String
Algorithms in C

Efficient Text Representation and Search

Thomas Mailund

ApPress

String Algorithms in C

Efficient Text Representation
and Search

Thomas Mailund

Apress’

String Algorithms in C: Efficient Text Representation and Search

Thomas Mailund
Aarhus N, Denmark

ISBN-13 (pbk): 978-1-4842-5919-1 ISBN-13 (electronic): 978-1-4842-5920-7
https://doi.org/10.1007/978-1-4842-5920-7

Copyright © 2020 by Thomas Mailund

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Jonathan J Castellon on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484259191. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5920-7

Table of Contents

About the AUtROKccismmimmminmienssnss s vii
About the Technical REVIEWETccususssassssnsssansssassssssssasssssssssssssasssssssssnsssassssasssansss ix
Chapter 1: Introduction..........ccccmiiissemmmnnssssnmmnssssnmmmsssssmesssssssssss s 1
Notation and CONVENTIONS ... s 1
L= o] TTer= TN 10 L0 RS 2
COUE CONVENTIONS......ccerrrerrsueeeseressssese e se s s se s se b se e ne e 3
Reporting a sequence Of reSUIS ... s 5
Chapter 2: Classical algorithms for exact searchccocccemmmmnnrrinnsssssssssnnneenn. 11
NaIVE AIGOFTtNM......covieieccceee e e e e a s 12
Border array and DOrder SBArCH...........cocverenesrsre s 14
Borders and DOFAEr @rraysccvvrierieninnin s s 15
Exact search using DOFAErS.........occvviieriinin e 18
KNUEh=-MOFTIS-Pratl.........cco i 21
Boyer-Moore=HOrSPOOL.........ccoviiiciin s e s r e e 28
Extended rightmost table.........cccoeerrcnne s 35
BOYEI-MIOOTEcecereeerreerisese e s e r e e e R p e e 38
JUMP TUIE ONE ..ottt et e e s e e e s e e e b b e e e nn 40
Second JUMP 1DIE.........cceeeceerer e ————————— 53
Combining the JUMP FUIES ..o e 55
ANO-COTASICK. .. cerveerrrsirrrreserre s s e b e e e R e b e e e e e R e nr s 58
TTIES ctteerrees e st s b e R A e e R A g e R e R A e e e e R e R e e nrnRe e 58
{00100 T T3S 83

iii

TABLE OF CONTENTS

Chapter 3: SUFfiX treeS....cccuirsmnrrssssnnmrssssnnnsessssnnnsessssnsnsessssnnsssssssnnnsssssnnnnessssnnnnssnss 87
Compacted trie and suffix repreSentation............ccccvreevrecrnsnniesre s 88
Naive construction algorithm...........coccorecrece s 93
Suffix trees and the SA @and LCP @rrayscoveverererenerensesesesesesesesseseseses s sessssessssessssesenns 101

Constructing the SA @nd LOP @rrays.........ccoccvreerersesesesmsensesessesessssesessesessssessssesessssssssssssenes 101
Constructing the suffix tree from the SA and LCP arrayscooveevnvererieserencsensesesesesennes 104
MCcCreight’s @lgorithm.........ccoeciiececrr s 110
Searching With SUFFIX TrEESccvvreriirirrrre e e 123
LT] L0 OSSPSR 125
{01110 LT3R 131

Chapter 4: SUFfiX arrayS....cccussemmmmsssssnnmmssssnnsesssssnnsesssssnssssssssnnnssssssnnssssssnnnnsssssnnnnss 139

ConStructing SUFFIX @ITAYS.....c.cocieierrcerere e 142
Trivial constructions—Comparison-based SOrtiNg........cccccvvierrenerinsernsennnnse s 142
The SKeW algorithm..........ccoiiicriri e s 145

The SA-IS algOrthm ..o ——————————— 167
REMAPPING ..t e e e bbb e R e ns 176
Implementing the algorithm ... ——————— 179
MEMOTY rEAUCLIONcoceerecieircre e s a e 193

Searching USING SUFFIX @ITAYScccvveererserereserrsesese e e 206
3T L= T T 206
Burrows-Wheeler transform—based SEarchccoveroerrecrncnnsesrese e 214

Getting the longest common prefix (LCP) @rraycveernseresenesssesessesesssessssesessssessssesessesenns 221

COMPANISONS ...cuereertecererere et s st s e s e s s b e e e e b s e e e e e R s e e e e e e Re s Re e e e e e e Re b et e e naennes 225

Chapter 5: Approximate Search.......ccccccmrmmmmmmmsssssnmmmmmmms s —————————— 2D

Local alignment and CIGAR NOTAtiON..........cccoevrererveriernsensenesesessessesessssessessessessssessessessssensensens 235
Brute force approach ... 238

Building an edit CloUd..........ccucrieriinsn e e 238
B0 (T 250
The Li-Durbin @algorithm...........ccoeorcrrcsreresec s s snenens 258
COMPANISONS ...cueruerieiirire et st s d s b e e e e R e e e e e R e b e e et e Re b et e e e R nns 269

iv

TABLE OF CONTENTS

Chapter 6: CONCIUSIONS.......cucccumimsssnnnnmmsssnnsmsssssnnnsssssnnsesssssnnnssssssnnssssssnnnnssssnnnnnss 273
Appendix: Fundamental data structuresccccunnmeemmmnmnnnnnnnsssssssnn————" 275
L1 (0] £ OSSOSO 275
LSS ueutitrere st r e E e R e e e e e Re e e e e e nae e 281
QUEBUES ...t eereres s e e ses s e e e e ss e e e sesae e e ne e e e se e e e e e e Rese e e eesaeae e e e eenasae e e e senanaeneaes 282
INAEX.eeiiiiisnnnnnrisssnnnnnsssssnnnesssssnnnessssnnnneasssnnneeasssnnnnesssannneesssnnnneesssnnnnessssnnnnessssnnnnesss 287

About the Author

Thomas Mailund is an associate professor in bioinformatics at Aarhus University,
Denmark. He has a background in math and computer science. For the past decade,

his main focus has been on genetics and evolutionary studies, particularly comparative
genomics, speciation, and gene flow between emerging species. He has published R
Data Science Quick Reference, The Joys of Hashing, Domain-Specific Languages in R,
Beginning Data Science in R, Functional Programming in R, and Metaprogramming in R,
all from Apress, as well as other books.

vii

About the Technical Reviewer

Jason Whitehorn is an experienced entrepreneur and
software developer and has helped many companies
automate and enhance their business solutions through data
synchronization, SaaS architecture, and machine learning.
Jason obtained his Bachelor of Science in Computer Science
from Arkansas State University, but he traces his passion

for development back many years before then, having first
taught himself to program BASIC on his family’s computer
while still in middle school.

When he’s not mentoring and helping his team at work,
writing, or pursuing one of his many side projects, Jason enjoys spending time with his
wife and four children and living in the Tulsa, Oklahoma region. More information about
Jason can be found on his website: https://jason.whitehorn.us.

ix

https://jason.whitehorn.us

CHAPTER 1

Introduction

Algorithms operating on strings are fundamental to many computer programs, and in
particular searching for one string in another is the core of many algorithms. An example
is searching for a word in a text document, where we want to know everywhere it occurs.
This search can be exact, meaning that we are looking for the positions where the word
occurs verbatim, or approximative, where we allow for some spelling mistakes.

This book will teach you fundamental algorithms and data structures for exact and
approximative search. The goal of the book is not to cover the theory behind the material
in great detail. However, we will see theoretical considerations where relevant. The
purpose of the book is to give you examples of how the algorithms can be implemented.
For every algorithm and data structure in the book, I will present working C code and
nowhere will T use pseudocode. When I argue for the correctness and running time of
algorithms, I do so intentionally informal. I aim at giving you an idea about why the
algorithms solve a specific problem in a given time, but I will not mathematically prove so.

You can copy all the algorithms and data structures in this book from the pages,
but they are also available in a library on GitHub: https://github.com/mailund/
stralg. You can download and link against the library or copy snippets of code into
your own projects. On GitHub you can also find all the programs I have used for time
measurement experiments so you can compare the algorithm’s performance on your

own machine and in your own runtime environment.

Notation and conventions

Unless otherwise stated, we use X, y, and p to refer to strings and i, j, k, [, and h to denote
indices. We use ¢ to denote the empty string. We use a, b, and c for single characters. As
in C, we do not distinguish between strings and pointers to a sequence of characters.
Since the book is about algorithms in C, the notation we use matches that which is

used for strings, pointers, and arrays in C. Arrays and strings are indexed from zero,

© Thomas Mailund 2020
T. Mailund, String Algorithms in C, https://doi.org/10.1007/978-1-4842-5920-7_1

https://doi.org/10.1007/978-1-4842-5920-7_1#DOI
https://github.com/mailund/stralg
https://github.com/mailund/stralg

CHAPTER 1 INTRODUCTION

that is, A[0] is the first value in array A (and x[0] is the first character in string x). The ith
character in a string is at index i — 1.

When we refer to a substring, we define it using two indices, i and j, i < j, and we
write x[i, j] for the substring. The first index is included and the second is not, that s,
x[i, jl = x[i]x[i + 1] - - - x[j — 1]. If a string has length 7, then the substring x[0, n] is the full
string. If we have a character a and a string x, then ax denotes the string that has a as its
first character and is then followed by the string x. We use a* to denote a sequence of as
of length k. The string a® x has a as its first three characters and is then followed by x.

A substring that starts at index 0, x[0, i], is a prefix of the string, and it is a proper prefix
if it is neither the empty string x[0, 0] = e nor the full string x[0, n]. A substring that ends
in n, x[i, n], is a suffix, and it is a proper suffix if it is neither the empty string nor the full
string. We will sometimes use x[i, | for this suffix.

We use $ to denote a sentinel in a string, that is, it is a character that is not found in
the rest of the string. It is typically placed at the end of the string. The zero-terminated
C strings have the zero byte as their termination sentinel, and unless otherwise stated,
$ refers to that. All C strings x have a zero sentinel at index n if the string has length n,

x =x[0]x[1] - - - x[n — 1]0. For some algorithms, the sentinel is essential; in others, it is not.
We will leave it out of the notation when a sentinel isn’t needed for an algorithm, but
naturally include the sentinel when it is necessary.

Graphical notation

Most data structures and algorithmic ideas are simpler to grasp if we use drawings to
capture the structure of strings rather than textual notation. Because of this, I have chosen to
provide more figures in this book than you will typically see in a book on algorithms. I hope
you will appreciate it. If there is anything you find unclear about an algorithm, I suggest you
try to draw key strings yourself and work out the properties you have problems with.

In figures, we represent strings as rectangles. We show indices into a string as arrows
pointing to the index in the string; see Figure 1-1. In this notation, we do not distinguish
between pointers and indices. If a variable is an index j and it points into x, then what
it points to is x[j], naturally. If the variable is a pointer, y, then what it points to is *y.
Whether we are working with pointers or indices should be clear from the context. It will
undoubtedly be clear from the C implementations. We represent substrings by boxes of
a different color inside the original string-rectangle. If we specify the indices defining the
substring, we include their start and stop index (where the stop index points one after
the end of the substring).

2

CHAPTER 1 INTRODUCTION

’

‘//J

X sl

L7220 2 0

XLl
Figure 1-1. Graphical string notation

When we compare two strings, we imagine that we align the boxes representing
them, so the parts we are comparing are on top of each other. For example, if we
compare the character at indexj in a string x with the character at index i in another
string p, then we draw a box representing x over a box representing p, and we draw
pointers for the two indices; see Figure 1-2. Since we are comparing the characters in the
two indices, the two pointers are pointing at each other. Conceptually, we imagine that p
is aligned under x starting at position j — i.

i j

N/

P22 27 7 2 2 2 2 L A 2 i L
—

\

L

Figure 1-2. Graphical notation for comparing indices in two different strings

Code conventions

There is a trade-off between long variables and type names and then the line within a
book. In many cases, I have had to use an indentation that you might not be used to. In
function prototypes and function definitions, I will generally write with one variable per
line, indented under the function return type and name, for example:

void compute z array(
const unsigned char *x,
uint32_t n,
uint32_t *Z

)

CHAPTER 1 INTRODUCTION

void compute reverse z array(
const unsigned char *x,
uint32_t nm,
uint32_t *Z

)

If a return type name is long, I will put it on a separate line:

static inline uint32_t
edge length(struct suffix_tree node *n) {
return range length(n->range);
}
struct suffix tree *
mccreight suffix_tree(
const unsigned char *string
)
struct suffix tree *
lcp_suffix_tree(
const unsigned char *string,
uint32_t *sa,
uint32_t *1cp
)
struct suffix tree node *
st _search(
struct suffix_tree *st,
const char *pattern

)5

I make an exception for functions that take no arguments, that is, have void as their

argument type.

There are many places where an algorithm needs to use characters to look up in

arrays. If you use the conventional C string type, char *, then the character can be either

signed or unsigned, depending on your compiler, and you have to cast the type to avoid

warnings. A couple of places we also have to make assumptions about the alphabet

size. Because of this, I use arrays of uint8 t with a zero termination sentinel as strings.

On practically all platforms, char is 8 bits so this type is, for all intents and purposes, C

strings. We are just guaranteed that we can use it unsigned and that the alphabet size

4

CHAPTER 1 INTRODUCTION

is 256. Occasionally it is necessary to cast a uint8 t * string to a C string. A direct cast,
(char *)x, will most likely work unless you are on an exotic platform. If it doesn’t, you
have to build a char buffer and copy characters byte by byte. It has to be a very exotic
platform if you cannot store 8 bits in a char! Because I assume that you can always cast to
char *, Twill use the C library string functions (with a cast) when this is appropriate. It is
a small matter to write your own if it is necessary.

I'will use uint32_t for indices, assuming that strings are short enough that we
can index them with 32 bits. You can change it as needed, but I find it a good trade-
off between likely lengths of strings and the space I need for data structures. I work in
bioinformatics, so hundreds of millions of characters are usually the longest I encounter.

Reporting a sequence of results

In search algorithms, we report each occurrence of a pattern. This sounds
straightforward, but there is a design choice in how we report the occurrences. Consider
the following algorithm. It is the Boyer-Moore-Horspool (BMH) algorithm that you

will see in the next chapter. It takes a string, x, and a pattern, p, and searches for all
occurrences of p in x. First, it does some preprocessing, and then it searches. This is a
general pattern for the algorithms in the next chapter. In the search, when it has found
an occurrence of p, it reports the position by calling the REPORT(j) function.

void bmh search(
const uint8_t *x,
const uint8_t *p
) {
uint32_t n
uint32_t m

strlen((char *)x);
strlen((char *)p);

// Preprocessing
int jump table[256];

for (int k = 0; k < 256; k++) {
jump_table[k]

m;

}

for (int k = 0; k < m - 1; k++) {
jump_table[p[k]] =m - k - 1;

CHAPTER 1 INTRODUCTION

solution. Often, however, we need different reporting functions for separate calls to the
search function. Or we need the report function to collect data for further processing
(and preferably not use global variables). We need some handle to choose different
report functions and to provide them with data.

search function and call the report function with the data when we find an occurrence.
In the following implementation, I am assuming we have defined the function type for
reporting, report_function, and the type for data we can add to it, report_function_
data, somewhere outside of the search function.

// Searching
for (uint32_t j = 0;
j<n-m+1;

j += jump_table[x[j + m - 1]]) {

int i =m - 1,

while (i > 0 88 p[i] == x[j + i])

if (i == 0 && p[o0] == x[j]) {
REPORT(3);

If a global report function is all you need in your program, then this is an excellent

One approach is using callbacks: Provide a report function and data argument to the

void bmh_search_callback(

) {

const uint8_t *x,

const uint8_t *p,
report_function report,
report function data data

uint32_t n = strlen((char *)x);
uint32_t = strlen((char *)p);

// Preprocessing
uint32_t jump table[256];

CHAPTER 1 INTRODUCTION

for (int k = 0; k < 256; k++) {
jump_table[k]

m;

}

for (int k = 0; k < m - 1; k++) {
jump_table[p[k]] =m - k - 1;

}

// Searching
for (uint32_t j = o;
j<n-m+1;
j += jump_table[x[j + m - 1]]) {

inti=m- 1;

while (i > 0 8% p[i] == x[] + i])
__i;

if (i == 0 8& p[o] == x[j]) {
report(j, data);

Callback functions have their uses, especially to handle events in interactive
programs, but also some substantial drawbacks. To use them, you have to split the
control flow of your program into different functions which hurts readability. Especially
if you need to handle nested loops, for example, iterate over all nodes in a tree and for
each node iterate over the leaves in another tree where for each node-leaf pair you find
occurrences... (the example here is made up, but there are plenty of real algorithms with
nested loops, and we will see some later in the book).

We can get the control flow back to the calling function using the iterator design
pattern. We define an iterator structure that holds information about the loop state,
and we provide functions for setting it up, progressing to the next point in the loop, and
reporting a match and then a function for freeing resources once the iterator is done.

The general pattern for using an iterator looks like this:

struct iterator iter;
struct match match;
iter init(&iter, data);

CHAPTER 1 INTRODUCTION

while (next func(8iter, &match)) {
// Process occurrence

}
iter dealloc(&iter);

The iterator structure contains the loop information. That means it must save the
preprocessing data from when we create it and information about how to resume the
loop after each time it is suspended. To report occurrences, it takes a “match” structure
through which it can inform the caller about where matches occur. The iterator is
initialized with data that determines what it should loop over. The loop is handled
using a “next” function that returns true if there is another match (and if it does it will
have filled out match). If there are no more matches, and the loop terminates, then it
returns false. The iterator might contain allocated resources, so there should always be a
function for freeing those.

In an iterator for the BMH, we would keep the string, pattern, and table we build in
the preprocessing.

struct bmh_match_iter {
const uint8_t *x; uint32_t n;
const uint8_t *p; uint32_t m;
int jump table[256];
uint32_t j;

b

struct match {
uint32_t pos;

};
We put the preprocessing in the iterator initialization function

void init bmh match iter(
struct bmh match_iter *iter,
const uint8_t *x, uint32_t n,
const uint8_t *p, uint32_t m

) 1
// Preprocessing
iter->j = 0;
iter->x = x; iter-»>n = n;
iter->p = p; iter->m = m;

CHAPTER 1

for (int k = 0; k < 256; k++) {
iter->jump_table[k] = m;

}

for (int k = 0; k < m - 1; k++) {
iter->jump_table[p[k]] =m - k - 1;

and in the next function we do the search

bool next bmh match(
struct bmh_match_iter *iter,
struct match *match
) {
const uint8_t *x = iter->x;
const uint8_t *p = iter->p;
uint32_t n = iter-»>n;
uint32_t m = iter->m;
int *jump_table = iter->jump_table;

// Searching

for (uint32_t j = iter->j;
j<n-m+1;
j += jump_table[x[j + m - 1]]) {

int i =m - 1,

while (i > 0 && p[i] == x[j + i]) {
i--5

}

if (i == 0 8& p[o] == x[j]) {
match->pos = j;
iter->j = j +

jump_table[x[j + m - 1]];

return true;

}

return false;

INTRODUCTION

CHAPTER 1 INTRODUCTION

We set up the loop with information from the iterator and search from there. If we
find an occurrence, we store the new loop information in the iterator and the match
information in the match structure and return true. If we reach the end of the loop, we
report false.

We have not allocated any resources when we initialized the iterator, so we do not
need to free anything.

void dealloc bmh match iter(
struct bmh _match_iter *iter

) 1
// Nothing to do here

Since the deallocation function doesn’t do anything, we could leave it out. Still,
consistency in the use of iterators helps avoid problems. Plus, should we at some point
add resources to the iterator, then it is easier to update one function than change all the
places in the code that should now call a deallocation function.

Iterators complicate the implementation of algorithms, especially if they are
recursive and the iterator needs to keep track of a stack. Still, they greatly simplify the
user interface to your algorithms, which makes it worthwhile to spend a little extra time
implementing them. In this book, I will use iterators throughout.

10

CHAPTER 2

Classical algorithms
for exact search

We kick the book off by looking at classical algorithms for exact search, that is, finding
positions in a string where a pattern string matches precisely. This problem is so
fundamental that it received much attention in the very early days of computing, and by
now, there are tens if not hundreds of approaches. In this chapter, we see a few classics.

Recall that we use iterators whenever we have an algorithm that loops over results
that should be reported. All iterators must be initialized, and the resources they hold must
be deallocated when we no longer need the iterator. When we loop, we have a function
that returns true when there is something to report and false when the loop is done. The
values the iterator reports are put in a structure that we pass along to the function that
iterates to the next value to report. For the algorithms in this chapter, we initialize the
iterators with the string in which we search, the pattern we search for, and the lengths of
the two strings. Iterating over all occurrences of the pattern follows this structure:

struct iterator iter;
struct match match;
iter init(iter, x, strlen(x), p, strlen(p));
while (next func(&iter, &match)) {
// Process occurrence

}
iter dealloc(&iter);

When we report an occurrence, we get the position of the match, so the structure the
iterator use for reporting is this:

struct match {
uint32_t pos;

s

11
© Thomas Mailund 2020

T. Mailund, String Algorithms in C, https://doi.org/10.1007/978-1-4842-5920-7_2

https://doi.org/10.1007/978-1-4842-5920-7_2#DOI

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

Naive algorithm

The simplest way imaginable for exact search is to iteratively move through the string

x, with an index j that conceptually runs the pattern p along x, and at each index start
matching the pattern against the string using another index, i (see Figure 2-1). The
algorithm has two loops, one that iterates j through x and one that iterates i through

p, matching x[i + j] against p[i] along the way. We run the inner loop until we see a
mismatch or until we reach the end of the pattern. In the former case, we move p one
step forward and try matching again. In the second case, we report an occurrence at
position j and then increment the index so we can start matching at the next position. We
stop the outer loop when index j is greater than n — m. If it is, there isn’t room for a match
that doesn’t run past the end of x.

Jtt

N/

P

\

L

(@I

Figure 2-1. Exact search with the naive approach

We terminate the comparison of x[i + j] and p[i] when we see a mismatch, so in the best
case, where the first character in p never matches a character in x, the algorithm runs in
time O(n) where n is the length of x. In the worst case, we match all the way to the end of p
at each position, and in that case, the running time is O(nm) where m is the length of p.

To implement the algorithm using an iterator, the iterator needs to remember
the string to search in and the pattern to search for—so we do not need to pass these
along each time we increment the iterator with potentials for errors if we use the wrong
strings—and we keep track of how far into the string we have searched.

struct naive match iter {
const uint8_t *x; uint32_t n;
const uint8_t *p; uint32_t m;
uint32_t current_index;

};
12

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

When we initialize the iterator, we remember the two strings and set the current
index to zero—before we start iterating we are at the beginning of the string.

void init naive match iter(
struct naive match iter *iter,
const uint8_t *x, uint32_t n,
const uint8_t *p, uint32_t m

) {
iter->x = x; iter-»n
iter->p = p; iter->m

1]
s S
e e

iter->current_index = 0;
iter->current_index = 0;

When we increment the iterator, we follow the algorithm as described earlier except
that we start the outer loop at the index saved in the iterator. We search from this index in
an outer loop, and at each new index, we try to match the pattern with an inner loop. We
break the inner loop if we see a mismatching character, and if the inner loop reaches the
end, we have a match and report it. Before we return, we set the iterator index and store
the matching position in the match structure.

bool next naive match(
struct naive match_iter *iter,
struct match *match

) {
uint32_t n = iter->n, m = iter->m;
const uint8_t *x = iter->x;
const uint8_t *p = iter->p;

if (m > n) return false;

if (m == 0) return false;

for (uint32_t j = iter->current_index; j <=n - m; j++) {
uint32_t i = 0;
while (i < m & x[j+i] == p[i]) {
i++;

13

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

if (i ==m) {
iter->current_index = j + 1;
match->pos = j;
return true;

}

return false;

The code

if (m > n) return false;
if (m == 0) return false;

makes sure that it is possible to match the pattern at all and that the pattern isn’t
empty. This is something we could also test when we initialize the iterator. However, we
do not have a way of reporting that we do not have a possible match there, so we put the
test in the “next” function.

We do not allocate any resources when we initialize the iterator, so we do not need to
do anything when deallocating it either. We still need the deallocator function, however,
so we always use the same design pattern when we use iterators. To make sure that if we,
at some point in the future, need to free something that we put in an iterator, then all
users of the iterator (should) have added code for this.

void dealloc naive match iter(
struct naive match_iter *iter

) 1
// Nothing to do here...

Border array and border search

It is possible to get O(n + m) running times for both best and worst case, and several
algorithms exist for this. We will see several in the following sections. The first one is
based on the so-called borders of strings.

14

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

Borders and border arrays

A border of a string is any substring that is both a prefix and a suffix of the said string; see
Figure 2-2. For example, the string x = ababa has borders aba, a, and the empty string.
There is always at least one border per string—the empty string. It is possible to list all
borders by brute force. For each index i in x, test if the substrings x[0, i] matches the
string x[n — i, n]. This approach makes time O(n) per comparison, and we need it for all
possible borders which means that we end up with a running time of O(rn?). It is possible
to compute the longest border in linear time, as we shall see. The way we compute it
shows that sometimes more is less; we will compute more than the length of the longest
suffix. What we will compute is the border array. This is an array that for each index i
holds the length of the longest border of string x[0, i]. Consider x = ababa. For index 0 we
have string a which has border a, so the first element in the border array is 1. The string
ab only has the trivial, nonempty border, so the border array value is zero. The next string
is aba with border a, so we get 1 again. Now abab has borders ab, so the border array
holds 2. The full string x = ababa with border aba so its border array looks like
ba=[1,0,1,2,3].

PR/ /2222222 e 2 22 L

U
Figure 2-2. A string with three borders

QHATETAA

We can make the following observation about borders and border arrays: The longest
border of x[0, 7] is either the empty string or an extension of a border of x[0, i — 1]. If the
letter at x[i] is a, the border of x[0, i] is some string y followed by a. The y string must be
both at the beginning and end of x[0, i — 1] (see Figure 2-3), so it is a border of x[0, i — 1].
The longest border for x[0, i] is the longest border of x[0, i — 1] that is followed by a (which
may be the empty border if the string x begins with a) or the empty border if there is no
border we can extend with a.

Another observation is that if you have two borders to a string, then the shorter of the
two is a border of the longer; see Figure 2-4.

15

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

The two observations combined gives us an approach to computing the border
array. The first string has the empty border as its only border, and after that, we can use
the border array up to i — 1 to compute the length of the longest border of x[0, i]. We start
by testing if we can extend the longest border with x[i], and if so, ba[i] =ba[i — 1] + 1.
Otherwise, we look at the second-longest border, which must be the longest border of
x[0, ba[i — 1]]. If the character after this border is x[i], then ba[i] = ba[ba[i — 1]] + 1.

We continue this way until we have found a border we can extend (see Figure 2-5). If we
reach the empty border, we have a special case—either we can extend the empty border
because x[0] = x[i], in which case ba[i] = 1, or we cannot extend the border because

x[0] # x[i], in which case ba[i] = 0.

X iisdninissiniscianiiing ©

Figure 2-3. Extending a border

X | nnnmsisiasiiiidisisiiiiaaniasinsiiiiikasiissiinns
I | I |
I |

Figure 2-4. A shorter border is always a border of a longer border

16

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

balbalt-111
balbalbali-1111 j bali-11 L

A

Figure 2-5. Searching for the longest border we can extend with letter a

An implementation of the border array construction algorithm can look like this:

ba[0] = 0;
for (uint32_t i = 1; i < m; ++i) {
uint32_t b = ba[i - 1];
while (b > 0 88 x[i] != x[b])
b = ba[b - 1];
ba[i] = (x[i] == x[b]) ? b + 1 : 0;
}

The running time is m for a string x of length m. It is straightforward to see that
the outer loop only runs m iterations but perhaps less easy to see that the inner loop
is bounded by m iterations in total. But observe that in the outer loop, we at most
increment b by one per iteration. We can assign b + 1 to ba[i] in the last statement in the
inner loop and then get that value in the first line of the next iteration, but at no other
point do we increment a value. In the inner loop, we always decrease b—when we get the
border of b — 1, we always get a smaller value than b. We don’t allow b to go below zero in
the inner loop, so the total number of iterations of that loop is bounded by how much the
outer loop increase b. That is at most one per iteration, so we can decrement b by at most
m, and therefore the total number of iterations of the inner loop is bounded by O(m).

17

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

Exact search using borders

The reason we built the border array was to do an exact search, so how does the array
help us? Imagine we build a string consisting of the pattern we search for, p, followed
by the string we search in, x, separated by a sentinel, $ character not found elsewhere in
the two strings, y = p$x. The sentinel ensures that all borders are less than the length of
p, m, and anywhere we have a border of length m, we must have an occurrence of p (see
Figure 2-6). In the figure, the indices are into the p$x string and not into x, but you can
remap this by subtracting m + 1. The start index of the match is i — m + 1 rather than the
more natural i — m because index i is at the end of the match and not one past it.

We can construct the string p$x in linear time and compute the border array—and
report occurrences in the process—in linear time, O(m + n). You don’t need to create
the concatenated string, though. You can build the border array for p and use that when
computing the border array for x. You pretend that p is prepended to x. When you do
this, the sentinel between p and x is the null-termination sentinel in the C-string p.

P X P

%M%%%ﬂ%%%ﬂ%:ﬂ;ZZ}ZZZ%Z3&%}%?23?12&6MMW%M@MMM%%252?2??22?&?627&5&?2222?2??%?223?322122%%22

/4

L-m+1 L balll=wm

Figure 2-6. Searching using a border array

An iterator that searches a string with this algorithm must contain the border
array of p, the index into x we have reached, and the b variable from the border array

construction algorithm.

struct border match iter {
const uint8_t *x; uint32_t n;
const uint8_t *p; uint32_t m;
uint32_t *border array;
uint32_t i; uint32_t b;

}s

18

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

When we initialize the iterator, we set its index to zero. That, after all, is where we
start searching in x. We also set the iterator’s b variable to zero. We imagine that we start
the search after a sentinel, so the longest border at the start index for x has length zero.
We then allocate and compute the border array.

void init border match iter(
struct border match_iter *iter,
const uint8_t *x, uint32_t n,
const uint8_t *p, uint32_t m

) {
iter->x = x; iter-»n
iter->p = p; iter->m
iter-»>i = iter->b = 0;

n;

m;

uint32_t *ba = malloc(m * sizeof(uint32_t));
compute_border array(p, m, ba);
iter->border array = ba;

Since we allocated the border array when we initialized the iterator, we need to free it
again when we deallocate it.

void dealloc border match_iter(
struct border match iter *iter

) {

free(iter->border array);

A third of my implementation for incrementing the following iterator is setting up
aliases for the variables in the iterator, so I don’t have to write iter->b and iter->m
for variables b and m, respectively. Other than that, there are the tests for whether it is
possible at all to have a match, that we also saw in the previous section, and then there is
the border array construction algorithm again, except that we never update an array but
instead report when we get a border of length m.

19

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

bool next border match(
struct border match_iter *iter,
struct match *match

) {
const uint8_t *x = iter->x;
const uint8_t *p = iter->p;
uint32_t *ba = iter->border array;

uint32_t b = iter->b;
uint32_t m = iter->m;
uint32_t n = iter-»>n;

if (m > n) return false;
if (m == 0) return false;

for (uint32_t i = iter->i; i < iter-»n; ++i) {
while (b > 0 &% x[i] != p[b])

b = ba[b - 1];
b = (x[i] == p[b]) ? b + 1 : 0;
if (b ==m) {

iter->i = 1 + 1;

iter->b = b;

match->pos = i - m + 1;
return true;

}

return false;

When we report an occurrence, we naturally set the position we matched in the
report structure, and we remember the border and index positions.

20

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

Knuth-Morris-Pratt

The Knuth-Morris-Pratt (KMP) algorithm also uses borders to achieve a best- and worst-
case running time of O(n + m), but it uses the borders in a slightly different way. Before
we get to the algorithm, however, I want to convince you that we can, conceptually, move
the pattern p through x in two different ways; see Figure 2-7. We can let j be an index
into x and imagine p starting there. When we test if p matches there, we use a pointer
into p, i, and test x[j + i] against p[i] for increasing i. To move p to another position in x,
we change j, for example, to slide p one position to the right we increment j by one.
Alternatively, we can imagine p aligned at position j — i for some indexjin x and an
index i into p. If we change i, we move j — i so we move p. If, for example, we want
to move p one step to the right, we can decrement i by one. To understand how the
KMP algorithm works, it is useful to think about moving p in the second way. We will
increment the j and 7 indices when matching characters, but when we get a mismatch,
we move p by decrementing i.

The idea in KMP is to move p along x as we would in the naive algorithm, but move
a little faster when we have a mismatch. We use index j to point into x and i to point
into p. We match x[j] against p[i] as we scan along x and the pattern is aligned against
x atindexj — i. We can move p’s position by modifying either i or j. Consider a place
in the algorithm where we have matched p|0, i] against x[j — , j] and see a mismatch.
In the naive algorithm, we would move p one step to the right and start matching p
again at that position. We would set i to zero to start matching from the beginning of p,
and we would decrement jto j — i + 1 to match at the new position at which we would
match p. With KMP we will skip positions where we know that p cannot match, and we
use borders to do this.

21

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

J Jri
NS
)(I
P =
X
‘ Move p forward
by increasing j.
Jte JHit+e
N
)(I
P ——————
\l
Jt J
N/
x |
P —————
\
i Move p forward
by decreasing i.
J1) J
N
x |
P = —
N

Figure 2-7. Two ways to conceptually look at matching

If we have matched p up to index i and then had a mismatch, we know that the only

next position at which we could possibly have a match is one where we match a border of

pl0, i — 1] against a suffix of the string we already matched x[j — i, j — 1]; see Figure 2-8.
It has to be a border of p[0, i — 1] and not p[0, i], although that might look like a better
choice from the figure. However, we know that p[0, i] doesn’t match at the last index, so

we need a border of the pattern up to index i — 1. When we move p, we must be careful

not to slide it past possible matches, but if we pick the longest border of p[0, i — 1], then

this cannot happen. Aligning the longest border moves the pattern the shortest distance

22

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

where a border matches a suffix of x[j — i, j — 1]. When we have a mismatch at index i,
we move p up to the next possible match by decreasing i to ba[i — 1]. See Figure 2-9 for a
visualization of this idea.

x s zdsniisiiiisiiaibainion

L (f we mateh at index i
then lncrease both L and |.

X
if we mismateh at bnodex L
then the next possible match
must align a suffix of the match
with a boroer of pLo:i-1].

Figure 2-8. Borders and the observation underlying the KMP algorithm

When we move p to match a border to the string we already matched, there is
a chance that the character following the border doesn’t match x[j] either. It is not
straightforward to pick a border where we are sure that the next character matches,
but we can easily avoid that we mismatch on exactly the same character as before. We
need to modify the border array, so we do not include borders where the next character
matches the character that follows the border. A border array where we have removed
the borders p|[0, ba[i]] and p[i — bali], i]| where p[bali] + 1] = p[i + 1] is what we call a
restricted border array. We can compute this restricted array by scanning the border
array from left to right and skipping a border if the characters match. The longest border
of the skipped border will not be followed by the same character as the border we skip. If
it did, we would have skipped past it when we processed the longer border.

23

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

7222 2222222 24727 20 2

Constder the longest border of plo:i-1] P f

ploii-1] Pl
s

we want to move p so the borders Line up.

f we do this by decreasing i to BLi-11.

Bl Bl

Figure 2-9. Calculations for how much we should jump at a mismatch
for (uint32_t i = 0; i <m - 1; i++) {
>

if (ba[i] > 0 8& pattern[ba[i]] == pattern[i + 1])
ba[i] = ba[ba[i] - 1];

}

An iterator for the KMP algorithm needs to hold the border array and the indices i and j.

struct kmp match iter {
const uint8_t *x; uint32_t n;
const uint8_t *p; uint32_t m;
uint32_t *ba;
uint32_t j, i;

};

The initialization consists of computing the border array and modifying it to avoid
borders that are followed by the same characters.

void compute border array(
const uint8_t *x,
uint32_t m,
uint32_t *ba
) {
ba[o] = 0;
for (uint32_t i = 1; i < m; ++i) {
uint32_t b = ba[i - 1];
while (b > 0 &% x[i] != x[b])
b = ba[b - 1];

24

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

ba[i] = (x[i] == x[b]) ? b + 1 : 0;

}

void computed restricted border array(
const uint8_t *x,
uint32_t m,
uint32_t *ba
) {
compute_border array(x, m, ba);
for (uint32_t i =0; i <m- 1; i++) {
if (ba[i] > 0 && x[ba[i]] == x[i + 1])
ba[i] = ba[ba[i] - 1];

}

void init_kmp match_iter(
struct kmp match_iter *iter,
const uint8_t *x, uint32_t n,
const uint8_t *p, uint32_t m

) {
iter->x = x; iter-»n = n;
iter->p = p; iter->m = m;
iter->j = 0; iter->i = 0;

uint32_t *ba = malloc(m * sizeof(uint32_t));
ba[0] = 0;
computed restricted border array(p, m, ba);

iter->ba = ba;

Since we allocate memory for the border array, we must also free it in the
deallocation function.

25

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

void dealloc_kmp match_iter(
struct kmp match_iter *iter

) {

free(iter->ba);

The next function gets its information from the iterator. It then iterates as long as
index j hasn’t reached a point where no more matches can occur, or until we have a
match that we report. We scan the text and pattern, by increasing i and j as long as we
have a match, and if i reaches m, we know that we have a match. To move p to the next
position, we increase j by one if i is zero (so we need to match from the beginning of p),
or we decrease i if i is not zero using the border array. If we have a match to report, we
update the iterator with the current loop state and return the position where we had the
match, j — m.

bool next kmp match(
struct kmp match _iter *iter,
struct match *match

) {
// Aliases to make the code easier to read...
uint32_t j = iter->j;
uint32_t i = iter-»>i;
uint32_t m = iter->m;
uint32_t n = iter->n;

const uint8_t *x = iter->x;
const uint8_t *p = iter->p;

if (m > n) return false;
if (m == 0) return false;

// Remember that j matches the first i
// items into the string, so + i.
while (j <=n - m+ i) {

// Match as far as we can

while (i < m & x[j] == p[i]) {

i++; J++;

26

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

// We need to check this
// before we update i.
bool we have a match = 1 == m;

// Update indices
if (i == 0) j++;
else i = iter->ba[i - 1];

// If we have a hit...

if (we_have a match) {
// ...yield new match
iter->j = j; iter->i = i;
match->pos = j - m;
return true;

}

return false;

The reason we have a Boolean for when we have a match is that we need to update
the indices whether we have a match or not. I chose this solution to avoid duplicated
code, but you could also have the update code twice instead.

To see that the algorithm runs in linear time, we need two observations. First,
the index j never decreases and this bounds it to maximal n steps. This variable does
not increase in each iteration, but when j doesn’t increase, i decreases instead. When
i decreases, we conceptually move p toward the right by increasing j —i, where the
beginning of p sits under x. We never move p to the left, so the number of steps we can
move p forward is also bounded by 7. So, in each iteration we either increment j or move
p, and both operations are bounded by 7 steps. This means that we have a linear bound
on the KMP algorithm.

27

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

J' Jjti

N/

x |uspaiianes Vi
P

\

L

Figure 2-10. Matching from right to left

Boyer-Moore-Horspool

With the Boyer-Moore-Horspool (BMH) algorithm, we are back to a worst-case
running time of O(nm), but now with a best-case running time of O(n/m + m), that
is, a potential sublinear running time. The trick to going faster than linear is to match
the pattern from right to left (see Figure 2-10), which lets us use information about the
match after the current position of p. If we have a mismatch before we reach the first
character in p, that is, before we reach index j in x, we might be able to skip past the
remaining prefix of x[j, j+m] without looking at it.

The idea in the BMH algorithm is straightforward. To have a match, at the very
least, the last character of p, p[m — 1], should match the last character in the substring
we are trying to match p against, that is, x[j + m — 1]. If we see a mismatch, we do not
simply increment j by one. Instead, we move p to the next position where the rightmost
occurrence of x[j + m — 1] occurs in p; see Figure 2-11. We cannot include the last
character since if that matches we will not move anywhere, so “rightmost” really means
the rightmost that is not the last character. As a preprocessing step, we want to build a
“jump table” that, whenever we have a mismatch (or get to the beginning of p), moves us
to the next position where we match x[j + m — 1]. If the rightmost occurrence of this last
character is at index k in p, we want to move p m — 1 — k positions; see Figure 2-12.

28

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

At a mismateh, move p so

the rightmost “a” aligns with
the “a” at the end of the current
match attempt (or at minimum
move p one position).

Do not tnelude the Llast character
n the definition of "rightimost"!

Figure 2-11. Observation that lets us jump ahead after a mismatch

When we build the jump table, we cannot include the last character in p, p[m — 1],
since jumping to align this one might leave us at the same position as we are already at.
Excluding it means that p will always jump at least one position to the right, that is, when
Jjis updated with the jump table, it will always increase. When we build the jump table,
we start by setting all entries to m. If a character is not in p, this will let us jump entirely
past the current j +m —1 position. We then iterate through p and insert the position
where we see a character into the table. If a character occurs more than once, it will be
the last position that is in the table because we update the table from left to right.

for (uint32_t k = 0; k < 256; k++) {
jump_table[k] = m;

}

for (uint32_t k = 0; k < m - 1; k++) {
jump_table[pattern[k]] =m - k - 1;

}

It should be obvious that the preprocessing is done in O(m).
In our BMH iterator, we need to store the current position of p in x, j, and we need to
store the jump table.

struct bmh _match_iter {
const uint8_t *x; uint32_t n;
const uint8_t *p; uint32_t m;
uint32_t jump table[256];
uint32_t j;
}s
29

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

Rightmost “a” at tndex R

where we want to
aligwn that “a” to

J j-kmm—i

Zzzzzzzzzz 72z 20220 772272722722 2727 222

we need tojump m-1-k whewn
xg’+m—1] = “a” and
pIRkI is the rightmost “a”.

Figure 2-12. The length to jump at a mismatch

When we initialize the iterator, we set j to the first position in x and we compute the
jump table for the pattern.

void init bmh_match iter(
struct bmh match _iter *iter,
const uint8_t *x, uint32_t n,
const uint8_t *p, uint32_t m

) {
iter->j = 0;
iter->x = x; iter-»n = n;
iter->p = p; iter->m = m;

for (uint32_t k = 0; k < 256; k++) {
iter->jump_table[k] = m;

30

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

for (uint32_t k = 0; k <m - 1; k++) {
iter->jump_table[pattern[k]] = m - k - 1;

The jump table is not heap allocated, we know its size at compile time, so we do not
need to free it when we deallocate the iterator.

void dealloc_bmh match iter(
struct bmh_match_iter *iter

) 1
// Nop

When we increment the iterator, we search from the current j, but instead of
incrementing the index by one in each iteration, we increment it with the value in the
jump table. For each position of j, we try to match p starting from the last character
and moving toward the first. If we have a match, we report the matching position and
increment j to the position where the next search should start.

bool next bmh match(
struct bmh_match_iter *iter,
struct match *match
) {
// Aliasing to make the code easier to read...
const uint8_t *x = iter->x;
const uint8_t *p = iter->p;
uint32_t n = iter-»>n;
uint32_t m = iter->m;
uint32_t *jump_table = iter->jump_table;

if (m > n) return false;
if (m == 0) return false;

for (uint32_t j = iter->j;
j<n-m+1;
j += jump_table[x[j + m - 1]]) {

uint32_t i = m - 1;

31

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

while (i > 0 8& p[i] == x[j + i]) {
i--;

if (i == 0 83 p[o] == x[j]) {
match->pos = j;
iter->j = j + jump_table[text[j + m - 1]];
return true;

}

return false;

To see that the worst-case running time is O(nm), consider a string and a pattern that
has only one character, x=aaa - - - a, p = aaa - - - a. With these two strings, we never have
a mismatch, the rightmost occurrence of a (excluding the last character in p as we do) is
m — 2, so we jump m — 1 — kwith k= m - 2, which moves us one position to the right. So
at each position in x, we match m characters, which gives us a running time of O(nm).
For the best-case running time, consider x = aaa - - - a again but now the pattern p = bbb
-+ - b. We will always get a mismatch at the first character we see, and then we need to
move to the rightmost occurrence of a in p. There isn’t any a in p, so we move p all the
way past position j + m — 1. This means that we only look at every mth character and we,
therefore, get a running time of O(n/m +m), where the m is for the preprocessing. These
two examples are, of course, extreme, but with random strings over a large alphabet, or
with natural languages, the rightmost occurrence can be far to the left or even not in the
string, and we achieve running times close to the best case bound.

There is another observation we can make that won’t change the worst-case running
time but might let us jump faster along x. If we have matched to index i and have a
mismatch there, there is no reason to place p at a location where the same character
will mismatch. We have the mismatching character and know where the rightmost
occurrences of characters are in p, so we can jump p to a position where p[i] and x[j + i
will match. If the rightmost occurrence of x[j + i] is at position k in p, then we can jump
by i — k; see Figure 2-13. If the rightmost occurrence of x[j + i] is to the right of i in p,
then the jump would be negative, which we do not want since that moves our search
backward and can in the worst case lead to an infinite loop. But if we jump the maximal
length given both of the rules above, then the jump rules will always move us at least one
character forward.

32

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

’ ’

J—FL

J

R AAIBIA BB 0 | st/ s i

To wateh “a” over “a” we
mﬂedtojuMﬁP£42ahead.

