test cases is t
bool cmp (const node &a, const node &b) //Lexicographic order

{
}

int get father (int x) //return the root for the union-find
set containing x

{

return a.name < b.name;

if (lanc[x]) //x doesn’t belong to any union-find set,
return x
return x;
anc [x] = get father(anc[x]) ; //calculating the root for

the union-find set containing x
return anc [x];

int change (char ch) //letter ch is transferred as its
corresponding number

{
}

return (int)ch - (int)’a’ + 1;

Practice for Advanced Data Structures m 389

bool exist euler circuit () //determine whether there exists
an Euler path, if there is an Euler, the starting point S is
calculated

{

int t = 0;
for (int i=1; 1<=26; i++) //for each vertex in the
graph
if (applil){
if (£ == 0) t = get father(i);
if (get_father(i)!= t)
return O0;
1
int sum = 0; //Initialization
S = 0;
for (int i = 1; 1 <=26; 1 ++) // for each vertex in the
graph
if (applil) {
if (ind[i] != oud[il){ //in-degree and out-
degree for vertex i1 are different
if (abs(ind[i] - oud[i])>1) return O;

// the difference between its in-degree and its out-degree is
larger than 1, there is no Euler path, and return 0

sum ++; //accumulate the number of vertices
which its out-degree and its in-degree differs by 1
if (oud[i]>ind[i]) S=i; // 1f its out-

degree is larger than its in-degree, the node S is as the
starting point for the Euler path
}
}
if (sum == 0) //in-degree and out-degree for each

vertex are the same, there is a cycle, the starting vertex is
the vertex s whose sequence number is the least

for (int 1 = 1; 1 <=26; 1 ++)
if (applil) {
S = 1i;
break;
!
return 1;
1
void dfs (int now) // from vertex now, calculate the Euler
path s[]
{
for (int i = 1; 1 <=n; i ++) //search unvisited edges
from now
if (!luse[i] && road[i].u == now) {
use[i] = 1;
dfs(roadl[i] .v) ;
s[++ stop] = 1i;

390 m Algorithm Design Practice for Collegiate Programming

void init () // input a dictionary, construct a directed
graph
{
cin >> n; //number of words
memset (ind, 0, sizeof (ind)); //in-degree and out-degree
memset (oud, 0, sizeof (oud)) ;
memset (anc, 0, sizeof (anc)); //union-find set
memset (app, 0, sizeof (app));
for (int i = 1; i <=n; i ++){ //input words and
construct a directed graph
cin >> road[i] .name; //the i-th word
road[i] .u = change (road[i] .name[0]) ; //the i-th

edge

road[i] .v = change (road[i] .name [(int)road[i] .name.
size() - 11);

app [road[i] .u] = applroad[i].v] = 1;

int u=get father(road[i] .u),v=get father (road[i].v);
//roots for union-find sets

if (u !'= v) anclu] = v; // union-find sets are
combined

oud[road[i] .u] ++; ind[road[i] .v] ++; // in-degree
and out-degree

1

!
void solve () // calculate and output Euler path

{

sort(road + 1, road + n + 1, cmp); //sort degrees in
Lexicographic order

if (lexist euler circuit()){ //there is no Euler path
cout << "**¥*" << endl;
return;

!

stop = 0; //Initialize the length of Euler path

memset (use, 0, sizeof (use));

dfs (S) ; //calculate the Euler path s[] from S

for (int i = stop; 1 >= 2; i --) //Output

cout << roadl[s[i]] .name << '.';
cout << road[s[1l]] .name << endl;

int main()

ios::sync_with stdio(false);

cin >> t; //number of test cases
for (int i = 1; i <=t; i ++) { //test cases
init () ; // input a dictionary, construct a directed
graph
solve () ; //calculate and output Euler path
}
return 0;

Practice for Advanced Data Structures m 391

7.3.2 Traveling Salesman Problem and Tournaments

In a graph, a Hamiltonian path is a path that contains each vertex exactly once, and
a Hamiltonian circuit is a circuit that contains each vertex exactly once. A graph
that contains a Hamiltonian path is called a traceable graph. A graph that contains
a Hamiltonian cycle is called a Hamiltonian graph.

Suppose G(V; E) is a connected graph with 7 vertices, #23, and no loops and
multiple edges; v€V; |V|=n, and deg(v) is the degree of v.

Theorem 7.3.4 Graph G has a Hamiltonian circuit if; for any two vertices # and
v of G that aren’t adjacent, deg(u)+deg(v)>n. G has a Hamiltonian path if, for any
two vertices # and v of G that aren’t adjacent, deg(u)+deg(v)=n—1.

Corollary. Graph G has a Hamiltonian circuit if each vertex has a degree
greater than or equal to /2.

The Travelling Salesman Problem (TSP) is such a problem: “Given a weighted
complete graph, what is the shortest possible route that visits each vertex exactly
once and returns to the original vertex?” It is an NP-hard problem.

A tournament is a directed graph without loops, in which every pair of vertices
is connected by a single uniquely arc.

Theorem 7.3.5 In a tournament, there is a directed Hamiltonian path.

In this section, there are three kinds of problems.

Case 1: In a graph there are a few vertices. Brute-force search can be used to solve
the traveling salesman problem, although its time complexity is O(n!Xn).
Case 2: State compression is used in solving the traveling salesman problem

when there are a few vertices in a graph.
Case 3: A Hamiltonian path is calculated in a tournament. The time complexity

is O().

7.3.2.1 Getting in Line

Computer networking requires that the computers in the network be linked.

This problem considers a “linear” network in which the computers are chained
together so that each is connected to exactly two others, except for the two com-
puters on the ends of the chain, which are connected to only one other computer.
A picture is shown in Figure 7.9. Here the computers are the black dots, and their
locations in the network are identified by planar coordinates (relative to a coordi-
nate system not shown in the picture).

Distances between linked computers in the network are shown in feet in Figure 7.9.

For various reasons, it is desirable to minimize the length of cable used.

Your problem is to determine how the computers should be connected into such
a chain to minimize the total amount of cable needed. In the installation being
constructed, the cabling will run beneath the floor, so the amount of cable used to
join two adjacent computers on the network will be equal to the distance between

392 m Algorithm Design Practice for Collegiate Programming

(12,16)

13.42 ft.

(24,10)
11.18 ft.

(13,8)

Figure 7.9

the computers plus 16 additional feet of cable to connect from the floor to the com-
puters and provide some slack for ease of installation.

Figure 7.10 shows the optimal way of connecting the computers shown above,
and the total length of cable required for this configuration is (4+16)+(5+16)+
(5.83+16)+(11.18+16)=90.01 feet.

Input

The input file will consist of a series of data sets. Each data set will begin with a line
consisting of a single number, indicating the number of computers in a network.
Each network has at least two and at most eight computers. A value of 0 for the
number of computers indicates the end of input.

After the initial line in a darta set specifying the number of computers in a net-
work, each additional line in the data set will give the coordinates of a computer
in the network. These coordinates will be integers in the range 0 to 150. No two
computers are at identical locations and each computer will be listed once.

Output

The output for each network should include a line which tells the number of the
network (as determined by its position in the input data), and one line for each

4 ft.

(8,16) (12,16)

5 ft. Total length of cable needed = 90.01 ft.

(8,11)

(24,10)
11.18 ft.

(13,8)

Figure 7.10

Practice for Advanced Data Structures ®m 393

length of cable to be cut to connect each adjacent pair of computers in the network.
The final line should be a sentence indicating the total amount of cable used.

In listing the lengths of cable to be cut, traverse the network from one end
to the other. (It makes no difference at which end you start.) Use a format similar
to the one shown in the sample output, with a line of asterisks separating output for
different networks and with distances in feet printed to two decimal places.

Sample Input | Sample Output

6 EETETEES

519 Network #1

55 28 Cable requirement to connect (5,19) to (55,28) is 66.80 feet.

38 101 Cable requirement to connect (55,28) to (28,62) is 59.42 feet.

28 62 Cable requirement to connect (28,62) to (38,101) is 56.26 feet.

111 84 Cable requirement to connect (38,101) to (43,116) is 31.81 feet.

43 116 Cable requirement to connect (43,116) to (111,84) is 91.15 feet.

5 Number of feet of cable required is 305.45.

84 99 Network #2

142 81 Cable requirement to connect (11,27) to (88,30) is 93.06 feet.

88 30 Cable requirement to connect (88,30) to (95,38) is 26.63 feet.

95 38 Cable requirement to connect (95,38) to (84,99) is 77.98 feet.

3 Cable requirement to connect (84,99) to (142,81) is 76.73 feet.

132 73 Number of feet of cable required is 274.40.

72 111 Network #3

0 Cable requirement to connect (132,73) to (72,111) is 87.02 feet.
Cable requirement to connect (72,111) to (49,86) is 49.97 feet.
Number of feet of cable required is 136.99.

Source: ACM/ICPC World Finals 1992
ID for Online Judge: UVA 216

A weighted graph is constructed as follows. Computers are represented as vertices.
Euclidean distances between computers are as weights of edges connecting the two
computers. Because each vertex’s degree is #—1, there must be Hamilton paths in
the graph. The problem requires you to calculate the Hamilton path with minimal
length. Because the upper limit of the number of vertices is eight, DFS can be used
to solve the problem.

394 m Algorithm Design Practice for Collegiate Programming

oY
= -

#include <iostream>
#include <cstdio>
#include <cmaths>
#include <cstdlibs>
#include <cstring>
#include <strings>
#include <map>
#include <utilitys>
#include <vectors>
#include <set>
#include <algorithm>
#idefine maxn 10
using namespace std;

bool vis[maxn] ; //visited marks for vertices

int x[maxn], ylmaxn], ans[maxn], t[maxn]; //computers’
coordinates x[] and y[], the shortest Hamiltonian path ansl[],
the current path t[]

double dis[maxn] [maxn] ; //distance between vertices
double Min; //the length of the shortest path

int n, casenum; //number of vertices n, number of test
cases casenum

int sqgr(int x) //return x°

{
}

void dfs(int sum, int now, double s) //calculate the
Hamiltonian path from the current state (there are sum
vertices in the current path, the length of the current path
is s, the last vertex in the current path is now)

{

return x * x;

if (sum == n){ // the Hamiltonian path
if (s < Min){ // the current Hamiltonian path is
the shortest
Min = s;
for (int 1 = 1; 1 <=n; i ++) ans[i] = t[i];
!
return; //backtracking
}
for (int i = 1; 1 <=n; i ++) //search unvisited
vertices
if (tvis([i]){
vis[i] = 1; //Set vertex i visited mark, (now, 1)

is added into the path

Practice for Advanced Data Structures ®m 395

tlsum + 1] = i;
dfs(sum + 1, i, s + dis[now] [i]);
vis[i] = 0; // Set vertex i unvisited mark

}
}

void init () // Input computers’ coordinates, construct
distance matrix

{
for (int i = 1; 1 <=n; i ++) // Input computers’
coordinates
cin >> x[1] >> yI[il;
memset (dis, 0, sizeof (dis)) ;
for (int 1 = 1; 1 <=n; i ++) //distances between vertices
for (int j= 1; Jj<=n; j ++)
dis[i]l [§] = sagrt(sgr(x[i] - x[j]) + sqr(yI[il
- y[il)) + 16;
!
void solve () // calculate and output the shortest
Hamiltonian path

cout TR R R RS EEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEE
khkkkkkkkk o endl;

cout << "Network #" << ++ casenum << endl;

Min = 1lelO0; //Initialization

dfs(0, 0, 0.0); // calculate the shortest Hamiltonian
path

for (int i = 1; 1 <=n-1; i ++) //Output the optimal way

of connecting the computers
cout << "Cable requirement to connect (" << x[ans[i]]

<< "," << ylans[i]] << ") to (" << x[ans[i + 1]] << ", " <<
ylans[i + 1]] << ") is " << dis[ans[i]] [ans[i + 1]] << "
feet." << endl;

cout << "Number of feet of cable required is " << Min <<
" " << endl;

}

int main()
ios::sync_with stdio(false);
cout << fixed;
cout.precision(2) ;

while (cin >> n, n > 0){ //number of computers
init () ; //Input computers’ coordinates, construct
distance matrix
solve () ; //calculate and output the shortest

Hamiltonian path

}

return O;

396 m Algorithm Design Practice for Collegiate Programming

7.3.2.2 Nuts for Nuts

So, Larry and Ryan decided that some nuts don’t really taste so good, they realized
that there are some nuts located in certain places of the island and they love them!
Since they’re lazy, but greedy, they want to know the shortest tour that they can use
to gather every single nut!

Can you help them?

Input

You'll be given x and y, both less than 20, followed by x lines of y characters each
as a map of the area, consisting sorely of “”, “#”, and “L”. Larry and Ryan are cur-
rently located in “L”, and the nuts are represented by “#”. They can travel in all eight
adjacent directions in one step. See below for an example. There will be at the most
15 places where there are nuts, and “L” will only appear once.

Output

On each line, output the minimum amount of steps starting from “L”, gather all
the nuts, and back to “L”.

Sample Input Sample Output
55 8
L.... 8
#...

#...

#...

55

L....

#...

#...

#...

Source: UVa Local Qualification Contest 2005
ID for Online Judge: UVA 10944

Larry and Ryan will go south for a nut, then south again for another nut, then
south twice for another nut, and then back where they are.

Nuts are represented as vertices. Nuts are numbered 1...% from top to down and
from left to right. A A-digit binary number is used to represent whether nuts are

Analysis

Practice for Advanced Data Structures m 397

gathered or not. If the 7-th nut is gathered, the (i-1)-th digit is 1, else the (i-1)-th
digit is 0. Initially the 4-digit binary number is 0. And finally the 4-digit binary
number is 2°~1. Suppose the current position for Larry and Ryan is (x, 3) and the
current gathered nuts is z. The current state is represented as (x, y, z). Suppose a
queue ¢ is used to store states, and a hash table Aash is to avoid repeated states.

Initially, the starting position for Larry and Ryan (/, /) and the current gath-
ered nuts 0 are added into queue g as the initial state, and Aash[the initial state]=1.
Then BES is used until queue g is empty.

The front is popped from ¢ and extended in eight directions to produce new
states. If a new state isn’t in Aash, then it is added into ¢, and hash[the new state]=1.
If the new state is the goal state (/, /, 2¢-7), Ryan and Larry have gathered all the
nuts, and returned back to “I".

The amount of steps starting from “L”, gather all the nuts, and back to “L” is
calculated during the BES.

oY
o o

#include <iostream>

#include <cstdios>

#include <cmaths>

#include <cstdlib>

#include <cstring>

#include <strings>

#include <map>

#include <utility>

#include <vector>

#include <set>

#include <algorithm>

#define maxn 22 //upper limit for the size of the map
using namespace std;

const int dx[9] = {0, 0, -1, -1, -1, 0, 1, 1, 1};

// Horizontal displacement and vertical displacement

const int dy[9] = {0, 1, 1, o, -1, -1, -1, 0, 1};

struct node {int x, y, get;}q[10000000]; //queue, where the
current position is (qgl].x, qgll.y), and qgl].get represents
gathered nuts

bool hash[maxn] [maxn] [32768] ; //Hash table, where hash[1i]
[7]1 [k] represents arriving at (i, j) and gathering k is the
current gathered nuts

int land([maxn] [maxn]; // If (i, j) is the i-th nut from top to
down and from left to right, landl[i] [j]1=2"; else land[i] [j]1=0
int n, m, sum, Sx, Sy; //the size for the map is (n, m);

the starting position for Larry and Ryan is (Sx, Sy)
void init () //Input the map

398 m Algorithm Design Practice for Collegiate Programming

{
memset (land, 0, sizeof (land)) ;
sum = 1;
for (int i = 1; 1 <=n; 1 ++){ // If (i, j) is the i-th

nut from top to down and from left to right, land[i][j]=25
else land[i] [j]=0

char ch;
cin.get (ch) ;
for (int j = 1; j <=m; i ++) {

cin.get (ch) ;

switch (ch)
case 'L': land[i] [j]=0; Sx = i; Sy = j; break;
case '#': land[i] [j]=sum; sum *= 2; break;

case '.': land[i] [j] = 0; break;
1
}
!
for (int 1 = 0; 1 <=n+1; 1 ++) //boundary value -1
land[i] [0] = land[il [m + 1] = -1;
for (int 1 = 1; 1 <=m+1l; 1 ++)
land[0] [1] = land[n + 1][i] = -1;
!
void solve() //calculate and output the minimum amount of
steps
{
memset (hash, 0, sizeof (hash)) ; //initialize Hash table
hash[sx] [Sy] [0] = 1; //Hash value for the starting
position
int head = 1, tail = 1, move = 0; //Initialization
qll]l.x = Sx; qlll.y = Sy;
qll].get = 0;
bool flag = 0;
if (sum == 1) flag = 1; //no nut
while (head <= tail && !flag) { //queue is not empty,
no Hamiltonian Circuit
int t = tail; //the rear for the queue
for (int i = head; i <= tail; i ++) { // elements
in the queue
int tx = glil.x, ty = qlil.y; //the current
element
for (int j = 1; J <=8;3 ++) { // 8 directions

are searched
int val=land[tx+dx[j]] [ty+dy[]j]1];
if (val >= 0 && !'hash[tx+dx[j]] [ty+dy[]]]
[gli] .get | wvall) //add into the queue
{ t ++;
gqlt] .x = tx + dx[j]; gqlt]l.y = ty + dy[j];
alt]l .get = glil.get | val;
hash[tx+dx [j]] [ty+dy[]j]] [q[i] .get|vall=1;
//Hash value

Practice for Advanced Data Structures ®m 399

if (glt] .x==Sx && glt] .y==Sy && glt].
get==sum-1) /
flag = 1;
1
1
1
head =tail+1l; tail=t;
move ++; //number of steps +1
!
cout << move << endl; // output the minimum number of
steps
!
int main()
{
ios::sync _with stdio(false);
while (cin >> n >> m){ //sizes of maps
init () ; // Input the map
solve () ; // calculate and output the minimum number
of steps
!
return 0;
!

Theorem 7.3.6 A tournament has a Hamiltonian path.

Proof. In a tournament there is a path. A vertex which is not in the path can be
inserted into the path. Suppose there is a path 2,—>a4,—...4; ...a,,—a, in the tour-
nament. A vertex 4,,; which isn’t in the path can be inserted into the path:

Case 1: If (4,41, 4)) is an arc, then 4,4, is inserted into the path, and the path
becomes a,,1 — @& — @y —> ..4;...d,_] = ay;

Case 2: If there are arcs (@), 4,41), 1<i<n—1, and 4,4, is the first vertex that there
is an arc (@41, 441), then 4,4, is inserted into the path and the path becomes
W = Ay = eelly = Ay = By eallyy —> Ay}

Case 3: There is no such a vertex 4; in the path that (4,4, 2) is an arc, 1<i<n.
There must be an arc (4,, 4,+,). Then a,,, is inserted into the path and the path
becomes @ — a4, —> ...4;...a,1 — @, = a1 .

Therefore, a tournament has a Hamiltonian path.
Obviously, the proof is also the algorithm for getting a Hamiltonian path in a
tournament.

7.3.2.3 Task Sequences

Tom has received a lot of tasks from his boss, which are boring to deal with by
hand. Fortunately, Tom got a special machine called an Advanced Computing
Machine (ACM) to help him.

ACM works in a really special way. The machine can finish one task in a short
time; after it has finished one task, it should smoothly move to the next one;

400 m Algorithm Design Practice for Collegiate Programming

otherwise, the machine will stop automatically. You must start it up again to make
it continue working. Of course, the machine cannot move arbitrarily from one task
to another. So each time before it starts up, one task sequence should be well sched-
uled. Specially, a single task also can be regarded as a sequence. In the sequence,
the machine should be able to smoothly move from one task to its successor (if a
successor exists). After the machine has been started up, the machine always works
according to the task sequence, and stops automatically when it finishes the last one.
If all the tasks have not been finished, the machine has to start up again and works
according to a new sequence. Of course, the finished tasks can’t be scheduled again.

For some unknown reason, it was guaranteed that for any two tasks 7 and j, the
machine can smoothly move from i to j or from j to 7 or both. Because the startup
process is quite slow, Tom would like to schedule the task sequences properly, so
that all the tasks can be completed with a minimal number of startup times. It is
your task to help him achieve this goal.

Input

The input contains several test cases. For each test case, the first line contains only
one integer 7, (0<7<1,000), representing the number of tasks Tom has received.
Then 7 lines follow. Each line contains # integers, 0 or 1, separated by white
spaces. If the j-th integer in the i-th line is 1, then the machine can smoothly move
from task 7 to task j; otherwise. the machine can not smoothly move from task 7
to task j. The tasks are numbered from 1 to 7.

Input is terminated by end of file.

Output

For each test case, the first line of output is only one integer 4, the minimal number
of startup times needed. And 24 lines follow, to describe the # task sequences. For
cach task sequence, the first line should contain one integer 7, representing the
number of tasks in the sequence. And the second line should contain 7 integers,
representing the order of the 7 tasks in the sequence. Two consecutive integers
in the same line should be separated by just one white space. Extra spaces are not
allowed. There may be several solutions, and any appropriate one is accepted.

Sample Input Sample Output
3 1

011

101 213

000

Source: ACM Asia Guangzhou 2003
IDs for Online Judges: POJ 1776, ZOJ 2359, UVA 2954

Practice for Advanced Data Structures m 401

A directed graph G(V, E) is used to represent the problem. Tasks are represented
as vertices, and relationships for any two tasks are represented as arcs. For any
two tasks 7 and j, the machine can smoothly move from 7 to j or from j to 7 or
both. Therefore, the directed graph is a tournament. Because a tournament has
a Hamiltonian path, the minimal number of startup times is 1. The algorithm
calculating the Hamiltonian path in a tournament is shown in the proof for
Theorem 7.3.5.

Vertex 1 is as the first vertex in the Hamiltonian path. Other vertices are
inserted into the Hamiltonian path one by one. Suppose the current inserted vertex
is vertex k. Vertices in the current Hamiltonian path are searched one by one, and
the current vertex is vertex i.

If (k, 1) ¢E, t=i, that is, (t, k)€E;
If (k, 1) €E, then
if vertex i is the first vertex in the current

Hamiltonian path, (k, i) is inserted into the current
Hamiltonian path, and vertex k is as the first vertex in the
current Hamiltonian path;

else (t, k) and (k, 1) are inserted into the current
Hamiltonian path;

If all vertices in the current Hamiltonian path have been searched, then (2 4) is
inserted into the current Hamiltonian path.

.«
% Program

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlibs>
#include <cstring>
#include <strings
#include <map>
#include <utilitys>
#include <vectors>
#include <set>
#include <algorithms>
#define maxn 1010

402 ®m Algorithm Design Practice for Collegiate Programming

#define Path(i, s) for (int 1 = s; 1i; 1 = nextl[i])
using namespace std;
int pic[maxn] [maxn] ; // adjacency matrix
int next [maxn] ; //pointers
int n; //number of vertices
void init () //construct an adjacency matrix
{
memset (pic, 0, sizeof (pic)); //initialization
string str;
getline(cin, str); //a blank line
for (int i = 1; i <=n; i ++) {
getline(cin, str); //the i-th row
for (int j= 1; j <=n;j ++) // the i-th row for the
adjacency matrix
picli]l [j] = str(j - 1) * 2] - '0';

!
!
void solve () // calculate and output the Hamiltonian Path

{

int head = 1, t; //Initialization
memset (next, 0, sizeof (next)) ;
for (int k = 2; k<=n; k++){ //vertex 2 ... vertex n are
inserted into the Hamiltonian Path
bool flag = 0; //vertice k isn’t inserted
for (int i = head; i; i = next[i]) //vertex 1i:
vertices in the current Hamiltonian Path
if (piclk] [i]){ //vertex k and vertex i are
connected
if (i==head) head=k; //vertex i is the

first vertex in the Hamiltonian Path
else next[t]=k;

next [k] = 1i; //(k, 1) is inserted
flag = 1; // vertex k is inserted
break;
lelse t = 1i;
if (!flag) //(t, k) is inserted into the
Hamiltonian Path
next [t] = k;

}

cout<<'l'<<endl<<n<<endl; // output the minimal number
of startup times needed and the number of vertices in the
Hamiltonian Path n

for (int i=head; i; i=next[i]) { //output the
Hamiltonian Path
if (i != head) cout << ' ';

cout << 1i;

}

cout << endl;

}

int main()

Practice for Advanced Data Structures ®m 403

{
ios::sync_with stdio(false);
while (cin >> n){ // the number of tasks (vertices)
init () ; //construct an adjacency matrix
solve () ; //calculate and output the Hamiltonian Path
!
return 0;
}

7.3.3 Maximum Independent Sets

In a graph G(V] E), I is a subset of vertices, that is, /IZV. If, for every two vertices
in /, there is no edge connecting the two vertices, / is an independent set for G.
A maximal independent set is such an independent set that if any other vertex is
added to the set, the set isn’t an independent set. A maximum independent set is an
independent set of the largest possible size for a given graph G. This size is called
the independence number of G, and denoted B(G).

The Eight Queens Chess Problem is a problem for placing eight queens on
the board so that no one queen can be taken by any other. The problem can
be represented as a graph. In the board, each square is represented as a vertex.
There are 64 vertices in the graph. If two placed queens can attack each other,
there is an edge connecting the two corresponding vertices. Therefore, solving
the Eight Queens Chess Problem is calculating the maximum independent set
for the graph.

In a graph G(V; E), if K is such a subset of vertices that each edge of the graph
is incident to at least one vertex of the set, then K is a vertex cover. A minimum
vertex cover is a vertex cover of the smallest possible size. This size is called the cover
number of G, and denoted o/(G). B(G)+oU(G)=|V].

In a graph G(V] E), a clique C is such a subset of the vertices that every two
distinct vertices are adjacent. A maximum clique of a graph is such a clique that
there is no clique with more vertices. The clique number ®(G) of a graph G is the
number of vertices in a maximum clique in G.

The opposite of a clique is an independent set. Therefore, a maximum clique for
a graph is a maximum independent set for its complement graph. And a maximum
independent set for graph is a maximum clique for its complement graph.

Obviously, calculating an independent set for a graph can be implemented
through calculating a maximum clique for its complement graph. When a graph is
input, its complement graph can be constructed.

Suppose f17] is the number of vertices for the maximum clique for the subgraph
induced by vertex i..vertex n; get[i][] stores the number of adjacent vertices of the
i-th vertex v for vertex v+1 .. vertex 7 in the current clique; max is the maximal
number of vertices for current cliques; and dfs(s, 7) is used to calculate f]], where
s is the number of vertices in the clique, # is the number of adjacent vertices of the

404 w Algorithm Design Practice for Collegiate Programming

s-th vertex v for vertex v+1 .. vertex # in the current clique. Initially, vertex 7 is put
into a clique, s=1, ¢ is the number of vertices in ge#[1][]. The algorithm for dfs(s, #)
is as follows:

If s<max, then max=s, the current clique is the optimal
solution, and return;
Enumerate get[s] [1] (1<is<t):

For the current adjacent vertex v, if s+f[v]<max, then
it can’t form the maximum clique, and return;

Vertex v is as the (s+1)-th vertex;

Calculate the number of vertices t' that are adjacent
to vertex v in get[s] [i+1...t], and store these vertices in
get [s+1] [];

dfs(s+1, t');

Based on dfs(s,), the main algorithm is as follows:

max=0;
Enumerate vertices in descending order (vertex i=n..l):

Vertex i1 is the first vertex in the clique;

Calculate the number of vertices adjacent to vertex 1
from vertex i+l to vertex n, and these adjacent vertices are
stored into get[1][];

dfs(1, t);
fli]l =max;
Output max(the number of vertices for the optimal
solution) ;

7.3.3.1 Graph Coloring

You are to write a program that tries to find an optimal coloring for a given graph,
as shown in Figure 7.11. Colors are applied to the nodes of the graph and the only
available colors are black and white. The coloring of the graph is called optimal
if a maximum of nodes is black. The coloring is restricted by the rule that no two
connected nodes may be black.

Figure 7.11 An optimal graph with three black nodes.

Practice for Advanced Data Structures m 405

Input

The graph is given as a set of nodes denoted by numbers 1...7, #<100, and a set of
undirected edges denoted by pairs of node numbers (1, 7,), 7!=n,. The input file
contains 7 graphs. The number m is given on the first line. The first line of each
graph contains 7 and 4, the number of nodes and the number of edges, respectively.
The following # lines contain the edges given by a pair of node numbers, which are
separated by a space.

Output

The output should consists of 2 lines, two lines for each graph found in the input
file. The first line should contain the maximum number of nodes that can be col-
ored black in the graph. The second line should contain one possible optimal color-
ing. It is given by the list of black nodes, separated by a blank.

Sample Input Sample Output

3
145

UG A W W NN =2 20 =
DO O R Ul WN

Source: ACM Southwestern European Regional Contest 1995

ID for Online Judge: POJ 1419, UVA 193

s 4 Analysis

The coloring is restricted by the rule that no two connected nodes may be black. The
coloring of the graph is called optimal if a maximum of nodes is black. Therefore,
the problem requires you to calculate a maximum independent set for the graph.
When a graph is input, its complement graph is constructed. Then a maximum
clique for the complement graph is calculated. The maximum clique for the com-
plement graph is a maximum independent set for the graph. The cardinal number

406 ®m Algorithm Design Practice for Collegiate Programming

of the maximum independent set for the graph is the maximum number of nodes
that can be colored black in the graph. And the maximum independent set for the
graph is one possible optimal coloring.

For each node 7 (7=7...1), node i is as the first node for the current clique. Then,
for node j (j=i+1...n), if node j and node 7 are adjacent, node j is put into a set, and
cliques are calculated with the above method.

Obviously, finally the maximum clique is calculated when the loop ends.

o
% Program

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlibs>
#include <cstring>
#include <strings
#include <map>
#include <utilitys>
#include <vectors
#include <set>
#include <algorithms>

#define maxn 105 //The upper limit for the number of nodes
using namespace std;

bool pic[maxn] [maxn] ; // adjacency matrix for complement
graph

int get [maxn] [maxn] ; // getlk] [1: nodes adjacent to the
k-th node in the current clique

int node[maxn], ans[maxn], dpl[maxn]; //node[]: current
clique; ans[]: maximum clique; dpl[i]: the number of nodes for
the maximum clique storing node i.. node n

int n, m, t, Max; //number of nodes n, number of edge m,
the number of nodes for the current clique Max

void dfs (int now, int sum) // the maximum clique is

calculated from the current state (the number of nodes for
the current clique now, number of edges connecting the last
node sum)
{
if (sum == 0){ // clique, that is, a complete subgraph
if (now>Max){ //adjust the number of nodes for the
maximum clique
Max = now;
for (int i=1; i<=Max; i ++) ans[i]=nodel[i];
}

return;

Practice for Advanced Data Structures ®m 407

!
for (int i=1; i<=sum; 1 ++) { //Enumeration
int v=get [now] [i], t=0; //the other node v for the
i-th edge, the number of edges connecting v t
if (now+dp[v]<=Max)return;
for (int j=i+1;j<=sum; J++) //v is added into the
clique
if (pic[v] [get[now] [j]]) get[now+1l] [++t]=get [now]
[31;
node [now+1] =v;
dfs (now+1, t);
1
!
void init () //Input edges, construct the complement graph

{

cin >> n >> m; //numbers of nodes and edges
memset (pic, true, sizeof (pic)); //initialize the
complement graph
for (int i = 1; i <= m; i ++){ // Input edges,
construct the complement graph
int a, b;

cin >> a >> b;
piclal [b]l=pic[b] [a]l=0;
}
1
void solve () // calculate the maximum clique for the

complement graph (the maximum independent set for the original
graph)

{
Max = O; // the number of nodes for the current clique
Max
for (int i = n; i >= 1; i --){ //node i is as the first
node for the current clique
int sum = 0;
for (int j=i+1; Jj<=n; Jj++) // if node j (j=i+1l..n)
and node i are adjacent, node j is put into get[1] []
if (pic[i] [j§]1) get[1l] [++sum]=7;

node [1] = 1i; // node 1 is as the first node for the
current clique
dfs (1, sum); //number of nodes for complete

subgraph for node i...n Max
dp[i] =Max;
}

cout << Max << endl; // number of nodes for the maximum
clique

for (int i=1; i<=Max-1;i++) // nodes for the maximum
clique

cout << ans[i] << ' ';
cout << ans[Max] << endl;

408 m Algorithm Design Practice for Collegiate Programming

int main()

{
ios::sync_with stdio(false);
cin >> t; //number of test cases
for (int i = 1; i <= t; i ++) {
init () ; //Input edges, construct the complement
graph
solve () ; // calculate the maximum clique for the

complement graph (the maximum independent set for the original
graph)

}

return O;

7.3.4 Articulation Points, Bridges, and
Biconnected Components

An articulation point in a connected graph is such a vertex that it would break the
graph into two or more pieces if it is removed. A bridge in a connected graph is such
an edge that it would break the graph into two or more pieces if it is removed. A
cut, vertex cut, or separating set of a connected graph G is a set of vertices whose
removal renders G disconnected. The connectivity or vertex connectivity k(G)
(where G is not a complete graph) is the size of a minimal vertex cut. A graph is
called £-connected or £-vertex-connected if its vertex connectivity is & or greater.
The edge cut of G is a group of edges whose total removal renders the graph
disconnected. The edge-connectivity A(G) is the size of a smallest edge cut, and
the local edge-connectivity A%, v) of two vertices u, v is the size of a smallest
edge cut disconnecting # from ». Again, local edge-connectivity is symmetric.
A graph is called k-edge-connected if its edge connectivity is 4 or greater. The
vertex-connectivity and the edge-connectivity of a graph show the connectivity
of a graph.

A connected component of a graph G is a connected subgraph of G that is not
a proper subgraph of another connected subgraph of G. In an unconnected graph,
how many connected components without a cut vertex can be computed? Such
connected components are called biconnected components. A connected subgraph
without a cut vertex is also called a block.

Function low is used to get cut vertices and bridges of a connected graph, and
biconnected components of a graph. Suppose pre[v] is the sequence number of ver-
tex v in DFS traversal. That is, pre[v] is the time that vertex v is visited. Function
lowlu] is the pre[v] of vertex v which is the earliest visited ancestor of # and #’s
descendants. That is,

Jowlu] = min {prelul , lowls] , prelw] }, where s is a child of u,
(u,s) ,(u,w)eE

and (u, w) is a back edge.

Practice for Advanced Data Structures ®m 409

A vertex itself is considered as one of its ancestors. Therefore low[ul=pre[u] or
lowlul=pre[w] can hold. low(u] is calculated as follows:

pre[u] u is visited for the first time in DFS
low[u] =< min{lowlu], pre(w]} (u,w) is a back edge
min{low(u],low[s]} all edges related to u’s children are inspected

In the algorithm, /owl[#] is changed until the DES subtree whose root is #, and
array low and array pre for » and its descendants are produced.
In DEFS, edges can be classified into four types:

Branch edge T: Edge (», v) is a branch edge, if it is the first time that » is visited
in DES.

Back edge B: Edge (u, v) is a back edge, if # is a descendant of », and » has been
visited, but all descendants of » haven’t been visited.

Forward edge F: Edge (#, v) is a forward edge, if v is a descendant of #, all
descendants of v have been visited, and pre[u]<pre[v].

Cross edge C: All other edges (#, v). That is, # and » have no ancestor-descen-
dant relationship in a DFS tree, or # and v are in different DFS trees. All
descendants of v have been visited and pre[u]>pre[v].

1. Function low is used to get cut vertices in a connected graph.
We determine whether a vertex is a cut vertex or not based on the two follow-
ing properties (see Figure 7.12).
Property 1: If vertex Ulisn’ta root, Uis a cut vertex if and only if there exists
a child s of U, low(s]=pre[U]. That is to say, there is no back edge from s

and its descendants to U’s ancestors.

U’s ancestors
Chosen root

for the forest v
OS/IO\O 52

52
A subtree whose A subtree whose
root is s1 root is s2
52’s descendants
Property 1 Property 2

(a) ()

Figure 7.12

410 ®m Algorithm Design Practice for Collegiate Programming

In Figure 7.12(a), although in the subtree whose root is 51 there is a back
edge to U’s ancestor, there is no back edge to U’s ancestor from 52 or s2’s
descendants. If U is removed, the graph is not connected.

In an undirected graph, there are only branch edges and back edges. We
can calculate Jow and pre through DFS, and find whether Property 1 holds
or not. The process is as follows:

If (v, w) 1s a branch edge T (pre[w]==-1), and if
there is no back edge from w or w’s descendants to v’'s
ancestors (lowl[w] zprel[v]), then vertex v is a cut vertex,
and lowl[v]l=min{low[v], Iow[w]}.

If (v, w) is a back edge B (prelw] !=-1), then
low[v]l=min{low[v], prelwl]}.

void fund cut point(int v) // DFS starts from v to
calculate a cut vertex in an undirected graph
{ int w;

low([v]=prelv]= ++d; // Initialization

for (wethe set of adjacent vertices for v) &&(w!=v)//
Search edge (v, w) for vertex v

{ if (prelwl==-1) //If (v, w) 1is branch edge T, w is
called recursively. If w and its descendants can’t return
to v’s ancestors, v is a cut vertex, calculate lowl[v]

{ fund cut point (w); //w's all children’s
related edges
if (low[w] >=prelv]) // v is a cut vertex

v 1s a cut vertex;
low[v]=min{ lowl[v], lowlw]};

}i
else low[v]l=min{ lowlv], prelwl}; // If (v, w) is a
back edge, calculate lowl[vV]

}
}

Property 2: If U'is selected as the root, then U'is a cut vertex if and only if it
has more than one child as in Figure 7.12(b).

In Figure 7.12(b), root U has two subtrees whose roots are s1 and s2
respectively, and there is no cross edge C between the two trees (in an undi-
rected graph, there is no cross edge C). Therefore, the graph isn’t connected
after vertex U is deleted, and vertex U is a cut vertex.

Based on the above two properties, the algorithm for calculating cut ver-
tices is as follows:

for(i = 0; 1 < n; 1 ++) //Initialization
preli]l =-1;
low[s] =prels]=d=0; // vertex s: start vertex

p=0; // the number of children for vertex s

Practice for Advanced Data Structures m 411

for (each weadjls]) p++;

if (p>1)

s is a cut vertex and exit; //Property 2
fund_cut_point(s) ; // Property 1

2. Function Jow is used to get the bridge in a connected graph.
In an undirected graph, edge (%, v) is a bridge if and only if («, v) is not in
any simple circuit.

The method for determining whether an edge is a bridge or not is as fol-
lows. Edge (%, v) is a branch edge discovered by DES. If there is no back edge
connecting v and its descendants to #’s ancestors; that is, low[v]>pre[u] or
lowlv]==pre[v]; then deleting (%, v) leads to # and v unconnected. Therefore,
edge (, v) is a bridge.

In Figure 7.13(a), DFS is used, a DES tree is set up, as shown in Figure 7.13(b),
and pre and low for all vertices are shown in Figure 7.13(c). Obviously for s, v,
and vy, low[v]==pre[v], and (vy, vs), (s,), and (vy;, v,) satisfy low[v]>pre(u]
for edge (, v). These edges are bridges in Figure 7.13(a).

In an undirected graph, there are only branch edges and back edges.
DEFS can be used to calculate /ow and pre for vertices (initial values for pre[| are
—1), and calculate bridges in the undirected graph. The method is as follows:

If (v, w) is a branch edge (prel[w]==-1), and if there
is no back edge from w or w’s descendants to u’s
ancestors, ((low[w]==prelw])|| (Iow[w]>prelv])), then (v,

w) is a bridge, and low[v]=min{lowl[vl, lowlw]}.

Note

Cﬂ%ross edge C Cﬂgorward edge F
%mch T C>\lé§ck edge B

Undirected graph DFS tree
(a) (b)
Node number (0|1[2(|3|4|5/6|7 |8 |9[10|11]| 12
Pre[v] 0|7|8|3|2|1|9|10({12|4|11|5| 6
Low[V] 0|0|0|1|1|1|0|10{10|2|10|2 | 6

The nodes of the pre value and low value

©)

Figure 7.13

412 ® Algorithm Design Practice for Collegiate Programming

If (v, w) is a back edge (prelw]!=-1), then
low[v]l=min{low[v], prelwl}.
void fund bridge (v); // DFS to find bridges from
vertex v
{ int w;
low[v]= prelv]=++d;
for (each we the set of adjacent vertices for v)
&(wl=v) // Search edge (v, w)
{ if (prelw]==-1) // if (v, w) is a
branch edge
{ fund bridge (w);
if ((lowlwl== prelw]) || (lowl[w]l> prelv]))
(v, w) is a branch edge;
low[v]=min{ low[v], lowlw]};
Vi
else low[v]l=min{ lowl[v], prelwl}; // if (v, w) is
a back edge
!
1

3. Function Jow is used to get biconnected components.

A biconnected component is a connected component without a cut vertex.
Biconnected components of a graph are partitions of edges of the graph, that
is, every edge must be in a block, and two different blocks don’t contain
common edges. In Figure 7.14, vertex & is a common vertex for block 3 and
block 4, vertex ¢ is a common vertex for block 3 and block 1, and vertex e
is a common vertex for block 2 and block 4. The three vertices are cut ver-
tices for the graph. The graph isn’t connected when one of the three vertices
is deleted.

Cut vertices b, ¢, and e are common vertices for two blocks

Figure 7.14

Practice for Advanced Data Structures m 413

The key to finding a block in an undirected graph is to find a cut vertex.
DEFS is used to get low and pre (initial values for pre[] are —1) and calculate
blocks in the undirected graph. The process is as follows:

For vertex v, u is the parent for v: if u is the
root, (u, v) 1is the first edge for the block; else
suppose f is u’s parent. If u is deleted, v and f aren’t
connected, then {f, u, v} isn’t biconnected, (u, v) is
the first edge for the new block; else (u, v) and (f, u)
are in the same block. A stack is used to store vertices
in the current block. Suppose that

st is a stack, sp is the pointer pointing to the top
of the stack;

r is the number of blocks in the graph;

ans is used to store blocks, where all vertices for
the t-th block are stored in ans([t] [0]...ans[t] [k], and
ans[t] [k+1]=-1 (end mark for block t, 1lstsr);
void dfs(v) //calculate block ans containing vertex v
{ stlsp++] = v; //v is pushed into the stack

prelvl=Ilow[v] =++d; // set pre and low for v

for (each we the set of adjacent vertices for v)
&(w!=v) //search adjacent edge (v, w) for v

{ 41if (prelwl==-1) { // (v, w) is a branch edge T

dfs(w) ;

if (lowlwl< lowl[v]) // all children’'s
related edges for w have been checked, Iow[v]=min{
low([w], low[V]}

Jowl[v]=low[w] ;

if (lowlw] >=prelv]) { //w and its
descendants can’t return to an ancestor earlier than v,
then v is a cut vertex, the block is sent to ansl[r]

k = 0;
stlspl = -1;
ans[r] [0] = v; // vertex v enters
ans|[r]
while (stl[sp] != w) // vertices
above w enter ans|[r]
ans[r] [++k] = st[--sp];
ans|[r] [++k] = -1; // end mark for
ans|[r]
if (k>2) //1if number of vertices
in the block > 2, accumulation
r++;
!
} else if (prelwl< lowl[v]) // (v, w) is

back edge B, low([v]l=min{ prelw], low([v]}
low[v]= prelw];
}

414 ®m Algorithm Design Practice for Collegiate Programming

7.3.4.1 Network

A Telephone Line Company (TLC) is establishing a new telephone cable network.
They are connecting several places numbered by integers from 1 to /V. No two places
have the same number. The lines are bidirectional and always connect two places
together, and in each place the lines end in a telephone exchange. There is one tele-
phone exchange in each place. From each place, it is possible to reach every other
place through lines; however, it need not be a direct connection, it can go through
several exchanges. From time to time, the power supply fails at a place and then the
exchange does not operate. The officials from TLC realized that in such a case, it can
happen that besides the fact that the place with the failure is unreachable, this can
also cause some other places to be unable to connect to each other. In such a case, we
will say the place (where the failure occurred) is critical. Now the officials are trying
to write a program for finding the number of all such critical places. Help them.

Input

The input file consists of several blocks of lines. Each block describes one network.
In the first line of each block, there is the number of places N<100. Each of the next
at most /V lines contains the number of a place followed by the numbers of some
places to which there is a direct line from this place. These at most V lines completely
describe the network, i.e., each direct connection of two places in the network is con-
tained at least in one row. All numbers in one line are separated by one space. Each
block ends with a line containing just 0. The last block has only one line with N=0.

Output

The output contains for each block except the last in the input file one line contain-
ing the number of critical places.

Sample Input | Sample Output

5 1
51234
0

6

213
5462
0

0

Source: ACM Central Europe 1996

Ids for Online Judges: POJ 1144, ZOJ 1311, UVA 315

You need to determine the end of one line. In order to make it easy to deter-
mine, there are no extra blanks before the end of each line.

Practice for Advanced Data Structures m 415

A graph is constructed as follows. Places are represented as vertices. Lines between
two places are represented as edges. Obviously, critical places are articulation points
in a graph. The problem requires you to calculate the number of articulation points
in a graph.

A Tarjan algorithm is used to recursively calculate dfn[] and Jow[] for
vertices, and calculate the number of articulation points in a graph based on two
properties.

o
% Program

#include <iostream>
#include <cstdio>
#include <cmaths>
#include <cstdlib>
#include <cstring>
#include <strings>
#include <map>
#include <utilitys>
#include <vector>
#include <set>
#include <algorithms
#define maxn 110 //The upper limit of the number of vertices
using namespace std;
bool use[maxn] ; //marks for articulation points
int pic[maxn] [maxn] ; // adjacency matrix
int dfn[maxn], low[maxn]; //dfn and low for vertices
int din, n, ans, s; //visiting sequence din, number of
vertices n, number of articulation points ans, number of
children for the root s
void tarjan(int u) //calculate the number of articulation
points from vertex u
{

dfnf[u] = low[u] = ++ din;

for (int i = 1; i <=n; i ++) //enumerate every adjacent
vertex for vertex u

if (piclul [i]){
if (1dfn[il){ //if (u, 1) is a branch edge or a

cross-edge

416 ®m Algorithm Design Practice for Collegiate Programming

tarjan (i) ;

low[u]l =min (low[u], lowl[i]); //adjust low
for u
if (low([i]l>=dfn([u] && !usel[u]) //there are
no back edges for i or descendants for i to u’s ancestors
if (u > 1) //if u isn’t the root, u is
an articulation point
ans ++;
use[u] = true;
}else //u is the root, the number of
children +1
S ++;
!
}else //(u, 1) 1s a back edge, adjust low for u
low[u] = min(low[u], dfn[i]);
!
!
void init () //Input a graph, and construct an adjacency
matrix
{
int u, v; //two adjacent vertices
memset (pic, 0, sizeof (pic)); //initialization
while (cin >> u, u > 0){
char ch;
do{
cin >> v;
cin.get (ch) ;
piclul [v] = pic[v][u]l = 1; // two adjacent
vertices
}while (ch != '\n');

1
}
void solve () //calculate and output articulation points
{

memset (dfn, 0, sizeof (dfn)); //Initialization

memset (low, 0, sizeof (low)) ;

memset (use, 0, sizeof (use));

ans = din = s= 0;

tarjan (1) ; //calculate the number of articulation
points from the root

if (s > 1) ans ++; // if the root has more than one
child, the root is an articulation point

cout << ans << endl; // Output the number of

articulation points in a graph

}

int main()

{
ios::sync_with stdio(false);
while (cin >> n, n > 0){ //Input the number of vertices

Practice for Advanced Data Structures m 417

init () ; //Input a graph and construct its adjacency
matrix
solve() ; //calculate and output the number of
articulation points in a graph
return O0;
}

7.3.4.2 Road Construction

It’s almost summer time, and that means that it’s almost summer construction
time! This year, the good people who are in charge of the roads on the tropical
island paradise of Remote Island would like to repair and upgrade the various roads
that lead between the various tourist attractions on the island.

The roads themselves are also rather interesting. Due to the strange customs of
the island, the roads are arranged so that they never meet at intersections, but rather
pass over or under each other using bridges and tunnels. In this way, each road
runs between two specific tourist attractions, so that the tourists do not become
irreparably lost.

Unfortunately, given the nature of the repairs and upgrades needed on each
road, when the construction company works on a particular road, it is unusable
in either direction. This could cause a problem if it becomes impossible to travel
between two tourist attractions, even if the construction company works on only
one road at any particular time.

So, the Road Department of Remote Island has decided to call upon your con-
sulting services to help remedy this problem. It has been decided that new roads
will have to be built between the various attractions in such a way that in the final
configuration, if any one road is undergoing construction, it would still be possible
to travel between any two tourist attractions using the remaining roads. Your task
is to find the minimum number of new roads necessary.

Input

The first line of input will consist of positive integers 7 and 7, separated by a space,
where 3<7<1000 is the number of tourist attractions on the island, and 2<<1000
is the number of roads. The tourist attractions are conveniently labelled from 1 to
n. Each of the following r lines will consist of two integers, v and w, separated by a
space, indicating that a road exists between the attractions labelled » and w. Note
that you may travel in either direction down each road, and any pair of tourist
actractions will have at most one road directly between them. Also, you are assured
that in the current configuration, it is possible to travel between any two tourist
attractions.

418 ®m Algorithm Design Practice for Collegiate Programming

Output

One line, consisting of an integer, which gives the minimum number of roads that
we need to add.

Sample Input 1 | Sample Output 1

0 12 2

1
1
1
1
2
2
5
3
3
7
4
4
9

= =2 O XN Ul WDN

0
0

Sample Input2 | Sample Output 2

0

_ N = W
[SSEROS I SRR OS]

Source: Canadian Computing Competition 2007

ID for Online Judge: POJ 3352

R

VNT>
QRx\)(/ Analysis

Remote Island is represented as a graph. Let tourist attractions be vertices, and
roads be edges. Because any two tourist attractions are connected, the graph is a
connected graph. Adding roads means adding edges in the graph. The goal for add-
ing a road is “if any one road is undergoing construction, it would still be possible
to travel between any two tourist attractions using the remaining roads.” That is to
say, a biconnected graph is constructed by adding roads with the minimum num-
ber. The algorithm is as follows.

First, all bridges are calculated. Second, all bridges are removed. And connected
components are biconnected components. All biconnected components are repre-
sented as vertices, and all bridges are added back. The new graph is a tree, and its
edge-connectivity is 1.

Practice for Advanced Data Structures ®m 419

Then the number of vertices whose degree is 1 is calculated. Suppose the num-
ber of leaves is Jeaf. In order to make the tree become a biconnected graph, at least

LWZHJ edges are added into the tree.

There are two lemmas.

Lemma 1: If there exists an edge (7, /), vertex 7 and vertex j are in a biconnected
component if and only if lowl[i]=low(;].
Lemma 2: There are 7 leaves in a tree. The tree will become a biconnected graph

after adding at least [Z-‘ edges.

The following algorithm is based on Lemma 1 and Lemma 2. Suppose ¢[][] is
an adjacency list, ¢[7][0] is the number of edges connecting vertex 7, and the other
vertex for the j-th edge is e[7][j], 1<e[{][0]<n—1, and 1<j<e[7][0].

1. Calculating low(];
2. Calculating degrees for vertices in the contacted tree;
3. The number of vertices whose degree is 1 is calculated, denoted as leaf. In

2

order to make the tree become a biconnected graph, at least {
are added into the tree.

g2
ﬂ@ Program

include <cstdio>
include <cstrings>
include <cstdlib>
include <vector>
define vi vector<int>
define pb push_back
using namespace std;
const int maxn=1010; //the upper limit of the number of
vertices
vi e[maxn] ; //an adjacency list for a graph
int dfsn[maxn],low[maxn], Time, deg[maxn] ; // degl]: degrees
for vertices in a tree, Time: visited time
int n,m;
void dfs(int a,int fa) { //calculate low from branch (fa, a)
int g;dfsnlal=low[al=++Time;
for (int p=0;p< elal .size() ;p++)
if (!dfsnlg=e(a] [p]])
dfs(qg,a),low[al=min(low[al, lowl[q]) ;
else 1if(g!=fa)lowlal=min(lowl(a],dfsnlqgl);

edges

0

H FH H H HF H

420 w Algorithm Design Practice for Collegiate Programming

!
void work () {
for(int i=1;i<=n;i++) el[i] .clear(); //Initialization
for(int i=0;i<m;i++) { // adjacency list e is constructed
int a,b;
scanf ("$d %d4d", &a, &b) ;
elal .pb(b);elbl.pb(a);
}
Time=0; // Initialization

memset (dfsn, 0, sizeof (dfsn)) ;
memset (deg, 0, sizeof (deg)) ;
dfs(1,-1); //calculate low
for(int i=1;i<=n;i++) // Calculating degrees for
vertices in the contacted tree
for (int p=0;p< eli].size() ;p++) if (lowl[e[i] [p]l]!=1low[i])
deg[low [i]]++;

int cnt=0; //number of leaves
for(int i=1;i<=n;i++) if(degl[il==1)cnt++;
printf ("$d\n", (cnt+1)/2) ; // the minimum number of roads

}

int main()
while (~scanf ("%d %4 ",&n,&m)) work() ;
return 0;

}

7.4 Problems
7.4.1 Long Long Message

Little Cat is majoring in physics in the capital of Byterland. A piece of sad news
comes to him these days: his mother is ill. Being worried about spending so much on
railway tickets (Byterland is such a big country, and he has to spend 16 hours on the
train to get to his hometown), he decided only to send SMS messages to his mother.

Little Cat belongs to a family that is not rich, so he frequently visits the mobile
service center to check how much money he has spent on SMS. Yesterday, the com-
puter of the service center was broken, and printed two very long messages. The
brilliant Lictle Cat soon found out the following:

1. All characters in messages are lowercase Latin letters, without punctuation
and spaces.

2. All SMS has been appended to each other—(+1)-th SMS comes directly
after the 7-th one—that is why those two messages are quite long.

3. His own SMS has been appended together, but possibly a great many redun-
dant characters appear leftwards and rightwards due to the broken computer.
For example, if his SMS is “motheriloveyou”, either long message printed
by that machine would possibly be one of “hahamotheriloveyou”, “motheril-
oveyoureally”, “motheriloveyouornot”, “bbbmotheriloveyouaaa”, etc.

Practice for Advanced Data Structures m 421

4. For these broken issues, Little Cat has printed his original text twice (so there
are two very long messages). Even though the original text remains the same
in two printed messages, the redundancy characters on both sides would pos-

sibly be different.

You are given those two very long messages, and you have to output the length
of the longest possible original text written by Little Cat.

Background: The SMS in the Byterland mobile service are charged in dollars-
per-byte. That is why Little Cat is worrying about how long could the longest origi-
nal text be.

Why ask you to write a program? There are four reasons:

1. Little Cat is so busy these days with physics lessons;

2. Little Cat wants to keep what he said to his mother a secret;

3. POJ is such a great Online Judge;

4. Little Cat wants to earn some money from PO]J, and try to persuade his
mother to see the doctor.

Input
Two strings with lowercase letters on two of the input lines individually. The num-
ber of characters in each one will never exceed 100000.

Output

A single line with a single integer number—what is the maximum length of the
original text written by the little cat?

Sample Input Sample Output

yeshowmuchiloveyoumydearmotherreallyicannotbelieve 27
ityeaphowmuchiloveyoumydearmother

Source: POJ Monthly, 2006.03.26, Zeyuan Zhu, “Dedicated to my great beloved
mother.”

ID for Online Judge: PO) 2774

“g Hint

Given two strings, the problem requires you to calculate the length of the longest
common substring,

Any substring in a string is a prefix for a suffix in the string. Calculating the
longest common substring for strings A and B is calculating the longest common

422 m Algorithm Design Practice for Collegiate Programming

lafala[bla$S[afbfafal]
height n“n String A
<
lalsfafbfafa]
<
2

lalafafbJa[$afbfafa]—
lalalbJa[$af[bfafa]

albla|$|a|b|afa
|« FEEELIRE]
<a|b|a a |
0
2<|b|a|$|a|b|a|a|
— |blaa]

String B

Figure 7.15

prefix for suffixes for strings A and B. It is inefficient to enumerate all suffixes for
strings A and B. String B is adjoined to the end of string 4, and a character which
doesn’t appear is inserted between A and B. For example, A="aaaba”, B= “abaa”,
B is adjoined to the end of A, and a character ‘$” which doesn’t appear is inserted
between A and B. The longest common prefix for suffixes for the new string is cal-
culated as Figure 7.15.

In Figure 7.15, “aa” is the longest common prefix for suffix(2) and suffix(9), and
“aa” is a suffix for B and isn’t a suffix for A; “aba” is the longest common prefix for
suffix(3) and suffix(7), and “aba” is a suflix for A and isn’t a suffix for B. The maxi-
mal value for height[] may not be the length of the longest common substring, for
the two suffixes may be in the same string. Therefore, “aba” is the longest common
substring for strings A and B.

The time complexity for the algorithm is O(|A|+|B]).

7.4.2 Milk Patterns

Farmer John has noticed that the quality of milk given by his cows varies from day
to day. On further investigation, he discovered that although he can’t predict the
quality of milk from one day to the next, there are some regular patterns in the
daily milk quality.

To perform a rigorous study, he has invented a complex classification scheme by
which each milk sample is recorded as an integer between 0 and 1,000,000 inclusive,
and has recorded data from a single cow over NV (1SN<20,000) days. He wishes to find
the longest pattern of samples which repeats identically at least K (2<K<N) times. This
may include overlapping patterns—1 23 23 2 3 1 repeats 2 3 2 3 twice, for example.

Practice for Advanced Data Structures ®m 423

Help Farmer John by finding the longest repeating subsequence in the sequence
of samples. It is guaranteed that at least one subsequence is repeated at least K times.

Input

Line 1: Two space-separated integers: NV and K;
Line 2: V+1: N integers, one per line, the quality of the milk on day 7 appears
on the i-th line.

Output
Line 1: One integer, the length of the longest pattern which occurs at least X
times.

Sample Input | Sample Output
82 4

1

2

3

2

3

2

3

1

Source: USACO 2006 December Gold
ID for Online Judge: POJ 3261

\% Hint

Given a sequence of integers whose length is /V, and an integer K, you are required
to calculate the length of the longest repeating subsequences repeated at least X
times in the sequence, and the subsequences can be overlapping,.

The problem is a typical problem for suffix arrays. And dichotomy is also used
in solving the problem.

7.4.3 Count Color

You have chosen Problem Solving and Program Design as an optional course, and
you are required to solve all kinds of problems. Here, we get a new problem.

There is a very long board with length L centimeters, and L is a positive
integer, so we can evenly divide the board into L segments, and they are labeled
by 1, 2, ... L from left to right, each is 1 centimeter long. Now we have to color the

424 wm Algorithm Design Practice for Collegiate Programming

board—one segment with only one color. We can do the following two operations
on the board:

1. “CA B C” Color the board from segment A to segment B with color C.
2. “P A B” Output the number of different colors painted between segment A
and segment B (including).

In our daily life, we have very few words to describe a color (red, green, blue,
yellow...), so you may assume that the total number of different colors 7'is very small.
To make it simple, we express the names of colors as color 1, color 2, ... color 77 At the
beginning, the board was painted in color 1. Now the rest of the problem is left to you.

Input

The first line of input contains L (1<2<100000), 7 (1<7%30) and O (10<100000).
Here O denotes the number of operations. Following O lines, each contains “C 4
B C” or “P A B” (here A, B, and C are integers, and A may be larger than B) as an
operation defined previously.

Output
Output the results of the output operation in order; each line contains a number.
Sample Input Sample Output
224 2
C112 1
P12
c222
P12

Source: POJ Monthly, 2006.03.26, dodo
ID for Online Judge: PO) 2777

“% Hint

Initially, the board is colored with color 1. Then update operations and query opera-
tions are dealt with one by one.

Update operations: Color a subinterval with a color;
Query operations: Output the number of different colors painted in a subinterval.

Obviously, the problem is a typical problem for visible segments. Its solution is
the same as the solution to 7.2.3.2 Mayor’s Posters. Because the upper limit of the
number of colors is 30, a bitwise operation can be used to improve the efficiency.

Practice for Advanced Data Structures m 425

7.4.4 Who Gets the Most Candies?

N children are sitting in a circle to play a game.

The children are numbered from 1 to /Vin clockwise order. Each of them has a
card with a non-zero integer on it in his/her hand. The game starts from the X~th
child, who tells all the others the integer on his card and jumps out of the circle.
The integer on his card tells the next child to jump out. Let A denote the integer.
If A is positive, the next child will be the A-th child to the left. If A is negative, the
next child will be the (—4)-th child to the right.

The game lasts until all children have jumped out of the circle. During the
game, the p-th child jumping out will get F(p) candies where F(p) is the number of
positive integers that perfectly divide p. Who gets the most candies?

Input

There are several test cases in the input. Each test case starts with two integers
N (0<N<500000) and K (ISKXN) on the first line. The next /V lines contain the
names of the children (consisting of at most 10 letters) and the integers (non-zero
with magnitudes within 10%) on their cards in increasing order of the children’s
numbers, a name, and an integer separated by a single space in a line with no lead-
ing or trailing spaces.

