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CHAPTER 1

Introduction
Algorithms operating on strings are fundamental to many computer programs, and in 

particular searching for one string in another is the core of many algorithms. An example 

is searching for a word in a text document, where we want to know everywhere it occurs. 

This search can be exact, meaning that we are looking for the positions where the word 

occurs verbatim, or approximative, where we allow for some spelling mistakes.

This book will teach you fundamental algorithms and data structures for exact and 

approximative search. The goal of the book is not to cover the theory behind the material 

in great detail. However, we will see theoretical considerations where relevant. The 

purpose of the book is to give you examples of how the algorithms can be implemented. 

For every algorithm and data structure in the book, I will present working C code and 

nowhere will I use pseudocode. When I argue for the correctness and running time of 

algorithms, I do so intentionally informal. I aim at giving you an idea about why the 

algorithms solve a specific problem in a given time, but I will not mathematically prove so.

You can copy all the algorithms and data structures in this book from the pages, 

but they are also available in a library on GitHub: https://github.com/mailund/

stralg. You can download and link against the library or copy snippets of code into 

your own projects. On GitHub you can also find all the programs I have used for time 

measurement experiments so you can compare the algorithm’s performance on your 

own machine and in your own runtime environment.

�Notation and conventions
Unless otherwise stated, we use x, y, and p to refer to strings and i, j, k, l, and h to denote 

indices. We use 𝜖 to denote the empty string. We use a, b, and c for single characters. As 

in C, we do not distinguish between strings and pointers to a sequence of characters. 

Since the book is about algorithms in C, the notation we use matches that which is 

used for strings, pointers, and arrays in C. Arrays and strings are indexed from zero, 

https://doi.org/10.1007/978-1-4842-5920-7_1#DOI
https://github.com/mailund/stralg
https://github.com/mailund/stralg
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that is, A[0] is the first value in array A (and x[0] is the first character in string x). The ith 

character in a string is at index i − 1.

When we refer to a substring, we define it using two indices, i and j, i ≤ j, and we 

write x[i, j] for the substring. The first index is included and the second is not, that is, 

x[i, j] = x[i]x[i + 1] · · · x[ j − 1]. If a string has length n, then the substring x[0, n] is the full 

string. If we have a character a and a string x, then ax denotes the string that has a as its 

first character and is then followed by the string x. We use ak to denote a sequence of as 

of length k. The string a3 x has a as its first three characters and is then followed by x.  

A substring that starts at index 0, x[0, i], is a prefix of the string, and it is a proper prefix 

if it is neither the empty string x[0, 0] = 𝜖 nor the full string x[0, n]. A substring that ends 

in n, x[i, n], is a suffix, and it is a proper suffix if it is neither the empty string nor the full 

string. We will sometimes use x[i, ] for this suffix.

We use $ to denote a sentinel in a string, that is, it is a character that is not found in 

the rest of the string. It is typically placed at the end of the string. The zero-terminated  

C strings have the zero byte as their termination sentinel, and unless otherwise stated,  

$ refers to that. All C strings x have a zero sentinel at index n if the string has length n,  

x = x[0]x[1] · · · x[n − 1]0. For some algorithms, the sentinel is essential; in others, it is not. 

We will leave it out of the notation when a sentinel isn’t needed for an algorithm, but 

naturally include the sentinel when it is necessary.

�Graphical notation
Most data structures and algorithmic ideas are simpler to grasp if we use drawings to 

capture the structure of strings rather than textual notation. Because of this, I have chosen to 

provide more figures in this book than you will typically see in a book on algorithms. I hope 

you will appreciate it. If there is anything you find unclear about an algorithm, I suggest you 

try to draw key strings yourself and work out the properties you have problems with.

In figures, we represent strings as rectangles. We show indices into a string as arrows 

pointing to the index in the string; see Figure 1-1. In this notation, we do not distinguish 

between pointers and indices. If a variable is an index j and it points into x, then what 

it points to is x[ j], naturally. If the variable is a pointer, y, then what it points to is ∗y. 

Whether we are working with pointers or indices should be clear from the context. It will 

undoubtedly be clear from the C implementations. We represent substrings by boxes of 

a different color inside the original string-rectangle. If we specify the indices defining the 

substring, we include their start and stop index (where the stop index points one after 

the end of the substring).

Chapter 1  Introduction
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When we compare two strings, we imagine that we align the boxes representing 

them, so the parts we are comparing are on top of each other. For example, if we 

compare the character at index j in a string x with the character at index i in another 

string p, then we draw a box representing x over a box representing p, and we draw 

pointers for the two indices; see Figure 1-2. Since we are comparing the characters in the 

two indices, the two pointers are pointing at each other. Conceptually, we imagine that p 

is aligned under x starting at position j − i.

�Code conventions
There is a trade-off between long variables and type names and then the line within a 

book. In many cases, I have had to use an indentation that you might not be used to. In 

function prototypes and function definitions, I will generally write with one variable per 

line, indented under the function return type and name, for example:

void compute_z_array(

    const unsigned char *x,

    uint32_t n,

    uint32_t *Z

);

Figure 1-1.  Graphical string notation

Figure 1-2.  Graphical notation for comparing indices in two different strings

Chapter 1  Introduction
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void compute_reverse_z_array(

    const unsigned char *x,

    uint32_t m,

    uint32_t *Z

);

If a return type name is long, I will put it on a separate line:

static inline uint32_t

edge_length(struct suffix_tree_node *n) {

    return range_length(n->range);

}

struct suffix_tree *

mccreight_suffix_tree(

    const unsigned char *string

);

struct suffix_tree *

lcp_suffix_tree(

    const unsigned char *string,

    uint32_t *sa,

    uint32_t *lcp

);

struct suffix_tree_node *

st_search(

    struct suffix_tree *st,

    const char *pattern

);

I make an exception for functions that take no arguments, that is, have void as their 

argument type.

There are many places where an algorithm needs to use characters to look up in 

arrays. If you use the conventional C string type, char *, then the character can be either 

signed or unsigned, depending on your compiler, and you have to cast the type to avoid 

warnings. A couple of places we also have to make assumptions about the alphabet 

size. Because of this, I use arrays of uint8_t with a zero termination sentinel as strings. 

On practically all platforms, char is 8 bits so this type is, for all intents and purposes, C 

strings. We are just guaranteed that we can use it unsigned and that the alphabet size 

Chapter 1  Introduction
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is 256. Occasionally it is necessary to cast a uint8_t * string to a C string. A direct cast, 

(char *)x, will most likely work unless you are on an exotic platform. If it doesn’t, you 

have to build a char buffer and copy characters byte by byte. It has to be a very exotic 

platform if you cannot store 8 bits in a char! Because I assume that you can always cast to 

char *, I will use the C library string functions (with a cast) when this is appropriate. It is 

a small matter to write your own if it is necessary.

I will use uint32_t for indices, assuming that strings are short enough that we 

can index them with 32 bits. You can change it as needed, but I find it a good trade-

off between likely lengths of strings and the space I need for data structures. I work in 

bioinformatics, so hundreds of millions of characters are usually the longest I encounter.

�Reporting a sequence of results
In search algorithms, we report each occurrence of a pattern. This sounds 

straightforward, but there is a design choice in how we report the occurrences. Consider 

the following algorithm. It is the Boyer-Moore-Horspool (BMH) algorithm that you 

will see in the next chapter. It takes a string, x, and a pattern, p, and searches for all 

occurrences of p in x. First, it does some preprocessing, and then it searches. This is a 

general pattern for the algorithms in the next chapter. In the search, when it has found 

an occurrence of p, it reports the position by calling the REPORT(j) function.

void bmh_search(

    const uint8_t *x,

    const uint8_t *p

) {

    uint32_t n = strlen((char *)x);

    uint32_t m = strlen((char *)p);

    // Preprocessing

    int jump_table[256];

    for (int k = 0; k < 256; k++) {

        jump_table[k] = m;

    }

    for (int k = 0; k < m - 1; k++) {

        jump_table[p[k]] = m - k - 1;

    }

Chapter 1  Introduction
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    // Searching

    for (uint32_t j = 0;

         j < n - m + 1;

         j += jump_table[x[j + m - 1]]) {

        int i = m - 1;

        while (i > 0 && p[i] == x[j + i])

            --i;

        if (i == 0 && p[0] == x[j]) {

            REPORT(j);

        }

    }

}

If a global report function is all you need in your program, then this is an excellent 

solution. Often, however, we need different reporting functions for separate calls to the 

search function. Or we need the report function to collect data for further processing 

(and preferably not use global variables). We need some handle to choose different 

report functions and to provide them with data.

One approach is using callbacks: Provide a report function and data argument to the 

search function and call the report function with the data when we find an occurrence. 

In the following implementation, I am assuming we have defined the function type for 

reporting, report_function, and the type for data we can add to it, report_function_

data, somewhere outside of the search function.

void bmh_search_callback(

    const uint8_t *x,

    const uint8_t *p,

    report_function report,

    report_function_data data

) {

    uint32_t n = strlen((char *)x);

    uint32_t = strlen((char *)p);

    // Preprocessing

    uint32_t jump_table[256];

Chapter 1  Introduction
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    for (int k = 0; k < 256; k++) {

        jump_table[k] = m;

    }

    for (int k = 0; k < m - 1; k++) {

        jump_table[p[k]] = m - k - 1;

    }

    // Searching

    for (uint32_t j = 0;

         j < n - m + 1;

         j += jump_table[x[j + m - 1]]) {

        int i = m - 1;

        while (i > 0 && p[i] == x[j + i])

            --i;

        if (i == 0 && p[0] == x[j]) {

            report(j, data);

        }

    }

}

Callback functions have their uses, especially to handle events in interactive 

programs, but also some substantial drawbacks. To use them, you have to split the 

control flow of your program into different functions which hurts readability. Especially 

if you need to handle nested loops, for example, iterate over all nodes in a tree and for 

each node iterate over the leaves in another tree where for each node-leaf pair you find 

occurrences… (the example here is made up, but there are plenty of real algorithms with 

nested loops, and we will see some later in the book).

We can get the control flow back to the calling function using the iterator design 

pattern. We define an iterator structure that holds information about the loop state, 

and we provide functions for setting it up, progressing to the next point in the loop, and 

reporting a match and then a function for freeing resources once the iterator is done.

The general pattern for using an iterator looks like this:

    struct iterator iter;

    struct match match;

    iter_init(&iter, data);
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    while (next_func(&iter, &match)) {

        // Process occurrence

    }

    iter_dealloc(&iter);

The iterator structure contains the loop information. That means it must save the 

preprocessing data from when we create it and information about how to resume the 

loop after each time it is suspended. To report occurrences, it takes a “match” structure 

through which it can inform the caller about where matches occur. The iterator is 

initialized with data that determines what it should loop over. The loop is handled 

using a “next” function that returns true if there is another match (and if it does it will 

have filled out match). If there are no more matches, and the loop terminates, then it 

returns false. The iterator might contain allocated resources, so there should always be a 

function for freeing those.

In an iterator for the BMH, we would keep the string, pattern, and table we build in 

the preprocessing.

struct bmh_match_iter {

    const uint8_t *x; uint32_t n;

    const uint8_t *p; uint32_t m;

    int jump_table[256];

    uint32_t j;

};

struct match {

    uint32_t pos;

};

We put the preprocessing in the iterator initialization function

void init_bmh_match_iter(

    struct bmh_match_iter *iter,

    const uint8_t *x, uint32_t n,

    const uint8_t *p, uint32_t m

) {

    // Preprocessing

    iter->j = 0;

    iter->x = x; iter->n = n;

    iter->p = p; iter->m = m;
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    for (int k = 0; k < 256; k++) {

        iter->jump_table[k] = m;

    }

    for (int k = 0; k < m - 1; k++) {

        iter->jump_table[p[k]] = m - k - 1;

    }

}

and in the next function we do the search

bool next_bmh_match(

    struct bmh_match_iter *iter,

    struct match *match

) {

    const uint8_t *x = iter->x;

    const uint8_t *p = iter->p;

    uint32_t n = iter->n;

    uint32_t m = iter->m;

    int *jump_table = iter->jump_table;

    // Searching

    for (uint32_t j = iter->j;

         j < n - m + 1;

         j += jump_table[x[j + m - 1]]) {

        int i = m - 1;

        while (i > 0 && p[i] == x[j + i]) {

            i--;

        }

        if (i == 0 && p[0] == x[j]) {

            match->pos = j;

            iter->j = j +

                   jump_table[x[j + m - 1]];

            return true;

        }

    }

    return false;

}
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We set up the loop with information from the iterator and search from there. If we 

find an occurrence, we store the new loop information in the iterator and the match 

information in the match structure and return true. If we reach the end of the loop, we 

report false.

We have not allocated any resources when we initialized the iterator, so we do not 

need to free anything.

void dealloc_bmh_match_iter(

    struct bmh_match_iter *iter

) {

    // Nothing to do here

}

Since the deallocation function doesn’t do anything, we could leave it out. Still, 

consistency in the use of iterators helps avoid problems. Plus, should we at some point 

add resources to the iterator, then it is easier to update one function than change all the 

places in the code that should now call a deallocation function.

Iterators complicate the implementation of algorithms, especially if they are 

recursive and the iterator needs to keep track of a stack. Still, they greatly simplify the 

user interface to your algorithms, which makes it worthwhile to spend a little extra time 

implementing them. In this book, I will use iterators throughout.
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CHAPTER 2

Classical algorithms 
for exact search
We kick the book off by looking at classical algorithms for exact search, that is, finding 

positions in a string where a pattern string matches precisely. This problem is so 

fundamental that it received much attention in the very early days of computing, and by 

now, there are tens if not hundreds of approaches. In this chapter, we see a few classics.

Recall that we use iterators whenever we have an algorithm that loops over results 

that should be reported. All iterators must be initialized, and the resources they hold must 

be deallocated when we no longer need the iterator. When we loop, we have a function 

that returns true when there is something to report and false when the loop is done. The 

values the iterator reports are put in a structure that we pass along to the function that 

iterates to the next value to report. For the algorithms in this chapter, we initialize the 

iterators with the string in which we search, the pattern we search for, and the lengths of 

the two strings. Iterating over all occurrences of the pattern follows this structure:

struct iterator iter;

struct match match;

iter_init(iter, x, strlen(x), p, strlen(p));

while (next_func(&iter, &match)) {

   // Process occurrence

}

iter_dealloc(&iter);

When we report an occurrence, we get the position of the match, so the structure the 

iterator use for reporting is this:

struct match {

    uint32_t pos;

};

https://doi.org/10.1007/978-1-4842-5920-7_2#DOI
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�Naïve algorithm
The simplest way imaginable for exact search is to iteratively move through the string 

x, with an index j that conceptually runs the pattern p along x, and at each index start 

matching the pattern against the string using another index, i (see Figure 2-1). The 

algorithm has two loops, one that iterates j through x and one that iterates i through 

p, matching x[i + j] against p[i] along the way. We run the inner loop until we see a 

mismatch or until we reach the end of the pattern. In the former case, we move p one 

step forward and try matching again. In the second case, we report an occurrence at 

position j and then increment the index so we can start matching at the next position. We 

stop the outer loop when index j is greater than n − m. If it is, there isn’t room for a match 

that doesn’t run past the end of x.

We terminate the comparison of x[i + j] and p[i] when we see a mismatch, so in the best 

case, where the first character in p never matches a character in x, the algorithm runs in 

time O(n) where n is the length of x. In the worst case, we match all the way to the end of p 

at each position, and in that case, the running time is O(nm) where m is the length of p.

To implement the algorithm using an iterator, the iterator needs to remember 

the string to search in and the pattern to search for—so we do not need to pass these 

along each time we increment the iterator with potentials for errors if we use the wrong 

strings—and we keep track of how far into the string we have searched.

struct naive_match_iter {

    const uint8_t *x; uint32_t n;

    const uint8_t *p; uint32_t m;

    uint32_t current_index;

};

Figure 2-1.  Exact search with the naïve approach

Chapter 2  Classical algorithms for exact search



13

When we initialize the iterator, we remember the two strings and set the current 

index to zero—before we start iterating we are at the beginning of the string.

void init_naive_match_iter(

    struct naive_match_iter *iter,

    const uint8_t *x, uint32_t n,

    const uint8_t *p, uint32_t m

) {

    iter->x = x; iter->n = n;

    iter->p = p; iter->m = m;

    iter->current_index = 0;

    iter->current_index = 0;

}

When we increment the iterator, we follow the algorithm as described earlier except 

that we start the outer loop at the index saved in the iterator. We search from this index in 

an outer loop, and at each new index, we try to match the pattern with an inner loop. We 

break the inner loop if we see a mismatching character, and if the inner loop reaches the 

end, we have a match and report it. Before we return, we set the iterator index and store 

the matching position in the match structure.

bool next_naive_match(

    struct naive_match_iter *iter,

    struct match *match

) {

    uint32_t n = iter->n, m = iter->m;

    const uint8_t *x = iter->x;

    const uint8_t *p = iter->p;

    if (m > n) return false;

    if (m == 0) return false;

    for (uint32_t j = iter->current_index; j <= n - m; j++) {

        uint32_t i = 0;

        while (i < m && x[j+i] == p[i]) {

            i++;

        }
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        if (i == m) {

            iter->current_index = j + 1;

            match->pos = j;

            return true;

        }

    }

    return false;

}

The code

    if (m > n)  return false;

    if (m == 0) return false;

makes sure that it is possible to match the pattern at all and that the pattern isn’t 

empty. This is something we could also test when we initialize the iterator. However, we 

do not have a way of reporting that we do not have a possible match there, so we put the 

test in the “next” function.

We do not allocate any resources when we initialize the iterator, so we do not need to 

do anything when deallocating it either. We still need the deallocator function, however, 

so we always use the same design pattern when we use iterators. To make sure that if we, 

at some point in the future, need to free something that we put in an iterator, then all 

users of the iterator (should) have added code for this.

void dealloc_naive_match_iter(

    struct naive_match_iter *iter

) {

    // Nothing to do here...

}

�Border array and border search
It is possible to get O(n + m) running times for both best and worst case, and several 

algorithms exist for this. We will see several in the following sections. The first one is 

based on the so-called borders of strings.
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�Borders and border arrays
A border of a string is any substring that is both a prefix and a suffix of the said string; see 

Figure 2-2. For example, the string x = ababa has borders aba, a, and the empty string. 

There is always at least one border per string—the empty string. It is possible to list all 

borders by brute force. For each index i in x, test if the substrings x[0, i] matches the 

string x[n − i, n]. This approach makes time O(n) per comparison, and we need it for all 

possible borders which means that we end up with a running time of O(n2). It is possible 

to compute the longest border in linear time, as we shall see. The way we compute it 

shows that sometimes more is less; we will compute more than the length of the longest 

suffix. What we will compute is the border array. This is an array that for each index i 

holds the length of the longest border of string x[0, i]. Consider x = ababa. For index 0 we 

have string a which has border a, so the first element in the border array is 1. The string 

ab only has the trivial, nonempty border, so the border array value is zero. The next string 

is aba with border a, so we get 1 again. Now abab has borders ab, so the border array 

holds 2. The full string x = ababa with border aba so its border array looks like  

ba = [1, 0, 1, 2, 3].

We can make the following observation about borders and border arrays: The longest 

border of x[0, i] is either the empty string or an extension of a border of x[0, i − 1]. If the 

letter at x[i] is a, the border of x[0, i] is some string y followed by a. The y string must be 

both at the beginning and end of x[0, i − 1] (see Figure 2-3), so it is a border of x[0, i − 1]. 

The longest border for x[0, i] is the longest border of x[0, i − 1] that is followed by a (which 

may be the empty border if the string x begins with a) or the empty border if there is no 

border we can extend with a.

Another observation is that if you have two borders to a string, then the shorter of the 

two is a border of the longer; see Figure 2-4.

Figure 2-2.  A string with three borders
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The two observations combined gives us an approach to computing the border 

array. The first string has the empty border as its only border, and after that, we can use 

the border array up to i − 1 to compute the length of the longest border of x[0, i]. We start 

by testing if we can extend the longest border with x[i], and if so, ba[i] = ba[i − 1] + 1. 

Otherwise, we look at the second-longest border, which must be the longest border of  

x[0, ba[i − 1]]. If the character after this border is x[i], then ba[i] = ba[ba[i − 1]] + 1.  

We continue this way until we have found a border we can extend (see Figure 2-5). If we 

reach the empty border, we have a special case—either we can extend the empty border 

because x[0] = x[i], in which case ba[i] = 1, or we cannot extend the border because  

x[0] ≠ x[i], in which case ba[i] = 0.

Figure 2-4.  A shorter border is always a border of a longer border

Figure 2-3.  Extending a border
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An implementation of the border array construction algorithm can look like this:

    ba[0] = 0;

    for (uint32_t i = 1; i < m; ++i) {

        uint32_t b = ba[i - 1];

        while (b > 0 && x[i] != x[b])

            b = ba[b - 1];

        ba[i] = (x[i] == x[b]) ? b + 1 : 0;

    }

The running time is m for a string x of length m. It is straightforward to see that 

the outer loop only runs m iterations but perhaps less easy to see that the inner loop 

is bounded by m iterations in total. But observe that in the outer loop, we at most 

increment b by one per iteration. We can assign b + 1 to ba[i] in the last statement in the 

inner loop and then get that value in the first line of the next iteration, but at no other 

point do we increment a value. In the inner loop, we always decrease b—when we get the 

border of b − 1, we always get a smaller value than b. We don’t allow b to go below zero in 

the inner loop, so the total number of iterations of that loop is bounded by how much the 

outer loop increase b. That is at most one per iteration, so we can decrement b by at most 

m, and therefore the total number of iterations of the inner loop is bounded by O(m).

Figure 2-5.  Searching for the longest border we can extend with letter a
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�Exact search using borders
The reason we built the border array was to do an exact search, so how does the array 

help us? Imagine we build a string consisting of the pattern we search for, p, followed 

by the string we search in, x, separated by a sentinel, $ character not found elsewhere in 

the two strings, y = p$x. The sentinel ensures that all borders are less than the length of 

p, m, and anywhere we have a border of length m, we must have an occurrence of p (see 

Figure 2-6). In the figure, the indices are into the p$x string and not into x, but you can 

remap this by subtracting m + 1. The start index of the match is i − m + 1 rather than the 

more natural i − m because index i is at the end of the match and not one past it.

We can construct the string p$x in linear time and compute the border array—and 

report occurrences in the process—in linear time, O(m + n). You don’t need to create 

the concatenated string, though. You can build the border array for p and use that when 

computing the border array for x. You pretend that p is prepended to x. When you do 

this, the sentinel between p and x is the null-termination sentinel in the C-string p.

An iterator that searches a string with this algorithm must contain the border 

array of p, the index into x we have reached, and the b variable from the border array 

construction algorithm.

struct border_match_iter {

    const uint8_t *x; uint32_t n;

    const uint8_t *p; uint32_t m;

    uint32_t *border_array;

    uint32_t i; uint32_t b;

};

Figure 2-6.  Searching using a border array
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When we initialize the iterator, we set its index to zero. That, after all, is where we 

start searching in x. We also set the iterator’s b variable to zero. We imagine that we start 

the search after a sentinel, so the longest border at the start index for x has length zero. 

We then allocate and compute the border array.

void init_border_match_iter(

    struct border_match_iter *iter,

    const uint8_t *x, uint32_t n,

    const uint8_t *p, uint32_t m

) {

    iter->x = x; iter->n = n;

    iter->p = p; iter->m = m;

    iter->i = iter->b = 0;

    uint32_t *ba = malloc(m * sizeof(uint32_t));

    compute_border_array(p, m, ba);

    iter->border_array = ba;

}

Since we allocated the border array when we initialized the iterator, we need to free it 

again when we deallocate it.

void dealloc_border_match_iter(

    struct border_match_iter *iter

) {

    free(iter->border_array);

}

A third of my implementation for incrementing the following iterator is setting up 

aliases for the variables in the iterator, so I don’t have to write iter->b and iter->m 

for variables b and m, respectively. Other than that, there are the tests for whether it is 

possible at all to have a match, that we also saw in the previous section, and then there is 

the border array construction algorithm again, except that we never update an array but 

instead report when we get a border of length m.
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bool next_border_match(

    struct border_match_iter *iter,

    struct match *match

) {

    const uint8_t *x = iter->x;

    const uint8_t *p = iter->p;

    uint32_t *ba = iter->border_array;

    uint32_t b = iter->b;

    uint32_t m = iter->m;

    uint32_t n = iter->n;

    if (m > n) return false;

    if (m == 0) return false;

    for (uint32_t i = iter->i; i < iter->n; ++i) {

        while (b > 0 && x[i] != p[b])

            b = ba[b - 1];

        b = (x[i] == p[b]) ? b + 1 : 0;

        if (b == m) {

            iter->i = i + 1;

            iter->b = b;

            match->pos = i - m + 1;

            return true;

        }

    }

    return false;

}

When we report an occurrence, we naturally set the position we matched in the 

report structure, and we remember the border and index positions. 
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�Knuth-Morris-Pratt
The Knuth-Morris-Pratt (KMP) algorithm also uses borders to achieve a best- and worst-

case running time of O(n + m), but it uses the borders in a slightly different way. Before 

we get to the algorithm, however, I want to convince you that we can, conceptually, move 

the pattern p through x in two different ways; see Figure 2-7. We can let j be an index  

into x and imagine p starting there. When we test if p matches there, we use a pointer 

into p, i, and test x[ j + i] against p[i] for increasing i. To move p to another position in x,  

we change j, for example, to slide p one position to the right we increment j by one. 

Alternatively, we can imagine p aligned at position j − i for some index j in x and an  

index i into p. If we change i, we move j − i so we move p. If, for example, we want 

to move p one step to the right, we can decrement i by one. To understand how the 

KMP algorithm works, it is useful to think about moving p in the second way. We will 

increment the j and i indices when matching characters, but when we get a mismatch, 

we move p by decrementing i.

The idea in KMP is to move p along x as we would in the naïve algorithm, but move 

a little faster when we have a mismatch. We use index j to point into x and i to point 

into p. We match x[ j] against p[i] as we scan along x and the pattern is aligned against 

x at index j − i. We can move p’s position by modifying either i or j. Consider a place 

in the algorithm where we have matched p[0, i] against x[ j − i, j] and see a mismatch. 

In the naïve algorithm, we would move p one step to the right and start matching p 

again at that position. We would set i to zero to start matching from the beginning of p, 

and we would decrement j to j − i + 1 to match at the new position at which we would 

match p. With KMP we will skip positions where we know that p cannot match, and we 

use borders to do this.
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If we have matched p up to index i and then had a mismatch, we know that the only 

next position at which we could possibly have a match is one where we match a border of 

p[0, i − 1] against a suffix of the string we already matched x[ j − i, j − 1]; see Figure 2-8.  

It has to be a border of p[0, i − 1] and not p[0, i], although that might look like a better 

choice from the figure. However, we know that p[0, i] doesn’t match at the last index, so 

we need a border of the pattern up to index i − 1. When we move p, we must be careful 

not to slide it past possible matches, but if we pick the longest border of p[0, i − 1], then 

this cannot happen. Aligning the longest border moves the pattern the shortest distance 

Figure 2-7.  Two ways to conceptually look at matching
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where a border matches a suffix of x[ j − i, j − 1]. When we have a mismatch at index i, 

we move p up to the next possible match by decreasing i to ba[i − 1]. See Figure 2-9 for a 

visualization of this idea.

When we move p to match a border to the string we already matched, there is 

a chance that the character following the border doesn’t match x[j] either. It is not 

straightforward to pick a border where we are sure that the next character matches, 

but we can easily avoid that we mismatch on exactly the same character as before. We 

need to modify the border array, so we do not include borders where the next character 

matches the character that follows the border. A border array where we have removed 

the borders p[0, ba[i]] and p[i − ba[i], i] where p[ba[i] + 1] = p[i + 1] is what we call a 

restricted border array. We can compute this restricted array by scanning the border 

array from left to right and skipping a border if the characters match. The longest border 

of the skipped border will not be followed by the same character as the border we skip. If 

it did, we would have skipped past it when we processed the longer border.

Figure 2-8.  Borders and the observation underlying the KMP algorithm
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    for (uint32_t i = 0; i < m - 1; i++) {

        if (ba[i] > 0 && pattern[ba[i]] == pattern[i + 1])

            ba[i] = ba[ba[i] - 1];

    }

An iterator for the KMP algorithm needs to hold the border array and the indices i and j.

struct kmp_match_iter {

    const uint8_t *x; uint32_t n;

    const uint8_t *p; uint32_t m;

    uint32_t *ba;

    uint32_t j, i;

};

The initialization consists of computing the border array and modifying it to avoid 

borders that are followed by the same characters.

void compute_border_array(

    const uint8_t *x,

    uint32_t m,

    uint32_t *ba

) {

    ba[0] = 0;

    for (uint32_t i = 1; i < m; ++i) {

        uint32_t b = ba[i - 1];

        while (b > 0 && x[i] != x[b])

            b = ba[b - 1];

Figure 2-9.  Calculations for how much we should jump at a mismatch
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        ba[i] = (x[i] == x[b]) ? b + 1 : 0;

    }

}

void computed_restricted_border_array(

    const uint8_t *x,

    uint32_t m,

    uint32_t *ba

) {

    compute_border_array(x, m, ba);

    for (uint32_t i = 0; i < m - 1; i++) {

        if (ba[i] > 0 && x[ba[i]] == x[i + 1])

            ba[i] = ba[ba[i] - 1];

    }

}

void init_kmp_match_iter(

    struct kmp_match_iter *iter,

    const uint8_t *x, uint32_t n,

    const uint8_t *p, uint32_t m

) {

    iter->x = x; iter->n = n;

    iter->p = p; iter->m = m;

    iter->j = 0; iter->i = 0;

    uint32_t *ba = malloc(m * sizeof(uint32_t));

    ba[0] = 0;

    computed_restricted_border_array(p, m, ba);

    iter->ba = ba;

}

Since we allocate memory for the border array, we must also free it in the 

deallocation function.
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void dealloc_kmp_match_iter(

    struct kmp_match_iter *iter

) {

    free(iter->ba);

}

The next function gets its information from the iterator. It then iterates as long as 

index j hasn’t reached a point where no more matches can occur, or until we have a 

match that we report. We scan the text and pattern, by increasing i and j as long as we 

have a match, and if i reaches m, we know that we have a match. To move p to the next 

position, we increase j by one if i is zero (so we need to match from the beginning of p), 

or we decrease i if i is not zero using the border array. If we have a match to report, we 

update the iterator with the current loop state and return the position where we had the 

match, j − m.

bool next_kmp_match(

    struct kmp_match_iter *iter,

    struct match *match

) {

    // Aliases to make the code easier to read...

    uint32_t j = iter->j;

    uint32_t i = iter->i;

    uint32_t m = iter->m;

    uint32_t n = iter->n;

    const uint8_t *x = iter->x;

    const uint8_t *p = iter->p;

    if (m > n) return false;

    if (m == 0) return false;

    // Remember that j matches the first i

    // items into the string, so + i.

    while (j <= n - m + i) {

        // Match as far as we can

        while (i < m && x[j] == p[i]) {

            i++; j++;

        }
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        // We need to check this

        // before we update i.

        bool we_have_a_match = i == m;

        // Update indices

        if (i == 0) j++;

        else i = iter->ba[i - 1];

        // If we have a hit...

        if (we_have_a_match) {

            // ...yield new match

            iter->j = j; iter->i = i;

            match->pos = j - m;

            return true;

        }

    }

    return false;

}

The reason we have a Boolean for when we have a match is that we need to update 

the indices whether we have a match or not. I chose this solution to avoid duplicated 

code, but you could also have the update code twice instead.

To see that the algorithm runs in linear time, we need two observations. First, 

the index j never decreases and this bounds it to maximal n steps. This variable does 

not increase in each iteration, but when j doesn’t increase, i decreases instead. When 

i decreases, we conceptually move p toward the right by increasing j −i, where the 

beginning of p sits under x. We never move p to the left, so the number of steps we can 

move p forward is also bounded by n. So, in each iteration we either increment j or move 

p, and both operations are bounded by n steps. This means that we have a linear bound 

on the KMP algorithm.
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�Boyer-Moore-Horspool
With the Boyer-Moore-Horspool (BMH) algorithm, we are back to a worst-case 

running time of O(nm), but now with a best-case running time of O(n/m + m), that 

is, a potential sublinear running time. The trick to going faster than linear is to match 

the pattern from right to left (see Figure 2-10), which lets us use information about the 

match after the current position of p. If we have a mismatch before we reach the first 

character in p, that is, before we reach index j in x, we might be able to skip past the 

remaining prefix of x[ j, j+m] without looking at it.

The idea in the BMH algorithm is straightforward. To have a match, at the very 

least, the last character of p, p[m − 1], should match the last character in the substring 

we are trying to match p against, that is, x[ j + m − 1]. If we see a mismatch, we do not 

simply increment j by one. Instead, we move p to the next position where the rightmost 

occurrence of x[ j + m − 1] occurs in p; see Figure 2-11. We cannot include the last 

character since if that matches we will not move anywhere, so “rightmost” really means 

the rightmost that is not the last character. As a preprocessing step, we want to build a 

“jump table” that, whenever we have a mismatch (or get to the beginning of p), moves us 

to the next position where we match x[ j + m − 1]. If the rightmost occurrence of this last 

character is at index k in p, we want to move p m − 1 − k positions; see Figure 2-12.

Figure 2-10.  Matching from right to left
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When we build the jump table, we cannot include the last character in p, p[m − 1], 

since jumping to align this one might leave us at the same position as we are already at. 

Excluding it means that p will always jump at least one position to the right, that is, when 

j is updated with the jump table, it will always increase. When we build the jump table, 

we start by setting all entries to m. If a character is not in p, this will let us jump entirely 

past the current j +m −1 position. We then iterate through p and insert the position 

where we see a character into the table. If a character occurs more than once, it will be 

the last position that is in the table because we update the table from left to right.

    for (uint32_t k = 0; k < 256; k++) {

        jump_table[k] = m;

    }

    for (uint32_t k = 0; k < m - 1; k++) {

        jump_table[pattern[k]] = m - k - 1;

    }

It should be obvious that the preprocessing is done in O(m).

In our BMH iterator, we need to store the current position of p in x, j, and we need to 

store the jump table.

struct bmh_match_iter {

    const uint8_t *x; uint32_t n;

    const uint8_t *p; uint32_t m;

    uint32_t jump_table[256];

    uint32_t j;

};

Figure 2-11.  Observation that lets us jump ahead after a mismatch
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When we initialize the iterator, we set j to the first position in x and we compute the 

jump table for the pattern.

void init_bmh_match_iter(

    struct bmh_match_iter *iter,

    const uint8_t *x, uint32_t n,

    const uint8_t *p, uint32_t m

) {

    iter->j = 0;

    iter->x = x; iter->n = n;

    iter->p = p; iter->m = m;

    for (uint32_t k = 0; k < 256; k++) {

        iter->jump_table[k] = m;

    }

Figure 2-12.  The length to jump at a mismatch
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    for (uint32_t k = 0; k < m - 1; k++) {

        iter->jump_table[pattern[k]] = m - k - 1;

    }

}

The jump table is not heap allocated, we know its size at compile time, so we do not 

need to free it when we deallocate the iterator.

void dealloc_bmh_match_iter(

    struct bmh_match_iter *iter

) {

    // Nop

}

When we increment the iterator, we search from the current j, but instead of 

incrementing the index by one in each iteration, we increment it with the value in the 

jump table. For each position of j, we try to match p starting from the last character 

and moving toward the first. If we have a match, we report the matching position and 

increment j to the position where the next search should start.

bool next_bmh_match(

    struct bmh_match_iter *iter,

    struct match *match

) {

    // Aliasing to make the code easier to read...

    const uint8_t *x = iter->x;

    const uint8_t *p = iter->p;

    uint32_t n = iter->n;

    uint32_t m = iter->m;

    uint32_t *jump_table = iter->jump_table;

    if (m > n)  return false;

    if (m == 0) return false;

    for (uint32_t j = iter->j;

         j < n - m + 1;

         j += jump_table[x[j + m - 1]]) {

        uint32_t i = m - 1;
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        while (i > 0 && p[i] == x[j + i]) {

            i--;

        }

        if (i == 0 && p[0] == x[j]) {

            match->pos = j;

            iter->j = j + jump_table[text[j + m - 1]];

            return true;

        }

    }

    return false;

}

To see that the worst-case running time is O(nm), consider a string and a pattern that 

has only one character, x = aaa · · · a, p = aaa · · · a. With these two strings, we never have 

a mismatch, the rightmost occurrence of a (excluding the last character in p as we do) is 

m − 2, so we jump m − 1 − k with k = m – 2, which moves us one position to the right. So 

at each position in x, we match m characters, which gives us a running time of O(nm). 

For the best-case running time, consider x = aaa · · · a again but now the pattern p = bbb 

· · · b. We will always get a mismatch at the first character we see, and then we need to 

move to the rightmost occurrence of a in p. There isn’t any a in p, so we move p all the 

way past position j + m − 1. This means that we only look at every mth character and we, 

therefore, get a running time of O(n/m +m), where the m is for the preprocessing. These 

two examples are, of course, extreme, but with random strings over a large alphabet, or 

with natural languages, the rightmost occurrence can be far to the left or even not in the 

string, and we achieve running times close to the best case bound.

There is another observation we can make that won’t change the worst-case running 

time but might let us jump faster along x. If we have matched to index i and have a 

mismatch there, there is no reason to place p at a location where the same character 

will mismatch. We have the mismatching character and know where the rightmost 

occurrences of characters are in p, so we can jump p to a position where p[i] and x[ j + i]  

will match. If the rightmost occurrence of x[ j + i] is at position k in p, then we can jump 

by i − k; see Figure 2-13. If the rightmost occurrence of x[ j + i] is to the right of i in p, 

then the jump would be negative, which we do not want since that moves our search 

backward and can in the worst case lead to an infinite loop. But if we jump the maximal 

length given both of the rules above, then the jump rules will always move us at least one 

character forward.
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We cannot make a jump table for this rule since the length we have to jump 

depends on i as well as the character where the mismatch occurs. So instead we store 

the “rightmost occurrence” array in the iterator. We can compute both jump rules from 

this. We need a way to handle characters that are not in the pattern, so we use a signed 

value. That way, these characters can have index -1. Here, we assume that the length of 

the pattern cannot be more than half of the string we are searching in, but this is not an 

unreasonable assumption and is unlikely ever to be a problem.

struct bmh_match_iter {

    const uint8_t *x; uint32_t n;

    const uint8_t *p; uint32_t m;

    // Signed so we can indicate no occurrence

    int32_t rightmost[256];

    uint32_t j;

};

Computing the array is straightforward. We initialize the array with -1 which is what 

the entries should be if a character is not found in p. We then run from left to right and 

insert indices by their character.

void init_bmh_match_iter(

    struct bmh_match_iter *iter,

    const uint8_t *x, uint32_t n,

    const uint8_t *p, uint32_t m

) {

Figure 2-13.  Second jump rule for BMH
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    iter->j = 0;

    iter->x = x; iter->n = n;

    iter->p = p; iter->m = m;

    for (uint32_t k = 0; k < 256; k++) {

        iter->rightmost[k] = -1;

    }

    for (uint32_t k = 0; k < m - 1; k++) {

        iter->rightmost[pattern[k]] = k;

    }

}

The expression for jumping occurs twice in the algorithm but is quite cumbersome 

to write and not informative about what is really happing, so it is a good idea to define a 

macro to handle it.

static inline uint32_t MAX(uint32_t a, uint32_t b) {

    return (((a) > (b)) ? (a) : (b));

}

#define BMH_JUMP() \

    MAX(i - iter->rightmost[x[j + i]], \

        (int32_t)m - iter->rightmost[x[j + m - 1]] - 1)

The various variables in the macro are not arguments but hardwired to be used 

inside the algorithm. This makes it easier to see what the intent of the macro is inside the 

function and is an approach I will often take in this book.