Figure 2-13. Second jump rule for BMH

We cannot make a jump table for this rule since the length we have to jump
depends on i as well as the character where the mismatch occurs. So instead we store
the “rightmost occurrence” array in the iterator. We can compute both jump rules from
this. We need a way to handle characters that are not in the pattern, so we use a signed
value. That way, these characters can have index -1. Here, we assume that the length of
the pattern cannot be more than half of the string we are searching in, but this is not an
unreasonable assumption and is unlikely ever to be a problem.

struct bmh match iter {
const uint8_t *x; wint32_t n;
const uint8_t *p; uint32_t m;
// Signed so we can indicate no occurrence
int32_t rightmost[256];
uint32_t j;
}s

Computing the array is straightforward. We initialize the array with -1 which is what
the entries should be if a character is not found in p. We then run from left to right and
insert indices by their character.

void init bmh_match iter(
struct bmh match _iter *iter,
const uint8 t *x, uint32_t n,
const uint8_t *p, uint32_t m

) {

33

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

iter->j = 0;

iter->x = x; iter-»n

1
>
-

iter->p = p; iter->m = m;

for (uint32_t k = 0; k < 256; k++) {
iter->rightmost[k] = -1;

}

for (uint32_t k = 0; k < m - 1; k++) {
iter->rightmost[pattern[k]] = k;

The expression for jumping occurs twice in the algorithm but is quite cumbersome
to write and not informative about what is really happing, so it is a good idea to define a
macro to handle it.

static inline uint32_t MAX(uint32_t a, uint32_t b) {
return (((a) > (b)) ? (a) : (b));
}
#tdefine BMH_JUMP() \
MAX(i - iter-s>rightmost[x[j + i]], \
(int32_t)m - iter-srightmost[x[j + m - 1]] - 1)

The various variables in the macro are not arguments but hardwired to be used
inside the algorithm. This makes it easier to see what the intent of the macro is inside the
function and is an approach I will often take in this book.

The function that increments the iterator uses the macro instead of the jump table
from earlier, it uses a signed value for i so we can handle -1 when we get it from the
rightmost array, but otherwise, there are no changes compared to the version from
earlier.

bool next_bmh_match(
struct bmh_match_iter *iter,
struct match *match
) {
// Aliasing to make the code easier to read...
const uint8_t *x = iter->x;
const uint8_t *p = iter->p;

34

uint32_t n
uint32_t m

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

iter->n;
iter->m;

int32_t “*rightmost = iter->rightmost;

if (m > n) return false;
if (m == 0) return false;

// We need to handle negative numbers, and we have already
// assumed that indices into the pattern can fit into
// this type.

int32_t i

m- 1;

for (uint32_t j = iter->j;
j<n-m+1;

j +-

i=m

BMH_JUMP()) {

_1’

while (i > 0 88 p[i] == x[j+i]) {
i--;

}

if (i == 0 8& p[o] == x[j]) {
match->pos = j;
iter->j = j + BMH_JUMP();
return true;

}

return false;

Extended rightmost table

The two components work well for jumping along x, but the first only looks at the last
match of p in x and the other only contributes to jumping if the rightmost occurrence
of the mismatched character is to the left of i. We can do better than this and jump to
the rightmost position fo the left of i every time we have a mismatch. To do this, we need
a table where we can look up by character and by index. If the alphabet has size k, we
would have a k x m table. We can do this as still be in O(nm) worst case and O(n/m + m)

35

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

running time, but we can save some space by having a linked list per character, and look
up indices in it. Let us add such an array of lists to the iterator:

struct index linked list {
struct index linked list *next;
uint32_t data;

}s

struct bmh match iter {
const uint8_t *x; uint32_t n;
const uint8_t *p; uint32_t m;
int32_t rightmost[256];
struct index linked list *rightmost table[256];
uint32_t j;

}s

There is nothing unique in how a linked list is implemented. See the Appendix. We
will need prepend to lists and to free them, so we write functions for that.

static inline struct index linked list *
new_index_link(

uint32_t val,

struct index linked list *tail

) 1
struct index_linked list *1link =
malloc(sizeof(struct index linked list));
link->data = val; link-»>next = tail;
return link;
}

void free index list(
struct index linked list *list

) {
while (list) {
struct index linked list *next = list->next;
free(list);
list = next;
}
}

36

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

When we initialize an iterator, we append each position to the list found at the
position’s character. When we are done, each list will contain all the occurrences of the
character they are associated with.

void init bmh match iter(
struct bmh_match_iter *iter,
const uint8_t *x, uint32_t n,
const uint8_t *p, uint32_t m

) {

iter->j = 0;

iter->x = x; iter->n

iter->p = p; iter->m = m;

for (uint32_t k = 0; k < 256; k++) {
iter->rightmost[k] = -1;

iter->rightmost table[k] = 0;

n;

}
for (uint32_t k = 0; k < m - 1; k++) {
iter->rightmost[p[k]] = k;
iter->rightmost table[p[k]] =
new_index link(k,
iter->rightmost table[p[k]]);

We allocate list links in the initializer, so we must free them again in the deallocator.

void dealloc_bmh match iter(
struct bmh_match_iter *iter

) {
for (uint32_t k = 0; k < 256; k++) {
free_index list(iter->rightmost table[k]);

The positions in each list are in descending order, so if we search for the rightmost
occurrence to the left of an index i, we scan until we find a position that is less than i.

37

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

static int32_t find_rightmost(
struct index_linked list *list,

int32_t i
) 1
while (list) {
if (list-»>data < i) {
return list->data;
}
list = list-»>next;
}
return -1;
}

The iteration function doesn’t change, but the BMH_JUMP () macro does. Instead of
the table lookup to find the rightmost occurrence in the entire string, we use the find_
rightmost() function. Otherwise, nothing is new.

#define BMH_JUMP() \
MAX(i - find_rightmost(
iter->rightmost table[text[j+i]], i), \
(int32_t)m - iter->rightmost[text[j+m-1]] - 1)

You might object, now, that the search in the lists is not constant time, so the running
time now potentially exceeds O(nm + m) in the worst case. To see that this isn’t so, consider
how many links we have to search through. The only indices that are larger than i are those
m — i we scanned past before a jump. The first link after that will have an index smaller
than i and we return that immediately. This means that the search in the list is not more
expensive than the scan we just did in the string, so the running time is at most twice as
many operations as without the lists, so worst case O(nm + m) and best case O(n/m + m).

Boyer-Moore

The Boyer-Moore (BM) algorithm adds two additional jump rules to the BMH algorithm.
These exploit that we have information about a suffix of the pattern that we have
matched against a substring of x. If we have matched the pattern suffix p[i, m| against
x[j + i, j + m], then we can use knowledge about where p[i, m] occurs, or partly occurs,
in the pattern. We have one rule for when p[i, m] occurs somewhere in p at some

38

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

plk, k + m — i]. If one or more of such substrings exist, then we should move the
rightmost occurrence such that it aligns with the matched part. For p to match in x,

it must at least match on the p[i, m] = p[k, k + m — i]. Picking the rightmost matching
substring means that we move the minimal distance where such a match is possible,
guaranteeing that we do not skip past a potential match. Since we have a mismatch at
pli — 1] #x[j + i — 1], we will also require that p[i — 1] # p[k — 1]. Without this
requirement, we might shift to a position where we get exactly the same mismatch in the
next comparison. See Figure 2-14 for the intuition for the first jump rule.

7770070020 7700202002770 R L L LA

Match

Figure 2-14. Jump rule one

As you can see from the figure, we shift p to the right to match up a substring with
a suffix. This suffix is a border of the string p[k, n]. The border array we used in the
first, nontrivial, algorithm gives us, for each i the longest border of p[0, i + 1], and this
border is a prefix of the string. We need a suffix, so we use a corresponding border
array computed from the right. We call it the reversed border array. Since we want the
preceding characters to mismatch, we modify the reversed border array the same way
as for the usual border array, but from the right to take care of preceding characters. Let
us call this the restricted reversed border array, just to have something to call it. We shall
use a variant of this array to compute the first jump table. There will not always be an
occurrence of p[i, m] to the left of the suffix p[i, m], in which case this jump rule cannot
be used. When this is the case, we set the jump rule to zero. Since the character rules in
the BMH algorithm ensure that we always step at least one position to the right, and we
will take the largest step possible between the two rules in this section and the two rules
in the previous section, we will always move forward.

The second jump table is used when the string p[i, m] does not occur to the left of
the suffix. If we cannot match such an occurrence against x[j + i, j + m|, then we can
try to match a suffix of x[j + i, j + m] against a border of p; see Figure 2-15. If there is no

39

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

nontrivial border of p, we set the jump table distance to zero. The character-based rules
will ensure that we always move forward by at least one character.

0z 0z 7z zzzzzzzzzz;z;z;/ RSS2

Figure 2-15. Jump rule two

Jump rule one

To build the jump table for the first case, it might be tempting to try to use a border array
to build a jump table. For each position i in the string p, the border array tells us how
long a match we have with a prefix, that is, the length of the longest string that is both a
prefix and a suffix of p[0, i]. If we build a border array from the right instead of from the
left, we know, for each position i, the length of the longest string that is both a prefix and
a suffix of p[i, m].

void compute reverse border array(
uint32_t *rba,
const uint8_t *x,

uint32_t m
) {
rba[m - 1] = 0;
for (int32_t i =m - 2; i >= 0; --1) {
uint32_t b = rba[i+1];
while (b > 0 &8 x[i] != x[m - 1 - b])
b = rba[m - b];
rba[i] = (x[i] == x[m - 1 - b]) 2 b +1 : 0;
}
}

Here, it is easy to modify the algorithm to run from right to left instead of left to right,
but in general, if you want to have a border-like structure where you can compute the
left-to-right version and want the right-to-left version, you can reverse the string, build

40

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

the left-to-right array, and then reverse that array. For the reverse border array, it would
look like this:

void compute border array(
const uint8_t *x,
uint32_t m,
uint32_t *ba

) {
ba[0] = 0;
for (uint32_t i = 1; i < m; ++i) {
uint32_t b = ba[i - 1];
while (b > 0 88 x[i] != x[b])
b = ba[b - 1];
ba[i] = (x[i] == x[b]) ? b + 1 : 0;
}
}
static void intarray rev n(uint32_t *x, uint32_t n)
{

uint32_t *y = x + n - 1;
while (x < y) {
uint32_t tmp = *y;

Yy =%
*x = tmp;
X+t 5 y--;

}

void compute reverse border array(
const uint8_t *x,
uint32_t m,
uint32_t *rba
) {
uint8_t x_copy[m];
strncpy((char *)x copy, (char *)x, m);
str_inplace rev_n(x_copy, m);

41

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

computed_border array(x copy, m, rba);
intarray rev n(rba, m);

Here, I have split the computation into multiple functions to make it clear what each
step is. I prefer the reverse-compute-reverse strategy in most cases, because though
itis slightly less efficient it greatly minimizes the work necessary to implement both
directions and reduces the risk of errors since there are fewer lines of code.

You can also calculate the reversed restricted border array this way. Recall that the
restricted border array is the border array where we exclude from the array the borders
that are followed by the character p[i + 1]; we only keep borders where the letter that
follows them differs. If we reverse the string, compute the restricted border array, and
then reverse the result, we get the restricted reversed border array:

void computed restricted border array(
const uint8_t *x,
uint32_t m,
uint32_t *ba

) {
compute_border array(x, m, ba);
for (uint32_t i = 0; i <m - 1; i++) {
if (ba[i] > 0 && x[ba[i]] == x[i + 1])
ba[i] = ba[ba[i] - 1];
}
}

void compute reverse restricted border array(
const uint8_t *x,
uint32_t m,
uint32_t *rba

) {
uint8_t x_copy[m];
strncpy((char *)x_copy, (char *)x, m);
str _inplace rev_n(x_copy, m);
computed restricted border array(x copy, m, rba);
intarray rev n(rba, m);
}

42

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

Now, when we have the restricted reverse border array, we can scan from left to right
and make a pointer from where a suffix ends (where we might have a mismatch in the
algorithm) to the position of the border inside the pattern—perhaps something like this
(see Figure 2-16):

for (uint32_t i =0; i <m- 1; i++) {
jump[n - xrba[i] - 1] = n - xrba[i] - i,

w-xrball] -1

272772202 %

pripgpppiitiiiide

w-xrballl -t

Figure 2-16. Jump table based on reverse borders

We go from left to right and let each suffix that also occurs internally in p and know
about the position where it occurs. We do not add the matching part of the suffix to the
jump table since we want to jump when we have a mismatch, so we get the index at the
position left of the matching suffix. At the matching suffix, we insert in the jump table the
length we should jump, n — xrba[i] — i. Because we do this from left to right, if there is
more than one occurrence, we will get the rightmost one.

That this algorithm computes the jump table sounds convincing, and I have seen
this implemented numerous times, which is why I mention it. There is a problem,
however: several borders can end at the same rightmost index. Consider the string
dabcacabca. Figure 2-17 shows the reverse border array on the left and the restricted
reverse border array on the right (the reverse border array where the previous character
differs between the suffix and the border). If we build a jump table from the reverse
border array, we would get a jump for the two nonzero values; see the two arrows on
the top of Figure 2-18. We would not see the jump at the bottom because it jumps to an
index where a longer border starts.

43

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

bba dabec acabecec a rbba

0 0
4 J (IR c (IR <+
3 IR «[IEE o
2 b b O
1 1 i c O
2 a b 2
1 c il c O
0 0
0 0
0 0

Figure 2-17. Example of backward border array and restricted backward border
arrays

44

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

Figure 2-18. Border array jump table

Each index in our pattern can be the endpoint of multiple borders. If we follow the
preceding idea, we only set a jump pointer to the longest border. If there are several
suffixes of the pattern where the rightmost occurrence in the pattern starts at the same
position, then only the longest match will get a jump rule. These borders, however, will
have different endpoints; see Figure 2-19.! These are unique—two different borders can’t
have the same endpoint. Imagine two borders with the same endpoint and consider
their start points. Where the shortest starts, there must be a mismatch between the start
point and the border at the suffix. If not, the border would be longer and the start point
further to the left. This, however, contradicts that the longer border must match, or it
would be shorter. See Figure 2-20. If the longer light-gray string is a border, then it must

'If we were looking simply at borders, then the shorter substrings would not be rightmost in the
figure. The shorter strings are borders of the longer borders and thus found at both ends of these.
Therefore, there are occurrences before the end of string, namely, at the left end of the longer
borders. The rightmost occurrences are therefore not those that match the start index. With the
restricted border arrays, however, it is possible to be in the situation illustrated in the figure.

45

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

u_n

match the “a” in the suffix. The character that precedes the shorter string must therefore
also be “@) contradicting that it could be another character. So while start points for
rightmost occurrences of suffixes are not unique, the endpoints are.

27247722 27

/L2207
— 00—

I (RN
= =

Figure 2-19. Point to border endpoints rather than start points

272407222 2%

R
Figure 2-20. Uniqueness of endpoints

T

There is an array, called the Z array, that captures the essence of the start point/
endpoint difference. The array is very similar to the border array, but at each index i, it
stores the length, k, of the longest string p[i, i + k| that starts in index i (not ends, as the
border array) and is a prefix of p, that is, p[0, k] = p[i, i + k]; see Figure 2-21. We do not
want an array of strings that matches prefixes but rather one that matches suffixes, that
is, we want an array Z' where Z'[i] contains the length of the longest substring [i — k,]
that matches a suffix of p, that is, p[i — k, i] = p[n — k, n]. This is the reverse of the Z array
of the reversed string p, so we can compute it assuming we have a function compute_z_
array() that computes the Z array.

void compute reverse z array(
const uint8_t *x,
uint32_t nm,
uint32_t *Z

) 1
uint8_t x_copy[m + 1];
strncpy((char *)x _copy, (char *)x, m); x_copy[m] = 0;
str_inplace_rev_n(x_copy, m);
compute z_array(x_copy, m, Z);
intarray rev n(zZ, m);
}

46

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

ba[jl J

\ /

Z%/Ki?/%%%?//X/YZ///;myXZ// T 00 7
WD,
=

WAL
=

o>

Z Il

R [

=
=

A
=

~a
P 2
'

b 4
¥ U

Z[R1
Figure 2-21. The Z array

In the Z array, p[0, Z[i]] = pli, i + Z[i]] is the longest border of p[0, i + Z[i]]. We cannot
extend it to the longest border of p[0, i +Z[i]+1] because p[Z[i]+1] # p[i +Z[i]+1] since
otherwise the longest string starting in i that matches a prefix of p would be at least one
longer. With the Z array, we get the “restricted border” effect for free in this sense. For the
reversed Z array, the same is true but for the letter that precedes the border strings.

Computing the Z array

The trivial algorithm for computing the Z array simply matches the string at each
position against the first part of our string, giving us an O(n?) running time.

uint32_t match(
const uint8_t * s1,
const uint8_t * s2
) {
uint32_t n = 0;
while (*s1 && *s2 8& (*s1 == *s2)) {
++51;
++S2;
++n;

47

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

return n;

}

void trivial compute z array(
const uint8_t *x,
uint32_t n,
uint32_t *Z
) {
Z[o] = o;
for (uint32_t i = 1; i < n; ++1) {
Z[i] = match(x, x + i);

The match() function works on pointers to strings and compares them as long as
they haven’t reached the null sentinel and as long as they agree on the current character.
If our string consists of only one character, x = a”, then match() will run through the
entire string x[i, n] which averaged over all the indices as O(n), giving us a total running
time of O(n?). We can do better!

In a linear-time construction algorithm, we iteratively consider indices k=0, 1, ...,

n — 1 and compute Z[k] using the previously computed values. We let / and r denote the
leftmost index and one past the right index, respectively, of the rightmost string we have
seen so far. As invariants in the algorithm, we have for all k' < k that Z[k'] is computed
and available and that / and r index the rightmost string x[/, [+ Z[l]] seen so far.

There are three cases to consider; see Figure 2-22. The first is when the index we are
computing is to the right of r. We can get in this situation if we have seen a rightmost
string pointed to by [and r, but the following ks gave us empty borders. To get Z[k] we
must compare x with x + k to get the matching length. If this length is zero, we set Z[k] to
zero and move to k + 1. If the match result is greater than zero, we set Z[k] to the value
and move [to k and r to k + Z[k]; the rightmost string we have seen is now then one
starting in k, and the updated indices will point at it.

In the other two cases, k is between [and r. This means that the string x[/, r] contains
information about the string starting in k that we can exploit. Let k'=k—land r'=r— L. If
we look at Z[k'| —which, by the invariant, is available—there are two possibilities. Either
Z[k'l <1’-k’ = r-k in which case the string starting in k" stops before index r’. This means
that there is a mismatch between x[Z[k'] + 1] and x[k’+ Z[k'] + 1]; see the middle case in

48

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

Figure 2-22. Since x[/, r] is a prefix of x, the mismatching character will also follow the
string x[k, k + Z[z']] which means that the longest string matching a prefix and starting
in k will have the length Z[k']. We update Z[k]| = Z[k'] and leave [and r alone; the string
pointed to by / and r is still the rightmost.

L r
Y y
A AR

AN

ZIR] = mateh (x, x+R)

Case 1:

WL

7

AAAAA s

ZIR]l = zZLk'1

case 3:

| B

X T zier RN

k. wm =wmateh(x + vr-k, x+vr)

ZIRl =vr-kR +m

Figure 2-22. The three cases for the Z array construction algorithm

49

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

Case three is when the string starting at index k’ continues past index r’. In this case,
we know that a prefix of the string matches a suffix of the string x[/, r], but we do not
know how much further the prefix will match the string starting at index k. To find out
where, we must do a character-by-character match. We do not need to start this search
atindex 1 and k, however. We know that the first r — k characters match, so we can start
our match at indices r — k and r; see case three in Figure 2-22. When we have found the
right string, we update the left pointer to point at the start of it, [= k, and we set the right
pointer to the end of the string r = k + Z[k].

An implementation can look like this:

void compute z_array(
const uint8_t *x,
uint32_t n,
uint32_t *Z
) {
z[o] = o5
if (n == 1) return; // special case
Z[1] = match(x, x + 1);
uint32_t 1 = 1;
uint32_t r = 1 + Z[1];

for (uint32_t k = 2; k < n; ++k) {

// Case 1:
if (k »=1) {
Z[k] = match(x, x + k);

if (Z[k] > 0) {1 =k; r = k + Z[k]; }

} else {
uint32_t kk = k - 1;
if (Z[kk] <1 - k) {

// Case 2:
Z[k] = Z[kk];
} else {

50

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

// Case 3

Z[k] =1 - k + match(x + r - k, x + 1);
1=k;

r =k + Z[k];

To see that the running time is linear, first ignore the calls to match(). If we do,
we can see that there are a constant number of operations in each case, so without
matching, we clearly have a linear running time. To handle match(), we do not consider
how much we match in each iteration—something that depends on the string and that
we do not have much control over. Instead, we consider the sum of all matches in a run
of the algorithm. We never call match() in the second case, so we need only to consider
cases one and three. Here, the key observation is that we only search to the right of r and
never twice with the same starting position.

In case one, we either have a mismatch on the first character, or we get a new string
back. In the first case, we leave [and r alone and immediately move to the next k, which
we will use as the starting point for the next match. As long as we are not getting a string
back from our matching, we use constant time for match() calls for each k, and we never
callmatch() on the same index twice. If we get a string, we move the right pointer, r, to
the end of this string. We will never see the indices to the left of r again because both case
one and three never search to the left of r. In the search in case three and a nontrivial

result in case one, we always move r past all indices we have started a search in earlier.

Z-based jump table

The jump rule needs to slide p to the rightmost position where we potentially have a
match. If i is where the rightmost occurrence sits, then index i — rZ[i] is the character
just before the start of the occurrence. If there is no occurrence, we set the jump distance
to zero, which leaves it up to one of the other jump rules. The prefix it matches starts at
position n — rZ[i], and it is when we have a mismatch p[i — rZ[i]] # p[n — rZ[i] — 1]

51

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

we should move p. Therefore, we want to store the jump distance for index n—rZ[i]—1 in
our jump table. The distance we need to jump is the one that places i —rZ[i] at position
n —rZ[il-1, so n —rZ[il—q —(i —rZ[i]) = n — i — 1. See Figure 2-23 for an illustration of the
jump rule and Figure 2-24 for a concrete example.

We build the jump table as follows: We first set all the entries to zero—the default
that will give the other jump rules control of the jump—and after that, we compute the
reverse Z array and set the jump values as described earlier.

uint32_t rZ[m];
compute reverse z array(iter->pattern, m, 1Z);
uint32_t jumpi[m];
for (uint32_t i = 0; i < m; i++) {
jumpa[i] =
}
for (uint32_t i = 0; i < m; i++) {
jumpi[m - rZ[i] - 1] =m - 1 - 1;

>

w-rZ[l -1

L-vZItl rzIl / vZ L]

S

w-rZl-1-CL-vZl]) =n-1-1

\\\\\\\I_ SNaSSS

Jump[w yZIl-11 = wn - L—:L

Figure 2-23. First jump rule for Boyer-Moore

52

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

o) o)
1 1 d [Jumplgl =g c. .zl 1
2 0 ——————— 1= g
. \ w-rZ[4]l-1 =5
4’ 4 1] 1 1 | V\,—L_1=5
5 o) UL R L

Jump[F] = 3
& = o Il b [w-"Zlel-1=>
7 o ——— w-i-141 =23
124 (o)
9 o)

Figure 2-24. Boyer-Moore jump table one example

We do this in the iterator initialization. We will see the full initialization later when
we have seen the second jump table as well.

We do not test for whether the reverse Z value is zero. In this case, we want the jump
to be zero (so we will use one of the other jump rules), but whenever Z is zero, the loop
will update the last index, n — rZ[i] — 1 = n — 1. In the final iteration, we will write n — i —
1=n-(n-1)—1=0there, exactly as desired.

Second jump table

The second jump rule is used where there are no occurrences of the matched string
inside the pattern. When this is the case, we should move the minimal amount necessary
to match a prefix of the pattern with a suffix of the matched text; see Figure 2-15. If we
have the border array for the pattern, then the longest border of the entire string is ba[m
— 1], the second-longest border is ba[ba[m — 1]], and so on. When we have a mismatch,
we need to jump such that the longest border possible matches the longest suffix of the
text we already matched. If we have matched more than ba[m — 1] characters, then we
should align the longest border with the matched string. If we have matched less than

53

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

ba[m — 1], then we should not align this border; it will only give us a mismatch at the
same position we just mismatched on. Instead, we should use the second-longest border
for the jump. In general, every time we have a mismatch between borders b; and b;,,
(with by, the shortest), then we should use the shorter of the two, b;,,; see Figure 2-25.
The distance we need to move when using border b is m minus its length, that is, m — b.

jump[i] =wm-balm - 1]

border 1

‘ 222242227,
boroler 2 UITHMNORRHINAR

border z| | _

[L
=

Jumplil = w - balbalm - 171

—

Jumplil = m - balbalbalm-1111

Figure 2-25. Jump ranges for jump rule two

We include the border of size zero in this preprocessing. It will guarantee us that if we
have matched a string that cannot be matched anywhere else in the pattern, then we skip
the entire string past the current attempted match.

Computing this jump table, once we have the border array, is straightforward.

uint32_t ba[m];

compute border array(iter->pattern, m, ba);
uint32_t jump2[m];

uint32_t b = ba[m - 1];

uint32_t jump = m - b;

for (uint32_t i = 0; 1 < m; i++) {

if (i >b) {
b = ba[b];
jump = m - b;
}

jump2[i] = jump;

54

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

Combining the jump rules

We cannot take the maximum jump of the two jump tables here, unlike in the BMH
algorithm where we can jump the maximum number of characters given by the two
rules. We should not move to a border of the full string if there is an internal string that
matches. This means that we should only use the second rule if we cannot use the first,
that is, we use jump table two when jump table one is zero. We can combine the two
jump tables, and only use the second if the first is zero, in this way:

// Combine the jump tables
iter->jump = malloc(m * sizeof(uint32_t));
for (uint32_t i = 0; i < m; ++i) {
iter->jump[i] = jumpa[i] ? jumpa[i] : jump2[i];

}

With all these jump tables, the Boyer-Moore algorithm is more complicated than
the previous algorithms. Still, if we put the border and Z array functionality in separate
functions, then the BM iterator is not overly complex to initialize and use.

Let us combine everything we have seen. We add a jump table to the iterator:

struct bm match iter {
const uint8_t *x; uint32_t n;
const uint8_t *p; uint32_t m;
int32_t rightmost[256];
struct index linked list *rightmost table[256];
uint32_t *jump;
uint32_t j;
};

When we initialize the iterator, we compute the two tables from the BMH algorithm;
then we compute the two jump tables, using a reversed Z array and a reversed border
array, respectively; and finally we combine the two tables.

void init bm match iter(
struct bm match iter *iter,
const uint8_t *x, uint32_t n,
const uint8_t *p, uint32_t m

) {

55

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

iter->j = 0;
iter->x = x; iter->n = n;
iter->p = p; iter->m = m;

for (uint32_t k = 0; k < 256; k++) {
iter->rightmost[k] = -1;
iter->rightmost table[k] = 0;

}

for (uint32_t k = 0; k < m - 1; k++) {
iter->rightmost[p[k]] = k;
iter->rightmost table[p[k]] =

new_index_link(k,
iter->rightmost table[p[k]]);
}

uint32_t jumpi[m];
uint32_t jump2[m];

for (uint32_t i = 0; i < m; i++) {
jump1[i] = 0;

}

uint32_t rZ[m];

compute _reverse z array(iter->p, m, rZ);

for (uint32_t i = 0; i < m; i++) {
// We don't have to check if rZ[i] = o.
// There, we will always write into n-0-1,
// i.e., the last character in the string.
// For the last index we set this ton -1i -1
// which is zero. When this jump is zero,
// one of the other rules will be used.
jumpi[m - rZ[i] - 1] =m - i - 1;

}

for (uint32_t i = 0; i < m; i++) {
jump2[i] = 0;

}

uint32_t ba[m];

compute_border array(iter->p, m, ba);

56

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

// Combine the jump tables
iter->jump = malloc(m * sizeof(uint32_t));
for (uint32_t i = 0; i < m; ++i) {
iter->jump[i] = jumpa[i] ? jumpa[i] : jump2[i];

We use a macro for jumping; in this case, we want the maximum of the jump table

increment and the increment we get from the BMH tables. The function that increments the

iterator should use this macro instead of BMH_JUMP (), but otherwise there are no changes.

#tdefine BM_JUMP() MAX(iter->jump[i], BMH_JUMP())

This is the only change we need to make to the next_bmh_match() function to get

next_bm match():

bool next bm match(

) {

struct bm match_iter *iter,
struct match *match

// Aliasing to make the code easier to read...
const uint8_t *x = iter->x;

const uint8_t *p = iter->p;

uint32_t n = iter-»>n;

uint32_t m = iter->m;

if (m > n) return false;
if (m == 0) return false;

// We need to handle negative numbers, and we have already
// assumed that indices into the pattern can fit into

// this type.

int32_ti=m- 1;

for (uint32_t j = iter->j; j < n - m+ 1; j += BV JUMP()) {

i=m-1;

while (i > 0 88 p[i] == x[j + i]) {
i--;

}

57

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

if (i == 0 83 p[o] == x[j]) {
match->pos = j;
iter->j = j + BM_JUMP();
return true;

}
}
return false;
}
Since we allocate the jump table in the initialize, we need to free it in the deallocation
function.

void dealloc_bm match iter(
struct bm match iter *iter

) {
for (uint32_t k = 0; k < 256; k++) {
free_index list(iter->rightmost table[k]);
}
free(iter->jump);
}

Aho-Corasick

The Aho-Corasick algorithm differs from the previous algorithms in that it does not only
search for a single pattern but search simultaneously for a set of patterns. The algorithm
uses a data structure, a trie (short for retrieval), that can store a set of strings and provide
efficient lookups to determine if a given string is in the set.

Tries

A trie, also known as a prefix tree, is a tree where each edge holds a letter and where no
child has more than one out edge with the same letter. Going from the root and down,
you can read off all prefixes of one or more of the strings in the set, and when you have
seen a full string from the set, you reach a node that is tagged with the string label from
the set; see Figure 2-26.

58

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

If you want all your strings to sit in leaves—something that can be useful in certain
algorithms—then you can add a sentinel to the strings; see Figure 2-27. This will place
all strings in leaves, and if the strings are unique, you will get a one-to-one mapping
between the leaves of the tree and the strings it contains. If you have duplicated strings,
they will still end up in leaves, but there will no longer be a one-to-one mapping. No
amount of trickery will prevent identical strings from ending up in the same node, so
some leaves will correspond to multiple strings.

" O
o /b#b+a@
ab
-< . 0

Figure 2-26. The trie data structure

+ W PN RO

abbas b/O—#4°

0
s S e @
o (Z#mi@
\k;—'—b—*#@
\F#:@

Figure 2-27. A trie with sentinel strings

One way to represent a trie is to have nodes that store the letter on their incoming
edges, a string label if the node corresponds to a string in the set, a pointer to its parent,
and pointers to its siblings and its children.

59

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

struct trie {
uint8_t in _edge label;
int string label;
struct trie *parent;
struct trie *sibling;
struct trie *children;

b

The parent pointer isn’t needed in many algorithms, but we need it in the Aho-
Corasick algorithm, so I have included it here. As an example, Figure 2-28 is the
representation of the trie in Figure 2-26. Notice that the child pointer points to tries. This
is because all sub-tries are also tries themselves.

When we initialize a trie, we set the edge label to zero—we will change it to the
correct label later—and we set the string label to minus one, the default number that
indicates that the path to the node is not a string in the set the trie stores. The three
pointers are set to default values: null.

void init trie(
struct trie *trie

) {
trie->in _edge label = '\o0';
trie->string label = -1;
trie->parent = 0;
trie->sibling = 0;
trie->children = 0;

}

struct trie *alloc trie(void)

{
struct trie *trie =

malloc(sizeof(struct trie));

init trie(trie);
return trie;

}

60

CHAPTER 2

CLASSICAL ALGORITHMS FOR EXACT SEARCH

parent —
edge Label:
string label:
stblings —
children

ZEN

parent

parent

edoe Label: a

edoe Label: b

string label:

string label:

siblings

siblings .

children

K children
| parent | parent
edoe Label: b
string label: 4
stblings

edge Label: ¢
[children |

string Label:
siblings
children

;

string label: 1

parent
edge Label: b
string Label:
siblings
children

eape Lavel: a

string label: 0

Figure 2-28. Representing a triein C

parent
edoe Label: b edge Label: ¢
string Label: = string Label:
siblings
children

chilaren

eaope LaoeL: 0

string label: 2

stoLLngs

I have written two functions for initializing tries, one that assumes that you have

already allocated a root struct trie structure and one

that does it for you. When you

want a new trie, you create its root using one of these functions. The root has no siblings,

but it will have children once we add strings to it.

When we deallocate a trie, we recursively delete children and siblings. We free

them because the construct algorithms—see the following function—heap allocate the

subnodes.

void dealloc trie(
struct trie *trie
) {
// Depth-first traversal freeing the trie.
if (trie->children)
free trie(trie->children);

61

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

if (trie->sibling)
free trie(trie->sibling);

}

void free trie(
struct trie *trie

) {
dealloc_trie(trie);
free(trie);

To construct a trie, we insert the input set string by string. When we add the string p;,
we search down the trie, T, and either find an existing node at the end of p,, or we find that
we cannot continue searching beyond some point k, that is, p,[0, k]| matches, but there is
no edge with character label p,[k]. In the first case, we set the node’s string_label to i,
and in the second case, we must insert the string p;[k, m] in the node we reached before
we couldn’t go any longer. So the straightforward approach is to find out where the string
sits or where it branches off the trie and insert it there.

Whenever we need to add a substring to a node, the trie we add is a string of nodes
with no branching. We can build such a trie using the following function:

static struct trie *
string to trie(
const uint8_t *str,
int string label
) {
const uint8_t *s = str;
while (*s) s++;

struct trie *trie = 0;

do {
5--5
struct trie *new node = alloc trie();
new_node->in_edge label = *s;
new_node->string label = string label;
new_node->children = trie;

62

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

if (trie) trie->parent = new _node;
trie = new_node;

string label = -1; // so we only label the leaf...
} while (s != str);

return trie;

It starts from the end of the string and iteratively constructs a node for each letter,
and sets that node’s child to the previous node we created. It sets the string label in the
root and then updates the string_label variable, so the remaining nodes will be set to
-1 indicating that they are not representing a string.

Constructing a trie from a string is useful when we build a trie from a single sequence
or when we need to add the suffix of a string to an existing node. To search, we need to
find which edge to follow for each node in the trie. The following function does that by
iterationg through all children w. The w variable is set to the child of the node, and we
iterate through the children via their sibling pointers.

struct trie *out link(
struct trie *v,
uint8_t label

) {

for (struct trie *w = v->children;

W; W = w->sibling) {
if (w->in_edge label == label)
return w;

}

return O;
}

With these two helper functions, we can write a function for adding a string to a trie.
It will first check if the trie has any children. If not, we build a trie for the string and insert
it as the child of the original node. If there are children, we start the search. For each
letter in the string, we get the out edge of the current node and update the current node
to be the output child. We abort the loop if we find a mismatch or reach the end of our

63

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

string. If we reach the end of the string—this happens when *str == 0—then we set the
string label. If we do not reach the end of the string, we have found a node that doesn’t
have the next character as an edge label. We can take the suffix of the pattern after the
mismatch and build a (single string) trie from it and then add it to the children of the
node where we got the mismatch.

void add string to trie(
struct trie *trie,
const uint8_t *str,
int string label
) {
if (!trie->children) { // first string is a special case
trie->children = string to trie(str, string label);
trie->children->parent = trie;
return;

}

while (*str) {
struct trie *child = out link(trie, *str);
if (!child) {
break;
} else {
trie = child;
str++;

}

if (*str == "\0") {
// The string was already in the trie --
// update with label.
// We only allow this when the
// string wasn't already inserted!
assert(trie->string label < 0);
trie->string label = string label;

} else {
// Insert new suffix as a child of parent
struct trie *new_suffix =

64

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

string to trie(str, string label);
new_suffix->sibling = trie->children;
trie->children = new_suffix;
new_suffix->parent = trie;

If you want to know if a string is in the trie, then you can search down in it. If there
is a node where you cannot continue, the string is not in the trie. On the other hand, if
you reach the end of the string, you are in a node. If this node has a string label, then the
string is in the trie; otherwise, it is not. The following two functions implement this idea:

struct trie *get trie node(
struct trie *trie,
const uint8_t *str

) {
if (!trie->children) return o;
while (*str) {
struct trie *child = out link(trie, *str);
if (!child) {
return 0; // we can't find the string
} else {
trie = child;
str++;
}
}
return trie;
}

bool string in trie(
struct trie *trie,
const uint8_t *str
) {
struct trie *t = get trie node(trie, str);
return t 88 (t->string label >= 0);

65

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

I split them into two functions because you sometimes want to get the node where
a string is so you can do something with it. You cannot use get_trie node() directly as
a test. It returns a node or null, so you can test if there is a node on the path given by the
string, but to test if it is in the trie’s set of strings, you must also check the string label. The
string in trie() function does that.

First, assume that we can always find the out edge with a given symbol in constant
time. We use linked lists for this, so on the surface this doesn’t seem to be the case,
but we will always assume that the alphabet is of constant size, making a list search
a constant time operation. When we insert pattern p; of length m,, we will in worst
case search down m; steps down the trie, so if m =) ,;m,, then the running time for
constructing a trie is O(m).

The Aho-Corasick (AC) algorithm works similarly to the KMP algorithm. It scans
along the string x (using an index j) and searches down the trie at the same time. We
increment the index j every time we see a match in the trie—and never decrement it—
and we move the trie along x every time we have a mismatch in the trie; see Figure 2-29.

\F p— : :
a—@ Mateh (and increment j)

Match (and inerement)

Figure 2-29. Matching and mismatching in Aho-Corasick

When we match along x, we move down the trie, matching character by character.
All strings below the current position in the trie can potentially match x. If we have
a mismatch, we need to move the trie to the right to the next position where we can

66

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

potentially match. Consider any string you can read by concatenating the edge labels
from the root and down the trie. That is, consider any string in the trie but not necessarily
one labelled with the strings the trie contains. For such a string, p, let f(p) denote the
longest proper suffix of p that you can also find in the trie. We call this mapping from p to
f(p) the failure link of p because we will use it when we fail at matching deeper into the
trie than p.

This definition of failure links sounds more complicated than the function really is.
It matches the borders we used in the algorithms earlier, except that it uses a trie form of
borders. When we have a mismatch, we want to move the trie to the right such that we
have a match between the prefix of some of the strings in the trie and the part of x we are
matching against. If you take p and all its suffixes, p[1, m], p[2, m], p[3, m], ..., plm, m],
then f(p) is the longest that you can find in the trie, that is, the longest of the suffixes
such that if you search down the trie, you will reach the end of the string before you see
a mismatch. For each node in the trie, v, we have a mapping from the string it represents
and that string’s failure link. In the following, I have listed failure links for the leaves in
the trie in Figure 2-29, and for the inner nodes, we jump from when we mismatch.

p f(p)
aac €
abbch b
ba a
bba ba
bbe c
ca a
abb bb
bb b

B €
abba bba

Recall that e denotes the empty string.

In the Aho-Corasick algorithm, we will represent failure links as pointers from
each node to its failure link node. For nodes where the failure link is empty, we will
set the pointer to point at the root of the trie. We will compute the failure nodes in a

67

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

preprocessing step. Whenever we have a mismatch in the algorithm, we will move from
the current node to its failure link—conceptually moving the trie further along x.
A version of the algorithm could look like this:

void aho corasick match(
const char *x,
uint32_t n,
struct trie *patterns
) {
uint32_t j = 0;
struct trie *v = patterns;

while (j < n) {
struct trie *w = out link(v, x[j]);
while (w) {
// The matching part
if (w->string label >= 0) {
// String hits->string label ends in
// index j. If we know the length
// of hits->string label, we could
// report the beginning.
// We will do so in the iterator
// code.
REPORT(w->string label, j);

}

Vo= W

J++;

w = out_link(v, x[j]);
}

// When we get here, we do not match
// any longer
if (is_trie root(v)) {

J+s

68

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

} else {
v = v->failure_link;

We search down the trie by, at each step, getting the out edge that matches the x[j]
we are looking at. The function we use is this:

struct trie *out link(
struct trie *v,
uint8_t label

) {
for (struct trie *w = v->children; w; w = w->sibling) {
if (w->in_edge label == label)
return w;
}
return 0;
}

When we see a match to one of the strings in the trie, that is, a node with a
nonnegative string label, we report a match. When it happens, j points to the end of the
match and that is what we report (we will change that at the end of the chapter). When
we have a mismatch, that is, we cannot find a node with the out label we want, then the
matching phase ends and we need to move the matching trie. We have a special case if
we are at the root. There, the failure link goes back to the root again, and we would not
move if we used it. So if we are at the root, we increase j instead of jumping in the trie. We
test if we are at the root by testing whether the trie has a parent:

static inline bool is trie root(
struct trie *trie

) {

return trie->parent == 0;

69

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

(27 i

Failure link jump
bl al
[0
bl b al
bl bec|

c—@ Matched to here
a
/b—’—b a-@
. - i <G /
v—e<a—e No—b—¢
b e A

Figure 2-30. Problem with missing matches when one string is a substring of
another

If there are no strings that are substrings of others, this algorithm works. However,
when one string is a substring of another, the algorithm can skip the string completely.
Consider Figure 2-30. We have matched abbcb, and we will then have a mismatch
(because we cannot go any further from that node in the trie). The mismatch means we
jump to the failure link, which is the string b. It is from here we will continue our search.
We are now in the sub-trie with the root b. Not all nodes in the trie will have a string label
but assume for the example that bb has. That means that we should report occurrences
of it, and if the next character is b we will do so. However, we have already encountered it
in the string we have scanned, but we never reported it there because we were elsewhere
in the trie when we encountered it, specifically in the node abb. With the shift from the
failure link, we have moved past that position entirely, and we are not coming back.
Substrings are a problem.

e Giiiissiiispiidisn o © o c o Wgiidiiiiisiaisiisiiisibie

a P c 1
o-gla—e / No—1b—o 2 b
A / ' ! bbgh
s b S e ! ; 3 5
ot \,’<“ ! ; “ e \
Ny c /) / 5
\\\\ \. ,/
S —® / !

Figure 2-31. Output lists and matches

70

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

What we want to do is output all strings that match at a position, and all such strings
can be found by traversing the failure links of the nodes; see Figure 2-31. All strings that
match from a node we have reached in the trie must be suffixes of the current string in
the trie, and we can get all of them by running through the failure link.

When we match the first character in abbcb, we do not match any additional string in
the trie, but when we match ab, we also have a match of b that ends in this position. We
can get that from following the failure link. When we match abb, we should also report
a match of bb and b, and we can get those by following the failure link twice, first for bb
and then for b. When we match ¢, we should report ¢, and again we can see this using
the failure link. Finally, when we match the last b in the string, we should report b as well
as the full string. Unlike in this example, we do not want to output all nodes we can find
from the failure links but only those with a nonnegative string label. So we skip those
that do not by pointing to the next that does. The list we get from doing this is what we
call the output list.

For each string v in the tree, you can go through the failure links v, f(v), f(v), ..., /"
(v) from the node up to the root. Each link, by definition, is closer to the root than the
previous, so we will eventually get there. From the nodes you see on this path, extract
those with a nonnegative string label. That is the output list.

To see that we output all matches that end at index j when we run through the
output list, observe that when we move through the failure links, we get all the strings
that match a suffix of the string we are looking at. To see that we do not miss any strings
we should emit a match for, observe that every time we jump a failure link, we get the
longest possible match, and therefore we cannot jump over another match.

Adding the output lists to the search algorithm, we get this:

void aho corasick match(
const uint8_t *x,
uint32_t n,
struct trie *patterns

) {
uint32_t j = 0;
struct trie *v = patterns;

while (j < n) {
struct trie *w = out link(v, x[j]);

71

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

while (w) {
for (struct output list *hits = w->output;
hits != 0;
hits = hits-»>next) {
// hits->string label ends in j
REPORT(hits->string label, j);

}
VAER"H
j++;
w = out_link(v, x[j]);
}
if (is_trie root(v)) {
j++;
} else {
v = v->failure link;
}

This time we do the traversal as before, but in each node, we run through the output
list before we do anything else. We do not check the string label except for reporting the
output; we know that we only have hits in the output list. Except for the loop through the
output list, there is nothing new in the function.

Preprocessing

Before we see the final version of the algorithm, we will see how to add the failure link
and the output list to the trie data structure. First, of course, we need to add them to the
trie structure:

struct output list {
int string label;
struct output list *next;

};

72

CHAPTER 2

struct trie {

}s

uint8_t in _edge label;
int string label;
struct trie *parent;
struct trie *sibling;
struct trie *children;

// For Aho-Corasick
struct trie *failure link;
struct output_list *output;

We initialize them with null pointers:

void init trie(struct trie *trie)

{

trie->in _edge label = '\0';
trie->string label = -1;
trie->parent = 0;
trie->sibling = 0;
trie->children = 0;

// For Aho-Corasick
trie->failure_link = 0;
trie->output = 0;

CLASSICAL ALGORITHMS FOR EXACT SEARCH

To set all failure links and the output lists, we will traverse the trie in a breadth-first

manner. In that way, whenever we see a node in the trie, its parent and all the nodes

closer to the root will already have their failure link and output list set.

