
Xingni Zhou, Qiguang Miao and Lei Feng
Programming in C

Also of interest

Programming in C, vol. : Basic Data Structures and Program
Statements
Xingni Zhou, Qiguang Miao, Lei Feng, 
ISBN ----, e-ISBN (PDF) ----,
e-ISBN (EPUB) ----

C++ Programming
Li Zheng, Yuan Dong, Fang Yang, 
ISBN ----, e-ISBN (PDF) ----,
e-ISBN (EPUB) ----

Elementary Synchronous Programming
Ali S. Janfada, 
ISBN ----, e-ISBN (PDF) ----,
e-ISBN (EPUB) ----

MATLAB® Programming
Dingyü Xue, 
ISBN ----, e-ISBN (PDF) ----,
e-ISBN (EPUB) ----

Programming in C++
Laxmisha Rai, 
ISBN ----, e-ISBN (PDF) ----,
e-ISBN (EPUB) ----

Xingni Zhou, Qiguang Miao and Lei Feng

Programming in C

Volume 2: Composite Data Structures
and Modularization

Authors
Prof. Xingni Zhou
School of Telecommunication Engineering
Xidian University
Xi’an, Shaanxi Province
People’s Republic of China
xnzhou@xidian.edu.cn

Qiguang Miao
School of Computer Science
Xidian University
Xi’an, Shaanxi Province
People’s Republic of China
qgmiao@xidian.edu.cn

Lei Feng
School of Telecommunication Engineering
Xidian University
Xi’an, Shaanxi Province
People’s Republic of China
fenglei@mail.xidian.edu.cn

ISBN 978-3-11-069229-7
e-ISBN (PDF) 978-3-11-069230-3
e-ISBN (EPUB) 978-3-11-069250-1

Library of Congress Control Number: 2020941966

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

© 2020 Walter de Gruyter GmbH, Berlin/Boston
Cover image: RomoloTavani/iStock/Getty Images Plus
Typesetting: Integra Software Services Pvt. Ltd.
Printing and binding: CPI books GmbH, Leck

www.degruyter.com

http://dnb.dnb.de
http://www.degruyter.com

Contents

1 Arrays 1
1.1 Concept of arrays 1
1.1.1 Processing data of the same type 1
1.1.2 Representation of data of the same type 5
1.2 Storage of arrays 6
1.2.1 Definition of arrays 6
1.2.1.1 Definition of arrays 6
1.2.1.2 Reference of array elements 7
1.2.1.3 Storage characteristics of arrays 8
1.2.1.4 Comparison of variables of the same type with plain

variables 9
1.2.2 Initialization of arrays 10
1.2.2.1 Initialize all elements 10
1.2.2.2 Initialize some elements 11
1.2.2.3 Array size determined by number of initial values 11
1.2.3 Memory layout of arrays 11
1.2.3.1 Memory layout of one-dimensional arrays 11
1.2.3.2 Memory layout of two-dimensional arrays 11
1.2.4 Memory inspection of arrays 12
1.3 Operations on one-dimensional arrays 16
1.4 Operations on two-dimensional arrays 26
1.5 Operations on character arrays 37
1.6 Summary 45
1.7 Exercises 48
1.7.1 Multiple-choice questions 48
1.7.2 Fill in the tables 50
1.7.3 Programming exercises 51

2 Pointers 53
2.1 Concept of pointers 53
2.1.1 Reference by name and reference by address 53
2.1.2 Management of storage space 55
2.1.2.1 Management of computer memory space 57
2.1.2.2 Storage rules of data in memory 58
2.1.2.3 Address management in memory 58
2.1.3 Definition of pointers 60
2.1.3.1 Comparison of pointer variables and plain variables 60
2.1.3.2 Syntax of pointer definitions 61
2.2 Pointer operations 61
2.2.1 Pointer operators 62

2.2.2 Pointer operations 62
2.2.3 Basic rules of pointer operations 62
2.2.4 Purpose of pointer offsets 67
2.2.4.1 Introduction 67
2.2.4.2 Discussion and conclusion 68
2.2.4.3 Program verification 69
2.2.5 Concept of null pointer 69
2.2.5.1 Meaning of NULL 69
2.2.5.2 Null pointer 71
2.3 Pointers and arrays 72
2.3.1 Pointers and one-dimensional arrays 72
2.3.2 Pointers and two-dimensional arrays 77
2.4 Pointers and multiple strings 82
2.4.1 One-dimensional pointer array and pointer to pointer 84
2.5 Summary 87
2.6 Exercises 87
2.6.1 Multiple-choice questions 87
2.6.2 Fill in the tables 89
2.6.3 Programming exercises 91

3 Composite data 93
3.1 Concept of structures 93
3.1.1 Introduction 93
3.1.2 Storage solution of mixed data table 94
3.1.2.1 Discussion of possible storage solution of mixed data table 94
3.1.2.2 Issues of constructing “combinatorial data” 95
3.1.2.3 Key elements of constructional data 95
3.2 Storage of structures 96
3.2.1 Type definitions of structures 96
3.2.2 Definition of structure variables 98
3.2.3 Structure initialization 99
3.2.4 Memory allocation of structure variables 100
3.2.4.1 Definitions related to structure 100
3.2.4.2 Memory layout of structure variables 100
3.2.4.3 Inspection of memory layout of structure variables 100
3.2.4.4 Data alignment of structures 102
3.2.5 Referencing structure members 105
3.3 Applications of structures 106
3.4 Union 117
3.4.1 Introduction 117
3.4.2 Memory layout of unions 118
3.4.2.1 Union-type definition 118

VI Contents

3.4.2.2 Union variable definition 119
3.4.2.3 Union member reference 119
3.4.2.4 Comparison of unions and structures 120
3.5 Enumeration 124
3.5.1 Introduction 124
3.5.2 Concept and syntax of enumeration 126
3.5.3 Example of enumerations 127
3.5.4 Rules of enumerations 128
3.5.4.1 We cannot assign values of other types to an enumeration

variable 129
3.5.4.2 Arithmetic operations are not allowed on enumeration

variables 129
3.6 Type definitions 129
3.6.1 Introduction 129
3.6.1.1 Porting of music files 129
3.6.1.2 Cases where macros are not enough 131
3.6.1.3 Define aliases for types 131
3.6.2 Syntax and applications of typedef 131
3.7 Summary 132
3.8 Exercises 134
3.8.1 Multiple-choice questions 134
3.8.2 Fill in the tables 136
3.8.3 Programming exercises 137

4 Functions 139
4.1 Concept of functions 139
4.1.1 Introduction 139
4.1.1.1 Modularization and module reuse in practice 139
4.1.1.2 Abstraction of practical problems: independent code

modules 140
4.1.2 Concept of modules 141
4.1.2.1 Coordination problems in teamwork 141
4.1.2.2 Coordination problems in modularization of programs 141
4.1.2.3 Concept of modules 142
4.2 Function form design 143
4.2.1 Methods of communication between modules 143
4.2.2 Function form design 144
4.2.2.1 Analysis of outsourcing structure 144
4.2.2.2 Abstraction of outsourcing structure 145
4.2.2.3 Function form design 145
4.2.2.4 Information transmission mechanism design 146
4.2.2.5 Three syntaxes related to functions 147

Contents VII

4.3 Design of information transmission mechanism between
functions 149

4.3.1 Characteristics of information transmission between
functions 149

4.3.1.1 Classification of data transmitted between functions 149
4.3.1.2 Expressions of data transmitted between functions 150
4.3.2 Information transmission between functions: submission and

receiving of data 150
4.3.2.1 Submission of small amount of data 150
4.3.2.2 Submission of a large amount of data 151
4.3.3 Receiving of function results 153
4.3.3.1 Receiving function results in pass by value 153
4.3.3.2 Receiving function results in pass by reference 153
4.4 Overall function design 153
4.4.1 Key elements of function design 153
4.4.1.1 Key elements of functions 153
4.4.1.2 Relations between function syntax and key elements of function

design 154
4.4.2 Summarization of information transmission between

functions 154
4.4.2.1 Direction 1: from caller to function 154
4.4.2.2 Direction 2: from function to caller 157
4.4.3 Function call 157
4.4.3.1 Execution and calling order of functions 157
4.4.3.2 Nested call of functions 157
4.4.3.3 Correspondence between parameters and arguments 159
4.4.3.4 Syntax of function call 160
4.5 Examples of function design 160
4.5.1 Call by value 160
4.5.2 Call by reference 168
4.5.3 Comprehensive examples of functions 179
4.5.4 Parameters of the main function 191
4.5.4.1 Introduction 191
4.5.4.2 Parameters of the main function 193
4.5.4.3 Example of the main function with parameters 194
4.6 Scope 196
4.6.1 Introduction 196
4.6.1.1 Cooperation issues in teamwork 196
4.6.1.2 Outsourced projects in a flow 198
4.6.1.3 Resource-sharing problem 198
4.6.2 Masking mechanism of modules 198
4.6.2.1 Isolation of internal data 199

VIII Contents

4.6.2.2 Masking rule of functions 199
4.6.3 Memory segments and storage classes 199
4.6.3.1 Memory segments of programs 199
4.6.3.2 Storage classes of variables 200
4.6.4 Masking mechanism 1: lifespan and scope of variables 201
4.6.4.1 Concept of scope 201
4.6.4.2 Attributes of variables 201
4.6.4.3 Local variables and global variables 202
4.6.5 Masking mechanism 2: scope of functions 211
4.6.6 Masking mechanism 3: restriction on shared data 212
4.7 Recursion 215
4.7.1 Case study 215
4.7.2 Concept of recursion 219
4.7.2.1 Definition of recursion 219
4.7.2.2 Type of recursion 220
4.7.2.3 Comparison of recursion and iteration 220
4.7.3 Example of recursion 221
4.8 Summary 224
4.9 Exercises 226
4.9.1 Multiple-choice questions 226
4.9.2 Fill in the tables 229
4.9.3 Programming exercises 233

5 Files: operations on external data 235
5.1 Introduction 235
5.2 Concept of files 236
5.2.1 Binary files 236
5.2.2 Text files 237
5.2.3 File termination mark and end-of-file checking function 237
5.3 Operation flow of files 238
5.4 Data communication between internal and external memory 239
5.5 Operations on files using programs 241
5.5.1 Opening files 241
5.5.2 Reading and writing 243
5.5.3 Closing files 248
5.5.4 Random access 249
5.6 Discussion on file reading and writing functions 251
5.6.1 Case 1: fprintf and fscanf 251
5.6.2 Case 2: fwrite and fread 252
5.6.3 Case 3: fprintf and fscanf 253
5.6.4 Case 4: fwrite and fscanf 254
5.7 Debugging and I/O redirection 254

Contents IX

5.7.1 Code template 1 Using fscanf and fprintf 255
5.7.2 Using freopen function 255
5.7.3 Code template 2 Using freopen function 256
5.8 Summary 257
5.9 Exercises 259
5.9.1 Multiple-choice questions 259
5.9.2 Fill in the tables 261
5.9.3 Programming exercises 262

Appendix A Adding multiple files to a project 265

Appendix B Programming paradigms 273

Appendix C void type 285

Index 287

X Contents

1 Arrays

Main contents
– Concept, usage, and available methods of arrays
– Introduction of representation and nature of arrays through comparison between array/

array elements and plain variables
– Storage characteristics and debugging techniques of arrays
– Programming techniques of multidimensional arrays
– Top-down algorithm design practices

Learning objectives
– Know how to define and initialize arrays as well as how to access array elements
– Be able to define and use multidimensional arrays
– Know how to deal with character arrays

1.1 Concept of arrays

Program statements and data construct programs. They are sequences of instruc-
tions created through algorithm design that conform to program control structures.
However, are we able to solve all problems after learning statements, basic data
types, program control structures, and algorithm implementation methods of C?

Let us look at a few problems in practice.

1.1.1 Processing data of the same type

Case study 1 Cracking Caesar code
Mr. Brown received an email from his son Daniel. However, the contents seemed a
little weird for an email sent by someone in elementary school: it was a meaningless
sequence “lettc fmvxlhec hehhc pszi csy”.

It later turned out that Daniel read a story of Julius Caesar and created an en-
crypted email using Caesar code to see whether his father could decrypt it.

During Roman times, Caesar invented the Caesar code to protect the information
he exchanged with his generals on the front line from being intercepted by enemy
spies. Encryption and decryption of Caesar code were done by shifting letters by a fixed
number of positions. The plaintext alphabet was shifted forward or backward by a fixed
number of positions to create the ciphertext alphabet. The number of positions shifted
was the key for encryption and decryption of Caesar code, as shown in Figure 1.1.

https://doi.org/10.1515/9783110692303-001

https://doi.org/10.1515/9783110692303-001

Mr. Brown stared at the ciphertext and thought that it would not be hard to design
an algorithm to solve the problem. He could simply shift each character in the ciphertext
by one position in the alphabet and repeat this process 26 times to list all possible plain-
texts, in which the one that is not nonsense would be the real plaintext. A universal al-
gorithm could be designed using this technique to crack ciphertexts of arbitrary length.
– If the length of the ciphertext is 2, we shift letters by one position in the alpha-

bet each time and list all 26 possible plaintexts.
– If the length of the ciphertext is 10, we shift letters by one position in the alpha-

bet each time and list all 26 possible plaintexts.
– If the length of the ciphertext is 100, we shift letters by one position in the al-

phabet each time and list all 26 possible plaintexts.

Think and discuss Necessary variables in password cracking
1. How many variables are necessary for a program to handle 100 characters?
2. How should we use these variables so that the program handles data in a convenient and

unified manner?

Discussion: Solving a problem with computers involves two major steps: first, we should use
reasonable data structures to describe the problem to store data into computers; second, we
create algorithms to solve it. To answer the earlier questions, we need to find a mechanism that
describes variables of the same type and handles them consistently.

Code implementation of the algorithm that solves Caesar codes is rather complicated,
so we shall introduce it later. Before that, let us consider a reversed order problem
that is more trivial.

Case study 2 Reversing 100 numbers
Write a program that reads 100 numbers and outputs them in a reversed order.

We are going to focus on how to handle variables of the same type. For a sim-
pler description, we use variables with subscripts to represent the numbers, as shown
in Figure 1.2.

Hello Right shift
by 3

positions

Khoor Left shift
by 3

positions

Hello

Case study 1
Encryption and decryption of Caesar code

encryption decryptionciphertextplaintext plaintext

Figure 1.1: Encryption and decryption of Caesar code.

2 1 Arrays

The flow of outputting 100 numbers backward is given in Figure 1.3. The pro-
gram reads the numbers in a loop starting from X1, and outputs them using a loop
starting from X100.

Variable Xi is uniquely identified by the value of i. We use x[i] to represent Xi in
programs so we can type the names using keyboards.

The code implementation is as follows:

01 int main(void)

02 {

03 int i;

04 int x[100];

05 for (i=1；i<=100; i++) scanf ("%d", &x[i]);

06 for (i=100; i>=1; i--) printf ("%d", x[i]);

07 return 0;

08 }

On line 4, the statement defines 100 variables with subscripts of type int. It is more
convenient to “batch” define variables of the same type.

It is worth noting that the starting subscripts on line 5 and line 6 do not follow
the convention of using C arrays exactly.

X1 X2 X3 Xi X99 X100

We need a way to
represent variables of
the same type so that
they can be processed

consistently

Case study 2
Reversing 100 numbers

Figure 1.2: Representation of 100 variables of the same type.

for(i=100; i>=1; i--) Output xi;

for(i=1 ; i<=100; i++) Input xi ;

Start

End

Xi varies with i, Xi
is represented as
x[i] in programs

Figure 1.3: Flow of outputting numbers backward.

1.1 Concept of arrays 3

Subscripts of arrays start from 0 in C. Here, we are trying to make the flow more
intuitive by not following this rule.

Case study 3 Simple table processing
Write a program that calculates the average grade of a student in six courses.

Figure 1.4 shows how to store grades and pseudo code of the algorithm. To
store grades, we use six variables, namely grade 0 to grade 5. On line 1 of the
pseudo code, int grade[6] defines 6 int variables. Note that the number of variables
is 6, but the range of subscripts is 0 to 5.

We use a while loop to add each grade[i] to total grade total. The value of i increases
in each iteration so that all variables are handled.

It is clear that the algorithm is trivial as long as we find a way to store and rep-
resent data of the same type. This also shows that the way data are organized and
represented is a crucial issue when solving problems with computers.

Case study 4 Complex table processing
Suppose there are four students, all of which take the same six courses. Write a pro-
gram that calculates average grades for each of them.

The only difference between this problem and the one earlier is the number of
grades. As shown in Figure 1.5, we can use a two-dimensional table to store data.
Its row index and column index uniquely identify a grade. For example, the grade
in row 1 column 2, whose value is 82, can be represented by grade[1][2].

Course 1 Course 2 Course 3 Course 4 Course 5 Course 6 Average
80 82 91 68 77 78

Pseudo code

Store grades in int grade[6]
Total score total = 0; Counter i = 0;
while i < 6

total= total+grade[i];
i++;

Average= total / 6

i 0 1 2 3 4 5
grade[i] 80 82 91 68 77 78

Case study 3
Simple table processing

Figure 1.4: Simple table processing.

4 1 Arrays

We can use a for loop to process grades for a single student and use another
one to calculate average grades for all of them. The algorithm and code implemen-
tation will be given in the section of two-dimensional arrays.

1.1.2 Representation of data of the same type

The discussion earlier showed that a new mechanism is necessary to handle data of
the same type. With respect to data representation and processing, arrays are a
data structure that regularly expresses data so that they are processed regularly.

Since arrays are collections of variables whose names have a pattern, they are sup-
posed to have features of variables. Figure 1.6 compares arrays with plain variables.

ID Course 1 Course 2 Course 3 Course 4 Course 5 Course 6 Average
1001 80 82 91 68 77 78
1002 78 83 82 72 80 66
1003 73 50 62 60 75 72
1004 82 87 89 79 81 92

grade[i][j] j=0 j=1 j=2 j=3 j=4 j=5
i=0 80 82 91 68 77 78
i=1 78 83 82 72 80 66
i=2
i=3

73 58 62 60 75 72
82 87 89 79 81 92

Grade of student 1 in course 2 is
grade[1][2]=82

Row i

Column j

Case study 4
Complex table processing

Figure 1.5: Complex table processing.

Plain variable Array Notes

Definition type name;
To be determined, but it should
consists of: type, name, number of
variables

• Memory is allocated upon
definition

• Size of memory allocated is
determined by variable type

Storage
unit

Quantity One Multiple Each storage unit of an array
has the same size

Length sizeof(type) sizeof(type)* number of variables Length is measured in bytes

Address &name To be determined

Referencing method name name[index]

Initialization type name=value To be determined
It is easier to process in
programs if variables are
initialized

Figure 1.6: Comparison of a group of variables with a single variable.

1.1 Concept of arrays 5

During the definition of a plain variable, the system allocates memory according to
its type specified by programmers. The definition of an array consists of type, name
and, in particular, the number of variables in the array.

There are multiple variable values in an array, so they should be stored in mul-
tiple storage units, whose sizes depend on types of the variables. The size of a stor-
age unit is measured in bytes and can be computed using the sizeof operator.

Besides, a referencing method of the address of a storage unit is necessary so
that programmers can inspect the unit.

We can infer from the examples earlier that the referencing method of variable
values in an array is to use the array name with an index.

Moreover, we should be able to initialize an array since we can do the same
with plain variables. Hence, a corresponding syntax is necessary.

1.2 Storage of arrays

There are four issues related to array storage, namely definition, initialization, mem-
ory allocation, and memory inspection.

1.2.1 Definition of arrays

1.2.1.1 Definition of arrays
An array is a collection of data of the same type. Figure 1.7 shows how to define an
array, where a definition is constructed by a type identifier followed by an array
name and multiple constants inside square brackets. Each constant indicates the
number of variables in the corresponding dimension.

An array is a collection of data of the same type.

Arrays

type name [constant 1][constant 2] ……[constant n];

Syntax

Definition Type Name Number of
dimensions

Number of
variables

Memory size

int x[100] int x 1 100 100* sizeof(int)
char c[2][3] char c 2 2*3 2*3* sizeof(char)

Memory is allocated
upon definition, which
remains unchanged

during execution

E.g.

Figure 1.7: Definition of arrays.

6 1 Arrays

In the figure above, the first row defines a one-dimensional integer array x with 100
variables. To compute the size of its memory space, we can obtain the size of its
type using the sizeof operator and multiply it with the number of variables. The second
row defines a two-dimensional character array with two rows and three columns. In
other words, it has six variables in total. The array name is c.

1.2.1.2 Reference of array elements
C uses a special term for variables in an array: array elements. An array element is
used in the same way as a single variable. To reference an array element, we use
the array name suffixed by an index wrapped in square brackets.

Think and discuss Do contents inside square brackets in an array definition and an element ref-
erence refer to the same thing?

Discussion: The index of an array element is a numerical expression, which indicates the posi-
tion of the element in an array; the object inside square brackets in an array definition has to
be a constant, which indicates the number of elements in the corresponding dimension. It is
worth noting that the number of elements must not be a variable. Like plain variables, arrays
obtain memory space from the system during array definition. The size of the allocated space
does not change during execution once the array is defined. Such a way of memory utilization
and management is called static memory allocation. On the other hand, C also provides “dy-
namic memory allocation,” which will be introduced in examples in chapter “Functions”.

Indices of array elements in C must start from 0. Accessing an array out of bound leads to a
logic error, but it is not a syntax error.

For example, the one-dimensional array x defined in Figure 1.8 has 100 elements with an
index range 0 to 99. If we try to access an element outside this range, we are accessing the
array out of bound. Grammatically, it is equivalent to using undefined variables.

Definition Index range Correct usage Out of bound examples

int x[100] [0]~[99] x[0], x[6], x[99] x[-1], x[100]

name [index 1] [index 2] …… [index n]

Referencing syntax

Array indices should be numerical expressions; they start from
0; programmers should not access indices that are out of bound

Array indices

An array element is a variable with subscript in an array.
Array elements are used in the same way as variables.

Array elements

Do contents inside
square brackets in an

array definition and in an
element reference refer

to the same thing?

E.g.

Figure 1.8: Array elements and their referencing rules.

The reason that out-of-bound errors are not syntax errors is that the compiler will not check whether
the index is valid. As a result, programmers should take care of indices when using arrays.

1.2 Storage of arrays 7

Knowledge ABC Index out-of-bound errors
An index out-of-bound error happens when accessing an array element whose index does not
fall in the predefined index range. C compilers seldom check whether indices are valid. Accessing
an index that is out of bound leads to the following issues.

First, although reading an out-of-bound element does not change values in memory, the cal-
culation that uses this value will generate wrong results.

Second, writing to an out-of-bound element does change values in memory. If the memory
units we write to contain values of other variables, the program may also generate wrong re-
sults. Furthermore, it is tough to debug in this case, since we do not know when the modified
value gets referenced.

An index out-of-bound error may occur in arrays and pointers that point to arrays. It is one of
the most common mistakes that beginners may make, so we should be careful when using arrays.

Having learned how to define arrays and how to reference array elements, we can
complete the program for number reversing problem.

01 int main(void)

02 {

03 int i;

04 int x[100]; // Array definition

//x[i] references array elements, the index is an expression

05 for (i=0；i<100; i++) scanf ("%d", &x[i]);

06 for (i=99; i>=0; i--) printf ("%d", x[i]);

07 return 0;

08 }

Line 4 contains definition of an array. Note how we reference array elements on line
5 and line 6.

Indices in square brackets on line 5 and 6 are variables, which are special forms
of expression. They start from 0 and end at 99.

Grammatically, the index of an array element should be a numerical expression
and the index of the first element of an array must be 0.

1.2.1.3 Storage characteristics of arrays
The system allocates contiguous memory space to an array based on its defini-
tion, so the storage characteristics can be summarized as “memory is allocated
during definition, the size keeps unchanged during execution, and elements are
stored continuously”.

Figure 1.9 shows an array definition written by a student. Will the memory be
allocated to array a in this case?

8 1 Arrays

1.2.1.4 Comparison of variables of the same type with plain variables
With the rules of arrays in C, we can update the table in Figure 1.6 and obtain
Figure 1.10.

(1) Number of dimensions of an array is determined by the number of indices, that
is, the number of pairs of square brackets. The constant in square brackets indi-
cates the number of elements in an array.

(2) Array names are identifiers.
(3) Values of array elements are of the same type.
(4) When allocating memory space for an array, C allocates a continuous space for

all elements and defines that the array name refers to the beginning address of
the memory allocated. In other words, array names are addresses.

(5) Array elements are accessed by array name with index.
(6) Initialization is done during definition. The syntax of initialization requires curly

brackets.

Array memory space
memory is allocated during definition, the size keeps unchanged
during execution, elements are stored continuously

Will memory be
allocated to array

a in this case?
int x;
int a[x];

int x=100;
int a[x];

E.g.

Figure 1.9: Storage characteristics of arrays.

Plain variable Array Notes

1 Definition type name; type name [constant]…[constant]
Number of dimensions
of an array is equal to
number of indices

2 Name Variable name Array name Identifiers

3 Variable One A group Array elements are of
the same type

4 Storage
unit

Quantity One Multiple Elements in an array
are stored

consecutivelyLength sizeof(type) sizeof(type) * number of variables

Address &name name Allocated by the
system

5 Referencing method name name[index]…[index] Number of dimensions
of an array is equal to
number of indices6 Initialization type name=value

type name[constant] …[constant]
= { a group of initial values}

Figure 1.10: Comparison of arrays with plain variables.

1.2 Storage of arrays 9

1.2.2 Initialization of arrays

We can modify the keyboard input part in the code implementation of the number
reversing problem so that the array is initialized with values. The revised program
is as follows:

01 int main(void)

02 {

03 int i; //Defines an array and initializes array elements

04 int x[10]={1,2,3,4,5,6,7,8,9,10};

05 //for (i=0；i<10; i++) scanf ("%d", &x[i]);

06 for (i=9; i>=0; i--) printf ("%d", x[i]);

07 return 0;

08 }

Statement on line 4 defines the array and initializes array elements, so the keyboard
input assignment can be skipped.

What is the advantage of initializing an array? If we have to debug the program
multiple times, it is more efficient to initialize the array than typing in numbers
repeatedly.

Array initialization defines an array and initializes its elements at the same time.
There are three ways to initialize an array in C, as shown in Figure 1.11.

1.2.2.1 Initialize all elements
In the first case in Figure 1.11, the one-dimensional array m has five elements and
five values are assigned to the array. The two-dimensional array a has two rows and

Case Example Array
size

Notes

1 Initialize all elements
int m[5]= {1,3,5,7,9} 5

int a[2][3] = { {1,3,5}, {2,4,6}}; 2 by 3 A 2-d array is stored in a
row-first manner

2 Initialize some elements
int b[5] = {1,3,5} 5 Uninitialized elements are

set to 0 automatically by
the systemint x[100] ={ 1,3, 5, 7 }; 100

3 Array size determined by
number of initial values

int n[] = {1,3,5,7,9} 5

char c[] =“abcde”; 6 String termination mark ‘\0’
is also an element

An array initialization defines an array and initializes its elements at the same time

Array initialization

E.g.

Figure 1.11: Array initialization.

10 1 Arrays

three columns, so it consists of six elements. Note that how curly brackets are used
when assigning all six values.

1.2.2.2 Initialize some elements
In the second case, the length of array b is 5, but only the first three elements are
initialized with a value. The other elements are automatically initialized with 0 by
the C language system.

1.2.2.3 Array size determined by number of initial values
We can omit the array size in square brackets when defining arrays. The size can be
determined by the system based on the number of initial values. In particular, C al-
lows us to assign initial values to character arrays with strings. Note that the string
termination mark ‘\0’ is an element as well.

1.2.3 Memory layout of arrays

We will introduce the memory layout of arrays through examples.

1.2.3.1 Memory layout of one-dimensional arrays
A one-dimensional array x of size 100 is defined in Figure 1.12. Indices start from 0
and end at 99. The first four elements are initialized with initial values, while the
rest are 0. These elements are stored contiguously in the order of index, that is,
from x[0] to x[99].

1.2.3.2 Memory layout of two-dimensional arrays
As shown in Figure 1.13, two-dimensional array a has two rows and three columns.
Its elements are stored in a row-first manner.

The 0th row is initialized with 1, 3, and 5, while the first row is initialized with 2,
4, and 6. The 0th row is stored first, followed by the first row. Note that a[0] denotes

C defines that array elements
are stored consecutively in

the order of indices

int x[100]={ 1, 3, 5, 7 };

Index 0 1 2 3 4 … i … 98 99

Element value 1 3 5 7 0 0 0 0 0 0

Element storage order x[0] x[1] x[2] x[3] x[4] x[i] x[98] x[99]

Figure 1.12: Memory layout of one-dimensional array.

1.2 Storage of arrays 11

the beginning position of the 0th row and a[1] denotes the beginning position of the
first row.

C defines that the one-dimensional form of a two-dimensional array which de-
notes “row address”.

1.2.4 Memory inspection of arrays

With the help of IDE, we can inspect how arrays are stored in the memory. We shall
start from cases where arrays are initialized. The program is as follows:

01 //Use an initial value list to initialize arrays

02 #include <stdio.h>

03 int main(void)

04 {

05 // Use an initial value list to initialize arrays

06 int m[5]= {1,3,5,7,9};

07 int n[] = {2,4,6,8};

08 int x[8] = {1,3,5,7};

09 char c[] ="abcde";

10 int a[2][3] = { {1,3,5}, {2,4,6}};

11 int i, j;

12

13 //Output 1-dimensional array m as a list

14 printf("1-dimensional array m[5]\n");

15 printf("%s%13s\n", "Element", "Value");

16 for (i = 0; i < 5; i++)

17 {

18 printf("%6d%13d\n", i, m[i]);

19 }

20 printf("\n");

21

int a[2][3]={ {1,3,5}, {2,4,6} };

Row address a[0] a[1]

Element
storage order a[0][0] a[0][1] a[0][2] a[1][0] a[1][1] a[1][2]

Element value 1 3 5 2 4 6

0 1 2
a[0] → 0 1 3 5
a[1] → 1 2 4 6

C defines that the 1
dimensional form of a 2

dimensional array
denotes “row address”

-
-

Figure 1.13: Memory layout of two-dimensional array.

12 1 Arrays

22 // Output 2-dimensional array m as a list

23 printf("2-dimensional array a[2][3]\n");

24 for (i = 0; i < 2; i++) //Row index range

25 {

26 for (j = 0; j < 3; j++) //Column index range

27 {

28 printf("%d ", a[i][j]);

29 }

30 printf("\n");

31 }

32 return 0;

33 }

On line 6, we define an integer array m of size 5 and initialize it. If we type in the
array name m in the Watch window, we can see the beginning address of the array
and values of each element, as shown in Figure 1.14.

On line 7, we define an integer array n without specifying the size and initialize it
with four initial values. We can see that 4 memory units are allocated to it.

On line 8, we define an integer array x of size 8 and partially initialize it. It is
clear that the uninitialized elements are set to 0 by the system.

On line 9, we define a character array c without specifying the size and initialize
it with a string of five characters. The system allocates six storage units, where the
last one has value 0. This is the string termination mark inserted by the system
automatically. It also takes up one storage unit.

On line 10, we define a 2 by 3 two-dimensional array a and initialize it. Each row
of the array has a beginning address, where the address of the first row is also the
beginning address of the entire array.

m n c

a
String termination

mark \‘0’ is
automatically

inserted by the
system

x

Figure 1.14: Inspecting memory of array 1.

1.2 Storage of arrays 13

On line 15, the table header is printed.
On lines 16–19, we use a for loop to output index i and corresponding array

elements m[i].
Program result:

1-dimensional array m[5]

Element Value

0 1

1 3

2 5

3 7

4 9

2-dimensional array a[2][3]

1 3 5

2 4 6

Knowledge ABC Differences between ‘\0’, ‘0’, “0” and 0 in C
Characters are stored as their ASCII values in C. Each character takes up 1 byte. The first value
in the ASCII table is 0, which corresponds to character Null, namely ‘\0’. It is used as the termi-
nation mark of strings and is inserted to the end of strings automatically by the system.

Character ‘0’ has ASCII value 48 or 0 × 30 in hexadecimal form. To convert a number into the
corresponding character in a program, for example, converting number 8 into character 8, we
can write 8+‘0’ in the code.

The character ‘0’ is a character literal, while number 0 is an integer literal. They are different
objects and are stored in different ways in computers. Character literals can be used as integers
in computation.

The difference between “0” and ‘0’ is that “0” is a string literal while ‘0’ is a character literal.
They are completely different. Character literals are wrapped by single quotation marks while
string literals use double quotation marks. A character literal has to be a single character, while
a string literal can have more than one character.

The output of two-dimensional array a is implemented by two for loops.

On line 24, the first for loop iterates through row index i, which has range 0 to 1.
On line 26, the second for loop iterates through column index j, which has range

0 to 2.
In Figure 1.15, we can see that j traverses the range 0 to 2 when i is 0, and tra-

verses the range again when i is 1.

0 1 2

a[0] → 0 1 3 5

a[1] → 1 2 4 6

Row i 0 1

Column j 0 1 2 0 1 2

a[i][j] 1 3 5 2 4 6

Figure 1.15: Inspecting memory of array 2.

14 1 Arrays

When defining an array, the system allocates contiguous memory space to
store its elements based on the array type and number of elements. It is shown in
the Memory window that int n[4] takes up a continuous block of memory with
size 4*4 bytes (in a 64-bit compiling environment, type int takes up 4 bytes,
which can be verified by subtracting addresses of two array elements), as illus-
trated in Figure 1.16.

Similarly, int a[2][3] takes up a continuous block of memory with size 6*4 bytes, as
shown in Figure 1.17.

Note that the array name refers to the address of the entire array, which is also the
beginning address of the array.

With rules of storage and elements referencing, we may now process data in
arrays.

Address Value Variable

18FF24 2 n[0]

18FF28 4 n[1]

18FF2C 6 n[2]

18FF30 8 n[3]

Figure 1.16: Continuous storage of a one-dimensional array.

Row Address Value Variable Row address

Row 0

18FF0C 1 a[0][0]
a[0]

18FF0C18FF10 3 a[0][1]
18FF14 5 a[0][2]

Row 1

18FF18 2 a[1][0]
a[1]

18FF18
18FF1C 4 a[1][1]
18FF20 6 a[1][2]

Figure 1.17: Continuous storage of a two-dimensional array.

1.2 Storage of arrays 15

1.3 Operations on one-dimensional arrays

Example 1.1 Highest score problem
1. Problem description
In the scoring problem we have seen before, there was a step where the highest score was dis-
carded. This is equivalent to finding the maximum of a series of numbers.

2. Algorithm description
We have seen this problem in section “representation of algorithms”, where the scores were
read from keyboard input. Now we can store scores given by referees in an array score[10]. The
algorithm can then be updated accordingly, as shown in Figure 1.18.

Top-level pseudo code First refinement Second refinement

Find the highest one of
scores stored in array
score[10]

Use score[0] as Largest
Counter i=0;

Largest=score[0];

Compare each element in
array score with Largest,
Store the larger in Largest;

while counter i< 10;
if(Largest < score[i])

Largest=score[i];
i increases by 1;

Output Largest Output Largest;

Figure 1.18: Eliminating the highest score using an array.

In the second refinement, a counter i is used to record the number of comparisons. Variable
Largest is initialized with score[0]; then, Largest is compared with score[i] repeatedly and up-
dated with the larger value in the loop body. Once the loop is done, Largest is printed.

3. Code implementation

01 //Finding the maximum number in an array

02 #include <stdio.h>

03 #define SIZE 10

04

05 int main(void)

06 {

07 int score[SIZE]

08 = {89,92,97,95,90,96,94,92,90,98};

09 int i; //Counter

10 int Largest =score[0]; //Initialize Largest with score [0] as a comparison basis

11 for (i = 0; i < SIZE; i++)

12 {

13 if (Largest < score[i])

14 Largest=score[i]; //Find the maximum

15 }

16 printf("The highest score is %d\n", Largest);

17 return 0;

18 }

16 1 Arrays

Program result:
The highest score is 98

Note: the score array is initialized on line 8 so that testing becomes easier.
On lines 11–15, the for loop finds the largest value and stores it in variable Largest.
Based on this program, it is trivial to write a program that finds the minimum number. Now we
can discard both the highest score and the lowest score by replacing them with 0.

4. Debugging
One should carefully design test cases for inspection or verification. Critical points in the de-
bugging of the earlier program are shown in Figure 1.19.

– Inspect memory layout of 1-d array
– Reference of array elements
– Use breakpoints to find required values quickly

11 for (i= 0; i< SIZE; i++)
12 {
13 if (Largest < score[i])
14 Largest=score[i];

// Find the maximum
15 }

Debugging
plan

Figure 1.19: Debugging the “eliminating highest score” program.

Figure 1.20 shows the score array in the Watch window. There are 10 elements, each of which
are initialized with an initial value. The maximum value Largest is initialized with the value of
score[0], which is 89.

In Figure 1.21, the condition of if statement in the for loop evaluates to false when i = 0, so
Largest keeps unchanged.

Figure 1.20: Memory inspection of a one-dimensional array 1.

1.3 Operations on one-dimensional arrays 17

In Figure 1.22, i becomes 1 after increment and score[1] = 92.

Figure 1.21: Memory inspection of a one-dimensional array 2.

Figure 1.22: Memory inspection of a one-dimensional array 3.

18 1 Arrays

In Figure 1.23, Largest becomes 92 when i = 1.

In Figure 1.24, we insert a breakpoint in the line pointed by the yellow arrow to inspect pro-
gram execution conveniently. Using the Go command, we can interrupt the program at this
statement whenever the condition of if statement evaluates to true. Here i = 2 and score[2] has
value 97, which is larger than the value of Largest, 92.

In Figure 1.25, we execute the Go command and the program pauses again. Now, i = 9 and
score[9] has value 98, which is larger than the value of Largest, 97.

Figure 1.23: Memory inspection of a one-dimensional array 4.

Figure 1.24: Memory inspection of a one-dimensional array 5.

1.3 Operations on one-dimensional arrays 19

In Figure 1.26, the loop terminates and the final value of Largest is 98.

Example 1.2 Computing total score
Scores given by judges are stored in an array score[10].

[Analysis]
1. Algorithm design
The algorithm is shown in Figure 1.27. Code implementation can be easily adapted from the pseudo
code in the second refinement.

Figure 1.25: Memory inspection of a one-dimensional array 6.

Figure 1.26: Memory inspection of a one-dimensional array 7.

20 1 Arrays

Top-level pseudo code First refinement Second refinement

Compute sum of scores
stored in array score[10]

Use total to store the sum ,and
score[10] to store scores

Initialize score[10]
Sum total =0;

Add values of elements in score
to total repeatedly

while (i<10)
total += score[i];
i++;

Output result Output total

Figure 1.27: Computing total score.

After eliminating the highest score and the lowest score, we can compute the total score that
complies with the scoring rule.

2. Code implementation
01 //Compute sum of array elements

02 #include <stdio.h>

03 #define SIZE 10

04

05 int main(void)

06 {

07 int score[SIZE] = {98,92,89,95,90,96,94,92,90,97};

08 int i; //counter

09 int total = 0; //sum

10

11 for (i = 0; i < SIZE; i++)

12 {

13 total +=score[i]; //Compute sum of array elements

14 }

15 printf("The total score is %d\n", total);

16 return 0;

17 }

Program result:
The total score is 933

Example 1.3 Number guessing game
An array stores an increasing number sequence 5, 10, 19, 21, 31, 37, 42, 48, 50, 55. Use binary
search to find elements with key values 19 and 66.

[Analysis]
1. Algorithm analysis
Let low denote the position of the minimum value in the searching range, and high denote the
position of the maximum value in the searching range. The comparison position in binary search
is then mid = (low + high)/2. Comparing key value with the element at position mid yields one of
the following results:
– Equal: the element at position mid is what we are looking for.
– Greater: we will look for the element in the lower range by setting low =mid + 1.
– Less: we will look for the element in the higher range by setting high =mid – 1.

1.3 Operations on one-dimensional arrays 21

Figures 1.28 and 1.29 illustrate processes of finding values 19 and 66.

R[] 5 10 19 21 31 37 42 48 50 55

Position 0 1 2 3 4 5 6 7 8 9

Search for
19

low highmid

R[] 5 10 19 21 31 37 42 48 50 55

Position 0 1 2 3 4 5 6 7 8 9

low highmid

Now mid=5, R[mid] . key=37> k, we proceed in range R[0…4]

Now mid=2, R[mid] . key=19=k, the search succeeded

Figure 1.28: Binary search: searching for k = 19.

R[] 5 10 19 21 31 37 42 48 50 55
Position 0 1 2 3 4 5 6 7 8 9

Search for
66

low highmid

R[] 5 10 19 21 31 37 42 48 50 55
Position 0 1 2 3 4 5 6 7 8 9

low highmid

Now mid=5, R[mid].key=37<k, we proceed in range R[6…9]

Now mid=9, R[mid].key=55<k, we proceed in range
R[10…9].Because low>high, the search failed.

Now mid=8, R[mid].key=50<k, we proceed in range R[9…9]

R[] 5 10 19 21 31 37 42 48 50 55
Position 0 1 2 3 4 5 6 7 8 9

low mid

Figure 1.29: Binary search: searching for k = 66.

22 1 Arrays

2. Code implementation
#include <stdio.h>

#define N 10

int main(void)

{

int a[N]={5,10,19,21,31,37,42,48,50,55};

int low=0, high=N-1,mid;

int key;

int flag=0; //Search flag, 0=fail, 1=success

printf("Please enter number to search:");

scanf("%d",&key);

while (low<=high) //Search range is not empty

{

mid = (low+high+1)/2;

if (a[mid]== key) //Match

{

flag=1;

break;

}

else

{

if (a[mid]> key) high = mid-1; //Continue searching in lower range

else low = mid+1; // Continue searching in higher range

}

}

if (flag==1)

printf("Search succeeded, index of %d is %d\n",key,mid);

else

printf("Search failed\n");

return 0;

}

Example 1.4 Assign values to a one-dimensional array using loop
Find the first 20 entries of the Fibonacci sequence.

The Fibonacci sequence is as follows: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . Its recurrence equation is
F(0) = 0， F(1) = 1，
F(n) = F(n–1) + F(n–2)

[Analysis]
1. Data structure design
Since indices and values in the Fibonacci sequence are 1-to-1 corresponded, we can store values
into a one-dimensional integer array, which will be represented by int f[20] in this example.
2. Algorithm design
We shall construct the first 20 entries based on the recurrence equation of the Fibonacci se-
quence, store them into the array and eventually output them.

1.3 Operations on one-dimensional arrays 23

The algorithm is shown in Figure 1.30.

Top-level pseudo code First refinement Second refinement

Store result in an array of
size 20 and output result

Initialize array [20]
with the first two values
of the sequence

int f[20]={ 0, 1 }
i=2;

Fill in the array using
the recurrence relation
starting from f[2]

while i< 20
f [i] = f [i-1]+f [i-2];
i++;

Output result Output elements in array f

Figure 1.30: Computing values of Fibonacci sequence.

3. Code implementation
1 //Find first 20 entries in Fibonacci sequence

2 #include <stdio.h>

3 int main(void)

4 {

5 int i;

6 int f[20]={0, 1}; //Array initialization

7

8 for (i=2; i<20; i++) //Generate the sequence

9 {

10 f[i]=f[i-1]+f[i-2]; //Recurrence equation of Fibonacci equation

11 }

12 for (i=0; i<20; i++) //Output array elements

13 {

14 if (i%5==0) printf("\n"); //Print 5 entries on each line

15 printf("%8d", f[i]);

16 }

17 return 0;

18 }

Program result:
0 1 1 2 3

5 8 13 21 34

55 89 144 233 377

610 987 1597 2584 4181

4. Program analysis
We shall analyze characteristics of iterated data processing by reading the program.

Lines 8–11 insert values into the Fibonacci array. Let the index be i, which corresponds to
array element f[i]. We can construct a table for them and fill in it with their values, as shown in
Figure 1.31. In addition to dynamic tracing and debugging, a static approach like this can also
help us analyze patterns in program execution. Note that indices start from 0, so the index of
the last element should be one less than the array size.

24 1 Arrays

Index i 0 1 2 3 4 5 … 18 19 20

f[i] 0 1 2 3 5 8 … … … …

Figure 1.31: Analysis of Fibonacci sequence program.

5. Discussion
(1) What if we do not initialize array f?

Discussion: If so, values of f[0] and f[1] will be arbitrary values, so further computation
will be wrong.

(2) How can we construct the Fibonacci sequence of arbitrary size?
Discussion: We can make the array size a symbol constant, so the program can be easily
adapted.

(3) What if we change the execution condition of the first for loop (line 8) to i ≤ 20?
Discussion: An out-of-bound error will happen because we are going to write to f[20],
which is not in the range of the array. This is a logic error in the program.

Program reading exercise
Teacher review system statistics
The university Mr. Brown works for has built an online teacher review system, where students
can rate teachers with a score in the range 6–10. Suppose we have randomly collected 50 rat-
ings of a teacher and stored them into an array, please write a program that generates number
of occurrences of each possible score.

1. Algorithm description
Let the ratings array be rating[]. It records number of occurrences of each score. The index i can
be computed by subtracting 6 from score x (6 ≤ x ≤ 10), that is, i = x–6, so we can use values
score–6 as indices of the ratings array. Whenever we find a new occurrence of a certain score,
we add one to the corresponding array element.

2. Code implementation
1 #include<stdio.h>

2 #define RESPONSE_NUM 50 //Size of review array

3 #define RATING_SIZE 5 //Size of ratings array

4

5 int main(void)

6 {

7 int answer; //Counter

8 int counter;

9

10 int rating[RATING_SIZE]={0}; //Rating array

11 int responses[RESPONSE_NUM] //Review array that stores students’reviews

12 ={ 6,8,9,10,6,9,8,7,7,10,6,9,7,7,7,6,8,10,7,

13 10,8,7,7,6,7,8,9,7,8,7,10,6,7,6,7,7,10,8,

14 6,7,7,8,6,6,7,8,9,7,7,10

15 };

16

1.3 Operations on one-dimensional arrays 25

17 //Use score-6 as index of rating array, add 1 to an element if we find new

18 //occurrence of the corresponding score

19 for (answer=0; answer<RESPONSE_NUM; answer++)

20 {

21 rating[responses[answer] -6]++;

22 }

23

24 //Print result in a table

25 printf("%s%17s\n","Rating","Number of occurrences");

26 for (counter=0; counter<RATING_SIZE; counter++)

27 {

28 printf("%6d%17d\n",counter+6,rating[counter]);

29 }

30 return 0;

31 }

Program result:
Rating Number of occurrences

6 10

7 19

8 9

9 5

10 7

1.4 Operations on two-dimensional arrays

Having seen operations on one-dimensional arrays, we can proceed to two-dimensional
arrays.

Example 1.5 Finding maximum in a two-dimensional array
There were three groups in Mr. Brown’s class, each with six students. Now that the final exam
has finished, please write a program to find the highest score and the corresponding student.

[Analysis]
1. Data description
As shown in Figure 1.32, we can store the scores in a two-dimensional array.

Essentially, this problem is equivalent to finding the maximum value in a two-dimensional
array with N rows and M columns and its row and column indices. To do this, we can simply
repeat the process of finding the maximum value in a one-dimensional array N times.

Figure 1.33 shows how row and column indices change when traversing the array in a row-
first manner. We first traverse row 0, with column index changing from 0 to M–1. Then we tra-
verse row 1, with column index changing from 0 to M–1 as well. We repeat this process until we
reach row N–1.

26 1 Arrays

Group Grade
1 80 77 75 68 82 78
2 78 83 82 72 80 66
3 73 50 62 60 91 72

Figure 1.32: Exam results.

Changes of row and column values when
traversing in a row-first manner

Row i 0 1 … N-1
Column j 0~M-1 0~M-1 0~M-1…

Column
Row 0 1 2 3 4 5

0 80 77 75 68 82 78
1 78 83 82 72 80 66
2 73 50 62 60 91 72

Figure 1.33: Traversing order of two-dimensional arrays.

2. Algorithm description
Figures 1.34 and 1.35 show the pseudo code of the algorithm.

Top-level pseudo code First refinement

Input 2-d array Input 2-d array

Find the maximum element and
its row and column indices

Use the first element as comparison basis max

Compare each element (row-first manner)with max,
Update max with the larger
Record the corresponding indices line and col

Output result Output result

Figure 1.34: Pseudo code of finding maximum value in two-dimensional array 1.

1.4 Operations on two-dimensional arrays 27

Second refinement third refinement
Input 2-d array a[N][M] in a
row-first manner(or initialize)

int i, j, a[N][M], max, line, col;
for(i=0;i<N;i++)

for(j=0;j<M;j++)
scanf("%d", &a[i][j]);

max=a[0][0]; line=col=0; max=a[0][0]; line=col=0;
i=j=0;
while row index i<N for(i=0;i<N;i++)

while column index j<M for(j=0;j<M;j++)
if (max<a[i][j]) if (max<a[i][j])

max=a[i][j] {
line=i max=a[i][j];
col=j line=i;

j++; col=j;
i++; j=0; }

Output max,line and col printf(“\n max=%d\t line=%d\t col=%d\n”, max, line, col);

Figure 1.35: Pseudo code of finding maximum value in two-dimensional array 2.