The function that increments the iterator uses the macro instead of the jump table 

from earlier, it uses a signed value for i so we can handle -1 when we get it from the 

rightmost array, but otherwise, there are no changes compared to the version from 

earlier.

bool next_bmh_match(

    struct bmh_match_iter *iter,

    struct match *match

) {

    // Aliasing to make the code easier to read...

    const uint8_t *x = iter->x;

    const uint8_t *p = iter->p;
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    uint32_t n = iter->n;

    uint32_t m = iter->m;

    int32_t  *rightmost  = iter->rightmost;

    if (m > n) return false;

    if (m == 0) return false;

    // We need to handle negative numbers, and we have already

    // assumed that indices into the pattern can fit into

    // this type.

    int32_t i = m - 1;

    for (uint32_t j = iter->j;

         j < n - m + 1;

         j += BMH_JUMP()) {

        i = m - 1;

        while (i > 0 && p[i] == x[j+i]) {

            i--;

        }

        if (i == 0 && p[0] == x[j]) {

            match->pos = j;

            iter->j = j + BMH_JUMP();

            return true;

        }

    }

    return false;

}

�Extended rightmost table
The two components work well for jumping along x, but the first only looks at the last 

match of p in x and the other only contributes to jumping if the rightmost occurrence 

of the mismatched character is to the left of i. We can do better than this and jump to 

the rightmost position to the left of i every time we have a mismatch. To do this, we need 

a table where we can look up by character and by index. If the alphabet has size k, we 

would have a k × m table. We can do this as still be in O(nm) worst case and O(n/m + m) 
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running time, but we can save some space by having a linked list per character, and look 

up indices in it. Let us add such an array of lists to the iterator:

struct index_linked_list {

    struct index_linked_list *next;

    uint32_t data;

};

struct bmh_match_iter {

    const uint8_t *x; uint32_t n;

    const uint8_t *p; uint32_t m;

    int32_t rightmost[256];

    struct index_linked_list *rightmost_table[256];

    uint32_t j;

};

There is nothing unique in how a linked list is implemented. See the Appendix. We 

will need prepend to lists and to free them, so we write functions for that.

static inline struct index_linked_list *

new_index_link(

    uint32_t val,

    struct index_linked_list *tail

) {

    struct index_linked_list *link =

        malloc(sizeof(struct index_linked_list));

    link->data = val; link->next = tail;

    return link;

}

void free_index_list(

    struct index_linked_list *list

) {

    while (list) {

        struct index_linked_list *next = list->next;

        free(list);

        list = next;

    }

}

Chapter 2  Classical algorithms for exact search



37

When we initialize an iterator, we append each position to the list found at the 

position’s character. When we are done, each list will contain all the occurrences of the 

character they are associated with.

void init_bmh_match_iter(

    struct bmh_match_iter *iter,

    const uint8_t *x, uint32_t n,

    const uint8_t *p, uint32_t m

) {

    iter->j = 0;

    iter->x = x; iter->n = n;

    iter->p = p; iter->m = m;

    for (uint32_t k = 0; k < 256; k++) {

        iter->rightmost[k] = -1;

        iter->rightmost_table[k] = 0;

    }

    for (uint32_t k = 0; k < m - 1; k++) {

        iter->rightmost[p[k]] = k;

        iter->rightmost_table[p[k]] =

            new_index_link(k,

                iter->rightmost_table[p[k]]);

    }

}

We allocate list links in the initializer, so we must free them again in the deallocator.

void dealloc_bmh_match_iter(

    struct bmh_match_iter *iter

) {

    for (uint32_t k = 0; k < 256; k++) {

        free_index_list(iter->rightmost_table[k]);

    }

}

The positions in each list are in descending order, so if we search for the rightmost 

occurrence to the left of an index i, we scan until we find a position that is less than i.
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static int32_t find_rightmost(

    struct index_linked_list *list,

    int32_t i

) {

    while (list) {

        if (list->data < i) {

            return list->data;

        }

        list = list->next;

    }

    return -1;

}

The iteration function doesn’t change, but the BMH_JUMP() macro does. Instead of 

the table lookup to find the rightmost occurrence in the entire string, we use the find_

rightmost() function. Otherwise, nothing is new.

#define BMH_JUMP() \

    MAX(i - find_rightmost(

        iter->rightmost_table[text[j+i]], i), \

        (int32_t)m - iter->rightmost[text[j+m-1]] - 1)

You might object, now, that the search in the lists is not constant time, so the running 

time now potentially exceeds O(nm + m) in the worst case. To see that this isn’t so, consider 

how many links we have to search through. The only indices that are larger than i are those 

m − i we scanned past before a jump. The first link after that will have an index smaller 

than i and we return that immediately. This means that the search in the list is not more 

expensive than the scan we just did in the string, so the running time is at most twice as 

many operations as without the lists, so worst case O(nm + m) and best case O(n/m + m).

�Boyer-Moore
The Boyer-Moore (BM) algorithm adds two additional jump rules to the BMH algorithm. 

These exploit that we have information about a suffix of the pattern that we have 

matched against a substring of x. If we have matched the pattern suffix p[i, m] against  

x[ j + i, j + m], then we can use knowledge about where p[i, m] occurs, or partly occurs,  

in the pattern. We have one rule for when p[i, m] occurs somewhere in p at some  
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p[k, k + m − i]. If one or more of such substrings exist, then we should move the 

rightmost occurrence such that it aligns with the matched part. For p to match in x, 

it must at least match on the p[i, m] = p[k, k + m − i]. Picking the rightmost matching 

substring means that we move the minimal distance where such a match is possible, 

guaranteeing that we do not skip past a potential match. Since we have a mismatch at  

p[i − 1] ≠ x[ j + i − 1], we will also require that p[i − 1] ≠ p[k − 1]. Without this 

requirement, we might shift to a position where we get exactly the same mismatch in the 

next comparison. See Figure 2-14 for the intuition for the first jump rule.

As you can see from the figure, we shift p to the right to match up a substring with 

a suffix. This suffix is a border of the string p[k, n]. The border array we used in the 

first, nontrivial, algorithm gives us, for each i the longest border of p[0, i + 1], and this 

border is a prefix of the string. We need a suffix, so we use a corresponding border 

array computed from the right. We call it the reversed border array. Since we want the 

preceding characters to mismatch, we modify the reversed border array the same way 

as for the usual border array, but from the right to take care of preceding characters. Let 

us call this the restricted reversed border array, just to have something to call it. We shall 

use a variant of this array to compute the first jump table. There will not always be an 

occurrence of p[i, m] to the left of the suffix p[i, m], in which case this jump rule cannot 

be used. When this is the case, we set the jump rule to zero. Since the character rules in 

the BMH algorithm ensure that we always step at least one position to the right, and we 

will take the largest step possible between the two rules in this section and the two rules 

in the previous section, we will always move forward.

The second jump table is used when the string p[i, m] does not occur to the left of 

the suffix. If we cannot match such an occurrence against x[ j + i, j + m], then we can 

try to match a suffix of x[ j + i, j + m] against a border of p; see Figure 2-15. If there is no 

Figure 2-14.  Jump rule one
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nontrivial border of p, we set the jump table distance to zero. The character-based rules 

will ensure that we always move forward by at least one character.

�Jump rule one
To build the jump table for the first case, it might be tempting to try to use a border array 

to build a jump table. For each position i in the string p, the border array tells us how 

long a match we have with a prefix, that is, the length of the longest string that is both a 

prefix and a suffix of p[0, i]. If we build a border array from the right instead of from the 

left, we know, for each position i, the length of the longest string that is both a prefix and 

a suffix of p[i, m].

void compute_reverse_border_array(

    uint32_t *rba,

    const uint8_t *x,

    uint32_t m

) {

    rba[m - 1] = 0;

    for (int32_t i = m - 2; i >= 0; --i) {

        uint32_t b = rba[i+1];

        while (b > 0 && x[i] != x[m - 1 - b])

            b = rba[m - b];

        rba[i] = (x[i] == x[m - 1 - b]) ? b + 1 : 0;

    }

}

Here, it is easy to modify the algorithm to run from right to left instead of left to right, 

but in general, if you want to have a border-like structure where you can compute the 

left-to-right version and want the right-to-left version, you can reverse the string, build 

Figure 2-15.  Jump rule two
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the left-to-right array, and then reverse that array. For the reverse border array, it would 

look like this:

void compute_border_array(

    const uint8_t *x,

    uint32_t m,

    uint32_t *ba

) {

    ba[0] = 0;

    for (uint32_t i = 1; i < m; ++i) {

        uint32_t b = ba[i - 1];

        while (b > 0 && x[i] != x[b])

            b = ba[b - 1];

        ba[i] = (x[i] == x[b]) ? b + 1 : 0;

    }

}

static void intarray_rev_n(uint32_t *x, uint32_t n)

{

    uint32_t *y = x + n - 1;

    while (x < y) {

        uint32_t tmp = *y;

        *y = *x;

        *x = tmp;

        x++ ; y--;

    }

}

void compute_reverse_border_array(

    const uint8_t *x,

    uint32_t m,

    uint32_t *rba

) {

    uint8_t x_copy[m];

    strncpy((char *)x_copy, (char *)x, m);

    str_inplace_rev_n(x_copy, m);
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    computed_border_array(x_copy, m, rba);

    intarray_rev_n(rba, m);

}

Here, I have split the computation into multiple functions to make it clear what each 

step is. I prefer the reverse-compute-reverse strategy in most cases, because though 

it is slightly less efficient it greatly minimizes the work necessary to implement both 

directions and reduces the risk of errors since there are fewer lines of code.

You can also calculate the reversed restricted border array this way. Recall that the 

restricted border array is the border array where we exclude from the array the borders 

that are followed by the character p[i + 1]; we only keep borders where the letter that 

follows them differs. If we reverse the string, compute the restricted border array, and 

then reverse the result, we get the restricted reversed border array:

void computed_restricted_border_array(

    const uint8_t *x,

    uint32_t m,

    uint32_t *ba

) {

    compute_border_array(x, m, ba);

    for (uint32_t i = 0; i < m - 1; i++) {

        if (ba[i] > 0 && x[ba[i]] == x[i + 1])

            ba[i] = ba[ba[i] - 1];

    }

}

void compute_reverse_restricted_border_array(

    const uint8_t *x,

    uint32_t m,

    uint32_t *rba

) {

    uint8_t x_copy[m];

    strncpy((char *)x_copy, (char *)x, m);

    str_inplace_rev_n(x_copy, m);

    computed_restricted_border_array(x_copy, m, rba);

    intarray_rev_n(rba, m);

}

Chapter 2  Classical algorithms for exact search



43

Now, when we have the restricted reverse border array, we can scan from left to right 

and make a pointer from where a suffix ends (where we might have a mismatch in the 

algorithm) to the position of the border inside the pattern—perhaps something like this 

(see Figure 2-16):

    for (uint32_t i = 0; i < m - 1; i++) {

        jump[n - xrba[i] - 1] = n - xrba[i] - i;

    }

We go from left to right and let each suffix that also occurs internally in p and know 

about the position where it occurs. We do not add the matching part of the suffix to the 

jump table since we want to jump when we have a mismatch, so we get the index at the 

position left of the matching suffix. At the matching suffix, we insert in the jump table the 

length we should jump, n − xrba[i] − i. Because we do this from left to right, if there is 

more than one occurrence, we will get the rightmost one.

That this algorithm computes the jump table sounds convincing, and I have seen 

this implemented numerous times, which is why I mention it. There is a problem, 

however: several borders can end at the same rightmost index. Consider the string 

dabcacabca. Figure 2-17 shows the reverse border array on the left and the restricted 

reverse border array on the right (the reverse border array where the previous character 

differs between the suffix and the border). If we build a jump table from the reverse 

border array, we would get a jump for the two nonzero values; see the two arrows on 

the top of Figure 2-18. We would not see the jump at the bottom because it jumps to an 

index where a longer border starts.

Figure 2-16.  Jump table based on reverse borders
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Figure 2-17.  Example of backward border array and restricted backward border 
arrays
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Figure 2-18.  Border array jump table

Each index in our pattern can be the endpoint of multiple borders. If we follow the 

preceding idea, we only set a jump pointer to the longest border. If there are several 

suffixes of the pattern where the rightmost occurrence in the pattern starts at the same 

position, then only the longest match will get a jump rule. These borders, however, will 

have different endpoints; see Figure 2-19.1 These are unique—two different borders can’t 

have the same endpoint. Imagine two borders with the same endpoint and consider 

their start points. Where the shortest starts, there must be a mismatch between the start 

point and the border at the suffix. If not, the border would be longer and the start point 

further to the left. This, however, contradicts that the longer border must match, or it 

would be shorter. See Figure 2-20. If the longer light-gray string is a border, then it must 

1�If we were looking simply at borders, then the shorter substrings would not be rightmost in the 
figure. The shorter strings are borders of the longer borders and thus found at both ends of these. 
Therefore, there are occurrences before the end of string, namely, at the left end of the longer 
borders. The rightmost occurrences are therefore not those that match the start index. With the 
restricted border arrays, however, it is possible to be in the situation illustrated in the figure.
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match the “a” in the suffix. The character that precedes the shorter string must therefore 

also be “a”, contradicting that it could be another character. So while start points for 

rightmost occurrences of suffixes are not unique, the endpoints are.

There is an array, called the Z array, that captures the essence of the start point/

endpoint difference. The array is very similar to the border array, but at each index i, it 

stores the length, k, of the longest string p[i, i + k] that starts in index i (not ends, as the 

border array) and is a prefix of p, that is, p[0, k] = p[i, i + k]; see Figure 2-21. We do not 

want an array of strings that matches prefixes but rather one that matches suffixes, that 

is, we want an array Z' where Z'[i] contains the length of the longest substring [i − k, i] 

that matches a suffix of p, that is, p[i − k, i] = p[n − k, n]. This is the reverse of the Z array 

of the reversed string p, so we can compute it assuming we have a function compute_z_

array() that computes the Z array.

void compute_reverse_z_array(

    const uint8_t *x,

    uint32_t m,

    uint32_t *Z

) {

    uint8_t x_copy[m + 1];

    strncpy((char *)x_copy, (char *)x, m); x_copy[m] = 0;

    str_inplace_rev_n(x_copy, m);

    compute_z_array(x_copy, m, Z);

    intarray_rev_n(Z, m);

}

Figure 2-19.  Point to border endpoints rather than start points

Figure 2-20.  Uniqueness of endpoints
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In the Z array, p[0, Z[i]] = p[i, i + Z[i]] is the longest border of p[0, i + Z[i]]. We cannot 

extend it to the longest border of p[0, i +Z[i]+1] because p[Z[i]+1] ≠ p[i +Z[i]+1] since 

otherwise the longest string starting in i that matches a prefix of p would be at least one 

longer. With the Z array, we get the “restricted border” effect for free in this sense. For the 

reversed Z array, the same is true but for the letter that precedes the border strings.

�Computing the Z array

The trivial algorithm for computing the Z array simply matches the string at each 

position against the first part of our string, giving us an O(n2) running time.

uint32_t match(

    const uint8_t * s1,

    const uint8_t * s2

) {

    uint32_t n = 0;

    while (*s1 && *s2 && (*s1 == *s2)) {

        ++s1;

        ++s2;

        ++n;

    }

Figure 2-21.  The Z array
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    return n;

}

void trivial_compute_z_array(

    const uint8_t *x,

    uint32_t n,

    uint32_t *Z

) {

    Z[0] = 0;

    for (uint32_t i = 1; i < n; ++i) {

        Z[i] = match(x, x + i);

    }

}

The match() function works on pointers to strings and compares them as long as 

they haven’t reached the null sentinel and as long as they agree on the current character. 

If our string consists of only one character, x = an, then match() will run through the 

entire string x[i, n] which averaged over all the indices as O(n), giving us a total running 

time of O(n2). We can do better!

In a linear-time construction algorithm, we iteratively consider indices k = 0, 1, ..., 

n − 1 and compute Z[k] using the previously computed values. We let l and r denote the 

leftmost index and one past the right index, respectively, of the rightmost string we have 

seen so far. As invariants in the algorithm, we have for all k' < k that Z[k'] is computed 

and available and that l and r index the rightmost string x[l, l + Z[l]] seen so far.

There are three cases to consider; see Figure 2-22. The first is when the index we are 

computing is to the right of r. We can get in this situation if we have seen a rightmost 

string pointed to by l and r, but the following ks gave us empty borders. To get Z[k] we 

must compare x with x + k to get the matching length. If this length is zero, we set Z[k] to 

zero and move to k + 1. If the match result is greater than zero, we set Z[k] to the value 

and move l to k and r to k + Z[k]; the rightmost string we have seen is now then one 

starting in k, and the updated indices will point at it.

In the other two cases, k is between l and r. This means that the string x[l, r] contains 

information about the string starting in k that we can exploit. Let k' = k − l and r' = r − l. If 

we look at Z[k']—which, by the invariant, is available—there are two possibilities. Either 

Z[k'] < r’-k’ = r-k in which case the string starting in k' stops before index r'. This means 

that there is a mismatch between x[Z[k'] + 1] and x[k' + Z[k'] + 1]; see the middle case in 

Chapter 2  Classical algorithms for exact search



49

Figure 2-22. Since x[l, r] is a prefix of x, the mismatching character will also follow the 

string x[k, k + Z[z']] which means that the longest string matching a prefix and starting 

in k will have the length Z[k']. We update Z[k] = Z[k'] and leave l and r alone; the string 

pointed to by l and r is still the rightmost.

Figure 2-22.  The three cases for the Z array construction algorithm
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Case three is when the string starting at index k' continues past index r'. In this case, 

we know that a prefix of the string matches a suffix of the string x[l, r], but we do not 

know how much further the prefix will match the string starting at index k. To find out 

where, we must do a character-by-character match. We do not need to start this search 

at index 1 and k, however. We know that the first r − k characters match, so we can start 

our match at indices r − k and r; see case three in Figure 2-22. When we have found the 

right string, we update the left pointer to point at the start of it, l = k, and we set the right 

pointer to the end of the string r = k + Z[k].

An implementation can look like this:

void compute_z_array(

    const uint8_t *x,

    uint32_t n,

    uint32_t *Z

) {

    Z[0] = 0;

    if (n == 1) return; // special case

    Z[1] = match(x, x + 1);

    uint32_t l = 1;

    uint32_t r = l + Z[1];

    for (uint32_t k = 2; k < n; ++k) {

        // Case 1:

        if (k >= r) {

            Z[k] = match(x, x + k);

            if (Z[k] > 0) { l = k; r = k + Z[k]; }

        } else {

            uint32_t kk = k - l;

            if (Z[kk] < r - k) {

                 // Case 2:

                 Z[k] = Z[kk];

            } else {
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                // Case 3

                Z[k] = r - k + match(x + r - k, x + r);

                l = k;

                r = k + Z[k];

              }

        }

    }

}

To see that the running time is linear, first ignore the calls to match(). If we do, 

we can see that there are a constant number of operations in each case, so without 

matching, we clearly have a linear running time. To handle match(), we do not consider 

how much we match in each iteration—something that depends on the string and that 

we do not have much control over. Instead, we consider the sum of all matches in a run 

of the algorithm. We never call match() in the second case, so we need only to consider 

cases one and three. Here, the key observation is that we only search to the right of r and 

never twice with the same starting position.

In case one, we either have a mismatch on the first character, or we get a new string 

back. In the first case, we leave l and r alone and immediately move to the next k, which 

we will use as the starting point for the next match. As long as we are not getting a string 

back from our matching, we use constant time for match() calls for each k, and we never 

call match() on the same index twice. If we get a string, we move the right pointer, r, to 

the end of this string. We will never see the indices to the left of r again because both case 

one and three never search to the left of r. In the search in case three and a nontrivial 

result in case one, we always move r past all indices we have started a search in earlier.

�Z-based jump table

The jump rule needs to slide p to the rightmost position where we potentially have a 

match. If i is where the rightmost occurrence sits, then index i − rZ[i] is the character 

just before the start of the occurrence. If there is no occurrence, we set the jump distance 

to zero, which leaves it up to one of the other jump rules. The prefix it matches starts at 

position n − rZ[i], and it is when we have a mismatch p[i − rZ[i]] ≠ p[n − rZ[i] − 1]  
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Figure 2-23.  First jump rule for Boyer-Moore

we should move p. Therefore, we want to store the jump distance for index n−rZ[i]−1 in 

our jump table. The distance we need to jump is the one that places i −rZ[i] at position 

n −rZ[i]−1, so n −rZ[i]−q −(i −rZ[i]) = n − i − 1. See Figure 2-23 for an illustration of the 

jump rule and Figure 2-24 for a concrete example.

We build the jump table as follows: We first set all the entries to zero—the default 

that will give the other jump rules control of the jump—and after that, we compute the 

reverse Z array and set the jump values as described earlier.

    uint32_t rZ[m];

    compute_reverse_z_array(iter->pattern, m, rZ);

    uint32_t jump1[m];

    for (uint32_t i = 0; i < m; i++) {

        jump1[i] = 0;

    }

    for (uint32_t i = 0; i < m; i++) {

        jump1[m - rZ[i] - 1] = m - i - 1;

    }
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We do this in the iterator initialization. We will see the full initialization later when 

we have seen the second jump table as well.

We do not test for whether the reverse Z value is zero. In this case, we want the jump 

to be zero (so we will use one of the other jump rules), but whenever Z is zero, the loop 

will update the last index, n − rZ[i] − 1 = n − 1. In the final iteration, we will write n − i − 

1 = n − (n − 1) − 1 = 0 there, exactly as desired.

�Second jump table
The second jump rule is used where there are no occurrences of the matched string 

inside the pattern. When this is the case, we should move the minimal amount necessary 

to match a prefix of the pattern with a suffix of the matched text; see Figure 2-15. If we 

have the border array for the pattern, then the longest border of the entire string is ba[m 

− 1], the second-longest border is ba[ba[m − 1]], and so on. When we have a mismatch, 

we need to jump such that the longest border possible matches the longest suffix of the 

text we already matched. If we have matched more than ba[m − 1] characters, then we 

should align the longest border with the matched string. If we have matched less than 

Figure 2-24.  Boyer-Moore jump table one example
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Figure 2-25.  Jump ranges for jump rule two

ba[m − 1], then we should not align this border; it will only give us a mismatch at the 

same position we just mismatched on. Instead, we should use the second-longest border 

for the jump. In general, every time we have a mismatch between borders bi and bi+1 

(with bi+1 the shortest), then we should use the shorter of the two, bi+1; see Figure 2-25. 

The distance we need to move when using border b is m minus its length, that is, m − b.

We include the border of size zero in this preprocessing. It will guarantee us that if we 

have matched a string that cannot be matched anywhere else in the pattern, then we skip 

the entire string past the current attempted match.

Computing this jump table, once we have the border array, is straightforward.

    uint32_t ba[m];

    compute_border_array(iter->pattern, m, ba);

    uint32_t jump2[m];

    uint32_t b = ba[m - 1];

    uint32_t jump = m - b;

    for (uint32_t i = 0; i < m; i++) {

        if (i > b) {

            b = ba[b];

            jump = m - b;

        }

        jump2[i] = jump;

    }
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�Combining the jump rules
We cannot take the maximum jump of the two jump tables here, unlike in the BMH 

algorithm where we can jump the maximum number of characters given by the two 

rules. We should not move to a border of the full string if there is an internal string that 

matches. This means that we should only use the second rule if we cannot use the first, 

that is, we use jump table two when jump table one is zero. We can combine the two 

jump tables, and only use the second if the first is zero, in this way:

    // Combine the jump tables

    iter->jump = malloc(m * sizeof(uint32_t));

    for (uint32_t i = 0; i < m; ++i) {

        iter->jump[i] = jump1[i] ? jump1[i] : jump2[i];

    }

With all these jump tables, the Boyer-Moore algorithm is more complicated than 

the previous algorithms. Still, if we put the border and Z array functionality in separate 

functions, then the BM iterator is not overly complex to initialize and use.

Let us combine everything we have seen. We add a jump table to the iterator:

struct bm_match_iter {

    const uint8_t *x; uint32_t n;

    const uint8_t *p; uint32_t m;

    int32_t rightmost[256];

    struct index_linked_list *rightmost_table[256];

    uint32_t *jump;

    uint32_t j;

};

When we initialize the iterator, we compute the two tables from the BMH algorithm; 

then we compute the two jump tables, using a reversed Z array and a reversed border 

array, respectively; and finally we combine the two tables.

void init_bm_match_iter(

    struct bm_match_iter *iter,

    const uint8_t *x, uint32_t n,

    const uint8_t *p, uint32_t m

) {
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    iter->j = 0;

    iter->x = x; iter->n = n;

    iter->p = p; iter->m = m;

    for (uint32_t k = 0; k < 256; k++) {

        iter->rightmost[k] = -1;

        iter->rightmost_table[k] = 0;

    }

    for (uint32_t k = 0; k < m - 1; k++) {

        iter->rightmost[p[k]] = k;

        iter->rightmost_table[p[k]] =

            new_index_link(k,

                iter->rightmost_table[p[k]]);

    }

    uint32_t jump1[m];

    uint32_t jump2[m];

    for (uint32_t i = 0; i < m; i++) {

        jump1[i] = 0;

    }

    uint32_t rZ[m];

    compute_reverse_z_array(iter->p, m, rZ);

    for (uint32_t i = 0; i < m; i++) {

        // We don't have to check if rZ[i] = 0.

        // There, we will always write into n-0-1,

        // i.e., the last character in the string.

        // For the last index we set this to n - i - 1

        // which is zero. When this jump is zero,

        // one of the other rules will be used.

        jump1[m - rZ[i] - 1] = m - i - 1;

    }

    for (uint32_t i = 0; i < m; i++) {

        jump2[i] = 0;

    }

    uint32_t ba[m];

    compute_border_array(iter->p, m, ba);
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    // Combine the jump tables

    iter->jump = malloc(m * sizeof(uint32_t));

    for (uint32_t i = 0; i < m; ++i) {

        iter->jump[i] = jump1[i] ? jump1[i] : jump2[i];

    }

}

We use a macro for jumping; in this case, we want the maximum of the jump table 

increment and the increment we get from the BMH tables. The function that increments the 

iterator should use this macro instead of BMH_JUMP(), but otherwise there are no changes.

#define BM_JUMP() MAX(iter->jump[i], BMH_JUMP())

This is the only change we need to make to the next_bmh_match() function to get 

next_bm_match():

bool next_bm_match(

    struct bm_match_iter *iter,

    struct match *match

) {

    // Aliasing to make the code easier to read...

    const uint8_t *x = iter->x;

    const uint8_t *p = iter->p;

    uint32_t n = iter->n;

    uint32_t m = iter->m;

    if (m > n) return false;

    if (m == 0) return false;

    // We need to handle negative numbers, and we have already

    // assumed that indices into the pattern can fit into

    // this type.

    int32_t i = m - 1;

    for (uint32_t j = iter->j; j < n - m + 1; j += BM_JUMP()) {

        i = m - 1;

        while (i > 0 && p[i] == x[j + i]) {

            i--;

        }
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        if (i == 0 && p[0] == x[j]) {

            match->pos = j;

            iter->j = j + BM_JUMP();

            return true;

        }

    }

    return false;

}

Since we allocate the jump table in the initialize, we need to free it in the deallocation 

function.

void dealloc_bm_match_iter(

    struct bm_match_iter *iter

) {

    for (uint32_t k = 0; k < 256; k++) {

        free_index_list(iter->rightmost_table[k]);

    }

    free(iter->jump);

}

�Aho-Corasick
The Aho-Corasick algorithm differs from the previous algorithms in that it does not only 

search for a single pattern but search simultaneously for a set of patterns. The algorithm 

uses a data structure, a trie (short for retrieval), that can store a set of strings and provide 

efficient lookups to determine if a given string is in the set.

�Tries
A trie, also known as a prefix tree, is a tree where each edge holds a letter and where no 

child has more than one out edge with the same letter. Going from the root and down, 

you can read off all prefixes of one or more of the strings in the set, and when you have 

seen a full string from the set, you reach a node that is tagged with the string label from 

the set; see Figure 2-26.
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If you want all your strings to sit in leaves—something that can be useful in certain 

algorithms—then you can add a sentinel to the strings; see Figure 2-27. This will place 

all strings in leaves, and if the strings are unique, you will get a one-to-one mapping 

between the leaves of the tree and the strings it contains. If you have duplicated strings, 

they will still end up in leaves, but there will no longer be a one-to-one mapping. No 

amount of trickery will prevent identical strings from ending up in the same node, so 

some leaves will correspond to multiple strings.

Figure 2-26.  The trie data structure

Figure 2-27.  A trie with sentinel strings

One way to represent a trie is to have nodes that store the letter on their incoming 

edges, a string label if the node corresponds to a string in the set, a pointer to its parent, 

and pointers to its siblings and its children.
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struct trie {

    uint8_t in_edge_label;

    int string_label;

    struct trie *parent;

    struct trie *sibling;

    struct trie *children;

};

The parent pointer isn’t needed in many algorithms, but we need it in the Aho-

Corasick algorithm, so I have included it here. As an example, Figure 2-28 is the 

representation of the trie in Figure 2-26. Notice that the child pointer points to tries. This 

is because all sub-tries are also tries themselves.

When we initialize a trie, we set the edge label to zero—we will change it to the 

correct label later—and we set the string label to minus one, the default number that 

indicates that the path to the node is not a string in the set the trie stores. The three 

pointers are set to default values: null.

void init_trie(

    struct trie *trie

) {

    trie->in_edge_label = '\0';

    trie->string_label = -1;

    trie->parent = 0;

    trie->sibling = 0;

    trie->children = 0;

}

struct trie *alloc_trie(void)

{

    struct trie *trie =

        malloc(sizeof(struct trie));

    init_trie(trie);

    return trie;

}
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I have written two functions for initializing tries, one that assumes that you have 

already allocated a root struct trie structure and one that does it for you. When you 

want a new trie, you create its root using one of these functions. The root has no siblings, 

but it will have children once we add strings to it.

When we deallocate a trie, we recursively delete children and siblings. We free 

them because the construct algorithms—see the following function—heap allocate the 

subnodes.

void dealloc_trie(

    struct trie *trie

) {

    // Depth-first traversal freeing the trie.

    if (trie->children)

        free_trie(trie->children);

Figure 2-28.  Representing a trie in C
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    if (trie->sibling)

        free_trie(trie->sibling);

}

void free_trie(

    struct trie *trie

) {

    dealloc_trie(trie);

    free(trie);

}

To construct a trie, we insert the input set string by string. When we add the string pi, 

we search down the trie, T, and either find an existing node at the end of pi, or we find that 

we cannot continue searching beyond some point  k, that is, pi[0, k] matches, but there is 

no edge with character label pi[k]. In the first case, we set the node’s string_label to i, 

and in the second case, we must insert the string pi[k, m] in the node we reached before 

we couldn’t go any longer. So the straightforward approach is to find out where the string 

sits or where it branches off the trie and insert it there.

Whenever we need to add a substring to a node, the trie we add is a string of nodes 

with no branching. We can build such a trie using the following function:

static struct trie *

string_to_trie(

    const uint8_t *str,

    int string_label

) {

    const uint8_t *s = str;

    while (*s) s++;

    struct trie *trie = 0;

    do {

        s--;

        struct trie *new_node = alloc_trie();

        new_node->in_edge_label = *s;

        new_node->string_label = string_label;

        new_node->children = trie;
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        if (trie) trie->parent = new_node;

        trie = new_node;

        string_label = -1; // so we only label the leaf...

    } while (s != str);

    return trie;

}

It starts from the end of the string and iteratively constructs a node for each letter, 

and sets that node’s child to the previous node we created. It sets the string label in the 

root and then updates the string_label variable, so the remaining nodes will be set to 

-1 indicating that they are not representing a string.

Constructing a trie from a string is useful when we build a trie from a single sequence 

or when we need to add the suffix of a string to an existing node. To search, we need to 

find which edge to follow for each node in the trie. The following function does that by 

iterationg through all children w. The w variable is set to the child of the node, and we 

iterate through the children via their sibling pointers.

struct trie *out_link(

    struct trie *v,

    uint8_t label

) {

    for (struct trie *w = v->children;

         w; w = w->sibling) {

        if (w->in_edge_label == label)

            return w;

    }

    return 0;

}

With these two helper functions, we can write a function for adding a string to a trie. 

It will first check if the trie has any children. If not, we build a trie for the string and insert 

it as the child of the original node. If there are children, we start the search. For each 

letter in the string, we get the out edge of the current node and update the current node 

to be the output child. We abort the loop if we find a mismatch or reach the end of our 
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string. If we reach the end of the string—this happens when *str == 0—then we set the 

string label. If we do not reach the end of the string, we have found a node that doesn’t 

have the next character as an edge label. We can take the suffix of the pattern after the 

mismatch and build a (single string) trie from it and then add it to the children of the 

node where we got the mismatch.

void add_string_to_trie(

    struct trie *trie,

    const uint8_t *str,

    int string_label

) {

    if (!trie->children) { // first string is a special case

        trie->children = string_to_trie(str, string_label);

        trie->children->parent = trie;

        return;

    }

    while (*str) {

        struct trie *child = out_link(trie, *str);

        if (!child) {

            break;

        } else {

            trie = child;

            str++;

        }

    }

    if (*str == '\0') {

        // The string was already in the trie --

        // update with label.

        // We only allow this when the

        // string wasn't already inserted!

        assert(trie->string_label < 0);

        trie->string_label = string_label;

    } else {

        // Insert new suffix as a child of parent

        struct trie *new_suffix =
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            string_to_trie(str, string_label);

        new_suffix->sibling = trie->children;

        trie->children = new_suffix;

        new_suffix->parent = trie;

    }

}

If you want to know if a string is in the trie, then you can search down in it. If there 

is a node where you cannot continue, the string is not in the trie. On the other hand, if 

you reach the end of the string, you are in a node. If this node has a string label, then the 

string is in the trie; otherwise, it is not. The following two functions implement this idea:

struct trie *get_trie_node(

    struct trie *trie,

    const uint8_t *str

) {

    if (!trie->children) return 0;

    while (*str) {

        struct trie *child = out_link(trie, *str);

        if (!child) {

            return 0; // we can't find the string

        } else {

            trie = child;

            str++;

        }

    }

    return trie;

}

bool string_in_trie(

    struct trie *trie,

    const uint8_t *str

) {

    struct trie *t  = get_trie_node(trie, str);

    return t && (t->string_label >= 0);

}
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I split them into two functions because you sometimes want to get the node where 

a string is so you can do something with it. You cannot use get_trie_node() directly as 

a test. It returns a node or null, so you can test if there is a node on the path given by the 

string, but to test if it is in the trie’s set of strings, you must also check the string label. The 

string_in_trie() function does that.

First, assume that we can always find the out edge with a given symbol in constant 

time. We use linked lists for this, so on the surface this doesn’t seem to be the case, 

but we will always assume that the alphabet is of constant size, making a list search 

a constant time operation. When we insert pattern pi of length mi, we will in worst 

case search down mi steps down the trie, so if m = ∑imi, then the running time for 

constructing a trie is O(m).

The Aho-Corasick (AC) algorithm works similarly to the KMP algorithm. It scans 

along the string x (using an index j) and searches down the trie at the same time. We 

increment the index j every time we see a match in the trie—and never decrement it—

and we move the trie along x every time we have a mismatch in the trie; see Figure 2-29.

When we match along x, we move down the trie, matching character by character. 

All strings below the current position in the trie can potentially match x. If we have 

a mismatch, we need to move the trie to the right to the next position where we can 

Figure 2-29.  Matching and mismatching in Aho-Corasick
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potentially match. Consider any string you can read by concatenating the edge labels 

from the root and down the trie. That is, consider any string in the trie but not necessarily 

one labelled with the strings the trie contains. For such a string, p, let f (p) denote the 

longest proper suffix of p that you can also find in the trie. We call this mapping from p to 

f (p) the failure link of p because we will use it when we fail at matching deeper into the 

trie than p.

This definition of failure links sounds more complicated than the function really is. 

It matches the borders we used in the algorithms earlier, except that it uses a trie form of 

borders. When we have a mismatch, we want to move the trie to the right such that we 

have a match between the prefix of some of the strings in the trie and the part of x we are 

matching against. If you take p and all its suffixes, p[1, m], p[2, m], p[3, m], …, p[m, m], 

then f (p) is the longest that you can find in the trie, that is, the longest of the suffixes 

such that if you search down the trie, you will reach the end of the string before you see 

a mismatch. For each node in the trie, v, we have a mapping from the string it represents 

and that string’s failure link. In the following, I have listed failure links for the leaves in 

the trie in Figure 2-29, and for the inner nodes, we jump from when we mismatch.

p f (p)

aac 𝜖

abbcb b

ba a

bba ba

bbc c

ca a

abb bb

bb b

B 𝜖

abba bba

Recall that 𝜖 denotes the empty string.

In the Aho-Corasick algorithm, we will represent failure links as pointers from 

each node to its failure link node. For nodes where the failure link is empty, we will 

set the pointer to point at the root of the trie. We will compute the failure nodes in a 
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preprocessing step. Whenever we have a mismatch in the algorithm, we will move from 

the current node to its failure link—conceptually moving the trie further along x.

A version of the algorithm could look like this:

void aho_corasick_match(

    const char *x,

    uint32_t n,

    struct trie *patterns

) {

    uint32_t j = 0;

    struct trie *v = patterns;

    while (j < n) {

        struct trie *w = out_link(v, x[j]);

        while (w) {

            // The matching part

            if (w->string_label >= 0) {

                // String hits->string_label ends in

                // index j. If we know the length

                // of hits->string_label, we could

                // report the beginning.

                // We will do so in the iterator

                // code.

                REPORT(w->string_label, j);

            }

            v = w;

            j++;

            w = out_link(v, x[j]);

        }

        // When we get here, we do not match

        // any longer

        if (is_trie_root(v)) {

            j++;
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        } else {

            v = v->failure_link;

        }

    }

}

We search down the trie by, at each step, getting the out edge that matches the x[ j] 

we are looking at. The function we use is this:

struct trie *out_link(

    struct trie *v,

    uint8_t label

) {

    for (struct trie *w = v->children; w; w = w->sibling) {

        if (w->in_edge_label == label)

            return w;

    }

    return 0;

}

When we see a match to one of the strings in the trie, that is, a node with a 

nonnegative string label, we report a match. When it happens, j points to the end of the 

match and that is what we report (we will change that at the end of the chapter). When 

we have a mismatch, that is, we cannot find a node with the out label we want, then the 

matching phase ends and we need to move the matching trie. We have a special case if 

we are at the root. There, the failure link goes back to the root again, and we would not 

move if we used it. So if we are at the root, we increase j instead of jumping in the trie. We 

test if we are at the root by testing whether the trie has a parent:

static inline bool is_trie_root(

    struct trie *trie

) {

    return trie->parent == 0;

}
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If there are no strings that are substrings of others, this algorithm works. However, 

when one string is a substring of another, the algorithm can skip the string completely. 

Consider Figure 2-30. We have matched abbcb, and we will then have a mismatch 

(because we cannot go any further from that node in the trie). The mismatch means we 

jump to the failure link, which is the string b. It is from here we will continue our search. 

We are now in the sub-trie with the root b. Not all nodes in the trie will have a string label 

but assume for the example that bb has. That means that we should report occurrences 

of it, and if the next character is b we will do so. However, we have already encountered it 

in the string we have scanned, but we never reported it there because we were elsewhere 

in the trie when we encountered it, specifically in the node abb. With the shift from the 

failure link, we have moved past that position entirely, and we are not coming back. 

Substrings are a problem.

Figure 2-31.  Output lists and matches

Figure 2-30.  Problem with missing matches when one string is a substring of 
another
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What we want to do is output all strings that match at a position, and all such strings 

can be found by traversing the failure links of the nodes; see Figure 2-31. All strings that 

match from a node we have reached in the trie must be suffixes of the current string in 

the trie, and we can get all of them by running through the failure link.

When we match the first character in abbcb, we do not match any additional string in 

the trie, but when we match ab, we also have a match of b that ends in this position. We 

can get that from following the failure link. When we match abb, we should also report 

a match of bb and b, and we can get those by following the failure link twice, first for bb 

and then for b. When we match c, we should report c, and again we can see this using 

the failure link. Finally, when we match the last b in the string, we should report b as well 

as the full string. Unlike in this example, we do not want to output all nodes we can find 

from the failure links but only those with a nonnegative string label. So we skip those 

that do not by pointing to the next that does. The list we get from doing this is what we 

call the output list.

For each string v in the tree, you can go through the failure links v, f (v), f2(v), ..., fn 

(v) from the node up to the root. Each link, by definition, is closer to the root than the 

previous, so we will eventually get there. From the nodes you see on this path, extract 

those with a nonnegative string label. That is the output list.

To see that we output all matches that end at index j when we run through the 

output list, observe that when we move through the failure links, we get all the strings 

that match a suffix of the string we are looking at. To see that we do not miss any strings 

we should emit a match for, observe that every time we jump a failure link, we get the 

longest possible match, and therefore we cannot jump over another match.

Adding the output lists to the search algorithm, we get this:

void aho_corasick_match(

    const uint8_t *x,

    uint32_t n,

    struct trie *patterns

) {

    uint32_t j = 0;

    struct trie *v = patterns;

    while (j < n) {

        struct trie *w = out_link(v, x[j]);
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        while (w) {

            for (struct output_list *hits = w->output;

                 hits != 0;

                 hits = hits->next) {

                // hits->string_label ends in j

                REPORT(hits->string_label, j);

            }

            v = w;

            j++;

            w = out_link(v, x[j]);

        }

        if (is_trie_root(v)) {

            j++;

        } else {

            v = v->failure_link;

        }

    }

}

This time we do the traversal as before, but in each node, we run through the output 

list before we do anything else. We do not check the string label except for reporting the 

output; we know that we only have hits in the output list. Except for the loop through the 

output list, there is nothing new in the function.

�Preprocessing

Before we see the final version of the algorithm, we will see how to add the failure link 

and the output list to the trie data structure. First, of course, we need to add them to the 

trie structure:

struct output_list {

    int string_label;

    struct output_list *next;

};
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struct trie {

    uint8_t in_edge_label;

    int string_label;

    struct trie *parent;

    struct trie *sibling;

    struct trie *children;

    // For Aho-Corasick

    struct trie *failure_link;

    struct output_list *output;

};

We initialize them with null pointers:

void init_trie(struct trie *trie)

{

    trie->in_edge_label = '\0';

    trie->string_label = -1;

    trie->parent = 0;

    trie->sibling = 0;

    trie->children = 0;

    // For Aho-Corasick

    trie->failure_link = 0;

    trie->output = 0;

}

To set all failure links and the output lists, we will traverse the trie in a breadth-first 

manner. In that way, whenever we see a node in the trie, its parent and all the nodes 

closer to the root will already have their failure link and output list set.

Consider a node, v, and let p(v) be its parent and f (p(v)) be the failure link of v’s 

parent. Node v is the string p(v) followed by some letter a (see Figure 2-32 a). The failure 

link of v must be a suffix of p(v) followed by a. It cannot be a longer string since this 

would contradict that f (p(v)) is the longest suffix of p(v) that is in the trie; we would be 

able to get a longer one by adding the first part of the failure link of v (see Figure 2-32 b).
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Therefore, f (v) must start with a suffix of p(v) (Figure 2-32 c). It might not be the 

longest suffix of p(v) with an a concatenated—there might not be an out edge of f (p(v)) 

with label a, but it will be some suffix, and we can get all suffixes of p(v) following failure 

links, and we want to pick the longest one.