Consider a node, v, and let p(v) be its parent and f(p(v)) be the failure link of v’s

parent. Node v is the string p(v) followed by some letter a (see Figure 2-32 a). The failure

link of v must be a suffix of p(v) followed by a. It cannot be a longer string since this

would contradict that f(p(v)) is the longest suffix of p(v) that is in the trie; we would be

able to get a longer one by adding the first part of the failure link of v (see Figure 2-32 b).

73

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

fpM)
a)
b)
W)
c) M)

vz .z 27/

Gisrasssssid = |o

W)
Figure 2-32. Relationship between v and p(v)

Therefore, f(v) must start with a suffix of p(v) (Figure 2-32 c). It might not be the
longest suffix of p(v) with an a concatenated—there might not be an out edge of f(p(v))
with label a, but it will be some suffix, and we can get all suffixes of p(v) following failure
links, and we want to pick the longest one.

Figure 2-33. Jumping the failure link of a parent to get the failure link of a child

To set the failure link for node v, we first exploit that the parent of the node will have
a failure link, so we can jump to the node it points to, f(p(v)). If we can find an out edge
there that matches a, then the node at the end of the out edge will be v’s failure link.
We have the longest suffix of p(v) that is in the trie, and we must have a suffix of p(v) as

74

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

the initial sequence to the failure link of v, f(v). If we can extend it with a, we have the
longest suffix of p(v) plus a so the longest suffix of v in the trie; see Figure 2-33. If we
cannot extend f(p(v)), then we take the next longest suffix of p(v) in the trie, f(f(p(v))),
and try there, and we continue following failure links until we find one that we can
extend. If we handle nodes in a breadth-first manner, we are guaranteed that all nodes
closer to the root than v will have their failure link set, so we have f(p(v)) and all f* (p(v))
set since these will be higher in the trie; they are suffixes of p(v) and must, therefore, be
shorter strings and thus higher in the trie. If there are no places we can extend, then the
only option we have is to set the failure link to the root.

To implement a breadth-first traversal of the trie, we need a queue structure. The
pointer_queue data structure can be found in the Appendix; the operations you can do
on it are what you would expect of a queue, that is, it is a first-in, first-out data structure,
enqueue_pointer() adds alink to a pointer to the back of the queue, pointer queue
front() gives you the front element of the queue, and dequeue_pointer() removes the
first element from the queue. When we need to do a breadth-first traversal of the trie,
we need to add all siblings of a node when we reach a new node, and for that, we use a
function, enqueue_siblings():

void enqueue siblings(
struct pointer queue *queue,
struct trie *siblings
) {
for (struct trie *s = siblings; s; s = s->sibling)
enqueue_pointer(queue, (void*)s);

To insert all children of a node, you can call enqueue_siblings() on its first child.

We use it in the function compute failure link for node() that handles the
breadth-first traversal. It creates and later frees the queue, inserts the children of the root
to start the traversal with, and then continues to handle nodes as long as there are nodes
in the queue.

void compute failure links(
struct trie *trie

) {

75

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

// We don't want to recompute them if we
// already have set up the failure links.
if (trie->failure link) return;

// Make the root its own failure link.
trie->failure link = trie;

struct pointer queue *nodes = alloc_pointer queue();
enqueue_siblings(nodes, trie->children);
while (!is pointer queue empty(nodes)) {
struct trie *v =
(struct trie *)pointer queue_front(nodes);
dequeue_pointer(nodes);
compute failure link for node(v, trie, nodes);

}

free pointer queue(nodes);

Itis in the compute _failure link node() we do the real work—setting the failure
link and output list for a specific node. This is where we search the failure links of the
parent to find one we can extend and also where we will set the output list.

void compute failure link for node(
struct trie *v,
struct trie *root,
struct pointer queue *queue
) {
// Breadth-first traversal...
enqueue_siblings(queue, v->children);

if (is_trie root(v->parent)) {
// Special case: immediate children of the
// root should have the root as parent.
v->failure link = v->parent;

} else {

76

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

uint8_t label = v->in_edge label;
struct trie *w = v->parent->failure link;
struct trie *out = out link(w, label);
while (!out && !is trie root(w)) {

w = w->failure link;

out = out link(w, label);

}
if (out) {

v->failure link = out;
} else {

v->failure link = root;
}

}

// Compute output list
if (v->string label >= 0) {
v->output = new output link(v->string label,
v->failure link->output);
} else {
v->output = v->failure link->output;

For the output list, observe that we will have to output all the strings in the output
link of the failure link of v—those are the strings that are suffixes of v with a string label. If
v has a string label we must also output it, so in that case we prepend v’s label to the list;
otherwise, we take the output of f(v).

In the traversal, we use two helper functions: is_trie root() and new output_
link(). We have seen is_trie root() before but not new_output link().Itlooks like
this:

struct output_list *
new_output link(

int label,

struct output_list *next

) |

77

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

struct output_list *link =
malloc(sizeof(struct output list));

link->string_label = label;

link->next = next;

return link;

When deallocating a trie, we need to handle the outlink as well as children and
siblings. We do not need to scan through the list nodes, however. The output list is a
linked list, but there is at most one link per string label, and that is associated with the
trie node with that label. We don’t need to handle the rest of the output list since those
will be handled when their corresponding trie nodes are deleted.

void dealloc trie(
struct trie *trie

) {
// Depth-first traversal freeing the trie.
if (trie->children) free trie(trie->children);
if (trie->sibling) free trie(trie->sibling);
if (trie->output &3 trie->string label >= 0) {

free(trie->output);

}

}

When we examine the running time for the preprocessing, we will assume that the
trie is already built; if you want to include it, just add the construction to this running
time. Building the trie can be done in time equal to the total sum of the lengths of strings
in it, O(m). Constructing the failure links can be done in the same time.

It isn’t obvious that we can construct the failure links in linear time. For each node v
at depth d(v), we can in principle follow d(v) failure links, giving us a running time of the
square of the number of nodes in the trie. This, however, is not a tight bound. To see this,
consider a node v and the path down to it. When we compute the failure links, we do it
breadth-first, but for now consider what amounts to a depth-first traversal. If the failure
link is set for v and we need to compute it for a child of v, w, then the node depth of f(w)
can at most be one more than the node depth of f(v). When we compute f(w), we might
decrease the failure depth by a number of steps but we can only increase it by one. As we

78

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

move down a depth-first path, we can increase the failure link depth by one at each step,
but we cannot decrease it more than we have increased it so far. So the total search for
suffix links on such a path is bounded by the depth of the path.

The algorithm with iterators

If we have a global REPORT () function (which we will avoid later), then the search
algorithm can look like this:

void aho_corasick match(
const uint8_t *x,
uint32_t n,
struct trie *patterns
) {
uint32_t j = 0;
struct trie *v = patterns;

while (j < n) {
struct trie *w = out link(v, x[j]);
while (w) {
for (struct output list *hits = w->output;

hits != 0;
hits = hits-»>next) {
// String hits->string label ends in
// index j. If we know the length
// of hits->string label, we could
// report the beginning.
// We will do so in the iterator
// code.
REPORT (hits->string label, j);

}

Vo= W
j++;
w = out_link(v, x[j]);

79

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

if (is_trie root(v)) {
JHt;

} else {
v = v->failure link;

We do not want this type of global reporting function, of course, nor do we want a
callback. They make it hard for others to use our code. Again we want an iterator. We
will initialize the iterator with a trie that is already constructed, in case the user of the
algorithm needs to use the trie on several strings or for other purposes and does not
want to create the trie anew each time. We also want to know the pattern lengths so we
can report the beginning of matches rather than the ends of patterns.

void init ac iter(
struct ac_iter *iter,
const uint8_t *x,
uint32_t n,
const uint32_t *pattern lengths,
struct trie *patterns_trie

) {
assert(iter);
iter->x = x; iter-»n = n;
iter->pattern_lengths = pattern_lengths;
iter->patterns trie = patterns trie;
iter->nested = true;
iter->j = 0;
iter->v = patterns_trie;
iter->w = 0;
iter->hits = 0;
// We need these for this algorithm.
compute failure links(patterns trie);
}

80

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

The resources for the iterator are all handled outside of the iterator so we do not have
to free any resources.

void dealloc ac_iter(struct ac_iter *iter)

{
// Nop

The function for incrementing the iterator is more involved. We have nested loops in
the algorithm where we have an outer loop that runs through the string x, and then we have
a nested loop that matches down the trie using failure links and then yet another nested
loop that iterates through the output list. We need to leave the iterator in any of these loops
and resume in the same loop when we increment the iterator. Therefore, the iterator has
the variable hits that is nonnull if we are in the process of outputting hits. We check if it
is null and return a match if it isn’t. We use another variable in the iterator, nested, that is
true if we are in the nested loop over failure links and matches, the while (w) look from
the implementation earlier. If nested is true, we get the outlink form w, and if there is one,
we update the various values in the iterator so we can return to the beginning of the loop.
For restarting the loop, we call next_ac_match() recursively. If there isn’t an outgoing edge
with the right label, we should leave the nested loop instead, so here we set nested to false
and continue to the next part of the function that handles the updates in the outer loop.
After the updated variables, we continue the loop by a recursive call again. The recursive
calls are likely to be tail-optimized by the compiler so we will not pay a runtime penalty and
we do not need to worry about exceeding the stack space.

bool next ac_match(
struct ac_iter *iter,
struct ac_match *match
) |
if (iter->hits) {
match->string label = iter->hits->string label;
// We use the pattern length to output
// the start of a match instead of the end.
match->index = iter->j -
iter->pattern_lengths[match->string label];
iter->hits = iter->hits->next;

81

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

return true;

}

if (iter->nested) {

iter->w = out_link(iter-»v, iter->x[iter->j]);

if (iter-»>w) {
iter->hits = iter->w->output;
iter->v = iter->w;
iter->j++;
iter->w = out_link(iter-»v, iter->x[iter->j]);
return next_ac_match(iter, match);

} else {
iter->nested = false;

}

if (iter->j < iter-»n) {

if (is_trie root(iter->v)) {
iter->j++;

} else {
iter->v = iter-»>v->failure link;

}

iter->nested = true;

return next ac_match(iter, match);

}

return false;

For the running time of the main algorithm, we can reason similarly to how we did
for the KMP algorithm. We never decrease j, but we increase it for each match. We never
move the trie to the left but move it to the right every time we have a mismatch. Both j
and trie cannot move past the end of x, so the running time is (7) plus the total number
of matches we output, z, which is not a constant, so the total time is O(n + z).

82

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

Comparisons

Theoretical analysis of algorithms is one thing, and actual running times another—
and more important property. I have simulated random strings with three different
alphabets: EQUAL, all symbols are the same; DNA, an alphabet of size four (A, C, G, T);
and a full 8-bit character set. If our analysis (and implementation) is correct, the

naive algorithms, BMH and BM, should have worst-case complexity on EQUAL, but
when we consider random strings, the performance should get better the larger the
alphabet. The other algorithms should run in linear time regardless of the alphabet.
The relative performance of the two classes of algorithms depends on the complexity
of the implementation. So consider Figure 2-34. In the figure, I have used m = 200.

The lines are loess fitted to the time measurements. The behavior is as expected: The
first three algorithms perform poorly with the EQUAL alphabet but comparable to the
other algorithms on the DNA alphabet. The naive algorithm is a little faster because it
is much simpler. With random strings, the BMH and BM algorithms outcompete the
others, with BM (the more complex of the two) the fastest. With the largest alphabet,
the naive algorithm, simple as it is, is faster than border and KMP, and the BMH and BM
algorithms dramatically faster.

The algorithms also depend on m, and in Figure 2-35, you can see the running time
of the linear-time algorithms for different m. In Figure 2-36 you can see the same for
the worst-case quadratic time algorithms. Notice that the linear-time algorithms hardly
depend on m. There is some dependency from the preprocessing step, but it is very
minor. The worst-case quadratic time algorithms depend on both 7 and m. When we fix
m, we always get a straight line for O(nm) algorithms, but the growth depends on m as
we see. They are all faster for smaller m and faster for larger alphabets (the y axes are not
on the same scale so you can see the running time for the fastest cases).

You are unlikely to run into truly random strings, but genomic DNA data is close
enough that the running time will be the same. Natural languages are hardly random,
but BMH and BM are known to perform sublinear there as well. The best algorithm
depends on your use case, but with reasonably large alphabets, BM and BMH are likely
to be good choices.

You can find the code I used for the experiments on GitHub: https://github.com/
mailund/stralg/blob/master/performance/match_search.c.

83

https://github.com/mailund/stralg/blob/master/performance/match_search.c
https://github.com/mailund/stralg/blob/master/performance/match_search.c

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

0.04
0.03
m
o
c
0.02 =
0.01
0.00
6e-04
Algorithm
'8 = Naive
§ 4e-04
o o =~ BMH
Q z
0, > = BM
(0]
£ 2e-04 Border
|_
KMP
0e+00 =
3e-04
2e-04
oo
|
g
1e-04
]
-
0e+00 ’
0 25000 50000 75000 100000

n

Figure 2-34. Performance of the search algorithms

84

CHAPTER 2 CLASSICAL ALGORITHMS FOR EXACT SEARCH

Border KMP
9e-04
5
6e-04 0
>
3e-04 /
0e+00 “/// v////
6e-04 S P
‘ m
3 — 100
S 4e-04
o o = 200
D z
L > 300
(0]
£ 2e-04 400
[
500
0e+00
3e-04
e /
2e-04 '
y o
|
=)
o0 / /
0e+00 7
o o o o o o o o o o
o o o o o o o o
o o o o o o o o
Te) o [Te) o e} o Te} o
3\ s} ~ S 3\ 0 N~ S
n

Figure 2-35. Dependency on m for the linear algorithms

85

CHAPTER 2

Time [seconds]

Figure 2-36. Performance of the worst-case quadratic time algorithms for

0.20

0.15

0.10

0.05

0.00

6e-04

4e-04

2e-04

0e+00

0.00020

0.00015

0.00010

0.00005

0.00000

CLASSICAL ALGORITHMS FOR EXACT SEARCH

Naive

p—

o

different m

86

25000

50000

75000

/
/

100000

=
%

BMH

\

0

25000

3 50000

75000

100000

|

0

25000

50000

75000

100000

vno3

vNd

H9-8

100
200
300
400
500

CHAPTER 3

Suffix trees

The suffix tree is a fundamental data structure when it comes to string algorithms. It
captures the structure of a string via all the string’s suffixes and uses this structure as
the basis of many algorithms. We will only use it for searching, where it provides linear
search for a pattern after a linear preprocessing of the string we search in.

Imagine that you have listed all the suffixes of a string x$ with the sentinel $ (which in C
is usually, and always in this chapter, zero). The sentinel is important here and
you must always include it in suffix trees. So, we have the suffixes x$[0, n + 1], x$[1, n],
x$(2, n}, ..., x$[n, n + 1], which obviously contain all the information that the string does
(the first suffix is the entire string). If we want to search for a pattern p in x, then we can
find the suffixes where p is a prefix, that is, suffixes x[j, n] where p = x[j, j + m]. Iteratively
matching p against all suffixes is not efficient, it would take time O(nm), and if we
explicitly list all suffixes, we would use O(n?) time and space on top of this. If, however,
we construct a trie of all the suffixes, we can search in time O(m). Consider the trie in
Figure 3-1. It contains all the suffixes of the string mississippi$. The sentinel guarantees us
that there is a one-to-one mapping between leaves and suffixes. To search for a pattern,
move down the trie until there is a mismatch or we reach the end of the pattern. If we
reach the end of the pattern, then the leaves below that point are the positions where the
pattern can be found in the string. If we, for example, search for the string “ss” from the
root, we get to the white node in Figure 3-1. The leaves below this node in the tree, two
and five, are the indices where “ss” occur in “mississippi$’, that is, indices 2 and 5.

87
© Thomas Mailund 2020

T. Mailund, String Algorithms in C, https://doi.org/10.1007/978-1-4842-5920-7_3

https://doi.org/10.1007/978-1-4842-5920-7_3#DOI

CHAPTER 3 SUFFIX TREES

0 wississippid

1 ississipple . e

2 ssissippid /'—’ P *

= sissippls , .

4 lssippld /\ =

5 ssippid s

s @ e ei

€ i e e e e e @
9 P
10 i# e —i—er—er—ei—eis @
11 & 0<

{ “ss”
/./) /./
i —r—eo—i—eo—+—@

'P
M/./ /O—L—o—/s—o—s—o—i—o—p—kp—o—i—o—#—e
s
S/.éi\.\—p—.—P—.—L—F#—e
s

J oo i-—o 0 0 i—oi @

'P

\e { \.\L\._*_e
\—#—@

Figure 3-1. Suffix trie for “mississippi”

Constructing this “suffix trie” in the standard way—one string at a time—takes time
proportional to the sum of the lengths of sequences we add to the trie, so building this
suffix trie costs us O(n?) space and time usage for the preprocessing. A suffix tree is a tree
containing all suffixes of a string but exploits the structure in a set of suffixes to reduce
both space and time complexity to O(n + m).

Compacted trie and suffix representation

A suffix tree is a trie containing all suffixes, but it is compacted. This means that we do
not represent each character as an edge in the trie, but rather, we merge edges where
nodes have out-degree one; see the left tree in Figure 3-2.' Since we have a single string,
which all the edges are a subsequence of, we can represent the edge strings efficiently
as indices or pointers into the string. The tree on the right in Figure 3-2 shows the actual
representation of a suffix tree. The notation [i, j| means from i to j with i included and j

not included, that is, j is one past the last index.

'This is also called the PATRICIA tree, but compacted trie is easier to remember since it is a
compact representation of a trie.

88

ceimis — O

» s 0

mlssiss'v.??'/b#o pr 4@ o
i -~ ssippid

o—o it —Q

e ssipi4 -

PhL
4 P <Pi_e -}
9

s

Figure 3-2. Suffix tree, conceptual and actual

CHAPTER 3 SUFFIX TREES

/.&12[
[g12]
=l o]
/e [g12]
[o,12] 142l e /e
1,21 [5,12]
.51 e Ig12] —e
23] —@<_ Lo ol
4,5
T [512]
8,91 18,12
O [912] —e
[11,12] ’ \e
[10,122]

The sentinel guarantees that there is a one-to-one correspondence between the

string’s suffixes and the suffix tree’s leaves. Since each inner node has at least two

children, the total number of nodes cannot exceed 27 — 1 and neither can the number of

edges, so the suffix tree can be stored in O(n) space.

In the implementation, we will not use indices but pointers into the string. This

is more convenient in many cases, and we can always get an index by subtracting the

pointer by the string. We represent an edge with a range structure that we put in each

node. The range in node v represents the edge label between v and its parent p(v).

struct range {
const uint8_t *from;
const uint8_t *to;

};

static inline uint32_t range length(struct range r) {

return (uint32_t)(r.to - r.from);

The range_length() is a convenience function and shows how we can go from

pointers to a length, and in this case, it will be an offset from the string pointed to by r. to.

In the simplest construction algorithm, we need a range, a sibling list, and a child

listin each node, plus a suffix label if the node is a leaf. In the more advanced two

algorithms, we also need a parent pointer and a suffix link pointer. What the parent

pointer does should be self-evident, and the suffix link pointer will be explained when

we get to McCreight'’s algorithm later in the chapter.

89

CHAPTER 3 SUFFIX TREES
With all the information we need in a node, the structure looks like this:

struct suffix tree node {
uint32_t leaf label;
struct range range;
struct suffix_tree node *parent;
struct suffix_tree node *sibling;
struct suffix tree node *child,
struct suffix_tree node *suffix link;

};

static inline uint32_t edge length(
struct suffix_tree_node *n

) {

return range length(n->range);

The edge_length() function is just another helper function we can use to, not
surprisingly, get the length of the edge leading to the node.

We could use a root note as the type of a suffix tree—as we did for tries—but we
will usually need access to the string that the tree is built from. We have pointers into
the string on all edges, but in some of the algorithms in this chapter, we will need to
consider them as indices, and that is easily done by subtracting the pointer to the string
from the pointers on an edge. So we use a suffix_tree structure and store a pointer to
the string in it.

struct suffix tree {
const uint8_t *string;
uint32_t length;
struct suffix_tree_node *root;
struct suffix_tree node pool pool;

};

The pool variable is used to allocate nodes efficiently. We have an upper bound
on the size of the number of nodes we can have, so we can preallocate a pool of nodes
for the tree instead of using malloc() and free() for each node. This speeds up the

90

CHAPTER 3 SUFFIX TREES

construction and makes it easier to free the tree—we can free the pool and do not have to
traverse the tree to free individual nodes.

struct suffix _tree node pool {
struct suffix_tree node *nodes;
struct suffix tree node *next node;

};

When we need a new node, we can get it from the pool. The new_node () function
constructs a node from a suffix tree (where it can get the pool) and the two pointers that
represent the edge label.

static struct suffix tree node *
new_node(
struct suffix_tree *st,
const uint8_t *from,
const uint8_t *to

) {

struct suffix_tree _node *v = st->pool.next_node++;

v->leaf_label = 0;
v->range.from = from;
v->range.to = to;
v->parent = 0;
v->sibling = 0;
v->child = 0;
v->suffix_link = 0;

return v;

This function should remain in the . c file and not be part of the public interface.
We don’t want the user to insert nodes willy-nilly. Suffix trees should be built using a
construction algorithm.

To free a suffix tree, we first need to free the nodes. This is a trivial task because we
have the nodes pool that we can deallocate with a single free() call.

91

CHAPTER 3 SUFFIX TREES

void free suffix tree(struct suffix tree *st)

{
// Do not free string; we are not managing it.
free(st->pool.nodes);
free(st);

}

We should not free the string when we free the suffix tree. That is the responsibility
of the user and part of the interface; the string is declared const, and we will use const
strings for all our construction algorithms.

When allocating a new tree, we allocate the struct to set the string and length
variables. Then we allocate the array we use as the node pool. Finally, we create a
root node and set its parent to itself and its suffix link to itself (forget the suffix link for
now, we get to it later). Adding a root to the tree when we construct it makes all other
functions easier to write since they avoid handling special cases where a node is null.

static struct suffix tree *
alloc_suffix_tree(
const uint8_t *string
) {
struct suffix_tree *st =
malloc(sizeof(struct suffix tree));
st->string = string;
uint32_t slen = (uint32_t)strlen((char *)string);
st->length = slen + 1; // We are using '\0' as sentinel.

// This is the max number of nodes in a tree where all
// nodes have at least degree two. There is a special case
// when the string is empty -- it should really only happen
// in testing, but never the less.
// In that case, there should be
// two and not one node (the root and a single child).
uint32_t pool size = st->length ==
? 2 (2 * st->length - 1);

st->pool.nodes =

malloc(pool size * sizeof(struct suffix tree node));

92

CHAPTER 3 SUFFIX TREES
st->pool.next_node = st->pool.nodes;

st->root = new node(st, 0, 0);
st->root->parent = st->root;
st->root->suffix_link = st->root;

return st;

Naive construction algorithm

The simplest way to build a suffix tree is to consider it a trie and insert one string at the
time, starting with the first suffix. We cannot quite consider it a trie since it is compacted,
but we can look at one character at a time as we scan along edges in effect doing the
same work as we would for building a trie. This naive approach is implemented in the
naive suffix_tree() function:

struct suffix_tree *naive suffix_tree(
const uint8_t *string

) {

struct suffix tree *st = alloc_suffix tree(string);

// We insert the first suffix manually to
// ensure that all inner nodes have at least one child.
// The root will be a special case
// for the first suffix otherwise,
// and we do not want to deal with that
// in the rest of the code.
struct suffix tree node *first =
new_node(st, st->string, st->string + st->length);
st->root->child = first;
first->parent = st->root;

93

CHAPTER 3 SUFFIX TREES

const uint8_t *xend = st->string + st->length;
for (uint32_t i = 1; i < st->length; ++i) {
struct suffix tree node *leaf =
naive insert(st, st->root, string + i, xend);
leaf->leaf label = i;
}

return st;

First, we ensure that there is at least one edge out of the root—otherwise, we would
need to handle the case where, and there isn’t a special case in all the other functions we
will write. After setting the first suffix as the first child of the root (and setting the parent
pointer of it to the root), we iterate through all the remaining suffixes and insert them
using the following naive insert() function. This function will return the new leaf
representing the suffix, and we set its label accordingly.

The naive_insert() function takes the suffix tree, a node to search out from (the
rootin naive suffix tree()), and a string given by a start pointer (x + i for the start of
suffix i) and an end pointer (the end of the string in naive_suffix_tree().

First, naive_insert() checks if there is an out edge from the node it should search
from, v. If there isn’t, then this is where we should add the string, so we create a new
node and insert it as a child of v using insert_child() (listed in following code). If there
is an out edge, we scan along it. We get a pointer to the start of the interval of the edge,
s, and we have the pointer x pointing to the beginning of the string we want to insert.
We scan along the edge as long as s and x point to the same character; see Figure 3-3 for
an illustration of how scanning an edge maps to scanning an interval in the suffix tree’s
string. In the figure, variables from and to define the interval of the edge we scan, s the
point in the edge we have scanned to, x the position in the string we insert that we have
scanned so far, and xend the end of the string we are inserting.

If we find a mismatch, we need to break the edge in two and add an edge to the leaf.
We do that using the function split_edge() described later in this section. If we reach
the end of the edge’s interval, we must continue from the node w at the end of the edge.
We do this by a recursive call.

94

CHAPTER 3

static struct suffix_tree node *

naive insert(

) {

struct suffix tree *st,
struct suffix_tree_node *v,
const uint8_t *x,

const uint8_t *xend

// Find child that matches *x.
struct suffix _tree node *w = find outgoing edge(v, x);

if (lw) {
// There is no outgoing edge that matches
// so we must insert here.
struct suffix _tree node *leaf = new_node(st, x, xend);
insert child(v, leaf);
return leaf;

} else {

// We have an edge to follow!
const uint8_t *s = w->range.from;
for (; s != w->range.to; ++s, ++x) {
if (*s 1= *x) {
struct suffix_tree node *u =
split_edge(st, w, s);
struct suffix tree node *leaf =
new_node(st, x, xend);
insert child(u, leaf);
return leaf;

}

// We made it through the edge, so continue

// from the next node.

// The call is tail-recursive, so the compiler
// will usually optimize it to a loop.

return naive insert(st, w, x, xend);

SUFFIX TREES

95

CHAPTER 3 SUFFIX TREES

from s to X xend

from
\ \VJ
S\
X
e
xenol
I 4
t=to W

Figure 3-3. Scanning along an edge by scanning in the string

The find outgoing edge() function does what you would expect. It scans through
the children of a node, tests each edge for whether it matches the character we are
looking for, and returns the node if it finds one. If it gets all the way through the children,
that is, to a node where the sibling pointer is null, then it returns null.

static struct suffix tree node *
find outgoing edge(
struct suffix_tree node *v,
const uint8_t *x

) {
struct suffix_tree node *w = v->child;
while (w) {
if (*(w->range.from) == *x) break;
W = w->sibling;
}
return w;
}

96

CHAPTER 3 SUFFIX TREES

The simplest way to add a child to a node is to prepend it to the linked list structure.
This, however, will leave the children list reversely sorted according to when we insert
edges, which for all intents and purposes means randomly sorted. There are algorithms
where we need to traverse the tree such that we see the suffixes in lexicographical order.
If we keep the children sorted according to their start symbol, this will simply be a depth-
first traversal where, for each node, we iterate through the nodes in the order they have
in the children’s list. It requires a little more work to insert a child at its correct position,
but it is mostly straightforward except for one special case. If the new child’s symbol is
less than the first node’s, we prepend the child. Otherwise, we scan through the existing
children until we find a letter that is larger than the new child’s symbol, and we insert
the child there. If we reach the last node, recognizable by it having null for a sibling, we
prepend the new child. After inserting the child, we must remember to set its parent to
the node we added it to.

static void insert child(
struct suffix_tree node *parent,
struct suffix tree node *child
) {
// We need this when we split edges.
if (!parent->child) {
parent->child = child;
return;

}

const char x = *child->range.from;

struct suffix_tree node *w = parent->child;

if (x < out letter(w)) {
// Special case for the first child.
child->sibling = parent->child;
parent->child = child;

} else {
// Find w such that it is the first chain
// with an outgoing edge that is larger
// than the new.
while (w->sibling 8& x > out letter(w->sibling))

w = w->sibling;

97

CHAPTER 3 SUFFIX TREES

child->sibling = w->sibling;
w->sibling = child;
}

child->parent = parent;

The out_letter() gives us the first symbol of an edge:

inline static char out letter(
struct suffix_tree node *v

) {

return *(v->range.from);

Finally, we come to the function for splitting an edge on a mismatch. Consider Figure 3-4
where on the left we have the edge we have scanned down and the position of the mismatch.
We have to split the edge at the mismatch position, which is where the variable s points. The
edge going down to the new node must, therefore, go from the pointer fromto s and the edge
below the new node must go from s to the pointer to. We will insert a new leaf as the second
edge out of the new node, and this must go from the pointer x to xend in the calling function
but we only break the edge with the new node, i, in this function. We add the other edge
outside of this function. In the implementation of the function split_edge(), the node wis
an argument as is s. We get the node v from w'’s parent pointer, we create node u, and we set
the start of its edge to be the from of the edge to w and the end to be s. Now u’s parent should
be v and its (so far only) child should be w. We update w's start position to be s (it already
has the right endpoint) and update the child and parent pointers for the nodes. We have to
remove w from v's children—it is now a child of u instead—and we insert u as a new child of
v. We return the new node so the caller can insert the leaf as a child of it.

static struct suffix tree node *
split_edge(
struct suffix_tree *st,
struct suffix_tree node *w,
const uint8_t *s

) {

struct suffix_tree node *v = w->parent;

struct suffix tree node *u

98

CHAPTER 3 SUFFIX TREES

new_node(st, w->range.from, s);
u->parent = v;
u->child = w;
w->range.from = s;
w->parent = u;

remove child(v, w);
insert child(v, u);

return u;
}
from
~Na V
\
< [from,s]
. X
o
xewol
e to] Lleaf
v [x,xend]
t=+to W

Figure 3-4. Splitting an edge

The return value of split_edge() is the new node and we use that to add the new
leaf. We only need the s pointer when we split the edge if we do this. We cannot create
the edge to the leaf with a range x to xend from the w edge and the pointer s, so if we
wanted split edge to insert the leaf as well, we would need more arguments to the
function. In naive_insert() we already know x and xend so we create the leaf there and
insert it as the second child of our new node. This is done with the following code:

struct suffix_tree node *u = split edge(st, w, s);
struct suffix tree node *leaf = new node(st, x, xend);
insert child(u, leaf);

99

CHAPTER 3 SUFFIX TREES

The remaining function we need to implement to complete the algorithm is the one

for removing a child from a node’s child list. We have three cases: If the list is empty—in

which case, we do nothing. If it is the first child—in which case, we change the children

list to the first sibling, which will also remove the child. In the final case, the node is

somewhere in the middle of the list, so we scan through the list and if we find the node

we unlink it.

static void remove child(
struct suffix_tree node *v,
struct suffix tree node *w
) {
if (!v->child) return;
if (v->child == w) {
v->child = w->sibling;
w->sibling = 0;
} else {
struct suffix tree node *u = v->child;
while (u->sibling) {
if (u->sibling == w) {
u->sibling = w->sibling;
w->sibling = 0;

return;

= u->sibling;

100

CHAPTER 3 SUFFIX TREES

Suffixes: Sorted SA LcP
mississippig (0) % (11) o)
lssissippig (1) 3 (10) 15
ssissipplé (2) ippis () 1
sissippld (3) Lssippl (4) 1
Lssippld (4) ississippls (1) 4
ssipplg (5) mississippis (0) o)
sippif (e) pisk 9 o
ippit () RPif (® 1
PPt (2) Sippif e o
g (9) sissippig (=) 2
L$ (10) ssippl (5) 1
% (11) ssissippl (2) =2

Figure 3-5. Suffix array and longest common prefix array

Suffix trees and the SA and LCP arrays

In this section, we briefly cover the close relationship between two special arrays and

a suffix tree. These arrays are the topic of the entire next chapter, but in this section,

we only consider how we can use them to build a suffix tree. If you take a list of all the
suffixes of a string and then sort them (see Figure 3-5), the suffix array (SA) is the suffix
indices in this sorted order. The longest common prefix (LCP) array is the longest prefix of
a suffix and the suffix above it in the sorted order—the underlined prefixes in Figure 3-5.
In this section, we shall see that we can construct the arrays from a suffix tree in linear
time and that we can construct the suffix tree from the two arrays in linear time.

Constructing the SA and LCP arrays

If we depth-first traverse a suffix tree with children sorted alphabetically, we will see
all leaves in sorted order, an observation that should be immediately obvious. Thus, if
we keep a counter of how many leaves we have seen so far and use it to index into the
suffix array, we can build the suffix array simply by putting leaf nodes at the index of the
counter as we traverse the tree.

101

CHAPTER 3 SUFFIX TREES

Getting the LCP array is only slightly more involved. If we let branch length be the total
length of the string, we read from the root down to a node v. All children of v will share a
prefix of exactly this length, so if we iterate through all but the first child, we will have at
least this longest common prefix. Children of the children will share longer prefixes, but we
can handle that by recursion. The problem with the first child is that though it shares the
prefix with the other children, it does not share it with the previous string in the suffix array.

Consider Figure 3-6. The letters represent branch lengths and the numbers the
leaves in the tree. Notice how the leftmost node in any of the subtrees has a lower LCP
than its siblings. If we traverse the tree and keep track of how much we share to the left,
we can output that number for each leaf. For the first child of a node, we send this left-
shared number unchanged down the tree, while at the remaining trees, we update the
value by adding the edge length of the children’s parent node.

Onto the implementation of the algorithm, we use this structure to reference the
two arrays and to keep track of which index we need to update in the array next time
we see a leaf.

struct sa_lcp data {
uint32_t *sa;
uint32_t *1cp;
uint32_t idx;

b

LCP

: 0

a
:a+b+e+d
:a+b + ¢
:a+b

a+b
:a+b+e

p KO

W

» O >

1 2
Figure 3-6. Branch lengths and LCP array

102

CHAPTER 3 SUFFIX TREES

In the function st_compute_sa_and lcp(), we create and initialize an instance of the

structure and call a recursive function, 1cp_traverse(), with the root as the node and

both the left-shared branch length and the node’s branch length as its input.?

void st compute sa and lcp(

) {

struct suffix_tree *st,
uint32_t *sa,
uint32_t *lcp

struct sa_lcp data data; // type defined earlier
data.sa = sa; data.lcp = lcp; data.idx = 0;
uint32_t shared depth = 0;
uint32_t branch_depth = 0;
lcp_traverse(st->root, &data,

shared_depth, branch depth);

In the traversal, we update the SA and LCP array each time we see a leaf; we

propagate the shared left-depth to the first node and use the current node’s depth as

both the left and the node depth in the recursive calls.

static void lcp traverse(

) {

struct suffix_tree node *v,
struct sa lcp data *data,
uint32_t left depth,
uint32_t node_depth

if (!v->child) {
// Leaf
data->sa[data->idx] = v->leaf label;
data->lcp[data->idx] = left_depth;
data->idx++;

} else {

*The traversal is easier to follow with a recursive function, but for large trees, it will hit the stack
limit and crash the program. Using an explicit heap-allocated stack solves the problem. I do not
show that implementation here, but you can find it at https://github.com/mailund/stralg.

103

https://github.com/mailund/stralg

CHAPTER 3 SUFFIX TREES

// Inner node
// The first child should be treated differently than
// the rest; it has a different branch depth because
// the LCP is relative to the last node in the previous
// leaf in v's previous sibling.
struct suffix_tree node *child = v->child;
uint32_t this_depth
= node_depth + edge length(v);
lcp traverse(child, data,
left_depth, this_depth);
for (child = child-»>sibling;
child;
child = child->sibling) {
// Handle the remaining children
lcp traverse(child, data,
this_depth, this_depth);

Since the entire algorithm is a depth-first traversal where we do constant time work
at each node, the running time is the same as the size of the tree, so O(n).

Constructing the suffix tree from the SA and LCP arrays

We can construct a suffix tree from the SA and LCP arrays by, conceptually, doing a
depth-first traversal of the tree while constructing it at the same time. We insert the
suffixes in a different order than for the naive approach; we insert them according to
the suffix array, so we first insert sa[0], then sa[1], and so on. When inserting the first
suffix, we add an edge from the root to a leaf labelled sa[0]. Then we split that edge

to insert sa[1] and an edge to it. For sa[2] we start in sa[1] and figure out where we
should break an edge and insert the new leaf. This can either be on the edge down to
sa[1] or the edge above it (see Figure 3-7), but it cannot be on the edge down to sa[0]
since sa[1] is lexicographically smaller than sa[2] which means it must be to the right
or above the edge to sa[1]. We continue inserting this way by inserting sa[3], sa[4],
and so on by first moving up the tree to find the place where they should be inserted and

104

CHAPTER 3 SUFFIX TREES

then inserting the new leaf. You can think of this as a depth-first traversal. When you
insert a new leaf, you move down the recursion (very quickly, of course, since you only
insert a single edge), and when you move up the tree to find an edge to split, you in effect
return from the depth-first recursion.

AlL strings placed to the left of sal1]
must be smaller thaw sal1], so sal2]

A) Possible Locations
must necessarily sit to the right.

for sa[=2]

sal1]
salo]

Figure 3-7. Possible placements of sa[2]

The main function for the algorithm looks like this:

struct suffix tree *

lcp suffix_tree(
const uint8_t *string,
uint32_t *sa,
uint32_t *lcp

) {

struct suffix tree *st = alloc_suffix tree(string);

uint32_t first label = sa[o0];
struct suffix_tree node *v =
new node(st, st->string + sa[o],
st->string + st->length);
v->leaf label = first label;
st->root->child = v;
v->parent = st->root;

105

CHAPTER 3 SUFFIX TREES

for (uint32_t i = 1; i < st->length; ++i) {
v = lcp insert(st, i, sa, lcp, v);

}

return st;

We first add sa[0] to the tree and set the variable v to the new leaf. Then we
iteratively add the remaining leaves with 1cp_insert() that returns the new leaf
inserted. This leaf is used by the function as the starting point for inserting the next leaf.

For the function doing the hard labor, 1cp_insert(), consider Figure 3-8. If we are
at the leaf for sa[i-1] and the longest prefix it shares with sa[i] is 1cp[i], then the
new leaf should be inserted 1cp[i] symbols down the path from the root to sa[i-1], or
n-sa[i-1]-lcp[i] up from the sa[i-1] leaf. We can search up that amount from sa[i-1]
and break the edge there (or insert the new leaf in a node if we do not hit an edge).

The pointers we need to insert on the new edge to the leaf are 1cp[1i] into the suffix,
thatis, sa[i]+1lcp[i], since this is what remains of the suffix after we have shared
lcp[i]; see Figure 3-9. We don’t know where the pointers on the edge we break are, they
need not be anywhere sa[i-1], sa[i], or 1cp[i], but we will know how far up the edge
are we from how much we had left to search when we started climbing up the edge. If we
call that amount length_up, then the break pointer is at to-length_up.

sali-1] w-sali-1] - lepli]

Figure 3-8. Relationship between safi-1], lcp[i], and the suffix tree

106

CHAPTER 3 SUFFIX TREES

Lepli]

T From

R

Ty salil+leplil

to - Lewgtl/_up — &

saltl salt] + Lepli] n
—
to”’///' ,
from to salt]

¥
WA s it//idttindd/

\ sali - 11
to - length_up

Figure 3-9. Splitting the edge when inserting sali]

With all the observations earlier, the actual implementation is straightforward. We
get the length we have to move up from the calculations we just did, and then we get the
length of the current edge we need to climb. Then we enter a loop that moves us up a
number of edges until we have traversed all the way to our insertion point. In the loop,
we each iteration subtract the edge length from the length we need to climb up—we
have just moved up that amount, after all—we move to the parent node, and we get the
length of the next edges. We do this until we hit an edge longer or equal to the next edge
or until the new edge length is zero. In the first case, we have found the insertion point
on an edge, and in the second case, we hit a node and need to insert the new leaf as a
child of that node.

static struct suffix tree node *
lcp_insert(
struct suffix_tree *st,
uint32_t i,
uint32_t *sa,
uint32_t *lcp,
struct suffix_tree node *v
) 1
struct suffix tree node *new leaf =
new_node(st,
st->string + sa[i] + lcp[il,
st->string + st->length);

107

CHAPTER 3 SUFFIX TREES

new leaf->leaf label = sa[i];
uint32_t length up = st->length - sa[i-1] - lcp[i];
uint32_t v _edge len = edge length(v);

while ((length_up >= v_edge len)
88 (length up '= 0)) {
length up -= v_edge_len;
v = v->parent;
v_edge len = edge length(v);
}

if (length up == 0) {
append child(v, new leaf);
} else {
struct suffix tree node *u =
split edge(st, v, v->range.to - length up);
// Append leaf to the new node
// (it has exactly one other child).
u->child->sibling = new_leaf;
new_leaf->parent = u;

}

return new_leaf;

There is one new function, append_child(). It adds a child to the children’s list. It
could be done with the insert_child() function as well, but it is simpler since we know
the edge we are inserting should go to the back of the list.

static void append child(
struct suffix_tree node *v,
struct suffix tree node *w
) {
struct suffix_tree node *child = v->child;
while (child->sibling) {
child = child->sibling;

108

CHAPTER 3 SUFFIX TREES

child->sibling = w;
w->parent = v;

To see that the running time is linear, observe that we construct the tree in
what is essentially a depth-first traversal. We do not traverse nodes going down the
recursion—that only makes the running time faster—but each time we move up the
tree, it corresponds to returning from the recursion in the traversal. If this is not clear, I
encourage you to work out a few examples on a piece of paper until you see that this is
the case.

An alternative argument for the running time uses an amortization argument, not
unlike those we used for, for example, border arrays, KMP, and Aho-Corasick. Consider
the depth of the leaf we start an iteration from, v with node depth d(v). The node depth
d(v) is the number of nodes on the path from node v to the root. When we search
upward, we decrease the depth, but we cannot decrease it more than d(v). After we find
the node or edge, we potentially increase the depth of all the nodes lexicographically
smaller than the suffix we are inserting (when we split an edge), or we leave them
alone (when we insert a child to node). However, we will never explore that part of the
tree when we insert lexicographically larger suffixes. We will look at nodes and edges
closer to the root than that point, but we will never return to that subtree since we will
never insert a lexicographically smaller string in the algorithm. So we can ignore those
increases in depth and only consider the increase when we insert a new leaf. That
increase is at most one. The algorithm can at max increase the depth by one (for the
relevant part of the tree) in each iteration, and we cannot decrease the depth more than
we have increased it, so since there are O(n) leaves in the tree, we have a linear running
time.

If we use the SA and LCP arrays to build the suffix tree, and need a sulffix tree
to produce the arrays, we have a circular problem. We shall see in the next chapter,
however, that we can build the arrays in linear time without using a suffix tree. We shall
also see, in the next section, that we can build a suffix tree in linear time without the two
arrays. A benefit of using the SA and LCP algorithm to construct suffix trees is that it will
be easier to preprocess a string using a suffix tree and then serialize it to a file when you
expect many searches in the same string over time. The two arrays are trivial to write to
a string, while serializing the tree structure itself means saving a structure with pointers

and reconstruct them when the tree is read from file.

109

CHAPTER 3 SUFFIX TREES

McCreight’s algorithm

McCreight’s algorithm lets us construct suffix trees in linear time without any additional
data structure beyond the string itself. It inserts suffixes in the order they appear in
the string, x[0, n]$, x[1, n]$, ..., $, just like the naive algorithm, except that it inserts the
next suffix faster than the naive algorithm. It keeps track of the last leaf inserted, like
the SA and LCP algorithm, but the two tricks it uses to achieve linear construction time
are different. From the latest leaf that we insert, we use a pointer to jump to a subtree
somewhere else in the tree, where the next leaf should be inserted. Then we search for
the insertion point in that tree, first using a search method that is faster than the naive
one and then searching the last piece of the suffix using the slow scanning method from
the naive algorithm.

Before we start we need to get some terminology and notation defined: Any suffix
y = x[i, n]$ can be split into two, potentially empty, substrings y = h(y)t(y) where h(y) is
the longest string that matches a prefix of a longer suffix x| j, n]$, j < i. This is just another
way to say that h(y) is how far down the tree we go when inserting suffix i, that is, it is the
point in the tree where we need to insert a new leaf for suffix i. We call the two strings the
head, h(y), and tail, (y), of suffix i. For convenience, we will use i for the strings for suffix
x[i, n]$, that is, if y = x[i, n|$, then k(i) = h(y) and (i) = t(y).

h(t) t(L)

1 |

hi) —~ L

t(0) ‘/

Figure 3-10. Inserting suffix i by finding its head and appending its tail

What we did in the naive algorithm was searching one character by one character
from the root to the point where suffix i would branch off the existing tree, that is, we
searched for h(i), and then we inserted a new leaf with label #(i). We searched with the

110

CHAPTER 3 SUFFIX TREES

naive search algorithm, one character at a time, and when we could not continue down
the tree, we had found k(7). We did not need to insert that string—by definition, it is
already in the tree—but we needed a new leaf and the remaining part of the suffix, #(i),
on the edge to the leaf; see Figure 3-10. In McCreight’s algorithm, we do essentially the
same, but we exploit the structure of suffixes to search for k(i) faster.