3. Code implementation
We can write the code based on the second refinement, in which we use for statements to
implement while loops. The complete code is as follows:

01 #include <stdio.h>

02 #define N 3

03 #define M 6

04

05 int main(void)

06 {

07 int i,j,max,line,col;

08 int a[N][M]= { {80,77,75,68,82,78},

09 {78,83,82,72,80,66},

10 {73,50,62,60,91,72}

11 };

12 max=a[0][0];

13 line=col=0;

14 for (i=0; i<N; i++)

15 {

16 for (j=0; j<M; j++)

17 {

18 if (max<a[i][j])

19 {

20 max=a[i][j];

21 line=i;

22 col=j;

23 }

24 }

25 }

26 printf("max=%d\t line=%d\t col=%d\n",max,line,col);

28 1 Arrays

27 return 0;

28 }

Program result:
max=91 line=2 col=4。

4. Debugging
Based on the characteristics of two-dimensional arrays and key points of this problem, we
designed a few test cases for debugging, as shown in Figure 1.36.

18 if(max<a[i][j])
19 {
20 max=a[i][j];
21 line=i;
22 col=j;
23 }

• Inspect memory layout of 2-d array
• Pattern of row and column indices
• Use breakpoints to find required values quickly

Debugging
plan

Figure 1.36: Key points of debugging the program that finds maximum value in a two-dimensional
array.

One may notice that the row addresses of a two-dimensional array are represented in the form of
a one-dimensional array in the IDE debugger, as shown in Figure 1.37. To traverse the entire array,
we traverse every column for each row. Note that a two-dimensional array is stored row by row in
memory (each row as a one-dimensional array).

Address Row 0 1 2 3 4 5

a[0] 0x18feec 0 80 77 75 68 82 78
a[1] 0x18ff04 1 78 83 82 72 80 66
a[2] 0x18ff1c 2 73 50 62 60 91 72

Row address reference
of 2-d array

Pattern of row and column indices
Row I 0 1 … N-1

Column j 0~M-1 0~M-10~M-1 …

Figure 1.37: Data storage in finding maximum in two-dimensional array problem.

1.4 Operations on two-dimensional arrays 29

As shown in Figure 1.38, we insert one breakpoint to the line where the current maximum
value is updated and to the line where the result gets printed. When the program enters the
first loop, as shown in Figure 1.39, the 0th element of the array is selected as the comparison
basis, whose value is a[0][0] = 80. In Figure 1.40, the program pauses after we execute the Go
command. The value of the element with index i = 0 and j = 4 is 82, which is larger than max.

Figure 1.38: Debugging the program that finds maximum in two-dimensional array 1.

Figure 1.39: Debugging the program that finds maximum in two-dimensional array 2.

30 1 Arrays

Figure 1.40: Debugging the program that finds maximum in two-dimensional array 3.

In Figure 1.41, the program pauses after we execute the Go command. The value of the element
with index i = 1 and j = 1 is 83, which is larger than max.

Figure 1.41: Debugging the program that finds maximum in two-dimensional array 4.

In Figure 1.42, the program pauses after we execute the Go command. The value of the element
with index i = 2 and j = 4 is 91, which is larger than max.

Figure 1.42: Debugging the program that finds maximum in two-dimensional array 5.

In Figure 1.43, the program completed scanning the array, and the loop is terminated. Now, i = 3,
j = 6, and the maximum value of the array is max = 91.

1.4 Operations on two-dimensional arrays 31

Figure 1.43: Debugging the program that finds maximum in two-dimensional array 6.

Conclusion Execution order of nested loops
As shown in Figure 1.44, C has the following rules for executing nested loops:
1. Check the outer loop execution condition: if it is met, the body of the outer loop is exe-

cuted; otherwise, the outer loop is terminated.
2. Check the inner loop execution condition: if it is met, the body of the inner loop is exe-

cuted; otherwise, the inner loop is terminated, and the program proceeds to loop incre-
ment of the outer loop.

Program reading exercise Whac-A-Mole
Whac-A-Mole is a classic computer game, in which moles pop up from holes at random. Players
need to force them back to their holes and obtain rewards by using a mallet to hit the moles on the
head.

1 for(i=0;i< N;i++)
2 {
3 for(j=0;j< M;j++)

Outer
loop

4 {
5 if (max<a[i][j])

Inner
loop

6 { max=a[i][j];
7 line=i;
8 col=j;}
9 }
10 }

Inner loop
condition

Inner loop body

Inner loop
increment

Outer loop
increment

T

T

F

F

Outer loop
condition

Figure 1.44: Execution order of nested loops.

32 1 Arrays

1. Algorithm description
The program uses random functions srand and rand to generate positions at which moles ap-
pear. The following Whac-A-Mole program has a 3 by 3 “ground” and treats user input coordi-
nates as positions the mallet hits. Although it is a console program and has a simple user
interface, the way it works is the same as a Whac-A-Mole game with beautiful graphics.

2. Code implementation
#include <stdio.h>

#include <stdlib.h>

#include <time.h>

//To simplify the code, we omitted curly brackets for some of the if-else statements

int main(void)

{

int times = 0; //Number of chances

int mousey = 0; //Row index of the mole

int mousex = 0; //Column index of the mole

int posy = 0; //Row index of the mallet

int posx = 0; //Column index of the mallet

int hits = 0; //Number of hits

int missed = 0; //Number of misses

int num = 0, row = 0, col = 0;

srand(time(0));

//Obtain game chances

printf("How many times do you want to play？：");

scanf("%d", ×);

//Print the map

printf("***\n***\n***\n");

printf("Mallet position input should be row index followed by column index, separated by

space\n");

//Actual game process

for (num = 1;num <= times;num++)

{

//Obtain position of mole and mallet

mousey = rand() % 3 + 1;

mousex = rand() % 3 + 1;

do

{

printf("Enter mallet position：");

scanf("%d %d", &posy, &posx);

} while (posy < 1 || posy > 3 || posx < 1 || posx > 3);

//Update number of hits and misses

if (mousey == posy && mousex == posx) hits++;

else missed++;

//Print the map

for (row = 1;row <= 3;row++)

{

for (col = 1;col <= 3;col++)

{

1.4 Operations on two-dimensional arrays 33

if (row == posy && col == posx) printf("O");

else if (row == mousey && col == mousex) printf("X");

else printf("*");

}

printf("\n");

}

//Text indicating hit or miss

if (mousey == posy && mousex == posx) printf("Bingo!\n");

else printf("You missed.\n");

//Print total score

printf("%d hits，%d misses\n", hits, missed);

}

return 0;

}

Program reading exercise Determining nationality
Six people are staying at a hotel, each from a different country. These countries are America,
Germany, Britain, France, Russia, and Italy. We shall use letters A to F to denote these people. It
is known that:
(1) A and the American are doctors.
(2) E and the Russian are technicians.
(3) C and the German are technicians.
(4) B and F used to be soldiers, and the German has never been a soldier.
(5) The French is older than A; the Italian is older than C.
(6) B and the American are going to Xi’an next week, while C and the French are going to

Hangzhou next week.

Determine the nationalities of these people.

[Analysis]
1. Data analysis
We shall first use the given information to eliminate the wrong answers.

Based on conditions 1, 2, and 3, we can conclude that A is not American, E is not Russian,
and C is not German. Based on occupation limits (A and the German have different jobs, so do E
and the American, E and the German, C and the American, and C and the Russian), it is clear
that A is neither Russian nor German, E is neither American nor German, and C is neither
American nor Russian.

It can be inferred from conditions 4 and 5 that neither B nor F is German, A is not French, and
C is not Italian.

Given condition 6, we know B is neither American nor French (because B and the French are
going to different cities next week), and C is not French.

To sum up:
A: A is not American, Russian, German, or French.
B: B is not German, American, or French.
C: C is not German, American, Russian, Italian, or French.
D: no information.
E: E is not American or German.
F: F is not German.

34 1 Arrays

We can store the earlier information into matrix a, and country names into another one-
dimensional array countries, as shown in Figure 1.45.

Rows of matrix a represent these guests, while columns represent their home countries. The
0th row is a special row for progress flags, which is either 1 for not processed or 0 for proc-
essed. The values of other elements indicate nationalities. For example, 4 represents Germany
in the countries array. If a value is 0, the person represented by the row does not come from the
country represented by the column.

2. Algorithm design
Following steps 2 and 3 in Figure 1.45, we can find the solution by repeatedly zeroing out rows.

0 1 2 3 4 5 6

Am Br Fr Ge It Ru

0 1 1 1 1 1 1

1 A 0 2 0 0 5 0

2 B 0 2 0 0 5 6

3 C 0 2 0 0 0 0

4 D 1 2 3 4 5 6

5 E 0 2 3 0 5 6

6 F 1 2 3 0 5 6

Column data process flag
1: not processed, 0:processed

Zero out other elements in row x

Find a column y with only one non-zero element
Counter num=1, row index x=4, column index y=4

2

3

1

*countries[7] = {" ","American","British","French","German","Italian","Russian "}; }

0 1 2 3 4 5 6
American British French German Italian Russian

Figure 1.45: Storage and procedures of determining nationalities problem.

3. Code implementation
#include<stdio.h>

char *countries[7]={" ","American","British","French","German","Italian","Russian"};

//The asterisk before countries indicates that the array stores addresses,

//which are beginning addresses of strings

int main(void)

{

int a[7][7],i,j,k,num,x,y;

for(i=0;i<7;i++) //Initialize the matrix

for(j=0;j<7;j++) a[i][j]=j; //Row for person, column for country,

//and value for nationality

for(i=1;i<7;i++) a[0][i]=1; //0-th element in each column is the progress mark,

//1 means not processed

//Enter know information, 0 means the person is not from a country

a[1][1] = a[1][3] = a[1][4] = a[1][6] = 0; // A is not American, Russian, German or French

a[2][1]= a[2][3]= a[2][4] =0; // B is not German, American or French

a[3][1] = a[3][3] = a[3][4]= a[3][5] =a[3][6] = 0;

// C is not German, American, Russian, Italian or French

1.4 Operations on two-dimensional arrays 35

a[5][1] = a[5][4]= 0; // E is not American or German

a[6][4]=0; //F is not German

while(a[0][1]+a[0][2]+a[0][3]+a[0][4]+a[0][5]+a[0][6]>0)

//Jump out of the loop once every column is processed

{

for(i=1;i<7;i++) //i is column index, we process the matrix column by column

{

if(a[0][i]) //Process the column if it hasn’t been processed

{

for(num=0,j=1;j<7;j++) //j is row index

{

if(a[j][i])

{

num++; //num counts non-zero elements in the column

x=j;

y=i; //x and y are coordinates of the non-zero element

}

}

if(num==1) //If there is only one non-zero element,

//zero out the row (except the non-zero element)

{

for(k=1;k<7;k++)

{

if(k!=y)a[x][k]=0;

a[0][y]=0; //Set column y to be “processed”

}

}

}

}

}

for(i=1;i<7;i++) //Print result

{

printf("%c is",'A'-1+i); //Print person

for(j=1;j<7;j++)

{

if(a[i][j]!=0)

{

printf("%s\n",countries[a[i][j]]); //Print country

break;

}

}

}

return 0;

}

Program result:
A is Italian

B is Russian

36 1 Arrays

C is British

D is German

E is French

F is American

1.5 Operations on character arrays

Example 1.6 Password verification
When a user logs into a system, the system needs to compare the password he/she enters with
the one used for registration. For example, a user signed up with password abc24680, as
shown in Figure 1.46. How should the system store this password?

Index 0 1 2 3 4 5 6 7 8 9 ... 18 19

Registered
password 'a' 'b' 'c' '2' '4' '6' '8' '0'

Figure 1.46: Password used for registration.

[Analysis]
1. Storage structure of data
If we use character arrays to store passwords, there are two possible ways to assign initial val-
ues: the first is to assign characters one by one, while the other is to assign a string. Characters
stored in these two approaches are the same, but termination mark ‘\0’ will be automatically
inserted to the end of the string by the system, as shown in Figure 1.47.

Index 0 1 2 3 4 5 6 7 8 9 ... 18 19
Registered
password 'a' 'b' 'c' '2' '4' '6' '8' '0'

Storage
solution 1 char password1[20]={'a','b','c','2','4','6','8','0'};

Storage
solution 2 char password2[20]="abc 24680";

Index 0 1 2 3 4 5 6 7 8 9 ... 18 19
Registered
password 'a' 'b' 'c' '2' '4' '6' '8' '0' \0

What is the
difference between
these two solutions?

Solution 1

Solution 2 The string has
termination mark

Figure 1.47: Storage approaches of character sequence.

Note: one can store strings of any length in C. When storing strings in character arrays, pro-
grammers need to make sure that the array size is large enough so that the longest string can
fit in; if the string is longer than the array, characters beyond the array bound will override data
after the array in memory.

2. Algorithm description

Figure 1.48 shows the stepwise refined algorithm.

1.5 Operations on character arrays 37

In the second refinement, ch! = ‘\n’ checks whether there are more inputs. The loop control
variable i acts as a counter as well. strlen is a library function that computes string length (not
counting termination mark ‘\0’). To determine whether the entire string has been checked, we
compare i with the string length.

3. Code implementation
01 #include <stdio.h>

02 #include <string.h>

03 int main(void)

04 {

05 int i=0;

06 char ch;

07 char password[20]="abc24680";

08 ch=getchar();

09 while (ch!='\n')

10 {

11 if (ch != password[i]) break;

12 ch=getchar();

13 i++;

14 }

15 if (i==strlen(password)) printf("Password is correct\n");

16 else printf("Password is wrong\n");

17 return 0;

18 }

Note that the header file for library function strlen on line 19 is included on line 2.

Top-level pseudo code First refinement

Compare keyboard input characters
and registered password characters
one by one
Output “Password is wrong" upon
mismatch

Store registered password in array password[]
Read keyboard input character in ch
while there is remaining input

Compare ch with password[]
Output “Password is wrong” upon mismatch

Output “Password is correct” if there
is no mismatch Output “Password is correct” if there is no mismatch

Second refinement
char password[20]; int i=0;
ch=getchar();
while (ch!='\n')

if (ch != password[i])
printf(“Password is wrong");
Jump out of loop

ch=getchar();
i++;

if (i==strlen(password))
printf(“Password is correct");

Figure 1.48: Password verification.

38 1 Arrays

Example 1.7 Cracking Caesar code
What did the mysterious email Daniel sent to his father (see Figure 1.49) say? How many charac-
ters were shifted? How should Mr. Brown implement his algorithm?

ciphertext[]="lettc fmvxlhec hehhc pszi csy"

Left shift by ? positions

Decryption
Ciphertext Plaintext

Figure 1.49: Cracking Caesar code.

[Analysis]
1. Data processing
Without loss of generality, we shall use right shift (the alphabet is shifted by one character to its
right each time) in the following discussion. To crack the ciphertext, we can list all 26 possible
results and look for a meaningful string. Figure 1.50 shows the case of shifting by one character.

Ciphertext Shift Plaintext
Normal case ciphertext[i]

1 position

ciphertext[i]+1
Special case ‘z’ ‘a’

Derivation ‘z'='a'+25 'z'+1='a'+25+1
→'a'+26%26

The range of shift
of English letters is

0 to 25, so mod is 26

ciphertext [i]=(ciphertext [i]+1 -'a') %26 + 'a'

Universal
formula

Right shift by x positions

We will use right
shifts instead of left

shifts for simpler
computation

ciphertext+1 corresponds to the
position of the character in the alphabet

Decryption
Ciphertext Plaintext

Figure 1.50: Character shifting analysis.

Normally, if ciphertext is ciphertext[i], its plaintext would be ciphertext[i] + 1, except character
‘z’, whose plaintext is ‘a’. In other words, we need to return to the beginning of the alphabet
when reaching the end. Let us examine this case more carefully.

Ciphertext character ‘z’ can be represented by the character ‘a’ plus 25, namely ‘z’ = ‘a’ + 25.
Hence plaintext ‘z’ + 1 = ‘a’ + 25 + 1 should be the character ‘a’.

We can use modular arithmetic (mod 26) to eliminate the 26 in the equation. Modular arith-
metic helps us return to the beginning of the alphabet when going out of bound.

By now, we have derived the universal formula for right shifting by 1 character. The expres-
sion inside parentheses indicates the position of ciphertext character plus 1 in the alphabet. For
example, if character ciphertext[i] is ‘b’, we have:

1.5 Operations on character arrays 39

ciphertext[i]+1-'a'='b'+1-'a'=2 //’b’+1 is shifted by 2 characters in the alphabet

(ciphertext[i]+1-'a')%26+'a'=2%26+'a'='c' //’b’ becomes ‘c’ after right shifting by 1

character

2. Algorithm description
Figure 1.51 shows the pseudo code of the algorithm.

In the second refinement, ‘\0’ is used to determine whether the entire string has been proc-
essed. Space is represented by a space wrapped with single quotation marks. The shifted ci-
phertext is computed using the formula we derived earlier. When printing strings, a number
indicating the number of characters shifted is added to the beginning. Finally, we need to find a
meaningful string in printed contents manually.

3. Code implementation
01 #include "stdio.h"

02 #define SIZE 80

03 int main(void)

04 {

05 char ciphertext[SIZE]="lettc fmvxlhec hehhc pszi csy";

06 int i=0,j=0;

07 printf("%s\n",ciphertext);

08 while (j<26)

09 {

Top -level pseudo code First refinement

– Right shift string by 1 position
– Print string
– Repeat process above 26 times

Repeat process below 26 times
while not reaching string end

ciphertext is not space
right shift ciphertext

print ciphertext string

Second refinement
while(j<26)

while(ciphertext[i]!='\0') //while not reaching string end
if (ciphertext[i] !=‘ ’) //skipspace

ciphertext[i]=(ciphertext[i]+1-‘a’)%26+‘a’ //right shift by 1
i++

printf("%d:%s\n", j, ciphertext)
i=0
j++

Finally, we need
to manually find
meaningful string

Figure 1.51: Algorithm for cracking Caesar code.

40 1 Arrays

10 while (ciphertext[i]!='\0')

11 {

12 if (ciphertext[i]!=' ')

13 {

14 ciphertext[i]=(ciphertext[i]+1-'a')%26+'a';

15 }

16 i++;

17 }

18 printf("%d:%s\n",j,ciphertext);

19 i=0;

20 j++;

21 }

22 return 0;

23 }

Program result:
lettc fmvxlhec hehhc pszi csy

0:mfuud gnwymifd ifiid qtaj dtz

1:ngvve hoxznjge jgjje rubk eua

2:ohwwf ipyaokhf khkkf svcl fvb

3:pixxg jqzbplig lillg twdm gwc

4:qjyyh kracqmjh mjmmh uxen hxd

5:rkzzi lsbdrnki nknni vyfo iye

6:slaaj mtcesolj olooj wzgp jzf

7:tmbbk nudftpmk pmppk xahq kag

8:unccl oveguqnl qnqql ybir lbh

9:voddm pwfhvrom rorrm zcjs mci

10:wpeen qxgiwspn spssn adkt ndj

11:xqffo ryhjxtqo tqtto belu oek

12:yrggp szikyurp uruup cfmv pfl

13:zshhq tajlzvsq vsvvq dgnw qgm

14:atiir ubkmawtr wtwwr ehox rhn

15:bujjs vclnbxus xuxxs fipy sio

16:cvkkt wdmocyvt yvyyt gjqz tjp

17:dwllu xenpdzwu zwzzu hkra ukq

18:exmmv yfoqeaxv axaav ilsb vlr

19:fynnw zgprfbyw bybbw jmtc wms

20:gzoox ahqsgczx czccx knud xnt

21:happy birthday daddy love you

22:ibqqz cjsuiebz ebeez mpwf zpv

23:jcrra dktvjfca fcffa nqxg aqw

24:kdssb eluwkgdb gdggb oryh brx

25:lettc fmvxlhec hehhc pszi csy

It is clear that the twenty-first string is what we want: “happy birthday daddy love you”. Mr.
Brown was impressed by what he saw: Daniel had not learned to program, but he was able to
manually compute the ciphertext without mistakes.

1.5 Operations on character arrays 41

Example 1.8 Sorting family names
Please write a program to sort the following family names in alphabetical order.

Zhao, Zhou, Zhang, Zhan, Zheng

[Analysis]
1. Data storage
Each family name is a string, so multiple family names are multiple strings, which can be stored
into a two-dimensional character array, as shown in Figure 1.52. Since we have five family names,
the number of rows in the array should be 5. The longest name has five characters, so the number
of columns should be 6 to store the name and a termination mark. The one-dimensional form of
the array can represent the beginning address of a row in a two-dimensional array.

char c[3][6]={“Zhao","Zhou", "Zhang","Zhan","Zheng"}

The beginning address of
a row in a 2-dimensional
array can be represented

by the 1-dimensional
form of the array.

C[0] Z h a o \0 \0
C[1] Z h o u \0 \0
C[2] Z h a n g \0
C[3] Z h a n \0 \0
C[4] Z h e n g \0

Figure 1.52: Storage of multiple strings.

2. Algorithm description
The pseudo code is shown in Figure 1.53.

C provides many library functions to process strings. As shown in Figure 1.54, this algorithm
requires strcpy for string copying and strcmp for string comparison.

Top-level pseudo code First refinement Second refinement

Find the largest string
among multiple strings

Store M strings in c[M][6] char c[M][6],char str[6]
Use the first string as
comparison basis str

Use c[0] as comparison
basis, and copy it into str

Compare each string with in row
order, store the larger in str

i=1;
while i< M

if str<c [i]
Copy c[i]into str

i++;
Output result Output result Output str

Figure 1.53: Sorting multiple strings.

42 1 Arrays

Function Functionality Return value

strcpy(character array, string)
Copy string into the

character array

strcmp(string1,string2)
Compare two strings

alphabetically

0:equal
Positive number:
string 1>string2

Negative number:
string 1<string2

#include <string.h>

Figure 1.54: String processing functions.

Knowledge ABC String processing functions
C provides various string processing functions, which handle input, output, concatenation,
modification, comparison, conversion, copy, and search of strings. Using these functions sim-
plifies programming tasks.

To use string functions for input and output, we should include the header file “stdio.h” first.
To use other string functions, we should include the header file “string.h”.

Please refer to Appendix C of Volume 1 for function prototypes and explanations of common
string functions.

3. Code implementation
01 #include <stdio.h>

02 #include <string.h>

03 #define M 5

04 int main(void)

05 {

06 char c[M][6]= {"Zhao","Zhou","Zhang","Zhan","Zheng"};

07 char str[6];

08 int i;

09

10 strcpy(str, c[0]); //Use string copy function to copy c[0] into array str

11 for (i=1; i<M; i++)

12 {

13 if (strcmp(str, c[i])< 0) //if str is less than c[i]

14 {

15 strcpy(str, c[i]); //then copy c[i] into str

16 }

17 }

18 printf("The largest string is:%s\n", str);

19 return 0;

20 }

Program result: The largest string is Zhou.

1.5 Operations on character arrays 43

On line 10, we use the string copy function to copy c[0] into array str.
On line 13, we compare the contents of str and c[i].
On line 15, we copy the larger string into str.

4. Debugging
Based on characteristics of the earlier program, we can conclude the key steps in debugging as
follows:

Inspecting a two-dimensional character array: string initialization and termination mark.
Inspecting row addresses of a two-dimensional array: the beginning address of a row in a

two-dimensional array is represented by the array name suffixed with one-dimensional index;
Inspecting how strcpy and strcmp functions work.
Figure 1.55 shows the two-dimensional character array c after initialization. Each row has

length 6 and stores a string. If a string has less than six characters, the system pads it with 0.
The address of a row is the beginning address of the string in that row, represented by c[i]. i is
an integer in the range 0–5.

Figure 1.55: Finding the largest string debugging, step 1.

44 1 Arrays

When the one-dimensional array character str was not initialized, its elements were decimal num-
ber –52, which corresponded to random Chinese characters. The reason “Zhou” is also displayed
is that the system stops upon reaching the termination mark ‘\0’ when displaying strings.

We use strcpy function to copy c[0] into str. In Figure 1.56, this change is shown in the Watch
window.

In Figure 1.57, i has value 1, and c[i] has value “Zhou” in the first iteration.
In Figure 1.58, the strcpy function in the if statement is executed and str now stores the string

“Zhou”. This indicates that the result of the strcmp function is less than 0.

1.6 Summary

Arrays are one of the most commonly used data structures in programming. An
array can be one-dimensional, two-dimensional, or multidimensional.

An array declaration consists of a type identifier, an array name and an array
length. An array element is also called an indexed variable.

Assigning values to an array can be done through initialization, input functions,
or assignment statements. Figure 1.59 shows the use cases of these approaches.

The main contents and relations between them are shown in Figure 1.60.
A variable is a single datum,
Whereas an array stores a group of data together,

Figure 1.56: Finding the largest string debugging, step 2.

1.6 Summary 45

Figure 1.57: Finding the largest string debugging, step 3.

Figure 1.58: Finding the largest string debugging, step 4.

46 1 Arrays

The three key elements of variables are name, value, and address,
Arrays are just about the same.
Memory is allocated to arrays during definition, and it does not change during
execution,
An array name can also be used as the beginning address of the array,
Array elements are of the same type, but their values can be different.
An array element is similar to a variable,
The index indicates its position in the array,
We should remember that indices start at 0,
And that out-of-bound accesses lead to errors.
The system uses ‘\0’ to mark the end of a character array.

Data characteristics Use cases

Initialization Can be either regular or not
We only need to type in data once. It is
convenient to use initialization when data

size is large and we need to debug repeatedly.

Keyboard input Can be either regular or not

We need to type in data in every execution.
Although input can vary, it is not convenient

for debugging. We can use this method to test
our program on different input after it is

debugged.

Assignment
statement Regular Values are assigned automatically. We

can use this method when data are regular.

Figure 1.59: Assignment approaches and their use cases.

Array

Concept

Type

A collection of data of the same type
Data are expressed regularly so we can process them consistently

Storage
and

access

Memory allocation: memory is allocated during definition, the size
keeps unchanged during execution, elements are stored continuously
Address: array name represents the beginning address
Initialization: assign values during definition
Reference: array elements, indices start from 0, beware of out of
bound errors

1-d array:array name represents the beginning address
2-d array:name[index]represents the beginning address of a row
Character array : can be initialized with strings

Figure 1.60: Relations between concepts related to arrays.

1.6 Summary 47

1.7 Exercises

1.7.1 Multiple-choice questions

1. [Array definition]
Which of the following statements define an array correctly? ()
A) int num[0. . .2008]
B) int num[]
C) int N=2008; int num[N]
D) #define N 2008 int num[N];

2. [Character array]
Which of the following statements is wrong about character arrays in C? ()
A) A character array can be used to store a string.
B) A string stored in a character array can be input/output together.
C) We can assign values to a character array using assignment operator "=" in

an assignment statement.
D) We cannot use relational operators to compare strings stored in character

arrays.

3. [String assignment of character arrays]
Suppose we have the following character array definition: char array[]="China";
Then the size of the array is ()
A) 4 bytes B) 5 bytes C) 6 bytes D) 7 bytes

4. [Character array: termination mark]
Suppose we have the following character arrays: char x[]="abcdefg"; char y[]=
{'a','b','c','d','e','f','g'}; Which of the following statements is correct? ()
A) Array x is equivalent to array y.
B) Array x and array y have the same length.
C) Length of array x is larger than that of array y.
D) Length of array x is smaller than that of array y.

5. [String input]
Suppose we have char s[30]={0} and we type “This is a string. <Enter>” during
program execution.
Which of the following statements cannot read the entire string “This is a string”.
into character array s correctly? ()
A) i=0;while ((c=getchar())!='\n') s[i++]=c
B) gets(s)
C) for (i=0; (c=getchar()) !='\n'; i++) s[i]=c
D) scanf("%s", s)

48 1 Arrays

6. [Array access]
What is the output of the following program? ()

int y=18，i=0，j，a[8];

do

{

a[i]=y%2;

i++;

y=y/2;

} while(y>=1);

for(j=i-1;j>=0;j--) printf("%d"，a[j]);

A) 10000 B) 10010 C) 00110 D) 10100

7. [Two-dimensional array]

int i, t[][3]={9,8,7,6,5,4,3,2,1};

for(i=0;i<3;i++) printf("%d ",t[2-i][i]);

What is the output of the program above? ()
A) 3 5 7 B) 7 5 3 C) 3 6 9 D) 7 5 1

8. [Two-dimensional array]

int a[4][4]={ {1,4,3,2},{8,6,5,7},{3,7,2,5},{4,8,6,1}}, i, k, t;

for (i=0; i<3; i++)

for (k=i+1; k<4; k++)

if (a[i][i] < a[k][k])

{ t=a[i][i]; a[i][i]=a[k][k]; a[k][k]=t;}

for (i=0; i<4; i++)

printf("%d,", a[0][i]);

What is the output of the program above? ()
A) 1,1,2,6, B) 6,2,1,1, C) 6,4,3,2, D) 2,3,4,6,

9. [Characters in two-dimensional array]
What is the output of the following program if we type in “peach flowers is pink
<Enter>” during execution? ()

char b[4][10]; int i;

for (i=0; i<4; i++) scanf("%s", b[i]);

for(i=3; i>=0; i--) printf("%s ", b[i]);

1.7 Exercises 49

A) peachflower is pink
B) pink is flower Peach
C) peachflowerispink
D) pink is flower peach

1.7.2 Fill in the tables

Complete tables in Figures 1.61–1.63 based on the program in each question.
1. [Two-dimensional array]

i 0 1 2 3

a[i][i] 1 None

s End of loop

Output

Figure 1.61: Arrays: fill in the tables, question 1.

i 5 4 3 2 1 0

c[i]=c[i-1]

Before

assignment

c[i] Unknown

c[i-1] ‘\0’
Output

Figure 1.62: Arrays: fill in the tables, question 2.

0 1 2 3 4 5 6 7 8 9

 p[] 'a' 'b' 'c' 'd'

 p[]

 p[] '

 Output

Figure 1.63: Arrays: fill in the tables, question 3.

50 1 Arrays

int main(void)

{

int a[3][3]＝{1,2,3,4,5,6,7,8,9}, i, s＝0；

for（i＝0；i<＝2；i++）

s＝s+a[i][i]；

printf（＂s＝%d\n＂，s）；

return 0;

}

2. [One-dimensional character array]

int main(void)

{ int i=5;

char c[6]="abcd";

do

{

c[i]=c[i-1];

} while(--i>0);

puts(c);

return 0;

}

3. [String processing library functions]

#include <string.h>

int main(void)

{

char p[20]={'a', 'b', 'c', 'd'}; //————①

char q[]="xyz", r[]="mnopq";

strcat(p, r); //————②

strcpy(p+strlen(q), q); //————③

printf("%d\n", strlen(p)); //————④

return 0;

}

1.7.3 Programming exercises

1. Thirteen people stand in a circle and are numbered off using only numbers 1, 2,
and 3. That is, they shout out numbers 1, 2, 3, 1, 2, 3, 1, 2, 3. . .. If someone
shouts out number 3, that person should leave the circle. Write a program to
find out which person is the last one remaining in the circle.

1.7 Exercises 51

2. Write a program that reads a string from keyboard input, sorts it in ascending
order based on ASCII values of characters, and prints the sorted string.

3. Please write a program, in which you define a one-dimensional character array
str[50], read a sequence of characters from keyboard input and store it into str,
read an integer M (M < 50), and finally copy characters after position M in array
str into a new character array ch[50].

4. Write a program that finds the element with value x in a one-dimensional inte-
ger array with 10 elements. If such an element exists, the program should print
its index; otherwise, the program should print "Search failed".

5. In an image encoding algorithm, we need to do a Zigzag scan on a given square
matrix. The Zigzag scan processes of 4 × 4 and 5 × 5 matrices are illustrated
in Figure 1.64. Write a program to simulate this process.

Figure 1.64: Zigzag scan.

52 1 Arrays

2 Pointers

Main contents
– Meaning, usage, and examples of pointers
– Representation and nature of pointers, shown through comparing pointers with plain

variables
– Differences and similarities between pointers and plain variables
– Relations between pointers and arrays
– Nature of pointer offsets
– Program reading practices
– Top-down algorithm design practices
– Debugging techniques of pointers

Learning objectives
– Understand the concept of pointers
– Understand relations between pointers, arrays, and strings
– Know how to use pointers to reference variables and arrays
– Can use string arrays through pointers
– Can design algorithms using the top-down stepwise refinement approach

2.1 Concept of pointers

2.1.1 Reference by name and reference by address

We shall explain these concepts through real-life examples.

Case study 1 Setting destination in a navigation system
Postmen nowadays often use navigation systems to find their destination when de-
livering to a new location. To set the destination in a navigation system, one can
input either the address or name of the location. For example, “Xidian University
North Campus” refers to the location by name, while “2 South Taibai Road, Yanta
District” refers to the same location by address, as shown in Figure 2.1.

To sum up, we can reference an object that has a location attributing either by
name or by address.

Case study 2 Classroom questioning and homework assignment
Teachers often ask students questions in class. He/she may ask “the second student in
the third row” to answer the question when he/she does not know the name of the
student. In this case, the student’s name is a “reference by name,” while the student’s

https://doi.org/10.1515/9783110692303-002

https://doi.org/10.1515/9783110692303-002

seat is a “reference by address.” When assigning homework, a teacher may use the
following statements: “questions 6 and 8 of chapter 3” or “question 6 and 8 on page
126.” The chapter here is a “reference by name,” while the page number is a “reference
by address,” as shown in Figure 2.2.

We just saw in these examples that we could access a real-life object with location
attributes through its name or its address.

Data in programs are also objects with location attributes, so we can use the
same methods to access them.

Location

Xidian University North Campus 2 South Taibai Road, Yanta District

Reference by
address

Reference by
name

we can reference
an object that has

a location attribute
either by name or

by address

Case study 1

Setting destination in a navigation system

Figure 2.1: Setting destination in a navigation system.

Student
name

Seat
location

Chapter Page

Reference by
address

Reference by
name

Case study 2

Classroom questioning and homework assignment

Figure 2.2: Classroom questioning and homework assignment.

54 2 Pointers

Case study 3 Data reference in programs
As of now, we have been accessing data through referencing variable names. For
example, we may use the name x to refer to variable x. Theoretically, we can also
access data through their addresses, as long as we have designed a mechanism for
it. In fact, we have learned in the introduction of scanf function that we could add a
“&” sign in front of a variable to reference it by address. In other words, &x returns
the address of variable x, as shown in Figure 2.3.

With the concept of variable addresses in mind, we can study how computers man-
age their memory space.

2.1.2 Management of storage space

We shall start from a storage space management problem in practice.

Case study 1 Lockers in kindergarten
To help kids that cannot recognize numbers well remember their lockers, teachers
in a kindergarten attached animal stickers to all lockers, as shown in Figure 2.4.
Because stickers are more intuitive, the kids are less likely to mistake their lockers.

Similarly, it is intuitive and convenient for programmers to use variables named
by meaningful identifiers to operate data.

Variable
name

Variable
address

x &x

Three key elements of variables: variable name,
variable value, variable address

Data in programs
are also objects with

location attributeReference by addressReference by name

Case Study 3

Data reference in programs

Figure 2.3: Data reference in programs.

2.1 Concept of pointers 55

Case study 2 Lockers in supermarket
As shown in Figure 2.5, the locker in a supermarket is a large cabinet divided into com-
partments of the same size, each with a number. A program manages the locker: when

Stickers:
“Reference
by name”

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 2.4: Reference by name in stickers.

Numbers:
“Reference
by address”

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 2.5: Reference by address in lockers.

56 2 Pointers

a customer presses the “Store” button, the system looks for an empty compartment
and opens one following specific rule; if no compartment is currently available, “No
available compartment” will be displayed.

In this process, the number of the compartment is necessary. If we consider the
number of a compartment as its address, then locating compartments through num-
bers is also “reference by address.”

2.1.2.1 Management of computer memory space
After seeing the locker, Mr. Brown thought to himself, “Hey, is not that computer
memory?” The memory is where a computer stores programs and data temporarily.
As shown in Figure 2.6, we divide the memory into units of the same size to better
manage it, which is similar to dividing a locker into compartments. Each unit stores
1 byte (8 bits) of data. They are also called memory units.

To simplify management, we attach a number to each unit. These numbers are called
addresses. A computer can execute memory read and write operations quickly using
addresses. The length of a memory unit is 1 byte. Addresses of variables are numbers
of memory units allocated by the system.

Knowledge ABC Representation of memory and addresses
Memory is used to temporarily store intermediate computation results of CPU and data that will
be exchanged with external memory, such as hard disks. As long as a computer is powered on,
the CPU fetches data it needs to the memory and sends the result out after computation is done.

Data are stored in binary form in computers. Addresses are also expressed and processed in
binary form. Memory addresses can be expressed in binary, octal, or hexadecimal forms.
Assembly languages and high-level languages often use hexadecimal addresses for convenience.

Memory

Address

In memory, every byte unit
(8 bits) has a number, which
is its address.

Unit no. Unit contents

0 1 0 0 1 1 1 0 0

1 0 1 1 0 1 1 1 1

2 1 1 1 0 0 0 1 1

3

...

...

127

...

The memory is
where a computer

stores programs and
data temporarily

A memory
unit

Figure 2.6: Computer memory.

2.1 Concept of pointers 57

It is also trivial to convert between hexadecimal and binary representations. C uses prefix 0x to
represent hexadecimal numbers, while assembly languages and some other high-level languages
use suffix H (Hexadecimal).

2.1.2.2 Storage rules of data in memory
Suppose type int has length of 2 bytes in a computer system. “Now I need to store
two backpacks,” Mr. Brown muttered and defined a variable x of type int. Because
int type took up 2 bytes, the variable could not fit into a single memory unit. What
would the system do? The answer is to find two consecutive units and allocate to
variable x. In other words, the system determines the number of units needed
based on data type specified by programmers, looks for consecutive memory units,
and allocates them to the variable.

Suppose the system found two consecutive empty units, 2000 and 2001, and
allocated it to variable x, as shown in Figure 2.7. Which one was the address of x
then?

In this case, we need the “address allocation rule.” The system defines the address
of a variable as the unit with the smallest number.

2.1.2.3 Address management in memory
Mr. Brown found it interesting to operate memory directly and mumbled to himself,
“I’ll be the system administrator this time.”

1 byte

1 byte

1 byte

....

2000

2001

2002

....

int x

Suppose size
of int is 2 bytesAddress of an variable is

the number of memory
unit allocated to it by the
system during compilation

or function call

Address allocation rule
Among all units allocated to an variable, its address is

the unit with the smallest number.

Memory

Which one is
the address
of variable x?

Figure 2.7: Address allocation rule.

58 2 Pointers

Suppose type int has length of 2 bytes. Professor defined three integer variables
i, j, and k. Then he looked for empty units in the memory. In Figure 2.8, empty units
are colored in gray. Hence, he could allocate unit 2000 to i, unit 2002 to j, and unit
2004 to k.

Similar to managing a locker, the system needs to record which units are already
allocated. This is done using unit addresses as well. As a result, a block of memory
is needed to store these addresses. In addition, we should be able to reference it by
unit addresses.

How should addresses be recorded?
Professor defined a special variable ptr to store the address of variable k. We

often use an arrow to indicate the relation between pointer ptr and variable k. The
value of ptr can be changed, so ptr can be used to store other variable addresses as
well. In C language, we call variable ptr a pointer pointing to variable k. In short,
ptr points to k.

With the help of pointers, system administrators can manage addresses in
memory.

Mr. Brown then stopped being an imaginary system administrator, returned to
reality by slightly shaking his head, and asked himself another question from the per-
spective of a computer user: “as programmers, what is the advantage of using ad-
dress variables?”

It is undoubtedly more intuitive and convenient for programmers to use variables
named by identifiers. However, the system has to find the memory unit that corre-
sponds to a variable name when executing the program. This process slows down
computation, so the system enables programmers to operate memory units through
pointers to enhance execution efficiency, as shown in Figure 2.9. Furthermore, using

Address Memory

... ...

2000 3

2002 6

2004 9

...

3010 2004

...

kptr

Variable ptr

Variable k

Variable j

Variable i

int i=3 ; int j=6 ; int k=9;

Value of ptr is
address of k

What are the merits
of using pointers for
programmers that

are not system
administrators?

We call variable ptr
a pointer pointing
to k, or ptr points

to k in short

Figure 2.8: Memory usage and management.

2.1 Concept of pointers 59

pointers help solve problems like batch transfer of data or user space requesting. We
will cover related topics in the chapter “Functions.”

Having discussed the topics earlier, we shall now proceed to introduce pointers
formally.

2.1.3 Definition of pointers

Pointer variables are variables whose values are memory addresses.

2.1.3.1 Comparison of pointer variables and plain variables
Because pointer variables are variables as well, we shall compare them with plain
variables and try to find differences between them.

Variables have three key elements: name, content, and address. Names of plain
variables are identifiers; contents of plain variables are numerical values; addresses
are memory units’ numbers. The first element and the third element remain the same
for pointer variables, but the contents are different: the value of a pointer variable
has to be an address.

Another question related to the nature of pointer value is “what is the type of a
pointer?”

For plain variables, C defines variable types as types of their values. However,
the definition changes for pointer variables. The language has a special rule for
these special variables, as shown in Figure 2.10.

1

2

3

4

5

6

7

8

Identifier:
user-oriented,

intuitive,
convenient

Unit number:
computer-oriented,

efficient

Figure 2.9: Reference by name and reference by address in computers.

60 2 Pointers

2.1.3.2 Syntax of pointer definitions
Let us look at the syntax of defining a pointer variable. Compared with the syntax
of defining a plain variable, the only difference is the * mark in front of the variable
name, as shown in Figure 2.11.

C considers the type of a pointer to be the type of data stored in the memory unit it
points to, so it is not necessarily an integer. For example, an integer pointer iPtr
points to an integer memory unit; a float pointer fPtr points to a floating-point num-
ber memory unit; a character pointer works the same way.

Because using pointers requires special rules, it is recommended to name them
using “ptr,” the abbreviation of “pointer,” as a kind reminder.

2.2 Pointer operations

Having learned how to access a pointer, we can now handle pointer data.

Plain variable Pointer variable

Three key
elements of

variables

Name Identifier Identifier

Value Number Address

Address Memory unit number Memory unit number

Pointers are special variables. Unlike plain variables, they
– are used to store addresses;
– use types of data stored in the memory units they point to as their own type

Rules

What is the
type of a
pointer?

Figure 2.10: Similarities and differences between pointer variables and plain variables.

Syntax

type * name;
Type of a pointer is
the type of data in
the memory unit it

points to, so it is not
necessarily int type

intiPtrint *iPtr;

floatfPtrfloat *fPtr;

charcPtrchar *cPtr;

E.
g.

Figure 2.11: Defining a pointer.

2.2 Pointer operations 61

2.2.1 Pointer operators

As shown in Figure 2.12, there are two operators related to pointers: the address-of
operator “&” and the dereference operator “*”. We can access contents stored in
memory units by referencing their addresses with the help of these operators.

What operations can we carry out using these operators?

2.2.2 Pointer operations

Unlike operations of plain variables, pointer operations are computations of addresses,
so there are only a few types of them, each with certain restrictions. Figure 2.13 shows
various pointer operations and their functionalities.

An assignment operation assigns a location to a pointer. An arithmetic opera-
tion can move a pointer around and compute the number of elements between two
pointers. Relational operations are used to determine the relative position of two
pointers.

More pointer operations in arrays will be introduced in Section 2.3.

2.2.3 Basic rules of pointer operations

We shall introduce how to use pointer operators through a simple example.

Example 2.1 Usage of pointers
Suppose we have an integer array x[5], two pointer variables aPtr and bPtr, please write code
that completes the following tasks:
– Describing the case illustrated in Figure 2.14.
– Storing the content in the memory unit pointed to by bPtr into the unit pointed to by aPtr.

Operator Name Usage

& Address-of
operator

Obtain addresses of
plain variables

* Dereference
operator

Obtain data in the
memory unit pointed

to by the pointer

Access data stored at
an address through
reference by address

Figure 2.12: Pointer operators and their usage.

62 2 Pointers

O
pe

ra
tio

n
ty

pe
Fu

nc
tio

n
Im

pl
em

en
ta

tio
n

N
ot

es

A
ss

ig
nm

en
t

Lo
ca

te
 a

 p
oi

nt
er

A
ss

ig
n

va
lu

e
to

 a
 p

oi
nt

er

Th
e

as
si

gn
ed

 v
al

ue

m
us

t
be

 a
n

ad
dr

es
s

of
 d

at
a

of
 t

he
 s

am
e

ty
pe

 a
s

th
e

po
in

te
r

A
ri
th

m
et

ic
M

ov
e

a
po

in
te

r
A
dd

 a
n

in
te

ge
r

to
 o

r
su

bt
ra

ct
 o

ne
 f
ro

m
 a

 p
oi

nt
er

A
va

ila
bl

e
fo

r
po

in
te

rs

po
in

tin
g

to
 a

rr
ay

s
C
om

pu
te

 n
um

be
r

of
 e

le
m

en
ts

be
tw

ee
n

tw
o

po
in

te
rs

S
ub

tr
ac

t
a

po
in

te
r

fr
om

th

e
ot

he
r

R
el

at
io

na
l

D
et

er
m

in
e

re
la

tiv
e

po
si

tio
n

of

tw
o

po
in

te
rs

C
om

pa
re

 t
w

o
po

in
te

rs

U
nl

ik
e

op
er

at
io

ns

of
 p

la
in

 v
ar

ia
bl

es
,

po
in

te
r

op
er

at
io

ns

ar
e

co
m

pu
ta

tio
n

of
 a

dd
re

ss
es

Fi
gu

re
2.
13
:P

oi
nt
er

op
er
at
io
ns

.

2.2 Pointer operations 63

Index 0 1 2 3 4

x[] 2 4 6 8 0

aPtr bPtr

Figure 2.14: Example usage of pointers.

1. Code implementation
Figure 2.15 shows the code implementation, in which we first define the integer array x and ini-
tialize it.

On line 2, we define two integer pointers aPtr and bPtr.
On line 3, we make aPtr point to the beginning address of array x, namely the 0-th unit, with

statement aPtr = x. By definition, the array name x represents the beginning address, which is
the address of element with index 0.

On line 4, we make bPtr point to element with index 3. The & sign is used to obtain the ad-
dress of x[3].

The first 4 lines complete the first task in the problem description. Now we are going to com-
plete the second.

On line 5, we use *bPtr to fetch value stored in the memory unit pointed to by bPtr. Similarly,
the value stored in the memory unit pointed to by aPtr can be acquired by *aPtr. After the as-
signment, this value becomes 8.

Index 0 1 2 3 4

x[] 4 6 8 0

aPtr bPtr

01 int x[5]= {2,4,6,8}; //Define and initialize an integer array
02 int *aPtr, *bPtr; //Define two integer pointers
03 aPtr =x; // Point aPtr to the beginning address of x
04 bPtr =&x[3]; // Point bPtr to address of x[3]
05 *aPtr =*bPtr; // Assign value pointed to by bPtr to unit pointed to by aPtr

8
C defines that an
array name refers

to the array’s
beginning address

Figure 2.15: Code implementation of the example.

2. Debugging
Using data in the Watch window and the Memory window, we obtain the graph shown in
Figure 2.16, which reveals relations between addresses and data.

64 2 Pointers

In
de

x
0

1
2

3
4

El
em

en
t

va
lu

e
2

4
6

8
0

El
em

en
t

ad
dr

es
s

0x
18

ff
34

0x
18

ff
38

0x
18

ff
3c

0x
18

ff
40

0x
18

ff
44

aP
tr

0x
18

ff3
4

0x
18

ff3
0

bP
tr

0x
18

ff4
0

0x
18

ff2
0

Po
in

te
r a

dd
re

ss
Po

in
te

r n
am

e
Po

in
te

r v
al

ue
s

Po
in

te
r a

dd
re

ss
Po

in
te

r n
am

e

W
ha

t
is

 v
al

ue

of
 *

aP
tr

 in
 t

he

W
at

ch
 w

in
do

w
?

N
ot

e
th

at
 b

yt
es

w

ith
 lo

w
er

ad

dr
es

se
s

ar
e

on
 t

he
 le

ft
 in

 t
he

M

em
or

y
w

in
do

w

Fi
gu

re
2.
16

:D
eb

ug
gi
ng

th
e
po

in
te
r
pr
og

ra
m
.

2.2 Pointer operations 65

We shall inspect array x first. In the Watch window, it is clear that the beginning address of x is
0x18ff34. The Memory window shows the addresses and values of elements in x starting from
address 0x18ff34. Note that bytes in the Memory window are displayed in the order of their ad-
dresses, where bytes in lower addresses are on the left. We can list these addresses and values
in a table for further analysis.

It is known that aPtr points to x[0] and bPtr points to x[3]. This can be verified by comparing
the value of pointer aPtr and the address of x[0] in the Watch window. We can see that the value
of pointer bPtr and the address of x[3] are also identical. Values of aPtr and bPtr are shown in
the square above them in the figure. They are both addresses of other variables.

What are the addresses of memory units in which these pointers are stored then?
In the Watch window, &aPtr indicates the address of the memory unit in which aPtr is stored,

which is 0x18ff30. Similarly, &bPtr shows the address of bPtr. As of now, we have seen all three
key elements of pointer variables, namely variable names, variable addresses, and variable
values.