Figure 2-33.  Jumping the failure link of a parent to get the failure link of a child

Figure 2-32.  Relationship between v and p(v)

To set the failure link for node v, we first exploit that the parent of the node will have 

a failure link, so we can jump to the node it points to, f (p(v)). If we can find an out edge 

there that matches a, then the node at the end of the out edge will be v’s failure link. 

We have the longest suffix of p(v) that is in the trie, and we must have a suffix of p(v) as 

Chapter 2  Classical algorithms for exact search



75

the initial sequence to the failure link of v, f (v). If we can extend it with a, we have the 

longest suffix of p(v) plus a so the longest suffix of v in the trie; see Figure 2-33. If we 

cannot extend f (p(v)), then we take the next longest suffix of p(v) in the trie, f ( f (p(v))), 

and try there, and we continue following failure links until we find one that we can 

extend. If we handle nodes in a breadth-first manner, we are guaranteed that all nodes 

closer to the root than v will have their failure link set, so we have f (p(v)) and all fn (p(v)) 

set since these will be higher in the trie; they are suffixes of p(v) and must, therefore, be 

shorter strings and thus higher in the trie. If there are no places we can extend, then the 

only option we have is to set the failure link to the root.

To implement a breadth-first traversal of the trie, we need a queue structure. The 

pointer_queue data structure can be found in the Appendix; the operations you can do 

on it are what you would expect of a queue, that is, it is a first-in, first-out data structure, 

enqueue_pointer() adds a link to a pointer to the back of the queue, pointer_queue_

front() gives you the front element of the queue, and dequeue_pointer() removes the 

first element from the queue. When we need to do a breadth-first traversal of the trie, 

we need to add all siblings of a node when we reach a new node, and for that, we use a 

function, enqueue_siblings():

void enqueue_siblings(

    struct pointer_queue *queue,

    struct trie *siblings

) {

    for (struct trie *s = siblings; s; s = s->sibling)

        enqueue_pointer(queue, (void*)s);

}

To insert all children of a node, you can call enqueue_siblings() on its first child.

We use it in the function compute_failure_link_for_node() that handles the 

breadth-first traversal. It creates and later frees the queue, inserts the children of the root 

to start the traversal with, and then continues to handle nodes as long as there are nodes 

in the queue.

void compute_failure_links(

    struct trie *trie

) {
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    // We don't want to recompute them if we

    // already have set up the failure links.

    if (trie->failure_link) return;

    // Make the root its own failure link.

    trie->failure_link = trie;

    struct pointer_queue *nodes = alloc_pointer_queue();

    enqueue_siblings(nodes, trie->children);

    while (!is_pointer_queue_empty(nodes)) {

        struct trie *v =

            (struct trie *)pointer_queue_front(nodes);

        dequeue_pointer(nodes);

        compute_failure_link_for_node(v, trie, nodes);

    }

    free_pointer_queue(nodes);

}

It is in the compute_failure_link_node() we do the real work—setting the failure 

link and output list for a specific node. This is where we search the failure links of the 

parent to find one we can extend and also where we will set the output list.

void compute_failure_link_for_node(

    struct trie *v,

    struct trie *root,

    struct pointer_queue *queue

) {

     // Breadth-first traversal...

    enqueue_siblings(queue, v->children);

    if (is_trie_root(v->parent)) {

        // Special case: immediate children of the

        // root should have the root as parent.

        v->failure_link = v->parent;

    } else {
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        uint8_t label = v->in_edge_label;

        struct trie *w = v->parent->failure_link;

        struct trie *out = out_link(w, label);

        while (!out && !is_trie_root(w)) {

            w = w->failure_link;

            out = out_link(w, label);

        }

        if (out) {

            v->failure_link = out;

        } else {

            v->failure_link = root;

        }

    }

    // Compute output list

    if (v->string_label >= 0) {

        v->output = new_output_link(v->string_label,

                                    v->failure_link->output);

    } else {

        v->output = v->failure_link->output;

    }

}

For the output list, observe that we will have to output all the strings in the output 

link of the failure link of v—those are the strings that are suffixes of v with a string label. If 

v has a string label we must also output it, so in that case we prepend v’s label to the list; 

otherwise, we take the output of f (v).

In the traversal, we use two helper functions: is_trie_root() and new_output_

link(). We have seen is_trie_root() before but not new_output_link(). It looks like 

this:

struct output_list *

new_output_link(

    int label,

    struct output_list *next

) {
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    struct output_list *link =

        malloc(sizeof(struct output_list));

    link->string_label = label;

    link->next = next;

    return link;

}

When deallocating a trie, we need to handle the outlink as well as children and 

siblings. We do not need to scan through the list nodes, however. The output list is a 

linked list, but there is at most one link per string label, and that is associated with the 

trie node with that label. We don’t need to handle the rest of the output list since those 

will be handled when their corresponding trie nodes are deleted.

void dealloc_trie(

    struct trie *trie

) {

    // Depth-first traversal freeing the trie.

    if (trie->children) free_trie(trie->children);

    if (trie->sibling) free_trie(trie->sibling);

    if (trie->output && trie->string_label >= 0) {

        free(trie->output);

    }

}

When we examine the running time for the preprocessing, we will assume that the 

trie is already built; if you want to include it, just add the construction to this running 

time. Building the trie can be done in time equal to the total sum of the lengths of strings 

in it, O(m). Constructing the failure links can be done in the same time.

It isn’t obvious that we can construct the failure links in linear time. For each node v 

at depth d(v), we can in principle follow d(v) failure links, giving us a running time of the 

square of the number of nodes in the trie. This, however, is not a tight bound. To see this, 

consider a node v and the path down to it. When we compute the failure links, we do it 

breadth-first, but for now consider what amounts to a depth-first traversal. If the failure 

link is set for v and we need to compute it for a child of v, w, then the node depth of f (w) 

can at most be one more than the node depth of f (v). When we compute f (w), we might 

decrease the failure depth by a number of steps but we can only increase it by one. As we 
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move down a depth-first path, we can increase the failure link depth by one at each step, 

but we cannot decrease it more than we have increased it so far. So the total search for 

suffix links on such a path is bounded by the depth of the path.

�The algorithm with iterators

If we have a global REPORT() function (which we will avoid later), then the search 

algorithm can look like this:

void aho_corasick_match(

    const uint8_t *x,

    uint32_t n,

    struct trie *patterns

) {

    uint32_t j = 0;

    struct trie *v = patterns;

    while (j < n) {

        struct trie *w = out_link(v, x[j]);

        while (w) {

            for (struct output_list *hits = w->output;

                 hits != 0;

                 hits = hits->next) {

                // String hits->string_label ends in

                // index j. If we know the length

                // of hits->string_label, we could

                // report the beginning.

                // We will do so in the iterator

                // code.

                REPORT(hits->string_label, j);

            }

            v = w;

            j++;

            w = out_link(v, x[j]);

        }
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        if (is_trie_root(v)) {

            j++;

        } else {

            v = v->failure_link;

        }

    }

}

We do not want this type of global reporting function, of course, nor do we want a 

callback. They make it hard for others to use our code. Again we want an iterator. We 

will initialize the iterator with a trie that is already constructed, in case the user of the 

algorithm needs to use the trie on several strings or for other purposes and does not 

want to create the trie anew each time. We also want to know the pattern lengths so we 

can report the beginning of matches rather than the ends of patterns.

void init_ac_iter(

    struct ac_iter *iter,

    const uint8_t *x,

    uint32_t n,

    const uint32_t *pattern_lengths,

    struct trie *patterns_trie

) {

    assert(iter);

    iter->x = x; iter->n = n;

    iter->pattern_lengths = pattern_lengths;

    iter->patterns_trie = patterns_trie;

    iter->nested = true;

    iter->j = 0;

    iter->v = patterns_trie;

    iter->w = 0;

    iter->hits = 0;

    // We need these for this algorithm.

    compute_failure_links(patterns_trie);

}
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The resources for the iterator are all handled outside of the iterator so we do not have 

to free any resources.

void dealloc_ac_iter(struct ac_iter *iter)

{

    // Nop

}

The function for incrementing the iterator is more involved. We have nested loops in 

the algorithm where we have an outer loop that runs through the string x, and then we have 

a nested loop that matches down the trie using failure links and then yet another nested 

loop that iterates through the output list. We need to leave the iterator in any of these loops 

and resume in the same loop when we increment the iterator. Therefore, the iterator has 

the variable hits that is nonnull if we are in the process of outputting hits. We check if it 

is null and return a match if it isn’t. We use another variable in the iterator, nested, that is 

true if we are in the nested loop over failure links and matches, the while (w) look from 

the implementation earlier. If nested is true, we get the outlink form w, and if there is one, 

we update the various values in the iterator so we can return to the beginning of the loop. 

For restarting the loop, we call next_ac_match() recursively. If there isn’t an outgoing edge 

with the right label, we should leave the nested loop instead, so here we set nested to false 

and continue to the next part of the function that handles the updates in the outer loop. 

After the updated variables, we continue the loop by a recursive call again. The recursive 

calls are likely to be tail-optimized by the compiler so we will not pay a runtime penalty and 

we do not need to worry about exceeding the stack space.

bool next_ac_match(

    struct ac_iter *iter,

    struct ac_match *match

) {

    if (iter->hits) {

        match->string_label = iter->hits->string_label;

        // We use the pattern length to output

        // the start of a match instead of the end.

        match->index = iter->j -

             iter->pattern_lengths[match->string_label];

        iter->hits = iter->hits->next;
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        return true;

    }

    if (iter->nested) {

        iter->w = out_link(iter->v, iter->x[iter->j]);

        if (iter->w) {

            iter->hits = iter->w->output;

            iter->v = iter->w;

            iter->j++;

            iter->w = out_link(iter->v, iter->x[iter->j]);

            return next_ac_match(iter, match);

        } else {

            iter->nested = false;

        }

    }

    if (iter->j < iter->n) {

        if (is_trie_root(iter->v)) {

            iter->j++;

        } else {

            iter->v = iter->v->failure_link;

        }

        iter->nested = true;

        return next_ac_match(iter, match);

    }

    return false;

}

For the running time of the main algorithm, we can reason similarly to how we did 

for the KMP algorithm. We never decrease j, but we increase it for each match. We never 

move the trie to the left but move it to the right every time we have a mismatch. Both j 

and trie cannot move past the end of x, so the running time is (n) plus the total number 

of matches we output, z, which is not a constant, so the total time is O(n + z).
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�Comparisons
Theoretical analysis of algorithms is one thing, and actual running times another—

and more important property. I have simulated random strings with three different 

alphabets: EQUAL, all symbols are the same; DNA, an alphabet of size four (A, C, G, T);  

and a full 8-bit character set. If our analysis (and implementation) is correct, the 

naïve algorithms, BMH and BM, should have worst-case complexity on EQUAL, but 

when we consider random strings, the performance should get better the larger the 

alphabet. The other algorithms should run in linear time regardless of the alphabet. 

The relative performance of the two classes of algorithms depends on the complexity 

of the implementation. So consider Figure 2-34. In the figure, I have used m = 200. 

The lines are loess fitted to the time measurements. The behavior is as expected: The 

first three algorithms perform poorly with the EQUAL alphabet but comparable to the 

other algorithms on the DNA alphabet. The naïve algorithm is a little faster because it 

is much simpler. With random strings, the BMH and BM algorithms outcompete the 

others, with BM (the more complex of the two) the fastest. With the largest alphabet, 

the naïve algorithm, simple as it is, is faster than border and KMP, and the BMH and BM 

algorithms dramatically faster.

The algorithms also depend on m, and in Figure 2-35, you can see the running time 

of the linear-time algorithms for different m. In Figure 2-36 you can see the same for 

the worst-case quadratic time algorithms. Notice that the linear-time algorithms hardly 

depend on m. There is some dependency from the preprocessing step, but it is very 

minor. The worst-case quadratic time algorithms depend on both n and m. When we fix 

m, we always get a straight line for O(nm) algorithms, but the growth depends on m as 

we see. They are all faster for smaller m and faster for larger alphabets (the y axes are not 

on the same scale so you can see the running time for the fastest cases).

You are unlikely to run into truly random strings, but genomic DNA data is close 

enough that the running time will be the same. Natural languages are hardly random, 

but BMH and BM are known to perform sublinear there as well. The best algorithm 

depends on your use case, but with reasonably large alphabets, BM and BMH are likely 

to be good choices.

You can find the code I used for the experiments on GitHub: https://github.com/

mailund/stralg/blob/master/performance/match_search.c.
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Figure 2-34.  Performance of the search algorithms
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Figure 2-35.  Dependency on m for the linear algorithms
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Figure 2-36.  Performance of the worst-case quadratic time algorithms for 
different m
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CHAPTER 3

Suffix trees
The suffix tree is a fundamental data structure when it comes to string algorithms. It 

captures the structure of a string via all the string’s suffixes and uses this structure as 

the basis of many algorithms. We will only use it for searching, where it provides linear 

search for a pattern after a linear preprocessing of the string we search in.

Imagine that you have listed all the suffixes of a string x$ with the sentinel $ (which in C 

is usually, and always in this chapter, zero). The sentinel is important here and  

you must always include it in suffix trees. So, we have the suffixes x$[0, n + 1], x$[1, n],  

x$[2, n], ..., x$[n, n + 1], which obviously contain all the information that the string does 

(the first suffix is the entire string). If we want to search for a pattern p in x, then we can 

find the suffixes where p is a prefix, that is, suffixes x[ j, n] where p = x[ j, j + m]. Iteratively 

matching p against all suffixes is not efficient, it would take time O(nm), and if we 

explicitly list all suffixes, we would use O(n2) time and space on top of this. If, however, 

we construct a trie of all the suffixes, we can search in time O(m). Consider the trie in 

Figure 3-1. It contains all the suffixes of the string mississippi$. The sentinel guarantees us 

that there is a one-to-one mapping between leaves and suffixes. To search for a pattern, 

move down the trie until there is a mismatch or we reach the end of the pattern. If we 

reach the end of the pattern, then the leaves below that point are the positions where the 

pattern can be found in the string. If we, for example, search for the string “ss” from the 

root, we get to the white node in Figure 3-1. The leaves below this node in the tree, two 

and five, are the indices where “ss” occur in “mississippi$”, that is, indices 2 and 5.

https://doi.org/10.1007/978-1-4842-5920-7_3#DOI
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Constructing this “suffix trie” in the standard way—one string at a time—takes time 

proportional to the sum of the lengths of sequences we add to the trie, so building this 

suffix trie costs us O(n2) space and time usage for the preprocessing. A suffix tree is a tree 

containing all suffixes of a string but exploits the structure in a set of suffixes to reduce 

both space and time complexity to O(n + m).

�Compacted trie and suffix representation
A suffix tree is a trie containing all suffixes, but it is compacted. This means that we do 

not represent each character as an edge in the trie, but rather, we merge edges where 

nodes have out-degree one; see the left tree in Figure 3-2.1 Since we have a single string, 

which all the edges are a subsequence of, we can represent the edge strings efficiently 

as indices or pointers into the string. The tree on the right in Figure 3-2 shows the actual 

representation of a suffix tree. The notation [i, j] means from i to j with i included and j 

not included, that is, j is one past the last index.

1�This is also called the PATRICIA tree, but compacted trie is easier to remember since it is a 
compact representation of a trie.

Figure 3-1.  Suffix trie for “mississippi”
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The sentinel guarantees that there is a one-to-one correspondence between the 

string’s suffixes and the suffix tree’s leaves. Since each inner node has at least two 

children, the total number of nodes cannot exceed 2n − 1 and neither can the number of 

edges, so the suffix tree can be stored in O(n) space.

In the implementation, we will not use indices but pointers into the string. This 

is more convenient in many cases, and we can always get an index by subtracting the 

pointer by the string. We represent an edge with a range structure that we put in each 

node. The range in node v represents the edge label between v and its parent p(v).

struct range {

    const uint8_t *from;

    const uint8_t *to;

};

static inline uint32_t range_length(struct range r) {

    return (uint32_t)(r.to - r.from);

}

The range_length() is a convenience function and shows how we can go from 

pointers to a length, and in this case, it will be an offset from the string pointed to by r.to.

In the simplest construction algorithm, we need a range, a sibling list, and a child 

list in each node, plus a suffix label if the node is a leaf. In the more advanced two 

algorithms, we also need a parent pointer and a suffix link pointer. What the parent 

pointer does should be self-evident, and the suffix link pointer will be explained when 

we get to McCreight’s algorithm later in the chapter.

Figure 3-2.  Suffix tree, conceptual and actual
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With all the information we need in a node, the structure looks like this:

struct suffix_tree_node {

    uint32_t leaf_label;

    struct range range;

    struct suffix_tree_node *parent;

    struct suffix_tree_node *sibling;

    struct suffix_tree_node *child;

    struct suffix_tree_node *suffix_link;

};

static inline uint32_t edge_length(

    struct suffix_tree_node *n

) {

    return range_length(n->range);

}

The edge_length() function is just another helper function we can use to, not 

surprisingly, get the length of the edge leading to the node.

We could use a root note as the type of a suffix tree—as we did for tries—but we 

will usually need access to the string that the tree is built from. We have pointers into 

the string on all edges, but in some of the algorithms in this chapter, we will need to 

consider them as indices, and that is easily done by subtracting the pointer to the string 

from the pointers on an edge. So we use a suffix_tree structure and store a pointer to 

the string in it.

struct suffix_tree {

    const uint8_t *string;

    uint32_t length;

    struct suffix_tree_node *root;

    struct suffix_tree_node_pool pool;

};

The pool variable is used to allocate nodes efficiently. We have an upper bound 

on the size of the number of nodes we can have, so we can preallocate a pool of nodes 

for the tree instead of using malloc() and free() for each node. This speeds up the 
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construction and makes it easier to free the tree—we can free the pool and do not have to 

traverse the tree to free individual nodes. 

struct suffix_tree_node_pool {

    struct suffix_tree_node *nodes;

    struct suffix_tree_node *next_node;

};

When we need a new node, we can get it from the pool. The new_node() function 

constructs a node from a suffix tree (where it can get the pool) and the two pointers that 

represent the edge label.

static struct suffix_tree_node *

new_node(

    struct suffix_tree *st,

    const uint8_t *from,

    const uint8_t *to

) {

    struct suffix_tree_node *v = st->pool.next_node++;

    v->leaf_label = 0;

    v->range.from = from;

    v->range.to = to;

    v->parent = 0;

    v->sibling = 0;

    v->child = 0;

    v->suffix_link = 0;

    return v;

}

This function should remain in the .c file and not be part of the public interface. 

We don’t want the user to insert nodes willy-nilly. Suffix trees should be built using a 

construction algorithm.

To free a suffix tree, we first need to free the nodes. This is a trivial task because we 

have the nodes pool that we can deallocate with a single free() call.
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void free_suffix_tree(struct suffix_tree *st)

{

    // Do not free string; we are not managing it.

    free(st->pool.nodes);

    free(st);

}

We should not free the string when we free the suffix tree. That is the responsibility 

of the user and part of the interface; the string is declared const, and we will use const 

strings for all our construction algorithms.

When allocating a new tree, we allocate the struct to set the string and length 

variables. Then we allocate the array we use as the node pool. Finally, we create a 

root node and set its parent to itself and its suffix link to itself (forget the suffix link for 

now, we get to it later). Adding a root to the tree when we construct it makes all other 

functions easier to write since they avoid handling special cases where a node is null.

static struct suffix_tree *

alloc_suffix_tree(

    const uint8_t *string

) {

    struct suffix_tree *st =

        malloc(sizeof(struct suffix_tree));

    st->string = string;

    uint32_t slen = (uint32_t)strlen((char *)string);

    st->length = slen + 1; // We are using '\0' as sentinel.

    // This is the max number of nodes in a tree where all

    // nodes have at least degree two. There is a special case

    // when the string is empty -- it should really only happen

    // in testing, but never the less.

    // In that case, there should be

    // two and not one node (the root and a single child).

    uint32_t pool_size = st->length == 1

                           ? 2 : (2 * st->length - 1);

    st->pool.nodes =

        malloc(pool_size * sizeof(struct suffix_tree_node));
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    st->pool.next_node = st->pool.nodes;

    st->root = new_node(st, 0, 0);

    st->root->parent = st->root;

    st->root->suffix_link = st->root;

    return st;

}

�Naïve construction algorithm
The simplest way to build a suffix tree is to consider it a trie and insert one string at the 

time, starting with the first suffix. We cannot quite consider it a trie since it is compacted, 

but we can look at one character at a time as we scan along edges in effect doing the 

same work as we would for building a trie. This naïve approach is implemented in the 

naive_suffix_tree() function:

struct suffix_tree *naive_suffix_tree(

    const uint8_t *string

) {

    struct suffix_tree *st = alloc_suffix_tree(string);

    // We insert the first suffix manually to

    // ensure that all inner nodes have at least one child.

    // The root will be a special case

    // for the first suffix otherwise,

    // and we do not want to deal with that

    // in the rest of the code.

    struct suffix_tree_node *first =

        new_node(st, st->string, st->string + st->length);

    st->root->child = first;

    first->parent = st->root;
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    const uint8_t *xend = st->string + st->length;

    for (uint32_t i = 1; i < st->length; ++i) {

        struct suffix_tree_node *leaf =

            naive_insert(st, st->root, string + i, xend);

        leaf->leaf_label = i;

    }

    return st;

}

First, we ensure that there is at least one edge out of the root—otherwise, we would 

need to handle the case where, and there isn’t a special case in all the other functions we 

will write. After setting the first suffix as the first child of the root (and setting the parent 

pointer of it to the root), we iterate through all the remaining suffixes and insert them 

using the following naive_insert() function. This function will return the new leaf 

representing the suffix, and we set its label accordingly.

The naive_insert() function takes the suffix tree, a node to search out from (the 

root in naive_suffix_tree()), and a string given by a start pointer (x + i for the start of 

suffix i) and an end pointer (the end of the string in naive_suffix_tree().

First, naive_insert() checks if there is an out edge from the node it should search 

from, v. If there isn’t, then this is where we should add the string, so we create a new 

node and insert it as a child of v using insert_child() (listed in following code). If there 

is an out edge, we scan along it. We get a pointer to the start of the interval of the edge, 

s, and we have the pointer x pointing to the beginning of the string we want to insert. 

We scan along the edge as long as s and x point to the same character; see Figure 3-3 for 

an illustration of how scanning an edge maps to scanning an interval in the suffix tree’s 

string. In the figure, variables from and to define the interval of the edge we scan, s the 

point in the edge we have scanned to, x the position in the string we insert that we have 

scanned so far, and xend the end of the string we are inserting.

If we find a mismatch, we need to break the edge in two and add an edge to the leaf. 

We do that using the function split_edge() described later in this section. If we reach 

the end of the edge’s interval, we must continue from the node w at the end of the edge. 

We do this by a recursive call.
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static struct suffix_tree_node *

naive_insert(

    struct suffix_tree *st,

    struct suffix_tree_node *v,

    const uint8_t *x,

    const uint8_t *xend

) {

    // Find child that matches *x.

    struct suffix_tree_node *w = find_outgoing_edge(v, x);

    if (!w) {

        // There is no outgoing edge that matches

        // so we must insert here.

        struct suffix_tree_node *leaf = new_node(st, x, xend);

        insert_child(v, leaf);

        return leaf;

    } else {

        // We have an edge to follow!

        const uint8_t *s = w->range.from;

        for (; s != w->range.to; ++s, ++x) {

            if (*s != *x) {

                struct suffix_tree_node *u =

                     split_edge(st, w, s);

                struct suffix_tree_node *leaf =

                     new_node(st, x, xend);

                insert_child(u, leaf);

                return leaf;

            }

        }

        // We made it through the edge, so continue

        // from the next node.

        // The call is tail-recursive, so the compiler

        // will usually optimize it to a loop.

        return naive_insert(st, w, x, xend);

    }

}
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The find_outgoing_edge() function does what you would expect. It scans through 

the children of a node, tests each edge for whether it matches the character we are 

looking for, and returns the node if it finds one. If it gets all the way through the children, 

that is, to a node where the sibling pointer is null, then it returns null.

static struct suffix_tree_node *

find_outgoing_edge(

    struct suffix_tree_node *v,

    const uint8_t *x

) {

    struct suffix_tree_node *w = v->child;

    while (w) {

        if (*(w->range.from) == *x) break;

        w = w->sibling;

    }

    return w;

}

Figure 3-3.  Scanning along an edge by scanning in the string
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The simplest way to add a child to a node is to prepend it to the linked list structure. 

This, however, will leave the children list reversely sorted according to when we insert 

edges, which for all intents and purposes means randomly sorted. There are algorithms 

where we need to traverse the tree such that we see the suffixes in lexicographical order. 

If we keep the children sorted according to their start symbol, this will simply be a depth-

first traversal where, for each node, we iterate through the nodes in the order they have 

in the children’s list. It requires a little more work to insert a child at its correct position, 

but it is mostly straightforward except for one special case. If the new child’s symbol is 

less than the first node’s, we prepend the child. Otherwise, we scan through the existing 

children until we find a letter that is larger than the new child’s symbol, and we insert 

the child there. If we reach the last node, recognizable by it having null for a sibling, we 

prepend the new child. After inserting the child, we must remember to set its parent to 

the node we added it to.

static void insert_child(

    struct suffix_tree_node *parent,

    struct suffix_tree_node *child

) {

    // We need this when we split edges.

    if (!parent->child) {

        parent->child = child;

        return;

    }

    const char x = *child->range.from;

    struct suffix_tree_node *w = parent->child;

    if (x < out_letter(w)) {

        // Special case for the first child.

        child->sibling = parent->child;

        parent->child = child;

    } else {

        // Find w such that it is the first chain

        // with an outgoing edge that is larger

        // than the new.

        while (w->sibling && x > out_letter(w->sibling))

            w = w->sibling;
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        child->sibling = w->sibling;

        w->sibling = child;

    }

    child->parent = parent;

}

The out_letter() gives us the first symbol of an edge:

inline static char out_letter(

    struct suffix_tree_node *v

) {

    return *(v->range.from);

}

Finally, we come to the function for splitting an edge on a mismatch. Consider Figure 3-4 

where on the left we have the edge we have scanned down and the position of the mismatch. 

We have to split the edge at the mismatch position, which is where the variable s points. The 

edge going down to the new node must, therefore, go from the pointer from to s and the edge 

below the new node must go from s to the pointer to. We will insert a new leaf as the second 

edge out of the new node, and this must go from the pointer x to xend in the calling function 

but we only break the edge with the new node, u, in this function. We add the other edge 

outside of this function. In the implementation of the function split_edge(), the node w is 

an argument as is s. We get the node v from w’s parent pointer, we create node u, and we set 

the start of its edge to be the from of the edge to w and the end to be s. Now u’s parent should 

be v and its (so far only) child should be w. We update w’s start position to be s (it already 

has the right endpoint) and update the child and parent pointers for the nodes. We have to 

remove w from v’s children—it is now a child of u instead—and we insert u as a new child of 

v. We return the new node so the caller can insert the leaf as a child of it.

static struct suffix_tree_node *

split_edge(

    struct suffix_tree *st,

    struct suffix_tree_node *w,

    const uint8_t *s

) {

    struct suffix_tree_node *v = w->parent;

    struct suffix_tree_node *u =
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        new_node(st, w->range.from, s);

    u->parent = v;

    u->child = w;

    w->range.from = s;

    w->parent = u;

    remove_child(v, w);

    insert_child(v, u);

    return u;

}

The return value of split_edge() is the new node and we use that to add the new 

leaf. We only need the s pointer when we split the edge if we do this. We cannot create 

the edge to the leaf with a range x to xend from the w edge and the pointer s, so if we 

wanted split edge to insert the leaf as well, we would need more arguments to the 

function. In naive_insert() we already know x and xend so we create the leaf there and 

insert it as the second child of our new node. This is done with the following code:

struct suffix_tree_node *u = split_edge(st, w, s);

struct suffix_tree_node *leaf = new_node(st, x, xend);

insert_child(u, leaf);

Figure 3-4.  Splitting an edge
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The remaining function we need to implement to complete the algorithm is the one 

for removing a child from a node’s child list. We have three cases: If the list is empty—in 

which case, we do nothing. If it is the first child—in which case, we change the children 

list to the first sibling, which will also remove the child. In the final case, the node is 

somewhere in the middle of the list, so we scan through the list and if we find the node 

we unlink it.

static void remove_child(

    struct suffix_tree_node *v,

    struct suffix_tree_node *w

) {

    if (!v->child) return;

    if (v->child == w) {

        v->child = w->sibling;

        w->sibling = 0;

    } else {

        struct suffix_tree_node *u = v->child;

        while (u->sibling) {

            if (u->sibling == w) {

                u->sibling = w->sibling;

                w->sibling = 0;

                return;

            }

            u = u->sibling;

        }

    }

}
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�Suffix trees and the SA and LCP arrays
In this section, we briefly cover the close relationship between two special arrays and 

a suffix tree. These arrays are the topic of the entire next chapter, but in this section, 

we only consider how we can use them to build a suffix tree. If you take a list of all the 

suffixes of a string and then sort them (see Figure 3-5), the suffix array (SA) is the suffix 

indices in this sorted order. The longest common prefix (LCP) array is the longest prefix of 

a suffix and the suffix above it in the sorted order—the underlined prefixes in Figure 3-5. 

In this section, we shall see that we can construct the arrays from a suffix tree in linear 

time and that we can construct the suffix tree from the two arrays in linear time.

�Constructing the SA and LCP arrays
If we depth-first traverse a suffix tree with children sorted alphabetically, we will see 

all leaves in sorted order, an observation that should be immediately obvious. Thus, if 

we keep a counter of how many leaves we have seen so far and use it to index into the 

suffix array, we can build the suffix array simply by putting leaf nodes at the index of the 

counter as we traverse the tree.

Figure 3-5.  Suffix array and longest common prefix array
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Getting the LCP array is only slightly more involved. If we let branch length be the total 

length of the string, we read from the root down to a node v. All children of v will share a 

prefix of exactly this length, so if we iterate through all but the first child, we will have at 

least this longest common prefix. Children of the children will share longer prefixes, but we 

can handle that by recursion. The problem with the first child is that though it shares the 

prefix with the other children, it does not share it with the previous string in the suffix array.

Consider Figure 3-6. The letters represent branch lengths and the numbers the 

leaves in the tree. Notice how the leftmost node in any of the subtrees has a lower LCP 

than its siblings. If we traverse the tree and keep track of how much we share to the left, 

we can output that number for each leaf. For the first child of a node, we send this left-

shared number unchanged down the tree, while at the remaining trees, we update the 

value by adding the edge length of the children’s parent node.

Onto the implementation of the algorithm, we use this structure to reference the 

two arrays and to keep track of which index we need to update in the array next time 

we see a leaf.

struct sa_lcp_data {

    uint32_t *sa;

    uint32_t *lcp;

    uint32_t idx;

};

Figure 3-6.  Branch lengths and LCP array
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In the function st_compute_sa_and_lcp(), we create and initialize an instance of the 

structure and call a recursive function, lcp_traverse(), with the root as the node and 

both the left-shared branch length and the node’s branch length as its input.2

void st_compute_sa_and_lcp(

    struct suffix_tree *st,

    uint32_t *sa,

    uint32_t *lcp

) {

    struct sa_lcp_data data; // type defined earlier

    data.sa = sa; data.lcp = lcp; data.idx = 0;

    uint32_t shared_depth = 0;

    uint32_t branch_depth = 0;

    lcp_traverse(st->root, &data,

                 shared_depth, branch_depth);

}

In the traversal, we update the SA and LCP array each time we see a leaf; we 

propagate the shared left-depth to the first node and use the current node’s depth as 

both the left and the node depth in the recursive calls.

static void lcp_traverse(

    struct suffix_tree_node *v,

    struct sa_lcp_data *data,

    uint32_t left_depth,

    uint32_t node_depth

) {

    if (!v->child) {

        // Leaf

        data->sa[data->idx] = v->leaf_label;

        data->lcp[data->idx] = left_depth;

        data->idx++;

    } else {

2�The traversal is easier to follow with a recursive function, but for large trees, it will hit the stack 
limit and crash the program. Using an explicit heap-allocated stack solves the problem. I do not 
show that implementation here, but you can find it at https://github.com/mailund/stralg.
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        // Inner node

        // The first child should be treated differently than

        // the rest; it has a different branch depth because

        // the LCP is relative to the last node in the previous

        // leaf in v's previous sibling.

        struct suffix_tree_node *child = v->child;

        uint32_t this_depth

            = node_depth + edge_length(v);

        lcp_traverse(child, data,

                     left_depth, this_depth);

        for (child = child->sibling;

            child;

            child = child->sibling) {

            // Handle the remaining children

            lcp_traverse(child, data,

                         this_depth, this_depth);

        }

    }

}

Since the entire algorithm is a depth-first traversal where we do constant time work 

at each node, the running time is the same as the size of the tree, so O(n).

�Constructing the suffix tree from the SA and LCP arrays
We can construct a suffix tree from the SA and LCP arrays by, conceptually, doing a 

depth-first traversal of the tree while constructing it at the same time. We insert the 

suffixes in a different order than for the naïve approach; we insert them according to 

the suffix array, so we first insert sa[0], then sa[1], and so on. When inserting the first 

suffix, we add an edge from the root to a leaf labelled sa[0]. Then we split that edge 

to insert sa[1] and an edge to it. For sa[2] we start in sa[1] and figure out where we 

should break an edge and insert the new leaf. This can either be on the edge down to 

sa[1] or the edge above it (see Figure 3-7), but it cannot be on the edge down to sa[0] 

since sa[1] is lexicographically smaller than sa[2] which means it must be to the right 

or above the edge to sa[1]. We continue inserting this way by inserting sa[3], sa[4], 

and so on by first moving up the tree to find the place where they should be inserted and 
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then inserting the new leaf. You can think of this as a depth-first traversal. When you 

insert a new leaf, you move down the recursion (very quickly, of course, since you only 

insert a single edge), and when you move up the tree to find an edge to split, you in effect 

return from the depth-first recursion.

The main function for the algorithm looks like this:

struct suffix_tree *

lcp_suffix_tree(

    const uint8_t *string,

    uint32_t *sa,

    uint32_t *lcp

) {

    struct suffix_tree *st = alloc_suffix_tree(string);

    uint32_t first_label = sa[0];

    struct suffix_tree_node *v =

        new_node(st, st->string + sa[0],

                 st->string + st->length);

    v->leaf_label = first_label;

    st->root->child = v;

    v->parent = st->root;

Figure 3-7.  Possible placements of sa[2]

Chapter 3  Suffix trees



106

    for (uint32_t i = 1; i < st->length; ++i) {

        v = lcp_insert(st, i, sa, lcp, v);

    }

    return st;

}

We first add sa[0] to the tree and set the variable v to the new leaf. Then we 

iteratively add the remaining leaves with lcp_insert() that returns the new leaf 

inserted. This leaf is used by the function as the starting point for inserting the next leaf.

For the function doing the hard labor, lcp_insert(), consider Figure 3-8. If we are 

at the leaf for sa[i-1] and the longest prefix it shares with sa[i] is lcp[i], then the 

new leaf should be inserted lcp[i] symbols down the path from the root to sa[i-1], or 

n-sa[i-1]-lcp[i] up from the sa[i-1] leaf. We can search up that amount from sa[i-1] 

and break the edge there (or insert the new leaf in a node if we do not hit an edge).

The pointers we need to insert on the new edge to the leaf are lcp[i] into the suffix, 

that is, sa[i]+lcp[i], since this is what remains of the suffix after we have shared 

lcp[i]; see Figure 3-9. We don’t know where the pointers on the edge we break are, they 

need not be anywhere sa[i-1], sa[i], or lcp[i], but we will know how far up the edge 

are we from how much we had left to search when we started climbing up the edge. If we 

call that amount length_up, then the break pointer is at to-length_up.

Figure 3-8.  Relationship between sa[i-1], lcp[i], and the suffix tree
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With all the observations earlier, the actual implementation is straightforward. We 

get the length we have to move up from the calculations we just did, and then we get the 

length of the current edge we need to climb. Then we enter a loop that moves us up a 

number of edges until we have traversed all the way to our insertion point. In the loop, 

we each iteration subtract the edge length from the length we need to climb up—we 

have just moved up that amount, after all—we move to the parent node, and we get the 

length of the next edges. We do this until we hit an edge longer or equal to the next edge 

or until the new edge length is zero. In the first case, we have found the insertion point 

on an edge, and in the second case, we hit a node and need to insert the new leaf as a 

child of that node.

static struct suffix_tree_node *

lcp_insert(

    struct suffix_tree *st,

    uint32_t i,

    uint32_t *sa,

    uint32_t *lcp,

    struct suffix_tree_node *v

) {

    struct suffix_tree_node *new_leaf =

        new_node(st,

                 st->string + sa[i] + lcp[i],

                 st->string + st->length);

Figure 3-9.  Splitting the edge when inserting sa[i]

Chapter 3  Suffix trees



108

    new_leaf->leaf_label = sa[i];

    uint32_t length_up = st->length - sa[i-1] - lcp[i];

    uint32_t v_edge_len = edge_length(v);

    while ((length_up >= v_edge_len)

           && (length_up != 0)) {

        length_up -= v_edge_len;

        v = v->parent;

        v_edge_len = edge_length(v);

    }

    if (length_up == 0) {

        append_child(v, new_leaf);

    } else {

        struct suffix_tree_node *u =

            split_edge(st, v, v->range.to - length_up);

        // Append leaf to the new node

        // (it has exactly one other child).

        u->child->sibling = new_leaf;

        new_leaf->parent = u;

    }

    return new_leaf;

}

There is one new function, append_child(). It adds a child to the children’s list. It 

could be done with the insert_child() function as well, but it is simpler since we know 

the edge we are inserting should go to the back of the list.

static void append_child(

    struct suffix_tree_node *v,

    struct suffix_tree_node *w

) {

    struct suffix_tree_node *child = v->child;

    while (child->sibling) {

        child = child->sibling;

    }
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    child->sibling = w;

    w->parent = v;

}

To see that the running time is linear, observe that we construct the tree in 

what is essentially a depth-first traversal. We do not traverse nodes going down the 

recursion—that only makes the running time faster—but each time we move up the 

tree, it corresponds to returning from the recursion in the traversal. If this is not clear, I 

encourage you to work out a few examples on a piece of paper until you see that this is 

the case.

An alternative argument for the running time uses an amortization argument, not 

unlike those we used for, for example, border arrays, KMP, and Aho-Corasick. Consider 

the depth of the leaf we start an iteration from, v with node depth d(v). The node depth 

d(v) is the number of nodes on the path from node v to the root. When we search 

upward, we decrease the depth, but we cannot decrease it more than d(v). After we find 

the node or edge, we potentially increase the depth of all the nodes lexicographically 

smaller than the suffix we are inserting (when we split an edge), or we leave them 

alone (when we insert a child to node). However, we will never explore that part of the 

tree when we insert lexicographically larger suffixes. We will look at nodes and edges 

closer to the root than that point, but we will never return to that subtree since we will 

never insert a lexicographically smaller string in the algorithm. So we can ignore those 

increases in depth and only consider the increase when we insert a new leaf. That 

increase is at most one. The algorithm can at max increase the depth by one (for the 

relevant part of the tree) in each iteration, and we cannot decrease the depth more than 

we have increased it, so since there are O(n) leaves in the tree, we have a linear running 

time.

If we use the SA and LCP arrays to build the suffix tree, and need a suffix tree 

to produce the arrays, we have a circular problem. We shall see in the next chapter, 

however, that we can build the arrays in linear time without using a suffix tree. We shall 

also see, in the next section, that we can build a suffix tree in linear time without the two 

arrays. A benefit of using the SA and LCP algorithm to construct suffix trees is that it will 

be easier to preprocess a string using a suffix tree and then serialize it to a file when you 

expect many searches in the same string over time. The two arrays are trivial to write to 

a string, while serializing the tree structure itself means saving a structure with pointers 

and reconstruct them when the tree is read from file.
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�McCreight’s algorithm
McCreight’s algorithm lets us construct suffix trees in linear time without any additional 

data structure beyond the string itself. It inserts suffixes in the order they appear in 

the string, x[0, n]$, x[1, n]$, …, $, just like the naïve algorithm, except that it inserts the 

next suffix faster than the naïve algorithm. It keeps track of the last leaf inserted, like 

the SA and LCP algorithm, but the two tricks it uses to achieve linear construction time 

are different. From the latest leaf that we insert, we use a pointer to jump to a subtree 

somewhere else in the tree, where the next leaf should be inserted. Then we search for 

the insertion point in that tree, first using a search method that is faster than the naïve 

one and then searching the last piece of the suffix using the slow scanning method from 

the naïve algorithm.

Before we start we need to get some terminology and notation defined: Any suffix 

y = x[i, n]$ can be split into two, potentially empty, substrings y = h(y)t(y) where h(y) is 

the longest string that matches a prefix of a longer suffix x[ j, n]$, j < i. This is just another 

way to say that h(y) is how far down the tree we go when inserting suffix i, that is, it is the 

point in the tree where we need to insert a new leaf for suffix i. We call the two strings the 

head, h(y), and tail, t(y), of suffix i. For convenience, we will use i for the strings for suffix 

x[i, n]$, that is, if y = x[i, n]$, then h(i) = h(y) and t(i) = t(y).

