Xingni Zhou, Qiguang Miao and Lei Feng
Programming in C

Also of interest

Programming in C, vol. 1: Basic Data Structures and Program
Statements

Xingni Zhou, Qiguang Miao, Lei Feng, 2020

ISBN 978-3-11-069117-7, e-ISBN (PDF) 978-3-11-069232-7,
e-ISBN (EPUB) 978-3-11-069249-5

C++ Programming

Li Zheng, Yuan Dong, Fang Yang, 2019

ISBN 978-3-11-046943-1, e-ISBN (PDF) 978-3-11-047197-7,
e-ISBN (EPUB) 978-3-11-047066-6

Elementary Synchronous Programming

s Ali S. Janfada, 2019

S |SBN 978-3-11-061549-4, e-ISBN (PDF) 978-3-11-061648-4,
e-ISBN (EPUB) 978-3-11-061673-6

MATLAB® Programming

Dingyii Xue, 2020

ISBN 978-3-11-066356-3, e-ISBN (PDF) 978-3-11-066695-3,
e-ISBN (EPUB) 978-3-11-066370-9

Programming in C++

Laxmisha Rai, 2019

ISBN 978-3-11-059539-0, e-ISBN (PDF) 978-3-11-059384-6,
e-ISBN (EPUB) 978-3-11-059295-5

Xingni Zhou, Qiguang Miao and Lei Feng

Programming in C

Volume 2: Composite Data Structures
and Modularization

DE GRUYTER

Authors

Prof. Xingni Zhou

School of Telecommunication Engineering
Xidian University

Xi’an, Shaanxi Province

People’s Republic of China
xnzhou@xidian.edu.cn

Lei Feng

School of Telecommunication Engineering
Xidian University

Xi’an, Shaanxi Province

People’s Republic of China
fenglei@mail.xidian.edu.cn

ISBN 978-3-11-069229-7
e-ISBN (PDF) 978-3-11-069230-3
e-ISBN (EPUB) 978-3-11-069250-1

Library of Congress Control Number: 2020941966

Qiguang Miao

School of Computer Science
Xidian University

Xi’an, Shaanxi Province
People’s Republic of China
ggmiao@xidian.edu.cn

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie

detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Cover image: RomoloTavani/iStock/Getty Images Plus

Typesetting: Integra Software Services Pvt. Ltd.
Printing and binding: CPI books GmbH, Leck

www.degruyter.com

http://dnb.dnb.de
http://www.degruyter.com

Contents

1 Arrays —1

1.1 Concept of arrays — 1

1.11 Processing data of the same type —1

1.1.2 Representation of data of the same type —5

1.2 Storage of arrays — 6

1.2.1 Definition of arrays — 6

1.2.1.1 Definition of arrays — 6

1.2.1.2 Reference of array elements —7

1.2.1.3 Storage characteristics of arrays — 8

1.2.1.4 Comparison of variables of the same type with plain
variables —9

1.2.2 Initialization of arrays — 10

1.2.2.1 Initialize all elements — 10

1.2.2.2 Initialize some elements — 11

1.2.2.3 Array size determined by number of initial values — 11

1.2.3 Memory layout of arrays — 11

1.2.3.1 Memory layout of one-dimensional arrays — 11

1.2.3.2 Memory layout of two-dimensional arrays — 11

1.2.4 Memory inspection of arrays — 12

1.3 Operations on one-dimensional arrays — 16

1.4 Operations on two-dimensional arrays — 26

1.5 Operations on character arrays — 37

1.6 Summary — 45

1.7 Exercises — 48

1.7.1 Multiple-choice questions — 48

1.7.2 Fillin the tables — 50

1.7.3 Programming exercises — 51

2 Pointers — 53

2.1 Concept of pointers — 53

2.11 Reference by name and reference by address — 53

2.1.2 Management of storage space — 55

2.1.21 Management of computer memory space — 57

2.1.2.2 Storage rules of data in memory — 58

2.1.2.3 Address management in memory — 58

2.1.3 Definition of pointers — 60

2.1.3.1 Comparison of pointer variables and plain variables — 60

2.1.3.2 Syntax of pointer definitions — 61

2.2 Pointer operations — 61

2.21 Pointer operators — 62

VI —— Contents

2.2.2
2.2.3
2.2.4
2.2.41
2.2.4.2
2.2.4.3
2.2.5
2.2.51
2.2.5.2
2.3
2.31
2.3.2
2.4
2.41
2.5

2.6
2.6.1
2.6.2
2.6.3

3

3.1
3.1.1
3.1.2
3.1.2.1
3.1.2.2
3.1.2.3
3.2
3.21
3.2.2
3.2.3
3.2.4
3.2.4.1
3.2.4.2
3.2.4.3
3.2.4.4
3.2.5
3.3

3.4
3.4.1
3.4.2
3.4.2.1

Pointer operations — 62

Basic rules of pointer operations — 62
Purpose of pointer offsets — 67
Introduction — 67

Discussion and conclusion — 68

Program verification — 69

Concept of null pointer — 69

Meaning of NULL — 69

Null pointer — 71

Pointers and arrays — 72

Pointers and one-dimensional arrays — 72
Pointers and two-dimensional arrays — 77
Pointers and multiple strings — 82
One-dimensional pointer array and pointer to pointer — 84
Summary — 87

Exercises — 87

Multiple-choice questions — 87

Fillin the tables — 89

Programming exercises — 91

Composite data — 93
Concept of structures — 93
Introduction — 93
Storage solution of mixed data table — 94
Discussion of possible storage solution of mixed data table — 94
Issues of constructing “combinatorial data” — 95
Key elements of constructional data — 95
Storage of structures — 96
Type definitions of structures — 96
Definition of structure variables — 98
Structure initialization — 99
Memory allocation of structure variables — 100
Definitions related to structure — 100
Memory layout of structure variables — 100
Inspection of memory layout of structure variables — 100
Data alignment of structures — 102
Referencing structure members — 105
Applications of structures — 106
Union — 117
Introduction — 117
Memory layout of unions — 118
Union-type definition — 118

Contents =— VII

3.4.2.2 Union variable definition — 119

3.4.2.3 Union member reference — 119

3.4.2.4 Comparison of unions and structures — 120

3.5 Enumeration — 124

3.5.1 Introduction — 124

3.5.2 Concept and syntax of enumeration — 126

3.5.3 Example of enumerations — 127

3.5.4 Rules of enumerations — 128

3.5.4.1 We cannot assign values of other types to an enumeration
variable — 129

3.5.4.2 Arithmetic operations are not allowed on enumeration
variables — 129

3.6 Type definitions — 129

3.6.1 Introduction — 129

3.6.1.1 Porting of music files — 129

3.6.1.2 Cases where macros are not enough — 131

3.6.1.3 Define aliases for types — 131

3.6.2 Syntax and applications of typedef — 131

3.7 Summary — 132

3.8 Exercises — 134

3.8.1 Multiple-choice questions — 134

3.8.2 Fillin the tables — 136

3.8.3 Programming exercises — 137

4 Functions — 139

4.1 Concept of functions — 139

411 Introduction — 139

4.1.11 Modularization and module reuse in practice — 139

4.1.1.2 Abstraction of practical problems: independent code
modules — 140

4.1.2 Concept of modules — 141

4.1.2.1 Coordination problems in teamwork — 141

4.1.2.2 Coordination problems in modularization of programs — 141

4.1.2.3 Concept of modules — 142

4.2 Function form design — 143

4.2.1 Methods of communication between modules — 143

4.2.2 Function form design — 144

4.2.21 Analysis of outsourcing structure — 144

4.2.2.2 Abstraction of outsourcing structure — 145

4.2.2.3 Function form design — 145

4.2.2.4 Information transmission mechanism design — 146

4.2.2.5 Three syntaxes related to functions — 147

VIl — Contents

4.3

4.3.1

4.3.1.1
4.3.1.2
4.3.2

4.3.2.1
4.3.2.2
4.3.3
4.3.3.1
4.3.3.2
4.4
4.4.1
4.41.1
4.4.1.2

4.4.2

4.4.2.1
4.4.2.2
4.4.3
4.4.3.1
4.4.3.2
4.4.3.3
4.4.3.4
4.5
4.5.1
4.5.2
4.5.3
4.5.4
4.5.4.1
4.5.4.2
4.5.4.3
4.6
4.6.1
4.6.1.1
4.6.1.2
4.6.1.3
4.6.2
4.6.2.1

Design of information transmission mechanism between
functions — 149

Characteristics of information transmission between
functions — 149

Classification of data transmitted between functions — 149
Expressions of data transmitted between functions — 150
Information transmission between functions: submission and
receiving of data — 150

Submission of small amount of data — 150

Submission of a large amount of data — 151

Receiving of function results — 153

Receiving function results in pass by value — 153
Receiving function results in pass by reference — 153
Overall function design — 153

Key elements of function design — 153

Key elements of functions — 153

Relations between function syntax and key elements of function
design — 154

Summarization of information transmission between
functions — 154

Direction 1: from caller to function — 154

Direction 2: from function to caller — 157

Function call — 157

Execution and calling order of functions — 157

Nested call of functions — 157

Correspondence between parameters and arguments — 159
Syntax of function call — 160

Examples of function design — 160

Call by value — 160

Call by reference — 168

Comprehensive examples of functions — 179

Parameters of the main function — 191

Introduction — 191

Parameters of the main function — 193

Example of the main function with parameters — 194
Scope — 196

Introduction — 196

Cooperation issues in teamwork — 196

Outsourced projects in a flow — 198

Resource-sharing problem — 198

Masking mechanism of modules — 198

Isolation of internal data — 199

4.6.2.2
4.6.3
4.6.3.1
4.6.3.2
4.6.4
4.6.4.1
4.6.4.2
4.6.4.3
4.6.5
4.6.6
4.7
4.7.1
4.7.2
4.7.21
4.7.2.2
4.7.2.3
4.7.3
4.8

4.9
4.9.1
4.9.2
4.9.3

5.1
5.2
5.2.1
5.2.2
5.2.3
5.3
5.4
5.5
5.5.1
5.5.2
5.5.3
5.5.4
5.6
5.6.1
5.6.2
5.6.3
5.6.4
5.7

Contents =— |IX

Masking rule of functions — 199

Memory segments and storage classes — 199
Memory segments of programs — 199

Storage classes of variables — 200

Masking mechanism 1: lifespan and scope of variables — 201
Concept of scope — 201

Attributes of variables — 201

Local variables and global variables — 202
Masking mechanism 2: scope of functions — 211
Masking mechanism 3: restriction on shared data — 212
Recursion — 215

Case study — 215

Concept of recursion — 219

Definition of recursion — 219

Type of recursion — 220

Comparison of recursion and iteration — 220
Example of recursion — 221

Summary — 224

Exercises — 226

Multiple-choice questions — 226

Fillin the tables — 229

Programming exercises — 233

Files: operations on external data — 235

Introduction — 235

Concept of files — 236

Binary files — 236

Text files — 237

File termination mark and end-of-file checking function — 237
Operation flow of files — 238

Data communication between internal and external memory — 239
Operations on files using programs — 241

Opening files — 241

Reading and writing — 243

Closing files — 248

Random access — 249

Discussion on file reading and writing functions — 251

Case 1: fprintf and fscanf — 251

Case 2: fwrite and fread — 252

Case 3: fprintf and fscanf — 253

Case 4: fwrite and fscanf — 254

Debugging and 1/0 redirection — 254

X —— Contents

5.7.1
5.7.2
5.7.3
5.8

5.9

5.9.1
5.9.2
5.9.3

Code template 1 Using fscanf and fprintf — 255
Using freopen function — 255

Code template 2 Using freopen function — 256
Summary — 257

Exercises — 259

Multiple-choice questions — 259

Fillin the tables — 261

Programming exercises — 262

Appendix A Adding multiple files to a project — 265

Appendix B Programming paradigms — 273

Appendix C void type — 285

Index — 287

1 Arrays

Main contents
— Concept, usage, and available methods of arrays
— Introduction of representation and nature of arrays through comparison between array/
array elements and plain variables
— Storage characteristics and debugging techniques of arrays
— Programming techniques of multidimensional arrays
— Top-down algorithm design practices

Learning objectives
— Know how to define and initialize arrays as well as how to access array elements
— Be able to define and use multidimensional arrays
— Know how to deal with character arrays

1.1 Concept of arrays

Program statements and data construct programs. They are sequences of instruc-
tions created through algorithm design that conform to program control structures.
However, are we able to solve all problems after learning statements, basic data
types, program control structures, and algorithm implementation methods of C?

Let us look at a few problems in practice.

1.1.1 Processing data of the same type

Case study 1 Cracking Caesar code

Mr. Brown received an email from his son Daniel. However, the contents seemed a
little weird for an email sent by someone in elementary school: it was a meaningless
sequence “lettc fmvxlhec hehhc pszi csy”.

It later turned out that Daniel read a story of Julius Caesar and created an en-
crypted email using Caesar code to see whether his father could decrypt it.

During Roman times, Caesar invented the Caesar code to protect the information
he exchanged with his generals on the front line from being intercepted by enemy
spies. Encryption and decryption of Caesar code were done by shifting letters by a fixed
number of positions. The plaintext alphabet was shifted forward or backward by a fixed
number of positions to create the ciphertext alphabet. The number of positions shifted
was the key for encryption and decryption of Caesar code, as shown in Figure 1.1.

https://doi.org/10.1515/9783110692303-001

https://doi.org/10.1515/9783110692303-001

2 — 1 Arrays

| Encryption and decryption of Caesar code

plaintext LT ciphertext i plaintext
Hello Right shift Khoor Left shift Hello
by 3 by 3
positions positions

Figure 1.1: Encryption and decryption of Caesar code.

Mr. Brown stared at the ciphertext and thought that it would not be hard to design
an algorithm to solve the problem. He could simply shift each character in the ciphertext
by one position in the alphabet and repeat this process 26 times to list all possible plain-
texts, in which the one that is not nonsense would be the real plaintext. A universal al-
gorithm could be designed using this technique to crack ciphertexts of arbitrary length.

— If the length of the ciphertext is 2, we shift letters by one position in the alpha-
bet each time and list all 26 possible plaintexts.

— If the length of the ciphertext is 10, we shift letters by one position in the alpha-
bet each time and list all 26 possible plaintexts.

— If the length of the ciphertext is 100, we shift letters by one position in the al-
phabet each time and list all 26 possible plaintexts.

Think and discuss Necessary variables in password cracking

1. How many variables are necessary for a program to handle 100 characters?

2. How should we use these variables so that the program handles data in a convenient and
unified manner?

Discussion: Solving a problem with computers involves two major steps: first, we should use
reasonable data structures to describe the problem to store data into computers; second, we
create algorithms to solve it. To answer the earlier questions, we need to find a mechanism that
describes variables of the same type and handles them consistently.

Code implementation of the algorithm that solves Caesar codes is rather complicated,
so we shall introduce it later. Before that, let us consider a reversed order problem
that is more trivial.

Case study 2 Reversing 100 numbers
Write a program that reads 100 numbers and outputs them in a reversed order.

We are going to focus on how to handle variables of the same type. For a sim-
pler description, we use variables with subscripts to represent the numbers, as shown
in Figure 1.2.

1.1 Concept of arrays =—— 3

| Reversing 100 numbers

We need a way to
represent variables of
the same type so that
they can be processed
consistently

Figure 1.2: Representation of 100 variables of the same type.

The flow of outputting 100 numbers backward is given in Figure 1.3. The pro-
gram reads the numbers in a loop starting from X;, and outputs them using a loop
starting from X;qo.

for(i=1; i<=100; i++) Input x; ;
I
for(i=100; i>=1; i--) Output x;;

X; varies with i, X;
is represented as
x[i] in programs N

Il

oO
End

Figure 1.3: Flow of outputting numbers backward.

Variable X; is uniquely identified by the value of i. We use x[i] to represent X; in
programs so we can type the names using keyboards.
The code implementation is as follows:

01 int main(void)

02 {

03 inti;

04 int x[10017;

05 for (i=1; i<=100; i++) scanf ("%d", &[i]);
06 for (i=100; i>=1; i--) printf ("%d", x[i]);
07 returno;

08 }

On line 4, the statement defines 100 variables with subscripts of type int. It is more
convenient to “batch” define variables of the same type.

It is worth noting that the starting subscripts on line 5 and line 6 do not follow
the convention of using C arrays exactly.

4 —— 1 Arrays

Subscripts of arrays start from 0 in C. Here, we are trying to make the flow more
intuitive by not following this rule.

Case study 3 Simple table processing

Write a program that calculates the average grade of a student in six courses.
Figure 1.4 shows how to store grades and pseudo code of the algorithm. To

store grades, we use six variables, namely grade O to grade 5. On line 1 of the

pseudo code, int grade[6] defines 6 int variables. Note that the number of variables

is 6, but the range of subscripts is O to 5.

| Simple table processing

Course1| Course2 | Course3| Course4 | Course5| Course6 | Average
80 82 91 68 77 78

0 1 2 3 4 5
grade[i] | 80 82 91 68 77 78

Pseudo code

Store grades in int grade[6]
Total score total = 0; Counter i = 0;
whilei<6

total= total+gradeli];

i++;

Average=total / 6

Figure 1.4: Simple table processing.

We use a while loop to add each gradel[i] to total grade total. The value of i increases
in each iteration so that all variables are handled.

It is clear that the algorithm is trivial as long as we find a way to store and rep-
resent data of the same type. This also shows that the way data are organized and
represented is a crucial issue when solving problems with computers.

Case study 4 Complex table processing
Suppose there are four students, all of which take the same six courses. Write a pro-
gram that calculates average grades for each of them.

The only difference between this problem and the one earlier is the number of
grades. As shown in Figure 1.5, we can use a two-dimensional table to store data.
Its row index and column index uniquely identify a grade. For example, the grade
in row 1 column 2, whose value is 82, can be represented by grade[1][2].

1.1 Conceptofarrays —— 5

| Complex table processing

1D Coursel | Course2 | Course3 | Course4 | Course5 | Course 6 | Average
1001 80 82 91 68 77 78
1002 78 83 82 72 80 66
1003 73 50 62 60 75 72
1004 82 87 89 79 81 92
Grade of student 1 irlcourse 2is
/— grade[1][2]=82
gradelil[j] | j=0 | j=1 | j=2 }/j=3 | j=4 | j=5
i=0 80 82 91 68 77 78
[Rowi | =1 78 | 83 | ()] 72 [80 | 66
i=2 73 58 62 60 75 72
i=3 82 87 89 79 81 92

Figure 1.5: Complex table processing.

We can use a for loop to process grades for a single student and use another
one to calculate average grades for all of them. The algorithm and code implemen-
tation will be given in the section of two-dimensional arrays.

1.1.2 Representation of data of the same type

The discussion earlier showed that a new mechanism is necessary to handle data of
the same type. With respect to data representation and processing, arrays are a
data structure that regularly expresses data so that they are processed regularly.
Since arrays are collections of variables whose names have a pattern, they are sup-
posed to have features of variables. Figure 1.6 compares arrays with plain variables.

Plain variable Array Notes

« Memory is allocated upon

To be determined, but it should definition

Definition type name; con‘5|sts of: type, name, number of | Size of memory allocated is
variables . -
determined by variable type
. . Each storage unit of an array
Quantity | One Multiple B
Storage has the same size
unit Length sizeof(type) sizeof(type)* number of variables Length is measured in bytes
Address | &name To be determined
Referencing method | name name[index]

Initialization

type name=value

To be determined

It is easier to process in
programs if variables are
initialized

Figure 1.6: Comparison of a group of variables with a single variable.

6 — 1 Arrays

During the definition of a plain variable, the system allocates memory according to
its type specified by programmers. The definition of an array consists of type, name
and, in particular, the number of variables in the array.

There are multiple variable values in an array, so they should be stored in mul-
tiple storage units, whose sizes depend on types of the variables. The size of a stor-
age unit is measured in bytes and can be computed using the sizeof operator.

Besides, a referencing method of the address of a storage unit is necessary so
that programmers can inspect the unit.

We can infer from the examples earlier that the referencing method of variable
values in an array is to use the array name with an index.

Moreover, we should be able to initialize an array since we can do the same
with plain variables. Hence, a corresponding syntax is necessary.

1.2 Storage of arrays

There are four issues related to array storage, namely definition, initialization, mem-
ory allocation, and memory inspection.

1.2.1 Definition of arrays

1.2.1.1 Definition of arrays

An array is a collection of data of the same type. Figure 1.7 shows how to define an
array, where a definition is constructed by a type identifier followed by an array
name and multiple constants inside square brackets. Each constant indicates the
number of variables in the corresponding dimension.

An array is a collection of data of the same type. 4 Meﬁo\ry is allocated

upon definition, which
“~ remains unchanged ~_ /
| during execution

/

type name [constant 1][constant 2] [constant n]; |- N

Definition Type NErmE N‘umbel_' of Num‘ber of Memory size
dimensions| variables
int x[100] int X 1 100 100* sizeof(int)
char c[2][3] char ¢ 2 2*3 2*3* sizeof(char)

Figure 1.7: Definition of arrays.

1.2 Storage of arrays = 7

In the figure above, the first row defines a one-dimensional integer array x with 100
variables. To compute the size of its memory space, we can obtain the size of its
type using the sizeof operator and multiply it with the number of variables. The second
row defines a two-dimensional character array with two rows and three columns. In
other words, it has six variables in total. The array name is c.

1.2.1.2 Reference of array elements

C uses a special term for variables in an array: array elements. An array element is
used in the same way as a single variable. To reference an array element, we use
the array name suffixed by an index wrapped in square brackets.

Think and discuss Do contents inside square brackets in an array definition and an element ref-
erence refer to the same thing?

Discussion: The index of an array element is a numerical expression, which indicates the posi-
tion of the element in an array; the object inside square brackets in an array definition has to
be a constant, which indicates the number of elements in the corresponding dimension. It is
worth noting that the number of elements must not be a variable. Like plain variables, arrays
obtain memory space from the system during array definition. The size of the allocated space
does not change during execution once the array is defined. Such a way of memory utilization
and management is called static memory allocation. On the other hand, C also provides “dy-
namic memory allocation,” which will be introduced in examples in chapter “Functions”.

Indices of array elements in C must start from 0. Accessing an array out of bound leads to a
logic error, but it is not a syntax error.

For example, the one-dimensional array x defined in Figure 1.8 has 100 elements with an
index range 0 to 99. If we try to access an element outside this range, we are accessing the
array out of bound. Grammatically, it is equivalent to using undefined variables.

Array elements

An array element is a variable with subscript in an array.
Array elements are used in the same way as variables.

Do contents inside
square brackets in an
array definition and in an
element reference refer
to the same thing?

Referencing syntax

name [index 1] [index 2] [index n]

Array indices

Array indices should be numerical expressions; they start from
0; programmers should not access indices that are out of bound

E.g.

Definition Index range Correct usage Out of bound examples

intx[100] [0]~[99] x[0], x[6], x[99] x[-1],x[100]

Figure 1.8: Array elements and their referencing rules.

The reason that out-of-bound errors are not syntax errors is that the compiler will not check whether
the index is valid. As a result, programmers should take care of indices when using arrays.

8 — 1 Arrays

Knowledge ABC Index out-of-bound errors

An index out-of-bound error happens when accessing an array element whose index does not
fall in the predefined index range. C compilers seldom check whether indices are valid. Accessing
an index that is out of bound leads to the following issues.

First, although reading an out-of-bound element does not change values in memory, the cal-
culation that uses this value will generate wrong results.

Second, writing to an out-of-bound element does change values in memory. If the memory
units we write to contain values of other variables, the program may also generate wrong re-
sults. Furthermore, it is tough to debug in this case, since we do not know when the modified
value gets referenced.

An index out-of-bound error may occur in arrays and pointers that point to arrays. It is one of
the most common mistakes that beginners may make, so we should be careful when using arrays.

Having learned how to define arrays and how to reference array elements, we can
complete the program for number reversing problem.

01 int main(void)
02 {
03 inti;
04 int x[1001]; // Array definition
//x[i] references array elements, the index is an expression
05 for (i=0; i<100; i++) scanf ("%d", &[i]);
06 for (i=99; i>=0; i--) printf ("%d", x[i]);
07 returno;
08 }

Line 4 contains definition of an array. Note how we reference array elements on line
5and line 6.

Indices in square brackets on line 5 and 6 are variables, which are special forms
of expression. They start from 0 and end at 99.

Grammatically, the index of an array element should be a numerical expression
and the index of the first element of an array must be 0.

1.2.1.3 Storage characteristics of arrays
The system allocates contiguous memory space to an array based on its defini-
tion, so the storage characteristics can be summarized as “memory is allocated
during definition, the size keeps unchanged during execution, and elements are
stored continuously”.

Figure 1.9 shows an array definition written by a student. Will the memory be
allocated to array a in this case?

Array memory space

memory is allocated during definition, the size keeps unchanged

1.2 Storage of arrays =—— 9

during execution, elements are stored continuously

— (7 T

int x;
int a[x];

int x=100;

int a[x];

4/ Will memory be
allocated to array

C)
3@?? ~ ain this case? >/

>

\\
A

\7 s - /'L,/

Figure 1.9: Storage characteristics of arrays.

1.2.1.4 Comparison of variables of the same type with plain variables

With the rules of arrays in C, we can update the table in Figure 1.6 and obtain

Figure 1.10.
Plain variable Array Notes
Number of dimensions
1 Definition type name; type name [constant]...[constant] of an array is equal to
number of indices
2 Name Variable name Array name Identifiers
. Array elements are of
3 Variable One A group the same type
Quantity One Multiple Elements in an array
i . i are stored
4 Store_xtge Length sizeof(type) sizeof(type) * number of variables consecutively
uni
Allocated by the
Address &name name system
5 | Referencing method name name[index]...[index]

6 Initialization

type name=value

type name[constant] ...[constant]
= { a group of initial values}

Number of dimensions
of an array is equal to
number of indices

Figure 1.10: Comparison of arrays with plain variables.

(1) Number of dimensions of an array is determined by the number of indices, that
is, the number of pairs of square brackets. The constant in square brackets indi-

cates the number of elements in an array.
(2) Array names are identifiers.
(3) Values of array elements are of the same type.

(4) When allocating memory space for an array, C allocates a continuous space for
all elements and defines that the array name refers to the beginning address of

the memory allocated. In other words, array names are addresses.
(5) Array elements are accessed by array name with index.

(6) Initialization is done during definition. The syntax of initialization requires curly

brackets.

10 —— 1 Arrays

1.2.2 Initialization of arrays

We can modify the keyboard input part in the code implementation of the number
reversing problem so that the array is initialized with values. The revised program
is as follows:

01 int main(void)

02 {

03 inti; //Defines anarray and initializes array elements
04 intx[101={1,2,3,4,5,6,7,8,9,10};

05 //for (i=0; i<10; i++) scanf ("%d", &[i]);

06 for (i=9; i>=0; i--) printf ("%d", x[i]);

07 returno;

08 }

Statement on line 4 defines the array and initializes array elements, so the keyboard
input assignment can be skipped.

What is the advantage of initializing an array? If we have to debug the program
multiple times, it is more efficient to initialize the array than typing in numbers
repeatedly.

Array initialization defines an array and initializes its elements at the same time.
There are three ways to initialize an array in C, as shown in Figure 1.11.

Array initialization

An array initialization defines an array and initializes its elements at the same time

@ Case Example Array Notes

size

int m[5]= {1,3,5,7,9} 5

1 Initialize all elements . A 2-d array is stored in a
int a[2][3] = { {1,3,5}, {2,4,6}}; 2by3 | w-first n;/anner

int b[5] = {1,3,5} 5 Uninitialized elements are
2 | Initialize some elements set to 0 automatically by
intx[100]1={1,3,573; 100 the system
.) int n[]={1,3,5,7,9} 5
3 Array size determined by - — o
number of initial values char ¢[] ="abcde”; 6 String termination mark *\0

is also an element

Figure 1.11: Array initialization.

1.2.2.1 Initialize all elements
In the first case in Figure 1.11, the one-dimensional array m has five elements and
five values are assigned to the array. The two-dimensional array a has two rows and

1.2 Storage of arrays —— 11

three columns, so it consists of six elements. Note that how curly brackets are used
when assigning all six values.

1.2.2.2 Initialize some elements

In the second case, the length of array b is 5, but only the first three elements are
initialized with a value. The other elements are automatically initialized with 0 by
the C language system.

1.2.2.3 Array size determined by number of initial values

We can omit the array size in square brackets when defining arrays. The size can be
determined by the system based on the number of initial values. In particular, C al-
lows us to assign initial values to character arrays with strings. Note that the string
termination mark ‘\0’ is an element as well.

1.2.3 Memory layout of arrays

We will introduce the memory layout of arrays through examples.

1.2.3.1 Memory layout of one-dimensional arrays

A one-dimensional array x of size 100 is defined in Figure 1.12. Indices start from 0
and end at 99. The first four elements are initialized with initial values, while the
rest are 0. These elements are stored contiguously in the order of index, that is,
from x[0] to x[99].

C defines that array elements
are stored consecutively in
the order of indices

intx[1001={1,3,5,7};

Index 0 1 2 3 4 i 98 99
Element value 1 3 5 7 0 0 0 0 0 0
Element storage order | x[0] | x[1] | x[2] | x[3] | x[4] x[i] x[98] | x[99]

Figure 1.12: Memory layout of one-dimensional array.

1.2.3.2 Memory layout of two-dimensional arrays
As shown in Figure 1.13, two-dimensional array a has two rows and three columns.
Its elements are stored in a row-first manner.

The Oth row is initialized with 1, 3, and 5, while the first row is initialized with 2,
4, and 6. The Oth row is stored first, followed by the first row. Note that a[0] denotes

12 — 1 Arrays

‘ int a[2][3]={ {1,3,5}, {2,4,6} };
0 1 2

ao]— ol 1 [3 | s
a[l] - 1 2 4 6

C defines that the 1 _
dimensional form of a 2 _
dimensional array
denotes “row addresls”

0O
Row address a[0] al[l]

Stormae arder | 3101001 | a[0J[1] | a0](2] | a[1](0] | a[1][1] | a[1](2]

Element value 1 3 5 2 4 6

Figure 1.13: Memory layout of two-dimensional array.

the beginning position of the Oth row and a[1] denotes the beginning position of the
first row.

C defines that the one-dimensional form of a two-dimensional array which de-
notes “row address”.

1.2.4 Memory inspection of arrays

With the help of IDE, we can inspect how arrays are stored in the memory. We shall
start from cases where arrays are initialized. The program is as follows:

01 //Use an initial value list to initialize arrays
02 #include <stdio.h>

03 int main(void)

04 {

05 //Useaninitial value list to initialize arrays
06 intm[5]={1,3,5,7,9};

07 intn[1={2,4,6,8};

08 intx[8]1={1,3,5,7};

09 char c[1="abcde";

10 intal2][3]1={{1,3,5}, {2,4,6}};

11 inti, j;

12

13 //Output 1-dimensional array mas a list
14 printf("1-dimensional array m[51\n");
15 printf("%s%13s\n", "Element", "Value");
16 for (i=0;i<5; i++)

17 {

18 printf("%6d%13d\n", i, m[i]);

19 3%

20 printf("\n");

21

1.2 Storage of arrays =— 13

22 // Output 2-dimensional array mas a list
23 printf("2-dimensional array al2]1[31\n");
24 for (i=0; i<2; i++) //Row index range

25 {

26 for (j=0; j<3; j++) //Column index range
27 {

28 printf("%d ", alil[j]1);

29 3}

30 printf("\n");

31 3}

32 returno;

33 }

On line 6, we define an integer array m of size 5 and initialize it. If we type in the
array name m in the Watch window, we can see the beginning address of the array
and values of each element, as shown in Figure 1.14.

]
[value

[Name [value Name [Value c 0x0018Feed
m__ 0x0018ff34 n__ 0x0018Ff24 oo
[0] 1 [0] 2 0] 97 a
1.3 (1] 4 (1] 98 b’
[21 5 2] l6 [2] 99 ‘o'
3 7 (3 8 (3] 100 'd’
L4 [4] 101 ‘e’
—I[8]1 0"
a jo
|value | TTae]
X 0x0018feec a 0x0018ff0c . . .
[0] 1 [0] 0x0018ff0c Strlng termln_at|on
(1.3 %[011 mark \'0’ is
[2] 5 (113 B
31 7 215 _automat|cally
[4] 0 [1] 0x0018ff18 inserted by the
[5] 0 [o] 2 system
[6] O [1] 4
[71 0 216

Figure 1.14: Inspecting memory of array 1.

On line 7, we define an integer array n without specifying the size and initialize it
with four initial values. We can see that 4 memory units are allocated to it.

On line 8, we define an integer array x of size 8 and partially initialize it. It is
clear that the uninitialized elements are set to 0 by the system.

On line 9, we define a character array c without specifying the size and initialize
it with a string of five characters. The system allocates six storage units, where the
last one has value 0. This is the string termination mark inserted by the system
automatically. It also takes up one storage unit.

On line 10, we define a 2 by 3 two-dimensional array a and initialize it. Each row
of the array has a beginning address, where the address of the first row is also the
beginning address of the entire array.

14 — 1 Arrays

On line 15, the table header is printed.

On lines 16-19, we use a for loop to output index i and corresponding array
elements mli].

Program result:

1-dimensional array m[5]

Element Value

0 1

1 3

2 5

3 7

4 9
2-dimensional array a[21[3]
1 3 5

2 4 6

Knowledge ABC Differences between ‘\0’, ‘0’, “0” and 0 in C

Characters are stored as their ASCII values in C. Each character takes up 1 byte. The first value
in the ASCII table is 0, which corresponds to character Null, namely \0’. It is used as the termi-
nation mark of strings and is inserted to the end of strings automatically by the system.

Character ‘0’ has ASClI value 48 or 0 x 30 in hexadecimal form. To convert a number into the
corresponding character in a program, for example, converting number 8 into character 8, we
can write 8+‘0’ in the code.

The character ‘0’ is a character literal, while number 0 is an integer literal. They are different
objects and are stored in different ways in computers. Character literals can be used as integers
in computation.

The difference between “0” and ‘0’ is that “0” is a string literal while ‘0’ is a character literal.
They are completely different. Character literals are wrapped by single quotation marks while
string literals use double quotation marks. A character literal has to be a single character, while
a string literal can have more than one character.

The output of two-dimensional array a is implemented by two for loops.

On line 24, the first for loop iterates through row index i, which has range 0 to 1.

On line 26, the second for loop iterates through column index j, which has range
Oto 2.

In Figure 1.15, we can see that j traverses the range 0 to 2 when i is 0, and tra-
verses the range again when i is 1.

0 1 2 Row i 0 1
a[o] =] 0| 1 3 5 Coumnj| 0 | 1 | 2] 0| 1]2
a[i]—| 1| 2 4 6 aliljl | 1 [3| 5] 21| 4

Figure 1.15: Inspecting memory of array 2.

1.2 Storage of arrays —— 15

When defining an array, the system allocates contiguous memory space to
store its elements based on the array type and number of elements. It is shown in
the Memory window that int n[4] takes up a continuous block of memory with
size 4*4 bytes (in a 64-bit compiling environment, type int takes up 4 bytes,
which can be verified by subtracting addresses of two array elements), as illus-
trated in Figure 1.16.

Memory Address | Value Variable
Address: |oxisfl2a | 18FF24 2 n[0]
0018FF24 02 00 00 00 | 18FF28 | 4 n1]
0018FF28 04 00 00 00

0018FF2C 06 00 00 00 | 8FF2C | 6 n(2]
0018FF30 08 00 00 00 | 18FF30 | 8 n[3]

Figure 1.16: Continuous storage of a one-dimensional array.

Similarly, int a[2][3] takes up a continuous block of memory with size 6*4 bytes, as
shown in Figure 1.17.

Row | Address | Value | Variable | Row address

Memory

18FFOC 1 a[0][0]
Address: |0x18fi0c 18FF10 3 [0]01] a[0]
0018FFOC 01 00 00 00 | Row©O a 18FFOC
0018FF10 03 00 00 00 18FF14 | 5 | a[0][2]
0018FF14 05 00 00 00 18FF18 | 2 | a[l][0]
0018FF18 02 00 00 00 TBFFIC e a[1]
0018FF1C 04 00 00 00 | oW1 4 | Al | greg
0018FF20 06 00 00 00 18FF20 | 6 | alt][2]

Figure 1.17: Continuous storage of a two-dimensional array.

Note that the array name refers to the address of the entire array, which is also the
beginning address of the array.

With rules of storage and elements referencing, we may now process data in
arrays.

16 — 1 Arrays

1.3 Operations on one-dimensional arrays

Example 1.1 Highest score problem

1. Problem description

In the scoring problem we have seen before, there was a step where the highest score was dis-
carded. This is equivalent to finding the maximum of a series of numbers.

2. Algorithm description

We have seen this problem in section “representation of algorithms”, where the scores were
read from keyboard input. Now we can store scores given by referees in an array score[10]. The
algorithm can then be updated accordingly, as shown in Figure 1.18.

Top-level pseudo code First refinement Second refinement
Counter i=0;

Use score[0] as Largest
Largest=score[0];

Find the highest one of . while counter i< 10;
scores stored in array Compare each element in if(Largest < score[i])

score[10 array score with Largest, _ L
[10] Store the larger in Largest; Largest=score[i];
i increases by 1;

Output Largest Output Largest;

Figure 1.18: Eliminating the highest score using an array.

In the second refinement, a counter i is used to record the number of comparisons. Variable
Largest is initialized with score[0]; then, Largest is compared with score[i] repeatedly and up-
dated with the larger value in the loop body. Once the loop is done, Largest is printed.

3. Code implementation

01 //Finding the maximum number in an array
02 #include <stdio.h>

03 #define SIZE 10

04
05 int main(void)

06 {

07 int score[SIZE]

08 ={89,92,97,95,90,96,94,92,90,98};

09 inti; //Counter

10 int Largest =score[0]; //Initialize Largest with score [0] as a comparison basis
11 for (i=0; i <SIZE; i++)

12 {

13 if (Largest <score[il])

14 Largest=score[i]; //Find the maximum

15 3}

16 printf("The highest score is %d\n", Largest);

17 returno;

1.3 Operations on one-dimensional arrays —— 17

Program result:
The highest score is 98

Note: the score array is initialized on line 8 so that testing becomes easier.

On lines 11-15, the for loop finds the largest value and stores it in variable Largest.

Based on this program, it is trivial to write a program that finds the minimum number. Now we
can discard both the highest score and the lowest score by replacing them with 0.

4. Debugging
One should carefully design test cases for inspection or verification. Critical points in the de-
bugging of the earlier program are shown in Figure 1.19.

Debugging
plan

11 for (i= 0; i< SIZE; i++)

12 {
— Inspect memory layout of 1-d array . .
— Reference of array elements ii. iy (t:g:z:sfg?gﬁgl-])
- kpoi fi i | ickl - g
Use breakpoints to find required values quickly e o
15 b

Figure 1.19: Debugging the “eliminating highest score” program.

Figure 1.20 shows the score array in the Watch window. There are 10 elements, each of which
are initialized with an initial value. The maximum value Largest is initialized with the value of
score[0], which is 89.

; . Vanh ii
#lnc!ude <{stdio. h> Name [Value
#define SIZE 10 Bscore 0x0018ff20
}nt main(void) E E?% gg

int score[SIZE] - 2] 2/

={89, 92,97, 95, 90, 96, 94,92, 90,98} ; | [[3] 95

int i; - [4] 90

int Largest =scorel[0]; - [5] 96

= for (i =0; i <SIZE; i++) - [6] 94

- [7] 92

if (Largest < scorelil) ~ [8] 90

Largest=scorel[il; A 98

} Largest 89
return 0;

Figure 1.20: Memory inspection of a one-dimensional array 1.

In Figure 1.21, the condition of if statement in the for loop evaluates to false when i=0, so
Largest keeps unchanged.

18 — 1 Arrays

1

Figure 1.21: Memory inspection of a one-dimensional array 2.

#include <stdio. h>
#define SIZE 10

int main(void)

int score[SIZE]

={89, 92, 97, 95, 90, 96, 94, 92, 90, 98} ;

int i; .

int Largest =score[0];

'I;or (i =0; i <SIZE; i++)

if (Largest < scorelil])
Largest=scoreli];

}

return 0;

Iﬁ

In Figure 1.22, i becomes 1 after increment and score[1] = 92.

#include <stdio. h>
#define SIZE 10

int main(void)

1

Figure 1.22: Memory inspection of a one-dimensional array 3.

int score[SIZE]
={89, 92, 97, 95, 90, 96, 94, 92, 90, 98} ;

int i;
int Largest =score[0];
'Eor (i =0; i <SIZE; i++)

if (Largest < scorelil)
Largest=scorelil];

}

return 0;

Name |Value
B score 0x0018ff20
~- [0] 89
- [1] 92
- [2] 97
- [3] 95
- [4] 90
~- [5] 96
- [6] 94
- [7] 92
- [8] 90
— [9] 98
Largest 89
i 0
scorel[i] 89
H
Name IValue
B score 0x0018ff20
~ [0] 89
- [1] 92
- [2] 97
=~ [3] 95
~ [4] 90
~ [5] 96
~ 6] 94
= [7] 92
- [8] 90
— [9] 98
Largest 89
i 1
________ scoreli] 92

1.3 Operations on one-dimensional arrays =— 19

In Figure 1.23, Largest becomes 92 when i =1.

#include <stdio. h>
t#tdefine SIZE 10

int main(void)

int score[SIZE]

={89, 92, 97, 95, 90, 96, 94, 92, 90, 98} ;
int i;

int Largest =score[0];

for (i =0; i <SIZE; i++)

=3 if (Largest < scorelil)
| Largest=scorelil;
return 0;

Figure 1.23: Memory inspection of a one-dimensional array 4.

Watch [< |
Name]\'alue
B score 0x0018ff20
~ [o] 89
[1] 92
(2] 97
[3] 95
~ [4] 90
- [5] 96
- [6] 94
(7] 92
[8] 90
[9] 98
Largest 89
i 1
scorel[i] 92

In Figure 1.24, we insert a breakpoint in the line pointed by the yellow arrow to inspect pro-
gram execution conveniently. Using the Go command, we can interrupt the program at this
statement whenever the condition of if statement evaluates to true. Here i =2 and score[2] has

value 97, which is larger than the value of Largest, 92.

#include <stdio. h>
#define SIZE 10

int main(void)

int score[SIZE]
={89, 92, 97, 95, 90, 96, 94, 92, 90, 98} ;
int i;
int Largest =score[0];
‘;or (i=0; i <SIZE; i++)
if (Largest < scorelil)
S | } Largest=score[il;

return 0;

}

Figure 1.24: Memory inspection of a one-dimensional array 5.

Watch [|
Name |Value
B score 0x0018ff20
- [o] 89
- [1] 92
- [2] 97
- [3] 95
- [4] 90
- [5] 96
- [e] 94
[7] 92
- [8] 90
— [9] 98
Largest 92
i 2
__scoreli] 97

In Figure 1.25, we execute the Go command and the program pauses again. Now, i =9 and
score[9] has value 98, which is larger than the value of Largest, 97.

20 — 1 Arrays

S —
atch
#include <stdio.h> s Tretoe
#define SIZE 10 Bscore 0x0018ff20
i{nt main(void) E E?% gg
int score[SIZE] = [2] £
=(89, 92, 97, 95, 90, 96, 94,92, 90,98} ; |~ [3] 95
int i; ~ [4] 90
int Largest =score[0]; - [5] 96
1{‘or (i=0; i <SIZE; i++) - Eb% 94
- [7 92
if (Largest < scorelil) ~ [8] 90
5] Largest=scorel[il; — 9] 98
} - Largest 97
i 9
W __scorelil 98
i
Figure 1.25: Memory inspection of a one-dimensional array 6.
In Figure 1.26, the loop terminates and the final value of Largest is 98.
) Watch =
#include <stdio. h> Name [value
#define SIZE 10 B score 0x0018ff20
i{nt main(void) E E?% gg
int score[SIZE] F Eg% gg
= {89,92,97,95, 90, 96, 94, 92,90, 9§ |
int i; - [4] 90
int Largest =score[0]; - [5] 96
for (i =0; i < SIZE; i++) - Eé% g;
= 4
if (Largest < scorelil) ~ [8] 90
@ Largest=scorelil: — [9] 98
} Largest 98
> . i 10
y DI __scorel[i] 1638280

Figure 1.26: Memory inspection of a one-dimensional array 7.

Example 1.2 Computing total score
Scores given by judges are stored in an array score[10].

[Analysis]

1. Algorithm design

The algorithm is shown in Figure 1.27. Code implementation can be easily adapted from the pseudo
code in the second refinement.

1.3 Operations on one-dimensional arrays =—— 21

Top-level pseudo code First refinement Second refinement
Use total to store the sum ,and | Initialize score[10]
score[10] to store scores Sum total =0;

Compute sum of scores while (i<10)

Add values of elements in score

stored in array score[10
Y [10] to total repeatedly

total += score[i];
i++;
Output result Output total

Figure 1.27: Computing total score.

After eliminating the highest score and the lowest score, we can compute the total score that
complies with the scoring rule.

2. Code implementation

01 //Compute sum of array elements
02 #include <stdio.h>

03 #define SIZE 10

04

05 int main(void)

06 {

07 int score[SIZE]={98,92,89,95,90,96,94,92,90,97};
08 inti; //counter

09 int total = 0; //sum

10

11 for (i=0; i <SIZE; i++)

12 {

13 total +=score[i J; //Compute sum of array elements
14 3

15 printf("The total score is %d\n", total);
16 return9;
17 }

Program result:
The total score is 933

Example 1.3 Number guessing game
An array stores an increasing number sequence 5, 10, 19, 21, 31, 37, 42, 48, 50, 55. Use binary
search to find elements with key values 19 and 66.

[Analysis]

1. Algorithm analysis

Let low denote the position of the minimum value in the searching range, and high denote the
position of the maximum value in the searching range. The comparison position in binary search
is then mid = (low + high)/2. Comparing key value with the element at position mid yields one of
the following results:

- Equal: the element at position mid is what we are looking for.

— Greater: we will look for the element in the lower range by setting low = mid + 1.

— Less: we will look for the element in the higher range by setting high = mid - 1.