There remains one last question: what is *aPtr then?
We can derive the answer from definitions and verify them in the debugger. In fact, the an-

swer is already given in the next line of aPtr in the Watch window.

3. Exceptions of pointers
If a postman is going to deliver to a new location and heads to the default address without set-
ting a destination in the navigation system, we can well imagine that he will not succeed.
Similarly, beginners may make the same mistake when using pointers.

In Figure 2.17, what will happen if we make aPtr point to nowhere by removing the third line
in the program?

Element
value 2 4 6 8 0

Element
address 0x18ff34 0x18ff38 0x18ff3c 0x18ff40 0x18ff44

aPtr
0xcccccccc0x18ff30

bPtr
0x18ff40 0x18ff2c

A warning pops up
when executing

*aPtr=*bPtr

Figure 2.17: Exception of pointers.

After debugging, we can see that everything in the Watch window and the Memory window re-
mains the same, except the value of aPtr being 0xcccccccc. This is because we did not initialize
aPtr with the beginning address of array x. The value is determined by the compiler instead of
by programmers, so it is unpredictable. Such pointers are often called “wild pointers.”

During the execution of line 5, namely *aPtr = *bPtr, a protection mechanism interferes: a
warning window pops up, and the program is terminated. This protection mechanism prevents
users from writing data to unknown units, so data w be modified unknowingly.

66 2 Pointers

Pointer variables are special variables that need special care. The most commonmis-
takes one may make when using pointers is accessing them without assigning initial val-
ues. Figure 2.18 elaborates on this mistake and introduces principles we should follow.

These principles are also critical issues in using pointer. Assigning to a pointer that
does not point to a certain location has two cons:
(1) It may lead to severe runtime errors, namely logic errors, which affects program

execution and may crash the system in the worst case.
(2) Even if the program runs without crashing, the assignment illegally modifies

data stored in some memory unit that we do not know. Such errors are ex-
tremely hard to find during debugging because we do not know when the modi-
fied data are going to be used. If we cannot reproduce such errors, they will
become one of the most challenging errors to debug.

2.2.4 Purpose of pointer offsets

2.2.4.1 Introduction
Suppose we have an integer array a, and a pointer aPtr pointing to a[0]. We are
asked to output the value of the memory unit aPtr points to, and value of the next
unit using aPtr as well.

The previous example showed how to point a pointer to an array element and
obtain its value, as shown in Figure 2.19.

To move pointer aPtr forward, we can certainly use reference by address, or to
be more specific, aPtr = &a[1]. &a[1] returns the location of the element with index 1
in array a. This is an example of reference by array names. When executing this
statement, the system needs to convert &a[1] into memory address corresponding to
the element, which may become inconvenient and inefficient when moving the
pointer multiple times. Are there alternative methods of moving pointers?

Can we use reference by address by adding an offset to the pointer? If so, it
would be easier to move a pointer forward multiple times, as shown in Figure 2.20.

Principles of using pointers

– We should clearly know where our pointers point to
– We should clearly know what data our pointers point to

It is wrong to assign value to a pointer that is not correctly
initialized or points to an unspecified location in memory

Programming mistake

Figure 2.18: Principles of using pointer and common mistakes.

2.2 Pointer operations 67

2.2.4.2 Discussion and conclusion
Suppose type int has length of 2 bytes. Furthermore, suppose the memory space of
array a is as shown in Figure 2.21 and aPtr points to address 2000.

Index 0 1 2 3 4

a[] 2 4 6 8 0

aPtr aPtr+offset 2

1
aPtr=&a[1]

Approach 2:
move the pointer

using an offset

Approach 1: point
the pointer to the

next element

Figure 2.20: Two reference approaches of array elements.

Address Memory

…

2000

2001

2002

2003

2004

2005

… …

3010

3011
Pointer aPtr

a[2]

a[1]

a[0]2

4

6

2000

Pointer aPtr

Suppose
size of int
is 2 bytes

Figure 2.21: Memory and pointers.

Index 0 1 2 3 4

a[] 2 4 6 8 0

aPtr

aPtr =a; // Point aPtr to the beginning address of a
printf("%d",*aPtr); // Print data pointed to by aPtr

Figure 2.19: Obtain array elements through reference by address.

68 2 Pointers

Figure 2.22 illustrates the memory layout under the assumption that aPtr points to
unit 2001 after adding 1 to it. We will verify this assumption below.

First of all, the assumption is not consistent with the definition of “pointer
types.” Type of a pointer is the type of the memory unit it points to. If aPtr + 1 points
to unit 2001, which belongs to the array element a[0], what is the size of the object
it points to then? Second, the value stored in unit 2001 contains half of the informa-
tion of element a[0].

Hence, it is not reasonable to make aPtr + 1 point to unit 2001. It is natural to
infer that we should move the pointer by the length of “pointer type” when adding
1 to it. In this case, it only makes sense if aPtr + 1 points to unit 2002.

Figure 2.23 presents the rule of pointer offsets in C language. Adding an integer
to or subtracting an integer from a pointer moves a pointer in memory space.
Pointer types determine the distance of such moves.

2.2.4.3 Program verification
We shall verify this rule using the program below:

01 #include <stdio.h>

02 int main(void)

03 {

04 int a[5]= {2,4,6,8}; //Define and initialize an integer array

05 int *aPtr; //Define an integer pointer

06 aPtr =a; //aPtr points to the beginning address of a

07 printf("%d",*aPtr); //Output value of the memory unit a points to

08 aPtr++; //Make aPtr point to the next unit

09 return 0;

10 }

On line 6, aPtr points to a[0]. On line 8, we add 1 to aPtr and make it point to a[1].
Figure 2.24 shows the debugging information of this program.
Before adding 1 to aPtr, aPtr points to a[0] and aPtr + 1 points to a[1].
After adding 1 to aPtr, aPtr points to a[1] and aPtr + 1 points to a[2].

2.2.5 Concept of null pointer

2.2.5.1 Meaning of NULL
NULL is a constant defined in header file <stdio.h> with value 0. It is used to repre-
sent a null pointer.

2.2 Pointer operations 69

Is
 it

 r
ea

so
na

bl
e

to

m
ak

e
aP

tr
+

1
po

in
t

to
 u

ni
t

20
01

?

A
dd

in
g

1
to

 a
 p

oi
nt

er

sh
ou

ld
 m

ov
e

it
by

 t
he

si

ze
 o

f
its

 t
yp

e

C
on

cl
u

si
on

1.
In

co
ns

is
te

nt
 w

ith
 d

ef
in

iti
on

of

 “
po

in
te

r
ty

pe
”

2.
V
al

ue
 s

to
re

d
in

 u
ni

t
20

01

co
nt

ai
ns

 h
al

f
of

 in
fo

rm
at

io
n

of
 e

le
m

en
t

a[
0]

P
oi

n
te

r
aP

tr
+

1

A
d

d
re

ss
M

em
or

y

…

20
00

20
01

20
02

20
03

20
04

20
05 …

…

30
10

30
11

a[
2

]

a[
1

]

a[
0

]
2

4

6

20
00

P
oi

n
te

r
aP

tr

Fi
gu

re
2.
22

:M
em

or
y
an

d
po

in
te
r
of
fs
et
s.

70 2 Pointers

2.2.5.2 Null pointer
If we assign NULL to a typed pointer variable, this pointer becomes a null pointer
that does not point to any object or function. That is, a null pointer does not point
to any memory unit.

A null pointer is not an uninitialized pointer. It is guaranteed that a null pointer
does not point to any object, but an uninitialized pointer may point anywhere. Note
that a null pointer is not the memory address 0 of a computer.

The purpose of introducing null pointers is that we can return NULL in excep-
tion routines so that it is easier to distinguish from a normal address value.

a[2]

a[0]

Figure 2.24: Debugging information of pointer offsets program.

The distance a pointer moves past in one shift is the size of its type.

When adding 6 to a float pointer,actual offset is
6*sizeof(float)=24bytes;

When subtracting 7 from a char pointer, actual offset is
7*sizeof(char)=7 bytes;

Conclusion

E.g.

Figure 2.23: Rule of pointer offsets.

2.2 Pointer operations 71

2.3 Pointers and arrays

Pointers are used to reference array elements by address. We shall introduce how to
use them in one-dimensional and two-dimensional arrays.

2.3.1 Pointers and one-dimensional arrays

Example 2.2 Computing sum using reference by address
Given a student’s grades in 6 classes, please compute the sum using reference by address.

Analysis
We can use the algorithm of the “computing sum” problem in section “one-dimensional arrays op-
erations”, but we need to reference array elements by address in this problem instead of by name.

1. Data structure design
We can obtain values of array elements by defining a pointer ptr that points to the array, as
shown in Figure 2.25.

Index 0 1 2 3 4 5
score[] 80 82 91 68 77 78

ptr

Figure 2.25: Referencing array elements by address.

2. Algorithm description
Figure 2.26 shows the pseudo code. The top-level pseudo code and the first refinement remain
the same as before because data reference details are not involved at these two levels. In
the second refinement, we start with the initialization of variables and making ptr point to the
data array. Then we construct the loop of repeated addition by determining loop control vari-
able, loop execution condition, and offset of ptr.

Top-level pseudo code First refinement Second refinement

Scores are stored in
array score[6]
Compute sum of
array elements

The sum is total, scores
are stored in score[6]

Initialize score[6], total =0, i=0
ptr=score;

Add values of elements of
score to total repeatedly

while (i<6)
total += *ptr;
i++;
ptr++;

Output result Output total

*ptr fetches
value of the unit
pointed to by ptr

Figure 2.26: Pseudo code of computing sum algorithm.

72 2 Pointers

01
 /

/C
om

pu
te

su
m

of
ar

ra
y

el
em

en
ts

02
 #

in
cl

ud
e

<
st

di
o.

h>
03

 #
de

fin
e

S
IZ

E
10

04

05
 in

t
m

ai
n(

vo
id

)
06

 {
07

in

t
sc

or
e[

 S
IZ

E
]

=
 {

98
,9

2,
89

,9
5,

90
,9

6,
94

,9
2,

90
,9

7}
;

08

in
t

i,
 *

pt
r=

sc
or

e;
//

pt
r

po
in

ts
 t

o
th

e
ar

ra
y

09

in
t

to
ta

l =
 0

;

 /
/

S
um

10

11

fo
r

(
i =

 0
;

i <
 S

IZ
E;

 i+

+
 ,

pt

r+
+

)
12

{

13

to
ta

l +
=

*p
tr

;
 /

/C
om

pu
te

 s
um

 o
f
sc

or
e

el
em

en
ts

14

}
15

pr

in
tf

(
"T

he
 t

ot
al

 s
co

re
 is

 %
d\

n"
,

to
ta

l)
;

16

re
tu

rn
 0

;
17

}

Th
e

to
ta

l s
co

re
 is

 9
33

C
om

pu
te

 s
um

 o
f
ar

ra
y

el
em

en
ts

02
 #

in
cl

ud
e

<
st

di
o.

h>
03

 #
de

fin
e

S
IZ

E
10

m
ai

n(
vo

id
)

sc
or

e[
 S

IZ
E

]
=

 {
98

,9
2,

89
,9

5,
90

,9
6,

94
,9

2,
90

,9
7}

;
i;

 /

/
C
ou

nt
er

to
ta

l =
 0

;

 /

/
S
um

(
i =

 0
;

 i
<

 S
IZ

E;

 i+

+
)

to
ta

l +
=

sc
or

e[
 i

];

 /

/
C
om

pu
te

 s
um

 o
f

sc
or

e
el

em
en

ts

pr
in

tf
(

“T
he

 t
ot

al
 s

co
re

 is
 %

d\
n"

,
to

ta
l)

;
0;

R
ef

er
en

ce
b

y
n

am
e

13
to

ta
l +

=
*p

tr
;

 /
/C

om
pu

te
 s

um
 o

f
sc

or
e

el
em

en
ts

to
ta

l +
=

sc
or

e[
 i

];

//
 C

om
pu

te
 s

um
 o

f
sc

or
e

el
em

en
ts

R
ef

er
en

ce
 b

y
ad

d
re

ss

11
fo

r
(

i =
 0

;
i <

 S
IZ

E;

 i+
+

 ,

pt
r+

+
)

(
i =

 0
;

 i
<

 S
IZ

E;

 i+

+
)

08
in

t
i,

*p
tr

=
sc

or
e;

//
pt

r
po

in
ts

 t
o

th
e

ar
ra

y
i;

 /

/
C
ou

nt
er

in
t

 *
pt

r=
sc

or
e;

is
 e

qu
iv

al
en

t
to

in
t

 *
pt

r;
pt

r=
sc

or
e;

01 04

05

06
 {

07

08

09

10

11

12

{
13

14

}

15

16

17

}

Fi
gu

re
2.
27

:C
od

e
im

pl
em

en
ta
ti
on

of
co

m
pu

ti
ng

su
m

pr
ob

le
m
.

2.3 Pointers and arrays 73

3. Code implementation
It is trivial to obtain actual code starting from pseudo code in the second refinement. Figure 2.27
lists programs of reference by name and by address together for readers to compare.
On line 8, pointer ptr is defined. Note that the statement int *ptr = score defines the pointer and
assign a value to it.

On line 11, ptr should be increased as well.
On line 13, the element pointed to by ptr is added to the sum.

Example 2.3 Pointer pointing to constant string
Compare a character array with a pointer pointing to a string.

Analysis
The test program is as follows:
1 int main(void)

2 {

3 char a[]="dinar##";

4 char *b="dollar##";

5

6 a[6]=':';

7 b[5]=':';

8 return 0；

9 }

If we run the program, an “Access Violation” warning will pop up. Debugging shows that the
error occurs when executing line 7. That is, we cannot write to the string pointed to by pointer
b. This is because a constant string is stored in the constant segment in memory, which cannot
be altered during execution; on the other hand, assigning a constant string to an array essen-
tially puts the string into the variable segment, which can be modified. Readers can refer to
chapter “Functions” for more details on memory layout.

Conclusion Pointers and constant strings
We cannot write to the memory segment in which constant strings are stored.

Example 2.4 Program analysis
Analyze the following program and list values of memory units pointed to by pointer aPtr and
bPtr in each iteration:
1 int main(void)

2 {

3 int a[10], b[10];

4 int *aPtr, *bPtr, i;

5 aPtr=a; bPtr=b;

6 for (i=0; i< 6; i++, aPtr++, bPtr++)

7 {

8 *aPtr=i;

9 *bPtr=2*i;

10 printf("%d\t%d\n", *aPtr,* bPtr);

74 2 Pointers

11 }

12 aPtr=&a[1]; //Step 1

13 bPtr =&b[1]; //Step 2

14 for (i=0; i<5; i++)

15 {

16 *aPtr +=i; //Step 3

17 *bPtr *=i; //Step 4

18 printf("%d\t%d\n", *aPtr++,* bPtr ++);

19 } //*aPtr++ fetches value first, and then adds 1 to aPtr

20 return 0；

21 }

Analysis
Figure 2.28 shows values of arrays a and b after the for loop on line 6 terminates.

a 0 1 2 3 4 5

b 0 2 4 6 8 10

Figure 2.28: Values of arrays a and b.

Since we have aPtr = &a[1] and bPtr = &b[1] in step 1 and 2, values of *aPtr and *bPtr should be
1 and 2, respectively. Figure 2.29 shows these two values in each iteration of the for loop on
line 14, starting from i = 0.

i 0 1 2 3 4

*aPtr in step ① 1 2 3 4 5

*aPtr in step ③ 1 3 5 7 9

*bPtr in step ② 2 4 6 8 10

*bPtr in step ④ 0 4 12 24 40

Figure 2.29: Data analysis table.

Example 2.5 Program analysis
Analyze the following program, figure out all objects pPtr and sPtr point to during execution and
the program result:
1 int main(void)

2 {

3 char a[2][5]={"abc","defg"};

4 char *pPtr=a[0],*sPtr=a[1];

5 while (*pPtr) pPtr++;

6 while (*sPtr) *pPtr++=*sPtr++;

7 printf("%s%s\n",a[0],a[1]);

8 return 0；

9 }

2.3 Pointers and arrays 75

Analysis
Figure 2.30 illustrates the case where pointers pPtr and sPtr point to array a.

a b c \0 \0 d e f g \0

a[0] a[1]

sPtrpPtr

Values in a 2-d array are
stored consecutively

Beginning address
of string “abc”

Beginning address
of string "defg"

Figure 2.30: Pointers pointing to array a.

(1) Figure 2.31 illustrates the case after line 5 is executed.

a b c \0 \0 d e f g \0

a[0] a[1]

sPtrpPtr

Figure 2.31: Program analysis 1.

(2) sPtr points to “d” at first. In the loop “while (*sPtr) *pPtr++ = *sPtr++” on line 6, we repeatedly
assign value pointed to by sPtr to the unit pointed to by pPtr. In the first iteration, the value is
updated to “d,” then both pointers move to the next element, as shown in Figure 2.32.

a b c \0 \0 d e f g \0

d

a[0] a[1]

pPtr sPtr

Figure 2.32: Program analysis 2.

(3) Now sPtr points to “e.” After another iteration, the value of the unit pointed by pPtr is up-
dated to “e,” as shown in Figure 2.33.

a b c \0 \0 d e f g \0

d e

a[0] a[1]

sPtrpPtr

Figure 2.33: Program analysis 3.

76 2 Pointers

(4) Now sPtr points to “f.” After another iteration, the value of the unit pointed by pPtr is up-
dated to “f,” as shown in Figure 2.34.

a b c \0 \0 d e f g \0

d e f

a[0] a[1]

sPtrpPtr

Figure 2.34: Program analysis 4.

(5) Now sPtr points to “g.” After another iteration, the value of the unit pointed by pPtr is up-
dated to “g,” as shown in Figure 2.35.

a b c \0 \0 d e f g \0

d e f g

a[0] a[1]

sPtrpPtr

Figure 2.35: Program analysis 5.

(6) Now sPtr points to “\0.” Because the loop condition is not met, the loop terminates, as
shown in Figure 2.36.

a b c \0 \0 d e f g \0

d e f g

a[0] a[1]

sPtrpPtr

Figure 2.36: Program analysis 6.

(7) On line 7, %s format specifier prints character starting from the given address and stops
upon reaching “\0.” Hence, the string starting at address a[0] is abcdefgfg and the string
starting from address a[1] is fgfg. As a result, the final output is abcdefgfgfgfg.

2.3.2 Pointers and two-dimensional arrays

Example 2.6 Computing total grade for multiple students
Suppose we have four students and their grades in six courses, as shown in Figure 2.37. Please
compute the total grade for each of them using referencing by address.

2.3 Pointers and arrays 77

ID Course 1 Course2 Course3 Course4 Course5 Course6 Total

1001 80 82 91 68 77 78

1002 78 83 82 72 80 66

1003 73 50 62 60 75 72

1004 82 87 89 79 81 92

We can repeat the
algorithm for one
student 4 times

Figure 2.37: Grades of students.

Analysis
We can simply apply the same algorithm four times to complete the task.

1. Data analysis
Let us analyze the data to be processed first. Fetching address for each element in a row can be
done in the same way as in one-dimensional arrays. We will use a pointer ptr and update it to
the beginning address of the next row after processing one row.

To obtain the address of the next row, we can certainly reference the one-dimensional row by
score[1]. However, this is a reference by name instead of by address. Can we reference the row
by address then? In other words, can we use another pointer sPtr as a row pointer for the two-
dimensional array, as shown in Figure 2.38?

score[0] 80 77 75 68 82 78

score[1] 78 83 82 72 80 66

score[2] 73 50 62 60 91 72
score[3] 82 87 89 79 81 92

Can we use a
pointer to simulate
row pointers of 2-d

arrays?

ptr

sPtr→
sPtr+1→

What is
offset of

sPtr?

Obtain address of an element

Obtain address
of a row

Number of elements in a row*sizeof(score element type)

Figure 2.38: Row pointer of two-dimensional array.

The answer is affirmative because we can treat score[0] to score[3] as array elements as well.
The next question is what should be the offset of sPtr?

According to the definition of pointer offset, it should be the number of elements in a row
multiplied by the size of elements type.

There is a special term in C for pointers pointing to row addresses of a two-dimensional array. As
shown in Figure 2.39, these pointers are called “pointer to arrays.” This is a confusing term, so
parentheses are added to pointer names to distinguish them from plain pointers and arrays.

78 2 Pointers

Pointer to arrays

A pointer to array is a pointer pointing to beginning
addresses of rows of a 2-dimensional array.

Syntax

type (*name)[constant];

Note that this is still a
pointer. The constant
inside square brackets

indicate number of
elements the pointer

moves past in one shift

A pointer used
for 2-d arrays

Figure 2.39: Pointer to arrays.

It is worth noting that this is still a pointer, even though there is a constant wrapped by square
brackets after the pointer name. In fact, the constant indicates the number of elements the
pointer moves past in one shift.

For this problem, we can define a pointer to array as shown in Figure 2.40.

Offset of pointer sPtr is 6*sizeof(int)

int (*sPtr)[6];
E.g.

Figure 2.40: Example of pointer to array.

Now we can obtain information of the two-dimensional array through reference by address, and
find out relation between ptr and sPtr, as shown in Figure 2.41.

score[0] 80 77 75 68 82 78

score[1] 78 83 82 72 80 66

score[2] 73 50 62 60 91 72

score[3] 82 87 89 79 81 92

ptr and score
ptr=score[]
*ptr=score[][]

ptr

sPtr→
sPtr+1→

Relation
between ptr

and sPtr
sPtr and score

sPtr=&score[]
*sPtr=score[]

ptr = * sPtr

Obtain address of an element

Obtain
of a row

address

Obtain address of the first element in a row

Figure 2.41: Relation between row pointers and element pointers.

2.3 Pointers and arrays 79

The object in the unit pointed to by ptr is an element of array score. The object in the unit
pointed to by sPtr is address of a one-dimensional row of array score. Hence, we can write state-
ment ptr = *sPtr, where *sPtr represents the beginning address of a row.

2. Code implementation

01 #include <stdio.h>

02 #define N 4 //Number of rows

03 #define M 6 //Number of columns

04 int main(void) {

05

06 int score[N][M]=

07 {

08 {80,77,75,68,82,78},

09 {78,83,82,72,80,66},

10 {73,50,62,60,91,72},

11 {82,87,89,79,81,92}

12 };

13 int i,j;

14 int total; //Total grade

15 int *ptr; //Row pointer

16 int (*sPtr)[M]; //A pointer to array, offset is M int

17 sPtr=&score[0]; //Make sPtr point to the first row

18

19 for (i=0; i<N; i++, sPtr++)

20 {

21 total = 0;

22 ptr=*sPtr; //Make ptr point to the beginning address of the row

23 for (j= 0; j< M; j++, ptr++)

24 {

25 total +=*ptr; //*ptr=score[][]

26 }

27 printf("Total grade of student %d is %d\n", i+1,total);

28 }

29 return 0;

30 }

Program result:
Total grade of student 1 is 460

Total grade of student 2 is 461

Total grade of student 3 is 408

Total grade of student 4 is 510

Note: On line 16, we define a pointer to array sPtr with offset being M int, where M is 6.
On line 17, we make sPtr point to the first row of the array.
On line 22, ptr is set to point to the first element in a row.
In the for loop between line 23 and 26, we use pointer ptr to retrieve elements in array score

and add them to the sum.

80 2 Pointers

In each iteration, ptr is increased by 1 in the loop increment part. That is, it moves to the next
element of the row.

In loop increment part of the for loop on line 19, sPtr is increased by 1. That is, it moves to
the next row.

3. Debugging
We can inspect the memory layout in the Watch window and the Memory window. Figure 2.42
shows the beginning addresses of each row of array score.

score[0]

score[1]

score[2]

score[3]sPtr moves along
the first column

Figure 2.42: Referencing elements of a two-dimensional array.

score[0] is 0x18fee8, which corresponds to the first gray block in the Memory window.
score[1] is 0x18ff00, which corresponds to the first white block.
Similarly, we have score[2] being 0x18ff18 and score[3] being 0x18ff30.
It is clear from the figure how ptr moves along each row. The value of ptr in the Watch win-

dow is the address of the 0th element in the score[0] block in the Memory window, which is
0x18fee8. The value of ptr + 1 is the address of the 1st element in score[0] block, which is
0x18feec.

sPtr moves along the first column of score. We have sPtr = score[0] and sPtr + 1 = score[1] at
first.

Values are displayed as hexadecimal numbers in the Memory window. The value of score[0][2]
is 4B, which corresponds to its decimal form 75 in the Watch window.

It can be derived from the Memory window that int type takes up 4 bytes in the system in
which this program is executed. The address of the last element in the 0th row is 0x18fefc. After
shifted by 4 bytes, it becomes 0x18ff00, which is precisely the address of the first element in
the first row. This shows that the addresses of these two elements are consecutive. Similarly,
one can inspect the addresses of the first and last elements of other rows and conclude that
rows of a two-dimensional array are stored consecutively.

2.3 Pointers and arrays 81

Once again, we notice that elements of multidimensional arrays are stored consecutively,
which is a general rule of array storage.

2.4 Pointers and multiple strings

Example 2.7 Finding largest string
Find the largest string (in alphabetical order) in the following family names. Please implement
using reference by address:

Zhao, Zhou, Zhang, Zhan, Zheng

Analysis

1. Data structure analysis
Each family name is a string, so we can store multiple family names in a two-dimensional char-
acter array, as shown in Figure 2.43.

c[0] "Zhao"

c[1] "Zhou"

c[2] "Zhang"

c[3] "Zhan"

c[4] "Zheng"

char *cPtr[5]={“Zhao", "Zhou", "Zhang","Zhan","Zheng"}

cPtr[] is a 1-d pointer array
(array elements are pointers)cPtr[0] "Zhao"

cPtr[1] "Zhou"

cPtr[2] "Zhang"

cPtr[3] "Zhan"

cPtr[4] "Zheng"

char c[5][6]={“Zhao", "Zhou", "Zhang","Zhan","Zheng"}

Beginning addresses
of rows of a 2-d array,
referenced using the
1-d form of the array

Figure 2.43: Two storage structures of multiple strings.

Because there are five names, we need to define a character array c with five rows. The longest
name has five characters, so we need six columns to store it and the termination mark.

The address of each row of a two-dimensional array can be referenced in a one-dimensional
format. c[0] to c[4] can be treated as elements of a special array whose elements are pointers.

Based on discussion earlier, we may define a pointer array cPtr[]. It is a one-dimensional
array of pointers with five elements, each of which is the address of a string.

2. Algorithm description
The pseudo code is shown in Figure 2.44.

82 2 Pointers

Top-level pseudo code First refinement Second refinement

Find the largest among
multiple strings

Store M strings into *cPtr[M] char *cPtr[M] , char str[6]

Use the first string in the
array as comparison basis str

Use cPtr[0] as comparison
basis, and copy it into str

Compare each string with str
and put the larger into str

i=1;
while i< M

if str<cPtr[i]
Copy c[i] into str

i++;
Output result Output result Output str

Figure 2.44: Finding largest string algorithm.

3. Code implementation

01 #include <stdio.h>

02 #include <string.h>

03 #define M 5 //Number of strings

04 #define N 5 //Longest string length + 1

05

06 int main(void)

07 {

08 char *cPtr[M]= {"Zhao","Zhou","Zhang","Zhan","Zheng"};

09 char str[N];

10 int i;

11 //Use strcpy to copy cPtr[0] into str, beware of out-of-bound error

12 strcpy(str, cPtr[0]);

13 for (i=1; i<M; i++)

14 {

15 if (strcmp(str, cPtr[i])< 0) //If str is less than cPtr[i]

16 {

17 strcpy(str, cPtr[i]); //Then copy cPtr[i] into str

18 }

19 }

20 printf("The largest string is: %s\n", str);

21 return 0;

22 }

Program result:
The largest string is: Zhou

Note: On line 8, pointer array cPtr is defined and initialized with 5 strings.
On line 9, a one-dimensional character array is defined. Note that its length is the number of

characters in the longest string plus one.
The watch window shows the elements of the pointer array, as shown in Figure 2.45. Values

of these elements are the beginning addresses of strings.

2.4 Pointers and multiple strings 83

Figure 2.45: Inspection of pointer array.

On line 12, we use strcpy function to copy cPtr[0] into array str.
On line 15, we compare strings stored in str and cPtr[i].
On line 17, we copy the larger one into str.

2.4.1 One-dimensional pointer array and pointer to pointer

In the earlier example, if we wish to use a pointer to point to elements in array cPtr,
what does this pointer that points to pointer array look like?

Let the pointer pointing to pointer array cPtr be cPtrPtr, then its relation with
elements in array cPtr should be as shown in Figure 2.46. In this case, we need a
new kind of pointers.

cPtrPtr points to cPtr, which is a pointer, so cPtrPtr is a pointer to pointer. We usually
call such pointers double pointers. Figure 2.47 shows how to define a double pointer
and how to assign a value to it. A double pointer requires two asterisks in front of the
pointer name.

1-dimensional pointer array
char *cPtr[5]={“Zhao", "Zhou”, “Zhang”,“Zhan”,“Zheng”} ;
//Array elements are pointers

cPtr[0] "Zhao"

cPtr[1] "Zhou"

cPtr[2] "Zhang"

cPtr[3] "Zhan"

cPtr[4] "Zheng"

We want a pointer
pointing to a

pointer array, what
does it look like?

cPtrPtr→
cPtrPtr+1→

Figure 2.46: One-dimensional pointer array.

84 2 Pointers

To inspect a double pointer in debugger, we can use the three statements shown
in Figure 2.48.

As shown in the Watch window, elements of cPtr are beginning addresses of strings.
Addresses of these elements are presented in the Memory window. For example, ele-
ment cPtr[0] has value 0x420f94, which is the beginning address of the string “Zhao.”
The address of cPtr[0] is 0x18ff34, as shown in the Memory window. The double
cPtrPtr points to elements of cPtr. By adding 1 to it, we move it to the next element.

Readers can reimplement the largest string algorithm using double pointers.

1-dimensional pointer array
char *cPtr[5]={“Zhao", "Zhou”, “Zhang”,"Zhan","Zheng"} ; //
Array elements are pointers

cPtr[0] "Zhao"

cPtr[1] "Zhou"

cPtr[2] "Zhang"

cPtr[3] "Zhan"

cPtr[4] "Zheng"

char **cPtrPtr; //Pointer to pointer (double pointer)
cPtrPtr=cPtr;

cPtrPtr→
cPtrPtr+1→cPtrPtr points to cPtr,

which is also a pointer,
so we call cPtrPtr a

double pointer, namely
a pointer to pointer

Syntax of double pointers

type **name;

Figure 2.47: Definition of pointer to pointer.

1-dimensional pointer array
char *cPtr[5]={“Zhao", "Zhou", "Zhang","Zhan","Zheng"} ;
// Array elements are pointers
char **cPtrPtr; //Pointer to pointer (double pointer)
cPtrPtr=cPtr;

Figure 2.48: Inspection of the pointer array.

2.4 Pointers and multiple strings 85

P
oi

n
te

rs

C
on

ce
p

t

A
d

va
n

ce
d

u

sa
g

e

R
ef

er
en

ce
 b

y
na

m
e:

 v
ar

ia
bl

e
na

m
e

R
ef

er
en

ce
 b

y
ad

dr
es

s:
 v

ar
ia

bl
e

ad
dr

es
s

Po
in

te
r:

 a
 v

ar
ia

bl
e

us
ed

 t
o

st
or

e
m

em
or

y
ad

dr
es

se
s.

 I
ts

 v
al

ue
 is

 a
n

ad
dr

es
s

O
p

er
at

io
n

Po
in

te
r

op
er

at
or

:
ad

dr
es

s-
of

 o
pe

ra
to

r
&

,
de

re
fe

re
nc

e
op

er
at

or
 *

A
ss

ig
nm

en
t

op
er

at
io

n:
 lo

ca
te

 a
 p

oi
nt

er

A
ri
th

m
et

ic
 o

pe
ra

tio
n:

 m
ov

e
a

po
in

te
r,

 c
om

pu
te

 n
um

be
r

of
 e

le
m

en
ts

 b
et

w
ee

n
po

in
te

rs

R
el

at
io

na
l o

pe
ra

tio
n:

 d
et

er
m

in
es

 r
el

at
iv

e
po

si
tio

n
of

 t
w

o
po

in
te

rs

U
sa

ge
 r

ul
e:

 o
ne

 s
ho

ul
d

as
si

gn
 a

 v
al

ue
 t

o
a

po
in

te
r

be
fo

re
 u

si
ng

 it
 in

 o
rd

er
 n

ot
 t

o
ac

ce
ss

 w
ro

ng
 m

em
or

y
un

its
O

ff
se

t:
 s

iz
e

of
 o

ff
se

t
in

 o
ne

 s
te

p
is

 d
et

er
m

in
ed

 b
y

si
ze

 o
f

po
in

te
r

ty
pe

Po
in

te
r

to
 a

rr
ay

:
a

po
in

te
r

po
in

tin
g

to
 b

eg
in

ni
ng

 a
dd

re
ss

es
 o

f
ro

w
s

in
 a

 2
-d

 a
rr

ay

1-
d

po
in

te
r

ar
ra

y:
 a

rr
ay

 e
le

m
en

ts
 a

re
 p

oi
nt

er
s

D
ou

bl
e

po
in

te
r:

 a
 p

oi
nt

er
 t

o
po

in
te

r

Fi
gu

re
2.
49

:R
el
at
io
ns

be
tw

ee
n
co

nc
ep

ts
re
la
te
d
to

po
in
te
rs
.

86 2 Pointers

2.5 Summary

The main contents of this chapter and the relations between them are shown
in Figure 2.49.

Objects with location attribute can be referenced either by name or by address,
Which are both key elements of variables,
Variable names are usually meaningful, so it is more intuitive and convenient
to use them,
Reference by address operates on memory directly, so it is more efficient.

Data are stored in cells inside memory.
Each cell has a number, which is used as their addresses,
Values of pointer variables are addresses,
And their types indicate types of data stored in the corresponding cell,
To access the data, we need to determine the address first.
Pointer operations are limited to comparison and moving.
The size of step must be determined before moving a pointer.

2.6 Exercises

2.6.1 Multiple-choice questions

1. [Null pointer]
Which of the following is the output of this program?（）

include <stdio.h>

int main(void)

{

printf("%d\n",NULL);

return 0；

}

A) We do not know B) 0 C) –1 D) 1

2. [Concept of pointers]
Which of the following statements is correct about addresses and pointers?（）

A) We can assign a pointer of one type to a pointer of another type through
forced-type conversion.

B) We can compute the address of a constant and assign it to a pointer of the
same type.

2.6 Exercises 87

C) We can compute the address of an expression and assign it to a pointer of
the same type.

D) We can compute the address of a pointer and assign it to a pointer of the
same type.

3. [Pointer assignment]
Suppose x is an integer variable and pb is an integer pointer. Which of the fol-
lowing statements is correct?（）

A) pb = &x B) pb = x C) *pb = &x D) *pb = *x

4. [Pointer exception]
Suppose we have the following definitions: int x=2, *p=&x; float y=3.0; char
z='c';.
Which of the following operations is unsafe?（）

A) p++ B) x++ C) y++ D) z++

5. [Read into address]
Suppose we have declarations double *p, a. Which of the following statements
can correctly read input?（）

A) *p = &a; scanf("%lf",p) B) p = (double*)malloc(8); scanf("%f",p)
C) p = &a; scanf("%lf",a) D) p = &a; scanf("%lf",p)

6. [Pointer offset]
What is value of y after executing the following program?（）

int a[]={2,4,6,8,10};

int y=1,x,*p;

p=&a[1];

for(x=0;x<3;x++) y + = * (p + x);

printf("%d\n",y);

A) 17 B) 18 C) 19 D) 20

7. [Operations on string]
Which of the following statements is a correct string assignment statement?（）

A) char s[5] = {"ABCDE"} B) char s[5] = {'A', 'B', 'C', 'D', 'E'}
C) char *s; s = "ABCDEF" D) char *s; scanf("%s"，s)

8. [Forced-type conversion of pointer]
Which of the following options points pointer p to a dynamic memory unit of an
integer variable? ()
int *p;
p = __________ malloc(sizeof(int));
A) int B) int * C) (*int) D) (int *)
Note: malloc is the library function for dynamic memory allocation

88 2 Pointers

9. [Row pointer of two dimensional array]
Suppose we have: int w[3][4] = {{0,1},{2,4},{5,8}}; int(*p)[4] = w;
Which of the following expressions evaluates to 4?（）

A) *w[1]+1 B) p++,*(p+1) C) w[2][2] D) p[1][1]

2.6.2 Fill in the tables

1. [Memory unit address]
Figure out values of variables in Figure 2.50 after executing the following pro-
gram. Suppose address of variable a is 0x003FFCA4 and address of variable b is
0x003FFCA8.

int main(void)

{

int a, b;

int *p1, *p2;

p1 = &a;

p2 = &b;

a = 50;

b = 20;

a = *p1 - *p2;

return 0;

}

2. [Pointer operations]
Fill in the table in Figure 2.51 based on the following program:

int a, b, k=4, m=6, *p1=&k, *p2=&m;
a=(p1==&m);
b=(*p1)／(*p2)+7;

Variable a b p1 p2 *p1 *p2
Value

Figure 2.50: Pointers: fill in the tables, question 1.

2.6 Exercises 89

3. [Pointer to one-dimensional character array]
Fill in the table in Figure 2.52 based on the following program:

int main(void)

{

int i, s=0, t[]={1,2,3,4,5,6,7,8,9};

int *p=t;

for(i=0;i<9;i+=2)

{

s+=*(p+i);

}

printf("%d\n",s);

return 0;

}

4. [Pointer to character array]
Fill in the table in Figure 2.53 based on the following program. Suppose key-
board input is "abcde"
#include "ctype.h"

int main(void)

{

char str[81],*sptr;

gets(str);

sptr=str;

while(*sptr)

{

i 0 2 4 6 8 10
p &t[0] End of loop
s 1

Figure 2.52: Pointers: fill in the tables, question 3.

Expression Result
p1==&m
*p1
*p2
(*p1)/(*p2)
a
b

Figure 2.51: Pointers: fill in the tables, question 2.

90 2 Pointers

putchar(*sptr+1);

sptr++;

}

return 0;

}

2.6.3 Programming exercises

1. Suppose we have an integer array with 10 elements. Show the output of its ele-
ments using the following methods: through array index, through array name,
and through a pointer.

2. Write a program that reads n number from keyboard input and outputs them in
the reversed order of input. Your implementation should use pointers.

3. Please write a program, in which you define a one-dimensional integer array
num[20], read an integer n (n ≤ 20), and an integer sequence (of n numbers)
from keyboard input, find the maximum and the minimum in the sequence and
swap them.

4. Write a function that stores input characters backwards. Input of characters and
output of the reversed characters should be done in the main function.

5. Write a program that connects two strings without using strcat function.
6. Please write a program that handles character input in the following way: if the

input is a lowercase letter, the program should output its uppercase counter-
part; if the input is uppercase, the program should output its lowercase counter-
part; other characters should be output as such.

7. A palindromic number is a nonnegative integer that remains the same when its
digits are reversed, for example, 12321. Please write a program that determines
whether the input integer is palindromic. If so, the program should output the
sum of its digits; otherwise the program should output "no."

8. Please write a program to encrypt string "China" using Caesar code with a right
shift of 4. For example, the fourth letter after "A" is "E," so ciphertext of "A" is
"E." As a result, ciphertext of "China" should be "Glmre."

Input str "abcde"

Number of iterations 1 2 3 4 5

*sptr 'a'

putchar(*sptr+1) 'b'

Functionality:

Figure 2.53: Pointers: fill in the tables, question 4.

2.6 Exercises 91

3 Composite data

Main contents
– Introduction of construction of structures through comparison of structures and arrays
– Analysis of the nature of structure types through comparison of structure types and basic

types
– Summarization of usage of structures through comparison of structure members and plain

variables
– Program reading practices
– Practice of top-down stepwise refinement algorithm design
– Storage characteristics and debugging techniques of structures

Learning objectives
– Understand the significance of custom data types
– Know steps and methods of type definition, variable definition, initialization, and reference

of structures
– Know the concept of unions and how to use them
– Know the concept of enumerations and how to use them

3.1 Concept of structures

3.1.1 Introduction

There were four students in a study group instructed by Mr. Brown. Their informa-
tion was recorded in a student management table, as shown in Figure 3.1. One day,
Mr. Brown asked his students, “We have learned how to compute total grade in a
two-dimensional table, can you write a program that computes total grades and
prints the entire management table?”

How to
implement

in code?

ID Name Gender Admission
Year

Computer
architecture C Compiler Operating

System Total

1001 ZhaoYi M 2009 90 83 72 82
1002 QianEr M 2009 78 92 88 78
1003 SunSan F 2009 89 72 98 66
1004 LiSi F 2009 78 95 87 90

Figure 3.1: Student management table.

https://doi.org/10.1515/9783110692303-003

https://doi.org/10.1515/9783110692303-003

Compared with a two-dimensional array, data in this table are not of the same type.
To process this table, we must first figure out how to access the data on a computer
before designing an algorithm. To be more specific, we need a method to store the
table in the computer and to retrieve grades from the table. This is also the general
approach to solve problems from a computer’s perspective.

3.1.2 Storage solution of mixed data table

3.1.2.1 Discussion of possible storage solution of mixed data table
Let us discuss possible solutions to store a mixed data table.

Based on the characteristics of the table and concept of array storage we have
learned, we can use two methods to store the table: by row or by column. The pros
and cons of these two methods are shown in Figure 3.2.

Of course, we can store each column in a one-dimensional array. However, total
grade computation will then involve multiple one-dimensional arrays. It is tedious
to do so in programs. If the computation is done in a module, then there is no easy
way to pass information from a row down to child functions.

On the other hand, if we store the table by row, data entries of one individual
are stored consecutively, so the sum can be computed in the same way as it is done
in one-dimensional arrays. By encapsulating the sum computation in a module, we
only need to pass row addresses to it, as we have done in two-dimensional arrays.

To sum up, it is easier to process data if we store the table by row.

What are
possible storage

solutions?

Solution Characteristics Issues

By column – Each column is a 1-d array
– Has existing solution

– Computation involves multiple
1-d arrays

– Computation is inconvenient

By row
– Multiple types of data in each row
– Easier to access using row offsets
– Consistent with our experience

– No existing storage and
processing solution

– Can use storage solution of
arrays

An array is a collection of variables of the same type
“By row: combinatorial data structure”is a group of
variables of different types

Reconstruct new
concepts and

methods based on
arrays

Figure 3.2: Possible solutions to table storage.

94 3 Composite data

3.1.2.2 Issues of constructing “combinatorial data”
There are multiple rows in a table, but they are essentially a repetition of a single
row. As a result, it suffices to figure out how we should store a single row. Hence,
the key is to “pack” data of different types together and store them in a continuous
space, whose beginning address functions as a reference to this space.

We can now list all given conditions and our expectations of the new storage
solution as follows:
– It can store multiple data entries, each of which may have its own type.
– Users can determine the number of data entries and values.
– Data mentioned earlier are “packed” together as one entity and stored in a con-

tinuous space.
– Each data entry can be accessed independently.

3.1.2.3 Key elements of constructional data
An array is a group of variables of the same type. However, a “combinatorial data
structure” requires us to reconstruct new concepts and methods based on arrays.
Using these new methods, we can construct “constructional data.”

Based on three key elements of data storage, we can analyze combinatorial
data from the perspective of storage size, memory allocation, and data access. As
shown in Figure 3.3, they are determined by type, definition, and reference of “com-
binatorial data,” respectively.

(1) Type of constructional data
The storage size is determined by data type. A type is identified by its name and
size.

The system cannot predict data in the mixed data table because they are gen-
erated by users. Thus, users need to “construct” a type for the table on their own.

Storage
size

Type of “combinatorial
data”

Type size Type name
Sum of size of each data entry keyword+identifier

Memory
allocation

Variable definition of
“combinatorial data”

Memory is allocated by the system based on types of
custom data
Multiple data entries are stored consecutively

Data
reference

Variable reference of
“combinatorial data”

Reference of single data entry, multiple entries as a whole
entity and address

Three key elements of data storage

This identifier
is user-defined

What issues we need to
consider when constructing
“combinatorial data”?

Figure 3.3: Key elements of storage of constructional data.

3.1 Concept of structures 95

There are multiple types of data in the table, so the size of the table type should
be the sum of the sizes of each entry.

Because such a combinatorial type is data-dependent, its size varies for different
tables. As a result, it is not possible to use a single type for all of them. Otherwise, the
system cannot allocate a suitable amount of memory for each table. Hence, it is the
programmers’ task to define types. It is thus necessary to design syntax for type defi-
nitions. In C language, such definitions are done in the format “keyword + identifier,”
in which programmers name the identifier.

(2) Definition of constructional data
After defining a variable for “combinatorial data,” the system should allocate mem-
ory based on the custom type. The data entries should be stored continuously.

(3) Reference of constructional data
To retrieve data, programmers should be able to access a single data entry, all en-
tries as a whole entity or the address of the “combinatorial data” variable.

“Combinatorial data” are called structures in C. A structure is a collection con-
structed by data of different types. Structures in C make storage and processing of
complex data structures possible.

3.2 Storage of structures

3.2.1 Type definitions of structures

Figure 3.4 shows the definition of a structure (struct) and its data entries. Structures
are one of the aggregate data types in C.

Figure 3.5 presents some concepts related to the type of structures.
Structure names are identifiers defined by programmers to reference structures

conveniently. The type name of a structure consists of keyword struct and the struc-
ture name. A structure definition consists of type names and definitions of structure
members. Although structure names are optional, it is not recommended to omit

Structure

A structure (struct) is a collection of multiple data entries.
Each entry in a structure is called a structure member.
Members can have different types.

Aggregate
data type

Figure 3.4: Definition of structures.

96 3 Composite data

them. A structure must be defined before being used. Members of a structure can be
of any valid types in C.

Think and discuss Will the system allocate memory for structure members after defining the
structure?
Discussion: Note that a structure is a user-defined data type. In C, types describe the size of
memory allocated, but a type definition will not trigger memory allocation. Memory will not be
allocated until a variable of this type is defined.

Example 3.1 Structure definition of student management table
Define a structure for data in Figure 3.6

ID Name Gender Admission
year

Computer
architecture C Compiler Operating

system Total

id name gender time score_1 score_2 score_3 score_4 total

Figure 3.6: Student management table.

Analysis
Figure 3.7 presents two solutions to structure definition for the table.

Solution 1: the structure name is student, which becomes the type name together with keyword
struct. The members are defined one by one, each with an appropriate type.
Solution 2: we can combine data of the same type into an array to make the definition simpler.

struct name
{ type member 1;

type member 2;
……

type member n;
};

Syntax of structure type definition

Programmers use identifiers to name structures for easier reference

Structure name

struct name

Structure type name

We must define a
structure before

using it

Will memory be allocated
to these members by the
system once the structure

type is defined?

struct is the
keyword of
structure

Figure 3.5: Concepts related to structure type.

3.2 Storage of structures 97

struct student
{

int id;
char name[10];
char gender;
int time;
int score_1;
int score_2;
int score_3;
int score_4;
int total;

} ;

struct student
{

int id;
char name[10];
char gender;
int time;
int score[4]; //Combine 4 grades in an array
int

}

Solution 2

Solution 1

total;

Figure 3.7: Solutions of structure definition for the student management table.

3.2.2 Definition of structure variables

With the definition of a structure type, we can define structure variables. As shown
in Figure 3.8, the definition is similar to plain variable definitions, except that the
type is a structure type.

Let us consider the following example:

Example 3.2 Variable definitions related to student management table
There were 30 students in Mr. Brown’s class, whose information is recorded in the student man-
agement table format shown earlier. Please write out definitions of the following variables:
– a structure variable;
– an array of 30 structure variables;
– a pointer pointing to a structure object.

Analysis
Figure 3.9 shows required definitions, where struct student is the structure type, x is the name
of the structure variable, com[30] is the structure array, and sPtr is the pointer pointing to a
structure.

structureType variableName;

Syntax of structure variable definition

Figure 3.8: Definition of structure variable.

98 3 Composite data

Description Form
Structure type struct student
Structure variable definition struct student x;
Structure array definition struct student com[30];
Structure pointer definition struct student *sPtr;

ID Name Gender Admission
year

Computer
architecture C Compiler Operating

system Total

id name gender time score_1 score_2 score_3 score_4 total

Figure 3.9: Variable definitions related to the student management table.

3.2.3 Structure initialization

Similar to arrays, a structure variable can also be initialized, as shown in Figure 3.10.

Example 3.3 Initialization of structure array
Please initialize structure array com[30] with data in the student management table.
Analysis
As shown in Figure 3.11, we shall only initialize the first four rows as a demonstration. The unin-
itialized elements will be set to 0 by the system automatically.

Now we can store data of various types in a single data structure.

ID Name Gender Admission
year

Computer
architecture C Compiler Operating

system Total

1001 ZhaoYi M 2009 90 83 72 82
1002 QianEr M 2009 78 92 88 78
1003 SunSan F 2009 89 72 98 66
1004 LiSi F 2009 78 95 87 90

//Structure array initialization
struct student com [30]
= { { 1001, "ZhaoYi", 'M', 2009, 90, 83, 72, 82 },

{ 1002, "QianEr", 'M', 2009, 78, 92, 88, 78 },
{ 1003, "SunSan", 'F', 2009, 89, 72, 98, 66 },
{ 1004, "LiSi", 'F', 2009, 78, 95, 87, 90 }

};

Uninitialized
elements are set

to 0 by the
system

Figure 3.11: Initialization of structure array.

struct structureName variableName= {Initial data}

Syntax of structure initialization
Similar to array

initialization

Figure 3.10: Syntax of structure variable initialization.