What we did in the naïve algorithm was searching one character by one character 

from the root to the point where suffix i would branch off the existing tree, that is, we 

searched for h(i), and then we inserted a new leaf with label t(i). We searched with the 

Figure 3-10.  Inserting suffix i by finding its head and appending its tail
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naïve search algorithm, one character at a time, and when we could not continue down 

the tree, we had found h(i). We did not need to insert that string—by definition, it is 

already in the tree—but we needed a new leaf and the remaining part of the suffix, t(i), 

on the edge to the leaf; see Figure 3-10. In McCreight’s algorithm, we do essentially the 

same, but we exploit the structure of suffixes to search for h(i) faster.

For a string ay let its suffix link s(ay) be defined as the string with the first symbol 

removed, that is, s(ay) = y, with the special case s(ε) = ε for the empty string. If v is a 

node in the tree where ay is the string we would read from the root to v, then s(v) is the 

node where we would find y when reading from the root and down. We will see in the 

algorithm that all nodes in a tree have a suffix link that is a node so we can represent 

them as pointers from nodes to nodes. Jumping these pointers is the first trick to 

McCreight’s algorithm.

First, observe that s(h(i − 1)) is a prefix of h(i). Consider h(i − 1). This string is how far 

down the tree we could scan before we found a mismatch when we inserted suffix i − 1. 

Therefore there was a longer suffix, k < i − 1, whose prefix matches h(i − 1) and then had 

a mismatch (there might be strings that match more of suffix i − 1, but by definition, this 

was the longest at the time we inserted i − 1). Now consider h(i). This is the longest prefix 

matching a prefix of a string we already inserted in the string. If we look at suffix k + 1, we 

can see that this will match s(h(i-1)); see Figure 3-11. Because we match at least suffix k + 1 

to this point, s(h(i − 1)) must be a prefix of h(i). If we only have suffix k + 1 that matches 

to this point, then we would have exactly h(i)=s(h(i-1)), but there might be longer strings 

matching a prefix of suffix i; after all, this suffix starts with a different character, and there 

might be suffixes that do the same and matches longer prefixes. Regardless, we know that 

s(h(i-1)) is a prefix of h(i).

If we have a pointer from h(i − 1) to s(h(i − 1)), then we can jump it and skip past this 

prefix in the search for h(i). Essentially, this is what we will do except that we do not have 

this suffix link when we need it. An invariant in the algorithm will be that we have suffix 

Figure 3-11.  The head of a suffix is longer to or equal to the previous suffix’ 
suffix link
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links for all nodes except possibly the parent of the last leaf we inserted. Not to worry, 

we can do something almost as good. While h(i − 1) might not have a suffix link pointer, 

its parent does p(h(i − 1)) ↦ s(p(h(i − 1))). This suffix link is also a prefix of h(i). See 

Figure 3-12. The dashed arrow is a pointer we are guaranteed to have, while the dotted 

arrow is the pointer we wished we had but might not.

The overall steps in the algorithm are this: We start by creating the first leaf and 

connecting it to the root. After that, we go through each suffix in order and get the parent 

of the last leaf we inserted (h(i − 1) in Figure 3-13 and the code). As an invariant of the 

algorithm, we will have that all nodes, with the possible exception of h(i − 1), will have a 

suffix link pointer. This is vacuously true after we have inserted the first leaf. For the root, 

though, it has a suffix link. We set the root’s suffix link to the root itself in alloc_suffix_

tree(), so although we need to set the suffix link when we increment i, to ensure the 

invariant, it is already satisfied at this point.

From the parent of leaf i − 1, called v in the code and in Figure 3-13, we call a 

function, suffix_search(), that returns s(h(i − 1)), called w in the code. This is the 

suffix link of v, so we set the pointer ensuring the invariant for the next iteration of the 

loop. The h(i) string is somewhere in the subtree of s(h(i − 1)) since s(h(i − 1)) is a prefix 

of it. So we need to search a little more from node w. We do this in two steps. We jump 

to s(p(h(i − 1))) using the suffix link and then we search for w from there. In the search, 

called “scan 1” in the figure, we can move faster than the naïve search. We know that the 

string from s(p(h(i − 1))) to s(h(i − 1)) is already in the tree which means that we can 

jump from node to node rather than scan along an edge. At each node we need to find 

which outgoing edge matches the current symbol in s(h(i − 1)) to choose the right path 

in the suffix tree, but we do not need to compare characters when we move along an 

Figure 3-12.  Head and suffix links and their “jump pointers”
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edge. We do not know how far down h(i) is from s(h(i − 1)), so in this part of the search, 

we need to use the naïve scan, called “scan 2” in the figure. The details of suffix_

search() are described in the following texts.

The implementation of the main function looks like this:

struct suffix_tree *

mccreight_suffix_tree(

    const uint8_t *x

) {

    struct suffix_tree *st = alloc_suffix_tree(x);

    uint32_t n = st->length;

    struct suffix_tree_node *leaf =

        new_node(st, x, x + st->length);

    leaf->parent = st->root; st->root->child = leaf;

    leaf->leaf_label = 0;

    for (uint32_t i = 1; i < st->length; ++i) {

        // Get the suffix of p(i-1) = h(i-1) = v

        struct suffix_tree_node *v = leaf->parent;

        struct suffix_tree_node *w = suffix_search(st, v);

        v->suffix_link = w;

        // Find head for the remaining suffix

        // using the naïve search.

Figure 3-13.  Searching for the head of suffix i
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        if (leaf->parent != st->root) {

            const uint8_t *y = leaf->range.from;

            const uint8_t *z = leaf->range.to;

            leaf = naive_insert(st, w, y, z);

        } else {

            // Search from the top for

            // the entire suffix.

            leaf = naive_insert(st, w, x + i, x + n);

        }

        // Move on to the next suffix.

        leaf->leaf_label = i;

    }

    return st;

}

For the “naive search” and “scan 2” from Figure 3-13, there are two cases depending 

on whether we need to search from the root or not. The general case is when h(i − 1) 

is nonempty (which also means that it is not the root). With suffix_search() we have 

searched for h(i) to the point s(h(i − 1)). The string we have to continue our search with 

is t(i − 1) (see Figure 3-14 A). We search for t(i − 1) because it makes the code slightly 

easier and in any case is the same string we would search for if we searched s(h(i − 1)) 

toward the end of the string (see the figure). We will continue searching for t(i − 1) until 

we get a mismatch, at which point we have found h(i).

If h(i − 1) is empty (i.e., the root), we cannot search from t(i − 1). The string t(i − 1) 

is the entire suffix x[i − 1, n]$ (see Figure 3-14 B). We need to scan for the entire suffix 

x[i, n]$ to find h(i).

Figure 3-14.  Cases for scan 2
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Now, the suffix_search() function is responsible for finding s(v) = w for node v; see 

Figure 3-13 and Figure 3-15. For this it uses two operations, it goes up to p(v) and then 

jumps to s(p(v)), and then it searches from there to w in the “scan 1” step. If the edge 

label on the edge from p(v) to v is the string from x to y (i.e., the pointers in the node 

representing v have the range from x to y), then it is this string we must search for once 

we have made the parent and suffix jumps.

There are four cases, depending on how v and p(v) sit in the tree; see Figure 3-16. (A) 

It might be the case that v is the root. Since the suffix of the root is the root itself, we have 

that w is the root so our function can return that. (B) v might be a child of the root with 

a single symbol as its edge label. The suffix of a single symbol is the empty string which 

is the root, so again we can return the root. (C) It is also possible that the parent of v is 

the root but with a longer edge label, the string from pointer x to pointer y. In this case, 

we must search from the root for the string x + 1 to y where we add one to x for the same 

reason that we had to add one when searching with the naïve algorithm from the root 

(see earlier texts). Finally, (D), we have that p(v) is not the root, so we can jump from v to 

s(p(v)) following the parent and suffix link pointer, respectively. From this point we must 

search for the string x to y since this is the missing string between p(v) and v.

The code for handling the four cases can look like this:

static struct suffix_tree_node *

suffix_search(

    struct suffix_tree *st,

    struct suffix_tree_node *v

) {

Figure 3-15.  General case of suffix search
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    if (v == st->root) {

        // Case A

        return v;

    } else if (v->parent == st->root

               && range_length(v->range) == 1) {

        // Case B

        return st->root;

    } else if (v->parent == st->root) {

        // Case C

        const uint8_t *x = v->range.from + 1;

        const uint8_t *y = v->range.to;

        return fast_scan(st, st->root, x, y);

    } else {

        // The general case, case D

        const uint8_t *x = v->range.from;

        const uint8_t *y = v->range.to;

        struct suffix_tree_node *w =

                v->parent->suffix_link;

        return fast_scan(st, w, x, y);

    }

}

Figure 3-16.  Four cases for finding the suffix of node v
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The fast_scan() function handles the “scan 1” part of the algorithm, and as the 

name suggests, it is faster than the naïve search we use for “scan 2”. We call it with a node 

and a string range. Call these v, x, and y. We want it to return the node w below v where 

the path label spells out the string from x to y or create such a node if it doesn’t exist (so 

we always get a node from a call to the function). It is the same behavior as the naïve 

search in the tree has, but we will exploit that when we use fast_scan(), we call it with 

a string that we know is in the tree below node v. It is guaranteed by the observation 

that s(h(i − 1)) is a prefix of h(i). If we know that a string is in the tree, we do not need to 

compare every symbol down an edge against it. If we know which edge to follow, we can 

jump directly from one node to the next. This is what fast_scan() does.3

Let w be the node at the end of the edge where the first letter matches the first 

symbol we are searching for, and let s and t be the pointers that define the edge label 

from v to w. Let n be the length of the string, n = t − s, and let z = x + n, that is, z is the 

point we get to if we move x forward by the length of the v to w edge.

We have three cases for fast_scan(), depending on how the string s to t compares 

to the string from x to y; see Figure 3-17. (A) The two strings could match exactly. This 

means that we have found the string we are looking for so we can return w. (B) The string 

x to y might be shorter than then string from s to t—which we can recognize by z < y. In 

this case, we need to create a new node for where the x to y string ends and return the 

new node, node u in the figure. Finally, (C) the x to y string might be longer than the 

string from s to t. If this is the case, we need to search for the remainder of x to y, the 

string from z to y, starting in node w and we do this recursively.

The implementation can look like this:

static struct suffix_tree_node *

fast_scan(

    struct suffix_tree *st,

    struct suffix_tree_node *v,

    const uint8_t *x,

    const uint8_t *y

){

3�By definition, we know that h(i) is in the tree, so you might argue that we could use fast_scan( ) 
to find it. The reason that we cannot is that although we know the string is in the tree, we do not 
know what the string is. We don’t know when we are done with the scan. For this reason, the 
naive search is necessary for “scan 2”.
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    // Find child that matches *x.

    struct suffix_tree_node * w = find_outgoing_edge(v, x);

    assert(w); // must be here when we search for a suffix

    // Jump down the edge.

    uint32_t n = edge_length(w);

    const uint8_t *z = x + n;

    if (z == y) {

        // Found the node we should end in.

        return w; // We are done now.

    } else if (z > y) {

        // We stop before we reach the end node, so we

        // need to split the edge.

        // We need to split at distance k from

        // s on the edge from v to w (with label [s,t])

        //

        //       |---n----|

        //     v o--------o w (s,t)

        //     x *---*----* z

        //           y

        //       |-k-|

        //

        uint32_t k = (uint32_t)(y - x);

        assert(k > 0);

        const uint8_t *s = w->range.from;

        const uint8_t *split_point = s + k;

        return split_edge(st, w, split_point);

    } else {

        // We made it through the edge,

        // so continue from the next node.

        // The call is tail-recursive,
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        /// so the compiler will optimize

        // it to a loop.

        return fast_scan(st, w, z, y);

    }

}

Figure 3-17.  Fast scan cases
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The second case in the fast scan, where we split an edge, leaves a node with a single 

child, violating an invariant of suffix trees. This should worry us, but it isn’t a problem 

because we immediately after the fast scan search with a naïve insert. This naïve search 

will see a mismatch on the existing edge and insert t(i) on an out edge of node u, 

returning us to a tree that satisfies the invariant.

To see that this is the case, see Figure 3-18. By definition, h(i − 1) is the longest prefix 

of suffix i − 1 before we have a mismatch, so there must be some longer suffix, k < i − 1, 

that shares prefix h(i − 1) and then mismatches. Let the symbol at the mismatch be 

a for suffix i − 1 and b for suffix k. When we insert suffix i, suffix k + 1 must have been 

inserted. Suffixes k + 1 and i share the prefix s(h(i − 1)) and the next character in k + 1 

after s(h(i − 1)) is b, and since we broke a single edge, so there is only one symbol that 

continues from this point, we must conclude that the symbol after the point where we 

broke the edge must be b. Since t(i − 1)—which is the string we will search for in after 

calling fast_scan()—begins with symbol a, we will get a mismatch immediately and 

conclude that s(h(i − 1)) is indeed h(i).

To analyze the running time of McCreight’s algorithm, we split it into three parts: (1) 

The total work we do when jumping to parent and then the suffix of the parent, (2) the 

total work we do when using fast_scan() to handle “scan 1”, and (3) the total work we 

do with naive_insert() to handle “scan 2”.

Of the three, (1) is easy to handle. For each leaf we insert, of which there are n, we 

move along two pointers which take constant time, so (1) takes time O(n).

For (2) we will use an amortization argument. Let d(v) be the node depth of node 

v, that is, the number of nodes on the path from the root to v. Moving to the parent of v, 

p(v), cannot decrease the depth more than one. If v is the root, which is its own parent, 

then d(p(v)) = d(v) and otherwise d(p(v)) = d(v) − 1. Moving along a suffix pointer can 

also only decrease the depth by one. Consider Figure 3-19. For each path from the root 

down to v, we see a number of nodes, and each node has a suffix link (in the algorithm, 

node h(i − 1) might not have a suffix link, but we never jump from this node, so this has 

no consequence for the argument). In the following text, we shall argue that each of 

these suffix links is unique. In the general case, (A) in Figure 3-19, this means that d(s(v)) 

= d(v). (B) An exception is when the first edge on the path has a single symbol as its label. 

In that case, the first node has the root as its suffix and d(s(v)) = d(v) − 1.
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Now, to see that the suffix link nodes are unique, recall that all nodes in the tree 

correspond to a prefix of at least one suffix and that nodes on the same paths will have 

the node with the smallest depth be a prefix of the other. Let k be such a suffix for nodes 

vi and vi−1 = p(vi ); see Figure 3-20. Since vi−1 and vi are different nodes, the edge label 

Figure 3-18.  Splitting an edge in fast scan

Figure 3-19.  Relationship between a path and the path of suffix links
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between them, y, is nonempty. If we now look at suffix k + 1, we get the suffix of vi−1 and 

vi instead, and these are also separated by the nonempty string y; thus, they must be 

different nodes.

Figure 3-20.  Uniqueness of suffix links

In each iteration of (2), the pointer jumps, thus decreasing the depth by at most two; 

after which “scan 1” (or fast scan) increases the depth by a number of nodes. It cannot, 

however, increase the depth by more than O(n)—there simply aren’t paths long enough. 

In total, it can increase the depth by O(n) plus the number of decreases in the algorithm 

which is bounded by O(n). In total, the time we spend on (B) is linear.

Finally, for (C) consider the search for h(i) from h(i − 1). First we make a jump to 

s(p(h(i − 1))), then a fast scan down to s(h(i − 1)), and then a slow scan down to h(i). 

When we insert h(i + 1), we jump and fast scan down to s(h(i)). If you consider these 

indices in the string we build our suffix over, rather than nodes in the tree, you will see 

that we always use a slow scan from one head to the other, that is, we slow scan from 

h(i − 1) to h(i) when inserting h(i), from h(i) to h(i + 1) when inserting h(i + 1), and so 

on; see Figure 3-21. These intervals do not overlap, and in each iteration, we move the 

pointer where a slow scan will start to the right. The total time we can spend in “scan 2” 

is thus O(n).
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�Searching with suffix trees
To search for a pattern p in a suffix tree of a string x, we use the strategy from the naïve 

insert we have seen before. We scan down edges in the tree until we either find the 

pattern or find a mismatch. If the first is the case, then the leaf of the subtree under the 

edge or the node where we had the hit will be the positions in x where p occurs. The 

function below implements it. Here the pattern is null-terminated, as C strings are, but 

do not confuse this null with the sentinel in x$. If we reach the end of the string, we 

have a null character, and that is how it is used. The function doesn’t directly give us the 

positions where the pattern matches. It gives us the smallest subtree where the pattern 

matches the path label to it. All leaves in this subtree are positions where the pattern can 

be found in x.

The function searches for p from the node v. If p is empty, then we have a match at 

node v, and we return it. Otherwise, we find the out edge (the edge to a node w) where 

the first symbol matches the first symbol of p—it is along this edge and its subtree that 

p might be found. If we do not have a matching out edge, we cannot have a match, and 

we return a null pointer to indicate that. Assume that we do have an edge to scan along. 

Then we set s to its beginning and t to its end. The way we scan down the edge is by 

incrementing s and p and comparing what they point to. This means that p is not the 

Figure 3-21.  Slow scan (scan 2) time usage
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original pattern we are searching for when we run the algorithm, rather it is a pointer 

to how far into the pattern we have matched so far. Similarly, s is a pointer into how far 

along the edge we have matched; see Figure 3-22. If we reach the end of the pattern, that 

is, p points to the null symbol that terminates the string, then we have a match. Although 

Figure 3-22 shows a single substring of x where the pattern matches, the substring that is 

the edge label, the pattern will also match at all other leaves in the subtree rooted in w, 

so we return this node. If we see a mismatch between s and p, we do not have a match in 

the string, and we return a null pointer. It is important that we test for the end of string 

p before we check for a mismatch between the characters at s and p. If p points to the 

termination symbol and s does not, we will have a mismatch in a comparison between 

the strings, but we want this to be a complete match. If we get to the end of the edge 

without exhausting the pattern, we continue searching recursively from w. The pattern 

pointer is already incremented to the point in the pattern where we should continue our 

search, and the recursion continues the search. The tail recursion will be translated into 

a loop by most compilers, so the runtime penalty of recursion is minimal.

static struct suffix_tree_node *

st_search_internal(

    struct suffix_tree *st,

    struct suffix_tree_node *v,

    const uint8_t *p

) {

    if (*p == '\0')

        // We are searching from an empty string,

        // so we must already be at the right node.

        return v;

Figure 3-22.  Scanning along an edge when searching for a pattern
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    // Find child that matches *x.

    struct suffix_tree_node *w = v->child;

    while (w) {

        if (*(w->range.from) == *p) break;

        w = w->sibling;

    }

    if (!w) return 0; // The pattern is not here.

    // We have an edge to follow!

    const uint8_t *s = w->range.from;

    const uint8_t *t = w->range.to;

    for (; s != t; ++s, ++p) {

        if (*p == '\0') return w; // End of the pattern

        if (*s != *p)   return 0; // Mismatch

    }

    // We made it through the edge,

    // so continue from the next node.

    return st_search_internal(st, w, p);

}

To search in the entire tree, we need to search from the root which is what st_

search() does:

struct suffix_tree_node *

st_search(

    struct suffix_tree *st,

    const uint8_t *p

) {

    return st_search_internal(st, st->root, p);

}

�Leaf iterators
It is not hard to implement a depth-first traversal of a tree to extract the indices where 

we have matches, but for a user, iterators are easier to use, which was also our rationale 

for using them in the matching algorithms in the last chapter. Iterators can be hard to 

implement, but it is worth it to make the code more usable. An iterator for a depth-first 
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traversal is more complex than the ones we saw in the last chapter, however, because 

a depth-first traversal is recursive in nature which means that we need a stack, and for 

an iterator, we need an explicit stack. An explicit stack also solves another problem. A 

recursive traversal of the tree can have a deep recursion stack and might exceed the 

available stack space.

A simple way to implement a stack is to use a linked list where we push frames to 

the front of the list and pop them from the front as well (naturally). Our recursion is over 

nodes so that is what we put in our stack frames.

struct st_leaf_iter_frame {

    struct st_leaf_iter_frame *next;

    struct suffix_tree_node *node;

};

static struct st_leaf_iter_frame *

new_frame(struct suffix_tree_node *node)

{

    struct st_leaf_iter_frame *frame =

        malloc(sizeof(struct st_leaf_iter_frame));

    frame->node = node;

    frame->next = 0;

    return frame;

}

An iterator contains a stack and the results of iterations are leaf nodes.

struct st_leaf_iter {

    struct st_leaf_iter_frame *stack;

};

struct st_leaf_iter_result {

    struct suffix_tree_node *leaf;

};

When we initialize a new iterator from a node—the root in the tree that we wish to 

iterate over—we put the node in a frame and make that frame the list. There is a special 

case when the node is null, that is, the tree is empty. There we leave the stack empty. 

This way, we do not need to worry about frames with null nodes and the empty stack is 

the obvious indicator that we are done with the iteration.
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void init_st_leaf_iter(

    struct st_leaf_iter *iter,

    struct suffix_tree *st,

    struct suffix_tree_node *node

) {

    if (node) iter->stack = new_frame(node);

    else iter->stack = 0;

}

If the stack were always empty when we deallocate an iterator, we wouldn’t need to 

do anything, but it might not be. In that case we need to free all the frames in the stack.

void dealloc_st_leaf_iter(

    struct st_leaf_iter *iter

) {

    struct st_leaf_iter_frame *frame = iter->stack;

    while (frame) {

        struct st_leaf_iter_frame *next = frame->next;

        free(frame);

        frame = next;

    }

}

It is, not surprisingly, in next_st_leaf() the real work is done. Here we follow the 

steps a recursion would take. We get the next frame from the stack if there are any. If the 

node in the frame has children, it is not a leaf, so we push its children onto the stack (we 

get to reverse_push() and why we want it below). If it is a leaf, we free the frame and 

return it. If it wasn’t a leaf, we also free the frame—just a few lines later in the function—

and pop the next frame in the stack.

bool next_st_leaf(

    struct st_leaf_iter *iter,

    struct st_leaf_iter_result *res

) {

    struct st_leaf_iter_frame *frame = iter->stack;

    while (frame) {

        // Pop the frame.
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        iter->stack = frame->next;

        struct suffix_tree_node *node = frame->node;

        if (node->child) {

            // We have to push in reverse order to get

            // an in-order depth-first traversal.

            reverse_push(iter, node->child);

        } else {

            // Leaf

            // clean up and return result

            free(frame);

            res->leaf = node;

            return true;

        }

        // Get rid of the frame and pop the next.

        free(frame);

        frame = iter->stack;

    }

    return false;

}

The order in which we see a node’s children in the recursion depends on the order 

in which we add them to the stack. In a standard recursive implementation, we can call 

the function on each child in turn, but with the explicit stack, we need to push all of them 

to the stack before we pop the first again. If we push the children from the first child and 

follow its sibling pointers to the last, then the first child will be below the second that 

is below the third and so forth; see Figure 3-23. If we push the last child first, then the 

second last, and so on, then we have a stack that, when we pop off and process nodes, 

will give us the same traversal order as a direct depth-first traversal. If you do not care 

about which order you traverse the tree, you can use either, but the reverse_push() 

function is not substantially more complicated than the direct approach:

static void reverse_push(

    struct st_leaf_iter *iter,

    struct suffix_tree_node *child

) {
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    if (child->sibling)

        reverse_push(iter, child->sibling);

    struct st_leaf_iter_frame *child_frame =

        new_frame(child);

    child_frame->next = iter->stack;

    iter->stack = child_frame;

}

Figure 3-23.  Pushing children, direct or reversed
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If we want an iterator through the positions where the pattern match, we can wrap 

the leaf iterator in another iterator for that. The implementation is quite simple. We 

iterate through leaves—using the iterator earlier—and for each, we set the position and 

return true. When there are no more leaves, there are no more matches either.

struct st_search_iter {

    struct st_leaf_iter leaf_iter;

};

struct st_search_match {

    uint32_t pos;

};

void init_st_search_iter(

    struct st_search_iter *iter,

    struct suffix_tree *st,

    const uint8_t *p

) {

    struct suffix_tree_node *match = st_search(st, p);

    init_st_leaf_iter(&iter->leaf_iter, st, match);

}

bool next_st_match(

    struct st_search_iter *iter,

    struct st_search_match *match

) {

    struct st_leaf_iter_result res;

    if (!next_st_leaf(&iter->leaf_iter, &res))

        return false;

    match->pos = res.leaf->leaf_label;

    return true;

}

void dealloc_st_search_iter(

    struct st_search_iter *iter

) {

    dealloc_st_leaf_iter(&iter->leaf_iter);

}
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�Comparisons
The naïve implementation runs in worst-case O(n2), while the other two algorithms run 

in O(n), but how do they compare in practice? The worst input for the naïve algorithm 

is input where it has to search completely through every suffix to insert it, but for 

random strings, we expect mismatches early in the suffixes, so here we should get a 

better running time. It is harder to reason about best- and worst-case data for the other 

algorithms. For the McCreight’s algorithm, one could argue that it will also benefit from 

early mismatches since it has a naïve search algorithm as the final step in each iteration. 

The LCP algorithm doesn’t scan in any way but depends on the SA and LCP arrays 

(which in turn depends on the string underlying the suffix tree, of course). The algorithm 

corresponds closely to a depth-first traversal of the suffix tree, so we would expect it to 

be faster when there are fewer nodes, that is, when the branch-out of the inner nodes is 

high. We can experiment to see if these intuitive analyses are correct—it turns out that 

the fan-out of nodes is a key factor and the larger it is, the slower the algorithms get.

In Figure 3-24 you can see the running time of the three algorithms with three types of 

strings: Equal, strings consisting only on a single symbol; DNA, random4 sequences over 

four symbols (A,C,G,T); and 8-bit characters. Figure 3-25 zooms in on the smaller string 

sizes and leaves out the time measurements for the naïve algorithm on the Equal alphabet.

Some of the results are as we would expect. The naïve algorithm performs very 

poorly on single-symbol strings but better on random strings. It is still slower than the 

other two algorithms on random DNA sequences. With the 8-bit alphabet, the naïve and 

McCreight’s algorithm run equally fast—because mismatches occur faster with a larger 

alphabet—but notice two things: McCreight’s algorithm is not running in linear time as it 

should be, and while the two algorithms run in the same time, they are both slower than 

when we use the two smaller alphabets.

The culprit is the linked lists we use for node’s children. We have assumed that the 

alphabet is of a constant size—and generally, it is—but we are comparing running times 

for different alphabet sizes. The larger the alphabet, the longer it takes to insert nodes 

and to search for children. Profiling the algorithms reveals that most of the time is spent 

exactly on traversing these lists, and the larger the alphabet, the larger fraction of time 

this is. With the single-letter alphabet, Equal, we have the smallest fan-out of nodes—all 

inner node has two children (the letter and the sentinel). This is the optimal situation, 

4�Real DNA sequences are not random, but in my simulated data they are, and it is not that far 
from real DNA.
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with respect to children list traversal, for McCreight and LCP (but still the worst case for 

the naïve algorithm where the search time dominates). McCreight does run in linear time 

for the smallest alphabet, but it will not run in linear time for the larger alphabets until 

all nodes have most of the alphabet as out edges. The time depends on the degrees of the 

nodes the algorithms search through, which affects all through algorithms. The time it 

takes to reach a fan-out close to the maximal, a degree equal to the alphabet size, depends 

on the length of the string. For those shown in the figures, we are still seeing this effect.

Figure 3-24.  The three algorithms on the three different alphabets
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If the linked lists slow down our algorithm, we can consider an alternative.5 We can 

use an array for the children, indexed by the alphabet symbols. With this, we can look up 

the edge for any symbol in constant time. I have shown the running times of the array-

based and linked list–based algorithms in Figure 3-26. The array-based algorithms run 

5�I have not listed the implementation in this book since it closely resembles the linked list suffix 
trees. You can find the implementation at https://github.com/mailund/stralg.

Figure 3-25.  Zoom in on short strings
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in linear time and are not affected by the growing linked lists, but they are still affected 

by the alphabet size. The larger the alphabet, the larger arrays we need to store in each 

node, and the poorer IO efficiency we will see.

The fastest construction algorithm appears to be the LCP algorithm, linked list or 

array-based. We can examine their running time in Figure 3-27. The list-based is slightly 

faster for the smaller alphabets, and for the 8-bit alphabet, it is faster up to around string 

length 90,000, where the extra memory usage of the array-based implementation pays off. 

For smaller alphabets, it seems that the LCP algorithm with linked lists is the way to go.

The LCP algorithm gets its speed from not doing any searches. It does not build the 

suffix tree using only a string, however, but it needs the suffix array, SA, and the longest 

common prefix array, LCP. When we measure the running time of the algorithms, we 

should take into account that we need to compute these arrays before we can use the 

LCP algorithms. In this chapter, we have seen how to compute the SA and LCP arrays 

from a suffix tree, but of course, we do not want to include this construction on top 

of the LCP construction algorithm. We would never build a suffix tree so we could 

rebuild it with another algorithm. In the next chapter, we will see how to build the 

two arrays directly from a string, and in Figure 3-28, I have shown how LCP and LCP 

with the array construction compare to McCreight. The suffix array construction is 

potentially expensive, and its time usage depends on the alphabet size. The larger the 

alphabet, the faster it is, maybe counterintuitive but true. In the next chapter, I show 

several algorithms for computing the suffix array, two of them have this property, and 

it is one of those I have used for the experiments in this chapter. If we include the array 

construction, we need a large alphabet for the LCP algorithm to outcompete McCreight’s 

algorithm. For the DNA alphabet, the two algorithms are equally effective, and for 

the single-symbol alphabet—the worst case for the array construction algorithm—

McCreight’s algorithm is much faster.
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Figure 3-26.  Array-based children
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There is a scenario where we would always use the LCP construction algorithm 

based on the experimental results here. It is not uncommon to preprocess a string 

we will use for many queries. In bioinformatics, for example, we have strings that are 

millions of characters long, and we query them with millions of short patterns. In such 

scenarios, we build a search structure like a suffix array and save it to a file, so it is 

Figure 3-27.  Array- and list-based LCP constructions
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available every time we have new patterns to search for. It is hard to serialize a suffix tree 

but trivial to write two arrays to a file and read them in again. If we can read the arrays 

from a file, we can use the fast LCP algorithm to construct a suffix tree from them.

Figure 3-28.  Adding the array computations to LCP

If we do not have the arrays precomputed, then McCreight’s algorithm or even the 

naïve algorithm is competitive. The naïve algorithm is, obviously, only worth considering 

with a large alphabet, but its simplicity and a running time compatible with McCreight 
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might make it a good choice. Further, if memory is a problem, and each word counts, you 

can implement it without the parent and suffix link pointer; McCreight needs both (and 

LCP needs the parent pointer but not the suffix link).

You can find the code I used for the measurements on GitHub: https://github.

com/mailund/stralg/blob/master/performance/suffix_tree_construction.c.
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CHAPTER 4

Suffix arrays
The suffix array data structure is closely tied to the suffix tree, and we have already seen 

in the previous chapter. The suffix array gives you the lexicographically (alphabetically) 

sorted order of the suffixes, where each suffix is represented by its index into the string x; 

see Figure 4-1.

The appeal of the suffix array over suffix trees is its space-efficient and 

straightforward representation. You can do many of the things you can do with a suffix 

tree, and with a little extra data and (unfortunately) added complexity, you can simulate 

suffix trees with suffix arrays. The memory efficiency is a crucial reason to prefer suffix 

arrays. Suffix trees are rather memory hungry. If you have a string of length n, you 

can have O(n) nodes in your suffix tree.1 If you build the suffix tree using the naïve 

algorithm—so you do not need the parent and suffix link pointers—each node takes up 

five computer words (5w).2 You add one, the parent pointer, if you use the LCP algorithm 

(6w), and you add yet another for McCreight (7w). Those are the costs per node in the 

tree, and there can be twice as many nodes as characters in the string, so per character, 

we have 10w, 12w, and 14w, respectively. In contrast, the suffix array is one computer 

word per suffix, that is, one computer word per character, (w).

1�With my implementation. It is possible to compress it further, but the best representations in the 
literature are still not as memory efficient as a suffix array.

2�A note on terminology, I will use “word” to mean the size of memory you use to store an 
integer. It will typically be the same as a computer word, that is, the size of its registers. On most 
computers today, that is 64 bits. In my implementation, however, I use 32-bit integers, so that is 
the word size here. I also use pointers, though, and those will be full words. I use the term “word” 
to avoid focusing on a specific number of bytes, since you can always change your integer type to 
something smaller, to save space, or something larger so you can index into longer strings. And I 
also don’t want to distinguish between integers and pointers, although they have a different size 
in my implementation. Making the distinction will make the analysis and comparison between 
algorithms more complicated. Every time you see “word,” just think the size of integers and 
pointers.

https://doi.org/10.1007/978-1-4842-5920-7_4#DOI
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The memory efficiency of one word per input character is only for the actual array. 

The algorithm that we use to construct it can take up more space, of course, similar to 

how we saw that we needed extra pointers for the suffix trees to get the linear running 

times.

The representation of a suffix array is simple. We have a pointer to the string (we 

need it in addition to the array to compare patterns against the suffixes), the length 

of the string/array, and then the array. In the following structure, I have included two 

additional arrays that we will not use yet, so you can ignore them for now.

struct suffix_array {

    uint8_t *string;

    uint32_t length;

    uint32_t *array;

Figure 4-1.  Example of a suffix array
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    uint32_t *inverse;

    uint32_t *lcp;

};

When we construct a suffix array, we allocate the memory for the array and hardly 

more (the extra arrays are not always used so by default we set them to null—we can 

compute them when we need them).

static struct suffix_array *allocate_sa(uint8_t *string)

{

    struct suffix_array *sa =

        malloc(sizeof(struct suffix_array));

    sa->string = string;

    sa->length = (uint32_t)strlen((char *)string) + 1;

    sa->array = malloc(sa->length * sizeof(*sa->array));

    sa->inverse = 0;

    sa->lcp = 0;

    return sa;

}

Deallocating a suffix array is equally simple: we free the memory we allocated and 

that is that.

void free_suffix_array(struct suffix_array *sa)

{

    free(sa->array);

    if (sa->inverse) free(sa->inverse);

    if (sa->lcp)     free(sa->lcp);

    free(sa);

}

In each section of this chapter, I will present code that you have to compile in 

different files. I use macros liberally, and there are some overlaps between macros and 

variables in the algorithms, as I have tried to present the algorithms with variables that 

are typically used in the literature. Two of the algorithms are recursive, which means that 

you have to define prototypes for the functions you use. I have not done this everywhere, 

but only when it makes the text easier to read. However, for each section, I link to a file 
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on GitHub where you can download the full implementation. You can find the header 

file with the definition of the preceding structs at https://github.com/mailund/

stralg/blob/master/stralg/suffix_array.h and the allocation/deallocation code 

here: https://github.com/mailund/stralg/blob/master/stralg/suffix_array.c. 

You need these two files for all the code in this chapter.

�Constructing suffix arrays
Suffix arrays, like suffix trees, can be computed in linear time. This shouldn’t surprise 

since we have already seen how they can be computed using a suffix tree and we know 

that a suffix tree can be computed in linear time. However, one of the benefits of using 

suffix arrays is the smaller memory footprint, and if we are pressed for memory, then 

using a suffix tree to build a suffix array is not useful. We want to construct the array 

directly from the string and not via a suffix tree.

�Trivial constructions—Comparison-based sorting
Since the suffix array is simply the indices of the suffixes sorted in alphabetical order, an 

immediate approach to computing is to consider each suffix an independent string and 

explicitly sort them. Such an approach, using C’s qsort() function, would look like this:

static // Wrapper of strcmp needed for qsort

int construction_cmpfunc(

    const void *a,

    const void *b

) {

    return strcmp(*(char **)a, *(char **)b);

}

struct suffix_array *qsort_sa_construction(

    uint8_t *string

) {

    struct suffix_array *sa = allocate_sa(string);

    uint8_t **suffixes =

        malloc(sa->length * sizeof(uint8_t *));
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    for (int i = 0; i < sa->length; ++i)

        suffixes[i] = string + i;

    qsort(suffixes, sa->length, sizeof(char *),

            construction_cmpfunc);

    for (int i = 0; i < sa->length; i++)

        sa->array[i] = (uint32_t)(suffixes[i] - string);

    free(suffixes);

    return sa;

}

We build an array containing all our suffixes. Each suffix is represented by a pointer 

into the full string, which works since C strings are nothing more than pointers. When we 

point into the middle of our string, we get the string that starts at the position we point 

to. Then we call qsort() to sort the suffixes. The qsort() function uses a comparison 

function that gets a pointer to two keys to be compared. In our case, the keys are strings, 

that is, char *, so we need to get what the pointer is pointing to when we call strcmp().

When we have sorted the suffixes, we can get the indices of them for array by 

computing their offset from the string.

The expected running time of qsort() is O(k · n log n) where k is the time it takes to 

compare keys. In our case, keys are strings, and comparing them takes worst-case time 

O(n). So the expected running time for the quick sort solution is O(n2 log n). This is the 

expected running time, a probabilistic running time assuming that strings are random. 

If they are not, the worst-case running time can be O(kn2), or O(n3), for constructing 

suffix arrays this way. The worst-case comparison time happens if we have a string 

consisting of a single character. Then all comparisons continue to the end of the shortest 

string, which is on average n/2. The cases where we hit the worst-case running time 

for quick sort depend on its implementation. The algorithm picks a pivot element in a 

range and splits the keys there into two subranges based on the pivot. It puts the keys 

smaller than the pivot in one range and the keys that are larger in the other. We get the 

best performance if it splits the range in two equal sizes. We get the worst case if it splits 

them such that one element goes in one of the subranges and all the others in the other 

subrange. If we create a suffix array from a string with a single character, the array of 

suffixes we just made is inversely sorted (shorter strings always go before longer strings). 

If the quick sort implementation uses the first or last element in the range as a pivot, 
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we get the worst-case behavior. The pivot is either the largest or the smallest key in the 

range, so it will go in one subrange and all the other keys in the other. I will refer you to 

a textbook on fundamental algorithms to study the quick sort algorithm, if you are not 

already familiar with it.

The analysis is more pessimistic than what we will see in practice, though. We only 

see the worst-case complexity if the comparisons are very long. If there are few long 

repeats of substrings in our string, we will terminate the comparisons fast. With natural 

language strings or DNA strings, for example, we do not expect to see the worst case and 

the algorithm will in practice run in expected O(n log n). String comparisons run until 

we see the first mismatching character, and this length has a geometric distribution if the 

string is random, so k is O(1).3 The suffixes in the array we sort will have a random order, 

so quick sort will have the expected running time, O(n log n).

It is possible to do a radix sort instead of a comparison-based sort—do a stable 

bucket sort starting at the end of the suffixes and move to the beginning. This approach 

will have a worst-case running time of O(n2). It is better than quick sort both when it has 

its worst case, cubic running time, and when it has its expected running time but the 

string comparisons take linear time. With random strings, however, we expect that the 

quick sort algorithm will be faster.

The memory consumption in the construction is 2w per character. We need the array 

of pointers to the suffix strings to sort them, and then we need the actual suffix array.

The key takeaway from the analysis is that the running time with this approach is that 

for random strings, we might get an O(n log n), but it could be as bad as O(n3). For long 

strings, this is prohibitive, so we are motivated to find faster construction algorithms, 

and we will see two linear-time algorithms in the next following sections.

3�If you pick two random letters from an alphabet of size h, they are equal with probability 1/h and 
different with probability 1 − 1/h. The expected number of times you have to draw pairs of letters 
until they are different—corresponding to the number of characters you have to compare in 

random strings—is 
1

1 1- / h
. This depends on the alphabet size, which we assume is a constant, so 

a comparison of random strings takes constant time. If the alphabet is not uniformly distributed, 
you still have a probability for picking the same or different letters, and the formula is the same 
except for the value that goes in the denominator. The analysis is not entirely correct because we 
do not have random strings; they are all suffixes of the same string. When the strings are not 
independent, we cannot argue exactly this way, but with a long random string, the suffixes are 
sufficiently independent that it doesn’t matter in practice.
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�The skew algorithm
The Kärkkäinen-Sanders, DC3, or skew algorithm—it has many names—is a divide-

and-conquer approach to building a suffix array. It splits the string into two parts, one 

containing one-third of the suffixes and one containing the rest. It constructs a shorter 

string from the two-thirds suffixes and recursively sort it and then use it to combine the 

two initial array of suffixes into the correct array.

You can find the full source code for the algorithm at https://github.com/

mailund/stralg/blob/master/stralg/skew.c. Let us dig into the details. Given an 

initial string, split it into the suffixes that have index i with i % 3 = 0, those that have 

modulus one or two, i % 3 ≠ 0. Let us call these arrays sa3 and sa12. We put all the 

suffix indices into them such that those indices i % 3 ≠ 0 go into sa12 and the rest 

into sa3. We first construct sa12 and sort it lexicographically according to the suffixes 

it holds. We do this recursively using the method we are building now (as one does in 

divide-and-conquer algorithms). Once we have sa12, we can then construct a sorted 

sa3 from the result. All indices i % 3 = 1 are sorted in sa12, so if we insert i % 3 = 0 in 

the order that i + 1 appear in sa12, we have the indices in sa3 sorted with respect to the 

suffix following their index. If we then do a stable sort of the first letters of the suffixes in 

sa3, we will have binned these suffixes, so the first letters are in order, and within each 

bin, the suffixes are sorted with respect to the suffix following the first letter. This means 

that we have sorted the suffixes in sa3. We can sort sa3 in linear time if we use a radix 

sort. I go into details about this in a few pages.