22 — 1 Arrays

Figures 1.28 and 1.29 illustrate processes of finding values 19 and 66.

Search for
/ 19
R[] 5 10 (19 |21 |31 |37 |42 |48 |50 | 55
Position 0 1 2 3 4 5 6 7 8 9
low mid high

Now mid=5, R[mid] . key=37> k, we proceed in range R[0...4]

Now mid=2, R[mid] . key=19=k, the search succeeded

R[] 5 110 |19 |21 |31 |37 |42 |48 |50 |55
Position 0 1 2 3 4 5 6 7 8 9
low mid high

Figure 1.28: Binary search: searching for k =19.

Search for
66
R[] 5 110(19(21|31|37|42(48|50|55
Position 0 1 2134 |5|6|7]8]|9
low mid high

Now mid=5, R[mid].key=37<k, we proceed in range R[6...9]

R[] 5110(19(21|31|37|42|48|50 |55
Position o|1|2|3|4|5|6|7|8]|9
low mid high

Now mid=8, R[mid].key=50<k, we proceed in range R[9...9]

R[] 5110(19|21|31|37|42|48|50|55
Position o|1|2|3|4|5|6|7|8]|9
low mid

Now mid=9, R[mid].key=55<k, we proceed in range
R[10...9].Because low>high, the search failed.

Figure 1.29: Binary search: searching for k = 66.

1.3 Operations on one-dimensional arrays =— 23

2. Code implementation
#include <stdio.h>
#define N 10
int main(void)
{
int a[N]={5,10,19,21,31,37,42,48,50,55%};
int low=0, high=N-1,mid;
int key;
int flag=0; //Search flag, 0=fail, 1=success
printf("Please enter number to search:");
scanf("%d",&key);
while (low<=high) //Search range is not empty
{
mid = (lowthigh+1)/2;
if (almid]==key) //Match
{
flag=1;
break;
3
else
{
if (almid]> key) high =mid-1; //Continue searching in lower range
else low=mid+1; // Continue searching in higher range
¥
}
if (flag==1)
printf("Search succeeded, index of %d is %d\n",key,mid);
else
printf("Search failed\n");
return0;

Example 1.4 Assign values to a one-dimensional array using loop
Find the first 20 entries of the Fibonacci sequence.
The Fibonacci sequence is as follows: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . Its recurrence equation is
F(0)=0, F@)=1,
F(n) = F(n-1) + F(n-2)

[Analysis]

1. Data structure design

Since indices and values in the Fibonacci sequence are 1-to-1 corresponded, we can store values
into a one-dimensional integer array, which will be represented by int f[20] in this example.

2. Algorithm design

We shall construct the first 20 entries based on the recurrence equation of the Fibonacci se-
quence, store them into the array and eventually output them.

24 —— 1 Arrays

The algorithm is shown in Figure 1.30.

Top-level pseudo code First refinement

Store result in an array of
size 20 and output result

Second refinement
Initialize array [20] int f[20]={ 0,1}
with the first two values [;_5.
of the sequence !
Fill in the array using while i< 20
the recurrence relation f[i] = f [i-1]+F [i-2];
starting from f[2] i+

Output result

Output elements in array f

Figure 1.30: Computing values of Fibonacci sequence.

3. Code implementation

1 //Find first 20 entries in Fibonacci sequence
2 #include <stdio.h>

3 intmain(void)

4 {

5 inti;

6 int f[201={0, 1}; //Array initialization

7

8

for (i=2; i<20; i++) //Generate the sequence

9 {

10 fLil=f[i-1]+f[i-2]; //Recurrence equation of Fibonacci equation

11 3
12 for (i=0; i<20; i++) //Output array elements
13 {

14 if (i%5==0) printf("\n"); //Print 5 entries on each line

15 printf("%8d", f[il);

16 3}
17 returno;
18 }

Program result:
0 1 1 2 3
5 8 13 21 34
55 89 144 233 377
610 987 1597 2584 4181

4. Program analysis

We shall analyze characteristics of iterated data processing by reading the program.

Lines 8-11 insert values into the Fibonacci array. Let the index be i, which corresponds to
array element f[i]. We can construct a table for them and fill in it with their values, as shown in
Figure 1.31. In addition to dynamic tracing and debugging, a static approach like this can also
help us analyze patterns in program execution. Note that indices start from 0, so the index of

the last element should be one less than the array size.

1.3 Operations on one-dimensional arrays =—— 25

Indexi| 0 | 1|2 |3 |4 |5 | .. | 18] 19 | 20
flil | 0 | 1

Figure 1.31: Analysis of Fibonacci sequence program.

5. Discussion

(1) What if we do not initialize array f?
Discussion: If so, values of f[0] and f[1] will be arbitrary values, so further computation
will be wrong.

(2) How can we construct the Fibonacci sequence of arbitrary size?
Discussion: We can make the array size a symbol constant, so the program can be easily
adapted.

(3) What if we change the execution condition of the first for loop (line 8) to i <20?
Discussion: An out-of-bound error will happen because we are going to write to f[20],
which is not in the range of the array. This is a logic error in the program.

Program reading exercise

Teacher review system statistics

The university Mr. Brown works for has built an online teacher review system, where students
can rate teachers with a score in the range 6-10. Suppose we have randomly collected 50 rat-
ings of a teacher and stored them into an array, please write a program that generates number
of occurrences of each possible score.

1. Algorithm description

Let the ratings array be rating[]. It records number of occurrences of each score. The index i can
be computed by subtracting 6 from score x (6 <x<10), that is, i=x-6, so we can use values
score—6 as indices of the ratings array. Whenever we find a new occurrence of a certain score,
we add one to the corresponding array element.

2. Code implementation

1 #include<stdio.h>

2 #define RESPONSE_NUM 50 //Size of review array

3 #define RATING_SIZE 5 //Size of ratings array
4

5 intmain(void)

6 {

7 int answer; //Counter

8 int counter;

€

10 int rating[RATING_SIZE]={0}; //Rating array

11 int responses[RESPONSE_NUM] //Review array that stores students’reviews

12 ={6,8,9,10,6,9,8,7,7,10,6,9,7,7,7,6,8,10,7,
13 1e,8,7,7,6,7,8,9,7,8,7,10,6,7,6,7,7,10,8,
14 6,7,7,8,6,6,7,8,9,7,7,10

15)3

26 = 1 Arrays

17 //Use score-6 as index of rating array, add 1 to an element if we find new
18 //occurrence of the corresponding score
19 for (answer=0; answer<RESPONSE_NUM; answer++)

20 {

21 rating[responses[answer] -6 J++;
2 3}

23

24 //Print result in a table
25 printf("%s%17s\n","Rating", "Number of occurrences");
26 for (counter=0; counter<RATING_SIZE; counter++)

27 {

28 printf("%6d%17d\n",counter+6,ratingfcounter]);
29 }

30 returno;

31 %

Program result:

Rating Number of occurrences
6 10
7 19
8 9
9 5)
10 7

1.4 Operations on two-dimensional arrays

Having seen operations on one-dimensional arrays, we can proceed to two-dimensional
arrays.

Example 1.5 Finding maximum in a two-dimensional array
There were three groups in Mr. Brown’s class, each with six students. Now that the final exam
has finished, please write a program to find the highest score and the corresponding student.

[Analysis]
1. Data description
As shown in Figure 1.32, we can store the scores in a two-dimensional array.

Essentially, this problem is equivalent to finding the maximum value in a two-dimensional
array with N rows and M columns and its row and column indices. To do this, we can simply
repeat the process of finding the maximum value in a one-dimensional array N times.

Figure 1.33 shows how row and column indices change when traversing the array in a row-
first manner. We first traverse row 0, with column index changing from 0 to M-1. Then we tra-
verse row 1, with column index changing from 0 to M-1 as well. We repeat this process until we
reach row N-1.

1.4 Operations on two-dimensional arrays =—— 27

Group Grade
1 80 77 75 68 82 78
2 78 83 82 72 80 66
3 73 50 62 60 91 72

Figure 1.32: Exam results.

Ry 2lumn 0 1 | 2] 3| 4| s
80 77 75 68 82 78
1 78 83 82 72 80 66
73 50 62 60 91 72

Changes of row and column values when

traversing in a row-first manner

Row i 0 1 N-1

Column j 0~M-1 0~M-1 0~M-1

Figure 1.33: Traversing order of two-dimensional arrays.

2. Algorithm description
Figures 1.34 and 1.35 show the pseudo code of the algorithm.

Top-level pseudo code First refinement

Input 2-d array Input 2-d array
Use the first element as comparison basis max

Find the maximum element and | Compare each element (row-first manner)with max,
its row and column indices Update max with the larger
Record the corresponding indices line and col

Output result Output result

Figure 1.34: Pseudo code of finding maximum value in two-dimensional array 1.

28 — 1 Arrays

Second refinement

third refinement

Input 2-d array a[N][M] in a
row-first manner(or initialize)

inti, j, a[N][M], max, line, col;
for(i=0;i<N;i++)
for(j=0;j<M;j++)
scanf("%d", &a[il[j]);

max=a[0][0]; line=col=0;

max=a[0][0]; line=col=0;

i=j=0;

while row index i<N

for(i=0;i<N;i++)

while column index j<M

for(j=0;j<M;j++)

if (max<a[il[il)

if (max<a[il[j])

max=a[i][j] {
line=i max=al[i][j];
col=j line=i;
j++; col=j;
i++; j=0; ¥

Output max,line and col

printf("\n max=%d\t line=%d\t col=%d\n”, max, line, col);

Figure 1.35: Pseudo code of finding maximum value in two-dimensional array 2.

3. Code implementation

We can write the code based on the second refinement, in which we use for statements to

implement while loops. The complete code is as follows:

01 #include <stdio.h>
02 #define N3

03 #defineM 6

04

05 int main(void)

06 {
07
08
09
10
1 i

12 max=al[0][0];

13 line=col=0;

14 for (i=0; i<N; i++)

15 {

16 for (j=0; j<M; j++)
17 {

18 if (max<alil[jl1)
19 {

20 max=alil[j1;
21 line=i;

22

23 3}
24 }

25 3}

26

int i, j,max,line,col;

col=j;

int a[NJ[M]={ {80,77,75,68,82,78},
{78,83,82,72,80,66},
{73,50,62,60,91,72}

printf("max=%d\t line=%d\t col=%d\n" ,max,line,col);

1.4 Operations on two-dimensional arrays =—— 29

27 returno@;
28 }

Program result:
max=91 line=2 col=4,

4. Debugging
Based on the characteristics of two-dimensional arrays and key points of this problem, we
designed a few test cases for debugging, as shown in Figure 1.36.

18 if(max<alil[j])
plan 200 max=ali][jl;
« Inspect memory layout of 2-d array 21 line=i;
» Pattern of row and column indices 22 col=j;
» Use breakpoints to find required values quickly | | 23 b

Figure 1.36: Key points of debugging the program that finds maximum value in a two-dimensional
array.

One may notice that the row addresses of a two-dimensional array are represented in the form of
a one-dimensional array in the IDE debugger, as shown in Figure 1.37. To traverse the entire array,
we traverse every column for each row. Note that a two-dimensional array is stored row by row in
memory (each row as a one-dimensional array).

Watch [= |

Name [value

Ba 0x0018feec

Row address reference “,[%] géomsfe“
of 2-d array Fnloo77
F [2] 75
0 O - [3] 68
° - [4] 82
—[5] 78

Address | Row | O 1 2 3 4 5 =[] 0%0018F 04
a[0] | Ox18feec 0 80 |77 |75 |68 | 82 |78 E %ﬂ ;g
a[1] | Ox18ff04 1 78 | 83 | 82 | 72 | 80 | 66 - [2] 82
a[2] | oxisffic | 2 | 73|50 |62 |60 01 72| | Bl 2
—[5] 66

Pattern of row and column indices %[%g] %wmfﬂc
- - [1] 50
Row I 0 1 N-1 B30
Column j 0~M-1 0~M-1 0~M-1 - [3] 60
-] 9
—[5] 72

Figure 1.37: Data storage in finding maximum in two-dimensional array problem.

30 — 1 Arrays

As shown in Figure 1.38, we insert one breakpoint to the line where the current maximum
value is updated and to the line where the result gets printed. When the program enters the
first loop, as shown in Figure 1.39, the Oth element of the array is selected as the comparison
basis, whose value is a[0][0] = 80. In Figure 1.40, the program pauses after we execute the Go
command. The value of the element with index i =0 and j =4 is 82, which is larger than max.

#include <stdio. h> ‘ ‘
#define N 3 I — a
#define M 6 Ba 0x0018feec
int main(void) = [0] 0x0018feec
- [0] 80
int i, j,max, line,col; - [1] 77
int a[N][MI= { {80,77,75,68,82,78}, - [2] 75
{78, 83, 82, 72, 80, 66}, - [3] 68
— [5] 78
max=a[0] [0]; line=col=0; = [1] 0x0018ff04
= for (i=0;i<N;i++) - [0] 78
{ - [1] 83
for (j=0; j<M; j++) - 2] 82
if (max<alilljl) B ?% ;g
® max=ali][j];line=i;col=j; — L5 66
} ’ Pl 0x0018ff1c
} ~ [0] 73
} - [1] 50
@ printf ("\n max=%d\t |ine=%d\t col=%d\n] [2] 62
return 0; - [3] 60
1 - [41 91
— [5] 72
Figure 1.38: Debugging the program that finds maximum in two-dimensional array 1.
Tor (i=0;i<N; i++) Watch a
—n. L Name Value
"Eor (J_01J<My J++) max 80
B> if (max<alilljl) ?['][J] SO
max=ali][j]l;line=i;col=j; J 50
} :

Figure 1.39: Debugging the program that finds maximum in two-dimensional array 2.

1.4 Operations on two-dimensional arrays =— 31

1Eor (i=0; i<N; i++)
‘IEor (j=0; j<M; j++)
if (max<alil[jl)

D max=alil[jl;line=i:col=j];

}

Figure 1.40: Debugging the program that finds maximum in two-dimensional array 3.

Watch [= |
Name Value

max 80

alillj] 82

i 0

j 4

In Figure 1.41, the program pauses after we execute the Go command. The value of the element

with indexi=1and j=1is 83, which is larger than max.

'IEOI' (i=0;i<N;i++)
for (j=0; j<M;j++)
if (max<alilljl)

D max=ali][j];line=i;col=j;

}

Figure 1.41: Debugging the program that finds maximum in two-dimensional array 4.

Watch -‘
Name Value

max 82

alillj]l 83

i 1

j 1

In Figure 1.42, the program pauses after we execute the Go command. The value of the element

with index i=2 and j= 4 is 91, which is larger than max.

1{’or (i=0; i<N; i++)
1Eor (j=0; j<M; j++)
if (max<alilljl)

D max=ali][j]l;!ine=i;col=j;

}

Figure 1.42: Debugging the program that finds maximum in two-dimensional array 5.

Watch - |
Name Value

max 83

alil][jl 91

i 2

] 4

In Figure 1.43, the program completed scanning the array, and the loop is terminated. Now, i=3,

j=6, and the maximum value of the array is max = 91.

32 — 1 Arrays

for (i=0;i<N;i++) oS o
[for (j=0; j<M; j++) Nammeax ‘;‘;“"
{ if (max<alilljl) ?[i][j] ;1199033
® max=ali][j]; line=i;col=j; || J 6
} :
2 Lrintf("\n max=hd\t |ine=hd\t col=%d\n

Figure 1.43: Debugging the program that finds maximum in two-dimensional array 6.

Conclusion Execution order of nested loops

As shown in Figure 1.44, C has the following rules for executing nested loops:

1. Check the outer loop execution condition: if it is met, the body of the outer loop is exe-
cuted; otherwise, the outer loop is terminated.

2. Check the inner loop execution condition: if it is met, the body of the inner loop is exe-
cuted; otherwise, the inner loop is terminated, and the program proceeds to loop incre-
ment of the outer loop.

Program reading exercise Whac-A-Mole
Whac-A-Mole is a classic computer game, in which moles pop up from holes at random. Players
need to force them back to their holes and obtain rewards by using a mallet to hit the moles on the

head.
Outer loop
condition
P i
1 for(i=0;i< N;i++)
2 {
3 for(j=0;j< M;j++)
4 { T
5 i (ma><<_a[|]_[]]_). G Inner loop body
6 { max=alill[jl; | Inner loop
7 line=i; loop |
. Inner loop
8 col=j;} increment
9 >
10 |} Outer loop
increment

i

Figure 1.44: Execution order of nested loops.

1.4 Operations on two-dimensional arrays =—— 33

1. Algorithm description

The program uses random functions srand and rand to generate positions at which moles ap-
pear. The following Whac-A-Mole program has a 3 by 3 “ground” and treats user input coordi-
nates as positions the mallet hits. Although it is a console program and has a simple user
interface, the way it works is the same as a Whac-A-Mole game with beautiful graphics.

2. Code implementation
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
//To simplify the code, we omitted curly brackets for some of the if-else statements
int main(void)
{
int times =0; //Number of chances
int mousey =0; //Row index of the mole
int mousex =0; //Column index of the mole
int posy = 0; //Row index of the mallet
int posx = 0; //Column index of the mallet
int hits =0; //Number of hits
int missed =0; //Number of misses
int num=0, row=0, col =0;
srand(time(0));
//0Obtain game chances
printf("How many times do you want to play? : ");
scanf("%d", ×);
//Print the map
printf("x*x\nx*x\n*xx*\n");
printf("Mallet position input should be row index followed by column index, separated by
space\n");
//Actual game process
for (num=1;num <= times;num++)
{
//0Obtain position of mole and mallet
mousey =rand() %3+ 1;
mousex =rand() %3 +1;
do
{
printf("Enter mallet position: ");
scanf ("%d %d", &posy, &posx);
} while (posy <1 || posy >3 || posx<1 || posx>3);
//Update number of hits and misses
if (mousey == posy && mousex == posx) hits++;
else missed++;
//Print the map
for (row=1;row<=3;row++)
{
for (col =1;col <= 3;col++)

{

34 — 1 Arrays

if (row == posy && col == posx) printf("0");
else if (row == mousey && col ==mousex) printf("X");
else printf("x");
}
printf("\n");
}
//Text indicating hit or miss
if (mousey == posy && mousex == posx) printf("Bingo!\n");
else printf("You missed.\n");
//Print total score
printf("%d hits, %dmisses\n", hits, missed);
}

return 9;

Program reading exercise Determining nationality

Six people are staying at a hotel, each from a different country. These countries are America,

Germany, Britain, France, Russia, and Italy. We shall use letters A to F to denote these people. It

is known that:

(1) Aand the American are doctors.

(2) Eand the Russian are technicians.

(3) Cand the German are technicians.

(4) B and Fused to be soldiers, and the German has never been a soldier.

(5) The French is older than A; the Italian is older than C.

(6) B and the American are going to Xi’an next week, while C and the French are going to
Hangzhou next week.

Determine the nationalities of these people.

[Analysis]
1. Data analysis
We shall first use the given information to eliminate the wrong answers.

Based on conditions 1, 2, and 3, we can conclude that A is not American, E is not Russian,
and C is not German. Based on occupation limits (A and the German have different jobs, so do E
and the American, E and the German, C and the American, and C and the Russian), it is clear
that A is neither Russian nor German, E is neither American nor German, and C is neither
American nor Russian.

It can be inferred from conditions 4 and 5 that neither B nor F is German, A is not French, and
Cis not Italian.

Given condition 6, we know B is neither American nor French (because B and the French are
going to different cities next week), and C is not French.

To sum up:

A: Ais not American, Russian, German, or French.

B: B is not German, American, or French.

C: Ciis not German, American, Russian, Italian, or French.

D: no information.

E: E is not American or German.

F: Fis not German.

1.4 Operations on two-dimensional arrays =—— 35

We can store the earlier information into matrix a, and country names into another one-
dimensional array countries, as shown in Figure 1.45.

Rows of matrix a represent these guests, while columns represent their home countries. The
Oth row is a special row for progress flags, which is either 1 for not processed or 0 for proc-
essed. The values of other elements indicate nationalities. For example, 4 represents Germany
in the countries array. If a value is 0, the person represented by the row does not come from the
country represented by the column.

2. Algorithm design
Following steps 2 and 3 in Figure 1.45, we can find the solution by repeatedly zeroing out rows.

0 1 2 3 4 5 6

Am Br Fr Ge It Ru a

Q A R Column data process flag
o ﬁ 1: not processed, 0:processed

1 |A o |2|0|0]|5]0
2 |B 0o |2|0|0]|5]6
3 |c 0o 2]|0]o|o]o]| @
4 |p 1 2| 3 ﬁ 5 | 64 ﬁ Zero out other elements in row x
5 |E o |2 3/ ols5|s6
6 |F 1]2 3{ o|s|e

Find a column y with only one non-zero element
Counter num=1, row index x=4, column index y=4

0 1 2 3—1(4) 5 6

American | British | French | German | Italian | Russian

*countries[7] = {" ","American","British","French","German","Italian","Russian "}; }

Figure 1.45: Storage and procedures of determining nationalities problem.

3. Code implementation
#include<stdio.h>
char *countries[7]={" ", "American","British","French","German","Italian", "Russian"};
//The asterisk before countries indicates that the array stores addresses,
//which are beginning addresses of strings
int main(void)
{
int al71[71,1i,3,k,num,x,y;
for(i=0;i<7;i++) //Initialize the matrix
for(j=0;j<7;j++) alill[jI=j; //Row for person, column for country,
//and value for nationality
for(i=1;i<7;i++) al0][i]=1; //0-th element in each column is the progress mark,
//1 means not processed
//Enter know information, @ means the person is not froma country
a[11[11=al1][3]1=al1]1[4]=al11[61=0; // Ais not American, Russian, German or French
a[2][1]1=al21[3]=al21[4]=0; // B is not German, American or French
a[3][11=al3]1[3]1=al31[4]=al3]1[5]=al3]1[6]1=0;
// Cis not German, American, Russian, Italian or French

36 — 1 Arrays

1.5 Operations on character arrays =— 37

CisBritish
D is German
E is French
F is American

1.5 Operations on character arrays

Example 1.6 Password verification

When a user logs into a system, the system needs to compare the password he/she enters with
the one used for registration. For example, a user signed up with password abc24680, as
shown in Figure 1.46. How should the system store this password?

Index 0 1 2 3 4 5 6 7 8 9 .. | 18| 19

Registered ,
password

a' wole | 2l g | e | g | o

Figure 1.46: Password used for registration.

[Analysis]

1. Storage structure of data

If we use character arrays to store passwords, there are two possible ways to assign initial val-
ues: the first is to assign characters one by one, while the other is to assign a string. Characters
stored in these two approaches are the same, but termination mark “\0’ will be automatically
inserted to the end of the string by the system, as shown in Figure 1.47.

Storage ‘
; char password1[20]={'a','b','c','2",'4","6",'8",'0"};
solution 1 /" What is the
Storage - " o0 O difference between
seliliem 2 char password2[20]="abc 24680"; ~—these two solutions?
@dex 0(1|2|3|4|5|6|7|8|9]../18|19
Reqi
ngsISS\fveorredd a3l e |2 e e et | o
@dex o[1]2[3[a[5]6]7][8]0o]..[18[1g]C Thestringhas
Registered) ermination mar
basaword a2t a et e ot [\o

Figure 1.47: Storage approaches of character sequence.

Note: one can store strings of any length in C. When storing strings in character arrays, pro-
grammers need to make sure that the array size is large enough so that the longest string can
fit in; if the string is longer than the array, characters beyond the array bound will override data
after the array in memory.

2. Algorithm description
Figure 1.48 shows the stepwise refined algorithm.

38 — 1 Arrays

Top-level pseudo code First refinement

Compare keyboard input characters Store registered password in array password[]

and registered password characters |Read keyboard input character in ch

one by one) . while there is remaining input
Ogtput Password is wrong" upon Compare ch with password][]
mismatch Output “Password is wrong” upon mismatch

Output “Password is correct” if there

) . Output “Password is correct” if there is no mismatch
is no mismatch

Second refinement
char password[20]; int i=0;
ch=getchar();
while (ch!="\n")

if (ch = password[i])
printf(“Password is wrong");
Jump out of loop
ch=getchar();
i++;
if (i==strlen(password))
printf(“Password is correct");

Figure 1.48: Password verification.

In the second refinement, ch!=‘\n’ checks whether there are more inputs. The loop control
variable i acts as a counter as well. strlen is a library function that computes string length (not
counting termination mark ‘\0’). To determine whether the entire string has been checked, we
compare i with the string length.

3. Code implementation
01 #include <stdio.h>
02 #include <string.h>
03 int main(void)

04 {
05 int i=0;
06 char ch;

07 char password[20]="abc24680";

08 ch=getchar();

09 while (ch!="\n")

10 {

11 if (ch !=password[i]) break;

12 ch=getchar();

13 i++;

14 3}

15 if (i==strlen(password)) printf("Password is correct\n");
16 else printf("Password is wrong\n");
17 returno;

18}

Note that the header file for library function strlen on line 19 is included on line 2.

1.5 Operations on character arrays =—— 39

Example 1.7 Cracking Caesar code
What did the mysterious email Daniel sent to his father (see Figure 1.49) say? How many charac-
ters were shifted? How should Mr. Brown implement his algorithm?

ciphertext[]="lettc fmvxlhec hehhc pszi csy"

Ciphertext Plaintext
Decryption ———

Left shift by ? positions

Figure 1.49: Cracking Caesar code.

[Analysis]

1. Data processing

Without loss of generality, we shall use right shift (the alphabet is shifted by one character to its
right each time) in the following discussion. To crack the ciphertext, we can list all 26 possible
results and look for a meaningful string. Figure 1.50 shows the case of shifting by one character.

We will use right
shifts instead of left

shifts for simpler
computation

Ciphertext Plaintext
Decryption

Right shift by x positions oO

Ciphertext Shift Plaintext
Normal case ciphertext[i] ciphertext[i]+1
Special case z 1 position - @ e Tfh; ralnghelof shift
R it 'Z'+1="a'+25+ of English letters is
='a'+
DERETe Z'='a'+25 —'a'+26%26 0 to 25, so mod is 26

o

‘ ciphertext [i]=(ciphertext [i]+1 -'a') %26 + 'a’
U P Ch V_< ciphertext+1 corresponds to the
fg:’\:]fj: position of the character in the alphabet

Figure 1.50: Character shifting analysis.

Normally, if ciphertext is ciphertext[i], its plaintext would be ciphertext[i] + 1, except character
‘2’, whose plaintext is ‘a’. In other words, we need to return to the beginning of the alphabet
when reaching the end. Let us examine this case more carefully.

Ciphertext character ‘z’ can be represented by the character ‘a’ plus 25, namely ‘z’ = ‘a’ + 25.
Hence plaintext ‘z’ + 1="a’ + 25 + 1 should be the character ‘a’.

We can use modular arithmetic (mod 26) to eliminate the 26 in the equation. Modular arith-
metic helps us return to the beginning of the alphabet when going out of bound.

By now, we have derived the universal formula for right shifting by 1 character. The expres-
sion inside parentheses indicates the position of ciphertext character plus 1in the alphabet. For
example, if character ciphertext[i] is ‘b’, we have:

40 — 1 Arrays

ciphertext[i]+1-'a'='b'+1-'a'=2 //’b’+1 is shifted by 2 characters in the alphabet
(ciphertext[i]+1-'a')%26+'a'=2%26+"'a'="c"' //’b’ becomes ‘c’ after right shifting by 1
character

2. Algorithm description
Figure 1.51 shows the pseudo code of the algorithm.

In the second refinement, ‘\0’ is used to determine whether the entire string has been proc-
essed. Space is represented by a space wrapped with single quotation marks. The shifted ci-
phertext is computed using the formula we derived earlier. When printing strings, a number
indicating the number of characters shifted is added to the beginning. Finally, we need to find a
meaningful string in printed contents manually.

3. Code implementation

01 #include "stdio.h"

02 #define SIZE 80

03 int main(void)

04 {

05 char ciphertext[SIZEJ]="lettc fmvxlhec hehhc pszi csy";
06 int i=0,j=0;

07 printf("%s\n",ciphertext);

08 while (j<26)

09 {

Top -level pseudo code First refinement
Repeat process below 26 times

- Ri_ght sh_ift string by 1 position while not reaching string end
— Print string ciphertext is not space
— Repeat process above 26 times right shift ciphertext

print ciphertext string

Second refinement

while(j<26)
while(ciphertext[i]!="\0") //while not reaching string end
if (ciphertext[i] !=" ") //skipspace
ciphertext[i]=(ciphertext[i]+1-'a’)%26+'a’ //right shift by 1 |

i++ oood Finally, we need
- W0/ 4.0 Wi to manually find
printf("%d:%s\n", j, ciphertext) meaningful string

i=0 \

j++

Figure 1.51: Algorithm for cracking Caesar code.

1.5 Operations on character arrays =— 41

10 while (ciphertext[i]!="'\0")

11 {

12 if (ciphertext[i]!='")

13 {

14 ciphertext[iJ]=(ciphertext[i]+1-"'a')%26+'a";
15 }

16 i++;

17 3

18 printf("%d:%s\n",j,ciphertext);
19 i=0;

20 jt+;

21}

22 returno;

23 }

Program result:

lettc fmvxlhec hehhc pszi csy

0:mfuud gnwymifd ifiid qtaj dtz
1:ngvve hoxznjge jgjje rubk eua
2:ohwwf ipyaokhf khkkf svcl fvb
3:pixxg jgzbplig 1illg twdm gwc
4:qjyyh kracgmjh mjmmh uxen hxd
5:rkzzi 1sbdrnki nknni vyfo iye
6:slaaj mtcesolj olooj wzgp jzf
7
8

: tmbbk nudftpmk pmppk xahq kag

:unccl ovegugnl gngql ybir 1bh
9:voddm pwfhvrom rorrm zcjs mci

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21
22:
23:
24:
25:

wpeen gxgiwspn spssn adkt ndj
xqffo ryhjxtqgo tqtto belu oek
yrggp szikyurp uruup cfmv pfl
zshhqg tajlzvsq vsvvg dgnw gqgm
atiir ubkmawtr wtwwr ehox rhn
bujjs vclnbxus xuxxs fipy sio
cvkkt wdmocyvt yvyyt gjqz tjp
dwllu xenpdzwu zwzzu hkra ukq
exmmv yfogeaxv axaav ilsb vlr
fynnw zgprfbyw bybbw jmtc wms
gzoox ahgsgczx czcex knud xnt

:happy birthday daddy love you

ibgqz cjsuiebz ebeez mpwf zpv
jerradktvjfca fcffa ngxg agw
kdssb eluwkgdb gdggb oryh brx
lettc fmvxlhec hehhc pszi csy

It is clear that the twenty-first string is what we want: “happy birthday daddy love you”. Mr.
Brown was impressed by what he saw: Daniel had not learned to program, but he was able to
manually compute the ciphertext without mistakes.

42 —— 1 Arrays

Example 1.8 Sorting family names
Please write a program to sort the following family names in alphabetical order.
Zhao, Zhou, Zhang, Zhan, Zheng

[Analysis]

1. Data storage

Each family name is a string, so multiple family names are multiple strings, which can be stored
into a two-dimensional character array, as shown in Figure 1.52. Since we have five family names,
the number of rows in the array should be 5. The longest name has five characters, so the number
of columns should be 6 to store the name and a termination mark. The one-dimensional form of
the array can represent the beginning address of a row in a two-dimensional array.

char c[3][6]={"Zhao","Zhou", "Zhang","Zhan","Zheng"}

The beginning address of €lo] |Z21hjalol\0LAO
inni r

a row in a 2-dimensional Cl1] | Z|hlo|u | \0|\O

array can be represented Cl2] |z|h a|n| g |\O

by the 1-dimensional C[3] |Z|h | a n | \0O | \O

form of the array. ci4] |z hleln| g |0

Figure 1.52: Storage of multiple strings.

2. Algorithm description
The pseudo code is shown in Figure 1.53.

C provides many library functions to process strings. As shown in Figure 1.54, this algorithm
requires strcpy for string copying and strcmp for string comparison.

Top-level pseudo code First refinement Second refinement

Store M strings in c[M][6]

char c[M][6],char str[6]

Use the first string as
comparison basis str

Use c[0] as comparison
basis, and copy it into str

Find the largest string i=1;
among multiple strings . o while i< M

Compare each string with in row - -

. if str<c [i]
order, store the larger in str —
Copy c[iJinto str
i++;

Output result Output result Output str

Figure 1.53: Sorting multiple strings.

1.5 Operations on character arrays =—— 43

Function Functionality Return value

Copy string into the
character array

strcpy(character array, string)

0:equal
Positive number:
string 1>string2

Compare two strings

strcmp(string1,string2) alphabetically

Negative number:
string 1<string2

#include <string.h>

Figure 1.54: String processing functions.

Knowledge ABC String processing functions
C provides various string processing functions, which handle input, output, concatenation,
modification, comparison, conversion, copy, and search of strings. Using these functions sim-
plifies programming tasks.

To use string functions for input and output, we should include the header file “stdio.h” first.
To use other string functions, we should include the header file “string.h”.

Please refer to Appendix C of Volume 1 for function prototypes and explanations of common
string functions.

3. Code implementation

01 #include <stdio.h>

02 #include <string.h>

03 #defineM5

04 int main(void)

05 {

06 char c[M1[6]1={"Zhao", "Zhou", "Zhang", "Zhan", "Zheng"};
07 char str[6];

08 inti;

09

10 strcpy(str, c[01); //Use string copy function to copy c[0] into array str
11 for (i=1; i<M; i++)

12 ¢

13 if (strcmp(str, c[i1)<@) //if str is less thanc[i]
14 {

15 strepy(str, c[il); //then copy c[i] into str

16 }

17 3

18 printf("The largest string is:%s\n", str);
19 returno;
20 }

Program result: The largest string is Zhou.

44 — 1 Arrays

On line 10, we use the string copy function to copy c[0] into array str.
On line 13, we compare the contents of str and cli].

On line 15, we copy the larger string into str.

4. Debugging

Based on characteristics of the earlier program, we can conclude the key steps in debugging as

follows:

Inspecting a two-dimensional character array: string initialization and termination mark.
Inspecting row addresses of a two-dimensional array: the beginning address of a row in a
two-dimensional array is represented by the array name suffixed with one-dimensional index;

Inspecting how strcpy and stremp functions work.

Figure 1.55 shows the two-dimensional character array c after initialization. Each row has
length 6 and stores a string. If a string has less than six characters, the system pads it with 0.
The address of a row is the beginning address of the string in that row, represented by c[i]. i is

an integer in the range 0-5.

#include <stdio. h>
#include <string. h>
#define M 5

int main()

char str[6];
int i

= streopy (str, ¢[0]);
for (i=1; i<M; i++)

i{f (stremp (str, c[i])< 0)
strepy (str, c[il);

}

return 0;

char c[M][6]= {"Zhao", "Zhou",

Watch = |
Name IVaIue
Hec 0x0018f28
‘= [0] 0x0018ff28 "Zhao"
o] 90 'z’
[1] 104 'h’
[2] 97 'a’
[3] 111 ‘o’
[4] o '
[51 0"
'‘m [1] 0x0018ff2e "Zhou"
'‘m [2] 0x0018ff34 "Zhang"
'm [3] 0x0018ff3a "Zhan"
'm [4] 0x0018ff40 "Zheng"
Bstr O0x0018ff20 "ZRZR
Zhao"
- [0] -52 '
- [1] -52 '?
~ [2] -52 '?
- [3] -52 '
- [4] -52 '?
- [5] -52 '?
c[0] 0x0018ff28 "Zhao"

Figure 1.55: Finding the largest string debugging, step 1.

1.6 Summary =— 45

When the one-dimensional array character str was not initialized, its elements were decimal num-
ber -52, which corresponded to random Chinese characters. The reason “Zhou” is also displayed
is that the system stops upon reaching the termination mark ‘\0’ when displaying strings.

We use strcpy function to copy c[0] into str. In Figure 1.56, this change is shown in the Watch
window.

#include <stdio. h>
#include <string.h> Watch Bn
#define M 5 Name [value
int main() M c 0x0018ff28

{ B str 0x0018ff20 "Zhao"

char c[M1[6]= {"Zhao", "Zhou", || - [0] 90 'Z'

char str[é]; (11 104 "k

int 1; L [2] 97 'a’

stropy (str, c[O:!); B E’d 811 o

P f{:or (i=1; i<M; i++) 5] 52 2
if (stremp(str, c[i])< 0) IS c[0] 0x0018ff28 "Zhao"

{ - [0] 90 'z’

stropy (str, c[il); = [1] 104 'h'

- [2] 97 'a’

} L [3] 111 ‘o

| return 0;

Figure 1.56: Finding the largest string debugging, step 2.

In Figure 1.57, i has value 1, and c[i] has value “Zhou” in the first iteration.
In Figure 1.58, the strcpy function in the if statement is executed and str now stores the string
“Zhou”. This indicates that the result of the strcmp function is less than 0.

1.6 Summary

Arrays are one of the most commonly used data structures in programming. An
array can be one-dimensional, two-dimensional, or multidimensional.

An array declaration consists of a type identifier, an array name and an array
length. An array element is also called an indexed variable.

Assigning values to an array can be done through initialization, input functions,
or assignment statements. Figure 1.59 shows the use cases of these approaches.

The main contents and relations between them are shown in Figure 1.60.

A variable is a single datum,

Whereas an array stores a group of data together,

46

— 1 Arrays

#include <stdio. h>

#include <string. h> Watch - |
#define M 5 Name [value
int main() ®Ec 0x0018ff28
B str 0x0018ff20 "Zhao"
char c[M][6]= {"Zhao", "Zhou",| - [0] 90 'Z°
char str[6]; - [1]1 104 'h’
int i; - [2] 97 'a’
strepy (str, c[O:!); B Eﬂ (1)11 °
D f{:or (i=1; i<M; i++) L [5] -s2 2
if (stremp(str, c[i])< 0) 0x0018ff28 "Zhao"
{ - [0] 90 'z
strepy (str, clil); - [1] 104 'h’
- [2] 97 'a’
1 - [3] 111 ‘o’
~[4] o0
} return 0; ¥[5] 0"
Figure 1.57: Finding the largest string debugging, step 3.
#include <stdio. h>
#include <string. h> Watch i
#define M 5 Name Value
int main() B str 0x0018ff20 "Zhou"
- [0 ¢ 'z
char c¢[M][6]= {"Zhao", "Zhou", | - [1] 104 'h"
char str[6]; - [2] 111 "o’
LU E - [8] 17 '’
- [4] 0"
stropy (str, c[0]); ;
for (i=1; i<M; i++) = [5] ;52 ?
if (stremp(str, c[i])< 0) Bcli] 0x0018ff2e "Zhou"
{ ~ [0] 90 'z’
stropy (str, c[il); ~ [1] 104 'h’
- [2] 111 ‘o’
2 } - [8] 117 'u'
. - [4] 0
) return 0; =[] o0

Figure 1.58: Finding the largest string debugging, step 4.

1.6 Summary = 47

Data characteristics Use cases

We only need to type in data once. It is
Initialization | Can be either regular or not convenient to use initialization when data
size is large and we need to debug repeatedly.

We need to type in data in every execution.
Although input can vary, it is not convenient

Keyboard input | Can be either regular or not | for debugging. We can use this method to test
our program on different input after it is

debugged.
Assignment Reaular Values are assigned automatically. We
statement 9 can use this method when data are regular.

Figure 1.59: Assignment approaches and their use cases.

| A collection of data of the same type
Data are expressed regularly so we can process them consistently

Memory allocation: memory is allocated during definition, the size
keeps unchanged during execution, elements are stored continuously
Address: array name represents the beginning address

Initialization: assign values during definition

Reference: array elements, indices start from 0, beware of out of
bound errors

Storage
and
access

1-d array:array name represents the beginning address
2-d array:name[index]represents the beginning address of a row
Character array : can be initialized with strings

Figure 1.60: Relations between concepts related to arrays.

The three key elements of variables are name, value, and address,
Arrays are just about the same.

Memory is allocated to arrays during definition, and it does not change during
execution,

An array name can also be used as the beginning address of the array,
Array elements are of the same type, but their values can be different.
An array element is similar to a variable,

The index indicates its position in the array,

We should remember that indices start at O,

And that out-of-bound accesses lead to errors.

The system uses ‘\0’ to mark the end of a character array.

48 — 1 Arrays

1.7 Exercises

1.7.1 Multiple-choice questions

1.

2.

[Array definition]
Which of the following statements define an array correctly? ()
A) int num[0. . .2008]
B) int num(]
C) int N=2008; int num[N]
D) #define N 2008 int num[N];

[Character array]
Which of the following statements is wrong about character arrays in C? ()
A) A character array can be used to store a string.
B) A string stored in a character array can be input/output together.
C) We can assign values to a character array using assignment operator "=" in
an assignment statement.
D) We cannot use relational operators to compare strings stored in character
arrays.

[String assignment of character arrays]

Suppose we have the following character array definition: char array[|]="China";
Then the size of the array is ()

A) 4 bytes B) 5 bytes C) 6 bytes D) 7 bytes

. [Character array: termination mark]

Suppose we have the following character arrays: char x[|]="abcdefg"; char y[]=
{'a','n','c','d",'e",'f",'g'}; Which of the following statements is correct? ()

A) Array x is equivalent to array y.

B) Array x and array y have the same length.

C) Length of array x is larger than that of array y.

D) Length of array x is smaller than that of array y.

[String input]
Suppose we have char s[30]={0} and we type “This is a string. <Enter>” during
program execution.
Which of the following statements cannot read the entire string “This is a string”.
into character array s correctly? ()

A) i=0;while ((c=getchar())!="\n") s[i++]=c

B) gets(s)

C) for (i=0; (c=getchar()) !="\n'; i++) s[i]=c

D) scanf("%s", s)

1.7 Exercises =— 49

6. [Array access]
What is the output of the following program? ()

int y=18, i=0, j, a[8];
do

{

alil=y%2;

it++;
y=y/2;

Y} while(y>=1);

for(j=i-1;3>=0;j--) printf("%d", aljl);

A) 10000 B) 10010 C) 00110 D) 10100

7. [Two-dimensional array]

int i, t[1[3]1=(9,8,7,6,5,4,3,2,13};
for(i=0;i<3;i++) printf("%d ", t[2-i1[i]);

What is the output of the program above? ()
A) 357 B) 753 C) 369 D) 751

8. [Two-dimensional array]

int a[41[41={ {1,4,3,2},{8,6,5,7},{3,7,2,5},{4,8,6,13}}, i, k, t;
for (i=0; i<3; i++)

for (k=i+1; k<4; k++)

if (alil[il<alk1CkI)

{ t=alillil; aliJ[iJ=alk]Ck]; alkICkI=t;}

for (i=0; i<4; i++)

printf("%d,", al01[i]);

What is the output of the program above? ()
A) 1’1’2’6’ B) 6’2’1!1’ C) 6’4’3’2! D) 2’3’4’6’

9. [Characters in two-dimensional array]
What is the output of the following program if we type in “peach flowers is pink
<Enter>” during execution? ()

char b[4][10]; int i;
for (i=0; i<4; i++) scanf("%s", b[i]);
for(i=3; i>=0; i--) printf("%s ", b[i]);

50 — 1 Arrays

A) peachflower is pink
B) pink is flower Peach
C) peachflowerispink
D) pink is flower peach

1.7.2 Fillin the tables

Complete tables in Figures 1.61-1.63 based on the program in each question.

1. [Two-dimensional array]

i 0 1 2 3
a[i][i] 1 None
s End of loop
Output
Figure 1.61: Arrays: fill in the tables, question 1.
i 5 4 3
clil=c[i-1] .
Unkn
Before ctil ot
assignment cli-1] 0’
Output
Figure 1.62: Arrays: fill in the tables, question 2.
1 2 3 5
®p[] 2 b ¢! d
@pl]
®pl]

@Output

Figure 1.63: Arrays: fill in the tables, question 3.

1.7 Exercises = 51

int main(void)
{
int al3][3]1=(1,2,3,4,5,6,7,8,9}, i, s=0;
for (i=0; i<=2; i++)
s=s+ali][il;
printf ("s=%d\n", s) ;
return9;

3

2. [One-dimensional character array]

int main(void)
{ int i=5;
char c[6]="abcd";
do
{
c[il=c[i-11;
} while(--1>0);
puts(c);
return 0;

3. [String processing library functions]

#include <string.h>

int main(void)

{
char p[201={'a', 'b', 'c', 'd'}; //—©
char q[1="xyz", r[]="mnopq";
strcat(p, r); //——@
strcpy(p+strlen(q), q); //—®
printf("%d\n", strlen(p)); //—@
return0;

1.7.3 Programming exercises

1. Thirteen people stand in a circle and are numbered off using only numbers 1, 2,
and 3. That is, they shout out numbers 1, 2, 3, 1, 2, 3, 1, 2, 3.... If someone
shouts out number 3, that person should leave the circle. Write a program to
find out which person is the last one remaining in the circle.

52 — 1 Arrays

2. Write a program that reads a string from keyboard input, sorts it in ascending
order based on ASCII values of characters, and prints the sorted string.

3. Please write a program, in which you define a one-dimensional character array
str[50], read a sequence of characters from keyboard input and store it into str,
read an integer M (M < 50), and finally copy characters after position M in array
str into a new character array ch[50].

4. Write a program that finds the element with value x in a one-dimensional inte-
ger array with 10 elements. If such an element exists, the program should print
its index; otherwise, the program should print "Search failed".

5. In an image encoding algorithm, we need to do a Zigzag scan on a given square
matrix. The Zigzag scan processes of 4 x 4 and 5 x 5 matrices are illustrated
in Figure 1.64. Write a program to simulate this process.

PER] [
V////‘fi‘ ¥
z 7

il Vs
4

v

Figure 1.64: Zigzag scan.

2 Pointers

Main contents
— Meaning, usage, and examples of pointers
— Representation and nature of pointers, shown through comparing pointers with plain
variables
— Differences and similarities between pointers and plain variables
— Relations between pointers and arrays
— Nature of pointer offsets
— Program reading practices
— Top-down algorithm design practices
— Debugging techniques of pointers

Learning objectives
— Understand the concept of pointers
— Understand relations between pointers, arrays, and strings
— Know how to use pointers to reference variables and arrays
— Can use string arrays through pointers
— Can design algorithms using the top-down stepwise refinement approach

2.1 Concept of pointers
2.1.1 Reference by name and reference by address

We shall explain these concepts through real-life examples.