For a string ay let its suffix link s(ay) be defined as the string with the first symbol
removed, that is, s(ay) = y, with the special case s(¢) = € for the empty string. If vis a
node in the tree where ay is the string we would read from the root to v, then s(v) is the
node where we would find y when reading from the root and down. We will see in the
algorithm that all nodes in a tree have a suffix link that is a node so we can represent
them as pointers from nodes to nodes. Jumping these pointers is the first trick to

McCreight’s algorithm.
b,) | e, N

Figure 3-11. The head of a suffix is longer to or equal to the previous suffix’
suffix link

First, observe that s(h(i — 1)) is a prefix of 4(i). Consider k(i — 1). This string is how far
down the tree we could scan before we found a mismatch when we inserted suffixi — 1.
Therefore there was a longer suffix, k < i — 1, whose prefix matches A(i — 1) and then had
a mismatch (there might be strings that match more of suffix i — 1, but by definition, this
was the longest at the time we inserted i — 1). Now consider /(7). This is the longest prefix
matching a prefix of a string we already inserted in the string. If we look at suffix k + 1, we
can see that this will match s(h(i-1)); see Figure 3-11. Because we match at least suffix k + 1
to this point, s(h(i — 1)) must be a prefix of /(7). If we only have suffix k + 1 that matches
to this point, then we would have exactly h(i)=s(h(i-1)), but there might be longer strings
matching a prefix of suffix j; after all, this suffix starts with a different character, and there
might be suffixes that do the same and matches longer prefixes. Regardless, we know that
s(h(i-1)) is a prefix of h(%).

If we have a pointer from h(i — 1) to s(h(i — 1)), then we can jump it and skip past this
prefix in the search for k(). Essentially, this is what we will do except that we do not have
this suffix link when we need it. An invariant in the algorithm will be that we have suffix

111

CHAPTER 3 SUFFIX TREES

links for all nodes except possibly the parent of the last leaf we inserted. Not to worry,
we can do something almost as good. While /(i — 1) might not have a suffix link pointer,
its parent does p(h(i — 1)) — s(p(h(i — 1))). This suffix link is also a prefix of (7). See
Figure 3-12. The dashed arrow is a pointer we are guaranteed to have, while the dotted
arrow is the pointer we wished we had but might not.

Q) €6 PG)

DL | ||] / ________________________________
<p((i-1))) hi) ~ (1))
=p@-1) (@)
PR 4 ,
s(h(t-1)) - h() A

Figure 3-12. Head and suffix links and their “jump pointers”

The overall steps in the algorithm are this: We start by creating the first leaf and
connecting it to the root. After that, we go through each suffix in order and get the parent
of the last leaf we inserted (h(i — 1) in Figure 3-13 and the code). As an invariant of the
algorithm, we will have that all nodes, with the possible exception of h(i — 1), will have a
suffix link pointer. This is vacuously true after we have inserted the first leaf. For the root,
though, it has a suffix link. We set the root’s suffix link to the root itself in alloc_suffix_
tree(), so although we need to set the suffix link when we increment i, to ensure the
invariant, it is already satisfied at this point.

From the parent of leaf i — 1, called v in the code and in Figure 3-13, we call a
function, suffix_search(), that returns s(h(i — 1)), called w in the code. This is the
suffix link of v, so we set the pointer ensuring the invariant for the next iteration of the
loop. The k(i) string is somewhere in the subtree of s(h(i — 1)) since s(h(i — 1)) is a prefix
of it. So we need to search a little more from node w. We do this in two steps. We jump
to s(p(h(i — 1))) using the suffix link and then we search for w from there. In the search,
called “scan 1” in the figure, we can move faster than the naive search. We know that the
string from s(p(h(i — 1))) to s(h(i — 1)) is already in the tree which means that we can
jump from node to node rather than scan along an edge. At each node we need to find
which outgoing edge matches the current symbol in s(h(i — 1)) to choose the right path
in the suffix tree, but we do not need to compare characters when we move along an

112

CHAPTER 3 SUFFIX TREES

edge. We do not know how far down h(i) is from s(h(i — 1)), so in this part of the search,
we need to use the naive scan, called “scan 2” in the figure. The details of suffix_
search() are described in the following texts.

h(t) t(@) p(V) = p(h(i-1))
it { —)

L I |22]

! | \ v=h(-) TN
Jump Secanl seam o
—
sp k1)

s(h(i-1))

Figure 3-13. Searching for the head of suffix i

The implementation of the main function looks like this:

struct suffix tree *

mccreight suffix tree(
const uint8_t *x

) {
struct suffix tree *st = alloc_suffix tree(x);
uint32_t n = st->length;

struct suffix _tree node *leaf =

new_node(st, x, x + st->length);
leaf->parent = st->root; st->root->child = leaf;
leaf->leaf label = 0;

for (uint32_t i = 1; i < st->length; ++i) {

// Get the suffix of p(i-1) = h(i-1) = v

struct suffix_tree node *v = leaf->parent;

struct suffix tree node *w = suffix search(st, v);
v->suffix_link = w;

// Find head for the remaining suffix
// using the naive search.

113

CHAPTER 3 SUFFIX TREES

if (leaf->parent != st->root) {
const uint8_t *y = leaf->range.from;
const uint8_t *z = leaf->range.to;
leaf = naive insert(st, w, y, z);
} else {
// Search from the top for
// the entire suffix.
leaf = naive_insert(st, w, x + i, x + n);

}

// Move on to the next suffix.
leaf->leaf label = i;

}

return st;

For the “naive search” and “scan 2” from Figure 3-13, there are two cases depending
on whether we need to search from the root or not. The general case is when h(i — 1)
is nonempty (which also means that it is not the root). With suffix_search() we have
searched for k(i) to the point s(k(i — 1)). The string we have to continue our search with
is (i — 1) (see Figure 3-14 A). We search for #(i — 1) because it makes the code slightly
easier and in any case is the same string we would search for if we searched s(h(i — 1))
toward the end of the string (see the figure). We will continue searching for #(i — 1) until
we get a mismatch, at which point we have found h(i).

~ hi-1) , te0) ®) h(i-1)=e ,
 sh@w) o (1)
| | 1 | =
B 1| 1 | | | |
4, | L/v L\ it
n@) [@ W) £@0)
Scan 2 Scan 2

Figure 3-14. Cases for scan 2

If h(i — 1) is empty (i.e., the root), we cannot search from #(i — 1). The string #(i — 1)
is the entire suffix x[i — 1, n]$ (see Figure 3-14 B). We need to scan for the entire suffix
x[i, n]$ to find h(3).

114

CHAPTER 3 SUFFIX TREES

Now, the suffix_search() function is responsible for finding s(v) = w for node v; see
Figure 3-13 and Figure 3-15. For this it uses two operations, it goes up to p(v) and then
jumps to s(p(v)), and then it searches from there to w in the “scan 1” step. If the edge
label on the edge from p(v) to v is the string from x to y (i.e., the pointers in the node
representing v have the range from x to y), then it is this string we must search for once
we have made the parent and suffix jumps.

There are four cases, depending on how v and p(v) sit in the tree; see Figure 3-16. (A)
It might be the case that v is the root. Since the suffix of the root is the root itself, we have
that w is the root so our function can return that. (B) v might be a child of the root with
a single symbol as its edge label. The suffix of a single symbol is the empty string which
is the root, so again we can return the root. (C) It is also possible that the parent of v is
the root but with a longer edge label, the string from pointer x to pointer y. In this case,
we must search from the root for the string x + 1 to y where we add one to x for the same
reason that we had to add one when searching with the naive algorithm from the root
(see earlier texts). Finally, (D), we have that p(v) is not the root, so we can jump from v to
s(p(v)) following the parent and suffix link pointer, respectively. From this point we must
search for the string x to y since this is the missing string between p(v) and v.

1

Figure 3-15. General case of suffix search

The code for handling the four cases can look like this:

static struct suffix_tree node *
suffix_search(
struct suffix tree *st,
struct suffix_tree node *v

) {
115

CHAPTER 3 SUFFIX TREES

if (v == st->root) {
// Case A
return v;
} else if (v->parent == st->root
88 range length(v->range) == 1) {
// Case B
return st->root;

} else if (v->parent == st->root) {
// Case C
const uint8_t *x
const uint8_t *y = v->range.to;
return fast scan(st, st->root, x, y);

v->range.from + 1;

} else {
// The general case, case D
const uint8_t *x = v->range.from;
const uint8_t *y = v->range.to;
struct suffix tree node *w =
v->parent->suffix_link;
return fast scan(st, w, x, y);

A) ®)
vV = root) s / S U=
s (root) = root L/ voot y ./
(root) = voot _ & —& o=
w = root a/
£=root
v
w=root
c)

(V) =root ,i spW)
- li—

X+
[S)(cﬂw 1]
+1,
y Y

Figure 3-16. Four cases for finding the suffix of node v
116

CHAPTER 3 SUFFIX TREES

The fast_scan() function handles the “scan 1” part of the algorithm, and as the
name suggests, it is faster than the naive search we use for “scan 2” We call it with a node
and a string range. Call these v, x, and y. We want it to return the node w below v where
the path label spells out the string from x to y or create such a node if it doesn’t exist (so
we always get a node from a call to the function). It is the same behavior as the naive
search in the tree has, but we will exploit that when we use fast_scan(), we call it with
a string that we know is in the tree below node v. It is guaranteed by the observation
that s(h(i — 1)) is a prefix of h(i). If we know that a string is in the tree, we do not need to
compare every symbol down an edge against it. If we know which edge to follow, we can
jump directly from one node to the next. This is what fast_scan() does.?

Let w be the node at the end of the edge where the first letter matches the first
symbol we are searching for, and let s and ¢ be the pointers that define the edge label
from v to w. Let n be the length of the string, n=¢ — s, and let z = x + n, that is, z is the
point we get to if we move x forward by the length of the v to w edge.

We have three cases for fast_scan(), depending on how the string s to t compares
to the string from x to y; see Figure 3-17. (A) The two strings could match exactly. This
means that we have found the string we are looking for so we can return w. (B) The string
x to y might be shorter than then string from s to #——which we can recognize by z< y. In
this case, we need to create a new node for where the x to y string ends and return the
new node, node u in the figure. Finally, (C) the x to y string might be longer than the
string from s to ¢. If this is the case, we need to search for the remainder of x to y, the
string from z to y, starting in node w and we do this recursively.

The implementation can look like this:

static struct suffix_tree node *
fast_scan(
struct suffix tree *st,
struct suffix_tree_node *v,
const uint8_t *x,
const uint8_t *y

N

3By definition, we know that k(i) is in the tree, so you might argue that we could use fast_scan()
to find it. The reason that we cannot is that although we know the string is in the tree, we do not
know what the string is. We don’t know when we are done with the scan. For this reason, the
naive search is necessary for “scan 2”.

117

CHAPTER 3 SUFFIX TREES

// Find child that matches *x.
struct suffix _tree node * w = find outgoing edge(v, x);
assert(w); // must be here when we search for a suffix

// Jump down the edge.
uint32_t n = edge length(w);
const uint8_t *z = x + n;

if (z ==y) {
// Found the node we should end in.
return w; // We are done now.

} else if (z > y) {
// We stop before we reach the end node, so we
// need to split the edge.

// We need to split at distance k from
// s on the edge from v to w (with label [s,t])
//

// |---n----|

// V O-------- ow (s,t)

// X Ko--*o___* 7

// y

// |-k-|

//

uint32_t k = (uint32_t)(y - x);
assert(k > 0);

const uint8_t *s = w->range.from;
const uint8_t *split point = s + k;
return split edge(st, w, split point);

} else {
// We made it through the edge,
// so continue from the next node.
// The call is tail-recursive,

118

/// so the compiler will optimize

// it to a loop.
return fast scan(st, w, z, y);

}
}
A)
AV,
S
w
t
B)
)
S X
w Y
t
c)
\V2
S X
w
t
Y

Figure 3-17. Fast scan cases

CHAPTER 3

Return w

Split edge and

SUFFIX TREES

return new nooe u

Recurse on w, z, and Y

119

CHAPTER 3 SUFFIX TREES

The second case in the fast scan, where we split an edge, leaves a node with a single
child, violating an invariant of suffix trees. This should worry us, but itisn’t a problem
because we immediately after the fast scan search with a naive insert. This naive search
will see a mismatch on the existing edge and insert #(i) on an out edge of node u,
returning us to a tree that satisfies the invariant.

To see that this is the case, see Figure 3-18. By definition, k(i — 1) is the longest prefix
of suffix i — 1 before we have a mismatch, so there must be some longer suffix, k <i—1,
that shares prefix 4(i — 1) and then mismatches. Let the symbol at the mismatch be
a for suffix i — 1 and b for suffix k. When we insert suffix i, suffix k + 1 must have been
inserted. Suffixes k + 1 and i share the prefix s(h(i — 1)) and the next character in k + 1
after s(h(i — 1)) is b, and since we broke a single edge, so there is only one symbol that
continues from this point, we must conclude that the symbol after the point where we
broke the edge must be b. Since #(i — 1)—which is the string we will search for in after
calling fast_scan()—begins with symbol a, we will get a mismatch immediately and
conclude that s(h(i — 1)) is indeed h(i).

To analyze the running time of McCreight’s algorithm, we split it into three parts: (1)
The total work we do when jumping to parent and then the suffix of the parent, (2) the
total work we do when using fast_scan() to handle “scan 1’; and (3) the total work we
do with naive_insert() to handle “scan 2"

Of the three, (1) is easy to handle. For each leaf we insert, of which there are n, we
move along two pointers which take constant time, so (1) takes time O(n).

For (2) we will use an amortization argument. Let d(v) be the node depth of node
v, that is, the number of nodes on the path from the root to v. Moving to the parent of v,
p(v), cannot decrease the depth more than one. If v is the root, which is its own parent,
then d(p(v)) = d(v) and otherwise d(p(v)) = d(v) — 1. Moving along a suffix pointer can
also only decrease the depth by one. Consider Figure 3-19. For each path from the root
down to v, we see a number of nodes, and each node has a suffix link (in the algorithm,
node h(i — 1) might not have a suffix link, but we never jump from this node, so this has
no consequence for the argument). In the following text, we shall argue that each of
these suffix links is unique. In the general case, (A) in Figure 3-19, this means that d(s(v))
=d(v). (B) An exception is when the first edge on the path has a single symbol as its label.
In that case, the first node has the root as its suffix and d(s(v)) = d(v) — 1.

120

CHAPTER 3 SUFFIX TREES

b = S (l’l (L-‘l))

P
h(t-1)

R — g

Figure 3-19. Relationship between a path and the path of suffix links

Now, to see that the suffix link nodes are unique, recall that all nodes in the tree
correspond to a prefix of at least one suffix and that nodes on the same paths will have
the node with the smallest depth be a prefix of the other. Let k be such a suffix for nodes
v;and v, = p(v;); see Figure 3-20. Since v;_, and v, are different nodes, the edge label

121

CHAPTER 3 SUFFIX TREES

between them, y, is nonempty. If we now look at suffix k + 1, we get the suffix of v;_, and
v;instead, and these are also separated by the nonempty string y; thus, they must be
different nodes.

V'L—i v'b
R J

o = I MMM 2 LT L

L) VY7072 1 1V i 117

R+1—"

S (VL- 1) S (V'L)

Figure 3-20. Uniqueness of suffix links

In each iteration of (2), the pointer jumps, thus decreasing the depth by at most two;
after which “scan 1” (or fast scan) increases the depth by a number of nodes. It cannot,
however, increase the depth by more than O(n)—there simply aren’t paths long enough.
In total, it can increase the depth by O(n) plus the number of decreases in the algorithm
which is bounded by O(n). In total, the time we spend on (B) is linear.

Finally, for (C) consider the search for k(i) from h(i — 1). First we make a jump to
s(p(h(i — 1))), then a fast scan down to s(hk(i — 1)), and then a slow scan down to k(7).
When we insert (i + 1), we jump and fast scan down to s(x(7)). If you consider these
indices in the string we build our suffix over, rather than nodes in the tree, you will see
that we always use a slow scan from one head to the other, that is, we slow scan from
h(i — 1) to k(i) when inserting h(i), from k() to h(i + 1) when inserting k(i + 1), and so
on; see Figure 3-21. These intervals do not overlap, and in each iteration, we move the
pointer where a slow scan will start to the right. The total time we can spend in “scan 2”
is thus O(n).

122

CHAPTER 3 SUFFIX TREES

Jump Scan i Scan 2

L1 |
i h(-1)

sp(E-2))) <m@i-2))

|
Jump Scani | Scan 2

L | I |
Y
spn(i-1))) c(n(1)) ! h(t)
, Jump Scani 5 Sean 2
L+1 [1]
/ h(t+1)

sEM@) sh@®)

Figure 3-21. Slow scan (scan 2) time usage

Searching with suffix trees

To search for a pattern p in a suffix tree of a string x, we use the strategy from the naive
insert we have seen before. We scan down edges in the tree until we either find the
pattern or find a mismatch. If the first is the case, then the leaf of the subtree under the
edge or the node where we had the hit will be the positions in x where p occurs. The
function below implements it. Here the pattern is null-terminated, as C strings are, but
do not confuse this null with the sentinel in x$. If we reach the end of the string, we

have a null character, and that is how it is used. The function doesn’t directly give us the
positions where the pattern matches. It gives us the smallest subtree where the pattern
matches the path label to it. All leaves in this subtree are positions where the pattern can
be found in x.

The function searches for p from the node v. If p is empty, then we have a match at
node v, and we return it. Otherwise, we find the out edge (the edge to a node w) where
the first symbol matches the first symbol of p—it is along this edge and its subtree that
p might be found. If we do not have a matching out edge, we cannot have a match, and
we return a null pointer to indicate that. Assume that we do have an edge to scan along.
Then we set s to its beginning and ¢ to its end. The way we scan down the edge is by
incrementing s and p and comparing what they point to. This means that p is not the

123

CHAPTER 3 SUFFIX TREES

original pattern we are searching for when we run the algorithm, rather it is a pointer

to how far into the pattern we have matched so far. Similarly, s is a pointer into how far
along the edge we have matched; see Figure 3-22. If we reach the end of the pattern, that
is, p points to the null symbol that terminates the string, then we have a match. Although
Figure 3-22 shows a single substring of x where the pattern matches, the substring that is
the edge label, the pattern will also match at all other leaves in the subtree rooted in w,
so we return this node. If we see a mismatch between s and p, we do not have a match in
the string, and we return a null pointer. It is important that we test for the end of string

p before we check for a mismatch between the characters at s and p. If p points to the
termination symbol and s does not, we will have a mismatch in a comparison between
the strings, but we want this to be a complete match. If we get to the end of the edge
without exhausting the pattern, we continue searching recursively from w. The pattern
pointer is already incremented to the point in the pattern where we should continue our
search, and the recursion continues the search. The tail recursion will be translated into
a loop by most compilers, so the runtime penalty of recursion is minimal.

v w.range.from s t=w.range.to

N S—
® w—

‘P

t

Figure 3-22. Scanning along an edge when searching for a pattern

static struct suffix tree node *
st_search_internal(
struct suffix_tree *st,
struct suffix tree node *v,
const uint8_t *p
) {
if (*p == "\0")
// We are searching from an empty string,
// so we must already be at the right node.
return v;

124

CHAPTER 3 SUFFIX TREES

// Find child that matches *x.
struct suffix_tree node *w = v->child;
while (w) {
if (*(w->range.from) == *p) break;
w = w->sibling;
}

if (!w) return 0; // The pattern is not here.

// We have an edge to follow!

const uint8_t *s = w->range.from;

const uint8_t *t = w->range.to;

for (; s !=t; ++s, ++p) {
if (*p == '\0') return w; // End of the pattern
if (*s != *p) return 0; // Mismatch

}

// We made it through the edge,
// so continue from the next node.
return st search internal(st, w, p);

To search in the entire tree, we need to search from the root which is what st _

search() does:

struct suffix tree node *
st _search(
struct suffix tree *st,
const uint8_t *p

) {

return st _search_internal(st, st->root, p);

Leaf iterators

Itis not hard to implement a depth-first traversal of a tree to extract the indices where
we have matches, but for a user, iterators are easier to use, which was also our rationale
for using them in the matching algorithms in the last chapter. Iterators can be hard to
implement, but it is worth it to make the code more usable. An iterator for a depth-first

125

CHAPTER 3 SUFFIX TREES

traversal is more complex than the ones we saw in the last chapter, however, because
a depth-first traversal is recursive in nature which means that we need a stack, and for
an iterator, we need an explicit stack. An explicit stack also solves another problem. A
recursive traversal of the tree can have a deep recursion stack and might exceed the
available stack space.

A simple way to implement a stack is to use a linked list where we push frames to
the front of the list and pop them from the front as well (naturally). Our recursion is over
nodes so that is what we put in our stack frames.

struct st leaf iter frame {
struct st leaf iter frame *next;
struct suffix_tree node *node;

};

static struct st _leaf iter frame *

new frame(struct suffix tree node *node)

{
struct st leaf iter frame *frame =
malloc(sizeof(struct st leaf iter frame));
frame->node = node;
frame->next = 0;
return frame;
}

An iterator contains a stack and the results of iterations are leaf nodes.

struct st leaf iter {

struct st leaf iter frame *stack;
};
struct st leaf iter result {

struct suffix tree node *leaf;

};

When we initialize a new iterator from a node—the root in the tree that we wish to
iterate over—we put the node in a frame and make that frame the list. There is a special
case when the node is null, that is, the tree is empty. There we leave the stack empty.
This way, we do not need to worry about frames with null nodes and the empty stack is
the obvious indicator that we are done with the iteration.

126

CHAPTER 3 SUFFIX TREES

void init st leaf iter(
struct st leaf iter *iter,
struct suffix tree *st,
struct suffix_tree node *node
) {
if (node) iter->stack = new frame(node);
else iter->stack = 0;

If the stack were always empty when we deallocate an iterator, we wouldn’t need to
do anything, but it might not be. In that case we need to free all the frames in the stack.

void dealloc st leaf iter(
struct st leaf iter *iter

) {
struct st leaf iter frame *frame = iter->stack;
while (frame) {
struct st _leaf iter frame *next = frame->next;
free(frame);
frame = next;
}
}

It is, not surprisingly, in next_st leaf() the real work is done. Here we follow the
steps a recursion would take. We get the next frame from the stack if there are any. If the
node in the frame has children, it is not a leaf, so we push its children onto the stack (we
get to reverse_push() and why we want it below). If it is a leaf, we free the frame and
return it. If it wasn'’t a leaf, we also free the frame—just a few lines later in the function—
and pop the next frame in the stack.

bool next st leaf(
struct st leaf iter *iter,
struct st leaf iter result *res
) {
struct st leaf iter frame *frame = iter->stack;
while (frame) {
// Pop the frame.

127

CHAPTER 3 SUFFIX TREES

iter->stack = frame->next;
struct suffix_tree _node *node = frame->node;

if (node->child) {
// We have to push in reverse order to get
// an in-order depth-first traversal.
reverse push(iter, node->child);

} else {
// Leaf
// clean up and return result
free(frame);
res->leaf = node;
return true;

}

// Get rid of the frame and pop the next.
free(frame);
frame = iter-»>stack;

}

return false;

The order in which we see a node’s children in the recursion depends on the order
in which we add them to the stack. In a standard recursive implementation, we can call
the function on each child in turn, but with the explicit stack, we need to push all of them
to the stack before we pop the first again. If we push the children from the first child and
follow its sibling pointers to the last, then the first child will be below the second that
is below the third and so forth; see Figure 3-23. If we push the last child first, then the
second last, and so on, then we have a stack that, when we pop off and process nodes,
will give us the same traversal order as a direct depth-first traversal. If you do not care
about which order you traverse the tree, you can use either, but the reverse _push()
function is not substantially more complicated than the direct approach:

static void reverse push(
struct st leaf iter *iter,
struct suffix_tree node *child

) {

128

CHAPTER 3 SUFFIX TREES

if (child->sibling)
reverse push(iter, child-»sibling);
struct st leaf iter frame *child frame =
new_frame(child);
child frame->next = iter->stack;
iter->stack = child_frame;

}
stolings
children
1) 2) 3)
stblings — stblings — stblings
children children children
Dlrect >
1) 2) 2)
stolings stolings stblings
children 1) chilaren) chilaren
stbolings stolings
children 1) children
stblings
children
Reverse
1) 2) 2)
stolings stolings stblings
2) children =) children children
stblings stblings
=) children children
stblings
children

Figure 3-23. Pushing children, direct or reversed

129

CHAPTER 3 SUFFIX TREES

If we want an iterator through the positions where the pattern match, we can wrap
the leaf iterator in another iterator for that. The implementation is quite simple. We
iterate through leaves—using the iterator earlier—and for each, we set the position and

return true. When there are no more leaves, there are no more matches either.

struct st search iter {
struct st leaf iter leaf iter;
};
struct st search match {
uint32_t pos;
b
void init st search iter(
struct st _search iter *iter,
struct suffix_tree *st,
const uint8_t *p
) {
struct suffix _tree node *match = st _search(st, p);
init st leaf iter(&iter->leaf iter, st, match);

}

bool next st match(
struct st search iter *iter,
struct st search match *match
) 1
struct st leaf iter result res;
if (!next st leaf(8iter->leaf iter, 8res))
return false;
match->pos = res.leaf->leaf label;
return true;

}

void dealloc st search iter(
struct st search _iter *iter

) {

dealloc_st leaf iter(&iter->leaf iter);

130

CHAPTER 3 SUFFIX TREES

Comparisons

The naive implementation runs in worst-case O(n?), while the other two algorithms run
in O(n), but how do they compare in practice? The worst input for the naive algorithm
is input where it has to search completely through every suffix to insert it, but for
random strings, we expect mismatches early in the suffixes, so here we should get a
better running time. It is harder to reason about best- and worst-case data for the other
algorithms. For the McCreight’s algorithm, one could argue that it will also benefit from
early mismatches since it has a naive search algorithm as the final step in each iteration.
The LCP algorithm doesn’t scan in any way but depends on the SA and LCP arrays
(which in turn depends on the string underlying the suffix tree, of course). The algorithm
corresponds closely to a depth-first traversal of the suffix tree, so we would expect it to
be faster when there are fewer nodes, that is, when the branch-out of the inner nodes is
high. We can experiment to see if these intuitive analyses are correct—it turns out that
the fan-out of nodes is a key factor and the larger it is, the slower the algorithms get.

In Figure 3-24 you can see the running time of the three algorithms with three types of
strings: Equal, strings consisting only on a single symbol; DNA, random* sequences over
four symbols (A,C,GT); and 8-bit characters. Figure 3-25 zooms in on the smaller string
sizes and leaves out the time measurements for the naive algorithm on the Equal alphabet.

Some of the results are as we would expect. The naive algorithm performs very
poorly on single-symbol strings but better on random strings. It is still slower than the
other two algorithms on random DNA sequences. With the 8-bit alphabet, the naive and
McCreight’s algorithm run equally fast—because mismatches occur faster with a larger
alphabet—but notice two things: McCreight’s algorithm is not running in linear time as it
should be, and while the two algorithms run in the same time, they are both slower than
when we use the two smaller alphabets.

The culprit is the linked lists we use for node’s children. We have assumed that the
alphabet is of a constant size—and generally, it is—but we are comparing running times
for different alphabet sizes. The larger the alphabet, the longer it takes to insert nodes
and to search for children. Profiling the algorithms reveals that most of the time is spent
exactly on traversing these lists, and the larger the alphabet, the larger fraction of time
this is. With the single-letter alphabet, Equal, we have the smallest fan-out of nodes—all
inner node has two children (the letter and the sentinel). This is the optimal situation,

“Real DNA sequences are not random, but in my simulated data they are, and it is not that far
from real DNA.

131

CHAPTER 3 SUFFIX TREES

with respect to children list traversal, for McCreight and LCP (but still the worst case for
the naive algorithm where the search time dominates). McCreight does run in linear time
for the smallest alphabet, but it will not run in linear time for the larger alphabets until

all nodes have most of the alphabet as out edges. The time depends on the degrees of the
nodes the algorithms search through, which affects all through algorithms. The time it
takes to reach a fan-out close to the maximal, a degree equal to the alphabet size, depends
on the length of the string. For those shown in the figures, we are still seeing this effect.

0.075

0.050

lenb3

0.025

I S SIS
0.000 = AN

0.02 Algorithm

== |CP

McCreight
0.01

M
0.00

0.20

Time [seconds]
vNad

Naive

0.15

19-8

0.10

0.05

0.00 N

0 25000 50000 75000 100000
Size

Figure 3-24. The three algorithms on the three different alphabets

132

CHAPTER 3 SUFFIX TREES

0.004

0.003

lenb3

0.002

0.001

0.000

©
o
=
S

Algorithm
== |CP

McCreight
0.005

[Y
M
0.000

0.100

Naive

Time [seconds]
vNa

0.075

0.050

H9-8

0.025

0.000 w

0 10000 20000 30000 40000 50000
Size

Figure 3-25. Zoom in on short strings

If the linked lists slow down our algorithm, we can consider an alternative.> We can
use an array for the children, indexed by the alphabet symbols. With this, we can look up
the edge for any symbol in constant time. I have shown the running times of the array-
based and linked list-based algorithms in Figure 3-26. The array-based algorithms run

°T have not listed the implementation in this book since it closely resembles the linked list suffix
trees. You can find the implementation at https://github.com/mailund/stralg.

133

https://github.com/mailund/stralg

CHAPTER 3 SUFFIX TREES

in linear time and are not affected by the growing linked lists, but they are still affected
by the alphabet size. The larger the alphabet, the larger arrays we need to store in each
node, and the poorer 10 efficiency we will see.

The fastest construction algorithm appears to be the LCP algorithm, linked list or
array-based. We can examine their running time in Figure 3-27. The list-based is slightly
faster for the smaller alphabets, and for the 8-bit alphabet, it is faster up to around string
length 90,000, where the extra memory usage of the array-based implementation pays off.
For smaller alphabets, it seems that the LCP algorithm with linked lists is the way to go.

The LCP algorithm gets its speed from not doing any searches. It does not build the
suffix tree using only a string, however, but it needs the suffix array, SA, and the longest
common prefix array, LCP. When we measure the running time of the algorithms, we
should take into account that we need to compute these arrays before we can use the
LCP algorithms. In this chapter, we have seen how to compute the SA and LCP arrays
from a suffix tree, but of course, we do not want to include this construction on top
of the LCP construction algorithm. We would never build a suffix tree so we could
rebuild it with another algorithm. In the next chapter, we will see how to build the
two arrays directly from a string, and in Figure 3-28, I have shown how LCP and LCP
with the array construction compare to McCreight. The suffix array construction is
potentially expensive, and its time usage depends on the alphabet size. The larger the
alphabet, the faster it is, maybe counterintuitive but true. In the next chapter, I show
several algorithms for computing the suffix array, two of them have this property, and
it is one of those I have used for the experiments in this chapter. If we include the array
construction, we need a large alphabet for the LCP algorithm to outcompete McCreight’s
algorithm. For the DNA alphabet, the two algorithms are equally effective, and for
the single-symbol alphabet—the worst case for the array construction algorithm—
McCreight’s algorithm is much faster.

134

CHAPTER 3 SUFFIX TREES

Array McCreight LCP McCreight

Array LCP

0.06

<t
<
[

® ASCII
o DNA
Equal

String

[spuooss] awi |

0.02

0.00

00000}
00052
00005
000S¢

0
00000}

00052
0000S
000S¢
0 o
000001 &3
00052
0000S
000S¢

0
00000}

00054
0000S
000G¢

0

Figure 3-26. Array-based children

135

CHAPTER 3 SUFFIX TREES

0.03

0.02

11OSY

0.01

0.00

0.006

0.004 Algorithm

Time

=o= Array LCP
LCP

VYNd

0.002

0.000
0.005

0.004

0.003

lenb3

0.002

0.001

0.000

0 25000 50000 75000 100000
Size

Figure 3-27. Array- and list-based LCP constructions

There is a scenario where we would always use the LCP construction algorithm
based on the experimental results here. It is not uncommon to preprocess a string
we will use for many queries. In bioinformatics, for example, we have strings that are
millions of characters long, and we query them with millions of short patterns. In such
scenarios, we build a search structure like a suffix array and save it to a file, so it is

136

CHAPTER 3 SUFFIX TREES

available every time we have new patterns to search for. It is hard to serialize a suffix tree
but trivial to write two arrays to a file and read them in again. If we can read the arrays
from a file, we can use the fast LCP algorithm to construct a suffix tree from them.

LCP LCP + construction McCreight

0.20 o
0.15 °
0.10
0.05
p— /
0.00
L)

0.03

13-8

[4]
..
T 0.02
c []
8 [] * o
o z
2, >
()
£ o.01
= H (]
_’M
0.00
0.025
[]
0.020
0.015
U a
2
QO
0.010 =

0.005 /
0000 /

o o o o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
0 o 0 o 0 o ['e) o 'el o wn o
N wn ~ o N wn ~ o N n ~ o
Size

Figure 3-28. Adding the array computations to LCP
If we do not have the arrays precomputed, then McCreight’s algorithm or even the

naive algorithm is competitive. The naive algorithm is, obviously, only worth considering
with a large alphabet, but its simplicity and a running time compatible with McCreight

137

CHAPTER 3 SUFFIX TREES

might make it a good choice. Further, if memory is a problem, and each word counts, you
can implement it without the parent and suffix link pointer; McCreight needs both (and
LCP needs the parent pointer but not the suffix link).

You can find the code I used for the measurements on GitHub: https://github.
com/mailund/stralg/blob/master/performance/suffix_tree construction.c.

138

https://github.com/mailund/stralg/blob/master/performance/suffix_tree_construction.c
https://github.com/mailund/stralg/blob/master/performance/suffix_tree_construction.c

CHAPTER 4

Suffix arrays

The suffix array data structure is closely tied to the suffix tree, and we have already seen
in the previous chapter. The suffix array gives you the lexicographically (alphabetically)
sorted order of the suffixes, where each suffix is represented by its index into the string x;
see Figure 4-1.

The appeal of the suffix array over suffix trees is its space-efficient and
straightforward representation. You can do many of the things you can do with a suffix
tree, and with a little extra data and (unfortunately) added complexity, you can simulate
suffix trees with suffix arrays. The memory efficiency is a crucial reason to prefer suffix
arrays. Suffix trees are rather memory hungry. If you have a string of length n, you
can have O(n) nodes in your suffix tree.! If you build the suffix tree using the naive
algorithm—so you do not need the parent and suffix link pointers—each node takes up
five computer words (5w).? You add one, the parent pointer, if you use the LCP algorithm
(6w), and you add yet another for McCreight (7w). Those are the costs per node in the
tree, and there can be twice as many nodes as characters in the string, so per character,
we have 10w, 12w, and 14w, respectively. In contrast, the suffix array is one computer
word per suffix, that is, one computer word per character, (w).

'With my implementation. It is possible to compress it further, but the best representations in the
literature are still not as memory efficient as a suffix array.

2A note on terminology, I will use “word” to mean the size of memory you use to store an
integer. It will typically be the same as a computer word, that is, the size of its registers. On most
computers today, that is 64 bits. In my implementation, however, I use 32-bit integers, so that is
the word size here. I also use pointers, though, and those will be full words. I use the term “word”
to avoid focusing on a specific number of bytes, since you can always change your integer type to
something smaller, to save space, or something larger so you can index into longer strings. And I
also don’t want to distinguish between integers and pointers, although they have a different size
in my implementation. Making the distinction will make the analysis and comparison between
algorithms more complicated. Every time you see “word,” just think the size of integers and
pointers.

139
© Thomas Mailund 2020

T. Mailund, String Algorithms in C, https://doi.org/10.1007/978-1-4842-5920-7_4

https://doi.org/10.1007/978-1-4842-5920-7_4#DOI

CHAPTER 4 SUFFIX ARRAYS
S ufﬁxes :

mississippig (0)
Lssissippig (1)
ssissippig (2)

sissippif (2)
Lssippig (4)
ssippig (5)
sippi (&)
ippig)
PPt (8)
Pt 9)

L (10)

% (11)

Figure 4-1. Example of a suffix array

Sorted Suffix array

% 11
L

i
Lssippis
Lssissippls
mississippld
pit

Ppit

SUppL¥
sissippis
ssippisf
ssissippis

K
V)

DO w ™ol o Rr AN\

The memory efficiency of one word per input character is only for the actual array.

The algorithm that we use to construct it can take up more space, of course, similar to

how we saw that we needed extra pointers for the suffix trees to get the linear running

times.

The representation of a suffix array is simple. We have a pointer to the string (we

need it in addition to the array to compare patterns against the suffixes), the length

of the string/array, and then the array. In the following structure, I have included two

additional arrays that we will not use yet, so you can ignore them for now.

struct suffix array {
uint8_t *string;
uint32_t length;
uint32_t *array;

140

CHAPTER 4 SUFFIX ARRAYS
uint32_t *inverse;
uint32_t *lcp;
};
When we construct a suffix array, we allocate the memory for the array and hardly

more (the extra arrays are not always used so by default we set them to null—we can
compute them when we need them).

static struct suffix array *allocate sa(uint8_t *string)

{
struct suffix array *sa =
malloc(sizeof (struct suffix array));
sa->string = string;
sa->length = (uint32_t)strlen((char *)string) + 1;
sa->array = malloc(sa->length * sizeof(*sa->array));
sa->inverse = 0;
sa->lcp = 0;
return sa;
}

Deallocating a suffix array is equally simple: we free the memory we allocated and
that is that.

void free suffix array(struct suffix array *sa)

{
free(sa->array);
if (sa->inverse) free(sa->inverse);
if (sa->lcp) free(sa->1lcp);
free(sa);

}

In each section of this chapter, I will present code that you have to compile in
different files. I use macros liberally, and there are some overlaps between macros and
variables in the algorithms, as I have tried to present the algorithms with variables that
are typically used in the literature. Two of the algorithms are recursive, which means that
you have to define prototypes for the functions you use. I have not done this everywhere,
but only when it makes the text easier to read. However, for each section, I link to a file

141

CHAPTER 4 SUFFIX ARRAYS

on GitHub where you can download the full implementation. You can find the header
file with the definition of the preceding structs at https://github.com/mailund/
stralg/blob/master/stralg/suffix_array.h and the allocation/deallocation code
here: https://github.com/mailund/stralg/blob/master/stralg/suffix_array.c
You need these two files for all the code in this chapter.

Constructing suffix arrays

Suffix arrays, like suffix trees, can be computed in linear time. This shouldn’t surprise
since we have already seen how they can be computed using a suffix tree and we know
that a suffix tree can be computed in linear time. However, one of the benefits of using
suffix arrays is the smaller memory footprint, and if we are pressed for memory, then
using a suffix tree to build a suffix array is not useful. We want to construct the array
directly from the string and not via a sulffix tree.

Trivial constructions—Comparison-based sorting

Since the suffix array is simply the indices of the suffixes sorted in alphabetical order, an
immediate approach to computing is to consider each suffix an independent string and
explicitly sort them. Such an approach, using C’s gsort () function, would look like this:

static // Wrapper of strcmp needed for gsort
int construction_cmpfunc(

const void *a,

const void *b

) {

return strcmp(*(char **)a, *(char **)b);

}

struct suffix array *qsort sa construction(
uint8_t *string

) {

struct suffix array *sa = allocate sa(string);

uint8_t **suffixes =
malloc(sa->length * sizeof(uint8_t *));

142

https://github.com/mailund/stralg/blob/master/stralg/suffix_array.h
https://github.com/mailund/stralg/blob/master/stralg/suffix_array.h
https://github.com/mailund/stralg/blob/master/stralg/suffix_array.c

CHAPTER 4 SUFFIX ARRAYS

for (int i = 0; i < sa->length; ++i)
suffixes[i] = string + i;

gsort(suffixes, sa->length, sizeof(char *),
construction _cmpfunc);

for (int i = 0; i < sa->length; i++)
sa->array[i] = (uint32_t)(suffixes[i] - string);

free(suffixes);

return sa;

We build an array containing all our suffixes. Each suffix is represented by a pointer
into the full string, which works since C strings are nothing more than pointers. When we
point into the middle of our string, we get the string that starts at the position we point
to. Then we call gsort () to sort the suffixes. The qsort () function uses a comparison
function that gets a pointer to two keys to be compared. In our case, the keys are strings,
that is, char *, so we need to get what the pointer is pointing to when we call strcmp().

When we have sorted the suffixes, we can get the indices of them for array by
computing their offset from the string.

The expected running time of qgsort() is O(k - nlog n) where k is the time it takes to
compare keys. In our case, keys are strings, and comparing them takes worst-case time
O(n). So the expected running time for the quick sort solution is O(n? log n). This is the
expected running time, a probabilistic running time assuming that strings are random.
If they are not, the worst-case running time can be O(kn?), or O(n®), for constructing
suffix arrays this way. The worst-case comparison time happens if we have a string
consisting of a single character. Then all comparisons continue to the end of the shortest
string, which is on average n/2. The cases where we hit the worst-case running time
for quick sort depend on its implementation. The algorithm picks a pivot element in a
range and splits the keys there into two subranges based on the pivot. It puts the keys
smaller than the pivot in one range and the keys that are larger in the other. We get the
best performance if it splits the range in two equal sizes. We get the worst case if it splits
them such that one element goes in one of the subranges and all the others in the other
subrange. If we create a suffix array from a string with a single character, the array of
suffixes we just made is inversely sorted (shorter strings always go before longer strings).
If the quick sort implementation uses the first or last element in the range as a pivot,

143

CHAPTER 4 SUFFIX ARRAYS

we get the worst-case behavior. The pivot is either the largest or the smallest key in the
range, so it will go in one subrange and all the other keys in the other. I will refer you to
a textbook on fundamental algorithms to study the quick sort algorithm, if you are not
already familiar with it.

The analysis is more pessimistic than what we will see in practice, though. We only
see the worst-case complexity if the comparisons are very long. If there are few long
repeats of substrings in our string, we will terminate the comparisons fast. With natural
language strings or DNA strings, for example, we do not expect to see the worst case and
the algorithm will in practice run in expected O(n log n). String comparisons run until
we see the first mismatching character, and this length has a geometric distribution if the
string is random, so k is O(1).® The suffixes in the array we sort will have a random order,
so quick sort will have the expected running time, O(n log n).

It is possible to do a radix sort instead of a comparison-based sort—do a stable
bucket sort starting at the end of the suffixes and move to the beginning. This approach
will have a worst-case running time of O(n?). It is better than quick sort both when it has
its worst case, cubic running time, and when it has its expected running time but the
string comparisons take linear time. With random strings, however, we expect that the
quick sort algorithm will be faster.

The memory consumption in the construction is 2w per character. We need the array
of pointers to the suffix strings to sort them, and then we need the actual suffix array.

The key takeaway from the analysis is that the running time with this approach is that
for random strings, we might get an O(n log n), but it could be as bad as O(#?%). For long
strings, this is prohibitive, so we are motivated to find faster construction algorithms,
and we will see two linear-time algorithms in the next following sections.

3If you pick two random letters from an alphabet of size h, they are equal with probability 1/h and
different with probability 1 — 1/h. The expected number of times you have to draw pairs of letters
until they are different—corresponding to the number of characters you have to compare in

random strings—is . This depends on the alphabet size, which we assume is a constant, so

1
1-1/h
a comparison of random strings takes constant time. If the alphabet is not uniformly distributed,
you still have a probability for picking the same or different letters, and the formula is the same
except for the value that goes in the denominator. The analysis is not entirely correct because we
do not have random strings; they are all suffixes of the same string. When the strings are not
independent, we cannot argue exactly this way, but with a long random string, the suffixes are
sufficiently independent that it doesn’t matter in practice.

144

CHAPTER 4 SUFFIX ARRAYS

The skew algorithm

The Kérkkdinen-Sanders, DC3, or skew algorithm—it has many names—is a divide-
and-conquer approach to building a suffix array. It splits the string into two parts, one
containing one-third of the suffixes and one containing the rest. It constructs a shorter
string from the two-thirds suffixes and recursively sort it and then use it to combine the
two initial array of suffixes into the correct array.

You can find the full source code for the algorithm at https://github.com/
mailund/stralg/blob/master/stralg/skew.c. Let us dig into the details. Given an
initial string, split it into the suffixes that have index iwith i% 3 = 0, those that have
modulus one or two, i % 3 # 0. Let us call these arrays sa3 and sa12. We put all the
suffix indices into them such that those indices i% 3 # 0 go into sa12 and the rest
into sa3. We first construct sa12 and sort it lexicographically according to the suffixes
it holds. We do this recursively using the method we are building now (as one does in
divide-and-conquer algorithms). Once we have sa12, we can then construct a sorted
sa3 from the result. All indices i% 3 = 1 are sorted in sa12,soifweinserti% 3 = 0in
the order that i+ 1 appear in sal12, we have the indices in sa3 sorted with respect to the
suffix following their index. If we then do a stable sort of the first letters of the suffixes in
sa3, we will have binned these suffixes, so the first letters are in order, and within each
bin, the suffixes are sorted with respect to the suffix following the first letter. This means
that we have sorted the suffixes in sa3. We can sort sa3 in linear time if we use a radix
sort. I go into details about this in a few pages.