3.2 Storage of structures 99

3.2.4 Memory allocation of structure variables

Memory is allocated to variables based on their definitions. We shall examine how
memory is allocated to structure variables using objects we defined previously,
including structure variable x, structure pointer sPtr, and structure array com.

3.2.4.1 Definitions related to structure

struct student //Structure type definition

{

int id;

char name[10];

char gender;

int time;

int score[4];

int total;

};

struct student x; //Structure variable definition

struct student com [10] //Structure variable definition and initialization

={{1001, "ZhaoYi", ‘M’, 2009, 90, 83, 72, 82 },

{1002, "QianEr", ‘M’, 2009, 78, 92, 88, 78 },

{1003, "SunSan", ‘F’, 2009, 89, 72, 98, 66 },

{1004, "LiSi", ‘F’, 2009, 78, 95, 87, 90 }

};

struct student *sPtr; //Structure pointer definition

sPtr=com; //Make the pointer point to array

x=com[2]; //Assign com[2] to x

3.2.4.2 Memory layout of structure variables
Figure 3.12 shows memory layout of structure variables.

Size of memory allocated to structure variable x is the sum of size of memory
required by each member in the structure.

Structure array com has 10 rows, each of which has the same size as structure
variable x.

Using assignment statement sPtr = com, we point sPtr to the beginning address
of array com. This is possible because they are of the same type. To make the pointer
point to com[9], we can simply move it by nine elements with statement sPtr + 9.

3.2.4.3 Inspection of memory layout of structure variables
Figure 3.13 shows the memory layout of these variables in debugger windows.

Structure array com has 10 elements, each of which can be expanded by click-
ing the plus sign in front of it. Here we have only expanded com[0]. It is clear after

100 3 Composite data

expansion that each element consists of data entries defined in the structure-type
definition.

The Watch window for variable x shows that assigning value to a structure vari-
able copies all data entries.

In the window for sPtr, we can inspect contents pointed to by it. sPtr points to
the beginning address of com, and we can verify that id is indeed 1001. sPtr + 1 has
id 1002, so it points to com[1]. This is consistent with the definition of pointer offset.

Structure variable xStructure pointer sPtrStructure array com

//Assign value of com[2] to x
x=com[2];

//Structure pointer
points to structure array
sPtr=com;

com[0]

Figure 3.13: Inspection of the memory layout of variables related to the student management table.

x ID Name Gender Admission
year Grade 1 Grade 2 Grade 3 Grade 4 Total

ID Name Gender Admission
Year Grade 1 Grade 2 Grade 3 Grade 4 Total

com[0]
com[1]

… … ...

com[9]

sPtr=com;

sPtr

sPtr+9

struct student x, com [10], *sPtr;

Figure 3.12: Memory layout of variables related to student management table.

3.2 Storage of structures 101

3.2.4.4 Data alignment of structures
Because members of a structure can have different types, their addresses need to be
aligned during memory allocation. Let us look at two examples first.

Example 3.4 Data alignment for basic types
Suppose we have three structure variables A, B, and C, and we know their initial values. Also,
suppose the size of short and size of long are 2 and 4 bytes, respectively, in the runtime
environment. After testing, we have obtained lengths of these variables, which are 6, 8, and
8 bytes, respectively, as shown in Figure 3.14. Please explain why this is the case after inspect-
ing the memory.

struct
{ short a1;

short a2;
short a3;

} A ={1,2,3};

struct
{

long a1;
short a2;

} B ={4,5};

struct
{

short a1;
long a2;

} C={6,7};

sizeof(A)= sizeof(B)= sizeof(C)=

Suppose:
sizeof(short)=2 sizeof(long)=4

Result:
sizeof(A)=6 sizeof(B)=8 sizeof(C)=8

Why is this
the case?

Figure 3.14: Data alignment.

Analysis
Figure 3.15 shows the addresses of A’s structure members. They all have length of 2 bytes and
are stored consecutively.

Figure 3.15: Memory layout of A.

Figure 3.16 shows the addresses of B’s structure members. B.a1 is stored at 0x19ff20 and has
4 bytes. B.a2 is store right after it at address 0x19ff24. sizeof(B) yields 8, so 4 bytes are allocated
to B.a2. However, short type only takes up 2 bytes. Thus, the remaining 2 bytes are not in use.

102 3 Composite data

Figure 3.16: Memory layout of B.

Figure 3.17 shows the addresses of C’s structure members. C.a1 is stored at 0x19ff18. It is of
type short, so its length is supposed to be 2 bytes. Nonetheless, C.a2, a long variable, is stored
at 0x19ff1c, which is 4 bytes after C.a1. sizeof(C) yields 8 and we know the length of a long vari-
able is 4 bytes, so 4 bytes are allocated to C.a1. Once again, 2 bytes are not in use.

Figure 3.17: Memory layout of C.

Think and discussWhy are there “holes” in memory that are not used?
Discussion: We can infer from the memory layout shown earlier that these memory units are allo-
cated in such a way that the addresses of structure members are aligned. Data alignment allows
the CPU to access memory more efficiently. It is an optimization done by compilers during mem-
ory allocation of variables. The optimization (alignment) rule for basic types is as follows:

Variable address %N = 0 (Alignment parameter N = sizeof(variable type))
Note: this rule may vary in different compilers.

Knowledge ABC Memory allocation rules of structures (VC++ 6.0)
1. Member storage order

Members of a structure are stored in the order in which they are defined. The first member is
stored at the lowest address, while the last member is stored at the highest address.

2. Data alignment parameter
(1) Alignment parameter for a member:

N = min(sizeof(member type)，n)

Note: the value of n is configurable in VC++ 6.0. Its default value is 8 bytes.
(2) Alignment parameter for a structure: M =maximum of alignment parameters of all mem-

bers in the structure

3.2 Storage of structures 103

3. Memory allocation rules of structures
(1) Structure size L: L%M= 0 (empty bytes should be padded if necessary).
(2) Address of a member x: x%N = 0 (if the size of the member is less than M, the next mem-

ber is padded).

Memory is allocated in multiples of M bytes: if a member is longer than M bytes, then M more bytes
are allocated; if a member is shorter than M bytes, then the next member is padded following the
same set of rules (which also apply to nested structures).

Example 3.5 Data alignment for constructional types
Figure 3.18 shows the definition of structure struct stu and its information in the Watch and the
Memory windows.

Let struct stu x = {1, “ZhaoYi”, “Male”, 3, 4, 5, 6, 7 }.

struct stu
{ int StudentId;

char StudentName[10];
char StudentGender[7];

int TimeOfEnter;
int Score[4];

}

Figure 3.18: Memory layout of variable x.

The length of memory allocated to x is 0x19ff30-0x19ff04=0x2c=44 bytes; sum of length of its
members=(int+ char*10+char*7+int+int*4)=41 bytes. The difference between these two values
is 3 bytes, so “holes” exist in the memory, as shown in Figure 3.19.

Member Beginning
address 4 bytes

int StudentId 19FF04 01 00 00 00
char StudentName[10] 19FF08 5A 68 61 6F

59 69 00 00
char StudentGender[7] 19FF12 00 00 4D 61

6C 65 00 00
00 CC CC CC

int TimeOfEnter 19FF1C 03 00 00 00
int Score [4] 19FF20 04 00 00 00

05 00 00 00
06 00 00 00
07 00 00 00

Memory “hole”
3 bytes

Figure 3.19: Memory “holes.”.

104 3 Composite data

The alignment parameter of structure x is M = sizeof(int) = 4.

Note:
(1) Objects stored in unit 0x19FF10 and 0x19FF11 are StudentName[8] and StudnentName[9],

respectively.
(2) The beginning address of StudentGender is 0x19FF12.

The alignment parameter of StudentGender is N =min(sizeof(member type), 8) = sizeof
(char) = 1.
Because 0x19FF12%N = 0, the 7 elements of StudentGender is stored in units starting from
0x19FF12.

(3) The beginning address of TimeOfEnter is 0x19FF1C.

The alignment parameter of TimeOfEnter is N = sizeof(int) = 4.
The address of the next empty unit after 7 elements of StudentGender is 0x19FF19. None of

the numbers in the range 0x19FF19 to 0x19FF1B is multiple of 4, as shown in Figure 3.20, so the
beginning address of TimeOfEnter has to be 0x19FF1C, which is a multiple of 4. As a result,
aligning TimeOfEnter leads to the 3-byte “hole” after StudentGender.

Figure 3.20: Result of addresses mod 4.

We can conclude that a good structure member design makes the structure simpler and saves
memory space. Carefully designed structures can make our programs more efficient.

3.2.5 Referencing structure members

We obtain memory for structures by defining structure variables and assigning val-
ues to them through initialization. These are all write operations of data. Because
we need to read them as well, a referencing method is necessary for members of a
structure variable.

There are three ways to reference a structure member in C, as shown in Figure 3.21.
The first one references a member by its name. Its syntax is structure variable name
and member name connected by a dot. The rest references a member by its address.
They require a pointer pointing to the structure. This pointer is then used together
with member names to complete the task. Essentially, these two methods work in the
same way.

3.2 Storage of structures 105

Example 3.6 Example of referencing structure members
Figure 3.22 shows concrete examples of member referencing using structure and variables de-
fined previously.

Object Value to be referenced Statement Reference
prefix

Structure
variable x

Total grade x.total
x

x.score[0]

Structure
array

com[30]
com[i]

com[1].total

com[2].score[0]

Structure
pointer

sPtr

Total grade sPtr->total
sPtr->

sPtr->score[3]

Total grade (*sPtr).total
(*sPtr)

The 2nd grade

The 3rd grade

The 0th grade of the 2nd student

The 0th grade

Total grade of the 1st student

(*sPtr).score[0]

struct student
{

int id;
char name[10];
char gender;
int time;
int score[4];
int total;

}
struct student
x, com[30],*sPtr;

Figure 3.22: Example of referencing structure members.

To reference a member of the structure variable x, we use the statement “x.member name.”
To reference a member of structure array com, we use the statement “com[index].member name.”
To reference a member of the structure pointer sPtr, we use either “sPtr-> member name” or

“(*sPtr).member name.”

3.3 Applications of structures

Example 3.7 Comparison of structures and arrays
Write a program that finds the highest score and corresponding seat number in Figure 3.23,
prints the information, and swaps it with the first column.

structureVariableName.memberName
Method 1

structurePointerName->memberName
Method 2

(*structurePointerName).memberName
Method 3 We need a pointer

pointing to the
structure first

Reference
by address

Reference
by name

Figure 3.21: Syntax of referencing structure members.

106 3 Composite data

Seat No. 1 2 3 4 5 6

Grade 90 80 65 95 75 97

Figure 3.23: Data grid.

Analysis
1. Data structure design
We may use one of the following three solutions:
(1) Using a one-dimensional array

Score array: int score [6] = {90,80,65,95,75,97};
Seat number array: int set[6] = {1,2,3,4,5,6};

(2) Using a two-dimensional array
Combination of score and seat number: int score[2][6] = {{90,80,65,95,75,97},{1,2,3,4,5,6}};
We have learnt how to store data with arrays: data of the same type are stored in order;
each element is accessed using array name and index.

(3) Using a structure

Solution 1:
struct node {

int score[6];

int seat[6];}

struct node x={{90,80,65,95,75,97},{1,2,3,4,5,6}}

Solution 2:
struct node {

int score;

int seat;}

struct node y[6]={{90,1},{80,2},{65,3},{95,4},{75,5},{97,6}};

Structures “pack” correlated data together. Type of a structure is defined by users. Memory is
allocated during definition of variables of the structure type.

After storing data into memory using structures, we need to reference them for further com-
putation. Figure 3.24 shows how data are stored and accessed using a one-dimensional array,
two-dimensional array, and structure.

Figure 3.25 shows how to reference members of structure variable x and structure array y
and their corresponding values.

3.3 Applications of structures 107

A
dd

re
ss

Ty
pe

Va
ri

ab
le

re

fe
re

nc
e

S
to

ra
ge

 o
rd

er
C
ha

ra
ct

er
is

tic
s

1-
d

ar
ra

y

2-
d

ar
ra

y

A
rr

ay
 n

am
e

sc
or

e
in

t
sc

or
e[

in
de

x]
El

em
en

ts
 a

re
 s

to
re

d
co

ns
ec

ut
iv

el
y;

tw
o

ar
ra

ys
 a

re
 n

ot
 n

ec
es

sa
ri

ly
 s

to
re

d
co

ns
ec

ut
iv

el
y

It
 is

 c
on

ve
ni

en
t

to
ha

nd
le

 la
rg

e
am

ou
nt

of
 d

at
a

of
 t

he
 s

am
e

ty
pe

 u
si

ng
 a

rr
ay

s

A
rr

ay
 n

am
e

se
at

in
t

se
at

[i
nd

ex
]

A
rr

ay
 n

am
e

sc
or

e
in

t
sc

or
e[

in
de

x]
[

in
de

x]
El

em
en

ts
 a

re
 s

to
re

d
co

ns
ec

ut
iv

el
y

in
a

ro
w

-f
ir

st
 m

an
ne

r

S
tr

uc
-t

ur
e

A
dd

re
ss

 o
f
x

st
ru

ct

no
de

x.
sc

or
e

[i
nd

ex
]

M
em

be
rs

 o
f
th

e
st

ru
ct

ur
e

ar
e

st
or

ed
co

ns
ec

ut
iv

el
y;

 a
rr

ay
 s

co
re

 is
 f
ol

lo
w

ed
by

 a
rr

ay
 s

ea
t

S
tr

uc
tu

re
s

co
m

bi
ne

co

rr
el

at
ed

 d
at

a
to

ge
th

er
 s

o
th

at
 w

e
ca

n
us

e
on

e
si

ng
le

va

ri
ab

le
 t

o
ac

ce
ss

th

em

x.
se

at
[i

nd
ex

]
M

em
be

rs
 o

f
th

e
st

ru
ct

ur
e

ar
e

st
or

ed
co

ns
ec

ut
iv

el
y;

 p
ai

rs
 o

f
sc

or
e

an
d

se
at

 a
re

 s
to

re
d

in
 t

he
 a

rr
ay

co
ns

ec
ut

iv
el

y
A
dd

re
ss

 o
f
y

st
ru

ct

no
de

y[
in

de
x]

.s
co

re

y[
in

de
x]

.s
ea

t

Fi
gu

re
3.
24

:D
at
a
st
or
ag

e
an

d
re
fe
re
nc

e.

108 3 Composite data

Storage order of variable x Storage order of array y[6]
Member variable Value Member variable Value

x.score[0] 90 y[0].score 90
x.score[1] 80 y[0].seat 1
x.score[2] 65 y[1].score 80
x.score[3] 95 y[1].seat 2
x.score[4] 75 y[2].score 65
x.score[5] 97 y[2].seat 3
x.seat[0] 1 y[3].score 95
x.seat[1] 2 y[3].seat 4
x.seat[2] 3 y[4].score 75
x.seat[3] 4 y[4].seat 5
x.seat[4] 5 y[5].score 97
x.seat[5] 6 y[5].seat 6

Figure 3.25: Storage of x and y.

2. Algorithm design
Figure 3.26 shows pseudo code of the algorithm.

Pseudo code
Find the current maximum in score, record the
corresponding seat number as num
Swap max with the 0th element of score
Swap num with the 0th element of seat
Output contents of array score and array seat

Figure 3.26: Algorithm of finding the highest score and swapping it with the first column.

3. Code implementation 1

1 //Using 1-d array

2 #include <stdio.h>

3 #define MAX 6

4

5 int main(void)

6 {

7 int score[MAX]={90,80,65,95,75,97};

8 int seat[MAX]={1,2,3,4,5,6};

9 int max, num;

10 int temp1, temp2;

11

12 //Find maximum of score, store it in max and the index in num

13 max=score[0]; //Use the 0-th element as comparison basis

14 num=1;

15 for (int i=1; i< MAX; i++)

16 {

3.3 Applications of structures 109

17 if (max < score[i])

18 {

19 max=score[i];

20 num=seat[i];

21 }

22 }

23

24 //Swap the maximum with the 0-th element

25 temp1=score[0];

26 temp2=seat[0];

27 score[0]=max;

28 seat[0]=num;

29 score[num-1]= temp1;

30 seat[num-1]= temp2;

31

32 //Output

33 printf("No. 1: seat no. %d, %d pts\n", seat[0],score[0]);

34 return 0；

35 }

Program result:
No. 1: seat no. 6, 97 pts

4. Code implementation 2

1 //Using 2-d array

2 #include <stdio.h>

3 #define MAX 6

4 int main(void)

5 {

6 int score[2][MAX]=

7 { {90,80,65,95,75,97},

8 { 1, 2, 3, 4, 5, 6}

9 };

10 int max, num;

11 int temp1, temp2;

12

13 //Find maximum of score, store it in max and the index in num

14 max=score[0][0]; //Use the 0-th element as comparison basis

15 num=1;

16 for (int i=1; i< MAX; i++)

17 {

18 if (max < score[0][i])

19 {

20 max=score[0][i];

21 num=score[1][i];

22 }

23 }

24

110 3 Composite data

25 // Swap the maximum with the 0-th element

26 temp1=score[0][0];

27 temp2=score[1][0];

28 score[0][0]=max;

29 score[1][0]=num;

30 score[0][num-1]= temp1;

31 score[1][num-1]= temp2;

32

33 //Output

34 printf("No. 1: seat no. %d, %d pts\n ",score[1][0],score[0][0]);

35 return 0;

36 }

Program result:
No. 1: seat no. 6, 97 pts

5. Code implementation 3

1 //Using the first structure definition

2 #include <stdio.h>

3 #define MAX 6

4 int main(void)

5 {

6 struct node

7 {

8 int score[MAX];

9 int seat[MAX];

10 } x = { {90,80,65,95,75,97}，{1,2,3,4,5,6} };

11 int max,num;

12 int temp1,temp2;

13

14 // Find maximum of score, store it in max and the index in num

15 max=x.score[0]; // Use the 0-th element as comparison basis

16 num=1;

17 for (int i=1; i< MAX; i++)

18 {

19 if (max < x.score[i])

20 {

21 max=x.score[i];

22 num=x.seat[i];

23 }

24 }

25

26 // Swap the maximum with the 0-th element

27 temp1=x.score[0];

28 temp2=x.seat[0];

29 x.score[0]=max;

30 x.seat[0]=num;

31 x.score[num-1]= temp1;

3.3 Applications of structures 111

32 x.seat[num-1]= temp2;

33

34 //Output

35 printf("No. 1: seat no. %d, %d pts \n", x.seat[0],x.score[0]);

36 return 0；

37 }

Program result:
No. 1: seat no. 6, 97 pts

6. Code implementation 4

1 //Using the second structure definition

2 #include <stdio.h>

3 #define MAX 6

4 int main(void)

5 {

6 struct node

7 {

8 int score;

9 int seat;

10 } y[6]={{90,1},{80,2},{65,3},{95,4},{75,5},{97,6}};

11 int max,num;

12 int temp1,temp2;

13

14 // Find maximum of score, store it in max and the index in num

15 max=y[0].score; // Use the 0-th element as comparison basis

16 num=1;

17 for (int i=1; i< MAX; i++)

18 {

19 if (max < y[i].score)

20 {

21 max=y[i].score;

22 num=y[i].seat;

23 }

24 }

25

26 // Swap the maximum with the 0-th element

27 temp1=y[0].score;

28 temp2=y[0].seat;

29 y[0].score=max;

30 y[0].seat=num;

31 y[num-1].score= temp1;

32 y[num-1].seat= temp2;

33

34 //Output

35 printf("No. 1: seat no. %d, %d pts\n",y[0].seat,y[0].score);

36 return 0;

37 }

112 3 Composite data

Program result:
No. 1: seat no. 6, 97 pts

Example 3.8 Printing student management table
In the introduction section of this chapter, Mr. Brown asked his students to print the table on
screen.

Analysis
1. Data structure design
We have studied how to store the table in Section 3.2. To be more specific, we shall use the
following structure definition for the student management table:

struct student

{

int id;

char name[10];

char gender;

int time;

int score[4];

int total;

};

To compute the sum, we need to retrieve the score data by referencing structure members.

(1) Reference by name
Suppose there are i students and j classes, as shown in Figure 3.27. Then a student’s grade in
one class is com[i].score[j], in which i is the index of structure array com and j is the index of
structure member score. i and j control which row and which column we will be accessing.

com[0] 1001 ZhaoYi M 2009 90 83 72 82
com[1] 1002 QianEr M 2009 78 92 88 78
com[2] 1003 SunSan F 2009 89 72 98 66
com[3] 1004 LiSi F 2009 78 95 87 90

com[i].score[j]

Suppose there are i rows and j columns

Row i Column j

Figure 3.27: Grade reference in student management table 1.

(2) Reference by address
As shown in Figure 3.28, we point sPtr to the beginning address of com first. Note that the offset
of sPtr is one row. To make computation easier, we introduce another pointer ptr that points to
a single grade with ptr = sPtr- > score. Note that the score here is an array name, so it is also an
address. Now we can use sPtr and ptr to control row and column we access.

3.3 Applications of structures 113

com[0] 1001 ZhaoYi M 2009 90 83 72 82

com[1] 1002 QianEr M 2009 78 92 88 78
com[2] 1003 SunSan F 2009 89 72 98 66
com[3] 1004 LiSi F 2009 78 95 87 90

sPtr®
sPtr+1®

ptr ptr=sPtr->score

Use address of a
grade for

referencing score

sPtr controls which row to read, ptr references columns of score[]

Figure 3.28: Grade reference in student management table 2.

2. Code implementation
Figure 3.29 shows the reference by name program.

Structure type definition

Structure array definition
and initialization

Compute total grade of a row

01 #include <stdio.h>
02 #define N 4//Number of students
03 #define M 4//Number of courses
04 struct student
05 {
06 int id;
07 char name[10];
08 char gender;
09 int time;
10 int score[M];
11 int total;
12 };
13 int main(void)
14 {
15 struct student com [N]
16 = {{ 1001, "ZhaoYi", 'M', 2009, 90, 83, 72, 82 },
17 { 1002, "QianEr", 'M', 2009, 78, 92, 88, 78 },
18 { 1003, "SunSan", 'F', 2009, 89, 72, 98, 66 },
19 { 1004, "LiSi", 'F', 2009, 78, 95, 87, 90 }
20 }; //Structure array initialization
21
22 int i, j;
23 printf(“ID Name Gender Admission Year CompArch C Compil OS Total\n"); //Table header
24 for(i=0; i<N; i++)
25 {
26 com[i].total = 0;
27 for (j= 0; j< M; j++)
28 {
29 com[i].total +=com[i].score[j];
30 }
31 printf("%d %s %s %d",com[i].id,com[i].name,&com[i].gender,com[i].time);
32 printf(" %d %d",com[i].score[0],com[i].score[1]);
33 printf(" %d %d %d\n",com[i].score[2],com[i].score[3],com[i].total);
34 }
35 return 0;
36 }

Figure 3.29: Student management table processing program 1.

114 3 Composite data

Note:
Lines 4–12 define the structure type.
Lines 15–20 define and initialize the structure array.
Line 23 prints the header of the table.
Lines 27–30 compute the total score for one student.
The for loop on line 24 repeats the sum computation N times.
Lines 31–33 print other data in the row.
Program result:

ID Name Gender AdmissionYear CompArch C Compil OS Total

1001 ZhaoYi M 2009 90 83 72 82 327

1002 QianEr M 2009 78 92 88 78 336

1003 SunSan F 2009 89 72 98 66 325

1004 LiSi F 2009 78 95 87 90 350

The implementation shown in Figure 3.30 uses the same algorithm but references grades by
address. Please refer to the program earlier for the first 20 lines.

Compute total grade of a row

21
22 int i, j;
23 printf(“ ID Name Gender AdmissionYear CompArch C Compil OS Total\n ”); //Table header
24 for (i=0; i<N; i++)
25 {
26 com[i].total = 0;
27 for (j= 0; j< M; j++)
28 {
29 com[i].total +=com[i].score[j];
30 }
31 printf("%d %s %s %d",com[i].id,com[i].name,&com[i].gender,com[i].time);
32 printf(" %d %d",com[i].score[0],com[i].score[1]);
33 printf(" %d %d %d\n",com[i].score[2],com[i].score[3],com[i].total);
34 }
35 return 0;
36 }

Figure 3.30: Student management table processing program 2.

Example 3.9 Vote counting machine
There are three candidates in an election, as shown in Figure 3.31. Please write a program to
count votes for each candidate. Use keyboard input to simulate the counting process. Each
voter has to choose one from the three candidates. Suppose there are N votes in total.

Candidate name Number of votes
Zhang
Tong
Wang

Figure 3.31: Vote statistics.

3.3 Applications of structures 115

Analysis
1. Data structure design
There are two types of data in vote statistics, so it is better to use a structure to store them. The
structure should have two members: candidate name and number of votes. There are three can-
didates, so we can use a structure array to store their information.
(1) Structure design
Information of each candidate can be stored in the following structure:

struct person

{ char name[16]; //Candidate name

int sum; //Number of votes

}

(2) Vote statistics table design
There are three candidates, so we use an array of size 3. Each element is initialized with the
candidate name and 0 votes.

struct person vote[3] ={"Zhang",0, "Tong",0, "Wang",0};

2. Algorithm design and code implementation (see Figure 3.32)

Pseudo code

while counter<number of total votes N

Input candidate name in_name

Look for in_name in the statistics table,
Add 1 to corresponding number of votes if the
person exists in table

Output result

Figure 3.32: Algorithm.

//Vote counting#include <stdio.h>

#include <string.h>

#define N 50 //Number of votes

struct person

{ char name[20]; //Candidate name

int sum; //Total votes

};

int main(void)

{

struct person vote[3]

={"Zhang",0, "Tong",0, "Wang",0};

int i,j;

char in_name[20];

for(i=0;i<N;i++) //N votes

116 3 Composite data

{

scanf("%s",in_name); //Input candidate name

for(j=0;j<3;j++) //Add one to corresponding sum

if (strcmp(in_name, vote[j].name)==0)

{

vote[j].sum++;

}

}

for (i=0;i<3;i++) //Output result

{

printf("%s,%d\n",vote[i].name,vote[i].sum);

}

return 0;

}

Program reading exercise Finding the eldest person
The following program uses a structure to store names and ages of multiple individuals, to find
the eldest person, and to output the result:
#define N 4

#include "stdio.h"

static struct man

{

char name[8];

int age;

} person[N]= {"li",18,"wang",19,"zhang",20,"sun",22};

int main(void)

{

struct man *q,*p;

int i,m=0;

p=person;

for (i=0; i<N; i++)

{

if (m < p->age) q=p++;

m=q->age;

}

printf("%s,%d",(*q).name,(*q).age);

return 0;

}

3.4 Union

3.4.1 Introduction

There is a lab in the university Mr. Brown works for. The lab is available to members
of all related research groups. One should book the lab before using it. However,

3.4 Union 117

researchers from different groups cannot use the lab together. We can list research
groups and researchers that are entitled to use the lab as follows:

Public lab

{

Research group 1: Person 1；

Research group 2: Person 2；

. . .

Research group n: Person n；

}

To save memory space, we also use such a memory sharing strategy in computers.
We can store variables that cannot be accessed simultaneously into one memory
unit. Such a data structure is called a “union.” When we have multiple variables
and use exactly one of them each time, we can use a union to store them into the
same memory unit.

3.4.2 Memory layout of unions

Similar to structures, type definition, variable definition, and member access are
also key issues for unions.

3.4.2.1 Union-type definition
Figure 3.33 illustrates the syntax of the union-type definition.

Similar to a struct-type definition, a union-type definition merely declares the type.
No memory space is allocated at this stage.

union name
{

type 1 member 1;
type 2 member 2;
…
type n member n;

}

Syntax of union type definition

union is
keyword of

unions

We must define
a union type
before using it

Figure 3.33: Syntax of union-type definition.

118 3 Composite data

3.4.2.2 Union variable definition
Figure 3.34 shows the syntax of defining a union variable, which is similar to that
of a structure variable.

3.4.2.3 Union member reference
Figure 3.35 shows how to reference a union member. We have seen similar syntax
in structures.

Example 3.10 Memory Layout of Union Members
Suppose we have a union defined as shown in Figure 3.36. Unlike struct members, x, ch, and y
have the same address. The length of memory space allocated is determined by the member
with the largest size.

int x

char ch

float y

Memory space
shared by multiple

union members

sizeof(union number)
is the size of

variable y, which is
the member with
the largest size

union number
{

int x;
char ch;
float y;

};

Figure 3.36: Union members share the same address.

unionType variableList;

Syntax of union variable definition
Define type

before defining
variables

Figure 3.34: Syntax of defining a union variable.

unionVariableName.memberName
Method 1

unionPointerName->memberName
Method 2

We need a
pointer pointing
to the union first

Reference
by address

Reference
by name

Figure 3.35: Syntax of referencing a union member.

3.4 Union 119

3.4.2.4 Comparison of unions and structures
Unions and structures have multiple features in common. Figure 3.37 presents a
comparison of these two data structures.

Example 3.11 Simple program using union
Please examine the memory layout of a union in the debugger.

1. Test program
The following test program defines a union and assigns values to its members in the order in
which they are defined. After running the program, we can inspect the memory layout of the
union using a debugger:

#include <stdio.h>

int main(void)

{

union number //Define a union type

{

int x;

char ch;

float y;

};

union number unit; //Define a union variable

unit.x=1; //Reference union members

unit.ch='a';

unit.y=2;

return 0;

}

2. Debugging
Figure 3.38 shows that the three members are all stored at 0x12ff7c. In particular, it shows
memory layout after value 1 is assigned to x, whose value is shown in the Memory window as
well.

Union Structure

Memory size
 Memory space is shared by all
members, its size is determined by
the member with the largest size

 Memory space size is sum of
sizes of members

Member
relation

 Only one member is valid at a given
time, which is the last stored member

 All members are stored
consecutively in the order in
which they are defined

Relation Union types can appear in structure type definitions

Figure 3.37: Comparison of unions and structures.

120 3 Composite data

Figure 3.38: Inspection of the memory layout of a union step 1.

Figure 3.39 shows the memory layout after the character ‘a’ is assigned to ch. ch’s value in the
Memory window is 0x61, which is exactly the ASCII value of ‘a’. This indicates that the valid
value of the union has changed to 0x61.

Figure 3.39: Inspection of the memory layout of a union step 2.

In Figure 3.40, we have assigned real number 2 to y. However, the value displayed in the
Memory window is 0x40000000. Why is this the case?

3.4 Union 121

Figure 3.40: Inspection of the memory layout of a union step 3.

Think and discuss Display format of floating-point variables
The value of the float variable is 2, but why is it displayed as 0x40000000?
Discussion: According to the IEEE754 standard, which we have introduced in the chapter “Basic
Data,” real number 2 is exactly 0x40000000 if stored as a 32-bit float type number, as shown in
Figure 3.41.

Decimal Normalization Exponent Sign 8 bits biased
exponent(exponent+127)

23 bits fraction

2 1.0x21 1 0 100 0000 0 000 0000 0000 0000 0000 0000

Figure 3.41: Storage format of real number 2.

Program reading exercise Operations on unions
Suppose we have data from multiple teachers, as shown in Figure 3.42. The data include their
ID, name, title, number of courses they are teaching (if the title is Lecturer), or number of papers
they have published (if the title is Professor). Please write a program that prints these data and
computes the total number of papers published.

No. Name Title Number of
courses or papers

1 Zhao L program

2 Qian P 3

3 Sun P 5

4 Li L English

5 Zhou P 4

Figure 3.42: Data for union.

122 3 Composite data

1 //Operations on union

2 #include <stdio.h>

3 #define N 5 //Number of teachers

4

5 union work

6 { char course[10]; //Course name

7 int num; //

8 };

9

10 struct teachers

11 { int number; //ID

12 char name[8]; //Name

13 char position; //Title

14 union work x; //Number of courses or papers

15 } teach[N];

16

17 int main(void)

18 {

19 struct teachers teach[N]

20 ={ {1, "Zhao",'L',"program"},

21 {2, "Qian",'P',3},

22 {3, "Sun",'P',5},

23 {4, "Li",'L',"English"},

24 {5, "Zhou",'P',4},

25 };

26 int sum=0;

27

28 for(int i=0; i<N; i++)

29 {

30 printf (" %3d %5s %c ",teach[i].number,

31 teach[i].name, teach[i].position);

32 if (teach[i].position =='L')

33 {

34 printf ("%s\n", teach[i].x.course);

35 }

36 else if (teach[i].position =='P')

37 {

38 printf ("%d\n", teach[i].x.num);

39 sum=sum+teach[i].x.num;

40 }

41 }

42 printf ("paper total is %d\n", sum);

43 return 0;

44 }

Program result:
1 Zhao L program

2 Qian P 3

3.4 Union 123

3 Sun P 5

4 Li L English

5 Zhou P 4

paper total is 12

3.5 Enumeration

3.5.1 Introduction

When Daniel started to learn watercolor painting, he was shocked by how different
colors could be mixed into a new color. He kept asking Mr. Brown questions like
“What is the result of mixing red and blue?” or “What if I mix yellow and red?”
which made Mr. Brown exhausted. As a result, Mr. Brown decided to write a pro-
gram that could answer these questions, for given input from his son.

Figure 3.43 shows results of mixing two of three primary colors.

Before he could write the code, Mr. Brown needed to design a data structure. He
used a pointer array to store color names in Figure 3.43: char *ColorName[] =
{“red”,“yellow”,“blue”,“orange”,“purple”,“green”};

The two-dimensional array in Figure 3.43 should be initialized with indices of
colors in array ColorName, instead of actual name strings, because indices require
less memory space and are easier to process.

int ColorTab[3][3]={{0,3,4},{3,1,5},{4,5,2}};

During the initialization process, Mr. Brown found that it was difficult to remember
the number corresponding to a color. If there were more colors, it would be even
harder to remember them and initialize the array correctly. The reason is that
names of colors are more intuitive compared with abstract numbers. To solve this

Red Yellow Blue
Red Red Orange Purple

Yellow Orange Yellow Green
Blue Purple Green Blue

number 0 1 2 3 4 5
color Red Yellow Blue Orange Purple Green
string red yellow blue orange purple green

Figure 3.43: Color mixer.

124 3 Composite data

issue, Mr. Brown tried to define macros for each color so that he could directly use
these intuitive names in the program.

int int ColorTab[3][3]={{red,orange,purple},{orange,yellow,green},{purple, green,

blue}};

The complete program is as follows:

01 #include "string.h"

02 #include "stdio.h"

03 #define red 0

04 #define yellow 1

05 #define blue 2

06 #define orange 3

07 #define purple 4

08 #define green 5

09

10 //Define the color mixer

11 int ColorTab[3][3]={{red,orange,purple},{orange,yellow,green},{purple, green,

blue}};

12

13 int main(void)

14{

15 char color1[8]; //Read input 1

16 char color2[8]; //Read input 2

17 char *ColorName[]= {"red","yellow","blue","orange","purple","green"};

18 int i=0,j=0;

19

20 printf("Please enter any two colors of red, yellow and blue:\n");

21 gets(color1);

22 gets(color2);

23 while (0!=strcmp(color1,ColorName[i])) i++;

//Find index i of the first input

24 while (0!=strcmp(color2,ColorName[j])) j++;

//Find index j of the second input

25 //Find mixing result using i and j in the color mixer

26 printf("%s+%s=%s\n",ColorName[i],ColorName[j],ColorName[ColorTab[i][j]]);

27

28 return 0;

29 }

However, Mr. Brown needed to define 6 macros for mixing results of three primary
colors. If there were more base colors, it would be tedious to define a macro for
each possible outcome.

We often use numbers to represent states in programs, but numbers are less
intuitive and readable than state names, as we have just seen in the color example.

3.5 Enumeration 125

If we could find a way to represent states using meaningful words in programs, it
would be easier to read and understand them.

3.5.2 Concept and syntax of enumeration

In fact, C and some other languages do provide a method of using words in natural
languages to represent possible values of a variable. This method is enumeration
(enum).

In C, an enumeration is a collection of integer constants represented by identi-
fiers. The value of an enumeration variable must be a member of this collection. It
is worth noting that the system will not throw an error if an enumeration variable is
assigned a value that is out of the enumeration range.

The syntax of enumerations is similar to that of structures and unions, as
shown in Figure 3.44. We can define an enumeration for days in a week as follows:

enum WeeksType {Mon, Tues, Wed, Thurs, Fri, Sat, Sun} ;

enum WeeksType Day;

WeeksType is the enumeration type name, Day is an enumeration variable, identi-
fiers in curly brackets are all possible enumeration constants.

enum name
{

identifier 1[=integer constant],
identifier 2[=integer constant],
…
identifier n[=integer constant]

};

Syntax of enumeration type definition

enum name

Enumeration type name

enum is the
keyword of
enumeration

enumType variableList;

Syntax of enumeration variable definition
Define type

before defining
variables

Contents in
square brackets

are optional

Figure 3.44: Syntax of defining enumeration type and enumeration variable.

126 3 Composite data

Notes：
(1) Identifiers in an enumeration-type definition are constants.
(2) One needs to list all members when defining an enumeration.
(3) Contents in square brackets are optional. If we omit them, numbers 0, 1, 2, . . .

will be assigned to the identifiers. However, if one of the members is explicitly
assigned a value, members after it will automatically obtain a value, in which
each member is one larger than the previous.

We can explicitly assign values to all enumeration members. Note that the values
must be integers. For example: enum WeeksType {Mon = 1, Tues = 2, Wed = 3,
Thurs = 4, Fri = 5, Sat = 6, Sun = 7};

Besides, we can also explicitly assign values to a few members: enum WeeksType
{Mon = 1, Tues, Wed = 1, Thurs, Fri, Sat, Sun}; In this definition, Mon and Wed are de-
fined to be 1. Based on the note earlier, values of Tues, Thurs, Fri, Sat and Sun are 2, 2,
3, 4 and 5, respectively.
(4) Value of an enumeration variable must be one of the enumeration members.

For example, it is valid to write statement Day =Wed.

3.5.3 Example of enumerations

Example 3.12 Color mixer using enumeration
Mr. Brown revised his program of the color mixer using an enumeration of colors:

#include "string.h"

#include "stdio.h"

//Define enumeration for three primary colors and mixed colors

enum Color{red,yellow,blue,orange,purple,green};

//Define color mixer

int ColorTab[3][3]={{red,orange,purple},{orange,yellow,green},{purple,green,blue}};

int main(void)

{

//Same as before

}

Enumerations are similar to macros. Macros replace identifiers with corresponding
values in the preprocessing phase, while enumerations do the replacement during
compilation. We can consider enumerations as macros in the compilation phase.
More on macros can be found in the chapter “Preprocessing.”

Example 3.13 Price management
A supermarket often launches discount campaigns. It may offer a different discount for a prod-
uct during different periods. Please write a program to implement this model.

3.5 Enumeration 127

Analysis
We can list all periods in an enumeration:

enum enumType{Time1, Time2, Time3} rebateTime ;

Then we can handle different cases using a switch statement:
scanf("%d", &rebateTime);

switch (rebateTime)

{

case Time1:{. . .;break;}

case Time2:{. . .;break;}

case Time3:{. . .;break;}

default:break;

}

The code implementation is as follows:
#include<stdio.h>

int main(void)

{

enum enumType{Time1=3, Time2=5, Time3=6};

float x=1.0;

int weekday;

scanf("%d", &weekday);

switch (weekday)

{

case Time1: x=0.5; break;

case Time2: x=0.8; break;

case Time3: x=0.9; break;

default: break;

}

printf("Day %d, discount is %f",weekday,x);

return 0;

}

3.5.4 Rules of enumerations

There are many restrictions on enumerations for their uniqueness. We shall use the
following enumeration in the discussion:

enum WeeksType {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday};
enum WeeksType Weekday

128 3 Composite data

3.5.4.1 We cannot assign values of other types to an enumeration variable
For example, it is not valid to write Weekday = 10;

Note: this is because 10 is not a member of the enumeration. However, we can as-
sign values of other types to an enumeration variable through forced-type conversion.

3.5.4.2 Arithmetic operations are not allowed on enumeration variables
For example:

Weekday = Sat;

Weekday++; //Invalid

Note: this is because increment may break the first rule. In this example, Weekday
is assigned the last value of enumeration members, so increment will make this
value invalid.

3.6 Type definitions

3.6.1 Introduction

3.6.1.1 Porting of music files
Daniel received a music player as a birthday gift, and he spent lots of time listening
to music with it. One day, he asked his father, “These songs were stored in the com-
puter, how do they ‘fit’ into this little box then?” “Ha-ha, that’s a great question,”
answered Mr. Brown.

We can play music on various devices now, but how are music files stored in
them? We know data are stored in computers as binary data, so are music files. WAV
(Waveform Audio File Format) is one of the most frequently used multimedia audio file
formats on PC. It is a digital audio format used to store audio waves, designed by
Microsoft and IBM. It was first introduced in Windows 3.1 in 1991. After multiple revi-
sions, it can be used in many operating systems, including Windows, Macintosh, and
Linux.

A WAV file has a file header which contains meta information of the file fol-
lowed by actual music data. Figure 3.45 shows meta information in the header,
which consists of multiple data entries. The size of each entry is fixed and does not
change across platforms.

We have mentioned before that the sizes of basic types are platform dependent. As
a result, programmers need to be careful when porting code to other platforms. When
using code processing WAV files on different platforms that use different sizes for int
type, we have to modify every integer definition to make sure lengths of data entries in
the header are consistent with the standard. This makes code porting difficult.

3.6 Type definitions 129

In this case, if we rename 32-bit and 16-bit int types as UIN32 and UIN16, we can
define the WAV file header as the following structure. When porting the code, it suffi-
ces to replace UIN32 and UIN16 with the corresponding types of the target platform:

struct tagWaveFormat

{

char cRiffFlag[4];

UIN32 nFileLen;

char cWaveFlag[4];

char cFmtFlag[4];

char cTransition[4];

UIN16 nFormatTag ;

UIN16 nChannels;

UIN16 nSamplesPerSec;

UIN32 nAvgBytesperSec;

UIN16 nBlockAlign;

UIN16 nBitNumPerSample;

char cDataFlag[4];

UIN16 nAudioLength;

} ;

The replacement can be done using macros.

Offset Byte Type Content

Header

00H 4 Char "RIFF“ sign
04H 4 int32 File size
08H 4 Char "WAVE“ sign
0CH 4 Char "fmt“ sign
10H 4 Char Transition bytes
14H 2 int16 Audio format
16H 2 int16 Number of channels
18H 2 int16 Sample rate
1CH 4 int32 Byte rate
20H 2 int16 Block alignment
22H 2 Char Bits per sample
24H 4 Char “data” sign
28H 4 int32 Sound data size

Figure 3.45: Format of WAV file header.

130 3 Composite data

3.6.1.2 Cases where macros are not enough
Let us examine a special case. We intended to define a and b as integer pointers
with the first two lines of the following code. However, it turns out that b is not a
pointer, as shown in line 3. This is due to the rule of macro replacement:

01 #define PTR int*

02 PTR a, b;

03 int *a, b;

Syntactically, line 2 is similar to a variable definition. One may imagine that this
issue can be solved if PTR is a data type equivalent to int*. As a result, we need a
way to define aliases for data types in C.

3.6.1.3 Define aliases for types
The keyword of the alias definition in C is typedef (type + define). We can rewrite
the first two lines mentioned earlier using typedef:

01 typedef (int *) PTR

02 PTR a, b;

03 int *a, *b;

The purpose of using typedef is to fix issues made by macros and to make code
more readable. In practice, typedef is often found in network code and drivers
where type sizes are critical. To conform to different compilers, we better define
and use our own types. Thus, it suffices to update a few header files when porting
our code to new platforms. Typedef can hide complicated structures or platform-
dependent data types so that programs are easier to port and maintain.

The following section will present the syntax and applications of typedef.

3.6.2 Syntax and applications of typedef

Figure 3.46 shows how to define a new type using typedef. In essence, typedef cre-
ates aliases for existing data types.

typedef originalType newType;

Syntax of type definition

Figure 3.46: Syntax of typedef.

3.6 Type definitions 131

In addition to creating aliases that are intuitive and easy to remember, another use
case of typedef is to simplify complex type declarations. Figure 3.47 shows two ex-
amples of typedef.

In example 1, we create an alias integer for int; integer and int are equivalent types.
In example 2, we have a structure type struct student; create an alias Stu for it,

so we can replace all occurrences of struct student with Stu, thus making the code
easier to read.

The difference between #define and typedef is as follows: #define is a simple
text replacement that happened in the preprocessing phase, while typedef enables
flexible type replacement during compilation.

3.7 Summary

This chapter discusses how to describe, store, and reference a group of data that
are logically correlated. Figure 3.48 shows concepts related to structures, while
those of unions and enumerations are shown in Figures 3.49 and 3.50, respectively.

Example1 Example 2
Declare a new type typedef int integer; typedef struct student Stu;
Statement integer x,y; p=(struct student *)malloc(sizeof(struct student));
Equivalent statement int x,y; p=(Stu *)malloc(sizeof(Stu));

Figure 3.47: Examples of typedef.

Structure

Concept

Express a collection of logically correlated data of different
types as a whole entity for easier processing
expressed in a holistic combination that facilitates regular handling
Keyword: struct

Storage
and access

Structure type name: struc+identifier
Structure type definition

Structure
type

Reference
method

Reference a single data entry: member reference
Reference the structure: structure variable
Reference by address: structure pointer

Memory
allocation

Structure variable definition
Initialization

Figure 3.48: Concepts related to structures.

132 3 Composite data

To store a group of data of different types,
We need new storage and access mechanisms other than arrays,
An aggregation of data is called a structure,
Whose size is determined by members programmers put in it.
We need to define structure variables to obtain memory space,
We can define variables, arrays, or pointers of structure types.
Members of a structure can also be accessed,
Through reference by name or by address.

Variables of different types that share the same memory space construct a union,
Whose size is determined by members programmers put in it,
A variable must be a member of the union to use the shared space,
The actual space is allocated upon definition of a union variable,

Union

Concept
Use the same memory units for logically correlated data that
cannot be used simultaneously
Keyword: union

Union type name: union+identifier
Union type definition

Union
type

Reference
methods Reference a single data entry: member reference

Memory
allocation

Union variable definition
Allocation rules:
– Union members share the same address
– Memory size is determined by the member

with the largest size

Storage
and access

Figure 3.49: Concepts related to unions.

Enumeration

Concept
Use intuitive constant literals to represent a
small collection of integers with certain meanings
Keyword: enum

Storage
and access

Enumeration type name:enum+identifier
Enumeration type definition

Enumeration
type

Reference
methods

Enumeration variables can be used
wherever a plain variable is acceptable

Memory
allocation

Enumeration variable definition
Initialization: default and user-defined

Figure 3.50: Concepts related to enumerations.

3.7 Summary 133

Referencing a union variable is similar to referencing a structure variable,
The valid value of the shared space depends on which member stays in it
currently.

Different colors have different names,
Which correspond to abstract numbers in computers,
It is difficult to use these numbers,
So, we list color names in an enumeration to represent the integer constants,
Again, we can define enumeration types and enumeration variables,
The value of an enumeration variable has to be one of the enumeration members.

Custom types often contain many members, making it hard to use,
Type size may vary across platforms,
But some applications use fixed-length types,
Which make code porting difficult.
Hence, we rename types with typedef,
So, it suffices to modify a few places.

3.8 Exercises

3.8.1 Multiple-choice questions

1. [Array element: reference using pointers]

struct student

{ char name[20];

char sex;

int age;

} stu[3]={“Li Lin”, ‘ M’, 18, “Zhang Fun”, ‘ M’, 19, “Wang Min”, ‘F’, 20};

struct student *p;

p=stu;

p+=2;

printf(“%s, %c, %d\n”, p->name, p->sex, p->age);

The output of the program above is（）

A) Wang Min,F,20 B) Zhang Fun,M,19 C) Li Lin,F,19 D) Li Lin,M,18

2. [Chain structure]

struct sT

{ int x; struct sT *y; } *p;

struct sT a[4]={20,a+1,15,a+2,30,a+3,17,a };

int main(void)

134 3 Composite data

{ int i;

p=a;

for(i=1; i<=2; i++) { printf("%d,", p->x); p=p->y; }

return 0;

}

The output of the program above is（）

A) 20,30, B) 30,17 C) 15,30, D) 20,15,

3. [Array element: reference using variables]
The output of the following program is ()

struct abc

{ int a, b, c; };

struct abc sum[2]={{1,2,3},{4,5,6}};

int t;

t=sum[0].a + sum[1].b;

printf("%d \n", t);

A) 5 B) 6 C) 7 D) 8

4. [Array elements: referencing internal elements]

typedef struct

{ char name[10];

int age;

} ST;

ST stud[10]={ "Adum", 15, "Muty", 16, "Paul", 17, "Johu", 14, };

Which of the following is not character "u"?（）

A) stud[3].name[3]
B) stud[2].name[2]
C) stud[1].name[1]
D) stud[0].name[3]

5. [typedef]
Which of the following statements is wrong?（）

A) We can use typedef to create new types.
B) We can use typedef to create a new name for an existing type.
C) After defining a new type name with typedef, the original type name is still

valid.
D) We can use typedef to define aliases for existing types, but we cannot de-

fine aliases for variables.