Case study 1 Setting destination in a navigation system
Postmen nowadays often use navigation systems to find their destination when de-
livering to a new location. To set the destination in a navigation system, one can
input either the address or name of the location. For example, “Xidian University
North Campus” refers to the location by name, while “2 South Taibai Road, Yanta
District” refers to the same location by address, as shown in Figure 2.1.

To sum up, we can reference an object that has a location attributing either by
name or by address.

Case study 2 Classroom questioning and homework assignment

Teachers often ask students questions in class. He/she may ask “the second student in
the third row” to answer the question when he/she does not know the name of the
student. In this case, the student’s name is a “reference by name,” while the student’s

https://doi.org/10.1515/9783110692303-002

https://doi.org/10.1515/9783110692303-002

54 =— 2 Pointers

Setting destination in a navigation system

Xidian University North Campus |<—>| 2 South Taibai Road, Yanta District

we can reference
an object that has
a location attribute
either by name or
by address

Reference by Reference by
name address

Figure 2.1: Setting destination in a navigation system.
seat is a “reference by address.” When assigning homework, a teacher may use the
following statements: “questions 6 and 8 of chapter 3” or “question 6 and 8 on page

126.” The chapter here is a “reference by name,” while the page number is a “reference
by address,” as shown in Figure 2.2.

I Classroom questioning and homework assignment

Reference by Reference by
name address
Student Seat

« » R
name location

Chapter «—»> Page

Figure 2.2: Classroom questioning and homework assignment.

We just saw in these examples that we could access a real-life object with location
attributes through its name or its address.

Data in programs are also objects with location attributes, so we can use the
same methods to access them.

2.1 Concept of pointers —— 55

Case study 3 Data reference in programs

As of now, we have been accessing data through referencing variable names. For
example, we may use the name x to refer to variable x. Theoretically, we can also
access data through their addresses, as long as we have designed a mechanism for
it. In fact, we have learned in the introduction of scanf function that we could add a
“&” sign in front of a variable to reference it by address. In other words, &x returns
the address of variable x, as shown in Figure 2.3.

| Data reference in programs

Data in programs
are also objects wit

Reference by name Reference by address location attribute
_ . O
Variable Variable)
+—>
name address
X &x

Three key elements of variables: variable name,
variable value, variable address

Figure 2.3: Data reference in programs.

With the concept of variable addresses in mind, we can study how computers man-
age their memory space.

2.1.2 Management of storage space

We shall start from a storage space management problem in practice.

Case study 1 Lockers in kindergarten

To help kids that cannot recognize numbers well remember their lockers, teachers

in a kindergarten attached animal stickers to all lockers, as shown in Figure 2.4.

Because stickers are more intuitive, the kids are less likely to mistake their lockers.
Similarly, it is intuitive and convenient for programmers to use variables named

by meaningful identifiers to operate data.

56 —— 2 Pointers

!

1

[y
o

=
»

=

it giF SEN:

=l go0 & Bjm<d

[y
N

R Ve BE AL

[y
o

AeE A EE

Figure 2.4: Reference by na

me in stickers.

Case study 2 Lockers in supermarket
As shown in Figure 2.5, the locker in a supermarket is a large cabinet divided into com-
partments of the same size, each with a number. A program manages the locker: when

=] &
| | | |
=)
I || | I
3 (7 s () (15)
| | I I
&
I I | |

Figure 2.5: Reference by address in lockers.

c00O

, 0O

Stickers:
“Reference
by name”

Numbers:
“Reference
by address”

2.1 Concept of pointers = 57

a customer presses the “Store” button, the system looks for an empty compartment
and opens one following specific rule; if no compartment is currently available, “No
available compartment” will be displayed.

In this process, the number of the compartment is necessary. If we consider the
number of a compartment as its address, then locating compartments through num-
bers is also “reference by address.”

2.1.2.1 Management of computer memory space

After seeing the locker, Mr. Brown thought to himself, “Hey, is not that computer
memory?” The memory is where a computer stores programs and data temporarily.
As shown in Figure 2.6, we divide the memory into units of the same size to better
manage it, which is similar to dividing a locker into compartments. Each unit stores
1 byte (8 bits) of data. They are also called memory units.

Memory
o

O
Unit no. Unit contents
V] 110|011 |1|0[0f 0O

oj1j1(0j1f1|1]|1

The memory is
where a computer
stores programs and
data temporarily

1
2 1(1(1{0|0|0|1(1
3

Address
In memory, every byte unit 127

(8 bits) has a number, which
is its address.

Figure 2.6: Computer memory.

To simplify management, we attach a number to each unit. These numbers are called
addresses. A computer can execute memory read and write operations quickly using
addresses. The length of a memory unit is 1 byte. Addresses of variables are numbers
of memory units allocated by the system.

Knowledge ABC Representation of memory and addresses

Memory is used to temporarily store intermediate computation results of CPU and data that will

be exchanged with external memory, such as hard disks. As long as a computer is powered on,

the CPU fetches data it needs to the memory and sends the result out after computation is done.
Data are stored in binary form in computers. Addresses are also expressed and processed in

binary form. Memory addresses can be expressed in binary, octal, or hexadecimal forms.

Assembly languages and high-level languages often use hexadecimal addresses for convenience.

58 = 2 Pointers

It is also trivial to convert between hexadecimal and binary representations. C uses prefix Ox to
represent hexadecimal numbers, while assembly languages and some other high-level languages
use suffix H (Hexadecimal).

2.1.2.2 Storage rules of data in memory
Suppose type int has length of 2 bytes in a computer system. “Now I need to store
two backpacks,” Mr. Brown muttered and defined a variable x of type int. Because
int type took up 2 bytes, the variable could not fit into a single memory unit. What
would the system do? The answer is to find two consecutive units and allocate to
variable x. In other words, the system determines the number of units needed
based on data type specified by programmers, looks for consecutive memory units,
and allocates them to the variable.

Suppose the system found two consecutive empty units, 2000 and 2001, and
allocated it to variable x, as shown in Figure 2.7. Which one was the address of x
then?

Memory
Suppose size
Address of an variable is of int is 2 bytes
the number of memory 0)
unit allocated to it by the 2000 1 byte °
system during compilation m
or function call O 2001 1 byte
(o]
2002 1 byte °OO (" which one is
the address
of variable x?

Address allocation rule

Among all units allocated to an variable, its address is
the unit with the smallest number.

Figure 2.7: Address allocation rule.

In this case, we need the “address allocation rule.” The system defines the address
of a variable as the unit with the smallest number.

2.1.2.3 Address management in memory
Mr. Brown found it interesting to operate memory directly and mumbled to himself,
“I’ll be the system administrator this time.”

2.1 Concept of pointers =—— 59

Suppose type int has length of 2 bytes. Professor defined three integer variables
i, j, and k. Then he looked for empty units in the memory. In Figure 2.8, empty units
are colored in gray. Hence, he could allocate unit 2000 to i, unit 2002 to j, and unit
2004 to k.

Address Memory

What are the merits
of using pointers for
programmers that
are not system
administrators?

inti=3 ; intj=6; int k=9;
2000 3 Variable i Nel®)

2002 6 Variable j
2004 9 Variable k
We call variable ptr
a pointer pointing
to k in short
3010 2004 Variable ptr

°00

Value of ptr is
address of K

Figure 2.8: Memory usage and management.

Similar to managing a locker, the system needs to record which units are already
allocated. This is done using unit addresses as well. As a result, a block of memory
is needed to store these addresses. In addition, we should be able to reference it by
unit addresses.

How should addresses be recorded?

Professor defined a special variable ptr to store the address of variable k. We
often use an arrow to indicate the relation between pointer ptr and variable k. The
value of ptr can be changed, so ptr can be used to store other variable addresses as
well. In C language, we call variable ptr a pointer pointing to variable k. In short,
ptr points to k.

With the help of pointers, system administrators can manage addresses in
memory.

Mr. Brown then stopped being an imaginary system administrator, returned to
reality by slightly shaking his head, and asked himself another question from the per-
spective of a computer user: “as programmers, what is the advantage of using ad-
dress variables?”

It is undoubtedly more intuitive and convenient for programmers to use variables
named by identifiers. However, the system has to find the memory unit that corre-
sponds to a variable name when executing the program. This process slows down
computation, so the system enables programmers to operate memory units through
pointers to enhance execution efficiency, as shown in Figure 2.9. Furthermore, using

60 —— 2 Pointers

| & B

convenient

Identifier: | | Unit number:
user-oriented, computer-oriented;
intuitive, | n | n 10 efficient
. O

. 2 &8

i

4
o 4
m a

Figure 2.9: Reference by name and reference by address in computers.

pointers help solve problems like batch transfer of data or user space requesting. We
will cover related topics in the chapter “Functions.”

Having discussed the topics earlier, we shall now proceed to introduce pointers
formally.

2.1.3 Definition of pointers

Pointer variables are variables whose values are memory addresses.

2.1.3.1 Comparison of pointer variables and plain variables
Because pointer variables are variables as well, we shall compare them with plain
variables and try to find differences between them.

Variables have three key elements: name, content, and address. Names of plain
variables are identifiers; contents of plain variables are numerical values; addresses
are memory units’ numbers. The first element and the third element remain the same
for pointer variables, but the contents are different: the value of a pointer variable
has to be an address.

Another question related to the nature of pointer value is “what is the type of a
pointer?”

For plain variables, C defines variable types as types of their values. However,
the definition changes for pointer variables. The language has a special rule for
these special variables, as shown in Figure 2.10.

2.2 Pointer operations = 61

Plain variable Pointer variable OOO
Name Identifier Identifier i
Three key V\éhag |(5th2e
elements of | Value Number Address gginter?
variables Address| Memory unit number| Memory unit number

Pointers are special variables. Unlike plain variables, they
— are used to store addresses;
- use types of data stored in the memory units they point to as their own type

Figure 2.10: Similarities and differences between pointer variables and plain variables.

2.1.3.2 Syntax of pointer definitions

Let us look at the syntax of defining a pointer variable. Compared with the syntax
of defining a plain variable, the only difference is the * mark in front of the variable
name, as shown in Figure 2.11.

Type of a pointer is
the type of data in
the memory unit it
points to, so it is not
necessarily int type

type *name; 0O

int_xipt; | [irr
| float *fPtr; | |fPtr |—>m
| char *cPtr; | | chtr I——>m

Figure 2.11: Defining a pointer.

C considers the type of a pointer to be the type of data stored in the memory unit it
points to, so it is not necessarily an integer. For example, an integer pointer iPtr
points to an integer memory unit; a float pointer fPtr points to a floating-point num-
ber memory unit; a character pointer works the same way.

Because using pointers requires special rules, it is recommended to name them
using “ptr,” the abbreviation of “pointer,” as a kind reminder.

2.2 Pointer operations

Having learned how to access a pointer, we can now handle pointer data.

62 —— 2 Pointers

2.2.1 Pointer operators

As shown in Figure 2.12, there are two operators related to pointers: the address-of
operator “&” and the dereference operator “*”. We can access contents stored in
memory units by referencing their addresses with the help of these operators.

Operator Name Usage
& Address-of Obtain addrgsses of Access data stored at
operator plain variables © O O an address through

Obtain data in the reference by address
memory unit pointed

to by the pointer

% Dereference
operator

Figure 2.12: Pointer operators and their usage.

What operations can we carry out using these operators?

2.2.2 Pointer operations

Unlike operations of plain variables, pointer operations are computations of addresses,
so there are only a few types of them, each with certain restrictions. Figure 2.13 shows
various pointer operations and their functionalities.

An assignment operation assigns a location to a pointer. An arithmetic opera-
tion can move a pointer around and compute the number of elements between two
pointers. Relational operations are used to determine the relative position of two
pointers.

More pointer operations in arrays will be introduced in Section 2.3.

2.2.3 Basic rules of pointer operations
We shall introduce how to use pointer operators through a simple example.

Example 2.1 Usage of pointers
Suppose we have an integer array x[5], two pointer variables aPtr and bPtr, please write code
that completes the following tasks:

— Describing the case illustrated in Figure 2.14.

— Storing the content in the memory unit pointed to by bPtr into the unit pointed to by aPtr.

63

2.2 Pointer operations

sassaJppe Jo
uolneindwod ale
suoneJtado Jajuiod
‘sa|qenien uield jo
suolnelado ax1un

'suoljelado 191u10d :€1°Z 21nSi4

sAedue 03 Buiuiod
J12julod 104 9|ge|IeAY

QOO

sJaulod omy

Jajuiod ay3 se adAy
awes ayj Jo ejep Jo
ssalppe ue aq isnuw
an|eA paubisse ay |

sJ93ulod omy auedwo) 40 uonIsod BARE|B. BUILLIIRG jeuoney
Jayjo ayy sJ93ulod om] usamiaq
wioJ) Jajulod e peaqns | sguswald Jo Jaquinu a3ndwo
J 42Ul penqns | sy 13 q 3 0 SBWIYILY
J2jui0d B Wody U0 Jeagqns
Jaaulod e aAol
1o 03 4abajul ue ppy
Jajulod e 03 anjeA ubissy Jajulod e 938007 Juswubissy

SO10N

uonejuswa|dwi

uopouny

2dA3 uonesadp

64 —— 2 Pointers

Index 0 1 2 3 4
X[] 2 4 6 8
aPtr thr/

Figure 2.14: Example usage of pointers.

1. Code implementation
Figure 2.15 shows the code implementation, in which we first define the integer array x and ini-
tialize it.

On line 2, we define two integer pointers aPtr and bPtr.

On line 3, we make aPtr point to the beginning address of array x, namely the 0-th unit, with
statement aPtr = x. By definition, the array name x represents the beginning address, which is
the address of element with index 0.

On line 4, we make bPtr point to element with index 3. The & sign is used to obtain the ad-
dress of x[3].

The first 4 lines complete the first task in the problem description. Now we are going to com-
plete the second.

On line 5, we use *bPtr to fetch value stored in the memory unit pointed to by bPtr. Similarly,
the value stored in the memory unit pointed to by aPtr can be acquired by *aPtr. After the as-
signment, this value becomes 8.

Index 0 1 2 3 4

X[] n 4 6 8 0
/ /

aPtr bPtr OO

C defines that an
array name refers
to the array’s
beginning address

01 int x[5]= {2,4,6,8}; //Define and initialize an integer array
02 int *aPtr, *bPtr; //Define two integer pointers

03 aPtr =x; // Point aPtr to the beginning address of x
04 bPtr =&x[3]; // Point bPtr to address of x[3]
05 *aPtr =*bPtr; // Assign value pointed to by bPtr to unit pointed to by aPtr

Figure 2.15: Code implementation of the example.

2. Debugging
Using data in the Watch window and the Memory window, we obtain the graph shown in
Figure 2.16, which reveals relations between addresses and data.

65

2.2 Pointer operations

‘weiSoud 1ajutod ayy SuiSSngaq :9t1°z 94nS14

ssalppe J2julod | | sweu sapulod sanjeA Jajulod sweu Jajulod | | sseippe Jsjulod
dq nde
02H8LX0 | 0¥381X0 vEHBLX0 | 0SHBLX0
X X) X X X ssa.ppe
PPH8TX0 | OVH8TX0 €HB8TX0 | 8EHBTX0 | PEHBTX0 JUBWa|3
anjeA
0 8 9 14 4 JUBWa|3
14 € 4 T 0 X9pur
WD
9C448100%0 43498
00 00 00 00 ¥¥448100| T
00 00 00 80 0v448100 0€448100%0 43d*¥
MOPUIM AJOWD\ 00 00 00 90 9£448100 8 : w
343 Ul 13| BU) UO 00 00 00 ¥0 8£448100 0v+48100%0 1dq ZMOPUIM UDIEM
o1e 5955.1ppE 00 00 00 Z0 ¥€448100 z 3 oU) Ul 4oy 10
00 81 44 ¥& 0448100 verigioo%o i1ded ! *
J3MO| Yiim v 00 81 44 0¥ 92448100 7£448100%0 X |anjeA si jeym
mmu>D jeyj aloN ozygLxg] :sS9IpPY SnieA] JwieN|

H Kiows | -] yorepy

66 —— 2 Pointers

We shall inspect array x first. In the Watch window, it is clear that the beginning address of x is
0x18ff34. The Memory window shows the addresses and values of elements in x starting from
address 0x18ff34. Note that bytes in the Memory window are displayed in the order of their ad-
dresses, where bytes in lower addresses are on the left. We can list these addresses and values
in a table for further analysis.

It is known that aPtr points to x[0] and bPtr points to x[3]. This can be verified by comparing
the value of pointer aPtr and the address of x[0] in the Watch window. We can see that the value
of pointer bPtr and the address of x[3] are also identical. Values of aPtr and bPtr are shown in
the square above them in the figure. They are both addresses of other variables.

What are the addresses of memory units in which these pointers are stored then?

In the Watch window, &aPtr indicates the address of the memory unit in which aPtr is stored,
which is 0x18ff30. Similarly, &bPtr shows the address of bPtr. As of now, we have seen all three
key elements of pointer variables, namely variable names, variable addresses, and variable
values.

There remains one last question: what is *aPtr then?

We can derive the answer from definitions and verify them in the debugger. In fact, the an-
swer is already given in the next line of aPtr in the Watch window.

3. Exceptions of pointers
If a postman is going to deliver to a new location and heads to the default address without set-
ting a destination in the navigation system, we can well imagine that he will not succeed.
Similarly, beginners may make the same mistake when using pointers.

In Figure 2.17, what will happen if we make aPtr point to nowhere by removing the third line
in the program?

Watch B Memory a Microsoft Visual C+ + s El
ame [Volue Address: _[0x18fi2c
B x 0x0018f£34 0018FF2C 40 FF 18 00 @, .. ~|
8 aPtr Oxcoccocco 0018FF30 CC CC CC CC 3 i 0 Unhandled exception in 123.exe: 0xC0000005: Access Violation.
= 0XX0030: Error: l0018FF34 02 00 00 00 i
@bPtr 0x0018ff40 0018FF38 04 00 00 00
8 0018FF3C 06 00 00 00 ...
@8aPtr 0x0018ff30 "3 |0018FF40 08 00 00 00 ®
& 0018FF44 00 00 00 00 °0

R
@ &bPtr 0x0018ff2¢
"o 1"

A warning pops up

when executing ~

Element > 4 6 8 g*aPtr:*thr
value
Element | 1534 | 0x18ff38 | Ox18ff3c | Ox18ff40 | Ox18ff44
address

% /

0x18ff30 Oxccccccce ? 0x18ff40 0x18ff2c
aPtr bPtr

Figure 2.17: Exception of pointers.

After debugging, we can see that everything in the Watch window and the Memory window re-
mains the same, except the value of aPtr being Oxcccccccc. This is because we did not initialize
aPtr with the beginning address of array x. The value is determined by the compiler instead of
by programmers, so it is unpredictable. Such pointers are often called “wild pointers.”

During the execution of line 5, namely *aPtr=*bPtr, a protection mechanism interferes: a
warning window pops up, and the program is terminated. This protection mechanism prevents
users from writing data to unknown units, so data w be modified unknowingly.

2.2 Pointer operations = 67

Pointer variables are special variables that need special care. The most common mis-
takes one may make when using pointers is accessing them without assigning initial val-
ues. Figure 2.18 elaborates on this mistake and introduces principles we should follow.

Principles of using pointers

- We should clearly know where our pointers point to
- We should clearly know what data our pointers point to

Programming mistake

It is wrong to assign value to a pointer that is not correctly
initialized or points to an unspecified location in memory

Figure 2.18: Principles of using pointer and common mistakes.

These principles are also critical issues in using pointer. Assigning to a pointer that

does not point to a certain location has two cons:

(1) It may lead to severe runtime errors, namely logic errors, which affects program
execution and may crash the system in the worst case.

(2) Even if the program runs without crashing, the assignment illegally modifies
data stored in some memory unit that we do not know. Such errors are ex-
tremely hard to find during debugging because we do not know when the modi-
fied data are going to be used. If we cannot reproduce such errors, they will
become one of the most challenging errors to debug.

2.2.4 Purpose of pointer offsets

2.2.4.1 Introduction
Suppose we have an integer array a, and a pointer aPtr pointing to a[0]. We are
asked to output the value of the memory unit aPtr points to, and value of the next
unit using aPtr as well.

The previous example showed how to point a pointer to an array element and
obtain its value, as shown in Figure 2.19.

To move pointer aPtr forward, we can certainly use reference by address, or to
be more specific, aPtr = &a[1]. &a[1] returns the location of the element with index 1
in array a. This is an example of reference by array names. When executing this
statement, the system needs to convert &a[1] into memory address corresponding to
the element, which may become inconvenient and inefficient when moving the
pointer multiple times. Are there alternative methods of moving pointers?

Can we use reference by address by adding an offset to the pointer? If so, it
would be easier to move a pointer forward multiple times, as shown in Figure 2.20.

68 —— 2 Pointers

Index 0 1 2 3
al[] 2 4 6 8 0
aPtr
aPtr =a; // Point aPtr to the beginning address of a
printf("%d", *aPtr); // Print data pointed to by aPtr

Figure 2.19: Obtain array elements through reference by address.

Approach 1: point
the pointer to the
next element

erant] O,

Index 0 1 2 3 4
al] 2 4 6 8 0

S
| aPtr | | aPtr+offset |a

Approach 2:
move the pointer
using an offset

Figure 2.20: Two reference approaches of array elements.

2.2.4.2 Discussion and conclusion

Suppose type int has length of 2 bytes. Furthermore, suppose the memory space of
array a is as shown in Figure 2.21 and aPtr points to address 2000.

Address Memory Suppose
size of int
is 2 bytes
Pointer aPtr 2000 N
2
Soor T2
2002
4 a[1
o054 alu
2004
6 a[2]
~oos T8
3010
2000 Pointer aPtr
o L2000

Figure 2.21: Memory and pointers.

2.2 Pointer operations = 69

Figure 2.22 illustrates the memory layout under the assumption that aPtr points to
unit 2001 after adding 1 to it. We will verify this assumption below.

First of all, the assumption is not consistent with the definition of “pointer
types.” Type of a pointer is the type of the memory unit it points to. If aPtr + 1 points
to unit 2001, which belongs to the array element a[0], what is the size of the object
it points to then? Second, the value stored in unit 2001 contains half of the informa-
tion of element a[0].

Hence, it is not reasonable to make aPtr + 1 point to unit 2001. It is natural to
infer that we should move the pointer by the length of “pointer type” when adding
1 to it. In this case, it only makes sense if aPtr + 1 points to unit 2002.

Figure 2.23 presents the rule of pointer offsets in C language. Adding an integer
to or subtracting an integer from a pointer moves a pointer in memory space.
Pointer types determine the distance of such moves.

2.2.4.3 Program verification
We shall verify this rule using the program below:

01 #include <stdio.h>
02 intmain(void)

03 {

04 int al5]={2,4,6,8}; //Define and initialize an integer array
05 int xaPtr; //Define an integer pointer

06 aPtr =a; //aPtr points to the beginning address of a
o7 printf("%d",*aPtr); //0utput value of the memory unit a points to
08 aPtr++; //Make aPtr point to the next unit

09 return 0;

10 3}

On line 6, aPtr points to a[0]. On line 8, we add 1 to aPtr and make it point to a[1].
Figure 2.24 shows the debugging information of this program.
Before adding 1 to aPtr, aPtr points to a[0] and aPtr + 1 points to a[1].
After adding 1 to aPtr, aPtr points to a[1] and aPtr + 1 points to a[2].

2.2.5 Concept of null pointer
2.2.5.1 Meaning of NULL

NULL is a constant defined in header file <stdio.h> with value 0. It is used to repre-
sent a null pointer.

2 Pointers

70

[o]e yuawsja jo
uol3_WIO4Ul JO J|BY SulRluod
TOO0Z un ul palojs anjepn ¢ [t]e
,9dA} ua3ul0d, JO
uoniulsp Yim jusisisuoour 1

J

T+41de 25ew
0] a|qeuosead 11 ST

*$19s440 Jajujod pue Alowa :gg 'z 24nSi4

110€ adAy sy Jo az1s

000¢

3yl Ag 31 sAow pinoys
0T0€ Ja3uiod e 03 T Buippy

¢100z wun o3qued _) O O

S00¢

#00¢

€00¢

¢00¢

T00¢C !

EENE

000¢ dide Jajulod

Aowap

sso4ppVy

2.2 Pointer operations —— 71

The distance a pointer moves past in one shift is the size of its type.

When adding 6 to a float pointer,actual offset is
6*sizeof(float)=24bytes;
When subtracting 7 from a char pointer, actual offset is
7*sizeof(char)=7 bytes;

Figure 2.23: Rule of pointer offsets.

#include <stdio.h> |Watch H|Memory
int main(Name [vatue Address: _[0x18ff34
. _ |Ba 0x0018ff34
int ()= 12,4.6:8)em gal0] 0x0018734 [GOTRFFSs 0400 00 00 . .
aPtr =a: 2 0018FF3C 06 00 00 00
orintf (“%d", xaptr) ;|| 3 &al1]) 0x00187738 l0018FF40 08 00 00 00
S aPtrit; ' 4 0018FF44 00 00 00 00
return 0; aPtr | 0x0018ff34 |[0018FF48 88 FF 18 00
} C 2 0018FFAC 59 13 40 00 Y. e.
[@ aPtr+1= 0x0018ff38 [0018FF50 01 00 00 00
C 4 0018FF54 50 OE D3 01 P...
#include <stdio.h> |Watch B [Memory o
nt mainO == [value Address: [0x181i34
. _ ®a 0x0018ff34 |[5¢
int al5]= 12,4,6,81{ 58.00] 0s001affa4 [|0018FF34 02 00700700
int *aPtr; l?_ 2] -
:':?,:t;a(i%d-- *aptr);[[38al1] 0x00187£38 Ti0018FF40 08 00 00 00 ...
aPtrit; ’ 4 0018FF44 00 00 00 00
5> return 0; SaPtr 0x0018ff33 |0018FF48 88 FF 18 00 ...
} 4 0018FFAC 59 13 40 00 Y.@.
faptre 0x0018773¢ J[[0018FF50 01 00 00 00 ...
3 0018FF54 50 OE D3 01 P...

Figure 2.24: Debugging information of pointer offsets program.

2.2.5.2 Null pointer
If we assign NULL to a typed pointer variable, this pointer becomes a null pointer
that does not point to any object or function. That is, a null pointer does not point
to any memory unit.

A null pointer is not an uninitialized pointer. It is guaranteed that a null pointer
does not point to any object, but an uninitialized pointer may point anywhere. Note
that a null pointer is not the memory address O of a computer.

The purpose of introducing null pointers is that we can return NULL in excep-
tion routines so that it is easier to distinguish from a normal address value.

72 —— 2 Pointers

2.3 Pointers and arrays

Pointers are used to reference array elements by address. We shall introduce how to
use them in one-dimensional and two-dimensional arrays.

2.3.1 Pointers and one-dimensional arrays

Example 2.2 Computing sum using reference by address
Given a student’s grades in 6 classes, please compute the sum using reference by address.

Analysis
We can use the algorithm of the “computing sum” problem in section “one-dimensional arrays op-
erations”, but we need to reference array elements by address in this problem instead of by name.

1. Data structure design

We can obtain values of array elements by defining a pointer ptr that points to the array, as
shown in Figure 2.25.

Index 0 1 2 3 4 5
score[] 80 82 91 68 77 78

Figure 2.25: Referencing array elements by address.

2. Algorithm description

Figure 2.26 shows the pseudo code. The top-level pseudo code and the first refinement remain
the same as before because data reference details are not involved at these two levels. In
the second refinement, we start with the initialization of variables and making ptr point to the
data array. Then we construct the loop of repeated addition by determining loop control vari-
able, loop execution condition, and offset of ptr.

Top-level pseudo code First refinement Second refinement
The sum is tota]l scores Initialize SCOre[6], total =0, i=0
are stored in score[6] ptr=score;
Scores are stored in while (i<6)
array score[6] ———
Compute sum of Add values of elements of total += *ptr;
array elements score to total repeatedly i++; *ptr fetches
) value of the unit
ptr++;]
pointed to by ptr
Output result Output total

Figure 2.26: Pseudo code of computing sum algorithm.

2.3 Pointers and arrays

ssaJppe Aq 20ud.43j9Y {
0 uaniad

‘(12303 “,,u\po% SI 8102s |e30} BYL,,)Juld

{

SJUBWIRId 2402S JO wns ayndwo)// ‘uidy=+ |e303
b
(++0nd ‘" ++1 3ZIS>110=1) 40}

wns // 0 = 2303 U
Aeaue ayj 03 sjulod 13d// ‘2400s=43dy ‘I Jul
{£6'06'¢6'76'96'06'56'68'26'86} = [3ZIS]2400s jul

{2102s=.1d
3dy Ul

03 jJudjeAinba si
/9100s=11d, Jul

€£€6 Sl 2100S |ej0] =yl

¥ 90

(proA)utew jut 50

0

0T 3ZIS auljep# €0
<yroipis> spnpul# z0
sjuawig|d Aeude Jo wns aindwo)// 10

‘wajqoid wns Suindwod jo uoljeusawajduw apo) :£z°Z dInSi4

Qweu Aq 95ua.43)9Y { /1

‘0 91

(/12303 “,u\pop SI a103s B30} BYL, JJuud GT

{ 1

SJUBWIDID 2402s Jo wns andwo) // ‘[|]19100s=+ |e10} €T
rooa

(++1 3zIS>1 ‘0=1) T

0T

wns // ‘0 = |e30} 60

J23uno) // gl 80
{£6'06'¢6'v6'96'06'56'68"26'86} = [3ZIS]2400s L0
} 90

(prloA)uiew g0

0

0T 3ZIS aulap# €0
<Yyroipis> spnpoul# z0
sjuawig|d Aedde jo wins 2aandwo) 10

74 =— 2 Pointers

3. Code implementation
It is trivial to obtain actual code starting from pseudo code in the second refinement. Figure 2.27
lists programs of reference by name and by address together for readers to compare.
On line 8, pointer ptr is defined. Note that the statement int *ptr = score defines the pointer and
assign a value to it.

On line 11, ptr should be increased as well.

On line 13, the element pointed to by ptr is added to the sum.

Example 2.3 Pointer pointing to constant string
Compare a character array with a pointer pointing to a string.

Analysis
The test program is as follows:

1 intmain(void)

2 {

3 char a[]="dinar##";
4 char *b="dollar##";
5

6 al61=":";

7 b[5]=":";

8 return 0;

9

3

If we run the program, an “Access Violation” warning will pop up. Debugging shows that the
error occurs when executing line 7. That is, we cannot write to the string pointed to by pointer
b. This is because a constant string is stored in the constant segment in memory, which cannot
be altered during execution; on the other hand, assigning a constant string to an array essen-
tially puts the string into the variable segment, which can be modified. Readers can refer to
chapter “Functions” for more details on memory layout.

Conclusion Pointers and constant strings
We cannot write to the memory segment in which constant strings are stored.

Example 2.4 Program analysis

Analyze the following program and list values of memory units pointed to by pointer aPtr and
bPtr in each iteration:

1 intmain(void)

2 {

3 int al101], b[101];
4 int *aPtr, *bPtr, i;

5 aPtr=a; bPtr=b;

6 for (i=0; i< 6; i++, aPtr++, bPtr++)
7 A

8 *aPtr=i;

9 *bPtr=2%i;

10 printf("%d\t%d\n", *aPtr,* bPtr);

2.3 Pointers and arrays —— 75

11 3

12 aPtr=&a[1]; //Step 1

13 bPtr=8b[11]; //Step 2

14 for (i=0; i<5; i++)

15 {

16 *aPtr +=i; //Step 3

17 *bPtr *=i; //Step 4

18 printf("%d\t%d\n", *aPtr++,* bPtr ++);
19 3} //*aPtr++ fetches value first, and then adds 1 to aPtr
20 returnQ;

21 }

Analysis

Figure 2.28 shows values of arrays a and b after the for loop on line 6 terminates.

a 0 1 2 3 4 5

b 0 2 4 6 8 10

Figure 2.28: Values of arrays a and b.

Since we have aPtr = &a[1] and bPtr=&b[1] in step 1 and 2, values of *aPtr and *bPtr should be
1 and 2, respectively. Figure 2.29 shows these two values in each iteration of the for loop on
line 14, starting from i = 0.

i 0 1 2 3 4
*aPtr in step O 1 2 3 4 5
*aPtr in step (3 1 3 5 7
*bPtr in step (2 2 4 6 8 10
*bPtr in step (@) 0 4 12 24 40

Figure 2.29: Data analysis table.

Example 2.5 Program analysis
Analyze the following program, figure out all objects pPtr and sPtr point to during execution and
the program result:

1
2
3
4
5}
6
7
8
9

int main(void)

{
char a[2][5]={"abc", "defg"};
char *pPtr=a[0],*sPtr=a[1];
while (*pPtr) pPtr++;
while (*sPtr) *pPtr++=*sPtr++;
printf("%s%s\n",al0],al1]);
return 0;

76 —— 2 Pointers

Analysis

Figure 2.30 illustrates the case where pointers pPtr and sPtr point to array a.

pPtr sPtr

N\ N\ |Values in a 2-d array are
a | b | c | \0 | \0 | d | e | f | g | \O |/ stored consecutively
a[0] a[1]
Beginning address Beginning address
of string “abc” of string "defg"

Figure 2.30: Pointers pointing to array a.

(1) Figure 2.31illustrates the case after line 5 is executed.

pPtr sPtr

\ \

a|b | c|N|[\N0|d]| e]| f | g]|\O

a[0] a[1]

Figure 2.31: Program analysis 1.

(2) sPtr points to “d” at first. In the loop “while (*sPtr) *pPtr++ = *sPtr++” on line 6, we repeatedly
assign value pointed to by sPtr to the unit pointed to by pPtr. In the first iteration, the value is
updated to “d,” then both pointers move to the next element, as shown in Figure 2.32.

pPtr sPtr

\ \

a b [¢ \0 | \O d e f g \0
d
a[0] a[1]

Figure 2.32: Program analysis 2.

(3) Now sPtr points to “e.” After another iteration, the value of the unit pointed by pPtr is up-
dated to “e,” as shown in Figure 2.33.

pPtr sPtr

\ \

a b c |\0O|\O | d e f g | \0
d e
al0] al[1]

Figure 2.33: Program analysis 3.

2.3 Pointers and arrays =— 77

(4) Now sPtr points to “f.” After another iteration, the value of the unit pointed by pPtr is up-
dated to “f,” as shown in Figure 2.34.

pPtr sPtr

\ \

a b c |\0O|\NO| d e f g | \0
d e f
a[0] all]

Figure 2.34: Program analysis 4.

(5) Now sPtr points to “g.” After another iteration, the value of the unit pointed by pPtr is up-
dated to “g,” as shown in Figure 2.35.

pPtr sPtr

\ \

a b c |\0O|\NO| d e f g | \0

d e f g
a[0] a[1]

Figure 2.35: Program analysis 5.

(6) Now sPtr points to “\0.” Because the loop condition is not met, the loop terminates, as
shown in Figure 2.36.

pPtr sPtr

\ \

a b c |\0O|\NO| d e f g | \0

a[0] a[1]

Figure 2.36: Program analysis 6.

(7) On line 7, %s format specifier prints character starting from the given address and stops
upon reaching “\0.” Hence, the string starting at address a[0] is abcdefgfg and the string
starting from address a[1] is fgfg. As a result, the final output is abcdefgfgfgfs.

2.3.2 Pointers and two-dimensional arrays

Example 2.6 Computing total grade for multiple students
Suppose we have four students and their grades in six courses, as shown in Figure 2.37. Please
compute the total grade for each of them using referencing by address.

78 = 2 Pointers

Figure 2.37: Grades of students.

Analysis

We can simply apply the same algorithm four times to complete the task.

1. Data analysis

We can repeat the
algorithm for one
student 4 times

ID Course 1 Course2 Course3 Course4 | Course5 Course6 | Total
1001 80 82 91 68 77 78
1002 78 83 82 72 80 66
1003 73 50 62 60 75 72
1004 82 87 89 79 81 92
o
e

Let us analyze the data to be processed first. Fetching address for each element in a row can be
done in the same way as in one-dimensional arrays. We will use a pointer ptr and update it to
the beginning address of the next row after processing one row.

To obtain the address of the next row, we can certainly reference the one-dimensional row by
score[1]. However, this is a reference by name instead of by address. Can we reference the row
by address then? In other words, can we use another pointer sPtr as a row pointer for the two-
dimensional array, as shown in Figure 2.38?

Obtain address
of a row

sPtr+1— |score[1]

sPtr— |score[0]

score[2]
score[3]

w Obtain address of an element

80| 77 | 75 | 68 | 82 | 78
78 | 83 | 82 | 72 | 80 | 66
73| 50 | 62 | 60 | 91 72
82| 87 | 8 | 79 | 81 | 92

Can we use a
pointer to simulate
~— row pointers of 2-d
arrays?

Figure 2.38: Row pointer of two-dimensional array.

What is
offset of
sPtr?

oOO

Number of elements in a row*sizeof(score element type)

The answer is affirmative because we can treat score[0] to score[3] as array elements as well.
The next question is what should be the offset of sPtr?
According to the definition of pointer offset, it should be the number of elements in a row
multiplied by the size of elements type.
There is a special term in C for pointers pointing to row addresses of a two-dimensional array. As
shown in Figure 2.39, these pointers are called “pointer to arrays.” This is a confusing term, so
parentheses are added to pointer names to distinguish them from plain pointers and arrays.

2.3 Pointers and arrays = 79

A pointer used

Pointer to arrays for 2-d arrays

A pointer to array is a pointer pointing to beginning
addresses of rows of a 2-dimensional array.

Note that this is still a
pointer. The constant
inside square brackets
indicate number of
elements the pointer
moves past in onelshift

type (*name)[constant];

Figure 2.39: Pointer to arrays.

It is worth noting that this is still a pointer, even though there is a constant wrapped by square
brackets after the pointer name. In fact, the constant indicates the number of elements the
pointer moves past in one shift.

For this problem, we can define a pointer to array as shown in Figure 2.40.

@ int (*sPtr)[6]; |

A
| Offset of pointer sPtr is 6*sizeof(int) ‘

Figure 2.40: Example of pointer to array.

Now we can obtain information of the two-dimensional array through reference by address, and
find out relation between ptr and sPtr, as shown in Figure 2.41.

? Obtain address of an element

Obtainaddress sPtr— | score[0]| 80 | 77 | 75 | 68 | 82 | 78
of a row

sPtr+1— | score[1] | 78 | 83 82 72 80 66
score[2]| 73 | 50 62 60 91 72
score[3] | 82 | 87 89 79 81 92

Relation

between ptr. ptr and score sPtr and score
and sPtr ptr=score[] —> sPtr=&score]]
.+~ 0o, *ptr=score[][] *sPtr=score[]

Obtain address of the first element in a row

Figure 2.41: Relation between row pointers and element pointers.

80 — 2 Pointers

The object in the unit pointed to by ptr is an element of array score. The object in the unit
pointed to by sPtris address of a one-dimensional row of array score. Hence, we can write state-
ment ptr = *sPtr, where *sPtr represents the beginning address of a row.

2. Code implementation

01 #include <stdio.h>

02 #define N 4 //Number of rows

03 #defineM 6 //Number of columns
04 intmain(void) {

05

06 int score[N][M]=

07 {

08 {80,77,75,68,82,78%},

09 {78,83,82,72,80,66},

10 {73,50,62,60,91,72%},

11 {82,87,89,79,81,92}

12 };

13 inti,j;

14 int total; //Total grade

15 int *ptr; //Row pointer

16 int (*sPtr)[M1; //A pointer to array, offset isMint
17 sPtr=&score[0]; //Make sPtr point to the first row
18

19 for (i=0; i<N; it++, sPtr++)

20 {

21 total =0;

22 ptr=*sPtr; //Make ptr point to the beginning address of the row
23 for (j=0; j<M; j++, ptr++)

24 {

25 total +=*ptr; //*ptr=scorel[][]

26 3}

27 printf("Total grade of student %d is %d\n", i+1,total);
28 }

29 return 0;

30 }

Program result:

Total grade of student 1 is 460
Total grade of student 2 is 461
Total grade of student 3 is 408
Total grade of student 4 is 510

Note: On line 16, we define a pointer to array sPtr with offset being M int, where M is 6.

On line 17, we make sPtr point to the first row of the array.

On line 22, ptr is set to point to the first element in a row.

In the for loop between line 23 and 26, we use pointer ptr to retrieve elements in array score
and add them to the sum.

2.3 Pointers and arrays =—— 81

In each iteration, ptris increased by 1in the loop increment part. That is, it moves to the next
element of the row.

In loop increment part of the for loop on line 19, sPtr is increased by 1. That is, it moves to
the next row.

3. Debugging
We can inspect the memory layout in the Watch window and the Memory window. Figure 2.42
shows the beginning addresses of each row of array score.

Watch
Name |Value |
Bl score 0x0018fee8 sz]
= [0] 0x0018fee8
(0] 80
= 0177
- [21 75
31 68
[4] 82
L [5]1 78
@ [1] 0x0018ff00
- [0] 78
- [11 83
— [2] 82
31 72 0018FF1C 32 00 00 00 2...
- [4] 80 0018FF20 3E 00 00 00 >...
— [5] 66 0018FF24 3G 00 00 00 <...
3 Gionerrs e -~
the first column ptr 0x0018feo8
ptret 0x0018feec |llho1grF3g 59 00 00 00 ...
sPtr 0x0018fee8 |lloo18FF3C 4F 00 00 00 O...
@ sPtr+1_ 0x0018ff00 |llb018FF40 51 00 00 00 Q...
0018FF44 5C 00 00 00 \...

Figure 2.42: Referencing elements of a two-dimensional array.

score[0] is 0x18fee8, which corresponds to the first gray block in the Memory window.

score[1] is 0x18ff00, which corresponds to the first white block.

Similarly, we have score[2] being 0x18ff18 and score[3] being 0x18ff30.

It is clear from the figure how ptr moves along each row. The value of ptr in the Watch win-
dow is the address of the Oth element in the score[0] block in the Memory window, which is
0x18fee8. The value of ptr+1 is the address of the 1st element in score[0] block, which is
Ox18feec.

sPtr moves along the first column of score. We have sPtr=score[0] and sPtr+ 1= score[1] at
first.

Values are displayed as hexadecimal numbers in the Memory window. The value of score[0][2]
is 4B, which corresponds to its decimal form 75 in the Watch window.

It can be derived from the Memory window that int type takes up 4 bytes in the system in
which this program is executed. The address of the last element in the Oth row is 0x18fefc. After
shifted by 4 bytes, it becomes 0x18ff00, which is precisely the address of the first element in
the first row. This shows that the addresses of these two elements are consecutive. Similarly,
one can inspect the addresses of the first and last elements of other rows and conclude that
rows of a two-dimensional array are stored consecutively.

82 — 2 Pointers

Once again, we notice that elements of multidimensional arrays are stored consecutively,
which is a general rule of array storage.

2.4 Pointers and multiple strings

Example 2.7 Finding largest string
Find the largest string (in alphabetical order) in the following family names. Please implement
using reference by address:

Zhao, Zhou, Zhang, Zhan, Zheng

Analysis

1. Data structure analysis
Each family name is a string, so we can store multiple family names in a two-dimensional char-
acter array, as shown in Figure 2.43.

char c[5][6]={"Zhao", "Zhou", "Zhang","Zhan","Zheng"}

c[0] "Zhao"
T c[1] "Zhou"
Beginning addresses
of rows of a 2-d array, c[2] "Zhang"
referenced using the n "
1-d form of the arrayj/l> c[3] Zhan
| c[4] "Zheng"
char *cPtr[5]={"Zhao", "Zhou", "Zhang","Zhan","Zheng"}
cPtr[0] "Zhao" cPtr[] is a 1-d pointer array
(array elements are pointers)
cPtr[1] "Zhou"
cPtr[2] "Zhang"
cPtr[3] "Zhan"
cPtr[4] "Zheng"

Figure 2.43: Two storage structures of multiple strings.

Because there are five names, we need to define a character array c with five rows. The longest
name has five characters, so we need six columns to store it and the termination mark.
The address of each row of a two-dimensional array can be referenced in a one-dimensional
format. c[0] to c[4] can be treated as elements of a special array whose elements are pointers.
Based on discussion earlier, we may define a pointer array cPtr[]. It is a one-dimensional
array of pointers with five elements, each of which is the address of a string.

2. Algorithm description
The pseudo code is shown in Figure 2.44.

2.4 Pointers and multiple strings =—— 83

Top-level pseudo code First refinement Second refinement

Store M strings into *cPtr[M] | char *cPtr[M] , char str[6]

Use the first string in the v Use cPtr[0] as comparison
array as comparison basis str ‘ basis, and copy it into str

Find the largest among |[i=1;
multiple strings while i< M

Compare each string with str

and put the larger into str if str<cptrfi]

Copy c[i] into str
i++;

.Output result . Output result . Output str

Figure 2.44: Finding largest string algorithm.

3. Code implementation

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22

#include <stdio.h>

#include <string.h>

#define M5 //Number of strings
#define N5 //Longest string length + 1

int main(void)

{

char *cPtr[M]={"Zhao","Zhou","Zhang","Zhan","Zheng"};

char str[NJ;

int 1i;

//Use strcpy to copy cPtr[0] into str, beware of out-of-bound error
strcpy(str, cPtr[0]);

for (i=1; i<M; i++)

{
if (strcmp(str, cPtr[il)<0) //1f str is less than cPtr[i]
{

strepy(str, cPtr[il); //Then copy cPtr[i] into str

3

}

printf("The largest string is: %s\n", str);

return 0;

Program result:

The largest string is: Zhou

Note: On line 8, pointer array cPtr is defined and initialized with 5 strings.

On line 9, a one-dimensional character array is defined. Note that its length is the number of

characters in the longest string plus one.

The watch window shows the elements of the pointer array, as shown in Figure 2.45. Values

of these elements are the beginning addresses of strings.

