Using

TURBO C

HERBERT SCHILDT

BORLAND-OSBORI

Lswng Turbo C*

Using Turbo C°

Herbert Schildt

BORLAND-OSBORNE/McGRAW-HILL
PROGRAMMING SERIES

Osborne McGraw-Hill
2600 Tenth Street
Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of the U.S.A., write to
Osborne McGraw-Hill at the above address.

A complete list of trademarks appears on page 415.

Using Turbo C*

Copyright © 1988 by McGraw-Hill, Inc. All rights reserved. Printed in the United
States of America. Except as permitted under the Copyright Act of 1976, no part of
this publication may be reproduced or distributed in any form or by any means, or
stored in a database or retrieval system, without the prior written permission of the
publisher, with the exception that the program listings may be entered, stored, and
executed in a computer system, but they may not be reproduced for publication.

34567890 DODO 8987

ISBN 0-07-881279-8

Information has been obtained by Osborne McGraw-Hill from sources believed to be reliable. However,
because of the possibility of human or mechanical errors by our sources, Osborne McGraw-Hill, or others,
Osborne McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any information and is
not responsible for any errors or omissions or the results obtained from use of such information.

CONTENTS

Foreword xi
Preface xiil

Part One Introduction to Turbo C 1

Turbo C in Perspective 3
The Origins of C
C Is a Middle-level Language
C Is a Structured Language
A Replacement of Assembly Language
What Can C Be Used for?
A Programmer’s Language
Compilers Versus Interpreters
A Word to Turbo Pascal Users
Start Your Engines

The Turbo C Environment

Executing Turbo C
The Main Menu

The Edit Window

The Message Window
The Hot Keys

The TCINST Program

Using the Turbo C Editor

Editor Commands

Invoking the Editor and Entering Text
Deleting Characters, Words, and Lines
Moving, Copying, and Deleting Blocks of Text
More on Cursor Movement

Find and Find-and-Replace

Saving and Loading Your File

Understanding Auto-indentation

Moving Blocks of Text to and from Disk Files
Miscellaneous Commands

The Editor Command Summary

Invoking Turbo C with a Filename

Turbo C Essentials

Turbo C Is Case-Sensitive

A Simple Turbo C Program
Handling Errors

A Second Program

A Quick Review

What Is a Turbo C Function?
Two Simple Commands
Blocks of Code

Characters and Strings

A Quick Review of print()

A Quick Review of scanf()
Semicolons, Braces, and Comments
Indentation Practices

The Turbo C Library

The Turbo C Keywords

A Review of Terms

13

29

45

Part Two Turbo C Basics 69

Variables, Constants, Operators, n
and Expressions

Identifiers

Data Types

Declaring Variables

Constants

Operators

Expressions

Program-Control Statements 95
The if Statement
The switch Statement
Loops
The for Loop
The while Loop
The do/while Loop
Nested Loops
Loop Breaking
The continue Statement
Labels and goto

Arrays and Strings 125
Singly Dimensioned Arrays
Strings
Two-Dimensional Arrays
Multidimensional Arrays
Array Initialization
A Tic Tac Toe Example

Pointers 149
Pointers Are Addresses
Pointer Variables
The Pointer Operators
Pointer Expressions
Pointers and Arrays
Pointers to Pointers
Initializing Pointers
Problems with Pointers
Dynamic Allocation

9

10

n

12

A Closer Look at Functions

The General Form of a Function

The return Statement

Scope Rules of Functions

Function Arguments

The Arguments argc and argv to main()
Functions That Return Noninteger Values
Function Prototypes

Recursion

Implementation Issues

Input and Output
Two Preprocessor Directives
The stdio.h Header File
Streams and Files
Streams
Files
Conceptual Versus Actual
Console I/0
Formatted Console I/0
The Buffered I/0 System
Unbuffered I/0 —the UNIX-like File Routines
Choosing an Approach

Part Three Advanced Topics
Advanced Data Types

Access Modifiers

Storage-Class Specifiers

Type Conversion in Assignments
Function-Type Modifiers
Pointers to Functions

User-Defined Data Types

Structures

Arrays of Structures

Passing Structures to Functions
Pointers to Structures

173

205

249

251

269

13

14

15

Arrays and Structures Within Structures
Bitfields

unions

Enumerations

Using sizeof to Ensure Portability

The Keyword typedef

Advanced Operators

Bitwise Operators

The ? Operator

C Shorthand

The Comma Operator
Parentheses and Square Brackets
Precedence Summary

The Turbo C Preprocessor and
Compiler Options

The Turbo C Preprocessor

The #define Directive

The #error Directive

The #include Directive
Conditional Compilation Directives
The #undef Directive

The #line Directive

The #pragma Directive
Predefined Macro-Names
Compiler and Linker Options
Compiler Options

Linker Options

The Turbo C Integrated Environment Options
Args

Saving and Loading Options

Some Common Turbo C Library
Functions

String and Character Functions
The Mathematics Functions
Operating-System-Related Functions
Dynamic Allocation

Miscellaneous Functions

303

317

341

16

Miscellaneous Topics
Compiling Multiple-File Programs
The Command-Line Version of Turbo C
A Brief Overview of the Standalone Make
Some Common Programming Errors
Parting Words

Index

393

417

FOREWORD

It had to happen.

It was inevitable that Borland, which is first and foremost a language
company, would create software developer’s tools for C, one of the most popu-
lar programming languages. It probably is equally inevitable that Herbert
Schildt, noted author and veteran C programmer, would write a book that
helps serious programmers make the most of this elegant language.

Turbo C follows in the tradition of Turbo Pascal and Turbo Prolog in
demonstrating our commitment to bring superior development tools to
market for the thousands of C and BASIC programmers in this country and
abroad. With this language development environment, serious developers
have the tools to build the most portable software applications possible. And
because of C’s usefulness in multiple CPU environments, programmers will
be able to move these applications among many machines.

xi

xii Using Turbo C

It has been a pleasure to work with Osborne/McGraw-Hill and Herb to
produce the kind of book programmers like best about the language they like

most.

Philippe Kahn
President
Borland International, Inc.

PREFACE

I have been programming in C since the mid 1970s and have been writing
about the C language for the past several years. Although I am fluent in the
most popular computer languages, including FORTRAN, BASIC, Pascal,
Ada, Prolog, and assembler, it is C that I choose for my own projects. I like
the philosophy behind C: it offers freedom, elegance, and consistency. Just
before Borland announced Turbo C, I—like many other C programmers —
was fairly sure that C compilers for microcomputers had nearly scaled what-
ever heights they could reach, and that any improvements would be small
and insignificant. Frankly, I think that a large part of the C programming
community had become a little complacent. Needless to say, Turbo C cer-
tainly changed that!

First and foremost, Turbo C is a “C programmer’s compiler”: it is fast —
really fast —both in compilation and in execution. If you have never used a C
compiler before, you might be surprised to learn how slowly some of them

xtii

xiv Using Turbo C

compiled code. Second, Turbo C adheres to the proposed ANSI standard.
This means that code that you write in Turbo C will be as good ten years
from now as it is today. Finally, Turbo C’s integrated environment has sim-
plified program development.

Is This Book for You?

This book assumes that you have never programmed in C before. Although
programming experience is not technically necessary, it will be helpful if you
have programmed (even a little) in some computer language.

Part One begins with a discussion of the C language’s history , followed by
a look at Turbo C’s integrated environment and editor. Part One finishes
with some Turbo C essentials. Part Two contains the “meat” of the C lan-
guage. Part Three finishes the book with coverage of some advanced con-
cepts. By the time you finish Part Three, you will be an accomplished C
programmer.

This book will help you learn to program both in Turbe C specifically and
in C generally. Because Turbo C is ANSI standard, you can apply many
concepts of the Turbo C language to other C compilers in other environ-
ments.

There is good news and there is bad news about learning C. First, the bad
news: While C, in general, is a sophisticated language that gives virtually
unlimited power to the programmer, the price of this power is a greater
potential for error. In almost all other computer languages, the compiler is
constantly watching over your shoulder, trying to keep you out of trouble. In
C, however, you can do just about anything you like without so much as a
stifled snicker from the compiler. The good news is that if you know Pascal
(including Turbo Pascal), Modula-2, Ada, or any other contemporary struc-
tured language, you will find yourself right at home with Turbo C.

This book contains many useful and interesting functions and programs.
If you’re like me, you probably would like to use them, but hate typing them
into the computer. When I key in routines from a book, I always seem to type
something wrong and spend hours trying to get the program to work. For
this reason, I am offering the source code on diskette for all of the functions
and programs in this book for $24.95. Just fill in the order blank on the next
page and mail it, along with your payment, to the address shown on the order

blank. Or, if you're in a hurry, call (217) 586-4021 and place your order by
telephone. (VISA and MasterCard accepted.)

H.S.
Mahomet, Illinois
May 1987

Please send me ___ copies, at $24.95 each, of the programs in Using Turbo C.
For foreign orders, please add $5.00 shipping and handling.

Name

Address

City State Z1p

Telephone
Method of payment: Check ___ VISA __ MC __

Credit-card number:

Expiration date:

Signature:

Send to: Herbert Schildt
R.R. 1, Box 130
Mahomet, IL 61853
Or phone: (217) 586-4021

Introduction to
Turbo C

PART ONE

A

Part One of this book lays the groundwork Jor your study of
Turbo C. Chapter 1 offers a history and overview of the C lan-
guage. Chapter 2 teaches you how to use Turbo C’s wntegrated
programming environment, and Chapter 3 examines the editor.
Chapter 4 introduces some Turbo C basics.

v

Turbo C n
Perspective
CHAPTER 1

Before you can begin to explore the exciting world of Turbo C, you should
first place it in perspective, in relation both to other programming languages
and to other C compilers. The purpose of this chapter is to present a general
overview of the C programming language, its origins, uses, and philosophy.
If you already know something about C and are a fairly experienced pro-
grammer, then you might want to skip to Chapter 2.

This chapter begins with a short history of C and its uses. The chapter
also explains the reason that C has become the world’s most popular and
important computer language. If you are completely new to C or to pro-
gramming in general, you will find this background information valuable.

4 Using Turbo C

The chapter then covers the differences between compilers and interpreters.
If Turbo C is the first compiled language that you have worked with, you
should read this section carefully. Finally, the chapter ends with information
specifically for Turbo Pascal users who are moving up to Turbo C.

The Origins of C

Dennis Ritchie invented and first implemented C on a DEC PDP-11 that used
the UNIX operating system. The C language is the result of a development
process that started with an older language called BCPL, which is still in use
primarily in Europe. BCPL was developed by Martin Richards. BCPL influ-
enced a language called B, which was invented by Ken Thompson and which
led to the development of C in the 1970s.

For many years, the de facto standard for C was the version that was
supplied with the UNIX version 5 operating system and described in The C
Programming Language by Brian Kernighan and Dennis Ritchie (Prentice-
Hall, 1978). With the growing popularity of microcomputers, many C imple-
mentations were created. In what could almost be called a miracle, most of
these implementations were highly compatible with each other on the source-
code level. However, because no standard existed, there were always some
discrepancies. To change this situation, a committee was established in the
beginning of the summer of 1983. This committee began to work on the crea-
tion of an ANSI standard that would define once and for all the C language.
As of this writing, the proposed standard is nearly complete, and its adoption
by ANSI is expected in 1987. Because the ANSI C standard is a superset of
the UNIX standard, programmers who are migrating from a UNIX-based
compiler to an ANSI-standard compiler will find all the features they have
come to rely on. In addition, they will find some new features that will make
programming easier.

When Borland began its Turbo C project, it defined three goals. The first
goal was to implement the complete ANSI standard so that Turbo C users
would have the most up-to-date C compiler available. The second goal was to
produce the fastest, most efficient compiler possible. Borland knows, as you
will understand, that C programmers are an uncompromising bunch when it
comes to speed and efficiency in the programs that they write. The final goal

*

Turbo C in Perspective 5

was to provide an integrated C programming environment that would
streamline the development process. It is a pleasure to report that Borland
succeeded in accomplishing all three goals.

Now that you know Turbo C’s lineage, let’s examine what kind of a pro-
gramming language it is.

C Is a Middle-level
Language

C is often called a middle-level computer language. Middle-level does not have
a negative meaning. It does not mean that C is less powerful, harder to use,
or less developed than a high-level language, such as BASIC or Pascal. It also
does not imply that C is similar to assembly language with its associated
troubles. C is thought of as a middle-level language because it combines ele-
ments of high-level languages with the functionalism of assembler. Figure
1-1 shows the way that C fits into the spectrum of programming languages.

Highest-level Ada
Modula-2
Pascal
COBOL
FORTRAN
BASIC
Middle-level C
Forth
Lowest-level Macro-assembler
Assembler

Figure 1-1. C’s place in the world of programming languages

6 Using Turbo C

C code is very portable. Portability means that you can adapt software
written for one type of computer to another type. For example, if you can
move a program written for an Apple II+ easily to an IBM PC, then that
program is portable. Turbo C’s support of the ANSI standard assures you of
the portability of the code to other environments.

All high-level programming languages support the concept of data types.
A data type defines a set of values that a variable can store with a set of
operations that the computer can perform on that variable. Common data
types include integer, character, and real. Although C has five basic built-in
data types, it is not a strongly typed language like Pascal or Ada. C will allow
almost all type conversions. For example, you may freely mix character and
integer types in most expressions. In general, C compilers perform little run-
time error checking, such as array-boundary checking or argument-type
compatibility checking. The same is true of Turbo C. These checks are the
responsibility of the programmer. The reason for this lack of run-time error
checking is that run-time error checking slows a program’s execution. There-
fore, you as the programmer decide whether or not any error checking is
necessary.

As a middle-level language, C allows the manipulation of bits, bytes, and
addresses—which are the basic elements with which the computer functions.
This ability makes C well suited for system-level programming where these
operations are common.

Another important aspect of Turbo C is that it has only 38 keywords (32
that are defined by the ANSI standard, and 5 that were added by Borland to
allow you to make better use of some special aspects of the PC environment).
These keywords are the commands that make up the C language. By compar-
ison the IBM PC BASIC has 159 commands!

C Is a Structured
Language

Although the term block-structured language does not strictly apply to C in an
academic sense, C is commonly referred to simply as a structured language
because of its structural similarities to Algol, Pascal, and Modula-2. (Note:
Technically, a block-structured language allows you to declare subroutines

Turbo C in Perspective 7

inside other subroutines. However, since C does not allow this, it cannot for-
mally be called block-structured.) The distinguishing feature of a structured
language is its compartmentalization of code and data, which is the ability of
a language to section off and hide from the rest of the program all informa-
tion and instructions that are necessary to perform a specific task. One way
to achieve compartmentalization is by using stand-alone_subroutines. (A
stand-alone subroutine defines its own variable, which may be used only by
that subroutine.) The use of stand-alone routines makes it possible to write
subroutines in such a way that the events that occur within them will cause
no side effects in other parts of the program. By developing compartmental-
ized subroutines, you only need to know what they will do, and not how they
will do it.
Here are some examples of structured and nonstructured languages:

Nonstructured Structured
FORTRAN Pascal
BASIC Ada
COBOL C

Modula-2

Structured languages tend to be more modern, while nonstructured lan-
guages are older. In fact, a mark of an old computer language is that it is not
structured. Today, it is widely agreed that structured languages not only
make programming easier, but also make maintaining a program easier.

A Replacement of
Assembly Language

C’s inherent efficiency compared with its ability to operate directly on the
bits and bytes of the computer’s memory allows you to use C in place of
assembler in many situations. This cannot be undervalued as a factor that
contributes to C’s popularity among programmers. Assembly language uses
a symbolic representation of the actual binary code that the computer
directly executes. Each assembler operation maps into a single task for the
computer to perform. Although assembly language gives programmers the

8 Using Turbo C

potential for accomplishing tasks with maximum flexibility and efficiency,
assembly language is notoriously difficult to work with when you develop and
debug a program. Furthermore, since assembly language is unstructured by
nature, the final program tends to be spaghetti code: a tangled mess of jumps,
calls, and indexes. This characteristic makes assembly language programs
difficult to read, enhance, or maintain. Perhaps more importantly, assembly
language routines are not portable between machines that have different
CPUs.

As this discussion implies, even with all of the shortcomings of assembly
language, it was often used because it offered the only way to produce pro-
grams that ran fast enough. However, with the advent of Turbo C, it is diffi-
cult to justify the use of assembly language programming in all but the most
unusual circumstances.

What Can C Be
Used for?

Initially, C was used for systems programming. A systems program. is part of
a large class of programs that form a portion of the operating system of the
computer or its support utilities. For example, the following are commonly
called systems programs:

. operating systems . assemblers
. interpreters « compilers
« editors . data base managers

As C grew in popularity, many programmers began to use it to program
all types of tasks because of its portability and efficiency. Before long, €.
became the most popular, general-purpose programming language. Now that
C has been standardized, there is little doubt that its dominance will last well
into the next century.

Turbo C in Perspective 9

A Programmer’s Language

C is a programmer’s language. You might respond to a statement like that
with the question, “Aren’t all programming languages for programmers?”’
The answer is an unqualified NO!

Consider the classic examples of nonprogrammer’s languages: COBOL
and BASIC. COBOL was designed not to make the programmer’s lot better,
not to improve the reliability of the code produced, and not even to improve
the speed with which the programmer could write code. Rather, COBOL was
designed to enable nonprogrammers to read and presumably (however
unlikely) understand the program! (Note: The reader is cautioned that the
merits of COBOL are not under assault here —it does have its uses. The point
is that COBOL was not designed to be the ideal language for programmers.)
On the other hand, BASIC was created essentially to allow nonprogrammers
to program a computer in order to solve relatively simple problems.

Indeed, C stands virtually alone because it was created, influenced, and
field-tested by working programmers. Its success was largely due to “grass-
roots” support. The result is that C gives a programmer what a programmer
wants: few restrictions, few complaints, fast code, and efficiency. It is amaz-
ing that, by using Turbo C, a programmer can produce programs that are
nearly as efficient as those programs coded in assembly language, while still
enjoying the benefits of a high-level language. It is no wonder that C is easily
the most popular language among top-flight professional programmers.

Compilers Versus
Interpreters

Turbo C is a compiler. By contrast, the standard BASIC that came with your
computer is an interpreter. If you have never worked with a compiler before,
it will seem different. So, if compilers are new to you, carefully read this
section.

10 Using Turbo C

The terms compiler and interpreter refer to the way in which a program
is executed. In theory, any programming language can be either compiled or
interpreted, but some languages are usually executed one way or the other.
For example, BASIC is generally interpreted and C is usually compiled. The
way that a program is executed is not defined by the language in which it is
written. Interpreters and compilers are simply sophisticated programs that
operate on your program source code.

An interpreter reads the source code of your program one line at a time,
and performs the specific instructions that are in that line. A compiler reads
the entire program and then converts it into object code, which is a transla-
tion of the program source code into a form that the compiler can directly
execute. Object code is also referred to as binary or machine code. After you
compile the program, a line of source code is no longer meaningful to the
execution of your program.

When you use an interpreter, it must be present each time that you run
your program. For example, in BASIC, you must first execute the BASIC
interpreter, load your program, and then type RUN each time that you want
to use your program. The BASIC interpreter will execute your program one
line at a time. This slow process occurs every time that you run the program.
By contrast, a compiler converts your program into object code that your
computer can directly execute. Because the compiler translates your pro-
gram one time, all that you need do is execute your program directly —
generally by simply typing its name. Therefore, compilation is a one-time
cost. Interpreted code incurs this overhead each time that you run a
program.

Not all compilers are created equal. As you probably know, Turbo C is, at
the time of this writing, the fastest C compiler available. This situation is not
expected to change because Turbo C performs special manipulations called
optimizations to the code that it generates. Code optimization is still in the
realm of magic—not every C compiler developer can do this as well as
another. Although there is no way to know how many “spells and incanta-
tions” Borland used, it certainly managed to create some clever optimizations.

Two terms that you will see often in this book and in your C compiler
manual are compile-time and run-time. The term comprile-time refers to the
events that occur during the compilation process. The term run-time refers to
the events that occur while the program is executing. Unfortunately, you will
often see these terms used in connection with the word error, as in compile-
time error and run-time error. Happily, as you become a better Turbo C pro-
grammer, you will see fewer of these messages.

Turbo C in Perspective 11

A Word to Turbo
Pascal Users

If you are a Turbo Pascal programmer, there is good news and bad news.
First, the good news: in terms of basic language elements, Turbo C is sim-
ilar to Turbo Pascal. For example, although some of the names are different,
the loop statements and the conditional statements are virtually the same.
Thus, you already know most of the essentials of programming in Turbo C.
In fact, among the elements that are similar between Turbo C and Turbo
Pascal, those in Turbo C are generally more powerful, more flexible, and
more efficient. Because of the way Turbo C treats such basic elements as
variables and operators, you will have more direct control over the computer
and the way that the computer actually executes your program. To give you
an idea of what programming level you are moving up to, Turbo C is roughly
twice as powerful as Turbo Pascal —and, as you know, Turbo Pascal is no
slouch!

Now for the bad news: there is a price for all of Turbo C’s power. Turbo C
(and C in general) does not do much to keep you out of trouble. With Turbo C,
you no longer have automatic strong type checking, for example. In Turbo C,
the rule is “the programmer is king”: Turbo C will more or less do whatever
you tell it to do, even if what you want cannot conceivably work. For example,
in C, you can call a function that should take integer arguments with
floating-point arguments. Doing this will cause the function to misbehave,
but the Turbo C compiler will not give you any warning messages. As you
will see later in this book, there are ways to cause Turbo C to “look over your
shoulder” (not as much as Turbo Pascal, however) but you must explicitly
request it to activate these ways. In a different vein, you will find that, while
Turbo C’s I/0 capabilities are much more powerful than Turbo Pascal’s, they
are also more complex, so be patient when you read Chapter 10, which covers
this subject.

Start Your Engines

Now that the stage has been set, it’s time to start your engines. By the time
that you finish this book, you will be able to enjoy true turbo-power pro-
gramming at its best.

The Turbo C
Environment

CHAPTER 2

Turbo C has two separate modes of operation. The first mode, which you will
almost certainly want to use as you begin to program, is its integrated
development environment. In this environment, you can control editing, compila-
tion, and execution by using single keystrokes and easy-to-use menus. The
other mode of operation utilizes the traditional approach, where you first use
an editor to create your file, then compile it, link it, and run it manually. This
mode is called the command-line approach. The first part of this book will
use only the integrated environment because it is easier to work with and
because its on-line help will aid you if you need it. Using the compiler from
the command line will be covered later.

13

14 Using Turbo C

The purpose of this chapter is to show you the Turbo C integrated
environment —in other words, to get you acquainted with Turbo C. Many of
the options that you will see may seem cryptic now, but as you progress
through this book they will become clear. If you are already familiar with the
way that the integrated environment functions, you should skip to Chapter 3
at this time.

The rest of this book assumes that you have properly installed Turbo C
according to the instructions given in its manual. If you have not or if you
have had trouble with installation, please refer to Appendix A, which de-
scribes this process.

Executing Turbo C

To execute the integrated version of Turbo C, simply type TC and then press
ENTER. When Turbo C begins execution you will see the screen shown in
Figure 2-1. This is called the main menu screen and consists of four parts,
listed here in order from top to bottom:

+ The main menu
. The editor-status line and window
« The compiler message window

. The “hot key” quick-reference line

To exit Turbo C, press ALT-X.
The rest of this chapter examines each of these areas.

The Main Menu

You use the main menu either to tell Turbo C to do something, such as exe-
cute the editor or compile a program, or to set an environmental option.
There are two ways to make a main menu selection, which you should try at
this time. First, you can use the arrow keys to move the highlight to the

The Turbo C Environment 15

File Edit Run Compile Project Options Debug
Edit

Insert Indent Tag

T HENAME

Message

Fi-Help FS-Zoom Fé-Message F9-Make Fi0-Main menu

Figure 2-1. The Turbo C main menu screen

option that you want and then press ENTER. Second, you can simply type the
first letter of the menu option that you want. For example, to select Edit, you
would type E. You may enter the letter as either uppercase or lowercase.
Table 2-1 summarizes what each menu option does. Let’s look more closely at
each option in turn.

File

Move the highlight to File and press ENTER. This process activates the File
pull-down menu, as shown in Figure 2-2. To make a selection from a pull-
down menu you either move the highlight to the option and press ENTER, or
you type the first letter of the option. To exit a pull-down menu you simply
press ESC.

16 Using Turbo C

Table 2-1. The Main Menu Options

Item Options

File Loads and saves files, handles directories, invokes DOS,
and exits Turbo C.

Edit Invokes the Turbo C editor.

Run Compiles, links, and runs the program currently loaded
in the environment.

Compile Compiles the program currently in the environment.

Make Manages multifile projects.

Options Sets various compiler and linker options.

Setup Sets various environmental options,

Debug Sets various debug options.

The Load option prompts you for a filename and then loads that file into
the editor. The Pick option displays a menu that lists the last eight files that
you loaded into the integrated environment. You can select one of these files
by using the arrow keys to move the highlight to it and pressing ENTER.
Selecting New lets you edit a new file. The Save option saves the file cur-
rently in the editor. The Write to option lets you save a file under a different
filename than you used previously. Directory displays the directory, while
Change dir changes the default directory to the one that you specify. The OS
shell option loads the DOS command processor and then lets you execute
DOS commands. Under this option, you must type EXIT to return to Turbo
C. Finally, the Quit option quits Turbo C.

At this time, press ESC to return to the main menu.

Run and Compile

The Run option of the main menu attempts to compile, link, and execute the
program that is currently in the editor. There is no menu associated with Run.
Move the highlight to the Compile option and press ENTER. There are

The Turbo C Environment 17

Edit Run Compile Project Options Debug
R Edit
- Load Fz

Pick Alt-F3
Naw

Save F2
Wite to
Directaory
Change dir
0S8 shell
Quit Alt-X

Message

Fi-Help FS-Zoom F&-Edit F9-Make Fi0-Main Menu

Figure 2-2. The File pull-down menu

five options on the Compile menu. The first option allows you to compile a C
source file to an .OBJ file. An .OBJ file is a relocatable object file that is
ready to be linked into an .EXE file that Turbo C can execute. You will learn
more about the .OBJ files in Chapter 4. The second option will compile your
program directly into an executable file. The third option links the current
.OBJ file and creates an .EXE file. The fourth option forces Turbo C to
recompile and link all files in a project. (You will learn more about multifile
projects in Part Three of this book.) The final option lets you specify a pri-
mary file that you want to compile. If you do specify a primary file, then any
of the other Compile options or the Run command will use that file. If you do
not specify a file, Turbo C will use the file currently loaded in the editor.
Press ESC at this time to return to the main menu.

18 Using Turbo C

Project

You use the Project option on the main menu when you develop and main-
tain large, multifile programs.

Options

Select Options from the main menu at this time. As you can see, the options
in the Options pull-down menu are

Compiler
Linker
Environment
Args

Retrieve options
Store options

Each of these options causes Turbo C to display a pull-down window that
contains other options that relate to that particular option. You need not be
concerned about most of these options at this time because Turbo C’s default
mode of operation is applicable to all of the examples in this book and to most
programming projects. (Part Three will discuss several of the more impor-
tant options.) However, one of the options found under the Compiler option
concerns memory models, a topic that needs a few words of explanation.

Memory Models 1If you have looked through the Turbo C user manual
briefly, you have probably encountered the term memory model more than
once. If you do not know what this term means, don’t worry: Turbo C’s
default approach is fine for most applications, and is all that you will need
for the examples in this book. In fact, to understand the impact of the various
models fully requires an understanding of how the 8086 family of processors
works. It is beyond the scope of this book to look at this subject in great
detail; however; the short discussion that follows may help you understand
the general differences among the memory models. (You can find a detailed
explanation of memory models in Advanced Turbo C by Herbert Schildt
[Borland-Osborne/McGraw-Hill, available Summer 1987].)

The Turbo C Environment 19

As you may know, the 8086 family of processors uses a segment-offset
memory architecture. In this architecture, each segment is 64K long. The
segment part of the address determines which segment a program selects,
while the offset specifies the specific byte within that segment. Bluntly
stated, this architecture is not the most elegant approach and can cause some
rather difficult programming situations. The trouble is that, in order to allow
a program to access memory outside the segment in which it resides, the
program must use a 32-bit address. However, if the memory accessed is
inside the program’s segment, then the program only requires a 16-bit
address. Furthermore, a program may need to access code, data, or both in
each of these ways. Another complication is that 32-bit addressing is much
slower than 16-bit addressing. Thus, it is desirable to use 16-bit addressing
when possible. Although you can always use 32-bit addressing, it causes pro-
grams to execute very slowly and should be used only as a last resort.

As a result, Turbo C defines six different memory models from which you
may choose to use for the compiled form of your program. These models are
shown in Table 2-2. Generally Turbo C’s default small model is sufficient for
the majority of programming tasks.

Debug

The Debug option lets you set the way that Turbo C displays compiler-error
and linker-error messages. The default settings for Debug are generally
what you want to use; you do not need to worry about Debug further at this
time.

The Edit Window

Just below the main menu is the edit window. You will edit your program
inside this window. Although you will learn how to use the editor in the next
chapter, select Edit now. Turbo C places the cursor in the upper-left corner
of the window. The editor is ready for you to enter text at this time. Try

20 Using Turbo C

Table 2-2. The Turbo C Memory Models

Model Description

Tiny All addresses are 16-bits and all code and data must fit
in one 64K segment. Can be used to produce .COM files.

Small Code and data have separate segments. All addresses are

16-bits long. Good for most applications.

Medium Code may use multiple segments and requires 32-bit
address. Data has one segment and uses 16-bit addresses.
Best for large programs that do not have much data.

Compact Complement of the medium model: data may use multi-
ple segments. Code has one segment and uses 16-bit
addresses. Best for average-size program with a lot of
data.

Large Both code and data may use multiple segments, and
require 32-bit addresses. No single data item can exceed
64K. Best for large applications, but will run slowly.

Huge Same as the large model, except single-data items may
be larger than 64K. Runs the slowest of all models.

typing the line This is a test and then press RETURN. To leave the editor,
press F10.

The Message Window

The message window lies beneath the edit window and is used to display
various compiler or linker messages.

The Turbo C Environment 21

The Hot Keys

The Turbo C interactive environment supports a set of hot keys that you can
use to activate the various menus or to perform a few common functions
quickly. Table 2-3 shows the Turbo C hot keys. Because the hot keys are
active at all times, you can instantly activate any menu —regardless of what

Figure 2-3. The Turbo C Hot Keys

Hot Key Meaning

F1 Activates the on-line help system
F2 Saves the file currently in the editor
F3 Loads a file

F5 Zooms the active window

Fé Switches the active window

F7 Allows you to go to previous error
F8 Allows you to go to next error

F9 Compiles and links your program
F10 Activates the main menu

ALT-F1 Brings back the last help screen
ALT-F3 Allows you to pick a file to load
ALT-F9 Compiles file in the editor to .OBJ
ALT-F10 Displays the version number
ALT-C Activates the Compile menu
ALT-D Activates the Debug menu

ALT-E Activates the editor

ALT-F Activates the File menu

ALT-0 Activates the Options menu

ALT-P Activates the Project menu

ALT-R Runs the current program

ALT-X Quits Turbo C

22 Using Turbo C

you are currently doing. For example, you can compile a program without
leaving the editor. At the bottom of the screen, Turbo C shows the hot keys
that are the most relevant to what you are currently doing. But remember —
all of the hot keys are always active.

One of the most important hot keys is F10, which activates the main menu.
Other important hot keys are discussed here.

Help

You can activate the on-line help system by pressing F1. The help system is
context-sensitive, which means that Turbo C will display information that is
related to what you are currently doing. To see how the help system works,
press F1 at this time. To leave the help system, press ESC.

Switching Windows and Using Zoom

By pressing F5, you can enlarge either the edit window or the message win-
dow so that it covers the full size of the screen. The zoom feature is so named
because it simulates the action of a zoom lens of a camera. The F5 is a toggle
key, so pressing it again returns either the edit window or the message win-
dow to its regular size. Figure 2-3 shows the way that the screen looks when
you zoom in on the edit window.

You press Fé to determine the window that you want to enlarge. The Fé is
a toggle that switches between the edit and message windows. Pressing Fs
once selects the message window. Pressing Fé again returns control to the
edit window. You will select the message window when you want to examine
the various messages the compiler generates.

Make

The Make key is F9. The Make option provides a simple way to compile
programs that consist of multiple source files. You will see the use of the
Make key later in this book.

The Turbo C Environment 23

File Edit Run Compile Project

ins2rt Indent Tab CT:NOMaAMID, D

Options Debug

Fi-Help FS5-Zoom Fé6-Message F9-Make F10-Main menu

Figure 2-3. Zooming in on the edit window

The TCINST Program

Turbo C includes an installation program called TCINST, which you use to
set several attributes and default settings of the Turbo C integrated environ-
ment. To execute this program, simply type TCINST from the command
line. When the program begins to execute, you will see a display that is sim-
ilar to the one in Figure 2-4. Each of the TCINST options is discussed here.

24 Using Turbo C

- Installation Menu —

Editor commands
Default edit maodes
Screen made

Colors

Resize windows

Quit/save

Figure 2-4. The TCINST initial screen

Turbo C Directory

The Turbo C Directory option is an installation parameter that determines
which directory will contain Turbo C’s help and configuration files. If you do
not enter anything, then Turbo C assumes that it should use the current
working directory.

Editor commands

You can customize the Turbo C editor by selecting the Editor commands
option. Doing so produces the screen shown in Figure 2-5. If you are familiar
with another type of editor, you can make the Turbo C editor imitate it by
changing the keystrokes that make up each command.

To change a command, first position the highlight on the command that
you want to change and press ENTER. Turbo C only highlights the right side
of the command because this is the side that you can change. It is not possible
to change the left command. To clear the right-side sequence of the com-

The Turbo C Environment 25

mand, type C. To restore the original sequence, type R. To enter a new key-
stroke sequence, simply type the proper characters. For example, to change
the command for moving one word to the right to the keystroke sequence
CTRL-F CTRL-W, first select the Word Right command. Next, type C to clear
the old command. Now press CTRL-F, then CTRL-W, and then ENTER. Pressing
ENTER terminates the command sequence. The screen will look like Figure
2-6. If you wish to use ENTER as part of the command, you must press
SCROLL LOCK first. This causes Turbo C to treat ENTER literally, instead of as
a signal of the end of the keystroke sequence.

Turbo C Installation Program

1—-{-scroll PgUp-PgDn—page <J—modi¥y R-restare factory defaults ESC-exit

Cursor Left “CErl8: <Lft>
Cursor Right “OtrlDs <Rgt>

Word Laft “Ctrla KCtriLft>
Word Right “CEr1F > <CtriRgt>
Cursor Up <Up>
Cursor Down <Dn>
Scroll Up

Sorell Dows

Fage Up <Pgup>
Fage Down <PgDn>
fleft of Lipe {Home>
Right of Line <End>

Top of Screen <CtrlHome>
Bottom of Screen <CtrlEnd>
Top of File LCtriPgup>
Bottom of File <CtriPghn>

Move to BRlock Begin
Move to Block End

Move to Frevious Fosition «
Move to Marker O
Move to Marker 1 A SR n Y

Figure 2-5. The Editor Commands window of TCINST

26 Using Turbo C

~—backspace C-clear

Turbo € Installation Program =————————={omnhand=—==
R-restore 4d-accept edit <Scroll Laock> literal

MNeaw Ling

Cwreor Left
Cursor Right

Word Left

Wowd Right

Cursor Up

Cursor Down
Scroll Up

Scroll Down

Fage Up

Fage Down

Left of Line
Right of Ling

Top of Screen
Bottom of Screen
Top of File
Bottom of File
Move to Block Begin
Move to Block End

Move ta Marker O
Move to Marker 1

SEnter KEnter2

“intrlS: <Lft>

CCtr 1D <Rgt>

LAk <Ctrllét>

SOt lF CCtrlFo{ttri W

“CherlEr <Up>

L0trlXe <Dn>

“ChriWe

TChelZ

“ChelRE <PqUp>
<PgDhn>
<Home>
<End>
{CtritHome>
<CtrlEnd>
<CtrlPgUp>
<Ctrl1PgDn>

ER ns T WA MRS 2 S § L9
Move to Previous Fosition <Cbril@x{Ctrlf>

LOEFIE0
2Ctr10t

Figure 2-6. Changing the Word Right command

Default edit modes

You use the entries under the Default edit modes option to set the state of
certain options in the default operation of the Turbo C editor. The next chap-
ter will explain what these options do.

Secreen mode

The Screen mode option determines how Turbo C communicates with the
video controller in your computer. There are various ways to write the
screen. Depending upon the setup of your system, you may experience “snow”
on screen when you use the fastest method. The Screen Mode option allows
you to test for snow, based upon the type of video adapter you have.

The Turbo C Environment 27

Colors

The Colors option lets you select the color scheme that Turbo C uses when
running in a color environment. Turbo C has three built-in color options. In
addition, you may define your own color scheme for every part of the Turbo C
user interface. To do this, after you select the Colors option, select the Cus-
tomize Colors option. Turbo C asks you what area you wish to modify. If you
select the main menu, then Turbo C will show you another menu that lets you
select what part of the main menu you wish to adjust the color of. Your
screen will look like Figure 2-7. Once you have selected the part that you
wish to change, then Turbo C will show you a table of color options. As you
try each option, the partial view of the main menu will change to reflect the
particular color scheme.

¢ Installation Menu —
i Main Menu
~— Customize Colors 2odire

_] comna| Compile Project Debug
== Edit

Main Menu @dit =

stall i d Linker
First letter LEN 25 Not available
Selection bar mi e Enviranment
It ol) {
ol s det Errors i stop after ©

H: Error bosx]nta i}
I: Verify bosx

Jr Directory box _—
K: Hez=lp _METH B
L: Status line CONTT K
STRING, &

m—-adify color @-exit

Figure 2-7. Selecting the Customize Colors options with TCINST

28 Using Turbo C

Resize windows

You can use the Resize windows option to change the size of the edit and
message windows in relation to each other. After selecting this option, you
can use the up-arrow and down-arrow keys to move the line that separates
the two windows.

Quit/save

The Quit/save option terminates the installation program. Turbo C will ask
you whether you want to write into Turbo C the changes that you made while
running the program; if you do, they will become the default mode of
Options. If you do, answer yes. However, you probably should answer no at
this time.

Now that you know your way around the basics of Turbo C’s program-
ming environment, you are ready to learn how to use the editor.

Using the Turbo C
Edator

CHAPTER 3

In this chapter, you will learn to use the editor that is built into Turbo C’s
integrated programming environment. The operation of this editor is similar
to Micropro’s WordStar program and the editors that are provided by Turbo
Pascal, Turbo Prolog, and SideKick. If you already know how to use one of
these editors, then skip to Chapter 4 at this time.

The Turbo C editor contains about 50 commands and is quite powerful.
However, you will not have to learn all of its commands at once. The most
important command types are insertion, deletion, block moves, searching,
and searching with replacement. After you have mastered these basic com-
mand types, you will be able to learn the rest of the editor commands easily,
and use them as you need them. Actually, learning to use the editor will be
suprisingly simple because you will have Turbo C’s on-line context-sensitive
help system at your disposal.

29

30 Using Turbo C

Editor Commands

Before you begin, it is important to explain the way to give commands to the
Turbo C editor. With few exceptions, all editor commands begin with a con-
trol character. In many commands, this character is then followed by
another character. For example, the sequence CTRL-Q F is the command that
tells the editor to find a string. (This chapter will use the abbreviation CTRL
to stand for control.) This sequence indicates that you press CTRL-Q and then
type F in either uppercase or lowercase.

Invoking the Editor
and Entering Text

When Turbo C begins, it waits at the sign-on message until you press a key.
When you do, Turbo C highlights the option File on the main menu. To
invoke the editor, you either use the cursor keys to move the highlight to Edit
or you simply type e. After doing that, the screen will look like the one in
Figure 3- 1. (The screens shown here reflect the way that Turbo C looks when
you use a monochrome monitor. When you run Turbo C on a color system, the
screens will look slightly different.) To leave the editor, you simply press Fio.

The highlighted line is the editor-status line and tells you various things
about the state of the editor and the file that you are editing. The first two
items Line and Col display the line number and column number of the cur-
sor. The Insert message indicates that the editor is in insert mode; that is,
as you enter text, Turbo C will insert it in the middle of what (if anything) is
already in the editor. The opposite mode is called overwrite; in this mode of
operation, new text can overwrite existing text. You can toggle between these
two modes by pressing INS. You will probably always use the default insert
mode because it is the mode that is commonly used. The Indent message
indicates that auto-indentation is on. You will see how this feature works
shortly. You toggle the indentation mode by pressing CTRL-0 I. The Tab mes-
sage tells you that you may insert tabs by using TAB. You toggle the tab mode

Using the Turbo C Editor 31

by pressing CTRL-O T. The final item on the editor-status line is the name of
the file that you are editing. It is possible to tell Turbo C what file you want to
edit when you invoke Turbo C from the command line, as you will see later.
However, since you have not done so, Turbo C uses the default filename
NONAME.C.

As soon as you invoke the editor, it is ready to accept text. So, to start,
type the following lines:

Roses are red
violets are blue
and so will you.

File Edit Run Compiie Project Options Debug
Edit
Insert Indent Tab C:NOMAME.C

Message

Fi-Help F3-Zoom Fé-Message F9-Make F10-Main menu

Figure 3-1. The initial editor screen

32 Using Turbo C

Be sure to press ENTER after you type the last line. If you make mistakes,
you can use the backspace key to correct them. Your screen will now look like
the one in Figure 3-2. In the figure, notice the position of the cursor and the
values that are associated with Line and Col.

You may use the arrow keys to move the cursor around in the file. At this
time, use the keys to position the cursor at the far-left side of the line and so
will you. Now, type the line I like Turbo C and press ENTER. As you type,
watch the way that Turbo C moves the existing line to the right instead of
overwriting it. This is what happens when the editor is in insert mode. If you
had toggled the editor into overwrite mode, Turbo C would have overwritten
the original line. The screen will now look like the one in Figure 3-3.

File Edit Run Compile Project Options Debug
Edit

Col 1 lozert Indent Tab T MNONAME, T

Roses are red
violets are blue
and s0 will you.

Message

Fi-Help FS~Zoom Fé-Message F9-Make F10-Main menu

Figure 3-2. The editor screen with text entered

Using the Turbo C Editor 33

File Edit Run Compile Project Options Debug
Edit
Line 2 Col 1S Insert [ndent Tab C:NONAME.C
Roses are red
violets are blue
I like Turbo C
and so will you.
Massage
Fil-Help F5-Zoom Fé-Message F9-Make F10-Main menu

Figure 3-3. The editor screen after the insertion of a line

Deleting Characters,
Words, and Lines

You can delete a single character in either of two ways: you can use the back-
space key or DEL. The backspace key deletes the character immediately to
the left of the cursor, while DEL deletes the character that the cursor is on.

You can delete an entire word that is to the right of the cursor by pressing

34 Using Turbo C

CTRL-T. A word is any set of characters that is delimited by one of the follow-
ing characters:

space $ /[—+* N[]1(.;, <>

You can remove an entire line by pressing CTRL-Y. It does not matter
where the cursor is positioned in the line—Turbo C deletes the entire line.
You should try to delete a few lines and words at this time.

If you wish to delete the text from the current cursor position to the end of
the line, press CTRL-Q Y.

Mowving, Copying, and Deleting
Blocks of Text

The Turbo C editor allows you to manipulate a block of text, such as moving
or copying it to another location, or deleting it altogether. Any of these
actions requires that you first define a block. You can do this by moving the
cursor to the beginning of the block and pressing CTRL-K B. Next, you move
the cursor to the end of the block and press CTRL-K K. Turbo C will highlight
the block that you have defined (or will display it in a different color if you
have a color system). For example, move the cursor to the I at the beginning
of the third line that you just entered and press CTRL-K B. Next, move the
cursor to the end of the last line and press CTRL-K K. Your screen should look
like the one in Figure 3-4.

To move a block of text, you move the cursor to the place where you want
the text to go and then press CTRL-K V. This process causes Turbo C to delete
the previously defined block of text from its current position and place it at
the new location.

To copy a block, press CTRL-K C. For example, move the cursor to the top
of the file and press CTRL-K C. Your screen will look like the one in Figure
3-5. You should experiment with these commands at this time.

To delete the currently marked block, press CTRL-K Y.

You may mark a single word by positioning the cursor on the first charac-
ter in the word and pressing CTRL-K T.

Using the Turbo C Editor 35

File Edit Run Compile Project

Edit

Dptions Debug

Roses are red

violets are blue
T

I like Turbo C
and so5 wll

YD,

Message

Fl-Help FS-Zoom Fé-Message F9-Make FI10-Main menu

Figure 3-4. The editor screen after the definition of a block

More on Cursor
Movement

The Turbo C editor has a number of special cursor commands, which are

summarized in Table 3-1. Now, take the time to experiment with these
commands.

36 Using Turbo C

File Edit Run Compile Project Options Dabug

Edit

[nsert Indent Tab

CiHONAME . L

- oaes are red
violets are blue
I like Turbo C

and s0 will you.

Message

Fi-Help F5-Zoom Fé—Message F9-Make F10-Main menu

Figure 3-5. The editor screen after a block copy

Find and
Find-and-Replace

To find a specific sequence of characters, you press CTRL-Q F. Turbo C will
then prompt you at the status line for the string of characters that you wish
to find. Type the string that you are looking for and then press ENTER. Turbo
C will then prompt you, again at the status line, for search options. The
search options modify the way that Turbo C conducts the search. The search

Using the Turbo C Editor 37

Table 3-1. The Cursor Commands

Command Action

CTRL-A Moves to the start of the word that is to the left of
the cursor.

CTRL-S Moves left one character.

CTRL-D Moves right one character.

CTRL-F Moves to the start of the word that is to the right of
the cursor.

CTRL-E Moves the cursor up one line.

CTRL-R Moves the cursor up one full screen.

CTRL-X Moves the cursor down one line.

CTRL-C Moves the cursor down one full screen.

CTRL-W Scrolls the screen down.

CTRL-Z Scrolls the screen up.

PGUP Moves the cursor up one full sereen.

PGDN Moves the cursor down one full screen.

HOME Moves the cursor to the start of the line.

END Moves the cursor to the end of the line.

CTRL-QE Moves the cursor to the top of the screen.

CTRL-QX Moves the cursor to the bottom of the screen.

CTRL-QR Moves the cursor to the top of the file.

CTRL-QC Moves the cursor to the bottom of the file.

options are shown in Table 3-2. For example, typing G2 will cause Turbo C
to find the second occurrence of the string. No options need to be specified;
you may simply press ENTER. If no options are present, then the search pro-
ceeds from the current cursor position forward, allowing case sensitivity and
substring matches. You should try some searches at this time.

You can repeat a search by simply pressing CTRL-L. This feature is very
convenient when you are looking for a specific string in the file.

To activate the find-and-replace command, press CTRL-Q A. Its operation is
identical to the find command except that the find-and-replace command
allows you to replace the string that you are looking for with another string.
If you specify the N option, Turbo C will not ask you whether or not it should

38 Using Turbo C

Table 3-2. The Search Options of the Find Commands

Option Effect

B Searches the file backwards starting from the current cursor
position.
Searches the entire file, regardless of where the cursor is located.
Replaces without asking; for find-and-replace mode only.
Matches either uppercase or lowercase.
Matches only whole words —not substrings within words.

s 2 aZo

Causes the nth occurrence of the string to be found where n is
an integer.

replace each occurrence of the search string with the replacement string. If
you do not specify the N option, Turbo C will prompt you for a decision each
time that a match occurs. You should try some find-and-replace examples
now,

You may enter control characters into the search string type by first
pressing CTRL-P and then typing the control character that you want.

Setting and Finding Place-Markers

You can set up to four place-markers in your file by pressing CTRL-K and
entering a number n, where n is the number of the place-marker (0 to 3).
After you set a marker, pressing CTRL-Q 7, where n is the marker number,
causes the cursor to go to that marker.

Saving and Loading
Your File

There are three methods to save your file. Two of them will save your file to a
file that has the same name as that shown on the status line. The third

Using the Turbo C Editor 39

method allows you to save your file to a disk file of a different name, and then
makes that name the current name of your file. Let’s look at how each
method works.

At this time, exit the editor and return to the main menu by pressing F10.
Select the File option. Your screen will look like the sereen shown in Figure
3-6. The Save option saves what is currently in the editor into a disk file that
uses the name shown on the status line. If you select the Save option now, you
will create a file called NONAME.C. Although doing this won’t hurt any-
thing, you should probably use a different filename. To save under a different
filename, you will use the Write to option, which allows you to enter the
name of the file that you wish to write the current contents of the editor to. It
also makes this name the default filename. Select the Write to option now.
When Turbo C prompts you for the filename, type test and then press ENTER.
This process causes Turbo C to save your file. You can also save your file
while inside the editor by pressing F2.

Fila Edit Run Compile Project Options Debug
e Edit
Load F2 || Thoert Iodent D NDNAME L
B! Piclk Alt-F3
EGE | New es are red
vio

I 1] Write to
andi Directory
Change dir
0S shell
Quit Alt—X

Message

Fi-Help FS-Zoom Fé-Edit F9-Make F10-Main Menu

Figure 3-6. The Save option

40 Using Turbo C

To load a file, you may either press F3 while inside the editor, or select the
Load option in the File menu. After you have loaded a file, Turbo C will
prompt you for the name of the file that you wish to load. There are two ways
that you can specify the filename. First, if you know the name, you can type it
at this time. Second, if you are unsure of the name, do not type anything;
Turbo C will display a list of all files with the .C extension, from which you
may choose a file by using the arrow keys to position the highlight over it and
then pressing ENTER.

Understanding
Auto-indentation

Good programmers use indentation to help make the programs that they
write clearer and easier to understand. To help assist in this practice, after
you press ENTER, the Turbo C editor will automatically place the cursor at
the same indentation level as the line that you just typed, assuming that the
auto-indentation feature is on. (Remember that you toggle this feature by
pressing CTRL-0 1.) For example, make certain that the auto-indentation fea-
ture is on and enter the following few lines exactly as they are shown here.

This is an illustration
of the autoindentation
mechanism
of the Turbo C
editor.

As you begin to write Turbo C programs, you will find this feature quite
handy.

Moving Blocks of Text
to and from Disk Fliles

It is possible to move a block of text into a disk file for later use. You can do
this by first defining a block and then pressing CTRL-K W. After you have done

Using the Turbo C Editor 41

so, Turbo C will prompt you for the name of the file that you wish to save the
block in. Turbo C does not remove the original block of text from your
program.

To read a block in, press CTRL-K R. Turbo C will prompt you for the file-
name, and then will read in the contents of that file at the current cursor
location.

These two commands—CTRL-K W and CTRL-K R—are the most useful
when you are moving text between two or more files, as is so often the case
during program development.

Mascellaneous
Commands

You can abort any command that requests input by pressing CTRL-U at the
prompt. For example, if you execute the find command and then change your
mind, simply press CTRL-U.

If you wish to enter a control character into the file, you first press CTRL-P
and then type the control character that you want. Turbo C displays control
characters in either low intensity or reverse video, depending on how your
system is configured.

To undo changes that you made to a line before you move the cursor off
that line, simply press CTRL-Q L. Remember that, once you have moved the
cursor off the line, all changes are final.

If you wish to go to the beginning of a block, press CTRL-Q B. Pressing
CTRL-Q K takes you to the end of a block.

One particularly useful command is CTRL-Q P, which puts the cursor back
to its previous position. This command is handy if you want to search for
something and then return to the position that you were at.

The Editor Command
Summary

Table 3-8 shows all of the Turbo C editor commands.

42 Using Turbo C

Table 3-3. A Summary of Turbo C Editor Commands by Category

Command

Left-arrow or CTRL-S
Right-arrow or CTRL-D
CTRL-A

CTRL-F

Up-arrow or CTRL-E
Down-arrow or CTRL-X
CTRL-W

CTRL-2Z

PGUP or CTRL-R

PGDN or CTRL-C

HOME or CTRL-Q S

END or CTRL-Q D
CTRL-Q E

CTRL-Q X

CTRL-Q R

CTRL-Q C

CTRL-Q B

CTRL-Q K

CTRL-Q P

INS or CTRL-V
ENTER or CTRL-N

CTRL-Y
CTRL-QY
Backspace
DEL or CTRL-G
CTRL-T

CTRL-K B
CTRLK K
CTRL-K T
CTRL-K C
CTRL-KY
CTRL-K H
CTRLK V
CTRL-K R
CTRL-K W

Cursor commands

Action

Left one character

Right one character

Left one word

Right one word

Up one line

Down one line

Seroll up

Scroll down

Up one page

Down one page

Go to the start of the line
Go to the end of the line

Go to the top of the screen
Go to the bottom of the screen
Go to the top of the file

Go to the bottom of the file
Go to the start of the block
Go to the end of the block
Go to the last cursor position

Insert commands

Toggle insert mode
Insert a blank line

Delete commands

Entire line

To end of the line
Character to the left
Character at the cursor
Word to the right

Block commands

Mark the beginning
Mark the end

Mark a word

Copy a block

Delete a block

Hide or display a block
Move a block

Write a block to disk
Read a block from disk

Using the Turbo C Editor

Table 3-3. A Summary of Turbo C Editor Commands by Category

43

(continued)
Find commands
Command Action
CTRL-Q F Find
CTRL-Q A Find-and-replace
CTRL-Q N Find place-marker
CTRL-L Repeat find
Miscellaneous commands
CTRL-U Abort
CTRL-O 1 Toggle auto-indentation mode
CTRL-P Control character prefix
F10 Exit the editor
F3 New file
CTRLQW Restore the overwritten error
message
F2 Save
CTRL-K N Set a place-marker
CTRLO T Toggle tab mode
CTRL-Q L Undo

Invoking Turbo C

with a Filename

As mentioned earlier, you can specify the name of the file that you want to
edit when you invoke Turbo C. To do this, simply type the name of the file
after the TC on the command line. For example, typing TC MYFILE will
execute Turbo C and cause it to load the file MYFILE.C into the editor.
Turbo C automatically adds the extension .C. If MYFILE does not exist,

Turbo C will create it.

Turbo C E'ssentials

CHAPTER 4

When it comes to programming languages, the saying “You can’t learn it if
you don’t know it already” has never been more true! The problem is that
each element in a programming language does not exist in a void, but rather
exists in relation to the other elements.

To solve this problem, this chapter develops and discusses a number of
simple sample programs without going into a lot of detail. Also, the chapter
presents a few essential aspects of Turbo C. This chapter is designed for
either the novice programmer or the programmer who has never used a
structured language before. Reading this chapter will give you a rough idea
about how Turbo C works. Most of the material presented here will be exam-
ined more fully later, so if you already know a little about Turbo C, you may
want to skip to Chapter 5 at this time.

45

46 Using Turbo C

Turbo C Is
Case-Sensitive

If you are familiar with languages such as Turbo Pascal or BASIC, one of the
first differences that you will see in Turbo C is that it is case-sensitive. This
means that it treats uppercase and lowercase letters as separate characters.
For example, in Turbo Pascal, the variable names count, Count, and
COUNT are three ways of specifying the same variable. However, in Turbo
C, these names would represent three different variables. So, when you enter
the sample programs shown in this book, be very careful to use the proper
case.

A Stmple
Turbo C Program

To begin, execute Turbo C and select the Edit option. Next, enter the follow-
ing short program at this time.

/* Sample program #1 */

main{()

{
int age;
age = 36;

printf("My age is %d\n'", age);
>

After you are finished editing, press F10 to return to the main menu. To
compile and run this program, select Run. Turbo C will then compile the
program, link it with the necessary library functions (libraries will be de-
seribed shortly), and execute it.

As the compilation begins, Turbo C opens the compiler/linker window,
which allows you to monitor the progress of the compilation. Your screen

Turbo C Essentials 47

should look like the one in Figure 4-1 during compilation. When the compila-
tion is complete, the screen will clear and Turbo C will display the line My
age is 36, followed by a carriage-return-linefeed.

A Closer Look

Let’s take a closer look at what each line in the sample program just pre-
sented does. The first line

/* Sample program #1 */

File Edit Run Compile Project Options Debug
Edit
Line 2 Col 1 Ingsert Indent Tab C:TEST.C

/# Sample program #1 #*/

main ()
< e 1Nk 1NQg -
int ages
EXE file : C:i\TC\TEST.EXE
age = 343 Linking @ TS.LIE
printf (“My age i Total
> Lines compiled: 11

Warnings: ©
Errors: O

Available Memory: 158k

Ctrl-EBreak ta uit

Fi-Help FS-Zoom F&-Edit F9-Make F10-Main Menu

Figure 4-1. The Turbo C compilation window

48 Using Turbo C

is a comment. In Turbo C, comments begin with the sequence /* and are
terminated by the sequence */. The Turbo C compiler ignores anything that
is between the beginning and ending comment symbols.

If you examine the sample program closely, you will notice that a blank
line follows the comment line. In Turbo C, blank lines are permitted and
have no effect upon the program.

The line

main()

specifies the name of a function. All Turbo C programs begin execution by
calling the main() function. You will learn more about functions a little
later.

The next line consists of a single curly brace

<

which signifies the start of the main() function.
The first line of code inside function main() is

int age;

This line declares a variable called age and tells the compiler that age is an
integer. In Turbo C, you must declare all variables before you use them. The
declaration process involves the specification of both the variable’s name and
its type. In this case, age is of type int, which is Turbo C’s keyword for the
integer type. Integers are whole numbers between —32768 and 32767.

The next line is

age = 36;

which is an assignment statement. This line places the value 36 into the
variable age. Notice that Turbo C uses a single equal sign for assignment,
unlike Turbo Pascal, which uses the := pair. Also notice that this statement
ends with a semicolon. You terminate all statements in Turbo C with a
semicolon.

The next line, which outputs information to the screen, is

printf("My age is %d\n'", age);

Turbo C Essentials 49

This statement is important for two reasons. First, it is an example of a func-
tion call. Second, it illustrates the use of Turbo C’s standard output function
printf(). This line of code consists of two parts: the function name, which is
printf(), and its two arguments: “My age is %d \n”, and age. As shown
earlier, since this line is a Turbo C statement, it ends with a semicolon.

In Turbo C, there are no built-in I/O routines. Instead, these functions are
provided by Turbo C’s standard library and are called when needed. In fact,
Turbo C’s standard library contains many useful functions. Any program
that you write will also contain functions that you create, in addition to the
library functions. In either case, to call a function is quite easy: you simply
write its name and supply the necessary arguments. Calling a function will
be explained more completely shortly.

The printf() statement works in this way. The first argument is a string
that may contain either characters or format codes. A format code begins
with the percent sign. When Turbo C encounters the %d, it acts as a signal
that an integer is to be displayed in decimal format. The second argument
presents the value to be displayed —in this case, age. The \n is a special
format code that tells printf() to issue a carriage-return-linefeed sequence.
To understand the relationship between the normal characters and the for-
mat codes, change the line to read

printf("My %d age is\n", age);

and rerun the program. Turbo C now displays the message My 36 age is.
Therefore, the position of the format command in the string determines
when the second argument to printf() will be printed. As you will shortly
see, printf() is substantially more powerful than this example shows.

The last line of the program is a closing curly brace, which signals the
end of the main() function. When Turbo C reaches the end of main(), pro-
gram execution is terminated.