SA12: SA1R:
ississippid (1) # (11)
ssissippi (@) i4 @o)
issippi$ (4) . ippit ()
) SS‘LPF‘L* () Recursively sort) LISSLIPF’Z—* () SA
Suffixes: ippi () ississippig (1) # (11)
ississippig (0) Pt (@) i (2))
ississippis (1) i (20) ssippig (5) ippig ()
ssissippit (2) $ (11) ssissippid (@) ssippid (4)
sissippit (3) Construct SA12 ississippid (1)
issippid (4) mississippis (0)
ssippit (5) P Eﬁ;
sippig () Merge SAL2 and saz 'P?H‘ &9
ipplg () |, Construet S,AS]%M_ into suffix array sippig ()
P (2) LinSAL2 withimodz =1 destpit (2)
P) ssippit (5)
i$ (10) SAS SAS ssissippid (2)
-* @) . P,L-* (j) Stable radix sort MLSSLSSLFPL* ©
sippis () Pé)
issippid (2) sippit ()
wississippid (0) sissippit (2)

Figure 4-2. Overview of the skew algorithm

Once we have both sa12 and sa3 sorted, we can merge them into the suffix array we
want. See Figure 4-2 for an overview of the steps in the algorithm.

145

https://github.com/mailund/stralg/blob/master/stralg/skew.c
https://github.com/mailund/stralg/blob/master/stralg/skew.c

CHAPTER 4 SUFFIX ARRAYS

We do not sort sa12 directly with a recursion. It isn’t a string which is what our method
should take as input. Instead, we create another string from the array, get the suffix array
from that string, and from this suffix array, we extract the sorted suffixes in sa12.

I go into more details a little later, but this idea is this: first, do a radix sort based on
the first three characters in the suffixes in sa12. We can do this in linear time for any
constant-sized prefix of the suffixes in sa12, not just the first character as for sa3, so we
can sort based on the first three characters in constant time. Now map each triple to a
number such that the smallest lexicographically triplet gets zero, the second smallest
1, and so on. If all the triplets are unique, we have sorted sa12 completely, and we are
done. If not, we build a string z of length m12 + 1, where m12 is the length of sa12. We put
a sentinel, #, in the middle of it (which is why we need the length to be one more than
m12). Then we run through the suffixes in sa12 and put the triplet number at the front of
each suffix into u, those i% 3 = 2in the first half and thosei% 3 = 1in the second half.*
Insert them in the order they are found in sa12, not the sorted order; see Figure 4-3.

If we construct u this way, then you have an implicit representation of all the suffixes
in sa12, just in a different alphabet. We cannot see the letters inside each triplet, but we
have the order they should be sorted in from the way we mapped triplets into numbers.
We have the i% 3 = 1 suffixes in the first half and the others in the second half, and the
sentinel ensures that we will not mix them up. We use the zero character for our sentinel.
That way C will consider the strings before the sentinel as separate from the strings after
it, even though we put them in the same buffer. If we are in the first half, the string only
goes to the sentinel, and we never look at it farther than this. The way we have mapped
triplets, the triplet representations of suffixes are ordered in the same way as the original
strings. This, combined with the sentinel that takes care of the end of i % 3 = 1 strings,
means that if we sort u we have sorted the sa12 suffixes. The only thing we need to get
sal2is to map the indices in u to indices in sa12. There is a tiny bit of arithmetic here,
but in essence, we check whether we are below or above the middle. If we are below, we
add one because these are the i% 3 = 2 indices that are at the odd places in sa12. If we
are above the middle, we subtract the first half and the sentinel from the index.

mi2 / 2;
(i<m)?2(*i+1): Q*(@E-m-1));

uint32_t m
uint32_t k

*You could also insert the modulus one strings first. I chose not to, because the number of
modulus two indices varies whether there are an even or uneven number of suffixes in sal2. If I
put the modulus two suffixes at the beginning of the string, I can always use integer division to
get the middle of the string; otherwise, I had to check the length. Conceptually it doesn’t matter.

146

CHAPTER 4 SUFFIX ARRAYS

SA12: SAL:

. (11) o(%)

Lssissippid (1) f# ,
ssissippig (2)) 'L# o) Construct new - ('L‘#)
issippig (4) Radix sort . L'PPL:#) alphabet from triplets = (EPP)
ssippids (5) ow first three sywbols lssissippit (1) P P , 3 (tss)
it () > lssippit (4) 3 (iss)
spid (2) PPt (2) 4 (ppb)
(& (10) ssissippig (2) 5 (ssi)
& (11) ssippig (5) 5 (sst)

Create the w string
w:
U=5540#3321 5540#332 1 (ssissippl$)

ssi ssi ppl $ # iss iss ipp L$ 540#332 1 (ssippi)
40#2332 1 (ppl 4)
O#32332 1 (%)
#3322 1 (#)
232 1 (iss iss ipp %)
32 1 (issipp i)

Sort u b L
recwsiveLg = ; EL,;P) e
v Sorted SAL2
#)
o# (j#) i Eg
1 (f-#)) Extract the sorted SA12 ippid ()
St i) it @
2321 (iss iss ipp i$) LSSLSSLPP%# g;
“o# (PP:L ‘ﬁ;), ssiPPi ()
5404 (ssippt) ssissLPPL# (2)
554 0# (ssissippl #) PP

Figure 4-3. Constructing u and sort it recursively

147

CHAPTER 4 SUFFIX ARRAYS

Here mis the middle of the string and k is the index in the larger string that index i
should map to. That s, i is an index into the u string and k is where that index is in sa12.
While you do not need to do so if you have an index into sal12—that contains the
suffix indices—it is possible to map from a sa12 index into the suffixes it contains using

k+k/2+1;

Once we have both sa12 and sa3, we need to merge them into the true suffix array.
Again, [will go into more details later, but this is the intuition that should help you see
the overall picture. It follows a typical merge algorithm: we move indices i and j through
the two arrays and pick the smallest of the suffixes we compare in each iteration. The
trick is to determine which suffix is the smallest. If the first letter in the suffixes differs,
we can directly determine this, but if they do not, there is more work to do. There are
two cases. If i, the index into sa12,isai% 3 = 1index, thenbothi+ 1andj+ 1will be
in sa12, and we can get their relative order from the array. Ifiisai% 3 = 2index, then
i+ landj+ 1will bein different arrays (see Figure 4-4). If the letters at index i + 1 and
j+ 1are different, we can directly determine which suffix is the smallest. If not, we can
move one step further, toi+ 2 andj+ 2. There, the indices are both in sa12. It is here
that it is crucial that we do not split the data into two equal parts but one and two-thirds.
This prevents the indices from repeatedly jumping to different tables. Here, we will never
have to move beyond a third table lookup.

Constructing SA3

The simplest step in the skew algorithm is constructing sa3, so this is where we start.
Recall that we construct the array from the indices modulus one in the already sorted
sal2 and then radix sort on the first character. We have used uint8_t for our alphabet

so far, and our final function for constructing suffix arrays will have strings over this
alphabet as input, so we can use the same strings with our different algorithms. However,
during the execution of the skew algorithm, we need to make new alphabets, when we
handle s12, as we shall see later. Those alphabets can be larger than the 256 we can
fitinto a byte, so we should implement the algorithm so it can handle arbitrarily large
alphabets (though bounded by 7 in size). But to simplify, and for speed reasons, we
assume that we can hold all alphabets in uint32_t. We use the variable alph_size for
the alphabet size. We use the alphabet size when radix sorting. All strings are therefore of
typeuint32_t *.Itis a simple matter to translate the uint8 t * stringstouint32_t *.

148

CHAPTER 4 SUFFIX ARRAYS

\ SAL2 SAL2
i+1 jte
(mod =2 = 2) (mod =2 = 1)

(mod = = 0)

i+=2 jt=2
(mod 2 = 1) (mod 2 = 2)

(mod 3 =0)

Figure 4-4. Merging SA12 and SA3

The construction function looks like this:

static void construct sa3(
uint32_t m12,
uint32_t m3,
uint32_t n,
uint32_t *s,
uint32_t alph size,
struct skew buffers *shared buffers

) {

uint32_t j = 0;

// If the last position divides 3, we don't
// have information in sa12, but we know it
// should go first.
if ((n-1)%3==0) {

SA3(J++) =n - 1;

149

CHAPTER 4 SUFFIX ARRAYS

for (uint32_t i = 0; i < m12; ++i) {

uint32_t pos = SA12(i);
if (pos % 3 == 1) {
SA3(j++) = pos - 1;

}

radix_sort(s, n, shared buffers-»>sa3, m3,
0, alph size, shared buffers);

The m12 variable is the length of the sa12, m3 is the length of sa3, n is the length of
the string we are building the suffix array over, and s is the string. We use alph_sizein
the radix sort, but you can ignore it for now. The shared_buffers variable points to a
structure of type struct skew_buffers. This structure holds several arrays and buffers
we will use to avoid heap-allocating arrays when running the algorithm. Its structure
looks like this:

struct skew buffers {

uint32_t *sa12; // 2/3n +
uint32_t *sa3; // 1/3n = n
uint32_t current_u;

uint32_t *u; // 3*%(2/3n+1)
uint32_t *sau; // 3*(2/3n+1)

uint32_t radix buckets[256];
uint32_t radix_accsum[256];

uint32_t *helper_ buffero; /1 2/3n +
uint32_t *helper_bufferi; // 2/3n = 4/3 n
uint32_t *lex_remapped; // alias for helper 0

¢

The comments are the number of words we need to allocate for the arrays when
the input string has length n. Remember that by “words” I mean the space we need for
pointers or integers. In this case they are all integers, and with this implementation, each
word is 4 bytes. If you change the integer types, then the space requirements will change
as well, of course. When there are fractions, you have to round them up. So 1/37n means

150

CHAPTER 4 SUFFIX ARRAYS

that you have to allocate a number of words that are equal to one-third of the input size,
rounded up.

I will explain each buffer as we get to where they are used; in the sorting of sa3, we
only use sa12 and sa3. We access them with SA12() and SA3(), which are macros.

#define SA12(i) (shared_buffers-»sai12[(i)])
#define SA3(i) (shared_buffers-»sa3[(i)])

Since sal2 contains two-thirds of the input, that is what we must allocate for it, and
sa3 contains a third so this is what we must allocate for that array.

I'will use several macros in this algorithm to make the code more readable. The
macros assume that shared _buffers and s are the variables we use in the functions,
but we use that for consistency anyway. As you can see, the SA12() and SA3() look up
in the sa12 and sa3 arrays in the shared buffers. This is where we have the indices of the
suffixes for the two arrays.

We use these two macros for the sort:

#define B(i) (shared_buffers-sradix_buckets[(i)])
#define AS(i) (shared_buffers-s>radix_accsum[(i)])

We use the first to pick a bucket. As we sort, we count how many elements we need
to put into each bucket, rather than put the elements in there. We just count. Then we
compute the cumulative sum of the buckets, that is, an array that for each bucket tells
us how many elements there are in the buckets before it. We can now copy the actual
elements into a result array. For each element, we look up its bucket and use AS (key)
as the index we insert into. Each time we insert an element in a bucket, we increment
its corresponding accumulative sum, so at this point AS(key) works as a pointer to the
current position where elements in that bucket should be inserted; see Figure 4-5.

The radix sort function looks like this:

Buckets
@) 102 37...
Accumulative 0101215 ... i/‘
sum

o
AS(2)
AS(3)

Figure 4-5. Buckets and radix sort

151

CHAPTER 4 SUFFIX ARRAYS

#define RAWKEY(i) ((input[(i)] + offset »>= n) ? 0 : s[input[(i)] + offset])
#idefine KEY(i) ((RAWKEY((i)) »> shift) & mask)

static void radix sort(
uint32_t *s, uint32_t n,
uint32_t *sa, uint32_t m,
uint32_t offset, uint32_t alph size,
struct skew buffers *shared buffers)

const int32_t mask = (1 << 8) - 1;
bool radix_index = 0;

uint32_t *input, *output;

memcpy (shared buffers->helper buffero, sa, m * sizeof(uint32_t));
uint32_t *helper buffers[] = {
shared_buffers->helper_buffero,
shared_buffers->helper bufferi

};

for (uint32_t byte = 0, shift = 0;
byte < sizeof(*s) 8& alph size > 0;
byte++, shift += 8, alph size >>= 8) {

memset (shared buffers->radix_buckets, o,
256 * sizeof(uint32_t));

input = helper buffers[radix_index];
output = helper buffers[!radix index];
radix_index = !radix_index;

for (uint32_t i = 0; i < m; i++) {
// Count keys in each bucket
B(KEY(1))++;

}

uint32_t sum = 0;

for (uint32_t i = 0; i < 256; i++) {
// Get the accumulated sum for offsets
AS(i) = sum;

152

CHAPTER 4 SUFFIX ARRAYS

sum += B(i);

}

assert(sum == m);

for (uint32_t i = 0; 1 < m; ++1) {
// Move input to their sorted position
output[AS(KEY(1i))++] = input[i];

}

memcpy(sa, output, m * sizeof(uint32_t));

The arguments are s, the string we will sort, and its length n; sa is the output, that is,
the sorted indices, and m s its length. The offset is used to sort more than one computer
word; it looks to the right of the index to get the index there rather than the character at
the actual index. It is used later, but for sorting sa3, it is zero. The alph_size and shared
buffers arguments are the same as before. We use the alph_size to avoid extra work
when the alphabet size does not use all 32 bits in uint32_t. You can try leaving it out of
the outer loop to see the performance difference.

The function looks more complicated than it is. It sorts integers according to their
bytes, and it uses two arrays for this, helper buffero and helper bufferi, accessed
through the shared buffers variable. We put these in an array, helper buffers, so
we can switch them using a Boolean, radix_insert. We use them to insert indices
consecutively into their bucket. The input vector will hold the indices and the output
contains partially filled buckets. We flip between the two helper buffers in the iterations
of the radix sort using the shared buffer array, so input always refers to the values we
just sorted and output to where we will place the next sorted values. The accumulative
sum starts with pointers to the beginning of each buffer and is incremented each time
we insert an index into output.

The macro RAWKEY () gets the word in s we need to sort and the KEY() macro extracts
the byte we are currently sorting by.

The size of the two helper buffers is two-thirds of the length of the initial string. This
is because the longest string we will sort is the initial sa12; all other arrays we sort are
shorter.

153

CHAPTER 4 SUFFIX ARRAYS

Recursively sorting sa12

Sorting sa3 is the easy part, and we can do it without recursion. But we need a sorted
sal2 to do it. Sorting sa12 is the main part of the algorithm, and it is here we need the
recursion in our divide-and-conquer algorithm. I've listed the recursive function first,
in the following text, and I will go into the details later. To construct the suffix array, we
first create a new string from sa12, recursively get the suffix array from that, and use it to
get the sorted sa12. Everything except for the last two lines in the function handles this.
The second to last line constructs sa3 from sal2, as we just saw earlier, and the last line
merges the two sorted arrays—we will see how to do this and write the merge suffix_
arrays() function after we handle sa12.

I'will present the algorithm top-down, since I think it will be easier to see how the
pieces fit together that way. It does mean that you will see calls to functions you haven'’t
seen the definition of yet. They will come later. If I presented all the minor functions
that you need before we use them, I don’t think it would be clear how they fit in. This
does mean that you will not be able to copy the code into your editor and compile it as
you read along. If you want to, you can fetch the code from GitHub (https://github.
com/mailund/stralg/blob/master/stralg/skew.c), where the functions are in the
right order for compilation. Otherwise, you have to be patient until you have seen all the
function definitions.

As shown in Figure 4-3, the first step is to sort the suffixes by their first three
symbols so we can create u from the mapped letters. In the following function, we do
this using the remap_lex3() function that we will write shortly. The function returns
the size of the alphabet of triplets and the mapping from indices in sa12 to their
lexicographical number. If this alphabet size matches the entire number of suffixes,
then they are already sorted, and we are done, but if they do not, we construct the u
string with construct_u(); we will also see how to write that function shortly. We sort
u recursively, and when we have the suffix for that, we construct sa12 by mapping
indices in u to indices in sa12. For this, we use the functionmap_u_s(). You will see
this function soon.

static void skew _rec(
uint32_t *s, uint32_t n,
uint32_t alph size,

154

https://github.com/mailund/stralg/blob/master/stralg/skew.c
https://github.com/mailund/stralg/blob/master/stralg/skew.c

) {

CHAPTER 4

uint32_t *sa,
struct skew buffers *shared buffers

// When we index from zero, these are the number of
// indices modulo 3. We have n - 1 to adjust for

// the zero index and +1 because the zero index is
// included in the array for m3.

uint32_ t m3 = (n - 1) / 3 + 1;

uint32_t m12 = n - m3;

uint32_t mapped alphabet size =
remap_lex3(s, n, m12, alph size, shared buffers);

// The +1 here is because we leave space for the sentinel.
if (mapped alphabet size != m12 + 1) {
uint32_t *u =
shared buffers->u + shared buffers->current u;
uint32_t *sau =
shared buffers->sau + shared buffers->current u;
shared buffers->current u += mi12 + 1;

// Construct the u string and solve the suffix array
// recursively.
construct_u(shared buffers->lex remapped,
mi2, u);
skew rec(u, m12 + 1,
mapped_alphabet size,
sau, shared buffers);

int32_t mm = m12 / 2;

for (uint32_t i = 1; i < mi12 + 1; ++1) {

SA12(i - 1) = map_u_s(sau[i], mm);

SUFFIX ARRAYS

155

CHAPTER 4 SUFFIX ARRAYS

construct _sa3(mi2, m3, n, s, alph size, shared buffers);
merge suffix arrays(s, mi2, m3, sa, shared buffers);

We use the u and sau pointers for the u string and its suffix array. We could
dynamically allocate them with malloc() and free(), but we know ahead of time how
much space we need for them in total, so we have allocated all of the buffers already. We
have a pointer to the head of the buffers we have used, current _u, and we set u and sau
to point there, and then we update the current_u by incrementing itbym12 + 1, which
is the space we need for u (we need all indices in sa12 plus a sentinel).

. . L. 2 .
In each recursive call, we use u and sau of sizem12 + 1 which is gn +1, two-thirds of
the problem size. The sum Z(%) converges to 3, and we will never recurse deeper
i=0

than n, so an upper bound of the total memory we need for u and sau is 3(2/3n + 1).
Given the suffix array for u, we map the indices there into indices in sa12 to get that array.
We already saw the arithmetic needed for this, and we have wrapped it in this function:

// Map from an index in u to an index in s
inline static uint32_t map u s(uint32_t i, uint32_t m)

{
// first: u -> s12
uint32_ t k = (i<m) 2 2*i+1) : (2*({E -m-1));
return k + k / 2 + 1; // then s12 -> s

}

Once we have sorted sa12, we construct sa3 as shown earlier and merge the two
arrays (as discussed below).

Itis in the map_lex3() function, which I will list shortly, that we construct the sa12
array by running through the string, s, and inserting indices that are not zero modulo
three. It then sorts the array according to the first three letters with the call to radix
sort_3().The sorted array is in the shared_buffers struct as sa12, so it s a side effect
of radix_sort 3() that gives us the result. Next, we need to map the indices in s to their
lexicographical numbers. We have the sorted sa12 and can get the numbers from there,
but we need to construct u in the order the suffixes appear in s.

If we iterate through the sorted sequence, we will go through different bins and
each bin will correspond to a lex number. To remap to these numbers, we look up the
numbers in each bin and assign the bin number to them (see Figure 4-6 A). We cannot

156

CHAPTER 4 SUFFIX ARRAYS

quite do this since the indices in sa12 are into the s string and not into sa12 itself. So we
need to get the index into s, SA12(1), and then map that back to an index in the shorter
array using themap_s_s12() function (see Figure 4-6 B).

// Map from indices in s to indices in s12
inline static uint32_t map s s12(uint32_t k) {
return 2 * (k / 3) + (k % 3) - 1;

}
i
2
A cann ‘ | | |
V\ Jj=sA12()
Lex remapped ‘ ’ ’ ‘
remapped[j1 = bin (i)
L
4
¥ san]
\—/\‘ j=sA120)
s | L
(\J k = map_s_s12(j)
|

Lex remapped

remapped[R] = bin (i)

Figure 4-6. Mapping array to lex3 bins

The LEX3() macro maps directly from the sorted array to the remapped array.

#define LEX3(i) \
(shared_buffers-»lex_remapped[map_s_s12(SA12(i))])

The full remap function looks like this:

static int32_t remap lex3(
uint32_t *s, uint32_t n, uint32_t m12,
uint32_t alph size,

157

CHAPTER 4 SUFFIX ARRAYS

struct skew buffers *shared buffers
) 1
// Set up s12
for (uint32_t i =0, j = 0; i < n; ++i) {
if (i %3 1=0) {

SA12(j) = 1i;
J+s
}
}
// Sort si12

radix_sort 3(s, n, m12, alph size, shared buffers);

uint32_t no = 1; // Reserve 0 for sentinel
LEX3(0) = 1;

for (uint32_t i = 1; i < m12; ++1) {
if (lequal3(s, n, SA12(i), SA12(i - 1))) {
no++;
}
LEX3(i) = no;
}

return no + 1;

You haven’t seen the functions radix_sort 3() and equal3() yet, but they are
coming. Don’t worry.

As a side effect of this function, we overwrite the shared sa12 array. We don’t take
sal2 as a parameter, but it sits in the sa12 array in the shared_buffers. We access it with
the SA12() and write indices into it. Overwriting data in the array has no consequence
for the algorithm. In skew_rec(), we call recursively after remapping, and we are
not looking at this array until we return and reconstruct it using the result from the
recursion.

The radix sort used in remap _lex3(), radix_sort3(), usesthe radix_sort()
function we saw earlier, calling it three times. It uses the offsets to sort for three different
positions, starting two to the right of the suffix, then one, and then offset zero. Since the
sort is stable, the result is an array sorted by the first three letters. The result is put in the

158

CHAPTER 4 SUFFIX ARRAYS

shared buffers->sal2 array. It is the third parameter to the radix_sort() function,
and that is where radix_sort() writes its result.

inline static void
radix_sort 3(
uint32_t *s, uint32_t n, uint32_t m,
uint32_t alph size,
struct skew buffers *shared buffers
) {
radix_sort(s, n, shared buffers->sa12, m,
2, alph size, shared buffers);
radix_sort(s, n, shared buffers-»>sai12, m,
1, alph_size, shared buffers);
radix_sort(s, n, shared buffers-»>sai2, m,
0, alph size, shared buffers);

The equal3() function that we use to determine when we move from one bin to the
next in the sorted array is straightforward. We run through the three symbols at index
i and j and answer no if we see different characters (or if one reaches the end of the
string). If we get through the loop without seeing any differences, the two triplets are
equal and we return true.

inline static bool equal3(
uint32_t *s, uint32_t n,
uint32_t i, uint32_t j
) {
for (int k = 0; k < 3; ++k) {
if (i + k >= n) return false;
if (j + k >= n) return false;
if (s[i + k] !'= s[j + k]) return false;
}

return true;

159

CHAPTER 4 SUFFIX ARRAYS

Once we have the array of remapped letters, constructing u is trivial. Run through the
indices that are two modulo three and insert their remapped symbol, insert the sentinel,
and then run through the indices that are one modulo three.

static void construct u(
uint32_t *lex remapped,
uint32_t m12,
uint32_t *u

) {
uint32_t j = 0;
// First put those mod 3 == 2 so the first "half"
// is always m12 / 2 (the expression rounds down).
for (uint32_t i = 1; i < m12; i += 2) {
u[j++] = lex_remapped[i];
}
u[j++] = 0; // Add center sentinel.
// Insert mod 3 == 1.
for (uint32_t i = 0; 1 < m12; i += 2) {
u[j++] = lex_remapped[i];
}
}

Merging arrays

The final step in the algorithm is merging the two arrays. For this, we need to run
through the indices in sa12 and sa3. These contain the suffixes in s, represented by
their indices, sorted by their lexicographical order. So for all indices into s, we have
thosei% 3 = 0insa3 andthosei%3 # 0insai2.

When we merge, we have an index i1 into sa12 that tells us how far we have
gotten there, and an index jj into sa3. To compare letters there, which is the first
thing we do, we need to get the corresponding indices in the string s, which we can do
using ii = sa12[i] and jj = sa3[j], respectively. This macro does that.

160

CHAPTER 4 SUFFIX ARRAYS

#tdefine CHECK_INDEX(ii,jj) { \
if ((ii) »= n) return true; \
if ((jj) »= n) return false; \
if (s[(ii)] < s[(jj)]) return true; \
if (s[(ii)] » s[(jj)]) retuxn false; \
}

We use it in a function, less(), that we define below. Notice that it has return
statements. It will make less () return true if suffix ii comes before suffix jj when we
can determine this by only looking at the first character. The two first lines handle the
special cases where one of the indices falls outside the string. Shorter strings always
go before longer strings, so the index that is beyond the string is the smaller. If the first
character for the two suffixes is the same, the macro falls through all the if statements
and does not return. When this happens, the less() function will handle the next step in
the comparison.

To decide if one suffix comes before another, we cannot merely look at the first
character. If we could, we wouldn’t be using a complicated algorithm—we could just
use a bucket sort. We built the sa12 and sa3 algorithms so we could decide which suffix
comes before another when they agree on the first character, and in that case, we need to
determine if suffix ii+1 comes before jj+1 (and maybe if ii+2 comes before jj+2).

We write a function, less(), to handle the comparison. If the two indices come
from different arrays, we compare characters. That is all we can do, because we do not
know the relative order of indices in different arrays—that is, after all, what we are trying
to work out. If the characters are the same, we add one to the indices to see if we can
determine the order there. If we add one, then both indices could be different from zero
modulo three, and they can be found in sa12. The order there gives us the information
we want. Otherwise, we can add one more to them, and now they must be in sa12 if they
weren'’t the first time. So how do we determine the order of two indices into sa12?

The indices 1i and jj are into the string, s, which is the smallest given by the order in
which they appear in sa12? We cannot get this order directly from the indices. However,
if we can map indices 11 from s into indices in sa12, we can compare those indices. The
suffix array gives us, at each position i, an index into s, the suffix with rank i in s. What we
want is a map in the other direction, so we can go from an index ii into s to the rank it
has. That is, we want to know, for each index ii, where it is found in sa12.

161

CHAPTER 4 SUFFIX ARRAYS
We can build such an inverse suffix array (ISA) like this:

for (uint32_t i =1, j =0; j<mi2; i+=3, j+=2) {
ISA(SA12(j)) = i;

}

for (uint32_t i = 2, j
ISA(SA12(j)) = i;

1; j < mi2; i 4+=3, j +=2) {

}

for (uint32_t i =0, j =0; j < m3; i +=3, j++) {
ISA(SA3(3)) = i;

}

where we use the first helper buffer to store the inverse suffix array this macro:
#define ISA(ii) (shared_buffers->helper_buffero[(ii)])
To test if suffix 11 is smaller than index jj, we can now use this macro:

#define CHECK_ISA(ii,jj) \
(((3j) »>= n) ? false : \
((ii) »>= n) || IsA((ii)) < ISA((33)))

It first handles cases where the indices look past the end of the string (they are
special cases that can happen in the less() function below), and if the indices do not
map out of the string, then it compares the two indices in the suffix array via the ISA()
map.

The function below implements the “less than” we use when merging. Either the two
suffixes differs on the first letter, in which case CHECK_INDEX() handles the comparison
and returns from the less() function (remember that the macro has return statements
when it can determine the order directly). Otherwise, we check ii + 1vs.jj + 1.1fii
% 3 == 1, then we can check directly with ii + 1 (which must be two modulo tree) and
jj + 1 (which must be one modulo three as it comes from sa3). Otherwise, we check
indexii + 1and jj + 1and then check the inverse suffix array for ii + 2and jj + 2.
If we do this, we must be in the casewhere i1 % 3 == 2,s0ii + 2 % 3 = l,andjj + 1
% 3 = 2, and they are both in sa12. See Figure 4-4.

inline static bool less(
uint32_t ii, uint32_t jj,
uint32_t *s, uint32_t n,

162

CHAPTER 4 SUFFIX ARRAYS

struct skew buffers *shared buffers
) {

CHECK_INDEX(ii, jj);

if (i1 % 3 ==1) {
return CHECK ISA(ii + 1, jj + 1);

} else {
CHECK INDEX(ii + 1, jj + 1);
return CHECK ISA(ii + 2, jj + 2);

}

// Just for readability in the merge
#define LESS(i,j) less((i), (j), s, n, shared_buffers)

In the function for merging the suffix arrays, we first construct the inverse suffix
array—the code for that should be self-evident—and then we move through the two
arrays, get the indices from the suffix arrays, and test which is smaller of the two.

static void merge suffix arrays(
uint32_t *s, uint32_t m12, uint32_t m3,
uint32_t *sa, struct skew buffers *shared buffers
) {
uint32_t i
uint32_t n

0, j =0, k =0;
mi2 + m3;

// We are essentially building sa[i] (although

// not sorting between 12 and 3) and then doing

// isa[sa[i]] = i. Just both at the same time.

for (uint32_t h =1, j =0; j<mi2; h +=3, j +=2) {
ISA(SA12(j)) = h;

}

for (uint32_t h = 2, j
ISA(SA12(3)) = h;

1; j <mi2; h += 3, j += 2) {

}

for (uint32_t h =0, j =0; j<m3; h+=3, j++) {
ISA(SAS(j)) = h;

}

163

CHAPTER 4 SUFFIX ARRAYS

while (i < m12 &&% j < m3) {
uint32_t ii = SA12(i);
uint32_t jj = SA3(j);

if (LESS(ii,jj)) {
salk++] = ii;
it++;

} else {
salk++] = jj;
J++;

}

for (; i < mi2; ++i) {
sa[k++] = SA12(i);

}

for (; j < m3; ++) {
sa[k++] = SA3(j);

}
Construction function

We want a function that can work with the same strings as we use in the previous
chapters, that is, we want our strings to have type uint8 t *.In the recursive algorithm,
we had to use integers. So we need to wrap the algorithm in a function that translates a
uint8 t *string, x, into an integer string, s, and then calls the algorithm. This function
is also perfect to allocate the buffers we need and deallocate them after we have
constructed the suffix array. There isn’t much else to say about it; it looks like this:

static void skew(
const uint8_t *x,
uint32_t *sa
) 1
uint32_t n = (uint32_t)strlen((char *)x);
// Trivial special cases
if (n ==0) {
sa[0] = 0;
retuxn;
164

CHAPTER 4

} else if (n == 1) {

sa[o] = 1;
sa[1] = 0;
return;

}

// During the algorithm we can have letters larger than
// those in the input, so we map the string to one

// over a larger alphabet. We assume that we can hold
// the largest letter in uint32_t so we do not need to
// handle integers of arbitrary sizes.

// We are not including the termination sentinel
// in this algorithm but we explicitly set it

// at index zero in sa. We reserve

// the sentinel for center points in u strings.

uint32_t *s = malloc(n * sizeof(uint32_t));
for (uint32_t i = 0; i < n; ++i) {
s[i] = (unsigned char)x[i];

}

uint32_t m3 = (n - 1) / 3 + 1;
uint32_t m12 = n - m3;
struct skew buffers shared buffers;

shared_buffers.sa12 =

malloc(mi2 * sizeof(uint32_t));
shared buffers.sa3 =

malloc(m3 * sizeof(uint32_t));

shared buffers.current u = 0;
shared buffers.u =

malloc(3 * (m12 + 1) * sizeof(uint32_t));
shared buffers.sau =

malloc(3 * (m12 + 1) * sizeof(uint32_t));

shared buffers.helper buffero =
malloc(2 * m12 * sizeof(uint32_t));

SUFFIX ARRAYS

165

CHAPTER 4 SUFFIX ARRAYS

shared buffers.helper bufferi =
shared buffers.helper buffero + mi2;

// We never use helper buffer0 between
// creating and using the
// lexicographical mapping buffer. So we
// use the same buffer for both.
shared buffers.lex remapped =

shared buffers.helper buffero;

// Do not include index zero.

skew rec(s, n, 256, sa + 1, &shared buffers);
// but set it to the sentinel here

sa[0] = n;

free(shared buffers.sai2);
free(shared buffers.sa3);
free(shared buffers.u);

free(shared buffers.sau);
free(shared buffers.helper buffer0);
free(s);

}

struct suffix array *
skew_sa_construction(

uint8_t *x
) {
struct suffix array *sa = allocate sa(x);
skew(x, sa->array);
return sa;
}

The divide-and-conquer algorithm uses linear time in each recursive call, and since
we reduce the input size to two-thirds in each recursion, which is a geometric sum that
is bounded by a constant, we have a linear-time algorithm. The faster we get unique
letters when we create the alphabet for u, the faster the algorithm will be in practice. The
worst-case scenario is a string consisting of only one letter. There, we will have a single
lexicographical number (except for cases at the end of the string), so we recurse maximally.

166

CHAPTER 4 SUFFIX ARRAYS

If we add up the space we allocate in all the buffers, we see that we use 6.4 words
per character in the input string. I will leave the counting to the reader. This is close to
the memory we use for the nodes in a suffix tree, but a suffix tree can have up to 2n — 1
nodes, where n is the length of the string, so the suffix array algorithm here still uses less
memory than if we constructed a suffix tree.

The SA-IS algorithm

The SA-IS (sampling-induced sorting) algorithm by Nong, Zhang, and Chan is another
divide-and-conquer algorithm. It is similar to the skew algorithm in the sense that

it sorts some strings recursively and then induces the sorting of all strings based on
those sorted suffixes. It differs in how it chooses the suffixes to sort recursively and

how it combines the sorted sequences with the remaining suffixes. There are more
definitions and concepts needed to understand the algorithm, but once those are there,
the algorithm turns out to be both simpler to understand and to implement than the
skew algorithm. Further, there is less overhead in the operations we need to do, so the
algorithm is also faster. It is one of the fastest linear-time construction algorithms known.

You can get the full implementation from https://github.com/mailund/stralg/
blob/master/stralg/sa_is.c.

The overall idea in the algorithm is to identify particular substrings in the input and
replace them with numbers to create a shorter string, compute the suffix array from this
string, and then induce the suffix array for the initial string from it.

For each index in our input string, we assign it a class, S or L, depending on whether
the suffix starting at that index is smaller or larger than the suffix starting at the next
index. That is, index i is class S if x[i, n] < x[i + 1, n], that is, suffix i is lexicographically
smaller than suffix i+1. An index is class L if x[i, n] > x[i + 1, n], that is, suffix i is greater
than i+1. No two suffixes are the same, so they cannot be equal. A special case is the last
character, the sentinel. We define it to have class S.

For example, the stringmississippi$ has the classes:
mississippi$
LSLLSLLSLLLS

We can compute the classes in linear time with a sweep from right to left. When we
compare suffixes x[i, n] and x[i + 1, n], we can immediately see the class if x[i] # x[i + 1]
but if x[i] = x[i + 1], so they start with the same character; then it turns out that they

167

https://github.com/mailund/stralg/blob/master/stralg/sa_is.c
https://github.com/mailund/stralg/blob/master/stralg/sa_is.c

CHAPTER 4 SUFFIX ARRAYS

must have the same class. The sentinel is a special case, we define it to be class S, and it
doesn’t share a first character with any other suffix.

So consider suffix i where x[i] = x[i + 1]. Since they start with the same letter, let’s call
it a, they must both start with a run of that character (of length at least one since both
strings start with a). That run of as is one longer for x[i, n| than for x[i + 1, n]. Let k be the
length of the run of as for x[i + 1, n]. After the first a in x[i, n], the suffix has the run of k
as that it shares with x[i + 1, n]. After that run of as, they must have a different letter, b,
and after that they share a string, y, that is whatever goes after the b and to the end of the
suffixes. If y is empty, then b is the sentinel. There will always be a character after the run
of as (remember that we handle the sentinel as a special case).

x[L+2,n] act b Y
x[L+1,mn] ac alb I

xIt,w] i al b Y

Figure 4-7. Classifying strings into S and L (see the text for details)

We can write the form of the suffixes like this: x[i, n] = a*'by, x[i + 1, n] = a* by and
x[i + 2, n] = a*"'by (where the run of as for suffix i + 2 can be empty and it can start with
the letter b); see Figure 4-7. The first difference we see when we compare suffix i + 1
with suffix i + 2, or when we compare suffix i with suffix i + 1, is the a against the b, and
it is this comparison that determines which suffix is the smallest. If a < b, suffix i+ 1
will be smaller than suffix i + 2, so class S, and since the comparison between i and
i+ 1 also ends with a < b, suffix i must be smaller than suffix i + 1, so suffix i is also class
S. Symmetrically, if a > b, then suffix i + 1 has class L and so does suffix i. Whenever two
consecutive suffixes start with the same character, they have the same class.

Let t be a vector that gives us the class of an index, that is, #[i] is S if index i has class S
and L if i has class L.

We define a leftmost S (LMS) index as an index of class S where the class to the left
of itis class L, thatis, i is an LMS #(i) = Sand #(i — 1) = L. We cannot look to the left of the
first index in the string, but we define it not to be an LMS. The LMSs for mississippi$
are shown below the classes here:

168

CHAPTER 4 SUFFIX ARRAYS

mississippi$
LSLLSLLSLLLS

L S *

If we can somehow sort the suffixes that start at LMS indices, then we can sort all the
other suffixes. This is the induced sorting that gives us the final result. We recursively sort
the LMS prefixes and then the rest using the sorted LMS strings.

The way we sort the strings can look a little complicated, but once you implement
it, it will be three simple steps. Before the steps, though, we need to split the suffix array
into bins based on the first character. It is a simple run through the string where we
count how many occurrences we see of each character. We can get the beginning of
the bins using an accumulative sum from left to right and the end of the bins using an
accumulative sum from right to left. It is not unlike what we did in the skew algorithm
except we are not using a radix sort but a bucketing.

We can split each bin into two parts: the first part will contain the L suffixes that go
into the bin and the second part the S suffixes. We can do this because an L suffix x[i, n]
in the same bin as an S suffix, x[j, n|, will be lexicographically smaller than the S suffix,
x[i, n] < x[j, n].

To see this, consider their form. Since they are in the same bin, they start with the
same letter. Let us call it a. So, a prefix of the strings must be some nonzero length run
of a; let us say that suffix i starts with k as and suffix j with [as. After that, there is a
character that is not a; call it b for suffix i and c for suffix j. We will call the remaining
string for suffix i y and the remaining string for suffix j z. In other words, the suffixes
have the form x[i, n] = a*by and x[j, n] = a'cz. Because they have this form, and because
the runs of as are nonempty, the suffixes that follow them, i + 1 and j + 1, have the form
xli+1, n] =a*'by and x[j + 1, n] = a’“'cz (where the runs of as can be empty). It means
that when we compare suffix i with suffix i + 1, the first difference we see is when we
compare a in suffix i with b in suffix i + 1, and it is this comparison that determines
which of the two strings is the larger. Because x[i, n| has class L, a must be larger than b.
Otherwise, it would be smaller than x[i + 1, n]; see Figure 4-8. Similarly, we can analyze
suffix j. When we compare suffix j with j + 1, the first difference we see is when we
compare a with c. When j is of class S, a must be smaller than c.

169

CHAPTER 4 SUFFIX ARRAYS

A) , =1
x[inwl [a alol Y | xItnl > x[i+1,n] > a>b
x[i+1,n] [a®T b | J |

B) , =2
xOgnl [a alel = l x[nl <x[+1nl »a<c
x[+1,n] 2= Je| < |

Figure 4-8. The structure of L and S strings

Now compare x[i, n] and x[j, n] and consider the three cases [> k, [= k, and [< k; see
Figure 4-9. If [> k, then when we compare the two strings, we must match a b from x[i, n]
against an a from x{ j, n], and because a > b, we must have x[i, n] < x[j, n]. When [= k, we
compare b against ¢ and we know that b < a and ¢ > a so again we have x[i, n| < x[j, n].
Thirdly, if / < k we match an a from x[i, n] against a ¢ from x[j, n], and since ¢ > a we have
x[i, n] < x[j, n]. In short, within a bucket, the L strings come before the S strings.

A)

xin]l [a® | b| Y |) ,
L>k , a>b—x[,nl] <x[nl
nl & _ale
&) ximl & Jb[g , ,
L=k . c>a>b—>X[L,w]<)<];J,w]
xOwl [__a le | Z |
C ,
) xkwl | a® a_|b] Y

L< k c>a— Xl < x[j,w]

x[jnl o
Figure 4-9. L strings goes before S strings within buckets

The structure of a bucket is as shown in Figure 4-10. We have the L strings on the left
and the S strings on the right. If we have a pointer to the left of the bucket, we can insert L
strings from that side by inserting them at the current pointer and increment it after each

170

CHAPTER 4 SUFFIX ARRAYS

insertion. Likewise, we can insert S strings at the right by inserting them at the pointer

and decrementing the pointer.

If we have the ordered LMS suffixes, we can sort all the suffixes in three simple steps:

1.

First, we go through the LMS suffixes from the end to the
beginning, that is, in reverse order, and insert them at the end

of their buckets. They are S strings, so they belong after L strings
within their buckets. Putting them at the end doesn’t mean we are
putting them at the right position, LMS strings are not necessarily
larger than other S strings in their buckets and don’t all belong at
the end of the bucket, but for now, we only need to have them in
our suffix array in the right order, not the right positions, and we
do that this way.

bl’,w “or

SA

Bucket start Bucket end

Figure 4-10. Bucket structure

2.

Now we are going to put all the L strings in the array in their
correct position. Unlike the LMS strings, they will not only end up
in the right order, but also in the right position. If we insert all the
L strings in the L part of the bucket, and in the right order, they
must also end up at their final position. What we will do is a scan
from left to right in the bucket array, and when we see a string

x[i + 1, n] where x[i, n] (the string before it) is an L string, we add
x[i, n] to its bucket. In our scan, we will see all such strings. We
have the LMS strings so we will see L strings followed by an S, and
as we insert L strings, we will always insert x[i + 1, n] before we
get to and need to insert x[i, n]. Because all L x[i, n] strings must
appear to the right of the suffix that follows them, x[i + 1, n]—this
follows directly from the definition of the L class—we will always

171

CHAPTER 4 SUFFIX ARRAYS

172

have seen x[i + 1, n] before x[i, n] as we scan from left to right. So
when we get to the point where we need to handle x[i, n|, we have
already inserted it into the array. That we will insert the strings

in the right order is something we can prove by induction. We
start with the LMS strings in the right order, so the first string we
insert must be at the correct position. So assume we have inserted
k strings in the right order and consider k + 1. If that string is
inserted incorrectly, then we have inserted x[i, n] in a bin where
there is a larger x[j, n] already. But then consider x[i + 1, n] and
x[j+ 1, n]—itis when we process these that we insert x[i, n] and
x[j, n]. If x[j + 1, n] is already in the bin, we must have seen

x[j, n] before we now see x[i, n]. That cannot be right if the first k
first strings were inserted correctly; we have a contradiction, so it
must be true that we insert the strings in the right order. The base
setup of the step is the LMS strings that ensures that the first set
of strings are in the right order and kicks the induction off. The
LMS strings are not in the right position, but this step doesn’t
need them to be. It only needs the order they appear in when we
scan through the suffix array, and that order is correct. If they are
in the right order, then we insert the suffixes before them in the
right order into their respective buckets. The scan from left to
right guarantees that all the other L strings are also added to the
buckets in the right order.

As the final step, we place all the S strings based on the L strings
we just inserted. Here, we scan from right to left, and each time
we see suffix x[i + 1, n] where x[i, n] has class S, we insert x[i, n]

in its bucket. We can argue that this sorts them correctly similar
to the earlier step. An S suffix will always appear to the left of

the suffix that follows it in the suffix array. It follows from the
definition of S that it must be to the left. So when we get to suffix
x[i, n] in our scan, it is already inserted; we did so when we saw
x[i + 1, n] that is to the right of it. We have the L strings, so we will
see S strings before L strings in the right order (the reverse order
but this is the order we add them to the bucket, so that is what we
want). S strings that are followed by S strings x[i, n] must be to the

CHAPTER 4 SUFFIX ARRAYS

left of x[i + 1, n]—again by definition of S—and we have seen those
strings before we get there. All in all, if the L strings are sorted,

this scan will sort the S strings. Important to notice with this step
is that we do not add strings to the end of the bucket pointers
before the position where we have placed the LMS strings. We
start back at the original end of the buckets. The LMS strings are
not correctly placed in the first phase (it is only their order that is
correct), but we place them correctly now.

If we start with knowing the order of the LMS suffixes, then these three steps give
us the suffix array. The problematic step, of course, is getting the LMS suffixes sorted.
Directly sorting them would take O(n?). We solve it recursively, but first, we need to
create a reduced string.

We define LMS substrings as the strings that go from one LMS index to the next. The
LMS substrings formississippi$ are issi, issi, and ippi$.

mississippi$
LSLLSLLSLLLS
* ok % *

We will construct a new string that consists of the LMS substrings but where each
substring is replaced by a number. That number should be the position the string has in
a sorted list of LMS substrings—not unlike the LEX3 alphabet we constructed in the skew
algorithm. The unique LMS substrings for mississippi$ are issiand ippi$ with ippi$
< issi. Their lexicographical letters are therefore ippi$ = 1 and issi = 2. The orders of
the LMS substrings in mississippi$ are issi, issi, and ippi$, so the reduced string for
mississippi$is 221$. This is the string we sort recursively.

Sorting the reduced string is only useful if the sorted suffixes there give us the order
of the LMS suffixes. Not surprisingly, they do.

Let x be the original string and x’ the reduced string. Let p be an array of pointers
from the indices in x’to the start of the LMS substrings the characters in x’ were taken
from; see Figure 4-11. The indices in x’ correspond to LMS substrings; the symbol at
x'[i] corresponds to the string x[p[i], p[i + 1] + 1]. Because of the way we defined equality
between LMS substrings, if x'[i] = x'[j], then the LMS strings that start at p[i] and p[]

173

CHAPTER 4 SUFFIX ARRAYS

have the same length, the same characters, and the same classes. Similarly, if x'[i] < x[j],
then the LMS substring at p[i] is smaller than the string at p[j].