84 =— 2 Pointers

|Name [Value

cPtr 0x0018ff34

[0] ~ 0x00420f9¢ "Zhao"
[1] 0x00420f94 "Zhou"
[2] 0x00420f8c "Zhang"
[3] '0x00420034 "Zhan"
[4] 0x0042002¢ "Zheng"

Figure 2.45: Inspection of pointer array.

On line 12, we use strcpy function to copy cPtr[0] into array str.
On line 15, we compare strings stored in str and cPtrfi].
On line 17, we copy the larger one into str.

2.4.1 One-dimensional pointer array and pointer to pointer

In the earlier example, if we wish to use a pointer to point to elements in array cPtr,
what does this pointer that points to pointer array look like?

Let the pointer pointing to pointer array cPtr be cPtrPtr, then its relation with
elements in array cPtr should be as shown in Figure 2.46. In this case, we need a
new kind of pointers.

1-dimensional pointer array
char *cPtr[5]={"Zhao", "Zhou", “Zhang”,"Zhan","Zheng”} ;
//Array elements are pointers

W . ot cPtrPtr— cPtr[0] "Zhao"
e want a pointer

pointing l:o a CPtrPtr+1— | cPtr[1] "Zhou"
pointer array, what cPtr[2] "Zhang"

Opo

does it look like?

cPtr[3] "Zhan"
cPtr[4] "Zheng"

Figure 2.46: One-dimensional pointer array.

cPtrPtr points to cPtr, which is a pointer, so cPtrPtr is a pointer to pointer. We usually
call such pointers double pointers. Figure 2.47 shows how to define a double pointer
and how to assign a value to it. A double pointer requires two asterisks in front of the
pointer name.

2.4 Pointers and multiple strings =—— 85

1-dimensional pointer array
char *cPtr[5]={"Zhao", "Zhou”, *Zhang”,"Zhan","Zheng"} ; //
Array elements are pointers

char **cPtrPtr; //Pointer to pointer (double pointer)
CcPtrPtr=cPtr;

‘ cPtrPtr— cPtr[0] "Zhao"

CPtrPtr points to cPtr, cPtrPtr+1— cPtr[1] "Zhou"
which is also a pointer,

so we call cPtrPtr a) cPtr[2] "Zhang"
double pointer, namely

a pointer to pointer cPtr[3] "Zhan"

cPtr[4] "Zheng"

Syntax of double pointers

type **name;

Figure 2.47: Definition of pointer to pointer.

To inspect a double pointer in debugger, we can use the three statements shown
in Figure 2.48.

1-dimensional pointer array

char *cPtr[5]={"Zhao", "Zhou", "Zhang","Zhan","Zheng"} ;
// Array elements are pointers

char **cPtrPtr; //Pointer to pointer (double pointer)
CPtrPtr=cPtr;

Watch [|[Memory

"‘""”Pt l\glu6018ff34 Address: [0x181134
crtr X 0018FF34 94 OF 42 00 ..B. ~
(o] 0x00420f94 " Zhao" 0018FF38 8C OF 42 00 ..B.
[1] 0x00420f8c _"Zhou" 0018FF3C 34 00 42 00 4.B.
[2] 0x00420034 "Zhang” 0018FF40 2C 00 42 00 ,.B.
[3] 0x0042002¢ "Zhan" 0018FF44 1G 00 42 00 ..B.
[4] 0x0042001¢ "Zheng" 0018FF48 88 FF 18 00
?cPtrPtr 0x0018Ff34 0018FFAC 59 13 40 00 Y.@.
0x00420F94 "Zhao" 0018FF50 01 00 00 00
7 oPtrPtr+1 0x00187738 88]2*;523 28 g[E) gg g] R...
apr Syt e OGRS 05 60

: 0018FF60 91 91 48 77 fHHw

7 &cPtr [1] 0x0018ff38 NN1REEAA NN EN FN 7F b

Figure 2.48: Inspection of the pointer array.

As shown in the Watch window, elements of cPtr are beginning addresses of strings.
Addresses of these elements are presented in the Memory window. For example, ele-
ment cPtr[0] has value 0x420f94, which is the beginning address of the string “Zhao.”
The address of cPtr[0] is Ox18ff34, as shown in the Memory window. The double
cPtrPtr points to elements of cPtr. By adding 1 to it, we move it to the next element.
Readers can reimplement the largest string algorithm using double pointers.

2 Pointers

86

*s19jujod 0} paje|al s3daduod uUaaMIaq SuolIR|dY 61 d1nSi4

Jajuiod 03 J2julod e :uajulod 9|gnog

sa9julod aJe syjusw|d Aeudde :Aedue usjulod p-T

Aeaae p-z e ul smod Jo sassalppe buiuuibaq 03 bunuiod uajuiod e :Aedie 03 493uiod

9dA} 433ul0d JO 9zIS AQ paulwJdalap SI da1s QU0 ul 19SJJ0 JO BZIS :319SH0

sjun AJowaw Buoim ssadde
03 30U J9pJo Ul J1 Buisn aJ0joq Ja3ujod e 03 anjeA e ubisse pjnoys auo :ajnJ abesn

abesn
pasueApy

siajuiod om] Jo uoilisod aAIR|ad SDUIWIRIDP :uoielado |euoneRY

sJajuiod usaMIaq SjuUSWI|D JO Jaquinu 23ndwod ‘uajulod e sAOW :uoelado JiIPWYILY

Jajuiod e 23e00] :uoijelado Juswubissy

% J01e1ado aoualiajau9p g 10jelado Jo-ssadppe :dojetado Jajulod

SSalppe ue s| an|eA s} 'SassaJppe AJoWaW 2103S 0] Pasn 3|qelieA e :13julod

ssalppe 3|gelieA :ssaippe Ag 2ouaJaey

awieu 3|geleA :dWweu AQ 92Ua1aoy

uones2do

2.6 Exercises =— 87

2.5 Summary

The main contents of this chapter and the relations between them are shown
in Figure 2.49.
Objects with location attribute can be referenced either by name or by address,
Which are both key elements of variables,
Variable names are usually meaningful, so it is more intuitive and convenient
to use them,
Reference by address operates on memory directly, so it is more efficient.

Data are stored in cells inside memory.

Each cell has a number, which is used as their addresses,

Values of pointer variables are addresses,

And their types indicate types of data stored in the corresponding cell,
To access the data, we need to determine the address first.

Pointer operations are limited to comparison and moving.

The size of step must be determined before moving a pointer.

2.6 Exercises
2.6.1 Multiple-choice questions

1. [Null pointer]
Which of the following is the output of this program? ()

include <stdio.h>

int main(void)

{
printf("%d\n",NULL);
return 0;

A)Wedonotknow B)0O C)-1 D)1

2. [Concept of pointers]
Which of the following statements is correct about addresses and pointers? ()
A) We can assign a pointer of one type to a pointer of another type through
forced-type conversion.
B) We can compute the address of a constant and assign it to a pointer of the
same type.

88 =— 2 Pointers

C) We can compute the address of an expression and assign it to a pointer of
the same type.

D) We can compute the address of a pointer and assign it to a pointer of the
same type.

3. [Pointer assignment]
Suppose x is an integer variable and pb is an integer pointer. Which of the fol-
lowing statements is correct? ()
A)pb=&x B)pb=x C)*pb=&x D)*pb=*x

4, [Pointer exception]
Suppose we have the following definitions: int x=2, *p=&x; float y=3.0; char
z='c';.
Which of the following operations is unsafe? ()
A) p++ B) x++ C) y++ D) z++

5. [Read into address]
Suppose we have declarations double *p, a. Which of the following statements
can correctly read input?)
A) *p = &a; scanf("%lf",p) B) p = (double*)malloc(8); scanf("%f",p)
C) p = &a; scanf("%lf",a) D) p = &a; scanf("%lf",p)

6. [Pointer offset]
What is value of y after executing the following program? ()

int a[J]={2,4,6,8,10};

int y=1,x,*p;

p=&al[11];

for(x=0;x<3;x++) y + =% (p+x);
printf("%d\n",y);

A)17 B)18 (€19 D)20

7. [Operations on string]
Which of the following statements is a correct string assignment statement? ()
A) char s[5] = {"ABCDE"} B) char s[5] ={'A', 'B', 'C', 'D', 'E'}
C) char *s; s = "ABCDEF" D) char *s; scanf("%s", s)

8. [Forced-type conversion of pointer]
Which of the following options points pointer p to a dynamic memory unit of an
integer variable? ()
int *p;
p= malloc(sizeof(int));
A)int B)int* C) (*int) D) (int *)
Note: malloc is the library function for dynamic memory allocation

2.6 Exercises —— 89

9. [Row pointer of two dimensional array]

Suppose we have: int w[3][4] = {{0,1},{2,4},{5,8}}; int(*p)[4] = w;
Which of the following expressions evaluates to 4? ()
A)*wli]+1 B)p++*(p+1) O wi2]l2] D) p[1][i]

2.6.2 Fillin the tables

1.

[Memory unit address]

Figure out values of variables in Figure 2.50 after executing the following pro-
gram. Suppose address of variable a is 0x003FFCA4 and address of variable b is
0x003FFCAS.

int main(void)
{
int a, b;
int *p1, *p2;
pl =&a;
p2 =8&b;
a=>50;
b=20;
a=*pl - *p2;
return 9;

Variable a b p1 p2 *p1 *p2

Value

Figure 2.50: Pointers: fill in the tables, question 1.

[Pointer operations]
Fill in the table in Figure 2.51 based on the following program:

int a, b, k=4, m=6, *p1=8&Kk, *p2=&m;
a=(p1==8&m);
b=(*p1) / (*p2)+7;

90 —— 2 Pointers

Expression Result

p1==&m
*p1

*p2
("p1(*p2)
a

b

Figure 2.51: Pointers: fill in the tables, question 2.

3. [Pointer to one-dimensional character array]
Fill in the table in Figure 2.52 based on the following program:

int main(void)
{
inti, s=0, t[1={1,2,3,4,5,6,7,8,9%};
int *p=t;
for(i=0;i<9;i+=2)
{
st=x(p+i);
b
printf("%d\n",s);
return9;

i 0 2 4 6 8 10
p &t[0] End of loop

s 1

Figure 2.52: Pointers: fill in the tables, question 3.

4, [Pointer to character array]
Fill in the table in Figure 2.53 based on the following program. Suppose key-

board input is "abcde"
#include "ctype.h"

int main(void)

{
char str[81],*sptr;
gets(str);
sptr=str;
while(*sptr)
{

2.6 Exercises =— 91

putchar(*sptr+1);
sptr++;
}

return9;

Input str "abcde"

Number of iterations 1 2 3 4 5

*sptr a

putchar(*sptr+1) 'b'

Functionality:

Figure 2.53: Pointers: fill in the tables, question 4.

2.6.3 Programming exercises

1.

Suppose we have an integer array with 10 elements. Show the output of its ele-
ments using the following methods: through array index, through array name,
and through a pointer.

Write a program that reads n number from keyboard input and outputs them in
the reversed order of input. Your implementation should use pointers.

Please write a program, in which you define a one-dimensional integer array
num(20], read an integer n (n<20), and an integer sequence (of n numbers)
from keyboard input, find the maximum and the minimum in the sequence and
swap them.

Write a function that stores input characters backwards. Input of characters and
output of the reversed characters should be done in the main function.

Write a program that connects two strings without using strcat function.

Please write a program that handles character input in the following way: if the
input is a lowercase letter, the program should output its uppercase counter-
part; if the input is uppercase, the program should output its lowercase counter-
part; other characters should be output as such.

A palindromic number is a nonnegative integer that remains the same when its
digits are reversed, for example, 12321. Please write a program that determines
whether the input integer is palindromic. If so, the program should output the
sum of its digits; otherwise the program should output "no."

Please write a program to encrypt string "China" using Caesar code with a right
shift of 4. For example, the fourth letter after "A" is "E," so ciphertext of "A" is
"E." As a result, ciphertext of "China" should be "Glmre."

3 Composite data

Main contents

Introduction of construction of structures through comparison of structures and arrays
Analysis of the nature of structure types through comparison of structure types and basic
types

Summarization of usage of structures through comparison of structure members and plain
variables

Program reading practices

Practice of top-down stepwise refinement algorithm design

Storage characteristics and debugging techniques of structures

Learning objectives

3.1

Understand the significance of custom data types

Know steps and methods of type definition, variable definition, initialization, and reference
of structures

Know the concept of unions and how to use them

Know the concept of enumerations and how to use them

Concept of structures

3.1.1 Introduction

There were four students in a study group instructed by Mr. Brown. Their informa-
tion was recorded in a student management table, as shown in Figure 3.1. One day,
Mr. Brown asked his students, “We have learned how to compute total grade in a
two-dimensional table, can you write a program that computes total grades and
prints the entire management table?”

Admission Computer . Operating
ID Name | Gender Year architecture C Compiler System Total
1001 | ZhaoYi M 2009 90 83 72 82
1002 | QianEr M 2009 78 92 88 78
1003 | SunSan F 2009 89 72 98 66
1004 LiSi F 2009 78 95 87 90
° o
o How to
implement
in code?

Figure 3.1: Student management table.

https://doi.org/10.1515/9783110692303-003

https://doi.org/10.1515/9783110692303-003

94 — 3 Composite data

Compared with a two-dimensional array, data in this table are not of the same type.
To process this table, we must first figure out how to access the data on a computer
before designing an algorithm. To be more specific, we need a method to store the
table in the computer and to retrieve grades from the table. This is also the general
approach to solve problems from a computer’s perspective.

3.1.2 Storage solution of mixed data table

3.1.2.1 Discussion of possible storage solution of mixed data table
Let us discuss possible solutions to store a mixed data table.

Based on the characteristics of the table and concept of array storage we have
learned, we can use two methods to store the table: by row or by column. The pros
and cons of these two methods are shown in Figure 3.2.

What are
possible storage
solutions?,

0O

Solution Characteristics Issues

— Each column is a 1-d array Computation involves multiple

By column | _ Has existing solution 1-d arrays
9 — Computation is inconvenient
— Multiple types of data in each row |~ st?osésstilnngsscfﬁjrt?gr? and
By row — Easier to access using row offsets |_ can use sgtorage solution of

Consistent with our experience arrays

Reconstruct new
concepts and
methods based on
arrays

An array is a collection of variables of the same type
“By row: combinatorial data structure”is a group of
variables of different types c00O

Figure 3.2: Possible solutions to table storage.

Of course, we can store each column in a one-dimensional array. However, total
grade computation will then involve multiple one-dimensional arrays. It is tedious
to do so in programs. If the computation is done in a module, then there is no easy
way to pass information from a row down to child functions.

On the other hand, if we store the table by row, data entries of one individual
are stored consecutively, so the sum can be computed in the same way as it is done
in one-dimensional arrays. By encapsulating the sum computation in a module, we
only need to pass row addresses to it, as we have done in two-dimensional arrays.

To sum up, it is easier to process data if we store the table by row.

3.1 Concept of structures =— 95

3.1.2.2 Issues of constructing “combinatorial data”
There are multiple rows in a table, but they are essentially a repetition of a single
row. As a result, it suffices to figure out how we should store a single row. Hence,
the key is to “pack” data of different types together and store them in a continuous
space, whose beginning address functions as a reference to this space.
We can now list all given conditions and our expectations of the new storage
solution as follows:
— It can store multiple data entries, each of which may have its own type.
— Users can determine the number of data entries and values.
— Data mentioned earlier are “packed” together as one entity and stored in a con-
tinuous space.
— Each data entry can be accessed independently.

3.1.2.3 Key elements of constructional data

An array is a group of variables of the same type. However, a “combinatorial data
structure” requires us to reconstruct new concepts and methods based on arrays.
Using these new methods, we can construct “constructional data.”

Based on three key elements of data storage, we can analyze combinatorial
data from the perspective of storage size, memory allocation, and data access. As
shown in Figure 3.3, they are determined by type, definition, and reference of “com-
binatorial data,” respectively.

What issues we need to
consider when constructing
“combinatorial data”?

This identifier
is user-defined

Three key elements of data storage % R

Storage |Type of “combinatorial Type size Type name
size data” Sum of size of each data entry keyword+identifier

Memory is allocated by the system based on types of
custom data
Multiple data entries are stored consecutively

Data |Variable reference of | Reference of single data entry, multiple entries as a whole
reference | “combinatorial data” | entity and address

Memory |Variable definition of
allocation | “combinatorial data”

Figure 3.3: Key elements of storage of constructional data.

(1) Type of constructional data
The storage size is determined by data type. A type is identified by its name and
size.

The system cannot predict data in the mixed data table because they are gen-
erated by users. Thus, users need to “construct” a type for the table on their own.

96 —— 3 Composite data

There are multiple types of data in the table, so the size of the table type should
be the sum of the sizes of each entry.

Because such a combinatorial type is data-dependent, its size varies for different
tables. As a result, it is not possible to use a single type for all of them. Otherwise, the
system cannot allocate a suitable amount of memory for each table. Hence, it is the
programmers’ task to define types. It is thus necessary to design syntax for type defi-
nitions. In C language, such definitions are done in the format “keyword + identifier,”
in which programmers name the identifier.

(2) Definition of constructional data
After defining a variable for “combinatorial data,” the system should allocate mem-
ory based on the custom type. The data entries should be stored continuously.

(3) Reference of constructional data

To retrieve data, programmers should be able to access a single data entry, all en-

tries as a whole entity or the address of the “combinatorial data” variable.
“Combinatorial data” are called structures in C. A structure is a collection con-

structed by data of different types. Structures in C make storage and processing of

complex data structures possible.

3.2 Storage of structures
3.2.1 Type definitions of structures

Figure 3.4 shows the definition of a structure (struct) and its data entries. Structures
are one of the aggregate data types in C.

Aggregate

A structure (struct) is a collection of multiple data entries. data type

Each entry in a structure is called a structure member.
Members can have different types.

Figure 3.4: Definition of structures.

Figure 3.5 presents some concepts related to the type of structures.

Structure names are identifiers defined by programmers to reference structures
conveniently. The type name of a structure consists of keyword struct and the struc-
ture name. A structure definition consists of type names and definitions of structure
members. Although structure names are optional, it is not recommended to omit

3.2 Storage of structures =—— 97

them. A structure must be defined before being used. Members of a structure can be
of any valid types in C.

Structure name

Programmers use identifiers to name structures for easier reference

struct is the
keyword of
structure

Structure type name

00
struct name

Will memory be allocated
to these members by the
— system once the structure
type is defined?

Syntax of structure type definition

struct name
{ type member1;
type member 2;
We must define a
structure before
using it

type member n; o)

Figure 3.5: Concepts related to structure type.

Think and discuss Will the system allocate memory for structure members after defining the “
structure?

Discussion: Note that a structure is a user-defined data type. In C, types describe the size of
memory allocated, but a type definition will not trigger memory allocation. Memory will not be
allocated until a variable of this type is defined.

Example 3.1 Structure definition of student management table
Define a structure for data in Figure 3.6

ID | Name | Gender A S Computer C Compiler O EESi Total
year architecture system
id | name | gender time score_1 score_2 score_3 score_4 total

Figure 3.6: Student management table.

Analysis
Figure 3.7 presents two solutions to structure definition for the table.

Solution 1: the structure name is student, which becomes the type name together with keyword
struct. The members are defined one by one, each with an appropriate type.
Solution 2: we can combine data of the same type into an array to make the definition simpler.

98 —— 3 Composite data

struct student m

{
char name[10]; struct student
char gender; {
int time; int id;
int score_1; char name[10];
int score_2; char gender;
int score_3; int time;
int score_4; int score[4]; //Combine 4 grades in an array
int total; int total;
T }

Figure 3.7: Solutions of structure definition for the student management table.

3.2.2 Definition of structure variables

With the definition of a structure type, we can define structure variables. As shown
in Figure 3.8, the definition is similar to plain variable definitions, except that the
type is a structure type.

Syntax of structure variable definition

structureType variableName;

Figure 3.8: Definition of structure variable.

Let us consider the following example:

Example 3.2 Variable definitions related to student management table
There were 30 students in Mr. Brown’s class, whose information is recorded in the student man-
agement table format shown earlier. Please write out definitions of the following variables:

— astructure variable;

— an array of 30 structure variables;

— apointer pointing to a structure object.

Analysis

Figure 3.9 shows required definitions, where struct student is the structure type, x is the name
of the structure variable, com[30] is the structure array, and sPtr is the pointer pointing to a
structure.

3.2 Storage of structures =—— 99

D arie Rk Admission Con}puter C Compiler Operating Total
year architecture system
id name gender time score_1 score_2 score_3 score_4 total
Description Form
Structure type struct student
Structure variable definition struct student x;
Structure array definition struct student com[30];
Structure pointer definition struct student *sPtr;

Figure 3.9: Variable definitions related to the student management table.

3.2.3 Structure initialization

Similar to arrays, a structure variable can also be initialized, as shown in Figure 3.10.

Syntax of structure initialization

Similar to array

¥e) D
struct structureName variableName= {Initial data} initialization

Figure 3.10: Syntax of structure variable initialization.

Example 3.3 Initialization of structure array
Please initialize structure array com[30] with data in the student management table.
Analysis
As shown in Figure 3.11, we shall only initialize the first four rows as a demonstration. The unin-
itialized elements will be set to 0 by the system automatically.
Now we can store data of various types in a single data structure.

ID Name Gender Ao Computer C | Compiler TR Total
year architecture system
1001 ZhaoYi] 2009 90 83 72 82
1002 QianEr] 2009 78 92 88 78
1003 | SunSan F 2009 89 72 98 66
1004 LiSi F 2009 78 95 87 90

Uninitialized
elements are set

to 0 by the
system

//Structure array initialization
struct student com [30]
={ { 1001, "ZhaoYi", 'M', 2009, 90, 83,72, 82},
{ 1002, "QianEr", 'M', 2009, 78, 92, 88, 78 }, Ne)
{ 1003, "SunSan", 'F', 2009, 89, 72, 98, 66 },
{ 1004, "LiSi", 'F', 2009, 78, 95, 87,90}
I

Figure 3.11: Initialization of structure array.

100 —— 3 Composite data

3.2.4 Memory allocation of structure variables

Memory is allocated to variables based on their definitions. We shall examine how
memory is allocated to structure variables using objects we defined previously,
including structure variable x, structure pointer sPtr, and structure array com.

3.2.4.1 Definitions related to structure

struct student //Structure type definition
{
int id;
char name[10];
char gender;
int time;
int scorel[4];
int total;
55
struct student x; //Structure variable definition
struct student com [10] //Structure variable definition and initialization
={{1001, "ZhaoYi", ‘M’, 2009, 90, 83, 72, 82},
{1002, "QianEr", ‘M’, 2009, 78, 92, 88, 78 },
{1003, "SunSan", ‘F’, 2009, 89, 72, 98, 66 },
{1004, "LiSi", ‘F’, 2009, 78, 95, 87, 90 }
I3
struct student *sPtr; //Structure pointer definition
sPtr=com; //Make the pointer point to array
x=com[2]; //Assign com[2] to x

3.2.4.2 Memory layout of structure variables
Figure 3.12 shows memory layout of structure variables.

Size of memory allocated to structure variable x is the sum of size of memory
required by each member in the structure.

Structure array com has 10 rows, each of which has the same size as structure
variable x.

Using assignment statement sPtr = com, we point sPtr to the beginning address
of array com. This is possible because they are of the same type. To make the pointer
point to com[9], we can simply move it by nine elements with statement sPtr + 9.

3.2.4.3 Inspection of memory layout of structure variables

Figure 3.13 shows the memory layout of these variables in debugger windows.
Structure array com has 10 elements, each of which can be expanded by click-

ing the plus sign in front of it. Here we have only expanded com[0]. It is clear after

3.2 Storage of structures = 101

struct student x, com [10], *sPtr;

x | ID | Name | Gender Adr;(ias:rion Grade 1 | Grade 2 | Grade 3 | Grade 4 | Total
sPtr=com;

m\ ID | Name | Gender Adr;r;(iesasrion Grade 1 | Grade 2 | Grade 3 | Grade 4 | Total
com[0] | | | | | | | |
com[1]
com(9] | | | | | | | |

Figure 3.12: Memory layout of variables related to student management table.

Structure array com Structure pointer sPtr Structure variable x
Watch | | watch B | |watch a
Name [value [~]l [Name |value Name [value
H com 0x0019Fd78 B sPtr 0x0019Fd78 Bx {---}
(e 1901 {---} — id 1001 — did 1003
— id 1801 -E nanme 0x0619Fd7c @ name B8x0819FFBc
B name 0x0819Fd7c "Zhaovi" "Sunsan"
“ZhaoVi" - gender 77 H {~ gender 78 'F'
i~ gender 77w’ — time 2009 — time 2009
time 2009 HE score 0x0019Fd8c -El score Bx0819FF1c
Bl score 0x0019Fd8c — total [0] 89
re1 90 B sPtr+1 0x0819Fdab [11 72
[11 83 — id 1062 [21 98
[21 72 E name 0x0819Fdak [31 66
[31 82 “QianEr" L~ total [}
L total [} - gender 77 'H*
[11 {---} — time 2009 //Assign value of com[2] to x
[2]1 {---} B score 0x0019Fdbs x=com[2];
HH [3] (...} L total 0
[4] {---3 -
51 {--03 //Structure pointer
{:} ﬁ:::; points to structure array
18] (o3 sPtr=com;
9] teeed

Figure 3.13: Inspection of the memory layout of variables related to the student management table.

expansion that each element consists of data entries defined in the structure-type
definition.

The Watch window for variable x shows that assigning value to a structure vari-
able copies all data entries.

In the window for sPtr, we can inspect contents pointed to by it. sPtr points to
the beginning address of com, and we can verify that id is indeed 1001. sPtr + 1 has
id 1002, so it points to com[1]. This is consistent with the definition of pointer offset.

102 — 3 Composite data

3.2.4.4 Data alignment of structures

Because members of a structure can have different types, their addresses need to be
aligned during memory allocation. Let us look at two examples first.

Example 3.4 Data alignment for basic types

Suppose we have three structure variables A, B, and C, and we know their initial values. Also,
suppose the size of short and size of long are 2 and 4 bytes, respectively, in the runtime
environment. After testing, we have obtained lengths of these variables, which are 6, 8, and

8 bytes, respectively, as shown in Figure 3.14. Please explain why this is the case after inspect-
ing the memory.

Suppose:
sizeof(short)=2 sizeof(long)=4
struct struct struct
{ short ai; {
short a2; long ai; short ail;
short a3; short a2; long a2;
> A={1,2,3}; } B ={4,5}; > C={6,7};

sizeof(8)=7

Result:
sizeof(A)=6

sizeof(B)=8

sizeof(C)=8 °

Why is this
the case?

0O

Figure 3.14: Data alignment.

Analysis

Figure 3.15 shows the addresses of A’s structure members. They all have length of 2 bytes and
are stored consecutively.

Watch 8
Name |‘l.“alue
A {---3

sizeof(A) 6 oo a
A 0x0019FF28 Address: [0x19ff28
&A.a1 Bx0019FF28 8019FF28 61 88 .. =~
&A.a2 0x0019fF2a 8019FF2n ©2 00 ..
&A.a3 Bx0019FF2c 0819FF2C ©3 80 ..

Figure 3.15: Memory layout of A.

Figure 3.16 shows the addresses of B’s structure members. B.al is stored at 0x19ff20 and has
4 bytes. B.a2 is store right after it at address 0x19ff24. sizeof(B) yields 8, so 4 bytes are allocated
to B.a2. However, short type only takes up 2 bytes. Thus, the remaining 2 bytes are not in use.

3.2 Storage of structures =— 103

Watch [= |
Name IVaIue
B {---2
ail 4
a2 5
Memory
sizeof(B) 8 n
&B 0x0019FF20 Address: |0x19ff20
&B.a1 0x0019FF20 B019FF20 64 60 60 80 A
&B.a2 0x0019FF24 8019FF24 85 88 CC CC ..i%

Figure 3.16: Memory layout of B.

Figure 3.17 shows the addresses of C’s structure members. C.al is stored at 0x19ff18. It is of
type short, so its length is supposed to be 2 bytes. Nonetheless, C.a2, a long variable, is stored
at 0x19fflc, which is 4 bytes after C.al. sizeof(C) yields 8 and we know the length of a long vari-
able is 4 bytes, so 4 bytes are allocated to C.al. Once again, 2 bytes are not in use.

Watch x|
Name |‘Jalue
e B 2223
al 6
a2 7
Memory
sizeof(C) 8 =l
& = 0x0019ff18 Address: |Dx19ff18
&C.a1 0x0019FF18 0019FF18 06 00 CC CC ..10 A
&C.a2 0x0019Ff1c 0019FF1C 67 60 00 00

Figure 3.17: Memory layout of C.

Think and discuss Why are there “holes” in memory that are not used?
Discussion: We can infer from the memory layout shown earlier that these memory units are allo-
cated in such a way that the addresses of structure members are aligned. Data alignment allows
the CPU to access memory more efficiently. It is an optimization done by compilers during mem-
ory allocation of variables. The optimization (alignment) rule for basic types is as follows:
Variable address %N = 0 (Alignment parameter N = sizeof(variable type))
Note: this rule may vary in different compilers.

Knowledge ABC Memory allocation rules of structures (VC++ 6.0)
1. Member storage order
Members of a structure are stored in the order in which they are defined. The first member is
stored at the lowest address, while the last member is stored at the highest address.
2. Data alignment parameter
(1) Alignment parameter for a member:
N=min(sizeof (member type), n)
Note: the value of n is configurable in VC++ 6.0. Its default value is 8 bytes.
(2) Alignment parameter for a structure: M = maximum of alignment parameters of all mem-
bers in the structure

104 — 3 Composite data

3. Memory allocation rules of structures
(1) Structure size L: L%M = 0 (empty bytes should be padded if necessary).
(2) Address of a member x: x%N = 0 (if the size of the member is less than M, the next mem-

ber is padded).

Memory is allocated in multiples of M bytes: if a member is longer than M bytes, then M more bytes
are allocated; if a member is shorter than M bytes, then the next member is padded following the
same set of rules (which also apply to nested structures).

Example 3.5 Data alignment for constructional types
Figure 3.18 shows the definition of structure struct stu and its information in the Watch and the

Memory windows.

Let struct stu x ={1, “ZhaoYi”, “Male”, 3, 4,5, 6,7 }.

struct stu

{ int Studentld;
char StudentName[10];
char StudentGender[7];

int TimeOfEnter;
int Score[4];

Watch [x|
Name IVame
=] {...}
StudentId 1
- StudentName 0x0019ff08
"'ZhaoVvi"
- StudentGender 8x8019ff12
“Male"
— TimeOfEnter 3
-# Score 0x0019fF28
[&x 0x0019FFou
sizeof(x) 4y
B &x.StudentGender 0x0019FF12

Figure 3.18: Memory layout of variable x.

“Male"

Memory

Address:

0x19ff04

0819FF 04
0819FF 68
0819FF 6C
0819FF18
0019FF14
0819FF18
0019FF1C
0019FF20
0019FF24
0019FF28
0019FF2C
0019FF30

81 80 08 60
5A 68 61 6F
59 69 60 88
80 80 4D 61
6C 65 60 68
86 cC cC cC
83 00 00 60
64 00 00 60
85 00 00 60
86 00 00 60
87 00 00 60
78 FF 19 868

Zhao
vi..
..Ma
le..

)

The length of memory allocated to x is 0x19ff30-0x19ff04=0x2c=44 bytes; sum of length of its
members=(int+ char*10+char*7+int+int*4)=41 bytes. The difference between these two values
is 3 bytes, so “holes” exist in the memory, as shown in Figure 3.19.

Member ngldnrr::sg 4 bytes
int StudentId 19FF04 |01 | 00 | 00 | 00
char StudentName[10] | 19FFO8 |5A | 68 | 61 | 6F
59169400 | 00
char StudentGender[7] |19FF12 00 | 00 61
6C | 65| 00 | 00
o0fCccC|cCC|CcC
int TimeOfEnter 19FF1C [03 | 00 | 00 | OO
int Score [4] 19FF20 [04 | 00 | 00 | OO
05| 00| 00 | OO
06 | 00 | 00 | 0O
07 | 00 | 00 | OO

Figure 3.19: Memory “holes.”.

Memory “hole”

3 bytes

3.2 Storage of structures =— 105

The alignment parameter of structure x is M = sizeof(int) = 4.

Note:

(1) Objects stored in unit 0x19FF10 and 0x19FF11 are StudentName[8] and StudnentName[9],
respectively.

(2) The beginning address of StudentGender is 0x19FF12.
The alignment parameter of StudentGender is N = min(sizeof(member type), 8)=sizeof
(char) =1.
Because 0x19FF12%N = 0, the 7 elements of StudentGender is stored in units starting from
0x19FF12.

(3) The beginning address of TimeOfEnter is 0x19FF1C.

The alignment parameter of TimeOfEnter is N = sizeof(int) = 4.

The address of the next empty unit after 7 elements of StudentGender is 0x19FF19. None of
the numbers in the range 0x19FF19 to 0x19FF1B is multiple of 4, as shown in Figure 3.20, so the
beginning address of TimeOfEnter has to be 0x19FF1C, which is a multiple of 4. As a result,
aligning TimeOfEnter leads to the 3-byte “hole” after StudentGender.

Watch x |
Name |Value
Bx12FF69%4 1
Ox12FF6A%Y 2
0x12FF6B%Y 3
Bx12FF6C%Y (]

Figure 3.20: Result of addresses mod 4.

We can conclude that a good structure member design makes the structure simpler and saves
memory space. Carefully designed structures can make our programs more efficient.

3.2.5 Referencing structure members

We obtain memory for structures by defining structure variables and assigning val-
ues to them through initialization. These are all write operations of data. Because
we need to read them as well, a referencing method is necessary for members of a
structure variable.

There are three ways to reference a structure member in C, as shown in Figure 3.21.
The first one references a member by its name. Its syntax is structure variable name
and member name connected by a dot. The rest references a member by its address.
They require a pointer pointing to the structure. This pointer is then used together
with member names to complete the task. Essentially, these two methods work in the
same way.

106 — 3 Composite data

Reference
structureVariableName.memberName | | by name

structurePointerName->memberName

Reference
by address

°00 ("we need a pointer
(*structurePointerName).memberName pointing to the

structure first

Figure 3.21: Syntax of referencing structure members.

Example 3.6 Example of referencing structure members
Figure 3.22 shows concrete examples of member referencing using structure and variables de-
fined previously.

Object Value to be referenced Statement Re;‘i?@&ce
struct student Structure | Total grade x.total
{ X X
int id; variablex | The gth grade x.score[0]
c:ar namdell.o]; Structure | Total grade of the 1% student com[1].total
F ar.gen er; array comli]
int time; com[30] |The o' grade of the 2" student com[2].score[0]
int score[4];
int total; Total grade sPtr->total
} Structure d str->
e S p:intl:err The 3/ grade sPtr->score[3]
X, com[30],*sPtr; SPtr Total grade (*sPtr).total
(*sPtr)
The 2nd grade (*sPtr).score[0]

Figure 3.22: Example of referencing structure members.

To reference a member of the structure variable x, we use the statement “x.member name.”
To reference a member of structure array com, we use the statement “com[index].member name.”
To reference a member of the structure pointer sPtr, we use either “sPtr-> member name” or
“(*sPtr).member name.”

3.3 Applications of structures

Example 3.7 Comparison of structures and arrays
Write a program that finds the highest score and corresponding seat number in Figure 3.23,
prints the information, and swaps it with the first column.

3.3 Applications of structures =— 107

Seat No. 1 2 3 4 5 6

Grade 90 80 65 95 75 97

Figure 3.23: Data grid.

Analysis

1. Data structure design

We may use one of the following three solutions:

(1) Using a one-dimensional array
Score array: int score [6] ={90,80,65,95,75,97};
Seat number array: int set[6] ={1,2,3,4,5,6};

(2) Using atwo-dimensional array
Combination of score and seat number: int score[2][6] = {{90,80,65,95,75,97},{1,2,3,4,5,6}};
We have learnt how to store data with arrays: data of the same type are stored in order;
each element is accessed using array name and index.

(3) Using a structure

Solution 1:

struct node {

int score[6];

int seat[6];}

struct node x={{90, 80,65,95,75,97},{1,2,3,4,5,6}%}

Solution 2:

struct node {

int score;

int seat;}

struct node y[6]1={{90,1},{80,2},{65,3},{95,4},{75,5},{97,63}};

Structures “pack” correlated data together. Type of a structure is defined by users. Memory is
allocated during definition of variables of the structure type.

After storing data into memory using structures, we need to reference them for further com-
putation. Figure 3.24 shows how data are stored and accessed using a one-dimensional array,
two-dimensional array, and structure.

Figure 3.25 shows how to reference members of structure variable x and structure array y
and their corresponding values.

3 Composite data

108

*3Judlajal pue aSelols eleq g€ IS4

A|9AI13N29SU0D

eas’[xapul]A | spou
w3 Aedie ayj ul pa1o3s aJe 1eas 1 [xapui] uu_u:bm A 10 ssauppy
SS920€ 0] 9|qelieA pue 2100s Jo sdied ‘Aj9AIIN2asuU0d | 2402s*[xapullA
9|buls suo asn ued Pa.03S BB BININIIS B} JO SIDQWISIW | [xapur]3ess:x cHlnk=
9M 3ey) os Jaylaboy 2 onals
1eas Aedde Aq apou
Ep ErieE e 9MO||0J} S| 8400S Aedue !A|DAIINI9SU0D x | s | X309 SSIPPY
auIquiod saunpnyyg| PRMOII0S S! AR [xaput] 2100s°x
Pa.03S 4. 94N3dONJ3S dY3 JO SIaqUUB|
Jauuew 31siij-mod e [xapul 10 9100S Aedie
sAeue Buisn adAy ul A|]9A13N29SU0D palols ale sjuswa|g |][xapul]a100s : aweu Aeldly p-z
Qwes ayj Jo eiep Jo 1eas
junowe abie| sjpuey Ajpannoasuod | [xapuilieas M1 sweu Aewy Aedle
03 JUSIUBAUOD SI 1] _um._Mum Ajluessadau jou aJe sAedie omy PP p-1
!A]9A13ND9SU0D PaI03s BJe SJUDWD
[P 13| [xspui]sioos W | Suieu Aeuy
[Se]RtNEY1=3]:-10]g) JapJo abeuols mwr__wmw_u_w\ﬂ adAL SSa.4ppy

3.3 Applications of structures =—— 109

Storage order of variable x Storage order of array y[6]

Member variable Value Member variable Value
x.score[0] 90 y[0].score 90
x.score[1] 80 y[0].seat 1
x.score[2] 65 y[1].score 80
x.score[3] 95 y[1].seat 2
x.score[4] 75 y[2].score 65
x.score[5] 97 y[2].seat 3
x.seat[0] 1 y[3].score 95
x.seat[1] 2 y[3].seat 4
X.seat[2] 3 y[4].score 75
Xx.seat[3] 4 y[4].seat 5
X.seat[4] 5 y[5].score 97
X.seat[5] 6 y[5].seat 6

Figure 3.25: Storage of x and y.

2. Algorithm design
Figure 3.26 shows pseudo code of the algorithm.

Pseudo code

Find the current maximum in score, record the
corresponding seat humber as hum

Swap max with the Oth element of score

Swap num with the Oth element of seat

Output contents of array score and array seat

Figure 3.26: Algorithm of finding the highest score and swapping it with the first column.

3. Code implementation 1

1 //Using 1-d array

2 #include <stdio.h>

3 #define MAX 6

4

5 intmain(void)

6 {

7 int score[MAX]={90,80,65,95,75,97};

8 int seat[MAX1={1,2,3,4,5,6};

9 int max, num;

10 int templ, temp2;

11

12 //Find maximum of score, store it in max and the index in num
13 max=score[0]; //Use the 0-th element as comparison basis
14 num=T1;

15 for (int i=1; i<MAX; i++)

—
(93]

110 —— 3 Composite data

3.3 Applications of structures =— 111

112 — 3 Composite data

3.3 Applications of structures =—— 113

Program result:
No. 1: seat no. 6, 97 pts

Example 3.8 Printing student management table
In the introduction section of this chapter, Mr. Brown asked his students to print the table on
screen.

Analysis

1. Data structure design

We have studied how to store the table in Section 3.2. To be more specific, we shall use the
following structure definition for the student management table:

struct student
{
int id;
char name[10];
char gender;
int time;
int score[4];
int total;
5

To compute the sum, we need to retrieve the score data by referencing structure members.

(1) Reference by name

Suppose there are i students and j classes, as shown in Figure 3.27. Then a student’s grade in
one class is coml[i].score[j], in which i is the index of structure array com and j is the index of
structure member score. i and j control which row and which column we will be accessing.

com[i].score[j]

com[0] 1001| Zhaoyi
com[1] |1002| QianEr
com[2] 1003| SunSan
com[3] |1004 LiSi

2009 LN 83 | 72 82
2009 | 78] 92|88 78
2009 [89[72|98] 66
2009 | 7895|8790

mm

\-| Suppose there are i rows and j columns

Figure 3.27: Grade reference in student management table 1.

(2) Reference by address

As shown in Figure 3.28, we point sPtr to the beginning address of com first. Note that the offset
of sPtr is one row. To make computation easier, we introduce another pointer ptr that points to
a single grade with ptr=sPtr- > score. Note that the score here is an array name, so it is also an
address. Now we can use sPtr and ptr to control row and column we access.

114 — 3 Composite data

sPtr— com[0] 1001 | ZhaoYi
sPtr+1— com[1] 1002 | QianEr

Use address of a
grade for

referencing score Oo ptr=sPtr->score

2000 L0 83 [72 [82

2009 78 | 92 | 88 | 78
2009 89 | 72 | 98 | 66
2009 78 | 95 | 87 | 90

com[2] 1003 | SunSan
com[3] 1004 LiSi

mn| XX

sPtr controls which row to read, ptr references columns of score[]

Figure 3.28: Grade reference in student management table 2.

2. Code implementation
Figure 3.29 shows the reference by name program.

01 #include <stdio.h>

02 #define N 4//Number of students
03 #define M 4//Number of courses
04 struct student

05{
06
07
08
09
10
11
12 3;

36 }

13 int main(void)
14 {

int id;

char name[10]; Structure type definition
char gender;

int time;
int score[M];
int total;

Structure array definition

struct student com [N] / and initialization
= {{ 1001, "ZhaoYi", 'M', 2009, 90, 83, 72, 82 },
{ 1002, "QianEr", 'M', 2009, 78, 92, 88, 78 },
{ 1003, "SunSan", 'F', 2009, 89, 72, 98, 66 },
{ 1004, "Lisi", 'F', 2009, 78, 95, 87, 90 }
}; //Structure array initialization

inti, j;
printf(“ID Name Gender Admission Year CompArch C Compil OS Total\n"); //Table header
for(i=0; i<N; i++)

com[i].total = 0; ﬁ Compute total grade of a row ‘
for (j=0; j< M; j++)

com[i].total +=coml[i].score[j];
>
printf("%d %s %s %d",com[i].id,com[i].name,&com[i].gender,comli].time);
printf(" %d %d",coml[i].score[0],com[i].score[1]);
printf(" %d %d %d\n",com[i].score[2],com[i].score[3],com[i].total);

return O;

Figure 3.29: Student management table processing program 1.

3.3 Applications of structures —— 115

Note:

Lines 4-12 define the structure type.

Lines 15-20 define and initialize the structure array.

Line 23 prints the header of the table.

Lines 27-30 compute the total score for one student.

The for loop on line 24 repeats the sum computation N times.
Lines 31-33 print other data in the row.

Program result:

ID

1001
1002
1003
1004

Name Gender AdmissionYear CompArch C Compil 0S Total

ZhaoYi M 2009 90 83 72 82 327
QianEr M 2009 78 92 88 78 336
SunSan F 2009 89 72 98 66 325
LiSi F 2009 78 95 87 90 350

The implementation shown in Figure 3.30 uses the same algorithm but references grades by
address. Please refer to the program earlier for the first 20 lines.

21
22
23
24
25
26
27
28
29
30
31
32
88
34
85

36

inti, j;
printf(* ID Name Gender AdmissionYear CompArch C Compil OS Total\n ”); //Table header
for (i=0; i<N; i++)
{
com[i].total = 0;
for (j=0; j< M; j++)
{

/—| Compute total grade of a row|

com[i].total +=coml[i].score[j];

printf("%d %s %s %d",com[i].id,com[i].name,&coml[i].gender,com[i].time);
printf(" %d %d",com[i].score[0],com[i].score[1]);
printf(" %d %d %d\n",com[i].score[2],com[i].score[3],com[i].total);

>

return O;

Figure 3.30: Student management table processing program 2.

Example 3.9 Vote counting machine

There are three candidates in an election, as shown in Figure 3.31. Please write a program to
count votes for each candidate. Use keyboard input to simulate the counting process. Each
voter has to choose one from the three candidates. Suppose there are N votes in total.

Candidate name Number of votes

Zhang

Tong

Wang

Figure 3.31: Vote statistics.

116 —— 3 Composite data

Analysis

1. Data structure design

There are two types of data in vote statistics, so it is better to use a structure to store them. The
structure should have two members: candidate name and number of votes. There are three can-
didates, so we can use a structure array to store their information.

(1) Structure design

Information of each candidate can be stored in the following structure:

struct person
{ char name[16]; //Candidate name
int sum; //Number of votes

3

(2) Vote statistics table design
There are three candidates, so we use an array of size 3. Each element is initialized with the
candidate name and 0 votes.

struct person vote[3]={"Zhang",0, "Tong",0, "Wang",0};

2. Algorithm design and code implementation (see Figure 3.32)

Pseudo code

while counter<number of total votes N

Input candidate name in_name

Look for in_name in the statistics table,
Add 1 to corresponding number of votes if the
person exists in table

Output result

Figure 3.32: Algorithm.