3.8 Exercises 135

6. [Unions]
Character “0” has decimal ASCII value 48. Suppose the 0th element of an array
is stored at lower bytes and sizeof(int) is 4 bytes. What is the output of the fol-
lowing program? ()
union

{ int i[2];

long k;

char c[4];

} var, *s=&var;

s->i[0]=0x39;

s->i[1]=0x38;

printf(“%c\n”, s->c[0]);

A) 39　　　　　 B) 9　　　　　 C) 38　　　　　 D) 8

3.8.2 Fill in the tables

1. [Operations on structure members]

Suppose we have the following structure definition. Figure out values of structure
members shown in Figure 3.51 after executing the following program:

#include <stdio.h>

#define N 5

#define M 4

struct person

{

int Id;

char Name[10];

int Score[M];//Grade

int total;//Total grade

};

int main(void)

{

struct person allone[N]

={{ 1,"mark", { 9,6,8,7 },0 },

{ 2,"bob", { 8,6,8,5 },0 },

{ 3,"alice", { 5,9,7,8 },0 },

{ 4,"william",{ 8,9,9,9 },0 },

{ 5,"eric", { 8,9,6,9 },0 } };

struct person temp;

int i, j;

for (i = 0; i < N; i++) //————①

{

136 3 Composite data

allone[i].total = 0;

for (j = 0; j < M; j++)

{

allone[i].total += allone[i].Score[j];

}

}

for (i =1; i < N; i++) //————②

{

for (j = 0; j < N-i; j++)

{

if (allone[j].total < allone[j+1].total)

{

temp = allone[j];

allone[j] = allone[j+1];

allone[j + 1] = temp;

}

}

}

return 0;

}

3.8.3 Programming exercises

1. Suppose we have the following structure definition:

struct person

{

char lastName[15];

char firstName[15];

char age[4];

}

Please write code that reads 10 person objects (lastName, firstName, and age) from
keyboard input.

i 0 1 2 3 4

After for loop allone[i].id 1 2

allone[i].total

After for loop allone[i].id

allone[i].total

Figure 3.51: Composite data: fill in the tables, question 1.

3.8 Exercises 137

2. Please define a union to represent a point in one-dimensional space, two-
dimensional space, or 3-dimensional space. The union should contain an indi-
cator of the dimension and coordinates of the point.

3. Suppose we have the following enumeration declaration for days in a week: enum
day{Sunday,Monday,Tuesday,Wednesday,Thursday,Friday,Saturday} Figure out the
following values of expressions. Suppose that in each subquestion, the value of
today (whose type is day) before evaluating the expression is Tuesday.
(1) int(Monday)
(2) int(today)
(3) today < Tuesday
(4) day(int(today) + 1)
(5) Wednesday +Monday
(6) int(today) + 1
(7) today >= Tuesday
(8) Wednesday + Thursday

138 3 Composite data

4 Functions

Main contents
– Analyze why functions are necessary
– Explore relations between multiple functions
– Declaration, definition, and call of functions
– Purpose and rules of function parameters
– Key elements in function design and examples
– Program reading practices
– Top-down stepwise refinement algorithm design practices
– Debugging techniques of information transfer between functions

Learning objectives
– Understand the concept of modularization in large-scale programs
– Understand information transferring mechanism of functions
– Understand information masking mechanism of functions
– Know how to design new functions
– Understand the concept of recursion

4.1 Concept of functions

4.1.1 Introduction

4.1.1.1 Modularization and module reuse in practice

Case study 1 Combinatorial problems
In practice, we often need to complete a task repeatedly. For example, there are mathe-
matical formulas for computing number ofm-permutations of n elements Pn

m and num-
ber of m-combinations of n elements Cn

m, as shown in Figure 4.1. Multiple factorial
computations are necessary in these formulas, which can be done by calling the facto-
rial module multiple times in programs.

=Pm
n!

(n−m)!

n!
Cm =

(n−m)! m!

Case study 1
Combination and permutation We can reuse

the factorial
programnn

Figure 4.1: Computation of permutation and combination.

https://doi.org/10.1515/9783110692303-004

https://doi.org/10.1515/9783110692303-004

Case study 2 Scholarship application process
The university Mr. Brown works for provides scholarship to students every year.
The application process is shown in Figure 4.2. Workloads of some steps in this pro-
cess are so large that dedicated personnel are necessary. For example, step 3 in-
volves computing sum in a data table; step 5 involves sorting and classifying a
table; and step 6 involves searching, deletion, and insertion in a table.

1. Download the application form

4. Compute the number of students for each scholarship

2. Applicants fill in the form with grades

3. Gather applicants’ information and compute total grades

5. Determine which scholarship should be awarded to a student based on grade ranking

6. If an applicant is caught cheating in an exam, fill in the vacancy based on grade ranking

7. Class advisor signs the form and submits to the department of student affairs

We need dedicated
personnel for steps
with large workloads

Case study2
Scholarship application process

Figure 4.2: Scholarship application process.

4.1.1.2 Abstraction of practical problems: independent code modules
Usually, many issues arise when we try to solve practical problems with programs.
If the scale of a problem is large and required functionalities are complex, pro-
grammers often need to work in a team to solve it. They divide the problem into
modules based on functionalities so that programmers can work on different mod-
ules simultaneously. Sometimes, a function is required by most of the team, so they
can implement it in an independent code module so that it can be reused. In es-
sence, all these issues require modularization, as shown in Figure 4.3.

In essence, we
divide the program
into modules based

on functionality

Problems Strategy Solution

Scale of problems is large
Functionality is complex Teamwork

Divide into modules
based on functionality
– Write in modules
– Test in modules

We want to reuse programs Reuse Build independent
code modules

Figure 4.3: Independent modules.

140 4 Functions

4.1.2 Concept of modules

4.1.2.1 Coordination problems in teamwork
Before discussing the modularization mechanism in programs, let us examine and
analyze how humans solve real-life problems. Figure 4.4 shows critical steps that
require cooperation in the scholarship application process we just saw. What are
the differences between doing the work on one’s own and doing the work in a
team? Figure 4.5 compares these two ways from the perspective of workload, nature
of the work, and necessity of communication.

The workload is heavy for one person but small for a team. Multiple skills are neces-
sary for a single individual to complete all the work, while one skill may suffice for
a person in a team to complete the task assigned to him/her. There is no need to
communicate if a single person does the work, but communication is of great signif-
icance in teamwork because the output of one step is often the input of the next.

4.1.2.2 Coordination problems in modularization of programs
Similarly, what issues exist in the modularization of programs?

Think and discuss Issues of modularization of programs
1. What are the differences between using one segment of code and using multiple segments

of code to solve a problem?
2. What is the key to using multiple child programs to complete one task?

Gather applicants’ information
and compute total grades

Determine which scholarship should be
awarded to a student based on grade ranking

If an applicant is caught cheating in an exam,
fill in the vacancy based on grade ranking

Compute the sum
of a data table

Sort and classify
a data table

Search, delete and
insert in a data table

What are the
differences

between doing the
work by oneself
and by a team?

Figure 4.4: Work that requires cooperation in the scholarship application process.

Individual Team

Workload Large Small

Work nature Composite Single

Communication Not necessary Necessary

What are the
differences between

completing a task using
one code segment and

using multiple code
segments?

Figure 4.5: Analysis of individual work and teamwork.

4.1 Concept of functions 141

Discussion: There is no difference in workload or complexity of these two ways. However, using
several child programs require information transfer, which is precisely the key we are looking for.
Hence, programming languages must provide such mechanisms.

4.1.2.3 Concept of modules
Based on the discussion above, we can summarize what is necessary for indepen-
dent code modules.

We call collections of statements that have its own name and can complete spe-
cific tasks independently “modules” in programming, as shown in Figure 4.6. A mod-
ule consists of the implementation and an interface. Interfaces are created to hide a
module’s implementation and data from outside of the module. Communication with
external objects must be done through information interfaces. The interface of a mod-
ule describes how other modules or programs should use it. Input/output informa-
tion is also part of an interface.

There are other concepts related to modules, such as module reusing and multi-
module structures.

The word “module” has many aliases, such as function or child program. C uses
“function” to describe modules, as shown in Figure 4.7. We use the word “module”
in structured analysis and design; and it becomes “class” in object-oriented analysis
and design; the term used in component-based development is “component.”

Modules

A module is a collection of statements
that has its own name and can complete

specific tasks independently

Functionality

Interface information

The internal
implementation of a

module is hidden from
the outside; a module

communicates with
outside world through its

information interface

Interface
information

It indicates how this module should be used by other modules or programs. It
includes information like input/output.

Module reuse We can extract functions that can be repeatedly called into modules.

Multimodule
structure We divide a program into modules, each of which completes a different task.

Figure 4.6: Concepts related to modules.

142 4 Functions

Modularized program design has the following features:
(1) Modules are independent of each other. Each module has its functionality.

Programs using modules have more lucid logic and are easier to write and
maintain.

(2) It is easier to design programs, so the development cycle is shortened.
(3) Modules are more robust.
(4) Programmers no longer have to reinvent the wheel.
(5) It is easier to maintain existing code and write new code.

4.2 Function form design

4.2.1 Methods of communication between modules

Mr. Brown’s university is going to hold a commencement ceremony. The rostrum is
going to be built by the logistics department. Figure 4.8 shows the steps in the building

Module FunctionChild
program

We use the term
 "function" to describe

"modules" in C

Figure 4.7: Aliases of modules.

Make and install the
inkjet background

Place tables and chairs

Install and test
audio devices

Place green plants

Advertising
company

Department of
general services

Department of
devices

Landscaping
company

Service
provider

Service
provider

Case study 1

Outsourced projects in the flow

Figure 4.8: Process of building rostrum of the commencement ceremony.

4.2 Function form design 143

process. Some steps can be outsourced to professional companies, such as advertis-
ing companies or landscaping companies, to accelerate the process and guarantee
the quality.

Think and discuss Coordination methods in outsourced projects
Discussion: There are two methods of communication in an outsourced project, as shown in
Figure 4.9.
(1) The outsourcer coordinates between service providers (e.g., rostrum building process).
(2) Service providers communicate with each other (e.g., scholarship application process).

Both methods are feasible in programming design patterns. If modules are executed in order,
then the program is procedure oriented; if a module would not be executed until certain events
happen, then the program is object oriented. Readers can refer to Appendix B for more details
on this topic. Functions in C use the first method mentioned earlier, where “the outsourcer coor-
dinates between service providers.”

Compute the sum
of a data table

Sort and classify
a data table

Search, delete and
insert in a data table

The outsourcer
coordinates between

service providers
Service providers

communicate
with each other

Make and install the
inkjet background

Place tables and
chairs

Install and test
audio devices

Place green plants

Figure 4.9: Methods of communication between modules.

4.2.2 Function form design

4.2.2.1 Analysis of outsourcing structure
Let us take the advertising company as an example to analyze the structure of
outsourcing.

In the “background production” project, the advertising company is the ser-
vice provider, and the university is the outsourcer, as shown in Figure 4.10. The
advertising company needs to make a statement about what they can do, includ-
ing materials they use, specifications of the materials, rendering preview, and ser-
vice price. This statement can be considered as a definition of “production.” The
definition does not produce actual products. The advertising company will not
start “producing” based on the definition until the outsourcer provides image assets,
size of background, and quote. In other words, it is the outsourcer that “drives the
production.”

144 4 Functions

4.2.2.2 Abstraction of outsourcing structure
Figure 4.11 illustrates a further abstraction of the outsourcing structure. We can
consider outsourcing as a “manufacture” process. There are three critical elements
in manufacturing: input, output, and processing. Input is material used in the process.
The output is the final product. Processing refers to procedures in the manufacturing
process. To start manufacture, users need to provide materials required by the manu-
facturer. In programs, these materials are simply data.

4.2.2.3 Function form design
As independent code segments, functions are similar to outsourcing projects, as
shown in Figure 4.12. The process of writing a function defines its functionality,

Background
production

Description of production process
Image layout, materials, specifications,

rendering preview, service price

Make production happen
Provide images, determine sizes,

provide quote

Definition of
production

Drive the
production

Advertising
company

Outsourcer

Figure 4.10: Analysis of the outsourcing structure.

Manufacture

Definition of manufacture
(input, output, processing)

Make manufacture happen
(actual data)

Definition of
manufacture

Drive
manufacture

Manufacturer

User

Figure 4.11: Abstraction of the outsourcing structure.

4.2 Function form design 145

which includes input, output, and processing. Users of functions are referred to as
“callers” in programming languages. Callers provide functions with actual data so
that they can complete specific tasks.

4.2.2.4 Information transmission mechanism design
In practice, we can deliver raw materials to manufacturers through express or
Internet. When manufacture is completed, the manufacturer can send the prod-
uct back in a way suitable to users. In programs, however, data processing is done
entirely in computers. Thus, the information transmission mechanism needs to con-
form to the characteristics of computers.

When designing mechanisms of functions, we need to determine how the caller
sends data to the function and how the function sends results back to the caller, as
shown in Figure 4.13.

Function

Function definition
(input, output, functionality)

Function call
(actual data)

Definition of
functionality

Drive the
implementation

Code segment that
provide certain

functionality

Caller

Figure 4.12: Function form design.

Function definition (input, output, functionality)

Function (actual data)

Manufacturer

Outsourcer

How data are submitted How results are obtained

Figure 4.13: Information transmission mechanism design.

146 4 Functions

One of the methods of information transmission between modules is using
software interfaces, as shown in Figure 4.14. For “manufacturers,” namely those
who define functions, they should consider the following issues: interfaces of re-
ceiving information, code implementation, and approach of result submission. To
describe the manufacturing project, we need to determine a name for it, which is
the function name. For “outsourcers,” namely function callers, they need to con-
sider the following issues: interfaces of submitting information and approach of
receiving results.

4.2.2.5 Three syntaxes related to functions
C offers three syntaxes related to functions: function definition (the “manufac-
turer”), function call (the “outsourcer”), and function declaration (or function pro-
totype), which briefly describes a function. Figure 4.15 shows these syntaxes.

In a function definition, the information interface is implemented as a “parame-
ter list,” and implementation is done by declarations and statements between the
curly brackets. The type of function result is determined by “function type.” In a
function call, the interface of submitting the information is implemented as an “ar-
gument list.” C provides two “approaches of result submission:” one is to submit
through information interface and the other is to use return statements. The func-
tion call syntax does not explicitly show how the caller receives results. We shall
cover result submission and receiving in detail later.

Function name (information receiving interface)
+function implementation+result submission method

Function name (information submission interface)
+result receiving method

Function
mechanism

Manufacturer

Outsourcer

Figure 4.14: Information transmission design in functions.

4.2 Function form design 147

S
yn

ta
x

of
 f

u
n

ct
io

n
 c

al
l

/* Fu
nc

tio
na

lit
y:

 d
es

cr
ib

es
 t

ha
t

th
e

fu
nc

tio
n

do
es

Pa
ra

m
et

er
s:

 e
xp

la
in

 m
ea

ni
ng

 o
f

in
pu

t
da

ta
R
et

ur
n

va
lu

e:
 d

es
cr

ib
e

pr
oc

es
si

ng
 r

es
ul

t
an

d
its

 t
yp

e
*/

ty
pe

 f
un

ct
io

nN
am

e
(p

ar
am

et
er

Li
st

)
{

de
cl

ar
at

io
n;

st
at

em
en

ts
;

}

S
yn

ta
x

of
 f

u
n

ct
io

n
 d

ef
in

it
io

n

ty
pe

 f
un

ct
io

nN
am

e(
pa

ra
m

et
er

Li
st

);

S
yn

ta
x

of
 f

u
n

ct
io

n
 d

ec
la

ra
ti

on

D
es

ig
n

Im
p

le
m

en
ta

ti
on

In
tr

od
u

ct
io

n

In
fo

rm
at

io
n

re
ce

iv
in

g
in

te
rf

ac
e

Im
pl

em
en

ta
tio

n

In
fo

rm
at

io
n

su
bm

is
si

on
 in

te
rf

ac
e

W
he

re
 a

re
 t

he

“r
es

ul
t

su
bm

is
si

on

m
et

ho
d”

 a
nd

 t
he

“r

es
ul

t
re

ce
iv

in
g

m
et

ho
d”

?
R
es

ul
t

ty
pe

fu
nc

tio
nN

am
e(

ar
gu

m
en

tL
is

t)

Fi
gu

re
4.
15
:T

hr
ee

sy
nt
ax

es
re
la
te
d
to

fu
nc

ti
on

s.

148 4 Functions

Knowledge ABC Function declaration and where to write them
C is an old language, so its grammar has been revised continuously. There used to be few restric-
tions on the order of function declaration, definition, and call and necessity of function declara-
tion. Different compilers also followed different rules on them. However, the latest C standards
(such as C99 and C11) require that a function must be declared before being called. This require-
ment helps compilers find out errors of argument types and numbers in function calls. In most
cases, function declarations should be written at the beginning of code (usually after preprocess-
ing directives) and outside of function definitions. Like before, the new standards put no limits on
the location of function definitions and function calls.

4.3 Design of information transmission mechanism between
functions

4.3.1 Characteristics of information transmission between functions

4.3.1.1 Classification of data transmitted between functions
We have concluded in the introduction of functions that the key to completing a task
using multiple child programs is the information communication between them.
Programming languages should provide mechanisms for such communication.

In the scholarship example, fundamental steps that require cooperation are
computing sum, classification, and applicant substitution. We can implement them
in three functions, in which operations like addition, sorting, classification, search-
ing, deletion, and insertion are involved.

Figure 4.16 lists input/output information needed in these steps. These data are
either single data entries or groups of correlated data. The sum function reads raw
data table and outputs the data table with an extra column of the total score. The
classification function reads raw data table and classification arguments, and out-
puts the number of students of each level and their names.

Function Input Output Notes

Sum – Data table Data table The output data table
contains total grades

Classification
– Data table
– Classification

parameters

Number of students
of each scholarship
and student names

Sorting before
classification

Substitution

– Sorted and classified
data table

– Name of students to be
deleted from the table

Number of students
of each scholarship
and student names

There are data of
individuals and

data of a group of
students

Figure 4.16: Analysis of data in critical steps of the scholarship application process.

4.3 Design of information transmission mechanism between functions 149

Think and discuss In the process of transmitting data to function through its interface, what are
characteristics of the data and how are they transmitted?
Discussion: As shown in Figure 4.17, issues related to data transmission are data type and data
size. Since the nature of types is the size of the memory space used, type issues are necessarily
size issues. We shall discuss the later below.

Data type

Data size

Data
transmitted Passed

directly

Passed
indirectly

Data size issue in its nature

Small

Large

Figure 4.17: Characteristics of information transmitted between functions.

In real life, we can send items to others directly or indirectly. For example, a mail carrier can
send parcels to recipients directly or put them in a self-service parcel pick-up machine.

We can use these methods in information transmission between functions as well. In pro-
grams, a small amount of data are often passed to functions directly. In contrast, a large amount
of data are often passed to functions indirectly by providing the beginning address of the data so
that functions can fetch them on their own.

4.3.1.2 Expressions of data transmitted between functions
Data to be processed have different names if we consider them from different per-
spectives. From the function caller (outsourcer) standpoint, the data to be processed
are called “arguments” in C; from the function definition (manufacturer) standpoint,
the data it receives through software interface are called “parameters,” as shown
in Figure 4.18. As for how the final product is transmitted to users, we shall cover
the topic later.

4.3.2 Information transmission between functions: submission
and receiving of data

As we have discussed earlier, C processes data in different ways, according to the
size of data passed to a function.

4.3.2.1 Submission of small amount of data
We shall start from a small amount of data.

150 4 Functions

The memory space allocated to actual values that a function caller needs to pro-
cess is called “argument space.” The system copies the actual data and sends it to
the function called, as shown in Figure 4.19. In other words, the function receives a
copy of actual values. We can imagine the process as sending copies of assets to
advertisement companies for printing. The memory space allocated to these copies
is called “parameter space.”

Argument space is independent of parameter space. Thus, updates on data in parame-
ter space will not change data in argument space. Such information transmission is
single directional. Because the data transmitted are values, we call the process “pass
by value.” Such way of calling functions is called “call by value.”

4.3.2.2 Submission of a large amount of data
Now we are going to study the case of a large amount of data.

Argument Parameter

Information transmission

Data to be processed in the caller Data received by the function

Function
definition

(manufacturer)
Function call
(outsourcer)

Figure 4.18: Terms for data used in functions.

Actual data Copy of
actual data

One-directional
information
transmission

Pass by value (call by value)

Argument space Parameter space

Function
definition

(manufacturer)
Function call
(outsourcer)

Argument space
independent from
parameter space

Figure 4.19: Small amount of data: passed directly.

4.3 Design of information transmission mechanism between functions 151

If the size of the data is large, the cost of passing copies is also high, which
affects communication efficiency. In this case, the function caller can pass the be-
ginning address of the data to the “manufacturer,” because a large amount of data
are usually stored continuously in memory. The “manufacturer” then fetches data
from the specified address, as shown in Figure 4.20.

Note that the information passed is a copy of the “address of actual data.” It is simi-
lar to data maintenance of library servers: service providers can operate servers re-
motely as long as they know IP addresses and passwords.

Service providers can also carry out maintenance on-site. Similarly, the “manu-
facturer” can also head to the address of data and process them directly, as shown
in Figure 4.21. This is “pass by reference” in C. Function callers can pass the begin-
ning address of data to the “manufacturer” so that it can process data at the address
directly.

Address of
actual data

Copy of
address of
actual data

One-directional
information
transmission

Pass by value

Data to be processed in the caller Data received by the function

Fetch
information from
location specified

by users

Function
definition

(manufacturer)
Function call
(outsourcer)

Figure 4.20: Large amount of data: submit the address of data.

Parameter

Argument

Bidirectional
information
transmission

Function receives
and processesData to be processed

Pass by reference

Use the
original

data space

Function
definition

(manufacturer)
Function call
(outsourcer)

Figure 4.21: Large amount of data: processed on-site.

152 4 Functions

Note that argument space and parameter space is the same in “pass by reference.”
We have just seen that function callers can pass data to functions by value or

by reference. In fact, how function results are received are related to how data are
submitted.

4.3.3 Receiving of function results

4.3.3.1 Receiving function results in pass by value
In the case of pass by value, C provides two ways of submitting results, as shown
in Figure 4.22. The first is using a return statement to pass a single result. The sec-
ond way works for address parameters. Function callers can find results at this ad-
dress. In this case, many results can be passed.

4.3.3.2 Receiving function results in pass by reference
In the case of pass by reference, function callers can obtain multiple results in the
shared data space, as shown in Figure 4.23.

4.4 Overall function design

4.4.1 Key elements of function design

4.4.1.1 Key elements of functions
In the discussion of function form design and information transmission mechanism
design, we compared function modules to “manufacturers” in real life. Figure 4.24
summarizes the relations we found in the comparison. There are three key elements
of functions: input, output, and processing.

Argument Parameter

Data to be processed in the caller Data received by the function

Result returning methods:
Method 1: return one result using the return statement
Method 2: return an address, at which the caller can obtain multiple results

Function
definition

(Manufacturer)
Function call
(Outsourcer)

Figure 4.22: Submission and receiving of result in pass by value.

4.4 Overall function design 153

A function name briefly describes the processing, while the function body im-
plements the processing.

Data receiving and result submission of a function are done through informa-
tion interfaces. The input information interface is implemented as the parameter
list. The information passed can be either values or addresses. Results can be out-
put in two ways: using a return statement or putting them at a specified address for
callers to access. Again, results can be either values or addresses.

4.4.1.2 Relations between function syntax and key elements of function design
As shown in Figure 4.25, input information determines the parameter list, while
output information determines the function type.

A function in C consists of a function header and a function body. The function
header describes the structure of a function, while the function body implements
its functionality. As such, input, output, and processing of a function determines its
structure.

4.4.2 Summarization of information transmission between functions

4.4.2.1 Direction 1: from caller to function
In C programs, information is passed from arguments (user data) to parameters
(manufacturer data) in two ways: pass by value and pass by reference, as shown
in Figure 4.26. Arguments and parameters are stored in separate space in the case
of pass by value, while they share the same space in the case of pass by reference.
There is another way in C called simulated pass by reference, in which data passed is
address, but parameters and arguments have different spaces. In high-level languages,

Using the shared data space, we can have multiple
processing results

Argument

Parameter

Bidirectional
information
transmission

Function receives
and processesData to be processed

Pass by reference

Use the
original

data space

Figure 4.23: Submission and receiving of result in pass by reference.

154 4 Functions

M
an

uf
ac

tu
re

pr

oc
es

s

D
at

a
in

 n
ec

es
sa

ry
 in

fo
rm

at
io

n

Fu
nc

tio
na

lit
y

D
at

a
in

 s
ub

m
itt

ed
 r

es
ul

ts

Ty
pe

 o
f

da
ta

Q
ua

nt
ity

Ty
pe

 o
f
in

fo
rm

at
io

n
Q

ua
nt

ity

V
al

ue
,

ad
dr

es
s

V
al

ue
,

ad
dr

es
s

≥
0

≥
0

Fu
nc

tio
n

na
m

e

In
pu

t
in

fo
rm

at
io

n
(i

nt
er

fa
ce

 in
fo

rm
at

io
n)

Fu
nc

tio
n

bo
dy

im

pl
em

en
ta

tio
n

O
ut

pu
t

in
fo

rm
at

io
n

(i
nt

er
fa

ce
 in

fo
rm

at
io

n)

In
pu

t
in

fo
rm

at
io

n
pa

ra
m

et
er

 li
st

:
(t

yp
e

va
ri
ab

le
 1

,
ty

pe
 v

ar
ia

bl
e

2,
…

)

S
in

gl
e:

 r
et

ur
n

(v
al

ue
)

M
ul

tip
le

:
st

or
e

at
 s

pe
ci

fie
d

ad
dr

es
se

s
(1

)
re

tu
rn

 (
ad

dr
es

s)
(2

)
sp

ec
ify

 t
he

 a
dd

re
ss

 in
 p

ar
am

et
er

 li
st

Fi
gu

re
4.
24

:K
ey

el
em

en
ts

of
fu
nc

ti
on

de
si
gn

.

4.4 Overall function design 155

Fu
nc

tio
na

lit
y

In
pu

t
in

fo
rm

at
io

n
O

ut
pu

t
in

fo
rm

at
io

n

Fu
nc

tio
n

na
m

e
br

ie
fly

de

sc
ri
be

s
th

e
fu

nc
tio

na
lit

y

Th
e

ch
ar

ac
te

ri
st

ic
s

an
d

qu
an

tit
y

of
 in

pu
t

in
fo

rm
at

io
n

de
te

rm
in

e
th

e
pa

ra
m

et
er

 li
st

Th
e

ty
pe

 o
f

ou
tp

ut

in
fo

rm
at

io
n

de
te

rm
in

es
 t

he

fu
nc

tio
n

ty
pe

Fu
n

ct
io

n
 n

am
e

P
ar

am
et

er
 li

st
Fu

n
ct

io
n

 t
yp

e

Th
e

in
pu

t,
 o

ut
pu

t
an

d
fu

nc
tio

na
lit

y
of

a
fu

nc
tio

n
de

te
rm

in
e

its
 s

tr
uc

tu
re

Fu
nc

tio
n

he
ad

er

Fu
nc

tio
n

bo
dy

/*
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
Fu

nc
tio

na
lit

y:
 d

es
cr

ib
es

 t
ha

t
th

e
fu

nc
tio

n
do

es
Pa

ra
m

et
er

s:
 e

xp
la

in
 m

ea
ni

ng
 o

f
in

pu
t

da
ta

R
et

ur
n

va
lu

e:
 d

es
cr

ib
e

pr
oc

es
si

ng
 r

es
ul

t
an

d
its

 t
yp

e
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
-

*/
ty

pe
 f
un

ct
io

n
N

am
e

(p
ar

am
et

er
 L

is
t)

{
de

cl
ar

at
io

n;
st

at
em

en
ts

;
}

S
yn

ta
x

of
 f

u
n

ct
io

n
 d

ef
in

it
io

n

Fi
gu

re
4.
25

:K
ey

el
em

en
ts

of
fu
nc

ti
on

de
si
gn

an
d
th
ei
r
ex
pr
es

si
on

s.

156 4 Functions

a function call via pass by value is called a “call by value,” while one via pass by refer-
ence is called a “call by reference.”

4.4.2.2 Direction 2: from function to caller
Figure 4.27 shows ways of passing results. If the result is a single value, we can use
a return statement to pass it. If the result contains multiple values, we can return
an address. Additionally, if a parameter is an address, we can store these values at
the address passed in by the caller so that the caller can fetch them. A function may
return nothing in special cases.

4.4.3 Function call

4.4.3.1 Execution and calling order of functions
In the rostrum building example in Section 4.2, two steps are outsourced to service
providers. Figure 4.28 lists substeps of these two steps.

The execution order of functions is similar to the earlier process. The main func-
tion is the outsourcer, while child functions are service providers of steps in the pro-
cess. During execution, a program always starts from the main function. When a
child function is called, the program enters the child function and returns to the
main function after the child function terminates. Figure 4.29 illustrates the entire
process.

4.4.3.2 Nested call of functions
After the midterm exam, Mr. Brown would like to know the highest score, the low-
est score, and the difference between the two, so he asked his class representative
A to compute these values.

Direction Method Allocation of memory space Type of call

Argument->parameter

Pass by value Arguments and parameters
have separate memory units Call by value

Simulated pass by reference

Pass by reference Arguments and parameters
share memory units Call by reference

Figure 4.26: Data transmission from the caller to function.

Processing result Method

Single value return(value)

Multiple values
return(address)

Parameter is an address

Special case:
no return value

Figure 4.27: Data transmission from function to caller.

4.4 Overall function design 157

A completed the task quickly and reported the result to him. Then Mr. Brown
asked, “If we simulate this process with a program and you are asked to implement
the child functions, how are you going to do that?”

“That’s simple,” answered A, “I’ll write two functions. The max function com-
putes the highest score, and the min function computes the lowest score. The main
function can obtain the highest and the lowest scores by calling them, and then
compute the difference.”

Mr. Brown smiled and asked, “Is that a complete simulation?” A thought for a
while and responded, “No, I should have written another function for difference
computation.” “How does this function work then?” Mr. Brown followed up.

A said, “Let the function be dif, then the execution order of these functions is
as shown in Figure 4.30. We have learned nested if and nest loops, can we call this
‘nested function call’?” “Of course,” Mr. Brown commended, “We do use this term
in C.”

Inform the advertising company

Department of general services
places tables and chairs

Department of devices install
and test devices

Inform the landscaping company

Service
provider

Service
provider

Make and install
the background

Start

Complete

Place green
plants

Start

Complete

Outsourcer

Figure 4.28: Rostrum building process with outsourced steps.

main function

Call function a

Function a begins

Statements in function a

main terminates

Function a terminates......

......

Figure 4.29: Execution order of functions.

158 4 Functions

In C programs, a function can call another function, and the function being
called can further call other functions, resulting in a nested function call. We may
have arbitrary layers of nested calls and complete sophisticated tasks with them.

All C programs are constructed by functions, each of which is independently
defined. That is, one cannot define another function in the definition of a function.

4.4.3.3 Correspondence between parameters and arguments
Information to be received is defined in the parameter list of a function definition.
When calling this function, one needs to put data to be processed into the argument
list. The parameter list contains definitions of variables, while the argument list
contains references of variables, as shown in Figure 4.31.

main function begins

main terminates

Function dif
begins

Function max begins
Call function max

Function min begins

max terminates

min terminates
dif terminates

Call function dif

Call function min

Figure 4.30: Execution order of nested function call.

type functionName(parameterList)
{ declaration;
statements;

}

Syntax of function definition

functionName(argumentList)

Syntax of function call

Parameter list contains definitions of variables t
Plain variables: int x
Pointers: int *ptr
1-d arrays: int a[M]
2-d arrays: int b[M][N]
Structure: struct node stu

Argument list contains references of variables
Plain variables:x
Pointers: ptr
1-d arrays: a
2-d arrays: b
Structure: stu

Figure 4.31: Correspondence between parameters and arguments.

4.4 Overall function design 159

When using functions, one should always use the correct syntax. One of the com-
mon mistakes beginners make is using the wrong arguments. Programs with such mis-
takes cannot be compiled. Furthermore, it is often hard for them to realize the mistake.
(1) Parameter list: In a function definition, the definitions of parameters are listed

in the parameter list.
(2) Argument list: In a function call, references of arguments are listed in the argu-

ment list; in the case of arrays, we simply use array names in the argument list.

4.4.3.4 Syntax of function call
Based on whether a computation result exists, functions in C are classified into value-
returning functions and nonvalue-returning functions. A value-returning function has
a computation result and uses its type as the function type; a nonvalue-returning
function processes the data with no explicit computation result. For example, a
sorting function sorts data but does not compute a result.

A variable is necessary to store the result returned by value-returning functions,
while it is not for nonvalue-returning functions. Figure 4.32 shows syntaxes of call-
ing both kinds of functions.

4.5 Examples of function design

We have introduced the concept of functions, information transmission mechanism
between functions, and key elements of function design in previous sections. Now
we are going to study some examples of function design.

4.5.1 Call by value

Example 4.1 Finding maximum of three numbers
1. Function structure design
In function structure design, we extract input, output, and processing from the problem descrip-
tion. This example requires us to find the maximum using a function max. The input of this

variable=functionName(arguments);

Value-returning functions

functionName(arguments);

Nonvalue-returning functions

Value-returning and nonvalue-returning
Value-returning functions: the function computes a result, whose type is the function type
Nonvalue-returning functions: the function processes data without computing a result.
The function type is void

Figure 4.32: Syntax of a function call.

160 4 Functions

function is three integers, which determines the parameter list. The output of the function is the
computed maximum, which is an integer, so the function should be int as well. Figure 4.33 sum-
marizes key elements of the function.

Functionality Input information Output information

max int a,b,c int value

Function name Parameter list Function type

Figure 4.33: Key elements of function max.

2. Comparison of using main function and using child function
We shall implement the maximum finding code in the main function and in a child function, and
then compare the implementations, as shown in Figure 4.34. Values of a, b, and c in the main func-
tion are obtained from keyboard input, while they are obtained from the interface, namely parame-
ter list, in the child function. The maximum found in the main function is directly displayed onto
the screen, while that of the child function is returned to its caller through a return statement.

Through the comparison, we can conclude that although the two implementations differ in
input and output, statements used to find the maximum are exactly the same.

int main(void)
{

int a, b, c, m;

scanf("%d,%d,%d", &a,&b,&c);
m=a>b ? a:b;
m=m>c ? m:c;
printf("max=%d", m);
return 0;

}

int max(int a, int b, int c)
{

int m;

m=a>b ? a:b;
m=m>c ? m:c;
return (m);

}

Implemented in main Implemented in child function

Keyboard
input

Screen
output

Function
input

Function
output

Figure 4.34: Different implementations of the max function.

3. Calling child function
A child function must be called to complete its functionality. The caller can be either the main
function or other child functions. Figure 4.35 shows the program that finds the maximum using
a child function. Note how the child function is declared, defined, and called, and the order in
which these three constructions appear in the program. Similar to variables, a function must be
declared or defined before being called.

Line 2 declares the child function max. The line is also called the header of function max.
The definition of max is between lines 6 and 12.
On line 16, the three inputs are read from the keyboard in the main function.
On line 17, the max function is called. Because max is a value-returning function, the result is

stored in an integer variable x.

4.5 Examples of function design 161

01 #include <stdio.h>
02 int max(int a, int b, int c); //Declare function max
03 /*-- -----------
04 Find the maximum among numbers a, b and c
05 ------------------------------------ -----------------*/
06 int max(int a, int b, int c) //Define function max
07 {
08 int m;
09 m=a>b ? a:b;
10 m=m>c ? m:c;
11 return (m);
12 }
13 int main(void)
14 {
15 int a, b, c, x;
16 scanf("%d,%d,%d", &a, &b, &c);
17 x=max(a,b,c); //Call function max
18 printf("max=%d", x);
19 return 0;
20 }

Figure 4.35: Relation between max and main.

4. Debugging
We can study how child functions are called using a debugger.

Before debugging, we need to determine what we would like to inspect and act accordingly.
Issues we are going to investigate related to call by value are shown in Figure 4.36.

– Are addresses of arguments and parameters the same?
– How are parameters and arguments passed?
– Is it easy to debug if parameters and arguments have the same names?

Debugging
plan

Figure 4.36: Debugging plan of maximum finding program.

The input parameters of the main function and max function are a, b, and c. We can make a
table to record their values during debugging and then analyze these values. Figure 4.37 shows
the completed table with “Address” values obtained from the debugger. The debugging process
is shown in Figure 4.38, in which the image on the left shows the Watch window before max is
called, and the image on the right shows the Watch window after entering the max function.
Command of stepwise tracing has been introduced in chapter “Execution of Programs.” With
values and addresses of a, b, and c displayed in the Watch window, we can complete the table
in Figure 4.37. Note that the variable addresses may vary after each linking and compilation.

Arguments in main function
Variable Address Value

a 0x0018ff44 2
b 0x0018ff40 3
c 0x0018ff3c 6

Parameters in child function
Variable Address Value

a 0x0018fee0 2
b 0x0018fee4 3
c 0x0018fee8 6

x=max(a,b,c) int max(int a, int b, int c)

Parameters and
arguments are

in different
memory units

Figure 4.37: Debugger data of maximum finding program.

162 4 Functions

Evidently, addresses of arguments a, b, and c are different from addresses of parameters a, b,
and c. This indicates that they are stored in different spaces. It also proves that the values of
arguments are copied into parameters.

Although arguments and parameters in this program have the same name, they are stored at
different addresses, so they are essentially different variables. Using the same names for argu-
ments and parameters can easily confuse programmers when debugging, so it is recommended
to use different names for them.

Figure 4.38: Debugging process of maximum finding program using the same name for
arguments and parameters.

We shall rename the arguments as d, e, and f, and repeat the debugging process.

5. Debugging the new implementation
Figure 4.39 shows the values of parameters and arguments used in the main function and max
function when the program first enters the main function. Readers may have noticed values of
variables d, e, and f:

CXX0069: Error: variable needs stack frame

This error occurs because stack memory space has not been allocated to these variables.
Please refer to the chapter “Execution of Programs” for the concept of a stack.

Figure 4.39: Debugging process of maximum finding program 1.

4.5 Examples of function design 163

Knowledge ABC Stack frame
Stack frames are also called “activation records.” They are a data structure used by compilers to
implement function calls. Logically, a stack frame is an environment in which a function is exe-
cuted. It contains all data related to a function call: parameters, local variables, return address,
copies of register values that need to be restored, and so forth. Upon a function call, a frame is
pushed onto the stack. After the function terminates, the frame is popped from the stack.

If we step forward in the main function, variables in the main function will obtain memory space
and addresses as shown in Figure 4.40. At this moment, their values are still random numbers.
Values of variables in child function max are “not found” at this moment. This is due to the
masking mechanism of modules, which prevents a function from accessing data inside other
functions.

Figure 4.41 shows the state after executing scanf and before calling max. Now values of d, e,
and f are 2, 3, and 6, respectively. The value of x is still a random number.

Figure 4.40: Debugging process of maximum finding program 2.

By pressing F11, we step into child function max. As shown in Figure 4.42, variables in the main
function are now invisible, while variables in max become visible. We can see that parameters a,
b, and c have obtained values of arguments d, e, and f, but their addresses are different from
those of d, e, and f. The value of m is a random number at this moment.

After max function terminates, result 6 is stored into m, as shown in Figure 4.43.
The program then steps out of max and returns to main, as shown in Figure 4.44. We can see

that the value of x has become 6.

164 4 Functions

Figure 4.41: Debugging process of maximum finding program 3.

Figure 4.42: Debugging process of maximum finding program 4.

Figure 4.43: Debugging process of maximum finding program 5.

4.5 Examples of function design 165

Figure 4.44: Debugging process of maximum finding program 6.

Example 4.2 Structure variable as parameter
1. Problem description
Use the debugger to analyze the characteristics of passing a structure variable when using it as
the parameter.

2. Code implementation

#include <stdio.h>

struct student

{ int num;

float grade;

};

struct student func1(struct student stu) //Structure variable as parameter

{

stu.num=101;

stu.grade=86;

return (stu); //Return a structure variable

}

int main(void)

{

struct student x={0, 0};

struct student y;

y = func1(x); //Structure variable as argument

return 0;

}

166 4 Functions

3. Debugging
In Figure 4.45, note that address of structure argument x is 0x12ff78.
In Figure 4.46, note that the address of parameter stu is 0x12ff14, which is different for the

address of x. In conclusion, the value of the argument is copied into the parameter.

Figure 4.45: Structure variable as parameter debugging step 1.

Figure 4.46: Structure variable as parameter debugging step 2.

In Figure 4.47, members of structure stu are modified in child function func1.
In Figure 4.48, structure y in the main function is used to store the value of the structure vari-

able returned by func1.

Figure 4.47: Structure variable as parameter debugging step 3.

4.5 Examples of function design 167

Figure 4.48: Structure variable as parameter debugging step 4.

Note: x, y, and stu have different addresses. The value of x is not modified.

Conclusion About call by value
(1) Parameters and arguments are stored separately;
(2) During function call, values of arguments are copied into parameters;
(3) Computation in the child function uses parameters. Updates of parameter values do not

affect arguments.

In essence, call by value copies values of arguments into parameters. Thus, updates
of parameters in child functions would not affect the variables used in the function
call. Hence, call by value protects our data by preventing the function being called
from modifying variables in the caller.

4.5.2 Call by reference

Example 4.3 Computing partial sum of array
Compute the sum of elements between indices m and n in integer array score. See Figure 4.49
for the schematic.

The main function should read values for m and n and output results. The sum computation
should be done by child function func.

Analysis
In this problem, parameters can be passed in multiple ways. We shall implement the program
using three ways of parameter passing.

Index 0 1 2 3 4 5 6 7 8 9

score[] 1 2 3 4 5 6 7 8 9 0

nm

Figure 4.49: Computing partial sum of an array.

168 4 Functions

Solution 1
1. Function structure design
Figure 4.50 analyzes the number of inputs and outputs of the child function.

Content Quantity Parameter
passing method

Parameter passing
implementation

Input
Information of array

score Multiple Pass by
reference Parameter

int score[]

Values of m and n Single Pass by value int m,int n

Output
Sum of array elements
between index m and

index n
Single return Return int type

If the parameter
is a 1-d array, we

can omit the
array length

Figure 4.50: Key elements analysis of solution 1.

The input needs to contain all information of array score and values of indices m and n. There are
multiple elements in score. m and n are both single variables. Hence, we shall pass the array
score by address and pass m and n by value.

The output is the partial sum of elements between indices m and n. Because it is a single
value, we can return it using a return statement. The return type is int.

2. Function implementation design
Based on the key elements, we can write out the function header. As for the function body, we
can use a for loop to add elements between indices m and n into variable sum, and return the
sum using a return statement, as shown in Figure 4.51.

Function
header

Function type Function
name Parameter list

int func (int *sPtr, int m, int n)

Function
body

{ int i, sum=0;

sPtr = &sPtr[m];

for (i= m; i<=n; i++, sPtr++)

sum = sum + *sPtr;
//Compute sum of elements between index m and index n

return sum;

}

Figure 4.51: Function design of solution 1.

3. Code implementation
The code implementation is given in Figure 4.52.
The child function is between line 5 and line 15, while the remaining part is the main function.

4.5 Examples of function design 169

01 #include "stdio.h"
02 #define SIZE 10
03 int func(int score[], int m, int n);
04
05 //Compute the sum of elements of array score between index m and index n
06 int func(int score[],int m,int n)
07 {
08 int i,sum=0;
09
10 for (i= m; i<=n; i++)
11 {
12 sum=sum+score[i];
13 }
14 return sum;
15 }
16 int main(void)
17 {
18 int x;
19 int a[SIZE]= {1,2,3,4,5,6,7,8,9,0};
20 int p=3 , q=7; //Specify range of sum
21
22 printf(“Elements of array a between index %d and index %d are:",p,q);
23 for (int i= p; i<=q; i++)
24 {
25 printf("%d",a[i]);
26 }
27 printf("\n");
28 x=func(a,p,q);
29 printf(“Sum of elements of array a between index %d and index %d are: %d\n",p,q,x);
30 return 0;
31 }

If an argument is
an array, we only
need to write the

array name

Program result:
Elements of array a between index 3 and index 7 are: 4 5 6 7 8
Sum of elements of array a between index 3 and index 7 are: 30

Display
specified
elements

Figure 4.52: Code implementation of solution 1.

Lines 22–27 print values of elements in the specified range so that it is easier to debug later.
On line 28, function func is called with argument array a and indices p and q. Pay attention

to how we use the array name in the argument list.

4. Debugging
Before debugging, we should list issues we would like to investigate, which include questions
related to address passing and variables we want to inspect. Figure 4.53 shows the values of
these variables in the Watch and Memory windows of the debugger. During debugging, we can
use a table to record the values of variables for further analysis. With all the information we
have, we can conclude that call by reference uses the same memory space for parameters and
arguments, while call by value uses separate memory spaces for them.

170 4 Functions

Arguments in main function
Variable Address Value

a 0x0019ff04
p 0x0019ff00 3
q 0x0019fefc 7

Parameters in child function
Variable Address Value
score 0x0019ff04

m 0x0019fea4 3
n 0x0019fea8 7

x=func(a,p,q); int func(int score[],int m,int n);

– Are parameters and arguments
stored in the same memory units?

– How are parameters and
arguments passed?

Call by reference
Parameters and arguments

share memory units
Call by value

Parameters and arguments use
different memory units

Debugging
plan

Figure 4.53: Debugging code implementation of solution 1.

4.5 Examples of function design 171

Solution 2
1. Function structure design
The computation result of the child function can also be accessed using a shared address, as
shown in Figure 4.54. In this case, the function type is void, and the result is stored at a speci-
fied position of array score. An integer variable size represents the position.

Content Quantity Parameter
passing method

Parameter passing
implementation

Input

Information of array score Multiple Pass by reference

Parameter

int score[]

Values of m and n Single Pass by value int m,int n

Position in score that is used
to store result Single Pass by value int size

Output Sum of array elements
between index m and index n Single Pass by reference Function type void

Figure 4.54: Key elements analysis of solution 2.

2. Function implementation design
After designing the function structure of solution 2, we can write out the function header. As
shown in Figure 4.55, the function body uses a for loop to compute the sum and stores sum at a
specified position of array score.

Function
header

Function type Function
name Parameter list

void func (int score[], int m, int n, int size)

Function
body

{ int i, sum=0;

for (i=m; i<=n; i++)

sum=sum+score[i];

score[size]=sum; //The sum is stored in specified position of score

}

Figure 4.55: Function design of solution 2.

172 4 Functions

3. Code implementation
Figure 4.56 shows the code implementation of solution 2.

01 #include "stdio.h"
02 #define SIZE 10
03
04 void func(int score[],int m,int n,int size);
05
06 //Compute the sum of elements of array score between index m and index n,

//store result in position with index size
07 void func(int score[],int m,int n,int size)
08 {
09 int i,sum=0;
10
11 for (i= m; i<=n; i++)
12 {
13 sum=sum+score[i];
14 }
15 score[size]=sum; //The sum is stored in specified position of score
16 }
17 int main(void)
18 {
19 int a[SIZE]= {1,2,3,4,5,6,7,8,9,0};
20 int p=3, q=7; //Specify range of sum
21
22 printf("Elements of array a between index %d and index %d are:",p,q);
23 for (int i= p; i<=q; i++)
24 {
25 printf("%d ",a[i]);
26 }
27 printf("\n");
28 func(a,p,q,SIZE-1);
29 printf("Sum of elements of array a between index %d and index %d are:
30 %d\n",p,q,a[SIZE-1]);
30 return 0;
31 }

Nonvalue-returning
functions

Figure 4.56: Code implementation of solution 2.

The child function is declared and defined between line 4 and line 16. Note that the type of func-
tion is void, as shown in line 28, so it is a nonvalue-returning function call.

The main function is the same as in solution 1, except that the function call is slightly different.

4. Debugging
As usual, we need to list issues for investigation before debugging. We shall focus on issues
related to passing by reference in this solution, as shown in Figure 4.57. The value of the last
element of array a in the main function should be 0 before calling child function func and 30
after the call. Figure 4.58 shows debugging information of the program.

4.5 Examples of function design 173

– Inspect how the result is stored into score in child function
– Check whether a[SIZE-1] is changed after function call Using pass by reference,

child functions can
modify data at specified
addresses so that the

caller can obtain
updated values

Index 0 1 2 3 4 5 6 7 8 9

a[] before the call 1 2 3 4 5 6 7 8 9 0

a[] after the call 1 2 3 4 5 6 7 8 9 30

nm

Debugging
plan

Figure 4.57: Debugging plan of solution 2.

Figure 4.58: Debugging code implementation of solution 2.

Solution 3
1. Function structure design
Figure 4.59 shows the third solution. Compared with solution 1, the only difference is that the
beginning address of the score is passed to the child function using a pointer. This is an alter-
native form of “call by reference:” using a pointer as an argument.