What we need to be able to use the reduced string to give us the sorted LMS suffixes is
that the order of suffixes is preserved, that is, that if x'[i, n] < x'[j, n], then x[p[i], n] < x[p[], n.
Ifxi] < x[j], then the characters or classes in the LMS strings at p[i] and p[] differ, and the
order directly gives us that the suffix at p[i] is less than the one at p[j]. If x'[i] = x'[j], then the
order of the suffixes is determined by x[i + 1, n] and x'[j + 1, n], and we try comparing these,
which we might, again, do from the first character. If not, we continue with the next suffixes,
i+2andj+ 2, and we continue until we have characters or classes that differ. The order is
preserved, so if we sort the suffixes of X', we can get the order of the LMS suffixes from the
suffix array of x"and the pointer to the original indices.

Mm1ssisSsSippls
LSLLSLLSLLLS

* * * *

X=

Figure 4-11. Reduced string and the pointers to the original string

174

CHAPTER 4 SUFFIX ARRAYS

So where we stand now is that if we can reduce our string, then we can recursively
sort it, this gives us the order of the LMS suffixes, and from those, we can compute the
original suffix array by three scans through the suffix array, one right to left, then one left
to right, and then one right to left.

Reducing the string isn’t hard either if we know the numbers for each LMS substring.
Then it is just a scan through the string. Each number is unique, so we can put each
string in its bucket. The tricky part is getting these numbers since they require sorting the
LMS strings and scanning through them to give them names.

We can do the sorting using the exact three phases we used to induce the full suffix
array from the ordered LMS suffixes. This time, we do not have the sorted LMS suffixes
but put them at the end of their bins in any order. After inserting the LMS strings, we use
steps 2 and 3 from the algorithm earlier to sort the L and S suffixes, respectively. We then
end up with an array where the LMS substrings (but not suffixes) are in the correct order.

To see this, we define a set of strings, “LMS prefixes,” where we include all single
characters found at LMS indices, and then for each index i, we let pre(i) be the string
from i down to the first LMS index to the right of i (that means, if i is an LMS index, then
pre(i) is the entire LMS substring that starts at index 7). We can show that by the three
scans, we will sort the strings with respect to the prefixes longer than one.

When we insert strings in phase 1 of the sorting, we can think of it as sorting
the length-one prefixes. The strings are put in bins for their initial character, so by
inserting them thusly, we have sorted the length-one prefixes. In phase 2, we sort all
the L prefixes. We can show this inductively by assuming we have inserted the first k
correctly (and when we start, we will have the base case covered from phase 1). When
we insert the (k + 1) ’s, pre(i), we can assume that there is already a larger string in its
bin, pre(j). But that means that pre(j + 1) appeared before pre(i + 1) when we scanned
from left to right, and that is a contradiction. So we insert the L prefixes in the right
order, and since we insert all L prefixes, we must have sorted them with respect to
the prefix order. When we scan through the S prefixes, the argument is the same. We
overwrite the length-one strings because we fill the buckets from the back, where we
put those strings, but all prefixes of length more than one will be sorted. The proofis
entirely symmetric to the case for the L strings.

Since all the LMS strings are LMS prefixes (of length larger than one), the strings
we have sorted in the preceding three phases must give us the right order for the LMS
strings.

175

CHAPTER 4 SUFFIX ARRAYS

Summing the algorithm up: we can construct a reduced string by sorting the LMS
strings and number them lexicographically. If this string doesn’t have any duplicated
characters, we can immediately sort it (similar to how we terminate the recursion in the
skew algorithm). Otherwise, we sort it recursively. Once sorted, we construct the suffix
array from it.

The scans before and after the recursive calls clearly take linear time. When we name
the LMS strings, we need to iterate through them—this takes linear time—and compare
contiguous strings. That comparison could potentially take linear time, but the total
length of strings we compare cannot be more than linear. Each string is compared twice,
to the string before and the string after, and the strings only overlap in a single character.
So the running time, if we ignore the recursive call, is O(n).

By construction of the LMS strings, we cannot have more than half as many
characters as the full string (there is an L before each of the LMS indices that isn’t an
LMS index). Therefore, the reduced string is no longer than half the original string. If we
let T'(n) be the running time for the algorithm with input length n, we have the recursive
equation T (n) = O(n) + T (n/2) for the running time. If we expand this equation, we get
n(l+1/2+1/4+---).

The sum 21 /2" =2, so the total running time is linear, O(n).
i=0

Remapping

An essential part of the algorithm assumes that if we have a string with the same length
as our alphabet size, then all letters are unique and can be mapped into bins numbered
by their letter. This is not the case with natural language text. Many texts don’t use

the full character set, but the length of a string can be equal to the alphabet size. For
example, assume that we have a character set with 8 bits, this could be latin-1 (ISO/
IEC 8859-1). There, you have 256 characters, but few of them appear in any given text. If
you have a text of length 256, chances are high that it doesn’t contain all the characters,
but instead have some characters appearing more than once. The assumptions about
the alphabet and string length are guaranteed with all the strings constructed in the
algorithm, but we must also ensure it with the initial string. So, we want to map our
alphabet into indices 0, 1, ..., k where k is the number of unique characters found in the

176

CHAPTER 4 SUFFIX ARRAYS

string (and we will use 0 for the sentinel as always). We use a table that maps characters
and defines it like this:

struct remap table {
uint32_t alphabet size;
// I map from unsigned to signed for the table.
// I do this to have a way of identifying letters
// that were not found when building the map.
// You cannot use this remapping if you have more than
// 128 letters, if you do, use a larger table.
signed char table[256];
signed char rev table[128];

};

We can use the table to map an original string to the reduced alphabet and back
again.

We can build the table by scanning through the string and put a new index into the
table each time we see a new character. If we do this, we will not necessarily preserve
the lexicographical order of suffixes (the lexicographical order will depend on at which
position we see a character rather than the order in the input). So instead, we can first
collect the characters in the string and then assign indices to them in the sorting order

the characters should have.

void build remap table(
struct remap table *table,
const uint8_t *string

) {

const uint8_t *x;

// Collect existing characters.
for (x = string; *x; x++) {
if (table->table[*x] == -1) {
table->alphabet_size++;
table->table[*x] = 1;

177

CHAPTER 4 SUFFIX ARRAYS

// Now give the alphabet indices numbers in an
// order that matches the input.
for (int i = 0, char no = 0; i < 256; i++) {
if (table->table[i] != -1) {
table->table[i] = char no;
table->rev table[char no] = i;
char_no++;

}

void init remap table(
struct remap table *table,
const uint8_t *string

) {

table->alphabet_size = 1; // We always have zero.

// Set table entries to -1. This indicates a letter

// that we haven't seen.

memset (table->table, -1, sizeof(table->table));
memset(table->rev table, -1, sizeof(table->rev table));
// Sentinel is always the sentinel.

table->table[0] = 0;

table->rev _table[0] = 0;

build remap table(table, string);
}

void dealloc_remap table(
struct remap_table *table

) {

// We haven't allocated any resources.

}

void free remap table(
struct remap table *table

) {
free(table);

178

CHAPTER 4 SUFFIX ARRAYS
Whenever you want to map a string s into a string r's, you can use this code:

init_remap table(&remap_table, s);
rs = malloc(size + 1);
remap(rs, s, 8remap table);

where the remap () function could look like this:

void remap(
uint8_t *output,
const uint8_t *input,
struct remap_table *table
) {
// Since we map up to length + 1, we automatically
// get a zero sentinel (the last character we copy from
// input.
const uint8_t *from = input;
const uint8_t *to = input + strlen((char *)input) + 1;
uint8_t *x = output;
const uint8_t *y = from;
for (; y != to; ++y, ++x) {
*x = table->table[*y];

We will assume that the input string to the algorithm is remapped this way.

A consequence of remapping the string we build the suffix array over is that you must
also remap patterns you search for. If the two strings are in different alphabets, you will
not find the patterns you are looking for.

Implementing the algorithm

We will need a bit per position class and we will need a value to indicate that an entry in
an array is undefined. For this, we define these:

#idefine S true
#idefine L false
#define UNDEFINED ~0

179

CHAPTER 4 SUFFIX ARRAYS

For UNDEFINED I am using the largest number in our index type. It is unlikely that we
will ever have exactly the same length as what we can index into, so this value should be
free to use.

For classifying the position, we use a bool array, scan from right to left, and exploit
the observation from earlier that when we cannot directly see which class an index
has from comparing the character there and the next character, then we have the same
character and then the class is the same as the index to the right. There is a special
case when the string is empty. Then we cannot look at the character to the left of it.
Otherwise, the function is simple:

static void classify SL(
const uint32_t *x,
bool *s index,
uint32_t n
) {
s_index[n] = S;
if (n == 0) // empty string
return;

s_index[n - 1] = L;
for (uint32_t i = n; i > 0; --1) {
if (x[1 - 1] > x[i]) {
s_index[i - 1] = L;
} else if (x[i - 1] == x[i] && s_index[i] == L) {
s_index[i - 1] = L;
} else {
// either x[i - 1] < x[i] or
/7 x[i - 1] == x[i] && s_index[i] == S
s_index[i - 1] = S;

}

We will use a function for checking if an index is LMS. This function is equally
simple. We have a special case with the leftmost index, where we cannot check the index
to the left of it, but we handle this case explicitly and return that the index is L.

180

CHAPTER 4 SUFFIX ARRAYS

static bool is LMS_index(
bool *s_ index,
uint32_t n,

uint32_t i
) {

if (i == 0) return false;

else return s _index[i] == S && s _index[i - 1] == L;
}

A large part of the algorithm involves putting suffixes in buckets determined by
their first character. We can compute the bucket sizes by checking each character and
incrementing a counter in the relevant bucket.

static void compute buckets(
uint32_t *x,
uint32_t n,
uint32_t alphabet size,
uint32_t *buckets
) {
memset(buckets, 0, alphabet size * sizeof(uint32_t));
for (uint32_t i = 0; i < n + 1; ++i) {
buckets[x[i]]++;

Parameter x holds the string, n its length, alphabet size—not surprisingly the
number of letters in the alphabet—and buckets the array of bucket sizes.

We want to know the beginning or end index of each bucket, depending on which
class we insert, and we can get those as an accumulative sum through the buckets.

static void find buckets beginnings(
uint32_t *x,
uint32_t n,
uint32_t alphabet size,
uint32_t *buckets,
uint32_t *beginnings

) {

181

CHAPTER 4 SUFFIX ARRAYS

beginnings[0] = 0;
for (uint32_t i = 1; i < alphabet size; ++i) {
beginnings[i] = beginnings[i - 1] + buckets[i - 1];

}

static void find buckets ends(
uint32_t *x,
uint32_t n,
uint32_t alphabet size,
uint32_t *buckets,
uint32_t *ends
) {
ends[0] = buckets[0];
for (uint32_t i = 1; i < alphabet size; ++i) {
ends[i] = ends[i - 1] + buckets[i];

The function for placing the LMS strings at first, at positions that might be incorrect
but at least in their right buckets, looks like this:

void place LMS(
uint32_t *x,
uint32_t n,
uint32_t alphabet_size,
uint32_t *SA,
bool *s index,
uint32_t *buckets,
uint32_t *bucket_ends
) {
find buckets ends(x, n, alphabet size, buckets, bucket ends);
for (uint32_t i = 0; i < n + 1; ++i) {
if (is_LMS index(s_index, n, i)) {
SA[--(bucket ends[x[i]])] = i;

182

CHAPTER 4 SUFFIX ARRAYS

In the expression SA[-- (bucket_ends[x[1]])], we decrement the index of bucket
X[1] before we insert index i in it. The bucket_ends array holds the indices affer the
buckets (or after the current bucket). This is for consistency with other subsequences in C
where the first pointer is where values start, and the last pointer is one past the last value.

After inserting the LMS strings, we need to induce the L strings. Here, we scan from
left to right, and where we see a string, that is, SA[1] is not undefined, we check if the
index left of it has class L in which case we insert it at the beginning of its bucket. We
increment the bucket pointer after we insert the index. The start pointers point at the
first element and not one before.

static void induce L(
uint32_t *x,
uint32_t n,
uint32_t alphabet_size,
uint32_t *SA,
bool *s index,
uint32_t *buckets,
uint32_t *bucket starts
) {
find_buckets beginnings(x, n, alphabet size, buckets, bucket starts);
for (uint32_t i = 0; i < n + 1; ++i) {
// Not initialized yet.
if (SA[i] == UNDEFINED) continue;

// If SA[i] is zero, then we do not have
// a suffix to the left of it.
if (SA[i] == 0) continue;

uint32_t j = SA[i] - 1;
if (s_index[j] == L) {
SA[(bucket_starts[x[j]])++] = J;

183

CHAPTER 4 SUFFIX ARRAYS

Inducing the S strings works similarly. In this case, we scan from right to left, and
there is no need to check if elements are undefined. They will not be because the L
classes are inserted, and because we scan from right to left, we have inserted S class

strings before we get to them.

static void induce S(
uint32_t *x,
uint32_t n,
uint32_t alphabet size,
uint32_t *SA,
bool *s index,
uint32_t *buckets,
uint32_t *bucket_ends
) {
find _buckets ends(x, n, alphabet size,
buckets, bucket ends);
for (uint32_t i =n+ 1; i > 0; --1i) {
// We do not have a string to the left of the first.
if (SA[i - 1] == 0) continue;
uint32_t j = SA[i - 1] - 1;
if (s_index[j] == S) {
SA[--(bucket ends[x[j]])] = J;

When we build the updated alphabet from LMS strings, we need to know if the two
are equal. For this, we need to scan the two strings until we reach an LMS index. If we
reach one in one string before the other, they are not the same, but if they reach one at
the same point, and we have seen no mismatches along the way, they are. Mismatches,
here, mean that characters or class differs. If we see that, we return false.

static bool equal LMS(
uint32_t *x,
uint32_t n,
bool *s index,

184

CHAPTER 4 SUFFIX ARRAYS

uint32_t i,

uint32_t j
) {
// The sentinel string is unique.
if (i ==n+1 || j==n+ 1) return false;
uint32_t k = 0;
while (true) {
bool i LMS = is LMS index(s_index, n, i + k);
bool j LMS = is LMS index(s_index, n, j + k);
if (k > 0 8% i_LMS & j_LMS) {
// We reached the end of the strings.
return true;
}
// If one string ends before another or we
// have different characters, the strings are
// different.
if (i LMS 1= j_LMS
|| x[1+ k] '= x[j + k]
) {
return false;
}
k++;
}
return true;
}

It is the code that reduces a string where the real magic happens. In the function,
we run through the strings in the order given by the input suffix array. In this array, the
LMS strings are ordered, so every time we see one of these, we check if it is identical to
the LMS string we saw before it, in which case it should have the same name, or if it is
different, in which case it should have a name that is one larger. We store the names in
a buffer where they will appear in the same order as they do in the string. We use this
buffer to create the reduced string; it contains the names we have given the LMS strings
in the same order as they appear in the input. Once we have the names buffer, we scan
through it and construct the reduced string. The reduced string should be the LMS
names in the order they appear in the input string, and that is exactly what we have in

185

CHAPTER 4 SUFFIX ARRAYS

the names buffer if we skip the undefined entries. We also collect the offsets at which the
LMS strings appear. We need them later for mapping the string in the other direction.

static void reduce SA(
uint32_t *x,
uint32_t n,
uint32_t *SA,
uint32_t *names buf,
bool *s index,
uint32_t *new_alphabet_size,
uint32_t *summary string,
uint32_t *summary offsets,
uint32_t *new_string length
) {
memset(names_buf, UNDEFINED,
(n + 1) * sizeof(uint32_t));

// Start names at one so we save zero for sentinel.
uint32_t name = 0;

names_buf[SA[0]] = name;
uint32_t last suffix = SA[0];

for (uint32_t i = 1; i < n + 1; i++) {
uint32_t j = SA[i];
if (!is_LMS index(s_index, n, j)) continue;
if (lequal LMS(x, n, s_index, last suffix, j)) {
name++;
}
last_suffix = j;
names_buf[j] = name;

}

// One larger than the largest name used.
*new_alphabet size = name + 1;

uint32_t j = 0;
for (uint32_t i = 0; i < n + 1; i++) {
name = names buf[i];

186

CHAPTER 4 SUFFIX ARRAYS

if (name == UNDEFINED) continue;
summary offsets[j] = i;
summary string[j] = name;
J+s
}
// We don't include sentinel in the length.
*new_string length = j - 1;

The next function is long, but there is very little complicated in it. It is the main
sorting function. First, we classify the indices and compute buckets. After that, we
place LMS strings and induce the indices. Then, we build the reduced string and sort
it recursively (we haven’t seen sort_SA() yet, but we will shortly). Once we have the
array for the reduced string, we use it to place the LMS strings again, but this time in the
correct order (see later where we define the function remap LMS()), and then we induce

the remaining indices before we return.

static void recursive sorting(
uint32_t *x,
uint32_t n,
uint32_t *SA,
uint32_t *names_buf,
bool * s index,
uint32_t *buckets,
uint32_t *bucket_endpoints,
uint32_t *reduced string,
uint32_t *reduced offsets,
uint32_t alphabet_size

) {
classify SL(x, s_index, n);
compute buckets(x, n, alphabet size, buckets);

memset(SA, UNDEFINED, (n + 1) * sizeof(uint32_t));

place LMS(x, n, alphabet size, SA, s index,
buckets, bucket endpoints);

induce L(x, n, alphabet size, SA, s index,
buckets, bucket endpoints);

187

CHAPTER 4 SUFFIX ARRAYS

induce S(x, n, alphabet size, SA, s index,
buckets, bucket endpoints);

uint32_t new alphabet size;
uint32_t new string length;
reduce SA(x, n, SA,
names_buf,
s_index,
&new_alphabet size,
reduced string,
reduced offsets,
8new_string length);

// Move to next position in the buffers.
uint32_t *new SA = SA + n + 1;
uint32_t *new names buf = names buf + n + 1;
bool *new s index = s _index + n + 1;
uint32_t *new_summary string =

reduced string + n + 1;
uint32_t *new_summary offsets =

reduced offsets + n + 1;
uint32_t *new buckets =

buckets + alphabet size;
uint32_t *new bucket endpoints =

bucket _endpoints + alphabet size;

sort SA(reduced string, new_string length,
new_SA,
new_names_buf,
new_summary_ string,
new_summary offsets,
new_buckets,
new_bucket endpoints,
new_s_index,
new_alphabet size);

memset(SA, UNDEFINED, (n + 1) * sizeof(uint32_t));
remap_LMS(x, n,

188

CHAPTER 4 SUFFIX ARRAYS

buckets, bucket endpoints,
alphabet size,
s_index,
reduced_string,
new_string length, new SA,
reduced offsets,
SA);
induce L(x, n, alphabet size, SA, s index,
buckets, bucket endpoints);
induce S(x, n, alphabet size, SA, s index,
buckets, bucket endpoints);

In the recursive call, I do not allocate new strings or buffers. Similarly to the skew
algorithm, I allocate all the buffers in the outermost function and update pointers into
them when I recurse. Here, we are working with a string of length 7, excluding the
sentinel, that we shouldn’t override so we move the pointers n + 1 to the right before we
call recursively.

The sort_SA() function decides if we can get the sorted suffix array directly. We can
do this if the alphabet size matches the string length. When it does, all the LMS strings
are unique, and their names give us the order they should appear in. So, we run through
the string and bucket them at the index that matches their name. If we cannot construct
the suffix array directly, we sort it recursively.

void sort SA(
uint32_t *x,
uint32_t n,
uint32_t *SA,
uint32_t *names buf,
uint32_t *summary string,
uint32_t *summary offsets,
uint32_t *buckets,
uint32_t *bucket_endpoints,
bool *s index,
uint32_t alphabet size

) {

189

CHAPTER 4 SUFFIX ARRAYS

if (n == 0) {
// Trivially sorted.
SA[0] = 0;
return;

}

// Mapping each letter into its bin.
// This code assumes that the letters
// are numbers from zero (the sentinel)
// up to the alphabet size.
if (alphabet size == n + 1) {
SA[0] = n;
for (uint32_t i = 0; i < n; ++1) {
uint32_t j = x[i];
SA[j] = i;
}
} else {
recursive sorting(
X, n, SA,
names_buf,
s_index,
buckets,
bucket endpoints,
summary_string,
summary offsets,
alphabet_size

)5

Once done with sorting the reduced string, we need to put the LMS strings in the
right order into the current suffix array. To do this, we run through the indices in the
reduced string and get their position in the reduced suffix array—that gives us the order
we should insert them in. The index we need to insert is not the index in the reduced
suffix array but the offset in the original string, so we get that. We insert the indices at
the end of their respective buckets, so they won’t be overwritten when we induce the L
suffixes from them.

190

CHAPTER 4 SUFFIX ARRAYS

void remap LMS(
uint32_t *x,
uint32_t n,
uint32_t *buckets,
uint32_t *bucket ends,
uint32_t alphabet size,
bool *s index,
uint32_t *reduced string,
uint32_t reduced length,
uint32_t *reduced SA,
uint32_t *reduced offsets,
uint32_t *SA
) {
find buckets ends(x, n, alphabet size,
buckets, bucket ends);

for (uint32_t i = reduced length + 1; i > 0; --i) {
uint32_t idx = reduced offsets[reduced SA[i - 1]];
uint32_t bucket idx = x[idx];
SA[--(bucket ends[bucket idx])] = idx;

}

SA[0] = n;

The main function maps the input string, of type uint8 t *, to an integer string, of
type uint32_t *.Then it allocates all the buffers we use and call sort_SA(). When we
are done with sorting the suffix array, we copy the first half of it—the part that is sorted at
the first-level recursive call—into the suffix array buffer we want. Finally, we free all the
buffers.

struct suffix array *
sa_is construction(
uint8_t *remapped string,
uint32_t alphabet_size
) {
struct suffix array *sa = allocate sa(remapped string);
// We work with the string length without the sentinel

191

CHAPTER 4 SUFFIX ARRAYS

// in this algorithm.
uint32_t n = sa->length - 1;

// Create string of integers instead of bytes.
uint32_t *s = malloc((n + 1) * sizeof(uint32_t));
for (uint32_t i = 0; i < n; ++i) {

s[i] = remapped string[i];
}

s[n] = 0;

// Allocate all buffers.
uint32_t *SA =
malloc(2 * (n + 1) * sizeof(uint32_t));
uint32_t *names buf =
malloc(2 * (n + 1) * sizeof(uint32_t));
uint32_t *summary string =
malloc(2 * (n + 1) * sizeof(uint32_t));
uint32_t *summary offsets =
malloc(2 * (n + 1) * sizeof(uint32_t));
bool *s index =
malloc(2 * (n + 1) * sizeof(bool));
uint32_t max_alphabet size =
(alphabet size > n) ? alphabet size : n + 1;
uint32_t *buckets =
malloc(2 * max_alphabet size * sizeof(uint32_t));
uint32_t *bucket endpoints =
malloc(2 * max_alphabet size * sizeof(uint32_t));

// Sort in buffer and then move the result to the suffix array.
sort SA(s, n, SA, names buf,

summary string, summary offsets,

buckets, bucket endpoints, s_index,

alphabet size);
memcpy(sa->array, SA, (n + 1) * sizeof(uint32_t));

// Free all buffers.
free(bucket_endpoints);

192

CHAPTER 4 SUFFIX ARRAYS

free(buckets);
free(s_index);
free(summary offsets);
free(summary_string);
free(SA);

free(s);

return sa;

We argued earlier that the algorithm runs in linear time, and we shall see at the end
of the chapter that it is fast in practice, but what is the memory footprint? We can check
the buffers we allocate in the outermost function and reuse in all the recursions. We have
seven arrays where six of them take up 2n words (here that means integers), and then
we have one bool array. If we assume that this takes up one byte, then we use 12n + n/2
words—Iless than what we needed for McCreight’s algorithm but only barely so.

Memory reduction

The algorithm, as we have implemented it, is very wasteful of memory. It is fast, as we
shall see at the end of the chapter, but if the reason for using suffix array over suffix trees is
the smaller memory footprint, then we cannot spend more space constructing the suffix
array than we would constructing the suffix tree. We can, however, with some tricks, bring
this down to 2n words (integers) and n bits for each character in the string. Of these words,
half is used for the suffix array, so we only have a factor two overhead for constructing the
array. It is possible to go down to just n bits on top of the resulting suffix array if we have a
constant bound on the size of the alphabets, but we will not get that far here.

The tricks are not extremely difficult to understand, but they would certainly take
the focus from the overall ideas in the algorithm—and the simplicity of it—so I explain
them in this separate section. I only show the most important changes to the algorithm
to reduce the memory—the parts I don’t show are the same as those I have already
shown except that they work on a bit array instead of a byte array. You will not be able to
compile the following code in the same file as the code earlier. I redefine some macros
and several functions, and that will cause problems. Use a different file.

My implementation is at https://github.com/mailund/stralg/blob/master/stralg/
sa_is mem.c.

193

https://github.com/mailund/stralg/blob/master/stralg/sa_is_mem.c
https://github.com/mailund/stralg/blob/master/stralg/sa_is_mem.c

CHAPTER 4 SUFFIX ARRAYS

There are two main tricks to it. First, we observe that when we call recursively, we use
half the space on the suffix array and half the length of the original string on the reduced
string. This means that we can pack the two into the same buffer and build the reduced
suffix array in the first half of the input array and the reduced string in the other. We will
use the suffix array buffer for this. This array has size n words (integers), and we cannot
get rid of it in any way, because it is the output of the algorithm.

Second, we observe that we do not need to preserve any data from before a recursive
call because we need it after the call. We can reconstruct the classes array and the
buckets after the recursion. So, we can free the memory they use before the call and
allocate it again when we are done with the call. If we free and reallocate, we only use
the longest arrays possible in a recursion. For the classes, this is 7 bits. The longest array
we have equals the length of the first string. After that, we have at most half the length in
arecursion. For the buckets, the length in the first call is equal to the size of the original
alphabet, which we assume is a constant. The alphabet in the next call can be half the
size of the input string because that is the maximum number of LMS strings we can have,
and all of those could be unique. So by allocating and deallocating buckets, we will use at
most 1/2 words on them. So, adding up, we use n words on the suffix array, n/2 words on
the buckets, and rn bits on the classes. Because we have a function that takes uint8 t *
strings as input, and the algorithm works on integers, we also need to spend n words on

the integer string. We end up with 2%;1 words and 7 bits.

In the implementation we cannot get rid of the integer string, but from an
algorithmic point of view, we can. If we consider the integer string the input and the SA
string the output, and only analyze what exfra memory the algorithm uses, then we have
n/2 words (for the buckets) and n bits (for the classes). Compared to any of the other
algorithms we have seen, this is by far the most memory efficient. With a probabilistic
argument that I give at the end of this section, we can get rid of the n/2 words for the
buckets, so the algorithm uses only 7 bits in total. It is extremely memory efficient.

The first thing we do is getting rid of the bool array and replacing it with a bit array.
If you have worked with bit arrays before, you will not be surprised by how we do this.
When we index into one, we divide the index by eight to get the correct byte, and inside
the byte, we apply a mask that picks out the relevant bit. Getting a bit is simply that,
except that we translate the bit we get to true and false. Otherwise, we cannot compare
them to S and L values; we can interpret them as truth values, the L value will match
zero, but the S value will not match bits that are not the lowest in the byte. So we must

194

CHAPTER 4 SUFFIX ARRAYS

convert bits to bools. Setting a bit is slightly more involved. We need to get the bit from
the byte using a mask and then “OR” it with the existing bit to set it, or we must invert the
bit and then “AND” that to the existing byte.

static uint8_t mask[] = {
0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01
};
#define sget(i) ((s_idx[(i) /7 8] & mask[(i) % 8]) \
? true : false)
#define sset(i, b) (\
s_idx[(i) 7 8] = \
(b) ? (mask[(i) % 8] | s_idx[(i) / 8]) \
¢ ((~mask[(1) % 8]) & s_idx[(i) / 8]) \

The bit array macros assume that we have the byte array in a variable called s_idx.
To use the array, we need to use the macros for getting and setting bits. Aside from that,
most of the functions in the algorithm are the same as those we have already seen.

When we find buckets’ beginnings and ends, we do not put them in separate buffers
but reuse the buckets buffer. This means that we need to recompute the buckets every
time we call find_buckets beginnings() and find buckets ends().The find
buckets beginnings() looks like this:

static void find_buckets beginnings(
uint32_t *x,
uint32_t n,
uint32_t alphabet _size,
uint32_t *buckets
) {
compute buckets(x, n, alphabet size, buckets);
uint32_t sum = 0;
for (uint32_t i = 0; i < alphabet size; ++i) {
sum += buckets[i];
buckets[i] = sum - buckets[i];

195

CHAPTER 4 SUFFIX ARRAYS

When we reduce a string, we do not use a names buffer. Instead, we scan through
the input suffix array and pack the LMS indices into the first half of the input. Then we
collect the names in the second half. We exploit that there cannot be more names than
half the input length, so we can pack the names in there by taking half their index and
putting them after the reduced string. We can construct the reduced string as before—we
scan through the names and insert them into the reduced string in the order that they
appear. It doesn’t matter that their indices are half what they were before; we only want
their order.

static bool is LMS_ index(
uint8_t *s_idx,
uint32_t n,

uint32_t i
) {

if (i == 0) return false;

else return sget(i) == S 8& sget(i - 1) == L;
}

static bool equal LMS(
uint32_t *x,
uint32_t n,
uint8_t *s idx,
uint32_t i,
uint32_t j
) {
// The sentinel string is unique.
if (i ==n+1 || j==n+ 1) return false;
uint32_t k = 0;
while (true) {
bool i LMS = is LMS index(s_idx, n, i + k);
bool j LMS = is LMS_index(s_idx, n, j + k);
if (k > 0 8% i LMS & j LMS) {
// We reached the end of the strings.
return true;

196

CHAPTER 4 SUFFIX ARRAYS

// If one string ends before another or we
// have different characters, the strings are
// different.
if (i LMS != j LMS
|| x[1+ k] !'=x[j + k]
) {
return false;
}
k++;
}

return true;

}

static void reduce SA(
uint32_t *x,
uint32_t n,
uint32_t *SA,
uint8_t *s idx,
uint32_t *new_alphabet size,
uint32_t *new_string length
) {
// Pack the LMS strings into the first half of the
// SA buffer. After that we are free to use the
// second half of the array.
uint32_t *compacted = SA;
uint32_t n1 = 0;
for (uint32_t i = 0; i < n + 1; ++i) {
if (is LMS index(s_idx, n, SA[i])) {
compacted[n1++] = SA[i];

}

// Now collect the names in the upper half of the array.
#define half_pos(pos) (pos % 2 ==0) 2 pos / 2 : (pos - 1) / 2

uint32_t *names = SA + ni;

memset(names, UNDEFINED, sizeof(uint32_t) * (n + 1 - n1));

197

CHAPTER 4 SUFFIX ARRAYS

uint32_t name = 0;
names[half pos(compacted[0])] = name;
uint32_t last suffix = compacted[0];

for (uint32_t i = 1; i < n1; i++) {
uint32_t j = compacted[i];
if (!equal LMS(x, n, s _idx, last suffix, j)) {
name++;
}
last_suffix = j;
names[half pos(j)] = name;

}

// Finally, construct the reduced string
// by shifting the names down. They are in order
// now, so we really only need the right number of
// copies and we get them this way.
uint32_t *reduced = SA + ni;
uint32_t j = 0;
for (uint32_t i = 0; i < n+ 1 - n1; ++i) {

if (names[i] != UNDEFINED) {

reduced[j++] = names[i];

}

// One larger than the largest name used.
*new_alphabet_size = name + 1;

// We don't include sentinel in the length.
*new_string length = n1 - 1;

The recursive sorting function doesn’t change much. We allocate, deallocate,
reallocate, and free the buffers, but otherwise, we do the same as before. We have fewer
arguments to the reduce_SA() function because we do not use preallocated buffers but
do our computation in SA, though.

198

CHAPTER 4 SUFFIX ARRAYS

static void classify SL(
const uint32_t *x,
uint8_t *s idx,
uint32_t n
) {
sset(n, S);
if (n == 0) // empty string
return;
sset(n - 1, L);

for (uint32_t i =n; i > 0; --1i) {
if (x[i - 1] > x[i]) {
sset(i - 1, L);
} else if (x[i - 1] == x[i] 8& sget(i) == L) {
sset(i - 1, L);
} else {
sset(i - 1, S);

}

void place LMS(
uint32_t *x,
uint32_t n,
uint32_t alphabet_size,
uint32_t *SA,
uint8_t *s idx,
uint32_t *buckets
) {
find _buckets ends(x, n, alphabet size, buckets);
for (uint32_t i = 0; i < n + 1; ++i) {
if (is LMS index(s_idx, n, i)) {
SA[--(buckets[x[1]])] = i;

199

CHAPTER 4 SUFFIX ARRAYS

static void induce L(
uint32_t *x,
uint32_t n,
uint32_t alphabet_size,
uint32_t *SA,
uint8_t *s_idx,
uint32_t *buckets

) 1

find_buckets beginnings(x, n, alphabet size, buckets);

for (uint32_t i = 0; i < n + 1; ++i) {
if (SA[i] == UNDEFINED) continue; // Not initialized yet

// If SA[i] is zero, then we do not have
// a suffix to the left of it.
if (SA[i] == 0) continue;

uint32_t j = SA[i] - 1;

if (sget(j) == 1) {
SA[(buckets[x[j]11])++] = J;

}

static void induce S(
uint32_t *x,
uint32_t n,
uint32_t alphabet size,
uint32_t *SA,
uint8_t *s_idx,
uint32_t *buckets
) {
find buckets ends(x, n, alphabet size, buckets);
for (uint32.ti=n+1; i>0; --1) {
// We do not have a string to the left of the first.
if (SA[i - 1] == 0) continue;
uint32_t j = SA[i - 1] - 1;

200

CHAPTER 4

if (sget(j) == 5) {
SA[-- (buckets[x[§11)] = 3

}

void sort SA(
uint32_t *x,
uint32_t n,
uint32_t *SA,
uint32_t alphabet_size

) {
if (n ==0) {
// Trivially sorted
SA[0] = 0;
return;
}

// Mapping each letter into its bin.
// This code assumes that the letters
// are numbers from zero (the sentinel)
// up to the alphabet size.
if (alphabet size == n + 1) {
SA[0] = n;
for (uint32_t i = 0; i < n; ++1) {
uint32_t j = x[i];
SA[j] = 1i;
}
} else {
recursive sorting(
X, n, SA,
alphabet size
)5

SUFFIX ARRAYS

201

CHAPTER 4 SUFFIX ARRAYS

static void recursive sorting(
uint32_t *x,
uint32_t n,
uint32_t *SA,
uint32_t alphabet size
) {
uint8_t *s idx =
malloc(((n + 1)/8 + 1) * sizeof(uint8_t));
uint32_t *buckets =
malloc(alphabet size * sizeof(uint32_t));
classify SL(x, s_idx, n);

memset(SA, UNDEFINED, (n + 1) * sizeof(uint32_t));
place LMS(x, n, alphabet size, SA, s idx, buckets);
induce L(x, n, alphabet size, SA, s idx, buckets);
induce S(x, n, alphabet size, SA, s idx, buckets);
free(buckets);

uint32_t new_alphabet_size;
uint32_t new string length;
reduce SA(x, n, SA,
s_idx,
&new_alphabet size,
8new_string length);
uint32_t *reduced_string = SA + new_string length + 1;

// Don't use space on this for the recursive call.
free(s_idx);

sort SA(reduced string,
new_string length,
SA,
new_alphabet size);

// Get arrays back.

s _idx = malloc(((n + 1)/8 + 1) * sizeof(uint8_t));
classify SL(x, s_idx, n);

buckets = malloc(alphabet size * sizeof(uint32_t));

202

CHAPTER 4 SUFFIX ARRAYS

remap_LMS(x, n,

buckets,

alphabet size,

s_idx,

new_string length,

SA);
induce L(x, n, alphabet size, SA, s idx, buckets);
induce_S(x, n, alphabet size, SA, s idx, buckets);

free(buckets);
free(s_idx);

There is more work to do in remap_LMS() now. We compute the offsets in this
function now. Doing so is not hard, however. The offsets are the positions where LMS
strings appear, so we scan through the string and find these. Once we have the reduced
suffix array, we do not need the reduced string any longer, so we can put the offsets there.

The reduced suffix array, which is at the beginning of the input suffix array, gives us
the sorted order of the offsets. We scan through the suffix array, get the offset of an index,
and put that into the suffix array at the same index. It gives us the offsets in the right
order at the beginning of the suffix array.

Finally, we set the upper half of the suffix array to UNDEFINED—we need all positions
where we do not have LMS strings to be UNDEFINED—and then we scan from right to left
through the lower half, where all the offsets are. We get the position of each offset from
the suffix array, it holds the order in which we need to insert offsets, and then we put
the offset in the right bucket and clear the old position by setting it to UNDEFINED. Offsets
belong at an index that is higher than or equal to where they are packed in the array, so
we do not risk overwriting one with UNDEFINED when we insert them in buckets.

void remap LMS(
uint32_t *x,
uint32_t n,
uint32_t *buckets,
uint32_t alphabet size,
uint8_t *s idx,
uint32_t reduced length,
uint32_t *SA

203

CHAPTER 4 SUFFIX ARRAYS

) {

// Compute the offsets we need to map
// the reduced string to the original.
uint32_t *offsets = SA + reduced length + 1;
uint32_t j = 0;
for (uint32_t i = 1; i < n + 1; ++i) {

if (is LMS index(s_idx, n, i)) {

offsets[j++] = i;

}
}
// Move the offsets into the first part of SA, sorted
// by the SA of the reduced problem, so we have them
// when we update SA.
for (uint32_t i = 0; i < reduced length + 1; ++i) {

SA[i] = offsets[SA[i]];
}
// Reset the upper part of SA.
memset (SA + reduced length + 1,

UNDEFINED,
sizeof (uint32_t) * (n + 1 - (reduced length + 1)));

// Now we can insert the LMS strings in their buckets.
// Scanning right to left this way ensures that we see
// an LMS after we have zeroed its position, so we don't
// risk removing one when we set a position to UNDEFINED.
find buckets ends(x, n, alphabet size, buckets);
for (uint32_t i = reduced length + 1; i > 0; --i) {

uint32_t j = SA[i - 1]; SA[i - 1] = UNDEFINED;

SA[-- (buckets[x[{]11)] = 3;
}

}

Finally, there is not much change to sa_is_construction(). We construct the string
s, but we don’t allocate any buffers and we call sort_SA() directly with the suffix array’s
array—we don’t need to copy the result from a buffer now.

204

CHAPTER 4 SUFFIX ARRAYS

struct suffix array *

sa_is construction(
uint8_t *remapped string,
uint32_t alphabet_size

) {
struct suffix_array *sa = allocate sa(remapped string);
// We work with the string length without the sentinel
// in this algorithm.
uint32_t n = sa->length - 1;
// Create string of integers instead of bytes.
uint32_t *s = malloc((n + 1) * sizeof(uint32_t));
for (uint32_t i = 0; i < n; ++i) {
s[i] = remapped string[i];
}
s[n] = 0;
// Sort in buffer and then move the
// result to the suffix array.
sort SA(s, n, sa->array, alphabet size);
free(s);
return sa;
}

In the preceding analysis, we saw that we would use n/2 words for buckets, n for the
suffix array, n for the integer string, and 7 bits for the classes array. This is true for the
worst case where the alphabet we build in the recursion has one letter per LMS string,
but this is unlikely to happen. If your strings are random, the distance between LMS
indices is geometrically distributed, so the length is expected to be constant. Then we
use O(1) space for the buckets. Which means that, besides the input string and output
suffix array, we only use O(n) bits. We always need to use n words for the suffix array—
we cannot save away the output of the algorithm. We cannot get rid of the input string
either, but always when we analyze an algorithm; we do not count input and output as
part of the complexity. They can be handled by the caller of the algorithm. The one thing
that we do not do efficiently in our current implementation is handling the input string.
We use n words more than we need to, because we must translate a byte string into an

205

CHAPTER 4 SUFFIX ARRAYS

integer string. If you dare assume that the alphabet size never grows larger than 256 (you
can check how likely it will be, given your alphabet and character probabilities), then
you can use a uint8_t array for strings and then there is no need to build an integer
string before you can run the algorithm. In that case, the only overhead with using the
algorithm is 7 bits. In the worst case, however, the alphabet can have a size that is one
half of the input string, so I have not done this.

Searching using suffix arrays

Our suffix array would be a little use—except perhaps as a way to construct suffix trees—
if we couldn’t search for strings using them. Which, of course, we can. You can find the
code for this section at https://github.com/mailund/stralg/blob/master/stralg/
suffix_array.c.

Binary search

The most straightforward way to search using a suffix array is a binary search. The suffix
array has our suffixes in sorted order, and for each index, we can get the corresponding
suffix index from the array. In a binary search, we have an interval of the suffixes where
the key we search for is found if it is in the string. We can compare the key to the middle
of the interval and from there decide whether we must search in the first or second half.
This idea can be implemented like this:

static uint32_t binary search(
const uint8_t *p,
uint32_t key len,
struct suffix array *sa
) {
uint32_t low = 0;
uint32_t high = sa->length;

while (low < high) {
uint32_t mid = low + (high - low) / 2;
int cmp = strncmp(
(char *)p,
(char *)(sa->string + sa->array[mid]),

206

https://github.com/mailund/stralg/blob/master/stralg/suffix_array.c
https://github.com/mailund/stralg/blob/master/stralg/suffix_array.c

CHAPTER 4 SUFFIX ARRAYS

key len
);
if (cmp < 0) {
high = mid - 1;
} else if (cmp > 0) {
low = mid + 1;
} else {
// If cmp is 0, we have a match.
return mid;

}

// This must be the lowest point where
// a hit could be if we didn't catch it above.
return low;

In the iterator for the search, we have the interval where the keys are found. When
we have found the key in the string, we search backward and forward to get the interval
where it matches, and we use this interval when we iterate through the matches.

struct sa_match_iter {
struct suffix_array *sa;
uint32_t L;
uint32_t R;
uint32_t i;

b5

struct sa match {
uint32_t position;

};

void init sa match iter(
struct sa match _iter *iter,
const uint8_t *p,
struct suffix_array *sa

) {

iter-»sa = sa;

207

CHAPTER 4 SUFFIX ARRAYS

208

uint32_t key len = (uint32_t)strlen((char *)p);
assert(key len > 0); // I cannot handle empty strings!
uint32_t mid = binary search(p, key len, sa);

if (mid == sa->length ||

strncmp((char *)(sa->string + sa->array[mid]),
(char *)p, key len)
1= 0) {

// This is a special case where the lower bound is

// the end of the array. Here we cannot check

// the strcmp to figure out the interval

// (or whether we have a hit at all)

// but we know that the key is not in the

// string.

iter->L = iter->R = 0;

iter->i = 1;

return;

}

// Find lower and upper bound.
uint32_t lower = mid;
while (lower > 0 &&
strncmp((char *)(sa->string + sa->array[lower]),
(char *)p, key len) >= 0) {
lower--;
}
iter->i = iter->L = lower + 1;
uint32_t upper = mid;
while (upper < sa->length 88&
strncmp((char *)(sa->string + sa->array[upper]),
(char *)p, key len) == 0) {
Upper++;
}

iter->R = upper - 1;

CHAPTER 4 SUFFIX ARRAYS

bool next sa match(struct sa _match _iter *iter,

struct sa match *match)

{

if (iter->i > iter-»R)

return false;

match->position = iter->sa->array[iter->i++];

return true;
}
void dealloc sa match iter(struct sa match iter *iter)
{

// Nothing to be done here.
}

We don't free anything in the deallocation function, but we need it to match the
usage pattern we have for all our iterators.

The running time is O(m(log n + k)), where m is the length of the key, n is the length
of the string we search in, and k is the number of occurrences we find. The log n comes
from the binary search, and the m is multiplied to it because the worst time comparison
between the key and a suffix takes that long.

When setting up the iterator, we do a linear search for the beginning and end of the
interval. You can also use a binary search here to find the lower and upper bound. The
functions for that are listed as follows. The lower bound search() function finds the
first occurrence of a key, or the position where that key should be inserted if it isn’t in the
list (i.e., the first suffix larger than the key). The upper_bound_search() finds one past
the last occurrence of the key or the point where the string should be inserted, that is, if
the key isn’t in the string, then the upper and lower bound returns the same index. In the
upper bound search, we need to check if we have a match or are below a match when the
interval gets empty. This is to make sure that we get an index just past the right position
in those cases. Otherwise, the two implements should be fairly straightforward.

uint32_t lower bound search(
struct suffix_array *sa,
const uint8_t *key
) {
uint32_t L = 0, R = sa->length;
uint32_t key len = strlen((char*)key);

209

CHAPTER 4 SUFFIX ARRAYS

}

uint32_t mid;
while (L < R) {
mid =L+ (R-1L1) /2
int cmp = strncmp(
(char *)key,
(char *)(sa->string + sa->array[mid]),
key len
);
if (cmp <= 0) {
R = mid;
} else if (cmp > 0) {
L = mid + 1;

}
return (L <=R) ? L : R;

uint32_t upper bound_search(

) {

210

struct suffix array *sa,
const uint8_t *key

uint32_t L = 0, R = sa->length;
uint32_t key len = strlen((char*)key);
uint32_t mid;
while (L < R) {
mid = L + (R - L) / 2;
int cmp = strncmp(
(char *)key,
(char *)(sa->string + sa->array[mid]),
key len
);
if (cmp < 0) {
R =mid - 1;
} else if (cmp >= 0) {
L =mid + 1;

}

CHAPTER 4

}
R=(R>L)?R:L;
if (R == sa->length) return R;

int cmp = strncmp(
(char *)key,
(char *)(sa->string + sa->array[R]),
key len

);

return (cmp >= 0) ? R + 1 : R;

void init sa match iter(

) {

struct sa match_iter *iter,
const uint8_t *key,
struct suffix array *sa

iter-»>sa = sa;

// Find lower and upper bound
uint32_t lower = lower bound search(sa, key);
uint32_t upper = upper bound search(sa, key);

// No match

if (lower == upper) {
iter->L = iter-»>R = 0;
iter->i = 1;

}
iter->i = iter->L = lower;
iter->R = upper - 1;

SUFFIX ARRAYS

With this approach, we do not pay a cost of m for each occurrence of the key, so we

get the running time O(m log n + k).