//Note counting#include <stdio.h>
#include <string.h>
#define N 50 //Number of votes
struct person
{ char name[20]; //Candidate name
int sum; //Total votes
15
int main(void)
{

struct person vote[3]

={"Zhang",0, "Tong",0, "Wang",0};

inti,j;

char in_name[20];

for(i=0;i<N;i++) //Nvotes

{
scanf("%s",in_name); //Input candidate name
for(j=0;j<3;j++) //Add one to corresponding sum

if (strcmp(in_name, vote[jJ].name)==0)

{

vote[j].sum++;

3
}
for (i=0;i<3;i++) //0utput result
{
printf("%s,%d\n",vote[i].name,vote[i].sum);

}

return0;

Program reading exercise Finding the eldest person

3.4 Union = 117

The following program uses a structure to store names and ages of multiple individuals, to find

the eldest person, and to output the result:
#define N 4
#include "stdio.h"
static struct man
{
char name[81];
int age;

} person[N]={"1i", 18, "wang",19, "zhang", 20, "sun",22};

int main(void)
{
struct man *q, *p;
int i,m=0;
p=person;
for (i=0; i<N; i++)
{
if (m<p->age) g=p++;
m=q->age;
}
printf("%s,%d", (*q).name, (*q).age);
return 0;

}

3.4 Union

3.4.1 Introduction

There is a lab in the university Mr. Brown works for. The lab is available to members
of all related research groups. One should book the lab before using it. However,

118 —— 3 Composite data

researchers from different groups cannot use the lab together. We can list research
groups and researchers that are entitled to use the lab as follows:

Public lab
{

Research group 1: Person 1;
Research group 2: Person 2;

Research group n: Person n;

3

To save memory space, we also use such a memory sharing strategy in computers.
We can store variables that cannot be accessed simultaneously into one memory
unit. Such a data structure is called a “union.” When we have multiple variables
and use exactly one of them each time, we can use a union to store them into the
same memory unit.

3.4.2 Memory layout of unions

Similar to structures, type definition, variable definition, and member access are
also key issues for unions.

3.4.2.1 Union-type definition
Figure 3.33 illustrates the syntax of the union-type definition.

Syntax of union type definition

union name union is

{ keyword of
type 1 member 1; O unions
type 2 member 2; o O

) We must define
type n member n; a union type

¥ c00O before using it

Figure 3.33: Syntax of union-type definition.

Similar to a struct-type definition, a union-type definition merely declares the type.
No memory space is allocated at this stage.

3.4 Union — 119

3.4.2.2 Union variable definition
Figure 3.34 shows the syntax of defining a union variable, which is similar to that
of a structure variable.

Syntax of union variable definition

Define type
before defining
variables

unionType variablelList; o0 O

Figure 3.34: Syntax of defining a union variable.

3.4.2.3 Union member reference
Figure 3.35 shows how to reference a union member. We have seen similar syntax
in structures.

Reference

by name
unionVariableName.memberName H

Reference 00O

unionPointerName->memberName

We need a
pointer pointing
to the union first

Figure 3.35: Syntax of referencing a union member.

Example 3.10 Memory Layout of Union Members

Suppose we have a union defined as shown in Figure 3.36. Unlike struct members, x, ch, and y
have the same address. The length of memory space allocated is determined by the member
with the largest size.

union number
{ sizeof(union number)
int x; is the size of
char ch; variable y, which is
float y; the member with
3 the largest size
Memory space int x O
shared by multiple char ch OO
union members float y |

Figure 3.36: Union members share the same address.

120 — 3 Composite data

3.4.2.4 Comparison of unions and structures
Unions and structures have multiple features in common. Figure 3.37 presents a
comparison of these two data structures.

Union Structure

) Memory space is shared by all
Memory size | members, its size is determined by
the member with the largest size

Memory space size is sum of
sizes of members

All members are stored

Mempel‘ Only one member is valid at a given consecutively in the order in
relation time, which is the last stored member which they are defined
Relation Union types can appear in structure type definitions

Figure 3.37: Comparison of unions and structures.

Example 3.11 Simple program using union
Please examine the memory layout of a union in the debugger.

1. Test program

The following test program defines a union and assigns values to its members in the order in
which they are defined. After running the program, we can inspect the memory layout of the
union using a debugger:

#include <stdio.h>
int main(void)
{
union number //Define a union type
{
int x;
char ch;
float y;
s
union number unit; //Define aunion variable
unit.x=1; //Reference union members
unit.ch='a';
unit.y=2;
return 0;

2. Debugging

Figure 3.38 shows that the three members are all stored at 0x12ff7c. In particular, it shows
memory layout after value 1 is assigned to x, whose value is shown in the Memory window as
well.

#include <stdio.h>
int main()
{
union number
{
int
char
float

X
ch;
I'H

}:

unit.x=1;
unit.ch="a";
unit.y=2;

return 0;

|

union number unit;|:

Eléunit.g

_1.40130e-045

Name |Vmue

BHunit {...}

%L%unit.x Ox0012FFTc
1

LII_L&unit.ch 0x0012Fff7c " &
15
Ox0012FfTc

il

I

Abidl fox12ff7c

..e.

OO12FF7C ©1 00 0O 00
O012FF80 CO FF 12 00
O012FF84 E9 11 40 00

BB Bk

Figure 3.38: Inspection of the memory layout of a union step 1.

3.4 Union = 121

Figure 3.39 shows the memory layout after the character ‘@’ is assigned to ch. ch’s value in the
Memory window is 0x61, which is exactly the ASCII value of ‘@’. This indicates that the valid
value of the union has changed to 0x61.

#include <stdio.h> a
int main =
(0 Name |value HAJ
union number B unit ...} =)
{ ﬁl?unit.x 0x0012ff7c
int x: a7
char ch; Ei?unit.ch 0x0012ff7c "a”
float y; 97 'a’
¥ i&unit .y 0x08012ffTc
. . 1.35926e-043 .
union number unlt ; ‘_J
unit.x=1; a
unit.ch="a";
; ; Atmhk: loxi2ffrc
= unit.y=2; -
| T
¢ 0 Lo 3
return 0; =
, ..a. I

Figure 3.39: Inspection of the memory layout of a union step 2.

In Figure 3.40, we have assigned real number 2 to y. However, the value displayed in the
Memory window is 0x40000000. Why is this the case?

122 — 3 Composite data

#include <stdio.h> x|
int main()
{ Name |Va|ue ||;
union number unit (.- (=
(i&unit.x 0x0012ffTc
int x; 1073741824
char ch; i&uni t.ch OxEO12ffre "™
float y; [
i ‘i&_unil; .y 0x0012ffTc
: . 2.00000 i
union number unit; s sy u
unit.x=1; a
unit.ch:'a’; AbhbE l0x12ff7c _|
unit.y=2; 0012FF7C ©0 00 00 48 ...@ |
OO012FF80 CO FF 12 00 =
$|} return 0; 0O12FF84 E9 11 40 08 ..@. [

Figure 3.40: Inspection of the memory layout of a union step 3.

Think and discuss Display format of floating-point variables

The value of the float variable is 2, but why is it displayed as 0x40000000?

Discussion: According to the IEEE754 standard, which we have introduced in the chapter “Basic
Data,” real number 2 is exactly 0x40000000 if stored as a 32-bit float type number, as shown in
Figure 3.41.

Decimal |Normalization|Exponent| Sign 8 bits biased 23 bits fraction
exponent(exponent+127)
2 1.0x2! 1 0 100 0000 O 000 0000 0000 0000 0000 0000

Figure 3.41: Storage format of real number 2.

Program reading exercise Operations on unions
Suppose we have data from multiple teachers, as shown in Figure 3.42. The data include their
ID, name, title, number of courses they are teaching (if the title is Lecturer), or number of papers
they have published (if the title is Professor). Please write a program that prints these data and
computes the total number of papers published.

No. Name Title Number of
courses or papers
1 Zhao L program
2 Qian P 3
3 Sun B 5
4 Li L English
5 Zhou P 4

Figure 3.42: Data for union.

3.4 Union = 123

124 — 3 Composite data

3 SunP5

4 LiL English

5 Zhou P 4

paper total is 12

3.5 Enumeration
3.5.1 Introduction

When Daniel started to learn watercolor painting, he was shocked by how different
colors could be mixed into a new color. He kept asking Mr. Brown questions like
“What is the result of mixing red and blue?” or “What if I mix yellow and red?”
which made Mr. Brown exhausted. As a result, Mr. Brown decided to write a pro-
gram that could answer these questions, for given input from his son.

Figure 3.43 shows results of mixing two of three primary colors.

Red Yellow Blue
Red Red Orange | Purple
Yellow | Orange | Yellow | Green

Blue Purple | Green Blue

number 0 1 2 3 4 5
color Red Yellow Blue | Orange | Purple | Green
string red yellow blue orange | purple | green

Figure 3.43: Color mixer.

Before he could write the code, Mr. Brown needed to design a data structure. He
used a pointer array to store color names in Figure 3.43: char *ColorNamel[] =
{“red”,“yellow”,“blue”,“orange”,“purple”,“green”};

The two-dimensional array in Figure 3.43 should be initialized with indices of
colors in array ColorName, instead of actual name strings, because indices require

less memory space and are easier to process.
int ColorTab[31[31={{0,3,4},{3,1,5},{4,5,2}};

During the initialization process, Mr. Brown found that it was difficult to remember
the number corresponding to a color. If there were more colors, it would be even
harder to remember them and initialize the array correctly. The reason is that
names of colors are more intuitive compared with abstract numbers. To solve this

3.5 Enumeration = 125

issue, Mr. Brown tried to define macros for each color so that he could directly use
these intuitive names in the program.

int int ColorTab[3][3]={{red,orange,purple},{orange,yellow,green},{purple, green,
blue}};

The complete program is as follows:

01 #include "string.h"
02 #include "stdio.h"
03 #define red 0
04 #define yellow 1
05 #define blue 2
06 #define orange 3
07 #define purple 4
08 #define green 5
09
10 //Define the color mixer
11 int ColorTab[31[3]={{red,orange,purple},{orange,yellow,green},{purple, green,
blue}};
12
13 int main(void)
14{
15 char color1[81]; //Read input 1
16 char color2[8]; //Read input 2
17 char *ColorName[]={"red", "yellow","blue","orange", "purple", "green"};
18 int i=0, j=0;
19
20 printf("Please enter any two colors of red, yellow and blue:\n");
21 gets(colorl);
22 gets(color2);
23 while (@!=strcmp(colorl,ColorName[i])) i++;
//Find index i of the first input
24 while (@!=strcmp(color2,ColorName[j])) j++;
//Find index j of the second input
25 //Findmixing result using i and j in the color mixer
26 printf("%s+%s=%s\n",ColorName[i],ColorName[j],ColorName[ColorTab[i][j]]);
27
28 returno;
29}

However, Mr. Brown needed to define 6 macros for mixing results of three primary
colors. If there were more base colors, it would be tedious to define a macro for
each possible outcome.

We often use numbers to represent states in programs, but numbers are less
intuitive and readable than state names, as we have just seen in the color example.

126 — 3 Composite data

If we could find a way to represent states using meaningful words in programs, it
would be easier to read and understand them.

3.5.2 Concept and syntax of enumeration

In fact, C and some other languages do provide a method of using words in natural
languages to represent possible values of a variable. This method is enumeration
(enum).

In C, an enumeration is a collection of integer constants represented by identi-
fiers. The value of an enumeration variable must be a member of this collection. It
is worth noting that the system will not throw an error if an enumeration variable is
assigned a value that is out of the enumeration range.

The syntax of enumerations is similar to that of structures and unions, as
shown in Figure 3.44. We can define an enumeration for days in a week as follows:

Enumeration type name

enum name OO

Syntax of enumeration type definition

enum name

enum is the
keyword of
enumeration

{
identifier 1[=integer constant], Contents in
identifier 2[=integer constant], square brackets
o are optional
identifier n[=integer constant] o ¢

3

Define type
before defining
variables

Syntax of enumeration variable definition

enumType variableList;

Figure 3.44: Syntax of defining enumeration type and enumeration variable.

enum WeeksType {Mon, Tues, Wed, Thurs, Fri, Sat, Sun} ;
enum WeeksType Day;

WeeksType is the enumeration type name, Day is an enumeration variable, identi-
fiers in curly brackets are all possible enumeration constants.

3.5 Enumeration =—— 127

Notes:

(1) Identifiers in an enumeration-type definition are constants.

(2) One needs to list all members when defining an enumeration.

(3) Contents in square brackets are optional. If we omit them, numbers 0, 1, 2, . . .
will be assigned to the identifiers. However, if one of the members is explicitly
assigned a value, members after it will automatically obtain a value, in which
each member is one larger than the previous.

We can explicitly assign values to all enumeration members. Note that the values
must be integers. For example: enum WeeksType {Mon=1, Tues=2, Wed =3,
Thurs = 4, Fri=5, Sat=6, Sun=7};

Besides, we can also explicitly assign values to a few members: enum WeeksType
{Mon =1, Tues, Wed =1, Thurs, Fri, Sat, Sun}; In this definition, Mon and Wed are de-
fined to be 1. Based on the note earlier, values of Tues, Thurs, Fri, Sat and Sun are 2, 2,
3, 4 and 5, respectively.

(4) Value of an enumeration variable must be one of the enumeration members.

For example, it is valid to write statement Day = Wed.

3.5.3 Example of enumerations

Example 3.12 Color mixer using enumeration
Mr. Brown revised his program of the color mixer using an enumeration of colors:

#include "string.h"

#include "stdio.h"

//Define enumeration for three primary colors and mixed colors

enum Color{red,yellow,blue,orange,purple,green};

//Define color mixer

int ColorTab[3][3]={{red,orange,purple},{orange,yellow,green},{purple,green,blue}};
int main(void)

{

//Same as before

3

Enumerations are similar to macros. Macros replace identifiers with corresponding
values in the preprocessing phase, while enumerations do the replacement during
compilation. We can consider enumerations as macros in the compilation phase.
More on macros can be found in the chapter “Preprocessing.”

Example 3.13 Price management
A supermarket often launches discount campaigns. It may offer a different discount for a prod-
uct during different periods. Please write a program to implement this model.

128 —— 3 Composite data

Analysis
We can list all periods in an enumeration:

enum enumType{Timel, Time2, Time3} rebateTime ;

Then we can handle different cases using a switch statement:
scanf("%d", &rebateTime);
switch (rebateTime)

{
case Timel:{. . .;break;}
case Time2:{. . .;break;}
case Time3:{. . .;break;}
default:break;

}

The code implementation is as follows:
#include<stdio.h>
int main(void)
{
enum enumType{Time1=3, Time2=5, Time3=6};
float x=1.0;
int weekday;
scanf("%d", &weekday);
switch (weekday)
{
case Timel: x=0.5; break;
case Time2: x=0.8; break;
case Time3: x=0.9; break;
default: break;
3
printf("Day %d, discount is %f",weekday,x);
return9;

3.5.4 Rules of enumerations

There are many restrictions on enumerations for their uniqueness. We shall use the
following enumeration in the discussion:

enum WeeksType {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday};
enum WeeksType Weekday

3.6 Type definitions = 129

3.5.4.1 We cannot assign values of other types to an enumeration variable
For example, it is not valid to write Weekday = 10;

Note: this is because 10 is not a member of the enumeration. However, we can as-
sign values of other types to an enumeration variable through forced-type conversion.

3.5.4.2 Arithmetic operations are not allowed on enumeration variables
For example:

Weekday = Sat;
Weekday++; //Invalid

Note: this is because increment may break the first rule. In this example, Weekday
is assigned the last value of enumeration members, so increment will make this
value invalid.

3.6 Type definitions
3.6.1 Introduction

3.6.1.1 Porting of music files

Daniel received a music player as a birthday gift, and he spent lots of time listening
to music with it. One day, he asked his father, “These songs were stored in the com-
puter, how do they ‘fit’ into this little box then?” “Ha-ha, that’s a great question,”
answered Mr. Brown.

We can play music on various devices now, but how are music files stored in
them? We know data are stored in computers as binary data, so are music files. WAV
(Waveform Audio File Format) is one of the most frequently used multimedia audio file
formats on PC. It is a digital audio format used to store audio waves, designed by
Microsoft and IBM. It was first introduced in Windows 3.1 in 1991. After multiple revi-
sions, it can be used in many operating systems, including Windows, Macintosh, and
Linux.

A WAV file has a file header which contains meta information of the file fol-
lowed by actual music data. Figure 3.45 shows meta information in the header,
which consists of multiple data entries. The size of each entry is fixed and does not
change across platforms.

We have mentioned before that the sizes of basic types are platform dependent. As
a result, programmers need to be careful when porting code to other platforms. When
using code processing WAV files on different platforms that use different sizes for int
type, we have to modify every integer definition to make sure lengths of data entries in
the header are consistent with the standard. This makes code porting difficult.

130 — 3 Composite data

Offset | Byte Type Content
O0OH 4 Char "RIFF" sign
04H 4 int32 File size
08H 4 Char "WAVE" sign
OCH 4 Char "fmt" sign
10H 4 Char Transition bytes
14H 2 intl6 Audio format
Header| 16H 2 intl6 Number of channels
18H 2 intl6 Sample rate
1CH 4 int32 Byte rate
20H 2 intl6 Block alignment
22H 2 Char Bits per sample
24H 4 Char “data” sign
28H 4 int32 Sound data size

Figure 3.45: Format of WAV file header.

In this case, if we rename 32-bit and 16-bit int types as UIN32 and UIN16, we can
define the WAV file header as the following structure. When porting the code, it suffi-
ces to replace UIN32 and UIN16 with the corresponding types of the target platform:

struct tagWaveFormat

{
char cRiffFlag[4];
UIN32 nFilelLen;
char cWaveFlag[4];
char cFmtFlag[4];
char cTransition[4];
UIN16 nFormatTag ;
UIN16 nChannels;
UIN16 nSamplesPerSec;
UIN32 nAvgBytesperSec;
UIN16 nBlockAlign;
UIN16 nBitNumPerSample;
char cDataFlag[41;
UIN16 nAudiolLength;

hE

The replacement can be done using macros.

3.6 Type definitions =—— 131

3.6.1.2 Cases where macros are not enough

Let us examine a special case. We intended to define a and b as integer pointers
with the first two lines of the following code. However, it turns out that b is not a
pointer, as shown in line 3. This is due to the rule of macro replacement:

01 #define PTR int*
02 PTR a, b;
03 int *a, b;

Syntactically, line 2 is similar to a variable definition. One may imagine that this
issue can be solved if PTR is a data type equivalent to int*. As a result, we need a
way to define aliases for data types in C.

3.6.1.3 Define aliases for types
The keyword of the alias definition in C is typedef (type + define). We can rewrite
the first two lines mentioned earlier using typedef:

01 typedef (int *) PTR
02 PTR a, b;
03 int *a, *b;

The purpose of using typedef is to fix issues made by macros and to make code
more readable. In practice, typedef is often found in network code and drivers
where type sizes are critical. To conform to different compilers, we better define
and use our own types. Thus, it suffices to update a few header files when porting
our code to new platforms. Typedef can hide complicated structures or platform-
dependent data types so that programs are easier to port and maintain.

The following section will present the syntax and applications of typedef.

3.6.2 Syntax and applications of typedef

Figure 3.46 shows how to define a new type using typedef. In essence, typedef cre-
ates aliases for existing data types.

Syntax of type definition

typedef originalType newType;

Figure 3.46: Syntax of typedef.

132 — 3 Composite data

In addition to creating aliases that are intuitive and easy to remember, another use
case of typedef is to simplify complex type declarations. Figure 3.47 shows two ex-
amples of typedef.

Example 1 Example 2
Declare a new type |typedef int integer; | typedef struct student Stu;
Statement integer x,y; p=(struct student *)malloc(sizeof(struct student));
Equivalent statement|int x,y; p=(Stu *)malloc(sizeof(Stu));

Figure 3.47: Examples of typedef.

In example 1, we create an alias integer for int; integer and int are equivalent types.
In example 2, we have a structure type struct student; create an alias Stu for it,
so we can replace all occurrences of struct student with Stu, thus making the code
easier to read.
The difference between #define and typedef is as follows: #define is a simple
text replacement that happened in the preprocessing phase, while typedef enables
flexible type replacement during compilation.

3.7 Summary

This chapter discusses how to describe, store, and reference a group of data that
are logically correlated. Figure 3.48 shows concepts related to structures, while
those of unions and enumerations are shown in Figures 3.49 and 3.50, respectively.

Express a collection of logically correlated data of different
types as a whole entity for easier processing

expressed in a holistic combination that facilitates regular handling
Keyword: struct

Structure Structure type name: struc+identifier
type Structure type definition

Structure variable definition

Storage Memory | |
and access allocation Initialization

Reference a single data entry: member reference
Ri:i';ﬁg‘ée -+ Reference the structure: structure variable
Reference by address: structure pointer

Figure 3.48: Concepts related to structures.

3.7 Summary =— 133

Use the same memory units for logically correlated data that
cannot be used simultaneously

Keyword: union

Union Union type name: union-+identifier
type Union type definition

Union variable definition

Memory Allocation rules:

| allocation [| - Union members share the same address

— Memory size is determined by the member
with the largest size

Storage
and access

Reference .)
methods —+ Reference a single data entry: member reference

Figure 3.49: Concepts related to unions.

Use intuitive constant literals to represent a
small collection of integers with certain meanings

Keyword: enum

Enumeration Enumeration type name:enum-+identifier

type Enumeration type definition
Storage |||
and access

allocation Initialization: default and user-defined

Memory Enumeration variable definition

Reference Enumeration variables can be used
methods wherever a plain variable is acceptable

Figure 3.50: Concepts related to enumerations.

To store a group of data of different types,

We need new storage and access mechanisms other than arrays,
An aggregation of data is called a structure,

Whose size is determined by members programmers put in it.
We need to define structure variables to obtain memory space,
We can define variables, arrays, or pointers of structure types.
Members of a structure can also be accessed,

Through reference by name or by address.

Variables of different types that share the same memory space construct a union,
Whose size is determined by members programmers put in it,

A variable must be a member of the union to use the shared space,

The actual space is allocated upon definition of a union variable,

134 — 3 Composite data

Referencing a union variable is similar to referencing a structure variable,
The valid value of the shared space depends on which member stays in it
currently.

Different colors have different names,

Which correspond to abstract numbers in computers,

It is difficult to use these numbers,

So, we list color names in an enumeration to represent the integer constants,
Again, we can define enumeration types and enumeration variables,

The value of an enumeration variable has to be one of the enumeration members.

Custom types often contain many members, making it hard to use,
Type size may vary across platforms,

But some applications use fixed-length types,

Which make code porting difficult.

Hence, we rename types with typedef,

So, it suffices to modify a few places.

3.8 Exercises
3.8.1 Multiple-choice questions
1. [Array element: reference using pointers]

struct student
{ char name[201;
char sex;
int age;
} stu[3]={“LiLin”, *M’, 18, “Zhang Fun”, ‘M’, 19, “Wang Min”, ‘F’, 20};
struct student *p;
p=stu;
p+=2;
printf(“%s, %c, %d\n”, p->name, p->sex, p->age);

The output of the program above is ()
A) Wang Min,F,20 B) Zhang Fun,M,19 C) LiLin,F,19 D) LiLin,M,18

2. [Chain structure]

struct sT

{ int x; structsT xy; } *p;

struct sT a[4]={20,a+1,15,a+2,30,a+3,17,a };
int main(void)

{int1i;
p=a;
for(i=1; i<=2; i++) {printf("%d,", p->x); p=p->y; }
return9;

}

The output of the program above is ()
A) 20,30, B) 30,17 C) 15,30, D) 20,15,

. [Array element: reference using variables]
The output of the following program is ()

struct abc

{inta, b, c; };

struct abc sum[2]={{1,2,3},{4,5,6}};
int t;

t=sum[@].a +sum[1].b;

printf("%d \n", t);

A) 5 B) 6 C) 7 D) 8

. [Array elements: referencing internal elements]

typedef struct
{ char name[101];
int age;
} ST;
ST stud[10]1={ "Adum", 15, "Muty", 16, "Paul", 17, "Johu", 14, };

Which of the following is not character "u"? ()
A) stud[3].name[3]
B) stud[2].name[2]
C) stud[1].name[1]
D) stud[0].name[3]

. [typedef]
Which of the following statements is wrong? ()
A) We can use typedef to create new types.

3.8 Exercises = 135

B) We can use typedef to create a new name for an existing type.
C) After defining a new type name with typedef, the original type name is still

valid.

D) We can use typedef to define aliases for existing types, but we cannot de-

fine aliases for variables.

136 —— 3 Composite data

6. [Unions]

Character “0” has decimal ASCII value 48. Suppose the Oth element of an array
is stored at lower bytes and sizeof(int) is 4 bytes. What is the output of the fol-

lowing program? ()
union

{ inti[21];

long k;

char c[4];
} var, *s=&var;
s—>i[0]=0x39;
s->i[11=0x38;
printf(“%c\n”, s->c[0]);

A) 39 B) 9 C) 38 D) 8

3.8.2 Fillin the tables

1. [Operations on structure members]

Suppose we have the following structure definition. Figure out values of structure

members shown in Figure 3.51 after executing the following program:

#include <stdio.h>

#define N5

#defineM 4

struct person

{
int Id;
char Name[10];
int Score[M];//Grade
int total;//Total grade

b5

int main(void)

{
struct person allone[N]
={{1,"mark", {9,6,8,73},03},
{2,"bob", {8,6,8,5},03},
{3,"alice", {5,9,7,8%},03},
{4,"william",{ 8,9,9,93},0},
{5,"eric", {8,9,6,93},07%} };
struct person temp;
inti, j;
for (i=0; i <N; i++) //——@D
{

3.8 Exercises =— 137

allone[i].total =0;
for (j=0; j<M; j++)

{
allonel[i].total +=allone[i].Score[j];
}
}
for (i=1; i<N; i++) //—@
{
for (3=0; j <N-i; j++)
{
if (allone[j].total <allone[j+1].total)
{
temp = allone[j];
allone[j]=allone[j+1];
allone[j +1]=temp;
}
}
}
return0;

3

i 0 1 2 3 4
After for loop allonefil.id 1 2
® alloneli].total
After for loop allonefil.id
@ alloneli].total

Figure 3.51: Composite data: fill in the tables, question 1.

3.8.3 Programming exercises

1. Suppose we have the following structure definition:

struct person

{
char lastName[15];
char firstName[157;
char age[4];

}

Please write code that reads 10 person objects (lastName, firstName, and age) from
keyboard input.

138 —— 3 Composite data

2.

Please define a union to represent a point in one-dimensional space, two-
dimensional space, or 3-dimensional space. The union should contain an indi-
cator of the dimension and coordinates of the point.

Suppose we have the following enumeration declaration for days in a week: enum
day{Sunday,Monday, Tuesday, Wednesday, Thursday,Friday,Saturday} Figure out the
following values of expressions. Suppose that in each subquestion, the value of
today (whose type is day) before evaluating the expression is Tuesday.

(1) int(Monday)

(2) int(today)

(3) today < Tuesday

(4) day(int(today) + 1)

(5) Wednesday + Monday

(6) int(today) +1

(7) today >=Tuesday

(8) Wednesday + Thursday

4 Functions

Main contents
— Analyze why functions are necessary
— Explore relations between multiple functions
— Declaration, definition, and call of functions
— Purpose and rules of function parameters
— Key elements in function design and examples
— Program reading practices
— Top-down stepwise refinement algorithm design practices
— Debugging techniques of information transfer between functions

Learning objectives

— Understand the concept of modularization in large-scale programs
— Understand information transferring mechanism of functions

— Understand information masking mechanism of functions

— Know how to design new functions

— Understand the concept of recursion

4.1 Concept of functions
4.1.1 Introduction
4.1.1.1 Modularization and module reuse in practice

Case study 1 Combinatorial problems

In practice, we often need to complete a task repeatedly. For example, there are mathe-
matical formulas for computing number of m-permutations of n elements P}, and num-
ber of m-combinations of n elements Cj,, as shown in Figure 4.1. Multiple factorial
computations are necessary in these formulas, which can be done by calling the facto-
rial module multiple times in programs.

| Combination and permutation

n n! o n!
(n-m)!

We can reuse
the factorial
program

0O

m

(n-m)! m!

Figure 4.1: Computation of permutation and combination.

https://doi.org/10.1515/9783110692303-004

https://doi.org/10.1515/9783110692303-004

140 — 4 Functions

Case study 2 Scholarship application process

The university Mr. Brown works for provides scholarship to students every year.
The application process is shown in Figure 4.2. Workloads of some steps in this pro-
cess are so large that dedicated personnel are necessary. For example, step 3 in-
volves computing sum in a data table; step 5 involves sorting and classifying a
table; and step 6 involves searching, deletion, and insertion in a table.

| Scholarship application process |

) 1. Download the application form ((We need dedicated
| personnel for steps

) 2. Applicants fill in the form with grades Q< with large workloads
| m\—)\

’ 3. Gather applicants’ information and compute total grades o O

’ 4. Compute the number of students for each scholarship

‘ 5. Determine which scholarship should be awarded to a student based on grade ranking

‘ 6. If an applicant is caught cheating in an exam, fill in the vacancy based on grade ranking

) 7. Class advisor signs the form and submits to the department of student affairs

l

Figure 4.2: Scholarship application process.

4.1.1.2 Abstraction of practical problems: independent code modules

Usually, many issues arise when we try to solve practical problems with programs.
If the scale of a problem is large and required functionalities are complex, pro-
grammers often need to work in a team to solve it. They divide the problem into
modules based on functionalities so that programmers can work on different mod-
ules simultaneously. Sometimes, a function is required by most of the team, so they
can implement it in an independent code module so that it can be reused. In es-
sence, all these issues require modularization, as shown in Figure 4.3.

Problems Strategy Solution

Divide into modules
Scalelof pr_obllems is large Teamwork based on f_unctlonallty
Functionality is complex - Write in modules
- Test in modules

In essence, we
divide the program
into modules based
on functionality

Build independent

We wan r rogram R
e want to reuse programs euse code modules

Figure 4.3: Independent modules.

4.1 Concept of functions =— 141

4.1.2 Concept of modules

4.1.2.1 Coordination problems in teamwork

Before discussing the modularization mechanism in programs, let us examine and
analyze how humans solve real-life problems. Figure 4.4 shows critical steps that
require cooperation in the scholarship application process we just saw. What are
the differences between doing the work on one’s own and doing the work in a
team? Figure 4.5 compares these two ways from the perspective of workload, nature
of the work, and necessity of communication.

What are the
differences
between doing the
work by oneself
and by a team?

Gather applicants’ information r—-| Compute the sum ‘

and compute total grades of a data table
[
Determine which scholarship should be FI Sort and classify ‘

awarded to a student based on grade ranking a data table
[

If an applicant is caught cheating in an exam, Search, delete and
fill in the vacancy based on grade ranking insert in a data table

!

Figure 4.4: Work that requires cooperation in the scholarship application process.

Individual Team What are the
differences between
Workload Large Small completing a task using
Work nature Composite Single oliiﬁ%dﬁqﬁﬁ?ﬁeeggggd
\
Communication Not necessary Necessary OO segments?

Figure 4.5: Analysis of individual work and teamwork.

The workload is heavy for one person but small for a team. Multiple skills are neces-
sary for a single individual to complete all the work, while one skill may suffice for
a person in a team to complete the task assigned to him/her. There is no need to
communicate if a single person does the work, but communication is of great signif-
icance in teamwork because the output of one step is often the input of the next.

4.1.2.2 Coordination problems in modularization of programs
Similarly, what issues exist in the modularization of programs?

Think and discuss Issues of modularization of programs

1. What are the differences between using one segment of code and using multiple segments
of code to solve a problem?

2. What is the key to using multiple child programs to complete one task?

142 =— 4 Functions

Discussion: There is no difference in workload or complexity of these two ways. However, using
several child programs require information transfer, which is precisely the key we are looking for.
Hence, programming languages must provide such mechanisms.

4.1.2.3 Concept of modules
Based on the discussion above, we can summarize what is necessary for indepen-
dent code modules.

We call collections of statements that have its own name and can complete spe-
cific tasks independently “modules” in programming, as shown in Figure 4.6. A mod-
ule consists of the implementation and an interface. Interfaces are created to hide a
module’s implementation and data from outside of the module. Communication with
external objects must be done through information interfaces. The interface of a mod-
ule describes how other modules or programs should use it. Input/output informa-
tion is also part of an interface.

A module is a collection of statements
that has its own name and can complete
specific tasks independently

The internal
implementation of a
module is hidden from
the outside; a module
communicates with
outside world through its
information interface

| Interface information |

: O
Functionality

Interface It indicates how this module should be used by other modules or programs. It
information includes information like input/output.

Module reuse We can extract functions that can be repeatedly called into modules.

Multimodule

SREE We divide a program into modules, each of which completes a different task.

Figure 4.6: Concepts related to modules.

There are other concepts related to modules, such as module reusing and multi-
module structures.

The word “module” has many aliases, such as function or child program. C uses
“function” to describe modules, as shown in Figure 4.7. We use the word “module”
in structured analysis and design; and it becomes “class” in object-oriented analysis
and design; the term used in component-based development is “component.”

4.2 Function form design =—— 143

Child .
Module program Function

We use the term
"function" to describe
"modules" in C

Figure 4.7: Aliases of modules.

Modularized program design has the following features:

(1) Modules are independent of each other. Each module has its functionality.
Programs using modules have more lucid logic and are easier to write and
maintain.

(2) Itis easier to design programs, so the development cycle is shortened.

(3) Modules are more robust.

(4) Programmers no longer have to reinvent the wheel.

(5) Itis easier to maintain existing code and write new code.

4.2 Function form design
4.2.1 Methods of communication between modules

Mr. Brown’s university is going to hold a commencement ceremony. The rostrum is
going to be built by the logistics department. Figure 4.8 shows the steps in the building

Outsourced projects in the flow
L
Make and install the
inkjet background
[
Place tables and chairs
[
Install and test Department of
audio devices devices
[

Place green plants

l

Figure 4.8: Process of building rostrum of the commencement ceremony.

Advertising Service
company provider

general services

—
T Department of
| —]

) Service
provider

W

Landscaping
company

144 — 4 Functions

process. Some steps can be outsourced to professional companies, such as advertis-
ing companies or landscaping companies, to accelerate the process and guarantee
the quality.

Think and discuss Coordination methods in outsourced projects

Discussion: There are two methods of communication in an outsourced project, as shown in
Figure 4.9.

(1) The outsourcer coordinates between service providers (e.g., rostrum building process).

(2) Service providers communicate with each other (e.g., scholarship application process).

Both methods are feasible in programming design patterns. If modules are executed in order,
then the program is procedure oriented; if a module would not be executed until certain events
happen, then the program is object oriented. Readers can refer to Appendix B for more details
on this topic. Functions in C use the first method mentioned earlier, where “the outsourcer coor-
dinates between service providers.”

The outsourcer
coordinates between
service providers

Oo

o

Make and install the
inkjet background

Compute the sum
of a data table

Service providers
communicate

I
Place tables and

1
Sort and classify

with each other

chairs
|

a data table
I

o

Install and test
audio devices

Search, delete and
insert in a data table

‘ Place green plants ‘

!

Figure 4.9: Methods of communication between modules.

4.2.2 Function form design

4.2.2.1 Analysis of outsourcing structure
Let us take the advertising company as an example to analyze the structure of

outsourcing.

In the “background production” project, the advertising company is the ser-
vice provider, and the university is the outsourcer, as shown in Figure 4.10. The
advertising company needs to make a statement about what they can do, includ-
ing materials they use, specifications of the materials, rendering preview, and ser-
vice price. This statement can be considered as a definition of “production.” The
definition does not produce actual products. The advertising company will not
start “producing” based on the definition until the outsourcer provides image assets,
size of background, and quote. In other words, it is the outsourcer that “drives the

production.”

4.2 Function form design =— 145

Advertising Definition of
company production

Description of production process

Image layout, materials, specifications,
rendering preview, service price

Background
production

Make production happen
Provide images, determine sizes,

provide quote
Outsourcer

Drive the
production

Figure 4.10: Analysis of the outsourcing structure.

4.2.2.2 Abstraction of outsourcing structure

Figure 4.11 illustrates a further abstraction of the outsourcing structure. We can
consider outsourcing as a “manufacture” process. There are three critical elements
in manufacturing: input, output, and processing. Input is material used in the process.
The output is the final product. Processing refers to procedures in the manufacturing
process. To start manufacture, users need to provide materials required by the manu-
facturer. In programs, these materials are simply data.

Manufacturer
[)

Definition of manufacture
(input, output, processing)

Definition of
manufacture

Manufacture

Make manufacture happen
(actual data)

.
User Drive
manufacture

Figure 4.11: Abstraction of the outsourcing structure.

4.2.2.3 Function form design
As independent code segments, functions are similar to outsourcing projects, as
shown in Figure 4.12. The process of writing a function defines its functionality,

146 =— 4 Functions

Code segment that ‘ Definition of

provide certain . .
functionality ‘ Wnallty
Function definition
(input, output, functionality)

Function

Function call
(actual data)

Drive the
implementation

.
[Caller J

Figure 4.12: Function form design.

which includes input, output, and processing. Users of functions are referred to as
“callers” in programming languages. Callers provide functions with actual data so
that they can complete specific tasks.

4.2.2.4 Information transmission mechanism design
In practice, we can deliver raw materials to manufacturers through express or
Internet. When manufacture is completed, the manufacturer can send the prod-
uct back in a way suitable to users. In programs, however, data processing is done
entirely in computers. Thus, the information transmission mechanism needs to con-
form to the characteristics of computers.

When designing mechanisms of functions, we need to determine how the caller
sends data to the function and how the function sends results back to the caller, as
shown in Figure 4.13.

Manufacturer

f Function definition (input, output, functionality) \

How data are submitted How results are obtained

\ J

Function (actual data)

Outsourcer

Figure 4.13: Information transmission mechanism design.

4.2 Function form design =— 147

One of the methods of information transmission between modules is using
software interfaces, as shown in Figure 4.14. For “manufacturers,” namely those
who define functions, they should consider the following issues: interfaces of re-
ceiving information, code implementation, and approach of result submission. To
describe the manufacturing project, we need to determine a name for it, which is
the function name. For “outsourcers,” namely function callers, they need to con-
sider the following issues: interfaces of submitting information and approach of

receiving results.

Function name (information receiving interface)
+function implementation+result submission method

Function
mechanism

Function name (information submission interface)
+result receiving method

Outsourcer

Figure 4.14: Information transmission design in functions.

4.2.2.5 Three syntaxes related to functions

C offers three syntaxes related to functions: function definition (the “manufac-
turer”), function call (the “outsourcer”), and function declaration (or function pro-
totype), which briefly describes a function. Figure 4.15 shows these syntaxes.

In a function definition, the information interface is implemented as a “parame-
ter list,” and implementation is done by declarations and statements between the
curly brackets. The type of function result is determined by “function type.” In a
function call, the interface of submitting the information is implemented as an “ar-
gument list.” C provides two “approaches of result submission:” one is to submit
through information interface and the other is to use return statements. The func-
tion call syntax does not explicitly show how the caller receives results. We shall
cover result submission and receiving in detail later.

4 Functions

148

'Su0l3ouUNy 03 paje|al saxejuAhs aaly] ST ainSiy

20BLI2]Ul UOISSIWIQgNS
uonew.lou]

!(3s14939Weled)swenuoouny adAl (3simuswinbae)swenuonouny

uonpnpoul @o_ama:wEw_nEL_

[Ied uoipuny Jo xejuls

uoijeJePdP uoIPUNY JO XeJUAS

uonejuawaldul |

‘uonesepap }

¢ poyrow Q (3sr4e12weded) swenuoiouny adAl
Buialzdad 3nsad, [x smmmm oo adAy 3 nsay
2yl pue ,poyisw 9dA3 s31 pue 3nsau buissadoud 9qIIdSap dNjeA uiney

uolssiwqgns 3jnsad, ejep indul jo buluesw uiejdxs :sialawelded
93 aJe aJaym S90p U0IdUNS BY3 1eY) S2QIIDSap :A}l|euoiduUNS

uonuAP uoiPuNny Jo xXejuAs E

20eia1ul Buialedal] {
O uonewJojur ‘/ ! sjuswialels

4.3 Design of information transmission mechanism between functions =— 149

Knowledge ABC Function declaration and where to write them

Cis an old language, so its grammar has been revised continuously. There used to be few restric-
tions on the order of function declaration, definition, and call and necessity of function declara-
tion. Different compilers also followed different rules on them. However, the latest C standards
(such as €99 and C11) require that a function must be declared before being called. This require-
ment helps compilers find out errors of argument types and numbers in function calls. In most
cases, function declarations should be written at the beginning of code (usually after preprocess-
ing directives) and outside of function definitions. Like before, the new standards put no limits on
the location of function definitions and function calls.

4.3 Design of information transmission mechanism between
functions

4.3.1 Characteristics of information transmission between functions

4.3.1.1 Classification of data transmitted between functions

We have concluded in the introduction of functions that the key to completing a task
using multiple child programs is the information communication between them.
Programming languages should provide mechanisms for such communication.

In the scholarship example, fundamental steps that require cooperation are
computing sum, classification, and applicant substitution. We can implement them
in three functions, in which operations like addition, sorting, classification, search-
ing, deletion, and insertion are involved.

Figure 4.16 lists input/output information needed in these steps. These data are
either single data entries or groups of correlated data. The sum function reads raw
data table and outputs the data table with an extra column of the total score. The
classification function reads raw data table and classification arguments, and out-
puts the number of students of each level and their names.

Function Input Output Notes
_ The output data table
Sum Data table Data table contains total grades
- Data table Number of students Sorting before
Classification |- Classification of each scholarship classi?ication
parameters and student names
- gg{;efaglgd classified Number of students 9 O O
Substitution of each scholarship There are data of
- Name of students to be d d individuals and
deleted from the table and student names
data of a group of

students

Figure 4.16: Analysis of data in critical steps of the scholarship application process.

150 =— 4 Functions

n Think and discuss In the process of transmitting data to function through its interface, what are
characteristics of the data and how are they transmitted?
Discussion: As shown in Figure 4.17, issues related to data transmission are data type and data
size. Since the nature of types is the size of the memory space used, type issues are necessarily
size issues. We shall discuss the later below.

Data type Data size issue in its nature

Data
transmitted Passed

directly

Data size

Passed
indirectly

Figure 4.17: Characteristics of information transmitted between functions.

In real life, we can send items to others directly or indirectly. For example, a mail carrier can
send parcels to recipients directly or put them in a self-service parcel pick-up machine.

We can use these methods in information transmission between functions as well. In pro-
grams, a small amount of data are often passed to functions directly. In contrast, a large amount
of data are often passed to functions indirectly by providing the beginning address of the data so
that functions can fetch them on their own.

4.3.1.2 Expressions of data transmitted between functions

Data to be processed have different names if we consider them from different per-
spectives. From the function caller (outsourcer) standpoint, the data to be processed
are called “arguments” in C; from the function definition (manufacturer) standpoint,
the data it receives through software interface are called “parameters,” as shown
in Figure 4.18. As for how the final product is transmitted to users, we shall cover
the topic later.

4.3.2 Information transmission between functions: submission
and receiving of data

As we have discussed earlier, C processes data in different ways, according to the
size of data passed to a function.

4.3.2.1 Submission of small amount of data
We shall start from a small amount of data.

4.3 Design of information transmission mechanism between functions =— 151

Information transmission

Parameter
Data to be processed in the caller Data received by the function
Function call gugct.l?n
(outsourcer) efinition
(manufacturer)

Figure 4.18: Terms for data used in functions.

The memory space allocated to actual values that a function caller needs to pro-
cess is called “argument space.” The system copies the actual data and sends it to
the function called, as shown in Figure 4.19. In other words, the function receives a
copy of actual values. We can imagine the process as sending copies of assets to
advertisement companies for printing. The memory space allocated to these copies
is called “parameter space.”

Pass by value (call by value)

One-directional
information
transmission

Argument space
independent from

Copy of

Actual data actual data parameter space
Argument space Parameter space
Function call Fur!cfu‘)n
(outsourcer) definition
(manufacturer)

Figure 4.19: Small amount of data: passed directly.

Argument space is independent of parameter space. Thus, updates on data in parame-
ter space will not change data in argument space. Such information transmission is
single directional. Because the data transmitted are values, we call the process “pass
by value.” Such way of calling functions is called “call by value.”

4.3.2.2 Submission of a large amount of data
Now we are going to study the case of a large amount of data.

152 =— 4 Functions

If the size of the data is large, the cost of passing copies is also high, which
affects communication efficiency. In this case, the function caller can pass the be-
ginning address of the data to the “manufacturer,” because a large amount of data
are usually stored continuously in memory. The “manufacturer” then fetches data
from the specified address, as shown in Figure 4.20.

Pass by value

One-directional
information
transmission

Fetch
information from
location specified
by users

Copy of
address of
actual data

Address of
actual data

Data to be processed in the caller Data received by the function
Function call Function
(outsourcer) definition

(manufacturer)

Figure 4.20: Large amount of data: submit the address of data.

Note that the information passed is a copy of the “address of actual data.” It is simi-
lar to data maintenance of library servers: service providers can operate servers re-
motely as long as they know IP addresses and passwords.

Service providers can also carry out maintenance on-site. Similarly, the “manu-
facturer” can also head to the address of data and process them directly, as shown
in Figure 4.21. This is “pass by reference” in C. Function callers can pass the begin-
ning address of data to the “manufacturer” so that it can process data at the address
directly.

Pass by reference

Bidirectional
information
transmission

Use the
original
data space

Argument
Function receives

Data to be processed and processes

Parameter

Function call .::g:.ﬂ?:n
(outsourcer) (manufacturer)

Figure 4.21: Large amount of data: processed on-site.

4.4 Overall function design = 153

Note that argument space and parameter space is the same in “pass by reference.”

We have just seen that function callers can pass data to functions by value or
by reference. In fact, how function results are received are related to how data are
submitted.

4.3.3 Receiving of function results

4.3.3.1 Receiving function results in pass by value

In the case of pass by value, C provides two ways of submitting results, as shown
in Figure 4.22. The first is using a return statement to pass a single result. The sec-
ond way works for address parameters. Function callers can find results at this ad-
dress. In this case, many results can be passed.

Parameter
Data to be processed in the caller Data received by the function
Function call Function
(Outsourcer) definition
(Manufacturer)

Result returning methods:
Method 1: return one result using the return statement
Method 2: return an address, at which the caller can obtain multiple results

Figure 4.22: Submission and receiving of result in pass by value.

4.3.3.2 Receiving function results in pass by reference
In the case of pass by reference, function callers can obtain multiple results in the
shared data space, as shown in Figure 4.23.