Handling Errors

Invoke the editor and remove the opening parenthesis from the statement
main() and the semicolon that terminates the line int age;. Try to compile
the program. As you would expect, the program generates errors, which

50 Using Turbo C

Turbo C displays in the message window. Your screen will look like the one
in Figure 4-2. Notice that Turbo C highlights the first error in the message
window, as well as highlighting the line in the program in which the error
was detected. Remember, Turbo C tries to make sense out of whatever you
give it so the point at which Turbo C detects an error might be one line after
the error occurred because that is the point at which Turbo C finally decided
that you made a mistake!

One of the best features about the Turbo C integrated environment is that
you can interactively fix the errors in your program. By pressing Fg8, you can
advance to the next error. Pressing F7 causes you to go to the previous error.
Pressing ENTER activates the editor. You should fix your program at this
time. Don’t worry about the third error message. Turbo C generated this
message because the other two errors caused Turbo C to interpret the call to
printf() incorrectly.

File Edit Run Compile Project Options Debug
Edit
Line 4 Col 6 Insert Indent Tab C:TEST.C

/% Sample program #1 %/

P
L

int age
age = b3

printf ("My age is %d\n", agel;

o
S

Message
Compiling C:\TC\TEST.C:

TEST.C 3: Declaration zyntax error
Error C:\TCA\TEST.C 8: Declaration syntax ervor
Warning C:A\TCATEST.C 10: Possible use of 'age’ before definition

Fi-Help FS5-Zoom Fé-Edit F7/FB-Frev/Next error F9-Make F10-Main Menu

Figure 4-2. A compilation with errors

Turbo C Essentials 51

Errors Versus Warnings

The third error message that Turbo C generated when you mangled the pro-
gram actually is not an error message, but rather is a warning. As stated
earlier, C was designed to be very forgiving and to allow the compilation of
virtually anything that is syntactically correct. However, some things, even
though syntactically correct, are highly suspicious. When encountering one
of these, Turbo C prints a warning. You as the programmer then must decide
whether Turbo C’s suspicions are justified or not.

In the example, Turbo C generated the warning message as a side effect
of the other errors, but you will undoubtedly encounter several real warnings
as you continue to write Turbo C programs.

A Second Program

Although the first sample program illustrates some important aspects about
Turbo C, it is fairly pointless. The second sample program does something
that is useful: it converts from feet to meters. In doing so, it also illustrates a
second library function called scanf(), that is used to read an integer value
entered by a user. Enter this program into your computer now:

/* Sample program #2 -~ feet to meters */
main()
{

int feet;
float meters;

printf("Enter number of feet: ");
scanf("%d", &feet);
meters = feet * 0.3048; /* feet to meters conversion */

printf("%d feet is %f meters\n", feet, meters);

The program introduces some important new features. First, it declares
two variables: feet of type int; and meters of type float, which means that it
can have a fractional component. (Type float corresponds to Turbo Pascal’s
type REAL.)

52 Using Turbo C

Second, the program uses the library function scanf() to read an integer
entered at the keyboard. The %d in the first argument tells seanf() to read
an integer and to place the results in the variable that follows. The & that
precedes feet is necessary for scanf() to work properly, but for now you will
have to take this explanation on faith until you know more about the way that
Turbo C works. (Don’t leave the & out—if you do, it could cause a crash!)

Next, the program converts the number of feet to meters. Notice that,
even though feet is an integer, it may be divided by a floating-point number
and may be assigned to a floating-point variable. Unlike Turbo Pasecal and
many other modern languages, Turbo C allows you to use different types of
data in an expression. As is the case in virtually all other programming lan-
guages, the * signifies multiplication.

The program displays the conversion by using a call to printf(). As you
can see, this time printf() takes three arguments: the control string, and the
variables feet and meters. The general rule for printf() is that there are as
many arguments that follow the control string as there are format codes in
the control string. Since printf() uses two percent commands, it needs two
additional arguments. These arguments are matched in order, from left to
right, with the format commands. If you look closely at the function, you will
notice that it uses %f to print meters, and does not use %d. The reason for
this is that printf() must know precisely what type of data it is going to
display. The %f indicates that a value of type float follows.

A Variation

One limitation to the second sample program is that it can only convert
whole numbers of feet into meters. A more flexible program would be able to
convert floating-point values into meters. You can accomplish this by chang-
ing the program, as shown here.

/* Sample program #2 version 2 =~ feet to meters */

main()
{
float feet, meters; /* make feet a float =/

printf("Enter number of feet: ™);
scanf("%f", &feet); /* read a float */
meters = feet * 0.3048; /* feet to meters conversion #*/

printf("%f feet is %f meters\n", feet, meters);

Turbo C Essentials 53

As you can see, the first feature that has been changed is feet, which is now
of type float. In Turbo C, you can declare several variables of the same type
by using a comma-separated list. Next, this version calls the scanf() state-
ment by using %f, instead of %d. This change causes scanf() to read a
floating-point variable. (Do you notice the similarity between the printf()
and scanf() format codes? You should —the codes are the same.) Finally, the
printf() statement now needs a %f command to display feet.

A Quick Review

Before you proceed, let’s review the most important Turbo C features that
you have learned:

1. All Turbo C programs must have a main() function, which marks the
point at which program execution begins.

2. A program must declare all variables before using them.

3. Turbo C supports a variety of data types, including integer and
floating-point.

4. The printf() function outputs information to the screen.
5. The scanf() funection reads information from the keyboard.

6. Program execution stops when the end of main() is encountered.

What Is a Turbo C Function?

The C language is based on the concept of building blocks. The building
blocks are called functions. A C program is a collection of one or more funec-
tions. To write a program, you first create functions and then put them
together.

In C, a function is a subroutine that contains one or more C statements,
and that performs one or more tasks. In well-written C code, each function
performs only one task. Each function has a name and a list of arguments
that the function will receive. In general, you can give a function whatever
name you please, with the exception of main, which C reserves for the func-

54 Using Turbo C

tion that begins execution of your program. If you are familiar with Turbo
Pascal (or any other structured language), keep in mind that Turbo C func-
tions are similar to Pascal procedures and functions.

When denoting functions, this book will use a notational convention that
has become standard in texts about C. A function will have parentheses after
the function name. For example, if a function’s name is max, then this book
will write the function as max(). This notation will help you distinguish
variable names from function names in this book.

Here is the general form of a C function:

Sunction-name (parameter list)
parameter declarations;
{
body of code
}

All Turbo C programs must have a main() function because it is the
function that is first executed when your program begins to run. Further-
more, your program may have one and only one function called main(). (If
you used more than one main(), Turbo C would not know which one to call
first.)

You can create other functions in much the same way that you used to
create main(), and you can call them from other parts of your program. For
example, this program uses the function hello() to print hello on the screen:

/* A simple program with two functions #*/

main()
{

hello(); /* call the hello function */
>

hello()
{

printf("hello\n");
)

Turbo C Essentials 55

Functions with Arguments

A function argument is simply a value that is passed to the function at the
time that the function is called. You have already seen two functions that take
arguments: printf() and scanf(). You can create functions that take argu-
ments, too. For example, the function sqr() in this program takes an integer
argument and displays the square of the integer:

/* A program that uses a function with an argument */

main()
{
int num;

printf("enter a number: ");
scanf("%d", &num);

sqr(num); /* call sqr() with num x/
b

sqr(x) /* parameter name goes inside parentheses */
int x; /* declaration of the parameter */

{
printf("%d square is %d\n", num, num*num) ;

The declaration of sqr() places the variable that will be receiving the value
passed to sqr() inside the parentheses that follow the function name. (Func-
tions that do not take arguments do not need any variables, so the parentheses
are empty.) Then, the program declares the variable because the function
must know what type of data it will receive. You should enter this program
and run it so that you can see that it does operate as expected.

It is important to keep two terms straight. First, the term argument re-
fers to the value that is used to call a function. The term formal parameter
refers to the variable in a function that receives the value of the arguments
used in the function call. In fact, functions that can take arguments are
called parameterized functions. The important distinction to understand is

56 Using Turbo C

that the variable used as an argument in a function call has nothing to do
with the formal parameter that receives its value.

Here is another simple example of a parameterized function. The function
mul() prints the product of its two integer arguments.

/* another example of function arguments */

main()
{

mul (10, 11);
}

mul(a, b)
int a, b;
{
printf("%d", a*b);
3

Chapter 9 will cover functions and their arguments later, but this short
overview should give you the basic idea.

Functions that Return Values

Before you leave this discussion of functions, it is necessary to touch lightly
upon function return values. Many of the Turbo C library functions that you
will need use them. In Turbo C, a function may return a value to the calling
routine by using the return keyword. To illustrate, you can rewrite the pro-
gram given earlier that prints the product of two numbers as shown here:

/* A program that uses return */

main()
{
int answer;

answer = mul(10, 11); /* assign return value */

printf("The answer is %d\n", answer);
b

/* This function returns a value */
mul(a, b)
int a, b;
{
return axb;
}

Turbo C Essentials 57

In this example, mul() returns the value of a*b by using the return state-
ment. The program then assigns this value to answer; that is, the value
returned by the return statement becomes the value of mul() in the calling
routine.

Be careful: just as there are different types of variables, there are differ-
ent types of return values. The type that the mul() routine returns is int by
default. You will have to wait until Chapter 9 to see how to return values of
different types.

You can cause a function to return by using the return statement without
any values attached to it. In addition, you can use more than one return in a
function.

Two Simple Commands

In order to understand the examples in the next chapters, you must under-
stand, in their simplest form, two Turbo C commands: the if and the for.
Later chapters will explore the capabilities of these commands completely.

The of Statement

The Turbo C if statement operates in much the same way that an IF state-
ment operates in any other language. Its simplest form is

if(condition) statement;

where condition is an expression that evaluates to either true or false. In C,
true is nonzero and false is zero. For example, this fragment prints the
phrase 10 is less than 11 on screen:

if(10 < 11) printf("10 is less than 11");

The eomparison operators in Turbo C are similar to those in other languages,
such as < for less than, or >= for greater than or equal to. However, in C, the
equality operator is ==. Therefore, this statement does not print the message
hello:

if(10==11) printf("hello™"):

58 Using Turbo C

The for Loop

The for loop in Turbo C can operate much like the FOR loop in other lan-
guages, including Turbo Pascal and BASIC. The simplest form of the for
loop is

for(initialization, condition, increment) statement;

where initialization sets the loop-control variable to an initial value. The
condition is an expression that Turbo C tests each time the loop repeats. As
long as condition is true, the loop keeps running. The increment portion
increments the loop-control variable. For example, this program prints the
numbers 1 through 100 on screen:

/* A simple program that illustrates the for Lloop */

main()
{
int count;

for(count=1; count<=100; count++) printf("%d ", count);
b

Here, the program initializes count to 1. Each time that the loop repeats, the
program tests the condition count<=100. If the condition is true, the pro-
gram executes the printf() statement and increases count by one, which is
indicated by the two plus signs after count. When count is greater than 100,
the condition is false and the loop stops.

Blocks of Code

Because C is a structured language, it supports the creation of blocks of code.
A code block is a logically connected group of program statements that the
computer treats as a unit. In Turbo C, you create a code block by placing a

Turbo C Essentials 59

sequence of statements between opening and closing curly braces. For exam-
ple, in

if(x<10) {
printf("too low, try again'");
scanf ("“%d", &x);

)

Turbo C executes the two statements after if and between the curly braces if
x is less than 10. These two statements and the braces represent a block of
code. They are a logical unit: one statement cannot execute without the other
also executing. In C, the target of most commands may be either a single
statement or a code block. Not only do code blocks allow you to implement
many algorithms with greater clarity, elegance, and efficiency, but also they
help you conceptualize the true nature of the routine.

Characters
and Strings

Another important data type in Turbo C is char, which stands for character.
A character is a one-byte value that you can use to hold printable characters
or integers in the range of —128 through 127 In a program, a character
constant is enclosed between single quotes. For example, this program prints
the letters ABC on screen. Notice that this program introduces a new
printf() format code, which prints a single character.

/* A simple example of characters */
main()
{

char ch;

ch = 'A';

60 Using Turbo C

printf("%c", ch);

ch = '8B';
printf("%c", ch);

ch = 'C*;
printf("%c", ch);
b

Although you can use scanf() to read a single character from the key-
board, a more common way is to use Turbo C’s library function getche().
The getche() function waits until you press a key and then returns the
result. For example, this program will print the message you pressed my
magic key if you type an H:

main()
{
char ch;

ch = getche(); /* read one character from the keyboard */

if(ch=="H') printf("you pressed my magic key\n");

This program also illustrates that you can use characters in if statements.

Strings

In Turbo C, a string is an array of characters that is terminated by a null.
Turbo C does not have a “string” type. Instead, you must declare an array of
characters and use the various string functions in the library to manipulate
them. Although this book covers the subject of arrays later, here you will see
the way to create a string and learn two basic principles. This chapter pre-
sents this material now because strings are so common and are useful in
developing examples of other concepts.

An array is simply a list of variables of the same type. You create an array
by placing the size of the array between angle brackets after the array name.
The following fragment declares an 80-element single-dimension character
array called str:

char str[801];

Turbo C Essentials 61

To reference a specific element, you place the index of the element between
square brackets after the array name. All arrays in Turbo C are indexed
from zero. Therefore, str[0] is the first element, str[1] is the second element,
and so on until str[79], which is the eightieth and last element.

The single most important feature to remember about arrays in Turbo
C—in fact, in C in general —is that Turbo C performs no bounds checking.
This means that you can, if you are not careful, “run off the end” of an array.
For now, the easiest way to prevent this problem is always to use an array
that is large enough to hold whatever you will put into it. As mentioned ear-
lier, all strings end in a null. A null in Turbo C is a 0 and is specified in a
program as the character constant ' \Q’. Therefore, in order for a character
array to be large enough to hold the word hello, it must be at least six char-
acters long: five characters for the string and one character for the null ter-
minator, as shown here.

h e 1 1 0 "\Q’

To read a string from the keyboard, you first create a character array to hold
the string and then use the library function gets(). The gets() function takes
the name of the string as an argument and reads characters from the key-
board until you press ENTER. ENTER is not stored but is replaced by the null
terminator. The following program illustrates the use of gets().

/* A simple string example */
main()
{

char strC801;

printf("enter your name: '");

gets(str);

printf("hello %s", str);
X

Notice that the program uses the format command %s to tell printf() that it
should print a string.

62 Using Turbo C

A Quick Review
of print()

In this book, nearly every program example that does console output will use
the printf() function. You have already seen several examples in the preced-
ing programs. Let’s take a more formal look at printf() now.

The general form of printf() is

printf(“control string”,argument list)

In the printf() function, the control string contains either characters that
will be displayed on screen, format commands that tell printf() how to dis-
play the rest of the arguments, or both, The format codes that you have
learned so far are shown here:

Code Meaning
%d Display an integer in decimal format
%f Display a float in decimal format
%c Display a character
%s Display a string

There are several other format codes, which will be explained later.

You may embed format-control commands anywhere in the first string of
characters. When you call printf(), it scans the control string. The printf()
function simply prints on screen all regular characters as they appear. When
encountering a format command, printf() remembers it and uses it when
printing the appropriate argument. The function matches up format com-
mands and arguments left to right. The number of format commands in the
control string tells printf() how many subsequent arguments to expect.

The following examples will show you the printf() function in action.

printf("%Xs Xd","this is a string ", 100);
displays: this is a string 100

printf("this is a string %d",100);
displays: this is a string 100

printf("“number %d is decimal, %f is float."”,10,110.789);

Turbo C Essentials 63

displays: number 10 is decimal, 110.789 is float.
printf("%c %s %d~%x",'a'," number in decimal and hex: ",10,100;
displays: a number in decimal and hex: 10~A
printf(”Xs","HELLO\n");

displays: HELLO (same as the program)

You must have the same number of arguments as you do format commands in
the control string. If you do not, the screen will display either garbage or no
information at all.

A Quick Review
of scanf()

The seanf() function is one of Turbo C’s input functions. Although you can
use it to read virtually any type of data entered at the keyboard, in the first
few chapters of this book, you will be using it only to input integers or floats.
The general form of seanf() is

scanf(“control string”, argument list);

| For now, assume that the control string may only contain format codes. (In

| fact, until you study scanf() in detail later, don’t put anything in the control

| string other than the format codes or you will probably confuse the function.)

1 The two codes that you will need are %d and %f, which tell scanf() to read
an integer and a floating-point number, respectively. The argument list must
contain exactly the same number of arguments as the number of format
codes in the control string. If this is not the case, various problems could
occur —including a program crash.

In the argument list, an & must precede the variables that will receive the
values read from the keyboard. The need for this format is too complicated to
explain at this time; for now, it is sufficient to say that the & lets scanf()
place a value into the argument.

64 Using Turbo C

Semicolons, Braces,
and Comments

You may have been wondering why so many statements in C are terminated
with a semicolon. In C, the semicolon is a statement terminator; thus, you
must end each individual statement with a semicolon. The semicolon indi-
cates the end of one logical entity. (If you are familiar with Pascal, be careful.
The semicolon in Pascal is a statement separator; in C, it is a statement
terminator.) '

In C, a block is a set of logically connected statements, which is inside
opening and closing braces. If you consider a block as a group of statements
with a semicolon after each statement, it makes sense that the block is not
followed by a semicolon.

Unlike BASIC, C does not recognize the end of the line as a terminator.
This means C does not limit position, which makes it easier to group state-
ments together visually for clarity, as shown by these two equivalent code
fragments.

x=y;
y=y+1;

mul(x,y);

is the same as

x=y; y=y+1; mul(x,y);

You may place comments in C anywhere in a program. Comments are
enclosed between two markers. The starting comment marker is /* and the
ending comment marker is */. In ANSI standard C, you may not nest com-
ments, as shown in the following comment within a comment, which will
generate a compile-time error:

/* this 1is /* an error */ %/

Turbo C does have an option that allows nested comments but using it will
make your code nonportable.

Turbo C Essentials 65

Indentation
Practices

As you may notice, the earlier examples indented certain statements. The C
language is free-form because C does not care where you place statements in
relation to each other on a line.

However, over the years, a common and accepted indentation style has
developed that creates readable programs. This book will follow that style
and recommends that you do so as well. Using this style, you indent one level
after each opening brace and back one level at each closing brace. There are
certain statements that encourage some additional indenting and these will
be covered later.

Sometimes, in a particularly complex routine, the indentation is so great
that the lines of code begin to wrap around. To avoid wrapping, you can
break a statement into two parts and put them on separate lines. For exam-
ple, this statement is perfectly valid:

count = 10 * unit /
amount_left;

In general, you can break a line wherever you can place a space. However,
you should break lines only when necessary because it can confuse anyone
reading the code.

The Turbo C
Library

The Turbo C library and its functions have been mentioned frequently in this
chapter. Now it’s time for you to learn about them. All C compilers have
libraries that provide functions to perform most commonly needed tasks. The
designers of Turbo C have implemented a library that exceeds that defined

66 Using Turbo C

in the ANSI standard for C. This library contains most of the general-
purpose functions that you will use. You should examine the section of the
Turbo C user manual that describes these functions because they can help
save you coding time. This book will introduce library functions as needed,
with Chapter 16 discussing the most important ones.

When you use a function that is not part of the program you wrote, Turbo
C “remembers” its name. When the linker takes over, it finds the missing
function and adds it to your object code. The linker is a program that com-
bines your program with the necessary library functions. The functions in
the library are in relocatable format. This means that the functions do not
define the absolute memory address for the various machine-code instruc-
tions, but rather keep only offset information. When your program links with
the functions in the standard library, Turbo C uses these memory offsets to
create the actual addresses used. Several technical manuals and books
explain this process in more detail. However, you do not need any further
explanation of the actual relocation process in order to program in Turbo C.

There are several versions of the Turbo C library, with one version for
each memory model. Also, there is a separate mathematics library for 8087
emulation. You don’t need to worry about any of the libraries now, however,
because Turbo C automatically selects the correct library based upon the
options that you set with the Options selection from the main menu.

The Turbo C Keywords

Like all other programming languages, Turbo C consists of keywords and
syntax rules that apply to each keyword. A keyword is essentially a command
and, to a great extent, the keywords of a language define what can be done
and how it will be done.

As you know from Chapter 1, C is being standardized and Turbo C sup-
ports the entire set of keywords that the proposed ANSI standard specifies.
These keywords are shown in Table 4-1.

In addition, Turbo C adds eight additional keywords that you can use to
take advantage of the memory organization of the 8088/8086 family of pro-
cessors, and three keywords that support interlanguage programming and
interrupts. The extended keywords are shown in Table 4-2.

Turbo C Essentials 67

Table 4-1. The 32 Keywords, as Defined by the Proposed ANSI Standard

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

Table 4-2. The Turbo C Extended Keywords

asm —Cs —ds —es
S8 cdecl far huge
interrupt near pascal

All Turbo C keywords are lowercase.As stated earlier, C is case-sensitive;
hence, else is a keyword, while ELSE is not. You may not use a keyword for
any other purpose in a Turbo C program. For example, you cannot use a
keyword as the name of a variable.

A Review of Terms

Before you go on to the next chapter, you should review these terms:

Compile-time. The events that occur while your program is being compiled.
A common compile-time occurrence is a syntax error.

68 Using Turbo C

Library. The file containing the standard functions that your program may
use. These functions include all I/O operations, as well as other useful
routines.

Linker. A program that links separately compiled functions together into one
program; used to combine the functions in the standard C library with the
code that you write.

Object code. The code that the computer can read and execute directly, and
that has been translated from the source code of a program.

Run-time. The events that occur while your program is executing.

Source code. The text of a program that a user can read; commonly thought
of as “the program.”

Turbo C Basics

PART TWO

A

Now that you have installed Turbo C on your computer, know
how to use the editor, are familiar with the Turbo C program-
ming environment, and have run a few C programs, you are
ready to learn the language in a somewhat more formal way. In
Part Two, you will learn the essentials of Turbo C program-
ming, ncluding variables, operators, expressions, program-
control statements, functions, strings, and basic I/O.

The following notational conventions will be observed. Any
word that is part of the Turbo C language will be printed in
boldface. In addition, any variable or function name used in a
program will be in boldface when referred to in the text. De-
scriptive words that are not part of the Turbo C language but
that are used to form a general deseription will be displayed in
italics.

69

Variables,
Constants,
Operators, and
Expressions
CHAPTER 5

Operators manipulate variables and constants to form expressions. These
four —variables, constants, operators, and expressions —are the underpin-
nings of the C language. Before you can study Turbo C much further, you
should understand the concepts presented in this chapter. Unlike some com-
puter languages —notably BASIC —that have a simple (and limited)
approach to variables, operators, and expressions, C gives much greater
power and importance to these elements. Although you might feel tempted to
skip ahead to later chapters that present the “meat” of the language, you are
urged not to do so because this chapter presents some important principles.

n

72 Using Turbo C

Identifiers

The C language defines identifiers as the names that are used to refer to
variables, functions, labels, and various other user-defined objects. In C, an
identifier can vary from one character to several characters. The first char-
acter must be a letter or an underscore, with subsequent characters being
either letters, numbers, or an underscore. Turbo C also allows you to use a
dollar sign ($) within an identifier —but not as the beginning character. Here
are some examples of correct and incorrect identifiers.

Correct Incorrect
count lcount
test23 hilthere
high—balance high . .balance

In Turbo C, the first 32 characters of an identifier are significant. This
means that if two variables have the first 32 characters in common and differ
only on the thirty-third, Turbo C will not be able to tell them apart. For
example, these two identifiers

this_is__a__very__long__name__used__as__an__example
and
this_is_a_ very__long_name__used__as_an_example__too
will appear like this to Turbo C:
this_is_a_ very_long__name__used__as

The C language treats uppercase and lowercase letters as being different
and distinct. For example, count, Count, and COUNT are three separate
identifiers.

An identifier may not be the same as a Turbo C keyword, and it should

not have the same name as functions either that you wrote or that are in the
Turbo C library.

Variables, Constants, Operators, and Expressions 73

Data Types

As you saw in Chapter 4, all variables in C must be declared prior to their
use. This is necessary because Turbo C must know what type of data a vari-
able is before it can properly compile any statement that that variable is used
in. In C, there are five basic data types: character, integer, floating-point,
double-floating-point, and valueless. The keywords used to declare variables of
these types are char, int, float, double, and void, respectively. Table 5-1
presents the size and range of each data type of Turbo C for the IBM PC.

You use variables of type char to hold 8-bit ASCII characters such as A,
B, or C or any other 8-bit quantity. Variables of type int can hold integer
quantities that do not require a fractional component. You often use variables
of this type to control loops and conditional statements. You include variables
of the types float and double in your programs either when you need a frac-
tional component or when your application requires very large numbers. The
difference between a float variable and a double variable is the magnitude
of the largest (and smallest) number that they can hold. As Table 5-1 shows,
a double in Turbo C can store a number approximately ten times larger than
a float. You use the void type to help enhance type checking; it will be dis-
cussed later in this book.

Table 5-1. Size and Range of Turbo C’s Basic Data Types

Type Bit width Range

char 8 0 to 255

int 16 —32768 to 32767

float 32 3.4E—-38 to 3.4E+38
double 64 1.7E—308 to 1.7E+308

void 0 valueless

74 Using Turbo C

Type Modifiers

Except for void, the basic data types may have various modifiers that pre-
cede them. You use a modifier to alter the meaning of the base type to fit the
needs of various situations more precisely. Here is a list of the modifiers:

signed
unsigned
long
short

You may apply the modifiers signed, unsigned, long, and short to char-
acter and integer base types. However, you may also apply long to double.
Table 5-2 presents all allowed combinations of the basic types and the type
modifiers. Although allowed, the use of signed on integers is redundant
because the default integer declaration assumes a signed number.

The difference between signed and unsigned integers is in the way that
the computer interprets the high-order bit of the integer. If you specify a
signed integer, then the Turbo C compiler will generate code that assumes
that it should use the high-order bit of an integer as a sign flag. If the sign
flag is zero, then the number is positive; if it is one, then the number is
negative. Here are two examples:

127inbinaryis 00000000 01111111
—127inbinaryis 10000000 01111111
1
Sign bit

Be aware that most computers will use two’s complement arithmetic, which
will cause the representation of —127 to appear differently. However, the use
of the sign bit is the same as was just shown. To create a negative number in
two’s complement, reverse all of the bits and add one. For example, —127 in
two’s complement will look like this:

11111111 10000001

Signed integers are important for many algorithms, but they only have
half of the absolute magnitude of their unsigned counterparts. For example,
here is 32767:

01111111 11111111

Variables, Constants, Operators, and Expressions 75

Table 5-2. All Possible Combinations of Turbo C’s Basic Types and

Modifiers
Type Bit width Range

char 8 ~—128 to 127

unsigned char 8 0 to 255

signed char 8 —128 to 127

int 16 —32768 to 32767

unsigned int 16 0 to 65535

signed int 16 —32768 to 32767

short int 16 —~32768 to 32767

unsigned short int 16 0 to 65535

signed short int 16 —32768 to 32767

long int 32 —2147483648 to
2147483647

signed long int 32 —2147483648 to
2147483647

unsigned long int 32 0 to 4294967295

float 32 3.4E—38 to 3.4E+38

double 64 1.7E—308 to 1.7E+308

long double 64 1.7E—308 to 1.7TE+308

If the high-order were set to 1, the computer would then interpret the
number as —32768. However, if you had declared this number to be an
unsigned int, then the number becomes 65535 when the high-order bit is set
to 1.

To understand the difference between the way that Turbo C interprets
signed and unsigned integers, run this short program now:

/* Show the difference between signed and unsigned
integers.
*/
main()
{
int i; /* a signed integer =*/
unsigned int j; /% an unsigned integer */

j = 60000;
i = j;
printf("%d %u", i, j);

76 Using Turbo C

When you run this program, the output is —5536 60000. The reason for this
output is that the computer interprets the bit pattern that represents 60000
in an unsigned integer as —5536 as a signed integer. As you know, the %d in
the program tells printf() to display an integer in decimal form. The %u is
another format code that tells printf() that you want to display an unsigned
int.

Turbo C allows you to use a shorthand notation to declare unsigned or
long integers: you may simply use the word unsigned or long without int.
For example,

unsigned x;
unsigned int y;

both declare unsigned integer variables.

You may use variables of type char to hold values other than just the
ASCII character set. In addition, you can use a char variable both as a
“small” integer with the range —128 through 127, and in place of an integer
when the situation does not require larger numbers. The main advantage of
using a character variable over an integer when the situation allows it is that
the computer requires less time to load or store a byte than a word value. To
prove this fact, enter the following program into your computer at this time.
(This program uses nested for loops that do nothing except increment their
control variables. These loops may look odd at this time but the program
nicely illustrates the difference between the access time of characters and
integers. You will learn more about loops in Chapter 6.)

/* This program shows the difference between
integers and characters for Loop control.
*/
main()
{
int i, j, k;
char ¢, d, e;
Llong tm;

tm = time(0);
for(iz=0; i<100; i++)
for(j=0; j<100; j++) /* do nothing */
for(k=0; k<100; k++) ;
printf(“Time for integer Lloops: %id\n", time(0)-tm);

tm = time(0);

Variables, Constants, Operators, and Expressions 77

for(c=0; c<100; c++)
for(d=0; d<100; d++) /* do nothing »/
for(e=0; e<100; e++) ;
printf("Time for character ltoops: %Ld\n", time(0)~tm);

This program uses the function time(), which is supplied in Turbo C’s
library, to time the execution of the loops. When the program calls time()
with an argument of zero, it returns the current system time in seconds.
Since this number is large it must be of type long. For this same reason, the
program uses | in the format %ld to tell printf() that a long integer is com-
ing. Later, you will see the way to use printf() with any type of data. When
the timer program is run with an S8MHz AT-compatible computer, the inte-
ger loops run in 8 seconds and the character loops run in 6 seconds—a very
respectable increase over integers.

Declaring Variables

Here is the general form of a variable declaration statement:
type variable _list;

Here, type must be a valid Turbo C data type and variable __list may consist
of one or more identifiers with comma separators. Here are some sample
declarations:

int i,j,L;
short int si;
unsigned int ui;

double baltance, profit, Lloss;

Unlike some other computer languages, the name of a variable in C has
nothing to do with its type.

78 Using Turbo C

Where Variables Are Declared

Where a variable is declared greatly affects the way that the other parts of
your program can use that variable. The rules that determine how a variable
can be used based upon where its declaration is in the program are called the
scope rules of the language. A complete discussion of these rules and their
ramifications will have to wait until you know more about Turbo C, but the
basics of the rules will be covered here.

There are three places in a C program where you can declare variables.
The first place is outside of all functions, including the main() function. The
variable that you declare in this way is called global, and may be used by any
part of your program. The second place where you can declare a variable is
inside a function. Variables declared in this way are called local variables,
and may be used only by statements that are in the same function. In
essence, a local variable is known only to the code inside its function and is
unknown outside that function. The last place where variables can be
declared is in the declaration of the formal parameters of a function. (As
described in Chapter 4, you use the formal parameters to receive the argu-
ments when that function is called). Aside from being used to receive the
information that is passed to the function, these parameters act like any
other local variables. Figure 5-1 shows a short program that declares vari-
ables at each place and produces the following output:

esssssssssthe current sum is O
eesseseceasthe current sum is 1
eeesawvass-the current sum is 3
eessssseasthe current sum is 6
sessaseasthe current sum is 10
eessssenssthe current sum is 15
essacessaathe current sum is 21
eeesessessthe current sum is 28
ssessansaathe current sum is 36
sesesssssathe current sum is 45

As you can see in Figure 5-1, any function in the program may access the
global variable sum. However, total () cannot directly access the local vari-
able count in main(), which must pass count as an argument. This is neces-
sary because a local variable can only be used by code that is in the same
function in which the variable is declared. Note that the count in display()
is completely separate from the count in main(), again, because a local vari-
able is known only to the function in which it is declared.

Variables, Constants, Operators, and Expressions 79

/* sum the numbers O through 9 =*/

int sum; - Global Variable
main()
{
int count; —a— Local Variable
sum = 0; /% jnitialize */

for(count=0; count<10; count++) {
total(count);
display();

)
>
/* add to running total */
total (x)
int x; —~— Formal Parameter
{
sum = x + sum;
>
display ())
{ Y Local Variable

int count; /* this count is different from
the one in main()
*/

for(count=0; count<i0; count++) printf(".");
printf("the current sum is %d\n", sum);
}

Figure 5-1. Using global and local variables

You must understand two important aspects of variables. First, no two

global variables may have the same name. If they did, the compiler would not
know which variable to use. Second, a local variable in one function may have
the same name as a local variable in another function without conflict. The
reason for this is that the code and data inside one function are completely
separate from those in another function. Simply stated, the statements inside
one function have no knowledge about the statements inside another function.
However, remember that no two variables within the same function should
have the same name. Later, after you know more about functions, this book
will explain and elaborate these basic concepts.

80 Using Turbo C

Constants

In C, constants refer to fixed values that the program may not alter. For the
most part, constants and their usage are so intuitive that all of the preceding
programs in this book have used them in one form or another. However, you
are now ready to study them formally.

Turbo C constants can be of any of the basic data types. The way that you
represent each constant depends upon its type. You enclose character con-
stants in single quotes. For example ‘a’ and ‘%’ are both character constants.

You specify integer constants as numbers without fractional components.
For example, 10 and —100 are integer constants. Floating-point constants
require the use of the decimal point followed by the number’s fractional
component. For example, 11.123 is a floating-point constant. Here are some
other examples:

Data type Constant examples
char ‘a’ & \n’ ‘97
int 1 123 21000 —234
long int 35000 —34
short int 10 —-12 90
unsigned int 10000 987 40000
float 123.23 4.34e—3
double 123.23 12312333 —0.9876324 1.0E100

Hexadecimal and Octal Constants

As you probably know, it is sometimes easier in programming to use a
number system that is based on 8 or 16, instead of 10. The number system
that is based on 8 is called octal and uses the digits 0 through 7. In octal, the
number 10 is the same as the number 8 in decimal. The number system that
is based on 16 is called hexadecimal. It uses the digits 0 through 9 and the
letters A through F, which stand for the numbers 10 through 15, respectively.
For example, the number 10 in hexadecimal is the number 16 in decimal.
Because of the frequency with which these two number systems are used,
Turbo C allows you to specify integer constants in hexadecimal or octal
instead of decimal if you prefer. A constant in hexadecimal form must begin
with a 0x (a zero followed by an x). An octal constant begins with a zero.
Here are some examples:

Variables, Constants, Operators, and Expressions 81

int hex = OxFF; /* 255 in decimal =*/

int oct 011; /* 9 in decimal =*/

String Constants

Turbo C supports another type of constant in addition to those constants of
the predefined data types: the string. A string is a set of characters that is
enclosed with double quotes. For example, “this is a test” is a string. You
have seen examples of strings in some of the printf() statements in the pro-
grams given so far in this book.

Do not confuse the strings with characters. You enclose a single-character
constant with single quotes; for example, ‘a’. However, “a” is a string that
contains only one letter.

Backslash Character Constants

Using single quotes to enclose all character constants works for most print-
ing characters, but a few, such as the carriage return, are impossible to enter
from the keyboard. For this reason, C provides the special backslash charac-
ter constants, which are shown in Table 5-3.

Table 5-3. Backslash Codes

Code Meaning
\b backspace
\f form feed
\n newline
\r carriage return
\t horizontal tab
\” double quote
V single quote
\0 null
W\ backslash
\v vertical tab
\a alert
\o octal constant
\x hexadecimal constant

82 Using Turbo C

You use a backslash code in exactly the same way as you would any other
character. For example,

ch='\t';

printf("this is a test\n");

first assigns a tab to ch, and then prints this is a test on screen followed by a
newline. You will see more examples of the backslash codes later in this book.

Variable Initializations

In C, you can give values to most variables at the same time that you declare
them by placing an equals sign and a constant after the variable name. The
general form of initialization is

type variable...name = constant;
Some examples are as follows:

char ch = 'a‘;
int first = 0;

float balance = 123.23

Global variables can be initialized only at the start of the program. How-
ever, local variables will be initialized each time that the function in which
they are declared is entered. Turbo C initializes all global variables to zero if
you do not specify another initializer. Local variables that are not initialized
will have unknown values before you make the first assignment to them.

The main advantage of initializing variables is that it slightly reduces the
amount of code in the program. For a simple example of variable initializa-
tion, here is a reworked version of the running total program developed ear-
lier in Figure 5-1:

/* An example using variable initialization =/

main()
{

Variables, Constants, Operators, and Expressions 83

int t;

printf("enter a number: ");
scanf("%xd", &t);
total(t);

b
total(x)
int x;
<
int sum=0, i;
for(i=0; i<x; i++) {
sum = sum + i;
for(count=0; count<10; count++) printf(".");
printf("the current sum is Xd\n", sum);
>

Operators

Turbo C is rich in built-in operators. An operator is a symbol that tells the
compiler to perform specific mathematical or logical manipulations. C has
three general classes of operators: arithmetic, relational and logical, and
bitwise. In addition, C has some special operators for particular tasks.

This chapter will examine only the arithmetic, relational and logical,
assignment, and sizeof operators. This book will discuss the other operators
as needed or later in Part Three.

Arithmetic Operators

Table 5-4 lists the C arithmetic operators. The operators +, —, *, and / all
work in the same way in C as they do in most other computer languages. You
can apply the operators to almost any built-in data type that C allows. When
you apply / to an integer or character, the computer will truncate any
remainder; for example, 10/8 will equal 3 in integer division.

The modulo division operator % yields the remainder of an integer di-
vision. However, as such, you cannot use % on type float or double. The fol-
lowing program illustrates both integer division and the % operator:

84 Using Turbo C

main()

{

int x, y;

X
Y

10,
3;
printf("Xd", x/y); /* will display 3 =»/

printf("%d", x%Zy); /* will display 1, the remainder of
the integer division =/

“n
~

x 1
b4 2;

-

printf("%d %d", x/y, x%y); /* will display 0 1 »/

The reason that the last line prints 0 and 1 is that 1/2 in integer division is 0
with a remainder of 1.

The unary minus multiplies its single operand by —1. Thus, any number
preceded by a minus sign switches the sign of the number.

Increment and Decrement

C allows two useful operators that are not generally found in other computer
languages. These are the increment and decrement operators: ++ and ——.
The operator ++ adds 1 to its operand, and the operator —— subtracts one.

Table 5-4. Arithmetic Operators

Operator Action
- subtraction, also unary minus
+ addition
* multiplication
/ division
% modulo division
— decrement

++ increment

Variables, Constants, Operators, and Expressions 85

Therefore, the following are equivalent operations:

x++;

x - - ;
are the same as

x+1;
x=1;

Both the increment and decrement operators may either begin or follow
the operand. For example, you can write

x=x+1;
either as

++x;

or as

x++;

However, there is a difference when you use them in an expression. When
an increment or decrement operator precedes its operand, C then performs
the increment or decrement operation before using the operand’s value.
When the operator follows its operand, C then uses the operand’s value before
incrementing or decrementing it. Consider the following:

x = 10;

y = ++x;

In this case, C sets y to 11 because C first increments x and then assigns it to
y. However, if the code had been written as

x=10;

y=x++;

C would have set y to 10 and then would have incremented x. In both cases, x

86 Using Turbo C

Table 5-5. Relational and Logical Operators

Relational Operators

Operator Action
> greater than
>= greater than or equal
< less than
<= less than or equal
== equal
1= not equal

Logical Operators

Operator Action
&& AND
i OR
! NOT

is still set to 11; the difference is when it is set. There are significant advan-
tages in being able to control when the increment or decrement operation

takes place, as you will see later in this book.
Here is the precedence of the arithmetic operators:

Highest ++ —
*/ %
Lowest + -

The computer evaluates operators on the same precedence level from left to
right. Of course, you may use parentheses to alter the order of evaluation.
The C language treats parentheses in the same way as virtually all other
computer languages treat them: they force an operation, or a set of opera-

tions, to have a higher precedence level.

Variables, Constants, Operators, and Expressions 87

Relational and Logical Operators

In the terms relational operator and logical operator, relational refers to the
relationships that values can have with one another, and logical refers to the
ways that these relationships can be connected together. The key to the con-
cepts of relational and logical operators is the idea of true and false. In C,
true is any value other than zero, while false is zero. Expressions that use
relational or logical operators will return 0 for false and 1 for true. Table 5-5
shows the relational and logical operators.

You use the relational operators to determine the relationship of one quan-
tity to another. They always return a 1 or a 0, depending upon the outcome of
the test. The following program illustrates the outcome of each operation and
displays the reults of each operation as either a 0 or a 1:

/* This program illustrates the relational operators. */
main()
{

int i, j;

printf("enter two numbers: ");
scanf("%d%d", &i, &j);

printf("xd
printf("%d !

%d is %d\n", i, j, i==j);
%d is %d\n", i, j, i'=j);
printf("%d %d is %d\n", i, j, i<=j);
printf("%d %d is %d\n", i, j, i>=3);
printf("%d < %d is %d\n", i, j, i <j);
printf("%d > %d is %d\n", i, j, i>j):

A=
nonn

v

Enter this program now and experiment by using various combinations of
numbers.

You may apply the relational operators to any of the basic data types. For
example, this fragment displays the message greater than because a ‘B’ is
greater than an ‘A’ in the ASCII collating sequence.

ch1 YA';
ch2 '8';
if(ch2>ch1) printf("greater than");

Later, this book will show you many more uses of the relational operators.

The logical operators are used to support the basic logical operations of
AND, OR, and NOT according to the following truth table, which uses 1 for
true and 0 for false.

88 Using Turbo C

P | a | PANDgq | pORq | NOTp
0 0 0 0 1
0 1 0 1 1
1 1 1 1 0
1 0 0 1 0

This program illustrates the operation of the logical operators:

/* This program illustrates the logical operators, */

main()

{
int i, j;
printf("enter two numbers (each being either 0 or 1): ");
scanf("%d%xd", &i, &j);

printf("%d AND %d is Xd\n", i, j, 1 && j);
printf("Xd OR %d is %d\n", i, j§, i || §);
printf("NOT Xd is Xd\n", i, !'i);

3

Now enter this program, and experiment with various combinations of true
and false until you are comfortable with the operations.

Both the relational and logical operators are lower in precedence than the
arithmetic operators. This means that C evaluates an expression such as 10 >
1+12 as if you wrote 10 > (14+12). The result of the expression is false.

The C language allows you to combine several operations into one expres-
sion, as shown here. This expression

10>5 &8 !(10<9) 1] 3<=4

will evaluate true.
The following shows the relative precedence of the relational and logical
operators:

Highest !
>o=<L L=
—_—= =

&&

Lowest "

As with arithmetic expressions, you can use parentheses to alter the natu-

Variables, Constants, Operators, and Expressions 89

ral order of evaluation in a relational or logical expression. For example,
188 10 !} 1

will be true because C evaluates the ! first, which makes the AND true.
However, if you use parentheses in the same expression, as shown here, the

result is false:
188 1¢CO0 'Y D)

Because (0 1 1) evaluates to true, the NOT changes the result to false and,
thus, causes the AND to be false.

Remember that all relational and logical expressions produce a result of
either 0 or 1. Therefore, the following program is not only correct, but will
also print the number 1 on screen:

main()
{
int x;

x = 100;
printf(“2d"”, x>10);
}

You use the relational and logical operators to support the program-
control statements, which include all loops and the if statement. For exam-
ple, this program uses an if statement to print the even numbers between 1

and 99:

/* print the even numbers between 1 and 99 #*/

main()
{

int i;

for(i=1; i<=100; i++)
if(!i%2) printf("%d ",i);

Here, the modulus operation will produce a zero result (false) if you use it on
an even number. The NOT then inverts this result.

90 Using Turbo C

The Assignment Operator

The assignment operator in Turbo C is the equal sign (=). Unlike many com-
puter languages, Turbo C allows you to use the assignment operator in
expressions that also involve other operators. For example, consider the
expression in the if statement of this program:

main()
{
int x, y, product;

printf("enter two numbers: ");
scanf ("%d%Zd", &x, &y);

if¢ (product=x*y) < 0)
printf(“one number is negative\n");

>

First, C assigns the value of x*y to product. Next, C tests the parenthesized
assignment expression against zero. This code in the if statement is perfectly
valid. In fact, statements of this type are common in professionally written C
code. Let’s take a close look at how and why this statement works.

You can think of the assignment operator in Turbo C as doing two things.
First, the operator assigns the value of the right side to the variable on the
left. However, when you use the assignment operator as part of a larger
expression, it produces the value of the right side of the expression. There-
fore the (product=x#*y) part of the expression assigns the value of x*y to
product and returns that value. It is this value that is then tested against
zero in the if. The parentheses are necessary because the assignment opera-
tor is lower in precedence than the arithmetic operators.

The sizeof Operator

Turbo C includes the compile-time operator called sizeof that returns the
size of the variable or type that is its operand. The keyword sizeof precedes
the operand’s variable or type name. If sizeof operates on a data type, then
the type must appear in parentheses. For example, this evaluates to 2:

sizeof (int)

You will see many uses of this operator in this book.

Variables, Constants, Operators, and Expressions 91

Expressions

Operators, constants, and variables are the constituents of expressions. An
expression in C is any valid combination of those pieces. Because most
expressions tend to follow the general rules of algebra, they are often taken
for granted. However, expressions have a few aspects that relate specifically
to C. This section will discuss these aspects.

Type Conversion in Expressions

When you mix constants and variables of different types in an expression, C
converts them to the same type. The C compiler will convert all operands
“up” to the type of the largest operand on an operation by operation basis, as
described in these type-conversion rules:

1. All chars and short ints are converted to ints. All floats are converted
to doubles.

2. For all operand pairs, the following occurs in sequence. If one of the
operands is a long double, the other operand is converted to long dou-
ble. If one of the operands is double, the other operand is converted to
double. If one of the operands is long, the other operand is converted
to long. If one of the operands is unsigned, the other is converted to
unsigned.

After the compiler applies these conversion rules, each pair of operands will
be of the same type, and the result of each operation will be the same as the
type of both operands. Note that the second rule has several conditions that
must be applied in sequence.

For example, consider the type conversions that occur in Figure 5-2.
First, the computer converts the character ch to an int and float f to double.
Then the computer converts the outcome of ch/i to a double because f*d is
double. The final result is double because, by this time, both operands are
double.

92 Using Turbo C

char ch;
int i;

float f;
double d;

result=(ch / i) + (f * d) - (f + i);

A
int ouble double
\ \ \

int ’/:;7ble double

double

double

Figure 5-2. A type-conversion example

Casts

You can force an expression to be of a specific type by using a construction
called a cast. The general form of a cast is

(type) expression

where type is one of the standard C data types. For example, if x is an inte-
ger and you wished to make sure that the computer would evaluate the
expression x/2 to type float in order to guarantee a fractional component,
you could write

(float) x / 2

Variables, Constants, Operators, and Expressions 93

Here, the cast (float) is associated with x, which causes the computer to ele-
vate 2 to type float and the outcome to be float. However, be careful —if you
try to write the cast in this way, the computer will not evaluate a fractional
component:

(float) (x /2)

In this case, the computer carries out an integer division, and elevates the
result of that to float.

Casts are often considered operators. As an operator, a cast is unary and
has the same precedence as any other unary operator.

Sometimes, casts can be very useful. For example, suppose that you want
to use an integer for loop control, but that performing a computation on the
integer requires a fractional part, as in this program:

main() /% print i and /3 with fractions */
<
int i;

for(i=1; i<=100; ++t)
printf("%Xd / 2 is: Xf",i,(float) i/3);

Without the cast (float), the computer would have performed only an integer
division; but the cast ensures that the fractional part of the answer will be
displayed on the screen.

Spacing and Parentheses

At your discretion, you may place spaces in an expression to aid readability.
For example, the following two expressions are the same:

x=10/y*(127/x);

x =10 / y x (127/%);

The use of redundant or additional parentheses will not cause errors or
slow down the execution of the expression. Try to use parentheses to make
clear the exact order of evaluation, both for yourself and for others who may
have to understand your program later. For example, study the following

94 Using Turbo C

expressions:

x=y/2=34%temp-127;
x=(y/2) = ((3b4xtemp) -~ 127);

Which one is easier to read?

Program-Control
Statements
CHAPTER 6

In a sense, the program-control statements are the essence of any computer
language because they govern the flow of program execution. The way that
they are implemented affects the language’s personality and feel. Turbo C’s
program-control statements are rich and powerful, and help explain the lan-
guage’s popularity.

You can divide the program-control statements into three categories. The
first consists of the conditional instructions if and switch. The second is the
loop-control statements while, for, and do-while. The third category con-
tains the unconditional branch instruction goto.

95

96 Using Turbo C

Before you begin to read this chapter, remember that a statement may
consist of one of the following: a single statement, a block of statements, or no
statement, which is called an empty statement. The descriptions presented in
this chapter use the term statement to mean all of these possibilities.

The f Statement

Although you had a short introduction to the if statement in Chapter 4, you
are now ready to look at it in depth. The general form of the if statement is

if(condition) statement,;
else statement;

The else clause is optional. If condition evaluates to true (anything other than
0), the computer will execute the statement or block that forms the target of
the if; otherwise, if the else exists, the computer will execute the statement
or block that is the target of the else. Remember that only the code that is
associated with if or the code that is associated with else will execute —never
both.

For example, consider the following program that plays a simple version
of the “guess the magic number” game. The program prints the message
#* Right ** when you guess the magic number, and uses the Turbo C library
function rand() to generate the magic number. The rand() function returns
a random integer in the range of 0 through 32767.

/* magic number program */
main()
{
int magic; /* magic number */
int guess;

magic = rand(); /* generate a number */

printf(guess: "),
scanf("%d", &guess);

if(guess == magic) printf("**x Right **\n");

Program-Control Statements 97

This program uses the equality operator (==) to determine whether the
player’s guess matches the magic number. If the guess does match, the pro-
gram prints the message on screen.

Taking the magic number program further, this next version uses the
else statement to print a message when the player tries a wrong number.

/* magic number program - improvement 1 *x/

main()

{
int magic; /* magic number %/
int guess;

magic = rand(); /% generate a number */

printf("guess: ");
scanf("%d", &guess);

if(guess == magic) printf("*x Right **\n");
else printf(“.. Wrong ..\n");

Nested ifs

One of the most confusing aspects of if statements in any programming lan-
guage is the nested if. A nested if is an if statement that is the object of
either an if or an else. The reason that nested ifs are so troublesome is that
you may have difficulty telling what else associates with what if. Consider
this example:

ifix)
ifly) printf('1");
else printf("2");

To which if does the else refer? Fortunately, C provides a simple rule for
resolving this question. In C, the else is linked to the closest if that does not
already have an else statement associated with it. Both the if and the else
must be inside the same code block. In this case, the else is associated with
the if(y) statement. To make the else associate with the if(x), you must use

98 Using Turbo C

braces to override its normal association, as shown here:

ifix) (

if(y) printf("1');
>
else printf("2");

The else is now associated with the if(x) because it is no longer part of the
if(y) code block.
Here is another version of the magic number program:

/* magic number program improvement 2 */

main()

{
int magic; /* magic number =/
int guess;

magic = rand(); /* generate a number */

printf(‘guess: '");
scanf("%d", &guess);

if(guess == magic) {
printf("*x Right ** ");
printf("%d is the magic number\n", magic);
>
else {
printf(".. Wrong .. ");
if(guess > magic) printf("Too high\n");
else printf("Too low\n");
3
}

This version uses a nested if to provide the player with feedback on how close
each guess is.

The f-else-if Ladder
A common programming construct is the if-else-if ladder. It looks like this:

if (condition)
statement,

else if (condition)
statement,

Program-Control Statements 99

else if (condition)
statement;

else
statement;

The computer evaluates the conditional expressions from the top down-
ward. As soon as the computer finds a true condition, it executes the asso-
ciated statement and bypasses the rest of the ladder. If none of the conditions
are true, then the computer will execute the final else. The final else often
acts as a default condition; that is, if all other conditional tests fail, then the
computer performs the last else statement. If the final else is not present and
all other conditions are false, then no action will take place.

Using an if-else-if ladder, the magic number program becomes

/* magic number program improvement 3 */

main()

{
int magic; /* magic number */
int guess;

magic = rand(); /* generate a number #*/

printf("guess: ");
scanf("%Zd", &guess);

if(guess == magic) {
printf("«* Right *» ");
printf("%d is the magic number\n", magic);

else if(guess > magic)
printf(".. Wrong .. Too High\n");
else printf(",.. Wrong .. Too low\n");

The Conditional Expression

Sometimes newcomers to C are confused by the fact that they can use any
valid C expression to control the if; that is, you do not need to restrict the
type of expression to only those that involve the relational and logical opera:

100 Using Turbo C

tors (as is the case in a language like BASIC). All that is required is that the
expression evaluate to either a zero or nonzero value. For example, this pro-
gram reads two integers from the keyboard and displays the quotient. In
order to avoid a divide-by-zero error the program uses an if statement, which
the second number controls.

/* divide the first number by the second «/

main()
{
int a, b;

printf("enter two numbers: ");
scanf("%dXd", &a, &b);

if(b) printf("%Zd\n", a/b);
else printf("cannot divide by zero\n");
>

This approach works because if b is zero, then the condition that controls the
if is false and the else executes. If b is nonzero, the condition is true and the
division takes place. It is unnecessary (and is considered extremely bad style)
to write the if like this

if(b l= 0) printf("%d\n", a/b);

because it is redundant and inefficient.

The switch Statement

Although the if-else-if ladder can perform multiway tests, it is hardly ele-
gant. The code can be difficult to follow and can confuse even its author at a
later date. For these reasons, C has a built-in multiple-branch decision

Program-Control Statements 101

statement called switch. In the switch, the computer tests a variable succes-
sively against a list of integer or character constants. After finding a match,
the computer executes the statement or block of statements that is associated
with that constant. The general form of the switch statement is

switch(variable) {
case constantl:
statement sequence
break;
case constant2:
stalement sequence
break;
case constant3:
statement sequence
break;

default:
statement sequence

}

where the computer executes the default statement if it finds no matches.
The default is optional; if default is not present, no action takes place if all
matches fail. When finding a match, the computer executes the statements
associated with that case until it reaches the break or, in the case of the
default (or last case, if no default is present) the end of the switch state-
ment. (The switch statement is somewhat similar to BASIC’s ON-GOTO
statement or Turbo Pascal’s CASE statement.)
There are two important things to know about the switch statement:

1. The switch differs from the if in that switch can only test for equality,
whereas the if conditional expression can be of any type.

102 Using Turbo C

2. No two case constants in the same switch can have identical values. Of
course, a switch statement that is enclosed by an outer switch may
have ease constants that are the same.

Often, you will use the switch statement to process keyboard commands,
such as menu selection. As shown here, the function menu() displays a menu
for a spelling-checker program, and will call the proper procedures based
upon user input:

menu ()
{
char ch;

printf(”1. Check Spelling\n");

printf("2. Correct Spelling errors\n");
printf("3. Display Spelling Errors\n");
printf("Strike Any Other Key to Skip\n");
printf(" Enter your choice: ");

ch=getchar(); /* read the selection from
the keyboard =/

switch(ch) {

case "1':
check_spellingQ);
break;

case '2':
correct_errors();
break;

case '3':
display_errors();
break;

default :
printf("No option selected");

Technically, the break statements are optional inside the switch state-
ment. You use break statements to terminate the statement sequence that is
associated with each constant. If you omit the break statement, execution
will continue into the statements of the next case until the computer reaches
either a break or the end of the switch. Think of the cases as labels. Execu-

Program-Control Statements 103

tion will start at the label that matches the control variable and will continue
until the computer finds a break statement, or the switch ends. Pay special
attention to the switch statement in this program:

/* A very silly program =/

main()
{
int t;

for(t=0; t<10; t++)
switch(t)
case 1:
printf("Now");
break;
case 2:
printf(” is ");
case 3:
printf("the");
printf(" time for all good men\n");
break;
case S:
case 6:
printf("to ");
break;
case 7:
case 8:
case 9:
printf(".");

When run, this program produces the following output:

Now is the time for all good men
the time for all good men
to to ...

This program illustrates the fact that you can have empty case statements.
Using empty case statements is helpful when several conditions use the same
piece of code. As you can probably guess, the ability of the cases to run

104 Using Turbo C

together when no break statement is present enables you to write efficient
code by avoiding unwarranted duplication.

You must understand that the statements associated with each label are
not code blocks, but rather are statement sequences. (Of course, the entire
switch statement does define a block.) Usually, this technical distinction is
not important except in certain special situations.

Nested switch Statements

You can have a switch that is part of the statement sequence of an outer
switch. Even if the case constants of the inner switch and the outer switch
contain common values, no conflicts will arise. For example, the following
code fragment is perfectly acceptable:

switch(x)
case 1:
switch(y) {
case 0: printf("divide by zero error”);

break;
case 1: process(x,y);
}
break;
case 2:

Here is another example. The simple database program shown next illus-
trates the way that you might use a nested switch statement. This program
asks the user for the region and the salesperson, and then displays the cur-
rent sales figure for that person. The program must use nested switch
statements because several salespeople have similar first initials. Notice that
the program introduces the use of the standard library function toupper().
This function returns the uppercase equivalent of its character argument.
This allows the user to enter responses in either uppercase or lowercase. (The
complement of toupper() is tolower(), which converts uppercase characters
to lowercase.)

/* A simple regional salesperson database */
main()
<

char division, salesperson;

printf("Divisions are: East, Midwest, and West\n");

Program-Control Statements 105

printf("Enter first letter of division: ");
division = getche();

division = toupper(division); /* make uppercase */
printf("\n");

switch(division) (
case 'E':
printf("Salespersons are: Ralph, Jerry, and Mary\n'");
printf("Enter the first Letter of salesperson: ");
salesperson = toupper(getche());
printf("\n");

switch(salesperson) {
case 'R': printf(“Sales: $Xd\n", 10000);
break;
case 'J': printf(”Sales: $Xd\n", 12000);
break;
case 'M': printf(”Sales: $Xd\n", 14000);
break;
)

break;

case 'M':
printf("Salespersons are: Ron, Linda, and Harry\n");
printf("Enter the first letter of salesperson: ");
salesperson = toupper(getche());
printf("\n");
switch(salesperson) {
case 'R': printf("Sales: $xd\n", 10000);
break;
case 'L': printf(”Sales: $%d\n", 9500);
break;
case 'H': printf("Sales: $%d\n", 13000);
break;
)
break;

case 'W':
printf("Salespersons are: Tom, Jerry, and Rachel\n");
printf("Enter the first letter of salesperson: ");
salesperson = toupper(getche());
printf("\n");

switch(salesperson)
case 'R': printf("Sales: $%Zd\n", 5000);
break;
case 'J*': printf("Sales: $%d\n", 9000);
break;
case 'T': printf("Sales: $%d\n", 14000);
break;
b

break;

106 Using Turbo C

To see how the program works, select the Midwest region by typing M.
This causes the outer switch statement to select case ‘M’. To see Harry's
total sales, type H to cause the program to display the value 13000.

Note that a break statement in a nested switch has no effect on the outer
switch.

Loops

Loops allow the computer to repeat a set of instructions until it reaches a
certain condition. Turbo C supports the same type of loops as other modern,
structured languages. The C loops are the for, the while, and the do-while.

The for Loop

Although Chapter 4 introduced the simple form of the for loop, you may be
surprised in this chapter to see just how powerful and flexible the for is.
Let’s review what you have learned about it so far.