Output

Output one line for each test case containing the name of the luckiest child and the
number of candies he/she gets. If ties occur, always choose the child who jumps out
of the circle first.

Sample Input Sample Output

42 Sam 3
Tom 2
Jack 4
Mary -1
Sam 1
Source: POJ Monthly, 2006.07.30, Sempr

ID for Online Judge: POJ 2886

“g Hint

The key to the problem is: after the #-th child jumps out of the circle, who is the
(#+1)-th child jumping out of the circle? A segment is used to represent children.
A child jumping out of the circle can be implemented by updating a single point
in a segment tree.

426 m Algorithm Design Practice for Collegiate Programming

First, we calculate the numbers of factors for each integer in [1, NV]. For exam-
ple, Mike is the sixth child who jumps out of the circle. He will get four candies.
Four is the number of positive integers that perfectly divide into 6 (factors for 6 are
1, 2, 3, and 6). It can be calculated in O(NVlog(NV)).

Suppose the i-th child jumps out of the circle, and his position is #ow (in the
circle there are #—i+1 children, before he/she jumps out of the circle). After the i-th
child jumps out of the circle, there are #—i children in the circle. The i-th child
jumping out of the circle is implemented by deleting the now-th element in the
corresponding intervals. Suppose the root for the segment is 7, and the interval that
vertex i corresponds to is [/, 7]; the algorithm is as follows:

if (1 == r && now == 1) return the vertex’s sequence
number for element 1I1;

if (the now-th element is in the left subinterval)
calculate the sequence number for the now-th element is in the
left subinterval recursively;

else{ nowenum - number of elements in the left
subinterval;
calculate the sequence number for the now-th

element is in the right subinterval recursively;

}

After finding the sequence number for the vertex for the now-th element, the
number of elements for vertices in the path from the vertex to the root —1.

7.4.5 Help with Intervals

LogLoader, Inc. is a company specialized in providing products for analyzing logs.
While Ikki is working on graduation design, he is also engaged in an internship at
LogLoader. Among his tasks, one is to write a module for manipulating time inter-
vals, which have confused him a lot. Now he badly needs your help.

In discrete mathematics, you have studied several basic set operations, namely
union, intersection, relative complementation, and symmetric difference, which
naturally apply to the specialization of sets as intervals. For your quick reference,
they are summarized in the table below:

Operation Notation Definition
Union AuUB {x:xe Aorxe B}
Intersection ANB {x:xe Aand x e B}
Relative complementation A-B {x:xe Abutxe B}
Symmetric difference A®B A-B)u(B-A)

Practice for Advanced Data Structures m 427

Ikki has abstracted the interval operations emerging from his job as a tiny
programming language. He wants you to implement an interpreter for him. The
language maintains a set S, which starts out empty and is modified as specified by
the following commands:

Command | Semantics
UurT S«SuT
I T S«5SnT
DT S«S5-T
CT S«T-5
ST S«S®T

Input

The input contains exactly one test case, which consists of between 0 and 65,535
(inclusive) commands of the language. Each command occupies a single line and
appears like

XT

where X is one of “U”, “I”, “D”, “C”, and “S”, and 7 is an interval in one of
the forms (#,6),(a,6],[2,6) and [a,6)(a,b€ Z, 0<a<b<65,535), which take their usual
meanings. The commands are executed in the order they appear in the input.

End of file (EOF) indicates the end of input.

Output

Output the set S as it is after the last command is executed as the union of a
minimal collection of disjoint intervals. The intervals should be printed on one line
separated by single spaces and appear in increasing order of their endpoints. If §is
empty, just print “empty set” and nothing else.

Sample Input Sample Output

U [1,5] (2,3)
D [3,3]
S [2,4]
C(1,5)
1(2,3]

Source: PKU Local 2007 (POJ Monthly, 2007.04.28), frkstyc

ID for Online Judge: POJ 3225

428 wm Algorithm Design Practice for Collegiate Programming

=" Hint

In the problem, four set operations, union, intersection, relative complementation,
and symmetric difference, are given. Initially a set S is empty. After a sequence of
set operations, S is the union of a minimal collection of disjoint intervals.

A segment tree is used to represent the universal set. “An interval is in the set”
is represented as 1, “An interval isn’t in the set” is represented as 0, and “Some parts
for an interval are in the set” is represented as —1. Because there are open intervals,
half-open intervals, and closed intervals, in the segment there are not only intervals,
but also points, that is, the number of vertices should be doubled.

Two operations are used to simplify set operations.

Change(l, r, ¢): An interval [/, 7] is added into the set, or taken out from the set
(c==1, added; and ¢==0, taken out)

Reverse(l, r): An interval [/, 7] is reversed. If the interval is in the set, then it is
taken out; else it is added into the set.

Operation ‘U’ corresponds to Change(l, 1, 1);

Operation T’ corresponds to Change(1, [~1, 0) and Change(r+1, n, 0);

Operation ‘D’ corresponds to Change(l, r, 0);

Operation ‘C’ corresponds to Change (0, /-1, 0); Change(r+1, n, 0); Reverse(l, 7);

Operation ‘S’ corresponds to Reverse(/, 7);

7.4.6 Horizontally Visible Segments

There are a number of disjoint vertical line segments in the plane. We say that two
segments are horizontally visible if they can be connected by a horizontal line seg-
ment that does not have any common points with other vertical segments. Three
different vertical segments are said to form a triangle of segments if each two of
them are horizontally visible. How many triangles can be found in a given set of
vertical segments?

Your task is to write a program which for each data set:

reads the description of a set of vertical segments,
computes the number of triangles in this set,
writes the result.

Input

The first line of the input contains exactly one positive integer & equal to the num-
ber of data sets, 1<4<20. The data sets follow.

The first line of each data set contains exactly one integer 7, 1<#<8000, equal
to the number of vertical line segments. Each of the following 7 lines consists

Practice for Advanced Data Structures ®m 429

of exactly three non-negative integers separated by single spaces: y;, y;', x,—the
y-coordinate of the beginning of a segment, y-coordinate of its end, and its
x-coordinate, respectively. The coordinates satisfy 0<y,<y,'<8000, 0<x,<8000.
The segments are disjoint.

Output

The output should consist of exactly & lines, one line for each data set. Line 7 should
contain exactly one integer equal to the number of triangles in the i-th data set.

Sample Input | Sample Output

1 1
5

044
031
342
022
023

Source: ACM Central Europe 2001
ID for Online Judges: POJ 1436, ZO) 1391, UVA 2441

“igi Hint

The solution to the problem is similar to the solution to 7.4.3 Count Color. The
interval [/, 7] on the Y-axis is regarded as a segment tree, and the projection for a
vertical line on the Y-axis is regarded as a segment. The number of triangles is
calculated by enumerating segments from left to right.

7.4.7 Crane

ACM has bought a new crane (crane—ijefdb). The crane consists of # segments of
various lengths, connected by flexible joints. The end of the i-th segment is joined
to the beginning of the i+1-th one, for 1<i<zn. The beginning of the first segment
is fixed at point with coordinates (0, 0) and its end at point with coordinates (0, w),
where w is the length of the first segment. All of the segmencts lie always in one
plane, and the joints allow arbitrary rotation in that plane. After a series of unpleas-
ant accidents, it was decided that the software that controls the crane must contain
a piece of code that constantly checks the position of the end of the crane and stops
the crane if a collision should happen.

430 m Algorithm Design Practice for Collegiate Programming

Your task is to write a part of this software that determines the position of the
end of the n-th segment after each command. The state of the crane is determined
by the angles between consecutive segments. Initially, all of the angles are straight,
i.e., 180°. The operator issues commands that change the angle in exactly one joint.

Input

The input consists of several instances, separated by single empty lines.

The first line of each instance consists of two integers 1<72<10,000 and ¢=0 sep-
arated by a single space—the number of segments of the crane and the number of
commands. The second line consists of # integers 4, ..., 4, (1=/,<100) separated by
single spaces. The length of the i-th segment of the crane is /. The following ¢ lines
specify the commands of the operator. Each line describing the command consists
of two integers s and & (1<s<7, 0<2<359) separated by a single space—the order to
change the angle between the s-th and the s+1-th segment to # degrees (the angle is
measured counterclockwise from the s-th to the s+1-th segment).

Output

The output for each instance consists of ¢ lines. The i-th of the lines consists of
two rational numbers x and y separated by a single space—the coordinates of the
end of the n-th segment after the i-th command, rounded to two digits after the
decimal point.

The outputs for each two consecutive instances must be separated by a single
empty line.

Sample Input | Sample Output

21 5.00 10.00

10 5

190 —10.00 5.00
-5.00 10.00

32

555

1 270

2 90

Source: CTU Open 2005
ID for Online Judge: PO) 2991

\% Hint

A segment tree is used to represent the problem. The root for the segment tree is the
interval [1, 7] representing 7 segments. Each node in the segment tree represents

Practice for Advanced Data Structures m 431

an interval [/, 7]. In a node there are two pointers, where its left pointer points to
the coordinates of the starting point for segment /, and its right pointer points
to the coordinates of the end point for segment ». Obviously, after a command
is executed, the right pointer of the root is the coordinates of the end of the n-th
segment.

7.4.8 Is It a Tree?

A tree is a well-known data structure that is either empty (null, void, nothing) or is
a set of one or more nodes connected by directed edges between nodes, satisfying
the following properties:

There is exactly one node, called the root, to which no directed edges point.
Every node except the root has exactly one edge pointing to it.
There is a unique sequence of directed edges from the root to each node.

For example, consider Figure 7.16, in which nodes are represented by circles and
edges are represented by lines with arrowheads. The first two of these are trees, but
the last is not.

In this problem, you will be given several descriptions of collections of nodes
connected by directed edges. For each of these, you are to determine if the collec-
tion satisfies the definition of a tree or not.

Input

The input will consist of a sequence of descriptions (test cases) followed by a pair
of negative integers. Each test case will consist of a sequence of edge descriptions
followed by a pair of zeros. Each edge description will consist of a pair of integers;
the first integer identifies the node from which the edge begins, and the second
integer identifies the node to which the edge is directed. Node numbers will always
be greater than zero.

Figure 7.16

432 m Algorithm Design Practice for Collegiate Programming

Output

For each test case display the line “Case k is a tree.” or the line “Case 4 is not a
tree.”, where £ corresponds to the test case number (they are sequentially numbered
starting with 1).

Sample Input Sample Output

68 53 52 64 56 00 Case 1is atree.
Case 2is a tree.

81 73 62 89 75 74 78 76 00 | Case3isnotatree.
38 68 64 53 56 52 00
-1 -1

Source: ACM 1997 North Central Regionals
IDs for Online Judges: PO) 1308, ZOJ 1268, UVA 615

“g Hint

The problem is solved based on the definition of a tree.

When edges are input, in-degrees and out-degrees for nodes are calculated. If
there exists a node whose in-degree is larger than 1, or the number of nodes whose
in-degree is 0 is larger than 1, the case is not a tree. After all edges are inpug, if there
is no above case, the case is a tree.

7.4.9 The Postal Worker Rings Once

Graph algorithms form a very important part of computer science and have a
lineage that goes back at least to Euler and the famous Seven Bridges of Konigsberg
problem. Many optimization problems involve determining efficient methods for
reasoning about graphs.

This problem involves determining a route for a postal worker so that all mail is
delivered while the postal worker walks a minimal distance, so as to rest his weary legs.

Given a sequence of streets (connecting given intersections), you are to write a
program that determines the minimal cost tour that traverses every street at least
once. The tour must begin and end at the same intersection.

The “real-life” analogy concerns a postal worker who parks a truck at an inter-
section and then walks all streets on the postal delivery route (delivering mail) and
returns to the truck to continue with the next route.

The cost of traversing a street is a function of the length of the street (there is a cost
associated with delivering mail to houses and with walking even if no delivery occurs).

In this problem, the number of streets that meet at a given intersection is called
the degree of the intersection. There will be at most two intersections with an odd
degree. All other intersections will have an even degree, i.e., an even number of
streets meeting at that intersection.

Practice for Advanced Data Structures ®m 433

Input

The input consists of a sequence of one or more postal routes. A route is composed
of a sequence of street names (strings), one per line, and is terminated by the string
“deadend” which is NOT part of the route. The first and last letters of each street
name specify the two intersections for that street, and the length of the street name
indicates the cost of traversing the street. All street names will consist of lowercase
alphabetic characters.

For example, the name foo indicates a street with intersections fand o of length
3, and the name computer indicates a street with intersections ¢ and 7 of length 8.
No street name will have the same first and last letter, and there will be at most one
street directly connecting any two intersections. As specified, the number of inter-
sections with odd degree in a postal route will be at most two. In each postal route,
there will be a path between all intersections, i.e., the intersections are connected.

Output

For each postal route, the output should consist of the cost of the minimal tour that
visits all streets at least once. The minimal tour costs should be output in the order
corresponding to the input postal routes.

Sample Input | Sample Output

One 11
two 114
three
deadend
mit
dartmouth
linkoping
tasmania
york
emory
cornell
duke
kaunas
hildesheim
concord
arkansas
williams
glasgow
deadend

Source: Duke Internet Programming Contest 1992

ID for Online Judge: UVA 117

434 m Algorithm Design Practice for Collegiate Programming

\% Hint by the Problemsetter (http://www.algorithmist.com)

This problem reduces to a graph, by looking at each first or last character as a vertex,
and the street name as an edge. We can reduce this problem to an Eulerian Path or
an Eulerian Cycle problem, since each vertex will have an even number of degrees
(except for at most two vertices).

Even though at first glance, it seems like it might need the Chinese Postman
algorithm, but since each vertex will have an even number of degrees (except for at
most two vertices), we can use the simpler Eulerian Path/Eulerian Cycle algorithm
instead. If all vertices are of even degrees, then you're done, since the solution is
simply the Eulerian Cycle—the sum of the weights of all the edges. Otherwise, we
will have to calculate the Eulerian Path, and then you will have to find the shortest
path between the two odd-degree vertices. This can be done with any of the Shortest
Path algorithms.

7.4.10 Euler Circuit

An Euler circuit is a graph traversal starting and ending at the same vertex and
using every edge exactly once. Finding an Euler circuit in an undirected or directed
graph is a fairly easy task, but what about graphs where some of the edges are
directed and some undirected? An undirected edge can only be traveled in one
direction. However, sometimes any choice of direction for the undirected edges
may not yield an Euler circuit.

Given such a graph, determine whether an Euler circuit exists. If so, output
such a circuit in the format specified below. You can assume that the underlying
undirected graph is connected.

Input

The first line in the input contains the number of test cases, at most 20. Each test
case starts with a line containing two numbers, V and E: the number of vertices
(1=V<100) and edges (1E<500) in the graph. The vertices are numbered from
1 to V. Then follow Elines specifying the edges. Each such line will be in the format
a b type where a and b are two integers specifying the endpoints of the edge. zype
will either be the character “U”, if the edge is undirected, or “D?, if the edge is
directed. In the latter case, the edge starts at @ and ends at .

Output

If an Euler circuit exists, output an order in which the vertices can be traversed
on a single line. The vertex numbers should be delimited with a single space, and

http://www.algorithmist.com

Practice for Advanced Data Structures ®m 435

the start and end vertex should be included both at the beginning and the end of
the sequence. Since most graphs have multiple solutions, any valid solution will be
accepted. If no solution exists, output the line “No Euler circuit exists”. Output a
blank line between each test case.

Sample Input | Sample Output

134256541

No Euler circuit exists

WIN= = KUl WDNN=_=2ONDN
WANROOTODU AU ADAWO®
cCcoCgogUocCccc

N
cCCcCoo

Source: 2004 ICPC Regional Contest Warmup 1
ID for Online Judge: UVA 10735

\% Hint by the Problemsetter (http://www.algorithmist.com)

Given a graph G, which contains both directed edges and undirected edges, find a
closed path in it, in which each edge is included exactly once.

Recall that, when an Euler tour exists in a directed graph: the undetlying undi-
rected graph is connected, and the in-degree of each vertex is equal to the out-degree.

In this problem, some of the graph’s edges may be undirected. If we can orient
them in such a way that the in-degree of each vertex will be equal to its out-degree,
then the problem will be reduced to finding a tour in a directed graph. Such an
orientation can be found by solving the following bipartite matching problem.

Construct a bipartite graph /. In one partition, put all edges (both directed and
undirected) of G, and the other partition contains G’s vertices. For every edge, we
have to know which of its two endpoints is the head. So, connect every object (edge
of G) in the first partition with its G’s endpoints in the second partition.

We'll be finding a matching in this graph. If an undirected edge e = (#, v) of G
will be matched with », it means, that in the final directed graph, the edge ¢ will go
from vertex u to vertex .

http://www.algorithmist.com

436 m Algorithm Design Practice for Collegiate Programming

Each matched H’s edge of (¢, v) will contribute to the in-degree of vertex v in
the directed graph, and unmatched edge (e, #) contributes to the out-degree of u.

Since we want to make the in-degree and out-degree of each vertex equal,
each vertex must have an equal number of matched and unmatched edges in A.
Additionally, each directed edge has to be matched with its respective head from G.

After finding a matching in H, satisfying the outlined constraints, we can assign
direction to each undirected G’s edge and find that the Euler tour is the resulting
directed graph with any standard algorithm. If a matching doesn’t exist, there will
be no Euler tour in the original graph.

7.4.11 The Necklace

My little sister had a beautiful necklace made of colorful beads. Two successive
beads in the necklace shared a common color at their meeting point. Figure 7.17
shows a segment of the necklace.

But, alas! One day, the necklace was torn and the beads were scattered all over
the floor. My sister did her best to recollect all the beads from the floor, but she
is not sure whether she was able to collect all of them. Now, she has come to me
for help. She wants to know whether it is possible to make a necklace using all the
beads she has in the same way her original necklace was made, and if so, in which
order the beads must be put.

Please help me write a program to solve the problem.

Input

The input contains 7 test cases. The first line of the input contains the integer 7.

The first line of each test case contains an integer N (5<N<100), giving the
number of beads my sister was able to collect. Each of the next Vlines contains two
integers describing the colors of a bead. Colors are represented by integers ranging
from 1 to 50.

Output

For each test case in the input, first output the test case number as shown in the
sample output. Then, if you apprehend that some beads may be lost, just print the
sentence “some beads may be lost” on a line by itself. Otherwise, print /V lines
with a single bead description on each line. Each bead description consists of two

aupEnanaDs

Figure 7.17

Green
White
White
Green
Green
Blue

Practice for Advanced Data Structures m 437

integers giving the colors of its two ends. For 1</<N-1, the second integer on line
i must be the same as the first integer on line 7 +1. Additionally, the second integer
on line Vmust be equal to the first integer on line 1. Since there are many solutions,
any one of them is acceptable.

Print a blank line between two successive test cases.

Sample Input | Sample Output
2 Case #1

5 some beads may be lost
12

23 Case #2

34 21

45 13

56 34

5 4 2

21 22

22

34

31

24

Source: ACM Shanghai 2000, University of Valladolid New Millenium Contest
IDs for Online Judges: UVA 10054, UVA 2036

“g Hint

A graph is constructed as follows: each color is represented as a node, and each bead
is represented as an edge. The problem requires you to determine whether the graph
is an Euler graph or not.

The problem is similar to 7.3.1.2 Catenyms.

7.4.12 Dora Trip

Nobita is in great trouble. Today he failed to hand in his homework again, so he
was heavily punished at school. Learning that, his mother is furious, and therefore
assigns him many tasks to do—to buy vegetables at the market, to collect a parcel
at the post office, and a lot more. Nobita certainly does not want to see his teacher
on his way, nor would he like to meet Jyian, the tough bully. As usual, he asks
Doraemon for help.

438 m Algorithm Design Practice for Collegiate Programming

“Oh no!” cried Doraemon. “My door is broken, and my small propellers have all
run out of batteries...” Well, that means Nobita has got to go without Doraemon’s
magic tools. “Ah, I still have this. It may well be useful.” From his fourth-dimensional
pocket, Doraemon takes out a map of their living area. He then marks on it the
places where Nobita has to visit by asterisks (*’), and where Jyian or his teacher
may appear by crosses (X’). Now Nobita’s job is simple—he has to find the shortest
route, through which he would not visit any of the “crosses”, and he could finish the
maximum number of the jobs (if not all) given by his mum. What he needs is just
a computer program that works out the path.

Imagine that you are Nobita and write the program.

Input

The input file contains no more than 20 test cases. The details of each set are given
as follows:

The first line of each case contains two integers 7 and ¢ (1<7,¢<20), which are
the number of rows and columns of the map respectively. The next lines, each with
¢ characters, give the map itself. For each character, a space “ ” stands for an open
space; a hash mark “#” stands for an obstructing wall; the capital letter “S” stands
for the position of Nobita’s house, which is where his journey is to start and end;
the capital letter “X” stands for a dangerous place; and an asterisk “*” stands for a
place he has to visit. The perimeter of the map is always closed, i.c., there is no way
to get out from the coordinate of the “S”. The number of places that Nobita has to
visit is at most 10.

The input file is terminated by a null case where 7 = ¢ = 0. This case should not
be processed.

Output

For each test case, if Nobita cannot visit any target places at all, just print the

line “Stay home!”. Otherwise, your program should output the lexicographically

smallest shortest path so that the number of target places that Nobita visits is maxi-

mized. Use the letters ‘N, ‘S’, ‘E’, and "W’ to denote north, south, east and west
. « » .

respectively. Note that by “north” we mean facing upwards. You can be sure that

the length of a correct output path will never exceed 200.

Sample Input | Sample Output

55 WWSSEEWWNNEE
#H#H#H#H# EEWW

S# Stay home!

XX#

*#

Practice for Advanced Data Structures ®m 439

Sample Input | Sample Output

H#H#H#H
55

H#HHH
#* X#
H#HH#HHXH#
#S *#
HHHH
55

##H#H#H#
#S X#
X#
##
H##H#H
00

Source: Programming Contest for Newbies 2005

ID for Online Judge: UVA 10818

“ﬁ Hint

The problem is a Traveling Salesperson problem, that is, the problem is NP-complete.
Because the number of places that Nobita has to visit is at most 10, a simple search
suffices.

The problem is similar to 7.3.2.2 Nuts for Nuts. Suppose Nobita’s current posi-
tion is (x,) and the sequence of nodes that Nobita goes through is z. (x, 3, 2)
constitutes a state. Initially, the position of Nobita’s house (S,, S,) and z=0 is as the
initial state and added into a queue ¢. Then BFS is used. And hash technology is
also used to avoid repetitions.

7.4.13 Blackbeard the Pirate

Blackbeard the Pirate has stashed up to 10 treasures on a tropical island, and now
he wishes to retrieve them. He is being chased by several authorities, however, and
so would like to retrieve his treasure as quickly as possible. Blackbeard is no fool;
when he hid the treasures, he carefully drew a map of the island which contains the
position of each treasure and the positions of all obstacles and hostile natives that
are present on the island.

Given a map of an island and the point where he comes ashore, help Blackbeard
determine the least amount of time necessary for him to collect his treasure.

440 m Algorithm Design Practice for Collegiate Programming

Input

The input consists of a number of test cases. The first line of each test case contains
two integers 4 and w giving the height and width of the map, respectively, in miles.
For simplicity, each map is divided into grid points that are a mile square. The next
b lines contain w characters, each describing one square on the map. Each point on
the map is one of the following:

@ 'The landing point where Blackbeard comes ashore.

~ Woater. Blackbeard cannot travel over water while on the island.

A large group of palm trees; these are too dense for Blackbeard to travel

through.

. Sand, which he can easily travel over.

* A camp of angry natives. Blackbeard must stay at least one square away or

risk being captured by them, which will terminate his quest. Note this is one

square in any of eight directions, including diagonals.

! A treasure. Blackbeard is a stubborn pirate and will not leave unless he col-
lects all of them.

Blackbeard can only travel in the four cardinal directions; that is, he cannot
travel diagonally. Blackbeard travels at a nice slow pace of one mile (or square) per
hour, but he sure can dig fast, because digging up a treasure incurs no time penalty
whatsoever.

The maximum dimension of the map is 50 by 50. The input ends with a case
where both 4 and w are 0. This case should not be processed.

Output

For each test case, simply print the least number of hours Blackbeard needs to col-
lect all his treasure and return to the landing point. If it is impossible to reach all
the treasures, print out —1.