2. Function implementation design
Figure 4.60 shows the implementation of solution 3. The parameter uses pointer sPtr to store
the address of array score. On line 2 of the function body, we point sPtr to address of the ele-
ment we want to access, that is, address of the element with index m. Then we use the for loop

174 4 Functions

to compute the sum. Note that we refer elements of score using pointer sPtr. Finally, the sum is
returned using the return statement.

An alternative way of
pass by reference: using
a pointer as parameter

Content Quantity Parameter
passing method

Parameter passing
implementation

Input
Information of array score Multiple Pass by

reference Parameter
int *sPtr

Values of m and n Single Pass by value int m,int n

Output
Sum of array elements
between index m and

index n
Single Pass by value Return int type

Figure 4.59: Key element analysis of solution 3.

Function
header

Function
type

Function
name Parameter list

int func (int *sPtr, int m, int n)

Function
body

{ int i, sum=0;

sPtr = &sPtr[m]; //sPtr points to address of the
element to be accessed

for (i= m; i<=n; i++, sPtr++)
sum = sum + *sPtr;
//Compute sum of elements of score between index m and index n

return sum;
}

Figure 4.60: Function implementation design of solution 3.

3. Code implementation

01 #include "stdio.h"

02 #define SIZE 10

03 int func(int *sPtr,int m,int n);

04

05 int func(int *sPtr, int m, int n)

06 {

07 int i,sum =0;

08

09 sPtr = &sPtr[m]; //Point sPtr to address of element to be accessed

10 for (i= m; i<=n; i++, sPtr++)

11 {

12 sum = sum + *sPtr;

13 }

4.5 Examples of function design 175

14 return sum;

15 }

16 int main(void）

17 {

18 int x;

19 int a[SIZE] = {1,2,3,4,5,6,7,8,9,0};

20 int *aPtr = a;

21 int p=3, q=7; //Specify the range

22

23 x=func(aPtr,p,q);

24 printf("%d\n",x);

25 return 0;

26 }

4. Debugging
As usual, we list issues related to pass by reference and variables we want to inspect, as shown
in Figure 4.61. Argument aPtr and parameter sPtr should have the same value, which ought to
be the address of array a.

Simulated call by reference
Parameters and arguments
use different memory units

Call by value
Parameters and arguments

use different memory
units

Arguments in main function
Variable Address Value

a Address of
array a

aPtr Address
of array a

p 3
q 7

Parameters in child function
Variable Address Value

sPtr Address
of array a

m 3
n 7

x=func(aPtr,p,q); int func(int*sPtr, int m, int n)

Are memory units of parameters and arguments the same
when using a pointer as parameter?

Debugging
plan

Figure 4.61: Debugging plan of solution 3.

Figure 4.62 shows the first step of debugging.
In the main function, the address of array a is 0x18ff1c. aPtr is a pointer pointing to the ad-

dress of a, so their values should be identical. The address of aPtr can be obtained using &
operator. We can see in the Watch window that the address is 0x18ff18.

176 4 Functions

Figure 4.62: Debugging solution 3 step 1.

In the child function func, the address of sPtr is 0x18feb8 and the value of sPtr is the same
as array a.

With the information displayed in the Watch window, we can complete the table shown in
Figure 4.63. In conclusion, parameter addresses and argument addresses are different when
passing a pointer to the child function. This is similar to call by value. We call such a function
call a simulated call by reference.

Arguments in main function

Variable Address Value

a 0x0018ff1c

aPtr 0x0018ff18 0x0018ff1c

p 0x0018ff10 3

q 0x0018ff14 7

Parameters in child function

Variable Address Value

sPtr 0x0018feb8 0x0018ff1c

m 0x0018febc 3

n 0x0018fec0 7

x=func(aPtr,p,q) int func(int*sPtr, int m, int n)

Figure 4.63: Debugging information table of solution 3.

We continue the debugging process until sPtr is going to point to the element with index 3, as
shown in Figure 4.64. Note that the value of sPtr is 0x18ff1c at this moment. Then we enter the
for loop with i = 3. The value of sPtr is updated to 0x18ff28. Using the asterisk operator, we can
obtain the value of the unit it points to, which is 4. We can also inspect the memory layout at
this address in the Memory window.

4.5 Examples of function design 177

Figure 4.64: Debugging solution 3 step 2.

In the next iteration, as shown in Figure 4.65, we have i = 4 and sPtr pointing to 0x18ff2c after
increasing by 1. The value stored at this address is 5. In the next iteration, i becomes 5 and sPtr
points to address 0x18ff30, in which value 6 is stored.

Figure 4.65: Debugging solution 3 step 1.

When the value of i becomes 8, the loop terminates, as shown in Figure 4.66. Note that sPtr
now points to address 0x18ff3c. The function func then terminates, and the program returns to
the main function. The computation result 30 is now stored into x. It is worth noting that the
address and value of aPtr did not change as sPtr changed.

178 4 Functions

Figure 4.66: Debugging solution 3 step 4.

Conclusion About call by reference and call by value
Figure 4.67 summarizes the three types of calls and their characteristics. In C programs, argu-
ments and parameters are stored in different memory units when the variables passed are num-
bers or pointers. They share the same space only when an array is passed.

The merit of using call by reference is that the information transmission efficiency becomes
higher because fewer data are copied during the process.

Type Memory units of
parameters and

arguments

Information
transmission

direction

Call type

Parameter

Value Different Single
Call by value

Pointer Different Double
Array name Shared Double Call by reference

Conclusion

Figure 4.67: Summarization of variable passing rules.

4.5.3 Comprehensive examples of functions

Example 4.4 Calling the same function multiple times
Please write a program that computes the number of k-combinations from n elements.

Analysis
As shown in Figure 4.68, the formula requires the computation of multiple factorials. Consequently,
we can write a function that computes factorial and reuse it.

4.5 Examples of function design 179

= >
× −

! ()
! ()!

nn k n k
k n k

C Reuse
factorial
function

Figure 4.68: Formula of computing k-combinations.

1. Function structure design
Key elements of the function are shown in Figure 4.69. The function name is factorial. Given an
integer x, the function outputs factorial of x. If the input is invalid, the function should return -1.

Functionality Input information Output information

Compute factorial int x int value
Exception: –1

Normal: >0

Function name Parameter list Function type

Figure 4.69: Key elements of function factorial.

We can write out the function header based on these key elements, and the function body
based on its functionality. An exception handling routine is necessary so that the function re-
turns –1 when x<0. The cumulative product computed in the for loop is stored in variable f.

Although there are two return statements, the function has to terminate through one and ex-
actly one exit, as shown in the flowchart (Figure 4.70).

Function
header

Function
type

Function
name

Parameter
list

int factorial (int x)

Function
body

{

int i;

int f=1; //Cumulative product

if (x<0) return (-1);

for (i=1; i<=x; i++) f=f*i;

return(f);

}

f = 1

Input x

x<0

f = x!

Return"-1"

Return value of f

End

Start

Y

There are two
return statements,
how many values

are returned?

Figure 4.70: Structure and function body design of factorial.

2. Code implementation
As shown in Figure 4.71, the main function calls factorial multiple times in one expression.

180 4 Functions

#include <stdio.h>
int factorial (int x);

int factorial (int x)
{

int i;
float t=1;
for(i=1; i<=x; i++) t=t*i;
return (t);

}

int main(void)
{

int c;
int m,n;

printf("input m,n:");
scanf(" %d%d",&m, &n);
c=factorial (m)/(factorial (n)*factorial (m-n));
printf("The result is %8.1f", c);
return 0;

}

Function declaration

Function definition

Function call

Figure 4.71: Multiple calls of the factorial function.

Example 4.5 Calling multiple functions
There is a sorted array. Please write a program that inserts an input number into the array so
that the result array is still sorted.

Requirement: use binary search to find the insertion position and then use a move function
to move elements backwards. The sorted array and the input is given in the main function.

1. Algorithm design
Regardless of finding the keyword or not using a binary search function, the mid value will be the
index of the position at which the new number will be inserted. Having found this index, we can
use the move function to move array elements backwards and insert the number at position mid.

2. Code implementation

/*===

Functionality: binary search

Input: address of sorted array, array length, value of keyword to be found

Output: position of the last search

===*/

int BinarySearch (int a[], int n, int key)

{

int low=0, high=n-1;

int mid;

while (low<=high)

{

mid = (low+high+1)/2;

if (a[mid]== key) break; //Search succeeded

else

4.5 Examples of function design 181

{

if (a[mid]> key) high = mid-1; //Search in the low range

else low = mid+1; //Search in the high range

}

}

return mid;

}

/*===

Functionality: move array elements

Input: address of array, array length, position from which the move starts

Output: None

===*/

void move(int a[],int n,int subscript)

{

int i;

for(i=n;i>subscript;i--)

{

a[i]=a[i-1];

}

}

#include <stdio.h>

#define N 11

int main(void)

{

int array[N]={5,10,19,21,31,37,42,48,50,55};

int number; //Number to be inserted

int insert_sub; //Insert position

printf("The original array:\n");

for(i=0;i<N;i++) printf("%d ",array[i]);

printf("\n");

printf("Please insert a new number:");

scanf("%d",&number);

insert_sub=BinarySearch (array,N-1,number); //Compute insert position

move(array,N-1,insert_sub+1); //Move elements after insert position afterwards

array[insert_sub+1]=number; //Insert the number

printf("The array after insertion:\n");

for(i=0;i<N;i++) printf("%d ",array[i]);

printf("\n");

return 0;

}

182 4 Functions

Example 4.6 Nested function calls
Compute the difference of the maximum and the minimum of three numbers.

Analysis
Although the problem is trivial, we shall use three functions to solve it in order to demonstrate
nested function calls. The code implementation is as follows:

int dif(int x,int y,int z); //Compute the difference of the maximum and

//the minimum of x, y and z

int max(int x,int y,int z); //Compute the maximum of x, y and z

int min(int x,int y,int z); //Compute the minimum of x, y and z

int main(void)

{

int a,b,c,d;

scanf("%d%d%d",&a,&b,&c);

d=dif(a,b,c);

printf("Max-Min=%d\n",d);

return 0;

}

int dif(int x,int y,int z) //Compute the difference of the maximum and

//the minimum of x, y and z

{

return (max(x,y,z) - min(x,y,z));

}

int max(int x,int y,int z) //Compute the maximum of x, y and z

{

int r;

r= x>y ? x:y;

return(r>z?r:z);

}

int min(int x,int y,int z) //Compute the minimum of x, y and z

{

int r;

r = x<y ? x:y;

return(r<z ? r:z);

}

4.5 Examples of function design 183

Example 4.7 Two-dimensional array as parameter
Find the highest grade from grades of three students in four courses.

Analysis
1. Data structure design
We shall use a two-dimensional array studentGrades[number of students][number of courses]
to store all the grades.

2. Function design
Based on the problem description, we can summarize the key elements of the function, as
shown in Figure 4.72.

Function name Functionality Parameter Function type

maximum
Determine the
highest score

Grade table, the number of
students, the number of courses int

Figure 4.72: Key elements of student grades processing function.

3. Code implementation

//Process 2-dimensional array in child function

#include <stdio.h>

#define STUDENTS 3

#define EXAMS 4

//Function declaration, see section 4.6.6 for introduction of const

int maximum(const int grades[][EXAMS], int pupils, int tests);

//When using 2-d array as parameter, the row size can be omitted in

//definition and declaration, but the column size cannot

int main(void)

{

//Initialize students’ grades

int studentGrades[STUDENTS][EXAMS]

= { { 77, 68, 86, 73 },

{ 96, 87, 89, 78 },

{ 70, 90, 86, 81 }

};

printf("Highest grade: %d\n",maximum(studentGrades,STUDENTS,EXAMS));

return 0;

}

int maximum(const int grades[][EXAMS], int pupils, int tests)

{

int i; //Counter of student

int j; //Counter of courses

int highGrade = 0; //Initialize with lowest possible grade

184 4 Functions

for (i = 0; i < pupils; i++) //Iterate through rows

{

for (j = 0; j < tests; j++) //Iterate through columns

{

if (grades[i][j] > highGrade)

{

highGrade = grades[i][j];

}

}

}

return highGrade; //Return highest score

}

Example 4.8 Structure array as parameter
Write a function output() to print records of five students.

Analysis
1. Algorithm design
The student records are stored in a structure array student stu[], which is passed to child func-
tion output() by the main function through passing its address.

2. Code implementation

#include <stdio.h>

#define N 5

struct student

{

int num;

char name[8];

int score[4];

};

void output(struct student stu[])

{

int i,j;

printf("\nNo. Name Sco1 Sco2 Sco3\n"); //Print table header

for (i=0; i<N; i++)

{

printf("%-6d%-6s",stu[i].num,stu[i].name); //Print ID and name

for (j=0; j<3; j++) printf("%-6d",stu[i].score[j]); //Print grades

printf("\n");

}

}

4.5 Examples of function design 185

int main(void)

{

struct student stu[N]=

{

{1001,"zhao",98,78,86,76},

{1002,"qian",92,68,76,67},

{1003,"sun",78,65,81,72},

{1004,"li",91,73,85,74},

{1005,"zhou",90,73,85,71},

};

output(stu);

return 0;

}

Example 4.9 Pointer as return value

Analysis

1. Code implementation

#include <stdio.h>

struct student

{ int num;

float grade;

};

struct student* func2(struct student stu)

{

struct student *str=&stu;

str->num=101;

str->grade=86;

return (str); //Return structure pointer

}

int main()

{

struct student x={0, 0};

struct student *stuPtr;

stuPtr = func2(x);

return 0;

}

2. Debugging
The process of debugging this program is shown further. In Figure 4.73, the address of argu-
ment x is 0x12ff78.

186 4 Functions

Figure 4.73: Pointer as return value program debugging step 1.

In Figure 4.74, the address of the parameter stu is 0x12ff20.

Figure 4.74: Pointer as return value program debugging step 2.

In Figure 4.75, the values of members in the structure stu are updated.

Figure 4.75: Pointer as return value program debugging step 3.

In Figure 4.76, stuPtr in the main function is used to store the value of local variable str. A local
variable is a variable defined inside a function.

Figure 4.76: Pointer as return value program debugging step 4.

Note: It is not recommended to return the addresses of local variables. Because the system re-
claims the memory space of local variables after the function returns, information related to
local variables is no longer guaranteed to be correct.

Example 4.10 Void pointers as return value
Please define a dynamic array to store grades of n students and compute the average grade.
The number of students and grades are read from keyboard input.

4.5 Examples of function design 187

Analysis
1. Background knowledge

The array definition method introduced in chapter “Array” allocates memory statically. In other
words, the size of the array and the address it is stored at are unchanged during program exe-
cution. Suppose that we want to insert new data into the array during program execution, but
the allocated array space is already fully used. Is there a way to expand the array space? There
is a memory allocation method called “dynamic memory allocation” in C: if a program needs
extra storage space during execution, it can “request” memory space of a certain size. When
the program no longer needs the space, the space can be returned to the system. Related li-
brary functions include malloc(), calloc(), free(), and realloc(). One must include the header file
stdlib.h or malloc.h to use these functions.

1) Memory allocation function malloc()

Prototype: void *malloc(unsigned size);
Functionality: allocates a block of memory of size bytes.
Parameters: size is an unsigned integer, which represents the size of the requested memory
space.
Return value: the address of the newly allocated memory is returned. If there is no memory
available, NULL shall be returned.

Note:
(1) NULL is returned when size is 0.
(2) void* is a typeless pointer that can point to memory units of any type. A typeless

pointer can be assigned to pointers of other types after forced type conversion.

2) Memory release function free()

Prototype: void free(void *block);
Functionality: releases memory space allocated using calloc(), malloc(), and realloc().
Parameter: block is a void pointer pointing to the memory to be reclaimed.
Return value: there is no return value.
Usage: void free(void *p);
The statement above releases memory in dynamic memory space pointed to by p, which is a
value returned by malloc(). Free function has no return value.

2. Code implementation

1 #include <stdio.h>

2 #include <malloc.h>

3

4 int *DefineArray(int n); /*Define a dynamic array of size n*/

5 void FreeArray(int *p); /*Release memory pointed to by p*/

6

7 int main()

8 {

188 4 Functions

9 int *p, i;

10 int nCount; /*Number of students*/

11 float fSum=0; /*Total grade*/

12

13 /*Input number of students*/

14 printf("\nPlease input the count of students: ");

15 scanf("%d",& nCount);

16

17 /*Define a dynamic array p*/

18 p= DefineArray(nCount);

19 if (p==NULL) return 1; /*Exception routine*/

20

21 /*Input grades of each student*/

22 printf("Please input the scores of students: ");

23 for(i=0; i< nCount; i++)

24 {

25 scanf("%d", &p[i]);

26 }

27

28 /*Compute total grade*/

29 for(i=0;i< nCount;i++)

30 {

31 fSum+=p[i];

32 }

33

34 /*Print average grade*/

35 printf("\nAverage score of the students: %3.1f", fSum/nCount);

36

37 /*Free dynamic array p*/

38 FreeArray(p);

39 return 0；

40 }

41

42 /*Dynamically request memory space of size n*sizeof(int), which is used

for an int array with n elements*/

43 int *DefineArray(int n)

44 {

45 return (int *) malloc(n*sizeof(int));

46 }

47

4.5 Examples of function design 189

48 /*Release memory allocated by malloc*/

49 void FreeArray(int *p)

50 {

51 free(p);

52 }

Program result:

Please input the count of students: 5

Please input the scores of students: 87 97 77 68 98

Average score of the students: 85.4

Note: The input parameter n of function DefineArray is the number of elements in the array. The
function uses malloc to allocate memory required by the array and casts the void pointer re-
turned into integer pointer. Finally, the function returns a pointer pointing to an integer variable
or array. The value of the pointer is precisely the beginning address of the memory space allo-
cated by malloc.

Knowledge ABC Memory leak
Applications usually use functions like malloc or realloc to obtain blocks of memory from the
heap. When the memory is no longer needed, programs must call function free to free these
memory blocks; otherwise, they cannot be used again. In this case, we consider these memory
blocks “leaked.”

A memory leak affects the performance of a computer by reducing the amount of available
memory in it. In the worst case, most of the available memory may eventually become allocated,
and all or some of the devices stop working correctly, or the application fails.

In modern operating systems, standard memory used by an application is released when it
terminates. In other words, a memory leak in a program with a short lifespan is rarely severe.

Much more serious leaks include those:
(1) where the program runs for an extended time and consumes additional memory over

time, such as background tasks on servers, but especially in embedded devices which
may be left running for many years;

(2) where new memory is allocated frequently for one-time tasks, such as when rendering
the frames of a computer game or animated video;

(3) where the program can request memory (such as shared memory) that is not released,
even when the program terminates;

(4) where the leak occurs within the operating system;
(5) when a system device driver causes the leak;
(6) where memory is limited, such as in an embedded system or portable device;
(7) running on an operating system (such as AmigaOS) that does not automatically release

memory on program termination, where memory has to be reclaimed through system
restart.

Program reading exercise
Read and analyze the program, then fill in the table.

#include "stdio.h"

#include "string.h"

190 4 Functions

void i_s(char in[], char out[]);

void i_s(char in[], char out[])

{

int i, j;

int l=strlen(in);

for (i=j=0; i<l; i++, j++)

{

out[j]= in[i]; //Step 1

out[++j] = '__'; //Step 2

in[i] += 1; //Step 3

}

out[j-1]= '\0';

}

int main(void)

{

char s[]= "1234";

char g[20];

i_s(s, g);

printf("%s\n", g);

return 0;

}

Having learned rules of information transmission between functions, readers can try to analyze
this program on their own. Figure 4.77 lists intermediate results of each step. If readers find it
hard to analyze the program by merely reading it, it is also possible to use a debugger to in-
spect variable values.

Index 0 1 2 3 4 5 6 7

(s[]) in[] 1 2 3 4 \0

(g[]) out[] 1

in[] in step 3 2

Figure 4.77: Program reading exercise.

4.5.4 Parameters of the main function

4.5.4.1 Introduction
We mentioned before that Mr. Brown wrote an arithmetic questions program for his
son Daniel. The program could generate random arithmetic problems and determine
whether Daniel’s answer was correct. Daniel spent much time on it and enjoyed it, so
Mr. Brown wanted to recommend the program to his nephew Annie, who was living

4.5 Examples of function design 191

in another city. Mr. Brown knew that Annie’s parents were not familiar with installing
programs, so he only sent a .exe file through email. The executable file required no C
compiling environment so that Annie could run the program from file explorer di-
rectly. When he tested the executable file, however, he found that the console win-
dow popped up after the program is started and then disappeared quickly before he
could even see the result.

“What should I do?” Mr. Brown thought to himself. He then recalled a method
used before graphical user interfaces were invented. Back in those days, DOS was
the dominating operating system. In DOS, all commands were sent to computers
from keyboard input, including the execution of applications. The interface used
for command input was all black. It is precisely the popped-up window which dis-
plays result after we execute programs in VC6.0 IDE, namely the console. The con-
sole is also called a command line interface, in which users type in commands for
applications in the command line environment. Program results are also displayed
in the command line interface.

However, the graphical user interface has been the de-facto standard nowa-
days. Is there a way to fall back to “console?” The Windows system does preserve
this function. We can enter the command line interface by typing cmd in the Run
window of Windows, as shown in Figure 4.78. Even if a computer is not equipped
with a compiling environment, we can still run console applications in cmd com-
mand line interface. After a console application terminates, it returns to cmd so that
we can inspect its result.

Figure 4.78: “Run” in Windows.

192 4 Functions

4.5.4.2 Parameters of the main function
We have seen the following form of the main function, which has no parameter:

int main(void)

{

. . .

return 0;

}

The return type of the main function is int, which is consistent with the return state-
ment at the end of the program. 0 is the return value of the main function. Where is
it returned to then? After the main function terminates, the return value is sent
back to the operating system, indicating that the program terminates normally.

We can use parameters in plain functions, but can we do the same with the
main function? If a function has parameters, then we have to pass arguments when
calling it. However, no function can pass arguments to the main function because it
cannot be called by any function. As a result, the argument must be provided exter-
nally. How can we do this?

A C program turns into an executable file with extension .exe after being com-
piled and linked. An executable file can be executed directly in the operating sys-
tem. In other words, it is the system that runs the file. Since other functions cannot
call or pass arguments to the main function, it has to be done by the system. In C
programs, we can pass arguments to main functions by typing them in the com-
mand line interface.

Let us take a look at the syntax of the main function with parameters:

int main(int argc, char *argv[])

{

. . .

return 0；

}

Command line arguments are also called positional arguments. They can be passed
to programs. Value of argc (argument count) is equal to the total number of posi-
tional arguments (including the program name). argv (argument value) is a pointer
array, in which program name is stored in argv[0] and the ith positional argument
is stored in argv[i], up until argv[argc-1]. In this way, we can pass command line
arguments into C programs without using input statements.

4.5 Examples of function design 193

4.5.4.3 Example of the main function with parameters

Example 4.11 Compute rectangle area using command line inputs

Analysis
The code implementation is shown in Figure 4.79.

On line 13, the sscanf function is also an input function, which is similar to scanf. We have
learned that scanf uses keyboard input (stdin). sscanf, on the other hand, uses fixed strings as
inputs. Readers can refer to Appendix C of Volume 1 for more on input functions. sscanf reads
data in a specified format from a string. Here it reads data from argv[1] and puts it into variable w.

01 #include <stdio.h>
02 #include <stdlib.h>
03

04 int main(int argc, char*argv[])

//arg c is the number of parameters; arg v[0] is the program name, other parameters are stored after it
05 {
06 float w,h; // Width and height of rectangle
07 if(argc< 3) // Parameters less than 3
08 {
09 printf(“input:File_Name width height\n");
10 printf(“E.g.: %s 3.2 4.5\n",argv[0]);
11 exit(0); //Exit the program
12 }
13 sscanf(argv[1],"%f",&w); //Width
14 sscanf(argv[2],"%f",&h); //Height
15 printf("area = %f\n",w*h);
16 return 0;
17

There are two
parameters besides

program name

Exception routine

}

Figure 4.79: Example of the main function with parameters.

On line 11, exit() is a library function whose header file is either stdlib.h or windows.h. It closes
all files and terminates the current process. In the statement exit(x), the value of x represents
exit status and is returned to the operating system. If x is 0, the program exited normally; other-
wise, it exited with exceptions.

Figure 4.80 shows the command line interface opened by cmd command. We first enter the
directory of the executable file with command cd, which stands for “change directory.” In this
example, the directory is “D:\MyWin32App\Win32App\Debug” and the executable file is “demo.
exe.” Then we type in command line arguments of the main function in the interface. After typ-
ing in the program name, width, and height (the program specifies the order in which argu-
ments are input), the program outputs area of the corresponding rectangle. We test the
program with three groups of inputs, two of which are valid. In the case of invalid input, the
program outputs the format of valid input and an example in the exception routine.

194 4 Functions

Correct example 1

Correct example 2

Wrong example

Enter directory of
the executable file

Figure 4.80: Test results of the main function with parameters.

Knowledge ABC Differences between exit() and return
According to ANSI C, they are equivalent in the first call of main().

Note that we have used the term “first call.” If main() is in a recursive program, then exit()
still terminates the program; on the other hand, a return statement returns to the previous level
of recursion. Only at the top level of recursion does a return statement terminate the program.
Besides, exit() terminates a program even if it is used in a function other than main().

Knowledge ABC Format of the main function
In the latest C99 standard, only the following two definitions of main() are correct (see ISO/IEC
9899:1999 (E) 5.1.2.2.1 program startup):

int main(void) // without parameter

{

. . .

return 0;

}

int main(int argc, char *argv[]) // with parameter

{

. . .

return 0;

}

4.5 Examples of function design 195

int indicates the return type of main(). Information passed to functions is normally written in-
side parentheses after function names. void means that no arguments should be passed to
main(). However, we often find the following forms of main() in legacy C code:

(1) main()
This is allowed in C90 standard, but not in C99. Hence, do not write this even if it is valid in
your compiler.

(2) void main()
This is valid in some compilers, but no standard considers accepting it. Bjarne Stroustrup,
the creator of C + +, makes a clear statement in the FAQ section on his website: void main()
has never existed in C++ or C. Consequently, compilers may reject such code. In fact, it is
invalid in many compilers.
The merit of sticking with the standard is: a program can normally run even after being

ported from one compiler to another. In other words, it results in “better portability.”

4.6 Scope

When solving practical problems with programs, the scale of programs becomes
larger as problems become more complicated. This leads to many issues in program-
ming. In response to these issues, we introduced the idea of modularization. To be
more specific, we introduced functions into the C language. Figure 4.81 shows some
issues related to functions, which we have seen in previous sections.

4.6.1 Introduction

4.6.1.1 Cooperation issues in teamwork
Mr. Brown’s research group received funding for a new project. For higher effi-
ciency, the project was divided into multiple modules, each of which was assigned
to a teacher or a student in the group.

However, they realized that there were issues of cooperation that needed to be
settled before starting coding.

A student said, “In small programs I have written before, child functions and
main function are in the same file. However, that would be inconvenient in the case
of teamwork! I think we should use a separate file for each module.” Another student

Issues we need to
consider when solving
problems with functions

Information transmission between functions
Definition of functions

Calling methods of functions

What should we do
when the scale of a
program is large?

Figure 4.81: Issues related to function design.

196 4 Functions

said, “I prefer using i, j, and k for loop control variables. Can I still use them if Prof.
Brown uses them as well? Should we discuss with each other before defining our
variables?”

A teacher thought for a while and responded, “From the perspective of the over-
all workflow, we should create program files on our own, but a program cannot run
if it has no main function. From the perspective of program execution, however, we
are writing one large program, which should contain only one main function. How
should we do this?”

Mr. Brown summarized everyone’s questions, as shown in Figure 4.82. Then he
said, “To answer these questions, we need to introduce new rules in the program-
ming language. Can you imagine what the best mechanism of working in team is? I
think we should work in different files. Variables in different files can have the
same name. One program should have only one main function.” Everyone nodded.

He asked further, “In this case, what mechanisms of program execution are neces-
sary to make what I just said possible?” “I think we can attach scope and lifespan
to variables so that they are isolated in a file or a function. This can stop them from
messing around,” another teacher answered. Everyone agreed with him.

As they have imagined, the rule in C is: a C program can consist of multiple
files, each of which can have multiple functions, as shown in Figure 4.83. Variables
in different files can have the same name. A C program must have one and only one
main function.

What problems are
there in teamwork
programming?

How many files should we use if each team member works on a separate program?

How many main functions are necessary if we have multiple files?

Can we use duplicated names for variables?

Figure 4.82: Issues in large-scale programs.

A convenient
and reasonable

mechanism

Independent files
Duplicated names

Single main function

Function A1
Function A2

......

Function B1
Function B2

......

...... Function N1
Function N2

......

C program

File A File B ... File N

Figure 4.83: Structure of C programs.

4.6 Scope 197

4.6.1.2 Outsourced projects in a flow
In the rostrum building flow, some work was outsourced. Each service provider can
be considered as a child function that completes a certain task. Information related
to one service provider, such as material, size, or price, need not and should not be
exposed to other service providers. This is the scope of information. Such a scoping
strategy is also used in modularization of programs.

4.6.1.3 Resource-sharing problem
Mr. Brown’s university has facilities like assembly halls, libraries, canteens, and in-
firmaries. There are also service departments that provide specific services. As per
government’s and university’s policies, assembly halls and libraries are open to the
public. Organizations and individuals can use them following some processes. On
the other hand, canteens and infirmaries are only available to students and univer-
sity employees. Depending on availability, resources can be divided into internal
resources and shared resources.

The code is also a resource. If a program consists of multiple source files, pro-
gram designers should be able to determine whether a function can be called by
functions in other files based on the nature of the problem to be solved. In other
words, the “availability” attribute should be necessary for functions as well.
Depending on availability, functions in C can be divided into internal functions
and external functions.

To borrow books from university libraries, individuals should present their univer-
sity ID cards. These cards are also required in other facilities, such as canteens and
infirmaries. In many cases, however, data regarding IDs used in one facility are only
available to the management department of that facility. Departments seldom share
their data. To sum up, some data are available to all departments and some are re-
stricted to certain departments.

Imagine a department as a function. Then there are two types of information
processed by functions. Data that are available to all functions are called global
data, while those available only inside a function are called local data.

4.6.2 Masking mechanism of modules

Recall the idea of modularization: we aim to hide internal implementation and data
of modules from outside and to ensure that modules communicate with other mod-
ules through information interfaces. To design such a mechanism, where should we
start? Based on the discussion in the introduction part, it is clear that we should
start from the isolation of internal data and the masking mechanism of functions.

198 4 Functions

4.6.2.1 Isolation of internal data
By masking data in a child function, which are mostly variables, we prevent them
from being accessed by other functions. Issues we need to consider about these var-
iables are shown in Figure 4.84.

4.6.2.2 Masking rule of functions
Depending on “availability,” functions in C are divided into two types: internal
functions and external functions. They are identified with special signs, as shown
in Figure 4.85. We shall introduce these signs in the section “scope of functions.”

4.6.3 Memory segments and storage classes

4.6.3.1 Memory segments of programs
In practice, we isolate data through categorizing data and manage them differently
based on the availability of data. We use the same strategy in computers to manage
data and code. Figure 4.85 shows the memory layout of a C program. The code seg-
ment contains binary code of functions; the constant segment contains string literals
and other constants; the dynamic segment is used to store internal data of functions,

Data processing

Interface information
– Allocation of variable spaces

What are the issues we
need to tackle when
designing masking
mechanism of functions?

Variables in
a function – Life span of variables

– Scope of variables

Function definition

Figure 4.84: Issues related to masking internal information of functions.

Function A1

Function A2
......

Function B1

Function B2
......

......
Function N1

Function N2
......

File A File B ... File N

C program

We use signs
“External”and“Internal”
to represent availability

of functions in a file

ExternalE

InternalI

E

EI

I

I

I

Figure 4.85: Sharing mechanism of functions in a multiple-file structure.

4.6 Scope 199

namely local variables. The static segment stores data that are shared among func-
tions, that is, global variables.

4.6.3.2 Storage classes of variables
To distinguish variables stored in different segments, C attaches another attribute
to them, that is, storage class. It also indicates the lifespan of variables in memory
(Figure 4.86) and scope of variables in programs, as shown in Figure 4.87.

Registers are fast storage locations inside CPUs. They provide the fastest way to ac-
cess data, even surpassing RAM. However, the size of the registers is limited.
Programmers nowadays seldom use register class themselves, because compilers
will handle it automatically. Register class is often used for variables that are ac-
cessed frequently, such as loop variables.

Memory
…

Code segment
Constant segment

Static segment
Dynamic segment

…

User
workspace

Segment Content Notes

Dynamic
segment

Stack Local variables, parameters Allocated and released by the system
automatically

Heap Memory requested using dynamic
allocation functions

– Allocated and released by programmers
– The system can reclaim the memory if

programmers didn’t release it
Static segment Global variables, static variables Allocated and released by the system

automatically

Constant segment Constants Allocated and released by the system
automatically

Code segment Program code

Data space

Figure 4.86: Memory layout.

Storage
segment Life span Storage class Type Notes

Dynamic
Same as
function

register Register Variables stored in registers

auto Auto Auto variables are local variables that are valid only once
in the function in which they are declared

Static
Same as
program

static Static Auto variables are local variables that are valid multiple
times in the function in which they are declared

extern External Global variables declared outside any function

Figure 4.87: Storage classes of variables.

200 4 Functions

Variables defined in functions are in the auto class by default unless otherwise speci-
fied. The value of an auto variable disappears when the function terminates. In its essence,
this happens because the system needs to reclaim storage units of the auto variable.

The value of a static variable is preserved after the function terminates. In other
words, the system will not reclaim its memory unit. Consequently, this value is still
available when the function is called again.

4.6.4 Masking mechanism 1: lifespan and scope of variables

4.6.4.1 Concept of scope
In a multiple-module structure, each child function possesses some internal data that
need not be accessed by other child functions. In the C language, the visibility of varia-
bles in a program is referred to as “scope.” Figure 4.88 shows the definition of scope
and its rules.

4.6.4.2 Attributes of variables
Because information needs to be hidden from other functions in some cases, we need
to add an attribute to variables, which are carriers of information. Hence, attributes of
variables include data type and storage class.

Data type describes the size of memory a variable needed. The storage class indi-
cates the lifespan of a variable in memory and its scope. Figure 4.89 shows the complete
syntax of variable declaration, which adds “storage class” in front of the data type.

Each function in a C program is an independent code block.

Code that constructs a function body is hidden from other parts of the program. It can’t be
accessed by statements (except the statement that calls the function) in other functions.

Rule of scope

A scope is the visibility of an object (such as a variable) in the code.

Scope

Figure 4.88: Scope and its rules.

storageClass dataType variableName

Complete syntax of variable declaration

Variable
attribute

Data type Data type indicates the size of a variable in the memory

Storage class Storage class indicates the life span of a variable in the
memory and its scope

Figure 4.89: Variable attributes and declaration syntax.

4.6 Scope 201

Example 4.12 Usage of a local static variable
In Figure 4.90, we can see that there is an auto class local variable var and a static class local vari-
able static_var in the child function varfunc(). After calling varfunc multiple times, we can make the
following conclusion based on the execution result of the program: values of an auto class local
variables disappear after the function returns, while values of a static class local variables are pre-
served even after the function returns.

01 #include"stdio.h"
02 void varfunc()
03 {
04 int var=0; //Local variable
05 static int static_var=0; //Local static variable
06 printf("var=%d ",var);
07 printf("static_var= %d\n",static_var);
08 var++;
09 static_var++;
10 }
11 int main(void)
12 {
13 int i;
14 for(i=0; i<3; i++)
15 {
16 printf(“Iteration %d\n",i);
17 varfunc();
18 }
19 return 0;
20 }

Program result:
Iteration 0 var=0 static_var= 0
Iteration 1 var=0 static_var= 1
Iteration 2 var=0 static_var= 2

Local variable: value is not accessible
after the function terminates

Static variable:value is preserved
after the function terminates

Figure 4.90: Example of variable attributes and declaration syntax.

4.6.4.3 Local variables and global variables
Depending on the location of the definition, variables are divided into local varia-
bles and global variables. Figure 4.91 shows their definitions.

We can omit the storage class auto for local variables defined in a function.
A local variable is defined inside a function. It is available only in this function.

Local variable

A global variable is defined outside any function. It can be accessed by all
functions in the program.

Global variable

Local variables are
locally available, global

variables are globally
available

We can omit the storage class extern for global variables defined in the
program. However, we must use extern when accessing global variables
defined in other files.

Figure 4.91: Local variables and global variables.

202 4 Functions

Keyword extern can be added in front of variables and functions to indicate that
their definitions are located in other files. Compilers will look for definitions in
other modules upon seeing extern.

Example 4.13 Compute average score
In a competition, scores of players are truncated means of scores given by N judges. The highest
and lowest scores are discarded, then the mean value of the rest is the final score of a player.

Analysis
1. Data structure design
Let scores be stored in array data[N]. As we need to access it in all processing steps, we can
make it a global variable. To make testing easier, we can initialize it with initial values in our
program, as shown in Figure 4.92.

Suppose there are N judges
We use a global variable data[N] to store scores

#define N 12 //Number of judges
int data[N]= {86,96,92,88,93,94,89,88,91,90,87,91};
//Global variable of score array

It is easier to test
the program if we
initialize the array

Figure 4.92: Average score: data structure design.

2. Algorithm design

Based on the problem description, we can use the algorithm shown in Figure 4.93 to solve the
problem.

Pseudo code Refinement

Discard the minimum score Least Find the minimum score Least, and replace it with 0
Discard the maximum score Largest Find the maximum score Largest, and replace it with 0
Compute the average of data Compute the average of data

We must replace
the minimum with
0 before looking
for the maximum.

Figure 4.93: Average score: algorithm design.

3. Function structure design
Because the score array data is global, that is, can be accessed by all functions, our function does
not need to read data through parameters or return the updated data, as shown in Figure 4.94.

Functionality Input information Output information Function header
Discard the minimum score

Least
No

(use global variable)
No

(use global variable) void Del_Least()

Discard the maximum score
Largest

No
(use global variable)

No
(use global variable) void Del_Largest()

Compute the average of data No
(use global variable) Float value float average()

Function name Parameter list Function type

Figure 4.94: Average score: function design.

4.6 Scope 203

4. Code implementation
Figure 4.95 presents the implementations of each child function. Storage classes of local varia-
bles defined in these functions are omitted, so they are auto by default. To discard the minimum
score in data, we initialize Least with the first element of data and compare every other element
with Least until we find the minimum. After finding the minimum score, we update it to be 0. We
can discard the maximum score using the same way. Finally, we add all values in data together
and divide the sum by the number of judges minus 2 to obtain the mean.

//Discard the maximum value Largest
void Del_Largest()
{

int Largest,tag=0;
Largest=data[0];
for(int i=0; i<N; i++)
{

if(Largest<data[i])
{

Largest=data[i];
tag=i;

}
}

printf("Largest=%d \n",Largest);
data[tag]=0;

}

//Compute the average of data
float average()
{

float sum=0;
for(int i=0; i<N; i++)
{

sum+=data[i];
}
return (sum/(N-2));

}

//Discard the minimum value Least
void Del_Least()
{

int Least,tag=0;
Least=data[0];
for(int i=0; i<N; i++)
{

if (Least>data[i])
{

Least=data [i];
tag=i;

}
}
printf("Least=%d \n",Least);
data[tag]=0;

}

Figure 4.95: Average score: code implementation.

Figure 4.96 is a screenshot of part of the program, which includes function declarations, global
variables declarations, and the main function.

Note that on line 7, array data is declared outside the main function. Because it is declared
in the same file, extern can be omitted.

The three function calls are between line 63 and line 65. The first two functions are nonvalue-
returning functions, while the third is a value-returning function.

02 #define N 12 // The number of judges
04 void Del_Least(); // Discard the minimum value Least
05 void Del_Largest(); // Discard the maximum value Largest
06 float average(); // Compute the average of data
07 int data[N]= {86,96,92,88,93,94,89,88,91,90,87,91};

// Score array as a global variable
55 int main(void)
56 {
57 float x;
58 for(int i=0; i<N; i++)
59 {
60 printf("%d ",data[i]);
61 }
62 printf("\n");
63 Del_Least();
64 Del_Largest();
65 x=average();
66 printf("average=%.2f\n",x);
68 return 0;
69 }

86 96 92 88 93 94 89 88 91 90 87 91
Least=86
Largest=96
average=90.30

A global array defined
outside functions

Figure 4.96: Partial code of average score problem.

204 4 Functions

Example 4.14 Scope of global variables
There are four functions in a program. Variables a, b, c, m and n are all global variables, but
their scopes are different, as shown in Figure 4.97.

Definition of function 1

Definition of function 2

Definition of function 3

Definition of function 4

int a,b,c;

int m,n;

Scope of global
variables m and n

Scope of global
variables a, b and c

Figure 4.97: Scope of global variables.

Scopes of a, b and c are from function 1 to function 4, while m and n are only visible to the last
two functions. In other words, function 3 and function 4 can use all these variables; function 1
and function 2 can only use a, b, and c.

We can conclude that scope of global variables depends on its location in the program.

Example 4.15 Local variables with duplicated names
Design a program where local variables have the same name, and examine their values at differ-
ent moments.

Analysis
1. Program design
Let a and b be two local variables defined in main function and in child function sub. We assign
values to them in both functions. The following code shows their values before and after calling
sub:

1 #include <stdio.h>

2 void sub();

3

4 int main(void)

5 {

6 int a,b; //They are local variables in main function

7

8 a=3; b=4;

9 printf("main:a=%d,b=%d\n",a,b); //Print their values in main function

10 sub(); //Call sub, which assign new values to a and b

11 printf("main:a=%d,b=%d\n",a,b); // Print their values in main function

12 return 0;

13 }

14

15 void sub()

4.6 Scope 205

16 {

17 int a,b; //They are local variables in sub

18

19 a=6; b=7;

20 printf("sub: a=%d,b=%d\n",a,b); //Print their values in sub

21 }

Program result:

main:a=3,b=4

sub: a=6,b=7

main:a=3,b=4

Note: Before calling sub, values of a and b are local variable values in main. When calling sub,
their values are local variable values in sub. Values in main function are masked. After returning
to main, values of a and b are once again local values in main.

2. Debugging
In Figure 4.98, we can see that addresses of a and b in main are 0x12ff7c and 0x12ff78
respectively.

Figure 4.98: Local variables with duplicated names debugging step 1.

In Figure 4.99, the program has just entered sub function. Addresses of a and b have become
CXX0069 error: variable needs stack frame. This error occurs because we have not allocated
memory to the variables we wish to inspect. Are a and b in the window local variables in main
function or in sub? Because the “execution arrow” points to the beginning of sub function, we
can infer that local variables a and b in sub have not been declared. Thus, this is an error re-
lated to variables in sub function.

Figure 4.99: Local variables with duplicated names debugging step 2.

206 4 Functions

In Figure 4.100, it is clear that addresses of a and b are different from what we have seen be-
fore. Although these variables have the same name in main and sub, they are actually stored in
different memory units

.
In Figure 4.101, a and b are once again local variables visible in main function, after returning to
main.

Example 4.16 Local variables and global variables with duplicated names
Examine scopes of a global variable and a local variable with the same name.

Analysis
Let a and b be two global variables. We also define local variables in child function max and in
main with the same names. Both functions contain operations on variables a and b. The pro-
gram is as follows.
1. Code implementation

1 #include <stdio.h>

2 int max(int a, int b);

3

4 int a=3,b=5; //Define a and b as global variables

5

6 int max(int a, int b) //a and b here are local variables

7 {

8 return (a>b ? a:b);

9 }

10

11 int main(void)

Figure 4.100: Local variables with duplicated names debugging step 3.

Figure 4.101: Local variables with duplicated names debugging step 4.

4.6 Scope 207

12 {

13 int a=8; //Define local variable a

14

15 printf("max=%d\n", max(a,b)); //Use local variable a and global

16 //variable b as arguments

17 return 0;

18 }

Program result:

max=8

2. Debugging
In Figure 4.102, we have just entered main function. The Watch window displays both address
and value of global variable b. CXX0069 error occurs for variable a because there is a global
variable and a local variable with the same name.

In Figure 4.103, the address of local variable a is 0x12ff7c. No value has been assigned to it
at this time.

Figure 4.102: Local variables and global variables with duplicated names debugging step 1.

Figure 4.103: Local variables and global variables with duplicated names debugging step 2.

208 4 Functions

In Figure 4.104, we have assigned a value to a. In Figure 4.105, the address of local variable in
child function is 0x12ff28, instead of 0x12ff7c of the local variable a in the main function. Global
variable b is invisible in function max. Address of local variable b is 0x12ff2c.

Figure 4.104: Local variables and global variables with duplicated names debugging step 3.

Figure 4.105: Local variables and global variables with duplicated names debugging step 4.

Figure 4.106 shows addresses of a and b after returning to main. In Figure 4.107, the local vari-
able a in the main function is changed to c. In this case, both global variables a and b are visible
in the main function.

4.6 Scope 209

Figure 4.106: Local variables and global variables with duplicated names debugging step 5.

Figure 4.107: Local variables and global variables with duplicated names debugging step 6.

Conclusion
It is recommended to use different names for local variables and global variables. Duplicated
names will mask global variables, resulting in confusion.

3. Summary of local variables and global variables
Figure 4.108 summarizes the rules of local variables and global variables. If a local variable in a
function has the same name as a global variable, the latter will be masked in this function. In
other words, modifying the value of the local variable will not affect the global variable.

– Local variables are locally visible;
– Global variables are globally visible;
– If a local variable has the same name as a global

variable, the local variable has the higher priority.

Rules
If a local variable

defined in a function
has the same name as
a global variable, the

global variable is masked
in this function.

Figure 4.108: Rules of local variables and global variables.

210 4 Functions

(1) Pros of global variables:
– Easier data transmission: it is easier and more convenient to transmit data among

functions through referencing global variables than using parameters and return
statements.

– Higher execution efficiency: with global variables, fewer parameters are necessary for
functions. This reduces the cost of calling functions, thus improving the execution
efficiency.

(2) Cons of global variables:
– Worse universality: using global variables affects encapsulation and universality of

functions.
– Worse readability: it is more difficult to debug programs with global variables because

it is hard to figure out which function makes the global data wrong.
– More memory: memory is not allocated to global variables as needed. Instead, memory

allocated to global variables will not be reclaimed until the program terminates.

As a conclusion, it is not recommended to use global variables unless the perfor-
mance of programs is of vital significance.

4.6.5 Masking mechanism 2: scope of functions

In the “shared resources” example, we mentioned that functions also have the
“availability” attribute. If a function defined in a source file can only be called by
functions in the same file, it is called an internal function; if functions in other files
can call it as well, it is called an external function.

To identify internal functions and external functions, we use two keywords of
storage classes: static and extern. When used for this purpose, they are merely iden-
tifiers and are no longer indicators of storage classes.

Figure 4.109 shows how to define an internal function and how to declare and
define an external function. The scope of an internal function is restricted to its
source file, while the scope of an external function is the entire program. If we omit

An internal function is a function that is only available in the file
in which it is defined

Internal function

An external function can be called by files other than the one in
which it is defined.

External function

Syntax of definition: [extern] type name (parameters) {body}

Syntax of definition: static type name(parameters) {body}

Syntax of declaration: extern type name (parameters);

We need to declare
an external function
before calling it

Also called
“static function”

Figure 4.109: Syntax of internal and external functions.

4.6 Scope 211

extern when defining a function, it will be implicitly defined as an external func-
tion. In files that need to call external functions, it is necessary to use the extern
keyword to indicate that the function called is external.

The merit of using internal functions is that one need not worry about whether
his/her functions have the same names as functions written by others when various
people write functions of the program because it does not matter in this case. For
example, buildings in Mr. Brown’s universities are named by letters in the alphabet.
His friend works for another university, whose buildings are also named by letters.
However, teachers and students in Mr. Brown’s university will never confuse their
buildings with buildings in other universities.

Example 4.17 A program with multiple files
Suppose a C program consists of three source files, namely test file 1 1.cpp, test file 2 2.cpp,
and test file 3 3.cpp, which are shown in Figures 4.110–4.112, respectively. The main function is
located in test file 1. These figures contain definitions of functions, comments on external decla-
rations, and comments on global variables. Please refer to Appendix A for how to add multiple
files to a project in the IDE.

Differences between a declaration and a definition: when a function or a variable is declared,
no physical memory is allocated. The purpose of declaration is to make sure compilers can com-
pile the program. When a function or a variable is defined, it is stored in physical memory
space. A function or a variable can be declared multiple times, but it can only be defined once.

How do we reference global variables in multiple files? Suppose we define a global variable
in a file, we need to use extern keyword in this file to make it accessible in other files. On the
other hand, if we define a static global variable, it is only accessible in this file, instead of other
files.

4.6.6 Masking mechanism 3: restriction on shared data

We have seen in previous examples that data are often shared among functions.
Functions can access the same data objects at different stages in different ways.
Sometimes, an unintentional operation may change the data, which is not what we
expect to see.

Our goal is to make data accessible by multiple functions and to ensure they
cannot be arbitrarily modified. To do this, we can use const keyword to define
data in parameters as constant. const is a keyword of C which prevents a variable
from being modified. Using const can partially enhance security and robustness
of programs.