Once we have both sa12 and sa3 sorted, we can merge them into the suffix array we 

want. See Figure 4-2 for an overview of the steps in the algorithm.

Figure 4-2.  Overview of the skew algorithm
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We do not sort sa12 directly with a recursion. It isn’t a string which is what our method 

should take as input. Instead, we create another string from the array, get the suffix array 

from that string, and from this suffix array, we extract the sorted suffixes in sa12.

I go into more details a little later, but this idea is this: first, do a radix sort based on 

the first three characters in the suffixes in sa12. We can do this in linear time for any 

constant-sized prefix of the suffixes in sa12, not just the first character as for sa3, so we 

can sort based on the first three characters in constant time. Now map each triple to a 

number such that the smallest lexicographically triplet gets zero, the second smallest 

1, and so on. If all the triplets are unique, we have sorted sa12 completely, and we are 

done. If not, we build a string u of length m12 + 1, where m12 is the length of sa12. We put 

a sentinel, #, in the middle of it (which is why we need the length to be one more than 

m12). Then we run through the suffixes in sa12 and put the triplet number at the front of 

each suffix into u, those i % 3 = 2 in the first half and those i % 3 = 1 in the second half.4 

Insert them in the order they are found in sa12, not the sorted order; see Figure 4-3.

If we construct u this way, then you have an implicit representation of all the suffixes 

in sa12, just in a different alphabet. We cannot see the letters inside each triplet, but we 

have the order they should be sorted in from the way we mapped triplets into numbers. 

We have the i % 3 = 1 suffixes in the first half and the others in the second half, and the 

sentinel ensures that we will not mix them up. We use the zero character for our sentinel. 

That way C will consider the strings before the sentinel as separate from the strings after 

it, even though we put them in the same buffer. If we are in the first half, the string only 

goes to the sentinel, and we never look at it farther than this. The way we have mapped 

triplets, the triplet representations of suffixes are ordered in the same way as the original 

strings. This, combined with the sentinel that takes care of the end of i % 3 = 1 strings, 

means that if we sort u we have sorted the sa12 suffixes. The only thing we need to get 

sa12 is to map the indices in u to indices in sa12. There is a tiny bit of arithmetic here, 

but in essence, we check whether we are below or above the middle. If we are below, we 

add one because these are the i % 3 = 2 indices that are at the odd places in sa12. If we 

are above the middle, we subtract the first half and the sentinel from the index.

    uint32_t m = m12 / 2;

    uint32_t k = (i < m) ? (2 * i + 1) : (2 * (i - m - 1));

4�You could also insert the modulus one strings first. I chose not to, because the number of 
modulus two indices varies whether there are an even or uneven number of suffixes in sa12. If I 
put the modulus two suffixes at the beginning of the string, I can always use integer division to 
get the middle of the string; otherwise, I had to check the length. Conceptually it doesn’t matter.
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Figure 4-3.  Constructing u and sort it recursively

Chapter 4  Suffix arrays



148

Here m is the middle of the string and k is the index in the larger string that index i 

should map to. That is, i is an index into the u string and k is where that index is in sa12.

While you do not need to do so if you have an index into sa12—that contains the 

suffix indices—it is possible to map from a sa12 index into the suffixes it contains using

    k + k / 2 + 1;

Once we have both sa12 and sa3, we need to merge them into the true suffix array. 

Again, I will go into more details later, but this is the intuition that should help you see 

the overall picture. It follows a typical merge algorithm: we move indices i and j through 

the two arrays and pick the smallest of the suffixes we compare in each iteration. The 

trick is to determine which suffix is the smallest. If the first letter in the suffixes differs, 

we can directly determine this, but if they do not, there is more work to do. There are 

two cases. If i, the index into sa12, is a i % 3 = 1 index, then both i + 1 and j + 1 will be 

in sa12, and we can get their relative order from the array. If i is a i % 3 = 2 index, then 

i + 1 and j + 1 will be in different arrays (see Figure 4-4). If the letters at index i + 1 and 

j + 1 are different, we can directly determine which suffix is the smallest. If not, we can 

move one step further, to i + 2 and j + 2. There, the indices are both in sa12. It is here 

that it is crucial that we do not split the data into two equal parts but one and two-thirds. 

This prevents the indices from repeatedly jumping to different tables. Here, we will never 

have to move beyond a third table lookup.

�Constructing SA3

The simplest step in the skew algorithm is constructing sa3, so this is where we start. 

Recall that we construct the array from the indices modulus one in the already sorted 

sa12 and then radix sort on the first character. We have used uint8_t for our alphabet 

so far, and our final function for constructing suffix arrays will have strings over this 

alphabet as input, so we can use the same strings with our different algorithms. However, 

during the execution of the skew algorithm, we need to make new alphabets, when we 

handle s12, as we shall see later. Those alphabets can be larger than the 256 we can 

fit into a byte, so we should implement the algorithm so it can handle arbitrarily large 

alphabets (though bounded by n in size). But to simplify, and for speed reasons, we 

assume that we can hold all alphabets in uint32_t. We use the variable alph_size for 

the alphabet size. We use the alphabet size when radix sorting. All strings are therefore of 

type uint32_t *. It is a simple matter to translate the uint8_t * strings to uint32_t *.
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The construction function looks like this:

static void construct_sa3(

    uint32_t m12,

    uint32_t m3,

    uint32_t n,

    uint32_t *s,

    uint32_t alph_size,

    struct skew_buffers *shared_buffers

) {

    uint32_t j = 0;

    // If the last position divides 3, we don't

    // have information in sa12, but we know it

    // should go first.

    if ((n - 1) % 3 == 0) {

        SA3(j++) = n - 1;

    }

Figure 4-4.  Merging SA12 and SA3
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    for (uint32_t i = 0; i < m12; ++i) {

        uint32_t pos = SA12(i);

        if (pos % 3 == 1) {

            SA3(j++) = pos - 1;

        }

    }

    radix_sort(s, n, shared_buffers->sa3, m3,

               0, alph_size, shared_buffers);

}

The m12 variable is the length of the sa12, m3 is the length of sa3, n is the length of 

the string we are building the suffix array over, and s is the string. We use alph_size in 

the radix sort, but you can ignore it for now. The shared_buffers variable points to a 

structure of type struct skew_buffers. This structure holds several arrays and buffers 

we will use to avoid heap-allocating arrays when running the algorithm. Its structure 

looks like this:

struct skew_buffers {

    uint32_t *sa12;                // 2/3n +

    uint32_t *sa3;                 // 1/3n = n

    uint32_t current_u;

    uint32_t *u;                   // 3*(2/3n+1)

    uint32_t *sau;                 // 3*(2/3n+1)

    uint32_t radix_buckets[256];

    uint32_t radix_accsum[256];

    uint32_t *helper_buffer0;      // 2/3n +

    uint32_t *helper_buffer1;      // 2/3n = 4/3 n

    uint32_t *lex_remapped;        // alias for helper 0

};

The comments are the number of words we need to allocate for the arrays when 

the input string has length n. Remember that by “words” I mean the space we need for 

pointers or integers. In this case they are all integers, and with this implementation, each 

word is 4 bytes. If you change the integer types, then the space requirements will change 

as well, of course. When there are fractions, you have to round them up. So 1/3n means 
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that you have to allocate a number of words that are equal to one-third of the input size, 

rounded up.

I will explain each buffer as we get to where they are used; in the sorting of sa3, we 

only use sa12 and sa3. We access them with SA12() and SA3(), which are macros.

#define SA12(i) (shared_buffers->sa12[(i)])

#define SA3(i)  (shared_buffers->sa3[(i)])

Since sa12 contains two-thirds of the input, that is what we must allocate for it, and 

sa3 contains a third so this is what we must allocate for that array.

I will use several macros in this algorithm to make the code more readable. The 

macros assume that shared_buffers and s are the variables we use in the functions, 

but we use that for consistency anyway. As you can see, the SA12() and SA3() look up 

in the sa12 and sa3 arrays in the shared buffers. This is where we have the indices of the 

suffixes for the two arrays.

We use these two macros for the sort:

#define B(i)    (shared_buffers->radix_buckets[(i)])

#define AS(i)   (shared_buffers->radix_accsum[(i)])

We use the first to pick a bucket. As we sort, we count how many elements we need 

to put into each bucket, rather than put the elements in there. We just count. Then we 

compute the cumulative sum of the buckets, that is, an array that for each bucket tells 

us how many elements there are in the buckets before it. We can now copy the actual 

elements into a result array. For each element, we look up its bucket and use AS(key) 

as the index we insert into. Each time we insert an element in a bucket, we increment 

its corresponding accumulative sum, so at this point AS(key) works as a pointer to the 

current position where elements in that bucket should be inserted; see Figure 4-5.

The radix sort function looks like this:

Figure 4-5.  Buckets and radix sort
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#define RAWKEY(i) ((input[(i)] + offset >= n) ? 0 : s[input[(i)] + offset])

#define KEY(i)    ((RAWKEY((i)) >> shift) & mask)

static void radix_sort(

    uint32_t *s, uint32_t n,

    uint32_t *sa, uint32_t m,

    uint32_t offset, uint32_t alph_size,

    struct skew_buffers *shared_buffers)

{

    const int32_t mask = (1 << 8) - 1;

    bool radix_index = 0;

    uint32_t *input, *output;

    memcpy(shared_buffers->helper_buffer0, sa, m * sizeof(uint32_t));

    uint32_t *helper_buffers[] = {

        shared_buffers->helper_buffer0,

        shared_buffers->helper_buffer1

    };

    for (uint32_t byte = 0, shift = 0;

         byte < sizeof(*s) && alph_size > 0;

         byte++, shift += 8, alph_size >>= 8) {

        memset(shared_buffers->radix_buckets, 0,

               256 * sizeof(uint32_t));

        input = helper_buffers[radix_index];

        output = helper_buffers[!radix_index];

        radix_index = !radix_index;

        for (uint32_t i = 0; i < m; i++) {

            // Count keys in each bucket

            B(KEY(i))++;

        }

        uint32_t sum = 0;

        for (uint32_t i = 0; i < 256; i++) {

            // Get the accumulated sum for offsets

            AS(i) = sum;
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            sum += B(i);

        }

        assert(sum == m);

        for (uint32_t i = 0; i < m; ++i) {

            // Move input to their sorted position

            output[AS(KEY(i))++] = input[i];

        }

    }

    memcpy(sa, output, m * sizeof(uint32_t));

}

The arguments are s, the string we will sort, and its length n; sa is the output, that is, 

the sorted indices, and m is its length. The offset is used to sort more than one computer 

word; it looks to the right of the index to get the index there rather than the character at 

the actual index. It is used later, but for sorting sa3, it is zero. The alph_size and shared_

buffers arguments are the same as before. We use the alph_size to avoid extra work 

when the alphabet size does not use all 32 bits in uint32_t. You can try leaving it out of 

the outer loop to see the performance difference.

The function looks more complicated than it is. It sorts integers according to their 

bytes, and it uses two arrays for this, helper_buffer0 and helper_buffer1, accessed 

through the shared_buffers variable. We put these in an array, helper_buffers, so 

we can switch them using a Boolean, radix_insert. We use them to insert indices 

consecutively into their bucket. The input vector will hold the indices and the output 

contains partially filled buckets. We flip between the two helper buffers in the iterations 

of the radix sort using the shared_buffer array, so input always refers to the values we 

just sorted and output to where we will place the next sorted values. The accumulative 

sum starts with pointers to the beginning of each buffer and is incremented each time 

we insert an index into output.

The macro RAWKEY() gets the word in s we need to sort and the KEY() macro extracts 

the byte we are currently sorting by.

The size of the two helper buffers is two-thirds of the length of the initial string. This 

is because the longest string we will sort is the initial sa12; all other arrays we sort are 

shorter.
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�Recursively sorting sa12

Sorting sa3 is the easy part, and we can do it without recursion. But we need a sorted 

sa12 to do it. Sorting sa12 is the main part of the algorithm, and it is here we need the 

recursion in our divide-and-conquer algorithm. I’ve listed the recursive function first, 

in the following text, and I will go into the details later. To construct the suffix array, we 

first create a new string from sa12, recursively get the suffix array from that, and use it to 

get the sorted sa12. Everything except for the last two lines in the function handles this. 

The second to last line constructs sa3 from sa12, as we just saw earlier, and the last line 

merges the two sorted arrays—we will see how to do this and write the merge_suffix_

arrays() function after we handle sa12.

I will present the algorithm top-down, since I think it will be easier to see how the 

pieces fit together that way. It does mean that you will see calls to functions you haven’t 

seen the definition of yet. They will come later. If I presented all the minor functions 

that you need before we use them, I don’t think it would be clear how they fit in. This 

does mean that you will not be able to copy the code into your editor and compile it as 

you read along. If you want to, you can fetch the code from GitHub (https://github.

com/mailund/stralg/blob/master/stralg/skew.c), where the functions are in the 

right order for compilation. Otherwise, you have to be patient until you have seen all the 

function definitions.

As shown in Figure 4-3, the first step is to sort the suffixes by their first three 

symbols so we can create u from the mapped letters. In the following function, we do 

this using the remap_lex3() function that we will write shortly. The function returns 

the size of the alphabet of triplets and the mapping from indices in sa12 to their 

lexicographical number. If this alphabet size matches the entire number of suffixes, 

then they are already sorted, and we are done, but if they do not, we construct the u 

string with construct_u(); we will also see how to write that function shortly. We sort 

u recursively, and when we have the suffix for that, we construct sa12 by mapping 

indices in u to indices in sa12. For this, we use the function map_u_s(). You will see 

this function soon.

static void skew_rec(

    uint32_t *s, uint32_t n,

    uint32_t alph_size,
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    uint32_t *sa,

    struct skew_buffers *shared_buffers

) {

    // When we index from zero, these are the number of

    // indices modulo 3. We have n - 1 to adjust for

    // the zero index and +1 because the zero index is

    // included in the array for m3.

    uint32_t m3 = (n - 1) / 3 + 1;

    uint32_t m12 = n - m3;

    uint32_t mapped_alphabet_size =

        remap_lex3(s, n, m12, alph_size, shared_buffers);

    // The +1 here is because we leave space for the sentinel.

    if (mapped_alphabet_size != m12 + 1) {

        uint32_t *u =

            shared_buffers->u + shared_buffers->current_u;

        uint32_t *sau =

            shared_buffers->sau + shared_buffers->current_u;

        shared_buffers->current_u += m12 + 1;

        // Construct the u string and solve the suffix array

        // recursively.

        construct_u(shared_buffers->lex_remapped,

                    m12, u);

        skew_rec(u, m12 + 1,

                mapped_alphabet_size,

                 sau, shared_buffers);

        int32_t mm = m12 / 2;

        for (uint32_t i = 1; i < m12 + 1; ++i) {

            SA12(i - 1) = map_u_s(sau[i], mm);

        }

    }
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    construct_sa3(m12, m3, n, s, alph_size, shared_buffers);

    merge_suffix_arrays(s, m12, m3, sa, shared_buffers);

}

We use the u and sau pointers for the u string and its suffix array. We could 

dynamically allocate them with malloc() and free(), but we know ahead of time how 

much space we need for them in total, so we have allocated all of the buffers already. We 

have a pointer to the head of the buffers we have used, current_u, and we set u and sau 

to point there, and then we update the current_u by incrementing it by m12 + 1, which 

is the space we need for u (we need all indices in sa12 plus a sentinel).

In each recursive call, we use u and sau of size m12 + 1 which is 
2
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 converges to 3, and we will never recurse deeper 

than n, so an upper bound of the total memory we need for u and sau is 3(2/3n + 1).

Given the suffix array for u, we map the indices there into indices in sa12 to get that array. 

We already saw the arithmetic needed for this, and we have wrapped it in this function:

// Map from an index in u to an index in s

inline static uint32_t map_u_s(uint32_t i, uint32_t m)

{

    // first: u -> s12

    uint32_t k = (i < m) ? (2 * i + 1) : (2 * (i - m - 1));

    return k + k / 2 + 1; // then s12 -> s

}

Once we have sorted sa12, we construct sa3 as shown earlier and merge the two 

arrays (as discussed below).

It is in the map_lex3() function, which I will list shortly, that we construct the sa12 

array by running through the string, s, and inserting indices that are not zero modulo 

three. It then sorts the array according to the first three letters with the call to radix_

sort_3(). The sorted array is in the shared_buffers struct as sa12, so it is a side effect 

of radix_sort_3() that gives us the result. Next, we need to map the indices in s to their 

lexicographical numbers. We have the sorted sa12 and can get the numbers from there, 

but we need to construct u in the order the suffixes appear in s.

If we iterate through the sorted sequence, we will go through different bins and 

each bin will correspond to a lex number. To remap to these numbers, we look up the 

numbers in each bin and assign the bin number to them (see Figure 4-6 A). We cannot 
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quite do this since the indices in sa12 are into the s string and not into sa12 itself. So we 

need to get the index into s, SA12(i), and then map that back to an index in the shorter 

array using the map_s_s12() function (see Figure 4-6 B).

// Map from indices in s to indices in s12

inline static uint32_t map_s_s12(uint32_t k) {

    return 2 * (k / 3) + (k % 3) - 1;

}

The LEX3() macro maps directly from the sorted array to the remapped array.

#define LEX3(i) \

    (shared_buffers->lex_remapped[map_s_s12(SA12(i))])

The full remap function looks like this:

static int32_t remap_lex3(

    uint32_t *s, uint32_t n, uint32_t m12,

    uint32_t alph_size,

Figure 4-6.  Mapping array to lex3 bins
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    struct skew_buffers *shared_buffers

) {

    // Set up s12

    for (uint32_t i = 0, j = 0; i < n; ++i) {

        if (i % 3 != 0) {

            SA12(j) = i;

            j++;

        }

    }

    // Sort s12

    radix_sort_3(s, n, m12, alph_size, shared_buffers);

    uint32_t no = 1; // Reserve 0 for sentinel

    LEX3(0) = 1;

    for (uint32_t i = 1; i < m12; ++i) {

        if (!equal3(s, n, SA12(i), SA12(i - 1))) {

            no++;

        }

        LEX3(i) = no;

    }

    return no + 1;

}

You haven’t seen the functions radix_sort_3() and equal3() yet, but they are 

coming. Don’t worry.

As a side effect of this function, we overwrite the shared sa12 array. We don’t take 

sa12 as a parameter, but it sits in the sa12 array in the shared_buffers. We access it with 

the SA12() and write indices into it. Overwriting data in the array has no consequence 

for the algorithm. In skew_rec(), we call recursively after remapping, and we are 

not looking at this array until we return and reconstruct it using the result from the 

recursion.

The radix sort used in remap_lex3(), radix_sort3(), uses the radix_sort() 

function we saw earlier, calling it three times. It uses the offsets to sort for three different 

positions, starting two to the right of the suffix, then one, and then offset zero. Since the 

sort is stable, the result is an array sorted by the first three letters. The result is put in the 
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shared_buffers->sa12 array. It is the third parameter to the radix_sort() function, 

and that is where radix_sort() writes its result.

inline static void

radix_sort_3(

    uint32_t *s, uint32_t n, uint32_t m,

    uint32_t alph_size,

    struct skew_buffers *shared_buffers

) {

    radix_sort(s, n, shared_buffers->sa12, m,

               2, alph_size, shared_buffers);

    radix_sort(s, n, shared_buffers->sa12, m,

               1, alph_size, shared_buffers);

    radix_sort(s, n, shared_buffers->sa12, m,

               0, alph_size, shared_buffers);

}

The equal3() function that we use to determine when we move from one bin to the 

next in the sorted array is straightforward. We run through the three symbols at index 

i and j and answer no if we see different characters (or if one reaches the end of the 

string). If we get through the loop without seeing any differences, the two triplets are 

equal and we return true.

inline static bool equal3(

    uint32_t *s, uint32_t n,

    uint32_t i, uint32_t j

) {

    for (int k = 0; k < 3; ++k) {

        if (i + k >= n) return false;

        if (j + k >= n) return false;

        if (s[i + k] != s[j + k]) return false;

    }

    return true;

}
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Once we have the array of remapped letters, constructing u is trivial. Run through the 

indices that are two modulo three and insert their remapped symbol, insert the sentinel, 

and then run through the indices that are one modulo three.

static void construct_u(

    uint32_t *lex_remapped,

    uint32_t m12,

    uint32_t *u

) {

    uint32_t j = 0;

    // First put those mod 3 == 2 so the first "half"

    // is always m12 / 2 (the expression rounds down).

    for (uint32_t i = 1; i < m12; i += 2) {

        u[j++] = lex_remapped[i];

    }

    u[j++] = 0; // Add center sentinel.

    // Insert mod 3 == 1.

    for (uint32_t i = 0; i < m12; i += 2) {

        u[j++] = lex_remapped[i];

    }

}

�Merging arrays

The final step in the algorithm is merging the two arrays. For this, we need to run 

through the indices in sa12 and sa3. These contain the suffixes in s, represented by 

their indices, sorted by their lexicographical order. So for all indices into s, we have 

those i % 3 = 0 in sa3 and those i %3 ≠ 0 in sa12.

When we merge, we have an index ii into sa12 that tells us how far we have 

gotten there, and an index jj into sa3. To compare letters there, which is the first 

thing we do, we need to get the corresponding indices in the string s, which we can do 

using ii = sa12[i] and jj = sa3[j], respectively. This macro does that.
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#define CHECK_INDEX(ii,jj) {         \

if ((ii) >= n) return true;          \

if ((jj) >= n) return false;         \

if (s[(ii)] < s[(jj)]) return true;  \

if (s[(ii)] > s[(jj)]) return false; \

}

We use it in a function, less(), that we define below. Notice that it has return 

statements. It will make less() return true if suffix ii comes before suffix jj when we 

can determine this by only looking at the first character. The two first lines handle the 

special cases where one of the indices falls outside the string. Shorter strings always 

go before longer strings, so the index that is beyond the string is the smaller. If the first 

character for the two suffixes is the same, the macro falls through all the if statements 

and does not return. When this happens, the less() function will handle the next step in 

the comparison.

To decide if one suffix comes before another, we cannot merely look at the first 

character. If we could, we wouldn’t be using a complicated algorithm—we could just 

use a bucket sort. We built the sa12 and sa3 algorithms so we could decide which suffix 

comes before another when they agree on the first character, and in that case, we need to 

determine if suffix ii+1 comes before jj+1 (and maybe if ii+2 comes before jj+2).

We write a function, less(), to handle the comparison. If the two indices come 

from different arrays, we compare characters. That is all we can do, because we do not 

know the relative order of indices in different arrays—that is, after all, what we are trying 

to work out. If the characters are the same, we add one to the indices to see if we can 

determine the order there. If we add one, then both indices could be different from zero 

modulo three, and they can be found in sa12. The order there gives us the information 

we want. Otherwise, we can add one more to them, and now they must be in sa12 if they 

weren’t the first time. So how do we determine the order of two indices into sa12?

The indices ii and jj are into the string, s, which is the smallest given by the order in 

which they appear in sa12? We cannot get this order directly from the indices. However, 

if we can map indices ii from s into indices in sa12, we can compare those indices. The 

suffix array gives us, at each position i, an index into s, the suffix with rank i in s. What we 

want is a map in the other direction, so we can go from an index ii into s to the rank it 

has. That is, we want to know, for each index ii, where it is found in sa12.
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We can build such an inverse suffix array (ISA) like this:

    for (uint32_t i = 1, j = 0; j < m12; i += 3, j += 2) {

        ISA(SA12(j)) = i;

    }

    for (uint32_t i = 2, j = 1; j < m12; i += 3, j += 2) {

        ISA(SA12(j)) = i;

    }

    for (uint32_t i = 0, j = 0; j < m3; i += 3, j++) {

        ISA(SA3(j)) = i;

    }

where we use the first helper buffer to store the inverse suffix array this macro:

#define ISA(ii) (shared_buffers->helper_buffer0[(ii)])

To test if suffix ii is smaller than index jj, we can now use this macro:

#define CHECK_ISA(ii,jj) \

    (((jj) >= n) ? false : \

    ((ii) >= n) || ISA((ii)) < ISA((jj)))

It first handles cases where the indices look past the end of the string (they are 

special cases that can happen in the less() function below), and if the indices do not 

map out of the string, then it compares the two indices in the suffix array via the ISA() 

map.

The function below implements the “less than” we use when merging. Either the two 

suffixes differs on the first letter, in which case CHECK_INDEX() handles the comparison 

and returns from the less() function (remember that the macro has return statements 

when it can determine the order directly). Otherwise, we check ii + 1 vs. jj + 1. If ii 

% 3 == 1, then we can check directly with ii + 1 (which must be two modulo tree) and 

jj + 1 (which must be one modulo three as it comes from sa3). Otherwise, we check 

index ii + 1 and jj + 1 and then check the inverse suffix array for ii + 2 and jj + 2. 

If we do this, we must be in the case where ii % 3 == 2, so ii + 2 % 3 = 1, and jj + 1 

% 3 = 2, and they are both in sa12. See Figure 4-4.

inline static bool less(

    uint32_t ii, uint32_t jj,

    uint32_t *s, uint32_t n,

Chapter 4  Suffix arrays



163

    struct skew_buffers *shared_buffers

) {

    CHECK_INDEX(ii, jj);

    if (ii % 3 == 1) {

        return CHECK_ISA(ii + 1, jj + 1);

    } else {

        CHECK_INDEX(ii + 1, jj + 1);

        return CHECK_ISA(ii + 2, jj + 2);

    }

}

// Just for readability in the merge

#define LESS(i,j) less((i), (j), s, n, shared_buffers)

In the function for merging the suffix arrays, we first construct the inverse suffix 

array—the code for that should be self-evident—and then we move through the two 

arrays, get the indices from the suffix arrays, and test which is smaller of the two.

static void merge_suffix_arrays(

    uint32_t *s, uint32_t m12, uint32_t m3,

    uint32_t *sa, struct skew_buffers *shared_buffers

) {

    uint32_t i = 0, j = 0, k = 0;

    uint32_t n = m12 + m3;

    // We are essentially building sa[i] (although

    // not sorting between 12 and 3) and then doing

    // isa[sa[i]] = i. Just both at the same time.

    for (uint32_t h = 1, j = 0; j < m12; h += 3, j += 2) {

        ISA(SA12(j)) = h;

    }

    for (uint32_t h = 2, j = 1; j < m12; h += 3, j += 2) {

        ISA(SA12(j)) = h;

    }

    for (uint32_t h = 0, j = 0; j < m3; h += 3, j++) {

        ISA(SA3(j)) = h;

    }
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    while (i < m12 && j < m3) {

        uint32_t ii = SA12(i);

        uint32_t jj = SA3(j);

        if (LESS(ii,jj)) {

            sa[k++] = ii;

            i++;

        } else {

            sa[k++] = jj;

            j++;

        }

    }

    for (; i < m12; ++i) {

        sa[k++] = SA12(i);

    }

    for (; j < m3; ++j) {

        sa[k++] = SA3(j);

    }

}

�Construction function

We want a function that can work with the same strings as we use in the previous 

chapters, that is, we want our strings to have type uint8_t *. In the recursive algorithm, 

we had to use integers. So we need to wrap the algorithm in a function that translates a 

uint8_t * string, x, into an integer string, s, and then calls the algorithm. This function 

is also perfect to allocate the buffers we need and deallocate them after we have 

constructed the suffix array. There isn’t much else to say about it; it looks like this:

static void skew(

    const uint8_t *x,

    uint32_t *sa

) {

    uint32_t n = (uint32_t)strlen((char *)x);

    // Trivial special cases

    if (n == 0) {

        sa[0] = 0;

        return;

Chapter 4  Suffix arrays



165

    } else if (n == 1) {

        sa[0] = 1;

        sa[1] = 0;

        return;

    }

    // During the algorithm we can have letters larger than

    // those in the input, so we map the string to one

    // over a larger alphabet. We assume that we can hold

    // the largest letter in uint32_t so we do not need to

    // handle integers of arbitrary sizes.

    // We are not including the termination sentinel

    // in this algorithm but we explicitly set it

    // at index zero in sa. We reserve

    // the sentinel for center points in u strings.

    uint32_t *s = malloc(n * sizeof(uint32_t));

    for (uint32_t i = 0; i < n; ++i) {

        s[i] = (unsigned char)x[i];

    }

    uint32_t m3 = (n - 1) / 3 + 1;

    uint32_t m12 = n - m3;

    struct skew_buffers shared_buffers;

    shared_buffers.sa12 =

        malloc(m12 * sizeof(uint32_t));

    shared_buffers.sa3 =

        malloc(m3 * sizeof(uint32_t));

    shared_buffers.current_u = 0;

    shared_buffers.u =

        malloc(3 * (m12 + 1) * sizeof(uint32_t));

    shared_buffers.sau =

        malloc(3 * (m12 + 1) * sizeof(uint32_t));

    shared_buffers.helper_buffer0 =

        malloc(2 * m12 * sizeof(uint32_t));
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    shared_buffers.helper_buffer1 =

        shared_buffers.helper_buffer0 + m12;

    // We never use helper_buffer0 between

    // creating and using the

    // lexicographical mapping buffer. So we

    // use the same buffer for both.

    shared_buffers.lex_remapped =

        shared_buffers.helper_buffer0;

    // Do not include index zero.

    skew_rec(s, n, 256, sa + 1, &shared_buffers);

    // but set it to the sentinel here

    sa[0] = n;

    free(shared_buffers.sa12);

    free(shared_buffers.sa3);

    free(shared_buffers.u);

    free(shared_buffers.sau);

    free(shared_buffers.helper_buffer0);

    free(s);

}

struct suffix_array *

skew_sa_construction(

    uint8_t *x

) {

    struct suffix_array *sa = allocate_sa(x);

    skew(x, sa->array);

    return sa;

}

The divide-and-conquer algorithm uses linear time in each recursive call, and since 

we reduce the input size to two-thirds in each recursion, which is a geometric sum that 

is bounded by a constant, we have a linear-time algorithm. The faster we get unique 

letters when we create the alphabet for u, the faster the algorithm will be in practice. The 

worst-case scenario is a string consisting of only one letter. There, we will have a single 

lexicographical number (except for cases at the end of the string), so we recurse maximally.
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If we add up the space we allocate in all the buffers, we see that we use 6.4 words 

per character in the input string. I will leave the counting to the reader. This is close to 

the memory we use for the nodes in a suffix tree, but a suffix tree can have up to 2n − 1 

nodes, where n is the length of the string, so the suffix array algorithm here still uses less 

memory than if we constructed a suffix tree.

�The SA-IS algorithm
The SA-IS (sampling-induced sorting) algorithm by Nong, Zhang, and Chan is another 

divide-and-conquer algorithm. It is similar to the skew algorithm in the sense that 

it sorts some strings recursively and then induces the sorting of all strings based on 

those sorted suffixes. It differs in how it chooses the suffixes to sort recursively and 

how it combines the sorted sequences with the remaining suffixes. There are more 

definitions and concepts needed to understand the algorithm, but once those are there, 

the algorithm turns out to be both simpler to understand and to implement than the 

skew algorithm. Further, there is less overhead in the operations we need to do, so the 

algorithm is also faster. It is one of the fastest linear-time construction algorithms known.

You can get the full implementation from https://github.com/mailund/stralg/

blob/master/stralg/sa_is.c.

The overall idea in the algorithm is to identify particular substrings in the input and 

replace them with numbers to create a shorter string, compute the suffix array from this 

string, and then induce the suffix array for the initial string from it.

For each index in our input string, we assign it a class, S or L, depending on whether 

the suffix starting at that index is smaller or larger than the suffix starting at the next 

index. That is, index i is class S if x[i, n] < x[i + 1, n], that is, suffix i is lexicographically 

smaller than suffix i+1. An index is class L if x[i, n] > x[i + 1, n], that is, suffix i is greater 

than i+1. No two suffixes are the same, so they cannot be equal. A special case is the last 

character, the sentinel. We define it to have class S.

For example, the string mississippi$ has the classes:

mississippi$

LSLLSLLSLLLS

We can compute the classes in linear time with a sweep from right to left. When we 

compare suffixes x[i, n] and x[i + 1, n], we can immediately see the class if x[i] ≠ x[i + 1] 

but if x[i] = x[i + 1], so they start with the same character; then it turns out that they 
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must have the same class. The sentinel is a special case, we define it to be class S, and it 

doesn’t share a first character with any other suffix.

So consider suffix i where x[i] = x[i + 1]. Since they start with the same letter, let’s call 

it a, they must both start with a run of that character (of length at least one since both 

strings start with a). That run of as is one longer for x[i, n] than for x[i + 1, n]. Let k be the 

length of the run of as for x[i + 1, n]. After the first a in x[i, n], the suffix has the run of k 

as that it shares with x[i + 1, n]. After that run of as, they must have a different letter, b, 

and after that they share a string, y, that is whatever goes after the b and to the end of the 

suffixes. If y is empty, then b is the sentinel. There will always be a character after the run 

of as (remember that we handle the sentinel as a special case).

We can write the form of the suffixes like this: x[i, n] = ak+1by, x[i + 1, n] = ak by and 

x[i + 2, n] = ak−1by (where the run of as for suffix i + 2 can be empty and it can start with 

the letter b); see Figure 4-7. The first difference we see when we compare suffix i + 1 

with suffix i + 2, or when we compare suffix i with suffix i + 1, is the a against the b, and 

it is this comparison that determines which suffix is the smallest. If a < b, suffix i + 1 

will be smaller than suffix i + 2, so class S, and since the comparison between i and 

i + 1 also ends with a < b, suffix i must be smaller than suffix i + 1, so suffix i is also class 

S. Symmetrically, if a > b, then suffix i + 1 has class L and so does suffix i. Whenever two 

consecutive suffixes start with the same character, they have the same class.

Let t be a vector that gives us the class of an index, that is, t[i] is S if index i has class S 

and L if i has class L.

We define a leftmost S (LMS) index as an index of class S where the class to the left 

of it is class L, that is, i is an LMS t(i) = S and t(i − 1) = L. We cannot look to the left of the 

first index in the string, but we define it not to be an LMS. The LMSs for mississippi$ 

are shown below the classes here:

Figure 4-7.  Classifying strings into S and L (see the text for details)
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mississippi$

LSLLSLLSLLLS

 *  *  *   *

If we can somehow sort the suffixes that start at LMS indices, then we can sort all the 

other suffixes. This is the induced sorting that gives us the final result. We recursively sort 

the LMS prefixes and then the rest using the sorted LMS strings.

The way we sort the strings can look a little complicated, but once you implement 

it, it will be three simple steps. Before the steps, though, we need to split the suffix array 

into bins based on the first character. It is a simple run through the string where we 

count how many occurrences we see of each character. We can get the beginning of 

the bins using an accumulative sum from left to right and the end of the bins using an 

accumulative sum from right to left. It is not unlike what we did in the skew algorithm 

except we are not using a radix sort but a bucketing.

We can split each bin into two parts: the first part will contain the L suffixes that go 

into the bin and the second part the S suffixes. We can do this because an L suffix x[i, n] 

in the same bin as an S suffix, x[ j, n], will be lexicographically smaller than the S suffix, 

x[i, n] < x[ j, n].

To see this, consider their form. Since they are in the same bin, they start with the 

same letter. Let us call it a. So, a prefix of the strings must be some nonzero length run 

of a; let us say that suffix i starts with k as and suffix j with l as. After that, there is a 

character that is not a; call it b for suffix i and c for suffix j. We will call the remaining 

string for suffix i y and the remaining string for suffix j z. In other words, the suffixes 

have the form x[i, n] = akby and x[ j, n] = alcz. Because they have this form, and because 

the runs of as are nonempty, the suffixes that follow them, i + 1 and j + 1, have the form 

x[i + 1, n] = ak−1by and x[ j + 1, n] = al−1cz (where the runs of as can be empty). It means 

that when we compare suffix i with suffix i + 1, the first difference we see is when we 

compare a in suffix i with b in suffix i + 1, and it is this comparison that determines 

which of the two strings is the larger. Because x[i, n] has class L, a must be larger than b. 

Otherwise, it would be smaller than x[i + 1, n]; see Figure 4-8. Similarly, we can analyze 

suffix j. When we compare suffix j with j + 1, the first difference we see is when we 

compare a with c. When j is of class S, a must be smaller than c.
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Now compare x[i, n] and x[ j, n] and consider the three cases l > k, l = k, and l < k; see 

Figure 4-9. If l > k, then when we compare the two strings, we must match a b from x[i, n] 

against an a from x[ j, n], and because a > b, we must have x[i, n] < x[ j, n]. When l = k, we 

compare b against c and we know that b < a and c > a so again we have x[i, n] < x[ j, n]. 

Thirdly, if l < k we match an a from x[i, n] against a c from x[ j, n], and since c > a we have 

x[i, n] < x[ j, n]. In short, within a bucket, the L strings come before the S strings.

The structure of a bucket is as shown in Figure 4-10. We have the L strings on the left 

and the S strings on the right. If we have a pointer to the left of the bucket, we can insert L 

strings from that side by inserting them at the current pointer and increment it after each 

Figure 4-8.  The structure of L and S strings

Figure 4-9.  L strings goes before S strings within buckets
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insertion. Likewise, we can insert S strings at the right by inserting them at the pointer 

and decrementing the pointer.

If we have the ordered LMS suffixes, we can sort all the suffixes in three simple steps:

	 1.	 First, we go through the LMS suffixes from the end to the 

beginning, that is, in reverse order, and insert them at the end 

of their buckets. They are S strings, so they belong after L strings 

within their buckets. Putting them at the end doesn’t mean we are 

putting them at the right position, LMS strings are not necessarily 

larger than other S strings in their buckets and don’t all belong at 

the end of the bucket, but for now, we only need to have them in 

our suffix array in the right order, not the right positions, and we 

do that this way.

	 2.	 Now we are going to put all the L strings in the array in their 

correct position. Unlike the LMS strings, they will not only end up 

in the right order, but also in the right position. If we insert all the 

L strings in the L part of the bucket, and in the right order, they 

must also end up at their final position. What we will do is a scan 

from left to right in the bucket array, and when we see a string 

x[i + 1, n] where x[i, n] (the string before it) is an L string, we add 

x[i, n] to its bucket. In our scan, we will see all such strings. We 

have the LMS strings so we will see L strings followed by an S, and 

as we insert L strings, we will always insert x[i + 1, n] before we 

get to and need to insert x[i, n]. Because all L x[i, n] strings must 

appear to the right of the suffix that follows them, x[i + 1, n]—this 

follows directly from the definition of the L class—we will always 

Figure 4-10.  Bucket structure
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have seen x[i + 1, n] before x[i, n] as we scan from left to right. So 

when we get to the point where we need to handle x[i, n], we have 

already inserted it into the array. That we will insert the strings 

in the right order is something we can prove by induction. We 

start with the LMS strings in the right order, so the first string we 

insert must be at the correct position. So assume we have inserted 

k strings in the right order and consider k + 1. If that string is 

inserted incorrectly, then we have inserted x[i, n] in a bin where 

there is a larger x[ j, n] already. But then consider x[i + 1, n] and  

x[ j + 1, n]—it is when we process these that we insert x[i, n] and  

x[ j, n]. If x[ j + 1, n] is already in the bin, we must have seen  

x[ j, n] before we now see x[i, n]. That cannot be right if the first k 

first strings were inserted correctly; we have a contradiction, so it 

must be true that we insert the strings in the right order. The base 

setup of the step is the LMS strings that ensures that the first set 

of strings are in the right order and kicks the induction off. The 

LMS strings are not in the right position, but this step doesn’t 

need them to be. It only needs the order they appear in when we 

scan through the suffix array, and that order is correct. If they are 

in the right order, then we insert the suffixes before them in the 

right order into their respective buckets. The scan from left to 

right guarantees that all the other L strings are also added to the 

buckets in the right order.

	 3.	 As the final step, we place all the S strings based on the L strings 

we just inserted. Here, we scan from right to left, and each time 

we see suffix x[i + 1, n] where x[i, n] has class S, we insert x[i, n] 

in its bucket. We can argue that this sorts them correctly similar 

to the earlier step. An S suffix will always appear to the left of 

the suffix that follows it in the suffix array. It follows from the 

definition of S that it must be to the left. So when we get to suffix 

x[i, n] in our scan, it is already inserted; we did so when we saw 

x[i + 1, n] that is to the right of it. We have the L strings, so we will 

see S strings before L strings in the right order (the reverse order 

but this is the order we add them to the bucket, so that is what we 

want). S strings that are followed by S strings x[i, n] must be to the 
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left of x[i + 1, n]—again by definition of S—and we have seen those 

strings before we get there. All in all, if the L strings are sorted, 

this scan will sort the S strings. Important to notice with this step 

is that we do not add strings to the end of the bucket pointers 

before the position where we have placed the LMS strings. We 

start back at the original end of the buckets. The LMS strings are 

not correctly placed in the first phase (it is only their order that is 

correct), but we place them correctly now.

If we start with knowing the order of the LMS suffixes, then these three steps give 

us the suffix array. The problematic step, of course, is getting the LMS suffixes sorted. 

Directly sorting them would take O(n2). We solve it recursively, but first, we need to 

create a reduced string.

We define LMS substrings as the strings that go from one LMS index to the next. The 

LMS substrings for mississippi$ are issi, issi, and ippi$.

mississippi$

LSLLSLLSLLLS

 *  *  *   *

 |--|  |---|

    |--|

We will construct a new string that consists of the LMS substrings but where each 

substring is replaced by a number. That number should be the position the string has in 

a sorted list of LMS substrings—not unlike the LEX3 alphabet we constructed in the skew 

algorithm. The unique LMS substrings for mississippi$ are issi and ippi$ with ippi$ 

< issi. Their lexicographical letters are therefore ippi$ = 1 and issi = 2. The orders of 

the LMS substrings in mississippi$ are issi, issi, and ippi$, so the reduced string for 

mississippi$ is 221$. This is the string we sort recursively.