Sample Input | Sample Output

77 10
~~~~~~~ 32
s

~dbm

s @




Practice for Advanced Data Structures m 441

Sample Input | Sample Output

o VUV~
~#i#. HHH~
~H. e~

L F

Source: A Special Contest 2005
ID for Online Judge: UVA 10937

“g Hint

The problem is also a Traveling Salesperson problem. The solution to the problem is
the same as the solution to 7.3.2.2 Nuts for Nuts. BES, hash technology, and state
compression are used to solve the problem.



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


http://taylorandfrancis.com

Chapter 8

Practice for Computational
Geometry

Computational geometry is the study of geometric algorithms for solving geometric
problems. This chapter focuses on solving the following geometric problems:

1. Points, Line Segments, and Plans;

2. Calculating the Area for Union of Rectangles by Sweep Line Algorithms;
3. Intersection of Half-Planes;

4. Convex Hulls and Finding the Farthest Pair of Points.

8.1 Points, Line Segments, and Plans

In Euclidean space, a point is represented as a two-dimensional coordinate (x, ).
Suppose there are two points Pi(P=(x;, 3)) and Py(P=(xs, 3»)), and there is a
line segment from P, to P,. Such a line segment is called a directed line segment,
denoted by BB, where P, is the start point, P; is the end point, and the length of

the line segment (i.e., its Euclidean distance) ‘m‘ = \/(xl —x)  + (=) IR
is the origin (0, 0), then the directed line segment PP, is a vector P,, the length of
vector P, is | )| = \Jxr+ y22 , called the magnitude of P;.

In this section, experiments for points, line segments and plans are as follows:
1. Dot Product and Cross Product;

2. Line Segment Intersection;
3. Solving Polyhedron Problems by Euler’s Formula.

443



444 wm  Algorithm Design Practice for Collegiate Programming

8.1.1 Dot Product and Cross Product

First, dot product and cross product are introduced.

1. Dot product.
Suppose coordinates for points are as follows: A(xy, ), Bl 30, Clas, ),
D(x4, y4). Vector AB=(x;—x1, y2—y)=(xap yap), where its magnitude

AB| = x5 + ya5 . Vector CD=(x;—x3, y5—y3)=(xcp> ycp), where its magni-
J N2 J g

tude |CD| = xép + )/%D . Vectors AB and CD are shown in Figure 8.1.

The dot product of AB and CD is defined by AB ® CD=x,5Xxcptyap<ycp=
|AB|x|CD|xcos(a), where a is the angle between vector AB and vector CD,

a= acos(AB.CDJ , 0°<4<180°. Obviously, if the dot product AB ¢ CD
| AB|x|CD|

is negative, the angle 2 between vector AB and vector CD is an obtuse angle;
if the dot product AB e CD is positive, the angle 2 between vector AB and
vector CD is an acute angle; and if the dot product AB e CD is zero, vector
AB and vector CD are vertical.

2. Cross product.
In Figure 8.2, there are two vectors, Py and P,.

B(xy, yp)
VGV D(xy, y4)
Alxy, yy) Vector CD

C(x3, v3)

Figure 8.1

y
P+ Py(x; + x5, y1 +¥0)
PI(XI»Yl) 7
....... Py(x3, y2)
0 X

Figure 8.2



Practice for Computational Geometry ®m 445

The cross product for vector P, and vector P, is defined by

X1 N

X2 )2

AP = =x;X y,—x, X 31 =—Py AP, . The absolute value | PAP,| is

the area for the parallelogram whose points are (0, 0), Pi(x;, y1), Pa(x2, o) and
PPy (xr+x, y1ty2). And its positive or negative value is determined as follows:

If it goes clockwise from P, to P, then the cross product is PyAP,>0;

Ific goes counterclockwise from P, to P, then the cross product is PyAP,<0;

If directions for vector P, and vector P; are same or opposite, then the
cross product is PyAP,=0.

In Figure 8.3, by moving point P, horizontally and vertically to (0, 0), we
can determine whether it goes clockwise or counterclockwise from P, to P;.

Suppose vectors Pi=P,—P, and P;=P,—P,, where P{=(x|, y)=(x—x,
)’1—}’0); Pr=(x;, }’z')z(xz—xm }’2—)’0); P1'AP2'=(Pl—Po)A(Pz—Po)z(xl—xo)(}’2—)’0)—
(xz—xo)()/l—)/o)- o .

If the cross product is positive, it goes clockwise from B2 to B A, or the
polar angle for P, is larger than the polar angle for P; with respect to point
Py. If the cross product is negative, it goes counterclockwise from RP to PR,
or the polar angle for P, is larger than the polar angle for P, with respect to
point Py. And if the cross product is zero, PP and B P, are colinear, or the
polar angle for P, is the same as the polar angle for P,, with respect to point 7.

Based on the cross product Py'AP,'=(P—Po)MPr-Po)=(x1—x0) (y2—y0)—
(x2—x0)()1=90), we can determine whether it goes clockwise or counterclock-
wise from BB to B,

If the cross product is positive, it goes counterclockwise from BBt BB,
that is, it turns left from P; to P, [Figure 8.4(a)].

If the cross product is negative, it goes clockwise from BB to PP, that
is, it turns right from Py to P, [Figure 8.4(b)].

If the cross product is 0, the Py, Py and P, are colinear [Figure 8.4(c)].

P+ Py(x; + x5,y + )
P](xls)'l)'___——"‘__

Y P1<X1—X()sy1—}’()_)_ P+ Py(x) +x, = 2x),
> ST T i+ 2y)

Py(xy = X0, Y2 = yo)

Py(xa, )

PU(XO’ )’o) Pb(o 0) X'

Figure 8.3



446 m  Algorithm Design Practice for Collegiate Programming

Py P Py
—_—

(a) (b) (©

Figure 8.4

8.1.1.1 Transmitters

In a wireless network with multiple transmitters sending on the same frequencies, it
is often a requirement that signals don’t overlap, or at least that they don’t conflict.
One way of accomplishing this is to restrict a transmitter’s coverage area. This prob-
lem uses a shielded transmitter that only broadcasts in a semicircle.

A transmitter 7 is located somewhere on a 1000-square-meter grid. It broad-
casts in a semicircular area of radius 7. The transmitter may be rotated any amount,
but not moved. Given N points anywhere on the grid, compute the maximum
number of points that can be simultaneously reached by the transmitter’s signal.
Figure 8.5 shows the same data points with two different transmitter rotations.

All input coordinates are integers (0-1000). The radius is a positive real number
greater than 0. Points on the boundary of a semicircle are considered within that
semicircle. There are 1-150 unique points to examine per transmitter. No points are
at the same location as the transmitter.

Input

Input consists of information for one or more independent transmitter problems.
Each problem begins with one line containing the (x, y) coordinates of the trans-
mitter followed by the broadcast radius, . The next line contains the number of
points /V on the grid, followed by NV sets of (x, y) coordinates, one set per line. The
end of the input is signaled by a line with a negative radius; the (x, y) values will
be present but indeterminate. Figure 8.5 represents the data in the first two example
data sets below, though they are on different scales. Figures 8.5(a) and 8.5(c) show
transmitter rotations that result in maximal coverage.

(a) (b) (©)

Figure 8.5



Practice for Computational Geometry ® 447

Output

For each transmitter, the output contains a single line with the maximum number
of points that can be contained in some semicircle.

Sample Input Sample Output

25 25 3.5 3
7 4
25 28 4
23 27

27 27

24 23

26 23

24 29

26 29

350 200 2.0
5

350 202

350 199

350 198

348 200

352 200

995 995 10.0
4

1000 1000
999 998

990 992
1000 999
100 100 —2.5

Source: ACM Mid-Central USA 2001
IDs for Online Judges: POJ 1106, ZOJ 1041, UVA 2290

&d Analysis

Suppose the point for the transmitter is p,. Because the transmitter may be
rotated any amount, and broadcasts in a semicircular area of radius 7, a straight
line connecting any point and p, can be regarded as the lower boundary line for
the semicircular. If the straight line containing pp; is the lower boundary line



448 m  Algorithm Design Practice for Collegiate Programming

for the semicircular, point p; in the semicircular area must meet the following
conditions:

1. p; must be in the semicircular area whose lower boundary line contains py p;,
thatis, pop; * pop; 20;
2. The distance between p; and p, must be less than the radius, that is,

po—pj‘ﬁr.

Each time point 7 is as a starting point. By using cross product, the number
of points s; in the semicircular area can be calculated. If the straight line contain-
ing po p; is as the lower boundary line for the semicircular, these points are in the
semicircular area.

Obviously, the maximum number of points that can be contained in some
semicircle are S = max{s;}.

g
ﬂ@ Program

#include <cstdios>
#include <cmaths>
#include <cstring>
#include <algorithms>
using namespace std;

const double epsi = 1le-10;

const double pi = acos(-1.0);

const int maxn = 50005;

struct Point //Struct for point calculation

double x, vy;
Point (double x = 0, double y = 0): x( x), v(vy) { }
// Point vector
Point operator - (const Point &op2) const { //Vector
reduction
return Point(x - op2.x, y - 0op2.VY);
}

double operator *(const Point &op2) const { //Cross
product for 2 point vectors
return x * op2.y - y * 0Op2.X;

}i
inline int sign(const double &x) { //return positive,
negative, or 0 mark for x

if (x > epsi) return 1;

if (x < -epsi) return -1;

return 0;



Practice for Computational Geometry ® 449

inline double sqgr (const double &x) { //Calculating x°
return x * x;
}

inline double mul (const Point &p0,const Point &pl,const Point
&p2) {//cross product for p,p, and p,p;

return (pl - p0) * (p2 - p0);
!

inline double dis2 (const Point &p0O, const Point &pl) {
—_—2
//Calculating h%pJ
return sqgr(p0.x - pl.x) + sqgr(p0.y - pl.vy);
1

inline double dis(const Point &p0O, const Point &pl) {
//Calculating h%pJ
return sqgrt (dis2(p0, pl));

!
int n ;
Point pl[maxn], cp; //pl 1: the sequence of points, cp:
transmitter
double r; // radius
int main()
while (scanf ("%1f %1f %1f ", &cp.x, &cp.y, &r) && r >= 0 ) {

//Input coordinates of the transmitter and radius

scanf ("%d", &n); //Number of points

int ans = 0;

for (int i=0;i<n;i++)scanf ("$1f $1f",&pli] .x,&p[1].y);
// coordinates of points

for (int i = 0 ; i < n ; i ++) { //enumerating all
points
int tmp = 0; // the lower boundary line containing

point i and the transmitter, calculating number of pointsg that
can be contained in some semicircle

for (int j = 0 ; jJ <n ; J ++)
if (sign( dis(p[j]l, cp)-r)!=1)
if (sign( mul (cp,plil,pl[j]1)) !=-1)tmp++; // number of
points +1
ans = max( ans , tmp); // adjust the maximum number

of points

}

printf ("$d\n", ans); //Output the result

}

return O0;

}

The absolute value of the cross product PAP, for vector P, and P, is the
area of the parallelogram whose points are the origin (0, 0), P, P,, and P+P,
(Figure 8.6). And the area of the triangle whose points are origin, P, and P,

R 1D

Sa0.0An =



450 m  Algorithm Design Practice for Collegiate Programming

y
Py+ Py(xy+ X, y1 + ¥2)
Pi(xp,yp) >k
Py(x5, ¥2)
0 X

Figure 8.6

Therefore, the cross product can be used to calculate the area of a polygon.

Points can be sorted clockwise or counterclockwise as py...p,-1, and p,=p,. The
7n—2

Y ez,

area of the polygon is § = %, where vector P; is po pi, 1<i<n—1.

8.1.1.2 Area

You are going to compute the area of a special kind of polygon. One vertex of the
polygon is the origin of the orthogonal coordinate system. From this vertex, you
may go step by step to the following vertexes of the polygon until you go back to
the initial vertex. For each step you may go North, West, South, or East with a step
length of one unit, or go Northwest, Northeast, Southwest, or Southeast with a
step length of the square root of two.

For example, Figure 8.7 shows a legal polygon to be computed and its area is 2.5.

Input

The first line of input is an integer # (1=/<20), the number of the test polygons.
Each of the following lines contains a string composed of digits 1-9 describing how
the polygon is formed by walking from the origin. Here 8, 2, 6, and 4 represent

A

\J

Figure 8.7



Practice for Computational Geometry ® 451

North, South, East and West, while 9, 7, 3, and 1 denote Northeast, Northwest,
Southeast, and Southwest respectively. Number 5 only appears at the end of the
sequence, indicating the end of walking. You may assume that the input polygon is
valid, which means that the endpoint is always the start point and the sides of the
polygon are not cross to each other. Each line may contain up to 1000000 digits.

Output

For each polygon, print its area on a single line.

Sample Input | Sample Output
4 0

5 0

825 0.5

6725 2

6244865

Source: POJ Monthly, 2004.05.15 Liu Rujia@POJ
ID for Online Judge: POJ 1654

=

N* S

QULC
- J Analysis
Suppose points for the polygon are po, pi,..., p.—1, where pq is (0, 0) and p,=p,. Based
on the sequence of sides for the polygon, p;pi is the #41-th side in the polygon,
0<i<n—1; and the n-th side is p,; po. From (0, 0), the vectors for points in the poly-

gon Py, P, ..., P,_; with respect to point p, are calculated
Calculate the cross product for two vectors for the front and the rear of each side

n—1

>BnE,
PAP,,(0<i<n—1). The area for the polygon is § ="',

.«
% Program

#include
#include
#include
#include

<cstdio>
<cmath>
<cstring>
<algorithms>



452 m  Algorithm Design Practice for Collegiate Programming

#include <iostream>
#include <strings
using namespace std;
const double epsi = 1le-10;
const double pi = acos(-1.0);
const int maxn = 100005;
inline int sign(const double &x) { //positive or negative
if (x > epsi) return 1;
if (x < -epsi) return -1;
return 0;
!
struct Point { //Calculation for points
long long x, y;
Point (double x = 0, double y = 0): x( x), y(vy) {}
//construct points

Point operator + (const Point &op2) const { // Vector
addition
return Point(x + op2.x, y + 0p2.Y);
}
long long operator *(const Point &op2) const { // Cross
product
return x * op2.y - y * 0Op2.X;
1

}i
int main() {
int test = 0;

string s;
long long ans;
scanf ("%d\n", &test ); // the number of the test
polygons
for (; test; test --) { //every polygon is dealt with
cin >> s; //polygon string
ans = 0;
Point p = Point( 0 , 0) , pl; // the origin
for (int i = 0 ; i < s.size() ; i ++) {
if ( s[i] == '1') pl = p+Point (-1, -1); // Southwest
if ( s[i] == '2') pl = p+Point(0, -1); // South
if ( s[i] == '3'") pl = p+Point(1l, -1);
// Southeast
if ( s[i] == '4') pl = p + Point(-1,0); // West
if ( s[i] == '5') pl = Point (0, 0); // the end of
walking
if ( s[i] == '6') pl = p + Point (1, 0); // East
if ( s[i] == '7') pl = p+Point (-1, 1);
// Northwest
if ( s[i] == '8') pl = p + Point (0, 1); // North
if ( s[i] == '9') pl = p + Point (1, 1);
// Northeast
ans += p * pl; //Accumulation for Cross product

p = pl; //continue to walk



Practice for Computational Geometry ® 453

!
if (ans<0 ) ans = -ans; //absolute value for area
cout<<ans/2; //output area
if (ans % 2 ) cout << ".5"; //odd
cout << endl;
!
return 0;

8.1.2 Line Segment Intersection

In this section we focus on the following three problems:

1. Determining whether two line segments intersect or cross;
2. Calculating the intersection point when two line segments intersect;
3. Calculating the circumcenter of a triangle.

1. Determining whether two line segments intersect or cross.
Crossing means that two points of a line segment are respectively on both
sides of the straight line containing another line segment, or one point of
the line segment is on the straight line. Obviously, if we need to determine
whether line segment 2, p, and line segment p; p; cross or not, we only need
to determine whether the following two conditions are held or not:

a. Line segment P1p2 crosses the straight line containing line segment Pspss

b. Line segment 3P4 crosses the straight line containing line segment ])1 2.

Two crossings are used to determine whether the above two conditions
hold or not. Cross product is used to determine this. If we need to determine
whether line segment P i crosses the straight line containing line segment
p1 2, we add two auxiliary lines p1 3 and py p4, and then calculate two cross

prOduCtS. (P3_P1)A(P2—P1) and (P4—P1)A(P2—P1).

If one cross product is positive, and the other is negative, then ; p4 can’t cross
the straight line containing line segment g p, [Figure 8.8(a)];

If two cross products are all positive or negative, then psp; can’t cross the
straight line containing line segment p, p, [Figure 8.8(b)];

If one cross product is 0, p; or py is on the straight line containing line seg-
ment ﬂ [Figure 8.8(c)].

8.1.2.1 Pick-up Sticks

Stan has 7 sticks of various lengths. He throws them on the floor, one at a time and
in a random way. After he has finished throwing the sticks, Stan tries to find the
top-most sticks, that is those with no sticks on top of them. Stan has noticed that the



454 m  Algorithm Design Practice for Collegiate Programming

(P3= PN (Py=P)) <0
370 2 Il) (P4~ P)"(P,-P)<0
[ ]

P, ’ (P3=P)"(P,-P)<0 (P3=P) " (P~ P)) <0
Py Py Py P2

P
4 PZ P
(Py—P) ™ (Py—P))>0 ¢
) (Py—P) N (Py—P)=0
1 Pl 1

(@ (b) ©

Figure 8.8

last thrown stick is always on top, but he wants to find all the sticks that are on top.
Stan’s sticks are quite thin, so thin that their thickness can be neglected (Figure 8.9).

Input

Input consists of a number of cases. The data for each case start with 1<72<100000,
the number of sticks for this case. The following 7 lines contain four numbers each;
these numbers are the planar coordinates of the endpoints of one stick. The sticks
are listed in the order in which Stan has thrown them. You may assume that there
are not more than 1000 top sticks. The input is ended by the case with #=0. This
case should not be processed.

Output

For each input case, print one line of outpuc listing the top sticks in the format given
in the sample. The top sticks should be listed in order in which they were thrown.
Figure 8.9 illustrates the first case from input.

Sample Input Sample Output

Top sticks: 2, 4, 5.
142 Top sticks: 1, 2, 3.
331
-2.0 8 4
48 2
36 -20

011
021
031

O N 2O W W= =2 N = Gl

Source: Waterloo local 2005.09.17
IDs for Online Judges: POJ 2653, ZOJ 2551

Huge input, scanf is recommended.



Practice for Computational Geometry ® 455

: /
:///
N

Figure 8.9

VNTS
S{& Analysis

'The sticks are listed in the order in which Stan has thrown them. Each stick ;i is
enumerated in ascending order of numbers (i.c., bottom-up), 1<i<n:

Each stick j which is over stick 7 is enumerated, i+1<j<n. If there is a stick that
stick 7 intersects with, then there is a stick on top of stick 7, and stick 741 is enumer-
ated. If there is no stick on top of stick 7, stick 7 is a stick on top.

Two crossings are used to determine whether two sticks intersect or not. Suppose
stick 7is pi p3, and stick jis pf pf. If pip5 and p{ p] intersect, the two following
conditions must hold:

1. pljp{ crosses pi py, that is, positive and negative signs for pi p3 A pi p{ and

Pipy N pi pi are different, or one of the two cross products is 0;

2. pipi crosses pi pl. that is, postive and negative signs for 27 p] » o/l and

i pi ™ pi p are different, or one of the two cross products is 0.

The time complexity is O ().

[ﬂﬂ'

#include <cstdios>
#include <cmaths>
#include <cstrings>
#include <algorithms>




456 m  Algorithm Design Practice for Collegiate Programming

#include <iostream>
using namespace std;

const double epsi = le-10; // Infinitesimal

const double pi = acos(-1.0);

const int maxn = 100005; //the upper limit of the number of
sticks

inline int sign(const double &x) {
if (x > epsi) return 1;
if (x < -epsi) return -1;
return 0;
}
//structure and calculation for point
struct Point {
double x, vy;
Point (double x = 0, double y = 0): x(_ x), y(y) {}
//construct a point
Point operator +(const Point &op2) const {
return Point(x + op2.x, y + 0p2.Y);
}

Point operator - (const Point &op2) const {
return Point(x - op2.x, y - 0p2.Yy);

double operator *(const Point &op2) const
return x * op2.Xx + y * op2.Yy;
}

Point operator * (const double &d) const {
return Point(x * d, y * 4d);
}

Point operator /(const double &d) const {
return Point(x / 4, y / 4d);
1

double operator *(const Point &op2) const { // cross
product for vectors
return x * op2.y - y * 0Op2.X;

bool operator !=(const Point &op2) const
return sign (op2.x - x) != 0 || sign( op2.y - y) != 0;
}

}i

inline double sqgr (const double &x) { / /X
return x * x;

}

inline double mul (const Point &pO, const Point &pl,
const Point &p2)
// cross product for pop. and p.p,
return (pl - p0) * (p2 - p0);
}
inline double dis2(const Point &p0O, const Point &pl)
return sqgr(p0.x - pl.x) + sgr(p0.y - pl.vy);
}



Practice for Computational Geometry ® 457

inline double dis(const Point &p0O, const Point &pl) //h%pJ
return sqgrt (dis2 (p0, pl));

inline int cross( const Point &pl , const Point &p2 , const
Point &p3 , const Point &p4 , Point &p) { //determine

whether p,p, crosses p;p,
double al = mul( pl, p2 , p3), a2 = mul( pl, p2 , pd ) ;

if (sign ( al ) ==0 && sign ( a2 ) == 0) return 2; //if
Eﬁi and p;p. coincide, return 2

if (sign ( al ) == sign ( a2 )) return 0; //if Eﬂz
doesn't cross Eﬂi, return 0

return 1; // Eﬂz crosses Eii
}
int n;
Point pl[maxn] , p2[maxn] , tp; //a sequence of coordinates

for sticks pl[] and p2I[]
int main()
int test = 0; //number of test cases
while ( scanf ("%d", &n ) && n ) //number of sticks
printf ("Top sticks:");
bool f1 = false ;
for (int 1 =1 ; 1 <=n ; 1 ++) // a sequence of
coordinates for n sticks
scanf ("%$1f %1f %1f %1f" , &pll[i]l.x , & pllil.y , &
p2[il.x ,& p2[il.y);
for (int 1 =1 ; i <=n ; i ++) { // Each stick i is
enumerated bottom-up, lsisn
bool flag = false ;

for (int j = i+l ; j <= n ; J ++) // Each stick j
which is over stick i is enumerated
if ( cross ( pllil , p2[i]l , pl[j] , p2[j] , tp ) == 1
&& cross ( pll[j]l , p2[3j] , pilil , p2[i] , tp ) == 1) { flag =
true; break; }
if (flag == false && fl == true ) printf(",");
if (flag == false ) printf(" %d", i ), £l = true;
!
printf (".\n") ;
1
return 0;

}

2. Calculating the intersection point when two line segments intersect.
The formula for cross product can be used to calculate the intersection point
when two line segments intersect. Suppose mul(p,, p1, p») is the cross prod-
uct for pop and pyp, , thst is, mul(po, p1, p2)=(pr—po)(p2—po). The cross
product can be calculated as the triangle area (the shadow area) in the
parallelogram, whose points are pg, p1, p2, and prp, respectively, that is,

1 .
Sapompm = Exmu/(,ﬁo,phﬁz) (Figure 8.10).




458 m  Algorithm Design Practice for Collegiate Programming

Py+ Py(xy+ X3, y1 +y2)
Py

Py(xa, ¥2)
Py(xg, y0)

Figure 8.10

Based on this information, the intersection point when two line segments
intersect can be calculated. For example, in Figure 8.11, point P is the inter-
section point for line segment AB and line segment CD.

DD' is a vertical line for segment line AB from point D, and CC" is a
vertical line for line segment AB from point C. Because ADD'P ~ ACC'P,
‘Di = @ Because Sypp = M, and Sapc = w,

PC| 2 2

cc

|DP|  Spmasp _ |ADAAB| |mul(D,B,A)]
|PC| Spacz |ACAAB| |mul(C,B,A)|

Because |DP| _XpTX _JIp7p
‘PC‘ Xp —Xc Jyr—Jc

= Saasp X Xe + Spapc X Xp _ mul(D,B,A)X x. —mul(C,B,A)X Xp and
P Saasp + Sansc mul(D, B, A)—mul(C,B,A) ’

v, = Saaep X Ve + Saae X yp _ mul(D,B,A)X y. —mul(C,B,A)X yp
P Spnnp + Sansc mul(D,B,A)—mul(C,B,A)

8.1.2.2 Intersecting Lines

We all know that a pair of distinct points on a plane defines a line and that a pair of
lines on a plane will intersect in one of three ways: 1) no intersection because they

Figure 8.11



Practice for Computational Geometry ® 459

are parallel, 2) intersect in a line because they are on top of one another (i.e., they
are the same line), 3) intersect in a point. In this problem you will use your algebraic
knowledge to create a program that determines how and where two lines intersect.

Your program will repeatedly read in four points that define two lines in the x-y
plane and determine how and where the lines intersect. All numbers required by
this problem will be reasonable, say between —1000 and 1000.

Input

The first line contains an integer /V between 1 and 10 describing how many pairs of
lines are represented. The next NVlines will each contain eight integers. These integers
represent the coordinates of four points on the plane in the order x; 1 x; 723 3 %4 y4.
Thus, each of these input lines represents two lines on the plane: the line through
(x1, y1) and (x2, y2) and the line through (x3, y3) and (x4, y4). The point (x;, y) is
always distinct from (x,, y,). Likewise with (x3, y5) and (xs, y4).

Output

There should be N42 lines of output. The first line of output should read
“‘INTERSECTING LINES OUTPUT”. There will then be one line of output for
each pair of planar lines represented by a line of input, describing how the lines
intersect: “NONE”, “LINE?”, or “POINT”. If the intersection is a point, then your
program should output the x and y coordinates of the point, correct to two decimal
places. The final line of output should read “END OF OUTPUT”.

Sample Input Sample Output

5 INTERSECTING LINES OUTPUT
00440440 POINT 2.00 2.00
50761023 NONE

50763 -64-3 | LINE

2022715185 | POINT 2.005.00
03401225 POINT 1.07 2.20

END OF OUTPUT

Source: ACM Mid-Atlantic 1996
IDs for Online Judges: POJ 1269, ZOJ 1280, UVA 378

4 Analysis

The problem requires you to determine the relation between a pair of lines: they
are parallel, they are the same line, or they intersect; and if they intersect, you need
to output the x and y coordinates of the intersection point. One crossing is used to



460 m Algorithm Design Practice for Collegiate Programming

determine whether the two lines are parallel or the same line (whether ps ps crosses
21 p2 or nov):

Suppose al=mul(p;, p,, ps), and a2=mul(p,, P2, Pi) .

If (al==0)&&(a2==0), then line segments p,;p, and p:p. are the
same lines;

If positive and negative signs for al and a2 are same, then
line segments Eﬁi and Eii are parallel;

If positive and negative signs for al and a2 are different,
the x and y coordinates of the intersection point is

a2X p3.Xx—alXp,.Xx azxps;.y—alXp,.y
a2—al ’ a2—al )'

calculated directly: p=

D%

#include <cstdios
#include <cmaths>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
const double epsi = 1le-10; // Infinitesimal
inline int sign(const double &x) { // positive and negative
signs for x
if (x > epsi) return 1;
if (x < -epsi) return -1;
return 0;
}
struct Point { // structure and calculation for point
double x, v;
Point (double x = 0, double y = 0): x( x), y(vy) {}
//Construct point
Point operator - (const Point &op2) const { // subtraction
for vectors
return Point(x - op2.x, y - op2.Y);
}

double operator *(const Point &op2) const //cross
product
return x * op2.y - y * op2.X;
}

}i

inline double sgr (const double &x) { /] X
return x * Xx;

1

inline double mul (const Point &p0,const Point &pl,const Point
&p2) { //cross product for pop, and pyp.



Practice for Computational Geometry ® 461

return (pl - p0) * (p2 - po0);
}
inline double dis2(const Point &p0O, const Point &pl)
return sqgr(p0.x - pl.x) + sqgr(p0.y - pl.vy);
}
inline double dis(const Point &p0O, const Point &pl)
//\popl\
return sqrt(dis2 (p0, pl));

inline int cross( const Point &pl , const Point &p2 , const
Point &p3 , const Point &p4 , Point &p) { //if p.p. and psp,

are the same lines, return 2; if parallel return 0; else
return 1 and the intersection point p
double al = mul( pl, p2 , p3), a2 = mul( pl, p2 , pd4 ) ;
if (sign ( al ) ==0 && sign ( a2 ) == 0) return 2;
if (sign ( al - a2 ) == 0) return 0;
p-x = (a2 * p3.x - al * p4.x) / (a2 - al );
p.y = (a2 * p3.y - al * pa.y) / ( a2 -al );
return 1;
}
Point pl , p2 , p3 , P4 , p;
int main() {
int test = 0;
printf ("INTERSECTING LINES OUTPUT\n") ;

scanf ("%$d" , & test); //number of test cases
for ( ; test ; test --) { //test cases are dealt with one
by one
scanf ( "%$1f %1f %1f %1f %1f %1f %1f %1f" , &pl.x ,

&pl.y , &p2.x , & p2.y , &p3.x , &p3.y , &p4.x , &p4.y);
// coordinate for p;p, and p;p,

int m=cross(pl,p2,p3,p4,p); //relationship between pip,
and p;ps
if (m == ) printf ("NONE\n") ; //parallel
else if (m==2)printf ("LINE\n") ; //same lines
else printf ("POINT %.21f %.21f\n", p.x , p.vy); // the
intersection point p
}
printf ("END OF OUTPUT") ;
return O0;
1

3. Calculating the circumcenter of a triangle.
In a triangle, the intersection point of perpendicular bisectors for three sides
is the circumcenter of a triangle of the triangle. The distance between a point
and the circumcenter is the radius of the circumcircle.
Suppose the three points for a triangle are p=(x1, y1), p=(x2, 3,), and
23=(x3, y3), respectively; and the center of the circumcircle is p=(x, ).



462 m  Algorithm Design Practice for Collegiate Programming

For edge vector pp,, suppose Am)2 —X1, Bﬁ Bmz}’z—}/n and
el .
o = ; and for edge vector p; p;, suppose A =x3=0x1, By = 3= s
i,
and €, =— ; p1 is as the origin. The intersection point of perpendicu-

lar bisectors for side p, p, and side plﬁp; in the triangle is p; = (xy, 51 ), where

oo S Bn = B g e Crn X A nm = ¥ A
- , - .
A X By = By X A By X A = By X A

Therefore, the center of the circumcircleis p = p, + p; , and the Cartesian
coordinates of point p are (x,+x7, 14y ).

8.1.2.3 Circle Through Three Points

Your team is to write a program that, given the Cartesian coordinates of three
points on a plane, will find the equation of the circle through them all. The three
points will not be on a straight line. The solution is to be printed as an equation of
the form

(x=h)+(y—k) =7 o)
and an equation of the form

¥’y textdy—e=0 )

Input

Each line of input to your program will contain the x and y coordinates of three
points, in the order Ax, Ay, Bx, By, Cx, Cy. These coordinates will be real numbers
separated from each other by one or more spaces.

Output

Your program must print the required equations on two lines using the for-
mat given in the sample below. Your computed values for 4, 4, 7, ¢, d, and e in
Equations 1 and 2 above are to be printed with three digits after the decimal
point. Plus and minus signs in the equations should be changed as needed to
avoid multiple signs before a number. Plus, minus, and equal signs must be
separated from the adjacent characters by a single space on each side. No other
spaces are to appear in the equations. Print a single blank line after each equa-
tion pair.



Practice for Computational Geometry ® 463

Sample Input Sample Output

7.0 =5.0 -1.0 1.0 0.0 —=6.0 | (x—3.000)"2 + (y +2.000)A2 = 5.000A2
1.0 7.0 8.0 6.0 7.0 -2.0 xA2 +yA2 —6.000x +4.000y —12.000 =0

(x=3.921)A2 + (y — 2.447)A2 = 5.409/2
XA2 +yA2 —7.842x — 4.895y — 7.895=0

Source: ACM Southern California 1989
IDs for Online Judges: POJ 1329, UVA 190

%\& Analysis

On a plane, if three points aren’t on a straight line, the three points are points of a
triangle, and the circle through the three points is a circumcircle.

For equation 1, (x—h)2+(y—k)2=72, (b, k) is the Cartesian coordinate for the cen-
ter of the circumcircle, and 7 is the radius of the circumcircle.

For equation 2, x™+y ™ +extdy—e=0, c==2Xh, d=—2xk, e=h*+k*—7".

The key to the problem is to calculate the center (4, ) of the circumcircle for
AABC. Distances between the center and the points of the triangle are same. The
radius 7 is the distance between the center and any point of the triangle.

[,

#include <cstdio>
#include <cmaths>
#include <cstrings>
#include <algorithm>
#include <iostream>
using namespace std;
const double epsi = le-10; //precision
inline int sign(const double &x) { //positive or negative
sign for x
if (x > epsi) return 1;
if (x < -epsi) return -1;
return 0;
!
struct Point // structure and calculation for point
double x, vy;
Point (double x = 0, double y = 0): x( x), v(vy) {}
//point (x, y)



464 m  Algorithm Design Practice for Collegiate Programming

Point operator +(const Point &op2) const { //Addition for
vectors
return Point(x + op2.x, y + 0p2.VY);
}
Point operator - (const Point &op2) const { //Subtraction
for vectors
return Point(x - op2.x, y - 0op2.VY);
}
Point operator * (const double &d) const { //vector times
real
return Point(x * d, y * 4d);
}
Point operator /(const double &d) const { //vector is
divided by real
return Point(x / 4, y / 4d);
}
double operator *(const Point &op2) const //cross
product for two vectors
return x * op2.y - y * 0Op2.X;
} }
inline double mul (const P01nt &p0, const Point &pl,const Point
&p2) {//Cross product for pop:, and Dops
return (pl-p0) * (p2 - poO);
}

struct StraightLine // perpendicular bisector's structure
double A, B, C; // Perpendicular Bisector, where for
edge-vector p;p; in a triangle, A=(x;-x;), B=(y;-vi),

_|p:py|

A

(124, 5<3)

StraightLine (double a=0, double b=0, double c¢=0): A( _a),
B(_ b), ¢(_c){ } // perpendicular bisector is constructed
Point cross(const StraightLine &a) const {
// calculating the intersection point for the perpendicular
bisector and perpendicular bisector a
double xx = - (C * a.B - a.C * B) / (A * a.B - B * a.A);
double yy = - (C * a.A - a.C *A) / (B * a.A - a.B * A );
return Point (xx, yy);
}
}i
inline double sgr (const double &x) { s
return x * x;
}

_2
inline double dis2(const Point &p0O, const Point &pl) //h%pJ
return sqgr(p0.x - pl.x) + sqgr(p0.y - pl.vy);
1

inline double dis(const Point &p0O, const Point &pl) //k%pJ
return sqgrt (dis2(p0, pl));
!



Practice for Computational Geometry ® 465

inline double circumcenter (const Point &pl,const Point
&p2,const Point &p3,Point &p) //calculating the center p
and radius for the circumcircle, p is the intersection point
for bip; and pip;

p=pl+StraightLine (p3.x-pl.x,p3.y-pl.y,-dis2(p3,pl)/2.0).
cross (StraightLine (p2.x-pl.x, p2.y-pl.y,-dis2(p2, pl)/2.0));
//center of circle p

return dis( p , pl ); //return radius
1
Point pl, p2, p3, p;
inline int print (double x) //output value x
if (x > 0) printf(" + %.31f", x);
else printf (" - %.31f", -x);
return 0;
1

int main()
while (cin>>pl.x>>pl.y>>p2.x>>p2.y>>p3.x>>p3.y)
// coordinates of three points

double r=circumcenter (pl,p2,p3,p); // the center and
radius for circumcircle p and r
printf (" (x") ; //equation 1

print (-p.x) ;

printf (") "2 + (y");

print (-p.y);

printf(")*2 =");

printf (" %.31f", r);

printf ("*2\n") ;

printf ("x*2 + y*2"); //equation 2
print (-2 * p.x);

printf ("x") ;

print (-2 * p.y);

printf ("y");
print (sqr(p.x) + sqgr(p.y) - sqr(r));
printf (" = 0\n\n");

}

return 0;

}

8.1.3 Solving Polyhedron Problems by Euler’s
Polyhedron Formula

Euler’s Formula: If a finite, connected, planar graph is drawn in the plane without
any edge intersections; and » is the number of vertices, ¢ is the number of edges, and
fis the number of faces (regions bounded by edges, including the outer, infinitely
large region), then v—e+f=2.



466 ®m Algorithm Design Practice for Collegiate Programming

N

Euler’s Polyhedron Formula: For a polyhedron, the number of vertices (corner
points) v, plus the number of faces f; and minus the number of edges e, equals 2.
Symbolically v—e+f=2.

Figure 8.12

8.1.3.1 How Many Pieces of Land?

You are given an elliptical-shaped piece of land (see Figure 8.12) and you are asked
to choose 7 arbitrary points on its boundary. Then you connect all these points with
each other with straight lines (that’s #x(#—1)/2 connections for # points). What is
the maximum number of pieces of land you will get by choosing the points on the
boundary carefully?

Input

The first line of the input file contains one integer S (0<5<3500), which indicates
how many sets of input there are. The next § lines contain § sets of input. Each
input contains one integer /N (OSN<23 l).

Output

For each set of input, you should output in a single line the maximum number of
pieces of land possible to get for the value of V.

Sample Input Sample Output
4 1

1 2

2 4

3 8

4

Source: Math & Number Theory Lovers’ Contest

ID for Online Judge: UVA 10213



Practice for Computational Geometry ® 467

The number of pieces of land is the number of faces. Euler’s Formula v—e+f=2 is
used to solve the problem, where v is the number of vertices, ¢ is the number of
edges, and fis the number of faces.

First, the number of vertices » is calculated. There are 7 points on the ellipse’s
boundary. For a point x on the boundary, there are n—1 straight lines connecting
point x and other points. For a straight line /, there are 7 points on the left, and
there are #—2— points on the right. Because all these points are connected with one
another with straight lines, there are at most 7X(n—i—2) points on a straight line.

n-3
Each point is repeatedly counted four times. Therefore, v = n+ ZZZ X(n—i=2).
Second, the number of edges ¢ is calculated. There are 7 pointslon the elliptical
shaped land’s boundary. There are # edges on the boundary. There are 7 straight
lines connecting adjacent points. There are no intersection points on these edges.
For other straight lines connecting points, there are 7X(#»—i—2) intersection points
on a straight line. On a straight line, there are iX(n—i—2)+1 edges. Therefore,
n—3
e= 2Xn+32i><(n—i—2)+l.
2 i=1
Euler’s Formula v—e+f=2 is used to solve the problem. The maximum number
774—6;13+23nz—18nL
24 '

Because the upper limit for 7 is 23! the high-precision method is also used.

.«
% Program

include <cstdio>

include <cstring>

include <cstdlib>

include <iostream>

include <strings>

include <cmath>

include <algorithm>

using namespace std;

typedef long long inté64;

int64 m=1e8; //High-precision number: a decimal number with
8-digit

struct Bigint({ // High-precision number

1.

of pieces of land f'=

H*+ HF H H H H



468 m  Algorithm Design Practice for Collegiate Programming

int64 s[50];int 1; // High-precision number: array sl[],
length 1I
void print () { //output the integer for s[]

printf ("$11d",s[1]);
for(int i=1-1;i>=0;i--) printf("%0811ld",s[i]);
!
void read(inté64 x) { //integer x is stored in s[]
1=-1; memset (s, 0,sizeof(s))
do{
s [++1] =x%m;
x/=m;
}while (x) ;
!
} ans,tmp, t2;
Bigint operator +(Bigint a,Bigint b){ // all+bl]
inté4 d=0;
a.l=max(a.l,b.1l);
for(int i=0;i<=a.l;i++) //addition bitwise
a.s[i]l+=d+b.s[i];
d=a.s[i]/m;a.s[i]%=m;
1
if(d) a.sl[++a.l]l=d; //carry
return a;
!
Bigint operator - (Bigint a,Bigint b){ // all-bll
inté64 d=0;
for(int i=0;i<=a.l;i++) { //subtraction bitwise
a.s[i]-=4d;
if(a.s[i]l<b.s[i]l)a.s[i]+=m,d=1;
else d=0;
a.s[i]l-=b.s[i];
!
while(a.l&&!a.s[a.1l]) a.l--; //borrow
return a;
!
Bigint operator *(int b,Bigint a) { // all*b
int64 d=0;
for (int i=0;i<=a.l;i++) { //times bitwise
d+=a.s[i]*b;a.s[i]=d%m;
d/=m;
!
while (d) { //carry
a.s[++a.1]=d%m;
d/=m;
!
return a;
!
Bigint operator /(Bigint a,int b) { // all/b
inté4 d=0;
for(int i=a.l;i>=0;1i--){
d*=m;d+=a.s[1i];



Practice for Computational Geometry ® 469

a.s[i]1=d/b;d%=Db;

!
while(a.l&&!a.s[a.1l]) a.l--; //omit 0
return a;
1
Bigint operator *(Bigint a,Bigint b){ // all*bl[]
Bigint c; memset(c.s,0,sizeof(c.s))
for(int i=0;i<=a.l;i++)
for(int j=0;j<=b.1;j++){
c.sl[i+jl+=a.s[i]l*b.s[3j];
if(c.s[i+j]>m) //carry
c.s[i+j+1l+=c.s[i+j]1/m;
c.s[i+j] %=m;
1
!
1
c.l=a.1+b.1+10;
while(!c.s[c.1l]l&&c.1)c.1--;
while(c.s[c.1l]>m)
c.slc.1l+1l+=c.s[c.1l]/m;
c.s[c.l++]%=m;
!
return c;
1
int v;
void work () {
ans.read (v) ;tmp.read (24) ; //ans: number of points
ans=ans*ans*ans*ans+23* (ans*ans) +tmp-6* (ans*ans*ans) -18*ans;
//formula
ans=ans/24; //calculate and output the number of faces
ans.print () ;printf ("\n") ;
1
int main() {
int casen;scanf ("$d", &casen) ; //number of test cases
while (casen--) { //test cases are dealt with one by one
scanf ("%d", &v) ; //number of points
work () ; //calculate and output the number of faces

}

return O;

}

8.2 Calculating the Area for Union of
Rectangles by Sweep Line Algorithms

Sweep line algorithms can be used to calculate the area for the union of rectangles.

Suppose there are 7 rectangles Ry, ..., R, in a plane. R{UR,U...\UR,, is the union
of 7 rectangles. The area for the union of 7 rectangles is the area of coverage by
these 7 rectangles. For example, in Figure 8.13, the shadow area is the area of
R\UR,UR;, that is, the area of coverage by the three rectangles.



470 m  Algorithm Design Practice for Collegiate Programming

R, Rs
M

Figure 8.13 The area of R,UR,UR;.

The steps for calculating the area for the union of rectangles are as follows:

1. Discretization: The plane is divided into several strips.

2. Sweep: A sweep algorithm is used to sweep strips. Strips are stored in a seg-
ment tree.

3. Segment tree: Calculating the area for union of rectangles is implemented by
insertions and deletions in the segment tree.

Sweep line algorithms are introduced through two kinds of experiments:

1. Calculating the area for union of rectangles in the vertical direction;
2. Calculating the area for union of rectangles in the horizontal direction.

Sweep line algorithms can also be extended to the three-dimensional space to
calculate the volume for union of cuboids.

8.2.1 Sweeping in the Vertical Direction

Calculating the area for union of rectangles in the vertical direction is as follows.
Discretization is on the Y-axis. The plane is divided into several vertical strips by sweep-
ing on the X-axis. A segment tree is used to accumulate areas of these vertical strips.
Discretization: Discrete points are intersection points for sides of rectangles (or
their extended lines) and the Y-axis. In Figure 8.14, discrete points are A, B, C, and D.

[

Figure 8.14 Discrete points A, B, C, and D are intersection points for sides of
rectangles and Y-axis.



Practice for Computational Geometry ®m 471

L b L Iy
C
D
B
A
| | |

AR

Strip 1 Strip 2 Strip 3

Figure 8.15 The plane is divided into three vertical strips by straight lines /I, I,
I;, and I,.

Segments of discrete units are distances between two adjacent discrete points in the
ordered sequence of discrete points. For example, in Figure 8.14, the Y-axis for A is 1,
the Y-axis for B is 2, the Y-axis for C is 3, and the Y-axis for D is 4. After the discretiza-
tion, lengths for segment AB, BC, and CD are 1.

Sweep: First, the plane is divided into vertical strips, and each vertical strip is
one-dimensional. In Figure 8.15, the plane is divided into three vertical strips by
straight lines 4, 4, 5, and /.

Each vertical strip’s section can be regarded as a little modification for two adja-
cent vertical strips’ sections. In Figure 8.16, the section for vertical strip 2 = the sec-
tion for vertical strip 1 + segment AB = the section for vertical strip 3 + segment CD.

h 3 Il

Strip 1 Strip 2 Strip 3

Figure 8.16



472 m  Algorithm Design Practice for Collegiate Programming

[1,4]

TN

[1,2] [2,4]

TN

[2,3] [3, 4]

Figure 8.17 A segment tree representing interval [1, 4].

Segment tree: A segment tree is a rooted binary tree, where each vertex repre-

. . a+b
sents an interval [2, ). For each vertex, if (b—a)>1, suppose ¢ = -~ | and roots

for its left subtree and right subtree represent intervals [, ] and [c, ] respectively.
In Figure 8.17, interval [1, 4] can be divided into intervals [1, 2] and [2, 4]. And
interval [2, 4] can be divided into intervals [2, 3] and [3, 4].

Because vertical strips can be represented as segments, a segment tree can be
used to store vertical strips. Calculating the area for union of # rectangles can be
implemented by insertion and deletion in a segment tree.

8.2.1.1 Mobile Phone Coverage

A mobile phone company ACMICPC (Advanced Cellular, Mobile, and Internet
Connected Phone Corporation) is planning to set up a collection of antennas for
mobile phones in a city called Maxnorm. The company ACMICPC has several
collections for locations of antennas as their candidate plans, and now they want to
know which collection is the best choice.

For this purpose, they want to develop a computer program to find the coverage
of a collection of antenna locations. Each antenna A4; has power 7, corresponding
to “radius”. Usually, the coverage region of the antenna may be modeled as a disk
centered at the location of the antenna (x;, y;) with radius »,. However, in this city,
Maxnorm, such a coverage region becomes the square[x,—7,xA47]X[y—7,y+7]. In
other words, the distance between two points (x,, y,) and (x,, y,) is measured by the
max norm max{|x,—x,|, |y,—y,|} , or, the norm L., in this city Maxnorm instead of

the ordinary Euclidean norm 4/(x, — x, )+ (=4 )2,
As an example, consider the following collection of three antennas as depicted
in Figure 8.18:

40 4.0 3.0
50 6.0 3.0
55 45 1.0

where the i-th row represents x;, y;, 7, such that (x;, y,) is the position of the i-th
antenna and 7; is its power. The area of regions of points covered by at least one
antenna is 52.00 in this case.



Practice for Computational Geometry ® 473

y
8 .
g 5,6,3)@
| @,4,3) X
4 A )
i N
i ~(5.5,4.5,1)
T T T T T T T T
0 4 8 *

Figure 8.18

Write a program that finds the area of coverage by a given collection of antenna
locations.

Input

The input contains multiple data sets, each representing a collection of antenna
locations. A data set is given in the following format.

n
X1 Y1 I
X2 Yo Iz

Xn Yn In

The first integer 7 is the number of antennas, such that 2<#<100. The coordi-
nate of the 7-th antenna is given by (x;, y,), and its power is 7. x;, y; and 7; are frac-
tional numbers between 0 and 200 inclusive.

The end of the input is indicated by a data set with 0 as the value of .

Output

For each data set, your program should output its sequence number (1 for the first
data set, 2 for the second, etc.) and the area of the coverage region. The area should
be printed with two digits to the right of the decimal point, after rounding it to
two decimal places.

The sequence number and the area should be printed on the same line with no
spaces at the beginning and end of the line. The two numbers should be separated
by a space.



474 w  Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output

3 1 52.00
4.0 4.0 3.0 2 36.00
5.0 6.0 3.0
5545 1.0
2

3.0 3.0 3.0
15 15 1.0
0

Source: ACM Asia Regional Contest Tokyo 1998
IDs for Online Judges: ZOJ 1659, UVA 688

;lk//y\
G

Analysis
Each antenna’s coverage is a square whose center is (x;, 3;) and the length of its side
is 2Xr;. The area of coverage by 7 antennas’ locations is the area for the union of 7
corresponding squares. That is, the problem requires you to calculate the area for
the union of 7 corresponding squares.

The area for the union of 7 corresponding squares is calculated by sweeping in
the vertical direction. Discretization is on the Y-axis. The plane is divided into sev-
eral vertical strips by sweeping on the X-axis. A segment tree is used to accumulate
areas of vertical strips.

oY
= -

#include <cstdio>
#include <cmaths>
#include <algorithm>
using namespace std;

const double epsi = 1le-10;
const int maxn = 100 + 10;
struct Line ({ //coverage area
double x, vy1, v2; // x-coordinate for the left or right,

y-coordinates for the above side and below sides,
1 x-coordinate for the left node

S =
-1 x-coordinate for the right node



Practice for Computational Geometry ® 475

int s;

Line (double _a=0, double b=0, double c¢=0, int _d=0):
x(_a),yl( b),y2(_c),s(_d{ }
//construct a segment

bool operator <(const Line &op2) const { //Sorting in
ascending order for x-coordinates

return x < 0Op2.X;
}

}i
extern double ly[maxn << 1]; //1yl 1 stores y-coordinates
for the above side and below sides of a square covered by
antennas, capacity is 2™
class SegmentTree // Segment tree
int cover; // the flag for an open interval
SegmentTree *child[2]; //left, right children pointers

void deliver () // the length for covered interval
if (cover)
len = ly[r]l-1yI[1];
else
len = child[0]->len + child[1l]->len;

}

public:
int 1, r; //the interval for a segment tree
double len; //the length for the current strip
void setup(int _1, int _r) { //set up a segment tree for
the interval [ 1, r]
1= 1, r = _r; //initialization
cover = 0, len = 0;
if (1 + 1 == _r) return;
int mid = (1 + r) >> 1; //middle pointer

child[0] =new SegmentTree(),child[1l]=new SegmentTree() ;
//set up left and right subtrees
child[0] ->setup( 1, mid), child[1]->setup(mid, _r);
}
void paint (const int & 1, const int & r, const int &v)
//interval [_1, r] is inserted into the segment tree for
interval [1,r]
if (1 »>=r || _r <= 1) return;
if (1 <=1 && r <= _1r) {
if (cover += v) len = lyl[r]-1ly[l]; else {
if (child[0]==NULL)len=0;else len = child[0]->len +
child[1] ->1len;
}
return;
}
child[0] ->paint( 1, r, v), child[1]-spaint( 1, r, v);
deliver () ;
}

void die() { //deletion



476 ®m  Algorithm Design Practice for Collegiate Programming

if (childlol) {
child[0] ->die () ;
delete child[O0];
child[1] ->die () ;
delete child([1];
!
!
}i
int cs(0); //initialize the number of test cases
int n, tot, ty; //n: number of antennas, tot: the length
of 1[]1, ty: the length of Iy[]
Line 1[maxn << 1]; //1[] stores vertical strips
double ly[maxn << 1]; //1y[] stores y-coordinates
SegmentTree *seg tr; //Pointer for the segment tree
int main()
while (scanf("%d", &n), n) // number of antennas
tot = ty = 0;
for (int i = 0; 1 < n; ++1i) {
double x, vy, r;

scanf ("$1£f%1£f%1f", &x, &y, &r) //the i-th antenna

l[tot++] = Line(x - r, y - ¥, y + ¥, 1); //store strip
1[tot++] = Line(x + r, vy - ¥, v + ¥, -1);
ly [ty++] = y-r, lylty++]l=y + r;
//stores y-coordinates
sort(l, 1 + tot); //sort strips from left to right
sort (ly, ly + ty); // sort y-coordinates top-down
ty = unique(ly, ly + ty) - ly; //eliminate duplicate
double ans = 0; //initialize the area of the coverage
region
seg _tr = new SegmentTree() ;
seg tr-ssetup(0, ty - 1); //set up a segment for
interval [0, ty-1]
for (int i = 0, j; 1 < tot; i = J) { // Enumerate

strips in I[]

if (i) ans += seg tr->len * (1[i].x-1[i-1].x);
//accumulate area of the coverage region

j = 1i; //Enumerate strips, [1, r, k] is inserted
into the segment tree

while (j < tot && fabs(1l[i]l.x - 1[j].x) <= epsi) {

seg tr->paint (lower bound(ly,ly+ty,1[j].y1l) -

ly,lower bound(ly,ly+ty,1[j].y2) -1ly,1[j]l.s);

++3;
!
!
seg_tr->die(); delete seg tr; //delete a segment
printf ("%d %.21f\n", ++cs, ans); // the area of the

coverage region

}

return 0;

}



Practice for Computational Geometry ®m 477

8.2.2 Sweeping in the Horizontal Direction

Calculating the area for the union of rectangles in the horizontal direction is simi-
lar to calculating the area for the union of rectangles in the vertical direction.
Discretization is on the X-axis. The plane is divided into horizontal strips by sweep-
ing on the Y-axis. A segment tree is used to accumulate areas of horizontal strips.
The method is as follows:

Discretization: Calculate intersection points for sides of rectangles (or
their extended lines) and X-axis, sort intersection points in ascending order of
x-coordinates, and calculate distances between two adjacent intersection points.

Sweep: The plane is divided into horizontal strips, and a segment tree is used to
store these horizontal strips’ cross sections.

Segment tree: Calculating the union of # rectangles’ areas can be implemented
by insertion and deletion in a segment tree.

8.2.2.1 Atlantis

There are several ancient Greek texts that contain descriptions of the fabled island
Atlantis. Some of these texts even include maps of parts of the island. But unfor-
tunately, these maps describe different regions of Atlantis. Your friend Bill has to
know the total area for which maps exist. You (unwisely) volunteered to write a
program that calculates this quantity.

Input

The input consists of several test cases. Each test case starts with a line con-
taining a single integer 7 (1<1<100) of available maps. The 7 following lines
describe one map each. Each of these lines contains four numbers x;; 5 x2; 7,
(0=x<x,<100000; 0<y,<),<100000), not necessarily integers. The values (x;; y)
and (xy; ;) are the coordinates of the top-left and bottom-right corners of the
mapped area, respectively.

The input file is terminated by a line containing a single 0. Don’t process it.

Output

For each test case, your program should output one section. The first line of each sec-
tion must be “Test case #£”, where £ is the number of the test case (starting with 1).
The second one must be “Total explored area: ”, where 4 is the total explored area
(i.e., the area of the union of all rectangles in this test case), printed exact to two
digits to the right of the decimal point.

Output a blank line after each test case.



478 m  Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output

2 Test case #1

10 10 20 20 Total explored area: 180.00
15 15 25 255

0

Source: ACM Mid-Central European Regional Contest 2000
IDs for Online Judges: POJ 1151, ZOJ 1128, UVA 2184

NE S

N >(
\/ Analysis

An available map in the problem is represented as a rectangle. The total explored
area is the area for the union of these rectangles.

The plane is divided into several rectangles (Figure 8.19). Areas of these rect-
angles are calculated respectively. The sum of areas is the total explored area (the
area of the union of all rectangles). This is shown in Figure 8.20.

The algorithm is as follows:

For each map, its left boundary’s x-coordinate and right boundary’s x-coordinate
are stored in a sequence g in ascending order.

For each map, its bottom edge’s y-coordinate, top edge’s y-coordinate, and
x-coordinates for endpoints of edges are stored in a sequence /- The flag for bottom
edges is 1, and the flag for top edges is —1. And f’is sorted in ascending order of
y-coordinates, to make f'store horizontal strips from bottom to top.

Then, each horizontal strip is taken out from f and the segment [x, x]
(x-coordinates for endpoints of the edge) is inserted into the segment tree. There
are two fields for vertices for the segment tree:

len, the length of the union of intervals;
mark: the mark of the union of intervals;

When a horizontal strip is added, the area covered by a horizontal strip is accu-
mulated into the total explored area.

Figure 8.19



Practice for Computational Geometry ®m 479

Figure 8.20

oY
% Program

#include <cstdio>
#include <cmath>
#include <cstrings>
#include <algorithms>
#include <iostream>
using namespace std;
const int maxn = 500;
maps*2

struct node

//The upper limit of the number of

double x; //y-coordinate for horizontal strip

int 1, r, t; //1,

r: x-coordinates for two points in g, t:

the flag for bottom edge and top edge

} £ lmaxn] ; // horizontal strips

int n; // the number of maps

double glmaxn], x1[maxn], yyl[maxn], x2[maxn], yy2[maxn];
//q stores sorted x- coordinates, for the i-th map, the
coordinate for the top left corner (x1[i],yyl[i]), the
coordinate for the lower right corner (x2[i],yy2[i])

struct segment {
int mark;

double len; //the length of the union for intervals

} treel[maxn * 20];

return a.x < b.x;

}

//segment tree
int cmp (node a, node b)

{ //Comparison function for f£[]

int insert (const int k,const int 1,const int r,const int
lc,const int rc,const int t) //horizontal stripll, r]
is inserted into segment tree (k:root, interval [lc, rcl),
t: mark for bottom edge and top edge

if (lec<=1l && r<=rc)

tree[k] .mark += t;

} else {

{ //l1lc, rcl covers [1, r]

if ((l+r)/2>=1lc)insert (k*2,1, (1+r)/2, lc,rc,t);



480 m Algorithm Design Practice for Collegiate Programming

if ((1+4r) /2<rc) insert (k*2+1, (l+r)/ 2+1,r,lc, rc,t);

if (treel[k] .mark == 0) treelk].len=treelk *2].
len+tree [k *2+1] .len;
else treelk].len=q[r+1l]-gl[l];

return O0;
1
int main() {
int test = 0; //number of test cases
while (scanf("%d", &n) && n) //number of maps
double ans = 0; // the total explored area
for (int i = 1; i <=n ; i ++) { // the coordinates of
the top-left and bottom-right corner
scanf ("$1f %1f %1f %1f" , &x1[i], &yyll[il, &x2I[i],
&yy2l[il);
if (x1[1i] > x2[1]) swap(x1[i], x2[i]);
if (yyll[il > yy2I[il]) swap(yyll[il, yy2I[il);
gli * 2 - 2] = x1[1i]; // x-coordinate
gli * 2 - 1] = x2[1];
!
sort (q, g+n*2); //sort in ascending order of
x-coordinates in g
int m = unique(qg, g+n*2)-qg; //remove duplication in g,
m: the length of g
for ( int i=1;i<=n ; i ++) { //the i-th map is stored
in f

f[i*2-2] .1=1lower bound(q,qg+m,x1[i])-qg;
f[i*2-2] .r=1lower_bound(q,g+m,x2[i]) -g;
fli*2-2] .x=yy1l[i];

fli*2-2].t=1;

f[i*2-1] .1=1lower_bound(qg, g + m, x1[i]) - q;
f[i*2-1] .r=1lower bound(q, g + m, x2[i]) - qg;
fl1i * 2 - 1].x = yy2[il;

f[i * 2 - 1].t = -1;
!
sort (£, £+n*2, cmp) ; //f is sorted bottom up
for (int i = 0 ; 1 <n * 2; 1 ++) { //horizontal

strips are analyzed bottom-up
if (i) ans += tree[l].len* (£f[i] .x-f[i-1].x);
//accumulate the current strip's area

insert(1,0,m ,f[i].1,£([1i].r-1,£f[i].t); //insert the
strip into the segment tree
!
printf ("Test case #3%d\n", ++ test); //output the total

explored area
printf ("Total explored area: %.21f \n\n", ans);

}

return 0;

}



Practice for Computational Geometry W 481

/

ax+by+c>0

ax+by+c>0

(@ (b)

Figure 8.21

8.3 Intersection of Half-Planes

For a convex polygon, if its sides are represented by equations of lines or polar
angles, the convex polygon can be represented by the intersection of half-planes.

A line ax+by+c=0, where 4, b, and ¢ are constants in a two-dimensional plane,
divides the entire plane into two half-planes. A half-plane is thus defined by a line
and one of its sides: either ax+by+c20 or ax+by+c<0 [Figure 8.21(a)].

A half-plane in a bounded region, or an intersection of half-planes, can con-
stitute a convex polygon [Figure 8.21(b) and (0)]. The intersection of 7 half-planes
HNH,N...NH, is aconvex polygon with at most 7 sides. For example, in Figure 8.21(c),
there are five lines L, L, L, Ly, and Ls. One side of line Z, is the half-plane H,, 1<i<5.
The intersection of five half-planes is a convex polygon with five sides.

Maybe an intersection of 7 half-planes is unbounded. Four half-planes, x—<0,
x+¢20, y—c<0, and y+c=0, can be added to make the intersection bounded
(Figure 8.22).

An intersection of 7 half-planes can also be a line, a vertex, or an empty set.

The intersection of two convex polygons generates a new convex polygon
[Figure 8.23(a)]. For the new convex polygon, its points are points of intersection
of the two convex polygons’ sides. The points are also boundary points that classify
sides into outer sides and inner sides. Inner sides constitute the new convex polygon

x+c20

Figure 8.22



482 ®m  Algorithm Design Practice for Collegiate Programming

Outer side .Outer side

Inner side /\ e

/ 3 ﬂerside

(@ (b)

Figure 8.23

[Figure 8.23(b)]. Suppose there is a vertical sweep line sweeping from left to right.
At any time, there are at most four points of intersection of the sweep line and the
two convex polygons. For example, in Figure 8.23(a), the upper point and lower
point of intersection of the sweep line and convex polygon A are A, and 4, respec-
tively; and the upper point and lower point of intersection of the sweep line and
convex polygon A are B, and B, respectively. Obviously, the points of intersection
of the sweep line and the intersection of two convex polygons are A, and B,. Sides
containing A,, A, B,, and B, are ¢, e;, €3, and ¢y, respectively.

In this section, there are two kinds of experiments for the intersection of

half-planes:

1. On-Line Algorithm for Intersection of Half-Planes;
2. Polar Angles.

8.3.1 On-Line Algorithm for Intersection of Half-Planes

Suppose the intersection of 7 half-planes H\NH,N...NH, is the convex polygon A.
Originally A is the entire plane. Then, cutting lines ;x+6,y+c=0 for H; (the line
dividing A4 to generate the half-plane /) are used to divide A one by one, and the
part that 2;x+6,y+¢,20 is retained in A, 1<i<n. Finally, A is HiNH,N...NH,.

The key to the problem is how the cutting line 2;x+by+¢=0 divides the con-
vex polygon A, and how the part that @x+6y+¢,20 is retained in 4 is calculated.
Suppose there are £ points in A listed anticlockwise in 4[], the current cutting line

is ED;, and points are listed anticlockwise in 4[] after 4 is divided by M And
b[] is calculated as follows.

b[] is initialized empty;

for (int 1 = 0; i<k; ++1) { //enumerate points in all
{ if (pialil * pyalil =2 0) {alil is added into b[]; continue;}
//if a[iﬁ]p1 and ﬁ are connected anticlockwise, or ali]l is

over PiP2, then al[i] is retained [Figure 8.24 (a)]



Practice for Computational Geometry ® 483

ali]

ali]

(a) (b) (©

Figure 8.24

Calculate the left adjacent point j for point 1i;

if (paljl” pealy]>0) //if aljlp, and p.p, are connected
anticlockwise, then the intersection point for p,p, and aljlali]
is retained [Figure 8.24(b)].

{ the intersection point for ﬁ and a[jlali] is added into
bll; }

Calculate the right adjacent point j for point 1i;
if (p.aljl * pealjl > 0) {the intersection point for p,p, and
aljlali] is added into bl[];} //if aljlp, and p.p, are connected
anticlockwise, then the intersection point for p,p, and alilalj]
is retained [Figure 8.24(c)].

}

The time complexity using a cutting line to divide the plane A to generate a
half-plane is O(#). The intersection of 7 half-planes can be calculated by using the
following method 7 times.

Suppose the plane A is a square whose points’ coordinates are (~10°, —10°),
(10°, =10°), (10°, 10”) and (~10°, 10%), and the four points are stored in 4[]. The
cutting line for H, is used to divide 4 to generate a convex polygon whose points
are stored in &[], b[] is assigned to 4[], and 4[] is cleared out. Then the cutting line
for H, is used to divide A to generate a new convex polygon whose points are stored
in &[], ...... , and so on. After the cutting line for /, is used to divide A to generate
a convex polygon, its points are stored in 4[]. The time complexity is O(12’). This
algorithm is called the On-Line Algorithm for Intersection of Half-Planes.

8.3.1.1 Feng Shui

Feng shui is the ancient Chinese practice of placement and arrangement of space to
achieve harmony with the environment. George has recently become interested in
feng shui, and now wants to apply it to his home and bring harmony to it.

There is a practice which says that bare floor is bad for living areas since spiritual
energy drains through it, so George purchased two similar round-shaped carpets
(feng shui says that straight lines and sharp corners must be avoided). Unfortunately,
he is unable to cover the floor entirely since the room has the shape of a convex



484 m  Algorithm Design Practice for Collegiate Programming

(/

Figure 8.25

polygon. But he still wants to minimize the uncovered area by selecting the best
placing for his carpets, and he asks you to help.

You need to place two carpets in the room so that the total area covered by both
carpets is the maximum possible. The carpets may ovetlap, but they may not be cut
or folded (including cutting or folding along the floor border)—feng shui tells you
to avoid straight lines. See Figure 8.25.

Input

The first line of the input file contains two integer numbers 7 and »—the number
of corners in George’s room (3<7<100) and the radius of the carpets (1<r<1000,
both carpets have the same radius). The following 7 lines contain two integers x;
and y; each—coordinates of the i-th corner (~1000<x;,5,<1000). Coordinates of all
corners are different, and adjacent walls of the room are not colinear. The corners
are listed in clockwise order.

Output

Write four numbers x;, 3, x2, y» to the output file, where (xi, 1) and (x,, ,) denote
the spots where carpet centers should be placed. Coordinates must be precise up to
four digits after the decimal point.

If there are multiple optimal placements available, return any of them. The
input data guarantees that at least one solution exists.

Sample Input | Sample Output

52 -233 25
-2 0
-5 3
038
73
50
43 3573
00




Practice for Computational Geometry ® 485

Sample Input | Sample Output

038
10 8
10 0

Source: ACM Northeastern Europe 2006, Northern Subregion
ID for Online Judge: POJ 3384

Q%& Analysis

Two circles are placed in a convex polygon so that the total area covered by the two
circles is the maximum possible. The idea for solving this problem is to push sides
for the convex polygon inward, and a new convex polygon is generated. Obviously,
the two circles can be placed in the convex polygon, but they may not be cut or
folded. The on-line algorithm for the intersection of half-planes is used to solve the
problem.

Initially, the covered area plan is an infinitely great square. Then each side p; iy
is enumerated anticlockwise, 0<i<n—1, p,=po. p; pis1 is pushed 7 inward, and the

side g,4;,, is a side for the new convex polygon (p; piy is rotated 90°x , and

pipin
9:q+1 is generated). M is used to divide plan. Repeat the step until # sides are
dealt with. Finally, plan is the new convex polygon.

Then distances between all pairs of points for the convex polygon are enumer-
ated. Suppose the distance between a pair of points ¢, and ¢, is the longest. Points
¢1 and ¢, are the spots where carpet centers should be placed. Obviouly, the total
area covered by the two circles is maximal.

oY
% Program

#include <cstdio>
#include <iostream>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <ctime>
#include <climits>
#include <utilitys>




486 ®m Algorithm Design Practice for Collegiate Programming

#include <algorithms>
using namespace std;

const double epsi = le-10; // infinitesimal

const double pi = acos(-1.0); //180°

const int maxn = 100 + 10; //the upper limit of the number
of points

inline int sign(const double &x) { // x is positive,

negative, or zero
if (x > epsi) return 1;
if (x < -epsi) return -1;
return 0;

}

inline double sqgr(const double &x) { //x
return x * x;

}

struct Point { //Structure for points
double x, vy;
Point (double x = 0, double y = 0): x(_ x), y(y) {}
Point operator +(const Point &op2) const {

return Point(x + op2.x, y + 0p2.VY);

}

Point operator - (const Point &op2) const {
return Point(x - op2.x, y - 0op2.VY);

double operator *(const Point &op2) const / /Dot Product
return x* op2.x + y*op2.y;

Point operator * (const double &d) const {
return Point(x * d, y * d);
}

Point operator /(const double &d) const {
return Point(x / d, y / 4);
}

double operator
product
return x * op2.y - y * op2.X;
}

A

(const Point &op2) const { // vector

bool operator ==(const Point &op2) const { //coincidence
or not
return sign(x - op2.x) == 0 && sign(y - op2.y) == 0;

}
}i
inline double mul (const Point &p0, const Point &pl, const
Point &p2) // vector product for p;p, and p,p,

{
}

inline double dot (const Point &p0O, const Point &pl, const
Point &p2) // Dot Product for p,p, and p.p,

return (pl - p0) * (p2 - p0);




Practice for Computational Geometry ® 487

{
}

inline double dis2 (const Point &p0, const Point &pl) { //‘pﬂ%f
return sqr(p0.x - pl.x) + sgr(p0.y - pl.y);
}

inline double dis(const Point &p0O, const Point &pl)
// ‘plpo‘

return sqgrt (dis2(p0, pl));
}

inline double dis(const Point &p0O, const Point &pl, const
Point &p2)
if (sign(dot (pl, p0, p2))<0) return dis(p0, pl); // if the
included angle for Eﬂi and Eﬂz is larger than 90°, then
return‘ﬁi%
if (sign(dot (p2,p0, pl))<0) return dis(p0, p2); // if the
included angle for Eﬁ% and p,p; is larger than 90°, then
return‘ﬁﬁ%
return fabs(mul (p0, pl, p2) / dis(pl, p2)); //the length
of the vertical line from p, to PiP2
}
inline Point rotate(const Point &p, const double &ang) {
//return the point that point p is rotated degree ang
return Point(p.x * cos(ang) - p.y * sin(ang), p.x *
sin(ang) + p.y * cos(ang));
}
inline void translation (const Point &pl, const Point &p2,
const double &d, Point &gl, Point &g2)
{ //p2p. is pushed d inward and q,q: is formed
gl = pl + rotate(p2 - pl, pi / 2) * d / dis(pl, p2);
g2 = gl + p2 - pl;

return (pl - p0) * (p2 - pO0);

}

inline void cross(const Point &pl, const Point &p2, const
Point &p3, const Point &p4, Point &q)
{ //the intersection point g for p.p, and psp.

double s1 = mul(pl, p3, p4), s2 = mul(p2, p3, p4d);

g.x = (sl * p2.x - 82 * pl.x) / (sl - 82);

g.y = (81 * p2.y - 82 * pl.y) / (sl - s2);

}

inline int half plane cross(Point*a, int n,Point *b, const
Point &pl, const Point &p2) { // points for A are listed
anticlockwise in all], the current cutting line is Eﬁi, and
points are listed anticlockwise in b[] after A is divided

by pip:.
int newn = 0;
for (int i = 0, j; i < n; ++1i) {
if (sign(mul(a([i], pl, p2)) >= 0) { // ali] is added
into b[]

b[newn++] = ali];



488 m  Algorithm Design Practice for Collegiate Programming

continue;
!
j = 1i-1; if (j == -1) j = n-1; //point j is the left
adjacent point for point i
if (sign(mul(al[j]l, pl, p2))=>0) //the intersection

point for p.p, and aljlali] is added into bl[]
cross(pl, p2, aljl, alil, blnewn++]);

j =1+ 1; if (J ==n) j = 0; // point j is the right
adjacent point for point 1
if (sign(mul(aljl, pl, p2)) > 0) // the intersection

point for pp, and aljlali] is added into b[]
cross(pl, p2, aljl, alil, blnewn++]);
!

return newn;
1
int n; // number of points
double r; //radius
Point p[maxn] ; //the sequence of points for a convex
polygon
int t[2];
Point plane[2] [maxn], gl, g2;
int main()

scanf ("$d%1f", &n, &r); // the number of corners and the
radius of the carpets
for (int i = 0; 1 < n; ++1) // coordinates of corners
scanf ("$1£%1f", &plil.x, &plil.y);
pln]l = plo];
int ol = 0, 02;
t[0] = 4; //Initially the covered area plan is a square
initial
t[0] = 4;
plane[0] [0] = Point (-1e3, -1e3);
plane[0] [1] = Point (le3, -1e3);
plane[0] [2] = Point (1le3, 1le3);
plane[0] [3] = Point(-1le3, 1le3);
for (int i = 0; i < n; ++1i) {
02 = ol * 1;
translation(p[i + 1], Eﬂi]’ r, gql, g2); //PiPiss 18