The Basics of the for Loop

You are probably familiar with the general format of C’s for loop because it
is found in some form in all procedural programming languages. The
general form of the for statement is

for(initialization; condition; increment) statement,;

In its simplest form, the initialization is an assignment statement that the
compiler uses to set the loop-control variable. The condition is a relational
expression that tests the loop-control variable against some value to deter-
mine when the loop will exit. The increment defines the way that the loop-

Program-Control Statements 107

control variable will change each time that the computer repeats the loop.
You must separate these three major sections by using semicolons. The for
loop will continue to execute as long as the condition is true. Once the condi-
tion becomes false, program execution will resume on the statement that fol-
lows the for. ,

As a simple example, the following program prints the numbers 1
through 100 on the screen:

main()
{
int x;

for(x=1; x<=100; x++) printf("%d ", x);
>

This program initially sets x to 1. Since x is less than 100, the program calls
printf(). After printf() returns, the program increases x by 1, and tests it to
see if it is still less than or equal to 100. This process repeats until x is
greater than 100, at which point the loop terminates. In this example, x is the
loop-control variable, which is changed and checked each time that the loop
repeats.

The for loop need not always run in a forward direction. You can create a
negative running loop by decrementing, rather than incrementing, the value
of the loop-control variable. For example, this program prints the numbers
100 through 1 on screen:

main()
<
int x;

for(x=100; x>0; x==) printf("%d ", x);
b

However, C does not restrict you to incrementing or decrementing the
value of the loop-control variable. Instead, you may use any type of
assignment statement that you like. For example, the following loop prints
the numbers 0 through 95 by fives (5, 10, 15, and so on).

108 Using Turbo C

main()
{
int x;

for(x=0; x<=100; x=x+5) printf("%d ", x);
>

By using a code block, you can have a for statement repeat multiple
statements, as shown here. This example prints the squares of the numbers 0
through 99:

main()
{
int i;

for(i=0; i<100; i++) (
printf("this is i: Xd", i);
printf(" and i squared: %d\n", ixi);
>
>

An important point about for loops is that you must always perform the
conditional test at the top of the loop. This means that the computer may not
execute the code inside the loop at all if the condition is false. In this
example,

x = 10;
for(y=10; y!=x; ++y) printf("%d", y);

printf("%Zd", y);

the loop will never execute because x and y are in fact equal when the com-
puter enters the loop. Because this causes the conditional expression to eval-
uate to false, the computer will execute neither the body of the loop nor the
increment portion of the loop. Hence, y will still have the value 10 assigned to
it, and the output will be only the number 10 printed once on screen.

Variations of the for Loop

The discussion so far described the most common form of the for loop. How-
ever, C allows several variations that increase the for loop’s power, flexibility,
and applicability to certain programming situations.

Program-Control Statements 109

One of the most common variations is the use of two or more loop-control
variables. Here is an example, in which the variables x and y both control
the loop:

main()
{

int x,y;

for(x=0, y=0; x+y<100; ++x, y++)
printf("Zd ", x+y);

This program prints the numbers from 0 to 98 by increments of 2. Notice
that commas separate the initialization and increment sections. The comma
is actually a C operator that means essentially “do this and this,” and this
book will discuss it more fully later. During each time through the loop, the
computer increments both x and y. Both x and y must be at the correct value
for the loop to terminate.

The conditional expression does not necessarily have to involve testing the
loop-control variable against some target value. In fact, the condition may be
any valid C expression. This means that you can test for several possible
terminating conditions. For example, this program helps to drill a child on
addition. However, if the child tires and wants to stop, he or she simply types
N when asked for more. Pay special attention to the condition portion of the
for loop.

/* Drill on addition */

main()

{
int i, j, answer;
char done = ' °';

for(i=1; i<100 && done!='N'; i++) {

for(j=1; j<10; j++) {
printf("what is %d + Xd? ", i, j);
scanf("%d", &answer);
if(answer != i+j) printf("wrong\n");
else printf("right\n");

3

printf("more? ");

done = getche();

110 Using Turbo C

You can create another interesting variation of the for loop because, in
actuality, each of its three sections may consist of any valid C expression. The
expressions do not need to have anything to do with what the section is actu-
ally used for in the simplest case. With this in mind, consider the following
program:

/* an unusual use of the for */

main()
{
int t;

for(prompt(); t=readnum(); prompt())
sqgrnum(t);
}

prompt ()
{

printf("enter an integer: ");
}

readnum()

{
int t;

scanf("%d", &t);
return t;
>

sqgrnum(num)
int num;
{
printf("%¥d\n", num*num);
X

This program first displays a prompt and then waits for input. When you
enter a number, the program displays its square and prompts you again for
input. This process continues until you enter a 0.

If you look closely at the for loop in main(), you will see that each part of
the for contains function calls that prompt the user and read the number
that is entered from the keyboard. If the number entered is zero, the loop
terminates because the conditional expression will be false; if the number is
not zero, the program squares the number. Thus, this for loop uses the
initialization and increment portions in a “nontraditional,” but completely

Program-Control Statements 111

valid, sense. Enter this program into your computer and try to modify it to
behave in different ways.

Another interesting trait of the for loop is that it does not require all
pieces of the loop definition to be defined. In fact, the for loop does not need
an expression for any of the sections—the expressions are optional. For
example, this loop will run until you enter the number 123:

for(x=0; x!=123;) scanf("%d", &x);

Notice that the increment portion of the for definition is blank. Thus, each
time that the loop repeats, the program tests x to see if it equals 123, but does
not change x in any way. However, if you type 123 at the keyboard, the loop
condition becomes false and the loop terminates.

The Infinite Loop

One of the most interesting uses of the for loop is to create the infinite loop.
Since none of the three expressions that form the for loop are required, you
can make an endless loop by leaving the conditional expression empty, as
shown in this example:

for(;;) printf(" this Loop will run forever.\n");

Breaking Out of a for Loop

The for(;;) construct does not necessarily create an infinite loop because C’s
break statement, when encountered anywhere inside the body of a loop,
causes immediate termination. Program control would then pick up at the
code that follows the loop, as shown here:

for(;;) (
ch = getche(); /* get a character */
if(ch=='A') break; /* exit the loop */
}

printf("you typed an A");

112 Using Turbo C

This loop will run until you type A at the keyboard. (This chapter will exam-
ine the break more closely later.)

Using for Loops with
No Bodies

As defined by the C syntax, a statement may be empty. This means that the
body of the for (or any other loop, for that matter) may also be empty. You
can use this fact to improve the efficiency of certain algorithms, as well as to
create time-delay loops. The following shows the way to create a time delay
by using for:

for(t=0;t<SOME_VALUE;t++) ;

The while Loop

The second loop available in C is the while. Its general form is
while(condition) statement;

where statement, as stated earlier, can be either an empty statement, a single
statement, or a block of statements that will be repeated. The condition may
be any valid expression. The loop iterates as long as the condition is true.
When the condition becomes false, program control passes to the line that
follows the loop.

This example shows a keyboard-input routine that simply loops until you
press A:

wait_for_char()
{
char ch;

ch = "\0'; /% initialize ch */
while(chi="A') c¢h = getche();
>

Program-Control Statements 113

First, the routine initializes ¢h to null. Since ch is a local variable, its value
is unknown when the computer executes wait—for_char(). The while loop
then begins by checking to see if ch is not equal to ‘A’. Because the routine
initialized ch to null beforehand, the test is true and the loop begins. Each
time that you press a key on the keyboard, the program tries the test again.
After you press A, the condition becomes false because e¢h equals ‘A’, and the
loop terminates. :

As with the for loop, while loops check the test condition at the top of the
loop, which means that the loop code may not execute at all. In the example
just given, this is the reason that ¢h had to be initialized to prevent it from
accidentally containing ‘A’. Because the while performs the conditional test
at the top, the while is good for those situations when you may not want the
loop to execute. The position of the test eliminates the need to perform a
separate conditional test before the loop. For example, the function center()
in the program that follows uses a while loop to output the correct number of
spaces needed to center a line of text on an 80-column screen. If len equals
zero, as it would if the line to be centered is 80 characters long, the loop will
not execute.

/* A program that centers text on the screen %/
main()
{

char str{255];

printf("enter a string: ");
gets(str);

center(strien(str));
printfistr);
}

/* Compute and output proper number of spaces to
center a string of Len length.

*/

center(len)

int Len;

{
Len = (80-ten)/2;

while(len>0) {
printf(" ");
len=+;
>
b

114 Using Turbo C

Where several separate conditions may be needed to terminate a while
loop, you can use a single variable as the conditional expression, setting the
value of this variable at various points throughout the loop. For example,
study this funetion:

func1(Q)
{ T~
int working;

working = 1; /* i,e., true */

while(working) {
working=process1();
if{working)
working=process2();
if(working)
working=process3();
)
3

Here, any of the three routines may return false and may cause the loop to
exit.

You do not need to include any statements at all in the body of the while
loop. For example,

while((ch=getche()) (= 'A') ;

will simply loop until you type A at the keyboard. If you feel uncomfortable
placing the assignment inside the while conditional expression, remember
that the equal sign is simply an operator that evaluates to the value of the
operand on the right,

The do/while Loop

Unlike the for loop and the while loop that test the loop condition at the top
of the loop, the do/while loop checks the loop condition at the bottom of the
loop. This characteristic causes a do/while loop always to execute at least
once. The general form of the do/while loop is

Program-Control Statements 115

do {
statement;
} while(condition);

Although the braces are not necessary when only one statement is present,
you usually use them to improve readability and to avoid confusion (on the
part of the reader, and not the compiler) with the while.

This program uses a do/while to read numbers from the keyboard until
one of the numbers is less than 100:

main()
{
int num;

do {
scanf("%d", &num);
} while(num>100);
>

Perhaps the most common use of the do /while is in a menu-selection rou-
tine, which should always execute at least once. When you type a valid
response, the routine returns the response as the value of the function.
Invalid responses will cause the routine to prompt again for input. The fol-
lowing shows an improved version of the spelling-checker menu that was
developed earlier in this chapter:

menu ()
{

char ch;
printf("1. Check Spelling\n");

printf("2. Correct Spelling Errors\n");
printf("3, Display Spelling Errors\n");

do {
printf(" Enter your choice: ");
ch = getche(); /*x read the selection from

the keyboard =*/

switch(ch) {
case '1':

116 Using Turbo C

check_spelling();
break;

case '2°':
correct_errors();
break;

case '3':
display_errors();
break;

b
} while(ch!="1"' &8& ch!='2' && ch!='3");
b2

After displaying the options, the program will loop until you select a valid

option.
As another example of the do/while loop in action, here is a final

improvement to the magiec number program:

/* magic number program improvement final version =*/

main()

{
int magic; /* magic number */
int guess, tries = 0;

magic = rand(); /* generate a number */

do {
printf(”guess: ");
scanf(“%d", &guess);

if(guess == magic) (
printf("*x+ Right *» ");
printf("Xd is the magic number\n", magic);

else if(guess > magic)
printf(“.. Wrong .. Too High\n");
else printf(".. Wrong .. Too low\n");
tries++;
> while (guess != magic);
printf(”"You took %d tries.\n", tries);

Now, instead of simply giving the player one chance, the program loops until

Program-Control Statements 17

the player guesses the number. It also reports the number of tries the player
needed to guess correctly.

Nested Loops

When one loop is inside of another loop, the inner loop is said to be nested.
Nested loops allow you to solve some interesting programming problems. For
example, this short program displays the first four integer powers of the
numbers 1 through 9:

/* Display a table of the even powers of the
numbers 1 to 9.

*/

main()

{
int i, j, k, temp;

printf(" i it2 i3 i*4\n");
for(i=1; i<10; i++) { /* outer Loop */
for(j=1; j<5; j++) { /* 1st level of nesting */
temp = 1;
for(k=0; k<j; k++) /* innermost loop */
temp = tempxi;
printf("%X9d", temp);
pJ
printf{"\n");
b
>

When you run this program, it produces the results shown in Figure 6-2.
Notice that all of the numbers in the column are aligned. This alignment is
due to the use of a minimum field-width specifier in the printf() statement
that prints the numbers. If you place a number between the percent sign and
the d, the number tells printf() to add spaces as necessary up to the width
specified. In this way, you can make the program line up the numbers in the
columns.

It is sometimes important to determine how many iterations an inner loop
executes. You determine this number of iterations by multiplying the
number of times that the outer loop iterates by the number of times that the

118 Using Turbo C

A:\>power
i i"2 i*3 i%4
1 1 1 1
2 4 8 16
3 9 27 81
4 16 64 256
5 25 125 625
6 36 216 1296
7 49 343 2401
8 64 512 4096
9 81 729 6561

A \>

Figure 6-1. Output from the integer powers program

inner loop repeats each time it is executed. In the power program just given,
the outer loop repeats 9 times and the second loop repeats 4 times each time
that they are executed; thus, the second loop actually iterates 36 times. The
innermost loop executes an average of two times, which means that its total
number of iterations is 72.

Loop Breaking

The break statement has two uses. The first use is to terminate a case in the
switch statement. The section on the switch presented earlier in this chapter
covered this use. The second use is to force immediate termination of a loop,
bypassing the normal loop conditional test.

Program-Control Statements 19

When encountering the break statement inside a loop, the computer
immediately terminates the loop and program control resumes at the next
statement that follows the loop. For example, study this program:

main()
{
int t;
for(t=0; t<100; t++)
printf("%d ", t);
if(t==10) break;
)
)

This program prints the numbers 0 through 10 on the screen and then ter-
minates because the break causes immediate exit from the loop. The break
overrides the conditional test t<100 built into the loop.

The break is especially useful when an external event controls a loop, as
the following program illustrates. This simple program tests your sense of
time: it asks you to wait five seconds between the time that you start and the
time that you end. To begin, press RETURN. When you think five seconds are
up, press any key. If your sense of time is accurate, you win. (But, no cheat-
ing with a watch!)

/* How's your timer? */
main()
{

int x,y;

long tm;

printf("This program tests your sense of time!");
printf("When ready, press return, wait five seconds\n"),
printf("and strike any key: ");

getche();

printf{"\n");

tm = time(D);
for(;;)
if(kbhit()) break;
if(time(0)~tm==5) printf("You win!!t");
else printf("Your timing is off");

120 Using Turbo C

This program uses Turbo C’s time() function to read the current system
time. The current system time is given in seconds and represents the elapsed
time since 00:00:00, Greenwich time, January 1, 1970. Because the number of
seconds exceeds that which can be held by an integer, the program must use a
long int variable. (The zero used as an argument to time() causes the func-
tion to return the time. Do not use any other values as arguments until you
understand the use of pointers.) This program introduces another library
function, kbhit(). It checks to see if the user has pressed a key on the key-
board. If the user has pressed a key, the function returns true; if not, it
returns false.

It is important to understand that a break will cause an exit from only
the innermost loop. For example,

for(t=0; t<100; ++t) (
count=1;
for(;;)
printf("X%d *, count);
count++;
if(count==10) break;
)
)

will print the numbers 1 through 10 on the screen 100 times. Each time that the
computer encounters the break, the program passes control back to the
outer for loop.

A break that is used in a switch statement will affect only that switch,
and not any loop that the switch happens to be in.

The continue Statement

The continue statement works in a way somewhat similar to the break
statement. However, instead of forcing termination, continue forces the next
iteration of the loop to take place, and skips any code in between. For exam-
ple, the following program will display only even numbers:

Program-Control Statements 121

main()
{
int x;

for{x=0; x<100; x++)
if(xX2) continue;
printf("Xd ", x);

Each time that the program generates an odd number, the if statement exe-
cutes because an odd number modulus 2 always equals 1, which is true.
Thus, an odd number causes the continue to execute, which causes the next
iteration to occur, bypassing the printf() statement.

In while and do/while loops, a continue statement causes program con-
trol to go directly to the conditional test and then continue the looping pro-
cess. In the case of the for, the computer first performs the increment part of
the loop and then the conditional test, before, finally, the loop continues.

You can use continue to expedite the termination of a loop by forcing the
computer to perform the conditional test as soon as it encounters some ter-
minating condition. Consider this program that acts like a simple code
machine:

/* A simple code machine =/

main()

{
printf("enter the letters you want coded.\n");
printf("Type a $ when you are done.\n");

code();
)

/* code the letters */
code ()
{

char done, ch;

done = 0;
while(!done) {
ch = getche();
if(ch=='$"') {

122 Using Turbo C

done = 1;
continue;
)
printf("%c", ch+1); /* shift the alphabet one
) position */

b

You could use code() to code a message by shifting each character to one
letter higher; for example, an a would become a b. The function will termi-
nate when it reads a $. No further output will occur because the conditional
test, brought into effect by continue, will find done to be true and will cause
the loop to exit.

Labels and goto

Although the goto fell out of favor with the programming community some
years ago, it has managed to polish its tarnished image a bit recently. This
book will not judge its validity as a form of program control. However, it
should be stated that there are no programming situations that require the
use of goto—it is not a necessary item to make the language complete.
Rather, goto is a convenience that, if used wisely, can be beneficial in certain
programming situations. As such, this book does not use the goto extensively
outside of this section. (In a language like Turbo C, which has a rich set of
control structures and allows additional control through the use of break
and continue, there is little need for goto.) The chief concern that most pro-
grammers have about the goto is its tendency to confuse and render a pro-
gram nearly unreadable. However, sometimes the use of the goto will actu-
ally clarify program flow, rather than confuse it.

The goto requires a label for operation. A label is a valid C identifier that
is followed by a colon. Furthermore, the label must be in the same function

Program-Control Statements 123

as the goto that uses it. For example, you could write a loop from 1 to 100 by
using a goto and a label, as shown here:

x=1;

Loop1:
x++;
if(x<100) goto loop1;

One good time to use the goto is when you want to exit from several layers
of nesting. For example, consider the following code fragment:

for(...) €
for(...)
while(...) {
if(...) goto stop;

stop:
printf("error in program\n");

Eliminating the goto would force the code to perform a number of addi-
tional tests. Using a simple break statement would not work here because it
would cause only the exit from the innermost loop. If you substituted checks
at each loop, the code would then look like

done = 0;
for(eas) €
for(...)
while(eao) €
ifloaad
done = 1;
break:

124 Using Turbo C

LI B

}
if(done) break;
b
if(done) break;
)

You should use the goto sparingly —if at all. However, if the code would
be much more difficult to read, or if execution speed of the code is critical,
then by all means use the goto.

Now that your study of the program-control statements is complete, you
are ready to move on to the study of arrays and strings.

Arrays and
Strings

CHAPTER 7

An array is a collection of variables of the same type that are referenced by a
common name. In Turbo C, an array consists of contiguous memory loca-
tions. The lowest address corresponds to the first element, and the highest
address corresponds to the last element. An array may have from one dimen-
sion to several dimensions. You access a specific element in an array by using
an index.

The array that you will most often use is the character array. Because C
has no built-in string data type, C uses arrays of characters. As you will
shortly see, this approach to strings allows greater power and flexibility than
are available in languages that use special string types.

125

126 Using Turbo C

Singly Dimensioned Arrays

The general form of a single-dimension array declaration is
type var __namelsize];

Here, type declares the base type of the array. The base type determines the
data type of each element of the array. The size defines how many elements
the array will hold. For example, the following declares an integer array
named sample that is 10 elements long:

int samplef101];

In C, all arrays use zero as the index of their first element. Therefore, the
above example declares an integer array that has 10 elements: sample[0]
through sample[9]. For example, the following program loads an integer
array with the numbers 0 through 9:

main()

{
int x{10J; /* this reserves 10 integer elements x/
int t;

for(t=0;t<10;++t) xltl=t;
b

For a singly dimensioned array, you compute the total size of an array in
bytes as shown here:

Total bytes = sizeof(type) * length of array

Arrays are common in programming because they allow you to deal easily
with many related variables. For example, the use of arrays makes it easy to
compute the average of a list of numbers, as shown in this program:

/* find the average of ten numbers =*/

main()
{
int samplef10], i, avg;

Arrays and Strings 127

for(i=0; i<10; i++) {
printf("enter number %d: ", i);
scanf("%d", &samplelil);

}

avg = 0;

/* now, add up the numbers */
for(i=0; i<10; i++) avg = avg+samplelil;
printf("The average is %d\n", avg/10);

No Bounds Checking

The C language performs no bounds checking on arrays: thus, nothing stops
you from overrunning the end of an array. If you overrun the end of an array
during an assignment operation, then you will assign values to some other
variable’s data or even into a piece of the program’s code. Here is another
way to view this problem: you can index an array of size N beyond N without
causing any compile-time or run-time error messages, even though doing so
will probably cause your program to crash. As a programmer, you are
responsible for ensuring that all arrays are large enough to hold whatever
the program will put in them, and for providing bounds checking when
necessary. For example, Turbo C will compile and run this program even
though it overruns the array crash:

/* an incorrect program */

main()
{
int crash(101, i;

for(i=0; i<100; i++) crashlil=i;
b4

In this case, the loop will still iterate 100 times even though erash is only 10
elements long!

You may wonder why Turbo C, or the C language in general, does not
provide boundary checks on arrays. The answer is that C was designed to
replace assembly language coding in most situations. In order to do this, C
includes virtually no error checking because it slows (often dramatically) the

128 Using Turbo C

execution of a program. Instead, C expects you the programmer to be
responsible enough to prevent array overruns in the first place.

One-Dimensional Arrays Are Lasts

Single-dimension arrays are essentially lists of information of the same type.
For example, after you run this program
char chl7];
main()
{
int i;
for(i=0; i<7; i++) chlil = 'A'+i;
}
ch looks like this:

ch[0] ch[1] ch[2] ch[3] ch[4] ch[5] ch[6]

A B C D E F G

Strings

By far, the most common use for one-dimensional arrays is to create charac-
ter strings. In C, a string consists of a character array that is terminated by a
null. A null is specified as ‘\0’ and is generally zero. For this reason, you
must declare character arrays to be one character longer than the largest string
that you want them to hold. For example, if you want to declare an array str
that will hold a ten-character string, you would write

char strC113;

This declaration makes room for the null at the end of the string.

Arrays and Strings 129

As you saw in Chapter 5, while C does not have a string data type, it still
allows string constants. Remember that a string constant is a list of charac-
ters that is enclosed between double quotes. Here are two examples:

“hello there”
“this is a test”

You do not need to add the null manually onto the end of string constants —
the Turbo C compiler does this automatically. Thus, the string “hello” will
look like this in memory:

h e 1 1 0 ‘AQ

Reading a String from
the Keyboard

The best way to input a string from the keyboard is by using the gets()
library function. The general form of gets() is

gets(array-name);

To read a string, you call gets() with the name of the array, without any
index, as its argument. Upon return from gets(), the array will hold the
string that was entered from the keyboard. The gets() function will continue
to read characters until you enter a carriage return,

For example, this program simply repeats the string that you typed at the
keyboard:

/* A simple string example */
main()
{

char str(801;

gets(str); /* read a string from the keyboard */

printf("%Zs", str);
b

130 Using Turbo C

Notice that you can use str as an argument to printf(). Also notice that the
program uses the array name without an index. For reasons that will be
clear after you read a few more chapters, you can use the name of a charac-
ter array, without an index, that holds a string anywhere that you can use a
string constant.

Keep in mind that gets() does not perform any bounds checking on the
array that it is called with. Therefore, if you enter a string longer than the
size of the array, the array will be overwritten,

Some String Library Functions

Turbo C supports a wide range of string-manipulation functions. The most
common functions are

strepy()
strecat()
stremp()
strlen()

Let’s take a look at them now.

The strepy() Function
A call to strepy() takes this general form:
strepy(to, from);

You use the strepy() function to copy the contents of the string from into to.
Remember that the array that forms to must be large enough to hold the
string in from. If to is not large enough, the array will be overrun and will
probably damage your program.

For example, study this program:

main()
{

char str(80];

Arrays and Strings 131

strcpy(str, "hello");

>

This program will copy “hello” into string str.

The streat() Function
A call to streat() takes this form:
streat(s1, s2);

The streat() function appends s2 to the end of s1; s2 is unchanged. Both
strings must have been null-terminated, and the result is null-terminated.
Here is an example:

main()
{

char firstf{20], second(10);
strcpy(first, "hello");
strcpy(second, " there");
strcat(st, s2);
printf("%s", s1);

>

This program will print hello there on screen.

The stremp() Function
A call to stremp() takes this general form:
stremp(s1, s2);

The stremp() function compares two strings and returns 0 if they are equal.

132 Using Turbo C

If s1 is lexicographically greater than s2, then the function returns a positive
number; if s is less than s2, the function returns a negative number.
You can use the following function as a password-verification routine:

/* return true if password accepted; false otherwise */
password ()
{

char s[80];
printf("enter password: ");
gets(s);

if(strcmp(s, "password")) {
printf("invalid password\n");
return 0;

)

return 1;

)

Remember that stremp() returns false when the strings match. There-
fore, you must use the NOT operator if you wish something to occur when the
strings are equal. For example,

main()
{
char s(801;

for(;;:) (
printf(*: ");
gets(s);
if(!stremp(”quit”, s)) break;
b
)

continues to request input until you type quit.

Arrays and Strings 133

The strlen() Function
The general form of a call to strlen() is
strlen(s);

where s is a string. The strlen() function returns the length of the string that
s points to.

This program prints the length of the string that you enter at the
keyboard:

main()
{
char str801;

printf("enter a string: ");
gets(str);

printf("%d", strlen(s));

For example, if you enter the string hi there, this program would display 8.
The strlen() function does not count the null terminator.

This program prints the reverse of the string that you enter at the key-
board. For example, entering hello causes the program to print olleh.
Remember that strings are simply character arrays; thus, you may refer to
each character individually.

/* Print a string backwards */

main()

{
char str[80];
int i;

134 Using Turbo C

gets(str);

for(i=strlen(str)=1; i>=0; i-=) printf("%c", strfil);
X

As a final example, the following program illustrates the use of all four
string functions:

main ()
{
char s10801, s2[&03;

gets(s1); gets(s2);
printf("lengths: i¢d vd\n",strlen(s1),strlen(s2));
if(!strcmp(s1, s2)) printf("The strings are equal\n');

strcat(s1, s2);
printf("Zs\n", s1);

If you run this program, and enter the strings hello and hello, then the
output will be

tengths: 5 5
The strings are equal
hellohello

It is important to remember that stremp() returns false if the strings are
equal. Be sure to use the ! to reverse the condition, as the program just given
shows, if you are testing for equality.

Using the Null Termainator

You can often put the fact that all strings are null-terminated to good use in
order to simplify various operations on strings. For example, look at how
little code is required to make every character in a string uppercase:

Arrays and Strings 135

/* convert a string to uppercase */

main()

{
char strf801;
int i;

strepy(str, "this is a test");
for(i=0; strli); i++) strl[il = toupper(strfil);

printf("%s", str);
>

This program will print THIS IS A TEST. To convert each character in the
string, the program uses the library function toupper(), which returns the
uppercase equivalent of its character argument. Notice that the test condi-
tion of the for loop is simply the array that the control variable indexes. The
reason that this program works is that true is any nonzero value. Therefore,
the loop runs until it encounters the null terminator, which is zero. As you
progress, you will see many situations that are similar to this example.

A Variation of printf()

So far, to display the string held in a character array by using printf(), this
book has used this basic format:

printf(“%s”, array-name);

However, remember that the first argument to printf() is a string, and
that printf() prints all characters that are not format commands. Therefore,
if you only want to print one string, you can use this form:

printf(array-name);

The following example demonstrates this form.

136 Using Turbo C

main()
{
char str[80];

strcpy(str, "Hello Tom");

printf(str);
>

This program prints Hello Tom on the screen.

Two-Dimensional Arrays

C allows multidimensional arrays. The simplest form of the multidimen-
sional array is the two-dimensional array. In essence, a two-dimensional
array is an array of one-dimensional arrays. To declare a two-dimensional
integer array twod of size 10,20, you would write

int twod[103C20];

Pay careful attention to the declaration: unlike most other computer lan-
guages, which use commas to separate the array dimensions, C places each
dimension in its own set of brackets.

Similarly, to access point 8,5 of array twod, you would use twod[3][5].
This program loads a two-dimensional array with the numbers 1 through 12:

main()
{
int t,i, numC3104];

for(t=0;t<3;++t)
for(i=0;i<4;++4)
numftILid=(t*x4)+i+1;

In this example, num[0][0] will have the value 1, num[0]{1] will have the
value 2, num[0][2] will have the value 3, and so on. The value of num[2][3]
will be 12.

Arrays and Strings 137

The C language stores two-dimensional arrays in a row-column matrix,
where the first index indicates the row and the second index indicates the
column. This structure means that the rightmost index changes faster than
the leftmost when you are accessing the array elements in the order that C
actually stores them in memory. Figure 7-1 presents a graphic representa-
tion of a two-dimensional array in memory. You can think of the first index
as being a “pointer” to the correct row.

Remember that C allocates storage for all array elements permanently. In
the case of a two-dimensional array, you can use the following formula to find
the number of bytes of memory:

bytes = row * column * sizeof(data type)

Second Index

Memory address m
* m+7
| 0,4 0.5 0,6 0,7 |

0,0 0,1 0,2 0.3

1,0 1,1 1,2 1,3 1.4 15 1,6 L7

2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7

First Index

71N

3,0 31 32 33 3.4 3,6 3,6 3,7

4,0 4,1 4,2 4,3 4,4 4,5 4,6 4,7

m+(eX8)—1

Figure 7-1. A two-dimensional array in memory

138 Using Turbo C

Therefore, an integer array with dimensions 10,5 would have
10X 5X2

or 100 bytes allocated.
The short program shown here uses a two-dimensional array to store the
numeric grade of each student in each class of a teacher:

/* class grades program */
int gradef31730];

main()
{
char ch;

for(;;)
do {
printf("(E)nter grades\n");
printf("(R)eport grades\n™);
printf("(Q)uit\n");
ch=toupper(getche());
> while(ch!="E' &8 ch!='R' &8& ch!='Q@"');

switch(ch) (

case ‘'E':
enter_grades();
break;

case 'R':
disp_grades(grade);
break;

case 'Q‘':
exit(0);

)

/* enter the grades =/
enter_grades()
{

int t,i;

for(t=0;t<3;t++) {
printf("Class # %d:\n",t+1);
for(i=0;i<30;++i) {
printf("student 2%d: ");
scanf("%d", &gradel[tlLil);
b4
b
)

Arrays and Strings 139

/* display the grades =/
disp_grades ()
{
int t,id;
for(t=0;t<3;++t) {
printf("Class # 7d:\n",t+1);
for(i=0;i<30;++1)
printf("student #4d is %d\n", i+1, gradeltl[i]);

The program assumes that the teacher has 3 classes and a maximum of 30
students per class. Notice the way that each function accesses the array
grade.

Arrays of Strings

In programming it is not uncommon to use an array of strings. For example,
the input processor to a database may verify user commands against a string
array of valid commands. To create an array of strings, you use a two-
dimensional character array, in which the size of the left index determines
the number of strings and the size of the right index specifies the maximum
length of each string. For example, this declares an array of 30 strings, with
each string having a maximum length of 80 characters:

char str_arrayf301LC8C3J;

Accessing an individual string is quite easy: you simply specify only the left
index. For example, this statement calls gets() with the third string in
str__array:

gets(str_array[2]);

This statement is functionally equivalent to

gets(&str_arrayl21C01);

However, the first form is much more common in professionally written C
code.

To understand the way that string arrays work, study the following short
program.

140 Using Turbo C

/* enter and display Llines =/
main()
{
register int t, i, j;
char text{1001[801]
for(t=0; t<100; t++) (
printf("%d: ", t);
gets(text[t]);
if(lxtextltl) break; /* quit on blank Line */
}

for(i=0; i<t; i++)
printf("%s\n", text[il);

This program inputs lines of text until the user enters a blank line. The
program then redisplays each line.

Multidimensional
Arrays

As stated earlier, C allows arrays with more than two dimensions. The
general form of a multidimensional-array declaration is

type name[sizel]l[size2]. . .[sizeN];
For example, this statement creates a 4X10X3 integer array:
int threed[41C101C33;

You do not use arrays of three or more dimensions often because of the
amount of memory that is required to hold them. As stated before, C allo-
cates storage for all array elements. For example, a 4-dimensional character
array with the dimensions 10,6,9,4 would require

10X6X9X4

Arrays and Strings 141

or 2160 bytes. If the array contained 2-byte integers, it would need 4320
bytes. If the array were double (8 bytes long), then it would require 84560
bytes. The required storage increases exponentially with the number of
dimensions.

Array
Initralization

C allows the initialization of global arrays. You cannot initialize local arrays.
(Actually, you can initialize local variables, including arrays, if you declare
them as static. You will learn about this process later in Part Three of this
book.) The general form of array initialization is similar to that of other vari-
ables, as shown here:

type-specifier array__name[sizel]...[sizeN] = { value-list };

The value-list is a comma-separated list of constants that are type compatible
with the base type of the array. This statement will place the first constant in
the first position of the array, the second constant in the second position, and
so on. Note that a semicolon follows the }. The following example initializes a
10-element integer array with the numbers 1 through 10:

int iC103 = 1,2,3,4,5,6,7,8,9,10);
This statement indicates that i[0] will have the value 1 and i[9] will have the
value 10.
Character arrays that will hold strings allow a shorthand initialization
that takes the form
char array__name[size] = “string”;

. For example, this code fragment initializes str to “hello”:

char str(6] = "hello";

142 Using Turbo C

This code is the same as this fragment:
char strfé6l = {*h', "e', "L',*'L','0"','\0");

Because strings in C must end with a null, make sure that the array that you
declare is long enough to hold it. This is the reason that str must be six
characters long, even though hello is only five characters long. When you use
the string constant, the compiler automatically supplies the null terminator.

You initialize multidimensional arrays in the same way that you initialize
singly dimensioned ones. For example, the following initializes sqrs with the
numbers 1 through 10 and their squares:

int sqrsf10JC2]) = {
1,1,
2,4,
3,9,
4,16,
5,25,
6,36,
7,49,
8,64,
9,81,
10,100

Unsized-Array Initializations

Imagine that you are using array initialization to build a table of error mes-
sages, as shown here:

char e1012]
char e2013)
char e3[0181]

"read error\n";
"write error\n";
"cannot open file\n";

As you might guess, it is tedious to count the characters in each message
manually in order to determine the correct array dimension. You can let
Turbo C automatically dimension the arrays in this example by using
unsized arrays. In an array-initialization statement, if you do not specify the
size of the array, then Turbo C will automatically create an array big enough

Arrays and Strings 143

to hold all of the initializers present. If you use this approach, the message
table becomes

char e1L] = "read error\n";
char e2[] = "“write error\n";
char e3[]1 = "cannot open file\n";

Given these initializations, the statement
printf("%s has length %d\n",e2,sizeof e2);
will print

write error
has length 13

Besides being less tedious, the unsized-array initialization method allows you
to change any of the messages without having to worry about accidentally
miscounting,

The C language does not restrict unsized-array initializations to only
singly dimensioned arrays. For multidimensioned arrays, you must specify
all but the leftmost dimensions in order to allow Turbo C to index the array
properly. In this way, you may build tables of varying lengths while the com-
piler automatically allocates enough storage for them. For example, here is
the declaration of sqrs as an unsized array:

int sgrsfl]f2] = {
1,1,
2"’
3I9I
4,16,
5,25,
6,36,
7,49,
8,64,
9,81,
10,100

X;

The advantage of this declaration over the sized version is that you may
lengthen or shorten the table without changing the array dimensions.

144 Using Turbo C

A Tic Tac Toe Example

This chapter concludes with a longer example that illustrates many of the
ways that you ean manipulate arrays by using C. You commonly use two-
dimensional arrays to simulate board-game matrices, such as those found in
chess and checkers. While it is beyond the scope of this book to present a
program for chess or checkers, this section will develop a simple Tic Tac Toe
program.

The program will represent the Tic Tac Toe matrix by using a 3-by-3-
character array. You are always X and the computer is always O. When you
move, the program will place the X into the specified position of the game
matrix. When it is the computer’s turn to move, it scans the matrix and puts
its O in the first empty location of the matrix. (This makes for a fairly dull
game —you might find it fun to spice the program up a bit!) If the computer
cannot find an empty location, it reports a draw game and exits. The pro-
gram initializes the game matrix to contain spaces at the start of the game.
Here is the global array matrix, main(), and get_player _move(), which
is the function that inputs your move:

char matrixC33[31 = { /* the tic tac toe matrix */
[]]

main()
{
char done;

printf("This is the game of Tic Tac Toe.\n");
printf("You will be playing against the computer.\n');

done="' ';
do {
disp_matrix();
get_player_move();
done=check(); /* see if winner =/
if(done!=' ') break; /* winner!x/
get_computer_move ();
done=check(); /* see if winner */
} while(done=="' ');

Arrays and Strings 145

if(done=='X"') printf("You won!\n");
else printf("I won!!!li\n");
disp_matrix(); /* show final positions */

b
get_player_move()
{
int x, y;
int ok=0;
printf("Enter coordinates for your X: ");
do {
scanf ("%dxd", &x, 8&y);
X=<; yY**;
ifimatrixCx2CyJt=" ")
printf(“Invalid move, try again.\n");
else {
matrixCx1Cyl = 'Xx°';
ok = 1; /* input ok */
}
}white(lok);
X

The function get_computer__move(), shown next, puts an O in the first
open location. The function also reports a draw game if it cannot find an open
location.

get_computer_move ()

{
register int t, i;
/* Look for an unused location */
for(t=0; t<3; ++t) {
for(i=0; 1<3; ++1i)
if(matrixCtlCil=="' ') break;
if(matrix{~1Cil=="' ') break;
/* product will be 9 if no open spot found
if(t*xi==9) {
printf("draw\n");
exit(0); /* terminate the program =/
b
else matrixCtICi) = *0*;
b

This function introduces a new library function. If a draw game occurs,

146 Using Turbo C

get_computer _move() terminates the program through a call to exit().
The function exit(), which you can find in the standard library, causes
immediate termination of the program. You traditionally call exit() with an
argument of 0 to indicate that termination is normal. You can use other
arguments to indicate some sort of error to the operating system. A common
use of exit() occurs when a mandatory condition for the program’s execution
is not satisfied.
Here is the routine that displays the game matrix:

disp_matrix()
{
int t,i;

for(t=0; t<3; t++) {
printf(” %Zc | %c | %c ", matrixCt1I[O0],
matrixCtlIC11, matrix [t1[21);
if(t!=2) printf("\n-v=|~=«|~~~\n");
>
printf("\n");
3

This routine initializes the array to contain spaces because a space is used to
indicate to get__player__move() and get_computer _move() that a matrix
position is vacant. The fact that the routine uses spaces instead of nulls, for
example, simplifies the matrix display function, disp—matrix(), by allowing
the contents of the array to be printed on screen without any translations.

In the main loop, each time that you enter a move, the function check() is
called. This function determines if the game has been won and by whom. The
check() function will return an X if you have won, or an O if the computer
has won. If no one has won yet, check() returns a space. The check() func-
tion works by scanning first the rows, then the columns, and finally the diag-
onals to look for a winning configuration.

All of the routines in this example access the array matrix differently.
You should study the routines to make sure that you understand each array
operation. Here is the complete program:

/* A simple tic tac toe game. */

char matrix[31C3] = { /* the tic tac toe matrix */

main()

{

char done;

Arrays and Strings

printf("This is the game of Tic Tac Toe.\n");
printf("You will be playing against the computer.\n");

done = ' '.
do {

2

disp matrix();

get_player_move();

done=check(); /* see if winner =/
if(done!=' ') break; /* winner!*/
get_computer_move();

done=check(); /* see if winner */

} while(done=="' ');

if(done=='X"') printf("You won!\n");
else printf{("1 won!tti\n");

disp_matrix(); /* show final positions */

get_player_move()

<

>

int x,y;
int ok=0;

printf("Enter coordinates for your X:

do {
scant ("id%d", &x, Cy);
X==; y=t;
if(matrix[xJCyl!="' ')

Il)’.

printf("Invalid move, try again.\n");

else {
matrix{x]Lyl = 'X*;
ok = 1; /* input ok */
X
Iwhile(lok);

get_computer_move ()

{

register int t, i;

/* look for an unused location */
for(t=0; t<3; ++t) {
for(i=0; i<3; ++1i)
if(matrixCtlLil==' ') break;
if(matrixftlfil==' ') break;
>

/* product witl be 9 if no open spot
if(t*xi==9) (
printf("draw\n");

found =*/

147

148 Using Turbo C

exit(0); /* terminate the program */
b
else matrixCt1[il = '0°';
}

disp_matrixQ)
8
int t, i;

for(t=0; t<3; t++) {
printf(" %c | %c | %c “,matrix{tICO],
matrix[tlC1), matrix [t3021);
if(t1=2) printf("\nrev|===]|~-=\n");
}
printf("\n");
b3

/* see if there is a winner */
check ()
{

int t;

char *p;

for(t=0; t<3; t++) { /* check rows */
p=&matrix[t1f01;
if(*p==x(p+1) &E& *(p+1)==%(p+2)) return *p;
>

for(t=0; t<3; t++) /* check columns */
if(matrixf0JCtl==matrix(110t] &&
matrixC1JCtI==matrixC210t]) return matrixC01Ct];

for(t=0; t<3; t++) /* check columns */
if(matrixCtlC0)==matrix[tIL1] &&
matrixCtIC11==matrixCtIf21) return matrixCtlC01;

/* test diagonals *x/
if(matrixC0JL0J==matrixC1JC1] && matrix[1101]==matrix(2102])
return matrix({0JCO0];

if(matrixC01C23==matrixC11C1) && matrix[1J01)==matrixC21001)
return matrix[0JC2];

return ' °';

Enter this program now and experiment with it. With a little thought, you
should be able to make it play a better game.

Now that you have studied arrays, it is time to move on to one of C’s most
important features: pointers.

Pownters
CHAPTER 8

The understanding and correct use of pointers is critical to the creation of
most successful C programs. There are three reasons for this: First, pointers
provide the means by which functions can modify their calling arguments.
Second, you can use them to support C’s dynamic-allocation routines. Third,
you can substitute them for arrays in many situations in order to increase
efficiency.

In addition to being one of C’s strongest features, pointers are also its
most dangerous. For example, using uninitialized or wild pointers can cause
a system crash. Perhaps worse, it is easy to use pointers incorrectly, which
causes bugs that are difficult to find.

Because of the importance of pointers and their potential for abuse, this
chapter examines them in detail.

149

150 Using Turbo C

Pointers Are
Addresses

A pointer is a variable that holds a memory address. Most commonly, this
address is the location of another variable in memory. If one variable con-
tains the address of another variable, then the first variable is said to point to
the second. Figure 8-1 illustrates this situation.

Memory Variable
address in memory

1000 1003

1001

1002

1003

1004

1005

1006

Memory

Figure 8-1. One variable that points to another

Pointers 151

Pointer Variables

If a variable is going to hold a pointer, then you must declare it as such. The
general form for declaring a pointer variable is

type *war-name;

where type may be any valid base type in C and var-name is the name of the
pointer variable. The base type of the pointer defines what type of variables
the pointer can point to. For example, these staternents declare pointers to
integers and characters:

char *p;

int *temp, *start;

The Pointer Operators

There are two special pointer operators: * and &. The & is a unary operator
that returns the memory address of its operand. (A unary operator requires
only one operand.) For example,

count_addr = &count;

places into count_—_addr the memory address of the variable count. This
address is the computer’s internal location of the variable. The address has
nothing to do with the value of count. You can remember the operation of &
as returning “the address of” to the variable that it precedes. Therefore, you
can read the assignment statement just given as “count_addr receives the
address of count.”

To understand this assignment more clearly, assume that the variable
count is located at address 2000. After the assignment just given, count—
addr will have the value 2000.

152 Using Turbo C

The second operator, *, is the complement of the &. It is a unary operator
that returns the value of the variable located at the address that follows. For
example, if count.__addr contains the memory address of the variable count,
then

val = *count_addr;

will place the value of count into val. For example, if count originally had
the value 100, then, after this assignment, val will have the value 100 because
it is the value stored at location 2000, which is the memory address that was
assigned to count_value. Remember the operation of the * as “at address.”
Thus, in this case, you could read the statement just given as “val receives
the value at address count_addr.”

Unfortunately, in C, the multiplication sign and the “at address” sign are
the same. As you write your programs, keep in mind that these operators
have no relationship to each other. Both & and * have a higher precedence
than all other arithmetic operators except the unary minus, with which they
are equal.

Here is a program that uses the two assignment statements just given to
print the number 100 on screen:

main()
{
int #count_addr, count, val;

count = 100;
count_addr = &count; /* get count's address */

val = *count_addr; /* get the value at that address */
printf("%d", val); /* displays 100 */

The Importance of the Base Type

In the preceding discussion, you saw that you can assign to val the value of
count indirectly by using a pointer to count. At this point, you may have
asked an important question: How does Turbo C know how many bytes to

Pointers 153

copy into val from the address that is pointed to by count—addr? More
generally, how does the compiler transfer the proper number of bytes for any
assignment that uses a pointer? The answer to both questions is that the base
type of the pointer determines the type of data that the compiler will assume
the pointer is pointing to. In this case, because count—addr is an integer
pointer, Turbo C copies two bytes of information into val from the address
that count__addr points to. If count__addr had been a double pointer, then
the compiler would have copied eight bytes.

Make sure that your pointer variables always point to the correct type of
data. For example, when you declare a pointer to be of type int, the compiler
assumes that any address that the pointer holds will point to an integer vari-
able. Because C allows you to assign any address to a pointer variable, the
following code fragment will compile, showing only a warning message:

/* this program will not work right */
main()
{

float x=10.1, y;

int *p;

P = &x;
y = *p;
printf("%f", y);

This program will not assign the value of x to y. Because the program
declares p to be an integer pointer, the compiler will transfer only two bytes
of information to y, and not the four bytes that normally make up a floating-
point number.

Pownter Expressions

In general, expressions that involve pointers conform to the same rules as
any other C expression. This section examines a few special aspects of point-
er expressions.

154 Using Turbo C

Pointer Assignments

As with any variable, you may use a pointer in the right side of assignment
statements to assign the value of the pointer to another pointer, as in this
example:

main()
<
int x;
int *p1, *p2;
p1 = &x;
p2 = pi;
printf(" %p", p2); /* print the hexadecimal value of the
address of x = = not x's valuel%*/
>

This program displays the address, in hexadecimal, of x by using another
format code of printf(). The %p specifies that a pointer address will be
displayed. '

Pointer Arithmetic

In C, you may use only two arithmetic operations on pointers: + and —. To
understand what occurs in pointer arithmetic, let p1 be a pointer to an inte-
ger with a current value of 2000. After the expression

pl++;

the contents of p1 will be 2002, and not 2001! Each time that the computer
increments pl, it will point to the next integer. The same is true of decre-
ments. For example,

pl==;

will cause p1l to have the value 1998, if it previously was 2000.

Each time that the computer increments a pointer, it will point to the
memory location of the next element of its base type. Each time that the
computer decrements it, it will point to the location of the previous element.
In the case of pointers to characters, pointer arithmetic will often appear as

Pointers 155

“normal” arithmetic. However, all other pointers will increase or decrease
according to the length of the data type that they point to. For example, if
you assume one-byte characters and two-byte integers, when the computer
increments a character pointer, its value increases by one; however, when the
computer increments an integer pointer, its value increases by two. Figure
8-2 illustrates this concept.

The C language does not limit you to only increments and decrements,
however. You also may add or subtract integers to or from pointers. The
expression

pt = p1 + 9;

will make p1 point to the ninth element of the base type of p1 beyond the one
that it is currently pointing to.

Beyond addition and subtraction of a pointer and an integer, you may
perform no other arithmetic operations on pointers: specifically, you may not

char *ch=3000;
int *i=3000;

ch 3000 }
i

ch+1 3001

ch+ 2 3002

ch + 3 3003

ch + 4 3004
i+2

ch+5 3005

Memory

Figure 8-2. The relation of pointer arithmetic to the base type of the pointer

156 Using Turbo C

multiply or divide pointers; you may not add or subtract two pointers; you
may not apply the bitwise shift and mask operators to pointers; and you may
not add or subtract type float or double to or from pointers.

Pointer Comparisons

It is possible to compare two pointers in a relational expression. For instance,
given two pointers p and q, the following statement is perfectly valid:

if(p<qg) printf("p points to Lower memory than q\n");

Generally, you use pointer comparisons when two or more pointers are point-
ing to a common object.

A Memory Dump Example

An interesting use of pointers is for examining the contents of the computer’s
memory. The following program lets you enter the starting address of the
RAM that you want to examine, and then displays the contents of each byte
in hexadecimal format. This program introduces the keyword far, which you
use to allow pointers to refer to locations that are not in the same memory
segment that the pointer is in. The program uses far to allow dump() to ex-
amine any part of memory — not just the memory segment that the program
uses for data. You will study far more closely in Part Three, which discusses
advanced topics —for now, take it on faith that you can use far like this.

The program also uses an unsigned long int to read an address because a
memory address may exceed the size of an integer. Notice that the program
calls scanf() with the format code %lu, which means “read an unsigned long
integer.” Here is the program:

/* A simple program that displays the contents of

memory at a specified address.
*/

main()
{
unsigned long int start;

Pointers 157

printf("enter starting address: "),
scanf("%ld", &start);
dump(start);

dump(start)
unsigned int start;

char far *p;
int t;

p = (char far *) start; /* convert to a pointer =/

for(t=0; ; t++, p++) {
ifCI(t%16)) printf("\n");
printf("%2X ", #p); /% display in hex #*/
R if(kbhit()) return; /* stop when any key is hit =/
3

Notice that this program introduces the new printf() format code %X, which
tells the computer to display the argument in hexadecimal notation, and in
uppercase letters. A %x displays in hexadecimal with lowercase letters.

In addition, note that the program uses an explicit type cast to transfer
the unsigned integer value that you entered to a pointer. This step is neces-
sary in order to avoid a warning message, and it is a good practice in
programming.

Pointers and Arrays

There is a close relationship between pointers and arrays. Consider this
fragment:

char strC80], *pt;

char *p1;
p1 = str;

This fragment sets p1 to the address of the first array element in str. In C,
an array name without an index is the address to the start of the array. In

158 Using Turbo C

essence, the array name is a pointer to the array. To access the fifth element
in str, you could write

strC4]

or

*(p1+4)

Both statements will return the fifth element. Remember that arrays start at
zero, so these two statements use the number 4 to index str. You could also
add 4 to the pointer pl to get the fifth element, because p1 currently points
to the first element of str.

The C language essentially allows two methods of accessing array ele-
ments, array indexing and pointer arithmetic. This fact is important because
pointer arithmetic can be faster than array indexing. Since speed is often a
consideration in programming, the use of pointers to access array elements is
common in C programs.

To see an example of the way that you can use pointers in place of array
indexing, consider these programs—one that uses array indexing and one
that uses pointers —that display the contents of a string in lowercase:

/* array version x/
main()
{

char str[803];
int i;

printf("enter a string in uppercase: ");
gets(str);

printf("here's the string in lowercase: ");

for(i=0; strlil; i++) printf("%c", tolower(strlil));

/* pointer version x/
main()
<

char str(801, *p;

Pointers 159

printf("enter 2 string in uppercase: "J);
gets(str);

printf("here's the string in lowercase: ");

p = str; /% get the addres of str */
while(*xp) printf("%c", tolower(*p++));
b

The reason that the array version is slower than the pointer version is that C
takes longer to index an array than it does to use the * operator.

Sometimes, novice C programmers mistakenly believe that they should
never use array indexing because pointers are much more efficient. However,
this is not the case. If you want to access the array strictly in either ascend-
ing or descending order, then pointers are faster and easier to use. However,
if you want to access the array randomly, then array indexing is better
because it generally will be as fast as evaluating a complex pointer expres-
sion, and because it is easier to program and understand. In addition, when
you use array indexing, you are letting the compiler do some of the work for
you.

Indexing a Pointer

In C, you can index a pointer as if it were an array. This ability further
indicates the close relationship between pointers and arrays. For example,
this fragment is perfectly valid and prints the numbers 1 through 5 on
screen:

/* indexing a pointer %/
main()
{
int iC5) = {1, 2, 3, 4, 5);
int *p, t;
p = i;
for(t=0; t<5; t++) printf("Xd “, pltl);
b

In C, the statement p[t] is identical to p+t.

160 Using Turbo C

Although programmers often do not index a pointer as an array, doing so
can oceasionally simplify certain algorithms. (You will see some examples of
this in the next chapter.)

A Stack Example

The following stack routines present an interesting example of the way that
you can mix arrays and pointers. A stack is a list that uses “first-in-last-out”
accessing. It is often compared to a stack of plates on a table: the first plate
set down on the table is the last one to be used. Stacks are used frequently in
compilers, interpreters, spreadsheets, and other system-related software.

To create a stack, you would need two routines: push() and pop(). You
use push() to place values on the stack, and pop() to take them off. The
computer holds the stack in an array, but the stack routines will manipulate
the stack by using pointers. Since the stack routines developed here are for
integer quantities, the routines use an integer array. The variable tos will
hold the memory address of the top of the stack, and will be used to prevent
stack underflows. After the stack has been initialized, you may use push()
and pop() to store and retrieve integers from it.

These stack routines use a simple main() to drive them. The main()
reads numbers that you enter at the keyboard and stores them in the stack if
they are nonzero. When you enter a zero, pop() pops a value from the stack.
Here are the routines:

int stack[50]; /* get some memory for the stack */
int *p1, *tos;

main()
{
int value;

p1 = stack;
tos = p1; [/* Let tos hold top of stack */

do {
scanf("%d",&value);
if(value!=0) push(value);
else printf(”this is it %d\n",pop());

Pointers 161

)} while(value!=<1);
>

push (i)
int i;
C
pl++;
if(p1==(tos+50)) {
printf("stack overflow");
exit();
)
*pl=i;
}

pop ()
{
if((p1)==tos) {

printf("”stack underflow");
exit();

Plr~;
return *(p1+1);
b

Both push() and pop() perform a relational test on the pointer pl to
detect limit errors. The push() tests p1 against the end of stack by adding 50
(the size of the stack) to tos. The pop() checks p1 against tos to make certain
that a stack underflow has not occurred.

In pop(), the parentheses are necessary in the return statement. Without
them, the statement would look like

return *p1 +1;

which would return the value at location p1 plus one, and not the value of the

location p1+1. Be very careful to use parentheses to ensure the correct order
of evaluation when you use pointers.

Pointers and Strings

Since an array name without an index is a pointer to the first element of that
array, when you use the string functions that were discussed in the previous

162 Using Turbo C

chapter, what actually happens is that the computer only passes a pointer to
the strings to the functions, and not the actual string itself. To see how this
works, here is one way that you could write stremp():

strcmp(s1, s2)
char %s1, *s2;
{
while(xs1)
if(xs1-%xs2) /* if not equal then return */
return *si1-*s2; /* the difference */
else {
s1++;
s2++;
b

return '\Q0'; /* equal =/
}

Remember that a null, which is a false value, terminates all strings in C.
Therefore, a statement such as

while (*s1)

is true until the computer reaches the end of the string. Here, stremp() will
return zero if s1 is equal to s2. The stremp() returns a value less than zero if
s1 is less than s2; and it returns a value greater than zero if sl is greater
than s2.

At this point, you are probably wondering how you can call stremp() with
a string constant as an argument. For example, you may wonder how this
fragment works.

jf(istrecmp("hello", str)) printf("str contains hello");

The answer is that when you use a string constant, the computer only passes
a pointer to the constant to stremp(). More generally, when you use a string
constant in any type of expression, the computer treats the constant as a
pointer to the first character in the string. For example, this valid program
prints the phrase this program works on screen:

main()
{
char *s;

Pointers 163

s = “this program works";

printf(s);
>

Getting the Address
of an Array Element

So far, this chapter has simply been concerned with assigning the address of
the first element of an array to a pointer. However, you can assign the
address of a specific element of an array by applying the & to an indexed
array. For example, this fragment places the address of the third element of
X into p:

p = &x[2];

One place that this practice is especially useful is in finding a substring.
For example, this program prints the remainder of a string, that was entered
at the keyboard, from the point that the computer finds the first space:

/* display the string after the first space */
main()
{

char s{80];

char xp;

int i;

printf("enter a string: ");
gets(s);

/* find first space or end of string */
for(i=0; sCil && sCiltl="' '; i++) ;

p = &sli];

printf(p);

This program works because p will be pointing to either a space if one exists
or a null if there are no spaces in the string. If p is pointing to a space, the
program will print the space and then the remainder of the string. For

164 Using Turbo C

example, if you entered hi there, then print(f) prints first a space and then
there. If p is pointing to a null, then printf() prints nothing.

Arrays of Pointers

You can make arrays of pointers just like any other data type. The declara-
tion for an int pointer array of size 10 is

int »x[{103];

To assign the address of an integer variable called var to the third element
of the pointer array, you would write

x[2] = &var;
To find the value of var, you would write
*»x[21]

A common usage of a pointer array is as a holder of pointers to error
messages. You can create a function that will output a message, given its code
number, as is shown here in serror():

char *errC] = {
"cannot open file\n",
"read error\n",
"write error\n",
“"media failure\n®

X;

serror(num)
int num;
{

printf("%s",errCnuml);
>

As you can see, the code calls printf() inside serror() with a character point-
er that points to one of the various error messages indexed by the error
number, which is passed to the function. For example, if the computer passes
a 2 to num, then the code causes the computer to display the message write
error.

Pointers 165

Pointers to
Pointers

An array of pointers is the same as pointers to pointers. The concept of arrays
of pointers is straightforward because indexing the array keeps its meaning
clear. However, pointers to pointers can be confusing.

A pointer to a pointer is a form of multiple indirection, or a chain of
pointers. As you can see in Figure 8-3, in the case of a normal pointer, the
value of the pointer is the address of the variable that contains the desired
value. In the case of a pointer to a pointer, the first pointer contains the
address of the second pointer, which points to the variable that contains the
desired value.

You can carry multiple indirection to whatever extent desired, but there
are few cases where more than a pointer to a pointer is necessary, or even
wise to use. Excessive indirection is difficult to follow and prone to concep-
tual errors. (Do not confuse multiple indirection with linked lists, which are
used in such applications as databases.)

You must declare a variable that is a pointer to a pointer as such. You can
do this by placing an additional asterisk in front of the variable name. For

Pointer Variable

address - value

Single Indirection

Pointer Pointer Variable

address address value

Multiple Indirection

Figure 8-3. Single and multiple indirection

166 Using Turbo C

example, this declaration tells the compiler that newbalance is a pointer to
a pointer of type float:

float x*newbalance;

It is important to understand that newbalance is not a pointer to a floating-
point number, but rather is a pointer to a float pointer.

Accessing the target value that a pointer to a pointer indirectly points to
requires you to apply the asterisk operator twice as is shown in this short
example:

main()
{
int x, *p, **q;

10;
&x;
&p;

X
p
q

printf("%d", **q); /* print the value of x */
b

Here, this code declares p as a pointer to an integer, and q as a pointer to a
pointer to an integer. The call to printf() will print the number 10 on screen.

Initializing Pointers

After you declare a pointer, but before you assign it a value, it will contain an
unknown value. If you try to use the pointer prior to assigning it a value, you
will probably crash not only your program, but also the operating system of
your computer —an extremely nasty type of error!

By convention, you should give a pointer that points nowhere the value
null to signify that the pointer points to nothing. However, just because a
pointer has a null value does not make it “safe” to use. If you use a null
pointer on the left side of an assignment statement, you will still run the risk
of crashing your program or operating system.

Pointers 167

Because Turbo C assumes that a null pointer is unused, you can use the
null pointer to make many of your pointer routines easier to code and more
efficient. For example, you could use a null pointer to mark the end of a
pointer array. Doing this causes a routine that accesses that array to know
that it has reached the end when it encounters the null value. The for loop
shown here illustrates this approach:

/* Look up a name */

for(t=0;pltl;++t)
if(!strcmp(pltl,name)) break;

The loop will run until the routine either finds a match or encounters a null
pointer. Because the end of the array is marked with a null, the condition
that controls the loop will fail when the routine reaches the null.