Sorting the reduced string is only useful if the sorted suffixes there give us the order 

of the LMS suffixes. Not surprisingly, they do.

Let x be the original string and x' the reduced string. Let p be an array of pointers 

from the indices in x' to the start of the LMS substrings the characters in x' were taken 

from; see Figure 4-11. The indices in x' correspond to LMS substrings; the symbol at 

x'[i] corresponds to the string x[p[i], p[i + 1] + 1]. Because of the way we defined equality 

between LMS substrings, if x'[i] = x'[ j], then the LMS strings that start at p[i] and p[ j] 
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have the same length, the same characters, and the same classes. Similarly, if x'[i] < x'[ j], 

then the LMS substring at p[i] is smaller than the string at p[ j].

What we need to be able to use the reduced string to give us the sorted LMS suffixes is 

that the order of suffixes is preserved, that is, that if x'[i, n] < x'[ j, n], then x[p[i], n] < x[p[ j], n]. 

If xʹ[i] < x'[ j], then the characters or classes in the LMS strings at p[i] and p[ j] differ, and the 

order directly gives us that the suffix at p[i] is less than the one at p[ j]. If x'[i] = x'[ j], then the 

order of the suffixes is determined by x'[i + 1, n] and x'[j + 1, n], and we try comparing these, 

which we might, again, do from the first character. If not, we continue with the next suffixes, 

i + 2 and j + 2, and we continue until we have characters or classes that differ. The order is 

preserved, so if we sort the suffixes of xʹ, we can get the order of the LMS suffixes from the 

suffix array of xʹ and the pointer to the original indices.

Figure 4-11.  Reduced string and the pointers to the original string
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So where we stand now is that if we can reduce our string, then we can recursively 

sort it, this gives us the order of the LMS suffixes, and from those, we can compute the 

original suffix array by three scans through the suffix array, one right to left, then one left 

to right, and then one right to left.

Reducing the string isn’t hard either if we know the numbers for each LMS substring. 

Then it is just a scan through the string. Each number is unique, so we can put each 

string in its bucket. The tricky part is getting these numbers since they require sorting the 

LMS strings and scanning through them to give them names.

We can do the sorting using the exact three phases we used to induce the full suffix 

array from the ordered LMS suffixes. This time, we do not have the sorted LMS suffixes 

but put them at the end of their bins in any order. After inserting the LMS strings, we use 

steps 2 and 3 from the algorithm earlier to sort the L and S suffixes, respectively. We then 

end up with an array where the LMS substrings (but not suffixes) are in the correct order.

To see this, we define a set of strings, “LMS prefixes,” where we include all single 

characters found at LMS indices, and then for each index i, we let pre(i) be the string 

from i down to the first LMS index to the right of i (that means, if i is an LMS index, then 

pre(i) is the entire LMS substring that starts at index i). We can show that by the three 

scans, we will sort the strings with respect to the prefixes longer than one.

When we insert strings in phase 1 of the sorting, we can think of it as sorting 

the length-one prefixes. The strings are put in bins for their initial character, so by 

inserting them thusly, we have sorted the length-one prefixes. In phase 2, we sort all 

the L prefixes. We can show this inductively by assuming we have inserted the first k 

correctly (and when we start, we will have the base case covered from phase 1). When 

we insert the (k + 1) ’s, pre(i), we can assume that there is already a larger string in its 

bin, pre( j). But that means that pre( j + 1) appeared before pre(i + 1) when we scanned 

from left to right, and that is a contradiction. So we insert the L prefixes in the right 

order, and since we insert all L prefixes, we must have sorted them with respect to 

the prefix order. When we scan through the S prefixes, the argument is the same. We 

overwrite the length-one strings because we fill the buckets from the back, where we 

put those strings, but all prefixes of length more than one will be sorted. The proof is 

entirely symmetric to the case for the L strings.

Since all the LMS strings are LMS prefixes (of length larger than one), the strings 

we have sorted in the preceding three phases must give us the right order for the LMS 

strings.
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Summing the algorithm up: we can construct a reduced string by sorting the LMS 

strings and number them lexicographically. If this string doesn’t have any duplicated 

characters, we can immediately sort it (similar to how we terminate the recursion in the 

skew algorithm). Otherwise, we sort it recursively. Once sorted, we construct the suffix 

array from it.

The scans before and after the recursive calls clearly take linear time. When we name 

the LMS strings, we need to iterate through them—this takes linear time—and compare 

contiguous strings. That comparison could potentially take linear time, but the total 

length of strings we compare cannot be more than linear. Each string is compared twice, 

to the string before and the string after, and the strings only overlap in a single character. 

So the running time, if we ignore the recursive call, is O(n).

By construction of the LMS strings, we cannot have more than half as many 

characters as the full string (there is an L before each of the LMS indices that isn’t an 

LMS index). Therefore, the reduced string is no longer than half the original string. If we 

let T (n) be the running time for the algorithm with input length n, we have the recursive 

equation T (n) = O(n) + T (n/2) for the running time. If we expand this equation, we get 

n(1 + 1/2 + 1/4 + · · · ).

The sum 
i

i

=

¥

å =
0

1 2 2/ , so the total running time is linear, O(n).

�Remapping
An essential part of the algorithm assumes that if we have a string with the same length 

as our alphabet size, then all letters are unique and can be mapped into bins numbered 

by their letter. This is not the case with natural language text. Many texts don’t use 

the full character set, but the length of a string can be equal to the alphabet size. For 

example, assume that we have a character set with 8 bits, this could be latin-1 (ISO/

IEC 8859-1). There, you have 256 characters, but few of them appear in any given text. If 

you have a text of length 256, chances are high that it doesn’t contain all the characters, 

but instead have some characters appearing more than once. The assumptions about 

the alphabet and string length are guaranteed with all the strings constructed in the 

algorithm, but we must also ensure it with the initial string. So, we want to map our 

alphabet into indices 0, 1, …, k where k is the number of unique characters found in the 
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string (and we will use 0 for the sentinel as always). We use a table that maps characters 

and defines it like this:

struct remap_table {

    uint32_t alphabet_size;

    // I map from unsigned to signed for the table.

    // I do this to have a way of identifying letters

    // that were not found when building the map.

    // You cannot use this remapping if you have more than

    // 128 letters, if you do, use a larger table.

    signed char table[256];

    signed char rev_table[128];

};

We can use the table to map an original string to the reduced alphabet and back 

again.

We can build the table by scanning through the string and put a new index into the 

table each time we see a new character. If we do this, we will not necessarily preserve 

the lexicographical order of suffixes (the lexicographical order will depend on at which 

position we see a character rather than the order in the input). So instead, we can first 

collect the characters in the string and then assign indices to them in the sorting order 

the characters should have.

void build_remap_table(

    struct remap_table *table,

    const uint8_t *string

) {

    const uint8_t *x;

    // Collect existing characters.

    for (x = string; *x; x++) {

        if (table->table[*x] == -1) {

            table->alphabet_size++;

            table->table[*x] = 1;

        }

    }
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    // Now give the alphabet indices numbers in an

    // order that matches the input.

    for (int i = 0, char_no = 0; i < 256; i++) {

        if (table->table[i] != -1) {

            table->table[i] = char_no;

            table->rev_table[char_no] = i;

            char_no++;

        }

    }

}

void init_remap_table(

    struct remap_table *table,

    const uint8_t *string

) {

    table->alphabet_size = 1; // We always have zero.

    // Set table entries to -1. This indicates a letter

    // that we haven't seen.

    memset(table->table,     -1, sizeof(table->table));

    memset(table->rev_table, -1, sizeof(table->rev_table));

    // Sentinel is always the sentinel.

    table->table[0] = 0;

    table->rev_table[0] = 0;

    build_remap_table(table, string);

}

void dealloc_remap_table(

    struct remap_table *table

) {

    // We haven't allocated any resources.

}

void free_remap_table(

    struct remap_table *table

) {

    free(table);

}
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Whenever you want to map a string s into a string rs, you can use this code:

    init_remap_table(&remap_table, s);

    rs = malloc(size + 1);

    remap(rs, s, &remap_table);

where the remap() function could look like this:

void remap(

    uint8_t *output,

    const uint8_t *input,

    struct remap_table *table

) {

    // Since we map up to length + 1, we automatically

    // get a zero sentinel (the last character we copy from

    // input.

    const uint8_t *from = input;

    const uint8_t *to = input + strlen((char *)input) + 1;

    uint8_t *x = output;

    const uint8_t *y = from;

    for (; y != to; ++y, ++x) {

        *x = table->table[*y];

    }

}

We will assume that the input string to the algorithm is remapped this way.

A consequence of remapping the string we build the suffix array over is that you must 

also remap patterns you search for. If the two strings are in different alphabets, you will 

not find the patterns you are looking for.

�Implementing the algorithm
We will need a bit per position class and we will need a value to indicate that an entry in 

an array is undefined. For this, we define these:

#define S true

#define L false

#define UNDEFINED ~0
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For UNDEFINED I am using the largest number in our index type. It is unlikely that we 

will ever have exactly the same length as what we can index into, so this value should be 

free to use.

For classifying the position, we use a bool array, scan from right to left, and exploit 

the observation from earlier that when we cannot directly see which class an index 

has from comparing the character there and the next character, then we have the same 

character and then the class is the same as the index to the right. There is a special 

case when the string is empty. Then we cannot look at the character to the left of it. 

Otherwise, the function is simple:

static void classify_SL(

    const uint32_t *x,

    bool *s_index,

    uint32_t n

) {

    s_index[n] = S;

    if (n == 0) // empty string

        return;

    s_index[n - 1] = L;

    for (uint32_t i = n; i > 0; --i) {

        if (x[i - 1] > x[i]) {

            s_index[i - 1] = L;

        } else if (x[i - 1] == x[i] && s_index[i] == L) {

            s_index[i - 1] = L;

        } else {

            // either x[i - 1] < x[i] or

            // x[i - 1] == x[i] && s_index[i] == S

            s_index[i - 1] = S;

        }

    }

We will use a function for checking if an index is LMS. This function is equally 

simple. We have a special case with the leftmost index, where we cannot check the index 

to the left of it, but we handle this case explicitly and return that the index is L.
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static bool is_LMS_index(

    bool *s_index,

    uint32_t n,

    uint32_t i

) {

    if (i == 0) return false;

    else return s_index[i] == S && s_index[i - 1] == L;

}

A large part of the algorithm involves putting suffixes in buckets determined by 

their first character. We can compute the bucket sizes by checking each character and 

incrementing a counter in the relevant bucket.

static void compute_buckets(

    uint32_t *x,

    uint32_t n,

    uint32_t alphabet_size,

    uint32_t *buckets

) {

    memset(buckets, 0, alphabet_size * sizeof(uint32_t));

    for (uint32_t i = 0; i < n + 1; ++i) {

        buckets[x[i]]++;

    }

}

Parameter x holds the string, n its length, alphabet_size—not surprisingly the 

number of letters in the alphabet—and buckets the array of bucket sizes.

We want to know the beginning or end index of each bucket, depending on which 

class we insert, and we can get those as an accumulative sum through the buckets.

static void find_buckets_beginnings(

    uint32_t *x,

    uint32_t n,

    uint32_t alphabet_size,

    uint32_t *buckets,

    uint32_t *beginnings

) {
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    beginnings[0] = 0;

    for (uint32_t i = 1; i < alphabet_size; ++i) {

        beginnings[i] = beginnings[i - 1] + buckets[i - 1];

    }

}

static void find_buckets_ends(

    uint32_t *x,

    uint32_t n,

    uint32_t alphabet_size,

    uint32_t *buckets,

    uint32_t *ends

) {

    ends[0] = buckets[0];

    for (uint32_t i = 1; i < alphabet_size; ++i) {

        ends[i] = ends[i - 1] + buckets[i];

    }

}

The function for placing the LMS strings at first, at positions that might be incorrect 

but at least in their right buckets, looks like this:

void place_LMS(

    uint32_t *x,

    uint32_t n,

    uint32_t alphabet_size,

    uint32_t *SA,

    bool *s_index,

    uint32_t *buckets,

    uint32_t *bucket_ends

) {

    find_buckets_ends(x, n, alphabet_size, buckets, bucket_ends);

    for (uint32_t i = 0; i < n + 1; ++i) {

        if (is_LMS_index(s_index, n, i)) {

            SA[--(bucket_ends[x[i]])] = i;

        }

    }

}
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In the expression SA[--(bucket_ends[x[i]])], we decrement the index of bucket 

x[i] before we insert index i in it. The bucket_ends array holds the indices after the 

buckets (or after the current bucket). This is for consistency with other subsequences in C 

where the first pointer is where values start, and the last pointer is one past the last value.

After inserting the LMS strings, we need to induce the L strings. Here, we scan from 

left to right, and where we see a string, that is, SA[i] is not undefined, we check if the 

index left of it has class L in which case we insert it at the beginning of its bucket. We 

increment the bucket pointer after we insert the index. The start pointers point at the 

first element and not one before.

static void induce_L(

    uint32_t *x,

    uint32_t n,

    uint32_t alphabet_size,

    uint32_t *SA,

    bool *s_index,

    uint32_t *buckets,

    uint32_t *bucket_starts

) {

    find_buckets_beginnings(x, n, alphabet_size, buckets, bucket_starts);

    for (uint32_t i = 0; i < n + 1; ++i) {

        // Not initialized yet.

        if (SA[i] == UNDEFINED) continue;

        // If SA[i] is zero, then we do not have

        // a suffix to the left of it.

        if (SA[i] == 0) continue;

        uint32_t j = SA[i] - 1;

        if (s_index[j] == L) {

            SA[(bucket_starts[x[j]])++] = j;

        }

    }

}
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Inducing the S strings works similarly. In this case, we scan from right to left, and 

there is no need to check if elements are undefined. They will not be because the L 

classes are inserted, and because we scan from right to left, we have inserted S class 

strings before we get to them.

static void induce_S(

    uint32_t *x,

    uint32_t n,

    uint32_t alphabet_size,

    uint32_t *SA,

    bool *s_index,

    uint32_t *buckets,

    uint32_t *bucket_ends

) {

    find_buckets_ends(x, n, alphabet_size,

                      buckets, bucket_ends);

    for (uint32_t i = n + 1; i > 0; --i) {

        // We do not have a string to the left of the first.

        if (SA[i - 1] == 0) continue;

        uint32_t j = SA[i - 1] - 1;

        if (s_index[j] == S) {

            SA[--(bucket_ends[x[j]])] = j;

        }

    }

}

When we build the updated alphabet from LMS strings, we need to know if the two 

are equal. For this, we need to scan the two strings until we reach an LMS index. If we 

reach one in one string before the other, they are not the same, but if they reach one at 

the same point, and we have seen no mismatches along the way, they are. Mismatches, 

here, mean that characters or class differs. If we see that, we return false.

static bool equal_LMS(

    uint32_t *x,

    uint32_t n,

    bool *s_index,
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    uint32_t i,

    uint32_t j

) {

    // The sentinel string is unique.

    if (i == n + 1 || j == n + 1) return false;

    uint32_t k = 0;

    while (true) {

        bool i_LMS = is_LMS_index(s_index, n, i + k);

        bool j_LMS = is_LMS_index(s_index, n, j + k);

        if (k > 0 && i_LMS && j_LMS) {

            // We reached the end of the strings.

            return true;

        }

        // If one string ends before another or we

        // have different characters, the strings are

        // different.

        if (i_LMS != j_LMS

            || x[i + k] != x[j + k]

           ) {

            return false;

        }

        k++;

    }

    return true;

}

It is the code that reduces a string where the real magic happens. In the function, 

we run through the strings in the order given by the input suffix array. In this array, the 

LMS strings are ordered, so every time we see one of these, we check if it is identical to 

the LMS string we saw before it, in which case it should have the same name, or if it is 

different, in which case it should have a name that is one larger. We store the names in 

a buffer where they will appear in the same order as they do in the string. We use this 

buffer to create the reduced string; it contains the names we have given the LMS strings 

in the same order as they appear in the input. Once we have the names buffer, we scan 

through it and construct the reduced string. The reduced string should be the LMS 

names in the order they appear in the input string, and that is exactly what we have in 
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the names buffer if we skip the undefined entries. We also collect the offsets at which the 

LMS strings appear. We need them later for mapping the string in the other direction.

static void reduce_SA(

    uint32_t *x,

    uint32_t n,

    uint32_t *SA,

    uint32_t *names_buf,

    bool *s_index,

    uint32_t *new_alphabet_size,

    uint32_t *summary_string,

    uint32_t *summary_offsets,

    uint32_t *new_string_length

) {

    memset(names_buf, UNDEFINED,

           (n + 1) * sizeof(uint32_t));

    // Start names at one so we save zero for sentinel.

    uint32_t name = 0;

    names_buf[SA[0]] = name;

    uint32_t last_suffix = SA[0];

    for (uint32_t i = 1; i < n + 1; i++) {

        uint32_t j = SA[i];

        if (!is_LMS_index(s_index, n, j)) continue;

        if (!equal_LMS(x, n, s_index, last_suffix, j)) {

            name++;

        }

        last_suffix = j;

        names_buf[j] = name;

    }

    // One larger than the largest name used.

    *new_alphabet_size = name + 1;

    uint32_t j = 0;

    for (uint32_t i = 0; i < n + 1; i++) {

        name = names_buf[i];
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        if (name == UNDEFINED) continue;

        summary_offsets[j] = i;

        summary_string[j] = name;

        j++;

    }

    // We don't include sentinel in the length.

    *new_string_length = j - 1;

}

The next function is long, but there is very little complicated in it. It is the main 

sorting function. First, we classify the indices and compute buckets. After that, we 

place LMS strings and induce the indices. Then, we build the reduced string and sort 

it recursively (we haven’t seen sort_SA() yet, but we will shortly). Once we have the 

array for the reduced string, we use it to place the LMS strings again, but this time in the 

correct order (see later where we define the function remap_LMS()), and then we induce 

the remaining indices before we return.

static void recursive_sorting(

    uint32_t *x,

    uint32_t n,

    uint32_t *SA,

    uint32_t *names_buf,

    bool * s_index,

    uint32_t *buckets,

    uint32_t *bucket_endpoints,

    uint32_t *reduced_string,

    uint32_t *reduced_offsets,

    uint32_t alphabet_size

) {

    classify_SL(x, s_index, n);

    compute_buckets(x, n, alphabet_size, buckets);

    memset(SA, UNDEFINED, (n + 1) * sizeof(uint32_t));

    place_LMS(x, n, alphabet_size, SA, s_index,

              buckets, bucket_endpoints);

    induce_L(x, n, alphabet_size, SA, s_index,

             buckets, bucket_endpoints);
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    induce_S(x, n, alphabet_size, SA, s_index,

             buckets, bucket_endpoints);

    uint32_t new_alphabet_size;

    uint32_t new_string_length;

    reduce_SA(x, n, SA,

              names_buf,

              s_index,

              &new_alphabet_size,

              reduced_string,

              reduced_offsets,

              &new_string_length);

    // Move to next position in the buffers.

    uint32_t *new_SA = SA + n + 1;

    uint32_t *new_names_buf = names_buf + n + 1;

    bool *new_s_index = s_index + n + 1;

    uint32_t *new_summary_string =

                reduced_string + n + 1;

    uint32_t *new_summary_offsets =

                reduced_offsets + n + 1;

    uint32_t *new_buckets =

                buckets + alphabet_size;

    uint32_t *new_bucket_endpoints =

                bucket_endpoints + alphabet_size;

    sort_SA(reduced_string, new_string_length,

            new_SA,

            new_names_buf,

            new_summary_string,

            new_summary_offsets,

            new_buckets,

            new_bucket_endpoints,

            new_s_index,

            new_alphabet_size);

    memset(SA, UNDEFINED, (n + 1) * sizeof(uint32_t));

    remap_LMS(x, n,
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              buckets, bucket_endpoints,

              alphabet_size,

              s_index,

              reduced_string,

              new_string_length, new_SA,

              reduced_offsets,

              SA);

    induce_L(x, n, alphabet_size, SA, s_index,

             buckets, bucket_endpoints);

    induce_S(x, n, alphabet_size, SA, s_index,

             buckets, bucket_endpoints);

}

In the recursive call, I do not allocate new strings or buffers. Similarly to the skew 

algorithm, I allocate all the buffers in the outermost function and update pointers into 

them when I recurse. Here, we are working with a string of length n, excluding the 

sentinel, that we shouldn’t override so we move the pointers n + 1 to the right before we 

call recursively.

The sort_SA() function decides if we can get the sorted suffix array directly. We can 

do this if the alphabet size matches the string length. When it does, all the LMS strings 

are unique, and their names give us the order they should appear in. So, we run through 

the string and bucket them at the index that matches their name. If we cannot construct 

the suffix array directly, we sort it recursively.

void sort_SA(

    uint32_t *x,

    uint32_t n,

    uint32_t *SA,

    uint32_t *names_buf,

    uint32_t *summary_string,

    uint32_t *summary_offsets,

    uint32_t *buckets,

    uint32_t *bucket_endpoints,

    bool *s_index,

    uint32_t alphabet_size

) {
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    if (n == 0) {

        // Trivially sorted.

        SA[0] = 0;

        return;

    }

    // Mapping each letter into its bin.

    // This code assumes that the letters

    // are numbers from zero (the sentinel)

    // up to the alphabet size.

    if (alphabet_size == n + 1) {

        SA[0] = n;

        for (uint32_t i = 0; i < n; ++i) {

            uint32_t j = x[i];

            SA[j] = i;

        }

    } else {

        recursive_sorting(

            x, n, SA,

            names_buf,

            s_index,

            buckets,

            bucket_endpoints,

            summary_string,

            summary_offsets,

            alphabet_size

        );

    }

}

Once done with sorting the reduced string, we need to put the LMS strings in the 

right order into the current suffix array. To do this, we run through the indices in the 

reduced string and get their position in the reduced suffix array—that gives us the order 

we should insert them in. The index we need to insert is not the index in the reduced 

suffix array but the offset in the original string, so we get that. We insert the indices at 

the end of their respective buckets, so they won’t be overwritten when we induce the L 

suffixes from them.
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void remap_LMS(

    uint32_t *x,

    uint32_t n,

    uint32_t *buckets,

    uint32_t *bucket_ends,

    uint32_t alphabet_size,

    bool *s_index,

    uint32_t *reduced_string,

    uint32_t reduced_length,

    uint32_t *reduced_SA,

    uint32_t *reduced_offsets,

    uint32_t *SA

) {

    find_buckets_ends(x, n, alphabet_size,

                      buckets, bucket_ends);

    for (uint32_t i = reduced_length + 1; i > 0; --i) {

        uint32_t idx = reduced_offsets[reduced_SA[i - 1]];

        uint32_t bucket_idx = x[idx];

        SA[--(bucket_ends[bucket_idx])] = idx;

    }

    SA[0] = n;

}

The main function maps the input string, of type uint8_t *, to an integer string, of 

type uint32_t *. Then it allocates all the buffers we use and call sort_SA(). When we 

are done with sorting the suffix array, we copy the first half of it—the part that is sorted at 

the first-level recursive call—into the suffix array buffer we want. Finally, we free all the 

buffers.

struct suffix_array *

sa_is_construction(

    uint8_t *remapped_string,

    uint32_t alphabet_size

) {

    struct suffix_array *sa = allocate_sa(remapped_string);

    // We work with the string length without the sentinel
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    // in this algorithm.

    uint32_t n = sa->length - 1;

    // Create string of integers instead of bytes.

    uint32_t *s = malloc((n + 1) * sizeof(uint32_t));

    for (uint32_t i = 0; i < n; ++i) {

        s[i] = remapped_string[i];

    }

    s[n] = 0;

    // Allocate all buffers.

    uint32_t *SA =

                malloc(2 * (n + 1) * sizeof(uint32_t));

    uint32_t *names_buf =

                malloc(2 * (n + 1) * sizeof(uint32_t));

    uint32_t *summary_string =

                malloc(2 * (n + 1) * sizeof(uint32_t));

    uint32_t *summary_offsets =

                malloc(2 * (n + 1) * sizeof(uint32_t));

    bool *s_index =

                malloc(2 * (n + 1) * sizeof(bool));

    uint32_t max_alphabet_size =

                (alphabet_size > n) ? alphabet_size : n + 1;

    uint32_t *buckets =

                malloc(2 * max_alphabet_size * sizeof(uint32_t));

    uint32_t *bucket_endpoints =

                malloc(2 * max_alphabet_size * sizeof(uint32_t));

    // Sort in buffer and then move the result to the suffix array.

    sort_SA(s, n, SA, names_buf,

            summary_string, summary_offsets,

            buckets, bucket_endpoints, s_index,

            alphabet_size);

    memcpy(sa->array, SA, (n + 1) * sizeof(uint32_t));

    // Free all buffers.

    free(bucket_endpoints);
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    free(buckets);

    free(s_index);

    free(summary_offsets);

    free(summary_string);

    free(SA);

    free(s);

    return sa;

}

We argued earlier that the algorithm runs in linear time, and we shall see at the end 

of the chapter that it is fast in practice, but what is the memory footprint? We can check 

the buffers we allocate in the outermost function and reuse in all the recursions. We have 

seven arrays where six of them take up 2n words (here that means integers), and then 

we have one bool array. If we assume that this takes up one byte, then we use 12n + n/2 

words—less than what we needed for McCreight’s algorithm but only barely so.

�Memory reduction
The algorithm, as we have implemented it, is very wasteful of memory. It is fast, as we 

shall see at the end of the chapter, but if the reason for using suffix array over suffix trees is 

the smaller memory footprint, then we cannot spend more space constructing the suffix 

array than we would constructing the suffix tree. We can, however, with some tricks, bring 

this down to 2n words (integers) and n bits for each character in the string. Of these words, 

half is used for the suffix array, so we only have a factor two overhead for constructing the 

array. It is possible to go down to just n bits on top of the resulting suffix array if we have a 

constant bound on the size of the alphabets, but we will not get that far here.

The tricks are not extremely difficult to understand, but they would certainly take 

the focus from the overall ideas in the algorithm—and the simplicity of it—so I explain 

them in this separate section. I only show the most important changes to the algorithm 

to reduce the memory—the parts I don’t show are the same as those I have already 

shown except that they work on a bit array instead of a byte array. You will not be able to 

compile the following code in the same file as the code earlier. I redefine some macros 

and several functions, and that will cause problems. Use a different file.  

My implementation is at https://github.com/mailund/stralg/blob/master/stralg/

sa_is_mem.c.
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There are two main tricks to it. First, we observe that when we call recursively, we use 

half the space on the suffix array and half the length of the original string on the reduced 

string. This means that we can pack the two into the same buffer and build the reduced 

suffix array in the first half of the input array and the reduced string in the other. We will 

use the suffix array buffer for this. This array has size n words (integers), and we cannot 

get rid of it in any way, because it is the output of the algorithm.

Second, we observe that we do not need to preserve any data from before a recursive 

call because we need it after the call. We can reconstruct the classes array and the 

buckets after the recursion. So, we can free the memory they use before the call and 

allocate it again when we are done with the call. If we free and reallocate, we only use 

the longest arrays possible in a recursion. For the classes, this is n bits. The longest array 

we have equals the length of the first string. After that, we have at most half the length in 

a recursion. For the buckets, the length in the first call is equal to the size of the original 

alphabet, which we assume is a constant. The alphabet in the next call can be half the 

size of the input string because that is the maximum number of LMS strings we can have, 

and all of those could be unique. So by allocating and deallocating buckets, we will use at 

most n/2 words on them. So, adding up, we use n words on the suffix array, n/2 words on 

the buckets, and n bits on the classes. Because we have a function that takes uint8_t * 

strings as input, and the algorithm works on integers, we also need to spend n words on 

the integer string. We end up with 2
1

2
n  words and n bits.

In the implementation we cannot get rid of the integer string, but from an 

algorithmic point of view, we can. If we consider the integer string the input and the SA 

string the output, and only analyze what extra memory the algorithm uses, then we have 

n/2 words (for the buckets) and n bits (for the classes). Compared to any of the other 

algorithms we have seen, this is by far the most memory efficient. With a probabilistic 

argument that I give at the end of this section, we can get rid of the n/2 words for the 

buckets, so the algorithm uses only n bits in total. It is extremely memory efficient.

The first thing we do is getting rid of the bool array and replacing it with a bit array. 

If you have worked with bit arrays before, you will not be surprised by how we do this. 

When we index into one, we divide the index by eight to get the correct byte, and inside 

the byte, we apply a mask that picks out the relevant bit. Getting a bit is simply that, 

except that we translate the bit we get to true and false. Otherwise, we cannot compare 

them to S and L values; we can interpret them as truth values, the L value will match 

zero, but the S value will not match bits that are not the lowest in the byte. So we must 
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convert bits to bools. Setting a bit is slightly more involved. We need to get the bit from 

the byte using a mask and then “OR” it with the existing bit to set it, or we must invert the 

bit and then “AND” that to the existing byte.

static uint8_t mask[] = {

    0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01

};

#define sget(i) ((s_idx[(i) / 8] & mask[(i) % 8]) \

                    ? true : false)

#define sset(i, b) (                          \

    s_idx[(i) / 8] =                          \

    (b) ? (mask[(i) % 8] | s_idx[(i) / 8])    \

        : ((~mask[(i) % 8]) & s_idx[(i) / 8]) \

The bit array macros assume that we have the byte array in a variable called s_idx. 

To use the array, we need to use the macros for getting and setting bits. Aside from that, 

most of the functions in the algorithm are the same as those we have already seen.

When we find buckets’ beginnings and ends, we do not put them in separate buffers 

but reuse the buckets buffer. This means that we need to recompute the buckets every 

time we call find_buckets_beginnings() and find_buckets_ends(). The find_

buckets_beginnings() looks like this:

static void find_buckets_beginnings(

    uint32_t *x,

    uint32_t n,

    uint32_t alphabet_size,

    uint32_t *buckets

) {

    compute_buckets(x, n, alphabet_size, buckets);

    uint32_t sum = 0;

    for (uint32_t i = 0; i < alphabet_size; ++i) {

        sum += buckets[i];

        buckets[i] = sum - buckets[i];

    }

}
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When we reduce a string, we do not use a names buffer. Instead, we scan through 

the input suffix array and pack the LMS indices into the first half of the input. Then we 

collect the names in the second half. We exploit that there cannot be more names than 

half the input length, so we can pack the names in there by taking half their index and 

putting them after the reduced string. We can construct the reduced string as before—we 

scan through the names and insert them into the reduced string in the order that they 

appear. It doesn’t matter that their indices are half what they were before; we only want 

their order.

static bool is_LMS_index(

    uint8_t *s_idx,

    uint32_t n,

    uint32_t i

) {

    if (i == 0) return false;

    else return sget(i) == S && sget(i - 1) == L;

}

static bool equal_LMS(

    uint32_t *x,

    uint32_t n,

    uint8_t *s_idx,

    uint32_t i,

    uint32_t j

) {

    // The sentinel string is unique.

    if (i == n + 1 || j == n + 1) return false;

    uint32_t k = 0;

    while (true) {

        bool i_LMS = is_LMS_index(s_idx, n, i + k);

        bool j_LMS = is_LMS_index(s_idx, n, j + k);

        if (k > 0 && i_LMS && j_LMS) {

            // We reached the end of the strings.

            return true;

        }
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        // If one string ends before another or we

        // have different characters, the strings are

        // different.

        if (i_LMS != j_LMS

            || x[i + k] != x[j + k]

            ) {

            return false;

        }

        k++;

    }

    return true;

}

static void reduce_SA(

    uint32_t *x,

    uint32_t n,

    uint32_t *SA,

    uint8_t *s_idx,

    uint32_t *new_alphabet_size,

    uint32_t *new_string_length

) {

    // Pack the LMS strings into the first half of the

    // SA buffer. After that we are free to use the

    // second half of the array.

    uint32_t *compacted = SA;

    uint32_t n1 = 0;

    for (uint32_t i = 0; i < n + 1; ++i) {

        if (is_LMS_index(s_idx, n, SA[i])) {

            compacted[n1++] = SA[i];

        }

    }

    // Now collect the names in the upper half of the array.

#define half_pos(pos) (pos % 2 == 0) ? pos / 2 : (pos - 1) / 2

    uint32_t *names = SA + n1;

    memset(names, UNDEFINED, sizeof(uint32_t) * (n + 1 - n1));
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    uint32_t name = 0;

    names[half_pos(compacted[0])] = name;

    uint32_t last_suffix = compacted[0];

    for (uint32_t i = 1; i < n1; i++) {

        uint32_t j = compacted[i];

        if (!equal_LMS(x, n, s_idx, last_suffix, j)) {

            name++;

        }

        last_suffix = j;

        names[half_pos(j)] = name;

    }

    // Finally, construct the reduced string

    // by shifting the names down. They are in order

    // now, so we really only need the right number of

    // copies and we get them this way.

    uint32_t *reduced = SA + n1;

    uint32_t j = 0;

    for (uint32_t i = 0; i < n + 1 - n1; ++i) {

        if (names[i] != UNDEFINED) {

            reduced[j++] = names[i];

        }

    }

    // One larger than the largest name used.

    *new_alphabet_size = name + 1;

    // We don't include sentinel in the length.

    *new_string_length = n1 - 1;

}

The recursive sorting function doesn’t change much. We allocate, deallocate, 

reallocate, and free the buffers, but otherwise, we do the same as before. We have fewer 

arguments to the reduce_SA() function because we do not use preallocated buffers but 

do our computation in SA, though.
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static void classify_SL(

    const uint32_t *x,

    uint8_t *s_idx,

    uint32_t n

) {

    sset(n, S);

    if (n == 0) // empty string

        return;

    sset(n - 1, L);

    for (uint32_t i = n; i > 0; --i) {

        if (x[i - 1] > x[i]) {

            sset(i - 1, L);

        } else if (x[i - 1] == x[i] && sget(i) == L) {

            sset(i - 1, L);

        } else {

            sset(i - 1, S);

        }

    }

}

void place_LMS(

    uint32_t *x,

    uint32_t n,

    uint32_t alphabet_size,

    uint32_t *SA,

    uint8_t  *s_idx,

    uint32_t *buckets

) {

    find_buckets_ends(x, n, alphabet_size, buckets);

    for (uint32_t i = 0; i < n + 1; ++i) {

        if (is_LMS_index(s_idx, n, i)) {

            SA[--(buckets[x[i]])] = i;

        }

    }

}
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static void induce_L(

    uint32_t *x,

    uint32_t n,

    uint32_t alphabet_size,

    uint32_t *SA,

    uint8_t *s_idx,

    uint32_t *buckets

) {

    find_buckets_beginnings(x, n, alphabet_size, buckets);

    for (uint32_t i = 0; i < n + 1; ++i) {

        if (SA[i] == UNDEFINED) continue; // Not initialized yet

        // If SA[i] is zero, then we do not have

        // a suffix to the left of it.

        if (SA[i] == 0) continue;

        uint32_t j = SA[i] - 1;

        if (sget(j) == L) {

            SA[(buckets[x[j]])++] = j;

        }

    }

}

static void induce_S(

    uint32_t *x,

    uint32_t n,

    uint32_t alphabet_size,

    uint32_t *SA,

    uint8_t  *s_idx,

    uint32_t *buckets

) {

    find_buckets_ends(x, n, alphabet_size, buckets);

    for (uint32_t i = n + 1; i > 0; --i) {

        // We do not have a string to the left of the first.

        if (SA[i - 1] == 0) continue;

        uint32_t j = SA[i - 1] - 1;
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        if (sget(j) == S) {

            SA[--(buckets[x[j]])] = j;

        }

    }

}

void sort_SA(

    uint32_t *x,

    uint32_t n,

    uint32_t *SA,

    uint32_t alphabet_size

) {

    if (n == 0) {

        // Trivially sorted

        SA[0] = 0;

        return;

    }

    // Mapping each letter into its bin.

    // This code assumes that the letters

    // are numbers from zero (the sentinel)

    // up to the alphabet size.

    if (alphabet_size == n + 1) {

        SA[0] = n;

        for (uint32_t i = 0; i < n; ++i) {

            uint32_t j = x[i];

            SA[j] = i;

        }

    } else {

        recursive_sorting(

            x, n, SA,

            alphabet_size

        );

    }

}

Chapter 4  Suffix arrays



202

static void recursive_sorting(

    uint32_t *x,

    uint32_t n,

    uint32_t *SA,

    uint32_t alphabet_size

) {

    uint8_t *s_idx =

        malloc(((n + 1)/8 + 1) * sizeof(uint8_t));

    uint32_t *buckets =

        malloc(alphabet_size * sizeof(uint32_t));

    classify_SL(x, s_idx, n);

    memset(SA, UNDEFINED, (n + 1) * sizeof(uint32_t));

    place_LMS(x, n, alphabet_size, SA, s_idx, buckets);

    induce_L(x, n, alphabet_size, SA, s_idx, buckets);

    induce_S(x, n, alphabet_size, SA, s_idx, buckets);

    free(buckets);

    uint32_t new_alphabet_size;

    uint32_t new_string_length;

    reduce_SA(x, n, SA,

              s_idx,

              &new_alphabet_size,

              &new_string_length);

    uint32_t *reduced_string = SA + new_string_length + 1;

    // Don't use space on this for the recursive call.

    free(s_idx);

    sort_SA(reduced_string,

            new_string_length,

            SA,

            new_alphabet_size);

    // Get arrays back.

    s_idx = malloc(((n + 1)/8 + 1) * sizeof(uint8_t));

    classify_SL(x, s_idx, n);

    buckets = malloc(alphabet_size * sizeof(uint32_t));
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    remap_LMS(x, n,

              buckets,

              alphabet_size,

              s_idx,

              new_string_length,

              SA);

    induce_L(x, n, alphabet_size, SA, s_idx, buckets);

    induce_S(x, n, alphabet_size, SA, s_idx, buckets);

    free(buckets);

    free(s_idx);

}

There is more work to do in remap_LMS() now. We compute the offsets in this 

function now. Doing so is not hard, however. The offsets are the positions where LMS 

strings appear, so we scan through the string and find these. Once we have the reduced 

suffix array, we do not need the reduced string any longer, so we can put the offsets there.

The reduced suffix array, which is at the beginning of the input suffix array, gives us 

the sorted order of the offsets. We scan through the suffix array, get the offset of an index, 

and put that into the suffix array at the same index. It gives us the offsets in the right 

order at the beginning of the suffix array.

Finally, we set the upper half of the suffix array to UNDEFINED—we need all positions 

where we do not have LMS strings to be UNDEFINED—and then we scan from right to left 

through the lower half, where all the offsets are. We get the position of each offset from 

the suffix array, it holds the order in which we need to insert offsets, and then we put 

the offset in the right bucket and clear the old position by setting it to UNDEFINED. Offsets 

belong at an index that is higher than or equal to where they are packed in the array, so 

we do not risk overwriting one with UNDEFINED when we insert them in buckets.

void remap_LMS(

    uint32_t *x,

    uint32_t n,

    uint32_t *buckets,

    uint32_t alphabet_size,

    uint8_t *s_idx,

    uint32_t reduced_length,

    uint32_t *SA
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) {

    // Compute the offsets we need to map

    // the reduced string to the original.

    uint32_t *offsets = SA + reduced_length + 1;

    uint32_t j = 0;

    for (uint32_t i = 1; i < n + 1; ++i) {

        if (is_LMS_index(s_idx, n, i)) {

            offsets[j++] = i;

        }

    }

    // Move the offsets into the first part of SA, sorted

    // by the SA of the reduced problem, so we have them

    // when we update SA.

    for (uint32_t i = 0; i < reduced_length + 1; ++i) {

        SA[i] = offsets[SA[i]];

    }

    // Reset the upper part of SA.

    memset(SA + reduced_length + 1,

           UNDEFINED,

           sizeof(uint32_t) * (n + 1 - (reduced_length + 1)));

    // Now we can insert the LMS strings in their buckets.

    // Scanning right to left this way ensures that we see

    // an LMS after we have zeroed its position, so we don't

    // risk removing one when we set a position to UNDEFINED.

    find_buckets_ends(x, n, alphabet_size, buckets);

    for (uint32_t i = reduced_length + 1; i > 0; --i) {

        uint32_t j = SA[i - 1]; SA[i - 1] = UNDEFINED;

        SA[--(buckets[x[j]])] = j;

    }

}

Finally, there is not much change to sa_is_construction(). We construct the string 

s, but we don’t allocate any buffers and we call sort_SA() directly with the suffix array’s 

array—we don’t need to copy the result from a buffer now.

Chapter 4  Suffix arrays



205

struct suffix_array *

sa_is_construction(

    uint8_t *remapped_string,

    uint32_t alphabet_size

) {

    struct suffix_array *sa = allocate_sa(remapped_string);

    // We work with the string length without the sentinel

    // in this algorithm.

    uint32_t n = sa->length - 1;

    // Create string of integers instead of bytes.

    uint32_t *s = malloc((n + 1) * sizeof(uint32_t));

    for (uint32_t i = 0; i < n; ++i) {

        s[i] = remapped_string[i];

    }

    s[n] = 0;

    // Sort in buffer and then move the

    // result to the suffix array.

    sort_SA(s, n, sa->array, alphabet_size);

    free(s);

    return sa;

}

In the preceding analysis, we saw that we would use n/2 words for buckets, n for the 

suffix array, n for the integer string, and n bits for the classes array. This is true for the 

worst case where the alphabet we build in the recursion has one letter per LMS string, 

but this is unlikely to happen. If your strings are random, the distance between LMS 

indices is geometrically distributed, so the length is expected to be constant. Then we 

use O(1) space for the buckets. Which means that, besides the input string and output 

suffix array, we only use O(n) bits. We always need to use n words for the suffix array—

we cannot save away the output of the algorithm. We cannot get rid of the input string 

either, but always when we analyze an algorithm; we do not count input and output as 

part of the complexity. They can be handled by the caller of the algorithm. The one thing 

that we do not do efficiently in our current implementation is handling the input string. 