pushed r inward and forms Qg.q:
t[o2] = half plane cross(plane[ol], t[ol], planelo2],

ql, g2);
ol = 02;
!
double maxd = -1, curd;
for (int i=0; i<t[ol];++1) //distances between all pairs

of points for the convex polygon are enumerated, the distance
between a pair of points q; and g, is the longest
for (int j = i; j < tloll; ++3) {
curd = dis2(plane[ol] [i], plane[ol] [j]);
if (sign(curd - maxd) > 0)



Practice for Computational Geometry ® 439

maxd = curd;

gl = plane[ol] [i], g2 = plane[ol] [j];

}
}

printf("%.101f %.101f %.101f %.101f\n", gl.x, gl.y, Q2.x,

g2.v);
return O;

}

8.3.2 Polar Angles

//q. and g, are the spots where carpet centers

In the plane, the polar angle 6 is the counterclockwise angle from the x-axis to a
line at which a point in the xy plane lies. See Figure 8.26.
For a half-plane ax+6y<(2)c, where a=1, b€{1, —1}, its polar angle is as follows:

The polar angle for the half-plane x—y=c is %TC [Figure 8.27(a)];

The polar angle for the half-plane x—y<c is _ZTC [Figure 8.27(b)];

The polar angle for the half-plane x+y>c is —% n [Figure 8.27(0);

The polar angle for the half-plane x+y<c is %n [Figure 8.27(d)].

Figure 8.26

(a) (®) (©

Planes whose polar
angles are same

(e)

()]

Figure 8.27



490 m Algorithm Design Practice for Collegiate Programming

For the half-plane ax+by<(2)c, where a, b, and ¢ are constants, its polar angle
is atan2(b, a). If there are several half-planes whose polar angles are the same, one
half-plane is selected based on ¢. For example, in Figure 8.27(¢), the plane whose ¢
is the least is selected.

The insection of half-planes is a convex polygon, where lines whose polar angles

1 1
are in (—zn,zﬂ:} constitute the upper convex hull, and lines whose polar angles

1 1
are in (—n,—zn} U (2 n,n} constitute the lower convex hull (Figure 8.28).

We can calculate a convex polygon in ascending order of polar angles (i.e.,
counterclockwise). The algorithm is as follows:

Suppose array « stores boundaries (4, B;, and C; for A;x+By+C,=0, 1<i<n) for
n half-planes H,, H,, ...... , H,. The convex polygon for the intersection of 7 half-
planes HiNH,N...NH, is stored by &[ ] and ¢[ ], where 4[ ] is a deque that stores
straight line equations for boundaries, ¢[ | stores vertices, and /4 and # are the front
and rear for the deque &[ ] respectively.

Step 1: Pretreatment for 4[]: Sort 4[] using polars as the first key, and distances
from the origin to boundaries as the second key. If there are more than
one boundary with the same polar angle, the boundary with the shortest
distance from the origin to the boundary is selected. If A,=B,=0, and if C;>0,
the line Ax+By+C=0 is removed; and if C;<0, the program exits.

Step 1: Step 1 is to determine the sequence for intersections of half-planes, and
eliminate cases that intersections of half-planes don’t exist and coincide.

Step 2: The first two boundaries are added into queue 4[ ] as 4[0] and 4[1], and
the insection point for the two boundaries is stored into ¢[1], /=0, and #=I.

Step 3: Boundaries #[3]...4[n] (half-planes) are dealt with one by one:

1. While the deque isn’t empty, and when ¢[4] is substituted in boundary 4[4,
the equation is negative; then the rear for the deque is removed (z —);

2. While the deque isn’t empty, and when ¢[#+1] is substituted in bound-
ary 4[i], the equation is negative; then the front for the deque is removed

(h+);

Upper convex hull

Lower convex hull B =

Figure 8.28



Practice for Computational Geometry ® 491

3. Boundary 4[] is added into deque &[] (6[++£]=a[i]), and the insection
point for 6[7] and 4[#—1] is put into c[7]. It is to guarantee Ax+By+C;20
when insection points in ¢[] are substituted in each line.

Step 4: The front and the rear for queues &[] and c[] are joined. Redundant half-
planes are removed.

1. While the deque isn’t empty, and when c[#] is substituted in boundary
blh), the equation is negative, and the rear for the deque is removed (r —);

2. While the deque isn’t empty, and when c[4+1] is substituted in boundary
b[#], the equation is negative, and the front for the queue is removed from
the queue (++);

3. If the deque is empty (4+127), then the program exits; else for the convex
polygon, p, is the insection point for 6[4] and &[¢], and insection points

i .. piy are c[ptl].. clt], and piju = po.

The time complexity for the algorithm is O(zlog,7).

8.3.2.1 Art Gallery

The art galleries of the new and very futuristic building of the Center for Balkan
Cooperation have the form of polygons (not necessarily convex). When a big exhi-
bition is organized, watching over all the pictures is a big security concern. Your
task for a given gallery is to write a program that finds the surface of the area of
the floor, from which each point on the walls of the gallery is visible. In Figure 8.29,
a map of a gallery is given in some coordinate system. The area wanted is shaded on
in the second half of the figure.

Input

The number of tasks 7" that your program needs to solve will be on the first row of
the input file. Input data for each task start with an integer N, 5</V<1500. Each
of the next /V rows of the input will contain the coordinates of a vertex of the
polygon—two integers that fit in 16-bit integer type, separated by a single space.

Figure 8.29



492 m  Algorithm Design Practice for Collegiate Programming

Following the row with the coordinates of the last vertex for the task comes the line
with the number of vertices for the next test, and so on.

Output

For each test, you must write on one line the required surface—a number with
exactly two digits after the decimal point (the number should be rounded to the
second digit after the decimal point).

Sample Input | Sample Output

1 80.00
7
00
4 4
47
97
13 -1
8 -6
4 -4

Source: ACM Southeastern Europe 2002
IDs for Online Judges: PO) 1279, ZOJ 1369, UVA 2512

Based on the problem description “for a given gallery, to write a program which
finds the surface of the area of the floor, from which each point on the walls of the
gallery is visible”, the surface of the area of the floor consists of a set of points with
the following property:

Suppose s is a point on the boundary of the gallery, and v is a point in the set. A
line segment connecting s and v must be in the gallery.

The gallery is a polygon. And the surface of the area of the floor is the insec-
tion of left half-planes divided by sides for the polygon. If the polygon is a convex
polygon, the surface of the area of the floor is the polygon itself. And if the polygon
isn’t a convex polygon, the surface of the area of the floor is a subset for the polygon,
and may be an empty set.

Analysis



Practice for Computational Geometry ® 493

Based on the above discussion, the algorithm is as follows:

First, the coordinates of 7 vertices are input, and are transferred as equations of
n lines. Second, the plane is divided by sides for polygons anticlockwise. The insec-
tion of 7 half-planes is the surface of the area of the floor. Finally, the area of the
insection of 7 half-planes is calculated by the formula of cross product.

oY
= -

#include <iostream>
#include <cstdlibs>
#include <cstdio>
#include <strings>
#include <cmaths>
#include <algorithm>
using namespace std;
const int maxn=2100;
const double eps=1le-10;
struct Point { //Structure for points
double x, vy;
Point (double x = 0, double vy = 0): x( x), v(y) { }
//point
double operator *(const Point &op2) const { //cross product
return x * op2.y - y * oOp2.X;

A

1

}i

struct StraightLine({ //Intersection of half-planes
double A, B, C; //equation of line Ax+By+C=0

StraightLine (double _a=0, double b=0, double c¢=0):A(_a),
B( b), c(c) {} //line

double f (const Point &p) const { //point p is substituted
in an equation of line
return A * p.x + B * p.y + C;
}
double rang() const({ // atan2 (B, A), that is, the polar
angle for the line
return atan2 (B, A);

}

double d() const{ //the distance between the origin to
__<

JA* + B?

return C / (sqrt(A * A + B * B));

}

line Ax + By + C = 0:



494 m  Algorithm Design Practice for Collegiate Programming

Point cross(const StraightLine &a) const { //intersection
point for Ax+By+C=0 and line a
double xx = - (C * a.B - a.C * B) / (A * a.B - B * a.A);
double yy = - (C * a.A - a.C *A) / (B * a.A - a.B * A );

return Point (xx, vyy);

}
}i

StraightLine b[maxn], SL[maxn]; // SL[]: the sequence of
lines for half-planes, b[]: the sequence of lines for the
current intersection of half-planes

Point c[maxn], d[maxn]; // dl[]l: the sequence of points for
the intersection of half-planes, c¢[]: the sequence of points
for the current intersection of half-planes

int n; //number of points for a polygon

inline int sign(const double &x) { // x i1s positive or
negative

if (x > eps) return 1;

if (x < -eps) return -1;

return 0;
}
int cmp(StraightLine a, StraightLine b) { // comparing lines
a and b, polar angles are as the first key, distances from the
origin to lines are as the second key

if (sign( a.rang() - b.rang() ) != 0) return a.rang()
< b.rang() ;

else return a.d() < b.d();
}

int half plane cross(StraightLine *a, int n, Point *pt) {
// input a sequence of lines for a polygon a, whose length
is n. By polar angles, return a sequence of lines pt and its
length for the inner convex polygon a

sort (a+1l,a+n+1,cmp) ; // a is sorted, where polar angles
are as the first key, distances from the origin to lines are
as the second key

int tn = 1; // initialize the length of a

for (int i = 2; i <= n; i ++){ // enumerating adjacent
sides for the polygon, sides whose polar angles are same, or
A=B=0 and C>0, are deleted (Cs0, exit)

if (sign( ali] .rang() - ali-1].rang() )!=0) al++tnl=alil;
// polar angles for adjacent sides are different
if (sign(altn] .A )==0 && sign( altn].B )==0) // A=B=0
if (sign( altn].C )==1) tn --;
else return - 1;
!
n=tn; // the length for a
int h=0, t=1;
b[0] = all]; // line 1 and line 2 are stored in b[]
b[1] = al[2];
c[1] = b[1l] .cross(b[0]); //the intersection point for

line 1 and line 2 is stored in c/I]



Practice for Computational Geometry ®m 495

for (int i = 3; i <= n; i ++){ // enumerate line 3..line n
while (h < t && sign( a[i]l.f(c[t] ) )<0) t -- ;
while (h<t && sign(al[i].f( c[h+1] ))<0) h++ ;

bl ++ t] = alil; // line i is added into the rear for b
c[t] = b[t]l.cross( b[t-1] ); // the intersection for
the two lines at the rear of b is added into ¢

!

while (h < t && sign( b[h].f( c[t] ) )<0) t --;

while (h < t && sign( b[t].f£( c[h+1l] ) )<0) h ++;

if (h+1 >= t) return -1; // the queue is empty

pt[0] = b[h].cross( b[t] ); // the first point for the

convex polygon
for(int i=h;i<t;i++) ptli-h+1l]l=c[i+1];
ptlt - h + 1] = pt[0];

return t - h + 1; // number of points for the convex
polygon
1
int main() {
int x[maxn], y[maxn] ; //the sequence of points for a
polygon
double ans=0; //initialize the area for the maximal
convex polygon
int n, m; //n: number of points for a polygon, m: number
of points for the maximal inner convex polygon
int test; //the number of test cases
scanf ("%d", & test ); //input the number of test cases
for (; test ; test --){
scanf ("%d", & n); // input number of vertices and the
coordinates of vertices of the polygon
for (int 1 = 1; 1 <= n; 1 ++) scanf("%d %d", & x[i],
& yl[il);
x[n+1]1=x[1];y[n+1]l=y[1];
for (int i=1; i<=n;i++) //calculate n equations of lines,
where SL[i] stores A, B, C for p;.p;:
SL[i]=StraightLine (- (y[i]-y[i+1]), - (x[i+1]-x[1]),- (x[1i]
*y [i+1] -x[i+1]*y[i]));
m=half plane cross(SL,n,d); //calculation by polar
angles
ans = 0;
if (m == -1) printf("0.00\n"); //if there is no convex
polygon
else {
for (int i = 0; i < m; i ++) ans += d[i] * d[i+1];
printf ("%.21f\n", ans / 2); //the area for the
maximal convex polygon
!
!
return 0;

}



496 m Algorithm Design Practice for Collegiate Programming

8.3.2.2 Hotter Colder Game

The children’s game Hotter Colder is played as follows. Player A leaves the room
while player B hides an object somewhere in the room. Player A re-enters at position
(0,0) and then visits various other positions about the room. When player A visits
a new position, player B announces “Hotter” if this position is closer to the object
than the previous position; player B announces “Colder” if it is farther; and “Same”
if it is the same distance.

Input

Input consists of up to 50 lines, each containing an x, y coordinate pair followed
by “Hotter”, “Colder”, or “Same”. Each pair represents a position within the room,
which may be assumed to be a square with opposite corners at (0,0) and (10,10).

Output

For each line of input, print a line giving the total area of the region in which the
object may have been placed, to two decimal places. If there is no such region,
output 0.00.

Sample Input Sample Output

10.0 10.0 Colder | 50.00
10.0 0.0 Hotter 37.50
0.0 0.0 Colder 12.50
10.0 10.0 Hotter | 0.00

Source: Waterloo local 2001.01.27

IDs for Online Judges: POJ 2540, ZOJ 1886

S/ Analysis

Suppose the position of the placed object is P, and player A moves into D(x,, y,)
from C(x;, 31). The equation for the perpendicular bisector for the line segment CD
is substituted by P(x, y).

In the current round, if player B announces “Hotter”, then for the position of
P(x, y) |CP|>|DP| holds, that is,

2><(x2—x1)><x+2><(y2—yl)Xy+x12+y12—x22—y22 > 0;



Practice for Computational Geometry ®m 497

if player B announces “Colder”, then for the position of P(x, y), |CP|<|DP|
holds, that is,
2><(x2—xl)Xx+2><(y2—y1)Xy+x12 +y12 —xzz—yzz <0;
if player Bannounces “Same”, then for the position of P(x, y), |CP|=|DP| holds,

that is,
2><(x2—x1)><x+2><(y2—y1)><y+x12+y12—x§—y% =0.

For each time player B announces, a corresponding half-plane is added.

Initially, the total area of the region in which the object may have been placed
is [0, 10]x[0, 10]. In each round, the intersection of the current half-plane and the
new added half-plane is calculated. If the intersection doesn’t exist, output 0.00;
else output the area of the intersection.

In the program, the intersection of half-planes is calculated by polar angles.

o
% Program

#include <iostream>

#include <cstdlib>

#include <cstdios>

#include <strings>

#include <cmaths>

#include <algorithms>

using namespace std;

const int maxn=21000;

const double eps=1le-10;

struct Point { //structure for points
double x, vy;
Point (double x = 0, double y = 0): x( x), y(y) {}

double operator *(const Point &op2) const { //cross
product
return x * op2.y - y * 0Op2.X;
!
}i
struct StraightLine( // the intersection of half-planes
double A, B, C; //equation of line Ax+By+C

StraightLine (double _a=0, double b=0, double ¢=0): A(_a),
B( b), C( c) { }//construct equation of line
double f (const Point &p) const { // the equation of line
is substituted by point p
return A * p.x + B * p.y + C;

}



498 m  Algorithm Design Practice for Collegiate Programming

double rang() const({ //return the polar angle for the line
return atan2 (B, A);
}
double d() const{ //the distance from origin to line
Ax+By+C=0
return C / (sqgqrt(A * A + B * B));

}

Point cross(const StraightLine &a) const { // intersection
point
double xx = - (C * a.B - a.C * B) / (A * a.B - B * a.A);
double yy = - (C * a.A - a.C *A) / (B * a.A - a.B * A );

return Point (xx, yy);

}
}i

StraightLine b[maxn], SL[maxn],S[maxn]; // SLI[]: the
sequence of lines for half-planes, S[]: stores half-planes,
b[]: the sequence of lines for the current intersection of
half-planes

Point c[maxn], d[maxn]; // dl[]l: the sequence of points for
the intersection of half-planes, c¢[]: the sequence of points
for the current intersection of half-planes

int n; //number of points for a polygon

inline int sign(const double &x) { //x is positive or
negative

if (x > eps) return 1;

if (x < -eps) return -1;

return 0;
}
int cmp (StraightLine a, StraightLine b){ //comparing lines
a and b, polar angles are as the first key, distances from the
origin to lines are as the second key

if (sign( a.rang() - b.rang() ) != 0) return a.rang()
< b.rang() ;

else return a.d() < b.d();
}

int half plane cross(StraightLine *a, int n, Point *pt) {
//input a sequence of lines for a polygon a, whose length
is n. By polar angles, return a sequence of lines pt and its
length for the inner convex polygon a

sort (a+1l,a+n+1,cmp) ; // a is sorted, where polar angles
are as the first key, distances from the origin to lines are
as the second key

int tn = 1; //initialize the length of a

for (int i = 2; i <= n; i ++){ //enumerating adjacent
sides for the polygon, sides whose polar angles are same, or
A=B=0 and C>0, are deleted (Cs0, exit)

if (sign( ali] .rang() - ali-1].rang() )!=0) al++tnl=alil;
// polar angles for adjacent sides are different
if (sign(altn] .A)==0 && sign(altn].B)==0) // A=B=0

if (sign( altn].C )==1) tn --;



Practice for Computational Geometry ® 499

else return - 1;
!
n=tn; //the length for a
int h =0, t = 1;
b[0] = al1l]l; //line 1 and line 2 are stored in b/[]
b[1] = al2];
c[1l] = bll].cross(b[0]); //the intersection point for
line 1 and line 2 is stored in c/[]
for (int i = 3; i <= n; i ++){ //enumerate line 3..line n
while (h < t && sign( al[i].f£( c[t] ) )<0) t -- ;
while (h<t && sign( al[il.f(c[h+1] ))<0) h++ ;
bl ++ t] = alil; //line i is added into the rear for b
c[t] = b[t]l.cross( b[t-1] ); //the intersection for the
two lines at the rear of b is added into c¢
!
while (h < t && sign( b[h].f£( c[t] ) )<0) t --;
while (h < t && sign( b[t].£( c[h+1l] ) )<0) h ++;
if (h+1 >= t) return -1; //the queue is empty
pt[0] = b[h].cross( b[t] ); //the first point for the

convex polygon
for(int i=h;i<t;i++) ptli-h+1l]l=c[i+1];
ptlt - h + 11 = pt[0];
return t - h + 1; //number of points for the convex
polygon
}
int main() {
ios::sync_with stdio(false);
double x1, x2, y2, yl, ans=0;

int n, m; //n: number of half-planes, m: number of points
for the intersection of half-planes
n=0; //initially 4 half-planes for [0, 10]*[0, 10]

SL[++n] = StraightLine(0, 1, 0);
SL[++n] = StraightLine(1, 0, 0);
SL[++n] = StraightLine (0, -1, 10);
SL[++n] = StraightLine(-1, 0, 10);

double px=0,py=0,nx, ny; //position for before moving
(px,py) and after moving (nx,ny)
string c; // player B announces
char s;
while (cin >> nx >> ny){ // a position where play A enters
cin >> ¢ ; // player B announces
if (c[0] == 'C' ) //a corresponding plane is added based

on player B announces
SL [++n] =StraightLine (-2* (nx-px) , -2* (ny-py) , - (PX*pPX+PYy*pPy-
nx*nx-ny*ny) ) ;
else if (c[0]=="H' )
SL[++n] =StraightLine (2* (nx-px), 2* (ny-py) ., (pPX*pxX+py*py-
nx*nx -ny*ny)) ;
else SL[++n]=StraightLine (-2* (nx-px),-2* (ny-py), -
(pX*pxX+py*py-nx* nx-ny*ny)),



500 ® Algorithm Design Practice for Collegiate Programming

SL[++n] =StraightLine (2* (nx-px) ,2* (ny-py) , (pxX*pX+py*py-nx
*nx-ny*ny)) ;

pPX = nx ; py = ny ; // (nx, ny) will be the next
position where player A enters
ans=0; //initialize the area for the intersection of
half-planes
for (int 1 =1 ; 1 <= n ; 1 ++) S[i] = SLI[i];
m = half plane cross(S, n, d); //intersection of
half-planes
if (m==-1) printf("0.00\n"); //the intersection doesn't
exist
else {
for (int 1 = 0; 1 < m; i ++) ans += d[i] * d[i+1];
printf ("%.21f\n", ans / 2);
1
!
return 0;

}

8.4 Convex Hull and Finding the Farthest Pair of Points

In this section, there are two kinds of experiments as follows.

1. Convex hull: Finding the smallest convex hull containing all given points.
2. Finding the farthest pair of points in a convex hull.

8.4.1 Convex Hull

Suppose Q is a set of 7z points, Q ={po, ...., ps1}. Its convex hull CH(Q) is the
smallest polygon P, in which each point in Q is either on the boundary of P or in its
interior. A convex hull can be regarded as a shape formed by an elastic rubber band
that surrounds all points. An example is shown in Figure 8.30.

Figure 8.30



Practice for Computational Geometry ® 501

An algorithm, Graham’s scan, computes the convex hull of a set of 7 points.
Graham’s scan inputs a set Q of # points, and outputs vertices of the convex hull
CH(Q) in counterclockwise order.

1. First, the point in Q with the minimum y-coordinate is selected. If there are
more than one point with the minimum y-coordinate, the leftmost point is
selected. The selected point is denoted as py, and py is as the first vertice for
the convex hull CH(Q).

2. Second, other points in Q are sorted by polar angle in counterclockwise order.
By calculating the cross product (p;—po)*(p;—po) (i.e., Mul(p;, p» po)), we can
determine whose polar angle is larger.

If (p—po)M(p;—p0)>0, then the polar angle for p; is larger than the polar angle
for p;, with respect to po; and p; is scanned before p;.

If (p~po)(p;~p0)<0, then the polar angle for p; is less than the polar angle for
P> with respect to po; and p; is scanned before p,.

If (p—po)M(p;~po)==0, then the polar angle for p; is the same as the polar angle
for p;, with respect to po. The point which is farther from p, is scanned.
And the other points are removed.

Suppose pointers are sorted as a sequence { i, ..., p,-1}. If <2, the convex hull
is empty; else the sequence {py, ...., p,-1} is scanned.

A stack S is used to store candidate vertices in computing the convex hull.
Initially, points po, p1, and p, are pushed into stack S one by one. Then points
{p3> ..., pami} are scanned one by one. Suppose p; is the current scanned point,
and p,,, is the point at the top of the stack S. Because vertices are traversed counter-
clockwise, if p,,, is a vertice of the convex hull CH(Q), a left turn should be made
from p,,, to p;. If it is a nonleft turn, p,,, isn’t a vertice of the convex hull CH(Q),
and should be popped from S. After vertices making nonleft turns are popped, p; is
pushed into S. Then the next point p,,; is scanned. Finally, points in § are vertices of
the convex hull CH(Q). The sequence from the bottom to the top in § are vertices
of the convex hull CH(Q) in counterclockwise order.

By calculating the vector product (p; = prp—1) * (Prp = prop1) (i€, Mul(ps, proys
Pup1))> where p,,, ; is the point next to the top of S. If (p; — prp—1) ™ (Prop = Prop—1) 2 0,
P1p makes a nonleft turn.

8.4.1.1 Wall

Once upon a time there was a greedy king who ordered his chief architect to build a
wall around the king’s castle. The king was so greedy that he would not listen to his
architect’s proposals to build a beautiful brick wall with a perfect shape and nice tall
towers. Instead, he ordered the architect to build the wall around the whole castle
using the least amount of stone and labor, but demanded that the wall should not
come closer to the castle than a certain distance, as shown in Figure 8.31. If the



502 ®m Algorithm Design Practice for Collegiate Programming

—— e — o -

Figure 8.31

king finds that the architect has used more resources to build the wall than was
absolutely necessary to satisfy those requirements, then the architect will lose his
head. Moreover, he demanded that the architect introduce at once a plan of the wall
listing the exact amount of resources that are needed to build the wall.

Your task is to help the poor architect to save his head, by writing a program
that will find the minimum possible length of the wall that he could build around
the castle to satisfy the king’s requirements.

The task is somewhat simplified by the fact that the king’s castle has a polyg-
onal shape and is situated on flat ground. The architect has already established
a Cartesian coordinate system and has precisely measured the coordinates of all
castle’s vertices in feet.

Input

The first line of the input file contains two integer numbers /V and L separated
by a space. N (3<N<1000) is the number of vertices in the king’s castle, and
L (1<L<1000) is the minimal number of feet that the king allows for the wall to
come close to the castle.

The next /V lines describe the coordinates of the castle’s vertices in a clock-
wise order. Each line contains two integer numbers X; and Y, separated by a
space (—10000<X,Y,<10000) that represents the coordinates of the i-th vertex.
All vertices are different, and the sides of the castle do not intersect anywhere
except for vertices.

Output

Write to the outpur file the single number that represents the minimal possible
length of the wall in feet that could be built around the castle to satisfy the king’s



Practice for Computational Geometry ®m 503

requirements. You must present the integer number of feet to the king, because the
floating numbers are not invented yet. However, you must round the result in such
a way that it is accurate to 8 inches (1 foot is equal to 12 inches), since the king will
not tolerate any larger error in the estimates.

Sample Input Sample Output

9 100 1628
200 400
300 400
300 300
400 300
400 400
500 400
500 200
350 200
200 200

Source: ACM Northeastern Europe 2001
IDs for Online Judges: POJ 1113, ZOJ 1465, UVA 2453

%g\ |
>/ Analysis

The shape for the king’s castle is a polygon. The architect is required to build a wall
around the king’s castle. And the minimum number of feet that the king allows for
the wall to come close to the castle is L.

First, a convex hull is computed by Graham’s scan. The inputs for the algo-
rithm are the castle’s vertices. The built wall is a polygon with rounded corners
around the convex hull. Edges for the polygon are parallel to the edges of the
convex hull. Lengths of two parallel edges are the same. And the distance for two
parallel edges is L. For the wall, each round corner is an arc connecting two adja-
cent edges, whose radius is L, and the center of the circle is a vertex for the convex
hull. For a round corner, the sum of the radius angle and its corresponding interior
angle for the convex hull is 180°. Because the sum of degrees of interior angles in
a convex polygon with 7 edges is (#—2)x180°, the sum of degrees of radius angles is
360°. Therefore, the sum of the lengths of arcs is the circumference of a circle whose
radius is L.

The minimal possible length of the wall is the girth of the convex hull + the
circumference of a circle whose radius is L.



504 ®m Algorithm Design Practice for Collegiate Programming

oY
= -

#include <cstdio>
#include <cmaths>
#include <algorithm>
using namespace std;

const double epsi = le-8; //infinitesimal
const double pi = acos(-1.0); //Radian value for =
const int maxn = 1000 + 10;
struct Point //Calculation for point
double x, vy; // coordinate
Point (double x = 0, double y = 0): x( x), v(vy) { }

A

double operator *(const Point &op2) const { // vector
product for two point vectors
return x * op2.y - y * oOp2.X;
} 1
inline int sign(const double &x) {
if (x > epsi) return 1;
if (x < -epsi) return -1;
return 0;
1
inline double sqgr (const double &x) { //calculate %
return x * Xx;
1

inline double mul (const Point &p0O, const Point &pl,const Point
&p2) {// vector product for p,p, and p,p,

return (pl.x-p0.x)*(p2.y-p0.y)-(pl.y-p0.y)*(p2.x-p0.x) ;
//(pl - p0) * (p2 - p0);
}
inline double dis2 (const Point &p0O, const Point &pl) {

—_—2

// |pop]

return sqgr(p0.x - pl.x) + sqgr(p0.y - pl.vy);
}

inline double dis(const Point &p0O, const Point &pl) {

// ‘Popl‘
return sqgrt (dis2(p0, pl));
}

int n, 1; //n: the number of vertices in the king's castle,
1: the minimal number of feet that king allows for the wall to
come close to the castle

Point plmaxn], convex hull p0; // pll: a sequence for
vertices for the polygon, convex hull pO: the point with the
minimum y-coordinate

inline bool convex hull cmp(const Point &a, const Point &b) {




Practice for Computational Geometry ® 505

return sign(mul (convex hull p0, a, b))>0]||sign(mul (convex_
hull p0, a, b))==0 && dis2(convex hull p0, a)<dis2 (convex
hull po, b);
}
int convex hull (Point *a, int n, Point *b){ // the convex
hull b[] is computed based on a set of points al]l (number of
points is n)

if (n < 3) printf("Wrong in Line $%$d\n", _ LINE ); //the
number of points <3
for (int 1 = 1; 1 < n; ++1) //calculating convex hull pO

if (sign(ali] .x-al0].x)<0]||sign(ali] .x-a[0].x)==0 &&
sign(al[i] .y-al0].y)<0)swap(al0], alil);
convex _hull p0 = al[0];
sort(a, a + n, convex_hull cmp) ; //with respect to
convex hull pO, al] is sorted, polar angle is the first key,
distance is the second key

int newn = 2; // al0]l, all]l is pushed into the stack

b[0] = al0], b[1] = alll;

for (int i = 2; i < n; ++1i) { //points are dealt with one
by one

while (newn>1 && sign (mul (b[newn-1],b[newn-2], al[i]))>=0)--
newn; //pop nonleft turn points

b[newn++] = al[i]; //point i is pushed into the stack
}

return newn;

int main() {

scanf ("%d%d", &n, &l); // n: the number of vertices in
the king's castle, 1: the minimal number of feet that king
allows for the wall to come close to the castle

for (int i = 0; i < n; ++1) // coordinates of castle's
vertices
scanf ("$1£%1f", &pli]l.x, &plil.y);
n = convex hull(p, n, p); //calculating the convex
hull
pln] = plo0];
double ans = 0; // ans: length of the wall
for (int i = 0; 1 < n; ++1i) // the girth of the convex
hull
ans += dis(pl[i], pl[i + 1]);
ans += 2 * pi * 1; // the circumference of a circle
printf ("%.01f\n", ans);
return O0;

8.4.2 Finding the Farthest Pair of Points

Given a set of 7 points in a plane, how can we find the farthest pair of points? The
problem can be solved by finding the convex hull of the set of 7 points. The farthest



506 ® Algorithm Design Practice for Collegiate Programming

Piva

Piyi

Figure 8.32

pair of points must be two vertices for the convex hull. The distance between the
farthest pair of vertices for a convex hull is called the diameter of a convex hull.

For a convex hull, each pair of vertices can be enumerated to find the farthest
pair of vertices. The method of rotating calipers is the optimal algorithm for finding
the farthest pair of vertices of the convex hull.

Suppose P is a convex polygon with 7 vertices, and L is a line. If L intersects P,
and the interior of P lies completely on one side of Z, L is a line of support for P. It
is shown in Figure 8.32. If L intersects P at a vertex v, or an edge ¢; v or ¢ admits L.
A pair of vertices p;, p,€P is an antipodal pair if it admits parallel lines of support
for P. In Figure 8.32, an antipodal pair admits parallel lines of support. Lines of
support can be rotated to generate the next antipodal pair. Suppose angles that the
lines of support at p; and p; make with edges p,p;1 and p;p;., are 0; and ; respectively.
If 8<0;, and the lines of supports are rotated by angle 8, then p;,; and p; become
the next antipodal pair. If 8=6,, then three new antipodal pairs are generated.
Therefore, there are three cases that lines of support interest 2, shown in Figure 8.33,
Figure 8.34, and Figure 8.35, respectively. In the case shown in Figure 8.33, there is

Figure 8.33



Practice for Computational Geometry ® 507

Figure 8.34

an antipodal pair; in the case shown in Figure 8.34, there are two antipodal pairs;
and in the case shown in Figure 8.35, there are four antipodal pairs.

The diameter of a convex polygon Pis the greatest distance between parallel lines
of support of P. The diameter of a convex polygon P is the greatest distance between
an antipodal pair of P. Therefore we need to check each antipodal pair. Initially
q. is the vertices for P with the minimum y-coordinate, and ¢, is the vertices for P
with with the maximum y-coordinate. Obviously, ¢, and g, are an antipodal pair.
Suppose d, is the distance between g, and g;; C, is the circle of radius 4, centered at
9. and C, is the circle of radius ,,, centered at g; L, is the tangent to C, at ¢,, and L,
is the tangent to Cj at ¢;; L is the line through g, and g,. By the definition of tangent
line, L,1L and L, LL. Therefore, L, and L, are lines of support of P. L, and L, rotate
to generate new antipodal pairs. The process that L, and L, rotate is continued until
we come full circle to the starting position. Suppose ¢, and g; are the farthest pair of
points. , and L, are parallel lines of support that intersect g, and ¢, respectively. Z,
and L, can be rotated to generate each antipodal pair. This is shown in Figure 8.36.

For a convex polygon, suppose #[0] is the lowest point, and if there are more
than one lowest point, #[0] is the rightmost point for the lowest points; and #[2] is
the highest point, and if there are more than one highest point, #[0] is the leftmost
point for the highest points. Obviously #[0] and #[2] is an antipodal pair. The
algorithm calculating the distance for the farthest pair of points 7ez is as follows:

Calculate the sequence of vertices for convex hull;
Calculate ul0] and ul2], and initialize ret as |PuyoPuz

I

Rotation degree sumang=0;

Figure 8.35



508 ® Algorithm Design Practice for Collegiate Programming

Figure 8.36

while (sumang=2m)

calculate the current rotation degree curang to generate a
new antipodal pair ul[0] and ul2];

sumang+=curang; //accumulation

ret=max(ret, pu[o]pu[z]‘ ) ; //adjust the distance for the
farthest pair of points ret

}

Output the distance for the farthest pair of points ret;

8.4.2.1 Beauty Contest

Bessie, Farmer John’s prize cow, has just won first place in a bovine beauty con-
test, earning the title “Miss Cow World”. As a result, Bessie will make a tour of
N (2<N<50,000) farms around the world in order to spread goodwill between farm-
ers and their cows. For simplicity, the world will be represented as a two-dimensional
plane, where each farm is located at a pair of integer coordinates (x, ), each having a
value in the range —10,000...10,000. No two farms share the same pair of coordinates.
Even though Bessie travels directly in a straight line between pairs of farms, the
distance between some farms can be quite large, so she wants to bring a suitcase full
of hay with her so she has enough food to eat on each leg of her journey. Since Bessie
refills her suitcase at every farm she visits, she wants to determine the maximum
possible distance she might need to travel so she knows the size of suitcase she must
bring. Help Bessie by computing the maximum distance among all pairs of farms.

Input

Line 1: A single integer, N;
Line 2: N+1: Two space-separated integers x and y specifying the coordinate of each
farm.



Practice for Computational Geometry ® 509

Output

Line 1: A single integer that is the squared distance between the pair of farms that
are farthest apart from each other.

Sample Input | Sample Output

2

- 2O O BN
S = = O

Source: USACO 2003 Fall
ID for Online Judge: POJ 2187

Farm 1 (0, 0) and farm 3 (1, 1) have the longest distance (square root of 2).

\F S
S/ Analysis

In this problem, there are NV (2<N<50,000) points. The problem requires you to
compute the maximum distance among all pairs of points. Obviously, the pair of
points with the maximum distance must be two points for the convex hull. First,
the convex hull of the set of IV points is computed. Then the maximum distance
among all pairs of points for the convex hull is computed. If each pair of points is
enumerated, it will take more time. For this problem, rotating calipers is suitable to
compute the maximum distance among all pairs of points for the convex hull. The
program is shown as follows.

oY
% Program

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmaths>
#include <gqueue>
#include <cstdlib>
using namespace std;

#define N 50005 // the upper limit for the number of points
struct point{ // pll: a sequence of coordinates
int x,y;

}p INT;



510 ®  Algorithm Design Practice for Collegiate Programming

int n; // the number of points
int stack[N],top = -1; //stack stack[], pointer pointing to
the top of stack top
int multi(struct point a,struct point b,struct point c)
//cross product (b-a)”(c-a)

return (b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x);
}

int dis(struct point a,struct point b){ //the distance
between points a and b‘ab

return (b.x-a.x)*(b.x-a.x)+(b.y-a.y)*(b.y-a.y);
!

int cmp(struct point a,struct point b) { // Comparison
function in sorting: If three collinear(points a, b, and
pll]), the distance between b and p[l] is larger than the
distance between a and p[l], ab is sorted; else ba is sorted.
If no three collinear(points a, b, and p[l]), if the polar
angle for éffﬁ is less than the polar angle for Eiﬁﬂ, ab is
sorted; else ba is sorted.

int tmp = multi(p([1],a,b);

if (tmp == 0)

return dis(p([1l],a) < dis(pl[1l],b);
return tmp>0;

}
int main() {
int i,j,res=0; // res: the maximum distance
struct point begin; // the point with the minimum
y-coordinate
scanf ("%d", &n) ; // number of farms
begin.x = begin.y = 10005; //Initialization for the
point with the minimum y-coordinate in convex hull
for(i = 1;i<=n;i++){ //Input every farm's coordinate
scanf ("$d %d",&pli] .x,&p[1i].y);
if(pli]l .y < begin.y){ //adjust begin, note down the

sequence number j
begin = pl[i];
jo=1;
}else if (pl[i] .y==begin.y && pli] .x<begin.x)
begin = pli];

j o= i;
!
1
if (n==2) //output the distance between two points
printf ("$d\n",dis(p[1],p[2]1));
return 0;

}

pljl = pl1l;

pl1] = begin;

sort (p+2,p+n+1, cmp) ; //Sorting point 2 .. point n



Practice for Computational Geometry ® 511

stack [++top] = 1; //point 1 and point 2 are pushed into
stack, and graham is used to calculate the convex hull stackl[]
stack [++top] = 2;
for(i = 3;i<=n;i++)
while (top>0 && multi(p[stack[top-1]]1, plstack[topll],
pli])<=0) top--;
stack [++top] = i;
}

// Rotating calipers are used to find the farthest pair of

points
j=1;
stack [++top] = 1;
for(i = 0;i<top;i++) //Enumerate point i1

//enumerate the farthest point j for the line segment

plstackli]lplstack[i+1]] anticlockwise
while (multi(p[stack[i]],plstack[i+1]],plstack[j+1]]) >mul
ti(plstack[i]],plstack[i+1]], plstack[j]l])) j=(j+1)%top;
res=max (res,dis (p[stack[i]l],plstack[jl])); //
calculate |plstacklillplstackl7]]
res

}

printf ("%d\n", res) ; //output the maximum distance

, and adjust the maximum distance

8.5 Problems
8.5.1 Segments

Given 7 segments in the two-dimensional space, write a program that determines
if there exists a line such that after projecting these segments on it, all projected
segments have at least one point in common.

Input

Input begins with a number 7 showing the number of test cases and then, 7 test
cases follow. Each test case begins with a line containing a positive integer #<100
showing the number of segments. After that, # lines containing four real numbers
x1 )1 %2 9, follow, in which (x;, 1) and (x,, 3,) are the coordinates of the two end-
points for one of the segments.

Output

For each test case, your program must output “Yes!”, if a line with the desired prop-
erty exists and must output “No!” otherwise. You must assume that two floating-
point numbers  and & are equal if |a—b] <107,



512 ® Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output

3 Yes!
2 Yes!
1.0 2.0 3.0 4.0 No!
4.0 5.0 6.0 7.0
3

0.0 0.0 0.0 1.0
0.0 1.0 0.0 2.0
1.0 1.0 2.0 1.0
3

0.0 0.0 0.0 1.0
0.0 2.0 0.0 3.0
1.0 1.0 2.0 1.0

Source: Amirkabir University of Technology Local Contest 2006
ID for Online Judge: PO) 3304

\% Hint

The problem description is equivalent to determining whether there is a line /inter-
secting with 7 segments or not. If there is a line / intersecting with 7 segments, let
line 7 be perpendicular to line /, and line # is the line that the problem requires
you to find.

For segment i, its endpoints are p,,; and py41, 0<i<n—1. Each pair of endpoints
piand p; (0<i<j<27—1) is enumerated: if the line through p; and p; intersects with
or coincides with 7 segments, then all projected segments have at least one point in
common, and “Yes!” is output; else the next pair of points is enumerated. If there is
no line with the desired property, “No!” is output.

8.5.2 Titanic

It is a historical fact that during the legendary voyage of “Titanic”, the wireless
telegraph machine delivered six warnings about the danger of icebergs. Each of the
telegraph messages described the point where an iceberg had been noticed. The first
five warnings were transferred to the captain of the ship. The sixth one came late
at night, and the telegraph operator did not notice that the coordinates mentioned
were very close to the current ship’s position.

Write a program that will warn the operator about the danger of icebergs!



Practice for Computational Geometry ® 513

Input

The input messages are of the following format:

Message #<n>.

Received at <HH>:<MM>:<SS>.

Current ship’s coordinates are
<XI>A<X2>'<X3>" <NL/SL>

and <Y1>/A<Y2><Y3>" <EL/WL>.

An iceberg was noticed at

<A1>A<A2>'<A3>" <NL/SL>

and <B1>A<B2>'<B3>" <EL/WL>.

Here <n> is a positive integer, <HH>:<MM>:<SS> is the time of the message
reception, <X1>A<X2>'<X3>"<NL/SL> and <Y1>/A<Y2>'<Y3>"<EL/WL> means
“X1 degrees X2 minutes X3 seconds of North (South) latitude and Y1 degrees Y2
minutes Y3 seconds of East (West) longitude.”

Output

Your program should print to the output file message in the following format:

The distance to the iceberg: <s> miles,

where <s> should be the distance between the ship and the iceberg (that is the
length of the shortest path on the sphere between the ship and the iceberg). This
distance should be printed up to (and correct to) two decimal digits. If this distance
is less than (but not equal to!) 100 miles, the program should print one more line

with the text: “DANGER!”

Sample Input

Sample Output

Message #513.

Received at 22:30:11.

Current ship's coordinates are
41746'00" NL

and 50714'00" WL.

An iceberg was noticed at
417M14"11" NL

and 51/209'00" WL.

The distance to the iceberg: 52.04 miles.
DANGER!

Source: Ural Collegiate Programming Contest 1999

IDs for Online Judges: POJ 2354, Ural 1030



514 ®m  Algorithm Design Practice for Collegiate Programming

“g Hint

For simplicity of calculations, assume that the Earth is an ideal sphere with the
diameter of 6875 miles completely covered with water. Also, you can be sure that
lines in the input file break exactly as shown in the input samples. The ranges of
the ship and the iceberg coordinates are the same as the usual range for geographi-
cal coordinates, i.c., from 0 to 90 degrees inclusively for NL/SL and from 0 to
180 degrees inclusively for EL/WL.

“igi Hint

The problem requires you to calculate the distance between two points on a sphere.
The formula calculating spherical distance is used to solve the problem directly.
If the distance is less than 100 miles, the program should print one more line with
the text: “DANGER!”

8.5.3 Intervals

In the ceiling in the basement of a newly open developers” building, a light source
has been installed. Unfortunately, the material used to cover the floor is very sensi-
tive to light. It turns out that its expected lifetime is decreasing dramatically. To
avoid this, authorities have decided to protect light-sensitive areas from strong light
by covering them. The solution was not very easy because, as is common, in the
basement there are different pipelines under the ceiling, and the authorities want to
install the covers just on those parts of the floor that are not shielded from the light
by pipes. To cope with the situation, the first decision was to simplify the real situ-
ation and, instead of solving the problem in 3-D space, to construct a 2-D model
first (see Figure 8.37).

Ceiling

O

Floor

Figure 8.37



Practice for Computational Geometry ®m 515

Within this model, the x-axis has been aligned with the level of the floor. The
light is considered to be a point light source with integer coordinates [4,, b,]. The
pipes are represented by circles. The center of the circle 7 has the integer coordi-
nates [c,; ¢,] and an integer radius 7,. As pipes are made from solid material, circles
cannot overlap. Pipes cannot reflect the light and the light cannot go through the
pipes. You have to write a program that will determine the non-overlapping inter-

vals on the x-axis where there is, due to the pipes, no light from the light source.

Input

The input consists of blocks of lines, each of which except the last describes one
situation in the basement. The first line of each block contains a positive integer
number N<500 expressing the number of pipes. The second line of the block con-
tains two integers &, and b, separated by one space. Each of the next V lines of the
block contains integers ¢ ¢, and 7, where ¢,+7,<b,. Integers in individual lines are
separated by one space. The last block consists of one line containing 7=0.

Output

The output consists of blocks of lines, corresponding to the blocks in the input
(except the last one). One empty line must be put after each block in the output.
Each of the individual lines of the blocks in the output will contain two real num-
bers, the endpoints of the interval where there is no light from the given point light
source. The reals are exact to two decimal places and separated by one space. The
intervals are sorted according to increasing x-coordinate.

Sample Input Sample Output

6 0.72 78.86
300 450 88.50 133.94
70 50 30 181.04 549.93
120 20 20
270 40 10 75.00 525.00
250 85 20
220 30 30 300.00 862.50
380 100 100
1

300 300
300 150 90
1

300 300
390 150 90
0

Source: ACM Central Europe 1996
IDs for Online Judges: POJ 1375, ZOJ 1309, UVA 313



516 ® Algorithm Design Practice for Collegiate Programming

“g Hint

Suppose the point light source is node 4, and the center and the radius of the circle
i are p; and 7; respectively. There are two tangent lines from node & for the circle 4,
where the x-coordinates for the intersection points for two tangent lines and X-axis
are L; and R, respectively.

First, for circle i, 1<i<n, L, and R; are calculated. Then circles are sorted in ascend-
ing order for L;: order(0..n—1]. Finally, each circle in order[0..n—1] is analyzed one by
one to determine the interval where there is no light from the given point light source.

8.5.4 Treasure Hunt

Archeologists from the Antiquities and Curios Museum (ACM) have flown to
Egypt to examine the great pyramid of Key-Ops. Using state-of-the-art technology,
they are able to determine that the lower floor of the pyramid is constructed from
a series of straightline walls, which intersect to form numerous enclosed chambers.
Currently, no doors exist to allow access to any chamber. This state-of-the-art tech-
nology has also pinpointed the location of the treasure room. What these dedicated
(and greedy) archeologists want to do is to blast doors through the walls to get to
the treasure room. However, to minimize the damage to the artwork in the inter-
vening chambers (and stay under their government grant for dynamite), they want
to blast through the minimum number of doors. For structural integrity purposes,
doors should only be blasted at the midpoint of the wall of the room being entered.
You are to write a program which determines this minimum number of doors. An
example is shown in Figure 8.38.

0 37 47 76 100
100 100
90 90

75
71
61
47
38
14
0 0
0 20 40 85 100

Figure 8.38



Practice for Computational Geometry ® 517

Input

The input will consist of one case. The first line will be an integer 7 (0<1<30)
specifying the number of interior walls, followed by # lines containing the integer
endpoints of each wall x, y; x; y,. The four enclosing walls of the pyramid have fixed
endpoints at (0,0); (0,100); (100,100), and (100,0) and are not included in the list
of walls. The interior walls always span from one exterior wall to another exterior
wall and are arranged such that no more than two walls intersect at any point. You
may assume that no two given walls coincide. After the listing of the interior walls,
there will be one final line containing the floating-point coordinates of the treasure
in the treasure room (guaranteed not to lie on a wall).

Output

Print a single line listing the minimum number of doors that need to be created, in
the format shown below.

Sample Input Sample Output

7 Number of doors =2
20 0 37 100
40 0 76 100
850075
100 90 0 90
0 71 100 61

0 14 100 38
100 47 47 100
545 55.4

Source: ACM East Central North America 1999
IDs for Online Judges: POJ 1066, ZO) 1158, UVA 754

\% Hint

For each interior wall, the line segment connecting the treasure and its endpoint
can be regarded as a route for archeologists entering the treasure room. The number
of intersection points for the line segment and interior walls is the number of doors
which archeologists need to create for interior walls.

The i-th interior wall is represented as an edge vector py; py;, 0<i<n—1, where py;
and p,; are endpoints for the i-th interior wall; and the floating-point coordinate of
the treasure in the treasure room is p.

The line segment connecting the treasure and the starting point for the i-th inte-
rior wall is represented as an edge vector ppy;, 0<i<n—1. Suppose 4, is the number of
intersection points for the line segment and interior walls. A=min{4,, 4,, ..., 4,}.



518 ® Algorithm Design Practice for Collegiate Programming

The line segment connecting the treasure and the terminal point for the 7-th inte-
rior wall is represented as an edge vector ppy;, 0<i<n—1. Suppose B; is the number
of intersection points for the line segment and interior walls. B=min{B,, B,, ..., B,}.

The minimum number of doors which need to be created is min{A4, B}+1.

8.5.5 Intersection

You are to write a program that has to decide whether a given line segment inter-
sects a given rectangle.
Here’s an example:

line: start point: (4,9)
end point: (11,2)
rectangle: lefe-top: (1,5)
right-bottom: (7,1)

The line is said to intersect the rectangle if the line and the rectangle have at
least one point in common. The rectangle consists of four straight lines and the area
in between, as shown in Figure 8.39. Although all input values are integer numbers,
valid intersection points do not have to lay on the integer grid.

Input

The input consists of 7 test cases. The first line of the input file contains the number
n. Each following line contains one test case of the format:

xstart ystart xend yend xleft yrop xright ybottom

where (xstart, ystart) is the start and (xend, yend) the end point of the line and (x/eft,
ytop) the top-left and (xright, ybottom) the bottom-right corner of the rectangle. The

Y

0,0 X

Figure 8.39 Line segment does not intersect rectangle.



Practice for Computational Geometry ® 519

eight numbers are separated by a blank. The terms “top left” and “bottom right” do
not imply any ordering of coordinates.

Output

For each test case in the input file, the output file should contain a line consisting
either of the letter “T” if the line segment intersects the rectangle, or the letter “F”
if the line segment does not intersect the rectangle.

Sample Input Sample Output

1 F
491121571

Source: ACM Southwestern European Regional Contest 1995
IDs for Online Judges: POJ 1410, UVA 191

“g Hint

Suppose the given line segment is p#; pt,, where the start point for the line segment
is p#; and the end point is p#,. Based on the left-top and the right-bottom corners
for the given rectangle, the left-bottom corner, the right-top corner, and four edges
for the rectangle are calculated.

The rectangle consists of four straight lines and the area in between. If ps and
pty are in the area for the rectangle, the line intersects the rectangle. And if the line
segment intersects any edge for the rectangle, the line segment intersects the rect-
angle. Otherwise, the line segment doesn’t intersect the rectangle.

8.5.6 Space Ant

The most exciting space discovery occurred at the end of the 20th century. In 1999,
scientists traced down an ant-like creature in the planet Y1999 and called it M11.
It has only one eye on the left side of its head and has just three feet all on the right
side of its body. It suffers from three walking limitations:

1. It cannot turn right due to its special body structure.
2. It leaves a red path while walking.
3. It hates to pass over a previously red colored path, and never does that.

The pictures transmitted by the Discovery space ship depict that plants in the
Y1999 planet grow in special points on the planet. Analysis of several thousands



520 ® Algorithm Design Practice for Collegiate Programming

of the pictures have resulted in discovering a magic coordinate system governing
the grow points of the plants. In this coordinate system with x and y axes, no two
plants share the same x or .

An M11 needs to eat exactly one plant in each day to stay alive. When it eats
one plant, it remains there for the rest of the day with no move. The next day, it
looks for another plant to eat. If it cannot reach any other plant, it dies by the end
of the day. Notice that it can reach a plant in any distance.

The problem is to find a path for an M11 to let it live as long as possible.

Input is a set of (x, y) coordinates of plants. Suppose A with the coordinates
(%4, y0) is the plant with the least y-coordinate. M11 starts from point (0, y,) head-
ing towards plant A. Notice that the solution path should not cross itself; and all of
the turns should be counterclockwise. Also note that the solution may visit more
than two plants located on a same straight line. See Figure 8.40.

Input

The first line of the input is M, the number of test cases to be solved (1<M<10). For
each test case, the first line is /V, the number of plants in that test case (1SN<50),
followed by MV lines for each plant data. Each plant data consists of three integers:
the first number is the unique plant index (1..V), followed by two positive integers
xand y representing the coordinates of the plant. Plants are sorted by the increasing
order on their indices in the input file. Suppose that the values of coordinates are
at most 100.

Output

Output should have one separate line for the solution of each test case. A solution is
the number of plants on the solution path, followed by the indices of visiting plants
in the path in the order of their visits.

Plant A
Starting —»
point

Figure 8.40



Practice for Computational Geometry ®m 521

Sample Input | Sample Output

2 1087349562110

10 149101151287 613 41413 2
145
298
359
417
532
663
7 10 10
881
924
1076
14
1611
2119
387
412 8
5920
632
716
8213
915 1
10 14 17
11 13 19
12 5 18
1373
14 10 16

Source: ACM Tehran 1999
IDs for Online Judges: POJ 1696, ZOJ 1429

“§ Hint

Suppose N plants are 4y, a4y, ..., ay-1. A with the coordinates (x4, 3,4) is the plant with
the least y-coordinate. M11 starts from point (0, y,) heading towards plant A. Therefore
A s as the first plant 4. Then from 4;, 720, the next plant is analyzed one by one: based
on a;, the remaining plants are sorted as a1, ..., ay_1, where the first key is the direc-
tion, and the second key is the distance between 4; and the plant. The next plant is @;,.

8.5.7 Kadj Squares

In this problem, you are given a sequence S, S, ..., S, of squares of different sizes.
The sides of the squares are integer numbers. We locate the squares on the positive x-y



522 m  Algorithm Design Practice for Collegiate Programming

quarter of the plane, such that their sides make 45 degrees with x and yaxes, and one
of their vertices is on the y=0 line. Let 4, be the x coordinates of the bottom vertex of
S First, put §; such that its left vertex lies on x=0. Then, put S, (7>1) at minimum 4;
such that

bi >b,‘,1 and

the interior of S; does not have intersection with the interior of §; ... S._;.

The goal is to find which squares are visible, cither entirely or partially, when
viewed from above. In Figure 8.41, the squares S, S, and S4 have this property.
More formally, S; is visible from above if it contains a point p, such that no square
other than §; intersects the vertical half-line drawn from p upwards.

Input

The input consists of multiple test cases. The first line of each test case is 7 (1<2<50),
the number of squares. The second line contains 7 integers between 1 to 30, where
the i-th number is the length of the sides of ;. The input is terminated by a line
containing a zero number.

Output

For each test case, output a single line containing the index of the visible squares in
the input sequence, in ascending order, separated by blank characters.

Sample Input | Sample Output
4 124

3514 13

3

212

0

Source: ACM Tehran 2006
IDs for Online Judges: PO) 3347, UVA 3799

Figure 8.41



Practice for Computational Geometry ® 523

lef; reg; X

Figure 8.42

“g Hint

Suppose the length of one side for the i-th square is /;, and projections on the x-axis
for its left end and right end are /ef; and rig;, respectively, 0<i<n—1. This is shown in
Figure 8.42. If the i-th square is visible, the visible interval is [le;, 7i].

Because of the precision of real numbers, the sides of squares are expanded +/2
times. Obviously, /efo=0, and rigy=2x/,.

First, for other squares, their lef;and rig;are calculated: /f; = max {rzg]
rig=lef A2x1;, 1<i<n—1.

Then, based on /ef; and rig;, visible intervals for all squares are calculated:
le; = Omaxl{rigj,kfl- }, 7i; = min {rzgl,/e 1

< j<i-

1< j<n—1

L1,

})

Finally, every square is analyzed. If le<ri;, then the (74+1)th square is visible; else
it is invisible.

8.5.8 Pipe

The GX Light Pipeline Company started to prepare bent pipes for the new trans-
galactic light pipeline. During the design phase of the new pipe shape, the com-
pany ran into the problem of determining how far the light can reach inside each
component of the pipe. Note that the material which the pipe is made from is not
transparent and is not light reflecting.

Each pipe component consists of many straight pipes connected tightly together.
For programming purposes, the company developed the description of each com-
ponent as a sequence of points [x;; 1], [x2; 3], . . ., [%,5 ¥,), where x<x,<. . <x,. These
are the upper points of the pipe contour. The bottom points of the pipe contour
consist of points with y-coordinate decreased by 1. To each upper point [x; y)], there
is a corresponding bottom point [x; y~1] (see Figure 8.43). The company wants to
find, for each pipe component, the point with maximal x-coordinate that the light
will reach. The light is emitted by a segment source with endpoints [x;; y—1] and
[x1;71] (endpoints are emitting light, too). Assume that the light is not bent at the
pipe bent points and the bent points do not stop the light beam.



524 m Algorithm Design Practice for Collegiate Programming

(x4, y4!

Figure 8.43

Input

The input file contains several blocks, each describing one pipe component. Each
block starts with the number of bent points 2<7<20 on a separate line. Each of the
next 7 lines contains a pair of real values x;, 3, separated by space. The last block is
denoted with 7#=0.

Output

The output file contains lines corresponding to blocks in the input file. To each
block in the input file, there is one line in the output file. Each such line contains
either a real value, written with precision of two decimal places, or the message
“Through all the pipe.”. The real value is the desired maximal x-coordinate of the
point where the light can reach from the source for the corresponding pipe compo-
nent. If this value equals to x,, then the message “Through all the pipe.” will appear
in the output file.

Sample Input | Sample Output
4 4.67

01 Through all the pipe.
22

41

6 4

6

01

2 -0.6

5 -4.45

7 =557

12 -10.8

17 -16.55

0

Source: ACM Central Europe 1995
IDs for Online Judges: POJ 1039, UVA 303



Practice for Computational Geometry ® 525

\% Hint

Given a pipe component, the problem requires you to find the point with maximal
x-coordinate that the light will reach, or the light can be through all the pipe.

There are 7 pairs of points: the upper point [x;, ], and its corresponding bottom
point [x;, y~1], 1<i<n. Such a light must be through an upper point and a bottom
point. Therefore, enumeration is used to solve the problem. Lines through an upper
point and a bottom point are enumerated.

8.5.9 Geometric Shapes

While creating a customer logo, ACM uses graphical utilities to draw a picture that
can later be cut into special fluorescent materials. To ensure proper processing, the
shapes in the picture cannot intersect. However, some logos contain such intersect-
ing shapes. It is necessary to detect them and decide how to change the picture.

Given a set of geometric shapes, you are to determine all of their intersections.
Only outlines are considered; if a shape is completely inside another one, it is not
counted as an intersection. See Figure 8.44.

Input

The input contains several pictures. Each picture describes at most 26 shapes, each
specified on a separate line. The line begins with an uppercase letter that uniquely
identifies the shape inside the corresponding picture. Then there is a kind of the
shape and two or more points, everything separated by at least one space. Possible
shape kinds are as follows:

Square: Followed by two distinct points giving the opposite corners of the
square.

Rectangle: Three points are given; there will always be a right angle between the
lines connecting the first point with the second and the second with the third.

Figure 8.44



526 ® Algorithm Design Practice for Collegiate Programming

Line: Specifies a line segment; two distinct end points are given.

Triangle: Three points are given; they are guaranteed not to be colinear.

Polygon: Followed by an integer number N (3<N<20) and N points specifying
vertices of the polygon in either clockwise or anticlockwise order. The poly-
gon will never intersect itself and its sides will have non-zero length.

All points are always given as two integer coordinates X and Y separated with a
comma and enclosed in parentheses. You may assume that |X],|¥]<10000.

The picture description is terminated by a line containing a single dash (“=”).
After the last picture, there is a line with one dot (“).

Output

For each picture, output one line for each of the shapes, sorted alphabetically by its
identifier (X). The line must be one of the following:

“X has no intersections”, if X does not intersect with any other shapes.

“X intersects with A”, if X intersects with exactly one other shape.

“X intersects with 4 and B, if X intersects with exactly two other shapes.

“X intersects with A, B, . . ., and 27, if X intersects with more than two other
shapes.

Please note that there is an additional comma for more than two intersections.
A, B, etc. are all intersecting shapes, sorted alphabetically.
Print one empty line after each picture, including the last one.

Sample Input Sample Output

A square (1,2) (3,2) A has no intersections

F line (1,3) (4,4) B intersects with S, W, and x
W triangle (3,5) (5,5) (4,3) F intersects with W

x triangle (7,2) (7,4) (5,3) S intersects with B

S polygon 6 (9,3) (10,3) (10,4) (8,4) (8,1) (10,2) | W intersects with Band F

B rectangle (3,3) (7,5) (8,3) X intersects with B

B square (1,1) (2,2) A has no intersections

A square (3,3) (4,4) B has no intersections

Source: CTU Open 2007
ID for Online Judge: PO) 3449



Practice for Computational Geometry ®m 527

\% Hint

Enumeration is used to solve the problem. All pairs of different shapes are enumer-
ated. A square, a triangle, or a polygon is represented as a set of lines. That is, two
shapes are intersected if and only if their lines are intersected.

8.5.10 A Round Peg in a Ground Hole

The DIY Furniture Company specializes in assemble-it-yourself furniture kits.
Typically, the pieces of wood are attached to one another using a wooden peg that
fits into pre-cut holes in each piece to be attached. The pegs have a circular cross
section and so are intended to fit inside a round hole.

A recent factory run of computer desks were flawed when an automatic grind-
ing machine was mis programmed. The result is an irregularly shaped hole in one
piece that, instead of the expected circular shape, is actually an irregular polygon.
You need to figure out whether the desks need to be scrapped or if they can be sal-
vaged by filling a part of the hole with a mixture of wood shavings and glue.

There are two concerns. First, if the hole contains any protrusions (i.e., if there exist
any two interior points in the hole that, if connected by a line segment, that segment
would cross one or more edges of the hole), then the filled-in hole would not be struc-
turally sound enough to support the peg under normal stress as the furniture is used.
Second, assuming the hole is appropriately shaped, it must be big enough to allow for
insertion of the peg. Since the hole in this piece of wood must match up with a cor-
responding hole in other pieces, the precise location where the peg must fit is known.

Write a program to accept descriptions of pegs and polygonal holes and to
determine if the hole is ill-formed and, if not, whether the peg will fit at the desired
location. Each hole is described as a polygon with vertices (xi, y1), (x2)5.-.» (%,0,)-
The edges of the polygon are (x;,,) to (xi1,y41) for i=1...n—1 and (x,,),) to (x1, y).

Input

Input consists of a series of piece descriptions. Each piece description consists of the
following data:

Line 1 <nVertices> <pegRadins> <pegX> <peg¥>
number of vertices in polygon, 7 (integer)
radius of peg (real)

Xand Y position of peg (real)

n Lines <vertexX> <vertexY>

On aline for each vertex, listed in order, the Xand Y position of vertex. The end
of input is indicated by a number of polygon vertices less than three.



528 m Algorithm Design Practice for Collegiate Programming

Output

For each piece description, print a single line containing the string:

“HOLE IS ILL-FORMED?” if the hole contains protrusions.

“PEG WILL FIT” if the hole contains no protrusions and the peg fits in the
hole at the indicated position.

“PEG WILL NOT FIT” if the hole contains no protrusions but the peg will not
fit in the hole at the indicated position.

Sample Input | Sample Output

5151520 HOLE IS ILL-FORMED
1.0 1.0 PEG WILL NOT FIT
2.0 2.0

1.75 2.0

1.0 3.0

0.0 2.0
51515 20
1.0 1.0

2.0 2.0

175 2.5

1.0 3.0

0.0 2.0

1

Source: ACM Mid-Atlantic 2003
IDs for Online Judges: POJ 1584, ZO) 1767, UVA 2835

\% Hint

Suppose the position for the peg is peg, its radius is 7; and the sequence for vertices
of the polygon are py, ..., p,, where p,=p,.

1. Determine whether the hole contains protrusions or not.
Initially 0 and ¢1 are 0. Vertices are enumerated (0<i<n—1) as follows.

If p;p:i MPiwp:i <0, then p;,; is a concave vertex, the
number of concave vertices is cO++;

If pip:iMPip; >0, then p;,, is a convex vertex, the number
of convex vertices is cl++;

If (c0!=0&&cl!=0), then the hole contains protrusions.



Practice for Computational Geometry ® 529

2. Determine whether the position for the peg is in the polygon or not.

The necessary condition that the peg fits in the hole is that the position for
the peg is in the polygon. Suppose peg is a line segment from the origin to
vertex peg. Initially c0 and ¢l are 0. Each side p;; p; (0<i<n—1) of the polygon
is enumerated. If p, ;" peg<0, cO++; and if  pyp; N peg >0, cl++ After
all sides are enumerated, if (c0!=088&1!=0), then the position for the peg
isn’t in the polygon.

3. Determine whether the peg fits in the hole or not.

If the position for the peg is in the polygon, then the distance from peg to
g N 1 b,
sides for the polygon 7 = min PiPE T Db

0<i<n—1 ‘]71‘]7141
the peg can’t fit in the hole; else the peg can fit in the hole.

is calculated. If 7>m, then

8.5.11 Triangle

A lattice point is an ordered pair (x, y) where x and y are both integers. Given the
coordinates of the vertices of a triangle (which happen to be lattice points), you are
to count the number of lattice points which lie completely inside of the triangle
(points on the edges or vertices of the triangle do not count).

Input

The input test file will contain multiple test cases. Each input test case consists of
six integers x1, 1, X2, J2, X3, and y3, where (x, y1), (2, 32), and (x3, ;) are the coor-
dinates of vertices of the triangle. All triangles in the input will be non-degenerate
(will have positive area), and —15000< x;, y, X2, 2, X3, 5 <15000. The end-of-file is
marked by a test case with x; = y =x, =, =x3=y; =0 and should not be processed.

Output

For each input case, the program should print the number of internal lattice points
on a single line.

Sample Input | Sample Output

001001 0
005005 6
000000

Source: Stanford Local 2004
ID for Online Judge: POJ 2954



530 ® Algorithm Design Practice for Collegiate Programming

“g Hint

Suppose pi, ps, and p; are vertices of a triangle. Then the area for the triangle is

A A A
5 e : AT (7 is the number of points on .
p]‘, and Tpi .
Pi‘)’_Pr}" pi.X—pj.x‘zo
8(pipy)= px=pyx Pf-y—l)j-y\zo-
ng( piry = Py piX — pj-x‘) otherwise

Based on Pick’s theorem, the area for a triangle Sy= the number of internal
lattice points + gpp)+g(pap)+ g(psp) —1. Therefore, the number of internal
2

lattice points = §, — g(P1P2)+g(p22P3)+g(p3pl) +1.

8.5.12 Ants

Young naturalist Bill studies ants in school. His ants feed on plant-louses that live
on apple trees. Each ant colony needs its own apple tree to feed itself.

Bill has a map with coordinates of # ant colonies and 7 apple trees. He knows
that ants travel from their colony to their feeding places and back using chemically
tagged routes. The routes cannot intersect each other, or ants will get confused and