4.4 Overall function design
4.4.1 Key elements of function design

4.4.1.1 Key elements of functions

In the discussion of function form design and information transmission mechanism
design, we compared function modules to “manufacturers” in real life. Figure 4.24
summarizes the relations we found in the comparison. There are three key elements
of functions: input, output, and processing.

154 —— 4 Functions

Pass by reference

Bidirectional
information
transmission

Use the
original
data space

Argument
Function receives
and processes

Data to be processed

Parameter

Using the shared data space, we can have multiple
processing results

Figure 4.23: Submission and receiving of result in pass by reference.

A function name briefly describes the processing, while the function body im-
plements the processing.

Data receiving and result submission of a function are done through informa-
tion interfaces. The input information interface is implemented as the parameter
list. The information passed can be either values or addresses. Results can be out-
put in two ways: using a return statement or putting them at a specified address for
callers to access. Again, results can be either values or addresses.

4.4.1.2 Relations between function syntax and key elements of function design
As shown in Figure 4.25, input information determines the parameter list, while
output information determines the function type.

A function in C consists of a function header and a function body. The function
header describes the structure of a function, while the function body implements
its functionality. As such, input, output, and processing of a function determines its
structure.

4.4.2 Summarization of information transmission between functions

4.4.2.1 Direction 1: from caller to function

In C programs, information is passed from arguments (user data) to parameters
(manufacturer data) in two ways: pass by value and pass by reference, as shown
in Figure 4.26. Arguments and parameters are stored in separate space in the case
of pass by value, while they share the same space in the case of pass by reference.
There is another way in C called simulated pass by reference, in which data passed is
address, but parameters and arguments have different spaces. In high-level languages,

155

4.4 Overall function design

ug1Sap uol3duUNy Jo SJuaWa)d ASY 4zt 3InSi4

3s1] J932weded u| ssaippe ay3 Ajpads ()
(ssadppe) uiniad (1)

('z ||qeleA adAy ‘T o|qelien adA])

s9ssaJppe panads je 2403s :9|dinw | uonejuswadwi 13S1] J939weded uolewdojul andut sweu
(anjeA) uanjad :91buis| Apoq uondung uolun4
(uonewuJojul adeyul)
uonew.oul INdINO (uonpewuJojul adea3ul) uoewloul Indug
0= ssalppe ‘anjep 0= Ssa4ppe “anjeA
ssaoo0.d
A n A A
Aanuend ©8p 10 50AL }ijeuoioun4 juend uonewJojul Jo adAl sinpenUe

S)|NsaJl paniwgns ul eleq

uolewJojul A1essadau ul ejeq

4 Functions

156

24Nn30N.43s S
QUIWLI9Idp uolduUNy e
10 Ajljeuoiouny pue
ndano ‘andui ay

"suolssaldxa 119y} pue uSisap uolduNy Jo syUaWa)L AdY :5zH aInSi4

{
!sjuswalels | Apoq
‘uonelepap uonduNy
}
(3s17 J232weled) swep uonouny adAy || 4°Pe3Y
/ uonouny
& mmmmmmmmmmm e
9dA3 s31 pue 3nsaJ buissadoud 2quDSap anjeA ulniay
D © ejep indul jo bujuesw ujejdxs :siajawelded
S90p U0I30UNy BY3 J_YU]} S2QIIISap :A}|_UOIIDUNS
uoljuP3AP uodUNS Jo XejuAs
adAy cﬁ_v_ﬁ“c:u_ u_m____mumEE_ma mw_u | Ayjeuonauny
ayl m_mc.cL_ Bw_u wc.E:aB_mU m_»o_.umﬁ%u_c. U] S9qLISIP
uoReuiojul ndut Jo Ajue Al4211g Sweu uondun4
ndino jo adA3 ayy pue soj3siia3oedeyd ay L
uonewJojul IndinQ uolew.Jojul indug Ajjeuonoung

4.4 Overall function design =— 157

Direction Method Allocation of memory space Type of call

Pass by value Arguments and parameters
Simulated pass by reference | have separate memory units

Call by value

Argument->parameter
Arguments and parameters

Pass by reference X
share memory units

Call by reference

Figure 4.26: Data transmission from the caller to function.

a function call via pass by value is called a “call by value,” while one via pass by refer-
ence is called a “call by reference.”

4.4.2.2 Direction 2: from function to caller

Figure 4.27 shows ways of passing results. If the result is a single value, we can use
a return statement to pass it. If the result contains multiple values, we can return
an address. Additionally, if a parameter is an address, we can store these values at
the address passed in by the caller so that the caller can fetch them. A function may
return nothing in special cases.

Processing result Method
Single value return(value) Special case:
no return value
return(address) el
Multiple values
P Parameter is an address

Figure 4.27: Data transmission from function to caller.

4.4.3 Function call

4.4.3.1 Execution and calling order of functions
In the rostrum building example in Section 4.2, two steps are outsourced to service
providers. Figure 4.28 lists substeps of these two steps.

The execution order of functions is similar to the earlier process. The main func-
tion is the outsourcer, while child functions are service providers of steps in the pro-
cess. During execution, a program always starts from the main function. When a
child function is called, the program enters the child function and returns to the
main function after the child function terminates. Figure 4.29 illustrates the entire
process.

4.4.3.2 Nested call of functions

After the midterm exam, Mr. Brown would like to know the highest score, the low-
est score, and the difference between the two, so he asked his class representative
A to compute these values.

158 = 4 Functions

Outsourcer
| / Start ‘
[
Inform the advertising company Make and install Service
I the background provider
Department of general services)
places tables and chairs Complete |

I
Department of devices install
and test devices
T

Start ‘
T

Inform the landscaping company Place green Service
plants provider

J l
Complete ‘

Figure 4.28: Rostrum building process with outsourced steps.

| |/ Function a begins |
! !

| Call function a | |Statements in function a‘

main terminates

Figure 4.29: Execution order of functions.

A completed the task quickly and reported the result to him. Then Mr. Brown
asked, “If we simulate this process with a program and you are asked to implement
the child functions, how are you going to do that?”

“That’s simple,” answered A, “I’ll write two functions. The max function com-
putes the highest score, and the min function computes the lowest score. The main
function can obtain the highest and the lowest scores by calling them, and then
compute the difference.”

Mr. Brown smiled and asked, “Is that a complete simulation?” A thought for a
while and responded, “No, I should have written another function for difference
computation.” “How does this function work then?” Mr. Brown followed up.

A said, “Let the function be dif, then the execution order of these functions is
as shown in Figure 4.30. We have learned nested if and nest loops, can we call this
‘nested function call’?” “Of course,” Mr. Brown commended, “We do use this term
in C.”

4.4 Overall function design = 159

Function dif

|main function begins| bed!
egins

Function max begins|

| Call function max

tion dif max terminates |

Call func

Function min begins |

| Call function min

l

dif terminates

min terminates |

| main terminates|

Figure 4.30: Execution order of nested function call.

In C programs, a function can call another function, and the function being
called can further call other functions, resulting in a nested function call. We may
have arbitrary layers of nested calls and complete sophisticated tasks with them.

All C programs are constructed by functions, each of which is independently
defined. That is, one cannot define another function in the definition of a function.

4.4.3.3 Correspondence between parameters and arguments

Information to be received is defined in the parameter list of a function definition.
When calling this function, one needs to put data to be processed into the argument
list. The parameter list contains definitions of variables, while the argument list
contains references of variables, as shown in Figure 4.31.

[Syntax of function definition]

type functionName(parameterList)

{ declaration; Q

Parameter list contains definitions of variables t
Plain variables:int x
Pointers: int *ptr

functionName(argumentList)

e

P
—4

statements; 1-d arrays: int a[M]
} 2-d arrays: int b[M][N]
Structure: struct node stu
[Syntax of function call |
J Argument list contains references of variables

Plain variables:x
Pointers: ptr
1-darrays: a

9 2-d arrays: b
Structure: stu

Figure 4.31: Correspondence between parameters and arguments.

160 —— 4 Functions

When using functions, one should always use the correct syntax. One of the com-
mon mistakes beginners make is using the wrong arguments. Programs with such mis-
takes cannot be compiled. Furthermore, it is often hard for them to realize the mistake.
(1) Parameter list: In a function definition, the definitions of parameters are listed

in the parameter list.

(2) Argument list: In a function call, references of arguments are listed in the argu-
ment list; in the case of arrays, we simply use array names in the argument list.

4.4.3.4 Syntax of function call
Based on whether a computation result exists, functions in C are classified into value-
returning functions and nonvalue-returning functions. A value-returning function has
a computation result and uses its type as the function type; a nonvalue-returning
function processes the data with no explicit computation result. For example, a
sorting function sorts data but does not compute a result.

A variable is necessary to store the result returned by value-returning functions,
while it is not for nonvalue-returning functions. Figure 4.32 shows syntaxes of call-
ing both kinds of functions.

Value-returning functions Nonvalue-returning functions

variable=functionName(arguments); functionName(arguments);

Value-returning and nonvalue-returning

Value-returning functions: the function computes a result, whose type is the function type
Nonvalue-returning functions: the function processes data without computing a result.
The function type is void

Figure 4.32: Syntax of a function call.

4.5 Examples of function design

We have introduced the concept of functions, information transmission mechanism
between functions, and key elements of function design in previous sections. Now
we are going to study some examples of function design.

4.5.1 Call by value

Example 4.1 Finding maximum of three numbers

1. Function structure design

In function structure design, we extract input, output, and processing from the problem descrip-
tion. This example requires us to find the maximum using a function max. The input of this

4.5 Examples of function design = 161

function is three integers, which determines the parameter list. The output of the function is the
computed maximum, which is an integer, so the function should be int as well. Figure 4.33 sum-
marizes key elements of the function.

Functionality Input information Output information

max int a,b,c int value

Function name Parameter list Function type

Figure 4.33: Key elements of function max.

2. Comparison of using main function and using child function
We shall implement the maximum finding code in the main function and in a child function, and
then compare the implementations, as shown in Figure 4.34. Values of a, b, and c in the main func-
tion are obtained from keyboard input, while they are obtained from the interface, namely parame-
ter list, in the child function. The maximum found in the main function is directly displayed onto
the screen, while that of the child function is returned to its caller through a return statement.
Through the comparison, we can conclude that although the two implementations differ in
input and output, statements used to find the maximum are exactly the same.

Implemented in main Implemented in child function

int main(void) [int max(int a, int b, int ¢) —|

{ Kevboard ¢ Function
. . eyboar int m:)
inta, b, c, m; /7 input ’ input

| scanf("%d,%d,%d", &a,&b,&c);

m=a>b ? a:b;

m=a>b ? a:b; m=m>c ? m:c;

m=m>c ? m:c; return (m);

printf("max="%d", m); b Function

return 0; \ Screen output
> output

Figure 4.34: Different implementations of the max function.

3. Calling child function
A child function must be called to complete its functionality. The caller can be either the main
function or other child functions. Figure 4.35 shows the program that finds the maximum using
a child function. Note how the child function is declared, defined, and called, and the order in
which these three constructions appear in the program. Similar to variables, a function must be
declared or defined before being called.

Line 2 declares the child function max. The line is also called the header of function max.

The definition of max is between lines 6 and 12.

On line 16, the three inputs are read from the keyboard in the main function.

On line 17, the max function is called. Because max is a value-returning function, the result is
stored in an integer variable x.

162 —— 4 Functions

01 #include <stdio.h>
02 int max(int a, int b, int ¢); / /Declare function max

06 int max(int a, intb, intc) / /Define function max
07 ¢

08 int m;

09 m=a>b ? a:b;

10 m=m>C ? m:c;

11 return (m);

12 3}

13 int main(void)

14 {

15 inta, b, ¢, x;

16 scanf("%d,%d,%d", &a, &b, &c);

17 x=max(a,b,c); / /Call function max
18 printf("max=%d", x);

19 return O;

20 }

Figure 4.35: Relation between max and main.

4. Debugging
We can study how child functions are called using a debugger.
Before debugging, we need to determine what we would like to inspect and act accordingly.
Issues we are going to investigate related to call by value are shown in Figure 4.36.
Debugging

plan
- Are addresses of arguments and parameters the same?
- How are parameters and arguments passed?
- Is it easy to debug if parameters and arguments have the same names?

Figure 4.36: Debugging plan of maximum finding program.

The input parameters of the main function and max function are a, b, and c. We can make a
table to record their values during debugging and then analyze these values. Figure 4.37 shows
the completed table with “Address” values obtained from the debugger. The debugging process
is shown in Figure 4.38, in which the image on the left shows the Watch window before max is
called, and the image on the right shows the Watch window after entering the max function.
Command of stepwise tracing has been introduced in chapter “Execution of Programs.” With
values and addresses of a, b, and c displayed in the Watch window, we can complete the table
in Figure 4.37. Note that the variable addresses may vary after each linking and compilation.

Arguments in main function| [Parameters in child function Parameters and

Variable| Address |Value| |Variable| Address |Value arguments are
a |0x0018ff44| 2 a |0x0018fee0| 2 in different
b |0x0018ff40| 3 b [0x0018feed| 3 o0 memory upits
[¢ 0x0018ff3c 6 [0x0018fee8 6
x=max(a,b,c) int max(int a, int b, int c)

Figure 4.37: Debugger data of maximum finding program.

4.5 Examples of function design = 163

Evidently, addresses of arguments a, b, and c are different from addresses of parameters a, b,
and c. This indicates that they are stored in different spaces. It also proves that the values of
arguments are copied into parameters.

Although arguments and parameters in this program have the same name, they are stored at
different addresses, so they are essentially different variables. Using the same names for argu-
ments and parameters can easily confuse programmers when debugging, so it is recommended
to use different names for them.

#include <stdio. h> #include <stdio. h>
int max(int a, int b, int o); // Mol NN | R0 TR e o /MR o
i[nt max(int a, int b, intec) // a 2 “li{"t max(int a, int b, intc) / 2 2
- = - =
s ? miol @8a 0x0018ff4d mme 2 mio: @8 0x0018fee0
Feturn (m m&b 0x0018Ff40 Yeturn (m s B8b 0x0018fecs
®8&c 0x0018ff3c } B8 0x0018fee8

i[nt main(void) i{nt main(void)

int a, b,c, x; int a, b,c, x;

scanf ("%d, %d, %d", &a, &b, &c); scanf ("%d, %d, %d", &a, &b, &c);
> x=max (a, b, ¢) ; //mj x=max (a, b, ¢) ; //m|

printf("max=%d", x); printf("max=%d", x);

return 0; return 0;

Figure 4.38: Debugging process of maximum finding program using the same name for
arguments and parameters.

We shall rename the arguments as d, e, and f, and repeat the debugging process.

5. Debugging the new implementation

Figure 4.39 shows the values of parameters and arguments used in the main function and max
function when the program first enters the main function. Readers may have noticed values of
variables d, e, and f:

CXX0069: Error: variable needs stack frame

This error occurs because stack memory space has not been allocated to these variables.
Please refer to the chapter “Execution of Programs” for the concept of a stack.

#include <stdio. h> Watch a

int max(int a, int b, intc); //
/% Name |Valu:

E=PHa. by o, HEDHEX]. 4 _CXX0069: Error: variable needs stack frame
: ¢ = e CXX0069: Error: variable needs stack frame

int max(int a, intb, intc) f CXX0069: Error: variable needs stack frame
{ &d CXX0069: Error: variable needs stack frame
int m; & CXX0069: Error: variable needs stack frame
m=a>b ? a:b; &f GXX0069: Error: variable needs stack frame
m=m>c ? m:c, x CXX0069: Error: variable needs stack frame
} return (m); a_CXX0017: Error: symbol "a" not found
b GXX0017: Error: symbol "b" not found

=N |{nt main (void) ~c_CXX0017: Error:. symbol "c" not found

int d, e f,x; &a CXX0017: Error: symbol "a" not found
scanf("%d, %d, %d", &d, &e, &f)[| &b CXX0017: Error: symbol "b" not found
x=max (d, e, f) ; ..&c CXX0017: Error: symbol "c¢” not found
printf("max=%d", x); ! N
return 0; [{["]\ Watchl /

Watch2) Watch3) Watchd /

Figure 4.39: Debugging process of maximum finding program 1.

164 —— 4 Functions

Knowledge ABC Stack frame

Stack frames are also called “activation records.” They are a data structure used by compilers to
implement function calls. Logically, a stack frame is an environment in which a function is exe-
cuted. It contains all data related to a function call: parameters, local variables, return address,
copies of register values that need to be restored, and so forth. Upon a function call, a frame is
pushed onto the stack. After the function terminates, the frame is popped from the stack.

If we step forward in the main function, variables in the main function will obtain memory space
and addresses as shown in Figure 4.40. At this moment, their values are still random numbers.
Values of variables in child function max are “not found” at this moment. This is due to the
masking mechanism of modules, which prevents a function from accessing data inside other
functions.

Figure 4.41 shows the state after executing scanf and before calling max. Now values of d, e,
and fare 2, 3, and 6, respectively. The value of x is still a random number.

#include <stdio. h>
int max(int a, int b, intc); /[a
/% JName Value
— AN B = d 858993460
E=1Ha. b, of, BEPHEX S 528993460
int max(int a, intb, intc) | _f -858993460
{ = &d 0x0018ff44
int m; &e 0x0018ff40
m=a>b ? a:b; @ &F 0x0018ff3c
mEe 2 mic; x | —858993460
} return (m); a CXX0017: Error: symbol "a" not found
int main(void) b GXX0017: Error: symbol "b" not found
{ CXX0017: Error: symbol "c¢" not found
int d,e, f, x; CXX0017: Error: symbol "a" not found
= scanf ("%d, %d, %d", &d, &e, &f) {CXX0017: Error: symbol "b" not found
x=max (d, e, f) ; - CXX0017: Error: symbol "c¢" not found
printf("max=%d", x); o
, return 0; '\ Watchl { Watch2) Watch3 } Watchd

Figure 4.40: Debugging process of maximum finding program 2.

By pressing F11, we step into child function max. As shown in Figure 4.42, variables in the main
function are now invisible, while variables in max become visible. We can see that parameters a,
b, and ¢ have obtained values of arguments d, e, and f, but their addresses are different from
those of d, e, and f. The value of m is a random number at this moment.

After max function terminates, result 6 is stored into m, as shown in Figure 4.43.

The program then steps out of max and returns to main, as shown in Figure 4.44. We can see
that the value of x has become 6.

int
*

#include <{stdio. h>

max(int a, int b, intc); / Watch

4.5 Examples of function design = 165

int

int

= |

max(int a, intb, intc)
int m;

m=a>b ? a:b;

m=m>c ? m:c;

return (m);

main(void)

int d e, f, x;

scanf ("%d, %d, %d", &d, &e, &f)

x=max (d, e,) ;
printf("max=%d", x);

i
L i

return O0;

Name [Value
HE=1Ha\ b, o, HEPHEX] -2

0x0018ff3c

CXX0017: Error:
CXX0017: Error:
{CXX0017:
CXX0017:
CXX0017

[P Watchl { Watch2 % Watchs % Watchd /

0x0018f 744
000187740

—-858993460

" not found
not found
not found

" .not found
_"b" not found
"¢" not found

0017 Ers

Figure 4.41: Debugging process of maximum finding program 3.

int
/%

#include <stdio. h>

max(int a, int b, intg); /

Name [Value A

int
{

int
{

max(int a, int b, intc)

int m;

m=a>b ? a:b;
m=m>c ? m:c;
return (m);

main(void)

int d, e, f,x;

scanf ("%d, %d, %d", &d, &e, &f)
x=max (d, e, f) ;

printf("max=%d", x);

return 0;

CXX0017: Error: symbol "d" not found

: Error: symbol "e" not found
: Error: symbol "f" not found
: Error: symbol "d” not found

':“Error: symbol "e" not found]

- Error: symbol "f" not found
: Error: symbol "x" not found

® &a
= &b
H &

m
{*\ Watchl { Watch2 % Watch3) Watch4 /

e —

Figure 4.42: Debugging process of maximum finding program 4.

#include <stdio. h>

irlt max(int a, int b, intc); / aea Vale T~
d CXX0017: Error: symbol "d" not found
e CXX0017: Error: symbol "e" not found
int max(int a, int b, intc) f CXX0017: Error: symbol "f" not found
&d CXX0017: Error: symbol "d" not found
int m; &e CXX0017: Error: symbol "e" not found
m=a>h ? a:b; _&f CXX0017: Error: symbol "f" not found
m=m>e ? m:c; x GXX0017: Error: symbol "x" not found
return (m) ; a 2
int main(void) i o
Le 6
int d, e, f x; H&a 0x0018feel
scanf ("%d, %d, %d", &d, &e, &f)||@ &b 0x0018feed
x=max (d, e,) ; @ & 0x0018feed]
printf("max=%d", x); m 6 -
, return O; [\ Watchl { Watch2 } Watch3 } Watchd /

Figure 4.43: Debugging process of maximum finding program 5.

166 —— 4 Functions

#include <stdio.h>
; > . . , |Watch < |
|/2t max(int a, int b, intc); // NameRlVaie B
' 4.2 o e
e '3
int max(inta, intb, intc) || _f 6 .
{ @ &d 10x00187f44
int m; & &e 0x00181f40
m=a>b ? a:b; ® &f 1 0x0018ff3c
m=m>c ? m:c; x 16
} return (m) ; a_ CXX0017: Error: symbol "a" not found
int main(void) b CXX0017: Error: symbel "b" not found
c_CXX0017: Error: symbel "c¢" not found
int d,e f,x; &a CXX0017: Error: symbol "a" not found
scanf ("%d, %d, %d", &d, &, &f)||. &b CXX0017: Error: symbol "b" not found
xemax(d, e,) & CXX0017: Error: symbol "c* not found
= printf("max=%d", x); m_CXX0017: Error: symbol "m" not found v
. return 0; "I\ Watchl { Watch2 % Watch3) Watchd /

Figure 4.44: Debugging process of maximum finding program 6.

Example 4.2 Structure variable as parameter

1. Problem description

Use the debugger to analyze the characteristics of passing a structure variable when using it as
the parameter.

2. Code implementation
#include <stdio.h>
struct student
{ int num;
float grade;
¥
struct student funcl(struct student stu) //Structure variable as parameter
{
stu.num=101;
stu.grade=86;
return (stu); //Return a structure variable
3
int main(void)
{
struct student x={0, 03};
struct student y;
y = func1(x); //Structure variable as argument
return 0;

4.5 Examples of function design =—— 167

3. Debugging

In Figure 4.45, note that address of structure argument x is 0x12ff78.

In Figure 4.46, note that the address of parameter stu is 0x12ff14, which is different for the
address of x. In conclusion, the value of the argument is copied into the parameter.

int main() & nr
¢ Name |Va|ue
Struct student x={0. &J; &x 0x0012FF78
struct student y; E um o
5y = funcl(x); ,—grade 0.000000
return 0; S
)

Figure 4.45: Structure variable as parameter debugging step 1.

struct student funcl(struct student stu)

B> (v a
stu.num=101; N |V |
stu.grade=86; AN aug
return (stu); &x CXXe017: Ert

} &stu 0x0012FF14
. 9rade '0.000000

Figure 4.46: Structure variable as parameter debugging step 2.

In Figure 4.47, members of structure stu are modified in child function funcl.
In Figure 4.48, structure y in the main function is used to store the value of the structure vari-
able returned by funcl.

struct student funcil(struct student stu)

¢ 2 ol
stu.num=101; |
stu.grade=86; Name Value

2> return (stu); &x CXX0017: Ert
3 Héstu Ox0012fFF14
num 101
grade 86.0000

Figure 4.47: Structure variable as parameter debugging step 3.

168 —— 4 Functions

int main() |value
(‘Ox0R12ff 78
struct student x={0, 0}; ‘0
struct student y; 30 000000
y = funci(x); gexemzw?e
£> return 0; 101
) _86.0000

Figure 4.48: Structure variable as parameter debugging step 4.

Note: x, y, and stu have different addresses. The value of x is not modified.

Conclusion About call by value

(1) Parameters and arguments are stored separately;

(2) During function call, values of arguments are copied into parameters;

(3) Computation in the child function uses parameters. Updates of parameter values do not
affect arguments.

In essence, call by value copies values of arguments into parameters. Thus, updates
of parameters in child functions would not affect the variables used in the function
call. Hence, call by value protects our data by preventing the function being called
from modifying variables in the caller.

4.5.2 Call by reference

Example 4.3 Computing partial sum of array
Compute the sum of elements between indices m and n in integer array score. See Figure 4.49
for the schematic.

The main function should read values for m and n and output results. The sum computation
should be done by child function func.

Analysis
In this problem, parameters can be passed in multiple ways. We shall implement the program
using three ways of parameter passing.

Index 0 1 2 3 4 5 6 7 8 9
score[] 1 2 3 4 5 6 7 8 9 0

Figure 4.49: Computing partial sum of an array.

Solution 1
1. Function structure design
Figure 4.50 analyzes the number of inputs and outputs of the child function.

4.5 Examples of function design = 169

Content

Quantity

Parameter
passing method

Parameter passing
implementation

Information of array : Pass by ;
Input Score Multiple reference |parameter int score[]
Values of m and n Single [Pass by value int m,int &»
Sum of array elements
Output| between index m and | Single return Return int type
index n

Figure 4.50: Key elements analysis of solution 1.

If the parameter
is a 1-d array, we
can omit the
array length

The input needs to contain all information of array score and values of indices m and n. There are
multiple elements in score. m and n are both single variables. Hence, we shall pass the array

score by address and pass m and n by value.
The output is the partial sum of elements between indices m and n. Because it is a single

value, we can return it using a return statement. The return type is int.

2. Function implementation design
Based on the key elements, we can write out the function header. As for the function body, we
can use a for loop to add elements between indices m and n into variable sum, and return the
sum using a return statement, as shown in Figure 4.51.

Function | Function type F%r;(;:'gn Parameter list
header - - -
int func (int *sPtr, int m, int n)
{ inti, sum=0;
sPtr = &sPtr[m];
) for (i= m; i<=n; i++, sPtr++)
Function
body sum = sum + *sPtr;
//Compute sum of elements between index m and index n
return sum;
¥

Figure 4.51: Function design of solution 1.

3. Code implementation
The code implementation is given in Figure 4.52.
The child function is between line 5 and line 15, while the remaining part is the main function.

170 —— 4 Functions

01 #include "stdio.h"

02 #define SIZE 10

03 int func(int score[], int m, int n);

04

05 //Compute the sum of elements of array score between index m and index n
06 int func(int score[],int m,int n)

07 {

08 inti,sum=0;

09

10 for (i= m; i<=n; i++)

11

12 sum=sum-+score[i];

13 3}

14 return sum;

15}

16 int main(void)

17 {

18 intx;

19 int a[SIZE]={1,2,3,4,5,6,7,8,9,0};

20 intp=3,q9=7; //Specify range of sum

21 . . . Display

22 printf(“Elements of array a between index %d and index %d are:",p,q); specified
23 for (inti= p; i<=q; i++) elements
= A If an argument is oO .

25 printf("%d",a[i]); an array, we only

— need to write the
array name,

b
;Z pgntf(\n"); . .0 O
x=func(a,p,q);
29 printf(“Sum of elements of array a between index %d and index %d are: %d\n",p,q,x);
30 return O;
31}

Program result:
Elements of array a between index 3 and index 7 are: 4 5 6 7 8
Sum of elements of array a between index 3 and index 7 are: 30

Figure 4.52: Code implementation of solution 1.

Lines 22-27 print values of elements in the specified range so that it is easier to debug later.
On line 28, function func is called with argument array a and indices p and g. Pay attention
to how we use the array name in the argument list.

4. Debugging

Before debugging, we should list issues we would like to investigate, which include questions
related to address passing and variables we want to inspect. Figure 4.53 shows the values of
these variables in the Watch and Memory windows of the debugger. During debugging, we can
use a table to record the values of variables for further analysis. With all the information we
have, we can conclude that call by reference uses the same memory space for parameters and
arguments, while call by value uses separate memory spaces for them.

Debugging
plan

— Are parameters and arguments
stored in the same memory units?

— How are parameters and
arguments passed?

Call by reference
Parameters and arguments
share memory units

Call by value

Parameters and arguments use
different memory units

4.5 Examples of function design

x=func (a, p, q) ;

[9]

printf("Sum of elements of array a
return 0;

a8 &p

x0019ff00

Arguments in main function Parameters in child function
Variable Address Value Variable Address Value
a 0x0019ff04 score 0x0019ff04
p 0x0019ff00 3 m 0x0019fea4 3
q 0x0019fefc 7 n 0x0019fea8 7
x=func(a,p,q); int func(int score[],int m,int n);
int main(void) [Name [vawe]
Ha 0x0019ff04
int x; (o]
int a[SIZE]= {1,2,3,4,5,6,7.8.9,0}:| - [1] 2
int p=3, g=7; Specify range of [2] 3
L . . - [3] 4
= printf("Elements of array a betwee
for (int i= p; i<=q; i++) 4] 5
: ’ (5] 6
rintf("% " alil); (el 7
P ! SNV
printf("\n"); (8] 9
0
0
3

B&q 0x0019fefc
s w 7
Compute the sum of elements of array |[Name [value
int func(int score[], int m, int n) B score 0x0019ff04
1
int i, sum=0; B &m 0x0019fead
3
for (i=m; i<=n; i+4) @& 0x0019fea8

sum=sum+score[i];
}

return sum;

Memory x|

Address: [0x19ff04

019FF04 01 00 00 00 ~
019FF08 02 00 00 00

019FFOC 03 00 00 00

019FF10 04 00 00 00

019FF14 05 00 00 00

019FF18 06 00 00 00

019FF1C 07 00 00 00

019FF20 08 00 00 00

019FF24 09 00 00 00 ...
019FF28 00 00 00 00

17

Figure 4.53: Debugging code implementation of solution 1.

— 17

172 = 4 Functions

Solution 2

1. Function structure design
The computation result of the child function can also be accessed using a shared address, as
shown in Figure 4.54. In this case, the function type is void, and the result is stored at a speci-
fied position of array score. An integer variable size represents the position.

between index m and index n

Gt Quantity | e method | | mplementation
Information of array score | Multiple | Pass by reference int score[]
Input Values of m and n Single Pass by value Parameter | intm,intn
Position in score that is used Single Pass by value i e
to store result
Output Sum of array elements Single | Pass by reference | Function type void

Figure 4.54: Key elements analysis of solution 2.

2. Function implementation design

After designing the function structure of solution 2, we can write out the function header. As
shown in Figure 4.55, the function body uses a for loop to compute the sum and stores sum at a
specified position of array score.

Function type Function Parameter list
name
void func (int score[], int m, int n, int size)
{ inti, sum=0;

for (i=m; i<=n; i++)

sum=sum-+scorel[i];

score[size]=sum; //The sum is stored in specified position of score

Figure 4.55:

Function design of solution 2.

4.5 Examples of function design =—— 173

3. Code implementation
Figure 4.56 shows the code implementation of solution 2.

01 #include "stdio.h"

02 #define SIZE 10

03

04 void func(int score[],int m,int n,int size);

05

06 //Compute the sum of elements of array score between index m and index n,
//store result in position with index size

07 void func(int score[],int m,int n,int size)

09 int i,sum=0;

11 for (i= m; i<=n; i++)
12 {
13 sum=sum-+scorel[i];

15 score[size]=sum; //The sum is stored in specified position of score
16 }
17 int main(void)

19 int a[SIZE]= {1,2,3,4,5,6,7,8,9,0%};
20 int p=3, q=7; //Specify range of sum

22 printf("Elements of array a between index %d and index %d are:",p,q);
23 for (inti= p; i<=q; i++)

24
25 printf("%d ",a[i]); Nonvalue-returning
26} functions

27 printf("\n");

28 func(a,p,q,SIZE-1);
29 printf("Sum of elements of array a between index %d and index %d are:
30 %d\n",p,q,a[SIZE-1]);

30 return O;

Figure 4.56: Code implementation of solution 2.

The child function is declared and defined between line 4 and line 16. Note that the type of func-
tion is void, as shown in line 28, so it is a nonvalue-returning function call.
The main function is the same as in solution 1, except that the function call is slightly different.

4. Debugging

As usual, we need to list issues for investigation before debugging. We shall focus on issues
related to passing by reference in this solution, as shown in Figure 4.57. The value of the last
element of array a in the main function should be 0 before calling child function func and 30
after the call. Figure 4.58 shows debugging information of the program.

174 —— 4 Functions

Inspect how the result is stored into score in child function
- Check whether a[SIZE-1] is changed after function call

Using pass by reference,

child functions can
modify data at specified
addresses so that the
Index 0 1 2 3 4 5 6 7 8 9 caller can obtain
allbeforethecall | 1 | 2 | 3 | 4 | 5 | 6| 7| 8| 9| 0 updated value
a[] after the call 1 2 3 4 5 7 8 9 30
Figure 4.57: Debugging plan of solution 2.
int main(void) Name [value
BEla 0x00191f08
int a[SIZE]= (1,2,3,4,5,6,7,8,9,0};/ — [0] 1
= int p=3, g=7; //Specify range of |- [1] 2
o S 3
prmtf.('E!ement§ of array a betwee|| | [3] 4
for (int i= p; i<=q; i++) L[4 5
printf("%d ",alil); : Ez% g
printf("\n"); - [7] 8
func (a, p, q, SIZE-1) ; - [8] ¢
printf("Sum of elements of array 4 = [9] 0
return 0; i
]
int main(void) Name [value
0x0019ff08
int a[SIZE]= {1,2,3,4,5,6,7,8,9,0}; 1
int p=3, g=7; //Specify range o 2
3
printf("Elements of array a betwee| 4
for (int i= p; i<=q; i++) 5
printf("% ",ali]); ?
printf("\n"); 8
func(a, p, q, SIZE-1) ; 9
=2 printf("Sum of elements of array 4 30
} return 0; |

Figure 4.58: Debugging code implementation of solution 2.

Solution 3

1. Function structure design

Figure 4.59 shows the third solution. Compared with solution 1, the only difference is that the
beginning address of the score is passed to the child function using a pointer. This is an alter-
native form of “call by reference:” using a pointer as an argument.

2. Function implementation design

Figure 4.60 shows the implementation of solution 3. The parameter uses pointer sPtr to store
the address of array score. On line 2 of the function body, we point sPtr to address of the ele-
ment we want to access, that is, address of the element with index m. Then we use the for loop

4.5 Examples of function design —— 175

to compute the sum. Note that we refer elements of score using pointer sPtr. Finally, the sum is
returned using the return statement.

An alternative way of
pass by reference: using
— a pointer as parameter ™

: Parameter Parameter passing
Content Quantity passing method implementation
Information of array score | Multiple Pass by int *sPtr
reference
Input Parameter
Values of m and n Single Pass by value int m,int n
Sum of array elements
Output | between index m and Single Pass by value Return int type
index n

Figure 4.59: Key element analysis of solution 3.

Function Function Parameter list

Function type name
header - - - -
int func (int *sPtr, int m, int n)
{ inti, sum=0;
sPtr = &sPtr[m]; //sPtr points to address of the

element to be accessed

Function for (i= m; i<=n; i++, sPtr++)

body sum = sum + *sPtr;
//Compute sum of elements of score between index m and index n

return sum;

Figure 4.60: Function implementation design of solution 3.

3. Code implementation

01 #include "stdio.h"

02 #define SIZE 10

03 int func(int *sPtr,intm,int n);
04

05 int func(int *sPtr, intm, int n)
06 {

07 int i,sum=0;

08

09 sPtr=&sPtr[m]; //Point sPtr to address of element to be accessed
10 for (i=m; i<=n; i++, sPtr++)
11 {

12 sum = sum + *sPtr;

13 3}

176 = 4 Functions

14 return sum;

15 }

16 int main(void)

17 {

18 int x;

19 intal[SIZE]={1,2,3,4,5,6,7,8,9,0};
20 int *aPtr = a;

21 int p=3, g=7; //Specify the range
22

23 x=func(aPtr,p,q);

24 printf("%d\n",x);

25 return 0;

26 }

4. Debugging

As usual, we list issues related to pass by reference and variables we want to inspect, as shown
in Figure 4.61. Argument aPtr and parameter sPtr should have the same value, which ought to
be the address of array a.

Are memory units of parameters and arguments the same
when using a pointer as parameter?

Simulated call by reference
Parameters and arguments

7 use different memory units
Arguments in main function Parameters in child function Call by value
Variable| Address | Value | [variable] Address | Value Param%t%rs antti arguments
RS o use different memory
g array a T
Address sPtr =
aptr of array a of array a
q 7 n 7
x=func(aPtr,p,q); int func(int*sPtr, int m, int n)

Figure 4.61: Debugging plan of solution 3.

Figure 4.62 shows the first step of debugging.

In the main function, the address of array a is 0x18fflc. aPtr is a pointer pointing to the ad-
dress of a, so their values should be identical. The address of aPtr can be obtained using &
operator. We can see in the Watch window that the address is 0x18ff18.

4.5 Examples of function design —— 177

|{nt main(void) Mame ——Jvane

int x; Ba 0x0018ff1c
int a[SIZE] = {1,2,3,4,5,6,7,8,9,0}; @ &aPtr 9x0038ff18
int *aPtr = a; i

int p=3, q=7; //4%% KA TFirth{z & @ aPtr 0x0018ff1c
li&p 0x0018ff14

2> x=func (aPtr, p, @) ; 3
printf("%d\n", x); li&q 0x0018ff10
return 0; 7
} —
int func(int *sPtr, int m, int n) T ECen P ——
{ . . Name |Value
int i, sum =0; @ &sPtr (I?XOOJ 8feb8

1
0x0018ff1c
0x0018febc
3
0x0018fec0
7

B> sPtr = &sPtr[m]; //¥5sPtrik4tis) 233
for (i=m; i<=n; i++, sPtr++)

sum = sum + *sPtr;

return sum;

Figure 4.62: Debugging solution 3 step 1.

In the child function func, the address of sPtr is 0x18feb8 and the value of sPtr is the same
as array a.

With the information displayed in the Watch window, we can complete the table shown in
Figure 4.63. In conclusion, parameter addresses and argument addresses are different when
passing a pointer to the child function. This is similar to call by value. We call such a function
call a simulated call by reference.

Arguments in main function Parameters in child function
Variable Address Value Variable Address Value

0x0018ff1

a X ¢ sPtr 0x0018feb8 | 0x0018fflc

aPtr 0x0018ff18 0x0018fflc

. 0x0018ff10 3 m 0x0018febc 3

q 0x0018ff14 7 n 0x0018fecO 7
x=func(aPtr,p,q) int func(int*sPtr, int m, int n)

Figure 4.63: Debugging information table of solution 3.

We continue the debugging process until sPtr is going to point to the element with index 3, as
shown in Figure 4.64. Note that the value of sPtr is 0x18fflc at this moment. Then we enter the
for loop with i =3. The value of sPtr is updated to 0x18ff28. Using the asterisk operator, we can
obtain the value of the unit it points to, which is 4. We can also inspect the memory layout at
this address in the Memory window.

178 — 4 Functions

Figure 4.64: Debugging solution 3 step 2.

int func(int *sPtr, int m, int n) [Watch | Memory a
. . MNome | Address: [0x18ff1c
int i, sum =0; @ &sPtr 0x0018feb8 0018FF1C_ 01 00 00 00 -
_ 0018FF20 02 00 00 00
C% sPtr = &sPtriml; [[= sptr_o0x0018ff1c | lootsrFa4 03 00 00 00
for (i=m; i<=n; i++, sPtr++) B&m 0x0018febe 0018FF28 04 00 00 00
_ . 3 0018FF2C 05 00 00 00
sum = sum + *sPtr; Eén 0x0018fecO [[0018FF30 06 00 00 00
) [7 0018FF34 07 00 00 00
} return sum;] 0018FF38 08 00 00 00
----------- 0018FF3C 09 00 00 00
int func(int *sPtr, int m, int n) ‘Watch 1 ||Memory a
{ . . Address: [0x18ff1c
int i, sum =0; @ &sPtr 0x001 8febs 0018FF1C_ 01 00 00 00 ~
" 0018FF20 02 00 00 00
sPtr = &sPtr[m]; . [[&'sPtr 0x001 8ff28
1Eor (i=m; i<=n; i++, sPtr++) *sPtr 4
_ . i3
<9 o sumE ey *ePtr; | 0018FF30 06 00 00 00
) 0018FF34 07 00 00 00
} return sum; 0018FF38 08 00 00 00

In the next iteration, as shown in Figure 4.65, we have i =4 and sPtr pointing to 0x18ff2c after
increasing by 1. The value stored at this address is 5. In the next iteration, i becomes 5 and sPtr
points to address 0x18ff30, in which value 6 is stored.

Figure 4.65: Debugging solution 3 step 1.

int func(int *sPtr, intm, int n) [Watch -HMemory [= |
. . L allio Address: [0x18ff1c
int i, sum =0; @ &sPtr 0x0018feb8 0018EF1G_ 01 00 00 00 ~
W
0018FF20 02 00 00 00
sPtr = &sPtr[m]; @ sPtr 0x0018Ff2
for (i=m; i<=n; i+t, sPtr+t) & :sP;r 5X o] 0018FF24 03 00 00 %
| sum = sum + *sPtr; L_I ”'!4
. T 0018FF34 o7 00 oo
} return sum; 0018FF38 08 00 00
nn1RFE2R N@ nn N nn
int func(int *sPtr, int m, int n) ‘Watch Bl | Memory - |
) . Name Value Address: [0x18fi1c
int i,sum =0; @ &sPtr 0x0018feb8 0018FF1C 01 00 00 00 ~
— 0018FF20 02 00 00 00
sPtr = &sPtr[m]; B sPtr Ox0018ff30 |lllbo18FF24 03 00 00
for (i=m; i<=n; i++, sPtr++) *sPtr 6 00 00
P sum = sum + *sPtr; = o0
} ’ L 001BFF30 06 00 00 00
. 0018FF34 07 00 00 00
} return sum; 0018FF38 08 00 00 00
0018FF3C 09 00 00 00

When the value of i becomes 8, the loop terminates, as shown in Figure 4.66. Note that sPtr
now points to address 0x18ff3c. The function func then terminates, and the program returns to
the main function. The computation result 30 is now stored into x. It is worth noting that the
address and value of aPtr did not change as sPtr changed.

4.5 Examples of function design =— 179

int func(int *sPtr, int m, int n) Watch | Memory [= |
{ . . Name [value Address: [0x18fiTc
int i,sum =0; B &sPtr 0x0018feb8 D018FF1C 01 00 00 00 ~
_ 0018FF20 02 00 00 00
sPtr = &sPtr(ml; [sptr_0x00187f3c ||loo1sFF24 03 00 00 00
for (i=m i<n; i+, sPtrs) *sPtr 9 0018FF28 04 00 00 00
_) i 8 0018FF2C 05 00 00 00
} sum = sum + *sPtr; T 0018FF30 06 00 00 00

0018FF34 07 00 00 00

CQ return sum; 1 e
|0018FF30 09 00 00 00 }..

int main(void) Watch | [Memory - |
{ int x Namo hgm(5)018ff1 Address: [0x18ffic
e X - 2 % &——0018FF1C 01 00 00 00 A
int alSIZE] = {1,2,3,4,5,6,7,8,9,01; |[u gaptr 0x0018FF18__||0018FF20 02 00 00 00
It afur - & T 0018FF24 03 00 00 00
int p=3 , o=7; BaPtr 0x0018fflc |l0018FF28 04 00 00 00
_ . x 30 0018FF2C 05 00 00 00
(9 x—fu:?gaﬁstﬁg,\p:'q)),' [0018FF30 06 00 00 00
Bt 0. X T 0018FF34 07 00 00 00
} ; 0018FF38 08 00 00 00

0018FF3G 09 00 00 00
0018FF40 00 00 00 00

Figure 4.66: Debugging solution 3 step 4.

Conclusion About call by reference and call by value
Figure 4.67 summarizes the three types of calls and their characteristics. In C programs, argu-
ments and parameters are stored in different memory units when the variables passed are num-
bers or pointers. They share the same space only when an array is passed.

The merit of using call by reference is that the information transmission efficiency becomes
higher because fewer data are copied during the process.

Memory units of Information
Type parameters and transmission Call type
arguments direction
Value Different Single
- . Call by value
Parameter Pointer Different Double
Array name Shared Double Call by reference

Figure 4.67: Summarization of variable passing rules.

4.5.3 Comprehensive examples of functions

Example 4.4 Calling the same function multiple times
Please write a program that computes the number of k-combinations from n elements.

Analysis
As shown in Figure 4.68, the formula requires the computation of multiple factorials. Consequently,
we can write a function that computes factorial and reuse it.

180 = 4 Functions

|
nCr n’

T kRix(n —R)!

Figure 4.68: Formula of computing k-combinations.

1. Function structure design

Key elements of the function are shown in Figure 4.69. The function name is factorial. Given an
integer x, the function outputs factorial of x. If the input is invalid, the function should return -1.

Functionality Input information Output information
Exception: -1
Compute factorial int x int value
Normal: >0
Function name Parameter list Function type

Figure 4.69: Key elements of function factorial.

We can write out the function header based on these key elements, and the function body
based on its functionality. An exception handling routine is necessary so that the function re-
turns -1 when x<0. The cumulative product computed in the for loop is stored in variable f.
Although there are two return statements, the function has to terminate through one and ex-
actly one exit, as shown in the flowchart (Figure 4.70).

int f=1; //Cumulative product

if (x<0) return (-1);

for (i=1; i<=x; i++) f=f*i;

Function Function | Parameter
type name list
int factorial (int x)

{
int i;

Y Return"-1"

Figure 4.70: Structure and function body design of factorial.

2. Code implementation

return(f);
) There are two
return statements,

how many values
are returned?

| Return value of f|

End

As shown in Figure 4.71, the main function calls factorial multiple times in one expression.

4.5 Examples of function design =— 181

#include <stdio.h>

int factorial (int x); —| Function declaration|
int factorial (int x)
o

int i;

float t=1; 4| Function definition |

for(i=1; i<=x; i++) t=t*i;
return (t);

int main(void)

int c;

int m,n;

printf("input m,n:");

scanf(" %d%d",&m, &n);

c=factorial (m)/(factorial (n)*factorial (m-n)); —| Function call

printf("The result is %8.1f", c);
return 0;

Figure 4.71: Multiple calls of the factorial function.