There is another trick we can use to speed up the search. It doesn’t change the

asymptotic running time, it is still O(m log n + k), but it uses a faster approach to the

binary search. The critical observation behind the idea is that when we have matched

a prefix of the pattern against the suffix array, we have an interval, [L, R], where all the

211

CHAPTER 4 SUFFIX ARRAYS

suffixes that start with that prefix sit. If we want to extend the prefix by the next character,
then we will get a subinterval where that additional character matches. To get that
interval, we do not need to compare the key against the entire suffixes; we know that it
matches the prefix we have searched for so far. Instead, we can do a binary search inside
the interval where we match the next character in the pattern against characters at an
offset that skips the prefix we know matches.

We will use a lower and an upper bound function to get one interval from the
previous. These functions are very similar to the ones earlier, but they match a single
character at an offset, k, into the suffixes.

uint32_t lower bound k(
struct suffix array *sa,
uint32_t k, uint8_t a,
uint32_t L, uint32_t R
) {
while (L < R) {
uint32_t mid = L + (R - L) / 2;
uint32_t b idx = sa->array[mid] + k;
if (b_idx >= sa->length) {
// b is less if it is past the end.
L = mid + 1;
continue;
}
uint8_t b = *(sa->string + b_idx);
if (b < a) {
L = mid + 1;
} else {
R = mid;

}
return (L <=R) ? L : R;

}

uint32_t upper bound k(
struct suffix array *sa,
uint32_t k, uint8_t 3,

212

CHAPTER 4 SUFFIX ARRAYS

uint32_t L, uint32_t R
) {

uint32_t orig R = R;

while (L < R) {
uint32_t mid = L + (R - L) / 2;
uint32_t b_idx = sa->array[mid] + k;
if (b_idx >= sa->length) {

// b is less if it is past the end.

L = mid + 1;
continue;
}
uint8_t b = *(sa->string + b_idx);
if (a < b) {
R =mid - 1;
} else {
L = mid + 1;
}

}
R=(R>L)?R:L;
if (R == orig R) retuxn R;

uint8_t b = *(sa->string + sa->array[R] + k);
return (a >=b) 2 R+ 1 : R;

In the upper bound calculations, we have to stay inside the original interval, so
where we made sure that R would stay inside the suffix array, we tested it against sa-
>length; we now test it against the original R the function was called with.

In the match function—the function where we initialize the iterator—we run through

the key and update the interval for each new index:

void init sa match iter(
struct sa match _iter *iter,
const uint8_t *key,
struct suffix array *sa

) {

213

CHAPTER 4 SUFFIX ARRAYS
iter-»>sa = sa;

uint32_t key len = strlen((char*)key);
uint32_t L = 0, R = sa->length;

for (uint32_t i = 0; i < key len; i++) {
L = lower bound k(sa, i, key[i], L, R);
R = upper bound k(sa, i, key[i], L, R);
if (L >= R) break;

}

if (L ==R) {
iter->L = iter-»>R = 0;
iter->i = 1;

}

iter->L = L;

iter->R = R - 1;

iter->i = L;

There are further improvements possible for a binary search based on precomputing
possible intervals, but the result will still be a search that is logarithmic in the suffix array.
It is possible to improve the approach to O(m + log n). We will skip those methods and
move on to an approach that gives us a search algorithm that runs linear in the patterns
we search for, O(m).

Burrows-Wheeler transform-based search

The Burrows-Wheeler transform (BWT) is a transformation of a string that was originally
used as a heuristic to make compression more efficient. We will not use it like that, and I
will save you much discussion of it. All we need for the search algorithm is to know that
for an index i in a string x, it is x[SA[1] —1], with a special case for suffix zero. We can get it
in for suffix array sa like this:

static inline unsigned char bwt(
const struct suffix array *sa,
uint32_t i

214

CHAPTER 4 SUFFIX ARRAYS

uint32_t suf = sa->array[i];
return (suf == 0) ? '\0' : sa->string[suf - 1];

Contrary to what you might expect from the algorithm’s name, it isn’t an essential
part of the search, but we use it to compute one of two tables that are essential.

Again, you need to compile the code in this section in a separate file, and you can
find the implementation at https://github.com/mailund/stralg/blob/master/
stralg/bwt.c.

C and O tables

We define two tables, the first indexed by symbols in our alphabet and the second by
both a symbol and an index:

e (C(a) is the number of symbols smaller than a in x.

o O(a, i) is the number of indices j < i where x[SA[j]—1] = a (this is
where we use the Burrows-Wheeler transform).

What the C table contains is self-evident, but the O table is less obvious, from the
way I just defined it. Another way to define it, which is harder to capture mathematically
but is the critical property we use in the algorithm, is this: O(a, i) counts the number of
suffixes lexicographically smaller than suffix SA[1] that have an a before them in x.

These tables let us move from a string « in the suffix array to the string au (where a
is a character), or one past where it would be in case it isn’t in the array. If u is at index
i, then au will be at index C(a) + O(a, i); see Figure 4-12. To see this, observe that before
au in the suffix array, we must have all the suffixes that start with a letter smaller than a,
C(a). Inside the sequence of strings that start with a, the suffixes are sorted with respect
to the strings that follow a, and before u, there are O(a, i) other suffixes.

In the BWT search algorithm, we will search for a pattern starting at the end of the
pattern and prepending characters until we are done. Each time we prepend a letter, we
will use this jump rule. Before we get that far, however, we need to build the tables.

Both tables have a dimension with a length that depends on the alphabet size. We
have used uint8_t for our alphabet so far, but using 256 symbols is excessive in memory
usage, especially for the O table that also has a dimension of length n. Therefore, we
want to reduce the alphabet as much as possible, so we must remap the input string
before we construct the tables.

215

https://github.com/mailund/stralg/blob/master/stralg/bwt.c
https://github.com/mailund/stralg/blob/master/stralg/bwt.c

CHAPTER 4 SUFFIX ARRAYS

c(a)

[—>

o(a,L)

c@t) + oLl —» a|

Figure 4-12. Jump using the BWT tables

Building the C and O tables

We store the two tables in a structure with a pointer to the remapped table and the
(remapped) suffix array, and we define two macros to make access to the tables easier to
read.

struct bwt table {
struct remap table *remap table;
struct suffix array *sa;
uint32_t *c_table;
uint32_t *o table;
uint32_t **o_indices;
};
#define C(a) (bwt_table->c_table[(a)])
#define 0(a,i) (bwt_table->o_indices[i][a])

I use two arrays for the O table. I put all the datain o_table and use o_indices to
precompute offsets into the o_table array. You can compute the index into o_table from
aletteraandindexiasa * (table->sa->length + 1) + i, butlfound that setting the
offset,a * (table->sa->length + 1), into a separate array

o _indices[i] == o _table + i * alphabet size
216

CHAPTER 4 SUFFIX ARRAYS

and then looking up using bwt_table->o0_indices[i][a] was substantially faster.
To compute the C table, we first count how often we see each character a in
the string. We get C as the accumulative sum of these. That will give us the count of
characters less than a.

C(a) = C(a-1) + char_counts[a - 1];

For the O table, at index i, we either have the same number of smaller suffixes or one
more, if the previous index has an a before it.

O(a,i-1)+1x[S4[i-1]-1]=a
O(a,i—1) otherwise

O(a,i)z{

Putting these two observations together, we can compute the tables like this:

void init bwt table(
struct bwt_table *bwt_table,
struct suffix array *sa,
struct remap_table *remap_table

) {
bwt table->remap table = remap table;
bwt_table->sa = sa;

// ---- COMPUTE C TABLE
uint32_t char counts[remap table->alphabet size];
memset(char_counts, 0,
remap_table->alphabet size * sizeof(uint32_t));
for (uint32_t i = 0; i < sa->length; ++i) {
char_counts[sa->string[i]]++;

}

bwt_table->c_table =
calloc(remap table->alphabet size,
sizeof(*bwt table->c table));
for (uint32_t i = 1; i < remap_table->alphabet size; ++i) {
C(i) = C(i-1) + char_counts[i - 1];

217

CHAPTER 4 SUFFIX ARRAYS

// ---- COMPUTE O TABLE
// The table has indices from zero to n, so it must
// have size Sigma x (n + 1).
uint32_t o size =
remap_table->alphabet_size *
(sa->length + 1) *
sizeof (*bwt table->o0 table);
bwt_table->o table = malloc(o_size);
bwt_table->o_indices =
malloc((sa->length + 1) *
sizeof(*bwt table->o indices));
for (uint32_t i = 0; i < sa->length + 1; ++i) {
uint32_t *ptr = bwt table->o table + alphabet size * i;
bwt table->o indices[i] = ptr;

}

for (uint8_t a = 0; a < remap_table->alphabet size; ++a) {
0(a, 0) = 0;

}

for (uint8_t a = 0; a < remap_table->alphabet size; ++a) {
for (uint32_t i = 1; i <= sa->length; ++i) {
O(a, i) = 0(a, i - 1) + (bwt(sa, 1 - 1) == a);

}
}
}
Building the tables is clearly done in linear time (assuming the alphabet size is a
constant).

Deallocating the table is relatively straightforward:

void dealloc bwt table(
struct bwt table *bwt table

) {
free(bwt_table->c_table);
free(bwt_table->o table);
free(bwt_table->o_indices);
}

218

CHAPTER 4 SUFFIX ARRAYS

Searching

As mentioned earlier, when we search for a pattern using the BWT algorithm, we start
from the end and move forward. In the search we keep track of two pointers, L and R,
that spans the interval in the suffix array where the suffixes have the pattern so far as a
prefix. The L pointer points to the first suffix in the interval and the R pointer points one
past the last. When we prepend a character to the pattern, we update the pointers using
the jump rule from earlier; see Figure 4-13. This gives us another interval where the
suffixes have the new pattern as prefixes. Once we reach the start of the pattern, that is,
once we have the interval where all suffixes have the pattern as a prefix, we are done.

c(a) + o(a,L) —» al [|

c(a) + o(a,r) —»

L—>» [[|

Figure 4-13. Searching using the BWT

Each time we update the interval, we do constant work, and we only update intervals
m times, so searching is done in linear time in the length of the pattern.

We do the entire search in the search iterator. This will give us the L and R interval,
and when we iterate over the hits, we scan through it.

void init bwt exact match iter(
struct bwt _exact match_iter *iter,
struct bwt_table *bwt table,
const uint8_t *remapped pattern
);
219

CHAPTER 4 SUFFIX ARRAYS

void init bwt exact match_iter(
struct bwt_exact match_iter *iter,
struct bwt table *bwt table,
const uint8_t *remapped pattern

) {

const struct suffix_array *sa = iter->sa = bwt_table->sa;

uint32_t n
uint32_t m

sa->length;
(uint32_t)strlen((char *)remapped pattern);

uint32_t L = 0;
uint32_t R = n;

// If the pattern is longer than the string, then
// there won't be a match.
if (m > n) {
R=0;,L=1;
}
// We need i to be signed, so we use int64 t.
// This gives us a signed integer that can
// easily index all of uint32_t.
intég_t i =m - 1;

while (i >= 0 & L < R) {
uint8_t a = remapped pattern[i];
L = C(a) + 0(a, L);

R = C(a) + 0(a, R);

i--;

}

iter->L = L;

iter->R = R;

iter->i = L;

The variable i in the iterator is used when we report hits. It starts at the first index
in the interval (L) and will be incremented for each hit. When we report hits, we need to
map the index i the suffix array to the index in the string, but that is just a lookup in the
suffix array.

220

CHAPTER 4 SUFFIX ARRAYS

struct bwt_exact_match {
uint32_t pos;

s

bool next bwt exact match iter(
struct bwt exact match_iter *iter,
struct bwt_exact_match *match
) {
// Cases where we never had a match.
if (iter-»>i < 0) return false;
// Cases where we no longer have a match.
if (iter->i »>= iter->R) return false;

// We still have a match.

// Report it and update the position
// to the next match (if any).
match->pos = iter->sa->array[iter->i];
iter->i++;

return true;

We do not allocate any resources in the iterator, so deallocating it is trivial.

void dealloc bwt exact match iter(
struct bwt exact match iter *iter

) {
// Nothing to free

Getting the longest common prefix (LCP) array

For the LCP algorithm in the previous chapter, we (obviously) needed the LCP array (or
longest common prefix array). We saw how to get it from a depth-first traversal of the
tree, and in this section, we see how to compute it from the suffix array.

The linear-time algorithm iterates through the suffixes and compares each suffix with
its predecessor in the suffix, but fast because of the observation in Figure 4-14. If we know
the LCP for some index i1, it means that we know the longest prefix shared between

221

CHAPTER 4 SUFFIX ARRAYS

SA[ii] and SA[ii-1] (see Figure 4-14 A). Leti = SA[ii] and consider suffix i+1. This
suffix shares a prefix with SA[ii-1]+1 that has length LCP[1i]-1 (see Figure 4-14 B).

If we go back to the suffix array where i+1 sits, call it jj=ISA[i+1], then the previous
suffix, jj-1, shares a prefix of length LCP[jj] that must be atleast LCP[ii] - 1long(see
Figure 4-14 C). The suffixes come in blocks of shared prefixes in the suffix array, and since
there is at least one suffix that shares a length LCP[11]-1 prefix with jj, the longest must
be at least that long. To get the actual length, we need to compare suffixes SA[jj-1] and
SA[jj], but we can skip the first LCP[11]-1 characters in the comparison because we
know these match.

The ii and jj indices are related in the way illustrated in the figure, but notice that
itis also a relationship between the LCPs of suffixes i and i + 1. The figure also tells us
that the longest common prefix of ISA[i+1] is atleast LCP[ISA[1]]. The prefixes are
clustered in the suffix array so this tells us that there is a shared prefix there. Further,
the suffix before ISA[i+1] must be smaller than ISA[i+1] because SA[ii-1] is smaller
than SA[ii]. This is what we exploit in the algorithm. We run through the suffixes in x
and keep track of how much we can skip when comparing suffixes using the preceding
observation. The reason that the algorithm runs in linear time is an argument similar
to the one we had for computing the border array back in the chapter on classical
algorithms. If we consider the interval we can skip in each iteration, then it gets one
smaller because we skip LCP[1i]-1 and then it increases when we scan LCP[jj] vs.
LCP[jj-1]. The maximum length we can get is n, and we cannot increase beyond this
and what we decrease, which is bounded by 7. Thus the algorithm runs in linear time.

We can implement the computation of the inverse suffix array like this

void compute inverse(struct suffix array *sa)

{
if (sa->inverse) return; // only compute if it is needed
sa->inverse = malloc(sa->length * sizeof(*sa->inverse));
for (uint32_t i = 0; i < sa->length; ++i)
sa->inverse[sa->array[i]] = i;
}

222

A)
-1
i
B) Leelit]
. =
L1
i
c)]

,r
-1 ===]
’r

ISALL+1] =j

Leelitl
e

Leeljjl

[

Lerlit]1

CHAPTER 4 SUFFIX ARRAYS

SAILl=1 SAITiL-1]
Leelill Leeil
SALiI=t SAJL-1]
[] |]
A e
YL eplil]- LePlit]1
SAIII=1 SALLL-1]
(| | |
A e—
L1 eplil]-x LePlit]1

Figure 4-14. Key observation for computing the LCP

223

CHAPTER 4 SUFFIX ARRAYS
and the LCP array like this

void compute lcp(struct suffix array *sa)

{
if (sa->lcp) return; // only compute if we have to
sa->1cp = malloc((sa->length) * sizeof(*sa->1cp));
compute_inverse(sa);
sa->1cp[0] = 0;
uint32_t 1 = 0;
for (uint32_t i = 0; i < sa->length; ++i) {
uint32_t j = sa->inverse[i];
// Don't handle index 0; lcp[0] is always zero.
if (j == 0) continue;
uint32_t k = sa->array[j - 1];
while (sa->string[k + 1] == sa->string[i + 1])
++1;
sa->lcp[j] = 1;
l=1>0?1-1:0;
}
}

We do not compute the two arrays when we build the suffix array—because we do
not always need them—so in each function, we check if it is already built. and if not we
construct the array. In the function that computes LCP, the variable 1 keeps track of the
length of comparison we can skip. We increase it when we match in the comparison and

decrease it by one when we are done.

224

CHAPTER 4 SUFFIX ARRAYS

Comparisons

So what is the running time for constructing suffix arrays in practice? In Figure 4-15,
you can see the construction time for each algorithm for three alphabets, all equal
characters, a four-letter alphabet, and full 8-bit character set. I have also shown
McCreight’s suffix tree construction algorithm for comparison.

Consistently the SA-IS algorithm is the fastest, followed by the memory-efficient SA-
IS algorithm. All the recomputing takes some time, and the memory-efficient algorithm
thus runs slower than the memory-hungry version.

The worst-case input for both the naive sorting algorithm and the skew algorithm is
strings of a single repeated character. For explicit sorting, string comparison takes linear
time in the length of the shortest string; on average, this is half the original string. For the
skew algorithm, the triplet character alphabet we make in each recursive call will contain
a single character until the very bottom of the recursion so that the algorithm will do
maximal work. Once we have random strings with more characters, both algorithms are
faster. The explicit sorting remains the slowest, though.

Building the suffix tree with McCreight’s algorithm takes time somewhere in the
middle of the suffix array construction algorithms except for the large 8-bit alphabet,
which, as we saw in the previous chapter, shows the large fan-out of children in each
node slows down the algorithm substantially. With a large alphabet, McCreight’s
algorithm is still increasing the node’s fan-out when the suffix array algorithms are long
done with building their arrays.

225

CHAPTER 4 SUFFIX ARRAYS

0.0100

0.0075

0.0050

lenb3

0.0025

0.0000

0.009 Algorithm

== |\IcCreight

0.006 == Quick-sort

Time

== SA-IS
SA-IS-MEM
Skew

0.003

0.000
0.008

0.006

0.004

1108V

0.002

0.000
0 10000 20000 30000 40000 50000
Size

Figure 4-15. Suffix array construction time

In Figure 4-16, I have plotted the construction time for a suffix array (using the SA-IS
algorithm) and the additional time it takes to build the BWT tables. It takes extra time to
create the BWT tables, but the overhead is slight if we consider cases where the tables are
constructed only once and after that used for thousands of linear-time searches.

However, is it worthwhile to search using BWT compared to searching directly in
the suffix array? After all, the logarithm function grows very slowly, so the difference
between O(m) and O(m log n) might not matter in practice until we have incredibly

226

CHAPTER 4 SUFFIX ARRAYS

long strings. Add to this that the suffix array search only performs simple lookups in the
string and suffix array, while the BWT algorithm needs additional lookups in the C and O
tables. When looking for a value in the O table, we also need to compute the offset using
multiplication with the alphabet size. It is therefore conceivable that each step in the
linear BWT search is more expensive than the steps in the O(m log n) suffix array search.

In Figure 4-17, I have plotted the running time of the BWT search (BWT), the binary
search in a suffix array (SA), and the search in a suffix tree (ST), for 7 up to 1000 and m up
to 50, so relatively short strings. The string that we search in, x, is a random DNA string,
and the pattern, p, is selected from a random position in x, so all searches continue to
the end of the pattern. I have fitted lines to the data points, although the suffix array
binary search is not linear in 7 (you can see a curve in the plot if you look closely). The
line illustrates the growth of the functions. We observe that the algorithms behave as
they are expected to, BWT and ST are constant in n while SA is not, and all algorithms
are linear in m. The binary search is slower than the two linear-time algorithms, maybe
surprising and maybe not, considering the small data size, but it is more complex code.
The BWT algorithm is substantially slower than the suffix tree search. Since the suffix
tree needs to both search through children in the nodes of the tree and down edges, this
would not be obvious, but the reason is to some degree that the strings are random. This
means that there is a large fan-out near the root of the tree, but after that, the search runs
down a long edge and searching through an edge consists of comparing strings character
by character, which is much faster than the table lookups in BWT.

227

CHAPTER 4 SUFFIX ARRAYS

S
[]
o 8
15000 oo
[)
[0)
§ 10000
'; Time
[®)
g =o= Combined Time
=}
-§ == SA Time
o)
O
5000
0

0 10000 20000 30000 40000 50000
Length

Figure 4-16. Suffix array and BWT construction time

The results will not be representative of strings that have a structure very far from
random, but most strings are not far from random in their character sequences. Natural
language texts will also have a large fan-out near the root, and then long edges to leaves,
since sentences in a book rarely share more than a few words in a row. It is hard to think
of pathological strings, such as strings with a single character repeated, that are found in
real applications that do not give a suffix tree a similar structure.

228

CHAPTER 4 SUFFIX ARRAYS

Figure 4-17 shows results for very short strings, and there the algorithms behave as
we expect from theory, but if we increase the string lengths slightly (see Figure 4-18),
we see an unexpected explosion in the BWT algorithm’s performance. Many of the
experiments for n between 20,000 and 25,000 have exceedingly long running times, so
the suffix array search algorithm beats BWT for large m. What we see here is something
that the theory doesn’t predict but is a real concern in practice—memory efficiency,
specifically data locality. The theoretical model for computations used in this book is
the RAM model, and it assumes that we can access all memory positions in the same
running time. On a real computer, this is far from true.

When you access memory, it is pulled into a cache, so it is more efficient to get it
again. The cache also pulls in memory adjacent to what you accessed, so this will also be
faster to access. There are several levels of caches, so when you cannot get the data you
want from the cache that is closest to the CPU, you need to go some levels out to get it.
When you cannot find it in a cache, you have to go all the way out to get it in RAM. Each
time you move from one level to the next, you spend orders of magnitude more time
getting your data. Each time you miss the cache, you get a massive jump in access time.
For the experiments, it is evened out over many memory accesses, but it is clear that we
have more misses when the data is larger, and this effect drowns the expected running
time based on the RAM model.

229

CHAPTER 4 SUFFIX ARRAYS

BWT SA ST
[]
[)
0.00020 °
o®
[]
®
QL
[]
0.00015 ® se® =%
&
R “'“ m
0 . . ® — 10
[° b o ® = 30
0.00010 b : “*/sﬁﬂ. — 5
. (P i o
o e WO S
/«M‘
-8 ® o) ® ®
TR R aWwed @ ° °
0.00005 % S
@
S bt v Ess i
[@ L U]
o o o Q o o o 1= o o o 1=
2 8 2 8 8 8 B 8 8 8 B 8
n
BWT SA ST
0.00020

0.00015
n
o — 200
£
= — 400
- 600
0.00010
0.00005

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
m

Figure 4-17. Search time with n up to 1000 and m up to 50
230

CHAPTER 4 SUFFIX ARRAYS

The character-by-character search down the edges in the ST algorithm is cache-
efficient. We are looking at consecutive memory addresses, and that is ideal for caching.
We do not see a worsening of the running time. We do not see the effect for the SA
algorithm either. The suffix array takes up less memory than the BWT tables, and
with random strings, the search interval shrinks rapidly. Before long, the algorithm is
searching down a single string, similar to how the suffix tree algorithm search down a
single edge.

If we continue with z up to 10 million, Figure 4-19, we see the effect more
dramatically. None of the algorithms run in linear time for n. The ST algorithm is close (if
we ignore the data points for the highest n that I will get back to). The BA algorithm isn’t
supposed to be. The surprising results are for BWT. We see a steep growth up to around
a million, then it flattens out, but not entirely, and then there is an explosion in the
running time, one we see for all three algorithms. What is happening is that for the BWT
algorithm, more and more of the memory accesses misses the cache, and as the number
of misses increases, so does the running time. When it levels off, it is because practically
all access to the table involves a cache miss. There is still an increase because some of
the memory access needs to go all the way to RAM, and that access is vastly slower than
going to the cache. To the far right of the plot, where there is a massive jump for all the
algorithms, my test program runs out of RAM entirely, and the operating system has to
swap memory in and out of the disk. When that happens, the performance deteriorates
quickly.

231

CHAPTER 4 SUFFIX ARRAYS

Time

Time

0.009

0.006

0.003

0.000

0.005

0.004

0.003

0.002

0.001

0.000

BWT

o o o o

S o o o

o S o o o
S o o o

Ire) o Yol o

— — N

BWT
°
L L[]

100 200 300 400 500

250000

SA

o o o o
S o o o
o S o o o
S o o o
3 o 15} o
- — 39

n

SA

100 200 300 400 500
m

ST

o o o o

S o o o

o S o o o
S o o o

3 o 19} o

— — Y

ST

100 200 300 400 500

Figure 4-18. Search time with n up to 25,000 and m up to 600

232

250000

100
300
500

n

== 20000
== 40000
== 1e+05

- 2e+05

CHAPTER 4 SUFFIX ARRAYS

The computer runs out of memory faster for the data structures that take up more
memory, but what we see in the runtime experiments is the memory access patterns
more than when the program will need to be swapped. The random access with the
suffix array, and even more with the BWT tables, requires more swapping than the access
to consecutive characters for the suffix tree.

Admittedly, the comparisons made here are not entirely fair. It is possible to
compress suffix arrays and BWT tables, so they use less memory, so they can reach
larger n before there are memory issues with swapping. But with the algorithms that I
have presented in this chapter, the memory access patterns matter, and if you use these
algorithms, the suffix tree is more efficient for searching than the other two approaches.

You can find the code I have used for my experiments here:

https://github.com/mailund/stralg/blob/master/
performance/suffix_array construction.c

https://github.com/mailund/stralg/blob/master/
performance/bwt_construction.c

https://github.com/mailund/stralg/blob/master/
performance/suffix_array search.c

233

https://github.com/mailund/stralg/blob/master/performance/suffix_array_construction.c
https://github.com/mailund/stralg/blob/master/performance/suffix_array_construction.c
https://github.com/mailund/stralg/blob/master/performance/bwt_construction.c
https://github.com/mailund/stralg/blob/master/performance/bwt_construction.c
https://github.com/mailund/stralg/blob/master/performance/suffix_array_search.c
https://github.com/mailund/stralg/blob/master/performance/suffix_array_search.c

CHAPTER 4 SUFFIX ARRAYS

BWT SA ST
0.04
0.03
L] []
m
© 100
E o002
[300
500
0.01
0.00
o © © © ~ O © © © ~ O [{e] © © N~
o o o o o O o o o o O o o o o
+ + + + + + + + + + + + + + +
[0 (] [(] o O [0} [(] JORN) (] [(] [
o [te} o [te} o o [ts} o [te} o o [te} o [te} o
o N [Te} ~ -~ O N e} N~ -~ O N wn N~ ~—
n
BWT SA ST
0.015 °
.. *
[]
0.010
n
® o 12+06
£
[—e— 3e+06
e 6e+06
0.005
0.000

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
m

Figure 4-19. Search time with n up to 10 million and m up to 600

234

CHAPTER 5

Approximate search

We are not always satisfied with finding locations where a pattern matches exactly.
Sometimes we could, for example, want to find all occurrences of a word and include
occurrences where the word is misspelt. Searching for “almost matches” is called
approximate search. We will look at a suffix tree-based approach and a BWT-based
approach. Considering the experimental results from the last chapter, it might seem
odd to consider a BWT approach instead of a suffix array approach, but there is a reason
for this: we can add a trick to the BWT approach to make it faster than the suffix tree
solution that was the most efficient for exact search.

Local alignment and CIGAR notation

An approximative match is one where we can edit the key to make it match at a given
location. The operations we can do are

o Substitute, or replace, one character for another
o Inserta character
¢ Delete a character

If we have a match of such an edited pattern at a given location, we say that we
can align the pattern there. The idea is that we conceptually put the pattern on top of
the reference string at the location where we have an approximative match. We then
describe how the reference string should be edited to become the reference string,
that is, whether we should change a character in the reference, a substitution, delete a
character that is in the reference but not the pattern, or insert a character in the pattern
string that is not in the reference.

For matching and substitution strings, we have one character on top of another.
When we insert a character, we show it as a dash in the reference string (the inserted
character does not match any of the characters in the reference, but this is where it

235
© Thomas Mailund 2020

T. Mailund, String Algorithms in C, https://doi.org/10.1007/978-1-4842-5920-7_5

https://doi.org/10.1007/978-1-4842-5920-7_5#DOI

CHAPTER5 APPROXIMATE SEARCH

should be inserted). If we delete a character, we put a dash in the reference string (the
character would have been at this position if we hadn’t deleted it). The following are two
examples:

AACTTTCTGAA
... TTAAAAAATTTCT-AACAACA. ..

* *

AACTTTCTG-AA

... TGGAAAA-TTTCTGGAATGGAT. ..
* *

The first alignment has a substitution where A should replace the C in the pattern,
and it has an insertion of G (shown as a dash in the string we align to; it isn’t at that
position but it is where we must insert it). The second alignment has an insertion of C
(also shown as a dash in the string below) and a deletion of G.

This type of alignment is also called a local alignment. A global alignment is one
where we edit one string to match the entirety of another string. We will not consider
global alignments in this book.

When we report an occurrence of an approximative match, we want to report
both the position of the occurrence and how the pattern must be edited to get the
match. Reporting an alignment is not convenient but what we can do is to report
the transformations needed on the pattern. For example, we can report matches as
M, substitutions as S, insertions as I, and deletions as D as a string. The sequence of
operations we perform for the alignments earlier is MMSMMMMMIMM and MMIMMMMMMDMM.
The CIGAR format is a compressed form of this sequence of events. Whenever there is a
sequence of the same operation, it contains the length of the sequence followed by the
operation. It does not distinguish between M and S; if we know that one character should
go above another, we can always check if we have a match or substitution anyway.

The CIGAR for the first alignment above is 811I12M and the CIGAR for the second is
2M1I6M1D2M. The reason that there are 8 Ms in the first CIGAR, although there are only
two Ms in the string of operations, is that we use M for substitutions as well in CIGARs.

When matching a pattern, I find it easiest to collect each transformation step
individually, that is, the first format earlier, and then transform it into a CIGAR string
to report once I am done. The following edits to cigar() function will take a string
where each edit is represented by a letter and produce the corresponding CIGAR string:

236

CHAPTER 5 APPROXIMATE SEARCH

static const char *scan(
const char *edits
) {
const char *p = edits;
while (*p == *edits)
++p;
return p;

}

void edits to cigar(
char *cigar buffer,
const char *edits
) {
while (*edits) {
const char *next = scan(edits);
cigar buffer = cigar buffer + sprintf(
cigar buffer, "%d%c",
(int) (next - edits), *edits
);
edits = next;
}

*cigar buffer = '\0';

The code might be a little hard to decipher. The sprintf() function writes to the
front of the cigar_buffer and returns the length of the string it writes. When we add
that length to cigar buffer, we get a pointer to where we should continue writing next
time we call sprintf(). The (int)(next - edits) expression gives us the number
of characters we have scanned past, and *edits is the operation we repeated for this
number of times.

cigar buffer = cigar buffer + sprintf(
cigar buffer, "%d%c",
(int) (next - edits), *edits

);

237

CHAPTER5 APPROXIMATE SEARCH

Brute force approach

The straightforward way to do approximative matching is to construct all the patterns

at a certain edit distance (number of changes) from the pattern and then do an exact
search. We call all such strings the edit cloud around the pattern, and we can construct it
recursively.

Building an edit cloud

An easy way to build a string and a CIGAR from a pattern is to recursively handle

the three operations (four if you separate matching into (actual) matchind and
mismatching). Assume we have processed the pattern up to some point, for example, a
pattern_front pointer. Put the modified string in a buffer and have a pointer, string
front, pointing at the next position we should add characters to, and have the edits so
far in a buffer where pointer edit_fronts points to the next position where we should
add to the buffer. The situation is shown in Figure 5-1.

If we want to add an insertion to the pattern, we skip past the current symbol in the
pattern, we do not add anything to the string, but we record the operation in the edits.
The pattern_front and edits_front are incremented. If it seems odd to you that we do
not add a symbol to the string in an insertion operation, then remember that insertion
is something we do to transform the string into the pattern. The symbol we skip past in
the pattern is the one we have inserted there. Substitutions and matching are the same
operation (except that substitutions increase the edit distance). We add a character to
the string and increment string_front, increment pattern_front past the character
matched or substituted to, and record the operation in the edits buffer. For deletion,
we do almost the same as for matching. We add a character to the string and increment
string front, and we add a D to the edits buffer. The difference to matching is that we
do not increment pattern_front. The character we insert into the string is deleted in the
pattern so we should continue the recursion from the current position.

The idea is implemented in the following function; I will explain the at_beginning
variable after the code listing.

void recursive generator(
const uint8_t *pattern front,
const uint8_t *alphabet,
// To avoid initial deletions.

238

CHAPTER 5

bool at_beginning,

// Write the edited string here.
uint8_t *string front,

// Holds the beginning of full buffer
// so we can report the string.
uint8_t *string,

// We write the output cigar here.
char *cigar,

// We build the edit string here.
char *edits front,

// and use the beginning of the edits buffer
// when we report

char *edits,

int max_edit_distance)

if (*pattern front == '\0") {
// No more pattern to match...
// Terminate the buffer and report.
*string front = '\0’;
*edits front = '\0';
edits to cigar(cigar, edits);
report(string, cigar);

} else if (max_edit distance == 0) {
// We can't edit anymore, so just move the
// pattern to buffer and report.
uint32_t rest = strlen((char *)pattern front);
for (uint32_t i = 0; i < rest; ++i) {
string front[i] = pattern front[i];
edits front[i] = 'M';

APPROXIMATE SEARCH

239

CHAPTER5 APPROXIMATE SEARCH

string front[rest] = cigar[rest] = '"\o0';
edits to cigar(cigar, edits);
report(string, cigar);

} else {
// RECURSION
// Insertion
*edits front = 'I';
recursive generator(pattern front + 1,
alphabet,
false,
string front, string,
cigar,
edits front + 1, edits,
max_edit distance - 1);
// Deletion
if (lat_beginning) {
for (const uint8_t *a = alphabet; *a; a++) {
*string front = *a;
*edits front = 'D';
recursive generator(pattern front,
alphabet,
at_beginning,
string front + 1,
string,
cigar,
edits front + 1, edits,
max_edit distance - 1);

}
// Match/substitution

for (const uint8_t *a = alphabet; *a; a++) {
if (*a == *pattern front) {
*string front = *a;
*edits_front = 'M';

240

CHAPTER 5 APPROXIMATE SEARCH

recursive generator(pattern front + 1,
alphabet,
false,
string front + 1,
string,
cigar,
edits front + 1, edits,
max_edit distance);

} else {

*string_front = *a;

*edits front = 'M';

recursive generator(pattern front + 1,
alphabet,
false,
string front + 1,
string,
cigar,
edits front + 1, edits,
max_edit distance - 1);

241

CHAPTER5 APPROXIMATE SEARCH

pattern fromt
|
pattern \ la
string front
y
(modified) string | [
edits \ | lf
edits front
Insertion
pattern front
‘patterw*frowt \
pattern | [a o pattern | la |
string front Mateh/substitution strl'.v;g front
‘ ‘V | (modified) string | [‘
(modified) string
f A 9‘ [edits | |N1\
edits
f edits front
edits front i
Deletion
pattern front
pattern | la
string front
14
(modified) string| [b
edits ‘ ‘Df
edits front

Figure 5-1. Recursion for constructing an edit cloud

Iuse the at_beginning variable to avoid initial deletions. We cannot easily avoid
that many sequences of edits can lead to the same string, but we know that all edits
that start or end with deletions will have the same string as the edits that do not include
them. Whenever we reach the end of the pattern, we report the result, and we do not add
possible deletions as results as well. So terminal deletions are naturally avoided. We can
avoid initial deletions if we never do a deletion unless we have already done an insertion
or a match. The at_beginning parameter ensures exactly that.

242

CHAPTER 5 APPROXIMATE SEARCH

To get an iterator version of the recursion, we need an explicit stack. Stack frames
will contain the information we need for an operation and information about which
operation to do. I found it easiest to have four operations: one that creates the recursive
calls and three operations for insertion, deletion, and matches. Stack frames look like
this:

enum edit op {
RECURSE,
INSERTION,
DELETION,
MATCH

};

struct deletion_info {
char a;

};

struct match_info {
char a;

s

struct edit iter frame {
enum edit op op;

// The character we should delete or match
uint8_t 3;

// Have we inserted or matched yet?

bool at_beginning;

// Fronts of buffers

const uint8_t *pattern front;
uint8_t *string front;

char *cigar front;

// Number of edits left
int max_dist;

// The rest of the stack
struct edit_iter frame *next;

b

243

CHAPTER5 APPROXIMATE SEARCH

Deletion and match operations need to know which character to add to the string.
In the recursive function, we put those characters into the buffer before we called
recursively. With the explicit stack, we need to iterate through the alphabet to push
operations, and if we just update the string buffer, we would override all but the last
character we put there. Instead, we remember the character in the stack frame and add it
to the string when we get to the operation.

Pushing information to the stack is straightforward.

static struct edit iter frame *
push_edit iter frame(
enum edit_op op,
bool at beginning,
const uint8_t *pattern front,
uint8_t *string front,
char *cigar front,
int max_dist,
struct edit_iter frame *next
) {
struct edit iter frame *frame =
malloc(sizeof(struct edit iter frame));
frame->op = op;
frame->at_beginning = at_beginning;
frame->pattern front = pattern front;
frame->string front = string front;
frame->cigar front = cigar front;
frame->max_dist = max_dist;
frame->next = next;
return frame;

An iterator will hold the beginning of the buffers, a cigar buffer that we use to
translate the edits string into a CIGAR representation, and a pointer to the remainder of
the stack below the frame.

struct edit iter {
const uint8_t *pattern;
const char *alphabet;

244

CHAPTER 5 APPROXIMATE SEARCH

uint8_t *string;
char *edits;
char *cigar;

struct edit iter frame *frames;
}s

When we initialize an iterator, we allocate the buffers we need. We can never have
more than twice the string length edits—regardless of the maximum edit distance,
we will explore. If we remove all characters and then insert them again, we get this
maximum, and that is the most distant string we can ever create. So that is an upper
bound on the size of the buffers we need. After allocating the buffers, we push the first
recursion unto the stack.

void init edit iter(
struct edit iter *iter,
const uint8_t *pattern,
const char *alphabet,
int max_edit distance

) 1
uint32_t n = 2 * (uint32_t)strlen((char *)pattern);

iter->pattern = pattern;
iter->alphabet = alphabet;

iter->string = malloc(n); iter->string[n - 1] = '\o0’;
iter->edits = malloc(n); iter-sedits[n - 1] = '\0';
iter->cigar = malloc(n);

iter->frames = push edit iter frame(
RECURSE,
true,
iter->pattern,
iter->string,
iter->edits,
max_edit_distance,
0

);

245

CHAPTER5 APPROXIMATE SEARCH

When we increment the iterator, we check if we have reached the end of the pattern
or the total number of edits allowed. In either case, we report an occurrence. If not, we
perform the operation from the frame and then proceed to the next frame in a recursive
call. There is not much more to say about the function; it closely follows the recursive
version.

struct edit pattern {
const uint8_t *pattern;
const char *cigar;

};

bool next _edit pattern(
struct edit_iter *iter,
struct edit pattern *result

) {

if (iter->frames == 0) return false;

// Pop top frame
struct edit_iter frame *frame = iter->frames;
iter->frames = frame->next;

const uint8_t *pattern = frame->pattern front;
uint8_t *buffer = frame->string front;
char *cigar = frame->cigar_ front;

if (*pattern == "\0") {
// No more pattern to match...
*puffer = '\0';
*cigar = '\0’';
edits to cigar(iter->cigar, iter->edits);
result->pattern = iter->string;
result->cigar = iter->cigar;
free(frame);
return true;

} else if (frame->max_dist == 0) {
// We can't edit anymore, so just move
// pattern to the string and report.

246

CHAPTER 5 APPROXIMATE SEARCH

uint32_t rest = (uint32_t)strlen((char *)pattern);
for (uint32_t i = 0; i < rest; ++i) {
buffer[i] = pattern[i];
cigar[i] = 'M';
}
buffer[rest] = cigar[rest] = '\0';
edits_to cigar(iter->cigar, iter->edits);
result->pattern = iter->string;
result->cigar = iter->cigar;
free(frame);
return true;

}

switch (frame->op) {
case RECURSE:
for (const char *a = iter->alphabet; *a; a++) {
if (!frame->at_beginning) {
iter->frames = push edit_iter frame(

DELETION,
false,
frame->pattern_front,
frame->string front,
frame->cigar front,
frame->max_dist,
iter->frames

)
iter->frames->a = *a;
}
iter->frames = push edit iter frame(
MATCH,
false,

frame->pattern_front,
frame->string front,
frame->cigar front,

247

CHAPTER5 APPROXIMATE SEARCH

frame->max_dist,
iter->frames

)s
iter->frames->a = *a;

}

iter->frames = push_edit iter frame(
INSERTION,
false,
frame->pattern_front,
frame->string front,
frame->cigar front,
frame->max_dist,
iter->frames

);

break;

case INSERTION:

*cigar = 'I';

iter->frames = push edit iter frame(
RECURSE,
false,
frame->pattern front + 1,
frame->string front,
frame->cigar_front + 1,
frame->max_dist - 1,
iter->frames

);

break;

case DELETION:
if (frame->at_beginning) break;
*puffer = frame->a;
*cigar = 'D';
iter->frames = push edit iter frame(
RECURSE,
false,

248

CHAPTER 5

frame->pattern front,
frame->string front + 1,

frame->cigar_front + 1,

frame->max_dist - 1,

iter->frames

)5

break;

case MATCH:

if (frame->a == *pattern) {
*puffer = frame->a;
*cigar = 'M';
iter->frames = push edit iter frame(

);

} else {

RECURSE,

false,
frame->pattern front + 1,
frame->string front + 1,
frame->cigar front + 1,
frame->max_dist,
iter->frames

*puffer = frame->a;
*cigar = 'M';
iter->frames = push edit iter frame(

)5

RECURSE,

false,
frame->pattern front + 1,
frame->string front + 1,
frame->cigar front + 1,
frame->max_dist - 1,
iter->frames

APPROXIMATE SEARCH

249

CHAPTER5 APPROXIMATE SEARCH

break;

}

free(frame);
return next_edit pattern(iter, result); // recurse...

When we are done with the iterator, we need to remove what might remain of the
stack (in case we stop iterating before we reach the end of it) and free the buffers.

void dealloc_edit iter(
struct edit iter *iter
) {
struct edit_iter frame *frame = iter->frames;
while (frame) {
struct edit_iter frame *next = frame->next;
free(frame);
frame = next;

}

free(iter->string);
free(iter->edits);
free(iter->cigar);

Once you have created the edit cloud for a pattern, you can use any exact pattern-
matching algorithm of your choosing. The number of strings grows exponential with the
maximum edit distance, however. We cannot get around this in general; the recursion
works that way. But if we do the search at the same time as we explore edits, we can
break when we know that we cannot match a pattern further. With suffix trees and BWT
search, we can do exactly that.

Suffix trees

If we search for approximative matches in a suffix array, we can stop our search if we
exceed the number of edits we allow, simply by aborting the recursive search. In my
implementation, I collect all CIGARs and roots of a matching hit when I initialize the
iterator. It is possible to iterate one hit at a time, but the code gets substantially harder

250

CHAPTER 5 APPROXIMATE SEARCH

to read, so I have chosen this approach. I have also decided to write the search as a
recursive function. I do not expect that patterns are very long, so the recursion doesn'’t
get too deep. It is trivial to replace the recursion stack with an explicit stack if the
recursion depth becomes a problem. I collect the hits in two vectors, one that holds the
root of the tree where we have hits and one that holds the CIGAR used for this hit. I need
to copy the CIGARs the function generates when I store the hits, and for that, I use this
function:

uint8_t *str copy(const uint8_t *x)

{
uint32_t n = strlen((char *)x);
uint8_t *copy = malloc(sizeof(uint8_t) * n + 1);
strncpy((char *)copy, (char *)x, n);
copy[n] = 0;
return copy;
}

The iterator will hold the suffix tree, so we have access to it when we needed it. It
also holds the two vectors we collect hits in. For iterating through the hits, we have a flag,
processing tree, that tells us if we are in the middle of traversing a tree or not. Finally, it
holds an index that tells us which tree we are processing and a leaf iterator for doing the
actual processing.

struct st approx match iter {
struct suffix tree *st;

struct pointer vector nodes;
struct string vector cigars;

bool processing tree;
uint32_t current_tree index;
struct st leaf iter leaf iter;

b

When searching for the hits, we also need three string buffers—one that contains the
operations we have so far, a pointer to the beginning of this buffer for when we need to
construct a CIGAR from it, and then a buffer in which we construct the CIGAR.