It is common practice in professionally written C programs to initialize
strings. You saw an example of this in the serror() function in the previous
section. Another variation of initializing strings is this type of string
declaration:

char *p="hello world\n";

As you can see, the pointer p is not an array. The reason that this type of
initialization works has to do with the way that the compiler operates: Turbo
C creates what is called a string table that is used internally to store the
string constants of a program. Therefore, this declaration statement places
the address of the string “hello world”, as stored in the string table, into the
pointer p. Throughout the program, p can be used like any other string. For
example, the following program is valid:

char *p="hello world";

main()
{
register int t;

/* print the string forward and backwards */
printfip);
for(t=strien(p)=1;t>-1;t~~) printf("%c",pltl);

b

168 Using Turbo C

Problems with Pointers

Nothing will get you into more trouble than a “wild” pointer. Pointers are a
mixed blessing. They offer tremendous power, and are necessary for many
programs. But if a pointer accidentally contains a wrong value, it can be the
most difficult bug to track down.

A pointer bug is difficult to find because the pointer itself is not the prob-
lem; the problem is that, each time you perform an operation that uses the
pointer, you are reading or writing to some unknown piece of memory. If you
read that piece of memory, the worst that can happen is that you get gar-
bage. However, if you write to the area of memory, you will be writing over
other pieces of your code or data. This error may not show up until later in
the execution of your program, and may lead you to look for the bug in the
wrong place. At that time, there may be little or no evidence to suggest that
the pointer is the problem. This type of bug has caused programmers to lose
sleep time and time again. Because pointer errors are such nightmares, you
should do your best never to generate one.

Here are a few of the more common errors. First is the classic pointer
error, the uninitialized pointer. Consider this program:

main() /% this program is wrong */

{
int x, *p;
x = 10;
*p = X
3

This program assigns the value 10 to some unknown memory location. The
program never gives a value to the pointer p; therefore, it contains a garbage
value. This type of problem often goes unnoticed when your program is small
because the odds are in favor of p containing a “safe” address —one that is
not in your code, data area, or operating system. However, as your program
grows, the probability of p having a pointer into something vital increases.
Eventually, your program stops working. The solution to this type of pointer
problem is always to make sure that a pointer is pointing at something valid
before you use it.

A second common error is caused by a simple misunderstanding of the

Pointers 169

way to use a pointer. Study this program:

main() /* this program is wrong */
{
int x, *p;

x = 10;

P X;
printf("xd"”, =%p);

The call to printf() will not print the value of x, which is 10, but it will print
some unknown value. The reason is that the assignment

is wrong. The statement assigns the value 10 to the pointer p, which is sup-
posed to contain an address and not a value. To correct the program, you
should write

p = &x;

Just because pointers used incorrectly can cause tricky bugs is not a rea-
son to avoid their use. Simply be careful and make sure that you know where
each pointer is pointing before you use it.

Dynamic Allocation

Before you leave the subject of pointers, it is necessary to discuss Turbo C’s
dynamic-allocation system, which depends upon pointers for its operation.
There are two primary methods through which a C program can store
information in the main memory of the computer. The first method uses glob-
al and local variables that C defines. In the case of global variables, the stor-
age is fixed throughout the run-time of your program. For local vari-
ables, the program allocates storage from the stack space of the computer.

170 Using Turbo C

Although local variables are efficiently implemented in Turbo C, they
require you to know, in advance, the amount of storage that is needed for
every situation.

The second method that the program can use to store information is
through Turbo C’s dynamic allocation functions malloe() and free(). In this
method, a program allocates storage for information from the free memory
area called the heap that lies between your program with its permanent
storage area and the stack. Figure 8-4 shows conceptually how a Turbo C
program would appear in memory. The stack grows downward as the pro-
gram uses it, so the design of the program determines the amount of memory
that it needs. For example, a program with many recursive functions will
make much greater demands on stack memory than a program that does not
have recursive functions because local variables and return addresses are
stored on the stack. Remember that the computer permanently allocates the
memory required for the program and global data during the execution of
the program. The computer takes the memory to satisfy a malloe() request

System Memory

High
Stack

T

Free memory
for
allocation

Global variables

Program

Low

Figure 8-4. A conceptual view of a Turbo C program’s memory usage

Pointers 171

from the free memory area, by starting just above the global variables and
growing towards the stack. As you might guess, in fairly extreme cases, it is
possible for the stack to run into allocated memory.

Let’s begin the discussion of dynamic allocation with malloc() and
free().

The malloe() and free()
Functions

The functions malloe() and free() form Turbo C’s dynamic-allocation sys-
tem and are part of its library. (Actually, Turbo C has several other dynamic
allocation functions that add flexibility, but malloe() and free() are the most
important.) They work together by using the free memory region that lies
between your program and the top of the stack in order to establish and
maintain a list of available storage. Each time that you make a malloe()
memory request, it allocates a portion of the remaining free memory. Each
time that you make a free() memory release call, it returns memory to the
system.

The malloe() function is C’s general-purpose memory-allocation funection.
You declare malloc() as follows:

void *malloc (int number _of _ bytes);

It returns a pointer of type void, which means that you must use an explicit
type cast when you assign the pointer returned by malloc() to a pointer of
the type you want. After a successful call, malloc() will return a pointer to
the first byte of the region of memory that was allocated from the heap. If not
enough available memory exists to satisfy the malloc() request, an allocation
failure occurs and malloc() returns a null. You can use sizeof to determine
the exact number of bytes that each type of data needs. By doing this, you can
make your programs portable to a variety of systems.

The opposite of malloc(), free(), returns previously allocated memory to
the system. After you use free() to free memory, you can reuse it by using a
subsequent call to malloe(). You declare the function free() as

free(void *p);

The only important aspect about free() to remember is that you must never

172 Using Turbo C

call free() with an invalid argument because doing so would cause the com-
puter to destroy the free list.

The following short program will allocate enough storage for 40 integers,
print their values, and then release the memory back to the system:

main{) /* short allocation example */
{
int *p, t;

p = (int *) malloc(40*sizeof(int));

if(!p) /* make sure its a valid pointer */
printf("out of memory\n");

else {
for(t=0; t<40; ++t) *{(p+t) = t;
for(t=0; t<40; ++t) printf("%d ", *(p+t));
free(p);

)

)

Remember: before you use the pointer that malloe() returns, always
make sure that your allocation request succeeds by testing the return value
against zero. Do not use a pointer of value zero because it will most likely
cause your system to crash.

Dynamic allocation is useful when you do not know in advance how many
items of data you will be dealing with. (In Advanced Turbo C, this book’s
sequel [Borland-Osborne/McGraw-Hill, available Summer 1987}, you will see
how to use the dynamic-allocation system to support linked lists.) Now that
you have a basic understanding of pointers, you are ready to unlock the
power of C’s functions.

A Closer Look
at Functions
CHAPTER 9

In C, functions are the building blocks in which all program activity occurs.
With only a brief overview in Chapter 4, you have been using functions in a
more or less intuitive way. In this chapter, you will study them in detail,
learning such things as the way to make a function modify its arguments, the
scope rules and lifetime of variables, the way to create recursive functions,
and some special properties of the main() function.

173

174 Using Turbo C

The General Form of a Function

The general form of a function is

type-specifier function__name(parameter-list)
parameter declarations

body of the function
}

The type-specifier specifies the type of value that the function will return
through the use of return. The value may be of any valid type. If you do not
specify a type, then by default the computer assumes that the function will
return an integer result. The programs that you have been using so far have
made use of this fact. If you review them, you will see that all of the functions
returned either integer values or no value at all (which is legal). The parame-
ter list is a comma-separated list of variable names that will receive the
values of the arguments when the function is called. You do not have to
include parameters in a function, in which case the parameter list will be
empty. However, even if you do not include parameters, the parentheses are
still required. You use the section that contains the parameter declarations to
define the type of the parameters in the list.

The return Statement

Although Chapter 4 introduced the return statement as a means of return-
ing a value from a function, this section will examine return more fully.
The return statement has two important uses. First, you can use it to
cause an immediate exit from the function that it is in; that is, return will
cause program execution to return back to the calling code as soon as the
computer encounters it. Second, you may use return to return a value.

A Closer Look at Functions 175

Returning from a Function

There are two ways that a function terminates execution and returns to the
calling code. In the first way, the computer executes the last statement in the
function and then, conceptually, encounters the function’s ending }. (The final
curly brace is not actually present in the object code, but you can think of the
brace in this way.) For example, this function simply prints a string
backwards:

pr_reverse(s)
char *s;
{

register int t;

for(t=strlen(s)-1; t; t--) printf("%c", sftl);
}

After the function displays the string, there is nothing left for the function to
do, so it returns to the place in the program that it was called from.

The second way that a function can return is through the use of the
return statement. You can use the return statement without any value asso-
ciated with it. For example, this function prints the outcome of one number
raised to a positive integer power:

power(base, exp)
int base, exp;-

{
int i;
if(exp<0) return; /* can't do negative exponents */
i=1;
for(; exp; expr-) i = base * i;
printf("The answer is: %d: ", i);
3

If the exponent is negative, the return statement causes the function to ter-
minate before the computer reaches the final curly brace but no value is
returned.

176 Using Turbo C

A function may have several return statements in it. These may simplify
certain algorithms. For example, the function shown here returns either the
starting position of a substring within a string, or —1 if no mateh is found:

find_substr(sub,str)
char *sub,*str;

{
register int t;
char #p,*p2;
for(t=0; strft3; t++) { /% get starting point */
p=&strit];
p2=sub;
" while(*p2 &8 *p2==%xp) { /* while equal advance */
| pt+; /* through the string */
p2++;
}
if(1%p2) return t; /* if at the end of sub then match */
/* has been found */
>
return =1;
>

In this function, the use of two return statements simplifies the algorithm.

However, be careful: having too many return statements can muddy the
operation of a routine and confuse its meaning. So, it is best to use multiple
return statements only when they help to clarify a function.

Return Values

All functions, except those that you declare to be of type void, return a value.
This value either is explicitly specified by the return statement, or is 0 if you
do not use a return statement. Thus, as long as you do not declare a function
as void, you may use it as an operand in any valid C expression. Therefore,
each of the following expressions is valid in C.

x = abs(y);
if{max(x,y) > 100) printf("greater");

for(ch=getchar();isdigit(ch);) ... ;

4

A Closer Look at Functions 177

However, a function cannot be the target of an assignment. A statement
such as

swap(x,y)=100; /* incorrect statement */

is wrong. Turbo C will flag it as an error and will not compile a program
that contains such a statement.

Although all functions that are not of type void have return values, the
functions that you write generally will be of three types. The first is simply
computational. You design this function specifically to perform operations on
its arguments and return a value based on that operation —in essence, it is a
“pure” function. Examples of this type of function are the library functions
sqrt() and sin() that return the square root of a number and its sine,
respectively.

The second type of function manipulates information and returns a value
that simply indicates the success or failure of that manipulation. An example
is fwrite(), which you can use to write information to a disk file. If the write
operation is successful, then fwrite() returns the number of bytes that you
requested to be written; any other value indicates an error has occurred.
(You will learn about file I/O in the next chapter.)

The last type of function has no explicit return value. In essence, the func-
tion is strictly procedural and produces no value. For murky, historical rea-
sons, often functions that do not produce an interesting result will return
something anyway. For example, printf() returns the number of characters
written; however, it would be unusual to find a program that actually
checked the return value. Therefore, although all functions, except those of
type void, return values, you do not necessarily have any use for the values. A
common question about function return values is, “Don’t I have to assign this
value to some variable since the function is returning a value?” The answer is
no. If you do not specify an assignment, then the computer simply discards
the return value. Consider the following program that uses mul():

main()
{
int x, y, z;

x = 10; y = 20;
2 = muldlx, y); /* 1 */
printf("%d", mul(x, y)); /* 2 */

178 Using Turbo C

mul(x, y); /% 3 */
>

mul(a, b)
int a, b;
<
return a*b;
X

Line 1 assigns the return value of mul() to z. In line 2, the return value is not
actually assigned, but it is used by printf(). Finally, in line 3, the return
value is lost because the line neither assigns it to another variable nor uses it
as part of an expression,

Scope Rules of
Functions

The scope rules of a language govern whether or not a piece of code knows
about, or has access to, another piece of code or data. Chapter 4 lightly
touched on this subject; now, this section will examine it more closely.

In C, each function is a discrete block of code. A function’s code is private
to that funection, and cannot be accessed by any statement in any other func-
tion except through a call to that function. (For example, you cannot use goto
to jump into the middle of another function.) The code that comprises the
body of a function is hidden from the rest of the program and —unless the
code uses global variables or data—it can neither affect nor be affected by
other parts of the program. Here is another way to view this: the code and
data that are defined within one function cannot interact with the code or
data that is defined in another function because the two functions have a
different scope.

There are three types of variables: local variables, formal parameters,
and global variables. The scope rules govern how other parts of your program
may access each of these types, and establish the lifetimes of the variables.

A Closer Look at Functions 179

Local Variables

As you know, variables that are declared inside a function are called local
variables. However, C supports a broader concept of the local variable than
you have previously seen. A variable may be declared inside a block of code
and is local to that block. In reality, variables that are local to a function are
simply a special case of the general concept. Local variables may be refer-
enced only by statements that are inside the block in which those variables
are declared. Thus, local variables are not known outside their own code
block, and their scope is limited to the block within which they are declared.
Remember that a block of code begins when the computer encounters an
opening curly brace, and terminates when the computer finds a closing curly
brace.

One of the most important aspects of local variables that you should
understand is that they exist only during the execution of the block of code in
which they are declared; that is, a local variable is created upon entry into its
block and destroyed upon exit.

The most common code block in which you declare local variables is the
function. For example, consider these two functions:

func1()
{
int x;

x=10;
b

func2 ()
{
int x;
x=+199;
>

Here, the integer variable x is declared twice, once in func1() and once in
fune2(). The x in funcl() has no bearing on, or relationship to, the x in
func2() because each x is known only to the code that is within the same
block as the variable’s declaration.

180 Using Turbo C

The C language contains the keyword auto, which you can use to declare
local variables. However, since C assumes that all nonglobal variables are, by
default, auto, it is virtually never used. Hence, you will not see auto used in
any of the examples in this book.

It is common practice to declare all variables that are needed within a
function at the start of that function’s code block. You should follow this prac-
tice primarily to make it easy for anyone who reads the code to know what
variables the function is using. However, you do not need to do this because
you may declare local variables within any block of code. Consider the follow-
ing function:

fQO
{
char ch;

printf("continue (y/n)? :");
ch = getche();

/* enter this block only if answer is yes */
if(ch == 'y')
char s[80]; /* this is created only upon
entry into this block */
printf("enter name:");
gets(s);
process_it(s); /* do something */
3
)

Here, f() creates the local variable s upon entry in the if code block and
destroys it upon exit. Furthermore, s is known only within the if block and
may not be referenced elsewhere —even in other parts of the function that
contains it.

The main advantage of declaring a local variable within a conditional
block is that the computer will allocate memory for the variable only if
needed. The reason for this is that local variables do not come into existence
until the computer enters the block in which they are declared. Although
memory for a local variable is allocated but is not generally important in
most situations, it can really matter when you are writing code for dedicated
controllers (such as a garage door opener that responds to a digital security
code) where RAM is in short supply.

Because the computer creates and destroys local variables with each
entry and exit from the block in which they are declared, their content is lost
once the computer leaves the block. This fact is especially important to

A Closer Look at Functions 181

remember when you are writing a function call. When a function is called,
the computer creates its local variables and, upon its return, destroys them.
Thus, local variables cannot retain their values between calls. (There is an
exception to this rule, which Part Three will explain.)

Unless otherwise specified, storage for local variables is on the stack. The
fact that the stack is a dynamic region of memory explains why local vari-
ables cannot, in general, hold their values between function calls.

Formal Parameters

If a function will use arguments, then it must declare variables that will
accept the values of the arguments. These variables are called the formal
parameters of the function. The formal parameters behave like any other
local variables inside the function. As shown in the following program frag-
ment, their parameter declaration occurs after the function name and before
the function’s opening brace:

/* return 1 if ¢ is part of string s; O otherwise */
is in(s,c)
char *s;
char ¢;
{
while(*s)
if(xs==¢) return 1;
else s++;

return O;
}

The function is—in() has two parameters: s and ¢. This function returns 1 if
the character ¢ is part of the string s; the function returns 0 if not. You must
tell C what type of variables these are by declaring them as just shown in the
fragment. After you do this, you may use them inside the function as normal
local variables. Keep in mind that, as local variables, they are also dynamic
and are destroyed upon the computer’s exit from the function.

Remember to make sure that the formal parameters you declare are the
same type as the arguments that you will use to call the function. In addition,
even though these variables perform the special task of receiving the value of
the arguments that are passed to the function, you can use them like any
other local variable.

182 Using Turbo C

A Second Way to Declare
Parameters

The ANSI standard (and Turbo C) allows a variation in the way that you
may declare parameters to functions. You may place the entire declaration
for each parameter inside the parentheses that are associated with the func-
tion. For example, you can code the declaration portion for the is__in() func-
tion shown earlier like this:

is_in(char *s, char ¢)

This book will continue to use the more traditional approach shown ear-
lier because it is the one that virtually all existing C code uses. However, you
may use whatever method best suits your needs.

Global Variables

Unlike local variables, global variables are known throughout the entire pro-
gram and may be used by any piece of code. In essence, their scope is global
to the program. Global variables will also hold their values during the entire
execution of the program. You create global variables by declaring them out-
side of any function. Any expression may access them regardless of what
function that expression is in.

As you can see, the following program fragment declares the variable
count outside of all functions. Its declaration occurs before the main() fune-
tion. However, you could place it anywhere, as long as it is not in a function,
prior to its first use. Common practice dictates that it is best to declare glob-
al variables at the top of the program.

int count; /* count is global =/

main()

{
count=100;
func1Q);

)

A Closer Look at Functions 183

func1 ()
{

int temp;

temp=count;

func2();

printf("count is %d",count); /* will print 100 =/
3

func2()
{

int count;

for(count=1;count<10;count++)
printf(".");
b

If you study this program fragment carefully, it should be clear that,
although neither main() nor func1() has declared the variable count, both
functions may use it. However, func2() has declared a local variable called
count. When referencing count, func2() will be referencing only its local
variable, and not the global one. Remember that, if a global variable and a
local variable have the same name, all references to that variable name
inside the function in which the local variable is declared will refer to that
local variable and have no effect on the global variable. This fact is a conve-
nient benefit. However, forgetting this can cause your program to act
strangely —even though it “looks” correct.

Storage for global variables is in a fixed region of memory that Turbo C
sets aside for this purpose. Global variables are helpful when you use the
same data in many functions in your program. However, you should avoid
using unnecessary global variables, for three reasons: first, they take up
memory during the entire execution of your program and not just when they
are needed; second, using a global variable where a local variable will do
makes a function less general because it relies on a variable that must be
defined outside of itself; and, third, using a large number of global variables
can lead to program errors because of unknown, and unwanted, side effects.
You can see evidence of this third problem in BASIC, where all variables are
global. A major problem in developing large programs is the accidental
changing of a variable’s value because you used it elsewhere in the program.

184 Using Turbo C

This problem can occur in C if you use too many global variables in your
programs.

One of the principal features of a structured language is the compartmen-
talization of code and data. In C, you build compartmentalization by using
local variables and functions. For example, here are two ways to write mul(),
which is a simple function that computes the product of two integers.

General Specific
int x,y;
mul(x,y) mul()
int x,y; {
{
return(x#y); return(x*y);

} }

Both functions will return the product of the variables x and y. However,
you can use the generalized, or parameterized, version to return the product
of any two numbers, whereas you can use the specific version to find only the
product of the global variables x and y.

A Final Scope Example

Figure 9-1 presents the various scopes of view in the following short pro-
gram. In the figure, code that is contained in an inner scope has knowledge
of the outer scopes. However, the code in outer scopes has no effect on, or
knowledge of, the code in inner scopes.

/* SCOPE: A program with various scopes */
int count; /* global to entire program #*/

main()
{
char strl[80]; /* Local to main() */

printf("enter a string: ");
gets(str);
play(str);

)

A Closer Look at Functions 185

play(p)
char *p; /* local to play =/
{

if(lstremp(p, "add"™)) (
int a, b; /* local to if block inside play =/
scanf("Xd%d", &a, &b);
printf("Xd\n", a+b);

}

/* int a, b not known or existent here %/
else if (!strcmp(p, "beep")) printf("%c", 7);

You should be able to understand the various scopes in this example if you

study Figure 9-1 closely. You may want to experiment to see how various
changes affect the program.

int count;

main()
char str{80}

play()
char *p;

if(...)

int a,b;

Figure 9-1. The scopes of the SCOPE program

186 Using Turbo C

Function Arguments

As you have seen earlier, you must make sure that the function’s formal
parameters are of the same type as the arguments that you use to call the
function. If there is a type mismatch, the compiler will not issue an error
message but unexpected results will occur. Unlike many other languages, C
is very robust and generally will do something —even if it is not what you
want. For example, if a function expects an integer argument but is called
with a float, then the compiler will use the first two bytes of the float as the
integer value! It is your responsibility as the programmer to make sure that
such errors do not occur.

As with local variables, you may make assignments to a function’s formal
parameters or you may use them in any allowable C expression inside the
function. Even though these variables perform the special task of receiving
the values of the arguments that are passed to the function, you can use them
like any other local variable.

Call by Value and
Call by Reference

In general, you can pass arguments to subroutines in one of two ways. The
first way is called call by value. This method copies the value of an argument
into the formal parameter of the subroutine. Therefore, changes that you
make to the parameters of the subroutine have no effect on the variables that
you use to call it.

The second way that you can pass arguments to a subroutine is call by
reference. This method copies the address of an argument into the parameter.
Inside the subroutine, the address is used to access the actual argument used
in the call. This means that changes that you make to the parameter will
affect the variable that is used to call the routine.

C uses the call by value method to pass arguments. In general, using this
method does not allow you to alter the variables used to call the function.
Later in this chapter, you will find out how to “force” a call by reference by
using pointers to allow changes to the calling variables. Consider the follow-
ing function:

main()
<
int t=10;

A Closer Look at Functions 187

printf("%d %d", sqr(t), t);
>

sqr(x)
int x;
{
X = xkx;
return(x);
X

This function copies the value of the argument to sqr(), which is 10, into the
parameter x. When the assignment x = x#x takes place, the only thing that
is modified is the local variable x. The variable t, used to call sqr(), will still
have the value 10. Hence, the output of the function will be 100 10.

Remember that the computer passes a copy of the value of the argument
into that function. What occurs inside the function will have no effect on the
variable used in the call.

Creating a Call by Reference

Even though C’s parameter-passing convention is call by value, you can simu-
late a call by reference by passing a pointer to the argument. Since this
process will cause the computer to pass the address of the argument to the
function, you can then change the value of the argument outside the function.

You can pass pointers to functions just as you do with any other value. Of
course, you must declare the parameters as pointer types. For example, con-
sider the function swap(), which exchanges the value of its two integer
arguments:

swap(x, y)
int *x, *xy;
{

int temp;

temp = *x; /* save the value at address x */
kx = ky: /* put y into x */
y = temp; / put x into y */

}

The function uses the * operator to access the variable that its operand points
to. Hence, the function will swap the contents of the variables that are used to
call the function.

Remember that you must call swap() (or any other function that uses

188 Using Turbo C

pointer parameters) with the addresses of the arguments. This program
shows the correct way to call swap().

main()
{
int x, y;

X 10;

y 20;

swap(&x, 8&y);
}

In this example, the program assigns the value 10 to the variable x and the
value 20 to the variable y. The program then calls swap() with the addresses
of x and y. The program uses the unary operator & to produce the address of
the variables. Therefore, the program passes the addresses of x and y —not
their values —into the function swap().

At this point, you should understand why you had to put the & in front of
the arguments of secanf() that were to receive values: you were actually pass-
ing their addresses so that you could modify the calling variable.

Calling Functions with Arrays

When you use an array as an argument to a function, you are passing only
the address of the array and not a copy of the entire array. When you call a
function with an array name, you are passing a pointer to the first element in
the array into the function. (Remember that, in C, an array name without
any index is a pointer to the first element in the array.) This means that the
parameter declaration must be of a compatible pointer type. There are three
ways to declare a parameter that will receive an array pointer. First, you
may declare it as an array, as shown here:

main() /* print some numbers */
{
int t[103],4;

for(i=0;i<10;++i) tlLil=i;
display(t);
)

display(num)
int num(10];
{

A Closer Look at Functions 189

int i;

for(i=0;4<10;i++) printf("%d ",nunlil);
>

Even though this program declares the parameter num to be an integer
array of 10 elements, the C compiler will automatically convert num to an
integer pointer because no parameter can receive an entire array. Therefore,
only a pointer to an array will be passed, so you must include a pointer
parameter to receive it.

A second way to declare an array parameter is to specify the parameter
as an unsized array, as shown here:

display(num)
int num(];
{

int i;

for(i=0;i<10;4i+4) printf("%d “,numlil);
)

This code declares num to be an integer array of unknown size. Since C
provides no array-boundary checking, the actual size of the array is irrele-
vant to the parameter (but not to the program, of course). This method of
declaration also defines num as an integer pointer.

The final way that you can declare an array parameter, and the most
common form in professionally written C programs, is as a pointer, as shown
here:

display(num)
int *num;
{

int i;

for(i=0;i<10;i++) printf("%d ",numlil);
3

The C language allows this type of declaration because you may index any
pointer by using [] as if the pointer were an array. All three methods of
declaring an array parameter yield the same result: a pointer.

However, Turbo C treats an array element that is used as an argument
just like any other simple variable. For example, you could have written the

190 Using Turbo C

same program just shown without passing the entire array:

main() /* print some numbers */
<
int .t{103,4;

for(i=0;i<10;++i) tLil=i;
for(i=0;i<10;i++) display(tLil);
>

display(num)
int num;
{
printf("%d ",num);
3

As you can see, the parameter to display() is of type int. It is irrelevant that
the program calls display() by using an array element because the program
uses only that value of the array.

It is important to understand that when you use an array as a function
argument, the computer passes the array’s address to a function. This point
is an exception to C’s parameter-passing convention of call by value. Thus,
the code inside the function will be operating on, and potentially altering, the
actual contents of the array that you have used to call the function. For
example, consider the function print_upper() that prints its string argu-
ment in uppercase:

main() /* print string as uppercase */
{
char s[801;

gets(s);
print_upper(s);
X

print_upper(string)
char *string;
{

register int t;

for(t=0;stringltl;++t) <«
stringlt)=toupper(stringltl);
printf("%c", stringltl);
b
>

A Closer Look at Functions 191

After the call to print_upper(), the program will change the contents of
array s in main() to uppercase. If you do not want this to happen, you could
write the program like this:

main() /% print string as uppercase */

{
char sC803];

gets(s);
print_upper(s);
)

print_upper(string)
char *string;
{

register int t;

for(t=0;stringltl);++t)
printf("%c", toupper(stringltd));

In this version, the contents of array s remain unchanged because the pro-
gram does not change its values.

You can find a classic example of passing arrays into functions in the
standard library function gets(). Although gets() in Turbo C’s standard
library is much more sophisticated and complex, the function shown here
will give you an idea of how it works. To avoid confusion with the standard
function, this version is called xgets().

xgets(s) /* very simple version of the standard
gets() Library function */

char *s;

{

char ch;
int t;

for(t=0; t<80; ++t) {
ch=getchar();
switch(ch) {
case '\n':
sCtl='\0*'; /* terminate
the string */
return;
case '\b':
if(t>0) t-~-;

192 Using Turbo C

break;
default:
sCtl=ch;
}
>
s{801=*\0"';

>

The xgets() function must be called with a character array, which by
definition is a character pointer. Upon entry, xgets() establishes a for loop
from 0 to 80. This loop prevents you from entering larger strings at the key-
board. If you type more than 80 characters, the function will return. Because
C has no built-in bounds checking, make sure that any variable that is used
to call xgets() can accept at least 80 characters. As you type characters, the
function enters the characters in the string. If you type a backspace, the
function reduces the counter t by 1. When you strike a carriage return,
xgets() places a null, which signals termination, at the end of the string.
Because the function modifies the actual array used to call it, upon return
the array will contain the characters typed.

The Arguments arge and
argv to main()

Sometimes, it is useful to pass information into a program when you run it.
Generally you pass information into main() by using command-line argu-
ments. A command-line argument is the information that follows the pro-
gram’s name on the command line of the operating system. For example, you
can start Turbo C with a program from the command line by typing

>tee program...name

where program _name is the program that you wish to compile. The com-
puter passes the name of the program into Turbo C as an argument.

You use two special built-in arguments—argv and arge—to receive
command-line arguments. These are the only arguments that main() can
have. The arge parameter holds the number of arguments on the command
line, and is an integer. It will always be at least 1 because the name of the

A Closer Look at Functions 193

program qualifies as the first argument. The argv parameter is a pointer to
an array of character pointers. Each element in this array points to a
command-line argument. All command-line arguments are strings—a pro-
gram must convert any numbers into the proper internal format. The follow-
ing short program illustrates the use of command-line arguments and will
print Hello followed by your name on screen if you type your name directly
after the program name.

main(argc,argv) /* name program %/
int arge;

char *argvl];

{

iflargcl!=2) (
printf("You forgot to type your name\n");
exit(0);

)

printf("Hello %s", argv(11);

If you titled this program name and your name was Tom, then you would
type name Tom to run the program. The output from the program would be

Hello Tom. For example, if you were logged into drive A and were running
PC DOS, you would see

A>name Tom
Hello Tom
A>

after running name.

You must separate each command-line argument by a space or a tab. The
C language does not consider commas, semicolons, and the like to be separa-
tors. For example,

run Spot, run
is made up of three strings, while

Herb,Rick,Fred

is one single string because the commas are not legal separators.
You must declare argv properly. The most common method is

char xargv(];

194 Using Turbo C

The empty brackets indicate that argv is an array of undetermined length.
You can now access the individual arguments by indexing argv. For exam-
ple, argv[0] will point to the first string, which is always the program’s
name; argv[1] will point to the first argument; and so on. (In versions of
DOS before version 3.0, argv[0] was blank.)

A short example that uses command-line arguments is the program
called eountdown, shown here. The program counts down from a value that
you specify on the command line and beeps when the program reaches 0.
Notice that the program converts the first argument that contains the
number into an integer by using the standard function atoi(). If the string
“display” is present as the second command-line argument, the program will
also display the count on screen.

main(argc, argv) /* countdown */
int argc;
char *argvl];

int disp, count;

if(argc<2) {
printf("you must enter the Length of the count\n");
printf("on the command Line. Try again.\n");
exit(0);

>

if(argc==3 && !strcmp(argvl2],"display")) disp=1;
else disp=0;

for(count=atoi(argvl11); count; =~-count)
if(disp) printf("%d ", count);

printf("%c", 7); /* beep the bell =/
b

Notice that if you specify no arguments, the program will print an error
message. A program that uses command-line arguments commonly issues
instructions if you attempt to run it without the proper information being
present.

You access an individual character in one of the command strings by
adding a second index to argv. For example, this program will display on
screen a character at a time the arguments with which it was called.

A Closer Look at Functions 195

/* print all command line arguments %/
main(argc, argv)

int argc;

char *argvl(];

int t, i;

for(t=0; t<argc; ++t) {
i = 0;
whileCargvit][il) <
printf("%c", argvI[t][il);
++i;
>
printf(" ");
b
3

Remember that the first index accesses the string and the second index
accesses that character of the string.

Usually, you use arge and argv to get initial commands into your pro-
gram. In Turbo C, you can have as many command-line arguments as the
operating system will allow. DOS limits you to one 128-character line. You
normally use these arguments to indicate a filename or an option. Using
command-line arguments will give your program a professional appearance,
and will facilitate the program’s use in batch files.

Functions that Return
Noninteger Values

If you do not explicitly declare the type of a function, the computer automati-
cally declares it, by default, as int. The vast majority of C functions will use
this default. However, when you must return a different data type, you must
use a two-step process. First, you must give an explicit type specifier to the
function; second, you must identify the type of the function before you make
the first call to it. This process is the only way that the C compiler can gener-
ate correct code for functions that return noninteger values.

196 Using Turbo C

You may declare functions to return any valid C data type. The method of
declaration is similar to the method that you use for variables: the type spec-
ifier precedes the function name. The type specifier tells the compiler what
type of data the function will return. This information is critical if the pro-
gram is going to run correctly because different data types have different
sizes and internal representations.

Before you can use a function that returns a noninteger type, you must
make its type known to the rest of the program. The reason for doing this is
easy to understand. Unless directed to the contrary, Turbo C will assume that
a function is going to return an integer value. If your program calls a func-
tion that returns a different type before that function’s declaration, then the
compiler will generate the wrong code for the function call. To prevent this
mistake, you must place near the top of your program a special form of the
declaration statement to tell the compiler what value that function is really
returning. To see how this is done, examine this short example.

float sum(); /% identify the function »/

main()
<

float first, second;

first=123.23;

second=99.09;

printf("%f",sum(first,second));
}

float sum(a,b) /* return a float =/
float a,b;
<

return a+b;

}

The first function-type declaration tells the compiler that sum() will return a
floating-point data type. This step allows the compiler to generate code cor-
rectly for calls to sum().

The function-type declaration statement has the general form

type__specifier function_name();

Even if the function takes arguments, you do not list any in its type
declaration.

A Closer Look at Functions 197

Without the type-declaration statement, a mismatch will occur between
the type of data that the function returns and the type of data that the calling
routine expects. This mismatch will cause bizarre and unpredictable results.
If both functions are in the same file, the compiler will catch the type mis-
match and not compile the program. However, if they are in different files,
the compiler will not find the error. The compiler does type-checking not at
link-time or run-time, but only at compile time. Therefore, you must be care-
ful to make sure that both types are compatible.

When a character is returned from a function that you declared to be of
type integer, the computer converts the character value into an integer.
Because C handles the conversion from character to integer and back again
cleanly, often you simply let functions returning characters default to
integer, relying upon the automatic type conversion of characters into integ-
ers and back again.

Returning Pointers

Although you handle functions that return pointers in exactly the same way
as any other type of function, a few important concepts need to be discussed.

Pointers to variables are neither integers nor unsigned integers. They are
the memory addresses of a certain type of data. The reason for this distinc-
tion lies in the fact that, when the computer performs pointer arithmetic, it
is relative to the base type; that is, if an integer pointer is incremented, it
will contain a value that is two greater than its previous value. More gener-
ally, each time a pointer is incremented, the pointer will point to the next
data item of its type. Since each data type may be a different length, the
compiler must know what type of data the pointer is pointing to in order to
make it point to the next data item.

For example, here is a function that returns a pointer into a string at the
place where the computer finds a character match.

char *match(c, s)
char ¢, *s;
{

int count;

count=0;
while(c!=slcount] && sfcountl!="\0"') count++;
return(&€slcountl);

)

198 Using Turbo C

The function match() will attempt to return a pointer to the place in a string
where the computer finds the first match with e. If no match is found, the
function will return a pointer to the null terminator. Here is a short program
that uses match():

char *match(); /% declare match's type */

main()
{
char s[801, *p, ch;

gets(s);

ch = getche();

p = match(ch, s);

if(p) /* there is a match */
printf("%s ", p);

else
printf("no match found");

3.

This program reads first a string and then a character. If the character is in
the string, then it prints the string from the point of the character. Other-
wise, it prints no match found. For example, if you entered hi there as the
string and t as the character, the program will respond with there.

Functions of Type vord

One of the extensions to the old UNIX standard for C is the void data type.
One of its uses is to declare explicitly those functions that do not return
values. Using void prevents the use of these functions in any expression, and
helps to head off accidental misuse. For example, the function print—
vertical() prints its string argument vertically down the side of the screen.
Since it returns no value, it is declared as void.

void print_vertical(str)
char *str;
{
while(*str)
printf("%c\n", *str++);

A Closer Look at Functions 199

Before you can use this function—or any other void function—you must .
declare it. If you do not, Turbo C will assume that it is returning an integer.
Thus, when actually reaching the function, the compiler will declare a type
mismatch. This program shows a proper example of declaring such a
function.

void print_vertical();

main()
{

print_vertical("hello");
>

void print_vertical(str)
char *str;
{

while(*str)
printf("%c\n", #*str++);

In the past, functions that did not return values were simply allowed to
default to type int. This practice is expected to continue in the less-
demanding programming situations. However, where large, multiprogram-
mer projects are involved and where there is substantial room for error, it is
a good idea to declare functions with no return values as void. From this
point on, the examples in this book will use void where appropriate.

Function Prototypes

As you know, prior to using a function that returns a value other than int,
you must define it. In Turbo C, you can take this idea one step further by also
declaring the number and types of the function’s arguments. This expanded
definition is called a function prototype. Function prototypes are not part of
the original UNIX C but were added by the ANSI-standard committee.
They enable C to provide strong type-checking similar to that provided by
such languages as Turbo Pascal. In a strongly typed language, the compiler
issues errors if you call a function with arguments of types that are different
from those that you defined it as having. For example, this program will

200 Using Turbo C

cause the compiler to issue an error message because it attempts to call
func() with two integer arguments instead of the int and float required.

/* This program uses function prototypes to
enforce strong type checking in the calls
to func().

*/

float func(int, float); /% prototype */

main()
{
int x, y;

x = 10; y = 10;
func(x, y); /* type mismatch */
)

float func(x, y)
int x;

float y;

{

printf("%f", y/(float)x);
3

Not only does the use of function prototypes help you trap bugs before
they occur, but also function prototypes help to verify that your program is
working correctly by not allowing you to call functions with mismatched
arguments. Generally, it is a good idea to use function prototypes in larger
programs or in those situations where several programmers are working on
the same project.

Recursion

In C, functions may call themselves. A function is recursive if a statement in
the body of the function calls itself Sometimes called circular definition,
recursion is the process of defining something in terms of itself.

Examples of recursion abound. A recursive way to define an integer
number is as the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, plus or minus an integer
number. For example, the number 15 is the number 7 plus the number 8; 21
is 9 plus 12; 12 is 9 plus 3; and so on.

A Closer Look at Functions 201

For a computer language to be recursive, a function must be able to call
itself. A simple example is the function factr(), which computes the factorial
of an integer. The factorial of a number N is the product of all of the whole
numbers between 1 and N. For example, 3 factorial is 1 X 2 X 8, or 6. Both
factr() and its iterative equivalent are shown here:

factr(n) /* recursive */
int n;
{

int answer;

if(n==1) return(1);
answer=factr(n-1)#*n;
return(answer);

fact(n) /* non-recursive #*/
int n;
{

int t,answer;

answer=1;
for(t=1; t<=n; t++) answer=answer*(t);
return(answer);

}

The operation of the nonrecursive version of fact() should be clear: it uses
a loop that starts at 1 and ends at the number, and progressively multiplies
each number times the increasing product.

The operation of the recursive factr() is more complex. If factr() is called
with an argument of 1, the function returns 1; if it is called with any other
argument, it returns the product of factr(n—1)*n. To evaluate this expres-
sion, factr() is called with n—1 recursively. This process continues until n
equals 1 and the calls to the function begin to return.

When you compute the factorial of 2, the first call to factr() will cause a
second call to be made with the argument of 1. This second call will return 1,
which is then multiplied by 2 (the original n value). The answer is then 2.
You might find it interesting to insert printf() statements into factr(), which
will show at what level each call is and what the intermediate answers are.

When a function calls itself, the computer allocates storage for new local
variables and parameters on the stack, and executes the function code with
these new variables from the start. A recursive call does not make a new
copy of the function. Only the arguments are new. As each recursive call

202 Using Turbo C

returns, the computer removes the old local variables and parameters from
the stack, and resumes execution at the point of the function call inside the
function. Recursive functions could be said to “telescope” out and back.

Most recursive routines do not significantly save code size or variable
storage. Also, recursive versions of most routines may execute a bit more
slowly than their iterative equivalents because of the added function calls;
but this decrease in speed will not be noticeable in most cases. Although
unlikely, many recursive calls to a function could cause a stack overrun.
Because storage for function parameters and local variables is on the stack,
and because each new call creates a new copy of these variables, it is possible
that the stack could “walk on” some other data or program memory. How-
ever, you probably will not have to worry about this problem unless a recur-
sive function runs wild.

The main advantage of recursive functions is that you can use them to
create clearer and simpler versions of several algorithms than their iterative
siblings. For example, the QuickSort sorting algorithm is quite difficult to
implement in an iterative way. Also, some problems —especially Al-related
ones—seem to lend themselves to recursive solutions. Finally, some people
find it easier to think recursively than iteratively.

When writing a recursive function, you must have an if statement some-
where to force the function to return without executing the recursive call. If
you do not do this, after you call the function, it will never return. This is a
common error to make when you write recursive functions. Use printf() and
getche() liberally during development so that you can watch what is going on
and abort execution if you have made a mistake.

Implementation Issues

There are a few important issues to remember when you create C functions
that affect their efficiency and usability. These issues are the subject of this
section.

Parameters and General-Purpose
Functions

A general-purpose function is one that can be used in a variety of situations,
perhaps by many different programmers. Typically, you should not make

A Closer Look at Functions 203

general-purpose functions depend on global data. It is best to allow the

parameters to pass to a function all of the information that it needs.
Besides making your functions general-purpose, parameters keep your

code readable and less susceptible to bugs that can result from side effects.

Efficiency

Functions are the building blocks of C, and are crucial to the creation of all
but the most trivial programs. Let nothing said in this section be construed
to be otherwise. However, in certain specialized applications, you may need to
eliminate a function and replace it with in-line code instead. In-line code is
the equivalent of a function’s statements that you use without a call to that
function. You use in-line code instead of function calls only when execution
time is critical.

There are two reasons why in-line code is faster than a function call.
First, a “call” instruction takes time to execute. Second, if you want to pass
arguments, the computer places them on the stack —a process that also takes
time. For almost all applications, this slight increase in execution time is of
no significance. However, if execution time is crucial, remember that each
function call uses time that you would save if you placed the code in the
function in line. For example, here are two versions of a program that prints
the square of the numbers from 1 to 10. The in-line version will run faster
than the other because the function call takes time.

in Line function call
main() main()
{ {
int x; int x;
for(x=1; x<11; ++x) for(x=1; x<11; ++x)
printf("%d", x*x); printf("%d", sqr(x));
b
sqr(a)
int a;
{
return a*a;
b

Now that you have seen the power of Turbo C functions, you are ready to
explore its I/0 system.

Input and Output

CHAPTER 10

In C, you accomplish input and output through the use of library functions; C
has no keywords that perform I/0 operations. The ANSI standard, which
Turbo C follows, defines one complete set of I/0 functions. However, the
UNIX standard contains two distinct systems of routines that handle 1/0
operations. The first, which both the ANSI standard and UNIX C define, is
called the buffered-file system (sometimes the terms formatted or high-level
are used instead). The second, which is defined under only the UNIX de
facto standard, is the unbuffered-file system (sometimes called either unfor-
matted or UNIX-like).

205

206 Using Turbo C

The ANSI standard does not define the unbuffered-file system. Instead,
the ANSI standard expands the definition of the buffered system. The
approach of the ANSI standard is justified by several arguments, including
the fact that the two file systems are largely redundant. However, because
both file systems are currently in widespread use, Turbo C supports both
approaches. Hence, this chapter will cover both systems, but will place the
greatest emphasis on the ANSI standard I/O system. The reason for this is
that the use of the UNIX-like system, which the ANSI standard does not
define, is expected to decline. Therefore, new code should be written by using
the ANSI I/O functions.

The purpose of this chapter is to present an overview of I/0 in Turbo C,
and to illustrate the way that the core functions of each file system work
together. The Turbo C library contains a very rich and diverse assortment of
I/0 routines —more routines than this chapter can cover. However, the func-
tions presented in this chapter are sufficient for all but the most unusual
circumstances. Study the Turbo C user manual to see what other functions
are available.

Before beginning your exploration of Turbo C’s I/O system, you will need
to learn about two special compiler directives and some terminology.

Two Preprocessor
Directives

You can include various instructions to the Turbo C compiler in the source
code of a program. These instructions are called preprocessor directives and,
although not actually part of the C language, they expand the scope of the C
programming environment. All preprocessor directives begin with a # sign.
Although Part Three of this book will cover most of the preprocessor direc-
tives, you must understand two of them now in order to use Turbo C’s file
system.

Input and Qutput 207

The #define Directive

You use the #define directive to define an identifier and a string that the
compiler will substitute for the identifier each time it is encountered in the
source file. The identifier is called the macro-name, and the replacement
process is called macro-substitution. The general form of the directive is

#define identifier string

Notice that there is no semicolon in this statement. You may include any
number of spaces between the identifier and the string but, after the string
begins, you can only terminate it by using a newline.

For example, to use TRUE for the value 1 and FALSE for the value 0,
you would declare two macro #defines, as shown:

#define TRUE 1
#define FALSE O

These two lines cause the compiler to substitute a 1 or a 0 each time that the
compiler encounters TRUE or FALSE in your source file. For example, the
following will print 0 1 2 on screen:

printf("%d %d %d",FALSE, TRUE, TRUE+1);

After you define a macro-name, you may use it as part of the definition of
other macro-names. For example, this code defines the names ONE, TWO,
and THREE to their respective values.

#define ONE 1
#define TWO ONE+ONE
#define THREE ONE+TWO

It is important to understand that the macro-substitution is simply the
replacing of an identifier with its associated string. Therefore, to define a

208 Using Turbo C

standard error message, you might write something like this:

#define E_MS "standard error on input\n"

printf(E_MS);

This code causes the compiler to substitute the string standard error on
input \n when it encounters the identifier E_MS. Thus, the compiler sees
the printf() statement as

printf("standard error on input\n");

No text substitutions will occur if the identifier occurs within a string.
For example,

#define XYZ this is a test

printf("XYzZ");

will not print this is a test, but rather will print XYZ.

A common usage of #define is to define the size of elements, such as an
array dimension, that might change over the evolution of a program. For
example, this simple program uses the macro MAX_SIZE both to give
dimensions to an integer array and to control the loop condition of the for
loop that initializes the array.

#define MAX_SIZE 16
unsigned int pwrs_of_tuo[MAX_SIZE];

/* display powers of 2 %/

main()
<
int i;
pwrs_of_twol01 = 1; /#* start the sequence */

for(i=1; i<MAX_SIZE; T4++)
pwrs_of_twolil = puwrs_of_twoli-11 * 2;

printf("The first 16 powers of 2: \n");
for(i=0; i<MAX_SIZE; i++)
printf("%u ", pwrs_of_twolil);

Input and Output 209

You will use #define to define system-related constants in your programs
that use disk-file functions.

The #tinelude Directive

The #include preproccessor directive instructs the compiler to include
another source file with the one that contains the #include directive. You
must enclose the source file to be read in double quotes or angle brackets. For
example, each of these two statements

#include "stdio.h"
#include <stdio.h>

instructs the C compiler to read and compile the file that contains informa-
tion about the disk-file library routines.

It is valid to have #include directives in included files. These #include
directives are called nested includes. If you specify explicit pathnames as
part of the filename identifier, then the compiler will only search those direc-
tories for the included file. However, if you enclose the filename in quotes, the
compiler searches the current working directory first. If the compiler does
not find the file, then it searches any directories that you specified on the
command line by using the —I compiler option. If the compiler still has not
found the file, it searches the standard directories, as defined by the
implementation.

If you don’t specify explicit pathnames and if you enclose the filename in
angle brackets, the compiler first searches for the file in the directories that
are specified in the compiler command-line —I option. If the compiler does
not find the file, then it searches the standard directories. At no time is the
current working directory searched.

The stdro.h
Header Flile

Many Turbo C library functions require that certain data types or other
pieces of information be part of any program that uses them. You use the

210 Using Turbo C

#include directive to place this information into a separate file that is
included in your program. In C, these files are called header files, or headers
for short. The header file that you will need for the buffered I/O system is
called stdio.h. The one that the UNIX-like file system uses is called io.h.

For example, you must place this line of code near the top of any program
that uses the buffered I/O system:

#include "stdio.h"

Streams and Files

Before you begin to read about Turbo C’s I/O system, it is important to
understand the difference between the terms streams and files. The C I/O
system supplies C programmers with a consistent interface that is indepen-
dent of the actual device being accessed; that is, the C I/O system provides a
level of abstraction between the programmer and the device being used. This
abstraction is called a stream and the actual device is called a file. The fol-
lowing sections will explain the way that a stream and a file interact.

Streams

The buffered-file system is designed to work with a wide variety of devices,
which include terminals, disk drives, and tape drives. Even though each
device is different, the buffered-file system transforms each one into a logical
device called a stream. All streams behave similarly. Because streams are
largely device-independent, the same functions that can write to a disk file
also can write to the console. There are two types of streams: text and
binary.

Input and Output 211

Text Streams

A text stream is a sequence of characters that is organized into lines that are
terminated by newline characters. The proposed ANSI standard states that
the newline character is optional, depending upon the implementation. In a
text stream, certain character translations may occur as the host environ-
ment requires. For example, the computer may convert a newline into a
carriage-return-linefeed pair. Therefore, there may not be a one-to-one rela-
tionship between the characters that the computer writes (reads) and those
characters in the external device. Also, because of possible translations, the
number of characters written (read) may not be the same as those found in
the external device.

Binary Streams

A binary stream is a sequence of bytes that have a one-to-one correspondence
to those bytes in the external device. Thus, no character translations will
occur. In addition, the number of bytes written (read) will be the same as the
number of bytes found in the external device. However, the proposed ANSI
standard does specify that a binary stream may have an implementation-
defined number of null bytes that are appended to its end. For example, the
computer might use these null bytes to pad the information so that it fills a
sector on a disk.

Fliles

In C, a file is a logical concept that the system may apply to everything from
disk files to terminals. You associate a stream with a specific file by perform-
ing an open operation. Once a file is open, you may exchange information
between it and your program.

212 Using Turbo C

Not all files have the same capabilities. For example, a disk file can support
random access while a terminal cannot. This difference illustrates an impor-
tant point about the C I/O system: all streams are the same, but all files are
not.

If the file can support random access (sometimes referred to as position
requests), then opening that file also initializes the file-position indicator to
the start of the file. As each character is read from or written to the file, the
computer increments the position indicator —thus ensuring progression
through the file.

You disassociate a file from a specific stream by using a close operation.
On a stream that you opened for output, closing a stream causes the computer
to write any contents of the associated stream to the external device. Generally
referred to as flushing the stream, this process guarantees that the computer
does not accidentally leave any information in the disk buffer. The computer
will close all files automatically when your program terminates normally by
main() returning to the operating system or by a call to exit(). The comput-
er will not close files when a program terminates through a crash.

At the beginning of a program’s execution, the computer opens three
predefined text streams. They are stdin, stdout, and stderr. They refer to
the standard I/O device that is connected to the system. For most systems,
this device is the console. However, remember that most operating systems,
ineluding DOS, allow I/0 redirection, so you may redirect routines that read
or write to these files to other devices. (Redirection of I/O is the process
whereby the operating system reroutes information that would normally go
to one device to another device.) You should never try to open or close these
files explicitly.

Each stream that is associated with a file has a file-control structure of
type FILE. This structure is defined in the header stdio.h. You must not
make modifications to this file-control structure. (You will learn about strue-
tures in Part Three. Briefly, a structure is simply a group of variables that is
accessed under one name. Thus, a structure is similar to a RECORD in
Turbo Pascal. For now, you do not need to know anything about structures in
order to use the I/0 routines.)

Input and Output 213

Conceptual Versus
Actual

In light of the discussion just given, this section summarizes the way that the
C I/0O system operates. As far as you the programmer are concerned, all I/0
takes place through streams, which are sequences of characters. Further, all
streams are the same. The file system links a stream to a file. In the lan-
guage of C programmers, a file is any external device that is capable of 1/0.
Because different devices have various capabilities, all files are not the same.
However, the C I/0 system minimizes these differences as they relate to the
programmer because it converts the raw information that comes from the
device into a stream (and back again). Aside from the limitation that only
certain types of files support random access, programmers do not need to
worry about the actual physical device, and are free to concentrate on the
logical device called the stream.

If this approach seems confusing or strange, you need to see it in the
context of languages like BASIC or FORTRAN, in which each device that
the implementation supports has its own separate file system. In C’s
approach, you only need to think in terms of streams, and you only need to
use one file system to accomplish all I/0O operations.

Console 1/0

Comnsole I/0 refers to operations that occur at the keyboard and on the screen
of your computer. Generally, you perform console I/O by using a special case
of the unbuffered file system. Because input and output to the console are so
common, a subsystem of the buffered-file system was created that deals
exclusively with console I/O. Technically, the functions in this subsystem will
direct their operations to the standard input and standard output of the sys-

214 Using Turbo C

tem. As stated, in many operating systems, including PC DOS, you can re-
direct the console I/O to other devices. However, for simplicity, this discus-
sion assumes that the console will be the device used since it is the most
common.

The Functions getche()
and putchar()

The simplest of the console I/0 functions are getche(), which reads a char-
acter from the keyboard, and putchar(), which prints a character to the
screen. The getche() function waits until you press a key and then returns
its value. The function also “echoes” the key pressed to the screen automati-
cally. The putchar() function writes its character argument to the screen at
the current cursor position.

This program will input characters from the keyboard and will print
them in reverse case; that is, uppercase will print as lowercase, and lower-
case will print as uppercase. The program halts when you type a period.

#include "stdio.h"

main() /* case switcher */
{
char ch;

do {
ch = getche();
if(islower(ch)) putchar(toupper(ch));
else putchar(tolower(ch));
} while (ch!=".'); /* use a period to stopt/
b

There are two important variations of getche(). The first is getchar(),
which is the original, UNIX-based character input function. The trouble
with getchar() is that it buffers input until you enter a carriage return. The
reason for this is that the original UNIX systems would line-buffer terminal
input —that is, you had to hit a carriage return before anything you just
typed in order to send it to the computer. The effect of line-buffering is that
one or more characters will be waiting in the input queue after getchar()
returns. This effect is quite annoying in today’s interactive environments,
and the use of getchar() cannot be recommended. Turbo C supports get-
char() to ensure portability with UNIX-based programs. You may want to
experiment with getchar() a little to understand its effect better.

Input and Output 215

A second and more useful variation of getche() is geteh(), which operates
precisely like getche() —except that getch() does not echo the typed charac-
ter to the sereen.

The Functions gets() and puts()

On the next higher level of complexity and power are the functions gets()
and puts(). They enable you to read and write strings of characters at the
console.

The gets() function reads a string of characters that you enter at the
keyboard, and places them at the address that its character-pointer argu-
ment points to. You may type characters at the keyboard until you enter a
carriage return. The carriage return does not become part of the string; the
computer places instead a null terminator at the end and gets() returns. In
fact, it is impossible to use gets() to return a carriage return (however, you
can use getchar() to do so). You can correct typing mistakes by using the
backspace before pressing RETURN. Here is the general form that you use to
declare gets():

char *gets(char #*s)

Here s is a character array. The gets() function returns a pointer to s. For
example, this program reads a string into the array str and prints its length:

main()
{
char str(803];

gets(str);
printf("length is %d",strlen(str));
b g

The puts() function writes its string argument and then a newline to the
screen. It is declared as

char *puts(char *s)
The puts() function recognizes the same backslash codes as printf(), such as

\t for tab. A call to puts() requires far less overhead than the same call to
printf() because puts() can only output a string of characters —it cannot

216 Using Turbo C

output numbers or do format conversions. Therefore, puts() takes up less
space and runs faster than printf(). For these reasons, programmers often
use puts() when it is important to have highly optimized code. The puts()
function returns a pointer to its string argument. The following statement
writes hello on the screen:

puts("hello");

Table 10-1 summarizes the simplest functions that perform console 1/0
operations.

Formatted
Comnsole 1/0

In addition to the simple console I/O functions described earlier, the Turbo C
standard library contains two functions that perform formatted input and
output on the built-in data types: printf() and scanf(). The term formatted

-refers to the fact that these functions can read and write data in various

Table 10-1. The Basic Console I/O Functions

Function Operation

getchar() reads a character from the keyboard; waits for carriage
return

getche() reads a character with echo; does not wait for carriage
return

getch() reads a character without echo; does not wait for carriage
return

putchar() writes a character to the screen
gets() reads a string from the keyboard
puts() writes a string to the screen

Input and Output 217

formats that are under your control. You can use printf() to write data to the
console; you can use scanf(), the complement of printf(), to read data from
the keyboard. Both printf() and scanf() can operate on any of the built-in
data types, which include characters, strings, and numbers. Although you
have been using these functions since the start of this book, they will be
examined in detail here. '

The Function printf()
You use this general form to declare printf():

printf(“control string”,argument list);

The control string consists of two types of items. The first type is made up of
characters that the function will print on screen. The second type contains
format commands that define the way that the arguments are displayed. A
format command contains first a percent sign (%) and then the format code.
Table 10-2 presents the format commands. There must be exactly the same
number of arguments as there are format commands, and the format com-
mands and the arguments must match in order. For example, this printf()
call

printf("Hi %c¢ %d ¥%s",'c',10,"there!");

displays Hi ¢ 10 therel.

The format commands may have modifiers that specify the field width,
the number of decimal places, and a left-justification flag. An integer that is
placed between the % sign and the format command acts as a minimum
Jreld-width specifier. This specifier causes the computer to pad the output
with blanks or zeros to ensure that the output is a certain minimum length.
If the string or number is greater than that minimum, printf() will print it
in full, even if it overruns the minimum. By default, the computer uses
spaces to pad the output. If you wish to pad with zeros, place 0 before the field-
width specifier. For example, %05d will pad a number of less than five digits
with zeros so that the number’s total length is five.

To specify the number of decimal places that you want to print for a
floating-point number, place a decimal point after the field-width specifier
and then the number of decimal places that you wish to display. For example,

218 Using Turbo C

Table 10-2. Format Commands of printf()

Code Format
%¢e a single character

%d decimal

%i decimal

%e scientific notation

%1 decimal floating point

%g uses %e or %f —whichever is shorter
%0 octal

%S string of characters

%u unsigned decimal

%x hexadecimal

%% prints a % sign

%p displays a pointer

%n the associated argument will be an integer pointer into which is
placed the number of characters written so far

9%10.4f will display a number at least ten characters wide with four decimal
places. When you apply a format like this to strings or integers, the number
that follows the period specifies the maximum field length. For example,
%5.7s will display a string at least five characters long and no longer than
seven characters long. If the string is longer than the maximum field width,
the computer will truncate the characters off the end.

By default, all output is right-justified: if the field width is larger than the
data printed, the computer will place the data on the right edge of the field.
You can force the information to be left-justified by placing a minus sign
directly after the %. For example, %—10.2f will left-justify a floating-point
number with two decimal places in a ten-character field.

There are two format command modifiers that allow printf() to display
long and short integers. You may apply these modifiers to the type modifiers
d, i, 0, u, and x. The 1 modifier tells printf() that a long data type follows.

Input and Output 219

For example, %ld tells the computer that a long int will be displayed. The 1
modifier may also prefix the floating-point commands of e, f, and g, and
indicates that a double follows. The h modifier instructs printf() to display a
short int. Therefore, %hu indicates that the data is of type short unsigned
int.

With printf(), you can output virtually any format of data you desire.
Figure 10-1 presents some examples.