get to the wrong colony or tree, thus spurring a war between colonies.

Bill would like to connect each ant colony to a single apple tree so that all »
routes are non-intersecting straight lines. In this problem, such a connection is
always possible. Your task is to write a program that finds such a connection.

In Figure 8.45, ant colonies are denoted by empty circles and apple trees are
denoted by filled circles. One possible connection is denoted by lines.

Input

The first line of the input file contains a single integer number 7 (1<72<100)—the
number of ant colonies and apple trees. It is followed by 7 lines describing 7 ant
colonies, followed by 7 lines describing 7 apple trees. Each ant colony and apple
tree is described by a pair of integer coordinates x and y (-10,000<x, y<10,000) on a
Cartesian plane. All ant colonies and apple trees occupy distinct points on a plane.
No three points are on the same line.



Practice for Computational Geometry ® 531

~

’_‘I

()
~

Figure 8.45

Output

Werite to the output file 7 lines with one integer number on each line. The number
written on the 7-th line denotes the number (from 1 to 7) of the apple tree that is
connected to the i-th ant colony.

Sample Input | Sample Output

5

—42 58
44 86

7 28

99 34
=13 =59
—47 —44
86 74
68 —75
-68 60
99 -60

W Ul = N A

Source: ACM Northeastern Europe 2007
IDs for Online Judges: PO) 3565, UVA 4043

“g Hint

Suppose 4, is the position for ant colony 7, &; is the position for apple tree j, and 1<,
j<n. Set x consisits of 7 ant colonies, and set y consisits of 7 apple trees. The weight

of edge (a;, b)) is —

j
matching.

a,-bj‘ . Then a KM algorithm is used to calculate the maximum



532 m  Algorithm Design Practice for Collegiate Programming

8.5.13 The Doors

You are to find the length of the shortest path through a chamber containing
obstructing walls. The chamber will always have sides at x=0, x=10, y=0, and y=10.
The initial and final points of the path are always (0, 5) and (10, 5). There will
also be from 0 to 18 vertical walls inside the chamber, each with two doorways.
Figure 8.46 illustrates such a chamber and also shows the path of minimal length.

Input
The input data for the illustrated chamber would appear as follows:

2
42789
734567

The first line contains the number of interior walls. Then there is a line for each
such wall, containing five real numbers. The first number is the x coordinate of the
wall (0<x<10), and the remaining four are the y coordinates of the ends of the door-
ways in that wall. The x coordinates of the walls are in increasing order, and within
each line, the y coordinates are in increasing order. The input file will contain at least
one such set of data. The end of the data comes when the number of walls is —1.

Output

The output should contain one line of output for each chamber. The line should
contain the minimal path length rounded to two decimal places past the decimal
point, and always showing two decimal places past the decimal point. The line
should contain no blanks.

10
E
8
b
6
sl ] 5
45
3
2
0
0 4 7 10

Figure 8.46



Practice for Computational Geometry ® 533

Sample Input | Sample Output
1 10.00
54678 10.06

2

42789

734567

-1

Source: ACM Mid-Central USA 1996
IDs for Online Judges: POJ 1556, ZOJ 1721, UVA 393

“igi Hint

There are 4142 vertices, where pg=(0, 5), psx,+1=(10, 5), puxi—3 paxi—> is the first door
for the #-th wall, and ps—1 pax; is the second door for the i-th wall (1<i<n).

The distance between each pair of vertices p; and p; is calculated (0<i<dxn+1,
i<j<4xntl), d; = ;p:‘ If the intersection point for p,p; and the k-th wall
(Pi-XSP 4 XSPjX) ISN'C AL i3 Pii—z OF Pt Pk » then dy=co.

Then the Floyd algorithm is used to calculate the shortest distance between
each pair of vertices dj;.

Finally, dj 4,4+ is the minimal path length.

8.5.14 Toys

Calculate the number of toys that land in each bin of a partitioned toy box.

Mom and dad have a problem—their child John never puts his toys away when
he is finished playing with them. They gave John a rectangular box to put his toys
in, but John is rebellious and obeys his parents by simply throwing his toys into the
box. All the toys get mixed up, and it is impossible for John to find his favorite toys.

John’s parents came up with the following idea. They put cardboard partitions
into the box. Even if John keeps throwing his toys into the box, at least toys that
get thrown into different bins stay separated. Figure 8.47 shows a top view of an

example toy box.

Figure 8.47



534 m  Algorithm Design Practice for Collegiate Programming

For this problem, you are asked to determine how many toys fall into each par-
tition as John throws them into the toy box.

Input

The input file contains one or more problems. The first line of a problem consists
of six integers, # m x| y; x; yo. The number of cardboard partitions is 7 (0<#<5000)
and the number of toys is 72 (0<m<5000). The coordinates of the upper-left corner
and the lower-right corner of the box are (x;, 1) and (x,, y,), respectively. The fol-
lowing 7 lines contain two integers per line, U; L;, indicating that the ends of the
i-th cardboard partition is at the coordinates (U, y) and (Z;, y,). You may assume
that the cardboard partitions do not intersect each other and that they are specified
in sorted order from left to right. The next 7 lines contain two integers per line, x; y;
specifying where the j-th toy has landed in the box. The order of the toy locations
is random. You may assume that no toy will land exactly on a cardboard partition
or outside the boundary of the box. The input is terminated by a line consisting of
a single 0.

Output

The output for each problem will be one line for each separate bin in the toy box.
For each bin, print its bin number, followed by a colon and one space, followed by
the number of toys thrown into that bin. Bins are numbered from 0 (the leftmost

bin) to 7 (the rightmost bin). Separate the output of different problems by a single
blank line.

Sample Input Sample Output
56010 60 0 0:2
31 1:1
43 2:1
68 3:1
10 10 4:0
15 30 5:1
15

21 0:2
28 1:2
55 2:2
40 10 3:2
79 4:2
410 0 10 100 O

20 20

40 40

60 60




Practice for Computational Geometry ® 535

Sample Input Sample Output

80 80
510
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0

Source: ACM Rocky Mountain 2003
IDs for Online Judges: POJ 2318, UVA 2910

“igi Hint

Suppose the coordinates of the ends of the i-th cardboard partition are p; and p}
respectively, 0<5i<n—1; and the coordinates of the upper-right corner and the lower-
right corner of the box are p), and p), respectively.

For each input toy, dichotomy is used to calculate the bin 7es in which John
throws the toy. After 7 toys are input, the numbers of toys thrown into each bin
are calculated.

8.5.15 Area

Being well known for its highly innovative products, Merck would definitely be a
good target for industrial espionage. To protect its brand new research and devel-
opment facility, the company has installed the latest system of surveillance robots
patrolling the area. These robots move along the walls of the facility and report
suspicious observations to the central security office. The only flaw in the system
a competitor agent could find is the fact that the robots radio their movements
unencrypted. Not being able to find out more, the agent wants to use that informa-
tion to calculate the exact size of the area occupied by the new facility. It is public
knowledge that all the corners of the building are situated on a rectangular grid and
that only straight walls are used. Figure 8.48 shows the course of a robot around
an example area.

You are hired to write a program that calculates the area occupied by the new
facility from the movements of a robot along its walls. You can assume that this



536 ®  Algorithm Design Practice for Collegiate Programming

Figure 8.48

area is a polygon with corners on a rectangular grid. However, your boss insists that
you use a formula that he is proud to have found somewhere. The formula relates
the number 7 of grid points inside the polygon, the number £ of grid points on the
edges, and the total area A of the polygon. Unfortunately, you have lost the sheet
on which he had written down that simple formula for you, so your first task is to
find the formula yourself.

Input

The first line contains the number of scenarios.

For each scenario, you are given the number 7, 3<m<100, of movements of
the robot in the first line. The following 7 lines contain pair “dx dy” of integers,
separated by a single blank, satisfying —100<dlx, 4y<100 and (dx, 4y)'=(0, 0). Such
a pair means that the robot moves on to a grid point dx units to the right and 4y
units upwards on the grid (with respect to the current position). You can assume
that the curve along which the robot moves is closed and that it does not intersect
or even touch itself except for the start and end points. The robot moves anticlock-
wise around the building, so the area to be calculated lies to the left of the curve.
It is known in advance that the whole polygon would fit into a square on the grid
with a side length of 100 units.

Output

The output for every scenario begins with a line containing “Scenario #::” where
i is the number of the scenario starting at 1. Then print a single line containing
I, E, and A, the area A rounded to one digit after the decimal point. Separate the
three numbers by two single blanks. Terminate the output for the scenario with
a blank line.



Practice for Computational Geometry W 537

Sample Input | Sample Output
2 Scenario #1:
4 041.0

10

01 Scenario #2:
-10 1216 19.0

0 -1

7

50

13

-2 2

-10

0-3

-3 1

0-3

Source: ACM Northwestern Europe 2001
IDs for Online Judges: POJ 1265, ZOJ 1032, UVA 2329

\% Hint

Given a polygon on a rectangular grid, the number 7 of grid points inside the poly-
gon, the number £ of grid points on the edges, and the total area 4 of the polygon
are required to be calculated.

Based on Pick’s theorem, the total area A of the polygon is H+E/2—1. The total
area A of the polygon is the sum of all cross products for vectors from the origin to
each pair of adjacent vertices. E=ged(abs(x,—x), abs(y,—)). Finally 7 is calculated.

8.5.16 Line of Sight

An architect is very proud of his new home and wants to be sure that it can be
seen by people passing by his property line along the street. The property contains
various trees, shrubs, hedges, and other obstructions that may block the view. For
the purpose of this problem, model the house, property line, and obstructions as
straight lines parallel to the x axis, as shown in Figure 8.49.

To satisfy the architect’s need to know how visible the house is, you must write a
program that accepts as input the locations of the house, property line, and surround-
ing obstructions and calculates the longest continuous portion of the property line
from which the entire house can be seen, with no part blocked by any obstruction.



538 m Algorithm Design Practice for Collegiate Programming

House

Tree
Hedge

Property line

Figure 8.49

Input

Because each object is a line, it is represented in the input file with a left and right
x coordinate followed by a single y coordinate:

<Lx><xp><yY>

where x1, x,, and y are non-negative real numbers. x<x,.

An input file can describe the architecture and landscape of multiple houses.
For each house, the first line will have the coordinates of the house. The second line
will contain the coordinates of the property line. The third line will have a single
integer that represents the number of obstructions, and the following lines will have
the coordinates of the obstructions, one per line.

Following the final house, a line “0 0 0” will end the file.

For each house, the house will be above the property line (house y>property
line y). No obstruction will overlap with the house or property line, e.g., if obstacle
y=house y, you are guaranteed that the entire range obstacle [x;, x,] does not inter-
sect with house [x;, x,].

Output

For each house, your program should print a line containing the length of the lon-
gest continuous segment of the property line from which the entire house can be
seen to a precision of two decimal places. If there is no section of the property line
where the entire house can be seen, print “No View”.

Sample Input | Sample Output

266 8.80

0150 No View
3

121
341
12 13 1
155




Practice for Computational Geometry ®m 539

Sample Input | Sample Output

0100
1
0151
000

Source: ACM Mid-Atlantic 2004
IDs for Online Judges: PO) 2074, ZOJ 2325, UVA 3112

\% Hint

The key to the problem is to calculate the line equation through two points and the
intersection point for two lines.

On the property line, each obstruction corresponds to a line segment where the
house can’t be seen, as dotted lines in Figure 8.50. All corresponding dotted lines
are sorted and scanned to calculate the result.

8.5.17 An Easy Problem?!

I’s raining outside. Farmer Johnson’s bull, Ben, wants some rain to water his flow-
ers. Ben nails two wooden boards on the wall of his barn. Shown in Figure 8.51,
the two boards on the wall just look like two segments on the plane, as they have
the same width.

Your mission is to calculate how much rain these two boards can collect.

Input

The first line contains the number of test cases.

House

Tree
Hedge

Property line

Figure 8.50



540 ® Algorithm Design Practice for Collegiate Programming

Figure 8.51

Each test case consists of eight integers not exceeding 10,000 by absolute value,
X1 Y %25 Ya> X3, 3 %> Ya- (%1, 1), (32, 72) are the endpoints of one board, and (x5, y3),
(x4, y4) are the endpoints of the other one.

Output

For each test case, output a single line containing a real number with precision up
to two decimal places—the amount of rain collected.

Sample Input | Sample Output
2 1.00

0110 0.00

1021

0121

17012

Source: POJ Monthly, 2006.04.28, Dagger@PKU_RPWT
ID for Online Judge: POJ 2826

\% Hint

Two wooden boards (line segments) constitute a container. The problem requires
you to calculate the amount of rain that the container can collect.
Cases are shown in Figure 8.52.

The shaded area is collected rain.

Figure 8.52



Practice for Computational Geometry ® 541

p 0, 1)
p1+(0, 1)
Py
Py
Ip
tp b3
P3
p
P
Py I
p
2 P,
The rain can’t be collected. The shaded area is collected rain.

Figure 8.53

Suppose two wooden boards (line segments) are pp, and p;p; respectively,

where p1.y2pa.y, p3y2pay, and pry2psy.

If there is no intersection point for p, p, and p; ps, the rain can’t be collected;

Suppose the intersection point for p, p, and ps p4 is p, and the intersection point
for p, p, and the horizontal line is £ (as shown in Figure 8.53). If signs for p_p{ A ﬁ
and p(p+(0,1)) A py ps are the same, or p;(p;+(0,1)) and p, p; coincide, then the

rain can’t be collected; else the amount of collected rain is S, .

8.5.18 Road Accident

Two cars crashed on the road, receiving some damage each, and raising the usual
question: “Who to blame?” To answer this question, it is essential to thoroughly
reconstruct the sequence of events. By gathering witness testimonies and analyzing
tire tracks, positions and speeds of cars just before the impact were determined.
From these positions until the crash the cars moved straight forward.

Your program must, given the available data, calculate for each car what part of it
first came into contact with the other car. Parts are numbered as shown in Figure 8.54.

wi

(e, )

$2

(X2, ¥2)

Figure 8.54



542 m  Algorithm Design Practice for Collegiate Programming

Input

The input file contains twelve floating-point numbers: x; y1 2 vy wy 51 %2 yo 4y v, Wy
52, where (x, ) and (#, v)—coordinates of back-left and forward-left corners of the
car, w—width of the car, s—speed of the car.

Constraints

ISxi,)/i,ul-,ui,wiS106,05513106. Input data is such that a crash certainly happens.
Initially cars don’t have common points.

Output

The output file must contain two integers: p; p,, where p is the number of the part
which first contacted the other one (if two parts came into contact simultaneously,
output the lesser of the part numbers).

Sample Input 1 Sample Output 1

1.0 2.0 10.0 2.0 1.0 10.0 22
50.0 1.0 40.0 1.0 1.0 20.0

Sample Input 2 Sample Output 2

171101120 21
401501110

Source: ACM Northeastern Europe 2005, Far-Eastern Subregion
ID for Online Judge: POJ 3433

“g Hint

Two cars go at their speeds. Suppose one car stops, and the other car goes at a rela-
tive speed (see Figure 8.55).

Then the moving trail is determined. There are three cases: The first car’s point
comes into contact with the second car’s side; the second car’s point comes into
contact with the first car’s side; or two cars’ points crash together.

8.5.19 Wild West

Once upon a time in the west... The quiet life of the villages on the western frontier
are often stirred up by the appearance of mysterious strangers. A stranger might



Practice for Computational Geometry ® 543

w1 \

(1, ¥1)

N

Figure 8.55

be a bounty hunter looking for a notorious villain, or he might be a dangerous
criminal escaping the hand of justice. The number of strangers has become so large
that they formed the Mysterious Strangers’ Union. If you want to be a mysterious
stranger, then you have to apply to the Union, and you have to pass three exams
that test the three most important skills: shooting, fist-fighting, and harmonica
playing. For each skill, the Admission Committee gives a score between 1 (worst)
and m (best). Interestingly enough, there are no two members in the Union having
exactly the same skills: for every two members,s there is always at least one skill for
which they have different scores. Furthermore, it turns out that for every possible
combination of scores, there is exactly one member having these scores. This means
that there are exactly 72’ strangers in the union.

Recently, some members left the Union and they formed the Society of Evil
Mysterious Strangers. The aim of this group is to commit as many evil crimes as pos-
sible, and they are quite successful at it. Therefore, the Steering Committee of the Union
decided that a Hero is needed who will destroy this evil society. A Hero is a mysterious
stranger who can defeat every member of the Society of Evil Mysterious Strangers.
A Hero can defeat a member if the Hero has a higher score in at least one skill.
For example, if the evil society has two members:

B Colonel Bill, with a score of 7 for shooting, 5 for knife throwing and 3 for
harmonica playing, and

B Rabid Jack, with a score 10 for shooting, 6 for knife throwing and 8 for har-
monica playing

Then a Hero with score 8 for shooting, 7 for knife throwing, and 3 for har-
monica playing can defeat both of them. However, someone with a score of 8 for
shooting, 6 for knife throwing, and 8 for harmonica playing cannot be the Hero.
Moreover, the Hero cannot be a member of the evil society.



544 ®m  Algorithm Design Practice for Collegiate Programming

Your task is to determine whether there is a member in the Union who can be
the Hero. If so, then you have to count how many members are potential heroes.

Input

The input contains several blocks of test cases. Each block begins with a line con-
taining two integers: the number 1<7<100000 of members in the Society of Evil
Mpysterious Strangers and the maximum value 2<m<100000 of the scores. The next
n lines describe these members. Each line contains three integers between 1 and m:
the scores for the three skills.

The input is terminated by a block with #=m=0.

Output

For each test case, you have to output a single line containing the number of members
in the Union who satisfy the requirements for becoming a Hero. If there is no such
member, then output ‘0’. It can be assumed that the output is always at most 10'.

Sample Input | Sample Output

10 848

85 19

35 999999999992
39

3

22
10000
22

0

ON = N=_=ODNWw

Source: ACM Central Europe 2005
IDs for Online Judges: POJ 2944, UVA 3525

\% Hint

There are M> gunmen characterized by three different skills, each ranging from
1 to M. A subset containing N of these gunmen are The Bad Guys. We want to
select one of the other gunmen to be a Hero. The Hero must beat each of the Bad
Guys in at least one skill (not necessarily the same skill for all Bad Guys).

The task is to compute the number of gunmen that can be selected to be the
Hero.



Practice for Computational Geometry ® 545

Consider a Bad Guy with skills [z, &, c]. The set of gunmen that can’t beat him is
a cuboid with opposite corners [1,1,1] and [4, &, c]. The union U of all these cuboids
is exactly the set of gunmen that can’t be heroes. Thus the answer is M * minus the
volume of U.

We can compute the volume of U in O(MlogM) by sweeping in one direction
and maintaining the intersection of the sweeping plane and U in some tree-like
structure.

In C4++, STL sets can be used, so there is no need to implement the tree-like
structure.

8.5.20 The Skyline Problem

You are to design a program to assist an architect in drawing the skyline of
a city, given the locations of the buildings in the city. To make the problem
tractable, all buildings are rectangular in shape and they share a common
bottom (the city they are built in is very flat). The city is also viewed as two-
dimensional. A building is specified by an ordered triple (L, H;, R;) where L,
and R; are left and right coordinates, respectively, of building 7 and H; is the
height of the building. In Figure 8.56, buildings are shown on the left with
triples (1,11,5), (2,6,7), (3,13,9), (12,7,16), (14,3,25), (19,18,22), (23,13,29),
(24,4,28), and the skyline, shown on the right, is represented by the sequence:
1,11,3,13,9,0, 12,7 16, 3, 19, 18, 22, 3, 23, 13, 29, 0).

Input

The input is a sequence of building triples. All coordinates of buildings are positive
integers less than 10,000, and there will be at least one and at most 5,000 build-
ings in the input file. Each building triple is on a line by itself in the input file. All
integers in a triple are separated by one or more spaces. The triples will be sorted
by L,, the left x-coordinate of the building, so the building with the smallest left
x-coordinate is first in the input file.

il

0 5 10 15 20 25 30 0 5 10 15 20 25 30

Figure 8.56



546 ®m Algorithm Design Practice for Collegiate Programming

Output

The output should consist of the vector that describes the skyline as shown in
Figure 8.56. In the skyline vector (z1, 23, v3, ..., ¥,_2, -1, ¥,), the v; such that 7 is an
even number represents a horizontal line (height). The v, such that 7 is an odd number
represents a vertical line (x-coordinate). The skyline vector should represent the “path”
taken, for example, by a bug starting at the minimum x-coordinate and traveling hori-
zontally and vertically over all the lines that define the skyline. Thus the last entry in
the skyline vector will be a 0. The coordinates must be separated by a blank space.

Sample Input | Sample Output

1115 11131390127 16319 18 223 23 13290
267
3139
12 7 16
14 3 25
19 18 22
23 13 29
24 4 28

Source: Internet Programming Contest 1990

ID for Online Judge: UVA 105

“ﬁ Hint

The sweep line method is used to solve the problem.

Suppose the current building is represented by an ordered triple (left, height,
right), the right border for the skyline is rightmost, and for each point i on the bot-
tom, a[4] is its height for the current skyline, 1<i<rightmost.

After a building triple is input, «[4] in the interval (Jeft<i<right) and rightmost
are adjusted: alil=maxi{ali], height}(left<i<right); rightmost=max{rightmost, right}.

Then the sweep line method is used to enumerate points on the bottom. If
alil#ali-1], then output 7 and «[7]. Finally, rightmost+1 and 0 are output.

8.5.21 Lining Up

“How am I ever going to solve this problem?” said the pilot.

Indeed, the pilot was not facing an easy task. She had to drop packages at spe-
cific points scattered in a dangerous area. Furthermore, the pilot could only fly over
the area once in a straight line, and she had to fly over as many points as possible.
All points were given by means of integer coordinates in a two-dimensional space.



Practice for Computational Geometry ® 547

The pilot wanted to know the largest number of points from the given set that all
lie on one line. Can you write a program that calculates this number?
Your program has to be efficient!

Input

The input consists of several cases. The first line of each case is an integer IV
(1<N<700), and then follow V pairs of integers. Each pair of integers is separated
by one blank and ended by a newline character. The input ended by /N=0.

Output

Output one integer for each input case, representing the largest number of points
that all lie on one line.

Sample Input | Sample Output

11 3
22
33
910
10 11

Source: ACM 1994 East-Central Regionals
IDs for Online Judges: POJ 1118, UVA 270

“g Hint

Given 7 distinct points in a two-dimensional plane, find the maximum number of
points which lie in an arbitrary line.

An algorithm whose time complexity is O(nzlg(n)) is as follows:

The initial step to solve this problem is by sorting the points based on their
y-coordinates in ascending order. In case of ties, sort the points based on their
x-coordinates in ascending order.

The next step is to give each point a turn to become a pivot point. In each turn,
create a new set based on the remaining points (the ones which have greater indices
than the pivot point index) and sort these points angularly with respect to the pivot
point. Using the fact that this new set is sorted angularly, a simple O(#) algorithm
can be devised to find the maximum number of points on a line whose bottom-left
endpoint is the pivot.



548 ®m Algorithm Design Practice for Collegiate Programming

One may ask why the points whose indices are less than pivot point are omitted
during each pivot turn. Those points can be safely ignored without worrying that the
final result won’t be optimal. When an earlier point is a part of the optimal line, then
the optimal result should have already been computed in an eatlier pivot turn (remem-
ber the fact that the points were initially sorted based on their Cartesian coordinates).

8.5.22 Triathlon

A triathlon is an athletic contest consisting of three consecutive sections that should
be completed as fast as possible as a whole. The first section is swimming, the
second section is riding a bicycle, and the third one is running,

The speed of each contestant in all three sections is known. The judge can choose
the length of each section arbitrarily provided that no section has zero length. As a
result, sometimes she could choose their lengths in such a way that some particular
contestant would win the competition.

Input

The first line of the input file contains integer number N (1SN<100), denoting the
number of contestants. Then V lines follow, and each line contains three integers
V,, U, and W, 1=V, U, W;<10000), separated by spaces, denoting the speed of -th
contestant in each section.

Output

For every contestant, write to the output file one line, that contains the word “Yes”
if the judge could choose the lengths of the sections in such a way that this par-
ticular contestant would win (i.e., she is the only one who would come first), or the
word “No” if this is impossible.

Sample Input Sample Output
9 Yes
10 2 6 Yes
1073 Yes
567 No
327 No
626 No
357 Yes
846 No
10 4 2 Yes
187

Source: ACM Northeastern Europe 2000
IDs for Online Judges: POJ 1755, ZOJ 2052, UVA 2218, URAL 1062



Practice for Computational Geometry ® 549

“g Hint

Suppose lengths of swimming, riding bicycle, and running are A, B and C (4, B,

C>0) respectively. If the i-th contestant can win, for any other contestant j (i#7),

A B C A B C
e S e

V; Uu; w; v g

If A and B are regarded as variables x and y respectively, the above formula is

an inequality representing a half-plane. If the intersection of half-planes is a convex
polygon, then the i-th contestant can win. The algorithm is as follows:

For the i-th contestant (1<i<n), there are #+2 line equations (A;x+By+C;=0)
representing half-planes H,, H,, ..., H,.,, where the first n—1 line equations repre-

sent that the i-th contestant defeats the j-th contestant: 4, = t—f—(i—u}i),
B, = %j_%_(w%_w% , C = wi/—w%, 1</<n, j#i, and 1<k<n—1; and the last three

line equations represent x=0 (4,=1, B,=0, C,=0), y=0 (4,,=0, B,.,=1, C,,;=0), and
x+y=1 (A12==1, B,,=—1, C,p=1).

If the intersection of #+2 half-planes H\NH,N...NH,,, is a convex polygon,
then the i-th contestant can win; else the i-th contestant can’t win.

8.5.23 Rotating Scoreboard

This year, ACM/ICPC World finals will be held in a hall in the form of a
simple polygon. The coaches and spectators are seated along the edges of the
polygon. We want to place a rotating scoreboard somewhere in the hall such
that a spectator sitting anywhere on the boundary of the hall can view the
scoreboard (i.e., his line of sight is not blocked by a wall). Note that if the line
of sight of a spectator is tangent to the polygon boundary (either in a vertex or
in an edge), he can still view the scoreboard. You may view spectator’s seats as
points along the boundary of the simple polygon, and consider the scoreboard



550 ® Algorithm Design Practice for Collegiate Programming

as a point as well. Your program is given the corners of the hall (the vertices of
the polygon), and must check if there is a location for the scoreboard (a point
inside the polygon) such that the scoreboard can be viewed from any point on
the edges of the polygon.

Input

The first number in the input line, 7 is the number of test cases. Each test case is
specified on a single line of input in the form 7 x; y x, ¥, ... %, y, where 7 (3<2<100)
is the number of vertices in the polygon, and the pair of integers x; y; sequence speci-
fies the vertices of the polygon sorted in order.

Output

The output contains 7 lines, each corresponding to an input test case in that order.
The output line contains either “YES” or “NO” depending on whether the score-
board can be placed inside the hall conforming to the problem conditions.

Sample Input Sample Output
2 YES
400011110 NO

800 02 12 11 21 22 32 30

Source: ACM Tehran 2006 Preliminary
ID for Online Judge: PO]J 3335

“igi Hint

The hall is in the form of a simple polygon. The rotating scoreboard is placed some-
where in the hall such that a spectator sitting anywhere on the boundary of the hall
can view the scoreboard. That is, the rotating scoreboard is placed at the core for the
simple polygon. This problem is similar to 8.3.2.1 Art Gallery.

8.5.24 How I Mathematician Wonder What You Are!

After counting so many stars in the sky in his childhood, Isaac, now an astronomer
and a mathematician, uses a big astronomical telescope and lets his image process-
ing program count stars. The hardest part of the program is to judge if a shining
object in the sky is really a star. As a mathematician, the only way he knows is to
apply a mathematical definition of stars.



Practice for Computational Geometry ® 551

SN
717

The mathematical definition of a star shape is as follows: A planar shape F is
star-shaped if and only if there is a point Ce F such that, for any point PeF, the line
segment CP is contained in F. Such a point Cis called a center of F. To get accus-
tomed to the definition, let’s see some examples in Figure 8.57.

The first two are what you would normally call stars. According to the above
definition, however, all shapes in the first row are star-shaped. The two in the sec-
ond row are not. For each star shape, a center is indicated with a dot. Note that a
star shape in general has infinitely many centers. For example, for the third quad-

Figure 8.57

rangular shape, all points in it are centers.
Your job is to write a program that tells whether a given polygonal shape is star-
shaped or not.

Input

The input is a sequence of datasets followed by a line containing a single zero. Each
dataset specifies a polygon, and is formatted as follows:

X1 N

X2 )
Xn _yn

The first line is the number of vertices, 7, which satisfies 4<#<50. Subsequent
n lines are the x- and y-coordinates of the # vertices. They are integers and satisfy
0 <x<10000 and 0 <y,<10000 (=1, ..., n). Line segments (x;, y)—(xi + 1 ¥i + 1)
(=1, ..., n—1) and the line segment (x,, y,)—(x1, 1) form the border of the polygon
in the counterclockwise order. That is, these line segments see the inside of the
polygon in the left of their directions.



552 m  Algorithm Design Practice for Collegiate Programming

You may assume that the polygon is simple, that is, its border never crosses or
touches itself. You may also assume that no three edges of the polygon meet at a
single point even when they are infinitely extended.

Output

For each dataset, output “1” if the polygon is star-shaped and “0” otherwise. Each
number must be in a separate line, and the line should not contain any other
characters.

Sample Input | Sample Output

6 1
66 13 0
96 61
76 98
13 94
40
45 68
8

27 21
55 14
93 12
56 95
15 48
38 46
51 65
64 31
0

Source: ACM Japan 2006

IDs for Online Judges: POJ 3130, ZOJ 2820, UVA 3617

\% Hint

Based on the definition of a star shape (a planar shape F is star-shaped if and only
if there exists a point CeF such that, for any point PeF, the line segment CP is
contained in F. Such a point Cis called a center of F). If a planar shape F is star-
shaped, then there must exist a core for F, and centers of F constitute the core; and
if there is no core, then Fisn’t star-shaped. The intersection of half-planes is used to
calculate the core for a planar shape . The solution is the same as 8.5.23 Rotating
Scoreboard.



Practice for Computational Geometry ® 553

8.5.25 Video Surveillance

A friend of yours has taken the job of security officer at the Star-Buy Company, a
famous department store. One of his tasks is to install a video surveillance system
to guarantee the security of the customers (and the security of the merchandise,
of course) on all of the store’s countless floors. As the company has only a limited
budget, there will be only one camera on every floor. But these cameras may turn
around to look in every direction.

The first problem is to choose where to install the camera for every floor. The
only requirement is that every part of the room must be visible from there. In
Figure 8.58, the left floor can be completely surveyed from the position indicated
by a dot, while for the right floor, there is no such position, the given position fail-
ing to see the lower-left part of the floor.

Before trying to install the cameras, your friend first wants to know whether
there is indeed a suitable position for them. He therefore asks you to write a pro-
gram that, given a ground plan, determines whether there is a position from which
the whole floor is visible. All floor ground plans form rectangular polygons, whose
edges do not intersect each other and touch each other only at the corners.

Input

The input contains several floor descriptions. Every description starts with the
number 7 of vertices that bound the floor (4<#<100). The next 7 lines contain two
integers each, the x and y coordinates for the # vertices, given in clockwise order.
All vertices will be distinct and at corners of the polygon. Thus the edges alternate
between horizontal and vertical.

A zero value for 7 indicates the end of the input.

Output

For every test case, first output a line with the number of the floor, as shown in the
sample output. Then print a line stating “Surveillance is possible.” if there exists

& Invisible

Figure 8.58



554 ®  Algorithm Design Practice for Collegiate Programming

a position from which the entire floor can be observed, or print “Surveillance is
impossible.” if there is no such position.
Print a blank line after each test case.

Sample Input | Sample Output

4 Floor #1

00 Surveillance is possible.
01

11 Floor #2

10 Surveillance is impossible.
8

00

02

12

11

21

22

32

30

0

Source: ACM Southwestern European Regional Contest 1997

IDs for Online Judges: POJ 1474, ZOJ 1248, UVA 588

“g Hint

The only requirement for installing the camera is that every part of the room must
be visible from the camera. A ground plan is a polygon. If there exists a core for the
polygon, the camera can be installed in the core. The intersection of half-planes is
used to determine whether there exists a core for the polygon. The solution is the
same as 8.5.23 Rotating Scoreboard.

8.5.26 Most Distant Point from the Sea

The main land of Japan, called Honshu, is an island surrounded by the sea. In such
an island, it is natural to ask a question: “Where is the most distant point from the
sea?” The answer to this question for Honshu was found in 1996. The most distant
point is located in former Usuda Town, Nagano Prefecture, whose distance from
the sea is 114.86 km.

In this problem, you are asked to write a program which, given a map of an
island, finds the most distant point from the sea in the island, and reports its



Practice for Computational Geometry ® 555

distance from the sea. In order to simplify the problem, we only consider maps
representable by convex polygons.

Input

The input consists of multiple datasets. Each dataset represents a map of an island,
which is a convex polygon. The formar of a dataset is as follows:

n
X1 N
Xn _)/n

Every input item in a dataset is a non-negative integer. Two input items in a line
are separated by a space. 7 in the first line is the number of vertices of the polygon,
satisfying 3<7<100. Subsequent 7 lines are the x- and y-coordinates of the # verti-
ces. Line segments (x;, y,)—(xi41, y1) (15i<n—1) and the line segment (x,, y,)—(x1, %)
form the border of the polygon in counterclockwise order. That is, these line seg-
ments see the inside of the polygon in the left of their directions. All coordinate
values are between 0 and 10000, inclusive.

You can assume that the polygon is simple, that is, its border never crosses or
touches itself. As stated above, the given polygon is always a convex one.

The last dataset is followed by a line containing a single zero.

Output

For each dataset in the input, one line containing the distance of the most distant
point from the sea should be output. An output line should not contain extra char-
acters such as spaces. The answer should not have an error greater than 0.00001
(107). You may output any number of digits after the decimal point, provided that
the above accuracy condition is satisfied.

Sample Input | Sample Output
4 5000.000000
00 494.233641
10000 0 34.542948
10000 10000 | 0.353553

0 10000

3

00

10000 0

(Continued)



556 ®  Algorithm Design Practice for Collegiate Programming

Sample Input | Sample Output
7000 1000

6

0 40

100 20

250 40

250 70

100 90

070

3

00

10000 10000
5000 5001

0

Source: ACM Japan 2007
IDs for Online Judges: PO) 3525, UVA 3890

“g Hint

Given a convex polygon (a map of an island), the problem requires you to find the
most distant point from the sides of the convex polygon, and report its distance
from sides, that is, the radius for the largest circle in the convex polygon.

The problem can be solved by the intersection of half-planes and dichotomy.
The algorithm is as follows:

Suppose line equations for 7 sides for the convex polygon are A;x+By+C=0,
where A=y~ B=xi—x, and C=xXya—ximXy, (1<i<n—-1); and A=y,
B,=x—x,, and C,=x,Xy—x,Xy,,.

Suppose the interval for the distance is [/, 7]. Initially the interval is [0, 20000].
Dichotomy is used to calculate the most distance. Suppose mid =. Sides for
the convex polygon are pushed inward mid: For each line equation for a side for
the convex polygon, Ax+By+C=0, A; and B, aren’t changed, and C; is decreased
mid x| A? + B .

If there is an intersection of 7 half-planes, then the circle with radius mid can be
in the convex polygon, and the right subinterval is searched (/=mid); else the left sub-
interval is searched (r=mid). Repeat the above process until /=r. And /is the distance.

8.5.27 Uyuw’s Concert

Prince Remmarguts solved the chess puzzle successfully. As a reward, Uyuw
planned to hold a concert in a huge piazza named after its great designer Ihsnayish.



Practice for Computational Geometry ® 557

Figure 8.59

The piazza in United Delta of Freedom’s (UDF) downtown was a square of
[0, 10000]x[0, 10000]. Some basket chairs had been standing there for years, but
in a terrible mess. Look at the graph in Figure 8.59.

In this case we have three chairs, and the audiences face the direction as the
arrows in Figure 8.59 have pointed out. The chairs were old and too heavy to be
moved. Princess Remmarguts told the piazza’s current owner, Mr. Uw, to build
a large stage inside it. The stage must be as large as possible, but he should also
make sure the audience in every position of every chair would be able to see the
stage without turning aside (that means the stage is in the forward direction of
their own).

To make it simple, the stage could be set highly enough to make sure that even
if thousands of chairs were in front of you, as long as you were facing the stage, you
would be able to see the singer/pianist—Uyuw.

Being a mad idolater, can you tell them the maximal size of the stage?

Input

In the first line, there’s a single non-negative integer N (N<20000), denoting the
number of basket chairs. Each of the following lines contains four floating numbers
X1, J1> X2, ¥2, which means there’s a basket chair on the line segment of (xy, y,)—(x2, ),
and facing to its LEFT (that a point (x, y) is at the LEFT side of this segment means

that (x—x1)X(y—y2)—(x—x2)X(y—91)=0).

Output

Output a single floating number, rounded to one digit after the decimal point. This
is the maximal area of the stage.



558 ® Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output

3 54166666.7
10000 10000 0 5000
10000 5000 5000 10000
0 5000 5000 O

Source: POJ Monthly, Zeyuan Zhu
ID for Online Judge: POJ 2451

“g Hint

Lines on which 7 basket chairs are can be regarded as # half-planes. There are four
additional half-planes: x=0, x=10000, y=0, and y=10000. The intersection of n+4
half-planes constitute a polygon. The polygon is the stage. And the audience in
every position of the sides of the polygon can see the stage.

8.5.28 Moth Eradication

Entomologists in the Northeast have set out traps to determine the influx of Jolliet
moths into the area. They plan to study eradication programs that have some poten-
tial to control the spread of the moth population.

The study calls for organizing the traps in which moths have been caught into
compact regions, which will then be used to test each eradication program. A region
is defined as the polygon with the minimum length perimeter that can enclose all
traps within that region. For example, the traps (represented by dots) of a particular
region and its associated polygon are shown in Figure 8.60.

You must write a program that can take as input the locations of traps in a
region and output the locations of traps that lie on the perimeter of the region as
well as the length of the perimeter.

Figure 8.60



Input

Practice for Computational Geometry ® 559

The input file will contain records of data for several regions. The first line of each
record contains the number (an integer) of traps for that region. Subsequent lines
of the record contain two real numbers that are the x- and y-coordinates of the
trap locations. Data within a single record will not be duplicated. End of input is
indicated by a region with 0 traps.

Output

Output for a single region is displayed on at least three lines:

First line:

Next line(s):

Last line:

The number of the region. (The first record corresponds to Region
#1, the second to Region #2, etc.)

A listing of all the points that appear on the perimeter of the
region. The points must be identified in the standard form
“(x-coordinate, y-coordinate)” rounded to a single decimal place.
The starting point for this listing is irrelevant, but the listing must
be oriented clockwise and begin and end with the same point. For
collinear points, any order which describes the minimum length
perimeter is acceptable.

The length of the perimeter of the region rounded to 2 decimal places.

One blank line must separate the output from consecutive input records.

Sample Input

Sample Output

3

12
410
5123
6

00
11
3.1 13
345
6 2.1
2 -32

105
50

415
3 -0.2

Region #1:
(1.0,2.0)—(4.0,10.0)—(5.0,12.3)—(1.0,2.0)
Perimeter length =22.10

Region #2:
(0.0,0.0)—(3.0,4.5)—(6.0,2.1)—(2.0,-3.2)—(0.0,0.0)
Perimeter length = 19.66

Region #3:
(0.0,0.0)~(2.0,2.0)—(4.0,1.5)—(5.0,0.0)—(2.5,~1.5)—(0.0,0.0)
Perimeter length =12.52

(Continued)



560 ® Algorithm Design Practice for Collegiate Programming

Sample Input Sample Output

25 -15
00
22

0

Source: ACM World Finals 1992
ID for Online Judge: UVA 218

“§ Hint

Given 7 points in the plane, the smallest perimeter polygon containing all of the
given points is required to be found. It is a straightforward planar Convex Hull
problem. An O(nlogn) solution can solve it.

8.5.29 Bridge Across Islands

Thousands and thousands of years ago, there was a small kingdom located in the
middle of the Pacific Ocean. The territory of the kingdom consists of two separated
islands. Due to the impact of the ocean current, the shapes of both the islands became
convex polygons. The king of the kingdom wanted to establish a bridge to connect
the two islands. To minimize the cost, the king asked you, the bishop, to find the
minimal distance between the boundaries of the two islands, as shown in Figure 8.61.

Input

The input consists of several test cases.

Each test case begins with two integers N, M. (35N, M<10000)

Each of the next NV lines contains a pair of coordinates, which describes the
position of a vertex in one convex polygon.

Figure 8.61



Practice for Computational Geometry ® 561

Each of the next M lines contains a pair of coordinates, which describes the
position of a vertex in the other convex polygon.

A line with N= M = 0 indicates the end of input.

The coordinates are within the range [-10000, 10000].

Output

For each test case, output the minimal distance. An error within 0.001 is acceptable.

Sample Input Sample Output

44 1.00000
0.00000 0.00000
0.00000 1.00000
1.00000 1.00000
1.00000 0.00000
2.00000 0.00000
2.00000 1.00000
3.00000 1.00000
3.00000 0.00000
00

Source: POJ Founder Monthly Contest, 2008.06.29, Lei Tao
ID for Online Judge: POJ 3608

“g Hint

Suppose the first convex polygon is p;, and the second convex polygon is p,. The
problem requires you to calculate the minimal distance between the two convex
polygons.

Because p; and p, are separated, the algorithm for rotating calipers is used to
solve the problem.

8.5.30 Useless Tile Packers

Yes, as you have guessed, the Useless Tile Packers (UTP) pack tiles. The tiles are
of uniform thickness and have a simple polygonal shape. For each tile, a con-
tainer is custom-built. The floor of the container is a convex polygon, and under
this constraint, it has the minimum possible space inside to hold the tile it is
built for. But this strategy leads to wasted space inside the container, as shown
in Figure 8.62.



562 m Algorithm Design Practice for Collegiate Programming

Container —»

Wasted
-
space

Tile

Figure 8.62

The UTP authorities are interested to know the percentage of wasted space for
a given tile.

Input

The input file consists of several data blocks. Each data block describes one tile.

The first line of a data block contains an integer /V (3</N<100) indicating the
number of corner points of the tile. Each of the next /V lines contains two integers
giving the (x, y) coordinates of a corner point (determined using a suitable origin
and orientation of the axes) where 0<x, y<1000. Starting from the first point given
in the input, the corner points occur in the same order on the boundary of the tile
as they appear in the input. No three consecutive points are colinear.

The input file terminates with a value of 0 for V.

Output

For each tile in the input, output the percentage of wasted space rounded to two
digits after the decimal point. Each output must be on a separate line. Print a blank
line after each output block.

Sample Input | Sample Output

Tile #1
Wasted Space = 25.00 %

Tile #2
Wasted Space = 0.00 %

N =N OO

o

S o UToO =2 NNO UG




Practice for Computational Geometry ® 563

Sample Input | Sample Output

Source: BUET/UVA Occidental (WF Warmup) Contest 1, 2001
ID for Online Judge: UVA 10065

\% Hint

The floor of the container is a convex polygon, and under this constraint it has the
minimum possible space inside to hold the tile it is built for. It is a straightforward
Convex Hull problem.

The convex hull algorithm (choose one of them) is applied to calculate the area
of the convex hull. Then the area that the points cover is calculated. Finally, the
percentage of wasted space is calculated.

8.5.31 Nails

Arash is tired of working hard, so he wants to surround some nails on the wall of
his room by a rubber ribbon to make fun of it! Now, he wants to know what will be
the final length of the rubber ribbon after surrounding the nails. You must assume
that the radius of nails and rubber ribbon is negligible.

Input

The first line of input gives the number of cases, IV. IV test cases will follow. Each
test case starts with a line containing two integers, the initial length of rubber rib-
bon and the number of nails 0<#<100, respectively. Each of the next # lines con-
tains two integers denoting the location of a nail. There will be a blank line after
each test case.

Output

Your program must output the final length of rubber ribbon precise to five decimal
digits.



564 ® Algorithm Design Practice for Collegiate Programming

Sample Input | Sample Output
2 4.00000
24 5.00000
00

01

10

11

54

00

01

10

11

Source: Annual Contest 2006 Qualification Round

ID for Online Judge: UVA 11096

\% Hint

The problem requires you to find the length of an elastic band around a set of nails
on a 2-D surface. You need to find the convex hull and calculate its perimeter.

The initial length of the elastic is given; remember that it might be longer than
the convex perimeter. Also remember to output in the correct format (to five deci-
mal places).

8.5.32 Scrambled Polygon

A closed polygon is a figure bounded by a finite number of line segments. The
intersections of the bounding line segments are called the vertices of the polygon.
When one starts at any vertex of a closed polygon and traverses each bounding line
segment exactly once, one comes back to the starting vertex.

A closed polygon is called convex if the line segment joining any two points of
the polygon lies in the polygon. Figure 8.63 shows a closed polygon which is convex
and one which is not convex. (Informally, a closed polygon is convex if its border
doesn’t have any “dents”.)

The subject of this problem is a closed convex polygon in the coordinate plane,
one of whose vertices is the origin (x=0, y=0). Figure 8.64 shows an example. Such
a polygon will have two properties significant for this problem.

The first property is that the vertices of the polygon will be confined to three
or fewer of the four quadrants of the coordinate plane. In the example shown in
Figure 8.64, none of the vertices are in the second quadrant (where x<0, y>0).



Practice for Computational Geometry ® 565

E E
F F
D B D
A A
C C
B
(a) Convex (b) Not convex

Figure 8.63

To describe the second property, suppose you “take a trip” around the polygon:
start at (0, 0), visit all other vertices exactly once, and arrive at (0, 0). As you visit
cach vertex (other than (0, 0)), draw the diagonal that connects the current vertex
with (0, 0), and calculate the slope of this diagonal. Then, within each quadrant,
the slopes of these diagonals will form a decreasing or increasing sequence of num-
bers, i.e., they will be sorted. Figure 8.65 illustrates this point.

Input

The input lists the vertices of a closed convex polygon in the plane. The number
of lines in the input will be at least three but no more than 50. Each line contains
the x and y coordinates of one vertex. Each x and y coordinate is an integer in the
range —999..999. The vertex on the first line of the input file will be the origin, i.c.,

(60, 30)
(80, 20)
©.0) |(90, 10)
(90, -20)
(=30, -40)
(=30, =50) (70, -50)
(10, —60) (50, -60)

Figure 8.64



566 ® Algorithm Design Practice for Collegiate Programming

Slope =1.333 7'}/

Slope =-1.2

Slope = 1.667 !
Slope =6

Slope = 0.5
Slope = 0.25
___________ Slope =0.111
RRREE Slope = —0.222

Slope =-0.714

Figure 8.65

x=0 and y=0. Otherwise, the vertices may be in

Output

The output lists the vertices of the given polygon, one vertex per line. Each vertex
t. The origin (0,0) is the vertex on

n the output will determine a trip
taken along the polygon’s border, in the counterclockwise direction. The output

from the input appears exactly once in the outpu
the first line of the output. The order of vertices i

format for each vertex is (x, y) as shown below.

Sample Input | Sample Output
00 (0,0)

70 =50 (-30,-40)
60 30 (-30,-50)
-30, =50 (-10,-60)
80 20 (50,-60)
50 -60 (70,-50)
90 -20 (90,-20)
-30 —40 (90,10)
-10, —60 (80,20)
90 10 (60,30)

Source: ACM Rocky Mountain 2004
IDs for Online Judges: POJ 2007, ZO) 2352, UVA

a scrambled order. Except for the
origin, no vertex will be on the x-axis or the y-axis. No three vertices are colinear.

3052



Practice for Computational Geometry ® 567

\% Hint

The problem requires you to “take a trip” around the polygon: starting at (0, 0),
visiting all other vertices exactly once in the counterclockwise direction, and finally
arriving at (0, 0).

The problem is solved by sorting polar angles. A cross product is used to sort
polar angles. The program segments are as follows.

double cross(point p0, point pl, point p2)

{
}

bool cmp (const point &a, const point &b)// sorting in the
counterclockwise direction

return (pl.x-p0.x)x(p2.y-p0.y)-(p2.x-p0.x)x(pl.y-p0.Yy) ;

point origin; // the origin
origin.x = origin.y = 0;
return cross(origin, b, a)<EPS;

8.5.33 Grandpa’s Estate

Being the only living descendant of his grandfather, Kamran the Believer inher-
ited all of the grandpa’s belongings. The most valuable one was a piece of con-
vex polygon-shaped farm in the grandpa’s birth village. The farm was originally
separated from the neighboring farms by a thick rope hooked to some spikes (big
nails) placed on the boundary of the polygon. But, when Kamran went to visit his
farm, he noticed that the rope and some spikes are missing. Your task is to write a
program to help Kamran decide whether the boundary of his farm can be exactly
determined only by the remaining spikes.

Input

The first line of the input file contains a single integer # (1<¢<10), the number of test
cases, followed by the input data for each test case. The first line of each test case
contains an integer 7 (12<1000), which is the number of remaining spikes. Next,
there are 7 lines, one line per spike, each containing a pair of integers, which are the
x and y coordinates of the spike.

Output

There should be one output line per test case containing “YES” or “NO” depending
on whether the boundary of the farm can be uniquely determined from the input.



568 ® Algorithm Design Practice for Collegiate Programming

Sample Input | Sample Output

NO

Source: ACM Tehran 2002 Preliminary
ID for Online Judge: POJ 1228, ZO) 1377

\% Hint

Given a set of points, these points are on the boundary of the convex polygon-
shaped farm. The problem requires you to determine whether the convex hull is a
stable convex hull. A convex hull isn’t stable if a larger convex polygon can be gotten
by adding some points, and the larger convex polygon’ sides contains the given set
of points. Therefore, if a convex hull is stable, then there are at least three points
on each side. If there are only two points on a side, a larger convex polygon can be
gotten by adding a point.

The algorithm is as follows. First, a convex hull is calculated for the set of spikes.
If the number of spikes is less than six, the boundary of the farm can’t be deter-
mined. Second, if there are at least three spikes on each side for the convex hull,
the boundary of the farm can be determined; else the boundary of the farm can’t
be determined.

8.5.34 The Fortified Forest

Once upon a time, in a faraway land, there lived a king. This king owned a small
collection of rare and valuable trees, which had been gathered by his ancestors on
their travels. To protect his trees from thieves, the king ordered that a high fence be
built around them. His wizard was put in charge of the operation.

Alas, the wizard quickly noticed that the only suitable material available to
build the fence was the wood from the trees themselves. In other words, it was
necessary to cut down some trees in order to build a fence around the remaining
trees. Of course, to prevent his head from being chopped off, the wizard wanted to
minimize the value of the trees that had to be cut. The wizard went to his tower and



Practice for Computational Geometry ® 569

stayed there until he had found the best possible solution to the problem. The fence
was then built and everyone lived happily ever after.
You are to write a program that solves the problem the wizard faced.

Input

The input contains several test cases, each of which describes a hypothetical for-
est. Each test case begins with a line containing a single integer 7, 2<#<15, the
number of trees in the forest. The trees are identified by consecutive integers 1 to
n. Each of the subsequent 7 lines contains four integers x;, y;, v, /; that describe a
single tree. (x; ;) is the position of the tree in the plane, v, is its value, and 4 is the
length of fence that can be built using the wood of the tree. #; and /; are between
0 and 10,000.
The input ends with an empty test case (7=0).

Output

For each test case, compute a subset of the trees such that, using the wood from
that subset, the remaining trees can be enclosed in a single fence. Find the subset
with minimum value. If more than one such minimum-value subset exists, choose
the one with the smallest number of trees. For simplicity, regard the trees as having
zero diameter.

Display, as shown below, the test case numbers (1, 2, ...), the identity of each tree
to be cut, and the length of the excess fencing (accurate to two fractional digits).

Display a blank line between test cases.

Sample Input | Sample Output

6 Forest 1

0 0 8 3 Cut these trees: 245
1 4 3 2 Extra wood: 3.16
21 7 1

4 1 2 3 Forest 2

35 46 Cut these trees: 2
2 3 9 8 Extra wood: 15.00
3

3 010 2

5 520 25

7 =3 30 32

0

Source: ACM World Finals 1999
IDs for Online Judges: POJ 1873, UVA 811



570 m Algorithm Design Practice for Collegiate Programming

N\ Hint

The problem requires you to compute such a subset of the trees that, using the wood
from that subset, the remaining trees can be enclosed in a single fence; and the
subset must be with minimum value.

The fence built around the remaining trees is the convex hull containing all
remaining trees. The search with state compression is used to find which trees
will be cut, and which trees will remain. A binary number 7 with 7 digits is
used to represent 7 trees, 0</<2"—1, where a digit being 0 means that the cor-
responding tree will be cut, and a digit being 1 means that the corresponding
tree will remain. Suppose P, is the 4-th tree’s position, 1<k<n; pt[] is used to
store remaining trees (i.e., sequence numbers for digits being 1 in 74+1), and the
number of remaining trees is ##; sums of cut trees’ values and lengths are valu
and /Jen respectively; the set of points of the convex hull for p#[] is 4, and the
perimeter for the convex hull is /f; ans is the sum of the current cut trees’ values,
anst is the number of cut trees, ansi is the state for trees, and /ef'is the length of
the excess fencing.

The algorithm is as follows:

All states 7 for trees are enumerated, (0<i<2"-1):

1. In state 7, remaining trees are stored in pz[]. Then the sums of cut trees’ values
and lengths as valu and len are calculated;

2. The convex hull for remaining trees p#[] and the perimeter for the convex hull
Ul is calculated;

3. If the sum of the cut trees’ lengths can enclose remaining trees (//</en), the
current best solution should be adjusted:

If (valu<ans), then ans=valu, anst=n-tt, ansi=i, and the
length of the excess fencing is calculated (lef=len-11);

If (valu==ans) and (n-tt<anst), then anst=n-tt, ansi=i, and
the length of the excess fencing is calculated (lef=len-11).

Finally, output the result.

8.5.35 The Picnic

The annual picnic of the Zeron company will take place tomorrow. This year they
have agreed on the Gloomwood Park as the place to be. The girl responsible for
the arrangement, Lilith, thinks it would be nice if everyone is able to watch every-
one else during the occasion. From geometry class, she remembers that a region
in the plane with the property that a straight line between any two points in the
region, lies entirely in the region, is called convex. So that is what she is looking for.



Practice for Computational Geometry ®m 571

Figure 8.66

Unfortunately, this seems hard to fulfill, since Gloomwood Park has many opaque
obstacles, such as large trees, rocks, and so on.

Because the staff of the Zeron company is large, Lilith has a rather intricate prob-
lem to solve: finding a location to hold them all. Therefore, some of her friends help
her to draw a map of the whereabouts of the largest obstacles. To mark out the place,
she will use a ribbon stretched around the obstacles on the circumference of the cho-
sen region. The opaque obstacles should be thought of as points of zero extension.

Figure 8.66 shows the Gloomwood Park from above with black dots represent-
ing obstacles. The picnic area is the region whose circumference is dashed.

Input

The first line of the input contains a single positive integer 7, specifying the number
of test scenarios to follow. Each test scenario begins with a line containing an inte-
ger m, the number of obstacles in the park (2<m<100). The next line contains the
coordinates of the 7 obstacles, in the order x; 3, x, 2 x3 35 . . . .. All coordinates are
integers in the range [0, 1000]. Each scenario has at least three obstacles that are not
on a straight line, and no two obstacles have the same coordinates.

Output

For each test scenario, one line of output should be generated, stating the area
with one decimal of the largest convex polygon having obstacles as corners, but no
enclosed obstacles.

Sample Input Sample Output
1 129.0

11

33841222232352472712181213 1361096

Source: ACM Northwestern Europe 2002
IDs for Online Judges: POJ 1259, ZOJ 1562, UVA 2674



572 m  Algorithm Design Practice for Collegiate Programming

\% Hint

Given a set of vertices, the problem requires you to calculate the largest convex
polygon whose vertices are a subset of the set of vertices, and in which there is no
vertex. Suppose the given set of vertices is {p;|0<i<n—1}; and f]/][#] is the area of the
largest convex polygon having vertex £ and vertex j.

Each vertex p; in the convex hull is enumerated:

For the convex hull, vertex p; is as the bottom vertex, and #[0...m—1] is the
sequence for vertices in counterclockwise direction.

In #p[] all intervals [£, ;] (0<k<j—1, 1<j<m) are enumerated:

L. If pgy...pj1 aren’t on the inside of the convex hull having vertex p;, ver-

tex #p[k] and 1p(5] ((mul(zp[4], @UM[/]ﬂll(mul(p[i], tplk], 1p[l])=0)),
k+1</<j—1), then the area f1/] [/e]=% is calculated.

2. If ppor... pj-1 are on the right of #p,2p; and #p;, tp;, and #p; are sorted in coun-

terclockwise direction, then neither the convex polygon having vertices

Pitp; " it ]
2

nor the convex polygon hav-

Pir tpe and 2p; [its area is s1 =

ing vertices p;, tps, and #p (its area is s2=f[k][l]) contain ps... p,-1, then

Sl R1=max{f{j1[F], s1+s2}.

Then the area ans is adjusted: ans=max{f1jl[#l, ans}.
Finally, ans is the area of the largest convex polygon in which there are no
vertices.

8.5.36 Triangle

Given # distinct points on a plane, your task is to find the triangle that has the
maximum area, whose vertices are from the given points.

Input

The input consists of several test cases. The first line of each test case con-
tains an integer 7, indicating the number of points on the plane. Each of the
following 7 lines contains two integers x; and y,, indicating the i-th points.
The last line of the input is an integer —1, indicating the end of input, which
should not be processed. You may assume that 1<72<50000 and —1()4S>c,-,)/,-S104
forall i=1...n.



Practice for Computational Geometry ® 573

Output

For each test case, print a line containing the maximum area, which contains two
digits after the decimal point. You may assume that there is always an answer which
is greater than zero.

Sample Input | Sample Output
3 0.50
34 27.00
26

27

5

26

39

20

80

65

-1

Source: ACM Shanghai 2004 Preliminary
IDs for Online Judges: POJ 2079, ZOJ 2419

“§ Hint

First, the set of 7 vertices for the convex hull based on the given set of points are cal-
culated {po, p1> ..., pui}. Obviously, vertices for the triangle with the maximum
area are vertices for the convex hull.

Each vertex p; is enumerated, 0</<n—1:

The other two vertices p; and p; for the triangle are calculated as follows:.

Initially £ is (741)%mn;

The length _j of i—j is enumerated, and j is calculated (for (int _j=1, j=(_j+7)%n;
_j<n=1; _j++, j=(_j+i)% n))), and p, is calculated based on p; and p;: £ is calculated
by “rotating” in counterclockwise direction until Zp-, A puenoon e < 0. The area

Pi0; N ik
2

for the triangle whose vertices p;, p, and p SA,,, ,, = . The maximum

itk
area for the triangle is adjusted ans = max{ans,SA,,, ., 1.
Finally, ans is the maximum area for the triangle.



574 ®  Algorithm Design Practice for Collegiate Programming

8.5.37 Smallest Bounding Rectangle

Given the Cartesian coordinates of 7 (>0) two-dimensional points, write a program
that computes the area of their smallest bounding rectangle (smallest rectangle
containing all the given points).

Input

The input file may contain multiple test cases. Each test case begins with a line
containing a positive integer # (<1001) indicating the number of points in this test
case. Then follow # lines, each containing two real numbers giving respectively the
x- and y-coordinates of a point. The input terminates with a test case containing a
value 0 for # which must not be processed.

Output

For each test case in the input, print a line containing the area of the smallest
bounding rectangle rounded to the fourth digit after the decimal point.

Sample Input | Sample Output

3 80.0000
-3.000 5.000 100.0000
7.000 9.000

17.000 5.000

4

10.000 10.000
10.000 20.000
20.000 20.000
20.000 10.000
0

Source: 2001 Regionals Warmup Contest
ID for Online Judge: UVA 10173

“§ Hint

The problem requires you to calculate the area of the smallest rectangle contain-
ing all given points. First, the convex hull containing all given points is calculated.
Then the method of rotating calipers is used to calculate the area of the smallest
rectangle containing all given points:

The rightmost point and the leftmost point are calculated to guarantee the
minimal width covering all points;



Practice for Computational Geometry ® 575

The lowest point and the highest point are calculated to guarantee the minimal
height covering all points;

The area of the smallest rectangle containing all given points is calculated
through adjustment in the procedure of rotating calipers.

8.5.38 Exocenter of a Triangle

Given a triangle ABC, the Extriangles of ABC are constructed as follows:

On each side of ABC, construct a square (ABDE, BCH]J, and ACFG in
Figure 8.67).

Connect adjacent square corners to form the three Extriangles (AGD, BE]J, and
CFH in Figure 8.67).

The Exomedians of ABC are the medians of the Extriangles, which pass
through vertices of the original triangle, extended into the original triangle
(LAO, MBO, and NCO in Figure 8.67). As the figure indicates, the three
Exomedians intersect at a common point called the Exocenter (point O in
Figure 8.67).

This problem is to write a program to compute the Exocenters of triangles.

Input

The first line of the input consists of a positive integer 7, which is the number of
datasets that follow. Each dataset consists of three lines; each line contains two
floating-point values which represent the (two-dimensional) coordinate of one ver-
tex of a triangle. So, there are a total of (#x3)+1 lines of input. Note: All input

D E

Figure 8.67



576 ® Algorithm Design Practice for Collegiate Programming

triangles will be strongly non-degenerate in that no vertex will be within one unit
of the line through the other two vertices.
Output

For each dataset, you must print out the coordinates of the Exocenter of the input
triangle correct to four decimal places.