Example 4.5 Calling multiple functions
There is a sorted array. Please write a program that inserts an input number into the array so
that the result array is still sorted.

Requirement: use binary search to find the insertion position and then use a move function
to move elements backwards. The sorted array and the input is given in the main function.

1. Algorithm design

Regardless of finding the keyword or not using a binary search function, the mid value will be the
index of the position at which the new number will be inserted. Having found this index, we can
use the move function to move array elements backwards and insert the number at position mid.

2. Code implementation
/
Functionality: binary search

Input: address of sorted array, array length, value of keyword to be found
Output: position of the last search

*/
int BinarySearch (int al], intn, int key)
{
int low=0, high=n-1;
int mid;
while (low<=high)
{
mid = (lowt+high+1)/2;
if (almid]==key) break; //Search succeeded
else

182 = 4 Functions

{
if (almid]> key) high=mid-1; //Search in the low range
else low =mid+1; //Search in the high range
}
3
return mid;
3
/%
Functionality: move array elements
Input: address of array, array length, position fromwhich the move starts

Output: None

void move(int al],int n,int subscript)
{

inti;

for(i=n;i>subscript;i--)

{

a[iJ=ali-11;

3

3

#include <stdio.h>
#define N 11
int main(void)
{
int array[NI={5,10,19,21,31,37,42,48,50,55};
int number; //Number to be inserted
int insert_sub; //Insert position
printf("The original array:\n");
for(i=0;i<N;i++) printf("%d ",array[i]);
printf("\n");
printf("Please insert a new number:");
scanf ("%d" , &number);
insert_sub=BinarySearch (array,N-1,number); //Compute insert position
move(array,N-1,insert_sub+1); //Move elements after insert position afterwards
array[insert_sub+1J1=number; //Insert the number
printf("The array after insertion:\n");
for(i=0;i<N;it++) printf("%d ",array[i]);
printf("\n");
return 0;

4.5 Examples of function design =—— 183

Example 4.6 Nested function calls
Compute the difference of the maximum and the minimum of three numbers.

Analysis
Although the problem is trivial, we shall use three functions to solve it in order to demonstrate
nested function calls. The code implementation is as follows:

int dif(int x,inty,int z); //Compute the difference of the maximum and
//the minimum of x, y and z

int max(int x,inty,int z); //Compute the maximum of x, y and z

int min(int x,inty,int z); //Compute the minimum of x, y and z

int main(void)

{
int a,b,c,d;
scanf ("%d%d%d" ,&a,&b,&c);
d=dif(a,b,c);
printf("Max-Min=%d\n",d);
return 0;

¥

int dif(int x,int y,int z) //Compute the difference of the maximum and
//the minimum of x, y and z

{
return (max(x,y,z) -min(x,y,z));
}
int max(int x,int y,int z) //Compute the maximum of x, y and z
{
intr;

r=x>y ? x:y;

return(r>z?r:z);
3
intmin(int x,int y,int z) //Compute the minimum of x, y and z
{

intr;

r=x<y?x:y;

return(r<z ?r:z);

}

184 —— 4 Functions

Example 4.7 Two-dimensional array as parameter
Find the highest grade from grades of three students in four courses.

Analysis

1. Data structure design

We shall use a two-dimensional array studentGrades[number of students][number of courses]
to store all the grades.

2. Function design
Based on the problem description, we can summarize the key elements of the function, as
shown in Figure 4.72.

Function name| Functionality Parameter Function type
) Determine the Grade table, the number of int
maximum highest score | students, the number of courses n

Figure 4.72: Key elements of student grades processing function.

3. Code implementation
//Process 2-dimensional array in child function
#include <stdio.h>
#define STUDENTS 3
#define EXAMS 4
//Function declaration, see section 4.6.6 for introduction of const
int maximum(const int grades[J[EXAMS], int pupils, int tests);
//When using 2-d array as parameter, the row size canbe omitted in
//definition and declaration, but the column size cannot
int main(void)
{
//Initialize students’ grades
int studentGrades[STUDENTS J[EXAMS]
={{77, 68, 86, 73 },
{96, 87, 89, 78 },
{70, 90, 86, 813}
};
printf("Highest grade: %d\n" ,maximum(studentGrades, STUDENTS,EXAMS));
return 0;
}
int maximum(const int grades[J[EXAMS], int pupils, int tests)
{
int i; //Counter of student
int j; //Counter of courses
int highGrade =0; //Initialize with lowest possible grade

4.5 Examples of function design =— 185

for (i=0; i <pupils; i++) //Iterate through rows
{
for (j=0; j<tests; j++) //Iterate through columns
{
if (grades[i][j]> highGrade)
{
highGrade = grades[i]1[j1;
3
}
3

return highGrade; //Return highest score

3

Example 4.8 Structure array as parameter
Write a function output() to print records of five students.

Analysis

1. Algorithm design

The student records are stored in a structure array student stu[], which is passed to child func-
tion output() by the main function through passing its address.

2. Code implementation
#include <stdio.h>
#define N5
struct student
{
int num;
char name[81];
int score[4];
hE
void output(struct student stul])
{
inti,j;
printf("\nNo. Name Scol Sco2 Sco3\n"); //Print table header
for (i=0; i<N; i++)
{
printf("%-6d%-6s",stuli].num,stuli].name); //Print ID and name
for (j=0; j<3; j++) printf("%-6d",stuli].score[j]); //Print grades
printf("\n");
3
}

186 —— 4 Functions

4.5 Examples of function design

int main()

{
struct student x={0, 0};
struct student xstuPtr;

> stuPtr =
return 0;

}

func2(x);

Name Value
&x 0x0012ff78
stuPtr Oxcccccecec

Figure 4.73: Pointer as return value program debugging step 1.

In Figure 4.74, the address of the parameter stu is 0x12ff20.

struct studentx func2(struct student stu))
> (Yo a
struct student xstr=&stu;
str->num=101; Name |Va|ue
str->grade:86; &stu_ 0x0012ff20
return (str); num e
} grade 0.000000

Figure 4.74: Pointer as return value program debugging step 2.

In Figure 4.75, the values of members in the structure stu are updated.

struct studentx func2(struct st
(
struct student xstr=&stu;
str->num=101;
str->grade=86;
return (str);

b

Name Value
&stu 0x0012ff20
B str 0x0012ff20

101
86.0000

Figure 4.75: Pointer as return value program debugging step 3.

— 187

In Figure 4.76, stuPtr in the main function is used to store the value of local variable str. A local

variable is a variable defined inside a function.
int main() Name Value
{ &stu Error: cannc
struct student x={0, 0}; str CXX0017: Ert
struct student xstuPtr; B stuPtr 0x0012ff20
num 101
tuPtr = func2(x);
return o) [grade 86.0000

Figure 4.76: Pointer as return value program debugging step 4.

Note: It is not recommended to return the addresses of local variables. Because the system re-
claims the memory space of local variables after the function returns, information related to
local variables is no longer guaranteed to be correct.

Example 4.10 Void pointers as return value
Please define a dynamic array to store grades of n students and compute the average grade.

The number of students and grades are read from keyboard input.

188 = 4 Functions

Analysis
1. Background knowledge

The array definition method introduced in chapter “Array” allocates memory statically. In other
words, the size of the array and the address it is stored at are unchanged during program exe-
cution. Suppose that we want to insert new data into the array during program execution, but
the allocated array space is already fully used. Is there a way to expand the array space? There
is @ memory allocation method called “dynamic memory allocation” in C: if a program needs
extra storage space during execution, it can “request” memory space of a certain size. When
the program no longer needs the space, the space can be returned to the system. Related li-
brary functions include malloc(), calloc(, free(), and realloc(). One must include the header file
stdlib.h or malloc.h to use these functions.
1) Memory allocation function malloc()

Prototype: void *malloc(unsigned size);
Functionality: allocates a block of memory of size bytes.
Parameters: size is an unsigned integer, which represents the size of the requested memory
space.
Return value: the address of the newly allocated memory is returned. If there is no memory
available, NULL shall be returned.

Note:

(1) NULL is returned when size is 0.

(2) void* is a typeless pointer that can point to memory units of any type. A typeless

pointer can be assigned to pointers of other types after forced type conversion.

2) Memory release function free()
Prototype: void free(void *block);
Functionality: releases memory space allocated using calloc(), malloc(), and realloc().
Parameter: block is a void pointer pointing to the memory to be reclaimed.
Return value: there is no return value.
Usage: void free(void *p);
The statement above releases memory in dynamic memory space pointed to by p, which is a
value returned by malloc(). Free function has no return value.

2. Code implementation

#include <stdio.h>
#include <malloc.h>

int *DefineArray(int n); /*Define a dynamic array of size n*/

int main()

1
2
3
4
5 void FreeArray(int *p); /*Release memory pointed to by p*/
6
7
8 {

9
10
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43
44
45
46
47

4.5 Examples of function design

int *p, i;
int nCount; /#*Number of studentsx/
float fSum=0; /*Total gradex*/

/*Input number of students#*/
printf("\nPlease input the count of students: ");
scanf("%d",& nCount);

/*Define a dynamic array p*/
p= DefineArray(nCount);
if (p==NULL) return 1; /*Exception routine*/

/*Input grades of each studentx*/
printf("Please input the scores of students: ");
for(i=0; i<nCount; i++)
{
scanf("%d", &po[il]);
}

/*Compute total gradex*/
for(i=0;i< nCount;i++)
{

fSum+=p[il;
}

/*Print average gradex*/
printf("\nAverage score of the students: %3.1f", fSum/nCount);

/*Free dynamic array px/
FreeArray(p);
return 0;

}

— 189

/*Dynamically request memory space of size n*sizeof(int), which is used
for an int array with n elements*/

int *DefineArray(int n)

{

return (int *) malloc(nxsizeof(int));

}

190 — 4 Functions

48 /*Release memory allocated by malloc*/
49 void FreeArray(int *p)

50 {

51 free(p);

52 }

Program result:

Please input the count of students: 5

Please input the scores of students: 87 97 77 68 98
Average score of the students: 85.4

Note: The input parameter n of function DefineArray is the number of elements in the array. The
function uses malloc to allocate memory required by the array and casts the void pointer re-
turned into integer pointer. Finally, the function returns a pointer pointing to an integer variable
or array. The value of the pointer is precisely the beginning address of the memory space allo-
cated by malloc.

Knowledge ABC Memory leak

Applications usually use functions like malloc or realloc to obtain blocks of memory from the
heap. When the memory is no longer needed, programs must call function free to free these
memory blocks; otherwise, they cannot be used again. In this case, we consider these memory
blocks “leaked.”

A memory leak affects the performance of a computer by reducing the amount of available
memory in it. In the worst case, most of the available memory may eventually become allocated,
and all or some of the devices stop working correctly, or the application fails.

In modern operating systems, standard memory used by an application is released when it
terminates. In other words, a memory leak in a program with a short lifespan is rarely severe.

Much more serious leaks include those:

(1) where the program runs for an extended time and consumes additional memory over
time, such as background tasks on servers, but especially in embedded devices which
may be left running for many years;

(2) where new memory is allocated frequently for one-time tasks, such as when rendering
the frames of a computer game or animated video;

(3) where the program can request memory (such as shared memory) that is not released,
even when the program terminates;

(4) where the leak occurs within the operating system;

(5) when a system device driver causes the leak;

(6) where memory is limited, such as in an embedded system or portable device;

(7) running on an operating system (such as Amiga0S) that does not automatically release
memory on program termination, where memory has to be reclaimed through system
restart.

Program reading exercise
Read and analyze the program, then fill in the table.

#include "stdio.h"
#include "string.h"

4.5 Examples of function design =— 191

void i_s(char in[], char out[]);
void i_s(char in[], char out[])
{
inti, j;
int 1=strlen(in);
for (i=j=0; i<l; i++, j++)
{
out[jl=in[i]; //Step 1
out[++j]="'__"; //Step 2
in[i]l+=1; //Step 3
3
out[j-11="'\0"';
}
int main(void)
{
char s[]="1234";
char g[207;
i_s(s, g);
printf("%s\n", g);
return 0;

Having learned rules of information transmission between functions, readers can try to analyze
this program on their own. Figure 4.77 lists intermediate results of each step. If readers find it

hard to analyze the program by merely reading it, it is also possible to use a debugger to in-
spect variable values.

Index 0 3 4 5 6 7
(s[1) in[] 1 2 3 4 | \0

(g[1) out[] 1

in[] in step 3 2

Figure 4.77: Program reading exercise.

4.5.4 Parameters of the main function

4.5.4.1 Introduction

We mentioned before that Mr. Brown wrote an arithmetic questions program for his
son Daniel. The program could generate random arithmetic problems and determine
whether Daniel’s answer was correct. Daniel spent much time on it and enjoyed it, so
Mr. Brown wanted to recommend the program to his nephew Annie, who was living

192 — 4 Functions

in another city. Mr. Brown knew that Annie’s parents were not familiar with installing
programs, so he only sent a .exe file through email. The executable file required no C
compiling environment so that Annie could run the program from file explorer di-
rectly. When he tested the executable file, however, he found that the console win-
dow popped up after the program is started and then disappeared quickly before he
could even see the result.

“What should I do?” Mr. Brown thought to himself. He then recalled a method
used before graphical user interfaces were invented. Back in those days, DOS was
the dominating operating system. In DOS, all commands were sent to computers
from keyboard input, including the execution of applications. The interface used
for command input was all black. It is precisely the popped-up window which dis-
plays result after we execute programs in VC6.0 IDE, namely the console. The con-
sole is also called a command line interface, in which users type in commands for
applications in the command line environment. Program results are also displayed
in the command line interface.

However, the graphical user interface has been the de-facto standard nowa-
days. Is there a way to fall back to “console?” The Windows system does preserve
this function. We can enter the command line interface by typing cmd in the Run
window of Windows, as shown in Figure 4.78. Even if a computer is not equipped
with a compiling environment, we can still run console applications in cmd com-
mand line interface. After a console application terminates, it returns to cmd so that
we can inspect its result.

=/ Run X

Type the name of a program, folder, document, or
Internet resource, and Windows will open it for you.

Open: I cmd o ‘

| oK H Cancel H Browse... ‘

Figure 4.78: “Run” in Windows.

4.5 Examples of function design =—— 193

4.5.4.2 Parameters of the main function
We have seen the following form of the main function, which has no parameter:

int main(void)

{

return 0;

}

The return type of the main function is int, which is consistent with the return state-
ment at the end of the program. 0 is the return value of the main function. Where is
it returned to then? After the main function terminates, the return value is sent
back to the operating system, indicating that the program terminates normally.

We can use parameters in plain functions, but can we do the same with the
main function? If a function has parameters, then we have to pass arguments when
calling it. However, no function can pass arguments to the main function because it
cannot be called by any function. As a result, the argument must be provided exter-
nally. How can we do this?

A C program turns into an executable file with extension .exe after being com-
piled and linked. An executable file can be executed directly in the operating sys-
tem. In other words, it is the system that runs the file. Since other functions cannot
call or pass arguments to the main function, it has to be done by the system. In C
programs, we can pass arguments to main functions by typing them in the com-
mand line interface.

Let us take a look at the syntax of the main function with parameters:

int main(int argc, char *argv[])

{

return 0;

3

Command line arguments are also called positional arguments. They can be passed
to programs. Value of argc (argument count) is equal to the total number of posi-
tional arguments (including the program name). argv (argument value) is a pointer
array, in which program name is stored in argv[0] and the ith positional argument
is stored in argv[i], up until argvl[argc-1]. In this way, we can pass command line
arguments into C programs without using input statements.

194 — 4 Functions

4.5.4.3 Example of the main function with parameters

Example 4.11 Compute rectangle area using command line inputs

Analysis
The code implementation is shown in Figure 4.79.

On line 13, the sscanf function is also an input function, which is similar to scanf. We have
learned that scanf uses keyboard input (stdin). sscanf, on the other hand, uses fixed strings as
inputs. Readers can refer to Appendix C of Volume 1 for more on input functions. sscanf reads
data in a specified format from a string. Here it reads data from argv[1] and puts it into variable w.

01 #include <stdio.h>

02 #include <stdlib.h>

03

04 int main(int argc, char*argv[])
//arg c is the number of parameters; arg v[0] is the program name, other parameters are stored after it
05 {

06 float w,h; // Width and height of rectangle

07 if(argc< 3) // Parameters less than 3 d Fxception routine
08 {

09 printf(“input:File_Name width height\n");

10 printf("E.g.: %s 3.2 4.5\n",argv[0]);

11 exit(0); //Exit the program

12 > There are two
13 sscanf(argv[1],"%f",&w); //Width e parameters besides
14 sscanf(argv[2],"%f",&h); //Height program name

15 printf("area = %f\n",w*h);
16 return O;
17 3

Figure 4.79: Example of the main function with parameters.

On line 11, exit() is a library function whose header file is either stdlib.h or windows.h. It closes
all files and terminates the current process. In the statement exit(x), the value of x represents
exit status and is returned to the operating system. If x is 0, the program exited normally; other-
wise, it exited with exceptions.

Figure 4.80 shows the command line interface opened by cmd command. We first enter the
directory of the executable file with command cd, which stands for “change directory.” In this
example, the directory is “D:\MyWin32App\Win32App\Debug” and the executable file is “demo.
exe.” Then we type in command line arguments of the main function in the interface. After typ-
ing in the program name, width, and height (the program specifies the order in which argu-
ments are input), the program outputs area of the corresponding rectangle. We test the
program with three groups of inputs, two of which are valid. In the case of invalid input, the
program outputs the format of valid input and an example in the exception routine.

4.5 Examples of function design =—— 195

BN C:\WINDOWS\system32\cmd.exe — O X

Microsoft Windows [10.0.18362.657] A
(c) 2019 Microsoft Corporation.

C:\WINDOWS\system32>d:

- - 1 Enter directory of
| D:\>cd D:\MyWin32App\Win32App\Debug | the executable file

[_{i:\H?MIN329PP\Min32npp\Debug>demo 34 //fT4~{ Correct example 1 ‘

area = 12.000000
F:\HVMINSZRPP\Min329pp\Debug>demo 1.2 5.6
area = 6.720000

4 Correct example 2 ‘

D: \MYWIN32APP\Win32App\Debug>demo 6 \
input:File_Name width height ‘Wrong example ‘
E.g.: demo 3.2 4.5

D: \MYWIN32APP\l/in32App\Debug>_

Figure 4.80: Test results of the main function with parameters.

Knowledge ABC Differences between exit() and return
According to ANSI C, they are equivalent in the first call of main().

Note that we have used the term “first call.” If main() is in a recursive program, then exit()
still terminates the program; on the other hand, a return statement returns to the previous level
of recursion. Only at the top level of recursion does a return statement terminate the program.
Besides, exit() terminates a program even if it is used in a function other than main(.

Knowledge ABC Format of the main function n
In the latest C99 standard, only the following two definitions of main() are correct (see ISO/IEC
9899:1999 (E) 5.1.2.2.1 program startup):

int main(void) // without parameter

{

return 0;

3

int main(int argc, char *argv[]) // with parameter
{
return 0;

}

196 =— 4 Functions

int indicates the return type of main(). Information passed to functions is normally written in-
side parentheses after function names. void means that no arguments should be passed to
main(). However, we often find the following forms of main() in legacy C code:

(1) main()
This is allowed in C90 standard, but not in C99. Hence, do not write this even if it is valid in
your compiler.

(2) void main()
This is valid in some compilers, but no standard considers accepting it. Bjarne Stroustrup,
the creator of C + +, makes a clear statement in the FAQ section on his website: void main()
has never existed in C++or C. Consequently, compilers may reject such code. In fact, it is
invalid in many compilers.
The merit of sticking with the standard is: a program can normally run even after being
ported from one compiler to another. In other words, it results in “better portability.”

4.6 Scope

When solving practical problems with programs, the scale of programs becomes
larger as problems become more complicated. This leads to many issues in program-
ming. In response to these issues, we introduced the idea of modularization. To be
more specific, we introduced functions into the C language. Figure 4.81 shows some
issues related to functions, which we have seen in previous sections.

Issues we need to Information transmission between functions, What should we do

consider when solving Definition of functions C when the scale of a
problems with functions

Calling methods of functions program is large?

Figure 4.81: Issues related to function design.

4.6.1 Introduction

4.6.1.1 Cooperation issues in teamwork
Mr. Brown’s research group received funding for a new project. For higher effi-
ciency, the project was divided into multiple modules, each of which was assigned
to a teacher or a student in the group.

However, they realized that there were issues of cooperation that needed to be
settled before starting coding.

A student said, “In small programs I have written before, child functions and
main function are in the same file. However, that would be inconvenient in the case
of teamwork! I think we should use a separate file for each module.” Another student

4.6 Scope = 197

said, “I prefer using i, j, and k for loop control variables. Can I still use them if Prof.
Brown uses them as well? Should we discuss with each other before defining our
variables?”

A teacher thought for a while and responded, “From the perspective of the over-
all workflow, we should create program files on our own, but a program cannot run
if it has no main function. From the perspective of program execution, however, we
are writing one large program, which should contain only one main function. How
should we do this?”

Mr. Brown summarized everyone’s questions, as shown in Figure 4.82. Then he
said, “To answer these questions, we need to introduce new rules in the program-
ming language. Can you imagine what the best mechanism of working in team is? I
think we should work in different files. Variables in different files can have the
same name. One program should have only one main function.” Everyone nodded.

What problems are
there in teamwork
programming?

How many files should we use if each team member works on a separate program?

How many main functions are necessary if we have multiple files?

Can we use duplicated names for variables?

Figure 4.82: Issues in large-scale programs.

He asked further, “In this case, what mechanisms of program execution are neces-
sary to make what I just said possible?” “I think we can attach scope and lifespan
to variables so that they are isolated in a file or a function. This can stop them from
messing around,” another teacher answered. Everyone agreed with him.

As they have imagined, the rule in C is: a C program can consist of multiple
files, each of which can have multiple functions, as shown in Figure 4.83. Variables
in different files can have the same name. A C program must have one and only one
main function.

Independent files
Duplicated names

Single main function

A convenient
and reasonable
mechanism

C program °00

File A File B File N
Function Al Function B1 Function N1
Function A2 FunctionB2 || 77 Function N2

Figure 4.83: Structure of C programs.

198 —— 4 Functions

4.6.1.2 Outsourced projects in a flow

In the rostrum building flow, some work was outsourced. Each service provider can
be considered as a child function that completes a certain task. Information related
to one service provider, such as material, size, or price, need not and should not be
exposed to other service providers. This is the scope of information. Such a scoping
strategy is also used in modularization of programs.

4.6.1.3 Resource-sharing problem

Mr. Brown’s university has facilities like assembly halls, libraries, canteens, and in-
firmaries. There are also service departments that provide specific services. As per
government’s and university’s policies, assembly halls and libraries are open to the
public. Organizations and individuals can use them following some processes. On
the other hand, canteens and infirmaries are only available to students and univer-
sity employees. Depending on availability, resources can be divided into internal
resources and shared resources.

The code is also a resource. If a program consists of multiple source files, pro-
gram designers should be able to determine whether a function can be called by
functions in other files based on the nature of the problem to be solved. In other
words, the “availability” attribute should be necessary for functions as well.
Depending on availability, functions in C can be divided into internal functions
and external functions.

To borrow books from university libraries, individuals should present their univer-
sity ID cards. These cards are also required in other facilities, such as canteens and
infirmaries. In many cases, however, data regarding IDs used in one facility are only
available to the management department of that facility. Departments seldom share
their data. To sum up, some data are available to all departments and some are re-
stricted to certain departments.

Imagine a department as a function. Then there are two types of information
processed by functions. Data that are available to all functions are called global
data, while those available only inside a function are called local data.

4.6.2 Masking mechanism of modules

Recall the idea of modularization: we aim to hide internal implementation and data
of modules from outside and to ensure that modules communicate with other mod-
ules through information interfaces. To design such a mechanism, where should we
start? Based on the discussion in the introduction part, it is clear that we should
start from the isolation of internal data and the masking mechanism of functions.

4.6 Scope —— 199

4.6.2.1 Isolation of internal data

By masking data in a child function, which are mostly variables, we prevent them
from being accessed by other functions. Issues we need to consider about these var-
iables are shown in Figure 4.84.

What are the issues we
need to tackle when
designing masking
mechanism of functions?

[Function definition]

0O

1 - Allocation of variable spaces |

Data processing V:rfljglci;solnn - Life span of variables |

- Scope of variables |

[Interface information] o

Figure 4.84: Issues related to masking internal information of functions.

4.6.2.2 Masking rule of functions

Depending on “availability,” functions in C are divided into two types: internal
functions and external functions. They are identified with special signs, as shown
in Figure 4.85. We shall introduce these signs in the section “scope of functions.”

C program
We use signs
FileA File B FileN “External”and“Internal”
to represent availability
of functions in a file
@ Function A1 | Function B1 | Function N1
...... el
| © Function A2 | / Function B2 a Function N2
------------------ I | Internal
@ External

Figure 4.85: Sharing mechanism of functions in a multiple-file structure.

4.6.3 Memory segments and storage classes

4.6.3.1 Memory segments of programs

In practice, we isolate data through categorizing data and manage them differently
based on the availability of data. We use the same strategy in computers to manage
data and code. Figure 4.85 shows the memory layout of a C program. The code seg-
ment contains binary code of functions; the constant segment contains string literals
and other constants; the dynamic segment is used to store internal data of functions,

200 = 4 Functions

namely local variables. The static segment stores data that are shared among func-

tions, that is, global variables.

4.6.3.2 Storage classes of variables

To distinguish variables stored in different segments, C attaches another attribute
to them, that is, storage class. It also indicates the lifespan of variables in memory
(Figure 4.86) and scope of variables in programs, as shown in Figure 4.87.

Code segment User
Constant segment workspace
Static segment
Dynamic segment
Segment Content Notes

Stack Local variables, parameters

Allocated and released by the system
automatically

Dynamic
segment | Heap

Memory requested using dynamic
allocation functions

— Allocated and released by programmers

- The system can reclaim the memory if
programmers didn’t release it

Static segment | Global variables, static variables

Allocated and released by the system
automatically

Constant segment Constants

Allocated and released by the system
automatically

Code segment Program code

Figure 4.86: Memory layout.

Storage)
segment Life span | Storage class Type Notes
register Register | Variables stored in registers
. Same as
Dynamic | ¢ 0 ction auto Auto Auto variables are local variables that are valid only once
in the function in which they are declared
static Static Auto variables are local variables that are valid multiple
Static | >ameas times in the function in which they are declared
program
extern External | Global variables declared outside any function

Figure 4.87: Storage classes of variables.

Registers are fast storage locations inside CPUs. They provide the fastest way to ac-
cess data, even surpassing RAM. However, the size of the registers is limited.
Programmers nowadays seldom use register class themselves, because compilers
will handle it automatically. Register class is often used for variables that are ac-

cessed frequently, such as loop variables.

4.6 Scope = 201

Variables defined in functions are in the auto class by default unless otherwise speci-
fied. The value of an auto variable disappears when the function terminates. In its essence,
this happens because the system needs to reclaim storage units of the auto variable.

The value of a static variable is preserved after the function terminates. In other
words, the system will not reclaim its memory unit. Consequently, this value is still
available when the function is called again.

4.6.4 Masking mechanism 1: lifespan and scope of variables

4.6.4.1 Concept of scope

In a multiple-module structure, each child function possesses some internal data that
need not be accessed by other child functions. In the C language, the visibility of varia-
bles in a program is referred to as “scope.” Figure 4.88 shows the definition of scope
and its rules.

A scope is the visibility of an object (such as a variable) in the code.

Rule of scope

Each function in a C program is an independent code block.

Code that constructs a function body is hidden from other parts of the program. It can’t be
accessed by statements (except the statement that calls the function) in other functions.

Figure 4.88: Scope and its rules.

4.6.4.2 Attributes of variables
Because information needs to be hidden from other functions in some cases, we need
to add an attribute to variables, which are carriers of information. Hence, attributes of
variables include data type and storage class.

Data type describes the size of memory a variable needed. The storage class indi-
cates the lifespan of a variable in memory and its scope. Figure 4.89 shows the complete
syntax of variable declaration, which adds “storage class” in front of the data type.

) Data type Data type indicates the size of a variable in the memory
Variable — - - .
attribute Storage class Storage class. indicates the life span of a variable in the

memory and its scope

Complete syntax of variable declaration

storageClass dataType variableName

Figure 4.89: Variable attributes and declaration syntax.

202 =— 4 Functions

Example 4.12 Usage of a local static variable

In Figure 4.90, we can see that there is an auto class local variable var and a static class local vari-
able static_var in the child function varfunc(). After calling varfunc multiple times, we can make the
following conclusion based on the execution result of the program: values of an auto class local
variables disappear after the function returns, while values of a static class local variables are pre-
served even after the function returns.

01 #include"stdio.h"

02 void varfunc()

03¢

04 int var=0; //Local variable
05 static int static_var=0; //Local static variable
06 printf("var=%d ",var);

07 printf("static_var= %d\n",static_var);

Local variable: value is not accessible
after the function terminates

Static variable:value is preserved

08 var++; after the function terminates
09 static_var++;

10 }

11 int main(void)

12 {

13 inti; Program result:

14 for(i=0; i<3; i++) Iteration 0 var=0 static_var= 0
15 { Iteration 1 var=0 static_var=1
16 printf(*Iteration %d\n",i); Iteration 2 var=0 static_var= 2
17 varfunc();

18 3}

19 return O;

20 }

Figure 4.90: Example of variable attributes and declaration syntax.

4.6.4.3 Local variables and global variables
Depending on the location of the definition, variables are divided into local varia-
bles and global variables. Figure 4.91 shows their definitions.

Local variable

A local variable is defined inside a function. It is available only in this function.
We can omit the storage class auto for local variables defined in a function.

° Local variables are
© O locally available, global
Global variable variables are globally

available

A global variable is defined outside any function. It can be accessed by all N
functions in the program.

We can omit the storage class extern for global variables defined in the
program. However, we must use extern when accessing global variables
defined in other files.

Figure 4.91: Local variables and global variables.

4.6 Scope =—— 203

Keyword extern can be added in front of variables and functions to indicate that

their definitions are located in other files. Compilers will look for definitions in
other modules upon seeing extern.

Example 4.13 Compute average score

In a competition, scores of players are truncated means of scores given by N judges. The highest
and lowest scores are discarded, then the mean value of the rest is the final score of a player.

Analysis
1. Data structure design
Let scores be stored in array data[N]. As we need to access it in all processing steps, we can

make it a global variable. To make testing easier, we can initialize it with initial values in our
program, as shown in Figure 4.92.

Suppose there are N judges e

; / It is easier to test
We use a global variable data[N] to store scores (the program if we._

p
-
(¥___ initialize the array)—
—~ e e gy

TN

D

A\

#define N 12 //Number of judges . O
int data[N]= {86,96,92,88,93,94,89,88,91,90,87,91};
//Global variable of score array

Figure 4.92: Average score: data structure design.

2. Algorithm design

Based on the problem description, we can use the algorithm shown in Figure 4.93 to solve the
problem.

Pseudo code Refinement

Find the minimum score Least, and replace it with 0 (
Find the maximum score Largest, and replace it with 0 F
Compute the average of data

We must replace
the minimum with

0 before looking ™\
for the maximum.

Discard the minimum score Least

Discard the maximum score Largest
Compute the average of data

Figure 4.93: Average score: algorithm design.

3. Function structure design

Because the score array data is global, that is, can be accessed by all functions, our function does
not need to read data through parameters or return the updated data, as shown in Figure 4.94.

Functionality Input information Output information

Compute the average of data

(use global variable)

Function header
Discard the minimum score No No ;
Least (use global variable) | (use global variable) void Del_Least()
Discard the maximum score No No .
Largest (use global variable) | (use global variable) void Del_Largest()
No

Float value

float average()

Function name

Parameter list

Function type

Figure 4.94: Average score: function design.

204 —— 4 Functions

4. Code implementation

Figure 4.95 presents the implementations of each child function. Storage classes of local varia-
bles defined in these functions are omitted, so they are auto by default. To discard the minimum
score in data, we initialize Least with the first element of data and compare every other element
with Least until we find the minimum. After finding the minimum score, we update it to be 0. We
can discard the maximum score using the same way. Finally, we add all values in data together
and divide the sum by the number of judges minus 2 to obtain the mean.

//Discard the minimum value Least | //Discard the maximum value Largest || //Compute the average of data
void Del_Least() void Del_Largest() float average()
{ {
int Least,tag=0; int Largest,tag=0; float sum=0;
Least=data[0]; Largest=data[0]; for(int i=0; i<N; i++)
for(int i=0; i<N; i++) for(int i=0; i<N; i++)
{ sum+=datalil;
if (Least>datali]) if(Largest<datali]) b
{ { return (sum/(N-2));
Least=data [i]; Largest=datali]; ks
tag=i; tag=i;
¥ b
¥ b
printf("Least=%d \n",Least); printf("Largest=%d \n",Largest);
data[tag]=0; data[tag]=0;
b ¥

Figure 4.95: Average score: code implementation.

Figure 4.96 is a screenshot of part of the program, which includes function declarations, global
variables declarations, and the main function.

Note that on line 7, array data is declared outside the main function. Because it is declared
in the same file, extern can be omitted.

The three function calls are between line 63 and line 65. The first two functions are nonvalue-
returning functions, while the third is a value-returning function.

02 #define N 12 // The number of judges

04 void Del_Least(); // Discard the minimum value Least
05 void Del_Largest(); // Discard the maximum value Largest
06 float average(); // Compute the average of data

07 int data[N]= {86,96,92,88,93,94,89,88,91,90,87,91};
// Score array as a global variable

gg i{nt main(vold) A global array defined
57 float x; outside functions
58 for(int i=0; i<N; i++)

59 (

60 printf("%d ",data[i]);

61

86 96 92 88 93 94 89 88 91 90 87 91
Least=86

}
62 printf("\n");
63 Del_Least(); -
64 Del_Largest(); LRy
65 x=average(); average=90.30
66 printf("average=%.2f\n",x);
68 return O;

Figure 4.96: Partial code of average score problem.

4.6 Scope = 205

Example 4.14 Scope of global variables
There are four functions in a program. Variables a, b, ¢, m and n are all global variables, but
their scopes are different, as shown in Figure 4.97.

int a,b,c;

(‘ Definition of function 1 ‘

‘ Definition of function 2 ‘
Scope of global
variables a, b and ¢ —\ int m,n;

‘ Definition of function 3]/— Scope of global

variables m and n

\‘ Definition of function 4

Figure 4.97: Scope of global variables.

Scopes of a, b and c are from function 1 to function 4, while m and n are only visible to the last
two functions. In other words, function 3 and function 4 can use all these variables; function 1
and function 2 can only use a, b, and c.

We can conclude that scope of global variables depends on its location in the program.

Example 4.15 Local variables with duplicated names
Design a program where local variables have the same name, and examine their values at differ-
ent moments.

Analysis

1. Program design

Let a and b be two local variables defined in main function and in child function sub. We assign
values to them in both functions. The following code shows their values before and after calling
sub:

1 #include <stdio.h>

2 void sub();

3

4 int main(void)

5 {

6 inta,b; //They are local variables inmain function

7

8 a=3; b=4;

9 printf("main:a=%d,b=%d\n",a,b); //Print their values in main function

10 sub(); //Call sub, which assign new values to aandb

11 printf("main:a=%d,b=%d\n",a,b); // Print their values in main function
12 returno;

13 }

14

15 void sub()

206 —— 4 Functions

16 {

17 inta,b; //They are local variables in sub
18

19 a=6; b=7;

20 printf("sub: a=%d,b=%d\n",a,b); //Print their values in sub
21 3}

Program result:
main:a=3,b=4
sub: a=6,b=7
main:a=3,b=4

Note: Before calling sub, values of a and b are local variable values in main. When calling sub,
their values are local variable values in sub. Values in main function are masked. After returning
to main, values of a and b are once again local values in main.

2. Debugging
In Figure 4.98, we can see that addresses of a and b in main are 0x12ff7c and 0x12ff78
respectively.

int main() Name |Value
B &a 0x0012ffT7c
int a,b; = 3
B &b 0x0012ff78
a=3; b=d; [[
B printf("main:a=%d,b=%d\n",a,b); |
sub();
printf(“main:az=%d,b=%d\n",a,b);
return 0;
}

Figure 4.98: Local variables with duplicated names debugging step 1.

In Figure 4.99, the program has just entered sub function. Addresses of a and b have become
CXX0069 error: variable needs stack frame. This error occurs because we have not allocated
memory to the variables we wish to inspect. Are a and b in the window local variables in main
function or in sub? Because the “execution arrow” points to the beginning of sub function, we
can infer that local variables a and b in sub have not been declared. Thus, this is an error re-
lated to variables in sub function.

void sub() Name |Value
(O . &a CXX0069: Error:
int a,b; &b CXX0069: Error:

as6; b=T7;
printf(“sub: a=%d,b=%d\n",a,b);

Figure 4.99: Local variables with duplicated names debugging step 2.

4.6 Scope = 207

In Figure 4.100, it is clear that addresses of a and b are different from what we have seen be-
fore. Although these variables have the same name in main and sub, they are actually stored in
different memory units

void sub() Name Value

[Baa 0x0012ff20
int a,b; - 6
as6; b=7; El%b 0x0012ff1c
printf(“sub: a=%d,b=%d\n",a,b); [. 7

} :

Figure 4.100: Local variables with duplicated names debugging step 3.

In Figure 4.101, a and b are once again local variables visible in main function, after returning to
main.

int main() Name |Value

(0x0012FF7
int a,b; Eléa 3x £
a=3; b=4; Elgb Ox0012ff78
printf(“main:a=%d,b=%d\n",a,b); Eq
sub(); :

= printf(“main:a=%d,b=%d\n",a,b);

return 0;

3

Figure 4.101: Local variables with duplicated names debugging step 4.

Example 4.16 Local variables and global variables with duplicated names
Examine scopes of a global variable and a local variable with the same name.

Analysis

Let a and b be two global variables. We also define local variables in child function max and in
main with the same names. Both functions contain operations on variables a and b. The pro-
gram is as follows.

. Code implementation

#include <stdio.h>
int max(int a, int b);

int max(int a, int b) //a and b here are local variables

{

return (a>b ? a:b);
9 %}
10
11 int main(void)

1
1
2
3
4 int a=3,b=5; //Define a and b as global variables
5
6
7
8

208 = 4 Functions

12 {

13 int a=8; //Define local variable a

14

15 printf("max=%d\n", max(a,b)); //Use local variable a and global
16 //variable b as arguments

17 return0;

18 }

Program result:
max=8

2. Debugging
In Figure 4.102, we have just entered main function. The Watch window displays both address
and value of global variable b. CXX0069 error occurs for variable a because there is a global
variable and a local variable with the same name.

In Figure 4.103, the address of local variable a is 0x12ff7c. No value has been assigned to it
at this time.

#include <stdio.h> T [x]
int max(int a, int b); —
Name |VaMe
int a=3,b:=5; & CXX0069: Error:
Eiéb 0x0042316¢ int b
int max(int a, int b) 5
{
return (a>b ? a:b);
}
int main()
B {
int a=8;
printf(“max=%d\n",max(a,b));
return 0;
3

Figure 4.102: Local variables and global variables with duplicated names debugging step 1.

#include <stdio.h> B n‘ﬂ
int max(int a, int b);

Name |Vame

int a=3,b:=5; H & 0x0012ffTc
— -858993460
int max(int a, int b) B &b 0x0042316c int b
return (a>b ? a:b);
}
int main()
= int a=8;
printf(“max=%d\n",max(a,b));
return 0;
3

Figure 4.103: Local variables and global variables with duplicated names debugging step 2.

4.6 Scope —— 209

In Figure 4.104, we have assigned a value to a. In Figure 4.105, the address of local variable in
child function is 0x12ff28, instead of 0x12ff7c of the local variable a in the main function. Global
variable b is invisible in function max. Address of local variable b is 0x12ff2c.

#include <stdio.h>

int max(int a, int b); b R
Name [Value
int a=3,b=5; i&q“ 0x0012FfTc
8
int max(int a, int b) B & 0x0042316c int b
{ = 5
return (a>b ? a:b); :
}
int main()

int a=8;

B> printf(“"max=%d\n",max(a,b));
return 0;

Figure 4.104: Local variables and global variables with duplicated names debugging step 3.

#include <stdio.h>

int max(int a, int b); VS N ——]
Name |Value
int a=3,b=5; B & 0x0012ff28
. ; P :
int max(int a, int b) B & 0x0012ff2c
return (a>b ? a:b);
}
int main()
int a=8;
printf(“max=%d\n" ,max(a,b));
return 0;
}

Figure 4.105: Local variables and global variables with duplicated names debugging step 4.

Figure 4.106 shows addresses of a and b after returning to main. In Figure 4.107, the local vari-

able a in the main function is changed to c. In this case, both global variables a and b are visible
in the main function.

210 = 4 Functions

#include <stdio.h>
int max(int a, int b);

Name |Value

int a=3,b=5; Hé& 0x0012ff7c
~ 8
int max(int a, int b) B &b 0x0042316c int b
return (a>b ? a:b); I
3
int main()

int a=8;

printf(“max=%d\n",max(a,b));
B> return 0;
3

Figure 4.106: Local variables and global variables with duplicated names debugging step 5.

]|

#include <{(stdio._h>
int max(int a, int b);

Name |Vdue

N — &a 0x00423168 int a
H & ©0x0042316c int b
int max(int a, int b) Hé& 0x0012ff7c
8
return (a>h ? a:b); i
}
int main()
{

int c¢:=8;

B> printf(“max=%d\n" ,max(a,b));
return 0;

Figure 4.107: Local variables and global variables with duplicated names debugging step 6.

Conclusion
It is recommended to use different names for local variables and global variables. Duplicated
names will mask global variables, resulting in confusion.

3. Summary of local variables and global variables

Figure 4.108 summarizes the rules of local variables and global variables. If a local variable in a
function has the same name as a global variable, the latter will be masked in this function. In
other words, modifying the value of the local variable will not affect the global variable.

If a local variable
defined in a function
has the same name as

a global variable, the
global variable is masked\
in this function/.

- Local variables are locally visible;
- Global variables are globally visible;

- If a local variable has the same name as a global
variable, the local variable has the higher priority -

Figure 4.108: Rules of local variables and global variables.

4.6 Scope = 211

(1) Pros of global variables:

— Easier data transmission: it is easier and more convenient to transmit data among
functions through referencing global variables than using parameters and return
statements.

— Higher execution efficiency: with global variables, fewer parameters are necessary for
functions. This reduces the cost of calling functions, thus improving the execution
efficiency.

(2) Cons of global variables:

— Worse universality: using global variables affects encapsulation and universality of
functions.

— Worse readability: it is more difficult to debug programs with global variables because
it is hard to figure out which function makes the global data wrong.

— More memory: memory is not allocated to global variables as needed. Instead, memory
allocated to global variables will not be reclaimed until the program terminates.

As a conclusion, it is not recommended to use global variables unless the perfor-
mance of programs is of vital significance.

4.6.5 Masking mechanism 2: scope of functions

In the “shared resources” example, we mentioned that functions also have the
“availability” attribute. If a function defined in a source file can only be called by
functions in the same file, it is called an internal function; if functions in other files
can call it as well, it is called an external function.

To identify internal functions and external functions, we use two keywords of
storage classes: static and extern. When used for this purpose, they are merely iden-
tifiers and are no longer indicators of storage classes.

Figure 4.109 shows how to define an internal function and how to declare and
define an external function. The scope of an internal function is restricted to its
source file, while the scope of an external function is the entire program. If we omit

Internal function

e >

An internal function is a function that is only available in the file e Also called) D)
in which it is defined oC “static function” ~,

Syntax of definition: static type name(parameters) {body} —

External function

An external function can be called by files other than the one in We need to declare Y
which it is defined. an external function ®)
J

Syntax of definition: [extern] type name (parameters) {body}

before calling it N~

Syntax of declaration: extern type name (parameters);

Figure 4.109: Syntax of internal and external functions.

212 =— 4 Functions

extern when defining a function, it will be implicitly defined as an external func-
tion. In files that need to call external functions, it is necessary to use the extern
keyword to indicate that the function called is external.

The merit of using internal functions is that one need not worry about whether
his/her functions have the same names as functions written by others when various
people write functions of the program because it does not matter in this case. For
example, buildings in Mr. Brown’s universities are named by letters in the alphabet.
His friend works for another university, whose buildings are also named by letters.
However, teachers and students in Mr. Brown’s university will never confuse their
buildings with buildings in other universities.

Example 4.17 A program with multiple files

Suppose a C program consists of three source files, namely test file 1 1.cpp, test file 2 2.cpp,
and test file 3 3.cpp, which are shown in Figures 4.110-4.112, respectively. The main function is
located in test file 1. These figures contain definitions of functions, comments on external decla-
rations, and comments on global variables. Please refer to Appendix A for how to add multiple
files to a project in the IDE.

Differences between a declaration and a definition: when a function or a variable is declared,
no physical memory is allocated. The purpose of declaration is to make sure compilers can com-
pile the program. When a function or a variable is defined, it is stored in physical memory
space. A function or a variable can be declared multiple times, but it can only be defined once.

How do we reference global variables in multiple files? Suppose we define a global variable
in a file, we need to use extern keyword in this file to make it accessible in other files. On the
other hand, if we define a static global variable, it is only accessible in this file, instead of other
files.

4.6.6 Masking mechanism 3: restriction on shared data

We have seen in previous examples that data are often shared among functions.
Functions can access the same data objects at different stages in different ways.
Sometimes, an unintentional operation may change the data, which is not what we
expect to see.

Our goal is to make data accessible by multiple functions and to ensure they
cannot be arbitrarily modified. To do this, we can use const keyword to define
data in parameters as constant. const is a keyword of C which prevents a variable
from being modified. Using const can partially enhance security and robustness
of programs.