The Function scanf()

The general-purpose console-input routine is seanf(). It can read all of the
built-in data types, and can automatically convert numbers into the proper
internal format. It is almost the reverse of printf(). The general form of
scanf() is

scanf(“control string”, argument list);

The control string consists of three classifications of characters:

« Format specifiers
- White-space characters

- Nonwhite-space characters

printf() statement Output
(“%—5.21",123.234) 123.23
(“%5.21",3.234) 3.23
(“%10s”,“hello”) hello
(“%—10s”,“hello”) hello
(“%5.7s",“123456789”) 1234567

Figure 10-1. Some printf() examples

220 Using Turbo C

You place a % sign in front of the input format specifiers, which tell
scanf() what type of data will be read next. Table 10-3 lists these codes. For
example, %s reads a string, while %d reads an integer.

A white-space character in the control string causes seanf() to skip over
one or more white-space characters in the input stream. A white-space char-
acter is either a space, a tab, or a newline. In essence, one white-space char-
acter in the control string causes scanf() to read, but not store, any number
(including zero) of white-space characters, up to the first nonwhite-space
character.

A nonwhite-space character in the control string causes scanf() to read
and discard a matching character. For example, the control string “%d,%d”
causes scanf() first to read an integer, then to read and discard a comma,
and finally to read another integer. If the computer does not find the speci-
fied character, scanf() will terminate.

Table 10-3. Format Codes of scanf()

Code Meaning
%eC read a single character
%d read a decimal integer
%i read a decimal integer
%e read a floating-point number
%f read a floating-point number
%h read a short integer
%0 read an octal number
%s read a string
%X read a hexadecimal number
%p read a pointer

%n receives an integer value equal to the number of characters
read so far

Input and Qutput 221

All the variables used to receive values through scanf() must be passed
by their addresses. This means that all arguments must be pointers to the
variables used as arguments. Remember that this is C’s way of creating a call
by reference, and it allows a function to alter the contents of an argument.
For example, to read an integer into the variable count, you would use this
scanf() call:

scanf ("%d" ,&count);

The scanf() function reads strings into character arrays, and the array
name without an index is the address of the first element of the array. So, to
read a string into the character array address, you would use

scanf("%Zs" ,address);

In this case, address is already a pointer and does not need to be preceded by
the & operator.

You must separate the input data items by using spaces, tabs, or newlines.
The C language does not count punctuation such as commas, semicolons, and
the like as separators. Thus,

scanf("xdxd",&r,8&c) ;"

accepts an input of 10 20, but fails with the input 10,20. As in printf(), the
scanf() format codes are matched in order with the variables that receive
input in the argument list.

An * that is placed after the % and before the format code will read data
of the specified type, but will suppress its assignment. Thus,

scanf("Zd%*c%d" ,&x,8y);

given the input 10/20 places the value 10 into x, discards the division sign,
and gives the value 20 to y.

The format commands can specify a maximum field-length modifier. This
modifier is an integer number that you place between the % and the format-
command code that limits the number of characters read for any field. For

222 Using Turbo C

example, to read no more than 20 characters into str, you would write
scanf("%X20s", str);

If the input stream is greater than 20 characters, then a subsequent call to
input begins where this call leaves off. For example, if you enter

ABCDEFGHIJKLMNOPQRSTUVWXYZ

as the response to the call just given, secanf() places only the first 20
characters, or up to the T, into str because of the maximum-size specifier.
The function does not yet use the remaining characters, UVWXYZ. If you
make another scanf() call, such as

scanf("%s", str);

then the computer places UVWXYZ into str. Input for a field may terminate
before it reaches the maximum field length if the computer encounters a
white-space character. In this case, scanf() moves on to the next field.

Although you use spaces, tabs, and newlines as field separators, when
reading a single character, the computer reads them just like any other
character. For example, with an input stream of x y,

scanf("XcXcXc" ,%a,8b,8c);
will return with the character x in a, a space in b, and the character y in e.
Be careful: if you have any other characters —including spaces, tabs, and
newlines —in the control string, the computer will use those characters to
match and discard characters from the input stream. The computer will dis-
card any character that matches. For example, given the input stream 10t20,

scanf("%st%s" ,&x,8y);

will place 10 into x and 20 into y. The computer will discard the character t
because of the t in the control string. For another example,

scanf("%s ",name);

will not return until you type a character after you type a white-space char-

Input and Qutput 223

acter. This happens because the space after %s has instructed secanf() to read
and discard spaces, tabs, and newline characters.

You may not use scanf() to display a prompting message. Therefore, you
must display all prompts explicitly prior to the seanf() call.

The Buffered I/0
System

The buffered I/O system is comprised of several related functions. Table 10-4
presents the most common functions. These functions require you to include
the header file stdio.h in any program in which you use them.

The Flile Pointer

The common thread that holds the buffered I/O system together is the file
pointer. A file pointer is a pointer to information that defines various aspects

Table 10-4. The Most Common Buffered-File System Functions

Name Function
fopen() opens a stream
fclose() closes a stream
pute() writes a character to a stream
gete() reads a character from a stream
fseek() seeks to specified byte in a stream
fprintf() is to a stream what printf() is to the console
fscanf() is to a stream what seanf() is to the console
feof() returns true if EOF mark is reached
ferror() returns true if an error has occurred
rewind() resets the file-position locator to the beginning of the file
remove() erases a file

224 Using Turbo C

of the file, including its name, status, and current position. In essence, the
file pointer identifies a specific disk file, and is used by its associated stream
to direct each of the buffered I/0 functions to the place where they perform
operations. A file pointer is a pointer variable of type FILE, which is defined
in stdio.h.

The Function fopen()

The fopen() function serves two purposes: first, it opens a stream for use;
and, second, it links a file with that stream. Most often, and for the rest of
this discussion, the file is a disk file. The fopen() function is declared as

FILE *fopen(char #filename, char *mode);

Here, mode is a string that contains the desired open status. Table 10-5 pre-
sents the legal values for mode in Turbo C. The filename must be a string of
characters that make up a valid filename for the operating system and may
include a path specification.

As Table 10-5 shows, you may open a file in either text mode or binary
mode. In text mode, the computer translates carriage-return-linefeed
sequences to newline characters on input. On output, the reverse occurs: the
computer translates newlines to carriage-return-linefeed sequences. No such
translations occur on binary files.

To open a file for writing with the name test, you would write

fp = fopen("test","w");

where fp is a variable of type FILE #. The variable fp is the file pointer.
Aside from assigning it a value by using fopen(), your code should never
alter it. However, you will usually see the code written like this:

if ((fp = fopen("test”,"w"))==NULL) {
puts(”cannot open file\n");
exit(1);

)

Input and Output 225

Table 10-5. The Legal Values of mode

Mode Meaning

“p” open a text file for reading

“w” create a text file for writing

“a” append to a text file

“rb” open a binary file for reading

“wb” create a binary file for writing

“ab” append to a binary file

“r+” open a text file for read/write

“w+” create a text file for read/write

“at+” open or create a text file for read/write
“r+b” open a binary file for read/write
“w+b” create a binary file for read/write
“a+b” open a binary file for read/write

“rt” open a text file for reading

“wt” create a text file for writing

“at” append to a text file

“r+t” open a text file for read/write

“w+t” create a text file for read/write

“at+t” open or create a text file for read/write

This method detects any error in opening a file, such as trying to open a
write-protected disk or a full disk, before the computer attempts to write to
it. This method uses a null, which is 0, because no file pointer will ever have
that value. NULL is a macro that is defined in stdio.h.

If you use fopen() to open a file for writing, then the computer will erase
any preexisting file of that name and start a new file. If no file of that name
exists, then one will be created. If you want to add to the end of the file, then
you must use mode a. If you use a and the file does not exist, the function will
return an error. Opening a file for read operations requires that the file
exists. If it does not, fopen() will return an error. Finally, if you open a file
for read/write operations, the computer will not erase it if it exists; however,
if it does not exist, the computer will create it.

226 Using Turbo C

The Function pute()

You use the pute() function to write characters to a stream that you pre-
viously opened for writing through the fopen() function. The function is
declared as

int pute(int ci, FILE +/p);

where fp is the file pointer returned by fopen(), and ck is the character to be
output. The file pointer tells pute() which disk file to write to. For historical
reasons, ch is formally called an int, but the computer only uses the low-order
byte.

If a pute() operation is successful, then it will return the character writ-
ten. Upon failure, it will return an EQF. EOF is a macro defined in stdio.h
that stands for end-of-file.

The Function gete()

You use the gete() function to read characters from a stream that fopen()
has opened in read mode. The function is declared as °

int gete(FILE #/p);

fp is a file pointer of type FILE that is returned by fopen(). For historical
reasons, gete() returns an integer, but the high-order byte is zero.

The gete() function returns an EOF mark when the computer reaches
the end of the file. Therefore, to read a text file to the end-of-file mark, you
could use the following code:

ch = getc(fp);
while(ch!=EOF) (

ch = getc(fp);
b

As stated earlier, the buffered-file system can also operate on binary data.
When you open a file for binary input, it is possible that the computer may

Input and Output 227

read an integer value that is equal to the EOF mark. If this happens, it
would cause the routine just given to indicate an end-of-file condition, even
though the computer has not reached the physical end of the file. To solve this
problem, Turbo C includes the function feof(), which determines where the
end-of-file mark is when reading binary data. The feof() function takes a
file-pointer argument and returns 1 if the computer has reached the end of
the file; the function returns 0 if the computer has not reached the end.
Therefore, this routine reads a binary file until the computer encounters the
end-of-file mark.

while(!feof(fp)) ch = getc(fp);

You may apply this same method to text files as well as binary files.

The Function felose()

You use the felose() function to close a stream that was opened by a call to
fopen(). Remember: You must close all streams before your program termi-
nates. The felose() function writes to the file data that still remains in the
disk buffer, and does a formal operating-system-level close on the file. Fail-
ure to close a stream invites all kinds of trouble, including lost data, de-
stroyed files, and possible intermittent errors in your program. Using
fclose() also frees the file-control block associated with the stream, and
makes it available for reuse. As you probably know, the operating system
limits the number of open files that you may have at any one time —so you
may need to close one file before you can open another.
The general form to declare fclose() is

int fclose(FILE #fp);

where fp is the file pointer that is returned by the call to fopen(). A return
value of zero signifies a successful close operation; any other return value
indicates an error. You can use the standard function ferror() (which will be
discussed next) to determine and report any problems. Generally, the only
times that fclose() will fail are either when you remove a diskette prema-
turely from the drive or when there is no more space on the diskette.

228 Using Turbo C

The Functions ferror()
and rewind()

The ferror() function determines if a file operation has produced an error.
The general form to declare ferror() is

int ferror(FILE %/p)

where fp is a valid file pointer. The ferror() function returns true if an error
has occurred during the last file operation; it returns false if the file opera-
tion was successful. Because each file operation sets the error condition, you
should call ferror() immediately after each file operation; if you do not, an
error may be lost. '

The rewind() function will reset the file-position locator to the beginning
of the file that is specified as its argument. The general form of the declara-
tion is

void rewind(FILE #/p)

where fp is a valid file pointer.

Using the Functions fopen(),
gete(), pute(), and felose()

The functions fopen(), get(), pute(), and fclose() make up the minimal set
of file routines. A simple example of using putc(), fopen(), and feclose() is
the program ktod, which follows. It simply reads characters from the key-
board and writes them to a disk file until you type a dollar sign. You specify
the output file from the command line. For example, if you call this program
ktod, then typing ktod test will allow you to enter lines of text into the file
called test. Here is the program:

#include "stdio.h"

main(argc, argv) /* ktod - key to disk */
int argc;
char *argv(];

FILE *fp;
char ch;

Input and Output 229

if(argc!=2)
printf("You forgot to enter the filename\n");
exit(1);

if((fp=fopen(argvf1],"w")) == NULL)
printf(“cannot open file\n");
exit(1);

}

do (

ch = getchar();
putc(ch, fp);
} while (chi='$");

fclose(fp);

The complement of ktod is dtes, which will read any ASCII file and display
the contents on screen:

#include “"stdio.h"

main(argc, argv) /* dtos - disk to screen %/
int argc;
char *argv[];

<

FILE *fp;
char ch;

if(arget=2) {
printf("You forgot to enter the filename\n');
exit(1);

b4

if((fp=fopen(argvlf11, "r")) == NULL) {
printf("cannot open file\n");
exit(1);

by

ch=getc(fp); /* read one character */

while (ch!=£0F) {
putchar{(ch); /* print on screen %/
ch=getc(fp);

)

fclose(fp);

230 Using Turbo C

The following program will copy a file of any type.

#include "stdio.h"

mainCargc, argv) /* copy one file to another */
int argc;
char *argv(];

{

FILE *in, *out;

char ch;

if(argeci=3) {
printf("You forgot to enter a filename\n");
exit(1);

)

jf(¢in=fopen(argvi1l, "rb")) == NULL) {
printf("cannot open source file\n");
exit(1);

3

if((out=fopenCargvl2], "wb")) == NULL) (
printf("cannot open destination file\n");
exit(1);

>

/* this Line of code acutally copies the file »/

while(!feof(in)) putc(getc(in), out);

fclose(in);

fclose(out);

b

Notice that the program opens the files in binary mode and uses feof() to
check for the end of the file. (The program does not perform any error check-
ing on output; however, in a real-world situation, doing so would be a good
idea and you should try to add some as an exercise.)

The Functions getw() and putw()

In addition to gete() and pute(), Turbo C supports two additional buffered
I/0 functions: putw() and getw(). You use these functions to read and write
integers to and from a disk file. These functions work exactly the same as
pute() and gete(), with one exception: instead of reading or writing a single
character, putw() and getw() read or write an integer. For example, this
code fragment will write an integer to the disk file that fp points to:

putw(100, fp);

Input and Output 231

The Functions fgets() and fputs()

Turbo C’s buffered I/O system includes two functions that can read and
write strings from streams: fgets() and fputs(). The general forms of their
declarations are

char *fputs(char *str, FILE +/p);
char «fgets(char #str, int length, FILE #fp);

The function fputs() works exactly like puts(), except that fputs() writes
the string to the specified stream. The fgets() function reads a string from
the specified stream until it reads either a newline character or length—1
characters. If fgets() reads a newline, it will be part of the string (unlike
gets()). However, when fgets() is terminated, the resultant string will be
null-terminated.

The Functions fread() and fwrite()

The buffered I/O system provides two functions —fread() and fwrite() —
that allow you to read and write blocks of data. The general forms of their
declarations are

int fread(void *buffer, int num _bytes, int count, FILE *fp)
int fwrite(void *buffer, int num__bytes, int count, FILE *fp)

In the case of fread(), buffer is a pointer to a memory region that will receive
the data read from the file. For fwrite(), buffer is a pointer to the informa-
tion that will be written to the file. For both, num —bytes specifies the
number of bytes to be read or written. The argument count determines how
many items (each one being num __bytes in length) will be read or written.
Finally, fp is a file pointer to a previously opened stream.

As long as the file is opened for binary data, fread() and fwrite() can
read and write any type of information. For example, this program writes a
float to a disk file;

/* write a floating point number to a disk file */
#include "stdio.h"

232 Using Turbo C

main()

{
FILE *fp;
float f=12.23;

if((fp=fopen("test", "wb"))==NULL) (
printf(“cannot open file\n");
return;

3
furite(&f, sizeof(float), 1, fp);

fclose(fp);
b

As this program illustrates, the buffer can be, and often is, simply a variable.
One of the most useful applications of fread() and fwrite() involves the
reading and writing of arrays or, as you will see in the next chapter, struc-
tures. For example, this fragment writes the contents of the floating-point
array balance to the file balance by using a single fwrite() statement.

#include "stdio.h"

main()
{
FILE *fp;
float balance[100];

if((fp=fopen("balance", "w+"))==NULL) (
printf("cannot open file\n");
return;

b

/* this saves the entire balance array in one step */
furite(balance, sizeof(balance), 1, fp);

fclose(fp);
b3

Later in this book, you will see several other, more complex examples of the
way that you can use these functions.

Input and Qutput 233

Random-Access 1/0 and
Jseek()

You can perform random read and write operations under the buffered I/0
system with the help of fseek(), which sets the file-position locator. The
general form of the declaration of fseek() is

int fseek(FILE +fp, long int num__bytes, int origin);
where fp is a file pointer that is returned by a call to fopen(); num_bytes,

which is a long integer, is the number of bytes from origin to reach the new
position, and origin is one of the following macros:

Origin Name
beginning of file SEEK_SET
current position SEEK_CUR
end of file SEEK _END

Therefore, to seek num__bytes from the start of the file, origin should be
SEEK _SET. To seek num__bytes from the current position, origin should
be SEEK __CUR; and from the end of the file, it should be SEEK _END.

Remember that num__bytes must be a long int in order to support opera-
tions on files that are larger than 64K bytes.

The use of fseek() on text files is not recommended because the character
translations will result in position errors. Therefore, its use is suggested only
for binary files.

For example, to read the 234th byte in a file called test, you could use the
following code.

func1()
{
FILE »fp;
if((fp=fopen(”test”, "rb")) == NULL) ¢
printf("cannot open file\n");
exit(1);
}

fseek(fp, 234L, D);

234 Using Turbo C

return getc(fp); /* read one character */
/* at 234th position %/

>

Notice that this code appends the L modifier to the constant 234 in order to
force the compiler to treat the constant as a long int. You could also use a
cast to accomplish the same thing. (Remember that trying to use a regular
integer will cause errors when the computer expects a long integer.)

A return value of zero means that fseek() succeeded. A nonzero value
indicates failure.

A more interesting example is the DUMP program shown next that uses
fseek() to let you examine the contents in both ASCII and hexadecimal of
any file that you choose. You can look at the file in 128-byte “sectors,” as you
move about in the file in either direction. The style of the output displayed is
similar to the format used by the DOS program DEBUG when given the D
(dump memory) command. You exit the program by typing —1 when prompt-
ed for the sector.

In the program, notice the usage of fread() to read the file. At the end of
the file, it is likely that the program has read less than SIZE number of
bytes so the program passes the number returned by fread() to display().
(Remember that fread() returns the number of items actually read.) Enter
this program into your computer now and study it until you understand the
way that it works.

/* DUMP: A simplte disk lLook utility using fseek */
#include "stdio.h"
#include "ctype.h"

#define SIZE 128

char buf[SIZE];
void display();

main{argc, argv)
int argc;
char *argv(];
{
FILE »fp;
int sector, numread;

Input and Output 235

if(argc!=2) {
printf("usage: dump filename\n");
exit(1);

>

if((fp=fopen(argv[1], "rb"))==NULL) <{
printf("cannot open file\n");
exit(1);

}

do {

printf("enter sector: ");

scanf("Xld", §or);

if(fseek(fp, sector*SIZE, SEEK_SET)) (
printf("seek error\n");

}

if((numread=fread(buf, 1, SIZE, fp)) != SIZE) {
printf("EOF reached\n");

)

display(numread);
} while(sector>=0);
b

/* display the file w/
void display(numread)
int numread;
{
int i, j;
for(i=0; i<numread/16; i++) {
for(j=0; j<16; j++) printf("%3X", bufl[i*16+j1);
printf(" ");
for(j=0; j<16; j++) (
ifCisprint(buf[i*16+j1)) printf("%c", buf[i*16+j1);
else printf(".");
X
printf("\n");

)

The DUMP program introduces the use of a library function called
isprint(), which determines which characters are printing characters and
which characters are not. The isprint() function returns true if the charac-
ter is printable, and returns false if not. The isprint() function requires you
to use the header file ctype.h, which is included at the top of the DUMP

236 Using Turbo C

program. This header is needed by the isprint() function. An example output
with DUMP as used on itself is shown in Figure 10-2.

The Streams stdin, stdout,
and stderr

Whenever a Turbo C program starts execution, the computer opens three
streams automatically. They are standard input (stdin), standard output
(stdout), and standard error (stderr). Normally, these streams refer to the
console, but the operating system may redirect them to some other stream
device. Because these are file pointers, the buffered I/O system may use
them to perform I/O operations on the console. For example, you could define
putchar() as

putchar(c)
char ¢;
<
putc(c,stdout);
}

A:\>dump dump.c
enter sector: O
2F 2A 20 44 55 4D S0 3A 20 41 20 73 69 6D 70 6C /* DUMP: A simpl
65 20 64 69 73 6B 20 6C 6F 6F 6B 20 75 74 69 6C e disk look util
69 74 79 20 75 73 69 6E 67 20 66 73 65 65 6B 20 ity using fseek
20 2F D A 23 69 6E 63 6C 75 64 65 20 22 73 74 */..#include "st
64 69 6F 2E 68 22 D A 23 69 6FE 63 6C 75 64 65 dio.h"..#include
20 22 63 74 79 70 65 2E 68 22 D A D A 23 64 "ctype.h"....#d
65 66 69 6E 65 20 53 49 SA 45 20 31 32 38 D A efine SIZE 128..
D A 63 68 61 72 20 62 75 66 5B 53 49 5A 45 5D ..char buf[SIZE]
enter sector: 2
20 70 72 69 6E 74 66 28 22 75 73 61 67 65 3A 20 printf("usage:
64 75 6D 70 20 66 69 6C 65 6E 61 6D 65 5C 6E 22 dump filename\n"
29 3B D A 20 20 20 20 65 78 69 74 28 31 29 3B);.. exit(1l);
D A 20207D D A D A 20 20 69 66 28 28 66 .. Yeouoo 1if((f
70 3D 66 6F 70 65 6E 28 61 72 67 76 5B 31 5D 2C p=fopen(argv([1l],
20 22 72 62 22 29 29 3D 3D 4E 55 4C 4C 29 20 7B "rv"))==NULL) {
D A 20 20 20 20 70 72 69 6E 74 66 28 22 63 61 .. printf("ca
6E 6E 6F 74 20 6F 70 65 6E 20 66 69 6C 65 5C 6E nnot open file\n
enter sector:

Figure 10-2. Sample output from the DUMP program

Input and Output 237

In general, you use stdin to read from the console, stdout to write to the
console, and stderr to write to the console. You may use stdin, stdout, and
stderr as file pointers in any function that uses a variable of type FILE =+,

Keep in mind that stdin, stdout, and stderr are not variables but are
constants, and as such may not be altered. Also, just as the computer creates
these file pointers automatically at the start of your program, it closes them
automatically at the end; you should not try to close them.

The Functions fprintf()
and fscanf()

In addition to the basic I/Q functions discussed so far, the buffered I/0 sys-
tem includes fprintf() and fscanf(). These functions behave exactly the
same as printf() and scanf(), except that they operate with disk files. The
general forms of declarations of fprintf() and fscanf() are

fprintf(fp, “control string”, argument list);
fscanf(fp, “control string”, argument list);

where fp is a file pointer that is returned by a call to fopen(). As stated
earlier, except for directing their output to the file defined by fp, they operate
exactly like printf() and seanf(), respectively.

To illustrate how useful these functions can be, the following program
maintains a simple telephone directory in a disk file. You may enter names
and numbers, or you can look up a number that corresponds to the name that
you are interested in.

/* A simple telephone directory */
#include "stdio.h"
void add_num(), lookupQ);

main() /* fscanf - fprintf example */
{
char choice;

do {
choice = menu();
switch(choice)
case 'a': add _num();
break; -
case 'Ll': lookup();
break;

238 Using Turbo C

}

} while (choicel='q');
)
/* display menu and get request */
menu ()
{

char ch;

do {

printf("(A)dd, (L)ookup, or (Quit: ");
ch = tolower(getche());
printf(*\n");
} while(ch != 'qQ" &£ ch !'= ‘*a' &R ch != 'L*);

return ch;
)

/* add a name and number to the directory */
void add_num()
{

FILE »fp;

char namel801;

int a_code, exchg, num;

/* open it for append */

if((fp=fopen("phone"”,"a")) == NULL) {
printf("cannot open directory fite\n");
exit(1);

X

printf(“enter name and number: ");
fscanf(stdin, “.sXd¥d%d", name, Ea_code, &exchg, &num) ;
fscanf(stdin, "%*c"); /* remove (R from input stream */

/% write to file »/
printf("%d", fprintf(fp,"%s %d ¥d Zd\n", name, &_code, exchg, num));

fclose(fp);
b3

/* find a number given a name %/
void Lookup()
{

FILE *fp;

char namel80l1, name2[803;

int a_code, exchg, num;

/* open it for read */

Input and Output 239

if((fp=fopen("phone","r")) == NULL) {
printf("cannot open directory file\n");
exit(1);

b

printf("namne? ");
gets{name);

/* Look for number =%/
while(!feof(fp)) {
fscanf(fp,"%s%d%d%d", name2, da_code, Rexchg, &num);
if(!stremp(name, name2)) <
printf(“%s: (%d) %d-Xd\n",nanme, a_code, exchg, num);
break;
>
>
fclose(fp);
3

Enter this program and run it at this time. After you enter a couple of
names and numbers, examine the file phone. It should appear in the same
way that it would if you had used printf() to display the information on
screen.

Be careful: although using fprintf() and fseanf() often is the easiest way
to write and read assorted data to disk files, it is not always the most effi-
cient. Because you are writing formatted ASCII data just as it would appear
on the screen, instead of in binary, you use extra overhead with each call. So,
if speed or file size is a concern, you should probably use fread() and
fwrite().

Erasing Fliles

The remove() function erases a file that you specify. The general form of its
declaration is

int remove(char *filename);

-

If successful, remove() returns zero; if unsuccessful, it returns nonzero.

240 Using Turbo C

Unbuffered 1/0—
the UNIX-like File
Routines

Because C was originally developed under the UNIX operating system, a
second disk-file I/O system was created. This second system uses functions
that are separate from the functions of the buffered-file system. These
second-system functions are low-level UNIX-like disk I/O functions. Table
10-6 presents these functions. All of the functions require you to include the
header file i0.h near the beginning of any program that uses them.

The disk I/O subsystem that is comprised of these functions is called the
unbuffered I/O system because, as the programmer, you must provide and
maintain all disk buffers—the routines will not maintain them for you.
Unlike gete() and pute(), which write and read characters from or to a
stream of data, read() and write() read or write one complete buffer of
information with each call. (This process is similar to that of fread() and
fwrite().)

As stated at the beginning of this chapter, the proposed ANSI standard
does not define the unbuffered-file system. This implies that programs that
use it will have portability problems at some point in the future. Therefore, it
is expected that the unbuffered-file system’s use will diminish over the next
few years. At the time of this writing, however, many existing C programs
use the system, which is supported by virtually all existing C compilers,
including Turbo C. Hence, it is included in this chapter.

Table 10-6. The UNIX-like Unbuffered I/O Functions

Name Function
read() reads a buffer of data
write() writes a buffer of data
openy() opens a disk file
close() closes a disk file
Iseek() seeks to the specified byte in a file

unlink() removes a file from the directory

Input and Output 241

The Functions open(), creat(),
and close()

Unlike the high-level 1/0 system, the low-level system does not use file point-
ers of type FILE, but rather uses file descriptors called handles of type int.
The general form of the declaration of open() is

int open(char *filename, int mode, int access);

where filename is any valid filename and mode is one of the following macros
that are defined in io.h.

Mode Effect
O_RDONLY read-only
O_WRONLY write-only
O_RDWR read/write

Turbo C also allows you to add some options to these basic modes; consult
your manual for more information on the options.

The access parameter only relates to UNIX environments and is included
in the declaration for compatibility. Turbo C also defines a DOS-specific ver-
sion called _open(). The general form of its declaration is

int __open(char *filename, int mode);

which bypasses the access parameter altogether. In the examples in this
chapter, access will be set to zero.

A successful call to open() returns a positive integer. A return value of
—1 means that open() cannot open the file.

You will usually see the call to open() like this:

if((fd=open(filename, mode, 0)) == ~1) (
printf(“cannot open file\n");
exit(1);

b

If the file that you specify in open() does not appear on the disk, the opera-
tion will fail and will not create the file.

242 Using Turbo C

The general form of the declaration of close() is
int close(int fd);

If close() returns —1, it was unable to close the file. This could occur if you
removed the diskette from the drive, for example.

A call to close() releases the file descriptor so that you can reuse it for
another file. There is always some limit to the number of open files that may
exist simultaneously, so you should use close() to close a file when you no
longer need it. More important, a close operation forces the computer to write
to disk any information in the internal disk buffers of the operating system.
Failure to close a file will usually lead to loss of data.

You will use ereat() to create a new file for write operations. The general
form of the declaration of creat() is

int ereat(char #filename, int access);

where filename is any valid filename. You use the access argument to specify
access modes and to mark the file as being either binary or text.

Because the use of access in creat() relates to the UNIX environment,
Turbo C provides a special MS-DOS version called —ereat(), which takes a
file-attribute byte for access instead. In DOS, each file has an associated
attribute byte that specifies various bits of information. Table 10-7 shows the
organization of this attribute byte. The values in Table 10-7 are additive;
that is, if you wish to create a hidden file that is read only, you would use the
value 3 (1 + 2) for access. Generally, to create a standard file, access will be 0.

The Functions write()
and read()

After you open a file for writing, you may access it by using write(). The
general form of declaration of the write() function is

int write(int fd, void *buf, int size);

Each time the computer executes a call to write(), it writes size characters
from the buffer pointed to by buf to the disk file that is specified by fd.

Input and Output 243

Table 10-7. The Organization of the DOS-Attribute Byte

Bit Value Meaning

0 1 read-only file

1 2 hidden file

2 4 system file

3 8 volume label name
4 16 subdirectory name
5 32 archive

6 64 unused

7 128 unused

You may wonder why write() does not write the entire contents of the
buffer to disk automatically. The answer is that write() can write a partially
full buffer. The write() function will return the number of bytes that it
wrote during a successful write operation. Upon failure, write() returns —1.

The function read() is the complement of write(). The general form of
its declaration is

int read(int fd, void *buf, int size);

Here, fd, buf, and size are the same as for write(), except that read() will
place the data read into the buffer that is pointed to by buf If read() is
successful, it returns the number of characters actually read. If it is unsuc-
cessful, it returns 0 upon the physical end of the file; and if errors occur, it
returns —1.

The program shown here illustrates some aspects of the unbuffered 1/0
system. The program will read lines of text from the keyboard and writes
them to a disk file. After writing the lines, the program will read them back.

#include "io.h"

#define BUF_SIZE 128

main() /* read and write using unbuffered I/0 =%/
{

244 Using Turbo C

>

char buf[BUF_SIZE];
int fd1, fd2, t;

%f((fd1=_creat("oscar", O_WRONLY))==<1) { /% open for write »/
printf("cannot open file\n");
exit(1);

input(buf, fd1);

/* now close file and read back #*/
close(fd1);

if((fd2=open("oscar"”, 0, C_RDONLY))==-1) { /% open for write */
printf("cannot open file\n");
exit(1);

3

display(buf,fd2);
close(fd2);

input(buf, fd1)
char *buf;
int fd1;

{

}

register int t;

‘,"5
do {
for(t=0; t<BUF SIZE; t++) bufltl='\0"';
gets(buf); /* Tnput chars from keyboard */
if{write(fd1, buf, BUF_SIZE)!=BUF_SIZE) {
printf("error on.write\n");
exit(1);
3
} white (stremp(buf, "quit"));

display(buf, fd2)
char *buf;
int d2;

{

for(;;) €

iflread(fd2, buf, BUF_SIZE)==O) return;
printf{"Zs\n" buf);

Input and Output 245

The Function unlink()

To remove a file from the directory, you use unlink(). Although unlink() is
considered part of the UNIX-like I/O system, it will remove any file from the
directory. The standard form of the call is

int unlink(char *filename);
where filename is a character pointer to any valid filename. The unlink()
function will return an error (usually —1) if it could not erase the file. This

could happen if the file was not present on the diskette, or if the diskette was
write-protected.

Random-Access Files and lseek()

Turbo C supports random-access file I/O under the unbuffered I/0 system
through calls to lseek(). The general form of its declaration is

long lseek(int fd, long num _bytes, int origin);

where fd is a file descriptor that is returned by creat() or open(). The
num__bytes must be a long int, and origin must be one of the following macros:

Origin Name
beginning of file SEEK_SET
current position SEEK_.CUR
end of file SEEK_END

Therefore, to seek num__bytes from the start of the file, you should make
origin SEEK _SET. To seek from the current position, use SEEK _CUR;
to seek from the end of the file, use SEEK_END.

The lIseek() function returns num__bytes on success. Therefore, lseek()
will return a long integer, and must be declared as such at the top of your
program. Upon failure, Iseek() returns —1L.

246 Using Turbo C

A simple example that uses Iseek() is another version of the DUMP pro-
gram developed earlier. This version is recoded to use the UNIX-like I/0
system. The version not only shows the operation of Iseek() but also illus-
trates many of the unbuffered I/O functions.

#include "io.h"
#include “"ctype.h"

#define SIZE 128

char buf[SIZE];
void display();

main{argc, argv) /* read buffers using lseek() »/
int argc; char *argvll;
{

char s[103];
int fd, sector, numread;
Long pos;

if(argc!=2) (
printf("You forgot to enter the file name.");
exit(1);

}

if((fd=open(argv[1], O_RDONLY, 0))==«1) { /% open for read */
printf("cannot open file\n");
exit(1);
b
do {
printf("\n\nbuffer: ");
gets(s);

sector = atoi(s); /* get the sector to read */

pos = (long) (sectorxSIZE);
if(lseek(fd, pos, SEEK SET)!=pos)
printf("seek error\n");

if((numread=read(fd, buf, SIZE))!=SIZE)
printf("E0F reached\n");
display(numread);
} while(sector>=0);
close(fd);
}

void display(numread)

int numread;
{
int i, j;

Input and Output 247

for(i=0; i<numread/16; i++) {

for(j=0; j<16; j++) printf("%3X", buflix16+j1);

printf(" ");

for(j=0; j<16; j++) (
ifCisprint(buf[i*x16+3j1)) printf("%c", buffLi*x16+31);
else printf(".");

>

printf("\n");

Choosing an Approach

For new projects, using the buffered I/0 system that the ANSI standard
defines is recommended. Because the ANSI-standard committee has elected
not to standardize the UNIX-like unbuffered I/O system, it cannot be
recommended for future projects. However, existing code should remain
maintainable for a number of years, and there is probably no reason to rush
to rewrite at this time.

Within the buffered I/0 system, you should use text mode, gete(), and
pute() when you are working with character files, such as text files that a
word processor creates. However, when you need to store binary data or com-
plex data types, you should use binary files, fread(), and fwrite().

A final word of warning: never try to mix the I/O systems inside the
same program. The way that the systems approach files is different, and
they could accidentally interfere with each other.

Advanced Topics

PART THREE

A

Congratulations! Having reached this point in the book, you
can call yourself a Turbo C programmer. However, you really
have just scratched the surface. Part Three of this book pre-
sents many of Turbo C’s advanced features, including advanced
data types, user-defined data types, and advanced operators.
You will also learn more about Turbo C’s libraries. The book
finishes with a discussion of the various compiler options, the
MAKE utility program, and debugging.

v

249

Advanced
Data Types

CHAPTER 11

Up to this point, you have been using only the five basic data types. Although
these types are sufficient for many programming situations, they cannot
satisfy all of the demands of the serious programmer. Towards this end,
Turbo C allows you to apply various type modifiers to the basic types. These
type modifiers fall into these categories:

+ Access modifiers
. Storage modifiers
« Turbo C specific function-type modifiers

« Memory model modifiers

251

252 Using Turbo C

A type modifier precedes the base type that it modifies in the declaration
statement; that is, the general form of a variable declaration is expanded to
look like this:

type-modifier type-specifier variable-list;

As was stated earlier, the subject of memory models, segments, and over-
rides is a complex one that is beyond the scope of this book; thus, the memory
model modifiers near, far, and huge will not be discussed. However, this
topic is fully explained in the next book in this series called Advanced Turbo
C, by Herbert Schildt (Borland-Osborne/McGraw-Hill, available Summer,
1987). This chapter will look at the other modifiers in turn and will examine
a special type of pointer: the function pointer.

Access Modifiers

Turbo C has two type modifiers that you use to control the ways in which
variables may be accessed or modified. These modifiers are called const and
volatile.

The const Modifier

During execution, your program may not change a variable declared with
the const modifier, except that you may give the variable an initial value. For
example,

const float version = 3.,20;

creates a float variable called version that your program may not modify.
However, you can use version in other types of expressions. A const variable
will receive its value from an explicit initialization or through some hardware-
dependent means. Applying the const modifier to a variable’s declaration
ensures that other parts of your program will not modify the variable.

Advanced Data Types 253

Variables of type const have one very important use: they can protect the
arguments to a function from being modified by that function. When your
program passes a pointer to a function, it is possible for that function to
modify the actual variable that the pointer points to. However, if you specify
the pointer as const in the parameter declaration, the function code will not
be able to modify what it points to. For example, the code() function in this
short program shifts each letter in a message by one. Therefore, an A
becomes a B, and so forth. Using const in the parameter declaration ensures
that the code inside the function cannot modify the object that the parameter
points to.

void code();

main()
{

code("this is a test");
>

void code(str)

const char #*str;

{ .
while(*str) printf("%c", (*str++)+1);

>

If, for some reason, you had written code() in such a way that the argu-
ment to it would be modified, Turbo C would not compile it. For example, if
you had written code() like this

/* this is wrong */
void code(str)
const char *str;

{
while(*str) {
*str = *str + 1;
printf("%c", *str++);
b
>

you would see the following compiler-error message:

Cannot modify a const object in function code

254 Using Turbo C

The volatile Modifier

You use the modifier volatile to tell Turbo C that a variable’s value may be
changed in ways that the program does not explicitly specify. For example, a
program may pass a global variable’s address to the clock routine of the
operating system and may use the variable to hold the real-time of the sys-
tem. In this situation, the variable is altered without using any explicit
assignment statements. The reason that the external alteration of a variable
may be important is that Turbo C will automatically optimize certain
expressions by assuming that the content of a variable is unchanged if it does
not occur on the right side of an assignment statement. For example, assume
that the computer’s clock mechanism updates clock every tenth of a second.
If you do not declare clock as volatile, then the following statements might
not work properly:

int clock, timer;

timer = clock;
/* do something */
printf("elapsed type is %d\n", clock-timer);

Because the program does not alter clock and does not declare it as vola-
tile, Turbo C is free to optimize the code in such a way that the value of clock
is not reexamined in the printf() statement. However, declaring clock as

volatile int clock;

ensures that no such optimization will take place and Turbo C will examine
clock’s value each time that it is referenced.

Although it seems strange at first, you can use const and volatile
together. For example, assume that 0X30 is the value of a port that is
changed only by external conditions. Then the following declaration would be
precisely what you would want to prevent any possibility of accidental side
effects:

const volatile unsigned char *port=0x30;

Advanced Data Types 255

Storage
Class Specifiers

C supports four storage-class specifiers. They are

auto
extern
static
register

These specifiers tell the compiler how to store the variable that follows. The
storage specifier precedes the rest of the variable declaration, which has the
general form

storage-specifier type-specifier variable-list;

This section will examine each specifier in turn.

The auto Specifier

You use the auto specifier to declare local variables. However, it is rarely (if
ever) used because local variables are auto by default.

The extern Specifier

All of the programs that you have been working with so far have been quite
small-—so small, in fact, that many fit in the 25 lines of the screen. However,
in actual practice, programs tend to be much larger. Even though Turbo C is
extremely fast at compiling, as the file grows, the compilation time eventu-
ally takes long enough to be annoying. When this happens, you should break
your program into two or more separate files. Turbo C contains the extern
specifier, which helps support the multiple-file approach. In this book, each
of the programs developed easily fits in one file. However, in real-world pro-

256 Using Turbo C

gramming projects, this is seldom the case. Although the subject of multiple
files and separate compilation will have to wait until Chapter 16, you will
take a quick look at it here because it relates to extern.

Because Turbo C allows you to link separately compiled modules of a
large program in order to speed up compilation and to aid in the manage-
ment of large projects, there must be some way of telling all of the files about
the global variables that the program requires. A problem occurs if you
simply declare in each file all of the global variables that your program
needs. Although the compiler does not issue any error messages at compile
time, you are actually trying to create two (or more) copies of each variable.
The trouble starts when you attempt to link your modules together. The
linker will display a warning message because it will not know which vari-
able to use. The solution is to declare all of your global variables in one file
and use extern declarations in the other, as shown in Figure 11-1.

In file two of Figure 11-1, the code copies the global-variable list from file
one and adds the extern specifier to the declarations. The extern specifier
tells the compiler that the variable types and names that follow have already
been declared elsewhere. In other words, extern lets the compiler know what
the types and names are for these global variables without actually creating
storage for them again. When the linker links the two modules together, it
resolves all references to the external variables. This book will look more
closely at programs that use multiple files later.

When you use a global variable inside a function that is in the same file as
the declaration for the global variable, you may elect to use extern, although
you do not have to. (Frankly, you will rarely see this use of extern.) The
following program fragment shows the use of this option:

int first, last; /* global definition of first
and last */

main()
{
extern int first; /% optional use of the
extern declaration */
b4

Although extern variable declarations can occur inside the same file as
the global declaration, they are not necessary. If Turbo C finds a variable
that has not been declared, the compiler will see if it matches any of the

Advanced Data Types

257

File one

int x, y;

char ch;
main()
{
}
func1 O
{

x=123;
}

File two

extern int x, y;
extern char ch;

func22 ()
{

x=y/10;
}

func23 ()
{

y=10;
)

Figure 11-1. Using global variables in separately compiled modules

global variables. If it does, then the compiler will assume that it is the vari-

able being referenced.

The static Variables

The static variables are permanent variables within either their own func-
tion or file. They differ from global variables because they are unknown out-
side their function or file, but they do maintain their values between calls.
This characteristic can make static variables useful when you write general-
ized functions and function libraries that other programmers may use.
Because static has different effects when you use it upon local variables than
it does upon global ones, this chapter examines them separately.

258 Using Turbo C

The static Local Variables When you apply the static modifier to a
local variable, it causes Turbo C to create permanent storage for the local
variable in much the same way that it does for a global variable. The key
difference between a static local variable and a global variable is that the
static local variable is known only to the block in which it is declared. In
simple terms, a static local variable is a local variable that retains its value
between function calls.

It is important to the creation of stand-alone functions that static local
variables are available because there are several types of routines that must
preserve a value between calls. If a programming language did not allow
static variables, then you would have to use global variables —which would
open the door to possible side effects. A good example of a function that
would require such a variable is a number-series generator that produces a
new number based on the last one. While you could declare a global variable
for this value, any program that uses the function would have to declare that
global variable, making sure that it did not conflict with any other global
variables already declared; this requirement would be a major drawback.
Also, using a global variable would make this function difficult to place in a
function library. The better solution is to declare the variable that holds the
generated number as static, as shown in this program fragment:

series()
{

static int series num;

series_numsseries_num + 23;
return(series_num);
}

In this fragment, the variable series_num continues to exist between func-
tion calls, instead of coming and going the way that a normal local variable
would. Thus, each call to series() can produce a new member of the series
that is based on the previous number, without declaring series_num glob-
ally.

You may have noticed something unusual about the function series() as it
stands in the program fragment. The function never gives an initial value to
the static variable series_num. This means that the initial value will be
zero because Turbo C initializes static local variables to zero. While this
initialization step is acceptable for some applications, most series generators
will need a well-defined starting point. To do this requires you to initialize
series_num prior to the first call to series(), which you can do easily only if

Advanced Data Types 259

series_num is a global variable. However, avoiding the need to make
series_num global was the entire point of making it static to begin with,
which leads to the second use of static.

The static Global Variables When you apply the statie specifier to a
global variable, static instructs the compiler to create a global variable that
is known only to the file in which you declared the static global variable.
Thus, even though the variable is global, other routines in other files may
have no knowledge of it and may not alter its contents directly; it is not sub-
Ject to side effects. Therefore, for the few situations where a static local vari-
able cannot do the job, you can create a small file that contains only the
functions that need the static global variable, separately compile that file,
and use it without worrying about side effects.

To see how you can use a statie global variable, the number-series genera-
tor given earlier has been recoded so that you can use a “seed” value to
initialize the series through a call to a second function called series__start().
The entire file that contains series(), series_start(), and series—_num is
shown here:

/* this must all be in one file - preferably by itself */
static int series_num;

series ()

{
series_num=series num+23;
return(series_num);

}

/* initialize series_num */
series start(seed)
int seed;
{
series_num=seed;
}

Calling series_start() with a known integer value initializes the series
generator. After that, calls to series() will generate the next element in the
series.

Remember: the names of static local variables are known only to the
function or block of code in which they are declared, and the names of static
global variables are known only to the file in which they reside. If you place
the functions series() and series_start() in a library, you can use the func-

260 Using Turbo C

tions but you cannot reference the variable series—num. It is hidden from
the rest of the code in your program. You may even declare and use another
variable called series_num in your program (in another file) and not con-
fuse anything. In essence, the static specifier allows the existence of variables
that are known to the functions that need them, without confusing other
functions.

The static variables enable you the programmer to hide portions of your
program from other portions. This ability can be a tremendous advantage
when you are trying to manage a large, complex program. The static storage
specifier lets you create general functions that you can include in libraries
for later use.

The register Specifier

Another important type modifier in Turbo C is called register and applies
only to variables of type int and char. The register specifier requests that
Turbo C keep the value of variables declared with this modifier in the regis-
ter of the CPU, rather than in memory, where normal variables are stored.
Operations on register variables can occur much faster than on variables
stored in memory because Turbo C does not need memory access to deter-
mine or modify their values. (A memory access takes much longer than a
register access.) This time savings makes register variables ideal for loop
control. You can only apply the register specifier to local variables and to the
formal parameters in a function. Hence, you cannot use register global
variables.

Here is an example of the way to declare a register variable of type int
and the way to use it te control a loop. This function computes the result of
me for integers:

int_pwr(m,e)
int m;
register int e;
<
register int temp;

temp=1;
for(;e;e~~) temp*=m;

return temp;
>

Advanced Data Types 261

In this example, the code declares both e and temp to be register variables
because it uses both within the loop. In general practice, you should use reg-
ister variables where they will do the most good, which implies that you
should use them in places where many references will be made to the same
variable. This discrimination is important because you may not have an
unlimited number of register variables in use at any particular time.

Both the processor type and the specific implementation of C that you are
using determine the exact number of register variables allowed within any
one function. For Turbo C, there may be two register variables active at any
one time. Do not worry about declaring too many register variables, though,
because Turbo C will automatically make register variables into nonregister
variables when the number reaches the limit. (Turbo C does this to ensure
the portability of code across a broad line of processors.)

To see the difference that register variables can make, the following pro-
gram measures the execution time of two for loops that differ only in the
type of variable that controls them. This program uses the time() function
that is found in Turbo C’s standard library.

/* This program shows the difference a register
variable can make to the speed of program
execution.

*/

unsigned int i; /% non~register */
unsigned int delay;

main()

{
register unsigned int j;
Llong t;

t = time('\0");
for(delay=0; delay<10; detay++)
for(i=0; i<64000; i++);
printf("time for non-register Loop: Zld\n", time('\0*')~t);

t = time('\0");
for(delay=0; delay<10; delay++)

for(j=0; j<64000; j++) ;
printf("time for register Lloop: ZLd", time('\0")~t);

If you run this program, you will find that the register-controlled loop exe-
cutes in about half the time that the nonregister-controlled loop uses.

262 Using Turbo C

Type Conversion
n Assignments

Type conversion refers to the situation in which variables of one type are
mixed with variables of another type. When this mixing occurs in an
assignment statement, the type-conversion rule is simple: Turbo C converts
the value of the right side (the expression side) of the assignment to the type
of the left side (the target variable), as illustrated by this example.

int x;

char ch;

float f;

func O

{
ch=x; /* 1 */
x=f; /*x 2 */
f=ch; /% 3 */
f=x; /% & */

b

In line 1, the code lops off the left high-order bits of the integer variable
x, leaving ch with the lower 8 bits. If the value x was between 255 and 0,
then c¢h and x would have identical values. If x had any other value, the
value of ch would reflect only the lower order bits of x. In line 2, x receives
the nonfractional part of f. Line 3 converts the value of ch to its equivalent
floating-point format. This process also occurs in line 4, which converts the
value in x to its equivalent floating-point format.

When you convert from integers to characters, long integers to integers,
and integers to short integers, the basic rule to follow is that the appropriate
amount of high-order bits will be removed. Thus, you will lose 8 bits when
going from an integer to a character or short integer, and 16 bits when going
from a long integer to an integer.

Table 11-1 synopsizes these assignment type conversions. You must
remember one important point: The conversion of an int to a float, a float to
a double, and so on, will not add any precision or accuracy. These kinds of
conversions will only change the form in which the value is represented.

To use Table 11-1 to make a conversion that the table does not show
directly, simply convert one type at a time until you finish. For example, to
convert from a double to an int, first convert from a double to a float, and
then from a float to an int.

Advanced Data Types 263

Table 11-1. The OQutcome of Common Type Conversions, Assuming a 16-bit

Word
Target type Expression type Possible info loss
signed char char If value > 127, then targets will
be negative
char short int High-order 8 bits
char int High-order 8 bits
char long int High-order 24 bits
short int int None
short int long int High-order 16 bits
int long int High-order 16 bits
int float Fractional part and possibly more
float double Precision, result rounded
double long double None

Function-Type
Modifiers

Turbo C defines three type modifiers that you may only apply to functions.
These modifiers are pascal, cdeel, and interrupt. The proposed ANSI stan-
dard does not define these modifiers, but Turbo C does provide them in order
to take the best possible advantage of the PC programming environment.

The pascal Type Modifier

The pascal type modifier tells the compiler to use a Pascal-like parameter-
passing convention for the function’s arguments, rather than Turbo C’s nor-
mal method. This modifier allows two possibilities. First, you can write func-
tions in Turbo C that other compilers will use. Second, you can use a Pascal
compiler’s library routines by declaring them at the top of your C program as
being of type pascal.

264 Using Turbo C

For example, this version of the int_pwr() function can be compiled for
use by a Pascal compiler:

/* compile for Pascal compilers */
pascal int_pur(m,e)
int m;
register int e;
{
register int temp;

temp=1;

for(;e;e~=) temp*=m;
return temp;
b4

To compile all of the functions in a file to be of type pascal, you could do
so without utilizing pascal by first using the Option main menu selection.
Next, select Compiler and, finally, select Code Generation. You can now set
the calling convention to Pascal. Selecting this option tells Turbo C to treat
all functions as if they were for use with a Pascal compiler. As a general rule,
you should not compile using the pascal option unless you will be linking
with actual Pascal code.

The cdecl Type Modifier

The edecl keyword is the opposite of pascal because cdecl tells Turbo C to
compile a function so that its parameters are passed in a way that is compat-
ible with other C functions. You only use edecl when you have set the com-
piler to compile using the Pascal calling convention and you have a few func-
tions that you do not want compiled in the pascal format. The edecl keyword
is specific to Turbo C and is not generally portable.

The interrupt Type Modifier

The interrupt modifier tells Turbo C that the function that it modifies will
be used as an interrupt handler. The modifier causes Turbo C to preserve all
CPU registers each time that the program enters the function, and to exit
the function with an IRET (return from interrupt) instruction. The devel-
opment and installation of interrupt handlers is beyond the scope of this

Advanced Data Types 265

book; but if you are interested, you should study one of the excellent books on
DOS or assembly language programming. (A particularly good one for DOS
is DOS: The Complete Reference by Kris Jamsa [Osborne/MeGraw-Hill,
19871)

Pownters to Functions

A particularly confusing yet powerful feature of C is the function pointer. In
a way, a function pointer is a new type of data. Even though a function is not
a variable, it still has a physical location in memory that you can assign to a
pointer. The address assigned to the pointer is the entry point of the function.
You can then use this pointer in place of the function’s name. The pointer also
allows functions to be passed as arguments to other functions.

To understand how function pointers work, you must understand a little
about the way a function is compiled and called in Turbo C. First, while
compiling each function, the compiler transforms source code into object
code, and establishes an entry point. When a call is made to a function while
your program is running, the computer makes a machine-language “call” to
this entry point. Therefore, a pointer to a function actually contains the
memory address of the entry point of the function.

You obtain the address of a function by using the function’s name without
any parentheses or arguments. (This process is similar to the way that you
obtain an array’s address when you use only the array name without indices.)
For example, consider this program, paying close attention to the declarations:

main()

{
int strcmp(); /% declare a function */
char s1[801, s2(801;
void #p;

p = strcmp;

gets(s1);
gets(s2);

check(s1,s2,p);
b

check(a,b,cmp)

266 Using Turbo C

char *a,*b;

int (*xcmp) O;

{
printf("testing for equality\n");
if¢! (xcmp) Ca,b)) printf(”equal™);
else printf("not equal");

3

There are two reasons for the declaration of stremp() in main(). First,
the program must know what type of value stremp() is returning (in this
case, an integer) and, second, its name must be known to the compiler as a
function. In C, there is no way to declare a variable to be a function pointer
directly. Instead, as shown in the program, you must declare a void pointer
because it can receive any type of pointer. When the computer calls the func-
tion check(), two character pointers and one function pointer are passed as
parameters. The function check() declares the arguments as character point-
ers and a function pointer. Notice how the function pointer is declared. You
must use exactly the same method when declaring other function pointers,
except that the return type of the function may be different. The parentheses
around the *emp are necessary to allow the compiler to interpret this state-
ment correctly. Without the parentheses around *emp, the compiler would
be confused by the statement.

Once inside check(), you can see how the stremp() function is called. The
statement

(xcmp) (a,b)

performs the call to the function —in this case, stremp() —which cmp points
to with the arguments a and b. Again, the parentheses around *emp are
necessary. This statement also represents the general form of using a func-
tion pointer to call the function that it points to.

Note that you can call check() by using stremp directly, as shown here:

check(s1,s2,strcmp);

This statement would eliminate the need for an additional pointer varia-
ble. However, most real-world routines that use function pointers will proba-
bly use additional pointers.

You may wonder why anyone would want to write a program in this way.
Obviously, in this example, nothing is gained and significant confusion is
introduced. However, sometimes it is advantageous to pass arbitrary func-

Advanced Data Types 267

tions into routines or to keep an array of functions.

The following example may help to illustrate a use of function pointers.
When a compiler is written, it is common for the parser (that part of the
compiler that evaluates arithmetic expressions) also to perform function calls
to various support routines—for example, the sine, cosine, and tangent func-
tions. Instead of having a large switch statement with all of these functions
listed in them, you can use an array of function pointers with the proper
function called. You can get the flavor of this type of usage by studying the
expanded version of the example given earlier.

#include "ctype.h"

main()
{
int stremp();
int numcmp();
char s1C080], s2C801];

gets(s1);
gets(s2);

if(tolower (*s1) <= 'z' && tolower(xs1) >= '3')
check(s1,s2,strcmp);
else

check(s1,s2,numcmp);
b

check(a,b,cmp)

char *a,*b;

int (*xcmp) ();

{
printf(“testing for equality\n");
if(! (xcmp) (a,b)) printf("equal);
else printf("not equal');

)

numcmp(a, b)
char *a,*b;
{
if(atoi(a)==atoi(b)) return 0;

else return 1;
}

In this program, you can make check() check for either alphabetical
equality or numeric equality, simply by calling it with a different compari-
son function.

User-Defined
Data Types
CHAPTER 12

The C language allows you to create five different kinds of custom data types.
The first type is the structure, which is a group of variables under one name.
The structure is sometimes called a conglomerate data type. The second user-
defined type is the bitfield, which is a variation of the structure and allows
easy access to the bits within a word. The third type is the union, which
enables you to define the same piece of memory as two or more different
types of variables. A fourth custom data type is the enumeration, which is a
list of symbols. You create the final type by using typedef, and it simply
creates a new name for an existing type.

269

270 Using Turbo C

Structures

In C, a structure is a collection of variables that you reference under one
name. A structure provides a convenient means of keeping related informa-
tion together. A structure definition forms a template that you may use to
create structure variables. The variables that make up the structure are
called structure elements. (Structures in C are the equivalent of RECORDs in
Turbo Pascal.)

Generally, all elements in the structure are logically related to each other.
For example, you can normally represent the name-and-address information
of a mailing list in a structure. This code fragment declares a structure tem-
plate that defines the name and address fields. The keyword struct tells the
compiler that you are defining a structure template.

struct addr {
char name(303;
char streetf403];
char city[203;
char statel3];
unsigned Long int zip;
X;

Notice that a semicolon terminates the definition. The reason for the semi-
colon is that a structure definition is a statement. In addition, the structure
tag addr identifies this particular data structure, and is its type specifier.

At this point in the code, no variable has actually been declared. The code
has only defined the form of the data. To declare an actual variable with this
structure, you would write

struct addr addr_info;

This line will declare a structure variable of type addr called addr —info.
When you define a structure, you are essentially defining a complex variable
type that is made up of the structure elements. Only when you declare a
variable of that type will one actually exist.

Turbo C automatically allocates sufficient memory to accommodate all of
the variables that make up a structure variable. Figure 12-1 shows the way
that addr —info would appear in memory, assuming one-byte characters and
two-byte integers.

User-Defined Data Types 271

You may also declare one or more variables when you define a structure.
For example:

struct addr {
char name(30];
char streetl40];
char cityf201;
char statel3];
unsigned long int zip;
} addr_info, binfo, cinfo;

This code defines a structure type called addr, and declares variables
addr —info, binfo, and cinfo of the same type.

If you only need one structure variable, you do not need to include the
structure name.

struct (
char name[303];
char street[40];
char city{203;
char statel(3];
unsigned long int zip;
} addr_info;

declares one variable named addr —info, as defined by the structure that
precedes it.

Name 30 bytes
Street 40 bytes
City 20 bytes addr _info
State 3 bytes
ZIP 4 bytes

Figure 12-1. The addr _info structure as it appears in memory

272 Using Turbo C

The general form of a structure definition is

struct struct-type-name {
type variable __name;
type variable _name;
type variable _name;

} structure__variables;

where you may omit either the structure type name struct-type-name or the
structure _variables, but not both.

Referencing Structure Elements

You reference individual structure elements by using the . operator, which is
sometimes called the dot operator. For example, the following code will
assign the Zip code 12345 to the zip field of the structure variable addr —
info that was declared earlier.

addr_info.zip = 12345;
The structure-variable name, which is followed by a period, and the struc-
ture element name will reference that individual structure element. You
access structure elements by using this format. The general form is
structure _name.element _name
Therefore, to print the Zip code to the screen, you could write
printf("%d", addr__info.zip);
which prints the Zip code in the zip variable of the structure variable
addr —info.
In the same fashion, you can use the character array addr —info.name to

call gets(), as shown here.

gets(addr_'info.name);

User-Defined Data Types 273

This call to gets() will pass a character pointer to the start of the element
name.

To access the individual elements of addr —info.name, you could index
name. For example, you could print the contents of addr _info.name one
character at a time by using this code:

register int t;

for(t=0; addr_info.namelt]; ++t) putchar(addr_info.nameltl);

Arrays of Structures

Perhaps the most common use of structures is in arrays of structures. To
declare an array of structures, you must first define a structure, and then
declare an array variable of that type. For example, to declare an 100-
element array of structures addr that had been defined earlier, you would
write

struct addr addr_info[100];

This code creates 100 sets of variables that are organized as defined in the
structure addr.

To access a specific structure, you index the structure name. For example,
to print the Zip code of structure 3, you would write

printf("%d", addr_infol2l.zip);

Like all array variables, arrays of structures begin their indexing at zero.

A Mailing-List Example

To help illustrate the way to use structures and arrays of structures, this
section develops a simple mailing-list program that uses an array of struc-
tures to hold the address information. The functions in this program interact
with structures and their elements.