Sample Input | Sample Output

2 9.0000 3.7500
0.0 0.0 —48.0400 23.3600
9.0 12.0
14.0 0.0
3.0 4.0
13.0 19.0
2.0 -10.0

Source: ACM Greater New York 2003
IDs for Online Judges: PO) 1673, ZOJ 1821, UVA 2873

“g Hint

The problem is solved based on the definition of exocenters of triangles.

Let ﬁ be a vertical line through p; for p, 5 , and the intersection point for
pa and pps is a. And let pzb be a vertical line through p, for p, p, 5> an and the
intersection point for pob and pps is b. The intersection point o for p;p, and
]72 s (the orthocenter of a triangle) is the exocenter of the triangle (Figure 8.68).

Figure 8.68



Practice for Computational Geometry ® 577

Figure 8.69

For a triangle, its exocenter is its orthocenter. The proof is as follows.

In Figure 8.67, AFCN is rotated clockwise 90°. Line segment AC and line seg-
ment CF coincide. Line segment OC is lengthened. And the intersection point of
the lengthened line and AB is point P (Figure 8.69).

Because BC=CH and AN=NH, CNIJ|AB. Because ZNCP=90°, ZAPC=90°.

Similarly for the other two sides, we can prove, for a triangle, that its exocenter
is its orthocenter.

8.5.39 Picture

A number of rectangular posters, photographs, and other pictures of the same shape
are pasted on a wall. Their sides are all vertical or horizontal. Each rectangle can be
partially or totally covered by the others. The length of the boundary of the union
of all rectangles is called the perimeter.

Write a program to calculate the perimeter. An example with seven rectangles
is shown in Figure 8.70.

The corresponding boundary is the whole set of line segments drawn in
Figure 8.71.

The vertices of all rectangles have integer coordinates.
Input

Your program is to read from standard input. The first line contains the number of
rectangles pasted on the wall. In each of the subsequent lines, one can find the integer

=K

Figure 8.70



578 ®m  Algorithm Design Practice for Collegiate Programming

Figure 8.71

coordinates of the lower-left vertex and the upper-right vertex of each rectangle. The
values of those coordinates are given as ordered pairs consisting of an x-coordinate
followed by a y-coordinate. 0<number of rectangles<5000. All coordinates are in
the range [-10000,10000], and any existing rectangle has a positive area.

Output

Your program is to write to standard output. The output must contain a single
line with a non-negative integer which corresponds to the perimeter for the input
rectangles.

Sample Input | Sample Output

7 228
-15 05 10
-5 8 20 25
15 -4 24 14
0-616 4
215 10 22
30 10 36 20
34 0 40 16

Source: 1011998
ID for Online Judge: POJ 1177

“g Hint

The problem is solved by the Sweep Line Algorithm.

First, discretization is on the X-axis. The plane is divided into several horizontal
strips by sweeping on the Y-axis. A segment tree is used to accumulate lengths of
these horizontal strips s.



Practice for Computational Geometry ® 579

Second, discretization is on the Y-axis. The plane is divided into several vertical
strips by sweeping on the X-axis. A segment tree is used to accumulate lengths of
these vertical strips s,.

Obviously, the result is s+s,.

8.5.40 Fill the Cisterns! (Water Shortage)

During the next century, certain regions on earth will experience severe water
shortages. The old town of Ugbar has already started to prepare itself for the worst.
Recently they created a network of pipes connecting the cisterns that distribute
water in each neighborhood, making it easier to fill them at once from a single
source of water. But in case of a water shortage, the cisterns above a certain level
will be empty since the water will go to the cisterns below, as shown in Figure 8.72.

You have been asked to write a program to compute the level to which cisterns
will be filled with a certain volume of water, given the dimensions and position of
each cistern. To simplify, we will neglect the volume of water in the pipes.

Write a program which for each data set:

reads the description of cisterns and the volume of water, computes the level to
which the cisterns will be filled with the given amount of water, writes the result.

8m
1m
2m
2m
V=78 m’ 4m
1m Sm
6 m ?
[} |
| |
| |
: 7m ' : S5m
| ! | I1m
I : I
| , ' |
I * : I
| ! : :l9m
| | |
17m | ! §m
I | 15m | I
I | | |
I | | |
: :llm | :
| | : : *
| | ' ; |
! | | ! I5m
| | ' [ |
| | ' | |
Y ¥ ¥ Y Y

Figure 8.72



580 ®m Algorithm Design Practice for Collegiate Programming

Input

The first line of the input contains the number of data sets 4, 1<k<30. The data sets
follow.

The first line of each data set contains one integer 7, the number of cisterns,
1<72<50000. Each of the following 7 lines consists of four non-negative inte-
gers, separated by single spaces: 4, 5, w, d—the base level of the cistern, and its
height, width, and depth in meters, respectively. The integers satisfy 0<4<10° and
1<hxwxd<40000. The last line of the data set contains an integer V—the vol-
ume of water in cubic meters to be injected into the network. Integer V satisfies
1<V<2x10°.

Output

The output should consist of exactly  lines, one line for each data set.

Line 7, 1<i<d, should contain the level that the water will reach, in meters,
rounded up to two fractional digits, or the word “OVERFLOW?, if the volume of
water exceeds the total capacity of the cisterns.

Sample Input Sample Output

1.00
OVERFLOW
17.00

- NO N W
JEENEN
EENNE
JEENEN

4
11751
15622
5851
19 4 8 1
132

4
11751
15622
5851
19 4 8 1
78

Note:  Descriptions for Problem F Fill the Cisterns! in ACM Central
Europe 2001 and Problem D Water Shortage are similar.

Source: ACM Central Europe 2001, ACM Southwestern Europe 2001
IDs for Online Judges: POJ 1434, ZOJ 1389, UVA 2428



Practice for Computational Geometry ® 581

\% Hint

For the i-th cistern, its base level, height, width, and depth are 4, 4;, w;, and d,
respectively, 0<i<n—1.

First, we need to calculate how much water is in the # cisterns if the height of
the water level is 7. Suppose the amount of water is v,,.

For the i-th cistern (0<i<n—1), if its base level 4; < the water level m, then the
water level for the i-th cistern tmp=min{ m—b,, b}, and v,+=tmpxw;xd,.

Dichotomy is used to calculate the level that the water will reach. Suppose the
interval for the water level is [/, 7]. Initially, the interval for the water level is [0,
oo]. Let mid=(/+7)/2, and calculate the amount of filled water v,,,; that makes the
water level to be mid. If v,,,,2V (the volume of water in cubic meters to be injected
into the network), then the left subinterval is searched; else the right subinterval
is searched. Repeat the procedure until the search ends and / is the level that the
water will reach.

8.5.41 Area of Simple Polygons

There are N, 1SN<1,000 rectangles in the 2-D xy plane. The four sides of a rect-
angle are horizontal or vertical line segments. Rectangles are defined by their lower-
left and upper-right corner points. Each corner point is a pair of two non-negative
integers in the range of 0 through 50,000 indicating its x and y coordinates.

Assume that the contour of their union is defined by a set S of segments. We
can use a subset of S to construct simple polygon(s). Please report the total area of
the polygon(s) constructed by the subset of S. The area should be as large as pos-
sible. In a 2-D xy plane, a polygon is defined by a finite set of segments such that
every segment extreme (or endpoint) is shared by exactly two edges, and no subsets
of edges have the same property. The segments are edges and their extremes are the
vertices of the polygon. A polygon is simple if there is no pair of nonconsecutive
edges sharing a point.

Example: Consider the following three rectangles:

rectangle 1: <(0, 0) (4, 4)>,
rectangle 2: <(1, 1) (5, 2)>,
rectangle 3: <(1, 1) (2, 5)>.

The total area of all simple polygons constructed by these rectangles is 18.

Input

The input consists of multiple test cases. A line of four —1’s separates each test
case. An extra line of four —I's marks the end of the input. In each test case, the



582 ®m Algorithm Design Practice for Collegiate Programming

rectangles are given one by one in a line. In each line for a rectangle, four non-
negative integers are given. The first two are the x and y coordinates of the lower-left
corner. The next two are the x and y coordinates of the upper-right corner.

Output

For each test case, output the total area of all simple polygons in a line.

Sample Input | Sample Output

0044 18
1152 10
1125
-1 -1 -1 -1
0022
1133
2244
-1 -1 -1 -1
-1 -1 -1 -1

Source: ACM Taiwan 2001
IDs for Online Judges: POJ 1389, UVA 2447

“§ Hint

First, the convex hull containing all rectangles’ points are calculated. Then
the method of rotating calipers is used to calculate the total area of all simple

polygons.

8.5.42 Squares

A square is a four-sided polygon whose sides have equal length and adjacent sides
form 90-degree angles. It is also a polygon such that rotating about its center by
90 degrees gives the same polygon. It is not the only polygon with the latter prop-
erty, however, as a regular octagon also has this property.

So we all know what a square looks like, but can we find all possible squares that
can be formed from a set of stars in a night sky? To make the problem easier, we will
assume that the night sky is a two-dimensional plane, and each star is specified by
its x and y coordinates.



Practice for Computational Geometry ®m 583

Input

The input consists of a number of test cases. Each test case starts with the integer
n (1=1n<1000) indicating the number of points to follow. Each of the next 7 lines
specify the x and y coordinates (two integers) of each point. You may assume that
the points are distinct and the magnitudes of the coordinates are less than 20000.
The input is terminated when #=0.

Output

b
For each test case, print on a line the number of squares one can form from the
given stars.

Sample Input | Sample Output

1
6
1

O = = O

AN L2 ON-_LON_LOOVO-=0O=,H
_ == NN O OO

Source: ACM Rocky Mountain 2004
IDs for Online Judges: POJ 2002, ZOJ 2347, UVA 3047

“§ Hint

Suppose m is the container storing coordinates for all given stars; where the 7-th
star’s coordinate is (;, ;), 0<i<n—1. Initially ans=0.



584 ®m Algorithm Design Practice for Collegiate Programming

After the 7-th star’s coordinate (4;, £,) is input, the first i~1 stars’ coordinates (;,
b)), 0<j<i—1, are enumerated:
i 4

If (ar+b~b;, bita~a;) and (b+a—b;, a+b~a;) are in the container m, then ans++;
If (a7+b~b;, b~ar+a;) and (a+b~b;, ai+b~a)) are in the container m, then ans++;

. . . ans
Finally, the number of squares one can form from the given stars is B

8.5.43 That Nice Euler Circuit

Little Joey invented a Scrabble machine that he called Euler, after the great math-
ematician. In his primary school, Joey heard about the nice story of how Euler
started the study about graphs. The problem in that story was—Ilet me remind
you—to draw a graph on a paper without lifting your pen, and finally return to
the original position. Euler proved that you could do this if and only if the (planar)
graph you created has the following two properties: (1) The graph is connected; and
(2) Every vertex in the graph has even degree.

Joey’s Euler machine works exactly like this. The device consists of a pencil
touching the paper, and a control center issuing a sequence of instructions. The
paper can be viewed as the infinite two-dimensional plane; that means you do not
need to worry whether the pencil will ever go off the boundary.

In the beginning, the Euler machine will issue an instruction of the form
(X0, Yp) which moves the pencil to some starting position (X;, ;). Each subsequent
instruction is also of the form (X', Y"), which means to move the pencil from the
previous position to the new position (X', '), thus drawing a line segment on the
paper. You can be sure that the new position is different from the previous position
for each instruction. At last, the Euler machine will always issue an instruction
that moves the pencil back to the starting position (X, ¥;). In addition, the Euler
machine will definitely not draw any lines that overlay other lines already drawn.
However, the lines may intersect.

After all the instructions are issued, there will be a nice picture on Joey’s paper.
You see, since the pencil is never lifted from the paper, the picture can be viewed
as an Euler circuit.

Your job is to count how many pieces (connected areas) are created on the paper

by those lines drawn by Euler.

Input

There are no more than 25 test cases. Each case starts with a line containing an
integer N>=4, which is the number of instructions in the test case. The following
N pairs of integers give the instructions and appear on a single line separated by
single spaces. The first pair is the first instruction that gives the coordinates of the



Practice for Computational Geometry ® 585

starting position. You may assume there are no more than 300 instructions in each
test case, and all the integer coordinates are in the range (=300, 300). The input is
terminated when NV is 0.

Output
For each test case, there will be one output line in the format:

Case x: There are w pieces.
where x is the serial number starting from 1.

Note: Figure 8.73 illustrates the two sample input cases.

Sample Input Sample Output

5 Case 1: There are 2 pieces.
00011711000 Case 2: There are 5 pieces.
7

1711521255135 11

0

Source: ACM Shanghai 2004
IDs for Online Judges: POJ 2284, ZOJ 2394, UVA 3263

“igi Hint

The problem is solved by Euler’s formula: for any convex polyhedron, the number
of vertices and faces together is exactly two more than the number of edges. That
is, V=E+F=2.

First, the number of vertices Vis calculated. We calculate coordinates for inter-
section points, sort all points, and eliminate recurring points.

Then the number of edges E is calculated. Initially, £ is the number of input
edges (/V-1). Then, for each vertex v, if v is on a line segment and isn’t an endpoint
for the line segment, E++.

Finally, the number of faces F is calculated and output.

Figure 8.73



586 ® Algorithm Design Practice for Collegiate Programming

8.5.44 Can’t Cut Down the Forest for the Trees

Once upon a time, in a country far away, there was a king who owned a forest of
valuable trees. One day, to deal with a cash flow problem, the king decided to cut
down and sell some of his trees. He asked his wizard to find the largest number of
trees that could be safely cut down.

All the king’s trees stood within a rectangular fence, to protect them from
thieves and vandals. Cutting down the trees was difficult, since each tree needed
room to fall without hitting and damaging other trees or the fence. Each tree could
be trimmed of branches before it was cut. For simplicity, the wizard assumed that
when each tree was cut down, it would occupy a rectangular space on the ground,
as shown in Figure 8.74. One of the sides of the rectangle is a diameter of the origi-
nal base of the tree. The other dimension of the rectangle is equal to the height of
the tree.

Many of the king’s trees were located near other trees (that being one of the
tell-tale signs of a forest.) The wizard needed to find the maximum number of trees
that could be cut down, one after another, in such a way that no fallen tree would
touch any other tree or the fence. As soon as each tree falls, it is cut into pieces and
carried away so it does not interfere with the next tree to be cut.

Input

The input consists of several test cases each describing a forest. The first line of each
description contains five integers, xmin, ymin, xmax, ymax, and n. The first four
numbers represent the minimal and maximal coordinates of the fence in the x- and
y-directions (xmin<xmax, ymin<ymax). The fence is rectangular and its sides are
parallel to the coordinate axes. The fifth number 7 represents the number of trees
in the forest (1<#<100).

The next 7 lines describe the positions and dimensions of the 7 trees. Each
line contains four integers, xi, yi, di, and /i, representing the position of the

-<—— Space occupied

Circular base: by tree after cutting

the original
position of
the tree

—_—

Figure 8.74



Practice for Computational Geometry ®m 587

tree’s center (xi, yi), its base diameter 7, and its height Ai. No tree bases touch
each other, and all the trees are entirely inside the fence, not touching the fence
at all.

The input is terminated by a test case with X, =V, =%mex=Yma=n=0. This test
case should not be processed.

Output

For each test case, first print its number. Then print the maximum number of trees
that can be cut down, one after another, such that no fallen tree touches any other
tree or the fence. Follow the format in the sample output given below. Print a blank
line after each test case.

Sample Input | Sample Output

0010 10 3 Forest 1

33210 2 tree(s) can be cut
5531
28309
00000

Source: ACM World Finals 2001
ID for Online Judge: UVA 2235

“g Hint

The polar angle for the central axis of a rectangle is used to represent the state that
a tree is cut down, as shown in Figure 8.75.

Figure 8.75



588 ®m Algorithm Design Practice for Collegiate Programming

Figure 8.76

Other trees or the fence may prevent a tree from falling. Because the number
of trees in the forest #<100, each tree is enumerated. We calculate the range for the
polar angle that the tree can’t be cut down.

In Figure 8.76, for the i-th tree, its radius of the original base of the tree is 7,
the length of its central axis is 4;, the length for the line segment from the centre
of the circle to the another endpoint for the rectangle is &, and the included angle
for the line segment and its central axis is &;. States that trees or the fence prevent a
tree from falling are as follows.

There are two states that the fence can prevent a tree from falling.

Case 1: The distance between the center of a circle and the fence is in [0, 4.
The range for the included angle for two dotted lines (the polar angle for the

central axis of a rectangle) is |:mz'd —(cosfl ( ;fj,)+ b,»), mid +(cosfI ( 4 )+ b,»”

(as shown in Figure 8.77), where the distance between the center of a circle and
the fence is dist, and the polar angle for the vertical line is mid.

Fence

Figure 8.77



Practice for Computational Geometry ® 589

Figure 8.78

Case 2: The distance between the center of a circle and the fence is [4;, ).
The rectangle (tree) can also be perpendicular to the fence. When the tree is
rotated, it can touch the fence (Figure 8.78). Then the polar angle for the central

)+b,-,mz'd+cosfl(;§t)+bl}.

. . . “1( 4
axis of a rectangle is [mza’ — cos ( -

For tree j, there are two cases that tree j prevents tree ; fall.
Case 1: It is similar to the above Case 1 (Figure 8.79):
Suppose the distance between centers of two circles is disz, and the
polar angle for j with respect to i is mid. If the height of the tree exceeds
dist’ +(r, +7,)* , then J, = [dist’ +(r;+7,)* . The range for the polar angle
for the central axis of a rectangle that will prevent the tree from falling is

[mz'd —cos™! (Zﬁ;)"' b, ,mid + cos™ (th)+ bi] .

Case 2: It is similar to the above Case 2.

Figure 8.79



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


http://taylorandfrancis.com

Chapter 9

Practice for State
Space Search

Search technologies are fundamental technologies in computer science and
technology.

In data structure, search spaces are static, and a search algorithm is used to find
items with specified properties among a collection of items. There are three kinds
of static search methods for data structure: Sequential Search, Binary Search, and
Binary Search Trees (BST).

Sometimes search spaces are dynamic. Searched objects (also called states) are
generated during the search.

Classical algorithms for trees and graphs are based on explicit graph models and
tree models. But sometimes graph models and tree models are implicit.

In this chapter, we're back to the starting point: how to represent a search prob-
lem? And practices for state space search are shown.

A search problem can be represented as a state space. And a state space can be
represented as an implicit tree or an implicit graph. States are represented as ver-
tices. There are operations that lead from one state to other states. The goal for a
search problem is to find a path from an initial state to a set of goal states. During
the search, a search tree or a search graph is generated in the state space, called a
search space. That is, a search space is a part of a state space.

DEFS and BES are the most widely used dynamic search algorithms.

A search problem can be analyzed from different viewpoints:

1. The state space.
Is the state space limited or unlimited?
Is the state space static or generated dynamically? For example, in Al searched
objects (states) are generated during the search.

591



592 m  Algorithm Design Practice for Collegiate Programming

2. The search goal.

Is the search goal clear or unclear in the state space? For example, in a game
of chess, the search goal is unclear.

Does the problem require you to calculate the goal and/or the paths to the
goal?

3. Search.

Are there any constraints or not for the search? For example, in the Eight
Queens’ problem, there are constraints among queens, and backtracking
is used to find solutions.

Is the search data-driven or goal-driven? Data-driven search is also
called forward search. Goal states are searched from current states.
Conversely, the search is a goal-driven search, also called backward
search.

Is the search unidirectional search or bidirectional search? If only data-
driven search or only goal-driven search is used, the search is unidirec-
tional search. And if data-driven search and goal-driven search are used
together, the search is bidirectional search.

Is the search a game search (i.e., there is an opponent) or not? A two-person
zero-sum game is a game search, such as Weigi, Chinese Chess, Chess,
and so on.

Is the search a blind search or a heuristic search? Heuristic search is using
problem-specific knowledge to find solutions.

9.1 Constructing a State Space Tree

A state space consists of a set of states and a set of operations. A state is a situa-
tion for a problem. A state can be a situation in a game of chess, or a situation
that cars move, stop, or turn on a road, and so on. For a problem, there is one
initial state or more than one initial state. An operation is applied to a state of the
problem to get a new state. The relationship between states can be discrete, such
as a game of chess; or continuous, such as cars on a road. In a game of chess, a
chesspiece can be moved into another square to change the current state. On the
road, cars can move, stop, ot turn to change the current state. Operations applied
to states can be represented as a successor function. If there is only one initial
state, the state space is represented as a tree, called a state space tree. And if there
are more than one initial state, the state space is represented as a graph, called a
state space graph.

If there is only one initial state, the state space search is to find a path from an
initial state to a set of goal states.

There are costs for transformations from a state to other states.

Figure 9.1 shows a state space tree.



Practice for State Space Search ®m 593

________________ %
1 2 1
--------- @
1 >3 2.3 3

1
3 1 1 3
S LA BT p 2 722
: /;1* /yl*\ ;2* *\

A R

Figure 9.1

Therefore, to solve a problem of state space search, we need to define states, a
successor function, costs, and a state space. For example, in a game of chess:

States: Chessboards according to rules;

A successor function: Rules moving a chesspiece;

Costs: The cost for a state transformation is 1, and represents moving a chess-
piece one time;

A State Space: A set of chessboards according to rules.

For the problem of calculating single-source shortest paths in a graph, states, a
successor function, costs, and a state space are as follows:

States: all vertices in the graph;

A successor function: all edges in the graph;
Costs: Weights of edges;

A State Space: A set of reachable vertices.

A state space tree is used to represent transformations from an initial state to
a set of goal states, and calculate costs for transformations. There are two kinds of
cost calculations:

1. Evaluating Function g(x): The cost from the initial state to the current state x;
2. Heuristic Function A(x): The estimated cost from the current state x to goal
states.



594 m  Algorithm Design Practice for Collegiate Programming

Therefore, if a state space is regarded as a graph, a state space tree can be regarded
as a problem for the shortest path.

9.1.17 Robot

The Robot Moving Institute is using a robot in their local store to transport dif-
ferent items. Of course, the robot should spend only the minimum time necessary
when traveling from one place in the store to another. The robot can move only
along a straight line (track). All tracks form a rectangular grid, as shown in Figure 9.2.
Neighboring tracks are one meter apart. The store is a rectangle NxM meters and
it is entirely covered by this grid. The distance of the track closest to the side of the
store is exactly one meter. The robot has a circular shape with diameter equal to
1.6 meters. The track goes through the center of the robot. The robot always faces
north, south, west, or east. The tracks are in the south-north and in the west-east
directions. The robot can move only in the direction it faces. The direction in which
it faces can be changed at each track crossing. Initially, the robot stands at a track
crossing. The obstacles in the store are formed from pieces occupying ImX1m on
the ground. Each obstacle is within a 1x1 square formed by the tracks. The move-
ment of the robot is controlled by two commands—GO and TURN.

The GO command has one integer parameter # in {1, 2, 3}. After receiving this
command, the robot moves 7 meters in the direction it faces.

The TURN command has one parameter, which is either left or right. After
receiving this command, the robot changes its orientation by 90° in the direction
indicated by the parameter.

The execution of each command lasts one second.

Help researchers of RMI to write a program which will determine the minimal
time in which the robot can move from a given starting point to a given destination.

21N
1/
ml N

Figure 9.2 The circle is the Robot, the black squares are obstacles, and the
heavy lines are the path that the Robot moves through.




Practice for State Space Search ®m 595

Input

The input consists of blocks of lines. The first line of each block contains two
integers M<50 and <50, separated by one space. In each of the next M lines
there are NV numbers one or zero separated by one space. One represents obstacles
and zero represents empty squares. (The tracks are between the squares.) The
block is terminated by a line containing four positive integers Bl B2 E1 E2, each
followed by one space and the word indicating the orientation of the robot at the
starting point. Bl and B2 are the coordinates of the square in the north-west cor-
ner of which the robot is placed (starting point). £1 and E2 are the coordinates
of square to the north-west corner of which the robot should move (destination
point). The orientation of the robot when it has reached the destination point
is not prescribed. We use (row, column)-type coordinates, i.e., the coordinates
of the upper left (the most north-west) square in the store are 0,0 and the lower
right (the most south-east) square are AM—1, N—1. The orientation is given by the
words north or west or south or east. The last block contains only one line with
N=0 and M=0.

Output

The output contains one line for each block except the last block in the input. The
lines are in the order corresponding to the blocks in the input. The line contains
a minimal number of seconds in which the robot can reach the destination point
from the starting point. If there does not exist any path from the starting point to
the destination point, the line will contain —1.

Sample Input Sample Output
9 10 12
0000001000
0000000010
0001T0000O00O
0010000000
0000001000
0000010000
0001100000
0000000O0O0CO
17000000010

7 2 2 7 south

00

Source: ACM Central Europe 1996
IDs for Online Judges: POJ 1376, ZOJ 1310, UVA 314



596 ® Algorithm Design Practice for Collegiate Programming

=y Analysis

First, for a test case, in the area whose coordinate for the upper-left corner is (0, 0),
and the coordinate for the lower-right corner is (M-1, N-1), we find grids that the
Robot can’t move through. The Robot has a circular shape with diameter equal to
1.6 meter, and row 0, row M—1, column 0, and column /N-1 are boundaries for the
Robot. Therefore, in the area whose coordinate for the upper-left corner is (1, 1),
and the coordinate for the lower-right corner is (M-2, N=2), if there is an obstacle
at (4, j), the Robot can’t move through (-1, ), (i. j-1), and (-—1, j-1). That is, (-—1, j),
(2. j-1), and (i1, j—1) should also be set as obstacles. See Figure 9.3.

State (x, y, s, step): The current coordinate (x, y) at which the Robot is, the
current orientation s that the Robot faces; and the number of commands that has
been executed is step.

A successor function move[ ][ ][ ]: After the Robot moves j meters in direc-
tion 7, the horizontal increment is move[7][j][0] meters, the vertical increment is
moveld][f][1] meters, and the orientation is move[4][7][2]. That is, the Robot moves
from (x, y), and moves j meters in direction 7, then the coordinate for the Robot is
(x+moveld][f][0], y+moveli][j][1]), and the orientation that the Robot faces is moveli]
[/1(2]. In order to avoid repeated searches, if the coordinate and the orientation
hasn’t appeared before, then the command is valid, a new state is generated, and
the number of commands for the new state equals the number of commands for the
previous state + 1; else the state is omitted.

Obviously, move[ ][ ][ ] are contestant arrays.

Byte movel[4] [5] [4] = { // the Robot moves j meters in
direction i the horizontal increment is move[i] [j] [0] meters,
the vertical increment is movel[i] [j] [1] meters, and the
orientation is movel[i] [F] [2]

{o, o, 1}, {o, 0, 2},
0, O,

{ ' { . 0}, . { . 0}},
{{ o}, {o, o, 3}, {o, 1, 1}, {o, 2, 1}, {o, 3, 1}},

(0,0)
Row 0

()

i—1,j—1
Column0 " ([.:;7 1; b Column n -1
‘ Obstacle \
Rown-1

m-1,n-1)

Figure 9.3



Practice for State Space Search ®m 597

{{o, o, 0o}, {o, o, 3}, {0, -1, 2}, {0, -2, 2}, {0, -3, 2}},
{{o, o, 1}, {0, o, 2}, {-1, o, 3}, {-2, o, 3}, {-3, 0, 3}},

}i

State Space: A set of state graphs generated by legal commands.

Costs: The cost that the Robot executes one command is 1, represented as an
edge in the graph. The number of edges in the path is the number of commands
that the Robot executes from the starting point to the destination point, and is also
the minimal number of seconds in which the Robot can reach the destination point
from the starting point.

Obviously, BES is suitable to calculate the best path in such a state space. The
algorithm is as follows.

First, the coordinate for the Robot’s starting point, the current orientation that
the Robot faces; and the number 0 are as the first state. The first state is added into
the queue. Then the front for the queue is removed until the queue is empty or the
destination point is reached.

Each time the front is removed from the queue, the numbers of meters 7 (0</<4)
that the Robot moves are enumerated to calculate the reached coordinate (x', ')
and the orientation s"

If (x', ') is an obstacle, then the new state is invalid;

If (x', y') is the destination point, then the minimal number of seconds in which
the Robot can reach the destination point from the starting point is the num-
ber of commands for the previous state +1, and return successfully;

Otherwise, if (x', y') and s" haven’t been visited, the visited mark is set, the num-
ber of executed commands step'= the number of executed commands for the
previous state step+1, and the new state containing (x', y'), s' and step' is added
into the queue.

The cost for the execution of one command is 1 second. BES is done layer by
layer. If the destination point is reached, the number of executed commands is the
minimal number of seconds in which the robot reaches the destination point from
the starting point.

o
% Program

#include <iostream>
#include <queues>

using namespace std;
typedef int Byte;

struct Node //State




598 m Algorithm Design Practice for Collegiate Programming

Byte X, y, s, step; // current coordinate (x, y), the
current orientation s, and the number of commands has been
executed step

}i

Node Qt[300000], start, end; //Queue Qt[ ], starting point
start, destination point end

bool used[51] [51] [4]; //memorized state list, usedl[x] [y]
[d] : the Robot has visited (x, y) in direction d

bool map[51] [51]; //the matrix representing the store

Byte move[4] [5] [4] = { // the Robot moves j meters in

direction i the horizontal increment is move[i] [j] [0] meters,
the vertical increment is movel[i] [j] [1] meters, and the
orientation is movel[i] [F] [2]

{{o, o, 1}, {o, o, 2}, {1, o, o}, {2, o, 0}, {3, 0, 0}},

w o
=
—
—

{{o, o, o}, {o, o, 3}, {o, 1, 1}, {0, 2, 1}, {o, '
{{OI Ol 0}! {Ol 01 3}1 {01 _ll 2}1 {01 _21 2}1 {01 _31 2}}!
{{o, o, 1}, {0, 0o, 2}, {-1, o, 3}, {-2, o, 3}, {-3, 0, 3}},

}i

int n, m; // The size of the matrix is n*m

int SearchAns () { //BFS is used to calculate and return the

minimal number of seconds in which the Robot can reach the
destination point from the starting point

if (start.x == end.x && start.y == end.y) return 0;
// starting point and destination point are same, return 0
Node *cur = Qt, *next = Qt; // Initialize pointers
pointing to the front and rear for the queue
int i;
memset (used, 0, sizeof (used)) ; //all states havn't been
visited
start.step = 0O;
used[start.x] [start.y] [start.s] = 1; // starting point
has been visited
*next++ = start; // starting point is added into the
queue
while (cur!=next) { // while the queue isn't empty
for (i = 0; 1 < 5; i++) { //enumerating the number of
meters
next-sx=cur->x+move [cur->s] [i] [0] ; // coordinate

that the Robot moves i meters is (next->x, next->y), and the
orientation is next-s>s

next->y = cur->y + move[cur->s] [i] [1];

next->s = move [cur->s] [i] [2];

if (map[next->x] [next->y]) break; // Obstacle
if (next->x == end.x && next->y == end.y) return cur-
>step + 1; // destination point

if (!used[next->x] [next->y] [next->s]) // a new state
is generated
{
used [next->x] [next->y] [next->s] = 1;
next->step = cur->step + 1;



Practice for State Space Search ® 599

next++; // the new state is added into the queue
!
!
cur++; // the front is removed from the queue
1
return -1; //there is no path reaching the destination
point from the starting point, return -1
}
int main() {
int i, j, t, tl, t2, t3, t4; // starting point (tl1, t2),
destination point (t3, t4)
char buf[10]; //orientation string
memset (map [0], 1, sizeof (map[0]));
while (scanf ("%$d%d", &n, &m)!= EOF) { //input the size of
the store until 0 0
if (n == 0 && m == 0) break;
for (i = 1; i <= n; i++) { // input each row
memset (map[i], 0, sizeof (mapl[il));
map [i] [0] =map [i] [m]=1; // for row i, column 0 and
column m are obstacles
for(j=1;j<=m;j++){ // input row i
scanf ("%d", &t);
if (£ == 1) //if (i, j) is an obstacle, then (i-1, 7J),
(i. j-1), and (i-1, j-1) are obstacles
map [i] [J]1=map[i-1] [jl=map[i] [j-1]l=map[i-1][]j-11=1;
!
!
memset (map [n], 1, sizeof (map(n])); //column n are
obstacles
scanf ("%$d%d%d%d%s", &t1, &t2, &t3, &t4,buf) ; // starting

point (tl, t2), destination point (t3, t4), the orientation
that the Robot faces at starting point buf
start.x=tl; start.y=t2; end.x=t3; end.y=t4;

if (buf[0] == 's') start.s = 0; // the orientation
numbers
else if (buf[0] == 'e') start.s = 1;
else if (buf[0] == 'w') start.s = 2;
else if (buf[0] == 'n') start.s = 3;
printf ("$d\n", SearchAns()); //calculation and output
the result
!
return 0;
1

In state space search, generated states need to be stored in a queue. Sometimes
states should be compressed to store. In 9.1.2 The New Villa, states are stored as
binary numbers.



600 ®m Algorithm Design Practice for Collegiate Programming

9.1.2 The New Villa

Mr. Black recently bought a villa in the countryside. Only one thing bothers him:
although there are light switches in most rooms, the lights they control are often in
other rooms than the switches themselves. While his estate agent saw this as a fea-
ture, Mr. Black has come to believe that the electricians were a bit absent-minded
(to put it mildly) when they connected the switches to the outlets.

One night, Mr. Black came home late. While standing in the hallway, he noted
that the lights in all other rooms were switched off. Unfortunately, Mr. Black was
afraid of the dark, so he never dared to enter a room that had its lights out and
would never switch off the lights of the room he was in.

After some thought, Mr. Black was able to use the incorrectly wired light
switches to his advantage. He managed to get to his bedroom and to switch off all
lights except for the one in the bedroom.

You are to write a program that, given a description of a villa, determines how
to get from the hallway to the bedroom if only the hallway light is initially switched
on. You may never enter a dark room, and after the last move, all lights except
for the one in the bedroom must be switched off. If there are several paths to the
bedroom, you have to find the one which uses the smallest number of steps, where
“move from one room to another”, “switch on a light” and “switch off a light” each
count as one step.

Input

The input file contains several villa descriptions. Each villa starts with a line con-
taining three integers 7, &, and s. 7 is the number of rooms in the villa, which will be
at most 10. 4 is the number of doors/connections between the rooms, and s is the
number of light switches in the villa. The rooms are numbered from 1 to 7; room
number 1 is the hallway, and room number 7 is the bedroom.

This line is followed by 4 lines containing two integers 7 and j each, specifying
that room 7 is connected to room j by a door. Then follow s lines containing two
integers £ and / each, indicating that there is a light switch in room £ that controls
the light in room /.

A blank line separates the villa description from the next one. The inpur file
ends with a villa having 7=d=s=0, which should not be processed.

Output

For each villa, first output the number of the test case (‘Villa #1, “Villa #2’, etc.) in
a line of its own.

If there is a solution to Mr. Black’s problem, output the shortest possible
sequence of steps that leads him to his bedroom and only leaves the bedroom light
switched on. (Output only one shortest sequence if you find more than one.) Adhere
to the output format shown in the sample below.



Practice for State Space Search ® 601

If there is no solution, output a line containing the statement “The problem
cannot be solved.”
Output a blank line after each test case.

Sample Input | Sample Output

34 Villa #1

The problem can be solved in 6 steps:
- Switch on light in room 2.

- Switch on light in room 3.

—Move to room 2.

- Switch off light in room 1.

- Move to room 3.

- Switch off light in room 2.

WN = = W= W
N = W NN WN

2 Villa #2
The problem cannot be solved.

_ A NN
N = =

000

Source: ACM Southwestern European Regional Contest 1996

IDs for Online Judges: POJ 1137, ZOJ 1301, UVA 321

RE.
Analysis
Suppose the interval for the room numbers is [0, »—1].

State u: A state # is represented as a 7+4-digit binary number, where the last
four digits for % (#%16) represents the current room number, and the -digit prefix
for u (#/16) represents the current lights’ status for all rooms: one binary digit rep-
resents one room’s light: 1 represents that the light is on, and 0 represents that the
light is off; for the upper limit for the number of rooms is 10. The initial state #,=2".
That is, the light in the hallway (room 0) is on, and lights in other rooms are off.
The goal state #,,,,~(1<<(r+4—1))+r—1. That is, the light in in the bedroom (room
7—1) is on, and lights in other rooms are off.

Successor Function (the rule generating a new state #_new): For state «,

there are three operations:

1. Operation 1—Moving. If there is a door between the current room (room
#%16) and room 7 whose light is on, then Mr. Black enters room 7, and the new
state #_new=u— u%16+ is generated. That is, room 7 becomes the current room.



602 ®m  Algorithm Design Practice for Collegiate Programming

2. Operation 2—Switching off a light. If there is a light switch in the current
room (room #%]16) that controls the light in room 7 and the light in room 7
is on (the binary digit corresponding to room 7 in #/16 us,==1), then a new
state is generated #_new=u—2""". That is, the light in room i is switched off.

3. Operation 3—Switching on a light. If there is a light switch in room #%16
that controls the light in room 7 and the light in room 7 is off (the binary
digit corresponding to room 7 in #/16 u4,==0), then a new state is generated
u_new=u+2"", That is, the light in room 7 is switched on.

The generated state #_new is valid if the operation meets two following
conditions.

In order to avoid repeated searches, #_newhasn’tbeen visited before; In #_new,
the light in the current room must be on ((u_new/ 16)&(24-""16))==1).

State Space: From the initial state, new states are generated to construct a state
space tree.

Cost: In the state space tree, the cost for each edge is 1.

The problem requires you to calculate the shortest possible sequence of steps.
The upper limit for the number of states is 1024x10. For each state, the upper limit
of the number of operations is 30 (10 moving methods + 10 switching on lights + 10
switching off lights). Therefore, BES is suitable to solve the problem.

oY
0.,....

#include <cstdio»>
#include <cstdlib>
#include <cstrings>
#include <strings
#include <queues>
#include <algorithm>
using namespace std;

#define maxn 15 // The upper limit for the size of a matrix
#define maxs 20010 // The upper limit for states

#define MOVETO 20 // moving

#define SWITCHON 10 // switching on lights

#define SWITCHOFF O // switching off lights

int r; // the number of rooms

int control [maxs] ; //state transformation: state u is
generated by control [u]

int op[maxs]; //opli] stores control information for state 1i:

the number of room that Mr. Black will enter or control its light



Practice for State Space Search ® 603

bool visited[maxs] ; // visited[i]: visited mark for state 1
bool gl[maxn] [maxn], light [maxn] [maxn] ; //adjacency matrix
gl ][ 1 for rooms, where gl[i] [j]l==true represents there is a
door between room i and room j; adjacency matrix Il1ight[ ][ ]
represents controlling lights, where light[i] [j]==true
represents there is a switch in room i controling the light in
room j

bool init () //If the input is a test case, input and return
true; else return false

{

int t1, t2, d, s;

scanf ("%$d%d%d", &r, &d, &s); // the number of rooms r,
the number of doors d, and the number of switches s
if (r==0) return false; //Input end mark
memset (g, false, sizeof(g)); //Initialize adjacency
matrix g[ ][ ] for rooms
for (int i=0; i<d; i++) // constructing gl[ 11[ ]
{
scanf ("%$d%d", &tl, &t2); //a door between room t1
and room t2
tl--; t2--;

gltl] [t2]1=g[t2] [t1l]=true;

}

memset (light, false, sizeof (light)); // Initialize
adjacency matrix light
for (int 1=0; i<s; 1i++) // constructing light[ ][ 1
{
scanf ("%$d%d", &tl, &t2); //a switch in room t1
controls the light in room t2
tl--; t2--;

light [t1] [t2] =true;
return true;
bool checkstay (int u) //In state u, the light in the
current room is on, return true; else return false

{

int pos=u%16; int tmp=u/16; //In state u, the current
room number pos, and its light tmp

int j=1l<<pos;

if (tmp&j) return true; // the light in room pos is on,
return true; else return false

return false;
1

int bfs() //BFS is used to calculate and return the
shortest possible sequence of steps that leads Mr. Black to
his bedroom and only leaves the bedroom light switched on; if
there is no solution, return -1

{

queue<int> q; // state queue g



604 ®m Algorithm Design Practice for Collegiate Programming

queue<int> step; // the queue storing the number of
step step

int target =(l<<(r+4-1))+r-1; //goal state 2" "4+r-1

int u=(1<<4), k=0; //initial state u=2*, the number of

steps is 0
int u_new, uu, pos;

memset (visited, 0, sizeof (visited)) ; //all states are
unvisited

memset (control, 255, sizeof (control)) ; // all states'
fathers are empty

visited[u]l =true; g.push(u); // initial state u is added
into queue g

step.push (k) ; //the number of steps is k is added into

queue step
while (!g.empty())

{

u=qg.front (); g.pop() ; //the front u is popped from
queue g

k=step.front(); step.pop(); // the number of steps
is k, is popped from queue step

pos=u%l6; uu=u>>4; //current room pos and lights
for all rooms uu

if (u==target) {return k;} //if u is a goal state

for (int i=0; i<r; i++) //move operation:

enumerating each room i

{

if (glpos] [i]) //a door between room pos and

{

u_new=u-pos+i; //calculate new state u_new
if (!visited[u_new] && checkstay(u new)) //if u new
hasn't been and is valid

{

room 1

g.push(u _new); step.push(k+1l); // state u_new
is added into g, the number of steps is added into step

visited[u new]=true; //Set visited mark for
u_new

control [u_new] =u; //u _new is generated from u

op [u_new] =MOVETO+1 ; //state u new, Mr. Black

enters room 1

}
}
}

for (int i=0, j=(1<<4); i<r; i++, j=j<<1, uu=uu>>1l) //
switch off lights: enumerate each room i1
if (light[pos] [i]) //in room pos a switch controls

the light in room i

{

if (uu&l) //If the light is on, turn it off



Practice for State Space Search ® 605

{
u_new=u-j; //calculate state u new
if (!visited[u new] && checkstay(u new) //u_new
hasn't been visited, and is wvalid
{
g.push (u_new) ; //u new is added into g
step.push (k+1) ; //the number of steps is added into step
visited[u new]=true; //set u new visited mark
control [u new] =u;
op [u_new] =SWITCHOFF+1i; //state u_new turns the
light in room i off
}
}
else //turn on the light in room 1
{
u_new=u+j; //new state u new
if (!visited[u new] && checkstay(u new))
// u new hasn't been visited, and is valid

{

d.push (u_new) ; // u new is added into g
step.push (k+1) ; // the number of steps is added into step
visited[u new]=true; // set u new visited mark

control [u_new] =u;

op [u new] =SWITCHON+1i ; // state u new turns

the light in room i on

}
}
}
}
return -1; //return no solution
}
void dfsprint (int u) //from goal state u, output the
shortest possible sequence of steps
{
int u new;
if (u==(1l<<4)) return;
u_new=control [u] ;
dfsprint (u_new) ;
//Backtracking: if oplu]l >=20, then Move to room opl[u] -20+1; if

oplu] is in [19,10], then switch on light in room op[u]-10+1;
if oplu]l is in [9,0], Switch off light in room opl[u] +1

if (op[u] >=MOVETO) printf("- Move to room %d.\n",
op [u] -MOVETO+1) ;

else if (op[u]l >=SWITCHON) printf ("- Switch on light in
room %d.\n", op[u] -SWITCHON+1) ;

else if (op[u]l >=SWITCHOFF) printf ("- Switch off light in

room %d.\n", op[u] -SWITCHOFF+1) ;

}

void print (int cs, int steps) //calculate and output the
cs-th test case



606 ® Algorithm Design Practice for Collegiate Programming

{
printf ("villa #%d\n", cs); // the number of test cases
if (steps==-1) // no solution
printf ("The problem cannot be solved.\n") ;
else

{

printf ("The problem can be solved in %d steps:\n",
steps) ;

dfsprint ((l<<(r+4-1))+r-1); // from goal state output
the shortest possible sequence of steps

}

printf ("\n") ;

}

int main()

{

int steps; //the number of the shortest possible
sequence of steps
for (int cs=1; ;cs++) // deal with test cases
{
if (!init()) break; // Input a villa
steps=bfs() ; //BFS is used to calculate the number
of the shortest possible sequence of steps
print (cs, steps); //calculate and output the cs-th
test case
!
return 0;

9.2 Optimizing State Space Search

For 9.1.1 Robot and 9.1.2 The New Villa, searches aren’t blind. In constructing a
state space tree and finding the best path in the state space tree, some optimization
strategies can be taken to improve the algorithm efficiency. In state space search,
there are six kinds of optimization strategies, as follows:

. Branching;

. Memorization;
. Indexing;

. Pruning;

. Bounding;

. A* algorithm;

AN NN —

Strategy 1: Branching

A state space can be very large. And there is no need to construct a state space
before the state space search begins. Branching means that a state space is
searched as its state space tree is constructed. For 9.1.1 Robot and 9.1.2



Practice for State Space Search ®m 607

The New Villa, branching is used to solve problems. Branching is used in
almost all state space searches.

Strategy 2: Memorization

In state space searches, searched states need to be memorized to avoid being
repeatedly searched. For 9.1.1 Robot and 9.1.2 The New Villa, used[ ][ ][ ]
and visited| ] are used to store searched states respectively.

Strategy 3: Indexing

In state space searches, indexing means searched states are numbered. For
9.1.2 The New Villa, binary numbers are used to represent states.

The goal of using memorization and indexing is to improve efficiencies for
state space searches. Memorization and indexing are always combined with
pruning, bounding, and A* algorichm.

Strategy 4: Pruning

Pruning means removing some branches (subtrees) in state space searches to
improve search efficiencies. For 9.1.1 Robot and 9.1.2 The New Villa, if the
current state has been visited before, it is pruned. Pruning can be combined
with memorization and indexing. And for 9.1.2 The New Villa, the adjacent
room whose light is off is also pruned.

9.2.1 Be Wary of Rose

You've always been proud of your prize rose garden. However, some jealous fellow
gardeners will stop at nothing to gain an edge over you. They have kidnapped,
blindfolded, and handcuffed you, and dumped you right in the middle of your
treasured roses! You need to get out, but youre not sure how you can do it without
trampling any precious flowers.

Fortunately, you have the layout of your garden committed to memory. It is an
NXN collection of square plots (/V odd), some containing roses. You are standing on
a square marble plinth in the exact center. Unfortunately, you are quite disoriented,
and have no idea which direction you're facing! Thanks to the plinth, you can ori-
ent yourself facing one of North, East, South, or West, but you have no way to
know which.

You must come up with an escape path that tramples the fewest possible roses,
no matter which direction you're initially facing. Your path must start in the center,
consist only of horizontal and vertical moves, and end by leaving the grid.

Input

Every case begins with IV, the size of the grid (1SN<21), on a line. N lines with N

characters each follow, describing the garden: . indicates a plot without any roses,

“R” indicates the location of a rose, and “P” stands for the plinth in the center.
Input will end on a case where N=0. This case should not be processed.



608 ®m Algorithm Design Practice for Collegiate Programming

Output

For each case, output a line containing the minimum guaranteed number of roses
you can step on while escaping.

Sample Input | Sample Output

5 At most 2 rose(s) trampled.
.RRR.
R.R.R
R.P.R
R.R.R
.RRR.
0

IDs for Online Judges: UVA 10798

According to the problem description, you are blindfolded; you have the layout of
your garden committed to memory; you are standing on a square marble plinth in
the exact center; and you are quite disoriented: you can orient yourself facing one
of North, East, South, or West, but you have no way to know which.

Your garden is an VXV collection of square plots (/V is odd). Because of sym-
metry, the current square plot on which you are standing is a square plot (x, y), or
(n—1=y, x), or (y, n—1—x) or (n—1—x, n—1-y). And (x, y), (n—1—y, x), (y, n—1—x) and
(n—1—x, n—1—y) constitute a square whose center is the square marble plinth in the
exact center. Suppose you move into an adjacent square plot (x, ') from (x, y) in
direction 1, (x, y) and (x, ') are adjacent, either | x — x'|==1 or | y — y'==1. Also
because of symmetry, moves from three square plots in other three directions are
similar. In Figure 9.4, you move into (x', ') from (x, y), or move from (n—1-y, x),
(9, n—1-x) and (n—1—x, n—1—y) into (n—1—y, x'), (¥, n—1-x') and (n—1-x", n—1—")
respectively. Obviously, (n—1-y, x) and (n—1—y/, x') are adjacent, (y, n—1—x) and (y/,
n—1-x') are adjacent, and (n—1—x, n—1—y) and (»—1-x, n—1—') are adjacent. And
(', ), (1=1=', x"), (¥, n—1-x") and (n—1—x', n—1—y') constitute a new square whose
center is the square marble plinth in the exact center. The four adjacent square plots
represent your four moving directions.

Based on the above information, the successor function is as follows:

Analysis

Suppose you move into an adjacent square plot (x', y') from
(x, y) in direction 1. Because of symmetry, if

(x', y') contains a rose, then the number of roses you step
on in direction one into (x', y') = the number of roses
you step on when you move into (x, y) + 1;



Practice for State Space Search ® 609

0,0 T T T
(n—-1-y",x)

[
|::>’l -1-y,x —— (x,y) ,7:

(x", )

|

|
|
|
|
|
|

n-1-x,n-1-y) g0 n-1-
(n—1-x,n-1-y) (O,

n-1,n-1)

Figure 9.4

(y', n-1-x') contains a rose, then the number of roses you
step on in direction two into (y', n-1-x') = the number
of roses you step on when you move into (y, n-1-x) +1;

(n-1-x', n-1-y') contains a rose, then the number of roses
you step on in direction three into (n-1-x', n-1-y') =
the number of roses you step on when you move into (n-1-x,
n-1-y) + 1;

(n-1-y', x') contains a rose, then the number of roses you
step on in direction four into (n-1-y', x') = the number
of roses you step on when you move into (n-1-y, x) + 1;

Obviously, the maximum number of roses va/ you step on when you move into
(', ') in four directions (up, left, down, right) is the upper limit of the number of
roses you step on when you move into (x', y').

Memorization BFS is used to calculate the minimum guaranteed number of
roses you step on while escaping. The greedy method is used. Each time, the state
with minimum 4/ is removed from the priority queue. Therefore, the priority
queue is a min heap in which val is the priority.

Memorization is used in the search. In states there are the current position (x, y),
the number of roses you can step on in four directions (up, left, down, right) and
its maximum value val; and a Boolean array vis(x][yl[4][d,][d;][4] is used to mark
whether the state that (x, y) is the position and the number of roses you step on are
dy, ds, ds, and dj respectively has been searched before. If a generated state has been
searched before, the state is pruned.

Obviously, if (x==0)||(x==1—1)||(y==0)||()==n—1)), then you have escaped
from the garden, and fTx, y] is the minimum guaranteed number of roses you can

step on while escaping.



610 ®m Algorithm Design Practice for Collegiate Programming

oY
= -

#include <cstdio>

#include <cstrings>

#include <algorithm>

#include <queue>

using namespace std;

const int N = 21; //the upper limit of your garden size
const int d[4][2]1={{1, o}, {-1, o}, {o, -1}, {0, 1}}; //four
directions: horiztontal and vertical

int n, vis[N] [N] [11][11] [11] [117]; //memorization list,
where vis([x] [y] [d;] [d,] [ds] [d,] is the mark that when you move
into (x, y), the number of roses you step on are d,, d,, ds,
and d, respectively in directions (up, left, down, right)

char g[N] [N]; //the graph for the garden
struct State ({ // definition for State

int x, y, val; //the current square plot(x, y), the
maximum number of roses val you step on when you move into
(x', y') in four directions

int up, left, down, right; // the number of roses you
step on in 4 directions

State() {x= y=up=left=down=right=0;} //Initial state
(starting position (0, 0), numbers of roses you step on in

4 directions are 0)
State (int x, int y, int up, int left, int down, int right)
{ //current state
this->x = X;
this->y = y;
this->up = up;
this->left = left;
this->down = down;
this->right = right;
val = max(max(max(up,left), down), right);
!
bool operator< (const State& c)const { //priority for
states: val
return val > c.val;

}os; //state s
void init () { //Input the garden
for (int i = 0; 1 < n; i++) {
scanf ("$s", glil);
for (int j = 0; j < n; j++) // the plinth in the
center
if (gl[i]l [j] == 'P') s.x = 1, s.y = J;



Practice for State Space Search ® 611

}

int bfs() { //memorization BFS: calculate the minimum
guaranteed number of roses you step on while escaping
memset (vis, 0, sizeof (vis)); //Initialization
priority queue<State> Q; //priority queue Q storing
states: number of roses you step on val is priority
Q.push(s) ; //initial state is added into the queue
vis[s.x] [s.y][0] [0][0][0]=1; //initialize memorization
list
while (!Q.empty()) ({ // remove the front u from the
queue
State u = Q.top();
Q.pop () ;
if (u.x==0]||u.x==n-1||u.y==0| |u.y==n-1)return u.val;
//if escaping, return the minimum number of roses you step on
for (int i = 0; i < 4; i++) { //enumerating 4
directions
int xx = u.x + d[i][0]; //calculate the
adjacent square plot (xx, yy) in direction 1
int yy = u.y + dl[i] [1];
int up = u.up; // the number of roses you step
on in the original 4 directions
int left = u.left;
int down = u.down;
int right = u.right;
if (glxx] [yy]l == 'R') up++; //accumulation for
4 directions

if (gln - 1 - yyl[xx] == 'R') left++;

if (gln - 1 - xx][n - 1 - yyl == 'R') down++;

if (glyylIn - 1 - xx] == 'R') right++;

if (1vis[xx] [yy] [up] [left] [down] [right]) { J/if

the new state hasn't been visited, add it into the
memorization list and queue
vis [xx] [yy] [up] [left] [down] [right] = 1;
Q.push(State (xx, yy, up, left, down, right));

}
}

int main() {

while (~scanf("%d", &n) && n) //Input the size of
garden N
init () ; // Input garden and the plinth in the
center

printf ("At most %d rose(s) trampled.\n",bfs());
//Calculating and output the result

}

return 0;



612 m  Algorithm Design Practice for Collegiate Programming

Strategy 5: Bounding

Before enumerating the candidate solutions of a branch, the branch is checked
against upper and lower estimated bounds on the optimal solution, and it is
discarded if it cannot produce a better solution than the best one found so far
by the algorithm.

9.2.2 Fill

There are three jugs with a volume of @, 4, and c¢ liters. (4, b, and ¢ are positive inte-
gers not greater than 200). The first and the second jug are initially empty, while the
third is completely filled with water. It is allowed to pour water from one jug into
another until either the first one is empty or the second one is full. This operation
can be performed zero, one, or more times.

You are to write a program that computes the least total amount of water that
needs to be poured; so that at least one of the jugs contains exactly 4 liters of water
(d is a positive integer not greater than 200). If it is not possible to measure d liters
this way, your program should find a smaller amount of water &'<d which is closest
to d and for which d' liters could be produced. When 4' is found, your program
should compute the least total amount of poured water needed to produce 4" liters
in at least one of the jugs.

Input

The first line of input contains the number of test cases. In the next 7 lines, 7 test
cases follow. Each test case is given in one line of input containing four space-
separated integers—a, b, ¢, and d.

Output

The output consists of two integers separated by a single space. The first integer
equals the least total amount (the sum of all waters you pour from one jug to
another) of poured water. The second integer equals &, if 4 liters of water could be
produced by such transformations, or it equals the closest smaller value &' that your
program has found.

Sample Input | Sample Output

2 22
2342 9859 62
96 97 199 62

Source: Bulgarian National Olympiad in Informatics 2003

IDs for Online Judges: UVA 10603



Practice for State Space Search ® 613

_l

Suppose that volumes for three jugs are A, B, and C liters respectively. Finally, one
of the jugs contains exactly D liters of water.
State (@, b, ¢, to?): In the current three jugs, there are 2, 4, and ¢ liters of water

Analys:s

respectively. And the current total amount of poured water is o liters.
Successor function: There are six cases that you pour water from one jug into
another.

Case 1: If all water in jug 1 can be poured into jug 2 (#<B—b), then all water in
jug 1 is poured into jug 2, and a new state (0, b+a, ¢, for+a) is generated; else
water in jug 1 is poured into jug 2 until jug 2 is full, and a new state (a—(B—6),
B, ¢, tot+(B—b)) is generated.

Case 2: If all water in jug 1 can be poured into jug 3 (2<C—c), then all water in
jug 1 is poured into jug 3, and a new state (0, &, c+a, ror+a) is generated; else
water in jug 1 is poured into jug 3 until jug 3 is full, and a new state (a—(C—0),
b, C, ror+(C—c)) is generated.

Case 3: If all water in jug 2 can be poured into jug 1 (b<A—a), then all water in jug
2 is poured into jug 1, and a new state (a+6, 0, ¢, for+b) is generated; else water
in jug 2 is poured into jug 1 until jug 1 is full, and a new state (4, 6—(A—a),
¢, tor+(A—a)) is generated.

Case 4: If all water in jug 2 can be poured into jug 3 ()<C—c), then all water
in jug 2 is poured into jug 3, and a new state (a, 0, c+6, tor+b) is generated;
else water in jug 2 is poured into jug 3 until jug 3 is full, and a new state
(a, b—(C—¢), C, tor+(C—c)) is generated.

Case 5: If all water in jug 3 can be poured into jug 1 (¢<A—a), then all water in
jug 3 is poured into jug 1, and a new state (a+¢, b, 0, tor+c) is generated; else
water in jug 3 is poured into jug 1 until jug 1 is full, and a new state (4, b,
c—(A—a), tor+(A—a)) is generated.

Case 6: If all water in jug 3 can be poured into jug 2 (¢<B—b), then all water in
jug 3 is poured into jug 2, and a new state (4, b+, 0, ror+c) is generated; else
water in jug 3 is poured into jug 2 until jug 2 is full, and a new state (2, B,
c—(B—b), ror+(B—0b)) is generated.

State Space: Generated states constitute the state space.

Cost: The amount of poured water each time is as a weight of the correspond-
ing edge in the graph. The problem requires you to calculate the path with the
minimum sum of weights from the initial state (0, 0, C, 0) to the goal state (One of
the jugs contains exactly 4 liters of water or &' liters of water. If it is not possible to
measure 4 liters this way, we should find a smaller amount of water 4<d, which is



614 m  Algorithm Design Practice for Collegiate Programming

closest to d and for which d'liters could be produced.) Obviously the problem is a
problem of finding a shortest path. BES is suitable to solve the problem.

Suppose QA, OB, QC are gqueues storing the current amount of
water in the three jugs respectively; QTOT is the queue
storing the current total amount of poured water.

dp[ ][ 1[ 1 is the matrix storing upper limits for the
total amount of poured water, where dplal [b] [c] is the upper
limit for the total amount of poured water when the amount of
water in the three jugs are a, b, and c¢ respectively. Initially
dol 10101 is o.

res[ 1 is the goal matrix, where res[D] is the least total
amount of poured water when at least one of the jugs contains
exactly D liters of water. Initially res[ ] is w.

dp[ 1[ ]J[ ] and res[ ] are used in bounding. There are two
boundings: If (tot=zres[D]) or (totz=dplal [b] [c]), then the case
needn't be considered.

BES is as follows:

An initial state (0, 0, C, 0) is added into queues QA, (0B, QC
and QTOT respectively;
Repeat the following process until queue QA is empty:
Remove fronts for queues QA, 0B, QOC and QTOT, and
constitute a new state (a, b, ¢, tot);
if ((tot<res[D])&&(tot<dplal [b] [c]))

{

dplal [b] [cl=tot; //adjust dplal [b] [c]
resl[al=min(resl[al, tot); res[b]=min(res[b], tot);
res[cl=min(reslcl, tot);

Simulating the above six cases;
if a state satisfies the condition, then the state is
added into queues QA, OB, QC and QTOT;

}

When BES ends, from D, the first res[D']#eo is searched in descending order.
That is, res[D] is the least total amount of poured water.

oY
% Program

#include <stdio.h>

#include <queue>

using namespace std;

#define min(x, y) ((x) < (y) ? (x) : (y))



Practice for State Space Search ® 615

#idefine oo Oxfffffff //Define o

int A, B, C, D, JUGI[3]; // A, B, C: three jugs' volumes,
one of the jugs contains exactly D liters of water finally
int dp[201] [201] [201], res[201]; // in the current three

jugs there are a, b, and c¢ liters of water; the upper limit
for poured water is dplal [b] [c]; if one of the jugs contains
exactly D liters of water finally, res[D] is minimal poured
water
queue<int> QA, QB, QC, QTOT; // QA, 0B, QC are queues
storing the current amount of water in the three jugs
respectively; QTOT is the queue storing the current total
amount of poured water
void pushNode (int a, int b, int c, int tot) { // the
current amount of water in the three jugs a, b, ¢ is added
into queues OA, OB, OC, total amount of poured water tot is
added into queue OTOT

QA.push(a), QOB.push(b), QC.push(c), QTOT.push(tot) ;
}

void update (int a,int b,int c,int tot) { //6 cases pouring
water from one jug into another is simulated

if (tot >= res[D]) return; // Bounding: If (tot=resl[D])
or (tot=dplal [b] [c]), then the case needn't be considered.

if (tot >= dplal [b] [c]) return;

dpla] [b] [c]=tot; //the upper limit for the total amount

of poured water tot when three jugs have a, b, and c¢ liters of
water

res[a]l] = min(res[a]l, tot); // the total amount of
poured water can't exceed tot when three jugs have a, b, and c¢
liters of water

res [b] = min(res[b], tot);
res[c] = min(res[c], tot);
//case 1

if (a< B-b) pushNode (0, b+a, c, tot+a);
else pushNode (a- (B-b), B, ¢, tot+(B-b));
//case 2
if (a < C-c) pushNode (0, b, c+a, tot+a);
else pushNode(a-(C-c), b, C, tot+(C-c));
//case 3
if (b < A-a) pushNode (a+b, 0, c, tot+b);
else pushNode (A, b-(A-a), c, tot+(A-a));
//case 4
if(b < C-c¢) pushNode(a, 0, c+b, tot+b);
else pushNode(a, b-(C-c), C, tot+(C-c));
//case 5
if (¢ < A-a) pushNode (a+c, b, 0, tot+c);
else pushNode (A, b, c-(A-a), tot+(A-a));
//case 6
if (c < B-b) pushNode(a, b+c, 0, tot+c);
else pushNode(a, B, c-(B-b), tot+(B-b));



616 ® Algorithm Design Practice for Collegiate Programming

void bfs(int a,int b,int c,int tot) //BFS calculate the
result
QA.push(a), QB.push(b),QC.push(c), QTOT.push(tot); //initial
state is added into the queue
while (!QA.empty()) {
a = QA.front (), QA.pop(); //fronts of queues are
removed
b QB.front (), QB.pop() ;
¢ = QC.front (), QC.pop();
tot = QTOT.front (), QTOT.pop() ;

update(a, b, ¢, tot); //6 cases pouring water from
one jug into another is simulated
!
1
int main()
int t;
scanf ("%d", &t); //number of test cases
while (t--) { //each test case is dealt with
int i, j, k;
scanf ("%d %d %4 %d4d", &A, &B, &C, &D) ; //input a test
case
for(i = 0; 1 <= A; i++) //initialization
for(j = 0; j <= B; J++)
for(k = 0; k <= C; k++) dpli] [j] [k] = oo;
JUG[0]=A, JUG[1]=B, JUGI[2]=C;
for (i=0;i<=D;i++)res[i]=00;
bfs(0, 0, C, 0); //BFS from initial state
while (res[D] == oo) D--; //from D, find the first
res[D]l#» in descending order
printf ("%$d %d\n", res[D], D); //output the result
1
return 0;

9.2.3 Package Pricing

The Green Earth Trading Company sells four different sizes of energy-efficient
fluorescent light bulbs for use in home lighting fixtures. The light bulbs are expen-
sive, but last much longer than ordinary incandescent light bulbs and require much
less energy. To encourage customers to buy and use the energy-efficient light bulbs,
the company catalog lists special packages which contain a variety of sizes and
numbers of the light bulbs. The price of a package is always substantially less than
the total price of the individual bulbs in the package. Customers typically want to
buy several different sizes and numbers of bulbs. You are asked to write a program
to determine the least expensive collection of packages that satisfy any customer’s
request.



Practice for State Space Search ®m 617

Input

The input file is divided into two parts. The first one describes the packages which are
listed in the catalogue. The second part describes individual customer requests. The four
sizes of light bulbs are identified in the input file by the characters “a”, “b”, “c”, and “d”.

The first part of the input file begins with an integer 7 (1<72<50) indicating the
number of packages described in the catalog. Each of the 7 lines that follows is a
single package description. A package description begins with a catalog number
(a positive integer) followed by a price (a real number), and then the sizes and cor-