We use n words more than we need to, because we must translate a byte string into an 
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integer string. If you dare assume that the alphabet size never grows larger than 256 (you 

can check how likely it will be, given your alphabet and character probabilities), then 

you can use a uint8_t array for strings and then there is no need to build an integer 

string before you can run the algorithm. In that case, the only overhead with using the 

algorithm is n bits. In the worst case, however, the alphabet can have a size that is one 

half of the input string, so I have not done this.

�Searching using suffix arrays
Our suffix array would be a little use—except perhaps as a way to construct suffix trees—

if we couldn’t search for strings using them. Which, of course, we can. You can find the 

code for this section at https://github.com/mailund/stralg/blob/master/stralg/

suffix_array.c.

�Binary search
The most straightforward way to search using a suffix array is a binary search. The suffix 

array has our suffixes in sorted order, and for each index, we can get the corresponding 

suffix index from the array. In a binary search, we have an interval of the suffixes where 

the key we search for is found if it is in the string. We can compare the key to the middle 

of the interval and from there decide whether we must search in the first or second half. 

This idea can be implemented like this:

static uint32_t binary_search(

    const uint8_t *p,

    uint32_t key_len,

    struct suffix_array *sa

) {

    uint32_t low = 0;

    uint32_t high = sa->length;

    while (low < high) {

        uint32_t mid = low + (high - low) / 2;

        int cmp = strncmp(

             (char *)p,

            (char *)(sa->string + sa->array[mid]),
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             key_len

        );

        if (cmp < 0) {

            high = mid - 1;

        } else if (cmp > 0) {

            low = mid + 1;

        } else {

            // If cmp is 0, we have a match.

            return mid;

        }

    }

    // This must be the lowest point where

    // a hit could be if we didn't catch it above.

    return low;

}

In the iterator for the search, we have the interval where the keys are found. When 

we have found the key in the string, we search backward and forward to get the interval 

where it matches, and we use this interval when we iterate through the matches.

struct sa_match_iter {

    struct suffix_array *sa;

    uint32_t L;

    uint32_t R;

    uint32_t i;

};

struct sa_match {

    uint32_t position;

};

void init_sa_match_iter(

    struct sa_match_iter *iter,

    const uint8_t *p,

    struct suffix_array *sa

) {

    iter->sa = sa;
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    uint32_t key_len = (uint32_t)strlen((char *)p);

    assert(key_len > 0); // I cannot handle empty strings!

    uint32_t mid = binary_search(p, key_len, sa);

    if (mid == sa->length ||

        strncmp((char *)(sa->string + sa->array[mid]),

                (char *)p, key_len)

               != 0) {

        // This is a special case where the lower bound is

        // the end of the array. Here we cannot check

        // the strcmp to figure out the interval

        // (or whether we have a hit at all)

        // but we know that the key is not in the

        // string.

        iter->L = iter->R = 0;

        iter->i = 1;

        return;

    }

    // Find lower and upper bound.

    uint32_t lower = mid;

    while (lower > 0 &&

           strncmp((char *)(sa->string + sa->array[lower]),

                   (char *)p, key_len) >= 0) {

        lower--;

    }

    iter->i = iter->L = lower + 1;

    uint32_t upper = mid;

    while (upper < sa->length &&

           strncmp((char *)(sa->string + sa->array[upper]),

                   (char *)p, key_len) == 0) {

        upper++;

    }

    iter->R = upper - 1;

}
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bool next_sa_match(struct sa_match_iter *iter,

                   struct sa_match      *match)

{

    if (iter->i > iter->R)

        return false;

    match->position = iter->sa->array[iter->i++];

    return true;

}

void dealloc_sa_match_iter(struct sa_match_iter *iter)

{

    // Nothing to be done here.

}

We don’t free anything in the deallocation function, but we need it to match the 

usage pattern we have for all our iterators.

The running time is O(m(log n + k)), where m is the length of the key, n is the length 

of the string we search in, and k is the number of occurrences we find. The log n comes 

from the binary search, and the m is multiplied to it because the worst time comparison 

between the key and a suffix takes that long.

When setting up the iterator, we do a linear search for the beginning and end of the 

interval. You can also use a binary search here to find the lower and upper bound. The 

functions for that are listed as follows. The lower_bound_search() function finds the 

first occurrence of a key, or the position where that key should be inserted if it isn’t in the 

list (i.e., the first suffix larger than the key). The upper_bound_search() finds one past 

the last occurrence of the key or the point where the string should be inserted, that is, if 

the key isn’t in the string, then the upper and lower bound returns the same index. In the 

upper bound search, we need to check if we have a match or are below a match when the 

interval gets empty. This is to make sure that we get an index just past the right position 

in those cases. Otherwise, the two implements should be fairly straightforward.

uint32_t lower_bound_search(

    struct suffix_array *sa,

    const uint8_t *key

) {

    uint32_t L = 0, R = sa->length;

    uint32_t key_len = strlen((char*)key);
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    uint32_t mid;

    while (L < R) {

        mid = L + (R - L) / 2;

        int cmp = strncmp(

            (char *)key,

            (char *)(sa->string + sa->array[mid]),

            key_len

        );

        if (cmp <= 0) {

            R = mid;

        } else if (cmp > 0) {

            L = mid + 1;

        }

    }

    return (L <= R) ? L : R;

}

uint32_t upper_bound_search(

    struct suffix_array *sa,

    const uint8_t *key

) {

    uint32_t L = 0, R = sa->length;

    uint32_t key_len = strlen((char*)key);

    uint32_t mid;

    while (L < R) {

        mid = L + (R - L) / 2;

        int cmp = strncmp(

            (char *)key,

            (char *)(sa->string + sa->array[mid]),

            key_len

        );

        if (cmp < 0) {

            R = mid - 1;

        } else if (cmp >= 0) {

            L = mid + 1;

        }
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    }

    R = (R > L) ? R : L;

    if (R == sa->length) return R;

    int cmp = strncmp(

        (char *)key,

        (char *)(sa->string + sa->array[R]),

        key_len

    );

    return (cmp >= 0) ? R + 1 : R;

}

void init_sa_match_iter(

    struct sa_match_iter *iter,

    const uint8_t *key,

    struct suffix_array *sa

) {

    iter->sa = sa;

    // Find lower and upper bound

    uint32_t lower = lower_bound_search(sa, key);

    uint32_t upper = upper_bound_search(sa, key);

    // No match

    if (lower == upper) {

        iter->L = iter->R = 0;

        iter->i = 1;

    }

    iter->i = iter->L = lower;

    iter->R = upper - 1;

}

With this approach, we do not pay a cost of m for each occurrence of the key, so we 

get the running time O(m log n + k).

There is another trick we can use to speed up the search. It doesn’t change the 

asymptotic running time, it is still O(m log n + k), but it uses a faster approach to the 

binary search. The critical observation behind the idea is that when we have matched 

a prefix of the pattern against the suffix array, we have an interval, [L, R], where all the 
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suffixes that start with that prefix sit. If we want to extend the prefix by the next character, 

then we will get a subinterval where that additional character matches. To get that 

interval, we do not need to compare the key against the entire suffixes; we know that it 

matches the prefix we have searched for so far. Instead, we can do a binary search inside 

the interval where we match the next character in the pattern against characters at an 

offset that skips the prefix we know matches.

We will use a lower and an upper bound function to get one interval from the 

previous. These functions are very similar to the ones earlier, but they match a single 

character at an offset, k, into the suffixes.

uint32_t lower_bound_k(

    struct suffix_array *sa,

    uint32_t k, uint8_t a,

    uint32_t L, uint32_t R

) {

    while (L < R) {

        uint32_t mid = L + (R - L) / 2;

        uint32_t b_idx = sa->array[mid] + k;

        if (b_idx >= sa->length) {

            // b is less if it is past the end.

            L = mid + 1;

            continue;

        }

        uint8_t b = *(sa->string + b_idx);

        if (b < a) {

            L = mid + 1;

        } else {

            R = mid;

        }

    }

    return (L <= R) ? L : R;

}

uint32_t upper_bound_k(

    struct suffix_array *sa,

    uint32_t k, uint8_t a,
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    uint32_t L, uint32_t R

) {

    uint32_t orig_R = R;

    while (L < R) {

        uint32_t mid = L + (R - L) / 2;

        uint32_t b_idx = sa->array[mid] + k;

        if (b_idx >= sa->length) {

            // b is less if it is past the end.

            L = mid + 1;

            continue;

        }

        uint8_t b = *(sa->string + b_idx);

        if (a < b) {

            R = mid - 1;

        } else {

            L = mid + 1;

        }

    }

    R = (R > L) ? R : L;

    if (R == orig_R) return R;

    uint8_t b = *(sa->string + sa->array[R] + k);

    return (a >= b) ? R + 1 : R;

}

In the upper bound calculations, we have to stay inside the original interval, so 

where we made sure that R would stay inside the suffix array, we tested it against sa-

>length; we now test it against the original R the function was called with.

In the match function—the function where we initialize the iterator—we run through 

the key and update the interval for each new index:

void init_sa_match_iter(

    struct sa_match_iter *iter,

    const uint8_t *key,

    struct suffix_array *sa

) {
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    iter->sa = sa;

    uint32_t key_len = strlen((char*)key);

    uint32_t L = 0, R = sa->length;

    for (uint32_t i = 0; i < key_len; i++) {

        L = lower_bound_k(sa, i, key[i], L, R);

        R = upper_bound_k(sa, i, key[i], L, R);

        if (L >= R) break;

    }

    if (L == R) {

        iter->L = iter->R = 0;

        iter->i = 1;

    }

    iter->L = L;

    iter->R = R - 1;

    iter->i = L;

}

There are further improvements possible for a binary search based on precomputing 

possible intervals, but the result will still be a search that is logarithmic in the suffix array. 

It is possible to improve the approach to O(m + log n). We will skip those methods and 

move on to an approach that gives us a search algorithm that runs linear in the patterns 

we search for, O(m).

�Burrows-Wheeler transform–based search
The Burrows-Wheeler transform (BWT) is a transformation of a string that was originally 

used as a heuristic to make compression more efficient. We will not use it like that, and I 

will save you much discussion of it. All we need for the search algorithm is to know that 

for an index i in a string x, it is x[SA[i]−1], with a special case for suffix zero. We can get it 

in for suffix array sa like this:

static inline unsigned char bwt(

    const struct suffix_array *sa,

    uint32_t i

)
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{

    uint32_t suf = sa->array[i];

    return (suf == 0) ? '\0' : sa->string[suf - 1];

}

Contrary to what you might expect from the algorithm’s name, it isn’t an essential 

part of the search, but we use it to compute one of two tables that are essential.

Again, you need to compile the code in this section in a separate file, and you can 

find the implementation at https://github.com/mailund/stralg/blob/master/

stralg/bwt.c.

�C and O tables

We define two tables, the first indexed by symbols in our alphabet and the second by 

both a symbol and an index:

•	 C(a) is the number of symbols smaller than a in x.

•	 O(a, i) is the number of indices j < i where x[SA[j]−1] = a (this is 

where we use the Burrows-Wheeler transform).

What the C table contains is self-evident, but the O table is less obvious, from the 

way I just defined it. Another way to define it, which is harder to capture mathematically 

but is the critical property we use in the algorithm, is this: O(a, i) counts the number of 

suffixes lexicographically smaller than suffix SA[i] that have an a before them in x.

These tables let us move from a string u in the suffix array to the string au (where a 

is a character), or one past where it would be in case it isn’t in the array. If u is at index 

i, then au will be at index C(a) + O(a, i); see Figure 4-12. To see this, observe that before 

au in the suffix array, we must have all the suffixes that start with a letter smaller than a, 

C(a). Inside the sequence of strings that start with a, the suffixes are sorted with respect 

to the strings that follow a, and before u, there are O(a, i) other suffixes.

In the BWT search algorithm, we will search for a pattern starting at the end of the 

pattern and prepending characters until we are done. Each time we prepend a letter, we 

will use this jump rule. Before we get that far, however, we need to build the tables.

Both tables have a dimension with a length that depends on the alphabet size. We 

have used uint8_t for our alphabet so far, but using 256 symbols is excessive in memory 

usage, especially for the O table that also has a dimension of length n. Therefore, we 

want to reduce the alphabet as much as possible, so we must remap the input string 

before we construct the tables.
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�Building the C and O tables

We store the two tables in a structure with a pointer to the remapped table and the 

(remapped) suffix array, and we define two macros to make access to the tables easier to 

read.

struct bwt_table {

    struct remap_table  *remap_table;

    struct suffix_array *sa;

    uint32_t *c_table;

    uint32_t *o_table;

    uint32_t **o_indices;

};

#define C(a)    (bwt_table->c_table[(a)])

#define O(a,i)  (bwt_table->o_indices[i][a])

I use two arrays for the O table. I put all the data in o_table and use o_indices to 

precompute offsets into the o_table array. You can compute the index into o_table from 

a letter a and index i as a * (table->sa->length + 1) + i, but I found that setting the 

offset, a * (table->sa->length + 1), into a separate array

o_indices[i] == o_table + i * alphabet_size

Figure 4-12.  Jump using the BWT tables
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and then looking up using bwt_table->o_indices[i][a] was substantially faster.

To compute the C table, we first count how often we see each character a in 

the string. We get C as the accumulative sum of these. That will give us the count of 

characters less than a.

        C(a) = C(a-1) + char_counts[a - 1];

For the O table, at index i, we either have the same number of smaller suffixes or one 

more, if the previous index has an a before it.
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Putting these two observations together, we can compute the tables like this:

void init_bwt_table(

    struct bwt_table    *bwt_table,

    struct suffix_array *sa,

    struct remap_table  *remap_table

) {

    bwt_table->remap_table = remap_table;

    bwt_table->sa = sa;

    // ---- COMPUTE C TABLE

    uint32_t char_counts[remap_table->alphabet_size];

    memset(char_counts, 0,

           remap_table->alphabet_size * sizeof(uint32_t));

    for (uint32_t i = 0; i < sa->length; ++i) {

        char_counts[sa->string[i]]++;

    }

    bwt_table->c_table =

        calloc(remap_table->alphabet_size,

               sizeof(*bwt_table->c_table));

    for (uint32_t i = 1; i < remap_table->alphabet_size; ++i) {

        C(i) = C(i-1) + char_counts[i - 1];

    }
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    // ---- COMPUTE O TABLE

    // The table has indices from zero to n, so it must

    // have size Sigma x (n + 1).

    uint32_t o_size =

        remap_table->alphabet_size *

        (sa->length + 1) *

        sizeof(*bwt_table->o_table);

    bwt_table->o_table = malloc(o_size);

    bwt_table->o_indices =

        malloc((sa->length + 1) *

                sizeof(*bwt_table->o_indices));

    for (uint32_t i = 0; i < sa->length + 1; ++i) {

        uint32_t *ptr = bwt_table->o_table + alphabet_size * i;

        bwt_table->o_indices[i] = ptr;

    }

    for (uint8_t a = 0; a < remap_table->alphabet_size; ++a) {

        O(a, 0) = 0;

    }

    for (uint8_t a = 0; a < remap_table->alphabet_size; ++a) {

        for (uint32_t i = 1; i <= sa->length; ++i) {

            O(a, i) = O(a, i - 1) + (bwt(sa, i - 1) == a);

        }

    }

}

Building the tables is clearly done in linear time (assuming the alphabet size is a 

constant).

Deallocating the table is relatively straightforward:

void dealloc_bwt_table(

    struct bwt_table *bwt_table

) {

    free(bwt_table->c_table);

    free(bwt_table->o_table);

    free(bwt_table->o_indices);

}
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�Searching

As mentioned earlier, when we search for a pattern using the BWT algorithm, we start 

from the end and move forward. In the search we keep track of two pointers, L and R, 

that spans the interval in the suffix array where the suffixes have the pattern so far as a 

prefix. The L pointer points to the first suffix in the interval and the R pointer points one 

past the last. When we prepend a character to the pattern, we update the pointers using 

the jump rule from earlier; see Figure 4-13. This gives us another interval where the 

suffixes have the new pattern as prefixes. Once we reach the start of the pattern, that is, 

once we have the interval where all suffixes have the pattern as a prefix, we are done.

Each time we update the interval, we do constant work, and we only update intervals 

m times, so searching is done in linear time in the length of the pattern.

We do the entire search in the search iterator. This will give us the L and R interval, 

and when we iterate over the hits, we scan through it.

void init_bwt_exact_match_iter(

    struct bwt_exact_match_iter *iter,

    struct bwt_table *bwt_table,

    const uint8_t *remapped_pattern

);

Figure 4-13.  Searching using the BWT
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void init_bwt_exact_match_iter(

    struct bwt_exact_match_iter *iter,

    struct bwt_table *bwt_table,

    const uint8_t *remapped_pattern

) {

    const struct suffix_array *sa = iter->sa = bwt_table->sa;

    uint32_t n = sa->length;

    uint32_t m = (uint32_t)strlen((char *)remapped_pattern);

    uint32_t L = 0;

    uint32_t R = n;

    // If the pattern is longer than the string, then

    // there won't be a match.

    if (m > n) {

        R = 0; L = 1;

    }

    // We need i to be signed, so we use int64_t.

    // This gives us a signed integer that can

    // easily index all of uint32_t.

    int64_t i = m - 1;

    while (i >= 0 && L < R) {

        uint8_t a = remapped_pattern[i];

        L = C(a) + O(a, L);

        R = C(a) + O(a, R);

        i--;

    }

    iter->L = L;

    iter->R = R;

    iter->i = L;

}

The variable i in the iterator is used when we report hits. It starts at the first index 

in the interval (L) and will be incremented for each hit. When we report hits, we need to 

map the index i the suffix array to the index in the string, but that is just a lookup in the 

suffix array.
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struct bwt_exact_match {

    uint32_t pos;

};

bool next_bwt_exact_match_iter(

    struct bwt_exact_match_iter *iter,

    struct bwt_exact_match      *match

) {

    // Cases where we never had a match.

    if (iter->i < 0)        return false;

    // Cases where we no longer have a match.

    if (iter->i >= iter->R) return false;

    // We still have a match.

    // Report it and update the position

    // to the next match (if any).

    match->pos = iter->sa->array[iter->i];

    iter->i++;

    return true;

}

We do not allocate any resources in the iterator, so deallocating it is trivial.

void dealloc_bwt_exact_match_iter(

    struct bwt_exact_match_iter *iter

) {

    // Nothing to free

}

�Getting the longest common prefix (LCP) array
For the LCP algorithm in the previous chapter, we (obviously) needed the LCP array (or 

longest common prefix array). We saw how to get it from a depth-first traversal of the 

tree, and in this section, we see how to compute it from the suffix array.

The linear-time algorithm iterates through the suffixes and compares each suffix with 

its predecessor in the suffix, but fast because of the observation in Figure 4-14. If we know 

the LCP for some index ii, it means that we know the longest prefix shared between 
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SA[ii] and SA[ii-1] (see Figure 4-14 A). Let i = SA[ii] and consider suffix i+1. This 

suffix shares a prefix with SA[ii-1]+1 that has length LCP[ii]-1 (see Figure 4-14 B). 

If we go back to the suffix array where i+1 sits, call it jj=ISA[i+1], then the previous 

suffix, jj-1, shares a prefix of length LCP[jj] that must be at least LCP[ii] - 1 long (see 

Figure 4-14 C). The suffixes come in blocks of shared prefixes in the suffix array, and since 

there is at least one suffix that shares a length LCP[ii]-1 prefix with jj, the longest must 

be at least that long. To get the actual length, we need to compare suffixes SA[jj-1] and 

SA[jj], but we can skip the first LCP[ii]-1 characters in the comparison because we 

know these match.

The ii and jj indices are related in the way illustrated in the figure, but notice that 

it is also a relationship between the LCPs of suffixes i and i + 1. The figure also tells us 

that the longest common prefix of ISA[i+1] is at least LCP[ISA[i]]. The prefixes are 

clustered in the suffix array so this tells us that there is a shared prefix there. Further, 

the suffix before ISA[i+1] must be smaller than ISA[i+1] because SA[ii-1] is smaller 

than SA[ii]. This is what we exploit in the algorithm. We run through the suffixes in x 

and keep track of how much we can skip when comparing suffixes using the preceding 

observation. The reason that the algorithm runs in linear time is an argument similar 

to the one we had for computing the border array back in the chapter on classical 

algorithms. If we consider the interval we can skip in each iteration, then it gets one 

smaller because we skip LCP[ii]-1 and then it increases when we scan LCP[jj] vs. 

LCP[jj-1]. The maximum length we can get is n, and we cannot increase beyond this 

and what we decrease, which is bounded by n. Thus the algorithm runs in linear time.

We can implement the computation of the inverse suffix array like this

void compute_inverse(struct suffix_array *sa)

{

    if (sa->inverse) return; // only compute if it is needed

    sa->inverse = malloc(sa->length * sizeof(*sa->inverse));

    for (uint32_t i = 0; i < sa->length; ++i)

        sa->inverse[sa->array[i]] = i;

}
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Figure 4-14.  Key observation for computing the LCP
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and the LCP array like this

void compute_lcp(struct suffix_array *sa)

{

    if (sa->lcp) return; // only compute if we have to

    sa->lcp = malloc((sa->length) * sizeof(*sa->lcp));

    compute_inverse(sa);

    sa->lcp[0] = 0;

    uint32_t l = 0;

    for (uint32_t i = 0; i < sa->length; ++i) {

        uint32_t j = sa->inverse[i];

        // Don't handle index 0; lcp[0] is always zero.

        if (j == 0) continue;

        uint32_t k = sa->array[j - 1];

        while (sa->string[k + l] == sa->string[i + l])

            ++l;

        sa->lcp[j] = l;

        l = l > 0 ? l - 1 : 0;

    }

}

We do not compute the two arrays when we build the suffix array—because we do 

not always need them—so in each function, we check if it is already built. and if not we 

construct the array. In the function that computes LCP, the variable l keeps track of the 

length of comparison we can skip. We increase it when we match in the comparison and 

decrease it by one when we are done.
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�Comparisons
So what is the running time for constructing suffix arrays in practice? In Figure 4-15, 

you can see the construction time for each algorithm for three alphabets, all equal 

characters, a four-letter alphabet, and full 8-bit character set. I have also shown 

McCreight’s suffix tree construction algorithm for comparison.

Consistently the SA-IS algorithm is the fastest, followed by the memory-efficient SA-

IS algorithm. All the recomputing takes some time, and the memory-efficient algorithm 

thus runs slower than the memory-hungry version.

The worst-case input for both the naïve sorting algorithm and the skew algorithm is 

strings of a single repeated character. For explicit sorting, string comparison takes linear 

time in the length of the shortest string; on average, this is half the original string. For the 

skew algorithm, the triplet character alphabet we make in each recursive call will contain 

a single character until the very bottom of the recursion so that the algorithm will do 

maximal work. Once we have random strings with more characters, both algorithms are 

faster. The explicit sorting remains the slowest, though.

Building the suffix tree with McCreight’s algorithm takes time somewhere in the 

middle of the suffix array construction algorithms except for the large 8-bit alphabet, 

which, as we saw in the previous chapter, shows the large fan-out of children in each 

node slows down the algorithm substantially. With a large alphabet, McCreight’s 

algorithm is still increasing the node’s fan-out when the suffix array algorithms are long 

done with building their arrays.
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In Figure 4-16, I have plotted the construction time for a suffix array (using the SA-IS 

algorithm) and the additional time it takes to build the BWT tables. It takes extra time to 

create the BWT tables, but the overhead is slight if we consider cases where the tables are 

constructed only once and after that used for thousands of linear-time searches.

However, is it worthwhile to search using BWT compared to searching directly in 

the suffix array? After all, the logarithm function grows very slowly, so the difference 

between O(m) and O(m log n) might not matter in practice until we have incredibly 

Figure 4-15.  Suffix array construction time
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long strings. Add to this that the suffix array search only performs simple lookups in the 

string and suffix array, while the BWT algorithm needs additional lookups in the C and O 

tables. When looking for a value in the O table, we also need to compute the offset using 

multiplication with the alphabet size. It is therefore conceivable that each step in the 

linear BWT search is more expensive than the steps in the O(m log n) suffix array search.

In Figure 4-17, I have plotted the running time of the BWT search (BWT), the binary 

search in a suffix array (SA), and the search in a suffix tree (ST), for n up to 1000 and m up 

to 50, so relatively short strings. The string that we search in, x, is a random DNA string, 

and the pattern, p, is selected from a random position in x, so all searches continue to 

the end of the pattern. I have fitted lines to the data points, although the suffix array 

binary search is not linear in n (you can see a curve in the plot if you look closely). The 

line illustrates the growth of the functions. We observe that the algorithms behave as 

they are expected to, BWT and ST are constant in n while SA is not, and all algorithms 

are linear in m. The binary search is slower than the two linear-time algorithms, maybe 

surprising and maybe not, considering the small data size, but it is more complex code. 

The BWT algorithm is substantially slower than the suffix tree search. Since the suffix 

tree needs to both search through children in the nodes of the tree and down edges, this 

would not be obvious, but the reason is to some degree that the strings are random. This 

means that there is a large fan-out near the root of the tree, but after that, the search runs 

down a long edge and searching through an edge consists of comparing strings character 

by character, which is much faster than the table lookups in BWT.
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The results will not be representative of strings that have a structure very far from 

random, but most strings are not far from random in their character sequences. Natural 

language texts will also have a large fan-out near the root, and then long edges to leaves, 

since sentences in a book rarely share more than a few words in a row. It is hard to think 

of pathological strings, such as strings with a single character repeated, that are found in 

real applications that do not give a suffix tree a similar structure.

Figure 4-16.  Suffix array and BWT construction time
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Figure 4-17 shows results for very short strings, and there the algorithms behave as 

we expect from theory, but if we increase the string lengths slightly (see Figure 4-18), 

we see an unexpected explosion in the BWT algorithm’s performance. Many of the 

experiments for n between 20,000 and 25,000 have exceedingly long running times, so 

the suffix array search algorithm beats BWT for large m. What we see here is something 

that the theory doesn’t predict but is a real concern in practice—memory efficiency, 

specifically data locality. The theoretical model for computations used in this book is 

the RAM model, and it assumes that we can access all memory positions in the same 

running time. On a real computer, this is far from true.

When you access memory, it is pulled into a cache, so it is more efficient to get it 

again. The cache also pulls in memory adjacent to what you accessed, so this will also be 

faster to access. There are several levels of caches, so when you cannot get the data you 

want from the cache that is closest to the CPU, you need to go some levels out to get it. 

When you cannot find it in a cache, you have to go all the way out to get it in RAM. Each 

time you move from one level to the next, you spend orders of magnitude more time 

getting your data. Each time you miss the cache, you get a massive jump in access time. 

For the experiments, it is evened out over many memory accesses, but it is clear that we 

have more misses when the data is larger, and this effect drowns the expected running 

time based on the RAM model.
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Figure 4-17.  Search time with n up to 1000 and m up to 50
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The character-by-character search down the edges in the ST algorithm is cache-

efficient. We are looking at consecutive memory addresses, and that is ideal for caching. 

We do not see a worsening of the running time. We do not see the effect for the SA 

algorithm either. The suffix array takes up less memory than the BWT tables, and 

with random strings, the search interval shrinks rapidly. Before long, the algorithm is 

searching down a single string, similar to how the suffix tree algorithm search down a 

single edge.

If we continue with n up to 10 million, Figure 4-19, we see the effect more 

dramatically. None of the algorithms run in linear time for n. The ST algorithm is close (if 

we ignore the data points for the highest n that I will get back to). The BA algorithm isn’t 

supposed to be. The surprising results are for BWT. We see a steep growth up to around 

a million, then it flattens out, but not entirely, and then there is an explosion in the 

running time, one we see for all three algorithms. What is happening is that for the BWT 

algorithm, more and more of the memory accesses misses the cache, and as the number 

of misses increases, so does the running time. When it levels off, it is because practically 

all access to the table involves a cache miss. There is still an increase because some of 

the memory access needs to go all the way to RAM, and that access is vastly slower than 

going to the cache. To the far right of the plot, where there is a massive jump for all the 

algorithms, my test program runs out of RAM entirely, and the operating system has to 

swap memory in and out of the disk. When that happens, the performance deteriorates 

quickly.
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Figure 4-18.  Search time with n up to 25,000 and m up to 600
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The computer runs out of memory faster for the data structures that take up more 

memory, but what we see in the runtime experiments is the memory access patterns 

more than when the program will need to be swapped. The random access with the 

suffix array, and even more with the BWT tables, requires more swapping than the access 

to consecutive characters for the suffix tree.

Admittedly, the comparisons made here are not entirely fair. It is possible to 

compress suffix arrays and BWT tables, so they use less memory, so they can reach 

larger n before there are memory issues with swapping. But with the algorithms that I 

have presented in this chapter, the memory access patterns matter, and if you use these 

algorithms, the suffix tree is more efficient for searching than the other two approaches.

You can find the code I have used for my experiments here:

https://github.com/mailund/stralg/blob/master/

performance/suffix_array_construction.c

https://github.com/mailund/stralg/blob/master/

performance/bwt_construction.c

https://github.com/mailund/stralg/blob/master/

performance/suffix_array_search.c
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Figure 4-19.  Search time with n up to 10 million and m up to 600
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CHAPTER 5

Approximate search
We are not always satisfied with finding locations where a pattern matches exactly. 

Sometimes we could, for example, want to find all occurrences of a word and include 

occurrences where the word is misspelt. Searching for “almost matches” is called 

approximate search. We will look at a suffix tree–based approach and a BWT-based 

approach. Considering the experimental results from the last chapter, it might seem 

odd to consider a BWT approach instead of a suffix array approach, but there is a reason 

for this: we can add a trick to the BWT approach to make it faster than the suffix tree 

solution that was the most efficient for exact search.

�Local alignment and CIGAR notation
An approximative match is one where we can edit the key to make it match at a given 

location. The operations we can do are

•	 Substitute, or replace, one character for another

•	 Insert a character

•	 Delete a character

If we have a match of such an edited pattern at a given location, we say that we 

can align the pattern there. The idea is that we conceptually put the pattern on top of 

the reference string at the location where we have an approximative match. We then 

describe how the reference string should be edited to become the reference string, 

that is, whether we should change a character in the reference, a substitution, delete a 

character that is in the reference but not the pattern, or insert a character in the pattern 

string that is not in the reference.

For matching and substitution strings, we have one character on top of another. 

When we insert a character, we show it as a dash in the reference string (the inserted 

character does not match any of the characters in the reference, but this is where it 
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should be inserted). If we delete a character, we put a dash in the reference string (the 

character would have been at this position if we hadn’t deleted it). The following are two 

examples:

        AACTTTCTGAA

...TTAAAAAATTTCT-AACAACA...

          *     *

        AACTTTCTG-AA

...TGGAAAA-TTTCTGGAATGGAT...

          *      *

The first alignment has a substitution where A should replace the C in the pattern, 

and it has an insertion of G (shown as a dash in the string we align to; it isn’t at that 

position but it is where we must insert it). The second alignment has an insertion of C 

(also shown as a dash in the string below) and a deletion of G.

This type of alignment is also called a local alignment. A global alignment is one 

where we edit one string to match the entirety of another string. We will not consider 

global alignments in this book.

When we report an occurrence of an approximative match, we want to report 

both the position of the occurrence and how the pattern must be edited to get the 

match. Reporting an alignment is not convenient but what we can do is to report 

the transformations needed on the pattern. For example, we can report matches as 

M, substitutions as S, insertions as I, and deletions as D as a string. The sequence of 

operations we perform for the alignments earlier is MMSMMMMMIMM and MMIMMMMMMDMM. 

The CIGAR format is a compressed form of this sequence of events. Whenever there is a 

sequence of the same operation, it contains the length of the sequence followed by the 

operation. It does not distinguish between M and S; if we know that one character should 

go above another, we can always check if we have a match or substitution anyway. 

The CIGAR for the first alignment above is 8M1I2M and the CIGAR for the second is 

2M1I6M1D2M. The reason that there are 8 Ms in the first CIGAR, although there are only 

two Ms in the string of operations, is that we use M for substitutions as well in CIGARs.

When matching a pattern, I find it easiest to collect each transformation step 

individually, that is, the first format earlier, and then transform it into a CIGAR string 

to report once I am done. The following edits_to_cigar() function will take a string 

where each edit is represented by a letter and produce the corresponding CIGAR string:
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static const char *scan(

    const char *edits

) {

    const char *p = edits;

    while (*p == *edits)

        ++p;

    return p;

}

void edits_to_cigar(

    char *cigar_buffer,

    const char *edits

) {

    while (*edits) {

        const char *next = scan(edits);

        cigar_buffer = cigar_buffer + sprintf(

            cigar_buffer, "%d%c",

            (int)(next - edits), *edits

        );

        edits = next;

    }

    *cigar_buffer = '\0';

}

The code might be a little hard to decipher. The sprintf() function writes to the 

front of the cigar_buffer and returns the length of the string it writes. When we add 

that length to cigar_buffer, we get a pointer to where we should continue writing next 

time we call sprintf(). The (int)(next - edits) expression gives us the number 

of characters we have scanned past, and *edits is the operation we repeated for this 

number of times.

        cigar_buffer = cigar_buffer + sprintf(

            cigar_buffer, "%d%c",

            (int)(next - edits), *edits

        );
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�Brute force approach
The straightforward way to do approximative matching is to construct all the patterns 

at a certain edit distance (number of changes) from the pattern and then do an exact 

search. We call all such strings the edit cloud around the pattern, and we can construct it 

recursively.

�Building an edit cloud
An easy way to build a string and a CIGAR from a pattern is to recursively handle 

the three operations (four if you separate matching into (actual) matchind and 

mismatching). Assume we have processed the pattern up to some point, for example, a 

pattern_front pointer. Put the modified string in a buffer and have a pointer, string_

front, pointing at the next position we should add characters to, and have the edits so 

far in a buffer where pointer edit_fronts points to the next position where we should 

add to the buffer. The situation is shown in Figure 5-1.

If we want to add an insertion to the pattern, we skip past the current symbol in the 

pattern, we do not add anything to the string, but we record the operation in the edits. 

The pattern_front and edits_front are incremented. If it seems odd to you that we do 

not add a symbol to the string in an insertion operation, then remember that insertion 

is something we do to transform the string into the pattern. The symbol we skip past in 

the pattern is the one we have inserted there. Substitutions and matching are the same 

operation (except that substitutions increase the edit distance). We add a character to 

the string and increment string_front, increment pattern_front past the character 

matched or substituted to, and record the operation in the edits buffer. For deletion, 

we do almost the same as for matching. We add a character to the string and increment 

string_front, and we add a D to the edits buffer. The difference to matching is that we 

do not increment pattern_front. The character we insert into the string is deleted in the 

pattern so we should continue the recursion from the current position.

The idea is implemented in the following function; I will explain the at_beginning 

variable after the code listing.

void recursive_generator(

    const uint8_t *pattern_front,

    const uint8_t *alphabet,

    // To avoid initial deletions.
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    bool at_beginning,

    // Write the edited string here.

    uint8_t *string_front,

    // Holds the beginning of full buffer

    // so we can report the string.

    uint8_t *string,

    // We write the output cigar here.

    char *cigar,

    // We build the edit string here.

    char *edits_front,

    // and use the beginning of the edits buffer

    // when we report

    char *edits,

    int max_edit_distance)

{

    if (*pattern_front == '\0') {

        // No more pattern to match...

        // Terminate the buffer and report.

        *string_front = '\0';

        *edits_front = '\0';

        edits_to_cigar(cigar, edits);

        report(string, cigar);

    } else if (max_edit_distance == 0) {

        // We can't edit anymore, so just move the

        // pattern to buffer and report.

        uint32_t rest = strlen((char *)pattern_front);

        for (uint32_t i = 0; i < rest; ++i) {

            string_front[i] = pattern_front[i];

            edits_front[i] = 'M';

        }
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        string_front[rest] = cigar[rest] = '\0';

        edits_to_cigar(cigar, edits);

        report(string, cigar);

    } else {

        // RECURSION

        // Insertion

        *edits_front = 'I';

        recursive_generator(pattern_front + 1,

                            alphabet,

                            false,

                            string_front, string,

                            cigar,

                            edits_front + 1, edits,

                            max_edit_distance - 1);

        // Deletion

        if (!at_beginning) {

            for (const uint8_t *a = alphabet; *a; a++) {

                *string_front = *a;

                *edits_front = 'D';

                recursive_generator(pattern_front,

                                    alphabet,

                                    at_beginning,

                                    string_front + 1,

                                    string,

                                    cigar,

                                    edits_front + 1, edits,

                                    max_edit_distance - 1);

            }

        }

        // Match/substitution

        for (const uint8_t *a = alphabet; *a; a++) {

            if (*a == *pattern_front) {

                *string_front = *a;

                *edits_front = 'M';
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                recursive_generator(pattern_front + 1,

                                    alphabet,

                                    false,

                                    string_front + 1,

                                    string,

                                    cigar,

                                    edits_front + 1, edits,

                                    max_edit_distance);

            } else {

                *string_front = *a;

                *edits_front = 'M';

                recursive_generator(pattern_front + 1,

                                    alphabet,

                                    false,

                                    string_front + 1,

                                    string,

                                    cigar,

                                    edits_front + 1, edits,

                                    max_edit_distance - 1);

            }

        }

    }

}
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I use the at_beginning variable to avoid initial deletions. We cannot easily avoid 

that many sequences of edits can lead to the same string, but we know that all edits 

that start or end with deletions will have the same string as the edits that do not include 

them. Whenever we reach the end of the pattern, we report the result, and we do not add 

possible deletions as results as well. So terminal deletions are naturally avoided. We can 

avoid initial deletions if we never do a deletion unless we have already done an insertion 

or a match. The at_beginning parameter ensures exactly that.

Figure 5-1.  Recursion for constructing an edit cloud
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To get an iterator version of the recursion, we need an explicit stack. Stack frames 

will contain the information we need for an operation and information about which 

operation to do. I found it easiest to have four operations: one that creates the recursive 

calls and three operations for insertion, deletion, and matches. Stack frames look like 

this:

enum edit_op {

    RECURSE,

    INSERTION,

    DELETION,

    MATCH

};

struct deletion_info {

    char a;

};

struct match_info {

    char a;

};

struct edit_iter_frame {

    enum edit_op op;

    // The character we should delete or match

    uint8_t a;

    // Have we inserted or matched yet?

    bool at_beginning;

    // Fronts of buffers

    const uint8_t *pattern_front;

    uint8_t *string_front;

    char *cigar_front;

    // Number of edits left

    int max_dist;

    // The rest of the stack

    struct edit_iter_frame *next;

};
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Deletion and match operations need to know which character to add to the string. 

In the recursive function, we put those characters into the buffer before we called 

recursively. With the explicit stack, we need to iterate through the alphabet to push 

operations, and if we just update the string buffer, we would override all but the last 

character we put there. Instead, we remember the character in the stack frame and add it 

to the string when we get to the operation.

Pushing information to the stack is straightforward.

static struct edit_iter_frame *

push_edit_iter_frame(

    enum edit_op op,

    bool at_beginning,

    const uint8_t *pattern_front,

    uint8_t *string_front,

    char *cigar_front,

    int max_dist,

    struct edit_iter_frame *next

) {

    struct edit_iter_frame *frame =

        malloc(sizeof(struct edit_iter_frame));

    frame->op = op;

    frame->at_beginning = at_beginning;

    frame->pattern_front = pattern_front;

    frame->string_front = string_front;

    frame->cigar_front = cigar_front;

    frame->max_dist = max_dist;

    frame->next = next;

    return frame;

}

An iterator will hold the beginning of the buffers, a cigar buffer that we use to 

translate the edits string into a CIGAR representation, and a pointer to the remainder of 

the stack below the frame.

struct edit_iter {

    const uint8_t *pattern;

    const char *alphabet;
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    uint8_t *string;

    char *edits;

    char *cigar;

    struct edit_iter_frame *frames;

};

When we initialize an iterator, we allocate the buffers we need. We can never have 

more than twice the string length edits—regardless of the maximum edit distance, 

we will explore. If we remove all characters and then insert them again, we get this 

maximum, and that is the most distant string we can ever create. So that is an upper 

bound on the size of the buffers we need. After allocating the buffers, we push the first 

recursion unto the stack.

void init_edit_iter(

    struct edit_iter *iter,

    const uint8_t *pattern,

    const char *alphabet,

    int max_edit_distance

) {

    uint32_t n = 2 * (uint32_t)strlen((char *)pattern);

    iter->pattern = pattern;

    iter->alphabet = alphabet;

    iter->string = malloc(n); iter->string[n - 1] = '\0';

    iter->edits = malloc(n);  iter->edits[n - 1] = '\0';

    iter->cigar = malloc(n);

    iter->frames = push_edit_iter_frame(

        RECURSE,

        true,

        iter->pattern,

        iter->string,

        iter->edits,

        max_edit_distance,

        0

    );

}
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When we increment the iterator, we check if we have reached the end of the pattern 

or the total number of edits allowed. In either case, we report an occurrence. If not, we 

perform the operation from the frame and then proceed to the next frame in a recursive 

call. There is not much more to say about the function; it closely follows the recursive 

version.

struct edit_pattern {

    const uint8_t *pattern;

    const char *cigar;

};

bool next_edit_pattern(

    struct edit_iter *iter,

    struct edit_pattern *result

) {

    if (iter->frames == 0) return false;

    // Pop top frame

    struct edit_iter_frame *frame = iter->frames;

    iter->frames = frame->next;

    const uint8_t *pattern = frame->pattern_front;

    uint8_t *buffer = frame->string_front;

    char *cigar = frame->cigar_front;

    if (*pattern == '\0') {

        // No more pattern to match...