274 Using Turbo C

In this example, the information that will be stored includes

name
street
city, state, zip

To define the basic data structure addr that will hold this information, you
would write

struct addr {
char namel30];
char street(40];
char city[203;
char state(33;
unsigned long int zip;
} addr_info[SIZE];

The Zip code field is an unsigned long integer because the computer cannot
represent Zip codes greater than 64,000 —such as 94564 —in a two-byte
integer. In this example, the program uses an integer to hold the Zip code to
illustrate a numeric structure element. However, the more common practice
is to use a character string that accommodates postal codes with letters as
well as numbers, like those used by Canada and other countries. The array
addr _info contains SIZE structures of type addr, where you may define
SIZE to suit the specific need.

The first function that you need for the program is main(), which is shown
here:

main()
{
char choice;

init_List();

for(;;) €
choice = menu();
switch(choice) {
case 'e': enter();
break;
case 'd': display(Q;
break;
case 's': save();
break;

User-Defined Data Types 275

case 'L': Lload();
break;
case 'q': exit(1);

>
b
>

First, init _list() prepares the structure array for use by putting a null
character into the first byte of the name field. The program assumes that a
structure variable is not in use if the name field is empty. You could write
init __list() as

/* initialize the addr_info array =/
void init_List()
{

register int t;

for(t=0; t<SIZE; t++) *addr_infoltl.name='\0";
/* a zero length name signifies empty */
>

The menu __select() function will display the option messages and return
the user’s selection:

/* get a menu selection #/
menu()
{

char s{801;

do {
printf("(E)nter\n");
printf("(D)isplay\n");
printf("(L)oad\n");
printf("(S)ave\n");
printf("(Qduit\n\n");
printf("choose one: ");
gets(s);

} white(!strrchr("edlsqg"”, tolower(#s)));

return tolower(*s);
b2

The enter() function prompts the user for input, and places the informa-
tion entered into the next free structure. If the array is full, then enter()
prints the message list full on the screen. Here is enter():

276 Using Turbo C

/* put names into addr_info =/
void enter ()
{

register int i;

for(i=0; i<SIZE;i++)
if(l*xaddr_infolil.name) break;

if(i==SIZE) <(
printf("addr_info full\n");
return;

>

printf("name: ");

gets(addr_infolil.name);

printf("street: ");
gets(addr_infolil.street);

printf("city: ");
gets(addr_infolil.city);

printf("state: '");
gets(addr_infolil.state);

printf("zip: ");
gets(addr_infolil.zip);

The program uses the routines save() and load(), shown here, to save and
load the mailing-list database. Each routine contains little code because of
the power of fread() and fwrite().

/* save the Llist */
void save()

FILE «fp;

register int i;

if((fp=fopen("maitlist","wb"))==NULL) {
printf("cannot open file\n")
return;

3

4

for(i=0;i<SIZE;i++)
if(*addr_infolil.name)
if(fwrite(faddr_infolil,sizeof(struct addr),1,fp)!=1)
printf("file write error\n");
fclose(fp);

User-Defined Data Types 277

/% {oad the file %/
void Lload()
{
FILE =*fp;
register int i;

if((fp=fopen("maillist","rb"))==NULL) {
printf("cannot open file\n");
return;

)

init_ListQ);
for(i=0; i<SIZE; i++)
if(fread(&addr_info[i],sizeof(struct addr) ,1,fp)i=1) (
if(feof(fp)) (
fclose(fp);
return;
b
printf("file read error\n");
3

Both save() and load() confirm a successful file operation by checking the
return value of fread() or fwrite(). In addition, load() must explicitly
check for an end-of-file mark by using feof() because fread() returns the
same value if the computer reaches the end-of-file mark or if an error has

occurred,
The final function that the program needs is display(), which prints the
entire mailing list on screen.

/* display the addr_info %/
void display()
{

register int t;

for(t=0; t<SIZE; t++) {
if(xaddr _infoltl.name) <(
printf("%s\n", addr_infoltl.name);
printf("%s\n", addr_infoltl.street);
printf("%s\n", addr_infoltl.city);
printf("%s\n", addr_infoltl.state);
printf("%s\n\n", addr_infoltl.zip);

Here is the complete listing for the mailing-list program.

278 Using Turbo C

/* A simple mailing List that uses an array
of structures, */

#include "stdio.h"
#include “ctype.h"

#define SIZE 100

struct addr {
char namef40];
char streetl40];
char city(30];
char statel3];
char ziplL103];

} addr_infolSIZE];

void enter(), init_tist(), display(), save(), load();

main()
{
char choice;

init_ListO;

for(;;)
choice = menu();
switch(choice) {
case ‘'e': enter();
break;
case 'd': display();
break;
case 's': save();
break;
case 'L': load();
break;
case 'q': exit(1);
b
3
)

/* initialize the addr_info array »/
void init_ListQ)
<

register int t;

for(t=0; t<SIZE; t++) xaddr infoltl.name='\0*;

/* a zero length name signifies empty =%/
)}

/* get a menu selection =/
menu ()
{

char s[80];

b

User-Defined Data Types

do {
printf("(E)nter\n");
printf("(D)isplay\n");
printf("(L)oad\n");
printf("(s)ave\n");
printf("(Q)uit\n\n");
printf("choose ones ");
gets(s);
} white(!strrchr("edlsq", tolower(xs)));
return tolower(*s);

/* put names into addr_info =»/
void enter ()

{

}

register int i;

for(i=0; i<SIZE;i++)
if(!*addr_info[i].name) break;

if(i==S12€E) {
printf("addr_info full\n");
return;

b

printf("name: ");

gets(addr_infolil.name);

printf("street: ");
gets(addr_infolil.street);

printf("city: ");
gets(addr_info[i].city);

printf("state: ");
gets(addr_infolil.state);

printf("zip: ");
gets(addr_infolil.zip);

/* display the addr_info */
void display()

<

register int t;

for(t=0; t<SIZE; t++) {
if(*addr_info[t].name) <
printf("%s\n", addr_infoltl.name);
printf("%s\n", addr_infoltl.street);
printf("%s\n", addr_infoltl.city);
printf("Xs\n", addr_infoltl.state);
printf("%s\n\n", addr infoltl.zip):

279

280 Using Turbo C

b
)
)

/* save the Llist */
void save()
{
FILE «*fp;
register int i;

if((fp=fopen("maillist","wb"))==NULL) {
printf("cannot open file\n");
return;

b4

for(i=0;i<SIZE;i++)
if(xaddr_infolil.name)
if(furite(&addr_infolil,sizeof(struct addr),1,fp)!=1)
printf("file write error\n");
fclose(fp);

/* Load the fite */
void Load()
<
FILE «fp;
register int i;

if((fp=fopen("maillist"”,"rb"))==NULL) (
printf(“cannot open file\n");
return;

}

init_tist();
for(i=0; $<SIZE; i++)
if(fread(&addr_infolil,sizeof(struct addr),1,fp)!=1) (
if(feof(fp)) <
fclose(fp);
return;
b
printf("file read error\n");
}
)

If you have any doubts about your understanding of structures, enter this
program into your computer and study its execution by making changes and
watching their effect. Further, try to add functions that search the list,
remove an address from the list, and send the list to the printer.

User-Defined Data Types 281

Passing Structures
to Functions

So far, the examples in the book have assumed all structures and arrays of
structures to be either global or defined within the function that uses them.
This section will give special consideration to passing structures and their
elements to functions.

Passing Structure Elements
to Functions

When you pass an element of a structure variable to a function, you are actu-
ally passing the value of that element. Thus, you are passing a simple
variable—unless that element is complex, such as an array of characters. For
example, consider this structure:

struct fred
char x;
int y;
float 2z;
char sC101];
} mike;

Here is the way that you can pass each element to a function.

funci(mike.x); /* passes character value of x */

func2(mike.y); /* passes integer value of y */

func3(mike.z); /=* passes float vatue of z */

func4é(mike.s); /* passes address of string s =/

func(mike.s[23); /» passes character value of s[2] »/

However, to pass the address of an individual structure element so that
you achieve call-by-value parameter passing, you would place the & operator

before the variable name. For example, to pass the addresses of the elements
in the structure variable mike, you would write

282 Using Turbo C

func(&mike.x); /* passes address of character x */
func2(&mike.y); /* passes address of integer vy */
func3(&mike.z); /* passes address of float 2%/
funcé{mike.s); /* passes address of string s */

func(&mike.s[21); /* passes address of character s[2] */

Notice that the & operator precedes the structure variable name, and not the
individual element name. In addition, note that the string element s already
signifies an address so that the use of & is not required in that line of code.

Passing Entire Structures
to Functions

When you use a structure as an argument to a function, Turbo C passes the
entire structure by using the standard call-by-value method. This method
means that any changes that you make to the structure’s contents inside the
function to which the structure is passed do not affect the structure that you
use as an argument.

The most important consideration to keep in mind when you use a struc-
ture as a parameter is that the type of the argument must match the type of
the parameter. For example, this program declares both the argument arg
and the parameter parm to be of the same type of structure:

main()
{
struct {
int a,b;
char ch;
} arg;

arg.a=1000;

f1Carg);

User-Defined Data Types 283

arg(parm)
struct {
int x,y;
char ch;
} parm;

{
printf("Xd" ,parm.x);
)

As you can see, this program will print 1000 on the screen. Although it is not
uncommon to see parallel structure declarations of this type, a more common
approach—and one that requires less work from you—is to define a structure
globally, and then to use its name to declare structure variables and parame-
ters as needed. Using this method, the program just shown changes as
follows:

/* define a structure type */
struct struct type {

int a,b; -

char ch;
¥ ;

main()
{
struct struct_type arg; /* declare arg */

arg.a=1000;

f1Carg);
}

arg(parm)
struct struct_type parm;
{

printf("*%d",parm.a);

Not only does this version save programming effort, but more important, it
helps to ensure that the arguments and the parameters do in fact match.

284 Using Turbo C

Pointers to Structures

C allows pointers to structures in the same way that it allows pointers to any
other type of variable. However, there are some special aspects of structure
pointers that you must be aware of.

Declaring a Structure Pointer

You declare structure pointers by placing the * in front of a structure varia-
ble’s name. For example, if you assume the structure addr defined earlier,
the following declares addr —pointer to be a pointer to data of that type:

struct addr #*addr_pointer;

Using Structure Pointers

There are two primary uses for structure pointers. The first use is to achieve
a call-by-reference call to a function. The second use is to create linked lists
and other dynamic data structures by using Turbo C’s allocation system. This
chapter will only be concerned with the first use; the second use is covered in
detail in Advanced Turbo C, this book’s sequel.

There is one major drawback to passing all but the simplest structures to
functions: it is the overhead needed to push (and pop) all structure elements
onto the stack. In simple structures with few elements, this overhead is not
important, but if a structure uses several elements, or if some of the elements
are arrays, then run-time performance may degenerate to unacceptable lev-
els. The solution to this problem is to pass only a pointer.

When you pass a pointer to a structure to a function, the computer pushes
(and pops) only the address of the structure on the stack. This means that
Turbo C can execute a very fast function call. Also, because the function will
be referencing the actual structure and not a copy, the function can modify
the contents of the elements of the structure used in the call.

To find the address of a structure variable, you place the & operator

User-Defined Data Types 285

before the structure variable’s name. For example, given the following
fragment

struct bal €
float balance;
char namel80];
)} person;

struct bal *p; /* declare a structure pointer */
then
p=&person;

places the address of person into the pointer p. To reference the balance
element, you would write

(*p) .balance

The parentheses are necessary around the pointer because the dot operator
has a higher priority than the * operator.

Actually, there are two methods that you may use to reference an element
in a structure variable, given a pointer to that variable. The first method
uses explicit pointer references, and is considered archaic by today’s stan-
dards. However, because some older, existing C code may use this approach,
it is important that you are familiar with it. Also, it lays important ground-
work that enables you to understand the second, more common method. This
second method of accessing elements of structures by using pointers utilizes
the —> operator, which is essentially a shorthand for the first method.

To see how you can use a structure pointer, examine this simple program
that prints the hours, minutes, and seconds on the screen by using a software-
delay timer.

/* display a software timer w#/

struct tm {
int hours;
int minutes;
int seconds;

286 Using Turbo C

Y}
main()
<
struct tm time;

time.hours=0;
time.minutes=0;
time.seconds=0;

for(;;) {
update(&time);
display(&time);
b
)

update(t) /* version 1 - explicit pointer references */
struct tm *t;
{
(xt) .seconds++;
if((*xt).seconds==60)
(*t).seconds=0;
(*t).minutes++;
b
if((xt).minutes==60) {
(*t) .minutes=0;
(*t).hours++;
3
if((*xt).hours==24) (*t).hours=0;
delay();
}

display(t)

struct tm *t;

{
printf("X%d:",{(*t).hours);
printf("%d:",(*t).minutes);
printf("%d\n",(*t).seconds);

}

delay ()

{
long int t;
for(t=1;t<128000;++t) ;

b2

You can adjust the timing of this program by varying the loop count in
delay().

As you can see, the program defines a global structure called tm, but
declares no variable. Inside main(), the structure time is declared and
initialized to 00:00:00; thus, time is known directly only to main().

User-Defined Data Types 287

The program passes the address of time to two functions: update(),
which changes the time, and display(), which prints the time. In both funec-
tions, the argument is declared to be of structure type tm so that the com-
piler will know how to reference the structure elements.

The program accomplishes the actual referencing of each structure ele-
ment through the use of a pointer. For example, to set the hours back to zero
when the program reaches 24:00:00, you would write

if((*t).hours==24) (*t).hours=0;

This line of code tells the compiler to take the address of t—which is time in
main() —and assign zero to its element called hours. (Remember that the
parentheses are necessary around *t because the dot operator has a higher
priority than the * operator.)

As stated earlier, you will seldom, if ever, see references made to a struec-
ture’s elements through the explicit use of the * operator. Because this type of
operation is so common, C defines a special operator to perform this task.
This operator is the —> operator, which most C programmers call the arrow
operator. You form the arrow operator by using the minus sign followed by a
greater-than sign. You use the arrow operator in place of the dot operator
when accessing a structure element, given a pointer to the structure vari-
able. For example,

(*t) .hours

is the same as

t->hours
Therefore, you could rewrite update() as

update(t) /* version 2 with the arrow operator #*/
struct tm *t;
{

t->seconds++;

if(t->seconds==60) {
t->seconds=0;
t->minutes++;

)

288 Using Turbo C

if(t->minutes==60) {
t=>minutes=0;
t=>hours++;

b

if(t=>hours==24) t~>hours=0;
delay();
}

Remember that you use the dot operator to access structure elements
when operating on the structure itself. When you have a pointer to a struc-
ture, then you should use the arrow operator. Also, remember that you have
to pass the address of the structure to a function by using the & operator.

Arrays and
Structures Within
Structures

A structure element may be either simple or complex. A simple element is
one of the built-in data types, such as integer or character. You have already
seen one complex element: the character array used in addr_info. Other
complex data types are single arrays and multidimensional arrays of the
other data types and structures.

The computer treats a structure element that is an array as you might
expect from the earlier examples. For example, consider this structure:

struct x
int aC101C101; /* 10 x 10 array of ints */
float b;

Y y:

To reference integer 3,7 in a of structure y, you would write

y.al31C7)

When a structure is an element of another structure, it is called a nested
structure. For example, the structure variable element address is nested
inside emp in this example.

User-Defined Data Types 289

struct emp {
struct addr address;
float wage;

} worker;

Here, addr is the structure that was defined previously. The example defines
the structure emp as having two elements. The first element is the structure
of type addr that will contain an employee’s address. The second element is
wage, which holds the employee’s wage. The following code fragment will
assign the Zip code 98765 to the zip field of address of worker.

worker.address.zip = 98765;

As you can see, this fragment references the elements of each structure from
left to right from the outermost to the innermost.

Bitfields

Unlike most other computer languages, C has a built-in method to access a
single bit within a byte. This method can be useful for a number of reasons;
first, if storage is limited, you can store several Boolean (true or false) vari-
ables in one byte; second, certain device interfaces transmit information that
is encoded into bits within one byte; and third, certain encryption routines
need to access the bits within a byte. Although you can perform all of these
operations with the bitwise operators, a bitfield can add more structure
and efficiency to your code. The bitfield might also make a program more
portable.

The method that C uses to access bits is based on the structure. A bitfield
is just a special type of structure that defines the length in bits that each
element will be. The general form of a bitfield definition is

struct struct-type-name {
type name 1 : length;
type name 2 : length;

type name 3 : length;
}

290 Using Turbo C

You must declare a bitfield as either int, unsigned, or signed. You should
declare bitfields of length 1 as unsigned because a single bit cannot have a
sign.

For example, consider this structure definition:

struct device {
unsigned active : 1;
unsigned ready : 1;
unsigned xmt_error : 1;
} dev_code;

This structure defines three variables of one bit each. To see how you can use
a bitfield, imagine that your system has tape backup and that you want to use
the structure variable dev _code to decode information from the port of a
tape drive. The following code fragment will write a byte of information to
the tape, and check for errors by using dev_code given earlier.

wr_tape(c)
char c;
{
while(!dev_code.ready) rd(&dev_code); /* wait */

wr_to_tape(c); /* write out byte */

while(dev_code.active) rd(&dev_code); /* wait till
info is written */

if(dev_code.xmt_error) printf("write error");
}

Here, rd() returns the status of the tape drive and wr_to__tape() writes
the data. Figure 12-2 shows what the bitfield variable dev_code looks like
in memory.

As you can see from the example, the code accesses each bitfield by using
the dot operator. However, if the code references the structure through a
pointer, you must use the —> operator.

You do not have to name each bitfield. This freedom makes it easy to
reach the bit that you want, and allows you to pass up unused ones. For
example, if the tape drive also returned an end-of-tape flag in bit §, you could
alter the structure device to accommodate this end-of-tape flag by using

struct device {
unsigned active = 1;
unsigned ready : 1;

User-Defined Data Types 291

T
g
c
#
1

0 1 2 3 4 5 6 7

1

, unused

dev__code.xmt__error
dev__code.ready
dev__code.active

Figure 12-2. The bitfield variable dev __code in memory

unsigned xmt_error : 1;
unsigned : 2;
unsigned EOT : 1;

} dev_code;

Bitfield variables have certain restrictions. First, you cannot take the
address of a bitfield variable. Second, you cannot array bitfield variables.
Third, you cannot overlap integer boundaries. Finally, you cannot know, from
machine to machine, whether the fields will run from right to left or from
left to right; this limitation implies that any code that uses bitfields may have
some machine dependencies.

It is valid to mix normal structure elements with bitfield elements, as
shown here:

struct emp {
struct addr address;
float pay;
unsigned tay_off:1; /* Lay off or active =/
unsigned hourty:1: /* hourly pay or wage */
unsigned deductions:3: /% IRS deductions #*/
};

This structure defines an employee record that uses only one byte to hold
three pieces of information: the employee’s status, whether or not the

292 Using Turbo C

employee is salaried, and the number of deductions. Without the use of the
bitfield, this information would have used three bytes.

unions

In C, a union is a memory location that is used by several different variables,
which can be of different types. The union definition is similar to that of a
structure, as shown here:

union u_type {

int i;
char ch;
Y ;

As with a structure declaration, this definition does not declare any vari-
ables. You may declare a variable either by placing its name at the end of the
definition, or by using a separate declaration statement. To declare a union
variable envt of type u_type using the definition just given, you would write

union u_type cnvt;

In envt, both integer i and character ch share the same memory location.
(However, i occupies two bytes and ch uses only one.) Figure 12-3 shows the
way that i and ch share the same address.

When you declare a union, Turbo C will automatically create a variable
large enough to hold the largest variable type in the union.

To access a union element, you use the same syntax that you would use for
structures: the dot operator and the arrow operator. If you are accessing the
union element directly, use the dot operator. If you are accessing the union
variable through a pointer, use the arrow operator. For example, to assign
the integer 10 to element i of envt, you would write

cnvt.i=10;

User-Defined Data Types 293

Byte 0 Byte 1

o

Figure 12-3. How i and ch utilize the union envt

In the following example, the code passes a pointer to envt to a function:

func1(un)

union u_type *un;

{

un<>i=10; /* assign 10 to cnvt using
a pointer %/

Using a union can aid in the production of machine-independent, or por-
table, code. Because the compiler keeps track of the sizes of the variables that
make up the union, using a union does not produce machine dependencies.
You need not worry about the size of an integer, a character, a floating-point
variable, or whatever.,

In C, unions are used frequently when type conversions are necessary.
For example, the standard library function putw() will write the binary
representation of an integer to a disk file. Although there are many ways to
code this function, the one shown here uses a union. First, this code creates a

294 Using Turbo C

union that is comprised of one integer and a two-byte character array:

union pw {
int i;
char ch(23;
};

Now, you can create putw() by using the union, as shown here:

putw(word, fp) /* putw with union */
union pw word;
FILE *fp;
{
putc(word=>ch[01); /* write first half */
putc(word=>ch[13); /* write second hatf */
)

Although called with an integer, putw() can still use the standard function
pute() to write an integer to a disk file.

An interesting program that combines unions with bitfields displays the
ASCII code in binary that is generated when you press a key at the key-
board. The union allows getche() to assign the value of the pressed key to a
character variable, while the program uses the bitfield to display the indi-
vidual bits. Study this program to make sure that you fully understand its
operation.

/* display the ASCII code in binary for characters *j

/* a bitfield that will be decoded */
struct byte {

int a : 1;
int b : 1;
int ¢ : 1;
int d : 1;
int e 3 1;
int f : 1;
int g : 1;
int h : 1;
};

union bits {

char ch;

struct byte bit;
} ascii

void decode();
main()
{

do {
ascii.ch = getche();

User-Defined Data Types 295

printf(": ");
decode(ascii.bit);
} whileCascii.chl='q");
}

/* display the bit pattern for each character */
void decode(b)
union bits b;

{
if(b.bit.h) printf("1 ");
else printf ("0 ");
if(b.bit.g) printf("1 ");
else printf("0 ");
if(b.bit.f) printf("1 ");
else printf("0 ");
if(b.bit.e) printf("1 ");
else printf(“0 *);
if{b.bit.d) printf ("1);
else printf ("0 ");
if(b.bit.c) printf("1 ");
else printf("0 ");
if(b.bit.b) printf("1 *);
else printf("0 ");
if(b.bit.a) printf("1 ");
else printf("0 ");
printf("\n");
}

Figure 12-4 shows a sample run of the program.

-
v
[]
®
0
-
-

- nm\00|lvo=aurur~=’mmmnnvn>

. 46 20 er as es b e ab se ws s s4 v se ue es se se se ae ve ve o
OCO0000CUOOCOOPOOROOOOOO0O
H OO OO QM it et et bt o bt ot b et ot ek ot ot ot ot
Ll e e e el T Tl W WD
SO~ 0000000000000 00
OO MO M MM I~O0O00000
COCOHMROFR I~ MOOOOHMERMOOO
COCO0OOHHOOFHHOORMODO MO
SO O MO OO OO O O

-~
v

Figure 12-4. A sample run of the ASCII program

296 Using Turbo C

Enumerations

An enumeration is a set of named integer constants, and specifies all of the
legal values that a variable of that type may have. Enumerations are not
uncommon in everyday life. For example; an enumeration of the coins used in
the United States is

penny, nickel, dime, quarter, half-dollar, dollar

You define enumerations in almost the same way that you define structures,
with the keyword enum signaling the start of an enumeration type. The
general form is shown here:

enum enum-type-name { enumeration list } variable list;

Here, both the enumeration type name enum-type-name and the variable list
are optional. As with structures, you use the enumeration type name to
declare variables of its type. The following fragment defines an enumeration
called eoin that declares money to be of that type.

enum coin { penny, nickel, dime, quarter,
hatf_dollar, dollar);

enum coin money;
Given this definition and declaration, the following statements are valid:

money=dime;

if(money==quarter) printf("is a quarter\n");

The key point about an enumeration is that each symbol stands for an
integer value. As such, you may use the symbols in any integer expression.
Unless initialized otherwise, the value of the first enumeration symbol is
zero, the value of the second symbol is 1, and so forth. Therefore,

printf("%d %d",penny, dime);

displays 0 2 on screen.

User-Defined Data Types 297

You can specify the value of one or more of the symbols by using an
initializer. To do so, place an equal sign and an integer value after the sym-
bol. Whenever you use an initializer, the computer assigns values greater
than the previous initialization value to symbols that appear after the initial-
izer. For example, the following assigns the value of 100 to quarter:

enum coin { penny, nickel, dime, quarter=100,
half_dollar, dollarl;

The values of these symbols are as follows:

penny 0
nickel 1
dime 2
quarter 100
half__dollar 101
dollar 102

One common, but erroneous, assumption about enumerations is that the
symbols can be input and output directly. However, this is not the case. For
example, the following code fragment will not perform as desired:

/* this will not work »/

money = dollar;

printf("%s" money);

Remember that the symbol dollar is simply a name for an integer; it is not a
string. For the same reason, you cannot use this code to achieve the desired
results:

/* this code is wrong */

gets(s);

strcpy(money,s);

Thus, this code does not cause the computer to convert a string that contains
the name of a symbol automatically to that symbol.

Actually, creating code to input and output enumeration symbols is quite
tedious (unless you are willing to settle for their integer values). For exam-

298 Using Turbo C

ple, you need to use this code to display, in words, the kind of coins that
money contains:

switch(money) (

case penny: printf("penny");
break;

case nickel: printf("nickel");
break;

case dime: printf("dime");
break;

case quarter: printf("quarter");
break;

case half_dotlar: printf("half_dollar");
break; -

case dollar: printf("doliar");

Sometimes, to translate an enumeration value into its corresponding string,
you can declare an array of strings and use the enumeration value as an
index. For example, this code fragment will also output the proper string:

char namell[20])={
“penny",
"nickel",
"dime",
“quarter",
"half_dollar",
“dollar"”

>

;
printf("%s" ,namelmoneyl);

This fragment will only work if you do not use symbol initializations because
you must index the string array starting at zero. For example, this program
prints the names of the coins:

enum coin { penny, nickel, dime, quarter,
hatf_dotlar, dollar);

enum coin money;

char namel1C201={
"penny",
"nickel”,
"dime",
‘'quarter",

User-Defined Data Types 299

"half_dotlar",
“dollar"
};

main()
{
enum coin money;

for(money=penny; money<=dollar; money++)
printf("%s ",namelmoneyl);

Given the fact that you must convert enumeration values manually to their
human-readable string values for console I/0, you can find the greatest use of
enumeration values in routines that do not make such conversions. For exam-
ple, it is common to see an enumeration used to define a compiler’s symbol
table. Another use of enumerations is to help prove the validity of a program
by providing a compile-time redundancy check.

Using sizeof
to E'nsure
Portabilaty

So far, you have seen that you can use structures, unions, and enumerations
to create variables of varying sizes, and that the actual size of these variables
may change from machine to machine. You can use the sizeof unary operator
to compute the size of any variable or type, and to help eliminate machine-
dependent code from your programs.

For example, Turbo C has the following sizes for data types:

Type Size
(bytes)
char 1
int 2
long int 4
float 4
double 8

Therefore, this code will print the numbers 1, 2, and 8 on the screen:

300 Using Turbo C

char ch;
int i;
double f;

printf("%d'",sizeof(ch));
printf("%d",sizeof(i));

printf("%d",sizeof(f));

The sizeof operator is a compile-time operator: the computer knows all of
the information necessary to compute the size of any variable at compile
time. For example, consider this code:

union x {
char ch;
int i;
float f;
} tom;

The sizeof(tom) will be 4. At run-time, it does not matter what the union
tom is actually holding; all that matters is the size of the largest variable it
can hold because the union must be as large as its largest element.

The Keyword
typedef

Turbo C allows you to define new data type names explicitly by using the
typedef keyword. You are not actually creating a new data class, but rather
are defining a new name for an existing type. This process can help make
machine-dependent programs more portable; you only need to change the
typedef statements. The process also can aid in documenting your code by
allowing descriptive names for the standard data types. The general form of
the typedef statement is

typedef type name;

where type is any allowable data type and name is the new name for this

User-Defined Data Types 301

type. The name that you define is in addition to, and not a replacement for,
the existing type name.
For example, you could create a new name for float by using

typedef float balance;

This statement tells the compiler to recognize balance as another name for
float. Next, you could create a float variable by using balance:

balance over_du};

Here, over__due is a floating-point variable of type balance, which is
another word for float.

You can use typedef to create names for more complex types, too, as
shown here:

typedef struct client {
float due;

int over_due;

char namel40];

};

client clist[NUM_CLIENTS]; /* define array of
structures of type client =/

Using typedef can help make your code easier to read and easier to port
to a new machine. However, remember that you are not creating any new
data types.

Now that you have seen the power of Turbo C’s custom data types, you are
ready to move on to Turbo C’s advanced operators, which can give your pro-
grams true “turbo power”!

Advanced Operators

CHAPTER 13

In Part Two you learned about the more common Turbo C operators. Unlike
most languages, Turbo C contains several special operators that greatly
increase its power and flexibility —especially for system-level programming.
You will study these operators in this chapter.

Bitunse Operators

Unlike most other languages, C supports a complete arsenal of bitwise opera-
tors. Since C was designed to replace assembly language in most program-
ming tasks, it had to have the ability to support all (or at least many) opera-

303

304 Using Turbo C

tions that can be done in assembler. Bitwise operations refer to the testing,
setting, or shifting of the actual bits in a byte or word, both of which corre-
spond to Turbo C’s char and int data types. You may not use bitwise opera-
tions on type float, double, long double, void, or other more complex types.
Table 13-1 lists the operators.

The bitwise AND, OR, and one’s complement (NOT) are governed by the
same truth table that governs their logical equivalents, except that they work
on a bit-by-bit level. Given that p and q are Boolean variables, the exclusive
OR, #, has the truth table shown here.

p , 4 ,p*q
0 0 0
1 0 1
1 1 0
0 1 1

As the table indicates, the outcome of an XOR is true only if exactly one of
the operands is true; it is false if any other condition exists.

Bitwise operations most often find application in device drivers —such as
modem programs, disk-file routines, and printer routines —because you can
use the bitwise operations to mask off certain bits, such as parity. (You use
the parity bit to confirm that the rest of the bits in the byte are unchanged. It
is usually the high-order bit in each byte.) '

In terms of its most common usage, you can think of the bitwise AND as a
way to turn bits off; that is, any bit that is 0 in either operand will cause the
outcome of the operation to be 0. For example, the following function first
reads a character from the modem port by using the library function
bioscom(), and then resets the parity bit to zero. You can use the biescom()
function to access the asynchronous serial ports on an IBM PC or compatible.
(You can find a complete description in The Turbo C Reference Guide.)

char get_char_from_modem()

{
char ch;

¢ch = bioscom(2, 0, 0); /* get a character from
COM1 =/
return(ch & 127);
3

Advanced Operators 305

Table 13-1. The Bitwise Operators

Operator Action
& AND
! OR
A exclusive OR (XOR)
~ one’s complement (NOT)
>> shift right
<< shift left

Parity is indicated by the eighth bit, which is set to zero by ANDing it
with a byte that has bits 1 through 7 set to 1 and bit 8 set to 0. The expression
ch & 127 means to AND together the bits in ech with the bits that make up
the number 127. The result is that the eighth bit of ¢h will be set to 0. In the
following example, assume that ch had received the character A and had the
parity bit set:

Parity bit
11 1 ch that contains an A with parity set
0 1 1 127 in binary

& Do bitwise AND
01 0 0 0 0 0 1 A without parity

0 00 00O
11111

You can use the bitwise OR as the reverse of AND, to turn bits on. Any bit
that is set to 1 in either operand will cause the corresponding bit in the vari-
able to be set to 1. For example, here is 128 | 3.

1 0 0 0 0 0 0 0 128 in binary
0 0000 01 1 8 in binary
! Bitwise OR

1 0 0 0 0 0 1 1 Result

An exclusive OR, which is usually abbreviated as XOR, will set a bit on if

306 Using Turbo C

and only if the bits that you are comparing are different. For example, 127 2
120 is

1 1 1 127 in binary
0 0 0 120 in binary
Bitwise XOR
0 000 01 1 1 Result

61111
61111

Generally, bitwise ANDs, ORs, and XORs apply their operations directly
to each bit in the variable individually. For this reason, bitwise operations
are usually not used in conditional statements in the way that the relational
and logical operators are. For example, if X equals 7, then X && 8 evaluates
to true (1), whereas X & 8 evaluates to false (0).

Remember: relational and logical operators always produce a result that
18 either 0 or 1, whereas the similar bitwise operations may produce any arbi-
trary value in accordance with the specific operation. In other words, the logi-
cal and relational operators will always evaluate to 0 or 1, while bitwise
operations may have values other than 0 or 1.

The AND operator is also useful when you want to check to see if a bit is
on or off. For example, this statement checks to see if bit 4 in status is set:

if(status & 8) printf("bit &4 is on");

The reason that the statement uses 8 is that, in binary, 8 is represented as
0000 1000. Thus, the number 8, when translated into binary, has only the
fourth bit on. Hence, the if statement can only succeed when bit 4 of status is
also on. An interesting use of this procedure is the disp —binary() function
shown here. It displays, in binary format, the bit pattern of its argument.
You will use disp—binary() later in this chapter to watch the effects of
other bitwise operations.

/* display the bits within a byte */
void disp_binary(i)
int i;
{
register int t;

for(t=128; t>0; t = t/2)
if(i & t) printf("1 ");
else printf ("0 ");

Cprintf("\n");
b

Advanced Operators 307

The disp _binary() function works by successively testing each bit in the
byte, by using the bitwise AND, to determine if the bit is on or off. If it is on,
the function displays 1; if it is off, the function displays 0.

The shift operators, >> and <<, move all bits in a variable to the right or
the left as specified. The general form of the shift-right statement is

variable >> number of bit positions
and the general form of the shift-left statement is
variable << number of bit positions

As the statements shift bits off one end, the computer brings zeros in the
other end. Remember that a shift is not a rotate: the bits shifted off one end
do not come back around to the other. The bits shifted off are lost, and zeros
are brought in to replace them.

Bitwise-shift operations can be useful when you decode external-device
input such as D/A converters, and when you read status information. You can
also use the bitwise-shift operators to perform quick multiplication and divi-
sion of integers. As shown in Figure 13-1, a shift left will effectively multiply
a number by 2 and a shift right will divide it by 2. The figure assumes that
zeros are shifted in.

The following program graphically shows the effect of the shift operators.

/* Example of bitshifting. */
void disp_binary();

main()
{

int i=1, t;

for(t=0; t<8; t++) {
disp _binary(i);
i= 7T << 1;

)

printf("\n");

for(t=0; t<8; t++)
i=9 > 1;
disp_binary(i);
>
>

308 Using Turbo C

/* display the bits within a byte */
void disp_binary (i)
int i;
{
register int t;

for(t=128; t>0; t=t/2)
if(i & t) printf("1 ");
else printf("0 ");
printf(”\n");
>

It produces the following output:

00000O0GOCG1

00000010

0000O0CG1TO00O

00001000

00010000

00100000

01000000

170000000

10000000

01000000

00100000

00010000

00001000

00000100

00000010

00000GO0O01

x as Each
Statement Executes Value of x

char x;
x=T; 0 0 0 0 0 1 1 1 7
x<<L 0 0 0 0 1 1 1 O 14
x<<3 0 1 1 1 0 O 0 O 112
x<<2 1 1 0 0 0 0 0 O 192
x>>1 0 1 1 0 0 0 o0 O 96
X >> 2 O 0 0 1 1 0 0 O 24

Note: Each left shift multiplies by 2. After x<<2, information has been lost because a bit was shifted
off each end. Each right shift divides by 2. Subsequent divisions will not bring back any lost bits.

Figure 13-1. Multiplication and division with shift operators

Advanced Operators 309

Although C does not contain a rotate operator, you can easily create a
function to perform this task. A rotate operation is similar to a left-shift
operation except that a rotate operation shifts the bits that are shifted off the
left end onto the right end. For example, 1010 rotated once is 0101. One way
to perform a rotate requires using a union of two different types of data. The
first type is a two-element array of the type of data that you wish to rotate.
The second type is larger than the data that you will be rotating. Using this
union

union rotate {
char ch(2];
unsigned int i;
} rot;

the following function performs a byte rotation:

/* rotate a byte */
rotate_it(rot)
union rotate *rot;
{

rot=>chlf1] = 0; /* clear the high-order byte */
rot=>i = rot->1 << 1; /* shift once to the left */

/* see if a bit has been shifted out of ch[Q] *x/ .
if(rot=>chf11) rot=>i = rot=>i | 1; /% OR it back in */
b

The function first clears the high-order byte of the integer i so that if a bit is
shifted in, the function can detect it. By applying the left-shift operator to the
entire integer, the function will not lose a bit that leaves the byte ch[0], but
will move the bit into e¢h[1]. If a bit is shifted out, it is ORed into the lower-
order bit of ch[0]. A program that uses this function is shown here.

/* How to do a rotation */
union rotate {

char ch[2];

unsigned int i;

} rot;

void disp_binary();

main()
{
register int t;

rot.chf0] = 101;

310 Using Turbo C

for(t=0; t<7; t++) {
disp_binary(rot.i);
rotate_it(&rot);

>

X

/* rotate a byte */
rotate_it(rot)
union rotate *rot;

{
rot=>chf1]1 = 0; /x clear the high-order byte */
rot=>i = rot=> i << 1; /* shift once to the left */
/* see if a bit has been shifted out of ch[01 =*/
ifC¢rot=>chl11) rot<>i = rot=>i | 1; /% OR it back in */
>

/* display the bits within a byte */
void disp_binary (i)
int i;
{
register int t;

for(t=128; t>0; t=t/2)
if(i & t) printf("1 ");
else printf("0 ");
printf("\n");
>

This program produces this output by rotating the original byte six times.

01100101
171001010
10010101
00101011
01010110
10101100
01011001

The one’s complement operator, ~, will reverse the state of each bit in the
specified variable: all 1’s are set to 0 and all 0's are set to 1. An interesting
use for the one’s complement operator allows you to see the extended charac-
ter set that is hiding inside your computer. You may not realize that you can
directly generate only a small amount of the character set at the keyboard.

Advanced Operators 311

However, the following program uses the one’s complement operator to
reverse the bits in the characters that you type. These reversed-bit patterns
correspond to much of the extended character set. For example, when you
type d, the cents sign is displayed. You will be surprised how many different
characters are available. Here is the program:

/* A window into the PC's extended character set */

main()
{
char ch;

do {
ch = getch();
printf{("%c", “ch);
Ywhile(ch!='q");
3

Cipher routines often use the bitwise operators. To make a disk file
appear unreadable, you could perform some bitwise manipulations on it. One
of the simplest methods would be to complement each byte by using the one’s
complement to reverse each bit in the byte as is shown here:

Original byte 0 0 1 0 1 1 0 O
After first complement 1 1 1 0 0 1 1 Same
After second complement 0 0 1 0 1 1 0 04/

Notice that a sequence of two complements will always produce the original
number. Hence, the first complement would represent the coded version of
that byte. The second complement would decode this version to its original
value.

You could use the eneode() function shown here to encode a character. To
decode a coded character, you would simply use encode() a second time.

char encode(ch) /* a simple cipher function */
char ch;
{
return(“ch); /* complement it =/
)

312 Using Turbo C

The 2 Operator

You can use the ? operator to replace if/else statements of the general form

if(condition)
expression

else
expression

The key restriction of the ? operator is that the target of both the if and the
else must be a single expression —not another C statement.

The ? is called a ternary operator because it requires three operands and
takes the general form

Exp1 ? Exp2 . Exp3

where Expl1, Exp2, and Exp3 are expressions. Notice the use and placement
of the colon.

You can determine the value of a ? expression like this. Imagine that you
are evaluating Exp1. If it is true, then you evaluate Exp2 and it becomes the
value of the entire ? expression. If Exp1 is false, then you evaluate Exp3 and
its value becomes the value of the expression. For example, consider

x = 10;

y x>9 2?2 100 : 200;

This example will assign the value 100 to y. If x is less than 9, y will receive
the value 200. If you used the if/else statement, the same code would be

x = 10;

if(x>9) y=100;
else y=200;

However, the use of the ? operator to replace if/else statements is not
restricted to only assignments. To see how you can expand its use, it is impor-
tant to remember that all functions (except those declared as void) may
return a value. Hence, it is permissible to use one or more function calls in a
C expression. After encountering the function’s name, the computer executes
the function so that it can determine the funection’s return value. Therefore,

Advanced Operators 313

you can execute one or more function calls that use the ? operator by placing
them in the expressions that form the operands.
Here is an example:

main()
{

int t;

printf(": ");
scanf("%d",&t);

/* print proper message */
t 2?2 f1I(t)+f2() : printf("zero entered");

>

f1(n)
int n;
{
printf("%d ",n);
}

f20)
€

printf("entered");
3

In this simple example, if you enter a zero, then the printf() function will be
called and the message zero entered will appear. If you enter any other
number, then the program will execute both f 1() and £2(). It is important to
note that the value of the ? expression is discarded in this example. It is not
necessary to assign the value to anything.

A word of warning: Turbo C may rearrange the order of evaluation of an
expression in an attempt to optimize the object code. This rearranging could
cause functions that form the operands of the ? operator to execute in a
sequence other than you intended.

Using this scheme, you can again rewrite the magic number program
developed in Chapter 6 as shown here.

main() /* magic number program <« final version*/
{

int magic = 123; /* magic number */

int guess;

scanf("%d",&guess);
if (guess == magic) {
printf("** Right *x "),

314 Using Turbo C

printf("%d is the magic number" ,magic);
>
else
guess > magic ? printf("High") : printf("Low");
>

Here, the ? operator causes the computer to display the proper message
based on the outcome of the test guess>magie.

C Shorthand

C has a special shorthand that simplifies the coding of a certain type of
assignment statement. For example, you can rewrite

x = x+10;
in C shorthand as

x += 10;
The operator pair += tells the compiler to assign to x the value of x plus 10.

This shorthand will work for all of the binary operators in C. (Remember,
a binary operator is one that requires two operands.) The general form of the
shorthand is

var op = expression;

Here is another example:

x = x=100;

is the same as

You will see shorthand notation used widely in professionally written C
programs and you should become familiar with it.

Advanced Operators 315

The Comma Operator

You use the comma operator to string together several expressions. The com-
piler always evaluates the left side of the comma operator as void. Thus, the
expression on the right side will become the value of the total comma-
separated expression. For example,

x = (y=3, y+1);

first assigns the value 3 to y and then assigns the value of 4 to x. The paren-
theses are necessary because the comma operator has a lower precedence
than the assignment operator.

Essentially, the comma’s effect is to cause a sequence of operations to be
performed. When you use it on the right side of an assignment statement, the
value assigned is the value of the last expression of the comma-separated list.
For example, after the computer executes

y = 10;

x (y=y=-5, 25/y);
x will have the value 5 because the original value of y, 10, is reduced by 5,
and then the value of x is divided into 25, which yields 5 as the result.

In some ways, you can think of the comma operator as having the same
meaning as the word and has in English, as in the phrase “do this and this
and this.”

Parentheses and Square Brackets

The C language considers parentheses and square brackets to be operators.
Parentheses do the expected job of increasing the precedence of the opera-
tions that are inside the parentheses. Square brackets perform array-index-
ing and have been discussed earlier in this book. It is interesting to note that
most other computer languages do not consider parentheses and the array-
indexing symbols to be operators.

316 Using Turbo C

Table 13-2. The Precedence of C Operators

Highest () [] — .
! ~ 4++ —— — (type) *» & sizeof
* [/ %
+ —
<< >>
< <= > >=
= I=
&

&&
1
?

= = —= %= =

Precedence Summary

Table 13-2 lists the precedence of all C operators. Please note that all opera-
tors, except the unary operators and ?, associate from left to right. The unary
operators, which are *, &, —, and ?, associate from right to left.

The Turbo C
Preprocessor and

Comprler Options
CHAPTER 14

It is possible to include various instructions to the compiler in the source code
for a C program. These instructions are called preprocessor directives and,
although not actually part of the Turbo C language, they expand the scope of
the C programming environment. In addition to studying the preprocessor
directives, this chapter also examines Turbo C’s built-in macros. The chapter
concludes by looking at some of Turbo C’s more important compiler options.

317

318 Using Turbo C

The Turbo C Preprocessor

As defined by the proposed ANSI standard, the C preprocessor contains the
following directives.

#if
#ifdef
#ifndef
#else
#elif
#include
#define
#undef
#line
#error
#pragma

As is apparent, all preprocessor directives begin with a # sign.

The #define Directive

You use #define to define an identifier and a string that the compiler will

_substitute for the identifier each time it is encountered in the source file. The
proposed ANSI standard refers to the identifier as a macro-name, and to the
replacement process as macro-substitution. The general form of the directive
is

#define identifier string

Notice that this statement contains no semicolon. There may be any number
of spaces between the identifier and the string but, once the string begins,
only a newline can terminate it.

For example, if you wish to use the word TRUE for the value 1 and the
word FALSE for the value 0, then you would declare two macro #defines as

#define TRUE 1
#define FALSE O

The Turbo C Preprocessor and Compiler Options 319

This causes the compiler to substitute a 1 or a 0 each time that it encounters
the name TRUE or FALSE in your source file. For example, the following
will print 0 1 2 on screen:

printf("%d %d %d",FALSE, TRUE, TRUE+1);

After you define a macro-name, you may use it as part of the definition of
other macro-names. For example, this code defines the names ONE, TWO,
and THREE to their respective values:

#define ONE 1
#define TWO ONE+ONE
#define THREE ONE+TWO

It is important to understand that the macro-substitution is simply the
process of replacing an identifier with its associated string. Therefore, if you
wish to define a standard error message, you might write something like
this:

#define E_MS "standard error on input\n"

printf(E_MS);

Turbo C will actually substitute the string standard error on input\n when
it encounters the identifier E_MS. To the compiler, the printf() statement
will actually appear to be

printf("standard error on input\n");

No text substitutions will occur if the identifier occurs within a quoted
string. For example,

#define XYZ this is a test

printf("Xxyz");

will not print this is a test, but rather will print XYZ.
If the string is longer than one line, you may continue the string on the
next line by placing a backslash at the end of the line, as shown in this

320 Using Turbo C

example:

#idefine LONG_STRING "this is a very long \
string that is used as an example”

C programmers commonly use capital letters for defined identifiers. This
convention helps anyone who reads the program know at a glance that a
macro-substitution will take place. Also, it is best to put all #define direc-
tives at the start of the file or, perhaps, in a separate header file, rather than
sprinkling them throughout the program.

The most common usage of macro-substitutions is to define names for
“magic numbers” that occur in a program. For example, you may have a
program that defines an array and has several routines to access that array.
Instead of “hard-coding” the array’s size with a constant, it is better to define
a size and use that name whenever you need the size of the array. This
method only requires a change in one place and a recompilation to alter the
size of the array if you need to change it. Here is an example of this use of
macro-substitutions:

#define MAX_SIZE 100

float balance[MAX_SIZE];

The #define directive has another powerful feature: the macro-name can
have arguments. Each time that the compiler encounters the macro-name,
the actual arguments found in the program replace the arguments asso-
ciated with the macro-name. Study this example:

#define MIN(Ca,b) (a<b) ? a : b

main()
{
int x,y;

x=10;

y=20;

printf(“the minimum is: %d",MIN(x,y);
)

When compiling this program, the compiler will substitute the expression
defined by MIN(a,b), except that x and y will be used as the operands. Thus,

The Turbo C Preprocessor and Compiler Options 321

after the compiler makes the substitution, the printf() statement will look
like this:

printf(“the minimum is: %d",(x<y) 72 x : y);

The use of macro-substitutions in the place of actual functions has one
major benefit: it increases the speed of the code because no overhead for a
function call is incurred. However, you pay for this increased speed with an
increase in the size of the program because of the duplicated code.

The #error Directive

The #error directive forces Turbo C to stop compilation when the compiler
encounters it. It is used primarily for debugging. The general form of the
directive is

fferror error-message
The error-message does not appear between double quotes. When the com-
piler encounters this directive, it displays the following information and ter-

minates compilation.

Fatal: filename linenum Error directive: error-message

The #include Directive

The #include preproccessor directive instructs the compiler to include
another source file with the one that has the #include directive in it. You
must enclose the source file to be read between either double quotes or angle
brackets. For example,

#include "stdio.h"
#include <stdio.h>

322 Using Turbo C

both instruct the C compiler to read and compile the header for the disk-file
library routines.

It is valid for “include files” to have #include directives in them. These
files are referred to as nested includes. The number of levels of nesting that
you can use depends on the implementation that you are using.

If you specify explicit pathnames as part of the filename identifier, then
the compiler will search for the included file in only those directories. If you
do not specify pathnames and if you enclose the filename in quotes, the com-
piler first searches the current working directory. If the file is not found,
then the compiler searches any directories specified on the command line.
Finally, if the file has still not been found, the compiler searches the stan-
dard directories, as defined by the implementation.

If you do not specify explicit pathnames and if you enclose the filename in
angle brackets, the compiler first searches for the file in the directories that
are specified in the compiler command line. If the file is not found, then the
compiler searches the standard directories. At no time does the compiler
search the current working directory.

Conditional
Compilation Directives

Several directives allow you to compile portions of your program’s source
code selectively. This process is called conditional compilation and is used
widely by commercial software houses that provide and maintain many cus-
tomized versions of one program.

The #if, #else, ttelaf, and
#tendrf Directives

The general idea behind the #if is that if the constant expression that follows
the #if is true, then the compiler will compile the code between it and an
#endif; if the expression is false, the compiler will skip over it. You use
#endif to mark the end of an #if block.

The Turbo C Preprocessor and Compiler Options 323

The general form of #if is

#if constant-expression
statement sequence
#endif

If the constant-expression is true, Turbo C will compile the block of code; if
the constant-expression is false, the compiler will skip over it. For example,
this program

/* simple #if example */

#define MAX 100
main()
{
#if MAX>99
printf("compiled for array greater than 99\n");
#endif
}

will display the message on screen because, as defined, MAX is greater than
99. This example illustrates an important point: the expression that follows
the #if is evaluated at compile-time. Therefore, the expression must contain
only identifiers that have been previously defined and constants — it may not
use any variables. In addition, it may not use the sizeof operator.

The #else works in much the same way as the else that forms part of the
C language: #else establishes an alternative if the #if fails. You can expand
the previous example as shown here:

/* simple #if/#else example x/

#define MAX 10
main()
{
#if MAX>99
printf("compiled for array greater than 99\n");
#else
printf("compiled for small array\n");
#endif
>

This version defines MAX to be less than 99. Thus, the compiler does not
compile the #if position of the code, but does compile the #else alternative.

324 Using Turbo C

Therefore, the program displays the message compiled for small array.

Notice that this version uses the #else to mark both the end of the #if
block and the beginning of the #else block. This structure is necessary
because there can only be one #endif associated with any #if.

The #elif stands for “else if” and is used to establish an if/else/if ladder
for multiple-compilation options. A constant expression follows the gelif. If
the expression is true, then the compiler compiles that block of code and tests
no other #elif expressions. If the expression is false, the compiler checks the
next expression in the series. The general form is

#if expression
statement sequence
#elif expression 1
statement sequence
#elif expression 2
statement sequence
#elif expression 8
statement sequence
#elif expression

#elif expression N
statement sequence
#endif

For example, this fragment uses the value of ACTIVE_COUNTRY to
define the currency sign:

#define US O
#define ENGLAND 1
#define FRANCE 2

#define ACTIVE_COUNTRY US

#if ACTIVE_COUNTRY==US

char currencyll=s"dollar";
#eldif ACTIVE_COUNTRY==ENGLAND

char currencyCl="pound"”;
flelse

char currencyll="franc";
#endif

The Turbo C Preprocessor and Compiler Options 325

You may nest #ifs and #elifs to any level up to some implementation-
specific limit, with the #endif, #else, or #elif associating with the nearest #if
or #elif. For example, the following is perfectly valid:

#if MAX>100
#if SERIAL_VERSION
int port=198;
Helif
int port=200;
#endif
#else
char out_buffer[100];
#endif

The #ifdef and #ifndef Directives

Another method of conditional compilation uses the directives #ifdef and
#ifndef, which mean “if defined” and “if not defined,” respectively.
The general form of #ifdef is

#ifdef macro-name
statement sequence
#endif

If you previously defined the macro-name in a #define statement, the com-
piler will compile the statement sequence between the #ifdef and #endif. The
general form of #ifndef is

#ifndef macro-name
statement sequence
#endif

If the macro-name is currently undefined by a #define statement, then the
block of code is compiled. Both the #ifdef and #ifndef may use an #else
statement but not the #elif. For example,

#define TED 10

main()

326 Using Turbo C

{
#ifdef TED
printf("Hi Ted\n");
#else
printf("Hi anyone\n");
#endif
#ifndef RALPH
printf("RALPH not defined\n");
#endif
b

will print Hi Ted and RALPH not defined. However, if you did not define
TED, then the code would display Hi anyone, followed by RALPH not
defined.

You may nest #ifdefs and #ifndefs to any level in the same way that you
nest #ifs.

The #undef Directive

You use #undef to remove a previously defined definition of the macro-name
that follows the directive. The general form of #undef is '

#undef macro-name

For example, this code

#idefine LEN 100
#define WIDTH 100

char array[LENJICWIDTH];

#fundef LEN
#undef WIDTH
/* at this point both LEN and WIDTH are undefined */

defines both LEN and WIDTH until the #undef statements are encountered.
The principle use of #undef is to allow macro-names to be localized to
only those sections of code that need them.

The Turbo C Preprocessor and Compiler Options 327

The #line Directive

You can use the #line directive to change the contents of _ _ LINE _ __ and
— —FILE _ _, which are predefined identifiers in Turbo C. The basic form
of the command is

#line number [“filename”]

where number is any positive integer and the optional filename is any valid
file identifier. The number is the number of the current source line and the
filename is the name of the source file. You primarily use #line for debug-
ging purposes and special applications.

For example, the following specifies that the line count will begin with
100.

#line 100 /* reset the line counter */
main() /* Line 100 =*/
{ /* Line 101 =/

printf("Xd\n", LINE_); /* Line 102 =/

The printf() statement displays 102 because it identifies the third line in the
program after the #line 100 statement.

The #pragma Directive

The #pragma directive is an implementation-defined directive that allows
you to give various instructions, defined by the compiler’s creator, to the com-
piler. The general form of the #pragma directive is

#pragma name

where name is the name of the #pragma statement you want. Turbo C

328 Using Turbo C

defines two #pragma statements: warn and inline.
The warn directive causes Turbo C to override warning message options.
The general form of warn is

#pragma warn setting

where setting is one of the various warning error options, as defined in The
Turbo C Reference Guide. For most applications you will not need to use this
form of #pragma.

The second #pragma statement is inline. It has the general form

#pragma inline

and tells Turbo C that the program contains in-line assembly code. (In-line
assembly code is covered in detail in the sequel to this book, Advanced Turbo
C, by Herbert Schildt [Borland-Osborne/McGraw-Hill, 1987])

Predefined Macro-Names

The proposed ANSI standard specifies five built-in predefined macro-names.
They are

— —LINE_—
— —FILE_
— .DATE_
— —TIME_ _
— —STDC_ —~

In addition to these, Turbo C also defines these built-in macros:

— —CDECL_. _

— —COMPACT — —
— —HUGE_. _

— —LARGE _

— —MEDIUM_ _
— —_MSDOS_ .

— —PASCAL_.
— —SMALL_. _
— —TINY__

— —TURBOC_. _.

The Turbo C Preprocessor and Compiler Options 329

The #line discussion presented earlier in this chapter discussed both the
— —LINE_ _ and — _FILE__ _ macros.

The — _DATE__ __ macro contains a string of the form month/day/year,
which is the date of the translation of the source file into object code.

The — _TIME_ _ macro contains as a string the time of the trans-
lation of the source code into object code. The form of the string is
hour:minute:second.

The macro — _STDC_ _ contains the decimal constant 1. This means
that the implementation is an ANSI-standard-conforming implementation. If
the constant is any other number, then the implementation must vary from
the standard.

The — _CDECL_ _ macro is defined if you use the standard C calling
convention —that is, if the Pascal option is not in use. If the Pascal option is
in use, then the macro is undefined.

The compiler defines only one of these macros, based upon the memory

model that you use during compilation: — _TINY_. —, _ _SMALL__ _
— —COMPACT— _, _ _MEDIUM_ _, _ _LARGE_ _, and — _
HUGE_ _.

The — _MSDOS__ _ macro is defined with the value 1 under all situa-
tions when you use the MS-DOS version of Turbo C.

The — _PASCAL_ _ macro is defined only if you use the Pascal call-
ing conventions to compile a program. If you do not use those conventions,
— —PASCAL_ _ is undefined.

Finally, — _TURBOC_ _ contains the version number of Turbo C.

For the most part, you use these built-in macros in fairly complex pro-
gramming environments when you develop or maintain several different
versions of a program —perhaps running them on different computers. If you
are a beginning Turbo C programmer, you should be aware that these
macros are available, but you will probably not need to use one for some time.

Comprler and Linker Options

As you use Turbo C, you probably realize that you can control many options
that affect the way that Turbo C compiles and links programs. Until now, you
have used Turbo C’s default settings without worry because they can accom-
modate a wide variety of programming projects. While it is beyond the scope
of this book to cover all of the options available in Turbo C, the most impor-

330 Using Turbo C

tant options will be examined here. This chapter will discuss these options
from the point of view of the integrated environment. Except for those
options and settings that deal exclusively with the integrated environment,
all options that are available in the integrated environment are also available
for use by the command-line version.

These are the options available in the Options menu:

. Compiler

« Linker

+ Environment

. Args

. Retrieve options

. Store options

Compiler Options

After selecting Compiler, you will see these compiler options:

« Model

- Defines

. Code generation
. Optimization

- Source

+ Errors

« Names

Model

The Model option allows you to select which memory mode] to use to compile
your program. The default is small and is adequate for most applications.

The Turbo C Preprocessor and Compiler Options 331

Defines

The Defines option allows you to define temporary preprocessor symbols that
your program will automatically use. This feature is most useful when you
are debugging your program.

Code generation

Selecting Code generation presents a large number of switches that you can
set. These are the available options:

. Calling convention

- Instruction set

- Floating point

. Default char type

. Alignment

- Generate underbars

. Merge duplicate strings
. Standard stack frame

« Test stack overflow

« Line numbers

You can choose between the C calling conventions and the Pascal calling
conventions. A calling convention is simply the method by which a pro-
gramming language calls functions and passes arguments. Generally, you
should use the C calling convention.

If you know that the object code of your program will be used on a
80186/80286 processor, then you can select the Instruction set option to allow
for this. This option will cause your program to execute a little faster, but
your program will not be able to run on 8088/8086-based computers. The
default is 8088/8086 instructions.

You can choose the way that Turbo C implements floating-point opera-
tions. The default—and most common—method is to use 8087/80287-
emulation routines. The 8087 chip is the math co-processor for the 8086 fam-

332 Using Turbo C

ily of CPUs, while the 80287 chip is the math co-processor for the 80286 CPU.
When one of these co-processors is in the system, it allows extremely rapid
floating-point operations. However, if you do not have a math co-processor, or
if your program will be used in a variety of computers, you must emulate the
8087’s operation in software, a process that is much slower. If you do have the
co-processor, then you can select the 8087/80287 option, which uses the co-
processor. Finally, you can “deselect” floating-point operations altogether
when your program does not use them.

The default char type option determines whether the type char is signed
or unsigned by default. By default, char is signed in Turbo C.

The Alignment option determines whether data is aligned on byte or
word boundaries. On the 8086 and 80286 processors, memory accesses are
quicker if data is word-aligned. However, there is no difference on the 8088.
The default is word-alignment.