responding numbers of the light bulbs in the package. Between one and four dif-
ferent sizes of light bulbs will be listed in each description. The listing format for
these size-number pairs is a blank, a character (“a”, “b”, “c”, or “d”) representing a
size, another blank, and then an integer representing the number of light bulbs of
that size in the package. These size-number pairs will not appear in any particular
order, and there will be no duplicate sizes listed in any package. The following line
describes a package with catalog number 210 and price $76.95 which contains
three size “a” bulbs, one size “c” bulb, and four size “d” bulbs.

2107695a3c1d4

The second part of the input file begins with a line containing a single positive
integer m representing the number of customer requests. Each of the remaining
lines is a customer request. A listing of sizes and corresponding numbers of light
bulbs constitutes a request. Each list contains only the size-number pairs, formatted
the same way that the size-number pairs are formatted in the catalogue descrip-
tions. Unlike the catalogue descriptions, however, a customer request may contain
duplicate sizes. The following line represents a customer request for one size “a”
bulb, two size “b” bulbs, two size “c” bulbs, and five size “d” bulbs.

ald5blc2bl

Output

For each request, print the customer number (1 through 2, 1 for the first customer
request, 2 for the second, ...... , m for the m-th customer), a colon, the total price of
the packages which constitute the least expensive way to fill the request, and then
the combination of packages that the customer should order to fill that request.
Prices should be shown with exactly two significant digits to the right of the
decimal. The combination of packages must be written in ascending order of cata-
log numbers. If more than one of the same type package is to be ordered, then the
number ordered should follow the catalog number in parentheses. You may assume
that each customer request can be filled. In some cases, the least expensive way to
fill a customer request may contain more light bulbs of some sizes than necessary to



618 m Algorithm Design Practice for Collegiate Programming

fill the actual request. This is acceptable. What matters is that the customers receive
at least what they request.

Sample Input Sample Output
5 Input set #1:

10 25.00 b 2 1. 27.50 55

502 17.95 a 1 2: 50.00 10(2)

3 13.00 c 1 3: 65.50 3 10 55
552750 b 1d2ci1 4: 52.87 6
65287 a2b1d1c3 |5 9087 36 10
6 6: 100.45 55(3) 502
d1

b3

b3c2

b1alcldTat

b1b2c3cl1aldi
b3c2d1c1d2art

0

Source: ACM World Finals 1994
IDs for Online Judges: POJ 1889, UVA 233

DES is used to calculate the least expensive way to fill the request and the
combination of packages that the customer should order to fill that request. The
following strategies are used in the search.

1. Memorization: Current states are memorized. States constitute the current
number of stored package sz, the total price now, the combination of pack-
ages nowmet| ], and the remainder requirement for four sizes of light bulbs
need| ]. In order to avoid overflow, sz and now are as parameters for DFS, and
nowmet| ] and need| ] are as global variables. Initially, nowmer| ] is set 0, need| ]
is a customer’s request, st=0, and 7ow=0.

2. Bounding: The current total price is checked. The key to the problem is to
determine whether the current price is better. If the current total price isn’t
better, then it backtracks.

The problem shows 7 packages’ descriptions: their prices and num-
bers of four sizes of light bulbs. Obviously, the interval of the price for

the i-th light bulb in package j is in { the price for package j }

" the number of the i-th light bulbs

0<j<n—1, 0<i<3. That is, the upper limit of the price for the i-th light bulb
the price for package j

the number of the i-th light bulbs”

in package j is



Practice for State Space Search ® 619

For each size of light bulb, packages are sorted in ascending order of the
upper limits of its prices. Suppose rankby[i](j] stores the number of package stor-
ing the light bulb with size i whose price is ranked j; minaveli][j] stores the least
upper limit of prices for light bulb with size 7 from package j to package 7. And
rankby| 1[ ] and minave ][ ] are calculated when a test case is input.

There are two boundings:

Bounding 1: If the current total price nzow is higher than the current

cheapest price ans, it backtracks directly;

Bounding 2: Four sizes of light bulbs are searched. If now+minaveli]

[st]xneed[i] > ans (0<i<3) for four sizes of light bulbs, then it backtracks.
. Optimized search strategy: A greedy algorithm is used. The size of bulb
which is demanded most is searched, that is, need[br] = glgaj;{need [z']}. In

order to buy light bulbs with the cheapest price, based on the ascending order
for the upper limit of prices, in sz the first package p which meets the cus-
tomer’s requirement is searched and is put into the current combination, that
is, (p=rankby[br][i]) & &(p>st)& & (need|;]>0)& & (there exist light bulbs with

size j in package p), 0<i<n—1.
DES is implemented by search(st, now):

If now > ans, it backtracks directly (bounding 1) ;

If need[0]<=0 && need[l]<=0 && need[2]<=0 && need[3]<= O,
then ans=now; memcpy(met, nowmet, sizeof (met)), and it
backtracks;

If now+minave[i] [st] *need[i] > ans (0<i<3) for four sizes of

light bulbs, then it backtracks ( bounding 2);
Calculate such size br for a light bulb that
need[br] = max {need[il} ;
0<i<3

Select the suitable package p (p=rankbylbr] [i]) &&(p>st)
&& (need[j]>0) && (there exist light bulbs with size j in
package p), 0Osisn-1;

Add a package p: ++nowmet[p]; need[j] - the number of light

bulbs with size j in package p (0=<7j<3);
search(p, now + the price for package p);
recover need|[ ] and nowmet[ ] before the recursion;

oY
%‘Eﬁ Program

#include <cstdio>
#include <cstring>
#include <iostream>



620 m Algorithm Design Practice for Collegiate Programming

#include <vectors>

#include <algorithm>

#include <utilitys>

#include <sstream>

#include <map>

using namespace std;

struct pacnode //package struct

{

int gl4]; //number of bulbs gl[i] with size i
double price; //price
int id; // catalog number

}pac[60]; //packages

int n, met[60], nowmet [60], need[4], rankby[4] [60];
double ans, avel[4] [60], minave[4] [60];

void init () ; // packages' information
void work () ; //current customer's request
void search(int st, double now) ; //DFS is used to calculate

the result, the st-th package, the current price now
int main()

{

int testno = 0;

while (true) //number of packages n
{
if (scanf ("%d", &n) == EOF) break;
if (n == 0) break;
init () ; //n packages' information
++testno; //number of the test case
printf ("Input set #3%d:\n", testno);
int m;
scanf ("$d\n", &m) ; //number of customers
for (int 1 = 0; 1 < m; ++1) //customers' requests
{
printf ("sd:", i + 1); //number of the customer
work () ; //deal with the request for customer 1
!
!
return 0;

}

void init () // n packages' information

{

for (int i = 0; 1 < n; ++1i) // n packages' information
{
scanf ("%$d%1f", &pacl[i].id, &pacl[i] .price); // catalog
number and price for package 1
memset (pac[i]l .q, 0, sizeof (pacl[i]l.q));
char tmp[1000] ;
gets (tmp) ; // numbers and sizes for bulbs in package i
istringstream in(tmp) ;
while (true) //size kind and number x



Practice for State Space Search ® 621

char kind;

int x;
if (in >> kind >> x == NULL) break;
pacl[i] .glkind - 97] += x; //the number of bulbs

with size kind in package 1
!
}
for (int i = 0; 1 < 4; ++1i) //calculate avel[ 1[ ] by

enumerating sizes and packages
for (int j = 0; j < n; ++3)

if (paclj]l.qglil == 0) avel[il] [j] = 1el00;
else avelil] [j] = paclj].price / pacljl.qlil;
for (int i = 0; 1 < 4; ++1i) //enumerate size i, sorting

packages x[ ], the upper limit for the price is as the first
key, number of packages is the second key

{

pair<double, int> x[60]; // x[ 1: a pair of elements
for (int j = 0; j < n; ++3)

{
}

sort(x, X + n);
//calculate rankbyl[i] [j] and minave[i] [F]
for (int j = 0; j < n; ++j) rankbyl[il [j] = x[j].second;
minave[i] [n - 1] = avel[i]l [n - 1];
for (int j = n - 2; j >= 0; --j) minave[i] [j] =
min (minave [i] [ + 11, avelil [j]);
}
}
void work () // current customer's request
{
memset (need, 0, sizeof (need));
char tmp[1000];

x[jl.first = ave[i] [§]1; xI[j].second = j;

gets (tmp) ;
istringstream in(tmp) ;
while (true) //size kind, number x

{

char kind;

int x;

if (in >> kind >> x == NULL) break;

if (kind == 'a') need[0] += x; //4 bulbs' numbers
else if (kind == 'b') need[1l] += x;

else if (kind == 'c¢') need[2] += x;

else if (kind == 'd') need[3] += x;

}

memset (nowmet, 0, sizeof (nowmet)); ans = 1el00; //Initialize:
ans=ow

search (0, 0.0); // DFS is used to calculate the result,
the 0-th package, the current price 0



622 m  Algorithm Design Practice for Collegiate Programming

printf ("%8.21f", ans); // the least expensive way to fill
the request
vector<pair<int, ints> > oa;

for (int i = 0; 1 < n; ++i) // the combination of packages
is stored in oa
if (met[i] != 0) oa.push back(make pair(pacl[il].id,
met [i])) ;
sort (oa.begin(), oca.end()) ; //sorting oa
for (int i = 0; i < oa.size(); ++1i) //output the
combination of packages
if (cali].second != 1) printf(" %d(%d)", oali].first,

oal[i] .second) ;
else printf (" %d4d", oali].first);
printf ("\n") ;
1
void search(int st, double now) // DFS is used to calculate
the result, the st-th package, the current price now

{

if (now > ans) return; // the current price is higher
than the current cheapest price (bounding 1),

if (need[0] <= 0 && need[1l] <= 0 && need[2] <= 0 && need[3]
<= 0) //fill the request, adjust the current price, and
current package into the combination

{

ans = now; memcpy (met, nowmet, sizeof (met)); return;
for (int i = 0; 1 < 4; ++1) //search all sizes, after
adding it, the price is higher than ans
if (now + minave[i] [st] * need[i] > ans) return;

int br = 0; // The size br of bulb which is demanded most
for (int 1 = 1; 1 < 4; ++1)

if (need[i] > needl[br]) br = 1i;
for (int i = 0; i < n; ++i) //search the bulb with size br

in n packages in ascending order of price

{

int p = rankby[br] [i]; //package p
if (p < st) continue; // package p has been searched
bool use = false; //determine whether package p fills

the request
for (int j = 0; j < 4; ++3)
if (need[j] > 0 && paclpl.glj]l > 0)

{
}

use = true; break;

if (!use) continue; // package p can't fill the
request
++nownet [p] ; // package p is added into the

combination, and adjust remainder request
for (int j = 0; j < 4; ++j) need[j] -= paclpl.qljl;



Practice for State Space Search ®m 623

search(p, now + pac[p] .price);
--nowmet [p] ;
for (int j = 0; j < 4; ++j) need[j] += paclpl.qljl;

Strategy 6: Heuristic Search (A* Search)
Heuristic search is suitable to find the best path. The most widely known
heuristic search is A* search. A* search evaluates vertices by combining ¢(v),
the minimal cost to reach vertex v from the initial vertex; /(v), the estimated
minimal cost to get from vertex v to the goal vertex; and f{v)=¢(v)+h(v), flv) is
the estimated minimal cost through vertex v.

Obviously, for initial state (vertex) s, f{s)=0+h(s)=h(s).

That s, if we try to find the best solution, it is reasonable to find the vertex
v with the lowest value f{v). Therefore, A* search is also called best-first search.

Heuristic search is implemented by BES. Two lists are constructed:

OPEN is used to store states to be extended. And OPEN is a priority queue.
For an element v in OPEN, and f{v) is the key for the priority queue.
CLOSED is used to store visited states. That is, states that have been

deleted from OPEN.

The reason why two lists are constructed is that we need to determine
whether the current state is unvisited, visited, or generated. Based on that, the
methods calculating f[7] are different: if state v is unvisited, f[#] is calculated
by flv)=¢(v)+h(v); else fv] is adjusted. The process for A* search is as follows:.

For the initial state s, f(s)=h(s), and state s is
added into OPEN;

Each time the state u with the minimal f is removed
from OPEN, and its successor state v is extended: if v is
in the queue and the g(v) from u to v is better than the
previous g(v), then the f(v) should be adjusted, and v is
set as the successor state for u; if v isn't in the
queue, then f(v)=g(v)+h(v), v is set as the successor
state for u and added into OPEN.

The above process is repeated until the goal state is reached or OPEN is
empty.

If OPEN is empty, the search fails; else the best path is found.

Two aspects should be noted:

1. The selection for the estimated cost 4(v) is the key to find the best path.
2. There is a balance between the computation of A(v) and the efficiency
solving a problem.



624 m  Algorithm Design Practice for Collegiate Programming

13114 (15| x

Figure 9.5

9.2.4 Fight

The 15-puzzle has been around for over 100 years; even if you don’t know it by that
name, you've seen it. It is constructed with 15 sliding tiles, each with a number
from 1 to 15 on it, and all packed into a 4x4 frame with one tile missing. Let’s call
the missing tile “x”; the object of the puzzle is to arrange the tiles so that they are
ordered as shown in Figure 9.5 where the only legal operation is to exchange “x”
with one of the tiles with which it shares an edge. As an example, the following
sequence of moves shown in Figure 9.6 solves a slightly scrambled puzzle.

The letters in the previous row indicate which neighbor of the “x” tile is swapped
with the “x” tile at each step; legal values are “t”, “1”, “u”, and “d”, for right, left, up,
and down, respectively.

Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for
distributing an unsolvable version of the puzzle, and frustrating many people. In
fact, all you have to do to make a regular puzzle into an unsolvable one is to swap
two tiles (not counting the missing “x” tile, of course).

In this problem, you will write a program for solving the less well-known 8-puzzle,

composed of tiles on a three by three arrangement.

Input

You will receive, in “eight.inp”, a description of a configuration of the 8-puzzle. The
description is just a list of the tiles in their initial positions, with the rows listed from
top to bottom, and the tiles listed from left to right within a row, where the tiles are

1{2]3(4 1234 1234 11234
5161718 5161718 5161718 51678
91 x |10]12 9110 x |12 9 110(11]12 9 1101112
13(14 1115 13(14 1115 13(14] x |15 13(14]15] x

R—> D—> R—>

Figure 9.6



Practice for State Space Search ®m 625

1{2]3
x|4]6
71518

Figure 9.7

«_»

represented by numbers 1 to 8, plus “x”. For example, see the puzzle shown in Figure 9.7
is described by this list:

123x46758

Output

You will print to standard output either the word “unsolvable”, if the puzzle has
no solution, or a string consisting entirely of the letters “t”, “I”, “u”, and “d” that
describes a series of moves that produce a solution. The string should include no
spaces and start at the beginning of the line.

Sample Input Sample Output

23415x 768 | ulddrurdllurdruldr

Source: ACM South Central USA 1998
IDs for Online Judges: PO) 1077, ZOJ 1217, UVA 652

N 4 Analysis

An 8-puzzle is a 3X3 matrix, where its elements are 1 to 9 respectively, and 9 repre-
sents “x”. An 8-puzzle can be represented as a permutation for 1...9, where the k-th

element in the permutation is the element whose position is ﬂkJ,k%S) in the
matrix, 0<A<8. 3

States: A permutation for 1...9 can be regarded as a state. The number of states
is 91=362880. In order to save memory, the alphabet order for permutations is used
as the index for states:

1,2,3.4,5,6,7,8,9: 0

9,8,7.6,5,4,3,2,1: 362879



626 ® Algorithm Design Practice for Collegiate Programming

Obviously, 0 represents the goal state.

Heuristic Function f(#): The cost to the goal state, from the initial state and
through state u, f(u#)=d(u)+h(u), where d(u) is the minimal number of moves from
the initial state to state #, and A(u) is the estimated cost from state # to the goal

state: h(u Z x;—

and in the goal state is (x} ;).

Obviously, for the initial state s, f{s)=A(s).

Successor Function: If the position for “x” in state # is (x, y), that is, the number
in the position is 9, and # (1<k<8) is the number in one adjacent position (x', y'), then
numbers in (x, y) and (x', y') are exchanged and a new state v is generated.

State Space: Generated states constitute the state space.

Cost: In the state space tree, the cost for generating a new state is 1.

The problem requires you to calculate the path with the minimal cost from
the initial state to the goal state. Obviously, BES is suitable to solve the problem. A
priority queue in which the heuristic function f{) is used as the key is used to store
states, and each time the state with the minimal f{) is selected.

Suppose d(u) is the length of the path from the initial state to state #. If state v is
generated from state #, and d(#)+1<d(v), then d(v) should be adjusted: d(v)= d(u)+1,
state # is set as the precursor state for state v, and state v is added into the queue.
Therefore, the key is to calculate the estimated cost from the initial state through
state v to the goal state f{(v). The heuristic function f{) is as the key for the priority
queue. There are three cases:

— ;| (the position for number 7 in state # is (x;, y,),

Case 1: State v hasn’t been visited before: f(v)=d(v)+h(v).
Case 2: State v has been in the queue: There is a f{v) for ». If the estimated
cost should be adjusted, that is, the path to state » is adjusted through state

u, f)=f()—d)+d(u)+1.

Case 3: State v has been visited and removed from the queue: If the estimated
cost should be adjusted, f(v) = f{v)—d()+d(w)+1. The reason is the same as case 2.

A* algorithm is as follows:

Suppose the precursor state for the initial state s is -1;

dls]l=0; flsl=hl[s];

State s is added into the priority queue g; Set s the flag

entering g, and set flags not entering g for other states;
while ( the priority queue g isn't empty)

{
the state u with the minimal f[ ] in the priority
queue g is selected;
if u is the goal state (the alphabet order is 0)
return the result;
State u is removed from g;



Practice for State Space Search ®m 627

Calculate the position (x, y) for 'x' in state u;
for(int 1=0; i<4; ++1) { // four search directions
calculate the adjacent cell (a, b) for (x, y) in
direction 1i;
If ((a, b) is in the puzzle) {
9 in (x, y) and the number in (a, b) are
exchanged, and a new state v is generated;
If (dlu]l + 1) < dIlv])
{ dlvl=dlul+1;
State u is set as the precursor state for state
v, and direction i is recorded;
The heuristic function f[v] is adjusted based
on above three cases;
State v is added into g; set v the flag
entering g;

}

Set the search flags for the four directions for state u;
}
if (the goal state has been visited (the alphabet order
is 0))
Output a series of moves that produce a solution;
else output "unsolvable";

s,
%@ Program

#include<iostream>
#include<cstdio>
#include<cstrings>
#include<cstdlib>
#include<queue>
using namespace std;
int fac[] = { 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880 };
// facl[i]l=1!
int order(const char *s, int n) { // the alphabet order for
permutations s
n—-1
ks = 2 (s[i] — 1) ! * (the number of elements after s[i] and less than

i=0

slil),

Oskg=sn!-1
int i, j, temp, num;
num = 0; // the alphabet order 0
for (1 = 0; 1 < n-1; i++) { //from right to left,

enumeration



628 m  Algorithm Design Practice for Collegiate Programming

temp = 0; //the number of elements after s[i] and
less than s[i] temp
for (§ =1 + 1; § < n; j++) {
if (s[j] < s[i]l) temp++;

}

num += fac[s[i] -1] * temp; //accumulating

(s[il-1) !*temp

}

return num; //return the alphabet order for
permutations for s
1
bool is_equal (const char *bl, const char *b2) { // permutations
bl and b2 are equal or not

for (int i=0; i<9; i++) //scan 9 positions

if(b1[i] != b2[i])
return false;

return true; //bl and b2 are equal
!
struct node //States

char board[9]; //permutation

char space; //position for space
}i
const int TABLE SIZE = 362880; //the upper limit for the
number of states 9!
int hash(const char *cur) { // the alphabet order for

permutation cur
return order (cur, 9);

}
void get node (int num, node &tmp) { //map alphabet order
num to state tmp

int n=9; //the length for the permutation

int al9];

for (int 1 = 2; 1 <

n; ++1i) {
i;

o° I

ali - 1] = num
num = num / 1i;
tmp.board[i - 1] = 0;

tmp.board[0] = 0;
int rn, 1i;

for (int k = n; k >= 2; k--) {
rn = 0;
for (i =n - 1; i >= 0; --1i) {
if (tmp.board([i] != 0) continue;
if (rn == alk - 1]) break;
++rn;
}
tmp.board[i] = k;
}
for (i1 = 0; 1 < n; ++1i)

if (tmp.board[i] == 0) {



Practice for State Space Search ® 629

tmp.board[i] = 1;
break;

}

tmp.space = n - aln-1] -1;

}

int goal statel[9][2] = {{o0,0}, {o,1}, {o,2}, {1,0}, {1,1},

{1,2}, {2,0}, {2,1}, {2,2}}; //In the goal state, number 1
is at (goal state[i] [0], goal stateli] [1])
int h(const char *board) { // calculate h(board): the

estimated cost from state board to the goal state
int k;

int hv = 0; //sum of distances
for(int i=0; i<3; ++1) //search each position (i, 7)
for(int j=0; Jj<3; ++3){

k = i*3+3;

if (board[k] !=9) { //the number in position isn't 9

hv += abs(i - goal statel[board[k]-1][0]) +abs(j - goal
state [board[k] -111[11);

}

return hv; //return the sum of distances
int £[TABLE SIZE], d[TABLE_SIZE]; // Heuristic Function

flu]l : the cost to the goal state, from the initial state and
through state u, dl[u]l: the minimal number of moves from the

initial state to state u, (u is the alphabet order for
permutations)
struct cmp( //Comparison function for the priority queue:

Heuristic Function f[u] is the key, sorting in ascending
order
bool operator () (int u, int v){
return f[u] > f£[v];
}

}i

0 u hasn't been visited _
// colorlu] = 1 u is in the queue . in the

2 u has been removed from the queue

best path the precursor for u is parent[u], the direction
enter u is movel[u], u is the alphabet order for states
char color [TABLE SIZE];
int parent [TABLE SIZE];
char move [TABLE SIZE];
int step(4][2] = {{-1, o},{1, o}, {o, -1}, {o, 1}};
//direction i (stepl[i]l [0], stepl[i]l [1])
void A star(const node & start){ //from the initial state
start, A* algorithm is used to calculate a series of moves
int x, y, k, a, b;
int u, v;



630 ®m Algorithm Design Practice for Collegiate Programming

priority queue<int, vector<ints>, cmp> open; //priority
queue open(Heuristic Function f[u] is the key, sorting in
ascending order)

memset (color, 0, sizeof (char) * TABLE SIZE); //there is
one state in the queue

u = hash(start.board) ;

parent [u]l = -1; //the precursor for u is empty

d[u] = 0; //number of moves for u is 0

f[u]l] = h(start.board) ; // Heuristic Function f[u]

open.push(u); color[u] = 1; //u is added into the
priority queue

node tmp, cur; //the front for the queue cur, generated
state tmp

while (!open.empty ()) { //while the queue isn't empty, u

is the state with the minimal f[u]
u = open.topl() ;

if(u == 0) return; //u is the goal state
open.pop () ;
get_node(u, cur); // the alphabet order u
corresponds to state cur
k = cur.space; //in state cur, the space position
(x, ¥)
x=k/3; v =k % 3;
for(int i=0; i<4; ++1i){ //search 4 directions
a=x+step[i] [0]; b=y+stepl[i] [1]; //the adjacent
position (a, b) for (x, y) in direction i
if (0<=a && a<=2 && O0<=b && b<=2){ //(a, b) is
the puzzle
tmp = cur; //the space at (x, y) and the

number at (a, b) are exchanged, and the state tmp is generated
tmp.space = a*3 + b;
swap (tmp.board[k], tmp.board[tmp.spacel) ;

v = hash(tmp.board) ; // the alphabet order
v for state tmp
if (color([v]==1 &&(d[u]+1)<d[v]) //v is in
the queue, and d[ul+1l<d[v], (u, v) is adjusted in the best
path
move [v] = 1; //the direction i entering v
flvl=£f[v]-dlv]+d[ul+1;
dlv] = d[u] + 1;
parent [v] = u;
open.push (v) ; //v is added into the
queue
1
else if (color[vl==2 && (d[ul+1)<d[v]){ //4
directions for v have been searched, and dlul+1<d[v], (u, v)
is adjusted in the best path
move [v] = 1i; /the direction i entering v

flvl=£f([v]-dlv]+d[ul +1;



Practice for State Space Search ® 631

dlvl = dful + 1;
parent [v] = u;
open.push (v) ; //v is added into the
queue again
color([v] = 1; //v is in the queue
!
else if (color[v] == 0){ // v hasn't been
vigited
move [v] = i; //direction i entering v
dlv] = d[u] + 1;
f[v]=d([v]+h(tmp.board) ;
parent [v] = u;
open.push (v) ; //v is added into the
queue
color([v] = 1; //v is in the queue

!
!
color[u] = 2; //4 directions for u have been searched
!
!
void print path () { // output a series of moves
int n, u;
char path([1000]; // a series of moves
n=1; //number of moves
path[0] = move[O0];
u = parent[0]; //the precursor for the goal state u
while (parent [u] != -1){ //from the goal state to the
initial state
path[n] = move[u]; //the direction entering state u
+40; //number of moves
u = parent [u]; //the precursor
!
for (int i=n-1; i>=0; --1i){ //output a series of moves
from the initial state
if (path[i] == 0) printf ("u");
else if(path[i] == 1) printf("d");
else if (path[i] == 2) printf("1l");
else printf("r");
}
!
int main() {
//freopen("in", "r", stdin);
node start; //initial state
char c¢; //input character
for(int i=0; i<9; ++1i){ //input 9 characters, the initial
state start is constructed
cin>>c;
if(c == 'x"){ //the i-th character “x” is 9, it's a
space



632 m  Algorithm Design Practice for Collegiate Programming

start.board[i] = 9;
start.space = 1i;

1
else start.board[i]l=c-'0"';
!
A star(start); // A* algorithm is used to calculate a
series of moves
if (color [0] != 0)print path(); // if the goal state has

been visited, output a series of moves; else output "unsolvable—"
else printf ("unsolvable");
return O0;

9.2.5 Remmarguts’ Date

“A good man never makes girls wait or breaks an appointment!” said the mandarin
duck father. Softly touching his little ducks’ heads, he told them a story.

“Prince Remmarguts lives in his kingdom UDF—United Delta of Freedom.
One day their neighboring country sent them Princess Uyuw on a diplomatic
mission.”

“Erenow, the princess sent Remmarguts a letter, informing him that she would
come to the hall and hold commercial talks with UDF if and only if the prince
would go and meet her via the K-th shortest path. (In fact, Uyuw does not want to
come at all).”

Being interested in the trade development and in such a lovely gitl,
Prince Remmarguts really became enamored. He needs you—the prime
minister’s—help!

Details: UDF’s capital consists of NV stations. The hall is numbered S, while
the station numbered 7" denotes the prince’s current place. M muddy directed
sideways connect some of the stations. Remmarguts’ path to welcome the prin-
cess might include the same station twice or more than twice, even it is the sta-
tion with number § or 7. Different paths with the same length will be considered
disparate.

Input

The first line contains two integer numbers N and M (1SN<1000, 0<M<100000).
Stations are numbered from 1 to N. Each of the following M lines contains three
integer numbers A, Band T (14, BN, 1<7<100). It shows that there is a directed
sideway from the A-th station to the B-th station with time 7.

The last line consists of three integer numbers S, 7, and K (1<S, TN,
1<K<1000).



Practice for State Space Search ® 633

Output

A single line consisting of a single integer number: the length (time required) to
welcome Princess Uyuw using the K-th shortest path. If K~th shortest path does not
exist, you should output “~1” (without quotes) instead.

Sample Input | Sample Output

22 14
125
214
122

Source: POJ Monthly, Zeyuan Zhu
ID for Online Judge: POJ 2449

s 4 Analysis

The problem can be represented as a weighted directed graph G. Stations in UDF
are represented as vertices, muddy directed sideways connecting some of the sta-
tions are represented as arcs, and the time cost on a sideway is represented as the
weight for the corresponding arc.

The problem requires you to calculate the length of the K-th shortest path from
the starting point to the terminal point in G.

The naive algorithm solving the problem is using BFS from the starting point.
When the terminal point is searched K times, the length of the path is the time
required to welcome Princess Uyuw using the K-th shortest path. If K is larger
or the number of vertices is more, the solution will consume more memory than
permitted.

The method to solve the problem is using algorithm calculating the single-
source shortest paths and A* search.

Step 1: For G, its converse digraph G’ is constructed. Then the terminal point T
is as the single-source, and an SPFA algorithm is used to calculate the lengths
of the shortest paths from the terminal point 7 to other vertices. It is used for
the estimated cost.

Hli]=

the length of the shortest path from vertexito7 7 is reachable from 7
o T isn’t reachable from i

Step 2: A* search is used to calculate the length of the K-th shortest path.



634 m  Algorithm Design Practice for Collegiate Programming

A* search can be used to calculate the shortest path. Therefore the K-th shortest
path can be calculated in the K-th times.

The key to A* search is to design the function for the estimated cost F[i]:
Fli=Gi]+H[4], where G[i] is the length of the shortest path from the starting point
S to vertex 7, and H[7] is the length of the shortest path from vertex i to the terminal
point 7; calculated in Step 1. Therefore, the estimated cost F[7] is the length of the
shortest path from S to 7, through vertex 7.

Each time the minimal value is gotten out from F[ ]. Therefore F[ ] is stored as
a priority queue.

Initially the starting point S is added into the priority queue F[ ]. Then A*
search is used. Each time, the vertex with the minimal value is obtained from
F[ ]. For each adjacent vertex 7, G[i] is calculated, F[i] is calculated based on
HIi], and the number of times that Prince Remmarguts goes through vertex 7 is
accumulated.

1. For each vertex, the number of paths that Prince Remmarguts goes through
it is at most K.
2. If Tisn’t reachable from some vertices, in H[ | the vertices” values are co.

.«
% Program

#include<stdio.h>
#include<iostream>
#include<queue>
#include<vectors>
using namespace std;
#define inf 99999999
#define N 1100

typedef struct nnn //the struct for priority queue
{

int F,G,s; //vertex s, G: the length from the starting
point to s, F; the length of the path through s

friend bool operator< (nnn a,nnn b) //the priority for the

priority queue

return a.F>b.F;

1
}PATH;
typedef struct nn // adjacency list
int v,w; //adjacent vertex v, the length of the arc w

}node;



Practice for State Space Search ® 635

vector<nodes>map [N] , tmap [N] ; // adjacency list mapl[ 1,
associated adjacency list tmap[ 1, where map[i] and tmapl[il
stores adjacent vertices for vertex 1

int HI[N] ; // H[ 1: lengths of the shortest paths from the
terminal point T to other vertices
void findH (int s) //SPFA algorithm to calculate H[ ]
{
queue<int>qg;
int ing[N]={0};
g.push(s); inglsl=1; H[s]=0; //s is added into queue g
while (!qg.empty()) //the front s for g is removed
{
s=q.front (); g.pop(); ingls]l=0;
int m=tmap([s].size(); //out-degree for s
for(int 1=0;i<m;i++) //enumerate arcs from s
{
int j=tmapl[s] [i] .v; //for s, the other vertex j for

the i-th arc
if (H[j]l>tmapl[s] [1] .w+H[s])

{
H[jl=tmap[s] [i] .w+H[s]; //HIF]
if (!'ingl[j]) ingljl=1,g.push(j); //7 isn't an
element in the queue, is added into the queue
}
!
!
1
int Astar (int st,int end, int K) // calculate the length of

the K-th shortest path from the starting point st to the
terminal point end

{
priority queue<PATH>q; //priority queue g, elements' type
is PATH
PATH p,tp;
int k[N]={0}; //k[ 1: the number of times through
vertices
findH (end) ; //calculate HI[ ]
if (H[st]==inf)return -1; //end is reachable from st
p.s=st; p.G=0; p.F=H[st]; // p is added into the priority
queue
g.push(p) ;
while(!qg.empty()) //the priority queue isn't empty
{
p=g.top(); g.pop();
klp.s]++; //the number of times through the vertex +1
if (k[p.s]>K)continue; // the number of times through
the vertex at most K
if (p.s==end&&k [end] ==K) return p.F; // the number of

times arriving at the terminal point is K, return the length
of the path



636 ®  Algorithm Design Practice for Collegiate Programming

int m=map[p.s].size(); //degree for p.s

for(int 1=0;i<m;i++) //arcs from p.s are enumerated

{
int j=maplp.s] [i] .v; //vertex j for the i-th arc
if(H[j] !=inf) //the terminal point is reachable from j
{

tp.G=p.G+map[p.s] [1] .w;
tp.F=H[]j]+tp.G;

tp.s=3;
g.push (tp) ;
!
1
!
return -1;
1
int main()
{
int n,m,S,T,K,a,b,t;
node p;
scanf ("%d%d", &n, &m) ; //numbers of vertices and edges
for(int i=1;i<=n;i++)
{
map[i] .clear(); tmapl[i].clear(); H[il=inf; //Initialize
adjacency list and HI[]
!
while (m--) // m muddy directed sideways
{
scanf ("%$d%d%d", &a, &b, &t) ; // arc (a,b) with length t
is stored in maplal
p.v=b; p.w=t; mapl[al .push back(p); //flip arc (b, a)

with length t is stored in map[b]
p.v=a; tmap [b].push back(p) ;

!

scanf ("%$d%d%d", &S, &T, &K) ; // the starting point, the
terminal point, and K

1f(S==T)K++; // the starting point and the terminal

point are same
printf ("$d\n",Astar(S,T,K)) ;
1

Iterative deepening A* Algorithm (IDA* Algorithm)

Iterative deepening A* (IDA*) is a graph traversal and path search algorithm that
can find the shortest path between a designated start node and any member of a set
of goal nodes in a weighted graph. It is a variant of iterative deepening depth-first
search that borrows the idea to use a heuristic function to evaluate the remain-
ing cost to get to the goal from the A* search algorithm. Since it is a depth-first
search algorithm, its memory usage is lower than in A*, but unlike ordinary itera-
tive deepening search, it concentrates on exploring the most promising nodes and



Practice for State Space Search ®m 637

thus doesn’t go to the same depth everywhere in the search tree. Unlike A*, IDA*
doesn’t utilize dynamic programming and therefore often ends up exploring the
same nodes many times.

The keys to the IDA* algorithm are bounding and pruning,.

9.2.6 Jaguar King

In a deep forest, a war is going to begin. Like other animals, the jaguars are pre-
paring for this ultimate battle. Though they are mighty strong and lightning fast,
they have an extra advantage over other animals. It’s their wise and brave king, the
Jaguar King.

The king knows that only speed and strength is not enough for winning the
war. They have to make a perfect formation. The king has set up a nice formation
and placed all the Jaguar Warriors according to that formation. There are N posi-
tions for /V jaguar warriors (including the king). The king is marked by 1 and the
other jaguar warriors are marked by a number from 2 to V. The warriors are placed
according to their number.

But then the king realizes that to make the formation perfect and effective,
some positions should have stronger jaguars and some should have faster jaguars.
Since the strength and speed of all the jaguars are not equal, the king decided to
change the positions of some jaguars. The wise king knows the ability of each and
every jaguar, so his decision is perfect, but the problem is how to change the jaguars.

One of the wise jaguars has given an idea. The idea is simple. All the jaguars
will wait for the king’s signal, all eyes upon the king. Suppose the king is in the
i-th position. The king jumps to the j-th position, and when the jaguar at the j-th
position sees the king coming, he immediately jumps to the i-th position. The king
repeats this procedure until they are formatted like the new formation. Now there
is another problem. Collision can occur while jumping. So, some wise jaguars have
made a jumping scheme so that no collision can occur. The scheme is noted below.

If the king is in the i-th position

If (i % 4=1) The king can jump to position (i+1), (i+3),
(i+4), (i-4)

If (i % 4=2) The king can jump to position (i+1), (i-1),
(i+4), (i-4)

If (i % 4=3) The king can jump to position (i+1), (i-1),
(i+4), (i-4)

If (i % 4=0) The king can jump to position (i-3), (i-1),
(i+4), (i-4)

Any position is valid if it lies in between 1 and V.

Actually the king can jump much higher between these positions so, no collision
can occur. Now you are one of the prisoners (actually they kept you to eat after the war).
You now have a chance to get out alive. You know all their ideas and the new formation.



638 m  Algorithm Design Practice for Collegiate Programming

If you can tell the king the minimum number of times the king has to jump to gain the
new formation, they could be generous and release you.

Input

The input file contains several sets of inputs. The total number of sets will be less
than 50. The description of each set is given below:

Each set starts with one integer N (4<N<40) which indicates the total number
of jaguar warriors. You can assume that NV is a multiple of 4. The next line will
contain /V numbers which indicates the final formation of the jaguars. Consecutive
numbers will be separated by a single space.

The input will be terminated by the set where N=0. And this set should not be
processed.

Output

For each set in the input, you should first print the set number starting from 1. And
the next line should be the minimum number of times the king has to jump to gain
the new formation.

Check the sample input-output for more details. Output should be formatted
like the sample output.

Hope you get out alive.

Sample Input Sample Output

4 Set 1:
1234 0

4 Set 2:
4231 1

8 Set 3:
523486711|2

8 Set 4:
52836714 |7

0

Source: Next Generation Contest Il

ID for Online Judge: UVA 11163

S/ Analysis

Initially Vjaguars are placed at V positions in a queue, N%4==0. The king is placed
at position 1. Other jaguars are marked by a number from 2 to /V. The jaguars are



Practice for State Space Search ® 639

placed according to their number. Only the king can exchange its position with
another jaguar. Suppose the king’s current position is #:

If (i % 4==1), then the king can jump to position (i+1), (+3), (i+4), (i—4);
If (i % 4==2) , then the king can jump to position (i+1), (—1), (H+4), (i—4);
If (i % 4==3), then the king can jump to position (+1), (—1), (+4), (i—4);
If (i % 4 = 0), then the king can jump to position (—3), (i—1), (i+4), (i—4).

Given the final formation of the jaguars, the minimum number of times the
king jumps to gain the final formation is required to calculate.

An array dx[i][j] is used to represent the above rule, where 7 is the remainder
that the king’s current position is divided by 4 (0<i<3), and each remainder is a
kind of the king’s jumping; and j is the sequence number for the kind of the king’s
jumping (0<7<3). That is, int dx[4][4] = {{-3, -1, +4, —4}, {+1, +3, +4, —4}, {+1, -1,
+4, —4}, {+1, -1, +4, —4}}. Therefore, if the king’s current position is 4, the king can
jump to four positions, where the j-th position is k+dx[k %4][;], 0</<3.

The estimated cost for the IDA* algorithm is F(v)=G(v)+H(v). F(v) is the esti-
mated number of times that the king jumps to gain the final formation through
the current state v. G(v) is the number of times that the king jumps to the cur-
rent state v from the initial formation. Initially, the king’s state is x, G(x)=0.
And H(v) is the estimated cost that the king jumps to gain the final formation
from the state v. H(v) is the sum of the numbers of times that n—1 jaguars (not
the king) jump to their current positions from their final positions using rule
dx[i %4][0..3], for n—1 jaguars (not the king) jump in the opposite directions for
the king’s jumping. A Floyd algorithm is used to calculate H(x) before the IDA*
algorithm is used.

In the IDA* algorithm, states are represented as (x, prev, dep, hv); where x is
the current position for the king; prev is the precursor position for the king, that
is, the king jumps to position x from position prev, and initially prev=—1; dep is
the number of times the king jumps to position x, that is, dep is G(x), and initially,
dep=0; and hv is the estimated number of times that the king jumps to gain the
final formation from the position x, that is, hv is H(2).

In the program, the function IDA(x, prev, dep, hv) is used to calculate the mini-
mum number of times mxdep the king jumps to gain the final formation. In order
to improve the efficiency, the following optimization strategies are used:

1. Bounding. The current minimum number of times mxdep that the king
jumps to gain the final formation is as the bounding. Based on the estimated
cost, if the king can jump to gain the final formation through the current
state, the estimated cost is dep+hv. Obviously, if dep+hv>mxdep, it can’t be a
solution.

2. The king can’t return to prev from x. That is, the endless loop needs to be
avoided.



640 ®m  Algorithm Design Practice for Collegiate Programming

3. There are at most four positions to which the king can jump. Therefore, there
are at most four generated states. The function IDA(x, prev, dep, hv) returns
the minimal value submxdep that is min {numbers of times for the king’s
jumping to gain the final formation in four directions}.

The function mxdep =IDA(x, prev, dep, hv) is as follows:

if (hv==0) return the number of times the king jumps dep and
the successful mark;
if (dep+hv> mxdep) it can't be a solution;
submxdep=w;
Four positions that the king can jump are enumerated tx(tx =
x+dx[x%4] [1], O0=<i<3):
{
if (tx is in the bound) && (tx=prev)
{ the number of times the king jumps to gain the final

formation is calculated;

The generated state (tx, x, dep+l, shv) is recursively
calculated, and the number of times the king jumps is tmp;

submxdep= min (submxdep, tmp) ;

}
Vi
Return submxdep;
IDA (x, -1, 0, E(s)) is called to calculate the number of
times the king jumps mxdep until the final formation is gained.

The size of the problem isn’t large (4</N<40).

o

#include <stdio.hs>

#include <algorithm>

#include <string.hs>

using namespace std;

int g[45] [45]; // glil [j1: the length of the shortest path
between position i and position j

int dx[4]1[4] = {{-3,-1,+4,-4},{+1,+3,+4,-4},{+1,-1,+4,-4},
{+1,-1,+4,-4}}; // if the king's current position is k, the
king can jump to 4 positions, where the j-th position is
k+dx[k %41 [7]

int A[45], n; // A[i]l is the number of the jaguar at
position i in the final formation, the numder of jaguars n
void build() { //using Floyd algorithm to calculate g[ ][ 1

int i, j, k;
for(i = 1; i <= 40; i++) { //initialize g[ 11[ 1]



Practice for State Space Search ® 641

for(j = 1; j <= 40; j++) glil [j] = Oxfffffff;
glil [1] = 0;

}

for(i = 1; i <= 40; i++) //each position i is
enumerated
for(j = 0; Jj < 4; Jj++) //4 positions can be jumped
if (i+dx[i%4]1 [§]1>0 && i+dx[i%4] [j]1<=40) // in the
bound

gli] [1+dx[1%4]1[j]1] = 1;
for(k = 1; k <= 40; k++)
for(i = 1; i <= 40; i++)
for(j = 1; j <= 40; Jj++)
glil [3] = min(g[i]l [3]1, gli] [kl+glk] [3]);
//adjust the length of the shortest path from i to j
1
int H() //accumulate the minimal numbers of times that
n-1 jaguars (not the king) jump to initial positions from
final positions
int i, sum = 0; //initialize the sum of the minimal
numbers of times sum 0
for(i=1; i <= n; i++){ //enumerate each jaguar (not the
king) position in the final formation, and accumulate
if (A[i] == 1) continue;
sum += g[i] [A[1i]];
1
return sum;
}
int singleH(int pos) // the minimal numbers of times that
jaguar at pos jumps to A[pos]
return g[pos] [A[pos]];
1

int mxdep, solved; //mxdep, the minimum number of times the
king jumps to gain the final formation
int IDA(int x, int prev, int dep, int hv) { // IDA(x, prev,
dep, hv) is defined in the analysis
if (hv == 0){ //return the minimum number of times the
king jumps to gain the final formation
solved = dep;
return dep;
1
if (dep+hv>mxdep) return dep+hv; //it isn't the solution
int i, tx;
int submxdep = Oxfffffff, shv, tmp;

for(i = 0; i < 4; i++) { // 4 positions to which the
king can jump
tx = x+dx[x%4] [1]; //the i-th position tx
if (tx==prev || tx<=0 || tx>n) continue; // (tx isn't
in the bound) or (tx=prev), the next position
shv=hv; /hv+dist[x] [tx] -dist[x] [Altx]]

shv -= singleH (tx) ;



642 m  Algorithm Design Practice for Collegiate Programming

swap (A[x], Altx]);
shv += singleH (x) ;

tmp = IDA(tx, x, dep+l, shv); //the king jumps from tx
if (solved) return solved; //gain the final formation
swap (A[x], A[tx]);
submxdep=min (submxdep, tmp) ; //adjust the current
minimal number of times
!
return submxdep; //return the current minimal number of
times

1
int main() {
int i, j, Xk, x;

int cases = 0; //the number of test cases
build() ; // Floyd algorithm is used to calculate the
matrix for the length of shortest path gl[ ][ ]
while (scanf ("%d", &n) == 1 && n) // the total number
of jaguar warriors
for(i=1; i<=n; i++) scanf("sd", &A[i]); // the
final formation of the jaguars
printf ("Set %d:\n", ++cases); //output the number
of test cases
int initH = H(); // accumulate the minimal numbers

of times that n-1 jaguars (not the king) jump to initial
positions from final positions

if (initH == 0) puts("0"); //initial formation is
the final formation, the king needn't jump
else {
solved = 0; //initialize the minimal numbers
of times the king jumps
mxdep = initH; //initialize
for(i = 1; 1 <= n; 1i++) 1if(A[i] == 1) x=1;

while (solved==0) mxdep=IDA(x,-1,0,initH) ;
printf ("$d\n", solved) ;

}
}

return O;

9.3 A Game Tree Used to Solve a Game Problem

In holographic, zero-sum, turn-taking, and two-player games, the Game Tree and
the Minimax Algorithm are used to find the best steps.

“Holographic” means the game’s information is clear to two players. For example,
Chinese Chess, Chess, and Weiqi are holographic games.

“Zero-sum” means the sum of interests of two players is 0: cither A defeats B,
B defeats A, or A and B end in a draw.



Practice for State Space Search ® 643

The state space for a game can be represented as a game tree, where nodes rep-
resent states, and edges represent moves between states. The root for a game tree is
the initial state. For a node in a game tree, its children are states generated by next
possible moves. Leaves are goal states for a game.

For two players, “Minimax” means that one player makes a move to maxi-
mize his or her utility, and minimize the utility for his or her opponent. The
Minimax algorithm is to calculate the minimal or maximal value, that is, the
best move, based on the current state. If the size for the game tree isn’t large,
DES can be used to get all possible moves, and to calculate the best move for
the current state. Otherwise, pruning should be used to eliminate some parts of
the tree.

9.3.1 Find the Winning Move

4x4 tic-tac-toe is played on a board with four rows (numbered 0 to 3 from top to
bottom) and four columns (numbered 0 to 3 from left to right). There are two play-
ers, x and o, who move alternately, with x always going first. The game is won by the
first player to get four of his or her pieces on the same row, column, or diagonal. If
the board is full and neither player has won, then the game is a draw.

Assuming that it is x’s turn to move, x is said to have a forced win if x can make
a move such that no matter what moves o makes for the rest of the game, x can win.
This does not necessarily mean that x will win on the very next move, although
that is a possibility. It means that x has a winning strategy that will guarantee an
eventual victory regardless of what o does.

Your job is to write a program that, given a partially completed game with x to
move next, will determine whether x has a forced win. You can assume that each
player has made at least two moves, that the game has not already been won by
either player, and that the board is not full.

Input

The input file contains one or more test cases, followed by a line beginning with a
dollar sign that signals the end of the file. Each test case begins with a line contain-
ing a question mark and is followed by four lines representing the board; format-
ting is exactly as shown in the example. The characters used in a board description
are the period (representing an empty space), lowercase x, and lowercase o.

Output

For each test case, output a line containing the (row, column) position of the first
forced win for x, or ‘##### if there is no forced win. Format the output exactly as
shown in the example.



644 ®m  Algorithm Design Practice for Collegiate Programming

For this problem, the first forced win is determined by board position, not
the number of moves required for victory. Search for a forced win by examining
positions (0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), ..., (3, 2), (3, 3), in that order,
and output the first forced win you find. In the second test case below, note that
x could win immediately by playing at (0, 3) or (2, 0), but playing at (0, 1) will
still ensure victory (although it unnecessarily delays it), and position (0, 1) comes
first.

Sample Input | Sample Output

? HHHHH
(2D

X0.
.OX.

.OX.
XXX
X000

$

Source: University of Valladolid Local Contest

IDs for Online Judges: UVA 10111

There are 16 squares in a 4x4 tic-tac-toe. There are three possibilities: empty, occu-
pied by x, and occupied by o. Therefore, state compression can be used to represent
states. A 16-digit ternary number szze is used to represent a state for a 4x4 tic-tac-toe.
In state, the ix4+j-th digit represents square (7, /):

Analysis

»

If square (4, j) is “x”, then the ix4+j-th digit for state is 1. That is, state
|= TUL<<((x4+/)x2);

If square (7, j) is “0”, then the ix4+j-th digit for szate is 2. That is, state
|= 2UL<<((ix4+/)x2);

If square is “, then the ix4+j-th digit for staze is 0.

For two players, x and o, there are 10 situations for winning a game, respec-
tively: four situations getting four pieces on the same row, four situations getting
four pieces on the same column, and two situations getting four pieces on the



Practice for State Space Search ® 645

same diagonal. For x, 10 situations winning a game are stored in xw([10]. For o,
10 situations winning a game are stored in ow/[10].

Four pieces on the same row or column:

Four pieces on the same row (0sis<3):
for(j = 0; 7 < 4; j++) {

xwl[n] |= 1UL<<((i*4+7)*2); //For x, the
i-th row is 1, x wins the game.
owl[n] |= 2UL<<((i*4+37)*2); //For o, the

i-th row is 1, o wins the game.

n++;

Four pieces on the same column (0<;<3):

for(j = 0; j < 4; Jj++) {

xwl[n] |= 1UL<<((j*4+1)*2); //For x, the
i-th column is 1, x wins the game.
ow[n] |= 2UL<<((j*4+1)*2); //For o, the
i-th column is 1, o wins the game.
}
n++;

Four pieces on the left diagonal:

for(i = 0; 1 < 4; i++) {
xw[n] |= 1UL<< ((i*4+1i)*2); //For x, the left
diagonal is 1, x wins the game.
ow[n] |= 2UL<<((i*4+1)*2); // For o, the left
diagonal is 1, o wins the game.
}
n++;

Four pieces on the right diagonal:

for(i = 0; i < 4; 1i++) {
xw[n] |= 1UL<<((i*4+3-1)%*2); // For x, the
right diagonal is 1, x wins the game.
ow[n] |= 2UL<<((1i*4+3-1)*2); // For o, the
right diagonal is 1, o wins the game.
}
n++;

In order to avoid repeated searches, for each state, a mark R[] is set. If zurn will
win board node, then R[node]=1; else R[node]=0.

Because the size for the board is small, the search depth is limited. Assuming
that it is x’s turn to move, x is said to have a forced win if x can make a move such
that no matter what moves o makes for the rest of the game, x can win.



646 ® Algorithm Design Practice for Collegiate Programming

A recursive function dfs(node, rx, ry, turn) is used to calculate the result for zurn;
where 70de represents the board, initially zodke is a test case; turn: 1 represents x, and
2 represents 0. Obviously, after zurn makes a move, 3-turn makes the next move; initially
turn is 1; (rx, ry) is a position of the forced win; initially (rx, 7y) is (=1,~1). dfs(node, rx, ry,
turn) returns the result for turn. If the result is 0, then turn is defeated; and if the result
is 1, then #urn must win, and the position of the forced win (rx, 7y) is also returned.

dfs(node, rx, ry, turn);
{

if ( board node has appeared before) return R[node];

if (board node is a situation winning a game) return 0 (turn
is defeated) ;

for each empty square(i, j) (0s<i, j<3, node>>((i*4+7)*2))&3==0)

{ dfs(node', rx, ry, 3-turn); //turn selects (i, j), the
new board node':node|(turn<<((i*4+j)*2)), then 3-turn makes
the next move

if (dfs returns 0) //3-turn is defeated, turn wins node'
(i, j) is as the position of the first forced win
(rx, ry);
R[node'l=1; //board node' wins
return 1; //turn wins
}
}
return 0; //turn is defeated

}

o
% Program

#include <stdio.h>
#include <string.h>
#include <map>
using namespace std;

map<unsigned int, ints> R; // mark R[ ], where R[x] is for
board x
unsigned int ow[10] = {}, xw[10] = {}; //xw[10]: 10

situations that x wins the game, ow[10]: 10 situations that o wins
the game
int check (unsigned int node) //the result for board node,
0 undetermined
check (node) = 1 x wins
2 o wins
int 1i;
for(i = 0; 1 < 10; i++) //x wins, return 1



Practice for State Space Search ® 647

if ((node&xw([i]) == xw([i]) return 1;

for(i = 0; 1 < 10; 1i++) // o wins, return 2
if ((node&ow[i]) == ow[i]) return 2;

return 0; //undetermined

}

int dfs(unsigned int node, int &rx, int &ry, unsigned int
turn) { //node is the current board, returns the result for
turn. If the result is 0, then there is no forced win for
turn; else turn must win, and the position of the first forced
win (rx, ry) is also returned

if (R.find(node) !=R.end()) return R[nodel;// board node
has appeared before

int f=check (node) ; //1f board node can determine the
result, return O

if (f) return 0;

int i, j;
int &ret = R[node];
for(i = 0; 1 < 4; i++) { //From top to down, from left

to right, search empty square

for(j = 0; J < 4; j++) {

if ((node>>((i*4+3j)*2))&3) continue;//if (i, j) isn't
empty, continue to search; else turn makes a move at (i, j),

new board node| (turn<<((i*4+3j)*2)), 3-turn makes the next move

f = dfs(node| (turn<<((i*4+j)*2)), rx, ry, 3-turn); // new
board

if (f == 0) { // if in new board turn
wins, (i, j) is the position of the first forced win

rx = 1i, ry = j;

ret = 1;

return 1; //return the mark that turn wins

!
}
!
return 0; // return the mark that turn is defeated
1
int main() {
char end[10], g[10] [10];

int i, j, n = 0;
//%x->1, o0->2
for(i = 0; 1 < 4; i++) { //4 situations getting pieces

on the same row, 4 situations getting pieces on the same
column
for(j = 0; 3 < 4; j++) {

xw[n] |= 1UL<<((i*4+3)*2); //For x, the i-th
row is 1, x wins the game.
ow[n] |= 2UL<<((i*4+73)*2); // For o, the i-th

row is 1, o wins the game.

}

n++;
for(j = 0; J < 4; j++) {



648 ®  Algorithm Design Practice for Collegiate Programming

xw[n] |= 1UL<<((j*4+1i)*2); // For x, the i-th
column is 1, x wins the game.
ow[n] |= 2UL<<((j*4+1)*2); // For o, the i-th

column is 1, o wins the game.

}

n++;
1
for(i = 0; 1 < 4; i++) { // left diagonal
xw[n] |= 1UL<<((i*4+1i)*2); // For x, the left
diagonal is 1, x wins the game.
ow[n] |= 2UL<<((i*4+1)*2); // For o, the left

diagonal is 1, o wins the game.

}

n++;
for(i = 0; i < 4; i++) { // right diagonal
xw[n] |= 1UL<<((i*4+3-1)*2); // For x, the right
diagonal is 1, x wins the game.
ow[n] |= 2UL<<((i*4+3-1)*2); // For o, the right
diagonal is 1, o wins the game.
1
n++;
while (scanf ("%s", end)==1) { //Input test cases until
end mark "$"
if (end[0] == 'S$') break;
for(i = 0; i < 4; i++) scanf ("$s", glil); //4 rows
unsigned int state = 0; // initial state 0
for(i = 0; i < 4; i++) { //From top to down, and

from left to right construct the initial state

for(j = 0; j < 4; j++) {
if(glil (4] == '.") {} //(i, F) is ".", then
omit
else if (g[i]l [§] == 'x'") //if (i, 7) is "x",
then the i*4+j-th digit for state is 1
state |= 1UL<<((i*4+j)*2);
else // if (i, j) is "o", then the i*4+j-th
digit for state is 2
state |= 2UL<< ((1i*4+3)*2);
!
1
int rx = -1, ry = -1; // initialize the position of

the first forced win for x
int £ = dfs(state, rx, ry, 1);

if (f == 0) //no forced win for x
puts ("##H#H#") ;
else
printf (" (%d, %$d) \n", rx, ry); // the position of
the first forced win for x (rx, ry)
}
return 0;



Practice for State Space Search ® 649

MAX nodes

e o o @3 MIN nodes

Values for the

S U9 @9 MAX nodes . .
evaluation function

MAX nodes (A) MIN nodes (B) in a game tree

Figure 9.8

There are some games whose search depths are larger. Therefore, we need to
restrict the search. For the current state, a score is evaluated. The method for evalu-
ating such scores is called an evaluation function. Suppose there are two players A
and B for a game. A makes the first move. In the game tree, nodes that specify A’s
moves are called “MAX nodes”, for A always moves to a state with the maximum
score. And nodes that specify B’s moves are called “MIN nodes”, for B always
moves to a state with the minimum score. That is to say, both A and B play opti-
mally (Figure 9.8).

In order to get the result more quickly, a kind of heuristic method, called 0—f3
(alpha-beta) pruning, is used in DFS in a game tree.

For a MAX node in the game tree, the value of the best choice (i.e., the maxi-
mum score) is obtained from leaves through DFS, called the value of o..

For a MIN node in the game tree, the value of the best choice (i.c., the mini-
mum score) is obtained from leaves through DFS, called the value of .

The DFS updates values of o and value of B as it goes along and prunes remain-
ing branches at a node as soon as the value of the current node is known to be worse
than the current o or 3 value for MAX node or MIN node respectively.

o pruning: When DES is used in a game tree, the score from leaves in the
leftmost branch to a MAX node A is denoted as o.. And the score o is as the lower
bound for A’s score.

Then DFS is used for other children for A. If after a round (two moves), a score
is lower than o, the corresponding branch (the subtree whose root is the child
for A) is pruned [Figure 9.9(a)]. In Figure 9.9(b), scores are in an ascending order
from left to right, and no branch is pruned.

MAX nodes 4 \ MAX nodes
4

MIN nodes e‘/. .

MAX nodes [S][8][4][6][2][ JBI[I[]
(@) (b)

Figure 9.9



650 m Algorithm Design Practice for Collegiate Programming

Pruning

MIN nodes Best Pruning MIN nodes

MAX nodes

MIN nodes

Figure 9.10

f pruning: By the same reason, the score from leaves in the leftmost branch
to a MIN node B is denoted as B. Obviously, the score B is as the upper bound for
B’s score.

Then DEFS is used for other children for B. If after a round (two moves), a score
is higher than B, the corresponding branch (the subtree whose root is the child
for B) is pruned. See Figure 9.10.

9.3.2 The Pawn Chess

Consider the following mini-version of chess: We have a 4x4 chessboard, with four
white pawns on the first rank (bottom line in the input) and four black pawns on
the last rank. The goal is for the player to get one of his pawns to the other end of
the board (last rank for the white player, first rank for the black player), or to stale-
mate his opponent. A player is stalemated if he has no legal moves when it’s his turn
to move (this includes having no pawns left).

The pawns move as in ordinary chess, except that they can never move two
steps. That is, a pawn may move one step forward (toward the opposite rank),
assuming that this square is empty. A pawn can also capture a pawn of the oppo-
site color if it’s one step ahead and to the left or right. Captured pieces are removed
from the game.

Given the position of the pawns on a chessboard, determine who will win the
game, assuming both players play optimally. You should also determine the num-
ber of moves the game will last before it’s decided (assuming the player who will
win tries to win as fast as possible and the player to lose will lose as slowly as pos-
sible). It will always be white’s turn to move from the given position.

Input

The first line in the input contains the number of test cases (at most 50). Each
case contains four lines describing the chessboard, preceded by a blank line. The
first of the four lines will be the last rank of the chessboard (the starting point for
the black pawns). Black pawns will be denoted with a ‘p’, white pawns with a ‘P’
and empty squares with a . There will be between one and four pawns of each
color. The initial position will not be a final game position, and white will always



Practice for State Space Search ® 651

have at least one legal move. Note that the input position may not necessarily be
one that could have arisen from legal play from the games starting position.

Output

For each test case, output a line containing the text white (xx) if white will
win, or black (xx) if black will win. Replace xx with the number of moves
(which will always be an odd number if white wins and an even number if
black wins).

Sample Input | Sample Output

2 white (7)
.ppp black (2)

PPP

pP.P
..P

Source: ACM ICPC World Finals Warmup 2 (2004-2005)
IDs for Online Judges: UVA 10838

Analysis
The problem requires you to calculate the winner and its number of moves. It
is a game problem. And 0—f (alpha-beta) pruning is used to improve the search
efficiency.

DES is used to construct a game tree, where nodes represent states for the 4x4
chessboard, and the root is the input test case. Goal states, that is, leaves, are states
that one player uses to get one of his pawns to the other end of the board (last rank
for the white player, first rank for the black player), or to stalemate his opponent.
Middle games are internal nodes.

The level number for the root of the game tree is depth=36. As it moves
down one level, ——depth. At even levels, it is white’s turn to move. And at
odd levels, it is black’s turn to move. The game tree is constructed top-down.
Based on game theory, at even levels, states of the maximum score should be
calculated; and at odd levels, states of the minimum score should be calculated.
Suppose



652 m  Algorithm Design Practice for Collegiate Programming

alpha(v) is the maximum number of moves for white from v to leaves. That
is, alpha(v)=max e, s tidren {the number of moves from # to leafs}. The initial

value for alpha is —9999.
beta(v) is the minimum number of moves for black from » to leaves.
beta(v)=min, e, dildwen {the number of moves from u to leafs}. The initial value

for beta is 9999.

The value of alpha (or the value of beta) for each node is gotten from leaves.
Therefore, when it is white’s turn to move, return the value of @/pha for the internal
nodes; and return —depth for leaves. And when it is black’s turn to move, return the
value of beta for internal nodes; and return depth for leaves.

During the process calculating alpha(v) and beta(v), if for a parent node v,
alpha(v) is calculated; for its children, the minimal beza is calculated. If # is a child
for v, beta(u) is p; and ' is another child for v; #" is a child for #', and return g<p,
then the subtree whose root is #' can be pruned.

Repeat the process until a goal state is reached.

If the recursion result is a positive number, white wins, and the number of
moves is 36 — the recursion result. And if the recursion result is a negative number,
black wins, and the number of moves is 36 + the recursion result.

o
% Program

#include <stdio.h>
#include <algorithms>
using namespace std;

struct state { // the chessboard
char gl[4] [5]; // the chessboard
int isEnd() { // 1f the chessboard is the final state,

return 1; else return 0

int b = 0, w = 0;

for (int i = 0; 1 < 4; i++) { //the number of white w
and the number of black b

for (int j = 0; J < 4; j++) |
if (glil[j] == 'p') b++;
if (gli] [J] == 'P') w++;
}
}
if (b == 0 || w == 0) return 1; // having no pawns
left, return 1
for (int i = 0; i < 4; i++) { // get one of his pawns

to the other end of the board, return 1
if (glo] [i] == 'P') return 1;



Practice for State Space Search ® 653

if (gl3][i] == 'p') return 1;
}
return 0; //else return O
}
}i
int alpha beta(state board, int depth, int alpha,int beta) { //the
current state for the chessboard board, level depth, alpha and
beta is as the definition
if (board.isEnd())return depth%2==0 ?-depth:depth; //if

the current state for the chessboard is a final state, if
depth is even (white) return -depth; else (black) return depth

int movable = 0; //initialize the moveable sign
if (depth% 2 == 0) { // it is white's turn to move
for (int i = 1; i < 4; i++) | // each pawn's position

is searched
for (int j = 0; J < 4; j++) {

if (board.glil [j] == 'P') { // at (i, j) there is a 'P'
for (int k = j - 1; k <= J + 1; k++) { //3 moveable
positions for (i, j) are searched
if (k < 0 || k »= 4) continue; // the position is
out of the chessboard
if ((k !'= j && board.gli-1][k] == 'p") || (k == j &&
board.gli-1]1[k] == '.")) {
state s=board; // new state for chessboard s: (i, 7J)
is empty, 'p' is moved to (i-1, k)
s.glil[j]1 = '.', s.gli-11[k] = 'P';

alpha=max(alpha,alpha beta(s,depth-1,alpha,beta));
// recursion, calculate alpha
if (beta<=alpha) return alpha;

movable = 1; // the sign for move
!
}
!
}
1
if (!movable)return -depth; // leaf (white has no legal
moves), return -depth
return alpha; //return alpha
} else { // it is black's turn to move
for (int i = 0; i < 3; i++) { //each pawn's

position is searched
for (int j = 0; J < 4; j++) {

if (board.gl[i] [§] == 'p') { //at (i, j) there is a 'p'
for (int k=j-1; k<=j+1; k++) { //3 moveable
positions for (i, j) are searched
if (k < 0 || k >= 4)continue; //the position is
out of the chessboard
if ((k != j && board.gl[i+1][k] == 'P') || (k == § &&

board.g[i+1] [k] == '."')) {



654 m  Algorithm Design Practice for Collegiate Programming

state s=board; //new state for chessboard s: (i, 7)
is empty, ‘p’ is moved to (i+l, k)
s.glil[j] = '.', s.gli+1]1 (k] = '"p';

beta=min (beta,alpha beta(s,depth-1,alpha,beta)) ;
//recursion, calculate beta

if (beta <= alpha) return beta;

movable = 1; //the sign for move

}
}
}
}

if (!movable) return depth; //leaf (black has no legal
moves), return depth
return beta; //return beta

}

!

int main() {
int testcase;

scanf ("%d", &testcase); //number of test cases
while (testcase--) ({
state init; //initial chessboard
for (int i = 0; 1 < 4; i++) scanf("%s", init.gl[il]);
int ret = alpha beta(init, 36, -9999, 9999);
if (ret >= 0) printf("white (%d)\n", 36-ret); // the
number of moves (white wins)
else printf ("black (%d)\n", 36+ret); // the number
of moves (black wins)
!
return O0;

}

9.4 Problems
9.4.1 The Most Distant State

The 8puzzle is a square tray in which eight square tiles are placed. The remain-
ing ninth square is uncovered. Each tile has a number on it. A tile that is
adjacent to the blank space can be slid into that space. A game consists of a
starting state and a specified goal state. The starting state can be transformed
into the goal state by sliding (moving) the tiles around. The 8puzzle problem
asks you to do the transformation in a minimum number of moves, as shown
in Figure 9.11.

However, our current problem is a bit different. In this problem, given an
initial state of the puzzle, you are asked to discover a goal state which is the most
distant (in terms of number of moves) of all the states reachable from the given
state.



Practice for State Space Search ® 655

2 8 3 1 2
6 4 = 8
7 5 7 6
Start Goal
Figure 9.11
Input

The first line of the input file contains an integer representing the number of test
cases to follow. A blank line follows this line.

Each test case consists of three lines of three integers each, representing the
initial state of the puzzle. The blank space is represented by a 0 (zero). A blank line
follows each test case.

Output

For each test case, first output the puzzle number. The next three lines will contain
three integers each representing one of the most distant states reachable from the
given state. The next line will contain the shortest sequence of moves that will trans-
form the given state to that state. The move is actually the movement of the blank
space represented by four directions : U (Up), L (Left), D (Down), and R (Righc).
After each test case, output an empty line.

Sample Input | Sample Output

1 Puzzle #1
264 815
137 736
058 402

UURDDRULLURRDLLDRRULULDDRUULDDR

Source: BUET/UVA World Finals Warm-up
ID for Online Judge: UVA 10085

“§ Hint

The problem is a special 8-puzzle. Normally the 8-puzzle requires you to calcu-
late the minimum number of moves from a starting state to a goal state. In this
problem, there is a starting state, but there isn’t a specified goal state. You need to
discover a goal state which is the most distant (in terms of number of moves) of all
the states reachable from the starting state.



656 ® Algorithm Design Practice for Collegiate Programming

Normally the 8-puzzle is solved by BES. In this problem, a while repetition ends
when the queue is empty, to guarantee that the most distant of all the states reach-
able from the starting state can be calculated.