        *buffer = '\0';

        *cigar = '\0';

        edits_to_cigar(iter->cigar, iter->edits);

        result->pattern = iter->string;

        result->cigar = iter->cigar;

        free(frame);

        return true;

    } else if (frame->max_dist == 0) {

        // We can't edit anymore, so just move

        // pattern to the string and report.
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        uint32_t rest = (uint32_t)strlen((char *)pattern);

        for (uint32_t i = 0; i < rest; ++i) {

              buffer[i] = pattern[i];

              cigar[i] = 'M';

        }

        buffer[rest] = cigar[rest] = '\0';

        edits_to_cigar(iter->cigar, iter->edits);

        result->pattern = iter->string;

        result->cigar = iter->cigar;

        free(frame);

        return true;

    }

    switch (frame->op) {

        case RECURSE:

            for (const char *a = iter->alphabet; *a; a++) {

                if (!frame->at_beginning) {

                    iter->frames = push_edit_iter_frame(

                        DELETION,

                        false,

                        frame->pattern_front,

                        frame->string_front,

                        frame->cigar_front,

                        frame->max_dist,

                        iter->frames

                    );

                    iter->frames->a = *a;

                }

                iter->frames = push_edit_iter_frame(

                    MATCH,

                    false,

                    frame->pattern_front,

                    frame->string_front,

                    frame->cigar_front,
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                    frame->max_dist,

                    iter->frames

                );

                iter->frames->a = *a;

            }

            iter->frames = push_edit_iter_frame(

                INSERTION,

                false,

                frame->pattern_front,

                frame->string_front,

                frame->cigar_front,

                frame->max_dist,

                iter->frames

            );

            break;

        case INSERTION:

            *cigar = 'I';

            iter->frames = push_edit_iter_frame(

                RECURSE,

                false,

                frame->pattern_front + 1,

                frame->string_front,

                frame->cigar_front + 1,

                frame->max_dist - 1,

                iter->frames

            );

            break;

        case DELETION:

            if (frame->at_beginning) break;

            *buffer = frame->a;

            *cigar = 'D';

            iter->frames = push_edit_iter_frame(

                RECURSE,

                false,
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                frame->pattern_front,

                frame->string_front + 1,

                frame->cigar_front + 1,

                frame->max_dist - 1,

                iter->frames

            );

            break;

        case MATCH:

            if (frame->a == *pattern) {

                *buffer = frame->a;

                *cigar = 'M';

                iter->frames = push_edit_iter_frame(

                    RECURSE,

                    false,

                    frame->pattern_front + 1,

                    frame->string_front + 1,

                    frame->cigar_front + 1,

                    frame->max_dist,

                    iter->frames

                );

            } else {

                *buffer = frame->a;

                *cigar = 'M';

                iter->frames = push_edit_iter_frame(

                    RECURSE,

                    false,

                    frame->pattern_front + 1,

                    frame->string_front + 1,

                    frame->cigar_front + 1,

                    frame->max_dist - 1,

                    iter->frames

                );

            }
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            break;

    }

    free(frame);

    return next_edit_pattern(iter, result); // recurse...

}

When we are done with the iterator, we need to remove what might remain of the 

stack (in case we stop iterating before we reach the end of it) and free the buffers.

void dealloc_edit_iter(

    struct edit_iter *iter

) {

    struct edit_iter_frame *frame = iter->frames;

    while (frame) {

        struct edit_iter_frame *next = frame->next;

        free(frame);

        frame = next;

    }

    free(iter->string);

    free(iter->edits);

    free(iter->cigar);

}

Once you have created the edit cloud for a pattern, you can use any exact pattern-

matching algorithm of your choosing. The number of strings grows exponential with the 

maximum edit distance, however. We cannot get around this in general; the recursion 

works that way. But if we do the search at the same time as we explore edits, we can 

break when we know that we cannot match a pattern further. With suffix trees and BWT 

search, we can do exactly that.

�Suffix trees
If we search for approximative matches in a suffix array, we can stop our search if we 

exceed the number of edits we allow, simply by aborting the recursive search. In my 

implementation, I collect all CIGARs and roots of a matching hit when I initialize the 

iterator. It is possible to iterate one hit at a time, but the code gets substantially harder 
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to read, so I have chosen this approach. I have also decided to write the search as a 

recursive function. I do not expect that patterns are very long, so the recursion doesn’t 

get too deep. It is trivial to replace the recursion stack with an explicit stack if the 

recursion depth becomes a problem. I collect the hits in two vectors, one that holds the 

root of the tree where we have hits and one that holds the CIGAR used for this hit. I need 

to copy the CIGARs the function generates when I store the hits, and for that, I use this 

function:

uint8_t *str_copy(const uint8_t *x)

{

    uint32_t n = strlen((char *)x);

    uint8_t *copy = malloc(sizeof(uint8_t) * n + 1);

    strncpy((char *)copy, (char *)x, n);

    copy[n] = 0;

    return copy;

}

The iterator will hold the suffix tree, so we have access to it when we needed it. It 

also holds the two vectors we collect hits in. For iterating through the hits, we have a flag, 

processing_tree, that tells us if we are in the middle of traversing a tree or not. Finally, it 

holds an index that tells us which tree we are processing and a leaf iterator for doing the 

actual processing.

struct st_approx_match_iter {

    struct suffix_tree *st;

    struct pointer_vector nodes;

    struct string_vector cigars;

    bool processing_tree;

    uint32_t current_tree_index;

    struct st_leaf_iter leaf_iter;

};

When searching for the hits, we also need three string buffers—one that contains the 

operations we have so far, a pointer to the beginning of this buffer for when we need to 

construct a CIGAR from it, and then a buffer in which we construct the CIGAR.
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struct collect_nodes_data {

    struct st_approx_match_iter *iter;

    char *edits_start;

    char *edits;

    char *cigar_buffer;

};

The iterator initialization closely follows the recursion we used in the previous 

section. A difference is that we search along an edge in the suffix tree using a pointer x 

to look at the current character we are processing and another, end, that is the end of the 

edge. We also have a pointer to where we currently are in the patter, p, and a pointer to 

where we are in the edits string, edits. Then, we have a flag, at_beginning, that tells us 

if we have seen insertions or matches yet so we avoid initial deletions (similar to what we 

did earlier). Finally, we have a counter that keeps track of how many edit operations we 

have left.

The function should be relatively easy to read. We will terminate the search if we 

reach the end of the string the suffix was built from.

If we reach that point, we know we cannot continue matching. If we do not have any 

edits left, we also terminate the search. If we have reached the end of the pattern, we 

report the result by adding the current CIGAR and the current node to the vectors. If we 

reach the end of the edge we are scanning, we will continue searching from the node’s 

children. If none of the previously discussed applies, then we recurse with the different 

edit operations.

static void collect_approx_hits(

    struct collect_nodes_data *data,

    struct suffix_tree_node *v,

    bool at_beginning,

    const uint8_t *x, const uint8_t *end,

    const uint8_t *p,

    char *edits,

    int edits_left

) {

    struct suffix_tree *st = data->iter->st;

    // We need to know this one so we never move past the end

    // of the string (and access memory we shouldn't).

    const uint8_t *string_end = st->string + st->length;
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    if (x == string_end)

        return; // Do not move past the end of the buffer.

    if (edits_left < 0) {

        // We have already made too many edits.

        return;

    }

    if (*p == '\0') {

        // A hit. Save the data in the iterator.

        *edits = '\0';

        edits_to_cigar(

            data->cigar_buffer,

            data->edits_start

        );

        string_vector_append(

            &data->iter->cigars,

            str_copy((uint8_t*)data->cigar_buffer));

        pointer_vector_append(

            &data->iter->nodes, (void *)v);

        return;

    }

    if (x == end) {

        // We ran out of edge: recurse on children.

        recurse_children(

            data, v,

            at_beginning,

            edits, p, edits_left);

        return;

    }

    if (edits_left == 0 && *x != *p) {

        // We cannot do any more edits and

        // we need at least a substitution.

        return;

    }
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    // Recursion

    int match_cost = *p != *x;

    *edits = 'M';

    collect_approx_hits(

        data, v,

        false,

        x + 1, end,

        p + 1,

        edits + 1,

        edits_left - match_cost,

    );

    if (!at_beginning) {

        *edits = 'D';

        collect_approx_hits(

            data, v,

            false,

            x + 1, end,

            p, edits + 1,

            edits_left - 1

        );

    }

    *edits = 'I';

    collect_approx_hits(

        data, v,

        false,

        x, end,

        p + 1, edits + 1,

        edits_left - 1

    );

}

I have moved the code for recursing on a node’s children to a separate function that 

looks like this:

static void recurse_children(

    struct collect_nodes_data *data,

    struct suffix_tree_node *v,
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    bool at_beginning,

    char *edits,

    const uint8_t *p,

    int max_edits

) {

    struct suffix_tree_node *child = v->child;

    while (child) {

        const uint8_t *x = child->range.from;

        const uint8_t *end = child->range.to;

        collect_approx_hits(data, child, at_beginning,

                            x, end, p, edits, max_edits);

        child = child->sibling;

    }

}

When we initialize the iterator, we allocate the strings we use to build CIGARs and 

the vectors we use to collect the hits, and then we collect the hits recursively. We also 

initialize the leaf iterator. This instantiation of the leaf iterator is not used for anything—

we initialize it again in the next function—but by always keeping the iterator initialized, 

we know that the deallocation function can always release the resources in it. At the end 

of the initialization, we mark that we are not in the process of iterating through leaves—

the first step in the next function will then start from the first tree—and we set the current 

tree index to zero so the next function will start there.

void init_st_approx_iter(

    struct st_approx_match_iter *iter,

    struct suffix_tree *st,

    const uint8_t *pattern,

    int edits

) {

    iter->st = st;

    uint32_t n = strlen((char *)pattern);

    struct collect_nodes_data data;

    data.iter = iter;

    data.edits_start = data.edits = malloc(2*n + 1);

    data.cigar_buffer = malloc(2*n + 1);
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    init_pointer_vector(&iter->nodes, 10);

    init_string_vector(&iter->cigars, 10);

    collect_approx_hits(&data, st->root, true,

                        st->root->range.from, st->root->range.to,

                        pattern, data.edits, edits, 0);

    free(data.edits_start);

    free(data.cigar_buffer);

    // We only initialize this to make resource management

    // easier. We keep this iterator initialized at all

    // time except when we deallocate it and immediately initialize.

    // it again.

    init_st_leaf_iter(&iter->leaf_iter, st, st->root);

    iter->processing_tree = false;

    iter->current_tree_index = 0;

}

The information we want to report for each match is the position of the match and 

the CIGAR:

struct st_approx_match {

    uint32_t pos;

    const char *cigar;

};

When we increment the iterator, we check if we are in a leaf iteration. If not, we need 

to pick the next tree or terminate the iteration if we do not have any more trees. When 

we have a tree, we initialize the leaf vector and tag that we are now processing a tree. We 

then call the function recursively so it can handle the new situation. If we are processing 

a tree, we increment the leaf iterator. If we do have more trees, we initialize the leaf 

iterator so it can process the next tree. We call recursively to get the next tree and start 

processing it.

bool next_st_approx_match(

    struct st_approx_match_iter *iter,

    struct st_approx_match *match

) {
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    if (!iter->processing_tree) {

        if (iter->current_tree_index == iter->nodes.used) {

            return false;

        }

        dealloc_st_leaf_iter(&iter->leaf_iter);

        init_st_leaf_iter(

            &iter->leaf_iter, iter->st,

            pointer_vector_get(

                &iter->nodes,

                iter->current_tree_index

            )

        );

        iter->processing_tree = true;

        return next_st_approx_match(iter, match);

    } else {

        struct st_leaf_iter_result res;

        bool more_leaves =

            next_st_leaf(&iter->leaf_iter, &res);

        if (!more_leaves) {

            iter->processing_tree = false;

            iter->current_tree_index++;

            return next_st_approx_match(iter, match);

        } else {

            uint32_t i = iter->current_tree_index;

            match->pos = res.leaf->leaf_label;

            match->cigar = (const char *)iter->cigars.data[i];

            return true;

        }

    }

}
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The resources we need to free when the iterator is deallocated are the nodes vectors, 

the CIGAR strings and the CIGAR vector, and then the leaf iterator.

void dealloc_st_approx_iter(

    struct st_approx_match_iter *iter

) {

    dealloc_pointer_vector(&iter->nodes);

    for (uint32_t i = 0; i < iter->cigars.used; ++i) {

        free(iter->cigars.data[i]);

    }

    dealloc_string_vector(&iter->cigars);

    dealloc_st_leaf_iter(&iter->leaf_iter);

}

�The Li-Durbin algorithm
You can take the same approach with the BWT search as you can with the suffix tree—

write a recursion that explores all edits while you search until you cannot match any 

more with the edits you have available—but the Li-Durbin algorithm adds an idea to 

this. They build an additional table for the BWT search that they use to terminate a 

search early. The table gives a minimum number of edits you need to match the rest of a 

string, and if the number of edits is smaller than this, the recursion stops.

The BWT search algorithm processes a pattern from the end toward the beginning. 

If we build a suffix array from the reversed string and search in that, starting at the 

beginning of the pattern and moving toward the end, then we find out where the 

reversed pattern sits in the reversed string. It is not hard to see this. If we reversed both 

the string and the pattern and did the BWT search, then we would locate the reversed 

pattern in the reverse string. The BWT algorithm doesn’t care that it is the reversed string 

we are searching in. Processing the pattern in the beginning-to-end order will give the 

algorithm the characters in the order it would get them if we reversed the pattern and 

went from end to beginning.

We can determine if a prefix of the pattern is in the string by searching from the 

beginning against the suffix array of the reversed string. The reversed pattern prefix is in 

the reversed string if and only if the prefix is in the original string. The same applies to 

any substring of the pattern. We can determine if that substring is in the string either by 
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searching from the end to the beginning of the pattern using the original suffix array or 

by searching from the beginning to the end in suffix array of the reversed string. We are 

interested in prefixes when building the table that lets the Li-Durbin algorithm terminate 

early, so we will search from beginning to end in the reversed string.

The idea is to build a table with an entrance per index in the pattern, and at each 

index, we will record a lower bound in the number of edits we need. We do an exact 

matching search from left to right in the pattern, searching in the reversed string. Each 

time we get to a point where we do not have a match, we record that at least one edit 

is needed to match the prefix. We then start from the full range of the reversed string 

and the point we got to in the prefix and continue until we cannot match any longer. 

There, we record that at least two edits are needed. We continue like this until we have 

processed the entire pattern. Then, when we do an approximative match from right to 

left in the pattern, we always check how many edits are needed to match the rest of the 

pattern (the prefix remaining). If we do not have enough edit operations left to match the 

pattern, we stop the recursion.

To search in the reversed string, we add an O table from the suffix of the reversed 

string to our bwt_table data struct and add the suffix array to the initialization function. 

Rather than having separate tables and initializers, we take an argument for the suffix 

array of the reversed string that can be null. If it is, we do not use it, and if it is not, we 

build the O table from it.

struct bwt_table {

    struct remap_table  *remap_table;

    struct suffix_array *sa;

    uint32_t *c_table;

    uint32_t *o_table;

    uint32_t *ro_table;    // NEW TABLE

    uint32_t **ro_indices; // NEW TABLE

};

#define RO(a,i)  (bwt_table->ro_indices[i][a])

void init_bwt_table(

    struct bwt_table    *bwt_table,

    struct suffix_array *sa,
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    struct suffix_array *rsa,

    struct remap_table  *remap_table

) {

    assert(sa);

    uint32_t alphabet_size = remap_table->alphabet_size;

    bwt_table->remap_table = remap_table;

    bwt_table->sa = sa;

    // ---- COMPUTE C TABLE -----------------------------------

    uint32_t char_counts[remap_table->alphabet_size];

    memset(char_counts, 0, remap_table->alphabet_size * sizeof(uint32_t));

    for (uint32_t i = 0; i < sa->length; ++i) {

        char_counts[sa->string[i]]++;

    }

    �bwt_table->c_table = calloc(remap_table->alphabet_size, sizeof(*bwt_

table->c_table));

    for (uint32_t i = 1; i < remap_table->alphabet_size; ++i) {

        C(i) = C(i-1) + char_counts[i - 1];

    }

    // ---- COMPUTE O TABLE -----------------------------------

    // The table has indices from zero to n, so it must have size.

    // Sigma x (n + 1)

    uint32_t o_size = remap_table->alphabet_size *

         (sa->length + 1) *

        sizeof(*bwt_table->o_table);

    bwt_table->o_table = malloc(o_size);

    bwt_table->o_indices =

        malloc((sa->length + 1) *

               sizeof(*bwt_table->o_indices));

    for (uint32_t i = 0; i < sa->length + 1; ++i) {

        uint32_t *ptr = bwt_table->o_table +

                        alphabet_size * i;

        bwt_table->o_indices[i] = ptr;

    }
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    for (uint8_t a = 0; a < remap_table->alphabet_size; ++a) {

        O(a, 0) = 0;

    }

    for (uint8_t a = 0; a < remap_table->alphabet_size; ++a) {

        for (uint32_t i = 1; i <= sa->length; ++i) {

            O(a, i) = O(a, i - 1) + (bwt(sa, i - 1) == a);

        }

    }

    // NEW CODE

    if (rsa) {

        bwt_table->ro_table = malloc(o_size);

        bwt_table->ro_indices =

            malloc((sa->length + 1) *

                    sizeof(bwt_table->ro_indices));

        for (uint32_t i = 0; i < sa->length + 1; ++i) {

            bwt_table->ro_indices[i] =

              bwt_table->ro_table +

              alphabet_size * i;

        }

        for (uint8_t a = 0; a < remap_table->alphabet_size; ++a) {

            RO(a, 0) = 0;

        }

        for (uint8_t a = 0; a < remap_table->alphabet_size; ++a) {

            for (uint32_t i = 1; i <= rsa->length; ++i) {

                RO(a, i) = RO(a, i - 1) + (bwt(rsa, i - 1) == a);

            }

        }

    } else {

        bwt_table->ro_table = 0;

        bwt_table->ro_indices = 0;

    }

}
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void dealloc_bwt_table(

    struct bwt_table *bwt_table

) {

    free(bwt_table->c_table);

    free(bwt_table->o_table);

    // NEW CODE

    if (bwt_table->ro_table) free(bwt_table->ro_table);

    if (bwt_table->ro_indices) free(bwt_table->ro_indices);

}

The approximative matching iterator looks like this:

struct bwt_approx_iter {

    struct bwt_table *bwt_table;

    const uint8_t *remapped_pattern;

    uint32_t L, R, next_interval;

    struct index_vector  Ls;

    struct index_vector  Rs;

    struct string_vector cigars;

    uint32_t m;

    char *edits_buf;

    uint32_t *D_table;

};

It contains pointers to the BWT tables and the (remapped) pattern. We need these 

for the recursive search. We use the L, R, and next_interval variables when we traverse 

the interval for a hit. The intervals for hits that we find are stored in the Ls and Rs vectors 

and the corresponding CIGARs in the cigars vector. The m variable will contain the 

length of the pattern. We will use it for allocating CIGAR strings; it tells us how long they 

can maximally be. The edits_buf variable points to the beginning of the string that 

holds our edits and the D_table variable holds the D table we use to terminate searches 

early.

When we initialize our approximative match iterator, we build the table of lower 

bounds, called D in the code. We only build it if we have the suffix array for the reversed 

string, so it is also possible to search without the D table if one so wishes. Building D is 

done as described earlier. We do a normal BWT search except it is in the ro_table suffix 
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array and from the beginning to the end. We search until we get an empty interval and 

then record that we need one edit more.

In the initializer, we also handle the recursive search for hits. I have taken a different 

approach to avoid initial deletion here, just to show the alternative. We call the recursion 

after matches and insertions so we are never in the situation where we can have an initial 

deletion.

void init_bwt_approx_iter(

    struct bwt_approx_iter *iter,

    struct bwt_table       *bwt_table,

    const uint8_t          *remapped_pattern,

    int                     max_edits)

{

    // Initialize resources for the recursive search.

    iter->bwt_table = bwt_table;

    iter->remapped_pattern = remapped_pattern;

    init_index_vector(&iter->Ls, 10);

    init_index_vector(&iter->Rs, 10);

    init_string_vector(&iter->cigars, 10);

    if (bwt_table->ro_table) {

        // Build D table.

        uint32_t m = (uint32_t)strlen((char *)remapped_pattern);

        iter->D_table = malloc(m * sizeof(uint32_t));

        int min_edits = 0;

        uint32_t L = 0, R = bwt_table->sa->length;

        for (uint32_t i = 0; i < m; ++i) {

            uint8_t a = remapped_pattern[i];

            L = C(a) + RO(a, L);

            R = C(a) + RO(a, R);

            if (L >= R) {

                min_edits++;

                L = 0;

                R = bwt_table->sa->length;

            }
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            iter->D_table[i] = min_edits;

        }

    } else {

        iter->D_table = 0;

    }

    // Set up the edits buffer.

    uint32_t m = (uint32_t)strlen((char *)remapped_pattern);

    uint32_t buf_size = 2 * m + 1;

    iter->m = m;

    iter->edits_buf = malloc(buf_size + 1);

    iter->edits_buf[0] = '\0';

    // Start searching.

    uint32_t L = 0, R = bwt_table->sa->length; int i = m - 1;

    struct remap_table *remap_table = bwt_table->remap_table;

    char *edits = iter->edits_buf;

    // M-operations

    unsigned char match_a = remapped_pattern[i];

    // Iterating alphabet from 1 so

    // I don't include the sentinel.

    for (unsigned char a = 1;

            a < remap_table->alphabet_size;

            ++a) {

        uint32_t new_L = C(a) + O(a, L);

        uint32_t new_R = C(a) + O(a, R);

        int edit_cost = (a == match_a) ? 0 : 1;

        if (max_edits - edit_cost < 0) continue;

        if (new_L >= new_R) continue;

        *edits = 'M';

        rec_approx_matching(iter, new_L, new_R, i - 1,

                            1, max_edits - edit_cost,

                            edits + 1);

    }
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    // I-operation

    *edits = 'I';

    rec_approx_matching(iter, L, R, i - 1, 0,

                        max_edits - 1, edits + 1);

    // Make sure we start at the first interval.

    iter->L = m; iter->R = 0;

    iter->next_interval = 0;

}

The recursive function follows the suffix tree recursion closely. The main difference 

is in how we handle the CIGAR at a hit. We search for the pattern from the end to the 

beginning, so we build the edit operations in that order as well. To build the CIGAR for a 

match, we must first reverse the edits and then build the CIGAR. We cannot reverse the 

edits inside the edits buffer. This would affect all the recursive calls since it is a shared 

buffer. Instead, we allocate a new string, move the edits into it, reverse it, and then 

compute the CIGAR and store it in the vector for the hits.

static void rec_approx_matching(

    struct bwt_approx_iter *iter,

    uint32_t L, uint32_t R, int i,

    int edits_left,

    char *edits

) {

    struct bwt_table *bwt_table = iter->bwt_table;

    struct remap_table *remap_table = bwt_table->remap_table;

    int lower_limit =

        (i >= 0 && iter->D_table) ? iter->D_table[i] : 0;

    if (edits_left  < lower_limit) {

         return; // We can never get a match from here.

    }

    if (i < 0) { // We have a match.

        index_vector_append(&iter->Ls, L);

        index_vector_append(&iter->Rs, R);
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        // Extract the edits and reverse them.

        *edits = '\0';

        char *rev_edits =

            (char *)str_copy((uint8_t *)iter->edits_buf);

        str_inplace_rev((uint8_t*)rev_edits);

        // Build the cigar from the edits.

        char *cigar = malloc(2 * iter->m);

        edits_to_cigar(cigar, rev_edits);

        // Free the reversed edits; we do not need them now.

        free(rev_edits);

        string_vector_append(&iter->cigars, (uint8_t *)cigar);

        return; // Done down this path of matching...

    }

    uint32_t new_L;

    uint32_t new_R;

    // M-operations

    unsigned char match_a = iter->remapped_pattern[i];

    // Iterating alphabet from 1 so

    // I don't include the sentinel.

    for (unsigned char a = 1;

            a < remap_table->alphabet_size;

            ++a) {

        new_L = C(a) + O(a, L);

        new_R = C(a) + O(a, R);

        int edit_cost = (a == match_a) ? 0 : 1;

        if (edits_left - edit_cost < 0) continue;

        if (new_L >= new_R) continue;

        *edits = 'M';

        rec_approx_matching(iter, new_L, new_R, i - 1,

                            edits_left - edit_cost,

                            edits + 1);

    }
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    // I-operation

    *edits = 'I';

    rec_approx_matching(iter, L, R, i - 1,

                        edits_left - 1, edits + 1);

    // D-operation

    *edits = 'D';

    for (unsigned char a = 1;

            a < remap_table->alphabet_size;

            ++a) {

        new_L = C(a) + O(a, L);

        new_R = C(a) + O(a, R);

        if (new_L >= new_R) continue;

        rec_approx_matching(

            iter, new_L, new_R, i,

            edits_left - 1, edits + 1

        );

    }

}

The expression checks if we can use the D table. We can only do this if we haven’t 

reached the beginning of the pattern and the D table was calculated (it will only be if we 

have the suffix array of the reversed string).

int lower_limit = (i >= 0 && iter->D_table) ?

                   iter->D_table[i] : 0;

When we increment the iterator, we use the L and R variables to determine whether 

we are processing an interval or if we should move to the next interval. If R is less than L, 

the current interval is empty, and we move to the next. If there aren’t any intervals left, 

we return false to report that we have iterated over all matches. If we are in an interval, 

we extract the CIGAR and the current position in the interval (where iter->L points).

bool next_bwt_approx_match(

    struct bwt_approx_iter  *iter,

    struct bwt_approx_match *match

) {
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    if (iter->L >= iter->R) { // Done with current interval

        if (iter->next_interval >= iter->Ls.used)

            return false; // No more intervals

        // Start the next interval

        iter->L = iter->Ls.data[iter->next_interval];

        iter->R = iter->Rs.data[iter->next_interval];

        iter->next_interval++;

    }

    match->cigar =

        (char *)iter->cigars.data[iter->next_interval - 1];

    match->position = iter->bwt_table->sa->array[iter->L];

    iter->L++;

    return true;

}

When we deallocate the iterator, we deallocate all the vectors and the D table if it was 

computed.

static void free_strings(

    struct string_vector *vec

) {

    for (int i = 0; i < vec->used; i++) {

        free(string_vector_get(vec, i));

    }

}

void dealloc_bwt_approx_iter(

    struct bwt_approx_iter *iter

) {

    dealloc_index_vector(&iter->Ls);

    dealloc_index_vector(&iter->Rs);

    free_strings(&iter->cigars);

    dealloc_string_vector(&iter->cigars);

    free(iter->edits_buf);

    if (iter->D_table) free(iter->D_table);

}

Chapter 5  Approximate search



269

�Comparisons
I will not compare edit cloud–based exact search with the other algorithms in this 

chapter. Being able to build the edit cloud gives a good intuition about approximative 

searching, and using an edit cloud with an exact search is an excellent way to run tests 

of the more complex algorithms. In practice, though, the size of the edit cloud explodes 

when the pattern gets large, and in practice, it is not practical to use this approach. 

Instead, I will compare searching using the suffix tree and the BWT with and without the 

D table. The results are shown in Figure 5-2.

I have performed the experiments with a maximum edit distance of 1, 2, and 3 

(shown at the top of the figure). The pattern lengths I have used are 50, 100, and 150; 

see the x axis. What we see is that for small edit distances, there is not much difference 

between the algorithms, but that the difference in running time increases with the 

edit distance. Using the BWT approach without the D table is the slowest. Then comes 

the suffix tree approach and, finally, the BWT approach with the D table. The latter is 

dramatically faster and should be your first choice if you need to do approximative 

searches.

Of course, there is also a penalty for building the D table. It takes roughly twice 

as long to build both the O and the RO table than just the O table; see Figure 5-3. You 

only construct the tables once and might search in the millions of times, so this extra 

construction time might not be an issue.

You can find the code I used for the experiments here:

https://github.com/mailund/stralg/blob/master/performance/bwt_search.c

https://github.com/mailund/stralg/blob/master/performance/bwt_

construction.c
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Figure 5-2.  Comparison of approximative search algorithms
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Figure 5-3.  BWT construction with and without D
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CHAPTER 6

Conclusions
You have now reached the end of String Algorithms in C. In the book, I have presented 

key algorithms and data structures for searching in strings and included implementation 

details often left out of textbooks on the topic. There are many more algorithms for exact 

search and for building, manipulating, and searching in suffix trees and suffix arrays 

that I could not fit into this book, but I encourage you to find them and implement 

them. After reading this book, you should have an idea about how you can effectively 

implement such algorithms, and use iterators to make it simple for a user to use your 

implementation. You can find all the algorithms in the book, plus example code in the 

form of tests and performance measurement programs, on GitHub: https://github.

com/mailund/stralg. I hope you have enjoyed the book.

https://doi.org/10.1007/978-1-4842-5920-7_6#DOI
https://github.com/mailund/stralg
https://github.com/mailund/stralg
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APPENDIX�

Fundamental data 
structures
In several algorithms we have used fundamental data structures such as vectors and 

queues. I trust the reader to be familiar with these data structures, and rather than 

describing their implementation in the middle of the description of an algorithm, I 

have moved them to this appendix and made references to them when we encountered 

them the first time. We have needed some of the data structures for more than one type 

of elements, for example, a vector of strings and indices and a queue of pointers and 

indices. To avoid duplicated code, I have used a combination of functions and macros. 

Most of the smaller functions are most appropriately implemented as inline functions, 

so the compiler can optimize them. I have done this where I found for all short functions 

but not for longer functions. Without further ado, here are their implementations.

�Vectors
#define vector_init(vec, init_size)  {     \

  (vec)->data = malloc((init_size) * sizeof(*(vec)->data)); \

  (vec)->size = init_size;                       \

  (vec)->used = 0;                               \

}

#define dealloc_vector(vec)  {               \

  free((vec)->data);                         \

}

#define vector_append(vec, val) {            \

https://doi.org/10.1007/978-1-4842-5920-7#DOI
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  if ((vec)->used == vec->size) {            \

    (vec)->data =                            \

        realloc((vec)->data, 2 * (vec)->size \

                * sizeof(*(vec)->data));     \

    (vec)->size = 2 * (vec)->size;           \

  }                                          \

  (vec)->data[(vec)->used++] = (val);        \

}

#define vector_get(vec,idx) (vec)->data[(idx)]

#define vector_set(vec,idx,val) (vec)->data[(idx)] = (val)

struct index_vector {

    uint32_t *data;

    uint32_t size;

    uint32_t used;

};

static inline void init_index_vector(

    struct index_vector *vec,

    uint32_t init_size

) {

    vector_init(vec, init_size);

}

static inline void dealloc_index_vector(

    struct index_vector *vec

) {

    dealloc_vector(vec);

}

static inline struct index_vector *

alloc_index_vector(

    uint32_t init_size

) {

    struct index_vector *vec =

        malloc(sizeof(struct index_vector));

    init_index_vector(vec, init_size);

    return vec;

}

APPENDIX  Fundamental data structures



277

static inline void free_index_vector(

    struct index_vector *vec

) {

    dealloc_index_vector(vec);

    free(vec);

}

static inline void index_vector_append(

    struct index_vector *vec,

    uint32_t index

) {

    vector_append(vec, index);

}

static inline uint32_t

index_vector_get(

    struct index_vector *vec,

    uint32_t i

) {

    return vector_get(vec, i);

}

static inline void

index_vector_set(

    struct index_vector *vec,

    uint32_t i,

    uint32_t val

) {

    vector_set(vec, i, val);

}

void sort_index_vector(

    struct index_vector *vec

);

bool index_vector_equal(

    struct index_vector *v1,

    struct index_vector *v2

);
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void print_index_vector(

    struct index_vector *vec

);

struct string_vector {

    uint8_t **data;

    uint32_t size;

    uint32_t used;

};

static inline void init_string_vector(

    struct string_vector *vec,

    uint32_t init_size

) {

    vector_init(vec, init_size);

}

static inline void dealloc_string_vector(

    struct string_vector *vec

) {

    dealloc_vector(vec);

}

static inline struct string_vector *

alloc_string_vector(

    uint32_t init_size

) {

    struct string_vector *vec =

        malloc(sizeof(struct string_vector));

    init_string_vector(vec, init_size);

    return vec;

}

static inline void free_string_vector(

    struct string_vector *vec

) {

    dealloc_string_vector(vec);

    free(vec);

}
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static inline uint8_t *string_vector_get(

    struct string_vector *vec,

    uint32_t idx

) {

    return vector_get(vec, idx);

}

static inline void string_vector_set(

    struct string_vector *vec,

    uint32_t idx,

    uint8_t *string

) {

    vector_set(vec, idx, string);

}

static inline void string_vector_append(

    struct string_vector *vec,

    uint8_t *string

) {

    vector_append(vec, string);

}

struct pointer_vector {

    void **data;

    uint32_t size;

    uint32_t used;

};

static inline void init_pointer_vector(

    struct pointer_vector *vec,

    uint32_t init_size

) {

    vector_init(vec, init_size);

}

static inline void dealloc_pointer_vector(

    struct pointer_vector *vec

) {

    dealloc_vector(vec);

}

APPENDIX  Fundamental data structures



280

static inline struct pointer_vector *

alloc_pointer_vector(

    uint32_t init_size

) {

    struct pointer_vector *vec =

        malloc(sizeof(struct pointer_vector));

    init_pointer_vector(vec, init_size);

    return vec;

}

static inline void free_pointer_vector(

    struct pointer_vector *vec

) {

    dealloc_pointer_vector(vec);

    free(vec);

}

static inline void *pointer_vector_get(

    struct pointer_vector *vec,

    uint32_t idx

) {

    return vector_get(vec, idx);

}

static inline void pointer_vector_set(

    struct pointer_vector *vec,

    uint32_t idx,

    void *pointer

) {

    vector_set(vec, idx, pointer);

}

static inline void pointer_vector_append(

    struct pointer_vector *vec,

    uint8_t *pointer

) {

    vector_append(vec, pointer);

}
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�Lists
struct index_linked_list {

    struct index_linked_list *next;

    uint32_t data;

};

static inline struct index_linked_list *

new_index_link(

    uint32_t val,

    struct index_linked_list *tail

) {

    struct index_linked_list *link =

        malloc(sizeof(struct index_linked_list));

    link->data = val; link->next = tail;

    return link;

}

void free_index_list(

    struct index_linked_list *list

) {

    while (list) {

        struct index_linked_list *next = list->next;

        free(list);

        list = next;

    }

}

struct pointer_linked_list {

    struct pointer_linked_list *next;

    void *data;

};

static inline struct pointer_linked_list *

new_pointer_link(

    void *val,

    struct pointer_linked_list *tail

) {

APPENDIX  Fundamental data structures



282

    struct pointer_linked_list *link =

        malloc(sizeof(struct pointer_linked_list));

    link->data = val; link->next = tail;

    return link;

}

void free_pointer_list(

    struct pointer_linked_list *list

) {

    while (list) {

        struct pointer_linked_list *next = list->next;

        free(list);

        list = next;

    }

}

�Queues
#define init_queue(queue) {   \

    (queue)->front = 0;       \

    (queue)->back = 0;        \

}

#define alloc_queue(queue_type) {                     \

    queue_type *queue = malloc(sizeof(queue_type));   \

    init_queue(queue);                                \

    return queue;                                     \

}

#define enqueue(list_type, link_constructor, queue, val) { \

    list_type *link = link_constructor(val, 0);            \

    if (queue->front == 0) {                               \

        queue->front = queue->back = link;                 \

    } else {                                               \
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        queue->back->next = link;                          \

        queue->back = link;                                \

    }                                                      \

}

#define dequeue(list_type, queue) {        \

    assert(queue->front != 0);             \

    list_type *link = queue->front;        \

    if (queue->front == queue->back) {     \

        queue->front = queue->back = 0;    \

    } else {                               \

        queue->front = queue->front->next; \

    }                                      \

    free(link);                            \

}

#define dealloc_queue(list_type, queue) { \

    while (!is_queue_empty(queue))        \

        dequeue(list_type, queue);        \

}

#define free_queue(list_type, queue) { \

    dealloc_queue(list_type, queue);   \

    free(queue);                       \

}

#define is_queue_empty(queue) \

  ((queue)->front == 0 && (queue)->back == 0)

#define queue_length(list_type, queue) { \

    uint32_t i = 0;                      \

    for (list_type *link = queue->front; \

      link;                              \

      link = link->next) {               \

      i++;                               \

    }                                    \

    return i;                            \

}
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struct index_queue {

    struct index_linked_list *front;

    struct index_linked_list *back;

};

static inline void init_index_queue(

    struct index_queue *queue

) {

    init_queue(queue);

}

static inline void dealloc_index_queue(

    struct index_queue *queue

) {

    dealloc_queue(struct index_linked_list, queue);

}

static inline struct index_queue *

alloc_index_queue(void) {

    alloc_queue(struct index_queue);

}

static inline void free_index_queue(

    struct index_queue *queue

) {

    free_queue(struct index_linked_list, queue);

}

static inline bool is_index_queue_empty(

    const struct index_queue *queue

) {

    return is_queue_empty(queue);

}

static inline uint32_t

index_queue_front(

    const struct index_queue *queue

) {

    assert(queue->front != 0);

    return queue->front->data;

}
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static inline void enqueue_index(

    struct index_queue *queue,

    uint32_t index

) {

    enqueue(struct index_linked_list,

            new_index_link, queue, index);

}

static inline void dequeue_index(

    struct index_queue *queue

) {

    dequeue(struct index_linked_list, queue);

}

static inline uint32_t

index_queue_length(

    struct index_queue *queue

) {

    queue_length(struct index_linked_list, queue);

}

struct pointer_queue {

    struct pointer_linked_list *front;

    struct pointer_linked_list *back;

};

static inline void init_pointer_queue(

    struct pointer_queue *queue

) {

    init_queue(queue);

}

static inline void dealloc_pointer_queue(

    struct pointer_queue *queue

) {

    dealloc_queue(struct pointer_linked_list, queue);

}

static inline struct pointer_queue *

alloc_pointer_queue(void)
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{

    alloc_queue(struct pointer_queue);

}

static inline void free_pointer_queue(

    struct pointer_queue *queue

) {

    free_queue(struct pointer_linked_list, queue);

}

static inline bool is_pointer_queue_empty(

    const struct pointer_queue *queue

) {

    return is_queue_empty(queue);

}

static inline void *pointer_queue_front(

    const struct pointer_queue *queue

) {

    assert(queue->front != 0);

    return queue->front->data;

}

static inline void enqueue_pointer(

    struct pointer_queue *queue, void *pointer

) {

    enqueue(struct pointer_linked_list,

            new_pointer_link, queue, pointer);

}

static inline void dequeue_pointer(

    struct pointer_queue *queue

) {

    dequeue(struct pointer_linked_list, queue);

}

static inline uint32_t pointer_queue_length(

    struct pointer_queue *queue

) {

    queue_length(struct pointer_linked_list, queue);

}
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array computations, 137
branch lengths, 102
constructing, 101–104
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M
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main function, 113
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naive_insert(), 120
path of suffix links, 121
prefix matching, 111
running time, 120
slow scan (scan 2) time usage, 123
suffix i, 113
suffix links, 111
suffix_search(), 113, 114
terminology and notation, 110
uniqueness of suffix links, 122

McCreight’s suffix tree construction 
algorithm, 225

Memory-efficient algorithm, 225
Memory reduction

allocating and deallocating  
buckets, 194

bit array, 193
bit array macros, 195
bool array, 194
buckets’ beginnings and ends, 195
find_buckets_beginnings(), 195
input string, 205
reduced string, 196
reduce_SA() function, 198
sort_SA(), 204
suffix array, 193, 194
UNDEFINED, 203

merge_suffix_arrays() function, 154
Merging arrays, 160–164
m12 variable, 150

N, O
Naïve algorithm, exact search, 12–14
Naïve construction algorithm

edge splitting, 99
find_outgoing_edge() function, 96

insert_child(), 94
naive_insert(), 94, 99
naive_suffix_tree() function, 93
out_letter(), 98
remove child, 100
scanning, 96
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Parent pointer, 89
Pattern, 11
pattern_front pointer, 238
Pattern-matching  

algorithm, 250
Pivot element, 143
pointer_queue data  

structure, 75
pointer_queue_front(), 75
pool variable, 90
Prefix tree, 58
Proper prefix, 2

Q
qsort() function, 143
Queues, 282–286

McCreight’s algorithm (cont.)

INDEX



291

R
radix_sort() function, 158
radix_sort_3(), 156, 158
range_length(), 89
RAWKEY(), 153
Reduced suffix array, 194, 203
reduce_SA() function, 198
Remap function, 157
remap_lex3() function, 154
remap_LMS(), 203
Remapping, 176–179
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representation, 88–93
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representation, 61
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