The Generate underbars option, which is on by default, determines
whether or not Turbo C will add an underscore to the start of each identifier
in the link file. For the most part, do not turn this option off unless you are an
experienced programmer and unless you understand the inner workings of
Turbo C.

A common compiler optimization that Turbo C performs is the elimina-
tion of duplicate string constants. Thus, Turbo C merges all duplicate strings
into one string. You can stop this merging by toggling the Merge duplicate
strings option.

You can use the Standard stack frame option to force Turbo C to gener-
ate standard calling and returning code for each function call. Doing this
helps the debugging process. You will not generally have to worry about or
use this option.

You can force Turbo C to check for stack overflows by turning on the Test
stack overflow option. Doing this will cause your program to run slower, but
this may be necessary in order to find certain bugs.

Finally, you can force Turbo C to enter the number of each line of the
source file into the object file. Having line numbers is useful when you use a
debugging program.

The Turbo C Preprocessor and Compiler Options 333

Optimization
Under the Optimization option are these four toggles:

« Optimize for size/speed
+ Use register variables on/off
- Register optimization off/on

« Jump optimization off/on

Turbo C is very efficient. But for somewhat complicated reasons, some
optimizations that make the object code smaller also make it slower. Other
optimizations make the object code faster but larger. Therefore, Turbo C lets
you decide which consideration —speed or size—is the most important by
providing the Optimize for option. The default is size.

When toggled off, the Use register variables option suppresses the use of
register variables. Unless you are interfacing to non-Turbo C code, leave this
option turned on.

The Register optimization option, which is off by default, allows Turbo C
to perform additional optimizations if you turn it on. However, leave this
option off, until you understand the inner workings of Turbo C.

By toggling Jump optimization on, you allow Turbo C to rearrange the
code within loops and switch statements. This setting can cause higher per-
formance. However, if you are using a debugger on your object code, then
turn this option off.

Source

The Source option lets you set the number of significant characters in an
identifier, determine whether comments may be nested, and force Turbo C to
accept only the ANSI keywords. Generally, you should leave these options in
their default settings. However, let’s look at a use for nested comments.

334 Using Turbo C

In its standard form, C (including Turbo C) does not allow one comment
to be inside another. For example, in standard C, this code will cause a
compile-time error:

/* In standard ANSI C this will not compile. */

/%
if(x<10) printf("all OK"); /* signal status =/
else printf("failure in port 102");

*/

Here, the programmer is attempting to “comment out” a section of code, but
failed to notice that a nested comment was created. By selecting the Nested
comments option, you can tell Turbo C to allow situations like the example
just given. This ability can be useful when you wish to remove a section of
code temporarily. (The standard and portable way to do this is to use an
#ifdef preprocessor command.)

Errors

The Errors option lets you determine how Turbo C reports errors during the
compilation process. You may set the way that Turbo C reports many fatal
and warning errors until the compilation process stops. You can toggle
whether or not Turbo C displays warning errors. Furthermore, you can
select precisely what type of warning errors will be displayed.

As you know, Turbo C is very forgiving and tries to understand your
source code, no matter how unusual it may seem. However, if Turbo C sus-
pects that what you have written is incorrect, it will display a warning error.
A warning error does not stop compilation —it simply informs you of Turbo
C’s concerns over a certain construct. You must decide whether or not Turbo
C is correct in its concern.

Many warning errors are generated by portability issues. An error may
occur because the code that you are working on is intrinsically nonportable.
In this case, you may tire of seeing the warning messages and choose to turn
them off temporarily.

Keep in mind that as a beginning C programmer, you should keep all

The Turbo C Preprocessor and Compiler Options 335

warnings active and then correct any statement that causes a warning. As
you become more experienced, you will be able to better decide which warn-
ings are important and which can be ignored.

Names

The Names option lets you change the names that Turbo C uses for the var-
ious memory segments used by your program. You will only need to change
these names in unusual situations. Do not change them unless you truly know
what you are doing.

Linker Options
If you select the Linker options, you will see the following choices:

» Map file
+ Initialize segments
+ Default libraries
+ Warn duplicate symbols
+ Stack warning
. Case-sensitive link
Until you become an advanced Turbo C programmer, you will probably not

want to change any of these. However, let’s quickly look at what you can use
them for.

Map file

By default, Turbo C’s linker does not create a map file of your compiled pro-
gram. A map file shows the relative positions of the variables and functions
that make up your program, and where they reside in memory. With the

-

336 Using Turbo C

Map file option, you may create a map file for debugging certain programs
in complex situations. You can create a map file three ways. The first shows
only the segments. The second shows the public, or global, symbols. The third
creates a detailed, or complete, map.

Initialize segments

By default, the Initialize segments option is off. You can turn it on in highly
specialized situations to force the linker to initialize segments.

Default libraries

The Default libraries option applies only when you are linking modules that
other C compilers compiled. By default, this option is off. If you turn it on,
the linker will search those libraries that are defined in those separately
compiled modules before it searches Turbo C’s libraries.

Warn duplicate symbols

By default, Warn duplicate symbols is on. Thus, if you have multiple-
defined global identifiers, the linker will warn you of this fact. By turning
the option off, you will not see this message and the linker will choose which
symbol to use.

Stack warning

If you are using Turbo C to create routines that you will link with external
assembly language programs, you might receive the link-time message No
stack specified. You can eliminate this message by turning the Stack warn-
ing option off. However, this is another situation that you are unlikely to
encounter.

The Turbo C Preprocessor and Compiler Options 337

Case-sensitive link

The Case-sensitive link option is on by default because C is case-sensitive.
However, if you are trying to link Turbo C modules with FORTRAN
modules, for example, you may need to turn this option off. Generally,
though, you will not want to change the default.

The Turbo C
Integrated Environment Options

By selecting the Environment option from the Options menu, you can
change the way Turbo C’s integrated environment works. Here are the
choices that you will see:

« Include directories
« Output directory

. Library directory

« Turbo C directory
- Auto save edit

- Backup source files

« Zoomed windows

The first four options let you define the paths to the indicated directories.

You can cause Turbo C to save the program in the editor automatically
after each change by turning the Auto save edit option on. By default, this
option is off.

When you save a file, Turbo C automatically renames the previous version
of that file from a .C extension to a .BAK extension. This process ensures that
you always have the previous version as a backup. You can prevent Turbo C
from using the process by toggling the Backup source files option. The only
reason that you would want to turn this option off is if disk space is very
limited.

338 Using Turbo C

Finally, you can have Turbo C use zoomed windows by default by turning
the Zoomed windows option on.

Args

As you know, when you run a program in the interactive environment, you do
not type the program name as you would do from the DOS system prompt.
Hence, you cannot specify command-line arguments directly when running a
program in the integrated environment. However, Turbo C handles this prob-
lem by allowing you to specify command-line arguments through the Args
option.

When you select Args, Turbo C prompts you to enter the command-line
parameters that your program requires. Enter the desired parameters —but
not the program name. Then, each time that you run the program, Turbo C
will use the command-line parameters that you specified.

Saving and Loading Options

After you have customized Turbo C by changing various options, you have
two choices: you can use the options during your current session only, or you
can save them. The two entries Retrieve options and Store options in the
Options menu allow you to save and load the options.

The TCCONFIG.TC File

When executing the integrated environment, Turbo C first looks for a file
called TCCONFIG.TC, which holds the configuration information for the
system. You can change the contents of this file by using the Store option.
With this option, the changes that you make to Turbo C will still be in
memory the next time you execute it.

The Turbo C Preprocessor and Compiler Options 339

Turbo C looks for the TCCONFIG.TC file first in the current working
directory. If Turbo C does not find the file, it then looks in the TURBO direc-
tory, should it exist. If you are going to modify TCCONFIG.TC, you should
keep a copy of the unmodified file handy in case you need to go back to the
default settings later.

Using Other Configuration Files

When you save the changes that you have made to Turbo C, you do not have to
save them in the TCCONFIG.TC file. You may specify any file that you
desire. When beginning to execute the integrated environment, Turbo C will
use the default settings. To load the options you want, simply select the
Options menu and use the Retrieve options option. Then, specify the name
of the file that contains the settings you want. The advantage to this
approach is that Turbo C’s default settings are always available if you should
need them, but you still can easily customize Turbo C to your liking.

Some Common
Turbo C Labrary
Functions
CHAPTER 15

This chapter discusses a number of the more common or more important
Turbo C library functions that have not been fully discussed in an earlier
chapter. If you have looked through the library section in The Turbo C Refer-
ence Guide, you are aware that the number of library functions is quite large
and that it is beyond the scope of this book to cover each function. However,
those discussed here are the ones that you will need for most programming

tasks.
You can group the library functions into the following categories:

« I/0 functions
. String and character functions

« Mathematical functions

3

342 Using Turbo C

. Operating-system-related functions
. Dynamic allocation

. Miscellaneous functions

Chapter 10 thoroughly covered the I/O functions and this chapter will not
expand their discussion here. This chapter will look at each of the other cate-
gories in turn. Keep in mind that some of the functions discussed have been
presented in passing earlier. This chapter includes them for a more formal
treatment.

Each function description begins with the appropriate header files and
then presents the function’s prototype. The prototype provides you with a
way of knowing what type of argument the function takes and what type of
value it returns. The chapter lists the functions alphabetically within their
category.

Remember: this chapter only scratches the surface. You should study The
Turbo C Reference Guide to see what other functions are available.

String and
Character Functions

The Turbo C standard library has a rich and varied set of string- and
character-handling functions. In C, a string is a null-terminated array of
characters. You can find the declarations for the string functions in the
header file string.h. The character functions use etype.h as their header file.

Because C has no bounds checking on array operations, it is your respon-
sibility as programmer to prevent an array overflow. As the proposed ANSI
standard puts it, if an array has overflowed, “the behavior is undefined,”
which is a simple way of saying that your program is about to crash!

In C, a printable character is one that the computer can display on a ter-
minal. Printable characters are usually those between a space (0x20) and a
tilde (0xfE). Control characters have values between (0) and (0x1F), as well
as DEL (0x7F).

You declare the character functions to take an integer argument. How-
ever, the function can only use the low-order byte. Generally, you are free to
use a character argument because the compiler will automatically elevate it
to int at the time of the call.

Some Common Turbo C Library Functions 343

#include “ctype.h”
int isalnum(int ch)

The isalnum() function returns nonzero if its argument is either a letter of
the alphabet or a digit. If the character is not alphanumeric, then the func-
tion returns 0.

Example

This program checks each character read from stdin and reports all alpha-
numeric ones:

#include "ctype.h"
#include "stdio.h"

main()
{
char ch;
for(;;) {
ch = getchar();
if(ch==' ') break;
if(isalnum(ch)) printf("%c is alphanumeric\n”, ch);
>
>

#include “ctype.h”
wnt isalpha(int ch)

The isalpha() function returns nonzero if ch is a letter of the alphabet; the
function returns 0 if ¢k is not a letter.

Example

This program checks each character read from stdin and reports all those
that are letters of the alphabet:

344 Using Turbo C

#include "ctype.h"
#include "stdio.h"
main()
{

char ch;

for(;;) <
ch = getchar();
if(ch==' ') break;
if(isalpha(ch)) printf("%c is a letter\n", ch);
3
b 4

#tinclude “ctype.h”
wnt isentrl(int ch)

The isentrl() function returns nonzero if ck is between 0 and 0x1F or if ch is
equal to 0x7F (DEL); the function returns 0 if ¢k is neither of these.

Fxample

This program checks each character read from stdin and reports all those
that are control characters.

#include "ctype.h"
#include "stdio.h"
main()
{

char ch;

for(;;) €
ch = getchar();
if(ch==' ') break;
if(iscntrl(ch)) printf("%c is a control character\n", ch);
)
}

Some Common Turbo C Library Functions 345

#include “ctype.h”
wnt isdigit(int ch)

If ch is a digit, 0 through 9, the isdigit() function returns nonzero. The func-
tion returns 0 if ¢k is not a digit.

Example

This program checks each character read from stdin and reports all those
that are digits:

#include "ctype.h”
#include "stdio.h"
main()
{

char ch;

for(;;) (
ch = getchar();
if(ch==' ') break;
if(isdigit(ch)) printf("%c is a digit\n", ch);
>
b

#include “ctype.h”
wnt isgraph(int ch)

If ch is any printable character other than a space, the isgraph() function
returns nonzero; if not, the function returns 0. Printable characters are in
the range from 0x21 through Ox7E.

346 Using Turbo C

Example

This program checks each character read from stdin and reports all those
that are printable characters.

#include "ctype.h"
#include "stdio.h"
main()
{

char ch;

for(;;) {
ch = getchar();
if(ch=="' ') break;
ifCisgraph(ch)) printf("%c is a printing character\n",ch);
3
>

#ineclude “ctype.h”
wnt tslower(int ch)

If ch is a lowercase letter (a to z), the islower() function returns nonzero; if
not, the function returns 0.

Example

This program checks each character read from stdin and reports all those
that are lowercase letters:

#include "ctype.h”
#include "stdio.h"
main()
{

char ch;

for(;;) (

ch = getchar();

if(ch==' ') break;

if(islower(ch)) printf("%c is lowercase\n", ch);
b

Some Common Turbo C Library Functions 347

#include “ctype.h”
int 1sprint(int ch)

The isprint() function returns nonzero if ck is a printable character, which
could also be a space; the function returns 0 if ck is nonprintable. Printable
characters are often in the range 0x20 through 0x7E.

Example

This program checks each character read from stdin and reports all those
that are printable.

#include "ctype.h"
#include "stdio.h"
main()
{

char ch;

for(;;) (
ch = getchar();
if(ch==' ') break;
if(isprint(ch)) printf("%c is printable\n", ch);
>
b

#include “ctype.h”
tnt tspunct(int ch)

The ispunet() function returns nonzero if ch is a punctuation character,
except a space; the function returns 0 if ck is another type of character. The
term punctuation, as defined by this function, includes all printing charac-
ters that are neither alphanumeric nor a space.

FExample

This program checks each character read from stdin and reports all those

348 Using Turbo C

that are punctuation:

#include "ctype.h"
#include "stdio.h"
main()
<

char ch;

for(;;) €
ch = getchar();
if(ch==' ') break;
if(ispunct(ch)) punctf("%c is punctuation\n", ch);
>
>

#include “ctype.h”
wnt isspace(int ch)

The isspace() function returns nonzero if ch is either a space, tab, or newline
character; the function returns 0 if ¢k is none of these characters.

Example

This program checks each character read from stdin and reports all those
that are white-space characters:

ffinclude "ctype.h"
#include "stdio.h"
main()
{

char ch;

for(;;) (

ch = getchar();

if(ch=="' ') break;

jf(isspace(ch)) spacef("%c is white-space\n", ch);
b J

Some Common Turbo C Library Functions 349

#include “ctype.h”
wnt tsupper(int ch)

The isupper() function returns nonzero if ck is an uppercase letter (A to Z);
the function returns 0 if ch is any other character.

Example

This program checks each character read from stdin and reports all those
that are uppercase letters:

#include "ctype.h"
#include "stdio.h"
main()
{

char ch;

for(;;)
ch = getchar();
if(ch==' ') break;

if(isupper(ch)) printf("%c is uppercase\n", ch);
}
>

\
#include “ctype.h”
int isxdigit(int ch)

The isxdigit() function returns nonzero if ch is a hexadecimal digit; the
function returns 0 if ¢k is not. A hexadecimal digit will be in one of these
ranges: AtoF,atof or 0to9.

Example

This program checks each character read from stdin and reports all those

350 Using Turbo C

that are hexadecimal digits.

#include "ctype.h"
#include "stdio.h"
main()
{

char ch;

for(;;) {
ch = getchar();
if(ch==' ') break;
if(isxdigit(ch)) xdigitf("%c is hexadecimal \n", ch);
X
b

#include “string.h”
char #*strcat(char *stri, char *str2)

The streat() function concatenates a copy of str2 to strl, and terminates stri
with a null. The first character of str2 overwrites the null terminator that
originally ended str1. The operation does not affect the string str2.

The streat() function returns stri.

Remember that no bounds checking takes place, so you as the pro-
grammer are responsible for ensuring that str! is large enough to hold both
its original contents and the contents of str2.

Example

This program appends the first string read from stdin to the second. For
example, if the user enters hello and there, the program will print
therehello.

#include "string.h"
main()
{

char s1C80], s2[801;

gets(s1);
gets(s2);
strcat(s2, s1);
printf(s2);

Some Common Turbo C Library Functions 351

#include “string.h”
char *strchr(char *str, int ch)

The strehr() function returns a pointer to the first occurrence of the low-
order byte of ¢k in the string that str points to. If the function does not find a
match, it returns a null pointer.

Example

This program prints the string is a test with a space preceding the string:

#include "string.h"
main()
{

char *p;

p = strchr("this is a test", (int) ' ");
printf(p);

#include “string.h”
int stremp(char *stri, char *str2)

The stremp() function lexicographically compares two null-terminated
strings and returns an integer based on the outcome, as shown here:

Value Meaning
Less than 0 strl is less than str2
0 str1 is equal to str2
Greater than 0 strl is greater than str2

Example

You can use the following function as a password-verification routine. It will
return 0 upon failure, and 1 upon success.

352 Using Turbo C

password()
{
char s[80], *strcmp();

printf("enter password: ");
gets(s);

if(strcmp(s,"pass™)) {
printf("invalid password\n");
return 0;

)

return 1;

#ineclude “string.h”
char *strepy(char *strl, char *str2)

You can use the strepy() function to copy the contents of str2 into str1. The
string str2 must be a pointer to a null-terminated string. The strepy() func-
tion returns a pointer to strl.

If str1 and str2 overlap, the behavior of strepy() is undefined.

Example
The following code fragment will copy “hello” into string str:

char str[803];
strepy(str, "hello");

#include “string.h”
unsigned int strien(char *str)

The strlen() function returns the length of the null-terminated string that
str points to. The function does not count the null.

Some Common Turbo C Library Functions 353

Example

The following code fragment will print the number 5 on screen:

strcpy(s, "hello");
printf("%d", strlen(s));

#include “stdio.h”
char *strstr(char *stri, char *str2)

The strstr() function returns a pointer to the first occurrence in the string
that str1 points to of the string that str2 points to (except str2’s null termina-
tor). The function returns a null pointer if it does not find a match.

Example

This program displays the message is is a test.

#include "string.h"
main()
{

char #*p;

p = strstr("this is a test"”,"is");
printf(p);
)

#include “string.h”
char *strtok(char *stri, char *str2)

" The strtok() function returns a pointer to the next token in the string that
str1 points to. The characters making up the string pointed to by str2 are the
delimiters that determine the token. The function returns a null pointer

354 Using Turbo C

when there is no token to return.

The first time that strtok() is called, the call actually uses strl. Subse-
quent calls use a null pointer for the first argument. In this way, the function
can reduce the entire string to its tokens.

It is important to understand that the strtok() function modifies the
string that str! points to. Each time that the function finds a token, it places
a null where it found the delimiter. In this way, strtok() can continue to
advance through the string.

You can use a different set of delimiters for each call to strtok().

Example

This program reduces the string “The summer soldier, the sunshine
patriot” to tokens, with spaces and commas being the delimiters. The output
will be

The!summer'soldieritheisunshineipatriot

#include "string.h"
main()
{

char *p;

p = strtok("The summer soldier, the sunshine patriot”," ");
printf(p);
do {
p = strtok('\0', ", *);
if(p) printf("}%s", p);
} while(p);

#include “ctype.h”
int tolower(int ch)

The tolower() function returns the lowercase equivalent of ck if ch is a letter;
the function returns ch unchanged if ck is not a letter.

Some Common Turbo C Library Functions 355

Example
This fragment displays q:

putchar(tolower('@*'));

#include “ctype.h”
nt toupper(int ch)

The toupper() function returns the uppercase equivalent of ch if ¢k is a let-
ter; the function returns ck unchanged if ¢k is not a letter.

Example

This fragment displays A:

putchar(toupper('a'));

The Mathematics
Functions

Turbo C contains several mathematics functions that take double arguments
and return double values. These functions fall into the following categories;

» Trigonometric functions
- Hyperbolic functions
- Exponential and logarithmic functions

« Miscellaneous

356 Using Turbo C

All of the mathematics functions require you to include the header
math.h in any program that uses them. In addition to declaring the mathe-
matics functions, this header defines three macros called EDOM, ERANGE,
and HUGE_VAL. If an argument to a mathematics function is not in the
domain for which it is defined, then the function returns 0 and sets the global
errno equal to EDOM. If a routine produces a result that is too large to be
represented by a double, an overflow occurs. This causes the routine to
return HUGE__VAL and sets errno to ERANGE, which indicates a range
error. If an underflow happens, the routine returns 0 and sets errno to
ERANGE.

#include “math.h”
double acos(double arg)

The acos() function returns the arc cosine of arg. The argument to acos()
must be in the range of —1 through 1; if not, a domain error will occur.

Example

This program prints the arc cosines, in increments of one-tenth, of the values
—1 through 1:

#include "math.h"

main()
{
double val = =1.0;

do €
printf("arc cosine of Xf is %f\n", val, acos(val));
val += 0.1;
} while(val<=1.0);
)

Some Common Turbo C Library Functions 357

#include “math.h”
double asin(double arg)

The asin() function returns the arc sine of arg. The argument to asin() must
be in the range —1 through 1; if not, a domain error will occur.

Example

This program prints the arc sines, in increments of one-tenth, of the values
—1 through 1:

#include "math.h"
main()
{
double val=+1,0;
do {
printf(”arc sine of %f is %Xf\n", val, asin(val));
val += 0.1;

} while(val<=1.0);
>

#include “math.h”
double atan(double arg)

The atan() function returns the arc tangent of arg.

Example

This program prints the arc tangents, in increments of one-tenth, of the
values —1 through 1:

358 Using Turbo C

#include "math.h"

main()
{
double val=-1.0;

do {
printf(“arc tangent of Xf is Xf\n", val, atan(val));
val += 0.1; :
} while(val<=1.0);
)

#include “math.h”
double atan2(double y, double x)

The atan2() function returns the arc tangent of y/x. The function uses the
signs of its arguments to compute the quadrant of the return value.

Example

This program prints the arc tangents, in increments of one-tenth, of 3, of the
values —1 through 1:

#include "math.h"

main()
{
double y=+«1.0;

do {
printf("atan2 of %f is %f\n", val, atan2(y, 1.0));
y += 0.1;
} while(y<=1.0);
>

Some Common Turbo C Library Functions 359

#include “math.h”
double ceil(double num)

The ceil() function returns the smallest integer, which is represented as a
double that is not less than num. For example, given 1.02, ceil() would
return 2.0. Given —1.02, ceil() would return —1.

Example
This fragment prints 10 on screen:

printf("Xf", ceil(9.9));

#include “math.h”
double cos(double arg)

The cos() function returns the cosine of arg. The value of arg must be in
radians.

Example

This program prints the cosines, in increments of one-tenth, of the values —1
through 1:
#include "math.h"

main()
{

360 Using Turbo C

double val=-1.0;

do {
printf("cosine of %f is %f\n", val, cos(val));
val += 0.1;

} while(val<=1.0);

#ineclude “math.h”
double cosh(double arg)

The cosh() function returns the hyperbolic cosine of arg. The value of arg
must be in radians.

Example

This program prints the hyperbolic cosines, in increments of one-tenth, of
the values —1 through 1:

#include "math.h"

main()
{

double val=-1.0;

do {
printf("hyperbolic cosine of Xf is %f\n", val, cosh(val));
val += 0.1;
>} while(val<=1.0);
3

#include “math.h”
double exp(double arg)

The exp() function returns the natural logarithm e raised to the arg power.

Some Common Turbo C Library Functions 361

Example
This fragment displays the value of e (rounded to 2.718282):

printf("value of e to the first: %f", exp(1.0));

tinclude “math.h”
double fabs(double num)

The fabs() function returns the absolute value of num.

Example
This program prints 1.0 1.0 on screen:

#include "math.h"

main()
{

printf("X1.1f %X1.1f", fabs(1.0), fabs(=1.0));

tinclude “math.h”
double floor(double num)

The floor() function returns the largest integer, which is represented as a
double, that is not greater than num. For example, given 1.02, floor() would
return 1.0. Given —1.02, floor() would return —2.0.

Example

This fragment prints 10 on screen:

printf("Xf", floor(10.9));

362 Using Turbo C

#include “math.h”
double log(double num)

The log() function returns the natural logarithm for num. A domain error
occurs if num is negative, while a range error occurs if the argument is 0.

Example

This program prints the natural logarithms for the numbers 1 through 10:

#include "math.h"

main()
{
double val=1.,0;
do {
printf("%f Xf\n", val, Llog(val));
val++;
} while (val<11.0);

#include “math.h”
double log10(double num)

The log10() function returns the base 10 logarithm for num. A domain error
occurs if num is negative, while a range error occurs if the argument is 0.

Example

This program prints the base 10 logarithms for the numbers 1 through 10:

#include "math.h"

Some Common Turbo C Library Functions 363

double val=1.0;

do {
printf("%Xf %f\n", val, lLog10(val));
val++;
} while (val<11.0);
b

tinclude “math.h”
double pow(double base, double exp)

The pow() function returns base raised to the exp power (baseer). A domain
error occurs if base is 0 and if exp is less than or equal to 0. A domain error
may also occur if base is negative and exp is not an integer. An overflow
produces a range error.

Example
This program prints the first 10 powers of 10:

#include "math.h"

main()
{
double x=10.0, y=0.0;

do {
printf("Xf",powlx, y));
y++;
} while(y<11);
)

tinclude “math.h”
double sin(double arg)

The sin() function returns the sine of arg. The value of arg must be in
radians.

364 Using Turbo C

Example

This program prints the sines, in increments of one-tenth, of the values —1
through 1.

#include "math.h"

main()
{
double val=-1.0;

do {
printf("sine of %f is %f\n", val, sin(val));
val += 0.1;
} while(val<=1.0);
b

#include “math.h”
double sinh(double arg)

The sinh() function returns the hyperbolic sine of arg. The value of arg must
be in radians.

Example

This program prints the hyperbolic sines, in increments of one-tenth, of the
values —1 through 1.

#include "math.h"

main()
{
double val=-1.0;

do {
printf("hyperbolic sine of %f is %Zf\n", val, sinh{val));
val += 0.1;
} while(val<=1.0);
>

Some Common Turbo C Library Functions 365

#include “math.h”
double sqrt(double num)

The sqrt() function returns the square root of num. If you call sqrt() with a
negative argument, a domain error will occur.

Example

This fragment prints 4 on screen:

printf("Xf", sqrt(16.0));

#include “math.h”
double tan(double arg)

The tan() function returns the tangent of arg. The value of arg must be in
radians.

Example

This program prints the tangent, in increments of one-tenth, of the values —1
through 1:

#include "math.h"

main()
{
double val=~1.0;

do {
printf("tangent of %f is X%Xf\n", val, tan(val));
val += 0.1;
} while(val<=1.0);
)

366 Using Turbo C

#include “math.h”
double tanh(double arg)

The tanh() function returns the hyperbolic tangent of arg. The value of arg
must be in radians.

Example

This program prints the hyperbolic tangent, in increments of one-tenth, of
the values —1 through 1:

#include "math.h"

main()
{
double val=-1.0;

do {
printf("Hyperbolic tangent of %f is %f\n", val, tanh(val));
val += 0.1;.
} while(val<=1.0);
>

Operating-System-Related
Functions

This section covers those functions that in one way or another are more
operating-system-sensitive than others. Of the functions found in Turbo C’s
library, these functions include the time and date functions, and those func-
tions that allow direct operating-system interfacing.

The time and date functions require the header time.h. It defines two
types. The type time_t can represent the system time and date as a long
integer, which is called the calendar time. The structure type tm holds the

Some Common Turbo C Library Functions 367

date and time broken down into its elements. Here is the definition of the tm

structure:

struct tm {

int
int
int
int
int
int
int
int
int

tm_sec;
tm_min;
tm_hour;
tm_mday;
tm_mon;
tm_year;
tm_wday;
tm_yday;
tm_isdst

/%

/ *
/*
/ *
/ *
/%
/*
] *

seconds, 0-59 =x/

minutes, 0<59 *x/

hours, 0«23 *»/

day of the month, 1~31 %/

months since Jan, 0-11 */

years from 1900 =/

days since Sunday, 0~6 */

days since Jan 1, 0=365 */
Daylight Savings Time indicator */

The value of tm_isdst will be positive if daylight-savings time is in effect, 0
if it is not in effect, and negative if there is no information available. When
represented in this way, the value of tm_isdst is referred to as the broken-

down time.

The PC-DOS interfacing functions that Turbo C defines require the
header dos.h, which defines a union REGS that corresponds to the registers
of the 8088/86 CPU and is used by some of the system-interfacing functions.
REGS is defined as the union of two structures in order to allow either a
word or a byte to access each register. Here is dos.h:

/* dos.h

befines structs, unions, macros, and functions for dealing
with MSDOS and the Intel iAPX86 microprocessor family.

Copyright (c) Borland International Inc. 1987
ALL Rights Reserved.

*/

struct WORDREGS

<

unsigned int ax, bx, cx, dx, si, di, cflag;

'

struct BYTEREGS
{

-unsigned char al, ah, bl, bh, ¢cl, ch, dl, dh;

X;

368 Using Turbo C

union REGS {
struct WORDREGS x;
struct BYTEREGS h;
X;

tinclude “time.h”
char *asctime(struct tm *ptr)

The asctime() function returns a pointer to a string. This string converts the
information stored in the structure that ptr points to into the following form:

day month date hours:minutes:seconds year \n \0Q
Here is an example:
Wed Jun 19 12:05:34 1999

The compiler generally obtains the structure pointer passed to asctime()
from either localtime() or gmtime().

The buffer that asctime() uses to hold the formatted output string is a
statically allocated character array. Turbo C overwrites this buffer each time
that the function is called. If you wish to save the contents of the string, you
must copy it elsewhere.

Example
This program displays the local time defined by the system:

#include "time.h"
#include "stddef.h"

Some Common Turbo C Library Functions 369

main{()

{
struct tm *ptr;
time_t Lt;

Lt = time(NULL);
ptr = localtime(&Llt);
printf(asctime(ptr));

#include “dos.h” int bdos(int frnum,
unsigned dx, unsigned al)

The bdos() function is not part of the proposed ANSI standard. You use the
bdos() function to access the PC-DOS system call that fnum specifies. The
function first places the value dx into the DX register and the value al into
the AL register, and then executes an INT 21H instruction.

The bdos() function returns the value of the AX register which PC-DOS
uses to return information. You can only use the bdos() function to access
those system calls that either take no arguments or that require only DX,
AL, or both for their arguments.

Example

This program reads characters directly from the keyboard, bypassing all of
C’s I/0 functions, until the user types a carriage return:

/* do raw keyboard reads */
#include "dos.h"”

main()
{

char ch;

while((ch=bdos(1,0,0))!=\n) ;
>

370 Using Turbo C

tineclude “time.h”
char *ctime(long time)

The ctime() function returns a pointer to a string of the form
day month date hours:minutes:seconds year \n \Q

given a pointer to the calendar time. You generally can obtain the calendar
time through a call to time(). The ctime() function is equivalent to

asctime(localtime(time))

The buffer that ctime() uses to hold the formatted output string is a stati-
cally allocated character array. Turbo C overwrites the buffer each time that
the function is called. If you wish to save the contents of the string, you must
copy it elsewhere.

Example

This program displays the loecal time defined by the system:

#include "time.h"
#include "stddef.h"

main()
{
time_t Lt;

Lt = time(NULL);

printf(ctime(lt));
)

#include “time.h”
double difftime(time —t time2, time —t ttmel)

The difftime() function returns the difference, in seconds, between timel
and time2. Thus, the function returns the result of time2 minus timel.

Some Common Turbo C Library Functions 371

Example

This program times the number of seconds that the empty for loop needs to
go from 0 to 500000.

#include "time.h"
#include "stddef.h"

main()

€
time_t start,end;
Long unsigned int t;

start = time(NULL);

for(t=0; t<S500000; t++) ;

end = time(NULL);

printf("loop required %Xf seconds\n", difftime(end, start));

tinclude “time.h”
struct tm *gmtime(time —t time)

The gmtime() returns a pointer, in the form of a tm structure, to the
broken-down form of time. The time is represented in Greenwich mean time.
Generally, you can obtain the time value through a call to time().

The structure that gmtime() uses to hold the broken-down time is stati-
cally allocated, and is overwritten each time that the function is called. If you
wish to save the contents of the structure, you must copy it elsewhere.

Example

This program prints both the local time and the Greenwich mean time of the
system:

#include "time.h"
#include "stddef.h"

/* print Local and GM time x/
main()
{

372 Using Turbo C

struct tm xlocal, *gm;
time_t ¢t;

t = time(NULL);
tocal = localtime(&t);
printf("Local time and
gm = gmtime(&t);
printf("Greenwich mean

t#include “dos.h”
int int86(int int _num, union REGS
*n_—regs, unton REGS *out_regs)

The int86() function is not part of the proposed ANSI standard. You use the
int86() function to execute a software interrupt that int num specifies. The
function first copies the contents of the union in__regs into the register of the

date: Xs'", asctime(local));

time and date:

processor, and then executes the proper interrupt.

Upon return, the union out__regs will contain the values of the registers

that the CPU has upon return from the interrupt.

The union REGS is defined in the header dos.h.

Example

The int86() function is often used to call ROM routines in the IBM PC. For
example, this function executes an INT 10H function code 0 that causes the

Xs" ,gmtime(gm));

video mode to be set to that specified by the argument mode:

#include "dos.h"

set_mode(mode)
char mode;
{

union REGS in, out;

in.h.al = mode;
in.h.ah =

int86(0x10, &in, &out);

0; /* set mode function number */

Some Common Turbo C Library Functions 373

#include “dos.h”
wnt intdos(union REGS *in_regs,
union REGS *out_regs)

The intdos() function is not part of the proposed ANSI standard. You use the
intdos() function to access the PC-DOS system call specified by the contents
of the union pointed to by in_regs. The function executes an INT 21H
instruction, and places the outcome of the operation in the union that out—
regs points to. The intdos() function returns the value of the AX register,
which PC-DOS uses to return information.

You use the intdes() function to access those system calls that either
require arguments in registers other than DX, AL, or both, or that return
information in a register other than AX.

The union REGS defines the registers of the 8088/86 family of processors,
and is found in the dos.h header.

Example

This program reads the time directly from the system clock, bypassing all of
C’s time functions:

#include "dos.h"
main()
{
union REGS in, out;
in.h.ah = 0x2c; /* get time function number =*/

intdos(&in, &out);
printf("time is X.2d:%.2d:%.2d",out.h.ch, out.h.cl, out.h.dh);

t#include “trme.h”
struct tm *localtime(time_—t *time)

The localtime() function returns a pointer, in the form of a tm structure, to
the broken-down form of time. The-time value is represented in localtime.

374 Using Turbo C

Generally, you can obtain the time value through a call to time().

The structure that localtime() uses to hold the broken-down time is stati-
cally allocated and is overwritten each time that the funection is called. If you
wish to save the contents of the structure, you must copy it elsewhere.

Example

This program prints both the local time and the Greenwich mean time of the
system:

/* print Local and Greenwich mean time =*/
main()
{

struct tm *local, *local;
time_t t;
t = time(NULL);

local = localtime(&t);

printf(“Local time and date: %s", asctime(local));

local = gmtime(&t);

printf(”"Greenwich mean time and date: %Xs", asctime(local));

#include “time.h”
time__t time(time—t time)

The time() function returns the current calendar time of the system. If the
system has no time, then the function returns —1.

You can call the time() function either with a null pointer or with a point-
er to a variable of type time_t. If you use the latter, then the function will
also assign the calendar time to the argument.

Some Common Turbo C Library Functions 375

Example
This program displays the local time that the system defines:

#include "time.h"
#include "stddef.h"

main{)

{
struct tm *ptr;
time_t Lt;

Lt = time(NULL);
ptr = localtime(&Llt);
printf(asctime(ptr));

Dynamic Allocation

A Turbo C program uses one of two primary ways to store information in the
main memory of the computer. The first way uses global and local
variables —including arrays and structures. In the case of global variables
and static local variables, the storage is fixed throughout the run-time of
your program. For dynamic local variables, Turbo C allocates storage from
the stack space of the computer. Although Turbo C efficiently implements
these variables, they require the programmer to know, in advanece, the
amount of storage needed for every situation. The second way that Turbo C
can store information is through the use of Turbo C’s dynamic-allocation sys-
tem. In this way, Turbo C allocates storage for information from the free
memory area as needed. The free memory region lies between your program
with its permanent storage area, and the stack.

The proposed ANSI standard specifies that the header information neces-
sary to the dynamic-allocation system will be in stdlib.h. However, Turbo C
also places the allocation-header information into alloc.h. This book will use
the proposed ANSI standard’s approach because it is portable.

376 Using Turbo C

#include “stdlib.h”
votd *calloc(unsigned num, unsigned size)

The calloe() function returns a pointer to the allocated memory. The amount
of memory allocated is equal to num=size. Thus, calloe() allocates sufficient
memory for an array of num objects of size size.

The calloe() function returns a pointer to the first byte of the allocated
region. If there is not enough memory to satisfy the request, the function
returns a null pointer. It is always important to verify that the return value |
is not a null pointer before you attempt to use it.

Example

This function returns a pointer to a dynamically allocated array of 100
floats:

#include "stdlib.h"

float *get_mem()
{
float =»p;

p = (float *) calloc(100, sizeof(float));
if(lp) {
printf("allocation failure - aborting');
exit(1);
}

return p;

#include “stdlib.h” /* malloc.h
tn some systems */vord free(void *ptr)

The free() function returns the memory that ptr points to back to the heap.
This process makes the memory available for future allocation.

Some Common Turbo C Library Functions 377

It is imperative that you only call free() with a pointer that was pre-
viously allocated by using one of the dynamic-allocation system’s functions,
such as malloe() or calloc(). Using an invalid pointer in the call most likely
will destroy the memory-management mechanism and cause a system crash.

Example

This program first allocates room for the user-entered strings, and then frees
it:

#include "stdlib.h"

main()
{
char *str[1003;
int i;
for(i=0; i<100; i++) <{
if((strfil = (char *)malloc(128))==NuLL) {
printf(”allocation error =~ aborting");
exit(1);
b
gets(strlil);
>

/* now free the memory */
for(i=0; i<100; i++) free(strlil);

#include “stdlib.h”
votd *malloc(unsigned size)

The malloe() function returns a pointer to the first byte of a region of
memory of size size that you have allocated from the heap. If there is insuffi-
cient memory in the heap to satisfy the request, malloe() returns a null point-
ter. It is always important to verify that the return value is not a null pointer
before you attempt to use it. Attempting to use a null pointer will usually
result in a system crash.

378 Using Turbo C

Example

This function allocates sufficient memory to hold structures of type addr:
#include "stdlib.h"

struct addr {
char namel401];
char streetf40];
char city[40];
char statel3];
char zip[10];

};

struct addr *get_struct()
{
struct addr *p;

if((p=(struct addr *)malloc(sizeof(addr)))==NULL) {
printf("allocation error ~ aborting”);
exit(1);
)
return p;
>

tinclude “stdlib.h”
void *realloc(void *ptr, unsigned size)

The realloc() function changes the size of the allocated memory that pir
points to to that specified by size. The value of size may be greater or less
than the original. The function may return a pointer to the memory block
because it may be necessary for realloe() to move the block in order to
increase its size. If this occurs, the function copies the contents of the old
block into the new block and no information is lost.

If there is insufficient free memory in the heap to allocate size bytes, then
the function returns a null pointer and frees (loses) the original block. This
process indicates the importance of verifying the success of a call to
realloe().

Example

This program first allocates 17 characters, copies the string “this is 16
chars” into them, and then uses realloc() to increase the size to 18 in order

Some Common Turbo C Library Functions 379

to place a period at the end of the string:

#include "stdlib.h"

main()
{
char *p;

p = (char *) malloc(17);

if(lp) {
printf("allocation error - aborting");
exit(1);

h 2

strcpy(p,"this is 16 chars");

p = realloc(p,18);

if(lp) {
printf("allocation error =« aborting");
exit(1);

)

strcat(p, ".");

printf(p);

free(p);

Mascellaneous Functions

The functions presented in this section are all of the standard functions that
do not easily fit in any other category.

#include “stdlib.h”
void abort()

The abort() function causes immediate termination of a program. The func-
tion does not flush any files, and returns the value 3 to the calling process,
which is usually the operating system.

The primary use of abort() is to prevent a runaway program from clos-
ing active files.

380 Using Turbo C

Example
This program will terminate if the user enters A.

#include "stdlib.h"

main()
{
for(;;)
if(getchar()=='A"') abort();

#tinclude “stdlib.h” ‘
int abs(int num)

The abs() function returns the absolute value of the integer num.

Example
This function converts the user-entered numbers into their absolute values:

#include "stdlib.h"

get_abs ()
{
char num(801;

gets(num)

return abs(atoi(num));
b,

#include “stdlib.h”
double atof(char *str)

The atof() function converts the string that str points to into a double value.
The string must contain a valid floating-point number. If it does not, the
function returns 0.

Some Common Turbo C Library Functions 381

The number may be terminated by any character that cannot be part of a
valid floating-point number. This character may be a white-space character,
punctuation (other than periods), or a character other than E or e. Thus, if
you call atof() with 100.00HELLOQO, the function will return the value
100.00.

Example
This program reads two floating-point numbers and displays their sum:

#include "stdlib.h"

main()
{
char num1[801, num2C80];

printf("enter first: ");

gets(numi);

printf("enter second: ");

gets(num2);

printf("the sum is: Xf",atoi(numi)+atoi(num2));

#include “stdlib.h”
int atoi(char *str)

The atoi() function converts the string that str points to into an int value.
The string must contain a valid integer number. If it does not, the function
returns 0.

The number may be terminated by any character that cannot be part of
an integer number. This character may be a white-space character, punctua-
tion, or a character other than E or e. Thus, if you call atoi() with 123.23,
the function will return the integer value 123 and ignore the 0.23 portion.

Example

This program reads two integer numbers and displays their sum:

382 Using Turbo C

#include "stdlib.h"

main()
{
char num1L80), num2(80];

printf(“enter first: ");

gets(numl);

printf(”enter second: ");

gets(num2);

printf(“the sum is: Xd",atoi(numi)+atoi(num2));

tinclude “stdlitb.h”
wnt atol(char *str)

The atol() function converts the string that str points to into a long int value.
The string must contain a valid long-integer number. If it does not, the func-
tion returns 0.

The number may be terminated by any character that cannot be part of
an integer number. This character can be a white-space character, punctua-
tion, or a character other than E or e. Thus, if you call atol() with 123.23,
the function will return the integer value 123 and will ignore the 0.23
portion.

Example

This program reads two long-integer numbers and displays their sum:

#include "stdlib.h"

main()

{
char num1C801, num2(803;

printf("enter first: ");

gets(numl);

printf("enter second: ");

gets{(num2);

printf("the sum is: %XLd",atol(numl)+atol(num2));

Some Common Turbo C Library Functions 383

#include “stdlrb.h”

void *bsearch(void *key, voird *base,
unsigned num, unsigned size,
wnt (*compare)())

The bsearch() function performs a binary search on the sorted array that
base points to, and returns a pointer to the first member that matches the
key that key points to. Here, num specifies the number of elements in the
array and size describes the size (in bytes) of each element.

The bsearch() function uses the function that compare points to to com-
pare an element of the array with the key. The form of the compare function
must be

SJunc_name(argl, arg2)void *argi, *arg2
The function must return the following values:

« A value less than 0 if arg! is less than arg2

+ 0 if argl is equal to arg2

« A value greater than 0 if arg! is greater than arg2

The array must be sorted in ascending order with the lowest address con-
taining the lowest element.

If the array does not contain the key, then bsearch() returns a null
pointer.

Example

Assuming buffered keyboard I/0, this program reads characters entered at
the keyboard and determines whether they belong to the alphabet:

#include "stdlib.h”
#include "ctype.h"

384 Using Turbo C

char *alpha="abcdefghijkilmnopgrstuvwxyz";

main()

{
char ch;
char *p;
int comp();

do {
printf("enter a character: ");
scanf("XcX*c",&ch);
ch = tolower(ch);
p = (char *) bsearch(&ch,alpha, 26, 1, comp);
if(p) printf('is in alphabet\n");
else printf("is not in alphabet\n");

} while(p);

)

/* compare two characters */
comp(ch, s)
char *ch, *s;
{
return #*ch~*s;
}

#tinclude “stdlib.h”
void exit(int status)

The exit() function causes immediate, normal termination of a program. The
function passes the value of status to the calling process, usually the operat-
ing system, if the environment supports it. By convention, if the value of
status is 0, normal program termination is assumed. You may use a nonzero
value to indicate an error.

Example

This function performs menu selection for a mailing-list program. If the user
selects Q, this function terminates the program.

Some Common Turbo C Library Functions 385

menu()
{
char choice;

do {
printf("Enter names (E)\n");
printf(“Delete name (D)\n");
printf("Print (P)\n");
printf("Quit (Q)\n");

} while(!strchr("EDPQ",toupper(ch));

if(ch=='a') exit(0);

return ch;

>

#include “stdlib.h”
char *itoa(int num, char *str, int radix)

The proposed ANSI standard does not currently define the itoa() function.
The itoa() function converts the integer num into its string equivalent,
and places the result in the string that str points to. The base of the output
string is determined by radiz, which may be in the range of 2 through 36.
The itoa() function returns a pointer to st». Generally, str has no error-
return value. Be sure to call itoa() with a string of sufficient length to hold
the converted result.

The main use of itoa() is to transform integers into strings so that you can
send them to a device not directly supported by the normal C I/O system —
that is, a nonstream device. You may accomplish the same process by using
sprintf(). The reason that this discussion includes itoa() is that its use is
quite prevalent throughout older existing code.

Example
This program displays the value of 1423 in hexadecimal, which is 58F:

#include "stdtib.h"

main()
{
char pL203];

386 Using Turbo C

itoa(1423, p, 16);

printf(p);
b

#include “stdlib.h”
long labs(long num)

The labs() function returns the absolute value of the long int num.

Example
This function converts the user-entered numbers into their absolute values:

#include "stdlib.h"
long int get_Labs()

{
char num[C803];

gets(num)

return labs(atol(num));
3

#include “setymp.h”

vord longgmp(envbuf, val)
Jmp —buf envbuf:

wnt val

The longjmp() function causes program execution to resume at the point of
the last call to setjmp(). These two functions are Turbo C’s way of providing
for a jump between functions. Notice that longjmp() requires the
header setjmp.h.

Some Common Turbo C Library Functions 387

The longjmp() function operates by resetting the stack as described in
envbuf, which must have been set by a prior call to setjmp(). This process
causes program execution to resume at the statement after the setjmp()
invocation. Thus, you can “trick” the computer into thinking that it never left
the function setjmp(). (Here is a graphic explanation. The longjmp() func-
tion “warps” across time and memory space to a previous point in your pro-
gram, without having to perform the normal function-return process.)

The buffer envbuf is of type jmp_buf, which is defined in the header
setjmp.h. You must have set the buffer through a call to setjmp() prior to
calling longjmp().

The value of val becomes the return value of setjmp() and may be inter-
rogated to determine where the long jump originated from. The only value
that longjmp() does not allow is 0.

It is important to understand that you must call the longjmp() function
before the setjmp() function returns. If you do not, the result is technically
undefined. (Actually, a crash will almost certainly occur.)

By far, the most common use of longjmp() is to return from a deeply
nested set of routines when a catastrophic error occurs.

Example
This program prints 1 2 3.

#include "setjmp.h"
jmp_buf ebuf;

main()

char first=1;
int 1i;

printf("1 ");
i = setjmp(ebuf);
if(first) {
first = ifirst;
f20;
printf("“this will not be printed");

printf("“%d", i);

388 Using Turbo C

f20)
{

printf("2 ");
Longjmp(ebuf,3);
3

#include “stdlib.h”
void gsort(void *base, unsigned num,
unsigned size, int (*compare)())

The gsort() function sorts the array that base points to by using a quicksort,
which was developed by C.A.R. Hoare. The quicksort is generally considered
the best general-purpose sorting algorithm. Upon termination, the function
will sort the array. Here, num specifies the number of elements in the array,
and size describes the size in bytes of each element.

The gsort() function uses the function that compare points to to compare

an element of the array with the key. The form of the compare function must
be

func__name(argl, arg?) void »argl, sarg2;
The function must return the following values:

« A value less than 0 if argl is less than arg2
. 0 if argl is equal to arg2

. A value greater than 0 if arg? is greater than arg?

The array is sorted into ascending order with the lowest address contain-
ing the lowest element.

Some Common Turbo C Library Functions

Example

This program sorts a list of integers and displays the result:

#include "stdlib.h" /% "search.h" in some systems */

int numC101= {
1,3,6,5,8,7,9,6,2,0

r

main()
{
int i, comp();

printf("original array: ");
for(i=0; i<10; i++) printf("%d ", num{il);

gsort(num, 10, sizeof(int), comp);
printf("sorted array: ");
for(i=0; i<10; i++) printf("%d ", numCil);
)
/* compare the integers =*/
comp(i, j)
int *i,*j;

return *i-xj;
}

#include “stdlib.h”
int rand()

389

The rand() function generates a sequence of pseudorandom numbers. Each
time that you call rand(), it returns an integer between 0 and RAND__MAX.

390 Using Turbo C

Example
This program displays ten pseudorandom numbers:

#include "stdlib.h"

main()
{
int 1i;

for(i=0; i<10; i++)
printf("%d ",rand());

#include “setymp.h”
int setymp(Jmp —buf envbuf)
jmp —buf envbuf

The setjmp() function saves the contents of the system stack in the buffer
envbuf for later use by longjmp().

The setjmp() function returns 0 upon invocation. However, longjmp()
passes an argument to setjmp() during execution, and this value, which is
always nonzero, will appear to be the value of setjmp() after a call to
longjmp().

See the discussion of longjmp(), given earlier, for additional information.

Example
This program prints 1 2 3:

#finclude "setjmp.h"
jmp_buf ebuf;

main()

{
char first=1;
int i;

Some Common Turbo C Library Functions 391

printf("1 ");
i = setjmp(ebuf);
if(first) {
first = lfirst;
f20);
printf("this will not be printed");
)
printf("%d",i);
)

f20)
{

printf("2 ");
longjmp(ebuf, 3);
b

#include “stdlib.h”
void srand(unsigned seed)

You use the srand() function to set a starting point for the sequence that
rand() generates. (The rand() function returns pseudorandom numbers.)

Generally you use srand() to allow multiple program runs that use dif-
ferent sequences of pseudorandom numbers.

Example

This program uses the system time to initialize the rand() function ran-
domly by using srand():

#include "stdio.h"
#include "stdlib.h"
#include "time.h"

/* Seed rand() with the system time
and display the first 100 numbers.
*/
main()
{
int i,stime;
long Ltime;

/* get the current calendar time */

392 Using Turbo C

ltime = time(NULL);

stime = (unsigned int) Lltime/2;
srand(stime);

for(i=0; i<10; i++) printf("%d ", rand());

Mascellaneous
Topics
CHAPTER 16

This final chapter covers a number of important topics, which include a brief
description of compiling multiple-file programs, compiling from the com-
mand line, and Turbo C’s standalone Make facility. The chapter concludes
with a look at the most common C programming errors.

Compiling Multiple-Fiile
Programs

As mentioned earlier in this book, most real-world C programs are too large
to fit easily into one file, The primary reason for this problem has to do with
efficiency considerations. First, extremely large files are difficult to edit.

393

394 Using Turbo C

Second, making a small change in the program requires that you recompile
the entire program. Although compiling in Turbo C is very fast, at some
point no matter how fast the compiler, the time it takes to compile will
become unbearable.

The solution to these problems is to break the program into smaller
pieces, compile them, and then link them together. This process is known as
separate compilation and linking, and forms the backbone of most develop-
ment efforts. ‘

The methods of creating, compiling, and linking multiple-file programs
differ between the integrated-environment version and the command-line
version of Turbo C. This section will focus on the integrated environment.
The next section will illustrate the command-line approach.

Projects and the Project Option

In the Turbo C integrated environment, multiple-file programs are called
projects. Each project is associated with a project file, which determines what
files are part of the project. The main menu option Project lets you specify a
project file. All project files must end with a .PRJ extension.

After you have defined a project file inside the Project menu, place in it
the names of the files that form the project. For example, if the project file is
called MYPROJ.PRJ and your project contains the two files TEST1.C and
TEST2.C, you would edit MYPROJ.PRJ, and enter the two files TEST1.C
and TEST2.C. Thus MYPROJ.OBJ will look like this:

TEST1.C
TEST2.C

For the sake of discussion, assume that you have not compiled TEST1.C
or TEST2.C. There are two ways to compile and link these files together.
First, you can select Run from the main menu. When there is a .PRJ file
specified in the Project option, Turbo C uses this file as its guide during
compilation of your program. The compiler reads the contents of the .PRJ
file and compiles each file that needs to be compiled to a .OBJ file. Next,
Turbo C links those files together and executes the program.

The second way that you can compile a project is to use the built-in Make
facility. By pressing F9, or by selecting the Make option under the main
menu option Compile, you cause Turbo C to compile and link all files that
are specified in the project file. The only difference between the Make option

Miscellaneous Topics 395

and the Run option is that Make does not execute the program. In fact, you
can think of the Run option as first performing a Make and then executing
the .EXE file.

Whenever you Make a program, the compiler will actually compile only
those files that need to be compiled. Turbo C determines which files these are
by checking the time and date associated with each source file and its .OBJ
file. If the .C file is newer than the .OBJ file, then Turbo C knows that the .C
file has been changed and then recompiles it. If the .C file is older than the
-OBJ file, then Turbo C simply uses the .OBJ file. In this situation, the target
.OBJ file is said to depend upon the .C file. The same sort of dependency is
true of the .EXE file: As long as the .EXE file is newer than all of the .OBJ
files in the project, then Turbo C does not recompile anything. If the .EXE
file is older, Turbo C recompiles any necessary files and relinks the project.

Trying It Yourself

To see how this process works, first select the Project option from the main
menu and select Project name. Turbo C will then prompt you for the name
of the project. For this example, use MYPROJ.PRJ. Next, using the File
option, load the file TEST1.C. (This file should be new. If not, use a different
name.) Enter and save the following code:

/* file TEST1.C »/
main()
{
printf("This is file 1.\n");
count(); /% this is in TESTZ2.C *»/
b4
Next, edit TEST2.C. Enter and save this code:

/* file TEST2.C =/

count ()
<
int i;

for(i=0; i<10 i++)
printf("X%Xd ", i);

396 Using Turbo C

Now, you can compile and run the program by selecting the Run option. Do
so at this time. As you can see, Turbo C compiles both files and links them
together automatically. If you select Run again, Turbo C merely checks the
dates on the files, sees that nothing needs to be recompiled, and runs the
program.

Specifying Additional Dependencies

Just as the standard library functions have header files, so may your pro-
gram. In fact, customized header files are common in C programs that use
multiple files because you can use them to declare extern variables as well
as any #defines that your program needs. Since a change to a header file
means that you must recompile any file that depends upon that header, it is
important to specify this relationship.

To specify a dependency like this, you place the name of the file (or files)
inside parentheses on the same line as the dependent file. For example,
assume that MYPROG.H is a header file that is necessary to TEST2.C of
the example just given. In this case, MYPROJ.PRJ will look like this.

TEST1
TEST2 (MYPROG.H)

To see how this process might actually work, make MYPROJ.PRJ look
like the one just shown. Next, modify TEST1.C and TEST2.C as shown
here. (Remember to keep them as separate files.)

/x file TEST1.C =/
int max;

main()

{
printf("This is file 1.\n");
max = 100;

count(); /* this is in TEST2.C =*/
>

/* file TEST2.C »/

#include "myprog.h" /% read in the header file =/

Miscellaneous Topics 397

count ()
{
int ¥;

for(i=0; i<max i++)
printf(“Xd ", 1);

Finally, create the header file MYPROG.H, as shown here.

/* header file MYPROG.H »/

extern int max;

As you can see, the keyword extern is used to prevent Turbo C from creating
two separate copies of max. The header file simply specifies that somewhere
your code declares a variable named max as an integer.

Now, select the Run option. Assuming that you entered everything cor-
rectly, the program runs fine. Now, edit the header file, change nothing, but
save it back to disk. This process will cause the date of the header file to be
newer than its dependent file TEST2.C. Now when you select Run, Turbo C
automatically recompiles TEST2.C and relinks the program.

Without a doubt, the project capabilities of Turbo C are among its most
important aspects because they let you manage multiple-source-file pro-
grams with little difficulty.

The Command-Line
Version of Turbo C

If you are new to C, there is no doubt that you will find that using Turbo C’s
integrated environment provides the easiest way to develop programs. How-
ever, if you have been programming for some time and have been using your
own editor, you might prefer to use the command-line version of Turbo C.
For long-time C programmers, the command-line version represents the tra-
ditional method of compilation and linking. In addition, the command-line
version of the compiler can do a few things that the integrated-environment
version cannot. For example, if you wish to generate an assembly language

398 Using Turbo C

listing of the code that Turbo C generated, or if you want to use in-line
assembly code, you must use the command-line version. The name of the
command-line compiler is TCC.EXE.

Compiling by Using
the Command-Line Compiler

Assume that you have a program called X.C. To compile this program by
using the command-line version of Turbo C, your command line with the C>
prompt will look like this:

C>TCC X.C

If there are no errors in the program, this command causes Turbo C to com-
pile and link X.C with the proper library files. This is the simplest form of
the command line.

The general form of the command line is

TCC [optionl option2...optionN] fnamel fname2... fnameN

where option refers to either a compiler option or a linker option, and where
fname is either a C source file, a .OBJ file, or a library file.

All compiler-linker options begin with a dash, or minus sign. Generally,
placing a dash after an option turns that option off. Table 16-1 shows the
options that are available in the command-line version of Turbo C. Keep in
mind that the options are case-sensitive.

For example, to compile X.C with the stack checked for overflow, the
command line will look like this:

C>TCC =N X.C

What’s in a Filename?

The Turbo C command-line version does not require the .C extension. For
example, both of these command lines function in the same way:

C>TCC X.C

C>7CC x

Miscellaneous Topics

Table 16-1. Turbo C’s Command-Line Options

399

Option

—A

—-a

—a—

-B

—C

—c
—Dname
—Dname=string
—d
—efname
—f

—f—
—{87

-G

—N
—Ipath
—iN

—=jN

-K

Meaning

Recognize ANSI keywords only

Use word alignment for data

Use byte alignment for data

In-line assembly code in source file
Accept nested comments

Compile to .OBJ only

Define a macro-name

Define and give a value to a macro-name
Merge duplicate strings

Specify project name

Use floating-point emulation

No floating-point emulation

Use 8087

Optimize code for speed

Stop after N warning errors

Specify path to include directory
Specify identifier length

Stop after N fatal errors

char unsigned

char signed

Use standard stack frame

Specify library directory

Create map file

Use compact-memory model

Use huge-memory model

Use large-memory model

Use medium-memory model

Use small-memory ‘model

Use tiny-memory model

Check for stack overflows

Specify output directory

Optimize for size

Use Pascal calling conventions

Use C calling conventions

Use register variables

Generate assembly code output
Undefine a macro-name

Display warning errors (see Turbo C Reference Guide)
Do not display warning errors
Embed line numbers into object code
Register optimization on

Specify segment names (see Turbo C Reference Guide)
Generate 80186/80286 instructions
Do not generate 80186/80286 instructions

400 Using Turbo C

You can compile a file with an extension other than .C by specifying its
extension. For example, to compile X.TMP, the command line will look like
this.,

C>TCC X.TMP

You may specify additional object files to link in with the source file that
you are compiling by specifying them after the source file. All of these files
must have been previously compiled and have a .OBJ extension. For example,
if your program consists of the files P1, P2, and P3, and if you have already
compiled P2 and P8 to .OBJ files, then the following command line will first
compile P1.C, and then link it with P2.0BJ and P3.0BJ:

¢>TCC P1 P2.0BJ P3.0BJ

If you have additional libraries other than those that Turbo C supplies,
you can specify them by using the .LIB extension.