251

CHAPTER5 APPROXIMATE SEARCH

struct collect nodes data {
struct st _approx match_iter *iter;
char *edits start;
char *edits;
char *cigar buffer;

};

The iterator initialization closely follows the recursion we used in the previous
section. A difference is that we search along an edge in the suffix tree using a pointer x
to look at the current character we are processing and another, end, that is the end of the
edge. We also have a pointer to where we currently are in the patter, p, and a pointer to
where we are in the edits string, edits. Then, we have a flag, at_beginning, that tells us
if we have seen insertions or matches yet so we avoid initial deletions (similar to what we
did earlier). Finally, we have a counter that keeps track of how many edit operations we
have left.

The function should be relatively easy to read. We will terminate the search if we
reach the end of the string the suffix was built from.

If we reach that point, we know we cannot continue matching. If we do not have any
edits left, we also terminate the search. If we have reached the end of the pattern, we
report the result by adding the current CIGAR and the current node to the vectors. If we
reach the end of the edge we are scanning, we will continue searching from the node’s
children. If none of the previously discussed applies, then we recurse with the different
edit operations.

static void collect approx hits(
struct collect nodes data *data,
struct suffix_tree node *v,
bool at_beginning,
const uint8_t *x, const uint8_t *end,
const uint8_t *p,
char *edits,
int edits_left
) {
struct suffix_tree *st = data->iter->st;
// We need to know this one so we never move past the end
// of the string (and access memory we shouldn't).
const uint8_t *string end = st->string + st->length;

252

CHAPTER 5

if (x == string end)

return; // Do not move past the end of the buffer.

if (edits left < 0) {
// We have already made too many edits.
return;
}
if (*p == "\0") {
// A hit. Save the data in the iterator.
*edits = "\0';
edits to cigar(
data->cigar buffer,
data->edits_start
);
string vector append(
&data->iter->cigars,
str_copy((uint8_t*)data->cigar buffer));
pointer vector append(
8data->iter->nodes, (woid *)v);
return;

}

if (x == end) {
// We ran out of edge: recurse on children.
recurse_children(
data, v,
at_beginning,
edits, p, edits left);
return;
}
if (edits left == 0 8& *x != *p) {
// We cannot do any more edits and
// we need at least a substitution.
return;

APPROXIMATE SEARCH

253

CHAPTER5 APPROXIMATE SEARCH

// Recursion
int match cost = *p = *x;
*edits = 'M';
collect approx_hits(
data, v,
false,
X + 1, end,
p+1,
edits + 1,
edits_left - match_cost,
)5
if (!at_beginning) {
*edits = 'D';
collect approx_hits(
data, v,
false,
X + 1, end,
p, edits + 1,
edits left - 1
)5
}
*edits = 'I';
collect approx_hits(
data, v,
false,
X, end,
p + 1, edits + 1,
edits left - 1
)5

I have moved the code for recursing on a node’s children to a separate function that
looks like this:

static void recurse children(
struct collect nodes data *data,
struct suffix tree node *v,

254

CHAPTER 5 APPROXIMATE SEARCH

bool at_beginning,
char *edits,

const uint8_t *p,
int max_edits

) {
struct suffix_tree node *child = v->child;
while (child) {
const uint8_t *x = child->range.from;
const uint8_t *end = child->range.to;
collect approx hits(data, child, at beginning,
X, end, p, edits, max_edits);
child = child->sibling;
}
}

When we initialize the iterator, we allocate the strings we use to build CIGARs and
the vectors we use to collect the hits, and then we collect the hits recursively. We also
initialize the leaf iterator. This instantiation of the leaf iterator is not used for anything—
we initialize it again in the next function—but by always keeping the iterator initialized,
we know that the deallocation function can always release the resources in it. At the end
of the initialization, we mark that we are not in the process of iterating through leaves—
the first step in the next function will then start from the first tree—and we set the current

tree index to zero so the next function will start there.

void init st approx_iter(
struct st approx match iter *iter,
struct suffix tree *st,
const uint8_t *pattern,
int edits

) {

iter->st = st;

uint32_t n = strlen((char *)pattern);

struct collect nodes data data;

data.iter = iter;

data.edits start = data.edits = malloc(2*n + 1);
data.cigar buffer = malloc(2*n + 1);

255

CHAPTER5 APPROXIMATE SEARCH

init pointer vector(&iter->nodes, 10);

init_string_vector(&iter->cigars, 10);

collect _approx_hits(8data, st->root, true,
st->root->range.from, st->root->range.to,
pattern, data.edits, edits, 0);

free(data.edits start);
free(data.cigar buffer);

// We only initialize this to make resource management

// easier. We keep this iterator initialized at all

// time except when we deallocate it and immediately initialize.
// it again.

init_st_leaf iter(&iter->leaf iter, st, st->root);

iter->processing tree = false;
iter->current_tree index = 0;

The information we want to report for each match is the position of the match and
the CIGAR:

struct st _approx match {
uint32_t pos;
const char *cigar;

};

When we increment the iterator, we check if we are in a leaf iteration. If not, we need
to pick the next tree or terminate the iteration if we do not have any more trees. When
we have a tree, we initialize the leaf vector and tag that we are now processing a tree. We
then call the function recursively so it can handle the new situation. If we are processing
a tree, we increment the leaf iterator. If we do have more trees, we initialize the leaf
iterator so it can process the next tree. We call recursively to get the next tree and start
processing it.

bool next st approx match(
struct st _approx match_iter *iter,
struct st _approx_match *match

) {

256

CHAPTER 5 APPROXIMATE SEARCH

if (!liter->processing tree) {
if (iter->current tree index == iter->nodes.used) {
return false;
}
dealloc_st leaf iter(&iter->leaf iter);
init st leaf iter(
diter->leaf iter, iter-»st,
pointer vector get(
&iter->nodes,
iter->current_tree_index

)

iter->processing tree = true;

return next st approx match(iter, match);

} else {

struct st leaf iter result res;

bool more leaves =
next st leaf(&iter->leaf iter, 8res);

if (!more leaves) {
iter->processing tree = false;
iter->current_tree index++;
return next st approx match(iter, match);

} else {
uint32_t i = iter->current tree index;
match->pos = res.leaf->leaf label;
match->cigar = (const char *)iter->cigars.data[i];
return true;

257

CHAPTER5 APPROXIMATE SEARCH

The resources we need to free when the iterator is deallocated are the nodes vectors,
the CIGAR strings and the CIGAR vector, and then the leaf iterator.

void dealloc st approx_ iter(
struct st approx match iter *iter
) {
dealloc pointer vector(&iter->nodes);
for (uint32_t i = 0; i < iter->cigars.used; ++i) {
free(iter->cigars.data[i]);
}
dealloc_string vector(8iter->cigars);
dealloc_st leaf iter(8iter->leaf iter);

The Li-Durbin algorithm

You can take the same approach with the BWT search as you can with the suffix tree—
write a recursion that explores all edits while you search until you cannot match any
more with the edits you have available—but the Li-Durbin algorithm adds an idea to
this. They build an additional table for the BWT search that they use to terminate a
search early. The table gives a minimum number of edits you need to match the rest of a
string, and if the number of edits is smaller than this, the recursion stops.

The BWT search algorithm processes a pattern from the end toward the beginning.
If we build a suffix array from the reversed string and search in that, starting at the
beginning of the pattern and moving toward the end, then we find out where the
reversed pattern sits in the reversed string. It is not hard to see this. If we reversed both
the string and the pattern and did the BWT search, then we would locate the reversed
pattern in the reverse string. The BWT algorithm doesn’t care that it is the reversed string
we are searching in. Processing the pattern in the beginning-to-end order will give the
algorithm the characters in the order it would get them if we reversed the pattern and
went from end to beginning.

We can determine if a prefix of the pattern is in the string by searching from the
beginning against the suffix array of the reversed string. The reversed pattern prefix is in
the reversed string if and only if the prefix is in the original string. The same applies to
any substring of the pattern. We can determine if that substring is in the string either by

258

CHAPTER 5 APPROXIMATE SEARCH

searching from the end to the beginning of the pattern using the original suffix array or
by searching from the beginning to the end in suffix array of the reversed string. We are
interested in prefixes when building the table that lets the Li-Durbin algorithm terminate
early, so we will search from beginning to end in the reversed string.

The idea is to build a table with an entrance per index in the pattern, and at each
index, we will record a lower bound in the number of edits we need. We do an exact
matching search from left to right in the pattern, searching in the reversed string. Each
time we get to a point where we do not have a match, we record that at least one edit
is needed to match the prefix. We then start from the full range of the reversed string
and the point we got to in the prefix and continue until we cannot match any longer.
There, we record that at least two edits are needed. We continue like this until we have
processed the entire pattern. Then, when we do an approximative match from right to
left in the pattern, we always check how many edits are needed to match the rest of the
pattern (the prefix remaining). If we do not have enough edit operations left to match the
pattern, we stop the recursion.

To search in the reversed string, we add an O table from the suffix of the reversed
string to our bwt_table data struct and add the suffix array to the initialization function.
Rather than having separate tables and initializers, we take an argument for the suffix
array of the reversed string that can be null. If it is, we do not use it, and if it is not, we
build the O table from: it.

struct bwt table {
struct remap table *remap table;
struct suffix array *sa;
uint32_t *c_table;
uint32_t *o table;
uint32_t *ro table; // NEW TABLE
uint32_t **ro_indices; // NEW TABLE
};

#define RO(a,i) (bwt_table-»>ro_indices[i][a])
void init bwt table(

struct bwt_table *bwt_table,
struct suffix_array *sa,

259

CHAPTER5 APPROXIMATE SEARCH

) {

260

struct suffix_array *rsa,
struct remap table *remap table

assert(sa);

uint32_t alphabet_size
bwt _table->remap table
bwt_table->sa = sa;

remap_table->alphabet_size;

remap_table;

// ---- COMPUTE C TABLE -------------mmmmmmmmmmmmm oo

uint32_t char_counts[remap_table->alphabet size];

memset(char_counts, 0, remap table->alphabet size * sizeof(uint32_t));

for (uint32_t i = 0; i < sa->length; ++i) {
char_counts[sa->string[i]]++;

}

bwt_table->c_table = calloc(remap table->alphabet size, sizeof(*bwt
table->c_table));
for (uint32_t i = 1; i < remap_table->alphabet size; ++i) {

C(i) = C(i-1) + char_counts[i - 1];

}

// ---- COMPUTE O TABLE ---------mmmmmmmmmmmm oo
// The table has indices from zero to n, so it must have size.
// Sigma x (n + 1)
uint32_t o size = remap_table->alphabet size *
(sa->length + 1) *

sizeof (*bwt_table->o0_table);
bwt_table->o table = malloc(o_size);
bwt_table->o_indices =

malloc((sa->length + 1) *

sizeof (*bwt table->o0 indices));

for (uint32_t i = 0; i < sa->length + 1; ++i) {

uint32_t *ptr = bwt_table->o_table +

alphabet _size * i;
bwt table->o indices[i] = ptr;

CHAPTER 5 APPROXIMATE SEARCH

for (uint8_t a = 0; a < remap_table->alphabet size; ++a) {
0(a, 0) = 0;
}
for (uint8_t a = 0; a < remap table->alphabet size; ++a) {
for (uint32_t i = 1; i <= sa->length; ++i) {
O(a, i) = 0(a, i - 1) + (bwt(sa, 1 - 1) == a);

}
}
// NEW CODE
if (rsa) {
bwt_table->ro table = malloc(o_size);
bwt_table->ro_indices =
malloc((sa->length + 1) *
sizeof(bwt table->ro indices));
for (uint32_t i = 0; i < sa->length + 1; ++i) {
bwt table->ro indices[i] =
bwt_table->ro table +
alphabet size * i;
}
for (uint8_t a = 0; a < remap_table->alphabet size; ++a) {
RO(a, 0) = 0;
}
for (uint8_t a = 0; a < remap_table->alphabet size; ++a) {
for (uint32_t i = 1; i <= rsa->length; ++i) {
RO(a, i) = RO(a, i - 1) + (bwt(rsa, i - 1) == a);
}
}
} else {
bwt_table->ro table = 0;
bwt_table->ro_indices = 0;
}

261

CHAPTER5 APPROXIMATE SEARCH

void dealloc bwt table(
struct bwt_table *bwt table
) {
free(bwt _table->c_table);
free(bwt_table->o table);
// NEW CODE
if (bwt table->ro_table) free(bwt table->ro table);
if (bwt_table->ro _indices) free(bwt table->ro_indices);

The approximative matching iterator looks like this:

struct bwt_approx_iter {
struct bwt table *bwt table;
const uint8_t *remapped pattern;

uint32_t L, R, next_interval;
struct index vector Ls;
struct index vector Rs;
struct string vector cigars;

uint32_t m;

char *edits buf;

uint32_t *D table;
};

It contains pointers to the BWT tables and the (remapped) pattern. We need these
for the recursive search. We use the L, R, and next_interval variables when we traverse
the interval for a hit. The intervals for hits that we find are stored in the Ls and Rs vectors
and the corresponding CIGARs in the cigars vector. The m variable will contain the
length of the pattern. We will use it for allocating CIGAR strings; it tells us how long they
can maximally be. The edits_buf variable points to the beginning of the string that
holds our edits and the D_table variable holds the D table we use to terminate searches
early.

When we initialize our approximative match iterator, we build the table of lower
bounds, called D in the code. We only build it if we have the suffix array for the reversed
string, so it is also possible to search without the D table if one so wishes. Building D is
done as described earlier. We do a normal BWT search except itis in the ro_table suffix

262

CHAPTER 5 APPROXIMATE SEARCH

array and from the beginning to the end. We search until we get an empty interval and
then record that we need one edit more.

In the initializer, we also handle the recursive search for hits. I have taken a different
approach to avoid initial deletion here, just to show the alternative. We call the recursion
after matches and insertions so we are never in the situation where we can have an initial
deletion.

void init bwt approx_ iter(
struct bwt approx iter *iter,

struct bwt_table *bwt_table,
const uint8_t *remapped_pattern,
int max_edits)

// Initialize resources for the recursive search.
iter->bwt_table = bwt_table;

iter->remapped pattern = remapped_pattern;
init_index_vector(8iter->Ls, 10);
init_index_vector(&iter->Rs, 10);

init_string vector(&iter->cigars, 10);

if (bwt_table->ro table) {
// Build D table.
uint32_t m = (uint32_t)strlen((char *)remapped pattern);
iter->D table = malloc(m * sizeof(uint32_t));

int min_edits = 0;
uint32_t L = 0, R = bwt_table->sa->length;
for (uint32_t i = 0; i < m; ++1) {
uint8_t a = remapped pattern[i];
L = C(a) + RO(a, L);
R = C(a) + RO(a, R);
if (L >=R) {
min_edits++;
L =0;
R = bwt_table->sa->length;

263

CHAPTER5 APPROXIMATE SEARCH

264

iter->D table[i] = min_edits;
}
} else {
iter->D_table = 0;

}

// Set up the edits buffer.

uint32_t m = (uint32_t)strlen((char *)remapped pattern);
uint32_t buf size = 2 * m + 1;

iter->m = m;

iter->edits_buf = malloc(buf size + 1);

iter->edits buf[o] = '\o';

// Start searching.
uint32_t L = 0, R = bwt_table->sa->length; int i = m - 1;

struct remap table *remap table = bwt_table->remap_table;
char *edits = iter->edits_buf;

// M-operations
unsigned char match_a = remapped pattern[i];
// Iterating alphabet from 1 so
// I don't include the sentinel.
for (unsigned char a = 1;
a < remap_table->alphabet size;
++a) {

uint32_t new L
uint32_t new R

C(a) + 0(a, L);
C(a) + 0(a, R);

int edit cost = (a == match a) ? 0 : 1;
if (max_edits - edit_cost < 0) continue;
if (new_L >= new R) continue;

*edits = 'M';

rec_approx_matching(iter, new L, new R, i - 1,
1, max_edits - edit_cost,
edits + 1);

CHAPTER 5 APPROXIMATE SEARCH

// I-operation

*edits = 'I';

rec_approx_matching(iter, L, R, i - 1, 0,
max_edits - 1, edits + 1);

// Make sure we start at the first interval.
iter->L = m; iter->R = 0;
iter->next_interval = 0;

The recursive function follows the suffix tree recursion closely. The main difference

is in how we handle the CIGAR at a hit. We search for the pattern from the end to the

beginning, so we build the edit operations in that order as well. To build the CIGAR for a
match, we must first reverse the edits and then build the CIGAR. We cannot reverse the

edits inside the edits buffer. This would affect all the recursive calls since it is a shared

buffer. Instead, we allocate a new string, move the edits into it, reverse it, and then
compute the CIGAR and store it in the vector for the hits.

static void rec_approx_matching(
struct bwt_approx_iter *iter,
uint32_t L, uint32_t R, int i,
int edits left,
char *edits
) {
struct bwt_table *bwt table = iter->bwt_table;
struct remap table *remap table = bwt table->remap_table;

int lower limit =

(i >= 0 && iter->D table) ? iter->D table[i] : 0;
if (edits_left < lower limit) {

return; // We can never get a match from here.

}

if (i < 0) { // We have a match.
index_vector_append(&iter->Ls, L);
index_vector append(8iter->Rs, R);

265

CHAPTER5 APPROXIMATE SEARCH

266

// Extract the edits and reverse them.
*edits = '"\0';
char *rev edits =
(char *)str copy((uint8_t *)iter->edits buf);
str_inplace rev((uint8_t*)rev edits);
// Build the cigar from the edits.
char *cigar = malloc(2 * iter->m);
edits to cigar(cigar, rev_edits);
// Free the reversed edits; we do not need them now.
free(rev_edits);

string vector append(&iter->cigars, (uint8_t *)cigar);

return; // Done down this path of matching...

}

uint32_t new L;
uint32_t new R;

// M-operations
unsigned char match a = iter->remapped pattern[i];
// Iterating alphabet from 1 so
// I don't include the sentinel.
for (unsigned char a = 1;
a < remap_table->alphabet size;

++a) {
new L = C(a) + 0(a, L);
new R = C(a) + 0(a, R);

int edit cost = (a == match a) ? 0 : 1;
if (edits left - edit cost < 0) continue;
if (new_L >= new R) continue;

*edits = 'M';

rec_approx_matching(iter, new L, new R, i - 1,
edits left - edit_cost,
edits + 1);

CHAPTER 5 APPROXIMATE SEARCH

// I-operation
*edits = 'I';
rec_approx_matching(iter, L, R, i - 1,
edits left - 1, edits + 1);

// D-operation
*edits = 'D';
for (unsigned char a = 1;
a < remap_table->alphabet size;
++a) {
new L = C(a) + 0(a, L);
new R = C(a) + 0(a, R);
if (new_L >= new R) continue;

rec_approx_matching(
iter, new L, new R, i,
edits left - 1, edits + 1

)5

The expression checks if we can use the D table. We can only do this if we haven’t
reached the beginning of the pattern and the D table was calculated (it will only be if we
have the suffix array of the reversed string).

int lower limit = (i >= 0 && iter->D table) ?
iter->D table[i] : o;

When we increment the iterator, we use the L and R variables to determine whether
we are processing an interval or if we should move to the next interval. IfR is less than L,
the current interval is empty, and we move to the next. If there aren’t any intervals left,
we return false to report that we have iterated over all matches. If we are in an interval,
we extract the CIGAR and the current position in the interval (where iter->L points).

bool next_bwt_approx_match(
struct bwt_approx_iter *iter,
struct bwt _approx match *match

) {

267

CHAPTER5 APPROXIMATE SEARCH

if (iter->L »>= iter-»>R) { // Done with current interval
if (iter->next_interval >= iter->Ls.used)
return false; // No more intervals
// Start the next interval
iter->L = iter->Ls.data[iter->next intervall;
iter->R = iter->Rs.data[iter->next intervall;
iter->next_interval++;
}
match->cigar =
(char *)iter->cigars.data[iter->next_interval - 1];
match->position = iter->bwt table->sa->array[iter->L];
iter->L++;

return true;

When we deallocate the iterator, we deallocate all the vectors and the D table if it was

computed.

static void free strings(
struct string vector *vec
) {
for (int i = 0; i < vec->used; i++) {
free(string vector get(vec, i));

}

void dealloc bwt approx_iter(
struct bwt_approx iter *iter

) {
dealloc_index vector(&iter->Ls);
dealloc_index vector(8iter->Rs);
free_strings(&iter->cigars);
dealloc_string vector(8iter->cigars);
free(iter->edits buf);
if (iter->D table) free(iter->D table);

268

CHAPTER5 APPROXIMATE SEARCH

Comparisons

I will not compare edit cloud-based exact search with the other algorithms in this
chapter. Being able to build the edit cloud gives a good intuition about approximative
searching, and using an edit cloud with an exact search is an excellent way to run tests
of the more complex algorithms. In practice, though, the size of the edit cloud explodes
when the pattern gets large, and in practice, it is not practical to use this approach.
Instead, I will compare searching using the suffix tree and the BWT with and without the
D table. The results are shown in Figure 5-2.

I have performed the experiments with a maximum edit distance of 1, 2, and 3
(shown at the top of the figure). The pattern lengths I have used are 50, 100, and 150;
see the x axis. What we see is that for small edit distances, there is not much difference
between the algorithms, but that the difference in running time increases with the
edit distance. Using the BWT approach without the D table is the slowest. Then comes
the suffix tree approach and, finally, the BWT approach with the D table. The latter is
dramatically faster and should be your first choice if you need to do approximative
searches.

Of course, there is also a penalty for building the D table. It takes roughly twice
as long to build both the 0 and the RO table than just the O table; see Figure 5-3. You
only construct the tables once and might search in the millions of times, so this extra
construction time might not be an issue.

You can find the code I used for the experiments here:

https://github.com/mailund/stralg/blob/master/performance/bwt_search.c

https://github.com/mailund/stralg/blob/master/performance/bwt_
construction.c

269

https://github.com/mailund/stralg/blob/master/performance/bwt_search.c
https://github.com/mailund/stralg/blob/master/performance/bwt_construction.c
https://github.com/mailund/stralg/blob/master/performance/bwt_construction.c

CHAPTER5 APPROXIMATE SEARCH

1 2 3
[]
0.06
[]
) ‘
[
[]
004 i é
@ Algorithm
[
[e] .
BWT-with-D
8 E WI
2, E3 BWT-without-D
= =
£ ST
'_
[
0.02
° $
A
KX 4 2
- Iy 2
0.00 @8 oo oo - - - -> - -
50 100 150 50 100 150 50 100 150

Pattern length

Figure 5-2. Comparison of approximative search algorithms

270

CHAPTER 5 APPROXIMATE SEARCH

20000
Algorithm
[}
£ =e= BWT-no-D
|_
== BWT-with-D
10000
0

0 10000 20000 30000 40000 50000
Length

Figure 5-3. BWT construction with and without D

271

CHAPTER 6

Conclusions

You have now reached the end of String Algorithms in C. In the book, I have presented
key algorithms and data structures for searching in strings and included implementation
details often left out of textbooks on the topic. There are many more algorithms for exact
search and for building, manipulating, and searching in suffix trees and suffix arrays

that I could not fit into this book, but I encourage you to find them and implement

them. After reading this book, you should have an idea about how you can effectively
implement such algorithms, and use iterators to make it simple for a user to use your
implementation. You can find all the algorithms in the book, plus example code in the
form of tests and performance measurement programs, on GitHub: https://github.
com/mailund/stralg. I hope you have enjoyed the book.

273
© Thomas Mailund 2020

T. Mailund, String Algorithms in C, https://doi.org/10.1007/978-1-4842-5920-7_6

https://doi.org/10.1007/978-1-4842-5920-7_6#DOI
https://github.com/mailund/stralg
https://github.com/mailund/stralg

APPENDIX

Fundamental data
structures

In several algorithms we have used fundamental data structures such as vectors and
queues. I trust the reader to be familiar with these data structures, and rather than
describing their implementation in the middle of the description of an algorithm, I

have moved them to this appendix and made references to them when we encountered
them the first time. We have needed some of the data structures for more than one type
of elements, for example, a vector of strings and indices and a queue of pointers and
indices. To avoid duplicated code, I have used a combination of functions and macros.
Most of the smaller functions are most appropriately implemented as inline functions,
so the compiler can optimize them. I have done this where I found for all short functions
but not for longer functions. Without further ado, here are their implementations.

Vectors

#define vector_init(vec, init_size) { \
(vec)-»data = malloc((init_size) * sizeof(*(vec)-»data)); \
(vec)-»size = init_size; \
(vec)->used = 0; \

}

#define dealloc_vector(vec) { \
free((vec)-»>data); \

}

#define vector_append(vec, val) { \

275
© Thomas Mailund 2020

T. Mailund, String Algorithms in C, https://doi.org/10.1007/978-1-4842-5920-7

https://doi.org/10.1007/978-1-4842-5920-7#DOI

APPENDIX ~ FUNDAMENTAL DATA STRUCTURES

if ((vec)-sused == vec-ysize) { \
(vec)->data = \
realloc((vec)-»>data, 2 * (vec)-»size \

* sizeof(*(vec)->data)); \

(vec)->size = 2 * (vec)->size; \
} \
(vec)->data[(vec)->used++] = (val); \
}
#define vector_get(vec,idx) (vec)-»>data[(idx)]
#define vector_set(vec,idx,val) (vec)-»data[(idx)] = (val)

struct index vector {
uint32_t *data;
uint32_t size;
uint32_t used;

};

static inline void init_index_vector(
struct index vector *vec,
uint32_t init size

) |
vector init(vec, init size);

}

static inline void dealloc_index vector(
struct index_vector *vec

) {

dealloc_vector(vec);
}
static inline struct index vector *
alloc_index vector(

uint32_t init size

) {
struct index vector *vec =
malloc(sizeof (struct index vector));
init index vector(vec, init size);
return vec;
}

276

APPENDIX

static inline void free index vector(
struct index vector *vec

) {
dealloc_index vector(vec);
free(vec);

}

static inline void index vector append(
struct index_vector *vec,
uint32_t index

) {

vector_ append(vec, index);

}

static inline uint32_t
index_vector get(
struct index vector *vec,
uint32_t i
) {
return vector get(vec, i);
}
static inline void
index_vector_set(
struct index vector *vec,
uint32_t i,
uint32_t val
) {

vector set(vec, i, val);

}

void sort index vector(
struct index vector *vec

);

bool index vector equal(
struct index vector *vi,
struct index vector *v2

)5

FUNDAMENTAL DATA STRUCTURES

277

APPENDIX ~ FUNDAMENTAL DATA STRUCTURES

void print index vector(
struct index_vector *vec

)5

struct string vector {
uint8_t **data;
uint32_t size;
uint32_t used;

};

static inline void init string vector(
struct string vector *vec,
uint32_t init size

) {
vector _init(vec, init size);

}

static inline void dealloc_string vector(
struct string vector *vec

) {

dealloc_vector(vec);

}

static inline struct string vector *

alloc_string vector(
uint32_t init size

) {
struct string vector *vec =

malloc(sizeof (struct string vector));

init string vector(vec, init size);
return vec;

}

static inline void free string vector(
struct string vector *vec

) {
dealloc_string vector(vec);
free(vec);

278

APPENDIX

static inline uint8_t *string vector get(
struct string vector *vec,
uint32_t idx

) |
return vector get(vec, idx);

}

static inline void string vector set(
struct string vector *vec,
uint32_t idx,
uint8_t *string

) {
vector_set(vec, idx, string);

}

static inline void string vector append(
struct string vector *vec,
uint8_t *string

) |

vector_append(vec, string);

}

struct pointer vector {
void **data;
uint32_t size;
uint32_t used;

s

static inline void init pointer vector(
struct pointer vector *vec,
uint32_t init size

) |
vector_init(vec, init size);

}

static inline void dealloc pointer vector(
struct pointer vector *vec

) {

dealloc_vector(vec);

FUNDAMENTAL DATA STRUCTURES

279

APPENDIX ~ FUNDAMENTAL DATA STRUCTURES

static inline struct pointer vector *

alloc_pointer vector(
uint32_t init size

) {
struct pointer vector *vec =

malloc(sizeof(struct pointer vector));

init pointer vector(vec, init size);
return vec;

}

static inline void free pointer vector(
struct pointer vector *vec

) {
dealloc_pointer vector(vec);
free(vec);

}

static inline void *pointer vector get(
struct pointer vector *vec,
uint32_t idx

) {
return vector get(vec, idx);

}

static inline void pointer vector set(
struct pointer vector *vec,
uint32_t idx,
void *pointer

) {
vector_set(vec, idx, pointer);

}

static inline void pointer vector append(
struct pointer vector *vec,
uint8_t *pointer

) {

vector append(vec, pointer);

280

APPENDIX

Lists

struct index linked list {
struct index_linked list *next;
uint32_t data;

b

static inline struct index linked list *
new_index_link(
uint32_t val,
struct index linked list *tail
) 1
struct index linked list *1link =
malloc(sizeof(struct index linked list));
link->data = val; link-»>next = tail;
return link;

}

void free index list(
struct index linked list *list

) {
while (list) {

FUNDAMENTAL DATA STRUCTURES

struct index_linked list *next = list->next;

free(list);
list = next;

}

struct pointer linked list {
struct pointer linked list *next;
void *data;

};

static inline struct pointer linked list *
new_pointer link(

void *val,

struct pointer linked list *tail

) {

281

APPENDIX ~ FUNDAMENTAL DATA STRUCTURES

struct pointer linked list *link =
malloc(sizeof(struct pointer linked list));

link->data = val; link->next = tail;

return link;

}

void free pointer list(
struct pointer linked list *list
) {
while (list) {
struct pointer linked list *next = list->next;
free(list);
list = next;

}

}

Queues

#define init_queue(queue) { \

(queue)->front = 0; \
(queue)-sback = 0; \

}

#define alloc_queue(queue_type) { \
queue_type *queue = malloc(sizeof(queue_type)); \
init_queue(queue); \
return queue; \

}

#define enqueue(list_type, link_constructor, queue, val) { \
list_type *1link = link_constructor(val, 0); \
if (queue->front == 0) { \

queue->front = queue->back = link; \
} else { \

282

APPENDIX ~ FUNDAMENTAL DATA STRUCTURES

queue-sback->next = link; \
queue-sback = link; \
} \
}
#define dequeue(list_type, queue) {
assert(queue->front != 0);
list_type *link = queue->front;
if (queue->front == queue-yback) {
queue->front = queue->back = 0;
} else {
queue->front = queue->front-»next;

}
free(link);

o o S S S S s s

}

#define dealloc_queue(list_type, queue) { \
while (!is_queue_empty(queue)) \
dequeue(list_type, queue); \
}
#define free_queue(list_type, queue) { \
dealloc_queue(list_type, queue); \
free(queue); \

}

#define is_queue_empty(queue) \
((queue)->front == 0 && (queue)-sback == 0)

#define queue_length(list_type, queue) { \
uint32_t i = 0;
for (list_type *link = queue->front;
link;
link = link-»next) {
i++;
}

return i;

o o S s S s

283

APPENDIX ~ FUNDAMENTAL DATA STRUCTURES

struct index queue {
struct index linked list *front;
struct index linked list *back;

s

static inline void init index_ queue(
struct index queue *queue

) {
init_queue(queue);

}

static inline void dealloc_index_queue(
struct index_queue *queue

) {

dealloc_queue(struct index linked list, queue);
}
static inline struct index queue *
alloc_index_queue(woid) {

alloc_queue(struct index queue);
}
static inline void free index queue(

struct index_queue *queue

) {

free queue(struct index linked list, queue);

}

static inline bool is index queue empty(
const struct index queue *queue

) {

return is queue empty(queue);
}
static inline uint32_t
index_queue_front(
const struct index queue *queue
) |
assert(queue->front != 0);
return queue->front->data;

284

APPENDIX

static inline void enqueue_index(
struct index queue *queue,
uint32_t index
) {
enqueue(struct index linked list,
new_index link, queue, index);
}
static inline void dequeue_index(
struct index_queue *queue

) {

dequeue(struct index linked list, queue);

}

static inline uint32_t
index_queue_length(
struct index_queue *queue

) {

queue_length(struct index linked list, queue);

}

struct pointer queue {
struct pointer linked list *front;
struct pointer linked list *back;

b

static inline void init pointer queue(
struct pointer queue *queue

) {
init_queue(queue);

}

static inline void dealloc_pointer queue(
struct pointer queue *queue

) {

FUNDAMENTAL DATA STRUCTURES

dealloc_queue(struct pointer linked list, queue);

}

static inline struct pointer queue *
alloc_pointer queue(void)

285

APPENDIX ~ FUNDAMENTAL DATA STRUCTURES

{

alloc_queue(struct pointer queue);
}
static inline void free pointer queue(
struct pointer queue *queue

) {

free_queue(struct pointer linked list, queue);

}

static inline bool is pointer queue empty(
const struct pointer queue *queue

) {

return is queue empty(queue);
}
static inline void *pointer queue front(
const struct pointer queue *queue
) |
assert(queue->front != 0);
return queue->front->data;

}

static inline void enqueue pointer(

struct pointer queue *queue, void *pointer
) |

enqueue(struct pointer linked list,

new_pointer link, queue, pointer);

}
static inline void dequeue_pointer(

struct pointer queue *queue

) {

dequeue(struct pointer linked list, queue);

}

static inline uint32_t pointer queue length(
struct pointer queue *queue

) {

queue_length(struct pointer linked list, queue);

286

Index

A

Aho-Corasick (AC) algorithm, 58
failure links, 67, 69, 71
iterators, 79-82
matching and mismatching, 66
missing matches problem, 70
outlists and matches, 70
output lists, 71, 72
preprocessing, 72-79
trie structure, 72

Alignment, 236

alloc_suffix_tree(), 112

alph_size, 150

append_child(), 108

Approximate search
comparison, 270
Li-Durbin algorithm (see Li-Durbin

algorithm)
local alignment and CIGAR
notation, 235-237
suffix trees, 250-258
Array-based algorithms, 133
Array-based children, 135

B

Backward border array, 44
Binary search, 206-214
Bit array macros, 195

bool array, 180, 194

© Thomas Mailund 2020

Border array construction algorithm, 18
Border array jump table, 45
Border arrays, 15, 17, 19, 26
Border of string, 15
Boyer-Moore (BM) algorithm
border array, 39
combining jump tables, 55-58
jump rule one, 39
backward border array, 44
border array jump table, 45
computing Z array, 47-51
jump table based on reverse
borders, 43
matching suffix, 43
point to border endpoints, 46
prefix and suffix, 40
restricted reversed
border array, 42
reverse border array, 41

reverse-compute-reverse strategy, 42

uniqueness of endpoints, 46

Z array, 46

Z-based jump table, 51, 53
jump rule two, 40

border array, 54

jump ranges, 54
restricted reversed border array, 39
reversed border array, 39

Boyer-Moore-Horspool (BMH)
algorithm, 5, 28-35

287

T. Mailund, String Algorithms in C, https://doi.org/10.1007/978-1-4842-5920-7

https://doi.org/10.1007/978-1-4842-5920-7#DOI

INDEX

Brute force approach
edit cloud, building
at_beginning variable,
238, 240-242
CIGAR representation, 244
deletion and match
operations, 244
pattern, 246, 250
pattern_front and edits_front, 238
pushing information, 244
push operations, 244
recursion, 242, 243, 245
recursive version, 246-250
stack frames, 243, 244
Buckets, 151, 181
Burrows-Wheeler transform (BWT)
C and O tables, 215-218
construction, 271
construction time, 228
running time, 227
search algorithm, 258
searching, 219-221
string transformation, 214

C

CHECK_INDEX(), 162

CIGAR format, 236

CIGAR string, 236

Code conventions, 3-5
compute_failure_link_for_node(), 75
compute_failure_link_node(), 76
const strings, 92

Constructing SA3, 148-153
Construction function, 164-167
construct_u(), 154

Conventions, 1

C’s gsort() function, 142

288

D

Data structures
lists, 281, 282
queues, 282-286
vectors, 275-280
Depth-first traversal, 104, 125, 131
dequeue_pointer(), 75
Divide-and-conquer
algorithm, 154, 166
Divide-and-conquer
approach, 145

E

edge_length() function, 90
Edit cloud, 238
edits_to_cigar() function, 236
enqueue_pointer(), 75
enqueue_siblings(), 75
equal3() function, 159
Exact search
Aho-Corasick algorithm, 58
borders, 18-20
Boyer-Moore (see Boyer-Moore (BM)
algorithm)
BMH algorithm, 28-35
extended rightmost table, 35-38
KMP algorithm, 21-27
Naive algorithm, 12-14
trie (see Tries)

F

fast_scan() function, 117
find_buckets_beginnings(), 195
find_buckets_ends(), 195
find_outgoing_edge() function, 96
find_rightmost() function, 38

G

Global alignment, 236
Graphical notation, 2, 3
Graphical string notation, 3

H

Heap-allocating arrays, 150

|, J

Input string, 205

insert_child() function, 108
Inverse suffix array (ISA), 162
is_trie_root(), 77

Iterator initialization function, 8
Iterator structure, 7, 8

K

Knuth-Morris-Pratt (KMP)
algorithm, 21-27

L

Icp_insert(), 106
lcp_traverse(), 103
Leaf iterators, 125-128, 130
Leftmost S (LMS) index, 168
LEX3 alphabet, 173
Li-Durbin algorithm
approximative matching iterator, 262
BWT search, 258
bwt_table data struct, 259
CIGAR, 265-267
D table, 267
D table variable, 262
edit operations, build, 265-267

INDEX

edits_buf variable, 262
increment iterator, 267
L, R, and next_interval variables, 262
O table, build, 259-261
recursive search, 263, 265
reversed string, 258, 259
ro_table suffix array, 263
suffix array, 258
Linear algorithms, 85
Lists, 281, 282
LMS strings, 176, 182, 184
LMS substrings, 173
Local alignment, 236
Longest common prefix (LCP)
array, 221, 222, 224
array computations, 137
branch lengths, 102
constructing, 101-104
traversal, 103
lower_bound_search() function, 209

malloc(), 90, 156
map_lex3() function, 156
map_s_s12() function, 157
map_u_s(), 154
Match structure, 8, 10
McCreight’s algorithm
construct suffix trees, 110
edge splitting, 121
fast_scan(), 117,119
general case of suffix search, 115
head and suffix links, 112
jumping, 111
jump pointers, 112
main function, 113
mismatches, 131

289

INDEX

McCreight's algorithm (cont.)

naive_insert(), 120

path of suffix links, 121

prefix matching, 111

running time, 120

slow scan (scan 2) time usage, 123

suffixi, 113

suffix links, 111

suffix_search(), 113, 114

terminology and notation, 110

uniqueness of suffix links, 122
McCreight's suffix tree construction

algorithm, 225

Memory-efficient algorithm, 225
Memory reduction

allocating and deallocating

buckets, 194

bit array, 193

bit array macros, 195

bool array, 194

buckets’ beginnings and ends, 195

find_buckets_beginnings(), 195

input string, 205

reduced string, 196

reduce_SA() function, 198

sort_SA(), 204

suffix array, 193, 194

UNDEFINED, 203
merge_suffix_arrays() function, 154
Merging arrays, 160-164
m12 variable, 150

N, O
Naive algorithm, exact search, 12-14
Naive construction algorithm

edge splitting, 99

find_outgoing edge() function, 96

290

insert_child(), 94
naive_insert(), 94, 99
naive_suffix_tree() function, 93
out_letter(), 98
remove child, 100
scanning, 96
single-symbol strings, 131
split_edge(), 94, 98, 99
traverse tree, 97
naive_insert() function, 94
naive sorting algorithm, 225
naive_suffix_tree(), 93, 94
new_node() function, 91
next_ac_match(), 81
next_bmh_match(), 57
next_bm_match(), 57
next_st_leaf(), 127
Notation, 1

P

Parent pointer, 89

Pattern, 11

pattern_front pointer, 238

Pattern-matching
algorithm, 250

Pivot element, 143

pointer_queue data
structure, 75

pointer_queue_front(), 75

pool variable, 90

Prefix tree, 58

Proper prefix, 2

Q

gsort() function, 143
Queues, 282-286

R

radix_sort() function, 158
radix_sort_3(), 156, 158
range_length(), 89
RAWKEY(), 153
Reduced suffix array, 194, 203
reduce_SA() function, 198
Remap function, 157
remap_lex3() function, 154
remap_LMS(), 203
Remapping, 176-179
REPORT() function, 79
report_function, 6
report_function_data, 6
Restricted backward border arrays, 44
Restricted border array, 23
Restricted reversed border array, 39
Reversed border array, 39, 41, 55
Reversed pattern prefix, 258
Reversed restricted border array, 42
Reversed string, 258

searching, 259
Reversed Z array, 55
reverse_push() function, 128

S

Sorting sal2, 154-160
sa_is_construction(), 204
Sampling-induced sorting (SA-IS)

algorithm. see also Skew algorithm

bucket structure, 171

classifying strings into S and L, 168
implementation, 179-193

input string, 167

leftmost S (LMS) index, 168

LEX3 alphabet, 173

linear-time construction algorithms, 167

INDEX

LMS strings, 176

LMS substrings, 173

L suffixes, 169

memory reduction, 193-206

string mississippi$, 167

ordered LMS suffixes, 171, 172, 175
reduced string, 174, 176
remapping, 176-179

structure of L and S strings, 170

Search algorithms, 84
Searching

binary search, 206-214

border array, 18

BWT (see Burrows-Wheeler
transform (BWT))

suffix trees, 123-130

Sentinel, 2, 146
shared_buffers, 150, 151, 156, 158
Skew algorithm

constructing SA3
alph_size and shared_buffers
arguments, 153
buffer, 151
construction function, 149
helper_buffer0 and
helper_buffer1, 153
merging SA12 and SA3, 149
radix sort function, 151-153
RAWKEY(), 153
shared_buffer, 151, 153
struct skew_buffers, 150
structure, 150
construction
function, 164-167
merging arrays, 160-164
overview, 145
recursively sorting sal2, 154-160
sal2 and sa3, 148

291

INDEX

skew_rec(), 158

sort_SA(), 189, 191, 204
sprintf() function, 237
st_compute_sa_and_lcp(), 103
String comparisons, 144
string_front, 238
string_in_trie() function, 66
string_label variable, 63
struct skew_buffers, 150
st_search(), 125

Suffix array (SA), 273

comparisons, 225-227, 229, 233

constructing, 101-104
construction time, 226
deallocating, 141
divide-and-conquer
approach, 145
LCP array, 221, 222, 224

longest common prefix array, 101

memory efficiency, 140
representation, 140
reversed string, 258, 259

SA-IS algorithm (see Sampling-induced
sorting (SA-IS) algorithm)

searching (see Searching)
skew algorithm, 145

smaller memory footprint, 142

structure, 140
suffix indices, 101
suffix trees, 139
traversal, 103

trivial constructions, 142-144

Suffix label, 89

Suffix link pointer, 112

Suffix links, 89, 111
suffix_search(), 112, 114, 115
suffix_tree structure, 90
Suffix trees, 139, 250-258, 273

292

compacted trie, 88-93

conceptual and actual, 89

McCreight’s algorithm (see McCreight’s
algorithm)

naive construction algorithm (see
Naive construction algorithm)

representation, 88-93

SA and LCP arrays, 104-109

searching, 123-130

trie, 88

Suffix trie, 88

Tries

Aho-Corasick (AC) algorithm
(see Aho-Corasick (AC)
algorithm)

construct, 62

constructing, 63

data structure, 59

deallocate, 61

get_trie_node(), 66

initialize, 60

prefix tree, 58

representation, 61

sentinel strings, 59

string_in_trie() function, 66

structure, 72

substring to node, 62

upper_bound_search(), 209

Vectors, 275-280

INDEX

W, X, Y Z

Worst-case comparison time, 143 Z array, 46, 47
Worst-case quadratic time Z array construction algorithm, 49
algorithms, 83, 86 Z-based jump table, 51, 53

293

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Introduction
	Notation and conventions
	Graphical notation
	Code conventions
	Reporting a sequence of results

	Chapter 2: Classical algorithms for exact search
	Naïve algorithm
	Border array and border search
	Borders and border arrays
	Exact search using borders
	Knuth-Morris-Pratt
	Boyer-Moore-Horspool
	Extended rightmost table
	Boyer-Moore
	Jump rule one
	Computing the Z array
	Z-based jump table

	Second jump table
	Combining the jump rules

	Aho-Corasick
	Tries
	Preprocessing
	The algorithm with iterators

	Comparisons

	Chapter 3: Suffix trees
	Compacted trie and suffix representation
	Naïve construction algorithm
	Suffix trees and the SA and LCP arrays
	Constructing the SA and LCP arrays
	Constructing the suffix tree from the SA and LCP arrays

	McCreight’s algorithm
	Searching with suffix trees
	Leaf iterators

	Comparisons

	Chapter 4: Suffix arrays
	Constructing suffix arrays
	Trivial constructions—Comparison-based sorting
	The skew algorithm
	Constructing SA3
	Recursively sorting sa12
	Merging arrays
	Construction function

	The SA-IS algorithm
	Remapping
	Implementing the algorithm
	Memory reduction

	Searching using suffix arrays
	Binary search
	Burrows-Wheeler transform–based search
	C and O tables
	Building the C and O tables
	Searching

	Getting the longest common prefix (LCP) array
	Comparisons

	Chapter 5: Approximate search
	Local alignment and CIGAR notation
	Brute force approach
	Building an edit cloud

	Suffix trees
	The Li-Durbin algorithm
	Comparisons

	Chapter 6: Conclusions
	Appendix:
Fundamental data structures
	Vectors
	Lists
	Queues

	Index