A queue ¢ is used to store states. The type for a state is szruct, including: a state
for the current nine squares c/[3][3], represented as a nine-digit novenary number;
the position for the square containing 0 (x, y); and the sequence of moves that trans-
forms from the starting state to the current state sz7;

Suppose m|[] is used to show whether a state has been visited or not. That is,

1 state p has appeared before

= e be defined <l
i) 0  state p hasn’t appeared before can be delined as Map=iong

long,ine> m;
Function hash(p) is used to determine whether a state has visited or not.

int hash(p) {
long long cnt, k;

cnt=k=0;
for (int 1=0; i<N; 1i++)) // calculate the value cnt for
state p
for(int j=0; j<N; j++) cnt+=p.ch[i] [j]l*pow(9, k++);
if (!mlent]) | //if cnt hasn't appeared
mlcnt]=1;
return 1;
!
return 0;

BES is used to solve the problem.

void bfs() {
initial state st is pushed into the queue g;
while (g isn't empty) {
the front st is poped from the queue;
Four directions are enumerated (0s=is<3):
{
Calculate the position (x1, yl) which the blank space can
be slid into from (st.x, st.y) in direction 1i;
if ((x1, yl) is out of the puzzle) continue;
stl=st; //new state stil
stl.chlstl.x] [stl.yl=stl.ch[x1] [y1l]; stl.ch[x1] [y1]=0;
stl.x=x1; stl.y=yl;
stl.str+= the character for direction 1i;

if (hash(stl)) qg.push(stl); //if stl hasn't been
visited, push stl into the queue
}

}
}



Practice for State Space Search ®™ 657

Figure 9.12
The main program is as follows:

1. Initialization;
m.clear();
st.str is empty;
Set st visited mark (hash(s?));
2. bfs(): search all reachable states;
3. For the last state sz removed from the queue, output sz.ch[3][3] and sz.szr.

9.4.2 15-Puzzle Problem

The 15-puzzle is a very popular game; even if you don’t know it by that name,
you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to
15 on it, and all packed into a 4x4 frame with one tile missing. The object of the
puzzle is to arrange the tiles so that they are ordered as shown in Figure 9.12.

Here the only legal operation is to exchange a missing tile with one of the tiles
with which it shares an edge. As an example, in Figure 9.13, the following sequence
of moves changes the status of a puzzle.

The letters in the previous row indicate which neighbor of the missing tile is
swapped with it at each step; legal values are ‘R, ‘L, ‘U’, and ‘D’, for “RIGHT”,
“LEFT”, “UP”, and “DOWN?, respectively.

A random puzzle position The missing Tile moves The missing Tile moves The missing Tile moves
to right. Denoted by R. upwards. Denoted by U. to the left. Denoted by L.

Figure 9.13



658 ®  Algorithm Design Practice for Collegiate Programming

Given an initial configuration of a 15-puzzle, you will have to determine the
steps that would make you reach the final stage. The input for 15-puzzles requires
at most 45 steps to be solved with our judge solution. So you will not be allowed
to use more than 50 steps to solve a puzzle. If the given initial configuration is not
solvable, you just need to print the line “This puzzle is not solvable.”

Input

The first line of the input contains one integer N, which indicates how many sets of
puzzles will be given as input. The next 4V lines contain /V sets of inputs. It means
four lines make one set of input. Zero denotes the missing tile.

Output

For each set of input, you will have to give one line of output. If the input puzzle is
not solvable, then print the line “This puzzle is not solvable.” If the puzzle is solv-
able, then print the move sequence as described above to solve the puzzle.

Sample Input | Sample Output

2 LLLDRDRDR

2340 This puzzle is not solvable.
1578
96 10 12
13 14 11 15
13124
5037
96 10 12
15 8 11 14

Source: 2001 Regionals Warmup Contest
ID for Online Judge: UVA 10181

\% Hint

The initial state is 16 sliding tiles, numbered from 0 to 15, are packed into a 4x4
frame. (The tile numbered 0 means there is no tile at the position). The goal state is
as shown in Figure 9.12. Only the tile numbered 0 can be exchanged with the tile
with which it shares an edge. It can be regarded as the tile moving horizontally or
vertically. The problem requires you to calculate the steps from the initial state to
the goal state.

Tiles’ positions are also numbered from 0 to 15. A position (x, y)=(p/4, p%4),
0<p<15.



Practice for State Space Search ® 659

First, we determine whether a puzzle is solvable or not.

If the title numbered 0 is moved horizontally, the sequence for the other 15
numbers can’t be changed. And if the tile number 0 is moved vertically, the inverse
number’s parity for the sequence for other 15 numbers will be changed (+-3 or
+-1). And the tile numbered 0 should be moved to the lower right corner. If a
puzzle is solvable, the parity for the inverse number for the sequence for 15 numbers
plus the number of rows at which the title numbered 0 is the same as the parity for
the inverse number for the sequence for 15 numbers in the goal state. The inverse
number for the sequence for 15 numbers in the goal state is an even.

Therefore, if the inverse number for the sequence for 15 numbers plus the num-
ber of rows at which the tile numbered 0 is an even, the puzzle is solvable; else the
puzzle is not solvable.

For example, in Figure 9.14, the tile numbered 0 is at the end of the fourth row.
The first tile is numbered 13, and the number of tiles whose number is less than 13
after the first title is 12. The first tile is denoted as 12(13). The second tile is num-
bered 10, and the number of tiles whose number is less than 10 after the second title
is 9. The second title is denoted as 9(10). Similarly, other titles are denoted as 9(11),
5(6), 4(5), 4(7), 3(4), 3(8), 0(1), 3(12), 3(14), 2(9), 1(3), 1(15), and 0(2).

The inverse number for the sequence for 15 numbers is 124+9+9+5+4+4+3+3+
04+3+3+2+14+14+0=59. Because 59+4=063 is an odd, this puzzle is not solvable.

The function to determine whether a puzzle is solvable or not is as follows:

bool solvable ( ) //Whether the puzzle is solvable or not
{
int cnt = 0;
for (int 1 = 0; 1 < 16; ++1){ //each position
if (puzli]l==0) cnt+=3-1/4; // the row at which the
title numbered 0 is (puz[i]; the number at poistion i)
elsef

for (int j=0; j<i; ++3j) // inverse number
if (puzlj] && puzl[jl > puzl[i]l) cnt++;

return ! (cnté&l) ; //even, return true; else return false

There are three algorithms for solving the problem.

13110 |11 |6
517 |4 |8
1 12 114 |9
3 1512 |0

Figure 9.14



660 ® Algorithm Design Practice for Collegiate Programming

Solution 1. DFS Algorithm
In DES, there may be many produced states. The maximal search depth
should be fixed. The input 15-puzzles requires at most 45 steps to be solved
with our judge solution. Therefore the maximal search depth can be set to 50.
The key to DFS is to determine efliciently whether a state has been visited
or not. In this problem, a state is represented as a hexadecimal number. A tile
is represented as a digit for the hexadecimal number. All tiles are sorted from
left to right and from top to bottom. For example, Figure 9.14 is represented
as a hexadecimal number:

13X16°+10x16"4+11x16+6x16"4+5%x 16 +7x16'+4x16”+8%x16°
+1X167+12X16°+14X16°+9x164+3X16°+15%16%+2x16'+0x16°
=(DABG657481CE93F20),,=(15759879913263939360),,.

If two states’ values are same, the two states are same. Hash technology is
used to determine whether two states are same or not.

For this problem, the DFS algorithm is as follows, where pazh[] is the
sequence for steps moving the tile whose number is 0.

void dfs(p, d) // p is the position for the tile whose
number is 0, and the state with search depth d

{

if (d>50) return fail;

if (puz[] is the goal state) output path[] and return;
(x, y) is the position for the title whose number is 0;
4 directions are enumerated (0si<3):

{

(x', y') is the new position for the title whose

number is 0 moving in direction i and p' is the position
value;

if ((x', y') is in the puzzle) {
puz[pl and puz[p'l are exchanged;
Calculate the state value s for puz[] and the hash

function h(s);

if ( in hash table hashl[h(s)] there is no state

whose value is s) {

step

path[dl= the value for direction i; //the
value for the dth step

dfs(p', d+1,); //recursion for the next

puzl[p]l and puz[p']l are exchanged; //the

state before the recursion

path[d] = * ;
!
}
}



Practice for State Space Search ® 661

The main program is as follows:

Input the initial state for the puzzle puz[], and
calculate the position value p for the title whose number is 0;
if (solvable()) dfs(p, 0); //if the puzzle is
solvable
else output "This puzzle is not solvable.";

Solution 2. BFS Algorithm
BES is to try to find a shortest path. If there exists a path from the initial state
to the goal state, BES can find the shortest path from the initial state to the goal
state. The difference between DFS and BFS is that DES uses the system stack (the
stack in a recursion) to store visited states, and BES uses a queue to store visited
states.

For this problem, the BES algorithm is as follows, where cA[][] represents
states for the puzzle, (x, y) is the position for the title whose number is 0, and szr
is the move sequence.

The initial state st: the input puzzle st.chl[][], the
initial position for the title whose number is 0 (st.x,
st.y), and st.str=' ';

if (the puzzle isn't solvable) output "This puzzle is not
solvable.";

else {
st is added into g;
while(g isn't empty) {
the front st for g is removed;
if (st is the goal state){ output st.str;
break;};

Four directions are enumerated (0sis<3):

{

the title whose number is 0 moves to (x1, y1)
from (st.x, st.y) in direction i;

if ((x1, yl) is out of the puzzle) continue;

stl=st; //new state stl

stl.ch[stl.x] [stl.y]l=stl.ch[x1] [y1l];
stl.ch([x1] [y1]1=0;

stl.x=x1; stl.y=yl;

stl.str+= the value representing direction i;

if (there is no state st in the hash table)
stl is added into the hash table and g;

}
}
}
When the number of steps is less than 15, BES and DFS can get the solution

to the problem quickly. As the number of steps increases, the spent time and
memory for BFS and DFS will increase.



662 m Algorithm Design Practice for Collegiate Programming

Solution 3: IDA* Algorithm
1. Heuristic Function

In this problem, the heuristic function is used to restrain the search depth.
The heuristic function f *(n)=g*(n)+h*(n), where g*(n) is the minimal number
of steps moving from the initial puzzle to the current puzzle 7; 4 (%) is the
minimal number of steps moving from the current puzzle # to the goal puzzle;
that is, the sum of Manhattan Distances from all numbers’ current positions

to their goal positions. The function 4 () is as follows:

int h( )
{
int s = 0;
for (int 1 = 0; 1 < 16; ++1){ //each position is
enumerated
x 1s the number at position 1i;
if (x == 0) continue;

s+= abs(i/4 - the row number for x in the goal

state) +abs (i%4 - the column number for x in the goal state);

}

return s;

}

2. Determine whether the current puzzle is solvable or not under the limited

search depth.

There is no function to determine repetitions in the IDA* algorithm. In

IDA* algorithm, each search step can’t move in the opposite direction.

The Boolean function dfs( p, pre, g, maxd) is used to determine whether
the current puzzle is solvable or not under the limited search depth, where p
is the position for the title whose number is 0, pre: the last moving direction,

g is the current search depth, and maxd is the limit for the search depth.

bool dfs(p, pre, g, maxd)

{

if (g+h() >maxd) return false; //the search depth
will exceed the limit
if (g == maxd) //the search depth reaches the

limit, return the comparison result for the current and
the goal puzzle

return memcmp (the current puzzle, the goal
puzzle, sizeof(the goal puzzle))==0;

calculate the position (x, y) for the tile whose
number is 0, that is x=p/4, y=p%4
Four directions are enumerated (0s7j=<3):

If (pre+j==3) continue; //j is the opposite
direction for the previous move (x', y') is the new
position for the tile whose number is 0 in direction j
and its position value is p';



Practice for State Space Search ® 663

if ((x', y') in the puzzle)

the number at position p and the number at
position p' are exchanged;

pathlgl= the character for direction j; //the
character for the gth step

if (dfs(p', j, g+1, maxd))return true; //if the
puzzle is solvable

the number at position p and the number at

position p' are exchanged; //recovering the state
before the recursion

return false;

}

3. The main program.
The above function dfs(p, pre, g, maxd) is the kernel program for the IDA*
algorithm. Based on that, the main program is as follows:

A puzzle is input, and the position value p for the title
whose number is 0;
if (solvable()) {

int maxd = 0; //initialize the
search depth

for(;!dfs(p,-1,0,maxd); ++maxd); //find
the solution as the search depth increases

path[maxd] =0,

output the move sequence pathl[];

}

else output "This puzzle is not solvable.";

The IDA* algorithm is more efficient than DES or BES.

9.4.3 Addition Chains

An addition chain for 7 is an integer sequence <4, ai, 45, ..., 4,,> with the following
four properties:

ap=1

a,=n

a<a<a<..<a, <a,,

For each £ (1<<m) there exist two (not necessarily different) integers i and
7 (0<i, j<k-1) with y=a+a;

You are given an integer 7. Your job is to construct an addition chain for 7 with
minimal length. If there is more than one such sequence, any one is acceptable.



664 ®  Algorithm Design Practice for Collegiate Programming

For example, <1,2,3,5> and <1,2,4,5> are both valid solutions when you are
asked for an addition chain for 5.

Input

The input file will contain one or more test cases. Each test case consists of one line
containing one integer 7 (1<72<100). Input is terminated by a value of zero (0) for 7.

Output

For each test case, print one line containing the required integer sequence. Separate
the numbers by one blank.

\% Hint

The problem is a little time-critical, so use proper break conditions where necessary
to reduce the search space.

Sample Input | Sample Output

5 1245

7 12467

12 124812

15 12451015

77 1248917 34 68 77
0

Source: Ulm Local Contest 1997
IDs for Online Judges: POJ 2248, UVA 529

“g Hint

Given an integer 7, the problem requires you to construct an addition chain for 7
with minimal length.

Obviously, it is inefficient that only DFS is used. IDA" (DFS + pruning) is
used to solve the problem. Suppose best is the current length of the addition chain.
Initially best=co. In array d[], 4[] is the maximal number of integers that can be
added into the addition chain after integer .

The addition chain is constructed from #y=1. In order to make the length of the
addition chain minimal, each time the maximum that can be added into is



Practice for State Space Search ® 665

considered first. That is, if the length of the addition chain is 441, and the current
maximum in the addition chain is 4, then the possible maximum for a4 is
atay=2a,. Therefore, the upper limit for the length of the addition chain after 4, is

. . 0 n<i<2*n
extended is k+d[a]. Therefore, d[i]= 1+4d[2%i] 1<i<n-1

The IDA* process solving the problem is as follows:

void DFS (k) //extend the addition chain from alk]
{
if (k+dlalk]]>=best) return; //The minimal addition
chain can't be generated from alk], backtracking
if (alk]==n) // The addition chain is generated
{
best = k;
al[lis stored in bl[]; ;
return;
1
for (i=k; 1i>=0; 1--) //Enumerate each pair of al[i] and

aljl from alk] to al0]
for (j=k; j>=1i; j--)
{

alk+ll=alil+aljl; // alk+1] is the sum of ali] and alj]
if (alk+l]l>alk] && alk+ll<=n) DFS(k+1); //if alk+1]
meets requirements, the addition chain is extended from alk+1]

}
}
The main program is as follows:

d[] is constructed;
best =w; al0] = 1;
DFS(0) ; // the addition chain is extended from al0]
Output b[0]..b[best];

9.4.4 Bombs! No, They Are Mines!!

It’s the year 3002. The robots of “ROBOTS ‘R US (R:US)” have taken control
over the world. You are one of the few people who remain alive only to act as their
guinea pigs. From time to time, the robots use you to find if they have been able to
become more intelligent. You, being the smart guy, have always been successful in
proving to be more intelligent.

Today is your big day. If you can beat the fastest robot in the IRQ2003 land,
you'd be free. These robots are intelligent. However, they have not been able to
overcome a major deficiency in their physical design—they can only move in four
directions: Forward, Backward, Upward, and Downward. And they take one unit



666 ® Algorithm Design Practice for Collegiate Programming

of time to travel one unit of distance. As you have only one chance, you're planning
it thoroughly. The robots have left one of the fastest robots to guard you. You’d need
to program another robot which would carry you through the rugged terrain. A
crucial part of your plan requires you to find how much time the guard robot would
need to reach your destination. If you can beat him, you’re through. See Figure 9.15.

We must warn you that the IRQ2003 land is not a pleasant place to roam. The
R:US have dropped numerous bombs while they invaded the human land. Most
of the bombs have exploded. Still some of the bombs remain, acting as land mines.
We have managed to get a map that shows the unsafe regions of the IRQ2003 land;
unfortunately your guard has a copy of the map, too. We know that at most 40 percent
of the area can be unsafe. If you are to beat your guard, you’d have to find his fastest
route long before he finds it.

Input

Input consists of several test cases. Each test begins with two integers R (1SR<1000),
C (1=C<1000)—they give you the total number of rows and columns in the grid
map of the land. Then follow the grid locations of the bombs. It starts with the
number of rows, (0<rows<R) containing bombs. For each of the rows, you’d have
one line of input. These lines start with the row number, followed by the number
of bombs in that row. Then you’d have the column locations of that many bombs
in that row. The test case ends with the starting location (row, column) followed by
your destination (row, column). All the points in the region are in the range (0,0)
to (R—1, C-1). Input ends with a test case where R=0 and C=0, and you must not
process this test case.

S

Sample input scenario
S: source, D: destination

Figure 9.15



Practice for State Space Search ® 667

Output

For each test case, print the time the guard robot would take to go from the starting
location to the destination.

Sample Input | Sample Output
10 10 18
9

012

112

2229

3217
53369
640127
73038

8279

93234

00

99

00

Source: UVA Local and May Monthly Contest (2004)
ID for Online Judge: UVA 10653

“g Hint

Given an RXC grid map of the land, a robot can only move in four directions:
Forward, Backward, Upward, and Downward. There are bombs in some grids and
the robot can’t move into the grids. The problem requires you to calculate the short-
est path from the starting location to the destination.

BES is used to calculate the shortest path. A state is represented as (x, ¥, 5), where
your current location is (x, y), and the distance from the starting location to (x, y)
is 5; and the visited sequence is represented as Vist[][], where Vist[x][y] is the mark
that (x, y) is visited.

The process for BES is as follows:

The initial state (the starting location, 0) is added into
the queue;
Vist [the starting location]=1;
while (the queue isn't empty) {
The front for the queue p is removed from the queue;
4 directions are enumerated (0sis<3):



668 ® Algorithm Design Practice for Collegiate Programming

{ a new state g is generated: the new location (g.x,
qg.y) and the distance g.s(=p.s+l);
if ((g.x, g.y) is in the grid map)&&(! Vist[qg.x] [g.y])&&( there
is no bomb at (g.x, g.y)){
Vistlqg.x] [q.y]l=1;
The new state g is added into the queue;

}

if ((g.x,qg.y) is the destination) return g.s;

9.4.5 Jugs

In the movie “Die Hard 3”, Bruce Willis and Samuel L. Jackson were confronted
with the following puzzle. They were given a three-gallon jug and a five-gallon jug
and were asked to fill the five-gallon jug with exactly four gallons. This problem
generalizes that puzzle.

You have two jugs, 4 and B, and an infinite supply of water. There are three
types of actions that you can use: (1) you can fill a jug, (2) you can empty a jug,
and (3) you can pour from one jug to the other. Pouring from one jug to the other
stops when the first jug is empty or the second jug is full, whichever comes first. For
example, if A has five gallons and B has six gallons and a capacity of eight gallons,
then pouring from A to B leaves B full and three gallons in A.

A problem is given by a triple (Ca, Cb, N), where Ca and Cb are the capacities
of the jugs A and B, respectively, and NV is the goal. A solution is a sequence of steps
that leaves exactly N gallons in jug B. The possible steps are

fill A
fill B
empty A
empty B
pour A B
pour B A
success

where “pour A B” means “pour the contents of jug A into jug B”, and “success”
means that the goal has been accomplished.
You may assume that the input you are given does have a solution.

Input

Input to your program consists of a series of input lines each defining one puzzle.
Input for each puzzle is a single line of three positive integers: Ca, Cb, and N.
Ca and Cb are the capacities of jugs A and B, and NV is the goal. You can assume
0<Ca<Cbh and NSCb<1000 and that 4 and B are relatively prime to one another.



Practice for State Space Search ® 669

Output

Output from your program will consist of a series of instructions from the list of the
potential output lines which will result in cither of the jugs containing exactly N gallons
of water. The last line of output for each puzzle should be the line “success”. Output lines
start in column 1 and there should be no empty lines nor any trailing spaces.

Sample Input Sample Output

354 fill B
573 pour B A
empty A
pour B A
fill B
pour B A
success
fill A
pour AB
fill A
pour AB
empty B
pour AB
success

Source: ACM South Central USA 1997
ID for Online Judges: POJ 1606, UVA 571

“g Hint

There are two methods to solve the problem.

Solution 1. Mathematic method.

An equation ax-by=c is used to represent the problem, where 2 and 4 are the

capacities of the jugs A and B respectively; x and y are the numbers pouring

water to jugs A and B respectively; and finally ¢ gallons of water is left in jug B.
Each time, first water is poured into the jug with small capacity. Then water

is poured into the jug with larger capacity. The solution with minimum integers

is the solution to the problem. The equation can be solved by simulation.

Initially the two jugs A and B are empty;
while (water in jug B isn't N gallons)
{

if (jug B is full){

empty jug B;



670 ® Algorithm Design Practice for Collegiate Programming

Output "empty B";

}

else 1f (jug A is empty)
{
£fill jug A;
output "fill A";

}

else

{

pour water from jug A to jug B;
jug A is empty;
if (water in jug B is more than its capacity)

{

extra water is poured into jug A;
jug B is full;

Output "pour A B";

}

Output "success";

}

Solution 2. BFS
1. The struct for a vertex p includes:

A state (a, b, opr); where p.a and p.b are the current amount of water in
jug A and jug B respectively, and p.gpr are six actions numbered 0~5,
and represent “fill A7, “fill B”, “empty A”, “empty B”, “pour A B”, and
“pour B A” respectively;

A precursor pointer p.pre pointing to the state generating p. When the
goal state (4, 7, opr) is reached, a series of instructions can be output

through p.pre:

void Outpath (p) ;

{
if (p.pre != NULL) Outpath(* (p.pre)) ;
output the instruction whose index is p.opr;

}

@ The visited mark vis[][], where vis[4][6] shows the state that there are 2 gal-
lons and 4 gallons water in jug A and jug B respectively has been visited;
2. States are added into the queue:
Push (&t, b, a, b, opr) is used to add the state (2, &, gpr) into the queue,
where ¢ is the pointer pointing to the rear, 4 is the pointer pointing to the
front, and vis[][6]=1, t++.
3. BES is used to calculate a series of instructions



Practice for State Space Search ® 671

The initial state p (p.a=p.b=0, p.opr=-1) is added into the
queue, and the precursor pointer p.pre is set as empty, vis[O0]
[0] = 1;

while (the queue isn't empty)

{
p is the front for the queue;
if (p.b==n)
{
Outpath (p) //output the series of instructions
output "success";
return;
}
if (!visl[cal [p.b]) Push(t, h, ca, p.b, 0); //1if jug A
isn't full, £ill A
if (!vislp.al [cb]) Push(t, h, p.a, cb, 1); //if jug B
isn't full, fill B
if (!vis([0] [p.b]) Push(t, h, 0, p.b, 2); // 1if jug A
isn't empty, empty A
if (!vis[p.al [0]) Push(t, h, p.a, 0, 3); // 1if jug B

isn't full, empty B
ta=p.a; tb=p.b;
// pour A B
if (ta+tb<=cbh) {tb+= ta; ta = 0; }
else ta-=(cb - tb); tb=cb;

if (lvisl(tal [tb]) Push(t, h, ta, tb, 4);
// pour B A

if (ta+tb<=ca){ta+=tb; tb=0; }

else{tb-=(ca-ta); ta=ca; };

if (!vis(tal [tb]) Push(t, h, ta, tb, 5);
h ++; //the front is removed from the queue
1

9.4.6 Knight's Tour Problem

You must have heard of the Knight's Tour problem. In that problem, a knight is
placed on an empty chess board and you are to determine whether it can visit each
square on the board exactly once.

Let’s consider a variation of the Knight's Tour problem. In this problem, a
knight is place on an infinite plane and it’s restricted to make certain moves. For
example, it may be placed at (0, 0) and can make two kinds of moves: Denote its
current place as (x; ), it can only move to (x+1; y4+2) or (x+2; y+1). The goal of this
problem is to make the knight reach a destination position as quickly as possible
(i.e., make as few moves as possible).

Input

The first line contains an integer 7' (7<20) indicating the number of test cases.



672 m  Algorithm Design Practice for Collegiate Programming

Each test case begins with a line containing four integers: f, f, ¢, ¢, (-5000<f,,
J» to ,55000). The knight is originally placed at (f,, £,) and (2, 7)) is its destination.

The following line contains an integer 7 (0<m<10), indicating how many kinds
of moves the knight can make.

Each of the following 2 lines contains two integers 2, m, (=10<m,, m,<10;
|m.|+|m,|>0), which means that if a knight stands at (x;, 3), it can move to (x+72,, y+m,).

Output

Output one line for each test case. It contains an integer indicating the least number
of moves needed for the knight to reach its destination. Output “IMPOSSIBLE” if
the knight may never gets to its target position.

Sample Input | Sample Output

3
066 IMPOSSIBLE

2
1

N2 NMNOW_aAaPNN=_UTON
O = W N =N

Source: ACM 2010 Asia Fuzhou Regional Contest
IDs for Online Judges: POJ 3985, UVA 5098

“§ Hint

Given an infinite chess board, an initial position and a destination, and some kinds
of moves the knight can make, you are required to calculate the least number of
moves for the knight from the initial position to the destination.

The algorithm is achieved by combining BES and pruning.

The structure for elements in the queue is s¢ruct, and contains the knight’s cur-
rent coordinate (x, y); and the distance s, from the knight’s initial coordinate to
knight’s current coordinate.



Practice for State Space Search ®m 673

Each time the front of the queue is removed, and 7 kinds of moves are enumer-
ated. If the knight’s new coordinate (x, y) is legal and isn’t in the queue, then the
new element ¢(g.x=x, g.y=y', g.s=p.s+1) is added into the queue, else the branch is
pruned.

Suppose the longest moving distance & = max{(mfi +m, )}, the initial position

1<i<m
is (sx, 57) and the destination is (¢, #y); a=ty—sy; b=sx—tx; and c=syXex—sxXzy.

We analyze cases that the knight’s new coordinate (x, y) are legal or not as

follows:

Case 1: If the square of the Euclidean distance between (x, y) and the initial
position (sx, 5y) ((x—sx)2+(y— y)z) isn’t larger than d, then (x, y) is legal;

Case 2: If the square of the Euclidean distance between (x, y) and the destina-
tion (¢x, ) ((x—tx)2+(y—ty)2) isn’t larger than d, then (x, y) is legal;

Case 3: If (x, y) deviates from the initial position (sx, sy), that is, (gx—sx)X
(x—sx)+(y—sy)X (y—s53)<0, then (x, y) isn’t legal;

Case 4: If (x, y) deviates from the destination (#x, #y), that is, (sx—£x)X(x—sx)+
(sy—1y)X(y—1y)<0, then (x, ) isn’t legal;

Case 5: If the distance between (x, y) and the line segment (sx, sy)—(zx, #y) isn’t
more than d, that is, (@xx+6Xy+0)*/(a*+6)<d, then (x, y) is legal; else (x, y)
isn’t legal.

Therefore, the algorithm based on the above analysis is as follows:

if (case 1) then (x, y) is legal
else if (case 2) then (x, y) is legal
else if (case 3) then (x, y) isn't legal
else if (case 4) then (x, y) isn't legal
else if (case 5) then (x, y) is legal
else (x, y) isn't legal;

Hash technology is used to avoid repetitions. The hash function is
h(xp)=((x<<15)2y)% 999997+999997)% 999997, where (x<<15)"y) is a 32-digit
binary number, the first 16 digits is x, the last 16 digits is y, and A(x, ) is a positive
integer. For each searched (x, y), we search whether there exists (x, ) in the hash

table head[h(x, y)].

9.4.7 Playing with Wheels

In this problem we will be considering a game played with four wheels. Digits
ranging from 0 to 9 are printed consecutively (clockwise) on the periphery of each
wheel. The topmost digits of the wheels form a four-digit integer. For example, in
Figure 9.16, the wheels form the integer 8056. Each wheel has two buttons associ-
ated with it. Pressing the button marked with a lef arrow rotates the wheel one digit



674 m  Algorithm Design Practice for Collegiate Programming

Figure 9.16

in the clockwise direction and pressing the one marked with the right arrow rotates
it by one digit in the opposite direction.

The game starts with an initial configuration of the wheels. Suppose that in the
initial configuration the topmost digits form the integer 8,8,855;. You will be given
some (say, #) forbidden configurations F;; F;;F3Fy (1<i<n) and a target configura-
tion T, T,T;T;. Your job will be to write a program that can calculate the minimum
number of button presses required to transform the initial configuration to the
target configuration by never passing through a forbidden one.

Input

The first line of the input contains an integer N giving the number of test cases to
follow.

The first line of each test case contains the initial configuration of the wheels
specified by four digits. Two consecutive digits are separated by a space. The next
line contains the target configuration. The third line contains an integer 7 giving
the number of forbidden configurations. Each of the following # lines contains a
forbidden configuration.

There is a blank line between two consecutive input sets.

Output

For each test case in the input, print a line containing the minimum number
of button presses required. If the target configuration is not reachable, then
print —1.



Practice for State Space Search ®m 675

Sample Input | Sample Output
2 14
8056 -1
6508

5

8057

8047

5508

7508

6408

0000

5317

8

0001

0009

0010

0090

0100

0900

17000

9000

Source: BUET/UVA Occidental (WF Warmup) Contest 1
ID for Online Judge: UVA 10067

“gﬁ Hint

The problem can be represented as a connected graph, where each four-digit integer
is represented as a vertex. Because each integer can become eight other integers
through pressing buttons, the degree for each vertex is 8. In the graph, the weight of
edges is 1. The initial configuration is as the initial state. And the target configura-
tion is the goal state.

If we press a button marked with a /eft arrow, the corresponding digit becomes
(the original digit +1)%10; and if we press a button marked with a right arrow, the
corresponding digit becomes (the original digit +9)%10.

Because there are many test cases, the offline method can be used. First, the
graph is constructed. Then, for each test case, vertices for forbidden configurations
and their edges are deleted from the graph. Finally, the shortest path from the ini-
tial configuration’s vertex to the target configuration’s vertex is calculated by BES
or SPFA. If there is such a path, the length of the path is the minimum number of
button presses required; else the target configuration is not reachable.



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


http://taylorandfrancis.com

Bibliography

1. Wu Yonghui, Wang Jiande. Data Structure Practice: for Collegiate Programming
Contest and Education (Second Edition). (Traditional Chinese Version). GOTOP
Information Inc. 2017.

2. Wu Yonghui, Wang Jiande. Data Structure Practice: for Collegiate Programming
Contest and Education. (English Version). CRC Press. 2016.

3. Wu Yonghui, Wang Jiande. Data Structure Practice: for Collegiate Programming
Contest and Education (Second Edition). (Simplified Chinese Version). China
Machine Press. 2016.

4. Wu Yonghui, Wang Jiande. Programming Strategies Solving Problems: for Collegiate
Programming Contest and Education. (Simplified Chinese Version). China Machine
Press. 2015.

5. Wu Yonghui, Wang Jiande. Programming Strategies Solving Problems: for Collegiate
Programming Contest and Education. (Traditional Chinese Version). GOTOP
Information Inc. 2015.

6. Wu Yonghui, Wang Jiande. Algorithm Design Experiment: for Collegiate
Programming Contest and Education. (Simplified Chinese Version). China Machine
Press. 2013.

7. Wu Yonghui, Wang Jiande. Solutions and Analyses to ACM-ICPC World Finals
(2004-2011). (Simplified Chinese Version). China Machine Press. 2012.

8. Wu Yonghui, Wang Jiande. Data Structure Experiment: for Collegiate Programming
Contest and Education. (Simplified Chinese Version). China Machine Press. 2012.

9. Wu Yonghui, Wang Jiande. Data Structure Experiment: for Collegiate Programming
Contest and Education. (Traditional Chinese Version) GOTOP Information Inc. 2012.

677



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


http://taylorandfrancis.com

Index

A
ad hoc problems

connect the cable wires, 43—44
cow doctor, 38—40
decode the tape, 32-34
defined, 1
factorials, 35-36
find the telephone, 27-28
fractions, 34—35
mechanism analysis, 1-6
Minesweeper, 17-19
parity, 30-31
perfection, 12-13
power, 42—43
prerequisites, 22-23
Rock, Scissors, Paper, 20-22
Save Hridoy, 23-27
Soundex, 16-17
squares, 36—38
statistical analysis, 6-12
stock graph, 31-32
Tic Tac Toe, 19-20
2 the 9s, 28-29
uniform generator, 14-15
WERTYU, 15-16
wine trading, 40—42
you can say 11, 29-30
add all (greedy algorithm), 226-228
analysis, 227
program, 227-228
addition chains (state space search), 663—665
hint, 664—665
IDA* algorithm for, 665
always on the run (dynamic programming),
313-315
hint, 314-315
anagram, 202-204
hint, 204

ancestor, 408—411
anniversary party (dynamic programming),
281-284
analysis, 282-283
program, 283284
annoying painting tool (greedy algorithm),
249-250
hint, 250
ants (computational geometry),
530-531
hint, 531
ants (statistical analysis), 6-9
analysis, 7-8
program, 8—9
area, 450453
analysis, 451
program, 451-453
area (computational geometry),
535-537
hint, 537
area for union of rectangles, 469—-480
area of simple polygons (computational
geometry), 581-582
hint, 582
art gallery (polar angles), 491-495
analysis, 492-493
program, 493-495
articulation points, 408—420. See also graph
algorithms
A-sequence (simulation problem), 86-87
hint, 87
Atlantis (sweep line algorithm), 477-480
analysis, 478
program, 478—480

B

back edge, 409
backward search, 592

679



680 ® /ndex

batch scheduling (dynamic programming),
331-332, 332-334
hint, 333-334
beauty (farthest pair of points), 508-511
analysis, 509
program, 509-511
Bell numbers, 173-177
biconnected components, 408—420. See also
graph algorithms
biconnected graph, 418—419
binary apple tree (dynamic programming),
278-281
analysis, 279-280
program, 280-281
binary search, 240, 591
binary search tree (BST), 252-254, 591
binomial showdown, 160-161, 161
analysis, 161
biorhythms, 123-126
analysis, 125
program, 125-126
bipartite graph, 220-221, 330, 435
Blackbeard the Pirate (traveling salesman
problem), 439-441
hint, 441
block game (simulation problem), 91-94
hint, 93-94
Bloques , 174-177
analysis, 176
program, 176-177
bounding, 612, 618-619
box of bricks (greedy algorithm), 246-247
hint, 247
brackets sequence (linear dynamic
programming)
analysis, 262
program, 262-264
branch edge, 409
branching, 606-607
Breadth-First Search (BES), 614, 656, 661,
667-668, 670-671
bridge (mechanism analysis), 3—6
analysis, 4-5
program, 5—6
bridge across islands (computational geometry),
560-561
hint, 561
bridges, 408—420. See also graph algorithms
BST construction (greedy algorithm),
252-254
hint, 253
program, 253-254

building design (simulation problem), 87—-89
hint, 88—89
Burnside’s lemma and, 188-191

C

Clooooops, 121-123
analysis, 122
program, 122-123
card magic trick (simulation problem), 82-83
hint, 83
Cartesian coordinates, 231, 232, 462, 462—463,
502, 548, 574
Catalan numbers, 171-173
catenyms, 385-391
analysis, 387
compound, 386
definition of, 386
program, 388-390
Chinese postman algorithm, 434
Chinese remainder theorem, 120, 125
chocolate box (dynamic programming),
293-294
hint, 294
cipher (simulation of direct statement), 46—48
analysis, 47
program, 47—48
circle through three points, 462-465
analysis, 463
program, 463—465
circuit, 327-328
circumcenter, 461-462
circumcircle, 461-462, 463
circumference, 503, 571
cliques, 403-404
closed intervals, 428
closed polygon, 564
cola bottle (simulation problem), 79-80
hint, 80
Collatz sequence (simulation problem), 81-82
hint, 82
color (Pélya counting formula), 198-201
analysis, 199-200
program, 200-201
color a tree (greedy algorithm), 235-239
analysis, 236-237
program, 237-239
colored cubes, 211-213
hint, 212-213
combinations, 162-163
analysis, 162
program, 163



combinatorics, 153-213
Bell numbers, 173-177
Catalan numbers, 171-173
defined, 153
enumeration of permutations and
combinations, 159-177
generating permutations, 153-159
inclusion-exclusion principle, 180-186
pigeonhole principle, 178-180
Pélya counting formula, 186-201
program, 176-177
Stirling numbers, 173-177
common permutation, 201-202
hint, 202
common subsequence (dynamic programming),
299-300
hint, 300
common substrings (suffix array), 347-351
analysis, 347348
program, 348—351
completely multiplicative function, 126-127
composite numbers, 99-100, 107, 108
composition of permutations, 143, 186, 187
compound catenyms, 386
computational geometry, 443-589
convex hull, 500-505
cross product, 444-445
dot product, 444
finding the farthest pair of points, 505-511
intersection of half-planes, 481-500
line segment intersection, 453—465
line segments, 443
plans, 443
points, 443
solving polyhedron problems by Euler’s
polyhedron formula, 465-469
sweep line algorithm, 469-480
congruences and congruence equations, 117-126
biorhythms, 123-126
C looooops, 121-123
Chinese remainder theorem, 120
theorems, 118-120
conjugacy class, 188
connect the cable wires (ad hoc problem),
43-44
hint, 44
connected components, 408, 418
connected graph, 382, 391, 408, 409, 411, 418,
675
construction simulation, 72-77
packets, 72-74
paper cutting, 75-77

Index m 681

converse digraph, 633
convex, 564
convex hull, 500-505
convex polygon, 481-483, 485, 490-491, 492,
503, 506-507, 549, 555556, 560—
561, 563, 564565, 568, 571-572
coordinates
Cartesian, 231, 232, 462, 462—-463, 502,
548, 574
defined, 216
discretization, 371
dot product, 444
floating-point, 517
geographic, 514
integer, 392, 446, 515, 526, 530, 546, 565
network, 391-392
orthogonal, 450
planar, 391, 454, 454459
for points, 444
segment, 369, 430-431
two-dimensional, 443
of vertices, 529, 551, 553
copying book (greedy algorithm)
analysis, 240
program, 239-242, 241-242
count color (segment trees), 423—424
hint, 424
count the factors (number theory problem),
140-141
hint, 141
coupons, 207-208
hint, 207-208
cow doctor (ad hoc problem), 38—40
hint, 40
crane (segment trees), 429-431
hint, 430-431
cross product, 444—445

D

data structures, 335—441
graph algorithms, 382-420
segment trees, 357-381
suffix arrays, 335-357
decode the tape, 32-34
hint, 34
democracy in danger (greedy algorithm),
244-246
hint, 246
Depth-First Search (DFS), 618, 618-619,
649-650, 660-661

derangements, 183



682 ®m [ndex

descendants, 408—411

dichotomy, 270

digit primes, 105-107. See also prime numbers
analysis, 106
program, 106-107

digraph, 387

direct statement, simulation by, 63-72

discretization, 371, 470-471, 477

disjoint segments, 374-381, 428—429

divisor, 12—13

dollars (dynamic programming), 264-266
analysis, 265-266
program, 265-266

doors (computational geometry), 532-533
hint, 533

Dora trip (traveling salesman problem), 437-439
hint, 438, 439

dot product, 444—445

doubling algorithm, 335-339. See also suthx

arrays

dynamic programming (DP), 259-334
linear, 259-278
problem characteristics, 259
with state compression, 284-334
tree-like, 278-284

E

edge, 409
edge vector, 462, 517-518
eight (state space search), 624—632
analysis, 625-627
program, 627-632
Eight Queens Chess Problem, 403
enumeration, 114
enumeration of permutations and combinations,
159-177
calculating numbers of permutations and
combinations, 159-171
escape path (state space search), 607-612
analysis, 608—609
program, 610—612
Euclidean algorithm, 113-114, 118
Euclidian distance, 393, 673
Euclidian norms, 472-476
Euclidian space, 443
Euler, Leonhard, 101
Euler circuit, 434-436, 584-585
defined, 382
hint, 435-436, 585
Euler graphs, 382-390. See also graph
algorithms

Euler phi-function @, 127, 199-200
Eulerian cycle, 387, 434
Eulerian digraph, 387
Eulerian path, 387, 434
Euler’s polyhedron formula, 465-469
Euler’s theorem, 127-128
Eurodiffusion (simulation of direct statement),
56-63
analysis, 58—60
based on sequence of time intervals, 59
graph for coin dissemination, 59
program, 61-63
evaluating function, 593
exocenter of a triangle (computational
geometry), 575-577
hint, 576-577
extended Euclidean algorithm, 113-114, 118
extended line, 470, 477

F

factorials (ad hoc problem), 35-36
hint, 36
factorization, 244
factovisors, 145
hint, 145
Factstone benchmark (mechanism analysis), 1-3
analysis, 2-3
program, 3
Farey sequence, 146-147
hint, 146-147
farthest pair of points, 505-511
fast, sorted permutation
analysis, 158
program, 158-159
feng shui (intersection of half-planes), 483—-489
analysis, 485
program, 485-489
Fermat-Euler theorem, 127-128
Fermat’s little theorem, 128
15-puzzle problem, 657-663
BES algorithm, 661
DES algorithm, 660-661
hint, 658-659
IDA* algorithm, 662-663
solutions, 659—-663
fill (state space search), 612-616
analysis, 613—614
program, 614-616
fill the cisterns (computational geometry),
579-581
hint, 581



find a multiple, 178-180
analysis, 179
program, 179-180
find the telephone (ad hoc problem)
hint, 28
fishing trip (greedy algorithm), 254-258
hint, 256
program, 256-258
fortified forest (computational geometry),
568-571
hint, 570
forward edge, 409
forward search, 592
fractions (ad hoc problem), 34-35
hine, 35
function run fun (dynamic programming),
308-309
hint, 309

G

game of connections, 171-173
analysis, 172
program, 172-173
game schedule (simulation by sieve method),
68-72
analysis, 69-70
program, 7072
game tree, 642—654
GCD and LCM inverse, 150—-151
hint, 151
GCD determinant, 149-150
hint, 149-150
generation function, 266
geometric shapes (computational geometry),
525-527
hint, 527
Gerg’s cake (number theory problem), 137-138
hint, 138
getting in line (traveling salesman problem),
391-395
analysis, 393
program, 394-395
goal state, 260, 397, 591-593, 601, 623, 626,
651-652, 654, 658-659
Goldbach, Christian, 101
Goldbach’s conjecture, 101-102. See also prime
numbers
Graham’s scan, 501
grandpa’s estate (computational geometry),
567-568
hint, 568

Index m 683

graph algorithms, 382420
articulation points, 408420
biconnected components, 408—420
bridges, 408—420
Euler graphs, 382-390
maximum independent sets, 403—408
traveling salesman problem and
tournaments, 391-403
graph coloring (maximum independent set),
404-408
analysis, 405-406
program, 406—408
greatest common divisors (GCD), 113-117
analysis, 115
enumeration method, 114
extended Euclidean algorithm, 114
inverse, 150-151
program, 116-117
greedy algorithms, 215-258
defined, 215
greedy choices based on sorted data, 222-234
Pass-Muraille, 215-219
program, 218-219, 233-234
Tian Ji: horse racing, 219-223
used with other methods to solve
P-Problems, 234-258
greedy choices, 215
based on sorted data, 222-234
group, 186

H

half-open intervals, 428
half-planes, intersection of, 481-500
Hamilton path, 326-328
Hamiltonian circuit, 391
Hamiltonian graph, 391
Hamiltonian path, 391
help with intervals (segment trees), 426—428
hint, 428
heuristic function, 593, 626
heuristic search, 623
hie with the pie (dynamic programming),
328-330
hint, 329-330
history grading (dynamic programming),
270-273
analysis, 272
program, 272-273
horizontally visible segments (segment trees),
428-429
hint, 429



684 ®m [ndex

hotel (segment trees), 375-381
analysis, 376, 376-378
program, 378-381

hotter colder game (polar angles), 496500
analysis, 496-500

Hufman coding, 215

ID codes, 154-157
analysis, 155
program, 156-157
IDA* algorithm, 636-637, 662—663, 665
included angle, 588
inclusion-exclusion principle, 180—186. See also
combinatorics
independent sets, 403
indeterminate equations and congruence,
113-126. See also number theory
congruences and congruence equations,
117-126
greatest common divisors, 113—117
indexing, 607
induced subgraph, 403
initial state, 10-12, 89-90, 260, 397, 439,
592-593, 601, 602, 614, 623, 626,
643, 654—655, 658, 661, 671, 675
integer factors, 103
intersecting lines, 458461
analysis, 459-460
program, 460—461
intersection, 518
hint, 519
intersection of half-planes
on-line algorithm for, 482-489
polar angles, 489-500
intersection point, 204-205, 457-458, 477,
516, 517-518, 533, 539, 576
intersections, 433
intervals (computational geometry), 514-516
hint, 516
inverse number, 659
irreducible basic fractions, 147-148
hint, 147-148
is bigger smarter? (dynamic programming),
305-306
islands and bridges (dynamic programming),
326-328
hint, 327-328
iterations, 14, 278
iterative deepening A* (IDA*) algorithm,
636-637, 662—663, 665

)

Jaguar King (state space search), 637-642
analysis, 638—640
program, 640—642
Johnny’s trip (Euler graphs), 382-385
analysis, 384
program, 384-385
jugs (state space search), 668671
BES algorithm for, 670-671
hint, 669-671
mathematic method for, 669-670

Kadj (computational geometry), 521-523
hing, 523
Knight’s Tour problem (state space search),
671-673
hint, 672-673
Kruskal’s algorithm, 215

L

lattice point, 529
lazy cows (dynamic programming), 300-301
hint, 301
LCM cardinality, 148-149
hint, 148-149
leaf, 280, 283, 325, 357, 359-360, 362, 419,
652
least common multiple (LCM), 148-149
hint, 148—149
inverse, 150—151
left subtree, 252, 253, 279-280, 359, 362, 366,
377-381, 472
less prime, 134-135
hint, 134-135
lexicographic order, 153-157, 336
light bulbs (simulation problem), 89-91
hint, 91
line, 526
line of sight (computational geometry), 537-539
hint, 539
line segments, 443. See also computational
geometry
intersection, 453—465
linear dynamic programming, 259-278. See
also dynamic programming; tree-like
dynamic programming
available decision set D,(s,), 260
brackets sequence, 261-264



decision #,, 260
longest common subsequence, 266269
longest-increasing subsequence, 269-278
stage 4 and state 5;, 259-260
subset sum, 264-266
successor function and optimization, 260
lining up (computational geometry), 546-548
hint, 547-548
link and pop game (simulation problem), 91-94
hint, 93-94
long long message (suffix array), 420-422
hint, 421-422
longest common prefix, 339-340. See also suffix
arrays
longest common subsequence (LCS), 266-269,
301-302
hint, 302
longest match (dynamic programming),
267-269
analysis, 268
program, 268-269
longest-increasing subsequence (LIS), 269-278
calculation methods, 270
dichotomy, 270
DP method, 270
transforming LIS problem into LCS
problem, 270

M

Manhattan distance, 662
many a little makes a mickle (dynamic
programming), 321-323
hint, 323
marks distribution (dynamic programming),
292-293
hine, 293
Martian mining (dynamic programming),
315-317
hint, 317
matches game (statistical analysis), 9-12
analysis, 10-12
program, 12
maximal subrectangle (dynamic programming),
309-311
hint, 310-311
maximum clique, 403, 406
maximum independent sets, 403—408. See also
graph algorithms
mayor’s posters (segment trees), 369-374
analysis, 370-372
program, 372-374

Index ®m 685

mechanism analysis, 1-6
bridge, 3-6
Factstone benchmark, 1-3
memorization, 607, 618
memorized search, 278, 309
Mersenne primes, 143. See also prime numbers
mileage (simulation problem), 7879
hint, 79
milk patterns (suffix array), 422-423
hint, 423
Miller-Rabin primality test, 110
Minesweeper (ad hoc problem), 17-19
hint, 19
minimal coverage (greedy algorithm), 247-248
hint, 248
mobile phone coverage (sweep line algorithm),
472-476
analysis, 474
program, 475—476
Mondriaan’s dream (dynamic programming),
288-290
analysis, 289
program, 290
most distant point from sea (computational
geometry), 554-556
hint, 556
most distant state (state space search),
654-657
hint, 655-657
program, 656—657
moth eradication (computational geometry),
558-560
hint, 560
multiple of 11 (ad hoc problem), 29-30
hint, 30
multiplication principle, 205
multiplicative functions, 126-132. See also
number theory
definitions, 126-127
Euler phi-function ¢, 127
Euler’s theorem, 127-128
Fermat-Euler theorem, 127-128
Fermat’s little theorem, 128
phi-function formula, 127
primitive root, 128
primitive roots, 130-132
reduced residue system modulo 7, 127
relatives, 128—130
multiplicative inverse, 140
musical theme (suffix array), 341-346
analysis, 342-343
program, 343-346



686 W [ndex

N

nails (computational geometry), 563-564
hint, 564
necklace (graph algorithm), 436-437
hint, 437
necklace of beads (Pélya counting formula),
191-194
analysis, 192
program, 192-194
network (graph algorithm), 414-417
analysis, 415
program, 415—417
new villa (state space search), 600-606
analysis, 601-602
program, 602—-606
9-degree of N, 28-29
NP-Complete Problems, 234
number theory, 12, 99-151
indeterminate equations and congruence,
113-126
multiplicative functions, 126-132
prime numbers, 99-112
nuts for nuts (dynamic programming),
284-287
analysis, 285-286
program, 286287
nuts for nuts (traveling salesman problem),
396-399
analysis, 396-397
program, 397-399

(0]
obtuse angle, 444

open intervals, 428

optimal solution, 75, 215, 217, 222, 250, 259-260
optimal substructures, 215

optimization problems, 215, 259, 260, 432
origin, 443, 449-450, 529, 537, 564-567, 566
orthocenter, 576-577

P

package pricing (state space search), 616-623
program, 619-623

packets (construction simulation), 72-74
analysis, 73-74
program, 74

packing rectangles (combinatorics), 163-171
analysis, 164-168
minimal enclosing rectangle, 167-168

program, 168-171
widths and heights for enclosing rectangles,
164-167
packing rectangles (simulation problem),
94-97
calculation of area by enumeration, 97
calculation of length and width, 97
hint, 95-97
palindrome (dynamic programming), 302-303
hint, 303
paper cutting (construction simulation), 75-77
program, 77
parallelogram, 445, 449, 457
parity, 30-31
hint, 31
Pass-Muraille (greedy algorithm), 215-219
analysis, 217
hing, 217
program, 218-219
pawn chess (game tree), 650—-654
analysis, 651-652
program, 652—654
perfect numbers, 12-13
perfect pth powers
hint, 144
perfection (ad hoc problem), 1213
hing, 13
permutation group, 186—188
permutations, 205-206. See also combinatorics
hint, 206
permutations, generating, 153—159
all permutations based on lexicographic
order, 157-159
fast, sorted permutation, 157159
next permutation based on lexicographic
order, 153157
perpendicular bisector, 461, 496
phi-function formula, 127
pick up (line segment intersection), 453—457
analysis, 455
program, 455-457
picnic (computational geometry), 570-572
hint, 572
picture (computational geometry), 577-579
hint, 578-579
pieces of land (polyhedron), 466469
analysis, 467
program, 467—469
pigeonhole principle, 178-180. See also
combinatorics
pipe (computational geometry), 523-525
hint, 525



pixel shuffle, 208-210
hint, 210
planar graph, 465, 584
plane, 428, 458—459, 462, 463, 469—-471, 474,
477, 478, 481, 483, 489, 508, 522,
547, 560, 572, 578-579
plans, 443
playing with wheels (state space search),
673-675
hint, 675
points, 443. See also computational geometry
points of intersection, 204-205
hint, 205
polar angles, 489-500. See a/s0 computational
geometry
Pélya counting formula, 186-201. See also
combinatorics
Burnside’s lemma and, 188-191
conjugacy class, 188
defined, 191
group, 186
permutation group, 186-188
polygon, 526
area of, 581-582
polyhedron, 465-469
positive integers, 12—13
postal worker rings once (graph algorithm),
432-434
hint, 434
power (ad hoc problem)
hint, 42—43
P-Problems, 234
prerequisites (ad hoc problem)
hint, 23
primality test, 109-112
prime factors
hint, 144
prime frequency, 132-133
hint, 132
prime gap, 107-109
analysis, 108
program, 109
prime land (number theory problem), 142-143
hint, 142-143
prime numbers, 99-112. See also number theory
calculating by sieve, 99-109
digit primes, 105-107
Goldbach’s conjecture, 101-102
less prime, 134-135
Mersenne primes, 143
prime factors, 143-144
prime frequency, 132-133

Index ®m 687

prime gap, 107-109
prime words, 135
primed subsequence, 110-112
sum of different primes, 136-137
summation of four primes, 103-105
testing the primality of large numbers,
109-112
twin primes, 133-134
prime words, 135
hint, 135
primed subsequence, 110-112
analysis, 111
program, 111-112
primitive roots, 128, 130-132
analysis, 131
program, 131-132
Prim’s algorithm, 215
product of digits (greedy algorithm), 244
hint, 244
programs
add all (greedy algorithm), 227-228
anniversary party (dynamic programming),
283-284
ants (statistical analysis), 8-9
area, 451-453
art gallery (polar angles), 493—495
Atlantis (sweep line algorithm), 478—480
beauty (farthest pair of points), 509-511
binary apple tree (dynamic programming),
280-281
biorhythms, 125-126
Bloques, 176-177
brackets sequence (linear dynamic
programming), 262-264
bridge (mechanism analysis), 5-6
BST construction (greedy algorithm),
253-254
C looooops, 122-123
catenyms, 388-390
cipher (simulation of direct statement),
47-48
circle through three points, 463—-465
color (Pélya counting formula), 200-201
color a tree (greedy algorithm), 237-239
combinations, 163
combinatorics, 176-177
common substrings (suffix array), 348-351
copying book (greedy algorithm), 239-242,
241-242
digit primes, 106-107
dollars (dynamic programming), 265-266
eight (state space search), 627-632



688 ® [ndex

programs (continued)

escape path (state space search), 610-612

Eurodiffusion (simulation of direct
statement), 61—63

Factstone benchmark (mechanism analysis),
3

fast, sorted permutation, 158—159

feng shui (intersection of half-planes),
485-489

fill (state space search), 614-616

find a multiple, 179-180

fishing trip (greedy algorithm), 256-258

game of connections, 172-173

game schedule (simulation by sieve method),
70-72

getting in line (traveling salesman problem),
394-395

graph coloring (maximum independent set),
406-408

greatest common divisors (GCD), 116-117

greedy algorithms, 218-219, 233-234

history grading (dynamic programming),
272-273

hotel (segment trees), 378-381

ID codes, 156-157

intersecting lines, 460—461

Jaguar King (state space search), 640—-642

Johnny’s trip (Euler graphs), 384-385

longest match (dynamic programming),
268-269

matches game (statistical analysis), 12

mayor’s posters (segment trees), 372-374

mobile phone coverage (sweep line
algorithm), 475-476

Mondriaan’s dream (dynamic
programming), 290

most distant state (state space search),
656-657

musical theme (suffix array), 343-346

necklace of beads (Pélya counting formula),
192-194

network (graph algorithm), 415-417

new villa (state space search), 602—-606

nuts for nuts (dynamic programming),
286-287

nuts for nuts (traveling salesman problem),
397-399

package pricing (state space search),
619-623

packets (construction simulation), 74

packing rectangles (combinatorics),
168-171

paper cutting (construction simulation), 77

Pass-Muraille (greedy algorithm), 218-219

pawn chess (game tree), 652—654

pick up (line segment intersection),
455-457

pieces of land (polyhedron), 467-469

prime gap, 109

primed subsequence, 111-112

primitive roots, 131-132

radar installation (greedy algorithm),
233-234

relatives, 129-130

Remmarguts’ date (state space search),
634-636

Renju game (simulation by sieve method),
66-67

road construction (graph algorithm),
419-420

Robocode (simulation of direct statement),
54-56

robot (state space search), 596-599

rock-paper-scissors (simulation of direct
statement), 49—50

shoemaker’s problem (greedy algorithm),
225-226

simple problem with integers (segment
trees), 367-369

ski (dynamic programming), 274-275

summation of four primes, 104-105

sweet child makes trouble (inclusion-
exclusion principle), 185-186

task sequences (traveling salesman problem),
401-403

text checking (suffix array), 353-357

Tian Ji: horse racing (greedy algorithm),
222-223

ticket buying (segment trees), 362-364

Tmutarakan exams (inclusion-exclusion
principle), 182-183

toral tickets (Pdlya counting formula),
196-198

transmitter, 448—450

wall (convex hull), 504-505

Wavio sequence (dynamic programming),
277-278

winning move (game tree), 646—650

wooden sticks (greedy algorithm), 230-231

promising teams (dynamic programming),

320-321
hint, 321
pruning, 607, 649—-650

pseudo-random numbers, 14-15



Q
QWERTY keyboard, 15-16

R

radar installation (greedy algorithm), 231-234
analysis, 232
program, 233-234
radius, 446—448, 463, 472, 484, 503, 516, 556
rain collection (computational geometry),
539-541
hint, 540-541
rank arrays, 335-339
rectangle, 525
area for union of, 469—480
rectangles (simulation problem), 94-97
calculation of area by enumeration, 97
calculation of length and width, 97
hint, 95-97
reduced residue system modulo 7, 127
relatively prime integers, 113, 118, 120-121,
126-129, 668
relatives, 128-130
analysis, 129
program, 129-130
remainder, 86, 179, 639
Remmarguts’ date (state space search), 632—637
analysis, 633—634
program, 634—636
Renju game (simulation by sieve method),
64-67
analysis, 66
program, 66—67
rivers (dynamic programming), 323-326
hint, 325-326
road accident (computational geometry),
541-542
constraints, 542
hint, 542
road construction (graph algorithm), 417-420
analysis, 418419
program, 419—420
robbery (dynamic programming), 311-313
hint, 312-313
Robocode (simulation of direct statement),
50-56
analysis, 53
program, 54-56
robot (state space search), 594-599, 665-668
analysis, 596-597
BES algorithm for, 667-668

Index ®m 689

hint, 667
program, 596-599
Rock, Scissors, Paper (ad hoc problem),
20-22
hint, 21-22
rock-paper-scissors (simulation of direct
statement), 48—50
analysis, 49
program, 49-50
rocks (simulation problem), 84-86
hint, 86
rotating caliper, 506, 509, 561, 574-575, 582
rotating scoreboard (computational geometry),
549-550
hint, 550
round pet in a ground hole (computational
geometry), 527-529
hint, 528-529

S

Save Hridoy (ad hoc problem), 23-27
hint, 27
scrambled polygon (computational geometry),
564-567
hint, 567
search space, 591
segment trees, 357-381
calculating the area for union of rectangles,
470, 472, 477
calculating visible segments, 369-374
constructing, 372
definition of, 357
disjoint segments, 374-381
fundamental operations for, 358-359
subintervals, 364-381
updating and calculating disjoint segments,
374-381
updating data uniformly and calculating
data dynamically in subinterval,
365-369
updating single points in, 360-364
updating subintervals in, 364-381
segments, 511-512
hint, 512
sequential search, 591
Seven Bridges of Konigsberg problem, 432
shoemaker’s problem (greedy algorithm),
223-226
analysis, 224-225
program, 225-226
sieve + trial division, 110



690 ®m /ndex

sieve method, 134
simulation by, 63-72
sieve of Eratosthenes, 99-109
simple problem with integers (segment trees),
365-369
analysis, 366
program, 367-369
simulation by sieve method
game schedule, 68-72
Renju game, 64-67
simulation of direct statement, 45-63
cipher, 4648
Eurodiffusion, 56-63
kinds of, 45
Robocode, 50-56
rock-paper-scissors, 48—50
simulation problems, 45-98
construction simulation, 72-77
simulation by sieve method, 63-72
simulation of direct statement, 45—63
ski (dynamic programming), 273-275
analysis, 274
program, 274-275
skyline problem (computational geometry),
545-546
hint, 546
smallest bounding rectangle (computational
geometry), 574-575
hint, 574-575
Soundex (ad hoc problem), 16-17
hing, 17
space ant (computational geometry),
519-521
hint, 521
a spy in the metro (dynamic programming),
294-297
hint, 296-297
square, 525
squares (ad hoc problems), 36-38
hint, 38
squares (computational geometry), 582-584
hint, 583-584
Stickel, Paul, 133
stacking boxes (dynamic programming),
306-308
hint, 308
stages, 259-260, 262, 264, 267, 297
star shape (computational geometry),
550-552
hint, 552
state, 592, 593
state space, 591-594

state space search, 591-675
defined, 591-592
game tree, 642—654
optimization strategies, 606—607
optimizing, 606—652
state space tree, 592—606
state space tree, 592—606
state transition equation, 274
statistical analysis, 6-12
ants, 6-9
matches game, 9
Stirling numbers, 173-177
stock graph (ad hoc problem)
hint, 32
straight line, 41, 43, 84, 86, 92, 93, 453, 4606,
467, 471, 508, 519, 520, 537, 546,
570, 571
string morphing (dynamic programming),
318-320
hint, 320
string to palindrome (dynamic programming),
317-318
hint, 318
stripies (greedy algorithm), 242-244
hint, 243-244
subgraph, 403, 406, 408
subintervals, 364-381
subset sum, 264-266
successor function, 260, 593, 601-602, 613, 626
suffix, 153-154, 335
suffix arrays, 335-357
application of, 341-357
doubling algorithm, 335-339
longest common prefix, 339-340
sum of different primes, 136-137
hint, 137
summation of four primes, 103105
analysis, 104
program, 104-105
sweep, 470, 471, 477
sweep line algorithm, 469-480
sweeping in horizontal direction, 477-480
sweeping in vertical direction, 470-477
sweet child makes trouble (inclusion-exclusion
principle), 183-186
analysis, 184
program, 185-186

T

tangent line, 507, 516
Tarjan algorithm, 415



task sequences (traveling salesman problem),
399-403
analysis, 401
program, 401-403
text checking (suffix array), 351-357
analysis, 352-353
program, 353-357
throwing cards away (simulation problem), 84
hint, 84
Tian Ji: horse racing (dynamic programming),
330-332
hint, 331-332
Tian Ji: horse racing (greedy algorithm),
219-223
analysis, 221-222
program, 222-223
Tic Tac Toe (ad hoc problem), 19-20
hint, 20
ticket buying (segment trees), 360-364
analysis, 361-362
hint, 361
program, 362-364
Titanic (computational geometry), 512-514
hint, 514
Tmutarakan exams (inclusion-exclusion
principle), 180-183
analysis, 181-182
program, 182-183
toral tickets (Pélya counting formula), 194198
analysis, 195-196
program, 196-198
tournaments, 391-403
toys (computational geometry), 533535
hint, 535
transmitter, 446—450
analysis, 447-448
program, 448450
traveling salesman problem and tournaments,
391-403. See also graph algorithms
treasure hunt (computational geometry),
516-518
hint, 517-518
tree
hint, 431-432, 432
tree-cutting (computational geometry),
586-589
hint, 587-589
tree-like dynamic programming, 278-284. See
also dynamic programming; linear
dynamic programming
tri tiling (dynamic programming), 291-292
hint, 291-292

Index ®m 691

triangle, 526
triangle (computational geometry), 529-530,
572-573

hint, 530, 573

triathlon (computational geometry), 548549
hint, 549

troublemakers (greedy algorithm), 250-252
hint, 251-252

twin primes, 133-134
definition, 133
hint, 133-134

2 the 9s, 28-29
hint, 29

typing errors, 15-16

U

uniform generator (ad hoc problem), 14-15
useless tile packers (computational geometry),
561-563
hint, 563
Uyuw’s concert (computational geometry),
556-558
hint, 558

\%

vacation (dynamic programming), 303-305
hint, 305

vector product, 501, 504

vectors, 444—445, 451, 462, 517-518, 546

vertex, 401, 403—404

vertex cover, 403

video surveillance (computational geometry),

553-554

hint, 554

visible segments, 369-374

w

a walk through the forest (dynamic
programming), 297-299
hint, 299
wall (convex hull), 501-505
analysis, 503
program, 504-505
Wavio sequence (dynamic programming),
275-278
analysis, 276
program, 277-278
WERTYU (ad hoc problem), 15-16
hing, 16



692 ®m /ndex

who gets the most candies? (segment trees),
425-426
hint, 425-426
widget factory (number theory problem),
138-140
hint, 140
Wild West (computational geometry), 542-545
hint, 544-545

wind trading (ad hoc problem), 40-42
hint, 41-42

winning move (game tree), 643—650
analysis, 644—646
program, 646-650

wooden sticks (greedy algorithm), 228-231
analysis, 229-230
program, 230-231



	Cover

	Half Title

	Title Page
	Copyright Page
	Contents
	Preface
	Author Biographical Information
	1.
Practice for Ad Hoc Problems
	1.1.
Solving Problems by Mechanism Analysis
	1.1.1. Factstone Benchmark
	1.1.2. Bridge

	1.2.
Solving Problems by Statistical Analysis
	1.2.1. Ants
	1.2.2. Matches Game

	1.3.
Problems

	2.
Practice for Simulation Problems
	2.1.
Simulation of Direct Statement
	2.1.1. The Hardest Problem Ever
	2.1.2. Rock-Paper-Scissors Tournament
	2.1.3. Robocode
	2.1.4. Eurodiffusion

	2.2.
Simulation by Sieve Method
	2.2.1. The Game
	2.2.2. Game Schedule Required

	2.3.
Construction Simulation
	2.3.1. Packets
	2.3.2. Paper Cutting

	2.4.
Problems

	3.
Practice for Number Theory
	3.1.
Practice for Prime Numbers
	3.1.1. Calculating Prime Numbers by a Sieve
	3.1.2. Testing the Primality of Large Numbers

	3.2.
Practice for Indeterminate Equations and Congruence
	3.2.1. Greatest Common Divisors and Indeterminate Equations
	3.2.2. Congruences and Congruence Equations

	3.3.
Multiplicative Functions
	3.4.
Problems

	4. Practice for Combinatorics
	4.1.
Generating Permutations
	4.1.1. Generating the Next Permutation Based on Lexicographic Order
	4.1.2. Generating All Permutations Based on Lexicographic Order

	4.2.
Enumeration of Permutations and Combinations
	4.2.1.
Calculating Numbers of Permutations and Combinations
	4.2.2.
Catalan Numbers, Bell Numbers and Stirling Numbers

	4.3. Applications of the Pigeonhole Principle and the Inclusion–Exclusion Principle
	4.3.1.
Applications of the Pigeonhole Principle
	4.3.2.
Applications of the Inclusion–Exclusion Principle

	4.4.
Applications of the Pólya Counting Formula
	4.4.1.
Necklace of Beads
	4.4.2.
Toral Tickets
	4.4.3.
Color

	4.5.
Problems

	5.
Practice for Greedy Algorithms
	5.1.
Practices for Greedy Algorithms
	5.1.1.
Pass-Muraille
	5.1.2.
Tian Ji: The Horse Racing

	5.2.
Greedy-Choices Based on Sorted Data
	5.2.1.
The Shoemaker’s Problem
	5.2.2.
Add All
	5.2.3.
Wooden Sticks
	5.2.4.
Radar Installation

	5.3.
Greedy Algorithms Used with Other Methods to Solve P-Problems
	5.3.1.
Color a Tree
	5.3.2.
Copying Books

	5.4.
Problems

	6. Practice for Dynamic Programming
	6.1.
Linear Dynamic Programming
	6.1.1. Linear Dynamic Programming
	6.1.2. Subset Sum
	6.1.3. Longest Common Subsequence (LCS)
	6.1.4. Longest Increasing Subsequence (LIS)

	6.2.
Tree-Like Dynamic Programming
	6.2.1. Binary Apple Tree
	6.2.2. Anniversary Party

	6.3.
Dynamic Programming with State Compression
	6.3.1. Nuts for Nuts
	6.3.2. Mondriaan’s Dream

	6.4.
Problems

	7.
Practice for Advanced Data Structures
	7.1.
Suffix Arrays
	7.1.1.
Doubling Algorithm Used to Calculate a Rank Array and a Suffix Array
	7.1.2.
The Longest Common Prefix
	7.1.3.
Application of Suffix Array

	7.2.
Segment Trees
	7.2.1.
Segment Trees
	7.2.2.
Updating a Single Point in a Segment Tree
	7.2.3.
Updating a Subinterval in a Segment Tree

	7.3.
Graph Algorithms
	7.3.1.
Euler Graphs
	7.3.2.
Traveling Salesman Problem and Tournaments
	7.3.3.
Maximum Independent Sets
	7.3.4.
Articulation Points, Bridges, and Biconnected Components

	7.4.
Problems

	8.
Practice for Computational Geometry
	8.1.
Points, Line Segments, and Plans
	8.1.1.
Dot Product and Cross Product
	8.1.2.
Line Segment Intersection
	8.1.3.
Solving Polyhedron Problems by Euler's Polyhedron Formula

	8.2.
Calculating the Area for Union of Rectangles by Sweep Line Algorithms
	8.2.1.
Sweeping in the Vertical Direction
	8.2.2.
Sweeping in the Horizontal Direction

	8.3.
Intersection of Half-Planes
	8.3.1.
On-Line Algorithm for Intersection of Half-Planes
	8.3.2.
Polar Angles

	8.4.
Convex Hull and Finding the Farthest Pair of Points
	8.4.1.
Convex Hull
	8.4.2.
Finding the Farthest Pair of Points

	8.5.
Problems

	9.
Practice for State Space Search
	9.1.
Constructing a State Space Tree
	9.1.1.
Robot
	9.1.2.
The New Villa

	9.2.
Optimizing State Space Search
	9.2.1.
Be Wary of Rose
	9.2.2.
Fill
	9.2.3.
Package Pricing
	9.2.4.
Eight
	9.2.5.
Remmarguts’ Date
	9.2.6.
Jaguar King

	9.3.
A Game Tree Used to Solve a Game Problem
	9.3.1.
Find the Winning Move
	9.3.2.
The Pawn Chess

	9.4.
Problems

	References
	Index