The example just given assumed P2.0BJ and P3.0OBJ existed. The way
to produce these files from their .C source files is to compile each by using
the —¢ compiler option. This option causes the compiler to create .OBJ files
but no link process takes place.

The executable output file that the linker produces generally has the
name of the source file being compiled with a .EXE extension. However, you
can specify a different name by using the —e compiler option. The name that
follows —e is the name of the file that the compiler will use as the executable
file. There can be no spaces between the —e and the filename. For example,
this command line causes the compiler to compile the file TEST.C and to
create an executable file called RUN.EXE.

C>TCC -eRUN test

A Brief Overview
of the Standalone Make

Turbo C comes with a standalone version of Make that you can use with the
command-line version of Turbo C. Make is a sophisticated program; this
section only introduces you to it. If you intend to use the command-line com-

Miscellaneous Topics 401

piler, then you should carefully study Appendix D of The Turbo C Reference
Guide, which fully describes Make.

Make is a utility program that, when you are using the command-line
version of Turbo C, automates the recompilation process for large programs
that are comprised of several files. Its operation is similar in nature to the
Project/Make facilities of the Turbo C integrated environment except that
it is more flexible. In the course of program development, you will make
many small changes to some of the files before you recompile and test the
program. The trouble is that it is easy to forget which file needs to be recom-
piled. This situation leads to either a recompilation of all files —a waste of
time —or accidentally not recompiling a file that should be, which potentially
adds several hours of frustrating debugging. The Make program solves this
problem by automatically recompiling only those files that you have altered.

Make is driven by a make file, which contains a list of target files, depen-
dent files, and commands. A target file requires its dependent file or files to
produce it. For example, T.C would be the dependent file of T.OBJ because
Turbo C requires T.C to make T.OBJ. Like its cousin in the integrated envi-
ronment, Make works by comparing the date and time between a dependent
file and its target file. If the target file has a date that is older than that of its
dependent file, or if it does not exist, then Turbo C executes the specified
command sequence. The general form of the make file is

target-filel : dependent-file list
command-sequence

target-file2 : dependent-file list
command-sequence

target-file3 : dependent-file list
command-sequence

target-fileN : dependent-file list
command-sequence

The target filename must start in the leftmost column, and must be followed
by a colon and a list of dependent files. At least one space or tab must pre-
cede the command sequence that is associated with each target. Comments
are preceded by #, and may follow the dependent-file list and the command
sequence. If comments appear on a line of their own, they must start in the
leftmost column. You must separate each target file specification from the
next by using at least one blank line.

To see how Make works, try the following example, which uses a simple
program. The program is divided into four, files called test.h, test.C, test2.c,
and test3.c, as shown in Figure 16-1.

402 Using Turbo C

test.h

extern int count;

test.c

int count=0;

main()

{
printf("count=zXd\n",count);
test2();
printf("countz=Xd\n" ,count);
test3();
printf("count=%d\n" ,count);

test2.¢

#include "test.h"
test2()
{
count=30;
}

test3.c

#include "test.h"
test3 ()
{

count=-100;
3

Figure 16-1. A simple four-file program

A make file that you can use to recompile the program when you make
changes looks like this:

recreate if header file has changed
test.exe: test.h

tcc -c test

tce ~c test?2

Miscellaneous Topics 403

tcc test testl2.obj test3.obj

test.obj: test.c ¥ test.c changed
tcc test testl.obj test3.obj

test2.obj: test2.c # test2.c changed
tcc -etest testl2 test.obj test3.obj

test3.0bj: test3.c # test3.c changed
tcc -etest test3 test.obj test2.obj

If the name of this file is MAKEFILE, then your command line would look
like this:

C>MAKE

This command causes the compiler to compile the necessary modules and
create an executable program. If you specify no other filename, Make exe-
cutes whatever is in the file called MAKEFILE, if it exists. To specify a
different make file, use the —f compiler option, which tells Make to use the
file that follows as its make file. For example, this command line tells Make
to use the MYMAKE make file:

C>MAKE ~fMYMAKE

Order is important in the make file because Make moves through the list
in only the forward direction. For example, imagine that you changed the
make file to look like this:

this makefile is incorrect
test.obj: test.c # test.c changed
tcc test test2.obj test3.obj

test2.obj: test2.c # test2.c changed
tcc -etest test2 test.obj test3.,obj

test3.0bj: test3.c # test3.c changed
tcc -etest test3 test.obj test2.obj

recreate if header file has changed
test.exe: test.h

tcc -¢c test

tcc ~c test?

tcc test testl.obj test3.obj

404 Using Turbo C

This file will no longer work correctly when you change the file test.h and
any other source file because changing a source file causes Turbo C to create
a new test.exe. Therefore, the date of the make file will no longer be older
than the date of test.h.

Make allows Turbo C to define macros in the make file. These macro-
names are simply placeholders for the information that will actually be
determined either by a command-line specification or by the macro’s defini-
tion in the make file. Turbo C defines macros according to this general form:

maero-name = definition
If there will be any white space in the macro definition, you must enclose the
definition in double quotes.
After you have defined a macro, you use it in the make file like this:

$(macro-name)

Each time that Turbo C encounters this, it substitutes the definition link to
the macro.

Some Common
Programmaing Errors

As good as any computer language is, you can still make programming
errors. To paraphrase Thomas Edison, programming is 10% inspiration and
90% debugging! All good programmers are good debuggers. Certain types of
bugs can occur easily while you use C, and these bugs are the topic of this
section.

Order-of-Process Errors

The increment and decrement operators are used in most programs in C, and

Miscellaneous Topics 405

the order in which the operation takes place is affected by whether these
operators precede or follow the variable. Consider the following:

y = 10; y = 10;

X = y++; X = ++y;

These two sets of statements are not the same. The first one assigns the value
of 10 to x and then increments y. The second one increments y to 11 and then
assigns the value 11 to x. Therefore, in the first set, x contains 10; in the
second set, x contains 11. The rule is that increment and decrement opera-
tions will occur before other operations if they precede the operand; they
occur later if they follow the operand.

An order-of-process error usually occurs through changes to an existing
statement. For example, you may enter the statement

X = kpt+t;

which assigns to x the value that p points to and then increments the pointer
p. However, imagine that later you decide that x really needs the square of
the value that p points to times the value pointed to by p. To do this, you try
the statement

x = #p++ & (%xp);

However, this statement cannot work because the statement given earlier has
already incremented p. The solution is to write

x = *p * (%xp++);

Errors like this can be very hard to find. There may be clues such as
loops that do not run correctly or routines that produce results that are off by
one. If you have any doubt about a statement, recode it in another way that
you are sure about.

406 Using Turbo C

Pownter Problems

A common error in C programs is the misuse of pointers. Pointer problems
fall into two general categories: those problems that arise from misunder-
standing of indirection and the pointer operators, and those that develop out
of the accidental use of invalid pointers. The solution to the first problem is
to understand the C language; the solution to the second problem is always to
verify the validity of a pointer before you use it.

Here is a typical error that beginning C programmers make. (Don’t try
this code unless you are willing to reformat your hard disk!!!)

#include "stdlib.h"

main() /* this program is WRONG »/
{
char *p;

*p = malloc(100); /+ this Line is wrong */

gets(p);
printf(p);

>

This program will crash the computer by overwriting the vector-interrupt
table that helps to drive the operating system! The reason for the crash is
that the code does not assign to p the address that malloe() returns, but
rather assigns the address to the memory location that p points to, which is 0.
This is most certainly not what is wanted. To correct this program, you must
substitute

p = malloc(100); /% this is correct «/

for the wrong line.

The program also has a second, more insidious, error. There is no run-
time check on the address that malloc() returns. Remember, if memory is
exhausted, then malloe() will return NULL, which is never a valid pointer
in C. The malfunction that this type of bug causes is difficult to find because
it occurs rarely, when an allocation request fails. The best way to handle this
error is to prevent it. Here is a corrected version of the program, which
includes a check for pointer validity:

Miscellaneous Topics 407

#include "stdlib.h®

main() /» this program is now correct =/
<

char *p; - “ad
p = malloc(100); /* this is correct */

if(p==NULL) (
printf("out of memory\n");
exit(1);

)

gets(p);
printf(p);

The terrible problem with “wild” pointers is that they are so hard to track
down. If you are making assignments to a pointer variable that does not con-
tain a valid pointer address, then your program may appear to function cor-
rectly some of the time and crash at other times. The smaller your program
is, the more likely it will run correctly, even with a stray pointer, because
very little memory is in use and the odds of that memory being used by
something else are statistically small. As your program grows, failures will
become more common —but you will be thinking about current additions or
changes to your program, and not about pointer errors. Hence, you will tend
to look in the wrong spot for the bug.

The sign of a pointer problem is that errors tend to be erratic. Your pro-
gram will work correctly one time, and incorrectly another. Sometimes other
variables will contain garbage for no explainable reason. If these problems
occur, check your pointers. As a matter of procedure, you should always
check all pointers when bugs begin to occur.

As consolation, remember that, while pointers can be troublesome, they
are also one of the most powerful and useful aspects of the C language and
are worth whatever trouble they may ocecasionally cause you. Make the effort
early on to learn to use them correctly.

One final point to remember about pointers is that you must initialize
them before you use them. Consider the following code fragment:

int *x;

*x = 100;

408 Using Turbo C

Using this code will be a disaster because you do not know where x is point-
ing and, if you assign a value to that unknown location, you are probably
destroying something of value —such as other code or data for your program.

Redefining Functions

You can, but you should not, call your functions by the same names as those
used in the C standard library. Turbo C will use your function over the one in
the library. One of the worst occurrences of the redefinition problem happens
when you redefine a standard library function but do not use the standard
funection directly in your program. Instead, another standard function uses it
indirectly.

The only way to avoid redefinition problems is never to give a function
that you write the same name as one in the standard library. If you are
unsure, append your initials to the beginning of the name, such as hs__
gete() instead of gete().

One-Off Errors

As you should know, all array indexes in C start at 0. A common error
involves the use of a for loop to access the elements of an array. Consider the
following program that is supposed to initialize an array of 100 integers:

main{() /% this program will not work w/

{
int x, numC100];

for(x=1; x<=100; ++x) numixl=x;
)

The for loop in this program is wrng for two reasons. First, the loop will not
initialize num[0], the first element of array num. Second, the loop goes one
past the end of the array: num[99] is the last element in the array and the
loop runs to 100. The correct way to write this program is

main() /% this is right =/
< .
int x, numC10031;

for(x=0; x<100; ++x) numixl=x;
)

Miscellaneous Topics 409

Remember that an array of 100 has elements 0 through 99.

Boundary Errors

The Turbo C run-time environment and many standard library functions
have little or no run-time bounds checking. For this reason, you can overwrite
arrays. For example, consider the following program that is supposed to read
a string from the keyboard and display it on the screen:

main()

{
int var1;
char sC103;
int var2;

varl = 10; wvar2 = 10;

get_string(s);

printf("X%s Xd %d", s, varl, var2);
b

get_string(string)
char #*string;
{

register int t;

printf("enter twenty characters\n");
for(t=0; t<20; ++t)
*s++ = getchar();
b
b

Here, there are no direct coding errors. However, there is an indirect error:
calling get__string() with s will cause a bug. Although the code declares s
to be 10 characters long, get_string() will read 20 characters, which will
cause 8 to be overwritten. The problem is that s may display all 20 characters
correctly, but var2 will not contain the correct value. Here is the reason: all
C combpilers, including Turbo C, must allocate a region of memory for local
variables. This region is usually the stack region. The variables varl, var2,
and s will be located in memory as shown in Figure 16-2.

Turbo C compilers on non-8086-based computers may exchange the order
of varl and var2, but they will still brackets. When overwriting s, the code
places the additional information into the area that is supposed to be var2, a
process that destroys any previous contents. Therefore, instead of printing
the number 10 for both integer variables, Turbo C will display something
else for the one destroyed by the overrun of s. This will cause you to look for

410 Using Turbo C

Low E
varl { } 2 bytes
S 10 bytes
var2 { } 2 bytes
High :

Figure 16-2. The variables varl, var2, and s in memory

the problem in the wrong place. Also, in this specific instance, the code may
overwrite the return address of the function call, which will cause a crash.

Function-Declaration Omissions

Any time that a function returns a value type other than int, you must
declare the function as such inside each function that uses it. Consider the
following program that multiplies two floating-point numbers together:

main() /% this is wrong */
{
float x, y;

scanf ("XfXf", &x, &y);
printf("xf", mullx, y));

>

float mul(a, b)
float a, b;
{
return a¥b;
b J

Miscellaneous Topics 411

Here, main() expects an integer value back from mul(), but mul() will
return a floating-point number. You will get meaningless answers because
main() will only copy two bytes out of the four needed for a float. Although
Turbo C will catch this error if these functions are in the same file, it cannot
if they are in separately compiled modules.

The way to correct this program is to declare mul() in main(), as shown
in this corrected version:

main() /* this is correct =/
{
float x, y, mut();

scanf("XfXf", &x, &y);
printf("%Xf", mul(x, y));
b

float mul(a, b)
float a, b;
{

return ax*b;

}

This version adds mul() to the float declaration list, which tells main() to
expect a floating-point value to be returned from mul().

Calling-Argument Errors

Be sure to match whatever type of argument a function expects with the type
that you give it. An important example is scanf(). Remember that scanf()
expects to receive the addresses of its arguments, and not their values. For
example,

int x;
char string[103;

scanf("XdX%s", x, string);
is wrong, while
scanf("XdX%Xs", &x, string);

is correct. Remember that strings already pass their addresses to functions,
so you should not use the & operator on them.

412 Using Turbo C

If a function’s formal parameters are of type float, then you must pass
floating-point variables to the function. For example, the following program
will not function correctly:

main() /+ this program is wrong */
<
int x,y;

scanf("Xd%d", x, y);
printf("%d",div_it(x, yl));

)

float div_it(a, b)
fLoat a, b;
<

return a/b;
>

You cannot use a floating-point function, such as div —it(), to return an inte-
ger value. Furthermore, you cannot expect div__it() to operate correctly
when you pass integers to it because it is expecting floating-point numbers.
(Remember, however, that you can always use a cast to coerce one type to
another if necessary.)

Stack-Heap Collisions

When the stack overruns the heap, the process is called a stack-heap collision.
Turbo C gives you the option of checking for stack overflow, which happens
when the stack overruns the heap. However, this check does slow down pro-
gram execution. Generally, you use this option only when you have strong
reason to suspect that a stack overflow is occurring. Diagnosing a stack over-
flow takes a little intuition. Usually, the program either completely dies or
continues executing at a bizarre point. This second symptom is due to the
program using data accidentally as a return address. The worst thing about
stack-heap collisions is that they generally occur without any warning and
kill the program so completely that debugging code cannot execute.

Another problem is that a stack-heap collision often seems to be a wild
pointer and, thus, misleads you. The only advice that can be offered is that
runaway recursive functions cause most stack-heap collisions. If your pro-
gram uses recursion and you experience unexplainable failures, check the
terminating conditions in your recursive functions.

Miscellaneous Topics 413

Parting Words

If you have read and worked through the examples in this book, you now have
a good understanding of Turbo C. However, as much as you know about
Turbo C—and C in general —there is still much to learn. The best way to
become an expert C programmer is, first, to study the way that other expert
C programmers write code. There are many excellent C programmers with
over a decade of experience from whom you can learn a lot by reading their
code. Second, write several programs in C. Each new programming task will
challenge both your imagination and your programming skills.
Good luck, and may your programs be free of bugs!

TRADEMARKS

DEC™

Forth®

IBMe
MicroPro®
SideKick®
Turbo Ce
Turbo Pascal®
Turbo Prolog®
UNIXe
WordStar®

Digital Equipment Corporation

FORTH, Inc.

International Business Machines Corporation
MicroPro International Corporation

Borland International, Inc.

Borland International, Inc.

Borland International, Inec.

Borland International, Ine.

AT&T

Micropro International Corporation

I NDEJX

? operator, 312-14 arg, 282
[} 189 arge, 192
}, 1756 Args option, 18, 330
+, 83-84 (table) Argument, 55
++, 84 (table) address of, 188
+=, operator pair command line, 192
—, 83-84 (table) list, 63
——, 84 (table) type compatibility checking, 6
* operator, 83-84 (table), 151-52, 159, 165, argv, 192-94

187, 221, 285 Arithmetic operators, 83, 84 (table)
*/, 64 Array, 60, 125
/, 83-84 (table) boundary checking, 6
/*, 64 character, 125, 294
==, b7, 97 element, 189
%, 84 (table), 221 indexing, 158, 163
sign, 206 initialization, 141-43
& operator, 52, 151-52, 163, 281-82, 411 initialization of unsized, 142-43

multidimensional, 288

A name, 265
abort(), 379 single, 288
Aborting commands, 41 strings, 189-40
abs(), 380 structures within structures, 288-89
Absolute value, 361, 380 unsized, 189
Access modifiers, 251-54 with pointers, 157-64
Access parameter, 241 Arrow keys, 14, 40
acos(), 356 Arrow operator, 287, 290
addr, 270-71, 274, 289, 378 ASCII, 229, 234, 294-95
addr _info, 271-72, 288 asctime(), 368
Address of argument, 188, 411 asin(), 857
AL register, 369, 373 Assembler, 8
Alignment option, 331-32 Assembly language, 7, 328, 303, 397
alloc.h, 875 Assignment operator, 90
Allocation, 169-72, 284 Asterisk, 151-52, 159, 165, 187, 221, 285
ALT key combinations, 21 (table) Asynchronous serial ports, 304
Ampersand, 151-52, 163, 281-82, 284, 411 atan(), 357
AND, 86 (table), 87, 304, 305 (table), 307 atan2(), 358
ANSI, 4, 66, 182, 199, 205-06, 211, 247, atof(), 380

263, 318, 328, 333, 342, 369, 372-73, 385 atoi(), 381
Apple II+, 6 atol(), 382
Arec cosine, 356 auto, 190, 255
Arc sine, 357 Auto-indentation, 40
Arc tangent, 357-58 Auto save edit option, 337

417

418 Using Turbo C

AX register, 369, 373

B
Backslash
character, 81, 319
codes, 81 (table)
Backspace key, 33
Backup source files option, 337
.BAK extension, 337
Base 10 logarithm, 362
BASIC, 5, 7, 9-10, 46, 64, 71, 100-01, 183,
213
bdos(), 369
Binary
code, 10
data, 226
operator, 314
stream, 211
bioscom() 304
Bitfield, 269, 289-92
Bitwise operators, 83, 303-11
Blank lines, 48
Block of code, 178
Block-structured language, 6
Blocks of text
moving, copying, and deleting, 34
moving, to and from disk files, 40-41
Boundary errors, 409-10
Bounds checking, 61, 127, 350
Brackets, 189, 194, 315, 321
break, 101-03, 106, 118-20
Broken-down time, 367
bsearch(), 383
Buffered-file system, 205, 223 (table)
Buffered I/0 system, 223-39
Byte rotation, 309

C

C, 3-5, 7

.C extension, 337, 395
Calendar time, 366, 370

Call, 265

Call by reference, 186-88, 284
Call by value, 186

Calling argument errors, 411
Calling convention option, 331
calloc(), 376-77

Capital letters, 320
case, 102, 118
Case sensitive, 37, 46, 67, 337
link option, 335, 337
Casts, 92-93
cdecl, 263-64
_ _CDECL___, 328-29
ceil(), 359
ch, 113, 305
Change dir option, 16
char data type, 59, 73, 76, 91, 304, 332
Character, 59
array, 125, 294
data type, 73
check(), 146, 266-67
Cipher routines, 311
Circular definition, 200
Class grades program, 138
clock, 254
Clock routine, 254
close(), 240 (table), 242
envt, 292
Code
and data, compartmentalization of, 184
block, 58, 178
Generation option, 264, 330-33
in-line, 207
code(), 122, 253
Col display, 30, 32
Colors, 27
Comma operator, 315
Comma separator, 77, 141, 193, 315
Command line, 13
approach, 394
argument, 192, 338
compiler, 401
options, 399 (table)
version, 397, 415
Commands, aborting, 41
Comment symbols, beginning and ending,
48
Comments, 401
__COMPACT __, 328-29
Compact model, 20 (table)
Compilation window, 47
Compilation with errors, 50

Compile option, 16 (table)
Compile-time, 10, 67

error, 10, 64, 334

operator, 90, 300
Compiler, 8-10, 327
Compiler-error message, 253
Compiler-linker options, 398
Compiler/linker window, 46
Compiler message window, 14
Compiler option on Options menu, 18, 264,

317, 329-35
Conditional compilation, 325
Conditional expression, 99-100
Conglomerate data type, 269
Console 1/0, 213-16

formatted, 216-23

functions, 216
const modifier, 252-54
Constants, 71, 80-83
Context-sensitive, 22, 29
continue statement, 120-22
Control character, 41, 842
Control string, 62-63, 217
cos(), 359
cosh(), 360
Cosine, 267, 359
count, 152, 182, 183
creat(), 242
ctime(), 370
CTRL key combinations, 25, 30-31, 34, 36-

38, 40-41

CTRL-Y, 34
ctype.h header file, 235, 342
Curly braces, 59, 175
Cursor commands, 35, 37 (table)
Customize colors option, 27

D

D/A converters, 307

Data and code, compartmentalization of, 7,
184

Data base managers, 8

Data type, 6, 53, 73-77

Date, month/day /year format for, 329

-—.—DATE _ __, 328-29

Debug option, 16 (table), 19

Index 419

DEBUG program, 234
Decrement operators, 84
Default
char type option, 331
condition, 99
editor modes, 26
libraries option, 335-36
default statement, 101
#define directive, 207-09
Defines option, 330-31
DEL key, 33
delay(), 286
Deleting characters, words, and lines,
33-34
Dependent file, 401
dev__code, 290-91
device, 290
Device drivers, 304
difftime(), 370
Directory
option, 16
standard, 322
working, 322
disp__binary, 307
display(), 78, 190, 234, 277, 287
div__int, 412
do/while loop, 114-17
Dollar sign, 72
Domain error, 356, 362-63, 365
DOS, 195, 214, 234, 241, 338, 367, 369, 373
DOS-attribute byte, 243 (table)
dos.h, 367, 372
Dot operator, 272, 285
double, 73, 83, 91, 141, 156, 262, 304, 356,
361, 380
Double-floating-point data type, 73
Double quotes, 321, 404
dump(), 156
DUMP program, 234-35, 246-47
DX register, 369, 373
Dynamic allocation, 169-72, 342, 375-79

E
Edit option, 16 (table), 30, 46
Edit window, 19-20

420 Using Turbo C

Editor, 8
commands, 24-25, 42-43 (table)
screen, 31-36
status line, 14, 30

EDOM, 356

8086 family of processors, 18, 331, 409

8087 emulation, 66
8087/80287 emulation routines, 331
8088/8086 family of processors, 66
8088/86 CPU, 367
#elif, 818, 322-25
else, 96-97, 323
#else, 318, 322-25
Empty statement, 96, 112
encode(), 311
End-of-file, 226
#endif, 322-25
enter(), 275
enum, 296
Enumeration data type, 269
Enumerations, 296-99
Environment option, 18, 330
EOF, 226
Equal sign, 48, 90
Equality operator, 97
ERANGE, 356
errno, 356
#error, 318, 321
Error message, 256
compiler, 253
Errors, 10
common programming, 404-12
option, 330, 334-35
order-of-process, 404-05
Esc key, 16-17, 22
Exclusive OR, 304, 305 (table)
.EXE file, 17, 395, 400
exit(), 146, 212, 384
exp(), 360
Explicit pointer references, 285
Expressions, 71, 91-94
Extended character set, 311
Extension
.BAK, 337
.C, 837, 395
.EXE, 395, 400

Extension, continued
.LIB, 400
.OBJ, 394-95, 398, 400
.PRJ, 394

extern, 255, 397

F
fabs(), 361
fact(), 201
Factorial, 201
factr(), 201
FALSE, 318
far, 252
fclose(), 223 (table), 227-28
feof(), 228 (table), 277
ferror(), 223 (table), 227-28
fgets(), 231
FILE, 212, 224
__FILE___, 327-29
File option, 15, 16 (table), 17, 30, 39, 395
File pointer, 223
File-position indicator, 212
Files, 38-40, 210
Find, 36-38
Find-and-replace, 36-38
First-in-last-out accessing, 160
float type, 51, 53, 73, 83, 91-92, 156, 166,
200, 231, 252, 262, 301, 304, 376, 411, 412
Floating point
arguments, 11
constant, 80
data type, 53, 73
number, 52, 217-18, 380, 410
option, 331
variable, 52-53
floor(), 361
Flushing the stream, 212
fopen(), 223 (table), 224-28
for loop, 58, 76, 106-12, 135, 192, 207, 261,
371, 408
for(;), 111
Formal parameter, 55, 178, 181
Format specifiers, 219-20
Formatted
console 1/0, 216-23
definition, 216
file system, 205

fprintf(), 223 (table), 237-39
fputs(), 231
fread(), 231-32, 234, 240, 247 276-77
free(), 170-72, 376
Free-form indentation, 65
fscanf(), 223 (table), 237-39
fseek(), 223 (table), 233-36
fune(), 200
Function, 53, 179
arguments, 186-92
call, 49, 207
calling, with arrays, 188-92
declaration omissions, 410-11
general form of, 174
general-purpose, 202
1/0, 841
keys, 20-21, 22 (table), 39 (table), 50
(table)
mathematical, 341, 356-66
operating-system-related, 342, 366-75
pointer, 252, 265
prototypes, 199-200
redefining, 408
return noninteger values, 195-99
return values, 56
scope rules, 178-82
stand-alone, 258
string and character, 324-56, 341
type declaration, 196
type modifiers, 251, 263-65
fwrite(), 177, 231-32, 240, 247, 276-77
G
Generate underbars option, 331-32
get(), 228
get_string(), 409
gete(), 223 (table), 226-27, 230, 240, 247,
408
getch(), 215, 216 (table)
getchar(), 214, 216 (table)
getche(), 60, 202, 214, 216 (table), 294
gets(), 61, 129, 139, 191, 215, 216 (table),
273
getw(), 230
Global variable, 78-79, 82, 169, 178, 182-
84, 256-57, 259-60, 375
gmtime(), 368, 371

Index 421

goto, 122
Greenwich mean time, 871

H
Hard coding, 320
Header file, 210, 320, 342, 396, 415, 418
Headers, 210
Heap, 170, 377-78
hello(), 54
Help system, 22, 29
Hexadecimal constant, 80
Hexadecimal digit, 349
High-level file system, 205
Hot key quick-reference line, 14
Hot keys, 21 (table)
huge, 252
—_HUGE __, 328-29
Huge mode, 20 (table)
HUGE _VAL, 856
Hyperbolic
cosine, 360
sine, 364
tangent, 366

I
1/0

functions, 341

redirection, 212

routines, built-in, 49
IBM PC, 6, 304, 372
IBM PC BASIC, 6
Identifier, 72, 207 318-19
if, 202

nested, 97-98

statement, 57, 96-97
#if, 318, 322-25
#ifdef, 318, 325-26
#ifndef, 318, 325-26
if-else-if ladder, 98-99, 324
if/else statements, 312
#include directive, 209, 318, 321-22
Include directories option, 337
INCLUDE subdirectory, 416-18
Includes, nested, 209
Increment operators, 84
Indent message, 30
Indentation, 40, 65

422 Using Turbo C

Indirection, single and multiple, 165
Infinite loop, 111
init __list(), 275
Initialization, 106
Initialize segments option, 335-36
Initializer, 297
Insert message, 30
Insert mode, 32
Installation, 416-17
Instruction set option, 331
int, 48, 51, 78, 76, 91, 152, 163, 190, 199-
200, 260, 262, 290, 304, 342, 410
INT 10H, 372
INT 21H, 369, 373
int _pwr(), 264
int86(), 372
intdos(), 373
Integer
arguments, 11
boundaries, 291
constants, 296
data type, 53, 73
number, 381-82
Integrated development environment, 13-
14, 29, 338, 401, 415
options, 337-38
Interpreter, 8-10
interrupt, 263-64
IRET (return from interrupt), 264
isalnum(), 343
isalpha(), 343
isentrl(), 344
isdigit(), 345
isgraph(), 345
islower(), 346
isprint(), 285, 347
ispunct(), 347
isspace(), 348
isupper(), 349
isxdigit(), 349
itoa(), 385
J
jmp __buf, 387
Jump optimization off/on option, 333
K
kbhit(), 120

Keys
backspace, 33
DEL, 33
ESC, 15-17, 22
function, 20-22, 39
hot, 21 (table)
Keywords, 6, 66
ANSI, 67 (table)
Turbo C extended, 67 (table)

L
Label, 122
labs(), 386
_ _LARGE ___, 328-29
Large model, 20 (table)
LEN, 326
.LIB extension, 400
LIB subdirectory, 416-17
Library, 68
directory option, 337
file, 415, 417
Turbo C, 65-66
#line, 318, 327
—_LINE_ __, 827-29
Line display, 30, 32
Line numbers option, 331-32
Linked lists, 165, 284
Linker, 66, 68, 256
option, 18, 330, 335-37
load(), 276-77
Load option, 16, 40
Loading options, 338
Local variable, 78-79, 169, 178-81, 257-59,
375
localtime(), 368, 373
log(), 362
log10(), 362
long, 91
long double, 304
long int, 386
Long integer, 76, 218, 245
Long modifier, 74
longjmp(), 386
Loop breaking, 118-20
Loop -control variables, 109
Loops, 106
Low-intensity display, 41

Iseek(), 240 (table), 245-47

M
Machine code, 10
Machine-dependent programs, 300
Macro, built-in, 317
Macro-assembler language, 5
Macro definition, 404
Macro name, 207, 318, 320, 325-26, 328-29
Macro substitution, 207, 318-20
Magic number program, 96-99, 116, 313
Mailing-list example, 273-80
Main menu, 14-19, 394
option, 16 (table)
main() function, 48-49, 53-54, 78, 110, 144,
160, 173, 182-88, 191-92, 212, 266, 274,
286-87, 411
Make facility, 393-94, 400-04
Make key, 22
Make option, 16 (table)
MAKE utility program, 249
malloe(), 170-72, 377, 406
Map file option, 335-36
match(), 198
math.h header, 356
Mathematical functions, 341, 356-66
MAX, 323
max, 397
max(), 54
MAX__SIZE, 207
—_MEDIUM_ _, 328-29
Medium model, 20 (table)
Memory
access, 260
address, 150
dump example, 156-57
model, 18, 20
model modifiers, 251-52
usage, 170
menu(), 102
menu __select(), 275
Merge duplicate strings option, 331-32
Message window, 20, 50
Middle-level computer language, 5
Minimum field-width separator, 117
Minimum field-width specifier, 217
Minus sign, 398

Index 423

Mode, 224, 225 (table)

mode, 372

Model option, 330

Modifiers, 74-75

Modules, 403

—-_MSDOS__, 328-29

mul(), 56-57, 177-78, 411

Multidimensional arrays, 136, 140-41, 143,
288

Multiple-branch decision statement, 100

Multiple-file programs, compiling, 393-97

Multiple indirection, 165

N

name field, 275

Names option, 330, 335

Natural logarithm, 360, 362

near, 252

Nested includes, 209, 822

Nested loops, 117-18

Nested structure, 288

New option, 16

Newline character, 222, 348

No stack specified (link-time message), 336

Nonstream device, 385

Nonwhite-space specifiers. 219-20

NOT, 86 (table), 87, 89, 132, 304, 305 (table)

Notational conventions, 69

NULL, 225, 406

Null, 60-61
pointer, 351, 353, 374, 377, 883
terminated array, 342
terminated string, 351-52
terminator, 134-35

Number-series generator, 259

0

.OBJ file, 17, 894-95, 398, 400

Object code, 68

Octal constant, 80

One-dimensional array, 128

One’s complement, 304, 305 (table), 310-11

open(), 240 (table), 241

Operating system, 8

Operating-system-related functions, 342,
366-75

424 Using Turbo C

Operators, 71, 83-90
’ precedence of, 316 (table)
Optimization option, 330, 333
Optimizations, 10
Optimize for size/speed option, 333
Option menu, 264
Options menu, 66, 330
Options option, 16 (table), 18
OR, 86 (table), 87, 804, 305 (table)
OS shell option, 16
Output directory option, 337
Overwrite, 30, 32

P
Parameter
access, 241
declaration, 174
list, 174
Parameterized, 184
Parameterized function, 55
Parentheses, 88, 90, 93-94, 266, 315, 396
Parity, 305
parm, 282
Parser, 267
pascal, 263-64
Pascal compiler library routines, 263
—_PASCAL __ __, 828-29
Password-verification routine, 132, 351-52
Pathname, 209, 322
PC DOS, 214, 367, 369, 373
Period, 272, 381
Pick option, 16
Place-markers, 38
Pointer, 137, 14-50, 189, 231
arithmetic, 154-56
arrays, 1567-64
assignments, 154
bug, 168
comparisons, 156
declaring structure, 284-88
expressions, 153-57
function, 252
indexing, 159-60
initializing, 166-67
invalid, 406
null, 353, 374, 377, 383
operators, 151-53, 406

Pointer, continued
problems, 406-08
references, explicit, 285
relation of arithmetic to base type, 1565
returning, 197-98
stray, 407
string, 161-63
to first byte, 376
to function, 253, 265
to pointers, 165-66
to string, 368, 370
to structures, 284-88
to variable, 374
uninitialized, 168
variable, 151, 266
wild, 407
Pop, 284
pop(), 160-61
Portability, 6, 299
Position requests, 212
pow(), 363
#pragma, 318, 321-22
Preprocessor directives, 206, 317-18
Printable character, 342
printf(), 49-50, 52-53, 55, 58-59, 61-62,
76-77, 81, 107, 117, 129, 154, 157, 163, 166,
169, 177-78, 201-02, 207, 215-19, 239, 254,
313, 319, 321, 327
format commands, 218 (table)
variation of, 135
.PRJ extension, 394
Processor type, 261
Program-control statements, 95
Programmer’s language, 9
Project, 394
file, 394
name option, 395
option, 18, 394-95
Prototype, 342
Punctuation, 347
Push, 284
push(), 160-61
pute(), 223 (table), 226, 228, 230, 240, 247,
294
putchar(), 214, 216 (table), 236
puts(), 215, 216 (table)
putw(), 230, 293-94

Q

gsort(), 388

QuickSort, 202, 388

Quit option, 16

Quit/save option, 28

R

Radian, 8569-60, 363-66

RAM, 180

rand(), 96, 389, 391

RAND__MAX, 389

Random -access file 1/0, 245

Range error, 363

rd(), 290

read(), 240, 243

Real time, 254

realloc(), 378

Recursion, 200-07

Recursive functions, 412

register, 255, 260-61

Register access, 260

REGS, 367, 372-73

Relational and logical operators, 83, 86
(table), 87-89, 306

Relocatable format, 66

remove(), 223 (table), 239

Resize windows, 28

Retrieve options, 18, 330, 338-39

return, 174-78

Return from interrupt (IRET), 264

return statement, 56-57

Return values, 176-78

Reverse video display, 41

rewind(), 223 (table), 228

Right-justified, 218

Row-column matrix, 137

RUN, 10

Run option, 16 (table), 46, 394-97

Run-time, 10, 68

Run-time error, 10

S

Save option, 16, 39

save(), 276-77

Saving options, 338

scanf(), 51-53, 55, 60, 63, 188, 216, 219-23
format codes, 220 (table)

Scope example, 184-85

Index 425

SCOPE program, 184-85

Scope rules, 78

Screen mode, 26

Search options, 36
SEEK_CUR, 233, 245
SEEK__END, 233, 245
SEEK_SET, 233, 245
Segment-offset memory architecture, 19
Semicolon, 48-49, 64, 107, 193, 270
Separate compilation and linking, 394
Separator, 64

series(), 258-59

series__num, 259

series __start, 259

serror(), 163, 167

setjmp(), 386, 390

setjmp.h, 386-87

Setup option, 16 (table)

Shift operators, 308

Short integer, 218

Short modifier, 74

Shorthand, C language, 314
SideKick, 29

Sign flag, 74

signed, 290

Signed modifier, 74

sin(), 177, 363

Sine, 267, 363

Single array, 288
Single-dimension array, 126
Single quotation marks, 81
Singly dimensioned arrays, 126-28
sinh(), 364

sizeof, 90, 299, 323

small, 330

—_-SMALL ___, 328-29
Small model, 19, 20 (table)
Software-delay timer, 285
Source code, 68

Source file, 400

Source option, 330, 333-34
Space, 193, 222

Spacing and parentheses, 93-94
Spaghetti code, 8

sprintf(), 385

sqr(), 565, 177, 187, 365

Square brackets, 315

426 Using Turbo C

srand(), 391
Stack, 160, 284, 375, 409
example, 160-61
heap collisions, 412
overflow, 412
warning option, 335-36
Stand-alone functions, 258
Stand-alone subroutine, 7
Standard directory, 322
Standard library, 261, 396
Standard stack frame option, 331-32
Statement, 96
sequence, 104, 325
terminator, 64
static, 141, 255, 257-60
Status line, 36, 38
—_STDC___, 328-29
stderr, 212, 236-37
stdin, 212, 236-37, 343
stdio.h header file, 209-10, 223
stdiib.h, 375
dtdout, 212, 236-37
Storage modifiers, 251, 255-61
Store options, 18, 330, 338
streat(), 131, 350
strehr(), 351
stremp(), 131, 162, 266, 351
strepy(), 130, 352
Streams, 210
String and character functions, 341-56
String constant, 81
String data type, 129
string.h, 342
String of characters, 36
String table, 167
Strings, 60, 128-36, 318-19
arrays of, 139-40
with pointers, 161-63
strlen(), 183, 352
strstr(), 353
strtok(), 353
struct, 270
Structure
arrays of, 273-80
data type, 269
definition, 270, 272

Structure, continued
element, 270, 272-73, 288
nested, 288
passing entire, to functions, 282-83
within structures and arrays, 288-89
Substring matches, 37
sum(), 196
swap(), 187-88
switch, 100-06, 118, 120, 267
Switching windows, 22
System crash, 377
Systems program, 8

T

Tab, 30, 193, 222, 348

tan(), 365

Tangent, 267, 365

tanh(), 366

Target file, 401

Target variable, 262

TCC.EXE, 417

TCCONFIG.TC file, 338-39

TCINST program, 23-28

Ternary operator, 312

test.exe, 404

test.h, 404

Test stack overflow option, 331-32

Text stream, 211

time, 286-87
hour:minute:second format for, 329

__TIME __, 328-29

time(), 77, 120, 261, 370-71, 374

time.h, 366

time _t, 366

_ _TINY_._, 328-29

Tiny model, 20 (table)

TLINK.EXE, 417

tm, 366, 373

tm__isdst, 367

tolower(), 104

total(), 78

toupper(), 104, 135

TRUE, 318

_ __TURBOC_._, 328-29

Turbo C, invoking, with filename, 43

Turbo C directory, 24, 337

Turbo Pascal, 11, 29, 46, 51-52, 101, 199,
212, 270
Turbo power, 301
Turbo Prolog, 29
TURBOC, 416
Two’s complement arithmetic, 74
Two-dimensional arrays, 136-40
Type, noninteger, 196
Type checking, 73
Type conversion, 262
common, 263 (table)
in expressions, 91
rule, 262
Type modifiers, 74, 251-52
d, i, o, u, and x, 218
Type specifier, 174, 196
typedef, 269, 300
Type, combinations with modifiers, 75
(table)

U

unary minus, 84

Unary operator, 151-52, 299

Unbuffered-file system, 205

Unbuffered 1/0 system, 240-47
functions, 240 (table)

#undef, 318

Unformatted-file system, 205

‘union, 293, 300, 309

union cnvt, 293

Union data type, 269

Unions, 292-95

UNIX, 198-99, 205, 240-41

UNIX-like file system, 205, 210, 240-47

UNIX-like unbuffered system, 247

unlink(), 240 (table), 245

unsigned, 91, 290

Unsigned integer, 76

Unsigned modifier, 74

Unsized array, 142-43, 189

Index 427

update(), 287
Uppercase letter, 349
User register variables on/off option, 333

A\
val, 152
Valueless, 73
Variable
global, 169, 178, 182-84, 256-57, 259-
60, 375
local, 169, 178, 257-59, 375
target, 262
Variable declaration statement, 77
Variable initializations, 82
Variables, 71, 77-79
vertical(), 198
void, 73, 176, 198, 266, 304, 312
volatile modifier, 254

W

wage, 289

warn, 328

Warn duplicate symbols option, 335-36
Warning error, 334

while loop, 112-14
White-space character, 219-20, 348, 381-82
WIDTH, 326

Word Right command, 25-26
WordStar, 29

worker, 289

Working directory, 322

wr _to__tape(), 290

Write to option, 16, 39
write(), 240, 242-43

X

xgets(), 191-92

XOR, 304, 305 (table)

Z

Zero, 135

Zoom feature, 22

Zoomed windows option, 337

The manuscript for this book was prepared and
submitted to Osborne/McGraw-Hill in electronic
form. The acquisitions editor for this project was
Jeffrey Pepper, the technical editor was Paul
Chui, the copy editor was Lorraine Aochi, and
the project editor was Fran Haselsteiner.

Text design uses Century Expanded for text body
and Univers Bold for display.

Cover art by Bay Graphics Design Associates.
Color separation by colour image. Cover
supplier, Phoenix Color Corp. Book printed and
bound by R.R. Donnelley & Sons Company,
Crawfordsville, Indiana.

Announcing
Two Dynamic New Imprints §

ol
Hill'|

OsborneMcGraw-Hill
2600 Tenth Street
Berkeley, -California 94710

The Borland-0sborne/McGraw-Hill

Business Series

<«(Using REFLEX®: THE DATABASE MANAGER

by Stephen Cobb
Features sophisticated SuperKey® macros and REFLEX
Workshop™ applications.

$21.95 paperback, 1saw 0-07-881267-9

< Using SPRINT™: The Professional Word Pracesser

by Kris Jamsa and Gary Boy

Take advantage of this fabulous new word processing system
that is powerful, fast, and includes many desktop publishing
features.

$21.06 paperback, issw 0-07-881201-7

The Borland-Osborne/McGraw-Hill

Programming Series

< Using Tarhe 0

by Herbert Schildt

Here's the official book on Borland's tremendous new language
development system for C programmers.

$10.05 paperback, rsa 0-07-881279-8

<4 Aivanced Tarks G©

by Herbert Schildt
For power programmers. Puts the amazing compilation speed
of Turbo C® into action.

822.0§ paperback, /saw 0-07-881280-1

<€ Advanced Turbo Prolog®Version 1.1

by Herbert Schifdt

Now Includes the Turbo Prolog Toolbox™ with examples of
spreadsheets, databases, and other business applications.
$21.85 paperback, 1sew 0-07-881285-2

< Tarho Pascal® Programmer’s Library

by Kris Jamsa and Steven Nameroff
Revised to cover Borland’s Turbo Numerical Methods Toolbox™

$21.85 paperback, 1sew 0-07-881286-0

<4 Using Turho Pascal®

by Steve Wood

Featuring MS—DOS programs, memory resident applications,
in-line code, interrupts, and DOS functions

$10.05 paperback, rsaw 0-07-881284-4

<4 Advanced Turhe Pascal®

by Herbert Schildt
Expanded to include Borland’s Turbo Pascal Database Toolbox®
and Turbo Pascal Graphix Toolbox®

$21.08 paperback, /saw 0-07-881283-6

Available at Book Stores and Computer Stores.
OR CALL TOLL-FREE 800-227-090
800-772-2531 (In California)

In Canada, contact McGraw-Hill Ryerson, Ltd. Phone 416-293-1911

Yladmnm Superkey, REFLEX, Turbo BASIC, Turbo C, Turbo Pascal Database Toolbox, Turbo Pascal Graphix Toolbox, Turbo Pascal, Turbo Prolog, and Turbo Prolog Toolbox

of Borland i REFLEX

SPRINT, and Turbo Pascal Numerical Methods Tooibox are trademarks of Boriand International. WordPerfect

Is a registered trademark of WordPerfect Corp. WordStar is a registered trademark of MicroPro Int') Corp. Copyright © 1987 McGraw-Hill, Inc.

/
all

iy

BORLAhD ‘OSBOR

———————
MAXITTM Increases your

DOS addressable conventional
memory beyond 640K for
only $195.

» Add up to 256K
above 640K for pro-
grams like FOXBASE+
and PC/FOCUS.

» Short card works in
the IBM PC, XT, AT,

and compatibles.

Break through the 640 barrier.
MAXIT increases your PC's available
memory by making use of the vacant
unused address space between 640K
and 1 megabyte. (See illustrations)

Big gain —no pain.
Extend the productive life of your, IBM
PC, XT, AT or compatible. Build more
complex spreadsheets and databases
without upgrading your present soft-
ware.

128K

o vov 2

v ok

704K

on‘

XT class mechine {8088, 8086} w/640K and » CGA
Color Morutor or 3 Compaa Type Dual Mode Display

this 96K above 640
is available 1o

all programs

s Top off a 512 IBM
AT's memory to 640K
and add another
128K beyond that.

® Run resident
programs like
Sidekick above 640K.

» Add up to 96K above
640K to all programs,
including PARADOX
and 1-2-3.

m Compatible with
EGA, Network, and
other memory cards.

Installation is a snap.

The MAXIT 256K memory card and
soltware works automatically. You
don't have to learn a single new com-
mand.

If you have questions, our customer
support people will answer them, fast.
MAXIT is backed by a one-year war-
ranty and a 30-day money-back
guarantee.

memory resident
programs
run here

this 84K above 640
15 available to
all programs

AT class machine (80286) w/640K and a Mono HERC
Monitor

Order toll free 1-800-227.0900. MAXIT is just $195 plus $4 shipping, and applicable state sales
tax. Buy MAXIT today and solve your PC's memory crisis. Call Toll free 1-800-227-0900 (In Cali-
fornia 800-772-2531). Qutside the U.S.A. call 1-415-548-2805. We accept VISA, MC.

MAXIT is a trademark of Osborne McGraw-Hill. IBM is a registered trademark of International Business Machines Corporation; 1-2-3 and
Symphony are registered trademarks of Lotus Development Corporation; Sidekick is a registered trademark of Borland International, Inc;
PARADOX is a trademark of ANSA Software; FOXBASE+ is a trademark of Fox Software; Hercules is a trademark of Hercules Computer
Technology, Inc; XT and AT are registered trademarks of international Business Machines Corporation; Compaq is a registered trademark of
Compagq Computer Corporation.

ISBN 0-07-881279-8

Here’s the official book on Bor-
land’s tremendous new compiler
for all C programmers, from be-
ginners to seasoned pros.

Veteran programmer Herb Schildt,
the author of five acclaimed books
on G, including Advanced Turbo
C®, has the expertise to guide you
to complete Turbo C mastery.

Part One of the book includes:
Complete coverage of the
Turbo C integrated
environment
Compiling and linking
The editor
Many fundamental Turbo G
concepts.

Part Two explores the heart of the
Turbo C language:

m Program control statements
m Functions

m Console and disk I/0

m Pointers and arrays.

Finally, Part Three covers more
advanced concepts:
m Compiler directives
Structures
Unions
Bitfields
Enumerations.

With Schildt’ s emphasis on
good programming structure,
you'll begin by designing pro-
grams for greater efficiency.
When you've finished Using
Turbo C® you'll be writing full-
fledged programs that get profes-
sional results.

Herbert Schildt is the author of
Advanced Turbo C®, C Made
Easy, Advanced C, Artificial Intelli-
gence Using C, C: The Complete
Reference, Advanced Turbo Pro-
log®, Version 1.1, Advanced
Turbo Pascal®, Modula-2 Made
Easy, and Advanced Modula-2.
He is president of Universal Com-
puting Laboratories, Inc., and a
consultant to artificial intelligence
and robotics developers. Schildt
holds a master’s degree in com-
puter science from the University
of Illinois at Urbana-Champaign.

®m Turbo C, Turbo Prolog, and Turbo Pascal are
registered trademarks Borland International, Inc.

	tc1.pdf
	tb0481.pdf
	tb0482.pdf
	tb0483.pdf
	tb0484.pdf
	tb0485.pdf
	tb0486.pdf
	tb0487.pdf
	tb0488.pdf
	tb0489.pdf
	tb0490.pdf
	tb0491.pdf
	tb0492.pdf
	tb0493.pdf
	tb0494.pdf
	tb0495.pdf
	tb0496.pdf
	tb0497.pdf
	tb0498.pdf
	tb0499.pdf
	tb0500.pdf
	tb0501.pdf
	tb0502.pdf
	tb0503.pdf
	tb0504.pdf
	tb0505.pdf
	tb0506.pdf
	tb0507.pdf
	tb0508.pdf
	tb0509.pdf
	tb0510.pdf
	tb0511.pdf
	tb0512.pdf
	tb0513.pdf
	tb0514.pdf
	tb0515.pdf
	tb0516.pdf
	tb0517.pdf
	tb0518.pdf
	tb0519.pdf
	tb0520.pdf
	tb0521.pdf
	tb0522.pdf
	tb0523.pdf
	tb0524.pdf
	tb0525.pdf
	tb0526.pdf
	tb0527.pdf
	tb0528.pdf
	tb0529.pdf
	tb0530.pdf
	tb0531.pdf
	tb0532.pdf
	tb0533.pdf
	tb0534.pdf
	tb0535.pdf
	tb0536.pdf
	tb0537.pdf
	tb0538.pdf
	tb0539.pdf
	tb0540.pdf
	tb0541.pdf
	tb0542.pdf
	tb0543.pdf
	tb0544.pdf
	tb0545.pdf
	tb0546.pdf
	tb0547.pdf
	tb0548.pdf
	tb0549.pdf
	tb0550.pdf
	tb0551.pdf
	tb0552.pdf
	tb0553.pdf
	tb0554.pdf
	tb0555.pdf
	tb0556.pdf
	tb0557.pdf
	tb0558.pdf
	tb0559.pdf
	tb0560.pdf
	tb0561.pdf
	tb0562.pdf
	tb0563.pdf
	tb0564.pdf
	tb0565.pdf
	tb0566.pdf
	tb0567.pdf
	tb0568.pdf
	tb0569.pdf
	tb0570.pdf
	tb0571.pdf
	tb0572.pdf
	tb0573.pdf
	tb0574.pdf
	tb0575.pdf
	tb0576.pdf
	tb0577.pdf
	tb0578.pdf
	tb0579.pdf
	tb0580.pdf
	tb0581.pdf
	tb0582.pdf
	tb0583.pdf
	tb0584.pdf
	tb0585.pdf
	tb0586.pdf
	tb0587.pdf
	tb0588.pdf
	tb0589.pdf
	tb0590.pdf
	tb0591.pdf
	tb0592.pdf
	tb0593.pdf
	tb0594.pdf
	tb0595.pdf
	tb0596.pdf
	tb0597.pdf
	tb0598.pdf
	tb0599.pdf
	tb0600.pdf
	tb0601.pdf
	tb0602.pdf
	tb0603.pdf
	tb0604.pdf
	tb0605.pdf
	tb0606.pdf
	tb0607.pdf
	tb0608.pdf
	tb0609.pdf
	tb0610.pdf
	tb0611.pdf
	tb0612.pdf
	tb0613.pdf
	tb0614.pdf
	tb0615.pdf
	tb0616.pdf
	tb0617.pdf
	tb0618.pdf
	tb0619.pdf
	tb0620.pdf
	tb0621.pdf
	tb0622.pdf
	tb0623.pdf
	tb0624.pdf
	tb0625.pdf
	tb0626.pdf
	tb0627.pdf
	tb0628.pdf
	tb0629.pdf
	tb0630.pdf
	tb0631.pdf
	tb0632.pdf
	tb0633.pdf
	tb0634.pdf
	tb0635.pdf
	tb0636.pdf
	tb0637.pdf
	tb0638.pdf
	tb0639.pdf
	tb0640.pdf
	tb0641.pdf
	tb0642.pdf
	tb0643.pdf
	tb0644.pdf
	tb0645.pdf
	tb0646.pdf
	tb0647.pdf
	tb0648.pdf
	tb0649.pdf
	tb0650.pdf
	tb0651.pdf
	tb0652.pdf
	tb0653.pdf
	tb0654.pdf
	tb0655.pdf
	tb0656.pdf
	tb0657.pdf
	tb0658.pdf
	tb0659.pdf
	tb0660.pdf
	tb0661.pdf
	tb0662.pdf
	tb0663.pdf
	tb0664.pdf
	tb0665.pdf
	tb0666.pdf
	tb0667.pdf
	tb0668.pdf
	tb0669.pdf
	tb0670.pdf
	tb0671.pdf
	tb0672.pdf
	tb0673.pdf
	tb0674.pdf
	tb0675.pdf
	tb0676.pdf
	tb0677.pdf
	tb0678.pdf
	tb0679.pdf
	tb0680.pdf
	tb0681.pdf
	tb0682.pdf
	tb0683.pdf
	tb0684.pdf
	tb0685.pdf
	tb0686.pdf
	tb0687.pdf
	tb0688.pdf
	tb0689.pdf
	tb0690.pdf
	tb0691.pdf
	tb0692.pdf
	tb0693.pdf
	tb0694.pdf
	tb0695.pdf
	tb0696.pdf
	tb0697.pdf
	tb0698.pdf
	tb0699.pdf
	tb0700.pdf
	tb0701.pdf
	tb0702.pdf
	tb0703.pdf
	tb0704.pdf
	tb0705.pdf
	tb0706.pdf
	tb0707.pdf
	tb0708.pdf
	tb0709.pdf
	tb0710.pdf
	tb0711.pdf
	tb0712.pdf
	tb0713.pdf
	tb0714.pdf
	tb0715.pdf
	tb0716.pdf
	tb0717.pdf
	tb0718.pdf
	tb0719.pdf
	tb0720.pdf
	tb0721.pdf
	tb0722.pdf
	tb0723.pdf
	tb0724.pdf
	tb0725.pdf
	tb0726.pdf
	tb0727.pdf
	tb0728.pdf
	tb0729.pdf
	tb0730.pdf
	tb0731.pdf
	tb0732.pdf
	tb0733.pdf
	tb0734.pdf
	tb0735.pdf
	tb0736.pdf
	tb0737.pdf
	tb0738.pdf
	tb0739.pdf
	tb0740.pdf
	tb0741.pdf
	tb0742.pdf
	tb0743.pdf
	tb0744.pdf
	tb0745.pdf
	tb0746.pdf
	tb0747.pdf
	tb0748.pdf
	tb0749.pdf
	tb0750.pdf
	tb0751.pdf
	tb0752.pdf
	tb0753.pdf
	tb0754.pdf
	tb0755.pdf
	tb0756.pdf
	tb0757.pdf
	tb0758.pdf
	tb0759.pdf
	tb0760.pdf
	tb0761.pdf
	tb0762.pdf
	tb0763.pdf
	tb0764.pdf
	tb0765.pdf
	tb0766.pdf
	tb0767.pdf
	tb0768.pdf
	tb0769.pdf
	tb0770.pdf
	tb0771.pdf
	tb0772.pdf
	tb0773.pdf
	tb0774.pdf
	tb0775.pdf
	tb0776.pdf
	tb0777.pdf
	tb0778.pdf
	tb0779.pdf
	tb0780.pdf
	tb0781.pdf
	tb0782.pdf
	tb0783.pdf
	tb0784.pdf
	tb0785.pdf
	tb0786.pdf
	tb0787.pdf
	tb0788.pdf
	tb0789.pdf
	tb0790.pdf
	tb0791.pdf
	tb0792.pdf
	tb0793.pdf
	tb0794.pdf
	tb0795.pdf
	tb0796.pdf
	tb0797.pdf
	tb0798.pdf
	tb0799.pdf
	tb0800.pdf
	tb0801.pdf
	tb0802.pdf
	tb0803.pdf
	tb0804.pdf
	tb0805.pdf
	tb0806.pdf
	tb0807.pdf
	tb0808.pdf
	tb0809.pdf
	tb0810.pdf
	tb0811.pdf
	tb0812.pdf
	tb0813.pdf
	tb0814.pdf
	tb0815.pdf
	tb0816.pdf
	tb0817.pdf
	tb0818.pdf
	tb0819.pdf
	tb0820.pdf
	tb0821.pdf
	tb0822.pdf
	tb0823.pdf
	tb0824.pdf
	tb0825.pdf
	tb0826.pdf
	tb0827.pdf
	tb0828.pdf
	tb0829.pdf
	tb0830.pdf
	tb0831.pdf
	tb0832.pdf
	tb0833.pdf
	tb0834.pdf
	tb0835.pdf
	tb0836.pdf
	tb0837.pdf
	tb0838.pdf
	tb0839.pdf
	tb0840.pdf
	tb0841.pdf
	tb0842.pdf
	tb0843.pdf
	tb0844.pdf
	tb0845.pdf
	tb0846.pdf
	tb0847.pdf
	tb0848.pdf
	tb0849.pdf
	tb0850.pdf
	tb0851.pdf
	tb0852.pdf
	tb0853.pdf
	tb0854.pdf
	tb0855.pdf
	tb0856.pdf
	tb0857.pdf
	tb0858.pdf
	tb0859.pdf
	tb0860.pdf
	tb0861.pdf
	tb0862.pdf
	tb0863.pdf
	tb0864.pdf
	tb0865.pdf
	tb0866.pdf
	tb0867.pdf
	tb0868.pdf
	tb0869.pdf
	tb0870.pdf
	tb0871.pdf
	tb0872.pdf
	tb0873.pdf
	tb0874.pdf
	tb0875.pdf
	tb0876.pdf
	tb0877.pdf
	tb0878.pdf
	tb0879.pdf
	tb0880.pdf
	tb0881.pdf
	tb0882.pdf
	tb0883.pdf
	tb0884.pdf
	tb0885.pdf
	tb0886.pdf
	tb0887.pdf
	tb0888.pdf
	tb0889.pdf
	tb0890.pdf
	tb0891.pdf
	tb0892.pdf
	tb0893.pdf
	tb0894.pdf
	tb0895.pdf
	tb0896.pdf
	tb0897.pdf
	tb0898.pdf
	tb0899.pdf
	tb0900.pdf
	tb0901.pdf
	tb0902.pdf
	tb0903.pdf
	tb0904.pdf
	tb0905.pdf
	tb0906.pdf
	tb0907.pdf
	tb0908.pdf
	tb0909.pdf
	tb0910.pdf
	tb0911.pdf
	tb0912.pdf
	tb0913.pdf
	tb0914.pdf
	tb0915.pdf
	tb0916.pdf
	tb0917.pdf
	tb0918.pdf
	tb0919.pdf
	tb0920.pdf
	tb0921.pdf
	tb0922.pdf
	tb0923.pdf
	tb0924.pdf
	tb0925.pdf
	tb0926.pdf
	tb0927.pdf
	tb0928.pdf
	tc2.pdf