212 4 Functions

Te
st

 f
ile

1.
cp

p:
01

 #
in

cl
ud

e
<

st
di

o.
h>

02
 e

xt
er

n
 in

t
re

se
t(

vo
id

);

 /

/D
ec

la
re

 r
es

et
 a

s
an

 e
xt

er
na

l f
un

ct
io

n
03

 e
xt

er
n

 in
t

ne
xt

(v
oi

d)
;

 /

/
D

ec
la

re
 n

ex
t

as
 a

n
ex

te
rn

al
 f
un

ct
io

n
04

 e
xt

er
n

 in
t

la
st

(v
oi

d)
;

//

 D
ec

la
re

 la
st

 a
s

an
 e

xt
er

na
l f

un
ct

io
n

05
 e

xt
er

n
 in

t
ne

w
s(

in
t)

;

 /

/
D

ec
la

re
 n

ew
s

as
 a

n
ex

te
rn

al
 f
un

ct
io

n
i

06

07
 i

nt
 i=

1;

 /

/D
ef

in
e

gl
ob

al
 v

ar
ia

bl
e

i
08

 i
nt

 m
ai

n(
)

09
 {

10

in
t

i,
j;

//

D
ef

in
e

lo
ca

l v
ar

ia
bl

es
 I

 a
nd

 j
11

i=

re
se

t(
);

12

fo
r

(j
=

1;

j<

4;

j+

+
)

13

{
14

pr

in
tf

("
%

d

 %

d

 "

,i,
 j
)

;
15

pr

in
tf

("
%

d

 "

,n
ex

t(
))

;
16

pr

in
tf

("
%

d

 "

,la
st

()
);

17

pr
in

tf
("

%
d\

n"
,n

ew
s(

i+
j)

);
18

}

19

re
tu

rn
 0

;
20

 }

Th
es

e
ar

e
fu

nc
tio

n
de

cl
ar

at
io

ns
.

Th
ei

r
de

fin
iti

on
s

ar
e

no
t

in
 t

hi
s

fil
e

W
he

th
er

 a
 v

ar
ia

bl
e

is
 g

lo
ba

l d
ep

en
ds

th

e
lo

ca
tio

n
at

 w
hi

ch
 it

 is
 d

ef
in

ed

(o
ut

si
de

 a
ll

fu
nc

tio
ns

)

G
lo

ba
l v

ar
ia

bl
e

i a
nd

 lo
ca

l v
ar

ia
bl

e
i

ar
e

no
t

st
or

e
in

 t
he

 s
am

e
m

em
or

y
un

it

C
al

l a
n

ex
te

rn
al

 f
un

ct
io

n

Pr
og

ra
m

 r
es

ul
t

1

1

2

3

7
1

2

4

5

10

1

3

6

7

14

Fi
gu

re
4.
11
0:

A
pr
og

ra
m

w
it
h
m
ul
ti
pl
e
fi
le
s
1.

4.6 Scope 213

Example 4.18 Using const to prevent array from being modified

1 //Example of const

2 #include <stdio.h>

3 #define SIZE 3

4 void modify(const int a[]); //Function prototype

5 int b[SIZE]; //Globa variable used to store updated array

6

7 //Program starts from main

8 int main(void)

9 {

10 int a[SIZE] = { 3, 2, 1 }; //Initialization

11 int i; //Counter

Test file2.cpp
01 extern inti; //Declare global variable i
02
03 int next(void)
04 {
05 return (i+=1);
06 }
07
08 int last(void)
09 {
10 return (i+=1);
11 }
12
13 int news(int i) //Define parameter i, which is a local variable
14 {
15 static int j=5; //Define static variable j
16 return(j+= i);
17 }

These are function declarations. Their
definitions are not in this file

Definition of external function next.
Because we omit the extern keyword, it
is by default external. Global variable i
is visible in this function.

Definition of external function last.
Global variable i is visible in this function.

Definition of external function news.
Local variable i is visible in this function.

Figure 4.111: A program with multiple files 2.

Test file3.cpp

01 extern int i; //Declare local variable i

02 int reset(void)

03 {

04 return (i);

05 }

Definition of external function reset.
Global variable i is visible in this function.

Figure 4.112: A program with multiple files 3.

214 4 Functions

12

13 modify(a); //Function

14 printf("\n Array a after calling modify:");

15 for(i = 0 ; i < SIZE ; i++)

16 {

17 printf("%3d", a[i]); //Print the array after function call

18 }

19

20 printf("\n Array b after calling modify:");

21 for(i = 0 ; i < SIZE ; i++) //Print updated array

22 {

23 printf("%3d", b[i]);

24 }

25 return 0;

26 }

27

28 //Fetch values from array a, process them and store results in array b

29 void modify(const int a[])

30 {

31 int i; //Counter

32 for(i=0;i<SIZE;i++)

33 {

34 //a[i]=a[i]*2; Compilation error if we attempt to modify a

35 b[i]=a[i]*2;

36 }

37 }

Program result:

Array a after calling modify: 3 2 1

Array b after calling modify: 6 4 2

4.7 Recursion

To iterate is human, to recurse, divine. – L. Peter Deutsch

4.7.1 Case study

Last weekend, Mr. Brown took Daniel to a family reunion. Since Daniel had never
attended a reunion, Mr. Brown introduced him to the four other kids in the room.

4.7 Recursion 215

Five kids then sat together. When Mr. Brown asked about their age, the first kid A
said, “I am 2 years older than B on my left.” B decided to do the same and said, “I
am 2 years older than C on my left as well.” C imitated, “I am 2 years older than D
on my left.” D said, “I am 2 years older than Daniel.” When it came to Daniel, he
answered honestly that he was 10.

Mr. Brown burst into laughter and asked, “This is fun. How will you solve this
problem?”

“I am 10, so D is 10+2 = 12, C is 12+2 = 14, B is 14+2 = 16, and A is 16+2 = 18.” Daniel
answered quickly. “Well done!” said Mr. Brown, “Can any of you generalize a for-
mula?” B reckoned that this was a recursive relation. A, who had been learning to pro-
gram, said that this could be easily implemented by a loop, as shown in Figure 4.113.

“Is this the only method?” asked Mr. Brown.
A thought for a little while and said, “We can write the formula in another way

to simulate the process of Mr. Brown asking about our age.” He then changed age
[n+1] = age[n]+2 to age[n] = age[n–1]+2. See Figure 4.114 for the derivation. “We
can’t directly compute the age of the fifth person age[5], but it is related to the age
of the fourth person age[4]. Although we can’t compute age[4] either, we can use
age[3] to express it. Repeating this process, with the new recursive formula, we get
to age[1], which is already known, and then compute all the way back using the
original recursive formula.”

Prof. Brown applauded him and asked what “n decreases by 1 proactively” and
“n increases by 1 passively”meant.

Let the age be age,whose initial value is 10,
age[n+1]=age[n]+2

n=1, age=10

n<6

Output n and age

End

Start

n++

age=age+2

Y

Figure 4.113: Age computing solution 1.

216 4 Functions

“‘n decreases by 1 proactively’ means that we scale down the problem. Here we
are decreasing the number of people n. What to decrease and how to decrease
should be determined by us. ‘n increases by 1 passively’ refers to the upscaling
when we come back from the base case. In this case, it is the increment of n. How
larger the scale of a previous problem is than the current one is determined during
the downscaling. Here we are increasing by 1” answered A.

Then Mr. Brown asked if anyone could draw the execution flow of this solu-
tion. Receiving no response after a while, he drew the graph himself, as shown
in Figure 4.115.

If n=1 then age[1]=10;
Otherwise age[n]=age[n-1]+2

age[5]=age[4]+2

age[4]=age[3]+2

age[3]=age[2]+2

age[2]=age[1]+2

age[1]=10

Move to the base
case level by level,
n decreases by 1

proactively

Simulation of Mr. Brown’s
question. We move to

the base case and derive
the result from it

n=5 initially

n-1

n-1

n-1

n-1

n+1

n+1

n+1

n+1
Derive result from the

base case level by level,
n increases by 1 passively

Base case n=1

Figure 4.114: Age computing solution 2.

How is pausing
implemented
in programs?

The output is
done by return
statement in
the function

Y

Start

Pause computation
age[n]

n=1

Input N, n=N
age[1]=10

n=N

N

Y

N

Output age[n]

n=n-1

Resume to
age[n]+2

n=n+1

End

Figure 4.115: Flowchart of age computing solution 2.

4.7 Recursion 217

“But how do we pause in a program? You can say that in words, but statements
in programs are executed one after another,” asked A.

“Calling another function,” Mr. Brown responded, “pauses the caller and exe-
cutes the callee. Since we have a ‘pause’ in the second method, it is only possible
through calling another function.”

“It is hard to see the correspondence between the change of n and age[n],
though,” argued A.

“In this case, let the child function be int age(int n), then the calling relation
between the main function and age can be represented by the chart in Figure 4.116.
Please note that there are multiple ‘pausing points.’ The age()’s in the gray area are
all pausing points.”

According to this figure, we can write the code shown in Figure 4.117.

On line 5, we can see that the function age() is calling itself but with a smaller
argument.

“It is like looking into the mirror.” A said, “Standing between two mirrors, you
can see many images of yourself, each smaller than another.” See Figure 4.118 for
an illustration of this metaphor.

age(5) age(4) age(3)

return 10return 14+2

main() age(4)+2 age(3)+2 10

return 16+2

age(2)

return 12+2

age(2)+2

Pausing point age(1)

return 12+2

age(1)+2

Figure 4.116: Schematic of the execution process of age computing solution 2.

01 #include <stdio.h>
02 int age(int n)
03 {
04 if (n==1) return(10); // Base case
05 else return (age(n-1)+2); // Move to the base case and derive result from it
06 }
07
08 int main(void)
09 {
10 printf("%d",age(5));
11 return 0;
12 }

age calls itself

Figure 4.117: Code implementation of age computing solution 2.

218 4 Functions

When a computation process calls itself directly (or indirectly), we call it a re-
cursive process. If the description of an object contains itself, or it defines itself,
then we call such an object a recursive object.

A recursive process is a round-trip process. As the scale of a problem becomes
smaller and smaller, there is an endpoint at which the scale can no longer be de-
creased. Then we start from the endpoint and return to where we started along the
original path.

4.7.2 Concept of recursion

We have roughly talked about recursion in the age example. Now we are going to
define recursion formally.

4.7.2.1 Definition of recursion

Term explanation Recursion
In mathematics and computer science, recursion refers to a function that uses itself in its definition.

The basic idea of recursion is to convert a large-scale problem into similar subproblems of a
smaller scale. Because we use the same function to solve similar problems of different scales,
the function may need to call itself. Moreover, the function must have a termination condition to

Figure 4.118: Cat in the mirror in the mirror.

4.7 Recursion 219

obtain results. Otherwise, it will call itself infinitely. As a result, a recursive process must con-
tain two key elements:
– Base case: the most straightforward instance of the problem, which can be solved without

recursion.
– Recursive case: an instance of the problem that can be solved through solving more

straightforward instances.

4.7.2.2 Type of recursion
If statements in a function call the function again, either directly or indirectly, we
call it a recursive call of functions. Figure 4.119 shows an example of a direct recur-
sive call, in which a statement inside func calls func again.

Figure 4.120 shows an example of an indirect recursive call. A statement in func1
calls func2, then a statement in func2 calls func1.

Compared with nested function calls, recursive calls are special cases of nested
calls: the functions being called are exactly the caller. Both direct and indirect re-
cursive calls lead to a loop of function calls. If there is no base case, the program
will end in a situation that is similar to infinite loops.

4.7.2.3 Comparison of recursion and iteration
Recursion and iteration are based on program control structures: iteration uses a
loop structure, while recursion uses branch structure. Both of them involve using

func(…)
{

……
func(…);
……

} Figure 4.119: Direct recursive call.

funcA(…)
{

……
funcB(…);
……

}

funcB(…)
{

……
funcA(…);
……

}

Figure 4.120: Indirect recursive call.

220 4 Functions

loops: iteration uses loops explicitly, while recursion uses loops through repeated
function calls. Both recursion and iteration require a termination condition: itera-
tion terminates when the loop condition evaluates to false, while recursion stops
upon the base case.

4.7.3 Example of recursion

Example 4.19 Computing factorial using recursion

n!=
1, n= o

n · ðn− 1Þ!, n>0

(

Analysis
1. Algorithm description
The process of computing factorial is as follows:
– n! can be computed by n * (n–1)!, so it suffices to compute (n–1)!;
– Similarly, it suffices to compute (n–2)! to obtain (n–1)!;
– In this way, n gets smaller and smaller. When n = 1, 1! is something we already know;
– then we trace back to compute 2!;
– and 3!;
– finally, we trace back to n!;

2. Code implementation

#include "stdio.h"

float fac(int n)；

//fac computes n!

float fac(int n)

{

float f;

if (n<0) printf("Error!\n"); //Input is invalid when n<0

if (n==0||n==1) return 1; //Base case

return n*fac(n-1); //n! = n * (n-1)!

}

int main(void)

{

printf("%f",fac（4）);

return 0 ;

}

3. Execution process of recursion
The calling process of the recursion is shown in Figure 1.121. Unlike nested calls of multiple
functions, all child functions are the same in recursion.

4.7 Recursion 221

fac(4) fac(3) fac(2)

return 2*1return 3*2

main() 4*fac(3) 3*fac(2) 2*fac(1)

return 4*6

Figure 4.121: Process of main function calling fac.

4. Efficiency analysis of recursion
One major drawback of recursive functions is system cost. Whenever a function is called, the
system has to allocate stack space to store parameter information. If we use recursive func-
tions, the system needs a large amount of memory for stack spaces. If we use a large integer as
the argument of fac, the system may crash in the worst case.

Good programming habit
We should use as few recursive calls as possible. Recursive calls, especially indirect ones, make
programs less readable. Besides, recursive calls require many system resources. Furthermore, it
is hard to test programs with recursive calls. Hence, we should avoid unnecessary recursive calls,
unless using them simplifies some algorithms or functions.

In recursion, we derive an unknown value by stepping backward; in loops, we derive an un-
known value by repeating the same process, which is a forward process.

Program reading exercise Compute nth item of Fibonacci sequence

Analysis
We can derive the key elements of recursion based on the recursion relation of the Fibonacci
sequence.
– Base cases: fab(1) = 1, fab(2) = 1.
– Recursive cases: fab(n) = fab(n–2) + fab(n–1).

The code implementation is as follows:

int fab(int n)

{

if(n==1 || n==2) return 1;

else return (fab(n-1)+fab(n-2));

}

Program reading exercise Computing 1+2+ . . .+n with recursion

Analysis
– Base case: f(1) = 1
– Recursive cases: f(n) = n + f(n–1)。
The code implementation is as follows:

int fn(int n)

{

222 4 Functions

if (n < 1) return 0; //Exception handling

else if (n == 1) return 1;

else return (n + fn(n - 1));

}

Program reading exercise Finding the maximum element in an array with recursion

Analysis
Let the array be arr[] with length len.
– Base case: when len = 1, the maximum is the first element arr[0].
– Recursive cases: the maximum is the larger of arr[0] and the maximum of the array starting

from the second element.

The three key elements of the function are as follows:
– Functionality: finding the maximum element in an array.
– Input: array address and array length.
– Output: the maximum

The critical step in the algorithm: the maximum of the array starting from the second element is
max(arr + 1, len-1).

The code implementation is as follows:

#include <stdio.h>

int max(int arr[], int len)

{

if(1 == len) //Only one element

{

return arr[0];

}

int a = arr[0]; //The first element

int b = max(arr + 1, len - 1); //Maximum of the array starting from

the second element

return a > b? a : b;

}

int main(void)

{

int a[] = {1,2,3,4,5,6,7,8,9,10};

printf("Maximum: %d\n", max(a, sizeof(a) / sizeof(a[0])));

return 0;

}

4.7 Recursion 223

4.8 Summary

1. Three syntaxes related to functions: declaration, definition, and call.
2. Three key elements of function design: input, output, and functionality deter-

mine function structures.
(1) Element 1: function name describes the functionality.
(2) Element 2: input determines numbers and types of parameters.
(3) Element 3: output determines function type.

3. Three ways of data transmission between functions: return statement, argu-
ment, and global variables.
(1) return statement: only one value can be passed from the called function to

the caller.
(2) argument: caller passes arguments to the function by address or by value.
(3) global variables: accessible by all functions.

Figure 4.122 shows the main contents of this chapter and their relations.

We can divide large-scale problems into independent modules, each imple-
mented by a child function,
Repeated tasks can also be implemented as a code segment.
The manufacturer defines how a function is implemented,
While the users call functions to complete tasks.
Input, output, and functionality define the structure of functions,
The function name describes the functionality,
Data to be processed are put into the parameter list,
The type of output determines the function type.
Child functions need to communicate with the caller,
The caller uses them through function calls,
Actual data are transmitted as arguments,
We use pass by value for single datum and pass by reference for a group of data,
Return, arguments, and global variables are used for the other direction,

We should select one depending on the problem we want to solve.
We use storage classes to identify the lifespans of variables.
The scope of variables and functions may vary.
Local variables are restricted to functions,
While global variables are visible to everyone.

224 4 Functions

Fu
n

ct
io

n

C
on

ce
pt

In
fo

rm
at

io
n

tr
an

sm
is

si
on

C
on

ce
pt

 o
f
m

od
ul

e:
in

de
pe

nd
en

t
fu

nc
tio

na
lit

y,
 f
un

ct
io

na
lit

y
re

us
e,

in

fo
rm

at
io

n
co

m
m

un
ic

at
io

n
be

tw
ee

n
m

od
ul

es
C
om

po
ne

nt
s:

 in
te

rf
ac

e+
fu

nc
tio

na
lit

y

G
lo

ba
lv

ar
ia

bl
es

S
yn

ta
x

S
yn

ta
x:

 t
yp

en
am

e(
pa

ra
m

et
er

s)
K
ey

el
em

en
ts

:i
np

ut
,o

ut
pu

t,
fu

nc
tio

na
lit

y
In

fo
rm

at
io

n
re

ce
iv

in
gi

nt
er

fa
ce

:p
ar

am
et

er
s

R
es

ul
t

su
bm

is
si

on
 m

et
ho

d:
re

tu
rn

 s
ta

te
m

en
t,

pa
ra

m
et

er
 a

dd
re

ss
es

C
on

te
nt

:f
un

ct
io

na
lit

y
co

de
se

gm
en

t
th

at
 c

om
pl

et
e

a
ce

rt
ai

n
ta

sk

Fu
nc

tio
n

de
fin

iti
on

Fu
nc

tio
n

de
cl

ar
at

io
n

S
yn

ta
x:

ty
pe

na
m

e(
pa

ra
m

et
er

s)
Pu

rp
os

e:
a

br
ie

f
in

tr
od

uc
tio

n
of

 f
un

ct
io

n

Fu
nc

tio
n

ca
ll

S
yn

ta
x:

na
m

e(
ar

gu
m

en
ts

)
In

fo
rm

at
io

n
su

bm
is

si
on

 in
te

rf
ac

e:
 a

rg
um

en
ts

Pu
rp

os
e:

 e
xe

cu
te

 t
he

 f
un

ct
io

na
lit

y
co

de
 s

eg
m

en
t

C
al

lin
g

m
et

ho
d:

 v
al

ue
-r

et
ur

ni
ng

 c
al

l,
no

nv
al

ue
-r

et
ur

ni
ng

 c
al

l

Pa
ra

m
et

er

in
te

rf
ac

e

S
ha

re
d

da
ta

S
ta

te
m

en
t

in
te

rf
ac

e

Pa
ss

 b
y

va
lu

e:
pa

ra
m

et
er

s
an

d
ar

gu
m

en
ts

 h
av

e
di

ff
er

en
t

m
em

or
y

un
its

,
us

ed
 t

o
pa

ss
 n

um
er

ic
 v

al
ue

s,
 o

ne
-d

ir
ec

tio
na

l i
nf

or
m

at
io

n
tr

an
sm

is
si

on
Pa

ss
 b

y
re

fe
re

nc
e:

pa
ra

m
et

er
s

an
d

ar
gu

m
en

ts
 u

se
 t

he
 s

am
e

m
em

or
y

un
its

,
us

ed
 t

o
pa

ss
 a

dd
re

ss
es

,
bi

di
re

ct
io

na
l i

nf
or

m
at

io
n

tr
an

sm
is

si
on

S
im

ul
at

ed
 p

as
s

by
 r

ef
er

en
ce

:
pa

ra
m

et
er

s
an

d
ar

gu
m

en
ts

 h
av

e
di

ff
er

en
t

m
em

or
y

un
its

,
us

ed
 t

o
pa

ss
 a

dd
re

ss
es

,
bi

di
re

ct
io

na
l i

nf
or

m
at

io
n

tr
an

sm
is

si
on

re
tu

rn
 s

ta
te

m
en

t:
 c

an
 o

nl
y

re
tu

rn
 o

ne
 r

es
ul

t

Fi
gu

re
4.
12
2:

C
on

ce
pt
s
re
la
te
d
to

fu
nc

ti
on

s
an

d
th
ei
r
re
la
ti
on

s.

4.8 Summary 225

4.9 Exercises

4.9.1 Multiple-choice questions

1. [Concept of functions]
Which of the following statements is correct? ()
A) A function in a C program can call or be called by any other functions in the

same program.
B) The location of the main function in a C program is fixed.
C) We cannot define another function in a function.
D) Every C program file has to have a main function.

2. [Pass by value]

void fun(int a, int b)

{

int t;

t＝a; a＝b; b＝t;

}

int main(void)

{

int c[10]＝{1,2,3,4,5,6,7,8,9,0}, I;

for (i＝0;i<10; i+=2) fun(c[i], c[i+1]);

for (i＝0;i<10; i++) printf("%d,", c[i]);

printf("\n");

return 0;

}

What is the output of the program above? ()
A) 1,2,3,4,5,6,7,8,9,0,
B) 2,1,4,3,6,5,8,7,0,
C) 0,9,8,7,6,5,4,3,2,1,
D) 0,1,2,3,4,5,6,7,8,9,

3. [Pass by reference]

#define N 4

void fun(int a[][N], int b[],int n)

{

int i;

for(i=0;i<n;i++) b[i] = a[i][i];

}

226 4 Functions

int main(void)

{

int x[][N]={{1,2,3},{4}, {5,6,7,8},{9,10}}, y[N], i;

fun(x, y, N);

for (i=0;i<N; i++) printf("%d,", y[i]);

printf("\n");

return 0;

}

What is the output of the program above? ()
A) 1,0,7,0, B) 1,2,3,4, C) 1,4,5,9, D) 3,4,8,10,

4. [A void function that accepts pointers]

void swap(char *x, char *y)

{

char t;

t＝*x; *x＝*y; *y＝t;

}

int main(void)

{

char *s1＝"abc", *s2＝"123";

swap(s1,s2);

printf("%s,%s\n",s1,s2);

return 0;

}

What is the output of the program above? ()
A) 321,cba B) abc,123 C) 123,abc D) 1bc,a23

5. [Recursion]

#include <stdio.h>

void my_put()

{

char ch;

ch = getchar();

if (ch != 'C') my_put();

putchar(ch);

}

4.9 Exercises 227

int main(void)

{

my_put();

return 0;

}

Suppose input is: ABC <Return>, what is the output of the program above? ()
A) ABC B) CBA C) AB D) ABCC

6. [Global variables]
Which of the following statements is wrong about global variables? ()
A) The scope of a global variable starts from its definition and ends at the end

of the source file.
B) A global variable is one that can be defined at any position outside functions.
C) We can restrict the scope of a global variable using the extern keyword.
D) The lifespan of a global variable is the entire execution process of the

program.

7. [Scope]
Which two storage classes include variables that only take up memory units
when being used? ()
A) auto and static
B) extern and register
C) auto and register
D) static and register

8. [Concept of storage classes]
Which of the following statements is wrong? ()
A) The system does not assign a specific initial value automatically to an auto

variable defined in C functions.
B) We can define variables in each compound statement in the same function.

The scope of these functions is restricted to the compound statement.
C) Suppose we define a static variable with an initial value in a function. Every

time the function is called, the variable will be assigned an initial value.
D) Parameters of a function cannot be static variables.

228 4 Functions

4.9.2 Fill in the tables

Fill in the tables in Figures 4.123–4.127 based on programs in each problem.

1. [Pass by value]

double fun(double x, int y)

{

int i;

double z;

for(i=1, z=x; i<y;i++) z= z* x;

return z;

}

2. [Pass by value with one-dimensional array]

Fill in the table in Figure 4.124 based on the program below.

#define N 5

void sub(int n,int uu[])

{

int t;

t=uu[n-1]+uu[n];

uu[n]=t;

}

int main(void)

{

int i, aa[N]={1,2,3,4,5};

for(i=1; i<N; i++) sub(i,aa);

for(i=0; i<N; i++) printf("%d_",aa[i]);

for(i=1, z=x; i<y;i++) z= z* x;

return z;

}

i 1 2 3 ... y-1 y

z x2

Functionality of fun

Figure 4.123: Functions: fill in the table question 1.

4.9 Exercises 229

printf("\n");

return 0;

}

3. [Pass by reference with two-dimensional array]

#define N 3

#define M 3

select(int a[N][M], int *n)

{

int i,j,row=1,colum=1;

for(i=0;i<N;i++)

for(j=0;j<M;j++)

if(a[i][j]>a[row][colum]){ row=i; colum=j; }

*n= row;

return (a[row][colum]);

}

int main(void)

{

int a[N][M]={9,11,23,6,1,15,9,17,20},max,n;

max=select(a,&n);

printf("max=%d,line= %d\n",max,n);

return 0;

}

n 1 2 3 4

(1) aa[n] 1,2,3,4,5,6

t 1+2

(2) uu[n] uu[1]=3

Program output:

Figure 4.124: Functions: fill in the table question 2.

230 4 Functions

4. [Purpose of using static variables in functions]

int ff(int n)

{

static int f=1;//————②

f=f*n;

return f;

}

int main(void)

{

int i;

for(i=1;i<=5;i++) //————①

printf("ff=%d\n",ff(i));//————③

return 0;

}

0 1 2

a[N][M]
0 9 11 23
1
2

i 0 1 2
j 0 1 2 0 1 2 0 1 2
a[row][colum]

9

row
0

colum
0

Figure 4.125: Functions: fill in the table question 3.

①i 1 2 3 4 5

②f 5

③ff(i)

Figure 4.126: Functions: fill in the table question 4.

4.9 Exercises 231

5. [Pass by reference with structure pointer]

#include<string.h>

#define N 3

struct stu

{

int ID;

char name[10];

int age;

};

int fun(struct stu *p)

{

p->ID+=201700; //————①

return (strlen(p->name)); //————②

}

int main(void)

{

struct stu students[N]=

{{1, "Zhang",20},

{2, "Wang", 19},

{3, "Zhao", 18}};

int len;

for(int i=0;i<N; i++)

{

len=fun(students+i);

printf("Name %d has length %d\n",students[i].ID,len);

}

return 0;

}

i 0 1 2

p &students[0]

p->ID

p->name

Figure 4.127: Functions: fill in the table question 5.

232 4 Functions

4.9.3 Programming exercises

1. Please write a program that reads two integers from keyboard input and out-
puts the one’s digit of the larger and the smaller to the second power.

2. Sequence A is defined as follows:

A(1)=1,

A(2)=1/(1+A(1)),

A(3)=1/(1+A(2)),

.

A(n)=1/(1+A(n–1))。

Please write a function that computes the nth item of the sequence.
3. Please write a function that reads a string from the main function, computes,

and outputs its length.
4. Suppose users type in multiple words in the console. Words are separated by

spaces. The '#' sign is used to indicate the end of input. Please write a function
that converts the first letter of each word into uppercase. The input is handled
in the main function.

5. Please write a program that: reads a nonzero integer n from keyboard input,
computes the sum of each digit of n and outputs the sum if the sum is a one-
digit number. If the sum has multiple digits, the program should repeat the
above process until the sum has single digit.
For instance, the conversion process of n = 456 is as follows:
4 + 5 + 6 = 15
1 + 5 = 6
The output is 6

6. Please write a program that reverses n input numbers using pointers.
Requirements：
(1) The program should have only one main function.
(2) Write a child function for reversing numbers. Input/output of data should

be done in the main function.

4.9 Exercises 233

5 Files: operations on external data

Main contents
– The concept of files
– Basic procedures of operating files using programs
– Categorization and functionality of file operation library functions
– Examples of file operation library functions

Learning objectives
– Understand the purpose of file storage
– Can create, read from, write to, and update a file
– Know sequential access of files
– Know random access of files

5.1 Introduction

A had been learning the C language and thought it was interesting. He was eager to
solve some practical problems with what he had learned.

One day, the class president asked him to compute the ranking of average grades
of his classmates in the midterm exam. He then used his programming knowledge
and completed the task quickly. His program asked users to input grade information
of every student in the class and then printed the sorted average grades onto the
screen.

However, the class president complained to A after trying the program, “I have
given you access to the electronic version of grades, but you didn’t use it. Instead,
your program asked me to input every grade on the keyboard. That was too tedious.
Also, your program merely printed the result on the screen. I had nothing left after I
closed it. Our school requires us to submit an electronic record. Your program is not
user-friendly enough, and I can’t use it.”

The class president’s complaint made A speechless. “How can a program read
electronic records of grades? We have only learned to read keyboard input. Besides,
how do I save the result to a data file?” he thought to himself.

To sum up, A’s question is: how should we fetch data from and save the result
to persistent storage automatically with programs?

As we all know, the purpose of programming is to process data as needed to com-
plete specific tasks. The data processing flow consists of data input, data processing,
and result output. Execution and testing of programs also involve data input and

https://doi.org/10.1515/9783110692303-005

https://doi.org/10.1515/9783110692303-005

output. Hence, data input/output is a critical part of programming. By analyzing the
data input/output process, we know the following things:
(1) Data to be processed are either created by programmers in programs (in this

case, programs can only process these data) or input by users during program
execution (users need to reenter the data in each execution of the program).

(2) Results of programs are output to screen instead of saving permanently.

It was these two features of normal data input/output that made A’s program not user
friendly. In practice, we often have the following needs regarding data processing:
(1) Input: the amount of input data is large; the input data are always the same.
(2) Output: we need to inspect the results frequently; the output is too much to be

displayed on a screen without scrolling.

In these cases, we can save these data for easier inspection or repeated use. To save
data permanently in computers, we store them into external memory. Operating sys-
tems manage data in the external memory in the form of files. As a result, it is neces-
sary to learn file operations to complete programming tasks quickly and flexibly.

5.2 Concept of files

A file is an ordered set of correlated data. The name of a file is called filename. We
have encountered files in previous chapters many times. For example, we have
mentioned source files, object files, executable files, and library files (header files).
Files are a persistent form of data, and they make data sharing possible.

Depending on how data are stored, files in C can be divided into binary files
and text files.

5.2.1 Binary files

Binary files, as the name indicates, store data in binary codes. For example, integer
5678 is stored as 00010110 00101110, which takes up 2 bytes in memory (the hexa-
decimal form of 5678 is 0x162E).

Although we can view binary files on screen, their contents are often garbled
characters because they are mostly nontext characters.

236 5 Files: operations on external data

5.2.2 Text files

Text files are also called as ASCII code files. Each character in such a file is stored
as a 1-byte ASCII code on disks. For example, Figure 5.1 shows the storage format of
number 5678.

ASCII code files can be displayed as characters on screen. For example, source files
are also ASCII code files. We can read them because they are displayed as characters.

The difference between text files and binary files is that: text files are constructed
by characters, while binary files are constructed by bits. Note that both of them are
handled as “stream files” in the C language.

Term explanation
Stream files: C treats files as “data streams,” which are sequences of consecutive bytes with no
breaks. Such a structure is called a “stream file structure,” in which each byte is accessible. A
termination mark exists at the end of a file, which is similar to the string termination mark.

We do not bother figuring out data characteristics, types, and storage formats when process-
ing stream files. We merely access data in bytes. The analysis and processing of data are left to
be done by other programs. As a result, this file structure is more flexible and can better utilize
storage space.

5.2.3 File termination mark and end-of-file checking function

(1) End-of-file (EOF) is the file termination mark. EOF is an integer symbolic con-
stant defined in header file as <stdio.h>, whose value is usually –1. It is worth
noting that EOF is only used for text files because –1 is also a valid character in
binary files.

(2) feof function is a function in the standard library, which is used to determine
whether we have reached the end of a file. It works for both binary files and
text files.

Knowledge ABC About EOF
Using constant EOF instead of –1 enhances the portability of programs. ANSI C standard empha-
sizes that EOF must be a negative integer (but not necessarily –1). As a result, the value of EOF
varies in different systems. The input method of EOF also depends on which system we are
using, as shown in Figure 5.2.

Binary form 0011,0101 0011,0110 0011,0111 0011,1000

Character ‘5’ ‘6’ ‘7’ ‘8’

Figure 5.1: Representation of characters in text files.

5.2 Concept of files 237

System Input method of EOF

UNIX-like <return> <ctrl-d>

Windows <ctrl-z>

Figure 5.2: Input methods of EOF in different systems.

Files are regarded as data streams in C. There is also a file termination mark and a
function to determine whether we have reached the end. In practice, the internal
pointer of a file points the beginning of the stream by default when users open it
with programs. As users execute operations, the pointer can move to other positions
in the stream. Finally, we check whether the pointer points to the end of the file to
make sure we have read the entire file.

5.3 Operation flow of files

By now, we should have had a basic idea of files. How do we operate files in prac-
tice? Files are usually stored in an external medium (like disks) and brought to in-
ternal memory when needed. We call the process of data moving to memory from
disks “read” and the process of data moving to disks from memory “write.”

In operating systems, each file is identified by a unique filename. Computers
use filenames to read and write a file.

When we look for data in a file on the disk by ourselves, we must find the file
using its name, read data from it, and close it. We use the same steps to operate files
with programs. The three fundamental steps of accessing files with programs are:
(1) Opening the file
(2) Processing the file
(3) Closing the file

File operations that are available in programs are as follows:
(1) Creating and saving a new file on disks
(2) Opening an existing file
(3) Reading from and writing to a file

We know that C has no input/output statements. The input/output of data is done
by calling library functions. In a broader sense, the operating system regards all
input/output devices connected to the computer as files. Input and output are then
similar to reading from and writing to a disk file. We usually define the monitor as
the standard output file. Displaying information on the screen is then outputting to
the standard output file. Functions like printf and putchar are all in this category.
The keyboard is often regarded as the standard input file. Typing in information

238 5 Files: operations on external data

through the keyboard is then inputting data from the standard input file. Functions
like scanf and getchar are examples of such input.

ANSI defines standard input/output functions and uses them to read and write
files. Readers can refer to Appendix C of Volume 1 for details of these functions. We
shall analyze some of the most common library functions in subsequent sections.

5.4 Data communication between internal and external memory

As shown in the file operation flow introduced in Section 5.3, the internal memory
and the external memory must communicate with each other to implement read
and write operations of files. Ideally, we want such communication to be done si-
multaneously. However, the reality is cruel. Different components of computer
work at different speeds, so tasks are often completed at different times. To solve
this problem, we introduce the buffer system into the communication between the
internal and the external memory.

Knowledge ABC Buffers
Because CPU and RAM work at high speed and external memory (like disks or CDs) works
slower, the computer has to wait for the external memory before it can proceed to subsequent
work. This speed mismatch affects the CPU’s performance terribly. As a result, the “buffer”
technology was introduced to solve the problem, as shown in Figure 5.3.

Program data
segment

Output file buffer

Input file buffer

Disks

Memory

Figure 5.3: Buffer system.

A buffer is a block of storage space in the internal memory, allocated and managed by the sys-
tem upon opening a file. The size of a buffer depends on the version of C. It usually is multiples
of 512 bytes.

When writing data to files in the external memory, we do not directly write to the external
memory. Instead, we write to the buffer. When the buffer is full or the file is closed, data in it
are automatically written to the external memory. It is the same for reading from a file. At first,
only one block of data is read into the buffer. When we read the data, we first look for them in
the buffer. If they exist, we simply fetch them from the buffer. Otherwise, we search for them in
the external memory. After finding the data we want, we read the data block in which they are
located in the buffer. Buffers can effectively reduce external memory accesses.

Reading and writing using buffers can better utilize disks. Standard C also uses a buffer
system.

5.4 Data communication between internal and external memory 239

When using a buffer system, the system creates a buffer for each file opened.
Operations on files then become operations on buffers.

For programmers’ convenience, ANSI C defines a structure for information re-
lated to file buffers (such as filename corresponding to the buffer, operations al-
lowed on the file, size of the buffer, and location of the data being accessed in the
buffer). We can obtain information about file buffers by accessing this structure var-
iable. The type of this structure is FILE, which is defined in stdio.h (note: based on
what we have learned about header files, we must include this header file when
using FILE to operate files).

The information contained in FILE type is as follows:

typedef struct _iobuf

{

char* _ptr; //Points to the first unread character in the buffer

int _cnt; //Number of remaining unread characters

char* _base; //Points to a character array, namely buffer of this file

int _flag; //A flag for some properties of the file

int _file; // Used to obtain file description. We can obtain file descriptor of the

file using fileno function

int _charbuf; //Single byte buffer. If the buffer is single-byte, _base is then invalid

int _bufsiz; //Size of the buffer

char* _tmpfname; //Temporary file name

} FILE;

Whenever a file is opened successfully, the operating system creates a FILE variable
for the file, allocates memory, and returns a pointer to it. The system stores infor-
mation about the file and the buffer into this FILE variable. Our program can use
the pointer to obtain file information and access the file, as shown in Figure 5.4.

After the file is closed, the variable is freed.

C
program OS

Filename

File opening mode

FILE pointer

Disks

When a C program opens
a file,the operating

system creates a FILE
structure variable for it
and returns a pointer

pointing to it

FILE
structure

When the file is
closed, the FILE

structure variable
is released

Figure 5.4: File operations.

240 5 Files: operations on external data

As long as we have this file pointer, we can use file operation functions provided
by the system to operate the file without knowing details of the buffer. File operating
code is thus easier to write. Now we are going to study how to operate files.

5.5 Operations on files using programs

We have introduced in Section 5.3 that programs operate file following three steps:
opening files, reading files, and closing files. There are corresponding library functions
for all these steps in ANSI C. We shall analyze these functions in the following sections.

5.5.1 Opening files

The library function for opening file is fopen, whose detailed information is as follows:
– Prototype: FILE fopen (char *filename, char *mode)
– Functionality: allocate a file buffer for a file in the memory.
– Parameters:

filename: a string that contains the path and the name of the file to be opened
mode: a string indicating the mode of file opening.

– Return value: file pointer (NULL indicates that the file was not opened because
an exception happened)

Note: Beginners often ignore exceptions when programming. They often think that
the file is opened after calling fopen function and uses the returned file pointer di-
rectly. However, this is problematic. fopen do not always open files successfully.
Invalid filenames or not enough access privileges can lead to an exception in fopen.
It is recommended to check if the file is successfully opened after calling fopen. To
be more specific, we should check whether the returned file pointer is NULL before
actually accessing the file.

The mode parameter of fopen determines the mode in which the file is opened.
There are multiple modes, whose values and meaning are shown in Figure 5.5.

Note:
(1) The opened file can be either text file or binary file.
(2) A text file is represented by “t” (optional), while a binary file is represented by “b.”

Programming error
As shown in Figure 5.5, mode “w” always checks whether the file exists first, regardless of the
file being a text file or a binary file. If the file exists, the function deletes the existing file and
create a new one. As a result, we should be careful when using it. If we want to preserve the
original contents in the file, we should not use mode “w” because it will delete the contents
without any warnings.

5.5 Operations on files using programs 241

Fi
le

 o
pe

ni
ng

 m
od

e
M

ea
ni

ng

R
ea

d-
on

ly
"r

"
O

pe
n

a
te

xt
 f
ile

 in
 r

ea
d-

on
ly

 m
od

e,
 f
ai

l i
f
th

e
fil

e
do

es
n’

t
ex

is
t

"r
b"

O
pe

n
a

bi
na

ry
 f
ile

 in
 r

ea
d-

on
ly

 m
od

e,
 f
ai

l i
f
th

e
fil

e
do

es
n’

t
ex

is
t

W
ri
te

-o
nl

y
"w

"
O

pe
n

a
te

xt
 f
ile

 in
 w

ri
te

-o
nl

y
m

od
e,

 c
re

at
e

a
ne

w
 f
ile

 if
 t

he
 f
ile

 d
oe

sn
’t

ex
is

t,
 d

el
et

e
an

d
cr

ea
te

 a
 n

ew
 o

ne
 if

 it
 e

xi
st

s

"w
b"

O
pe

n
a

bi
na

ry
 f
ile

 in
 w

ri
te

-o
nl

y
m

od
e,

 c
re

at
e

a
ne

w
 f
ile

 if
 t

he
 f
ile

 d
oe

sn
’t

ex
is

t,
 d

el
et

e
an

d
cr

ea
te

 a
 n

ew
 o

ne
 if

 it
 e

xi
st

s

R
ea

d/
w

ri
te

"r
+

"
O

pe
n

a
te

xt
 f

ile
 in

 r
ea

d/
w

ri
te

 m
od

e,
 f

ai
l i

f
th

e
fil

e
do

es
n’

t
ex

is
t

"r
b+

"
O

pe
n

a
bi

na
ry

 f
ile

 in
 r

ea
d/

w
ri
te

 m
od

e,
 f

ai
l i

f
th

e
fil

e
do

es
n’

t
ex

is
t

"w
+

"
O

pe
n

a
te

xt
 f
ile

 in
 r

ea
d/

w
ri
te

 m
od

e,
 c

re
at

e
a

ne
w

 f
ile

 if
 t

he
 f
ile

 d
oe

sn
’t

ex
is

t,
 d

el
et

e
an

d
cr

ea
te

 a
 n

ew
 o

ne
 if

 it
 e

xi
st

s

"w
b+

"
O

pe
n

a
bi

na
ry

 f
ile

 in
 r

ea
d/

w
ri
te

 m
od

e,
 c

re
at

e
a

ne
w

 f
ile

 if
 t

he
 f
ile

 d
oe

sn
’t

ex
is

t,
 d

el
et

e
an

d
cr

ea
te

 a
 n

ew
 o

ne
 if

 it
 e

xi
st

s

"a
+

"
O

pe
n

a
te

xt
 f
ile

 in
 r

ea
d/

w
ri
te

 m
od

e,
 c

re
at

e
a

ne
w

 f
ile

 if
 t

he
 f
ile

 d
oe

sn
’t

ex
is

t,
 a

pp
en

d
to

th

e
fil

e
if

it
ex

is
ts

"a
b+

"
O

pe
n

a
bi

na
ry

 f
ile

 in
 r

ea
d/

w
ri
te

 m
od

e,
 c

re
at

e
a

ne
w

 f
ile

 if
 t

he
 f
ile

 d
oe

sn
’t

ex
is

t,
 a

pp
en

d
to

 t
he

 f
ile

 if
 it

 e
xi

st
s

A
pp

en
d

"a
"

A
pp

en
d

da
ta

 t
o

th
e

en
d

of
 a

 t
ex

t
fil

e,
 c

re
at

e
a

ne
w

 f
ile

 if
 t

he
 f
ile

 d
oe

sn
’t

ex
is

t,
 a

pp
en

d
if

it
ex

is
ts

"a
b"

A
pp

en
d

da
ta

 t
o

th
e

en
d

of
 a

 b
in

ar
y

fil
e,

 c
re

at
e

a
ne

w
 f
ile

 if
 t

he
 f
ile

 d
oe

sn
’t

ex
is

t,

ap
pe

nd
 if

 it
 e

xi
st

s

Fi
gu

re
5.
5:

Fi
le

op
en

in
g
m
od

e.

242 5 Files: operations on external data

Although it is not grammatically wrong, using the wrong file opening mode can lead to logic
execution errors. For example, when we use write mode “w” to open a file instead of using up-
date mode “r+,” the file contents will be deleted. In conclusion, we must determine the correct
file opening mode before accessing files.

Knowledge ABC File paths
A path is the sequence of directories we need to visit when searching for a file on the disks.
There are absolute paths and relative paths. An absolute path starts from the drive letter. It is a
complete description of the location of a file. A relative path is a location relative to the target
location. It starts with the current directory.

The string that can uniquely identify a disk file is

Drive letter:\Path\Filename.Extension

Ex. 1: We are looking for the file c:\windows\system\config. If we are currently in the directory
c:\windows\, then the relative path is system\config, and the absolute path is c:\windows\sys-
tem\config.
Ex. 2:

fp=fopen("a1.txt","r");

This is a relative path with no path information. In this case, file a1.txt is in the current directory
(note: the current directory refers to the directory of the project which contains this program).

fp=fopen("d:\\qyc\\a1.txt","r");

This is an absolute path and file a1.txt is located in the directory qyc in D drive.
Note: we use “\\” instead of “\” because “\” should be escaped in strings.

5.5.2 Reading and writing

Unlike opening files, there are many cases of reading and writing, so people created
a series of library functions for them, as shown in Figures 5.6 and 5.7.

Note: We read from and write to the current position of a file. The current position is
the position currently pointed to by the data read/write pointer. When a file is opened,
the pointer points to the beginning of the file; after we read or write a byte success-
fully, the pointer moves forward automatically (moves to the next byte).

Functionality sFunction Standard I/O counterpart

Read/write
character

int fgetc(FILE *fp) getchar()
putchar()int fputc(int ch,FILE *fp)

Read/write
formatted data

int fscanf(FILE *fp,char *format,arg_list) scanf()
printf() Int fprintf(FILE *fp,char*format,arg_list)

Figure 5.6: File reading and writing functions 1.

5.5 Operations on files using programs 243

Fu
nc

tio
na

lit
y

Fu
nc

tio
n

Pa
ra

m
et

er
s

R
ea

d/
w

ri
te

st

ri
ng

s
ch

ar
 *

 f
ge

ts
 (

ch
ar

 *
st

r,
 in

t
nu

m
,F

IL
E

*
fp

)
nu

m
:

th
e

nu
m

be
r

of
 c

ha
ra

ct
er

s
be

in
g

re
ad

st
r:

 t
he

 a
dd

re
ss

 o
f
th

e
ch

ar
 a

rr
ay

in
t

fp
ut

s
(c

ha
r

*s
tr

,
FI

LE
 *

 f
p)

R
ea

d/
w

ri
te

da

ta
 b

lo
ck

s

in
t

fr
ea

d
(v

oi
d

*b
uf

,in
t

si
ze

,in
t

co
un

t,
FI

LE
 *

 f
p)

co

un
t:

 t
he

 n
um

be
r

of
 d

at
a

en
tr

ie
s

si
ze

:
th

e
le

ng
th

 o
f
a

da
ta

 e
nt

ry
bu

f:
 t

he
 a

dd
re

ss
 o

f
th

e
bu

ff
er

in
t

fw
ri
te

 (
vo

id
 *

bu
f,

in
t

si
ze

,in
t

co
un

t,
FI

LE
 *

 f
p)

Fi
gu

re
5.
7:

Fi
le

re
ad

in
g
an

d
w
ri
ti
ng

fu
nc

ti
on

s
2.

244 5 Files: operations on external data

Now we are going to introduce these functions through examples.

Example 5.1 Example of files 1
Read and display characters in file file.txt.

Analysis
1 //Read characters one by one from file

2 #include <stdio.h>

3 #include <stdlib.h>

4

5 int main(void)

6 {

7 char ch;

8 FILE *fp; //Define a FILE pointer fp

9 fp=fopen("file.txt","r"); //Open text file file.txt in read-only mode

10 if (fp==NULL) //Failed to open the file

11 {

12 printf("cannot open this file\n");

13 exit(0); //Call library function exit to terminate the program

14 }

15 ch=fgetc(fp); //Read a character and assign it to ch

16 while(ch!=EOF) //Check whether we have reached the end, equivalent to

(!feof(fp)) in this case

17 {

18 putchar(ch); //Output the character

19 ch=fgetc(fp); //Read a character and assign it to ch

20 }

21 fclose(fp); //Close the file

22 return 0；

23 }

Note: We use while(ch!=EOF) to determine whether we have reached the end of the file on line
16. This statement only works for files opened as text file. If we open a file in binary modes,
then we should use !feof(fp). Otherwise, we may wrongly consider a file to be completely read
when seeing value “–1.”

Term explanation
exit function: exit is declared in <stdlib.h>. It is used to terminate a program forcibly. When
there are input errors or the program cannot open a file, we can use this function to end the
program. The parameter of exit is passed to some operating systems so that other programs
can use it.

exit(0) means the program exits normally. In contrast, exit(1) indicates an exception (there
must be an exception as long as the argument is not 0, but we recommend using the macro
EXIT_FAILURE defined in stdlib.h to indicate the reason of exception. The macro is defined as 1
in the header file).

5.5 Operations on files using programs 245

Knowledge ABCWhat are the differences between exit() and return in C?
Exit function is used to exit the program and return to the operating system, while a return state-
ment merely returns to the caller from the function currently being executed. If we use return in
the main function, then the program terminates after return is executed and returns to the operat-
ing system. In this case, the return statement is equivalent to exit. However, one merit of exit is
that we can call it in other functions and use a search program to look for these calls.

Example 5.2 Example of files 2
Write the specified string into a file, and read the string from the file into an array.

Analysis
1 //Write the specified string into a file

2 #include <stdio.h>

3 char *s="I am a student"; //Specify the string to be written

4 int main(void)

5 {

6 char a[100];

7 FILE *fp; //Define file pointer fp

8 int n=strlen(s); //Compute length of s

9

10 //Open text file f1.txt in write mode

11 if ((fp=fopen("f1.txt","w"))!=NULL)

12 {

13 fputs(s,fp); //Write string pointed by s into file pointed by fp

14 }

15 fclose(fp); //Close the file pointed to by fp

16

17 //Open text file f1.txt in read-only mode

18 fp = fopen("f1.txt","r");

19 fgets(a, n+1, fp); //Read contents in file pointed to by fp into array a

20 printf("%s\n",a); //Print a

21 fclose(fp); //Close the file pointed to by fp

22 return 0;

23 }

Note: fgets(a, n+1, fp) on line 19 reads a string and stores it in array a. a is a character array de-
fined earlier. n+1 instructs the program to read n characters from the file pointed to by fp and
store them into a. These n characters are precisely string s. Because a string must be terminated
with “\0”, we use n+1 instead of n.

Think and discuss Is it necessary to check the result of file opening function?
Discussion: good programmers try their best to consider all possible error cases when program-
ming. In this example, we use a short string s for the convenience of demonstration, so it is fine
to write line 19. However, string s may be an extremely long string in practice. In this case, we
have to consider whether a is large enough to store the string in order to avoid out-of-bound
errors. Besides, we did not check the result of fopen when opening the file in read-only mode,
which is a risk in the program.

246 5 Files: operations on external data

Example 5.3 Example of files 3
Write formatted data onto the disk, and then read the contents from the file and display them
on the screen.

Analysis
1 //Write data block into a file

2 #include "stdio.h"

3 #include "stdlib.h"

4

5 struct student //Define the structure

6 {

7 char name[15];

8 char num[6];

9 float score[2];

10 } stu;

11 int main(void)

12 {

13 FILE *fp1;

14 int i;

15

16 fp1=fopen("test.txt","wb");

17 if(fp1 == NULL) //Open file in binary write-only mode

18 {

19 printf("cannot open file");

20 exit(0);

21 }

22 printf("input data:\n");

23 for(i=0;i<2;i++)

24 {

25 //Input a row of record

26 scanf("%s%s%f%f",

27 stu.name,stu.num,&stu.score[0],&stu.score[1]);

28 //Write data block into the file, one row at a time

29 fwrite(&stu,sizeof(stu),1,fp1);

30 }

31 fclose(fp1);

32

33 //Open the file again in binary read-only mode

34 if((fp1=fopen("test.txt","rb"))==NULL)

35 {

36 printf("cannot open file");

37 exit(0);

38 }

39 printf("output from file:\n");

40 for (i=0;i<2;i++)

41 {

42 fread(&stu,sizeof(stu),1,fp1); //Read block from the file

5.5 Operations on files using programs 247

43 printf("%s %s %7.2f %7.2f\n", //Display on the screen

44 stu.name,stu.num,stu.score[0],stu.score[1]);

45 }

46 fclose(fp1);

47 return 0;

48 }

Program result:
input data:

xiaowang j001 87.5 98.4

xiaoli j002 99.5 89.6

output from file:

xiaowang j001 87.50 98.40

xiaoli j002 99.50 89.60

Programming error
After writing content into a file, we may need to read the file later. Sometimes, we may see gar-
bled characters in the file. This is due to the inconsistency between the format we used when
writing to the file and the format of the file operating function. In the example above, if we
change line 29 into fprintf, there will be an output error.

5.5.3 Closing files

There is an old saying which goes “Timely return of a loan makes it easier to borrow
a second time.” We should return things we borrow from others quickly. If our credit
is good, then people are likely to help us when we need to borrow the second time.
In programs, dynamically allocated resources should follow this rule as well.
Otherwise, a memory leak may happen. In the worst cases, it will lead to results be-
yond our expectations. The FILE pointer in file operations is also a resource. We ob-
tain it by successfully calling fopen function. As a result, we have to return this
resource after using the file. The return here refers to closing the file. Readers may
have noticed that we always call fclose function after we are done with the file in
previous examples. fclose is the function we use to close files. It is defined as follows:
– Prototype: int fclose(FILE *fp)
– Functionality: it closes the file pointed to by the file pointer, handles the data

in the buffer, and releases the buffer eventually.
– Output: if an exception happens, the function returns a nonzero value; other-

wise, it returns 0.

Note: we should close a file in time after we use it. Otherwise, data may get lost.
Data are not written into the file until the buffer is full. If we terminate the program
when the buffer is not yet full, data in the buffer will be discarded.

248 5 Files: operations on external data

Example 5.4 Example of files 4

Analysis
1 //Write 10 record into data.txt

2 #include <stdio.h>

3 int main(void)

4 {

5 FILE *fp; //FILE is the file type

6 int i;

7 int x;

8

9 fp=fopen("data.txt","w"); //Open data.txt in text write mode ‘w’

10

11 for(i=1;i<=10; i++)

12 {

13 scanf("%d",&x);

14 fprintf(fp,"%d",x); //Output x into the file pointed to by fp

15 }

16 fclose(fp); //Close the file

17 return 0;

18 }

Program result: we can find the newly created file data.txt in the directory of our project after
the program terminates. We will see the 10 records read from keyboard input in it.

5.5.4 Random access

We have introduced the three steps of file operations in previous examples. Readers
may have noticed that we could only read the file from the very beginning to the
very end, one byte after another. Is it always acceptable in practice?

Apparently, such a rigid method is not always suitable in real life. Suppose we
have a file of student information, the records are stored in the order of student ID.
We wish to quickly locate a row using its index like we do with arrays. It is obvious
that we cannot do this with sequential access. In response to our needs, C provides
the fseek function that can relocate the file pointer. It is defined as follows:
– Prototype: fseek(FILE pointer, offset, beginning location)
– Functionality: relocate the file pointer. It moves the pointer by “offset” bytes

from the “beginning location” (Value of the beginning location: beginning of
the file is represented by SEEK_SET, whose value is 0; current location is repre-
sented by SEEK_CUR, whose value is 1; the end of the file is represented by
SEEK_END, whose value is 2).

– Return value: 0 is returned upon success, while –1 is returned upon a failure.

5.5 Operations on files using programs 249

Example 5.5 Example of files 5
We have records of students in the file stu_list.txt. Write a program that reads the data of the
second student.

Analysis
Code implementation:
1 //Read from specified location in a file: random access of files

2 #include "stdio.h"

3 #include "stdlib.h"

4

5 struct stu //Structure of student information

6 {

7 char name[10];

8 int num;

9 int age;

10 char addr[15];

11 } boy,*qPtr; //Define a structure variable boy and a structure pointer qPtr

12

13 int main(void)

14 {

15 FILE *fp;

16 char ch;

17 int i=1; //Skip the first i rows

18 qPtr = &boy; //qPtr points to the beginning address of boy

19

20 if ((fp=fopen("stu_list.txt","rb"))==NULL)

21 {

22 printf("Cannot open file!");

23 exit(0);

24 }

25 //Relocate the pointer to the beginning of the file

26 rewind(fp);

27 //Move the pointer by (i*structureSize) bytes

28 fseek(fp,i*sizeof(struct stu),0);

29 //Read the current row from the file, and store into address pointed to by qPtr

30 fread(qPtr, sizeof(struct stu),1,fp);

31 printf("%st%5d %7d %sn", qPtr->name,

32 qPtr->num, qPtr->age, qPtr->addr);

33 fclose(fp);

34 return 0；

35 }

Note: To make this program work, the file has to be written and opened in binary mode. For exam-
ple, we use fopen(“stu_list.txt”,“rb”) on line 20. Only in this case are the contents of the file bi-
nary data stored sequentially. Besides, we cannot use fseek(fp,i*sizeof(struct stu),0) on line 28 to
move the pointer if the file is not accessed in binary mode.

250 5 Files: operations on external data

5.6 Discussion on file reading and writing functions

When checking the file after we write to it, sometimes we find nothing but garbled
characters. Sometimes, the binary data we read from a file are not what we have
expected. What happened behind the scene?

We shall briefly discuss this problem by introducing several combinations of
file open modes and file operating functions.

5.6.1 Case 1: fprintf and fscanf

In this case, we read the file data.txt in binary mode, use fprintf to write data, and
use fscanf to read data from it.

1 //File reading and writing

2 #include <stdio.h>

3 #include <stdlib.h>

4

5 int main(void)

6 {

7 FILE *fp; //FILE is the file type

8 int i;

9 int x;

10 int b=0;

11 char ch;

12 fp=fopen("data.txt","wb"); //Open data.txt in “wb” mode

13

14 if (fp==NULL) //Fail to open

15 {

16 printf("1:cannot open this file\n");

17 exit(0); //Terminate the program with exit

18 }

19 //***Using fprintf to write data****

20 for(i=1; i< 7; i++)

21 {

22 scanf("%d",&x);

23 fprintf(fp,"%d",x); //Output x to the file pointed to by fp

24 }

25 fclose(fp); //Close the file

26

27 fp=fopen("data.txt","rb"); //Open text file data.txt in read-only mode

28 if (fp==NULL) //Fail to open

29 {

30 printf("2:cannot open this file\n");

31 exit(0); //Terminate the program with exit

32 }

5.6 Discussion on file reading and writing functions 251

33

34 //******* Using fscanf to read data ********

35 fscanf(fp,"%d",&x); //Read an int value into x

36 while (!feof(fp)) //Check whether the file ends

37 {

38 printf("%d ",x);

39 fscanf(fp,"%d",&x);

40 }

41 fclose(fp); //Close the file

42 return 0;

43 }

Program result:
Input: 2 3 4 5 6 7

Output: 2 3 4 5 6 7

If we open data.txt manually, we will find that the contents are 234567, which can be
displayed normally. If we use text editors like EditPlus to open the file in hexadecimal
mode, we will find the bytes being ASCII values “32 0A 33 0A 34 0A 35 0A 36 0A 37 0A.”

5.6.2 Case 2: fwrite and fread

In this case, we read the file data.txt in binary mode, use fwrite to write data and
use fread to read data from it. The code implementation can be obtained by replac-
ing the code segments in squares in case 1 with the code segments as follows:

//*** Using fwrite to write data ****

for(i=1; i<7; i++) //Write 6 int values into the file

{

scanf("%d",&x);

fwrite(&x,sizeof(int),1,fp); //Output x to the file pointed to by fp

}

//*** Using fscanf to read data ****

for(i=1; i<7; i++)

{

fread(&b,sizeof(int),1,fp);

printf("b=%x\n",b);

}

Program result:
Input:

2 3 4 5 6 7

Output:

b=2

b=3

b=4

252 5 Files: operations on external data

b=5

b=6

b=7

If we manually open data.txt in the operating system, we will find garbled charac-
ters in it. Opening the file in hexadecimal mode, we will see the bytes “02 00 00 00
03 00 00 00 04 00 00 00 05 00 00 0006 00 00 00 07 00 00 00.” These bytes are
precisely the binary byte stream of integers 2 to 7, in which each integer takes up 4
bytes. They are displayed as garbled characters because they are not stored as
ASCII values. In the program above, however, the numbers can be correctly read
because the fread function does read them as binary integer data.

5.6.3 Case 3: fprintf and fscanf

In this case, we read the file data.txt in binary mode, use fprintf to write data,
and use fscanf to read data from it. The code implementation is the same as in
the first case, except the code in the second square is replaced with the following
statements:

//***Using fread to read data****

for(i=1; i<7; i++)

{

fread(&b,sizeof(int),1,fp);

printf("b=%x\n",b);

}

Program result:
Input:

2 3 4 5 6 7

Output:

b=0a330a32

b=0a350a34

b=0a370a36

b=0a370a36

b=0a370a36

b=0a370a36

If we open data.txt manually, we will see numbers 234567 displayed correctly, as
they were in case 1. However, the numbers displayed are different from the inputs
because we use fread to read them as binary integers.

5.6 Discussion on file reading and writing functions 253

5.6.4 Case 4: fwrite and fscanf

In this case, we read the file data.txt in binary mode, use fwrite to write data and
use fread to read data from it. The code implementation is the same as in the first
case, except the code in the first square is replaced with the following statements:

//***Using fwrite to write data****

for(i=1; i<7; i++) //Write 6 integers into the file

{

scanf("%d",&x);

fwrite(&x,sizeof(int),1,fp); //Output x into the file pointed to by fp

}

Program result:
Input:

2 3 4 5 6 7

Output:

Output “7” infinitely

The contents of the data.txt file are the same as in case 2. Nonetheless, the program
runs into exception because fscanf cannot recognize binary bit stream correctly.

We used binary mode to read data in all 4 cases. Will the results be different if we
use text mode? It is not hard to infer from our analysis in these cases that the results
will be similar. Interested readers may try text mode in these 4 cases on their own.

Conclusion
When operating files, we should use matching functions for reading and writing. In this case, we
can guarantee the data are correctly recognized regardless of using binary mode or text mode.

Whether the generated file can be displayed correctly is determined by the writing function,
instead of the file opening mode. When we use fprintf, the file contains ASCII values, which can
be displayed normally. When we use fwrite, data are written into the file as a binary bit stream.
Whether they are normally displayed depends on whether they are valid ASCII values. We see
garbled characters because they are not ASCII values in most cases.

5.7 Debugging and I/O redirection

After designing an algorithm and writing the code, we need to use test data to test
the program in the debugging environment. Because we often find bugs in our pro-
grams, we need to rerun them and input test data repeatedly. In programs with
many input data, it takes a long time to type on the keyboard. Is there a better way
to do this? Here come files to save the day.

254 5 Files: operations on external data

We can put input data in a file and read them with file reading functions and
write results into specified files with file writing functions. Based on the character-
istics of the test data, we should select suitable file operation functions. There are
two code templates for this process.

5.7.1 Code template 1 Using fscanf and fprintf

#include <stdio.h>

int main(void)

{

FILE *fp1, *fp2;

fp1=fopen("data.in","r"); //Open input file data.in in read-only mode

fp2=fopen("data.out","w"); //Open output file data.out in write-only mode

//We process our data here. Note that we should fscanf to read and fprintf to print

fclose(fp1);

fclose(fp2);

return 0;

}

This program simply uses basic file operations we have learned. Now we are going
to see a program using freopen function.

5.7.2 Using freopen function

– Prototype: FILE *freopen(const char*path,const char *mode,FILE *stream);
– Parameters:

path: it is the filename used to store the custom input/output file name;
mode: file opening mode, which is the same as in fopen;
stream: a file, which is usually the standard stream files.

– Functionality: redirect the standard stream file to the file specified by path.
– Return value: the function returns a pointer to the file specified by path upon

success; otherwise, it returns NULL (we rarely use its return value though).

Knowledge ABC Standard stream files
When we run a C program, the operating system opens three files and provide the program with
pointers to them. These three file pointers are standard input stdin, standard output stdout,
and standard error stderr. They are declared in <stdio.h>.

Stdin: standard input stream. It outputs to screen by default.
Stdout: standard output stream. It outputs to screen by default.
Stderr: standard error stream. It outputs to screen by default.

5.7 Debugging and I/O redirection 255

When a file is not accessible due to some reason, debugging information has to be printed to
the end of output with stderr. This is acceptable when we print to screen. However, it is not accept-
able when we write to files or write to other programs through pipes (a pipe is a buffer of fixed
size). Output to stderr will be displayed on the screen even if we redirect the standard output.

5.7.3 Code template 2 Using freopen function

#include <stdio.h>

int main(void)

{

freopen("data.in", "r", stdin);//Redirect input from keyboard to data.in

freopen("data.out", "w", stdout);

//Redirect output from screen to data.out

//The data processing code remains the same

fclose(stdin);

fclose(stdout);

return 0;

}

Using freopen is as simple as using fprintf and fscanf. Besides, we do not need to
modify our code because we use input/output redirection, which is more conve-
nient than the first template. Here is an example of redirection.

Example 5.6 Debugging the program that calculates a+b
(1) Keyboard input case.

1 #include <stdio.h>

2 int main(void)

3 {

4 int a,b;

5

6 while(scanf("%d %d",&a,&b)!= EOF)

7 {

8 printf("%d\n",a+b);

9 }

10 return 0;

11 }

256 5 Files: operations on external data

Program result:
5 6

11

^Z

(2) Read data from in.txt and write result to out.txt.

1 #include <stdio.h>

2 int main(void)

3 {

4 int a,b;

5 //Redirect input, read data from in.txt under Debug directory of the

6 //current project

7 freopen("debug\\in.txt","r",stdin);

8 //Redirect output, write data to out.txt under Debug directory of the

9 //current project

10 freopen("debug\\out.txt","w",stdout);

11 while (scanf("%d %d",&a,&b)!= EOF)

12 {

13 printf("%d\n",a+b);

14 }

15 fclose(stdin); //Close the file

16 fclose(stdout); //Close the file

17 return 0;

18 }

Note:
(1) We read input data from in.txt under Debug directory of the current project. Before running

the program, we need to save our data “5 6” in in.txt (beware of the space between 5 and
6. Although the program is still valid if we omit the space, the result will not be what we
expected. Interested readers can try the program without the space, examine the result
and analyze why the result is different using what we have learned).

(2) We save output data to out.txt under Debug directory of the current project. After running the
program, we will find a out.txt file under Debug directory, which contains the number “11.”

5.8 Summary

Figure 5.8 shows main contents of this chapter and relations between them.

Files are persistent form of data,
We can save data in binary form or text form.
Programs follow three steps to operate files:
Namely opening, reading/writing, and closing.
To open a file, we need its path and filename;
To operate a file, we use library functions;
After operating the file, we must close it.

5.8 Summary 257

Fi
le

C
on

ce
p

t
A
 n

am
ed

 (
fil

en
am

e)
 s

et
 o

f
co

rr
el

at
ed

 d
at

a
st

or
ed

 in
 a

n
ex

te
rn

al
 m

ed
iu

m
C
ha

ra
ct

er
is

tic
s:

 c
an

 b
e

st
or

ed
 p

er
m

an
en

tly

C
la

ss
if

ic
at

io
n

B
in

ar
y

fil
e:

 d
at

a
ar

e
st

or
ed

 a
s

bi
na

ry
 c

od
e

Te
xt

 f
ile

:
ea

ch
 c

ha
ra

ct
er

 is
 s

to
re

d
as

 a
 b

yt
e,

 w
hi

ch
 is

 it
s

A
S
C
II

 v
al

ue

FI
LE

:
th

e
st

ru
ct

ur
e

of
 f
ile

 b
uf

fe
rs

Fo
pe

n:
al

lo
ca

te
s

a
fil

e
bu

ff
er

 in
 t

he
 m

em
or

y
fo

r
th

e
fil

e

P
ro

ce
ss

in
g

A
cc

es
s

O
bj

ec
ts

 o
f

re
ad

/w
ri
te

:
ch

ar
ac

te
rs

,
fo

rm
at

te
d

st
ri
ng

s,
 d

at
a

bl
oc

ks
R
el

oc
at

e:
re

lo
ca

te
 t

he
 f
ile

 p
oi

nt
er

O
pe

n

C
lo

se
Fc

lo
se

:
cl

os
e

th
e

fil
e

po
in

te
d

to
 b

y
th

e
fil

e
po

in
te

r,
 h

an
dl

e
bu

ff
er

ed
 d

at
a

pr
op

er
ly

 a
nd

 r
el

ea
se

 t
he

 b
uf

fe
r

I/
O

R

ed
ir

ec
ti

on

M
ea

ni
ng

:
w

e
st

or
e

da
ta

 t
o

be
 r

ea
d

in
to

 a
 f
ile

,
us

e
fil

e
re

ad
in

g
fu

nc
tio

ns
 t

o
re

ad
 t

he
m

,
an

d
us

e
fil

e
w

ri
tin

g
fu

nc
tio

ns
 t

o
w

ri
te

 r
es

ul
ts

 in
to

 a
 s

pe
ci

fie
d

fil
e

M
et

ho
d

1:
us

e
fs

ca
nf

 a
nd

 f
pr

in
tf

M
et

ho
d

2:
 u

se
 f
re

op
en

 a
nd

 f
cl

os
e

Fi
gu

re
5.
8
:R

el
at
io
ns

be
tw

ee
n
fu
nd

am
en

ta
lc
on

ce
pt
s
re
la
te
d
to

fi
le
s.

258 5 Files: operations on external data

5.9 Exercises

5.9.1 Multiple-choice questions

1. [Concept of files]
Which of the following statements is correct about files in C? ()
A) File is constructed by a series of data. It must be a binary file.
B) File is constructed by a series of structures. It could be a binary file or a text

file.
C) File is constructed by a series of data. It could be a binary file or a text file.
D) File is constructed by a series of characters. It must be a text file.

2. [Opening a file]
Suppose we have the following code segment:

FILE *fp;

if((fp=fopen("test.txt"，"w")) == NULL)

{printf("Failed to open file!");

exit(0);}

else

printf("File opened successfully!");

If the file test.txt does not exist and there is no other exception, which of the
following statements is wrong? ()
A) The output is “Failed to open file!”
B) The output is “File opened successfully!”
C) The system will create a file with the specified name.
D) The system will create a text file for write operation.

3. [fprintf]
Suppose we have the following program.

#include <stdio.h>

int main(void)

{ FILE *f;

f=fopen("filea.txt","w");

fprintf(f,"abc");

fclose(f);

return 0;

}

If the content of filea.txt was originally: hello, then then content of it after run-
ning the program above will be ()
A) abclo B) abc C) helloabc D) abchello

5.9 Exercises 259

4. [fseek and rewind]
Suppose we have the following program.

#include <stdio.h>

int main(void)

{

FILE *fp;

int i, a[6]={1,2,3,4,5,6},k;

fp = fopen("data.dat", "w+");

fprintf(fp, "%d\n", a[0]);

for (i=1; i<6; i++)

{

fseek(fp, 0L, 0);

fscanf(fp, "%d", &k);

fseek(fp, 0L, 0);

fprintf(fp, "%d\n", a[i]+k);

}

rewind(fp);

fscanf(fp, "%d", &k);

fclose(fp);

printf("%d\n", k);

return 0;

}

What is the output of this program? ()
A) 21 B) 6 C) 123456 D) 11

5. [End of file]
Suppose fp points to a file and has reached the end of the file. What is the return
value of feof(fp) then? ()
A) EOF B) –1 C) A nonzero value D) NULL

6. [File buffer]
The prototype of the function that reads a binary file is as follows: fread(buffer，
size，count，fp)；What does buffer refers to?
A) Number of bytes in a memory block.
B) An integer variable which represents the number of bytes in the data to be

read
C) A file pointer pointing to the file to be read
D) The beginning address of a memory block, which represents the address of

the data to be read

260 5 Files: operations on external data

5.9.2 Fill in the tables

Fill in the tables in Figures 5.9 and 5.10 based on the following programs:

1. [fprintf and fscanf]
Suppose there is file “123.dat” under the same directory of the program below. The
file is empty.

#include <stdio.h>

int main(void)

{

FILE * fp = NULL;

int temp;

fp = fopen("123.dat", "w");

while(scanf("%d",&temp)) //————①

{

fprintf(fp, "%d", temp); //————②

}

fclose(fp);

fp = fopen("123.dat", "r");

while (fscanf(fp,"%d",&temp) != EOF)

{

printf("%5d", temp);

}

fclose(fp);

-1 0 1 2 3 a

/

/

value

Figure 5.9: Files: fill in the tables question 1.

"123abcDEF"

Figure 5.10: Files: fill in the tables question 2.

5.9 Exercises 261

return 0;

}

2. [fputc and fgets]

#include<stdio.h>

int main(void)

{

FILE *fp;

char str[100];

int i=0;

if((fp=fopen(“test.txt”, " w "))= =NULL)

{

printf(“Can’t open this file.\n”);

exit(0);

}

printf(“Input a string: \n”);

gets (str); //——————①

while (str[i])

{

if(str[i]>= ‘a’&&str[i]<=‘z’)

str[i]= str[i]-32 ;

fputc(str[i], fp); //——————②

i++;

}

fclose (fp);

fp=fopen(“test.txt”, "r");

fgets(str, 100, fp); //——————③

printf(“%s\n”, str);fclose (fp);

return 0;

}

Suppose that the keyboard input is "123abcDEF"

5.9.3 Programming exercises

1. Read/write formatted file
Suppose that contents of text file 20083.txt and text file 20084.txt are all real num-
bers in the format “xx.x.” Please write a program that combines data in these files
and save them to file 20085.txt (data in 20083.txt followed by data in 20084.txt).

2. Read/write data blocks in file
We have data of 10 students (including student IDs, names, and grades in three
courses) in the file “score.txt.” Please write a program that stores data of students

262 5 Files: operations on external data

who failed at least one course into the file “bhg.txt.” and data of students who
passed all courses into the file “hg.txt.”

3. Read characters from file
Please write a program that opens a specified file (if it exists), read data in blocks of
128 bytes, and prints each block on the screen in hexadecimal form and in ASCII
values.

5.9 Exercises 263

Appendix A Adding multiple files to a project

There is more than one method to add multiple files to a project. We shall introduce
one of them through the following example:

Example A C program consists of three files, namely testfile1.cpp, testfile2.cpp, and testfile3.cpp.
We wish to add them to the same project.

testfile1.cpp：

/*The program consists of 3 files, main function is in test file 1*/

01 #include <stdio.h>

02 extern int reset(void); /* Declare reset as an external function* /

03 extern int next(void); /* Declare next as an external function */

04 extern int last(void); /* Declare last as an external function */

05 extern int news(int i); /* Declare news as an external function */

06

07 int i=1; /*Define global variable i*/

08 int main()

09 {

10 int i, j; /*Define local variables i and j*/

11 i=reset();

12 for (j=1; j<4; j++)

13 {

14 printf("%d\t%d\t",i,j);

15 printf("%d\t",next());

16 printf("%d\t",last());

17 printf("%d\n",news(i+j));

18 }

19 return 0;

20 }

testfile2.cpp：

01 extern int i; /*Declare global variable i*/

02

03 int next(void)

04 {

05 return (i+=1);

06 }

07

08 int last(void)

09 {

10 return (i+=1);

11 }

12

13 int news(int i) /*Define parameter i, which is a local variable*/

https://doi.org/10.1515/9783110692303-006

https://doi.org/10.1515/9783110692303-006

14 {

15 static int j=5; /*Define static variable j*/

16 return (j+=i);

17 }

testfile3.cpp：

01 extern int i; /*Declare global variable i*/

02 int reset(void)

03 {

04 return (i);

05 }

Terms:
– Internal function: an internal function is only accessible by functions in the same file. We

use keyword static to define internal functions. They are also called static functions.
– External function: if we define a function with keyword extern, then this function is an

external function. For example:

extern int reset(void);

Other files can call the function reset. If we omit extern in a function definition, then the function
is by default external.

In the file where we make a call to an external function, we should use extern to indicate that
the function is external.

Difference between declaration and definition: when a function or a variable is de-
clared, no physical memory is allocated to it. Declarations make sure that our programs
can be compiled. When a function or a variable is defined, it takes up physical space
in the memory. A function or a variable can be declared multiple times. However, it
can be defined only once.

How do we access global variables when there are multiple files? If we define a
global variable in one file and want to access it in other files, we must declare the
global variable with keyword extern. If a global variable is defined with static, how-
ever, then it can only be accessed in the same file instead of by other files.

To add multiple files to a project, we should follow these steps:

266 Appendix A Adding multiple files to a project

(1) Create a new project (suppose the name is test) in the IDE, as shown in Figure A.1

(2) Create a new file “testfile1.cpp” in the project test, as shown in Figure A.2.

Figure A.1: Create a new project.

Figure A.2: Create a new file “testfile1.cpp”.

Appendix A Adding multiple files to a project 267

(3) Create a new file “testfile2.cpp” in the project test, as shown in Figure A.3.

Figure A.2 (continued)

Figure A.3: Create a new file “testfile2.cpp”.

268 Appendix A Adding multiple files to a project

(4) Create a new file “testfile3.cpp” in the project test, as shown in Figure A.4.

Figure A.3 (continued)

Figure A.4: Create a new file “testfile3.cpp”.

Appendix A Adding multiple files to a project 269

(5) Compile “testfile1.cpp,” as shown in Figure A.5.

Figure A.4 (continued)

Figure A.5: Compile file “testfile1.cpp”.

270 Appendix A Adding multiple files to a project

(6) Compile “testfile2.cpp,” as shown in Figure A.6.

(7) Compile “testfile3.cpp,” as shown in Figure A.7.

Figure A.6: Compile file “testfile2.cpp”.

Figure A.7: Compile file “testfile3.cpp”.

Appendix A Adding multiple files to a project 271

(8) Execute “Build” command in the window of the main function to generate an
executable exe file, as shown in Figure A.8.

(9) Run the program in the window of the main function to obtain result.

Program result:

1 1 2 3 7

1 2 4 5 10

1 3 6 7 14

Figure A.8: Generate executable exe file.

272 Appendix A Adding multiple files to a project

Appendix B Programming paradigms

We write codes to solve practical problems. Programmers have different worldviews
and methodologies when creating virtual worlds. There are multiple ways to solve
problems. We call effective and universal patterns of problem-solving paradigms.

To be more specific, programming paradigms refer to styles and patterns of pro-
gramming. Each paradigm guides us to analyze and solve problems in a unique way.

Paradigms exist in daily life, too. Formatted forms like deposit slips, with-
drawal slips, receipts and invoices require us to fill in them in a specific way.

As shown in Figure B.1, programming paradigms include the imperative paradigm
and declarative paradigm. We can classify languages that are not imperative into the
declarative category. A paradigm may be used in many programming languages, and a
programming language may support multiple paradigms as well. Fundamental pro-
gramming paradigms include procedural, object oriented, functional, and logic.

An imperative program is a sequence of commands of a Von Neumann machine.
Object-oriented paradigm uses independent code blocks and objects and drives
them through messages. Functional programming is an abstraction of mathematics,
which describes computation as the evaluation of mathematical functions. Logic
programming uses facts and rules to derive and prove conclusions.

The popularity of a programming language is closely related to its areas of exper-
tise. For example, functional and logic languages are good at applications that use
mathematics and logic, such as artificial intelligence, symbol handling, databases,
and compilers. User-oriented applications are mostly interactive, event-driven, and
have different business logic, so it is better to use imperative languages for them.

There is no absolute border between declarative languages and imperative lan-
guages. They are all constructed based on low-level languages. Thus, they can be used

Imperative Declarative

Procedural
Object-
oriented

Functional Dataflow

Logic Constraint

......

......

Figure B.1: Programming paradigms classification.

https://doi.org/10.1515/9783110692303-007

https://doi.org/10.1515/9783110692303-007

together. For example, the introduction of functions or procedures in imperative lan-
guages makes them more declarative.

Fortran, COBOL, Pascal, and C are common procedural languages; Smalltalk,
Java, C++, and C# are all object-oriented languages; Lisp, Haskell, and Clean are
functional languages; logic languages include Prolog and others.

B.1 Procedural programming

A procedure is a set of steps (or commands) to complete a particular task.
Procedural programming uses a series of commands to implement these steps

and complete the required job.
There are many “procedure-oriented” examples in daily life. For example, the

process of “going to the outpatient department of the university hospital” consists of
several steps, as shown in Figure B.2. Each step can be seen as an independent proce-
dure. In other words, we do one thing at a time. Such a step is called a “module” in
programming. (Note: suppose we pay in one go after we are done with the process.)

– Module: a module is a collection of statements that has its own name and can
complete specific tasks independently. The internal implementation of a module
is invisible from the outside. A module communicates with the outside through
information interfaces.

– Information interface: an information interface describes how other modules
and programs use this module. Information in an interface includes input/out-
put information.

In the earlier example, “prescription” and “assay results” are the interface informa-
tion. The prescription is used in several modules. We call data that are available to
all modules “global variables.”

Pharmacy

Assay

Payment

Prescription

Assay

Inspection

Registration

Y N

Start

End

Figure B.2: The first process of “going to the outpatient department of the university hospital”.

274 Appendix B Programming paradigms

Procedural languages are imperative languages with the addition of child pro-
grams. Because all modern imperative languages have this feature, we often use these
two terms interchangeably. Terms like “procedure,” “child program,” “function,” and
“module” refer to the same thing in programming.

“Procedure-oriented” is a programming paradigm that focuses on modules.
In procedure-oriented programming, we use a top-down stepwise refinement devel-
opment method to divide a complex system into several independent child mod-
ules. Then we determine how these modules are assembled and how they interact
with each other (that is, how they call each other). After designing these child mod-
ules, we combine them together to get the final system. Each module is imple-
mented by fundamental structures like sequential, branch, and loop structure.

The procedure-oriented paradigm got its idea from sequences of computer com-
mands. It converts solutions to problems into conceptualized steps and then trans-
lates these steps into program instruction sets, in which instructions are listed in a
specific order.

A procedural program consists of three components, as shown in Figure B.3.
The calling rules of modules describe the execution order of modules. In a single
run of a program, the control is exchanged between the calling program and the
program being called, as shown in Figure B.4.

Data objects

Calling rules of modules

Code modules
Figure B.3: Structure of a procedural program.

Caller Callee

Pass the control to
the “procedure”

The caller
request a
“procedure”

Return the control
to the caller

Execute the
“procedure”

Figure B.4: Flow control of procedure calling.

B.1 Procedural programming 275

A function call hands the execution of a program (usually a child program) over to
other modules and preserves the context of the calling program. After the program
being called terminates, it returns to the saved context.

The nature of procedure-oriented programming is dividing problems into mod-
ules. It solves practical problems based on the characteristics of problem-solving
with computers. A multimodule system does module calling following a predeter-
mined routine.

When the scale of such a system is large, it is difficult to modify it if we have
different needs later. In the hospital example above, if we want to move “assay” after
“payment,” we have to update many components of the flow. If the system is exten-
sive, it would be hard to maintain. Besides, if we put no restriction on global data,
errors in them will affect other components of the system. “Prescription” is the global
data in the hospital example. If the pharmacy does not have the medicine listed on
the prescription, exceptions will occur in many modules. A summarization of critical
issues in procedure-oriented programming is given in Figure B.5.

B.2 Object-oriented programming

Let us take a look at a story of humans and animals. There is a cage, as shown
in Figure B.6. We can put at most one animal in the cage. If the cage is empty, the
hunter may put a monkey into it and inform the zoo; the farmer may put a pig into
it and inform the restaurant; the zoo would like to purchase the monkey, and the
restaurant would like to buy the pig. Can we simulate this process using a program? We
will find that we never know who is going to act first. In other words, we do not know
the calling order of modules, which is necessary for procedure-oriented programming.

In the procedural paradigm, modules are executed in a predetermined order and
in a flow-driven manner. The steps in the solution designed by programmers should
be executed one after another. The system structure depends on our task. A change
in one module may require changes in all related modules.

Nature Function design
Computation process: module call
Divide complex programs into simple and independent
procedures

Designers’ perspective: design programs based on
the characteristics of computers

Charac-
terisTics

A modular structure that
focuses on functions
Hard to maintain large
systems e.g., move “assay” after “payment”

No restriction on accessing
global data

Errors in global data affect many components
of the system, e.g., medicine on the prescription
is out of stock

Execution pattern Executed in a predetermined order

Figure B.5: Critical issues in procedure-oriented programming.

276 Appendix B Programming paradigms

In the example above, the execution order of modules depends on the state of
the system. Execution of modules is thus driven by events or messages. “Fetching or
putting animals” are events, and “informing” is a message. Figure B.7 shows an ab-
straction of this example. Procedural thinking does not work in such event-driven
problems, so people have to look for other programming paradigms. Therefore, ob-
ject-oriented programming comes to being.

Figure B.6: A story between humans and animals.

INITIALIZA-
TION READING COMPU-

TATION WRITING END

(A) PROCEDURAL SYSTEM

(B) OBJECT-ORIENTED SYSTEM

ZOO

COOK

HUNTER

CAGE

FARMER

Figure B.7: Procedure oriented and object oriented.

B.2 Object-oriented programming 277

If we use the event-driven method to describe the hospital example, we will find
that the nature of modules in the system has changed. In Figure B.8, steps that
were initially carried out by patients are now operations carried out after informa-
tion exchange by departments of the hospital. The functionality extracted from the
problem is no longer the core. Instead, the focus has become entities like depart-
ments. The events in this example are the reception of specific certificates, such as
medicare card, registration form, and prescription. A patient must have a medicare
card and money to register. A prescription cannot be filled without the assay sheet
with payment proof. These certificates drive operations and information exchange
among entities.

An entity has attributes (data) and behaviors (functionality). To make an object
work, we need corresponding certificates. In object-oriented programming, these
entities become objects. An object includes data and operations on its data. The cer-
tificates become messages (or events). Communication and control of objects are
done by sending and receiving messages, as shown in Figure B.9.

An object-oriented system is built upon the interaction between objects. The execu-
tion of modules is driven by events or messages. The impact of changing a module is
often limited to the module. In the hospital example, if we put “assay” after “pay-
ment,” we only need to send the “assay sheet” message to the cashier instead of the
laboratory, and then send the “assay sheet with payment proof” to the lab. Dashed
lines in Figure B.8 represent this change.

Start

End

Registration
Room

Pharmacy

Outpatient
department

Cashier

Laboratory

Medicare card, money

Registration form, medical record

Prescription

Prescription
with payment proof

Prescription with price

Assay sheet
Completed assay sheet

Assay sheet with payment proof

Assay sheet

Figure B.8: The second process of “going to the outpatient department of the university hospital”.

278 Appendix B Programming paradigms

Entities in a hospital can work in parallel. However, modules are executed se-
quentially on computers with a single CPU. How do we execute these parallel oper-
ations on computers? The solution is to store messages in a queue and handle them
sequentially, as shown in Figure B.10. An event generates a message, which is re-
ceived by the system. The event scheduler fetches messages from the message
queue and triggers corresponding procedures. Because the CPU works at high
speed, it seems like the machine is doing multiple works simultaneously.

In the Windows system, messages are the fundamental communication method.
Events are major sources of messages. The occurrence of an event is known through
messages. Whenever the user triggers an event, for example, a mouse movement or
a keystroke, the system converts it to a message and stores it in the message queue
of the corresponding program. The program fetches messages using GetMessage,
preprocesses them using TranslateMessage, and eventually send them to the win-
dow process WndProc using DispatchMessage.

Entity

─ Certain attribute (data)
─ Behavior (functionality)

Object

─ Data
─ Operations on data

Message

─ Communication between
objects

─ Control of objects

Certificate

─ Drive operations of entities
─ Enable information exchange

between entities

Figure B.9: Abstraction of object-oriented concepts in practice.

Event
source 1

…

Request
message

Event
source 2

Event
source n

Event
scheduler

Event
handler A

Dispatch
message

Event
handler B

Event
handler X

…

Consignment

Figure B.10: Event-driven mechanism in computers.

B.2 Object-oriented programming 279

Figure B.11 compares procedure-oriented programming with object-oriented
programming and summarizes the major differences.

“Object-oriented” is an idea that focuses on entities. Data and operations on them are
encapsulated into a single entity: an object. We summarize common features of similar
objects in a class. Most data of a class must be processed using methods in the same
class. Classes interact with the outside world through interfaces. Objects communicate
with each other through messages. Users determine the execution order of programs.

The original intention of introducing “object-oriented” is to isolate “interface”
from “implementation,” so that lower level changes do not affect upper level function-
ality. Object-oriented languages describe systems more naturally. It is easier to reuse
code and update our applications using these languages. Major features of object-
oriented languages include:
(1) Identifiability: basic components in the system can be identified as discrete

objects;
(2) Classifiability: objects with the same data structure and behaviors can form

their own class;
(3) Polymorphism: an object has a unique static type and multiple possible dynamic

types;
(4) Inheritance: data and operations can be shared among classes on different

levels.

The first three are the fundamental features, while the last one makes object-
oriented languages different from others. They (sometimes with dynamic binding as
well) make a strong expression ability possible. The components in an object-
oriented program are objects, each of which has its own attributes and behaviors.
Computation is done by creating new objects and communication between objects.

B.3 Functional programming

Functional programming is a mathematical thought that describes computations as
functions.

Procedure-oriented methods Object-oriented methods
(1) Focus on functionality Focus on objects

Encapsulate data and operations in objects(2) Isolate data and processing routine
(3) Re-develop similar software Inheritance of classes
(4)

(1)
(2)
(3)

(4)Execution order is predetermined Execution state of an object is controlled
by message

Figure B.11: Comparison of procedure-oriented programming and object-oriented programming.

280 Appendix B Programming paradigms

In functional programming, a program is a mathematical function, which is a
black box that maps inputs to output, as shown in Figure B.12. We call it a black
box because we do not know the implementation of it.

The term “function” in functional programming is no longer a subroutine in com-
puters. Instead, it refers to a mathematical function, namely a mapping of variables
in its domain.

Functional programming languages have the following features:
– a functional language should define a series of primitive (atomic) functions for

programmers to use;
– a functional language should allow programmers to build new functions using

primitive functions.

The major use cases of functional languages are in mathematical derivation and
parallel computing. They are suitable for solving mathematics problems of a limited
scale.

Example of functional programming 1
Mathematical expression: (1+2)*3−4 may be translated into the following procedural language
code:

var a = 1 + 2;

var b = a * 3;

var c = b - 4;

Functional languages require us to use functions. We can define different operations in the com-
putation as functions, and rewrite the process as follows:

var result = subtract(multiply(add(1,2), 3), 4);

Example of functional programming 2
Scheme defines a series of primitive functions. The function name and input list are written in
parentheses, and the result is a list that can be used as input of other functions.

For example, function car fetches the first element of a list. Function cdr fetches all elements
from a list except the first one. They are used as follows:

Function
(Black box)Input Output

Figure B.12: Functions in functional programming.

B.3 Functional programming 281

(car 2 3 7 8 11 17 20)-> 2

(cdr 2 3 7 8 11 17 20)-> 3 7 8 11 17 20

We can combine them to obtain the third element of a list: (car (cdr (cdr List))). If the list is 2 3 7
8 11 17 20, then the result is 7.

B.4 Logic programming

Logic programming is a programming paradigm that instructs us to write code
based on the logic process of derivation and computation in our brain:

Algorithm = Logic + Control

Logic programming describes facts and makes rules for them. The process of design-
ing programs is constructing a proof. The facts refer to the relations between objects
and attributes. The rules describe relations between facts. The execution of a program
is the process of derivation based on the rules. Logic programming is completely dif-
ferent from other paradigms.

Logic programming uses logic as programming languages, and considers com-
putation as a programming technique of controlled derivation. Users only need to
write the logic of their programs, and the control part is left to the interpreter pro-
gram in the system. In conclusion, the programming process can be represented by
this formula: facts+rules = results.

In 1972, Alain Comerauer’s group invented the first logic programming lan-
guage, Prolog. Prolog is suitable for artificial intelligence programs, which include
expert systems (a program that generates a suggestion or answer using a sophisti-
cated model), natural language processing, theory proving (a program that gener-
ates new theories as an expansion of current ones), and some intelligence games.
Prolog is usually used with some other languages in projects, where logic opera-
tions are done in Prolog and components like computation and user interfaces are
implemented in other languages.

Example of logic programming
Facts and rules construct programs in Prolog. For example, two facts about humans are as
follows:

human（John）

mortal（human）

The user may check:

？-mortal（John）

282 Appendix B Programming paradigms

The program will respond with yes.
Now we may make a summary of programming paradigms in Figure B.13.

Paradigm Program Input Output Programming
object

Execution object

Imperative Automata Initial state Final state Statement Command

Functional Mathematical
function

Independent
variable

Dependent
variable

Function Expression
evaluation

Logic Logic proofs Fact Conclusion Proposition Logic derivation

Figure B.13: Summary of programming paradigms.

B.4 Logic programming 283

Appendix C void type

There are many uses of “void type” in C. In different cases, void type has different
meanings.

1．void type
The type specifier is void. void type does not refer to a specific data type. Instead, it
is used when a function has no return value or to represent a generic pointer.

2．void-type functions
When a function is called, it usually returns a value to its caller. The value must
have a data type and should be specified in the function definition and declaration.
However, some functions do not return any value to their callers. These functions
can be defined as “void type.”

3．void-type pointers and null pointers
(1) void-type pointers
A void pointer is also called a generic pointer or a pointer with no type associated
with it. The data stored in the memory block pointed by a void pointer can be of
any type available in C.

Why do we need void pointers? Because sometimes we do not know what data
we are going to store in the memory block pointed by the void pointer. Thus, a
unique mechanism is needed. For example, malloc requests a continuous memory
block dynamically during program execution. The return value of malloc is a
pointer to this block. The designer of malloc has no idea what users will store in the
allocated memory, so he/she has to make the return value a void pointer to accom-
modate all cases.

Some languages have a dedicated type for pointers. The merit of doing so is
that it does not matter what data will be stored in the memory block allocated.

We cannot use void pointers to access data unless we convert it to a typed
pointer forcibly.

(2) Null pointer
Note that a null pointer is not a void pointer. A null pointer has value NULL. It does
not point to any memory address. In the malloc example, if memory allocation
fails, NULL will be returned as an indicator of exception.

https://doi.org/10.1515/9783110692303-008

https://doi.org/10.1515/9783110692303-008

Index

Array 1, 3, 4, 6, 7, 9–16, 21, 23–26, 29, 30, 37,
43, 45, 46, 48, 55, 64–66, 68–70, 76,
80–86, 88, 93, 95–97, 99, 100, 108, 115,
126, 135, 162, 170, 175, 181, 183, 190, 192,
205, 216, 231, 232, 246, 248, 251

–array element 1, 7–11, 17, 46, 48, 69, 71, 74,
75, 80, 84, 86–88, 136, 137, 171, 174,
177, 183

–array name 6, 7, 9, 13, 15, 45, 46, 48, 70, 93,
109, 110, 115, 162, 172, 181

–1-d array 17, 110, 161
–2-d array 10, 43, 48, 80, 81, 88, 110, 161
–index 4–9, 11, 24, 26, 45, 48, 93, 251

Enumeration 95, 128, 130, 131
–enumeration type 128, 129, 135, 136
–enumeration variable 128, 129, 131, 135, 136

File 237–241, 243–246, 248, 251, 253,
256, 259

–binary file 238, 239, 243, 244, 260
–FILE pointer 242, 243, 250, 251, 257, 260
–FILE type 242
–text file 238, 239, 243, 244, 247, 260
Function 33, 43, 44, 141, 144, 147, 148,

150–152, 157–159, 161–163, 170, 195,
198, 200, 201, 213, 221, 226–227, 268,
277, 283

–argument 149, 151–156, 159, 161–163, 170,
173, 178, 181, 195, 226

–call by reference 159, 172, 176, 178, 181
–call by value 153, 159, 163, 170, 172, 178, 181
–function call 148–151, 153, 159, 161, 162, 166,

175, 179, 185, 226, 278
–function declaration 149–151, 215, 227
–function definition 148–150, 158, 161, 162,

201, 227, 268
–function name 149, 156, 198, 226, 283
–function type 149, 156, 158, 162, 226
–nonvalue-returning 162
–parameter 141, 149, 152–159, 161–163, 165,

166, 170, 172, 173, 178, 181, 195, 202, 213,
226, 227

–parameter passing 170, 171, 174, 177
–pass by reference 154, 156, 159, 226

–pass by value 153–156, 159, 226
–return statement 149, 155, 156, 159, 197, 213,

226, 248
–value-returning 162

Global variable 202, 204–207, 209–216, 226,
227, 230, 268, 276

Input/output redirection 258

Local variable 166, 189, 202, 204, 206–212,
215, 216, 226

Memory unit 8, 13, 59–64, 66, 68, 69, 71,
73, 76, 88, 90, 91, 105, 120, 135, 159,
164, 173, 178, 181, 190, 203, 209, 215,
227, 230

Module 96, 142, 144–146, 149, 155, 166, 198,
203, 205, 226, 227, 276–281

Pointer 55, 61–65, 68–70, 74, 80, 81, 86–88,
176, 181, 190, 240, 242

–address 6, 9, 12, 13, 15, 29, 43, 45, 48, 55, 57,
59–61, 64, 97, 104, 105, 107, 110, 121, 135,
152, 154–157, 159, 164, 189

–null pointer 71, 73
–offset 55, 70–73, 103
–pointer type 71, 72, 88
–reference by address 56–59, 62, 64, 69, 70,

74, 75, 81, 88, 89, 108, 115, 121, 134
–reference by name 55–58, 62, 75, 80, 88,

108, 115, 121, 135

Redirection 260

String 10, 11, 13, 14, 37, 39, 40, 43, 44, 46,
49, 52, 53, 55, 76, 78, 79, 84, 85, 87, 90,
93, 126, 201, 235, 239, 246, 248, 260

Structure 95, 98, 99, 101, 104, 105, 107, 120,
122, 128, 134

–member reference 134, 135
–reference member 109
–structure array 100–103, 108, 109, 116, 187
–structure member 95, 99, 105, 107, 108
–structure name 98, 99

https://doi.org/10.1515/9783110692303-009

https://doi.org/10.1515/9783110692303-009

–structure type 95, 98–101, 109, 116, 122, 134
–structure variable 100–103, 107–109, 134,

136, 168, 242

Typedef 133, 134, 136, 137, 242

Union 95, 120, 122, 128, 135
–union type 120, 122, 135
–union variable 121, 135

288 Index

	Contents
	1. Arrays
	2. Pointers
	3. Composite data
	4. Functions
	5. Files: operations on external data
	Appendix A. Adding multiple files to a project
	Appendix B. Programming paradigms
	Appendix C. void type
	Index