213

4.6 Scope

uoIdUNy |BUIBIXS Ue [|BD

|~

JUN AJoWBaW awWes sy3 ul 2403S J0U ale

| 9|geleA |ed0| pue | 3|qeLieA |eqo|

(suoiouny ||e apisino)
pauysp sI 3 Yydiym je uonedo| ayj
spuadap |eqo|b sI 9|geleA e Jayiaymn

-/

3|1} SIY3 Ul 30U BB SUOIIULDP JIBYL
‘suoljede|dap uolppunj ale asayl

|/

*T saly 9)dinw yum weiSolid v Q114 3InSi4

9 €
v Z {oz
Z 1 T !0 uinjad 6T
3InsaJ weliboud { 81
(([+1)smau’,,u\p%,,)J3utid LT
(O3sel’s P%.,)4und 97
(Oxau’, P%.)hund ST
(LYY P% P%,)4und P
o€l
(++0 p> f1=D10y 21
(wsai=1 1T
[pue I ss|gelieA |ed0| auyad// T o1
} 60
(urew jur 80
I 3|qereA |eqolb suyaa// T=13ul £0
90

uoljouny |eUI]Xd Ue Se SMauU aJe|daq //
uolPuUNy |eUJSIXS Ue Se 3se| aJeppaq //
uoIPUNY |BUIDIXD UE Se Ixau aJepaq //
uolouny |eutalxa ue se 19sad alepaq//

17(qui)Smau Jul uJIXd SO
{(p1oA)3se| Jul uiIxe 0
{(pPIOA)IXBU JUI UJISIXd £0
!(p1oA)39Sad JUI UJDIXD 20
<y'olpis> spnpul# 10
:ddo 19|14 391

214 — 4 Functions

These are function declarations. Their

Definition of external function next.
Because we omit the extern keyword, it
is by default external. Global variable i

Definition of external function last.
Global variable i is visible in this function.

Definition of external function news.
Local variable i is visible in this function.

Test file2.cpp

01 extern inti; //Declare global variable i~

02 definitions are not in this file
03 int next(void)

04 { \

05 return (i+=1);

063 is visible in this function.
07

08 int last(void)

09 { _

10 return (i+=1);

113}

12

13 int news(int i) //Define parameter i, which is a local variable

14 {

15 static int j=5; //Define static variable j

16 return(j+=1i);

17 3

Figure 4.111: A program with multiple files 2.

Test file3.cpp
01 extern int i; //Declare local variable i

02 int reset(void)

L

03 {

04

Definition of external function reset.
Global variable i is visible in this function.

return (i);

05 }

Figure 4.112: A program with multiple files 3.

Example 4.18 Using const to prevent array from being modified

//Example of const
#include <stdio.h>
#define SIZE 3

//Program starts frommain
int main(void)

]
2
3
4
5
6
7
8
9 {
1

1

- o

int i; //Counter

void modify(const int al]); //Function prototype
int b[SIZE]; //Globa variable used to store updated array

int a[SIZE1={3, 2, 1}; //Initialization

4.7 Recursion = 215

12

13 modify(a); //Function

14 printf("\nArray a after calling modify:");
15 for(i=0; i<SIZE; i++)

16 {

17 printf("%3d", alil); //Print the array after function call
18 3}

19

20 printf("\nArray b after calling modify:");
21 for(i=0; i<SIZE; i++) //Print updated array

22 A

23 printf("%3d", b[i]);
24}

25 return 0;

26}

27

28 //Fetch values fromarray a, process them and store results in array b
29 voidmodify(const int al[1)

30 ¢

31 int i; //Counter

32 for(i=0;i<SIZE;i++)

33 {

34 //alil=ali]*2; Compilation error if we attempt to modify a

35 b[il=alilx2;

36 1

37 3}

Program result:

Array a after calling modify: 3 2 1
Array b after calling modify: 6 4 2

4.7 Recursion

To iterate is human, to recurse, divine. — L. Peter Deutsch

4.7.1 Case study

Last weekend, Mr. Brown took Daniel to a family reunion. Since Daniel had never
attended a reunion, Mr. Brown introduced him to the four other kids in the room.

216 —— 4 Functions

Five kids then sat together. When Mr. Brown asked about their age, the first kid A
said, “I am 2 years older than B on my left.” B decided to do the same and said, “I
am 2 years older than C on my left as well.” C imitated, “I am 2 years older than D
on my left.” D said, “I am 2 years older than Daniel.” When it came to Daniel, he
answered honestly that he was 10.

Mr. Brown burst into laughter and asked, “This is fun. How will you solve this
problem?”

“I am 10, so D is 10+2=12, Cis 12+2=14, B is 14+2=16, and A is 16+2 =18.” Daniel
answered quickly. “Well done!” said Mr. Brown, “Can any of you generalize a for-
mula?” B reckoned that this was a recursive relation. A, who had been learning to pro-
gram, said that this could be easily implemented by a loop, as shown in Figure 4.113.

Let the age be age,whose initial value is 10,
age[n+1]=age[n]+2

| n=1,age=10 |
— Output n$and age |
| agezgge+2 |
| n++ |
F<Tn<e >
End

Figure 4.113: Age computing solution 1.

“Is this the only method?” asked Mr. Brown.

A thought for a little while and said, “We can write the formula in another way
to simulate the process of Mr. Brown asking about our age.” He then changed age
[n+1] = age[n]+2 to age[n] = age[n-1]+2. See Figure 4.114 for the derivation. “We
can’t directly compute the age of the fifth person age[5], but it is related to the age
of the fourth person age[4]. Although we can’t compute age[4] either, we can use
age[3] to express it. Repeating this process, with the new recursive formula, we get
to age[1], which is already known, and then compute all the way back using the
original recursive formula.”

Prof. Brown applauded him and asked what “n decreases by 1 proactively” and
“n increases by 1 passively” meant.

4.7 Recursion = 217

If n=1 then age[1]=10;
Otherwise age[n]=age[n-1]+2 Simulation of Mr. Brown’s
question. We move to
the base case and derive

the result from it

n=>5 initially

Derive result from the
base case level by level,

n+1 n increases by 1 passively
Move to the base o
case level by level, age[3]=age[2]+2
n decreases by 1 n+1
proactively n-1

age[2]=age[1]+2
n+1
n-1
age[1]=10

Base case n=1

Figure 4.114: Age computing solution 2.

“e

n decreases by 1 proactively’ means that we scale down the problem. Here we
are decreasing the number of people n. What to decrease and how to decrease
should be determined by us. ‘n increases by 1 passively’ refers to the upscaling
when we come back from the base case. In this case, it is the increment of n. How
larger the scale of a previous problem is than the current one is determined during
the downscaling. Here we are increasing by 1” answered A.

Then Mr. Brown asked if anyone could draw the execution flow of this solu-
tion. Receiving no response after a while, he drew the graph himself, as shown
in Figure 4.115.

The output is
done by return

statement in
the function

Input N, n=N
age[1]=10

Pause computation

age[n] Resume to
age[n]+2

How is pausing
implemented
in programs?

n=n-1

Figure 4.115: Flowchart of age computing solution 2.

218 = 4 Functions

“But how do we pause in a program? You can say that in words, but statements
in programs are executed one after another,” asked A.

“Calling another function,” Mr. Brown responded, “pauses the caller and exe-
cutes the callee. Since we have a ‘pause’ in the second method, it is only possible
through calling another function.”

“It is hard to see the correspondence between the change of n and age[n],
though,” argued A.

“In this case, let the child function be int age(int n), then the calling relation
between the main function and age can be represented by the chart in Figure 4.116.
Please note that there are multiple ‘pausing points.” The age()’s in the gray area are
all pausing points.”

|
[main() | age(1)+2 | Aage®)+2| Aage@)+2]| Jage(1)+2 |
| | | l |

[age(s) | [age@ | [age(3) | [age(2) | [age(1) |

Pausing point

return 16+2 |\| return 14+2 H return 12+2 H return 1242 Hreturn 10

Figure 4.116: Schematic of the execution process of age computing solution 2.

According to this figure, we can write the code shown in Figure 4.117.

01 #include <stdio.h>

02 int age(int n)

03¢

04 if (n==1) return(10); // Base case

05 else return (age(n-1)+2); // Move to the base case and derive result from it
06 }
07 | age calls itself
08 int main(void)
09 ¢

10 printf("%d",age(5));
11 return O;

12 3}

Figure 4.117: Code implementation of age computing solution 2.

On line 5, we can see that the function age() is calling itself but with a smaller
argument.

“It is like looking into the mirror.” A said, “Standing between two mirrors, you
can see many images of yourself, each smaller than another.” See Figure 4.118 for
an illustration of this metaphor.

4.7 Recursion =— 219

Figure 4.118: Cat in the mirror in the mirror.

When a computation process calls itself directly (or indirectly), we call it a re-
cursive process. If the description of an object contains itself, or it defines itself,
then we call such an object a recursive object.

A recursive process is a round-trip process. As the scale of a problem becomes
smaller and smaller, there is an endpoint at which the scale can no longer be de-
creased. Then we start from the endpoint and return to where we started along the
original path.

4.7.2 Concept of recursion

We have roughly talked about recursion in the age example. Now we are going to
define recursion formally.

4.7.2.1 Definition of recursion

Term explanation Recursion

In mathematics and computer science, recursion refers to a function that uses itself in its definition.
The basic idea of recursion is to convert a large-scale problem into similar subproblems of a

smaller scale. Because we use the same function to solve similar problems of different scales,

the function may need to call itself. Moreover, the function must have a termination condition to

220 = 4 Functions

obtain results. Otherwise, it will call itself infinitely. As a result, a recursive process must con-
tain two key elements:
— Base case: the most straightforward instance of the problem, which can be solved without
recursion.
— Recursive case: an instance of the problem that can be solved through solving more
straightforward instances.

4.7.2.2 Type of recursion

If statements in a function call the function again, either directly or indirectly, we
call it a recursive call of functions. Figure 4.119 shows an example of a direct recur-
sive call, in which a statement inside func calls func again.

func(...)
{
e func(...);
b Figure 4.119: Direct recursive call.

Figure 4.120 shows an example of an indirect recursive call. A statement in funcl
calls func2, then a statement in func2 calls funcl.

L.

funcA(...) funcB(...)
{ {

funcB(); FuncA(.);
b b

Figure 4.120: Indirect recursive call.

Compared with nested function calls, recursive calls are special cases of nested
calls: the functions being called are exactly the caller. Both direct and indirect re-
cursive calls lead to a loop of function calls. If there is no base case, the program
will end in a situation that is similar to infinite loops.

4.7.2.3 Comparison of recursion and iteration
Recursion and iteration are based on program control structures: iteration uses a
loop structure, while recursion uses branch structure. Both of them involve using

4.7 Recursion = 221

loops: iteration uses loops explicitly, while recursion uses loops through repeated
function calls. Both recursion and iteration require a termination condition: itera-
tion terminates when the loop condition evaluates to false, while recursion stops
upon the base case.

4.7.3 Example of recursion

Example 4.19 Computing factorial using recursion

Analysis
1. Algorithm description
The process of computing factorial is as follows:
— n!can be computed by n * (n-1)!, so it suffices to compute (n-1)!;
— Similarly, it suffices to compute (n—2)! to obtain (n-1)!;
— In this way, n gets smaller and smaller. When n =1, 1! is something we already know;
— then we trace back to compute 2!;
- and3l;
— finally, we trace back to n!;

2. Code implementation
#include "stdio.h"
float fac(int n);
//fac computes n!
float fac(int n)
{
float f;
if (n<@) printf("Error!\n"); //Input is invalid when n<@
if (n==0| |n==1) return 1; //Base case
return nxfac(n-1); //n! =n* (n-1)!

}

int main(void)

{

printf("%f", fac (4));
return o ;

¥

3. Execution process of recursion
The calling process of the recursion is shown in Figure 1.121. Unlike nested calls of multiple
functions, all child functions are the same in recursion.

222 =— 4 Functions

4¥fac(3) | A 3*fac(2)| A 2*fac(1)]
! I
| fac(3) | fac(2)
l l
return 4*6| return 3*2 | return 2*1 ‘

Figure 4.121: Process of main function calling fac.

)

’ main()l

4. Efficiency analysis of recursion

One major drawback of recursive functions is system cost. Whenever a function is called, the
system has to allocate stack space to store parameter information. If we use recursive func-
tions, the system needs a large amount of memory for stack spaces. If we use a large integer as
the argument of fac, the system may crash in the worst case.

Good programming habit
We should use as few recursive calls as possible. Recursive calls, especially indirect ones, make
programs less readable. Besides, recursive calls require many system resources. Furthermore, it
is hard to test programs with recursive calls. Hence, we should avoid unnecessary recursive calls,
unless using them simplifies some algorithms or functions.

In recursion, we derive an unknown value by stepping backward; in loops, we derive an un-
known value by repeating the same process, which is a forward process.

Program reading exercise Compute nth item of Fibonacci sequence

Analysis
We can derive the key elements of recursion based on the recursion relation of the Fibonacci
sequence.

— Base cases: fab(1) =1, fab(2) = 1.

— Recursive cases: fab(n) = fab(n-2) + fab(n-1).

The code implementation is as follows:
int fab(int n)
{

if(n==1 || n==2) return 1;

else return (fab(n-1)+fab(n-2));
3

Program reading exercise Computing 1+2+ . . .+n with recursion

Analysis

- Basecase: fl1)=1

— Recursive cases: f(n) =n + f(n-1).
The code implementation is as follows:
int fn(int n)

{

4.7 Recursion = 223

if (n<1) return @; //Exception handling
else if (n==1) return1;
else return (n+fn(n-1));

3

Program reading exercise Finding the maximum element in an array with recursion

Analysis
Let the array be arr[] with length len.
— Base case: when len =1, the maximum is the first element arr[0].
— Recursive cases: the maximum is the larger of arr[0] and the maximum of the array starting
from the second element.

The three key elements of the function are as follows:
— Functionality: finding the maximum element in an array.
— Input: array address and array length.
— Output: the maximum

The critical step in the algorithm: the maximum of the array starting from the second element is
max(arr +1, len-1).
The code implementation is as follows:

#include <stdio.h>
int max(int arr[], int len)

{
if (1 ==1en) //0Only one element
{
returnarr[0];
3

inta=arr[0]; //The first element
int b=max(arr +1, len - 1); //Maximum of the array starting from
the second element
returna>b?a: b;
3
int main(void)
{
intall={1,2,3,4,5,6,7,8,9,10};
printf("Maximum: %d\n", max(a, sizeof(a) / sizeof(al0])));
return 0;

3

224 = 4 Functions

4.8 Summary

1. Three syntaxes related to functions: declaration, definition, and call.
2. Three key elements of function design: input, output, and functionality deter-
mine function structures.
(1) Element 1: function name describes the functionality.
(2) Element 2: input determines numbers and types of parameters.
(3) Element 3: output determines function type.

3. Three ways of data transmission between functions: return statement, argu-
ment, and global variables.
(1) return statement: only one value can be passed from the called function to
the caller.
(2) argument: caller passes arguments to the function by address or by value.
(3) global variables: accessible by all functions.

Figure 4.122 shows the main contents of this chapter and their relations.

We can divide large-scale problems into independent modules, each imple-
mented by a child function,

Repeated tasks can also be implemented as a code segment.

The manufacturer defines how a function is implemented,

While the users call functions to complete tasks.

Input, output, and functionality define the structure of functions,

The function name describes the functionality,

Data to be processed are put into the parameter list,

The type of output determines the function type.

Child functions need to communicate with the caller,

The caller uses them through function calls,

Actual data are transmitted as arguments,

We use pass by value for single datum and pass by reference for a group of data,
Return, arguments, and global variables are used for the other direction,

We should select one depending on the problem we want to solve.
We use storage classes to identify the lifespans of variables.

The scope of variables and functions may vary.

Local variables are restricted to functions,

While global variables are visible to everyone.

225

*suolje|al 113y} pue suoljduny o} pajejal sydaduo) :ggr'y ainsy

Py
©
£
3 sa|qelieA|eqo|D TEmU pa.eys |—
®
<
" ERINEMIT] uojssiwsuely
NSaJ dUO UIN3aJ AjUO UeD :juBW}RIS UIN3ad : >
A 14 Al 3 141 A +| JUBWLILRIS uonew.ou]
uoISSIWSURI} UOIJRWL.IOJUI [RUOIIDRIIPI] ‘S9SSsaJppe ssed 03 pasn
‘s)iun AJowaw juaJlaylp aAey sjuawnbae pue siajaweded :9oualajal Ag ssed pajeinwis
uoJISSiWsURl} UOIIRWIOJUI [RUOIIDRIIPI] ‘Sassalppe ssed 03 pasn ERI=INEMI]]
‘sjlun AJowaw awes ayj asn sjuswnbue pue susipweled:ddualalal AgQ ssed Jojoweded |
UOISSIWSURI} UOIIRW.IOJUl [BUOIIDDIIP-DUO ‘San|eA dilawnu ssed 03 pasn
‘s)iun AJowaw jualaylp aAey sjuawnbae pue siajaweded:anjeA Aq ssed
uolouUNy JO UOIIPNPOJIU] JolIg e:asodind uopelepap
(s4939weled)sweuadAy: xejuAs uonpung |]
||ed Bujuanial-anjeAuou ‘|jed buluinial-anjeA :poyaw buijed
jJusawbas apod Ajljeuonpuny ayy a3ndaxa :asodind
+— ||eD uondun4 XBIUAS uonoung
sjuswnblie :20ej93Ul UOISSILUGNS UOoIIRWIo4UT
(sjuswnbie)aweu:xejuAs
Yse) uiead e 939|dwod jey; Juswbasapod Ajljeuoilouny:juaiuo)d)
SassaJppe Jajaweled jusawale}s uiniad:poylauw uoissiwgns 3 nsay
si9joweled:aoep9julbulAledal UoRWIOU] ¢— ,”_ﬂ_uuw_w_w% =
Ajjeuonpuny’andino’indul:sjuswa|aAay -
(s1939weled)aweuadA) :xejuAs

Ajljeuonduny+aoepaiul :syusuodwo) _

mw_:UoE:wmzuwn:o_umu_c:EEouco_umELoE_ uawu:ou
‘asnaJ Ajljeuonouny ‘Ajljeuonouny Juspuadapul:ajnpow Jo 3daouo) _

226 —— 4 Functions

4.9 Exercises
4.9.1 Multiple-choice questions

1. [Concept of functions]
Which of the following statements is correct? ()
A) A function in a C program can call or be called by any other functions in the
same program.
B) The location of the main function in a C program is fixed.
C) We cannot define another function in a function.
D) Every C program file has to have a main function.

2. [Pass by value]

void fun(int a, intb)
{

int t;

t=a; a=b; b=t;
3

int main(void)
{

int c[10]={1,2,3,4,5,6,7,8,9,0}, I;
for (1=0;i<10; i+=2) fun(c[i], c[i+1]);
for (1=0;i<10; i++) printf("%d,", c[i]);
printf("\n");

return 0;

What is the output of the program above? ()
A) 1,2,3,4,5,6,7,8,9,0,

B) 2,1,4,3,6,5,8,7,0,

C) 0,9,8,7,6,5,4,3,2,1,

D) 0,1,2,3,4,5,6,7,8,9,

3. [Pass by reference]

#define N 4
void fun(int a[1[N], int b[],int n)
{

inti;

for(i=0;i<n;i++) b[il=ali][il;
3

4.9 Exercises =—— 227

What is the output of the program above? ()
A) 1’0’730’ B) 1’2’3,4! C) 1’4’5’9’ D) 3’4’8!10’

4, [A void function that accepts pointers]

What is the output of the program above? ()
A) 321,cba B) abc,123 C) 123,abc D) 1bc,a23

5. [Recursion]

228 = 4 Functions

int main(void)
{

my_put();
return 0;

3

Suppose input is: ABC <Return>, what is the output of the program above? ()
A) ABC B) CBA C) AB D) ABCC

6. [Global variables]
Which of the following statements is wrong about global variables? ()

A) The scope of a global variable starts from its definition and ends at the end
of the source file.

B) A global variable is one that can be defined at any position outside functions.

C) We can restrict the scope of a global variable using the extern keyword.

D) The lifespan of a global variable is the entire execution process of the
program.

7. [Scope]
Which two storage classes include variables that only take up memory units
when being used? ()
A) auto and static
B) extern and register
C) auto and register
D) static and register

8. [Concept of storage classes]
Which of the following statements is wrong? ()

A) The system does not assign a specific initial value automatically to an auto
variable defined in C functions.

B) We can define variables in each compound statement in the same function.
The scope of these functions is restricted to the compound statement.

C) Suppose we define a static variable with an initial value in a function. Every
time the function is called, the variable will be assigned an initial value.

D) Parameters of a function cannot be static variables.

4.9 Exercises =—— 229

4.9.2 Fillin the tables
Fill in the tables in Figures 4.123-4.127 based on programs in each problem.
1. [Pass by value]

double fun(double x, inty)
{
inti;
double z;
for(i=1, z=x; i<y;i++) z= z* x;
returnz;

}

for(i=1, z=x; i<y;it+) z= z* X;
return z;

1
s

i 1 2 3 y-1 y
2

z X

Functionality of fun

Figure 4.123: Functions: fill in the table question 1.

2. [Pass by value with one-dimensional array]

Fill in the table in Figure 4.124 based on the program below.

#define N5
void sub(int n,int uul])
{
int t;
t=uuln-1J]+uuln];
uulnl=t;
}
int main(void)
{
int i, aa[N]={1,2,3,4,5};
for(i=1; i<N; i++) sub(i,aa);
for(i=0; i<N; i++) printf("%d_",aalil);

230 — 4 Functions

n 1 2 3 4
(1) aa[n] 1,2,3,45,6
t 1+2
(2) uu[n] uu[l]=3
Program output:

Figure 4.124: Functions: fill in the table question 2.

3. [Pass by reference with two-dimensional array]

4.9 Exercises = 231

0 1 2
0 9 11 23
a[N]1[M] 1
2
i 0 1 2
j o|j1(2|0|1|2]|0(|1]2
a[row][colum] 9
row 0
colum
. 0

Figure 4.125: Functions: fill in the table question 3.

4, [Purpose of using static variables in functions]

int ff(int n)
{
static int f=1;//——©®@
f=fxn;
return f;
3
int main(void)
{
inti;
for(i=1;i<=5;i++) //—Q@
printf("ff=%d\n",ff(i));//—®

return 0;
>
@i 1 2 3 4 5
O 5
(i)

Figure 4.126: Functions: fill in the table question 4.

232 =— 4 Functions

5. [Pass by reference with structure pointer]

i 0 1 2
P &students[0]
@p->ID
@p->name

Figure 4.127: Functions: fill in the table question 5.

4.9 Exercises = 233

4.9.3 Programming exercises

1.

2.

Please write a program that reads two integers from keyboard input and out-
puts the one’s digit of the larger and the smaller to the second power.
Sequence A is defined as follows:

AC)=T,
A(2)=1/(1+A1)),
A(3)=1/(1+A(2)),

A(n)=1/C1+A(n=-1)).

Please write a function that computes the nth item of the sequence.

3.

Please write a function that reads a string from the main function, computes,

and outputs its length.

Suppose users type in multiple words in the console. Words are separated by

spaces. The '#' sign is used to indicate the end of input. Please write a function

that converts the first letter of each word into uppercase. The input is handled

in the main function.

Please write a program that: reads a nonzero integer n from keyboard input,

computes the sum of each digit of n and outputs the sum if the sum is a one-

digit number. If the sum has multiple digits, the program should repeat the

above process until the sum has single digit.

For instance, the conversion process of n = 456 is as follows:

4+5+6=15

1+5=6

The output is 6

Please write a program that reverses n input numbers using pointers.

Requirements:

(1) The program should have only one main function.

(2) Write a child function for reversing numbers. Input/output of data should
be done in the main function.

5 Files: operations on external data

Main contents
— The concept of files
— Basic procedures of operating files using programs
— Categorization and functionality of file operation library functions
— Examples of file operation library functions

Learning objectives

— Understand the purpose of file storage

— Can create, read from, write to, and update a file
— Know sequential access of files

— Know random access of files

5.1 Introduction

A had been learning the C language and thought it was interesting. He was eager to
solve some practical problems with what he had learned.

One day, the class president asked him to compute the ranking of average grades
of his classmates in the midterm exam. He then used his programming knowledge
and completed the task quickly. His program asked users to input grade information
of every student in the class and then printed the sorted average grades onto the
screen.

However, the class president complained to A after trying the program, “I have
given you access to the electronic version of grades, but you didn’t use it. Instead,
your program asked me to input every grade on the keyboard. That was too tedious.
Also, your program merely printed the result on the screen. I had nothing left after I
closed it. Our school requires us to submit an electronic record. Your program is not
user-friendly enough, and I can’t use it.”

The class president’s complaint made A speechless. “How can a program read
electronic records of grades? We have only learned to read keyboard input. Besides,
how do I save the result to a data file?” he thought to himself.

To sum up, A’s question is: how should we fetch data from and save the result
to persistent storage automatically with programs?

As we all know, the purpose of programming is to process data as needed to com-
plete specific tasks. The data processing flow consists of data input, data processing,
and result output. Execution and testing of programs also involve data input and

https://doi.org/10.1515/9783110692303-005

https://doi.org/10.1515/9783110692303-005

236 = 5 Files: operations on external data

output. Hence, data input/output is a critical part of programming. By analyzing the

data input/output process, we know the following things:

(1) Data to be processed are either created by programmers in programs (in this
case, programs can only process these data) or input by users during program
execution (users need to reenter the data in each execution of the program).

(2) Results of programs are output to screen instead of saving permanently.

It was these two features of normal data input/output that made A’s program not user

friendly. In practice, we often have the following needs regarding data processing:

(1) Input: the amount of input data is large; the input data are always the same.

(2) Output: we need to inspect the results frequently; the output is too much to be
displayed on a screen without scrolling.

In these cases, we can save these data for easier inspection or repeated use. To save
data permanently in computers, we store them into external memory. Operating sys-
tems manage data in the external memory in the form of files. As a result, it is neces-
sary to learn file operations to complete programming tasks quickly and flexibly.

5.2 Concept of files

A file is an ordered set of correlated data. The name of a file is called filename. We
have encountered files in previous chapters many times. For example, we have
mentioned source files, object files, executable files, and library files (header files).
Files are a persistent form of data, and they make data sharing possible.

Depending on how data are stored, files in C can be divided into binary files
and text files.

5.2.1 Binary files

Binary files, as the name indicates, store data in binary codes. For example, integer
5678 is stored as 00010110 00101110, which takes up 2 bytes in memory (the hexa-
decimal form of 5678 is 0x162E).

Although we can view binary files on screen, their contents are often garbled
characters because they are mostly nontext characters.

5.2 Concept of files = 237

5.2.2 Text files

Text files are also called as ASCII code files. Each character in such a file is stored
as a 1-byte ASCII code on disks. For example, Figure 5.1 shows the storage format of
number 5678.

Binary form | 0011,0101 | 0011,0110 | 0011,0111 | 0011,1000
Character ‘5’ ‘6’ ‘7' ‘8’

Figure 5.1: Representation of characters in text files.

ASCII code files can be displayed as characters on screen. For example, source files
are also ASCII code files. We can read them because they are displayed as characters.

The difference between text files and binary files is that: text files are constructed
by characters, while binary files are constructed by bits. Note that both of them are
handled as “stream files” in the C language.

Term explanation

Stream files: C treats files as “data streams,” which are sequences of consecutive bytes with no
breaks. Such a structure is called a “stream file structure,” in which each byte is accessible. A
termination mark exists at the end of a file, which is similar to the string termination mark.

We do not bother figuring out data characteristics, types, and storage formats when process-
ing stream files. We merely access data in bytes. The analysis and processing of data are left to
be done by other programs. As a result, this file structure is more flexible and can better utilize
storage space.

5.2.3 File termination mark and end-of-file checking function

(1) End-of-file (EOF) is the file termination mark. EOF is an integer symbolic con-
stant defined in header file as <stdio.h>, whose value is usually -1. It is worth
noting that EOF is only used for text files because —1 is also a valid character in
binary files.

(2) feof function is a function in the standard library, which is used to determine
whether we have reached the end of a file. It works for both binary files and
text files.

Knowledge ABC About EOF

Using constant EOF instead of —1 enhances the portability of programs. ANSI C standard empha-
sizes that EOF must be a negative integer (but not necessarily —1). As a result, the value of EOF
varies in different systems. The input method of EOF also depends on which system we are
using, as shown in Figure 5.2.

238 —— 5 Files: operations on external data

System Input method of EOF

UNIX-like <return> <ctrl-d>

Windows <ctrl-z>

Figure 5.2: Input methods of EOF in different systems.

Files are regarded as data streams in C. There is also a file termination mark and a
function to determine whether we have reached the end. In practice, the internal
pointer of a file points the beginning of the stream by default when users open it
with programs. As users execute operations, the pointer can move to other positions
in the stream. Finally, we check whether the pointer points to the end of the file to
make sure we have read the entire file.

5.3 Operation flow of files

By now, we should have had a basic idea of files. How do we operate files in prac-
tice? Files are usually stored in an external medium (like disks) and brought to in-
ternal memory when needed. We call the process of data moving to memory from
disks “read” and the process of data moving to disks from memory “write.”

In operating systems, each file is identified by a unique filename. Computers
use filenames to read and write a file.

When we look for data in a file on the disk by ourselves, we must find the file
using its name, read data from it, and close it. We use the same steps to operate files
with programs. The three fundamental steps of accessing files with programs are:

(1) Opening the file
(2) Processing the file
(3) Closing the file

File operations that are available in programs are as follows:
(1) Creating and saving a new file on disks

(2) Opening an existing file

(3) Reading from and writing to a file

We know that C has no input/output statements. The input/output of data is done
by calling library functions. In a broader sense, the operating system regards all
input/output devices connected to the computer as files. Input and output are then
similar to reading from and writing to a disk file. We usually define the monitor as
the standard output file. Displaying information on the screen is then outputting to
the standard output file. Functions like printf and putchar are all in this category.
The keyboard is often regarded as the standard input file. Typing in information

5.4 Data communication between internal and external memory =— 239

through the keyboard is then inputting data from the standard input file. Functions
like scanf and getchar are examples of such input.

ANSI defines standard input/output functions and uses them to read and write
files. Readers can refer to Appendix C of Volume 1 for details of these functions. We
shall analyze some of the most common library functions in subsequent sections.

5.4 Data communication between internal and external memory

As shown in the file operation flow introduced in Section 5.3, the internal memory
and the external memory must communicate with each other to implement read
and write operations of files. Ideally, we want such communication to be done si-
multaneously. However, the reality is cruel. Different components of computer
work at different speeds, so tasks are often completed at different times. To solve
this problem, we introduce the buffer system into the communication between the
internal and the external memory.

Knowledge ABC Buffers

Because CPU and RAM work at high speed and external memory (like disks or CDs) works
slower, the computer has to wait for the external memory before it can proceed to subsequent
work. This speed mismatch affects the CPU’s performance terribly. As a result, the “buffer”
technology was introduced to solve the problem, as shown in Figure 5.3.

| Memory |

=¥ Output file buffer
Program data @

segment
Input file buffer

Figure 5.3: Buffer system.

A buffer is a block of storage space in the internal memory, allocated and managed by the sys-
tem upon opening a file. The size of a buffer depends on the version of C. It usually is multiples
of 512 bytes.

When writing data to files in the external memory, we do not directly write to the external
memory. Instead, we write to the buffer. When the buffer is full or the file is closed, data in it
are automatically written to the external memory. It is the same for reading from a file. At first,
only one block of data is read into the buffer. When we read the data, we first look for them in
the buffer. If they exist, we simply fetch them from the buffer. Otherwise, we search for them in
the external memory. After finding the data we want, we read the data block in which they are
located in the buffer. Buffers can effectively reduce external memory accesses.

Reading and writing using buffers can better utilize disks. Standard C also uses a buffer
system.

240 — 5 Files: operations on external data

When using a buffer system, the system creates a buffer for each file opened.
Operations on files then become operations on buffers.

For programmers’ convenience, ANSI C defines a structure for information re-
lated to file buffers (such as filename corresponding to the buffer, operations al-
lowed on the file, size of the buffer, and location of the data being accessed in the
buffer). We can obtain information about file buffers by accessing this structure var-
iable. The type of this structure is FILE, which is defined in stdio.h (note: based on
what we have learned about header files, we must include this header file when
using FILE to operate files).

The information contained in FILE type is as follows:

typedef struct _iobuf
{
char* _ptr; //Points to the first unread character in the buffer
int _cnt; //Number of remaining unread characters
char* _base; //Points to acharacter array, namely buffer of this file
int _flag; //A flag for some properties of the file
int _file; // Used toobtain file description. We can obtain file descriptor of the
file using fileno function
int _charbuf; //Single byte buffer. If the buffer is single-byte, _base is then invalid
int _bufsiz; //Size of the buffer
charx _tmpfname; //Temporary file name
} FILE;

Whenever a file is opened successfully, the operating system creates a FILE variable
for the file, allocates memory, and returns a pointer to it. The system stores infor-
mation about the file and the buffer into this FILE variable. Our program can use
the pointer to obtain file information and access the file, as shown in Figure 5.4.

Filename
C File opening mode
program 0s
FILE pointer
- When a C program opens

When the file is a file,the operating
closed, the fILE FILE system creates a FILE
structure variable Qoo structure structure variable for it
is released and returns a pointer

pointing to it

Figure 5.4: File operations.

After the file is closed, the variable is freed.

5.5 Operations on files using programs = 241

As long as we have this file pointer, we can use file operation functions provided
by the system to operate the file without knowing details of the buffer. File operating
code is thus easier to write. Now we are going to study how to operate files.

5.5 Operations on files using programs

We have introduced in Section 5.3 that programs operate file following three steps:
opening files, reading files, and closing files. There are corresponding library functions
for all these steps in ANSI C. We shall analyze these functions in the following sections.

5.5.1 Opening files

The library function for opening file is fopen, whose detailed information is as follows:

— Prototype: FILE fopen (char *filename, char *mode)

— Functionality: allocate a file buffer for a file in the memory.

— Parameters:
filename: a string that contains the path and the name of the file to be opened
mode: a string indicating the mode of file opening.

— Return value: file pointer (NULL indicates that the file was not opened because
an exception happened)

Note: Beginners often ignore exceptions when programming. They often think that
the file is opened after calling fopen function and uses the returned file pointer di-
rectly. However, this is problematic. fopen do not always open files successfully.
Invalid filenames or not enough access privileges can lead to an exception in fopen.
It is recommended to check if the file is successfully opened after calling fopen. To
be more specific, we should check whether the returned file pointer is NULL before
actually accessing the file.

The mode parameter of fopen determines the mode in which the file is opened.
There are multiple modes, whose values and meaning are shown in Figure 5.5.

Note:
(1) The opened file can be either text file or binary file.
(2) A text file is represented by “t” (optional), while a binary file is represented by “b.”

Programming error

As shown in Figure 5.5, mode “w” always checks whether the file exists first, regardless of the
file being a text file or a binary file. If the file exists, the function deletes the existing file and
create a new one. As a result, we should be careful when using it. If we want to preserve the
original contents in the file, we should not use mode “w” because it will delete the contents
without any warnings.

5 Files: operations on external data

242

‘apow Sujuado 314 :§°g ainSi4

S31SIX@ 11 JI puadde

‘1SIXD 3,US20p 3|1 DU JI 914 MU B 33e3ID ‘9|1 Aleulq e Jo pud ayj 03} ejep puaddy w8 dd
pusdaay
S3ISIXd) o
JI puadde “3sixa 3,Us20p 3|1} Y3 JI B|IJ MBU B 23L3JD ‘3|1 IX3] B JO pud 9y3 03 ejep puaddy e
SISIXe 11 JI 31l 343 03 +qe
puadde ‘3s1xa 3,us20p 3|14 Y3 JI 31} MBU B 31L3ID ‘Dpow dIm/pead ul 91 Adeuiq e uado | " "
SISIXa } 41 3|l ayy +e
03} puadde “3s1xa 3,us20p 3|1} U3 JI 3|1} MAU e B3I ‘Dpow dIIM/pead ul 3|14 3X9] e uadQ e
S1SIXd 3l J| SUO MdBU B d3e3ID pue +qm
919|9p ‘ISIXd 1,UsSa0p 3|1 BY3 JI |14 MBU B 913D ‘Dpow S)dm/pead ul 91 Adeuiq e uado | " " 9)lum/peay
S1SIXD 1 J| BUO MdU e 33ed.ID -
pue 9313|9p ‘ISIXd 1,US20p 3|1} BYI JI d|l} MBU B 91LaJD ‘Dpow 31UM/pead ul 3|14 1Xxa] e uadQ e
1SIX® 3,Us20p 3| dU3 JI |IB) ‘Dpow d)Im/pead ul 3|y Adeulq e uadO | . +Gd,
1SIXd 3,US20p 3|l§ BY3 JI |IB) ‘Dpowl 3LM/peal ul 3|y 3x3) e uadQ wt
S1ISIXd 3} J| SUO MBU B 33D pue qm
919|9p ‘3ISIXd 3,US20p 31 DU JI D14 MBU B 31R3ID ‘Dpow Ajuo-a3dm Ul 914 Aleulq e uadQ e A
|UO-331IM
S1SIXD 11 JI SBUO MdBU e 91ed.D M
pue 913|9p ‘ISIXd 3,US20p 3|l DUI JI dlF MAU B 33e3ID ‘Dpow AJUO-234M Ul 31} 3X33 e uadQ e
1SIX3 1,Usa0p 3|l dY3 JI |Ie) ‘opowl Ajuo-peal ul 3|l Adeulq e uado WG
Aluo-peay

1SIX2 3,US20p 3|1} BU3 JI 184 ‘@powl Ajuo-pead ul 3|1y 3xa3 e uadQ

A

Buiueay

apow bujuado aj14

5.5 Operations on files using programs =—— 243

Although it is not grammatically wrong, using the wrong file opening mode can lead to logic
execution errors. For example, when we use write mode “w” to open a file instead of using up-
date mode “r+,” the file contents will be deleted. In conclusion, we must determine the correct
file opening mode before accessing files.

Knowledge ABC File paths
A path is the sequence of directories we need to visit when searching for a file on the disks.
There are absolute paths and relative paths. An absolute path starts from the drive letter. It is a
complete description of the location of a file. A relative path is a location relative to the target
location. It starts with the current directory.

The string that can uniquely identify a disk file is

Drive letter:\Path\Filename.Extension

Ex. 1: We are looking for the file c:\windows\system\config. If we are currently in the directory
c:\windows\, then the relative path is system\config, and the absolute path is c:\windows\sys-
tem\config.

Ex. 2:

fp=fopen("al.txt","r");

This is a relative path with no path information. In this case, file al.txt is in the current directory
(note: the current directory refers to the directory of the project which contains this program).

fp=fopen("d:\\gyc\\al.txt","r");

This is an absolute path and file al.txt is located in the directory qyc in D drive.
Note: we use “\\” instead of “\” because “\” should be escaped in strings.

5.5.2 Reading and writing

Unlike opening files, there are many cases of reading and writing, so people created
a series of library functions for them, as shown in Figures 5.6 and 5.7.

Functionality sFunction Standard 1/0 counterpart
Read/write int fgetc(FILE *fp) getchar()
character int fputc(int ch,FILE *fp) putchar()
Read/write int fscanf(FILE *fp,char *format,arg_list) scanf()
formatted data Int fprintf(FILE *fp,char*format,arg_list) printf()

Figure 5.6: File reading and writing functions 1.

Note: We read from and write to the current position of a file. The current position is
the position currently pointed to by the data read/write pointer. When a file is opened,
the pointer points to the beginning of the file; after we read or write a byte success-
fully, the pointer moves forward automatically (moves to the next byte).

operations on external data

5 Files

244

"z suonduny Suluum pue Sujpeal 3)14 :£°§ ainsy

(dj % 2714"3UN0D JUI'BZIS JUI'JNGx PIOA) BIIMY JUI

13J4nQg ay3 Jo ssaJppe sy} :Jnq $0|q eIEP
A1qus ejep e jo ybua| ayj :azis 21LIM/pesy
S91I3uUd ejep Jo Jaquwinu ay3 :3unod | (dJ 4 I714°3UN0D JUI'9ZIS Jul‘yngy PIOA) peady Jul ’
Aelie Jeyd 2yj JO SSappe ay) 43S (d§ 5 3114 "8 12YD) SIndy Jul sbuls
9)dM/pesy

peas Buiaq sia10edeyd JO JaqWnU 33 iwnu

(d} % 3714'wnu jul ‘a3s4 Jeyd) s3aby 4 Jeyd

sJiojoweled

uopuny

Ajjeuondunyg

5.5 Operations on files using programs =— 245

Now we are going to introduce these functions through examples.

Example 5.1 Example of files 1
Read and display characters in file file.txt.

Analysis
//Read characters one by one from file
#include <stdio.h>
#include <stdlib.h>

{
char ch;
FILE *fp; //Define a FILE pointer fp
9 fp=fopen("file.txt","r"); //Open text file file.txt in read-only mode
10 if (fp==NULL) //Failed to open the file
1M1 {
12 printf("cannot open this file\n");
13 exit(@); //Call library function exit to terminate the program
14 3
15 ch=fgetc(fp); //Read acharacter and assignit toch
16 while(ch!=EOF) //Check whether we have reached the end, equivalent to
(!feof (fp)) in this case
17 {
18 putchar(ch); //Output the character
19 ch=fgetc(fp); //Reada character and assign it to ch
20 3}
21 fclose(fp); //Close the file
22 return@;
23 }

1
2
3
4
5 intmain(void)
6
7
8

Note: We use while(ch!=EOF) to determine whether we have reached the end of the file on line
16. This statement only works for files opened as text file. If we open a file in binary modes,
then we should use !feof(fp). Otherwise, we may wrongly consider a file to be completely read
when seeing value “-1.”

Term explanation
exit function: exit is declared in <stdlib.h>. It is used to terminate a program forcibly. When
there are input errors or the program cannot open a file, we can use this function to end the
program. The parameter of exit is passed to some operating systems so that other programs
can use it.

exit(0) means the program exits normally. In contrast, exit(1) indicates an exception (there
must be an exception as long as the argument is not 0, but we recommend using the macro
EXIT_FAILURE defined in stdlib.h to indicate the reason of exception. The macro is defined as 1
in the header file).

246 = 5 Files: operations on external data

Knowledge ABC What are the differences between exit() and return in C?

Exit function is used to exit the program and return to the operating system, while a return state-
ment merely returns to the caller from the function currently being executed. If we use return in
the main function, then the program terminates after return is executed and returns to the operat-
ing system. In this case, the return statement is equivalent to exit. However, one merit of exit is
that we can call it in other functions and use a search program to look for these calls.

Example 5.2 Example of files 2
Write the specified string into a file, and read the string from the file into an array.

Analysis

1 //Write the specified string intoa file

2 #include <stdio.h>

3 char *s="I ama student"; //Specify the string tobewritten
4 intmain(void)

5 {

6 charal[100];

7 FILE *fp; //Define file pointer fp

8 intn=strlen(s); //Compute length of s

9

10 //Open text file f1.txt inwrite mode

11 if ((fp=fopen("f1.txt","w"))!=NULL)

12 {

13 fputs(s,fp); //Write string pointedby s into file pointed by fp
14 3}

15 fclose(fp); //Close the file pointed to by fp

16

17 //Open text file f1.txt in read-only mode

18 fp=fopen("f1.txt","r");

19 fgets(a, nt1, fp); //Read contents in file pointed to by fp into array a
20 printf("%s\n",a); //Printa

21 fclose(fp); //Close the file pointed to by fp

22 returno;

23 }

Note: fgets(a, n+1, fp) on line 19 reads a string and stores it in array a. a is a character array de-
fined earlier. n+1 instructs the program to read n characters from the file pointed to by fp and
store them into a. These n characters are precisely string s. Because a string must be terminated
with “\0”, we use n+1 instead of n.

Think and discuss Is it necessary to check the result of file opening function?

Discussion: good programmers try their best to consider all possible error cases when program-
ming. In this example, we use a short string s for the convenience of demonstration, so it is fine
to write line 19. However, string s may be an extremely long string in practice. In this case, we
have to consider whether a is large enough to store the string in order to avoid out-of-bound
errors. Besides, we did not check the result of fopen when opening the file in read-only mode,
which is a risk in the program.

5.5 Operations on files using programs =—— 247

Example 5.3 Example of files 3
Write formatted data onto the disk, and then read the contents from the file and display them
on the screen.

Analysis
//Write data block intoa file
#include "stdio.h"
#include "stdlib.h"

{

char name[15];

char num[6];
9 float score[2];
10 } stu;
11 int main(void)
12 {
13 FILE *fp1;
14 inti;
15
16 fpl=fopen("test.txt","wb");
17 if(fp1==NULL) //Open file in binary write-only mode
18 {
19 printf("cannot open file");
20 exit(0);
21 3}
22 printf("input data:\n");
23 for(i=0;i<2;i++)
24 {
25 //Input a row of record
26 scanf ("%s%s%fu%f",
27 stu.name,stu.num,&stu.score[0],&stu.score[1]);
28 //Write datablock into the file, one row at a time
29 fwrite(&stu,sizeof(stu),1,fpl);
30}
31 fclose(fpl);

1
2
3
4
5 struct student //Define the structure
6
7
8

33 //Open the file again in binary read-only mode

34 if((fpl=fopen("test.txt","rb"))==NULL)

35 {

36 printf("cannot open file");

37 exit(0);

38 3}

39 printf("output fromfile:\n");

40 for (i=0;i<2;i++)

41 {

42 fread(&stu,sizeof(stu),1,fp1); //Readblock fromthe file

248 = 5 Files: operations on external data

43 printf("%s %s %7.2f %7.2f\n", //Display on the screen
44 stu.name,stu.num,stu.score[0],stu.score[1]);

45 3}

46 fclose(fpl);

47 return Q;

48 }

Program result:

input data:

xiaowang j00187.598.4
xiaoli j00299.589.6
output fromfile:

xiaowang ;001 87.50 98.40
xiaoli j002 99.50 89.60

Programming error

After writing content into a file, we may need to read the file later. Sometimes, we may see gar-
bled characters in the file. This is due to the inconsistency between the format we used when
writing to the file and the format of the file operating function. In the example above, if we
change line 29 into fprintf, there will be an output error.

5.5.3 Closing files

There is an old saying which goes “Timely return of a loan makes it easier to borrow
a second time.” We should return things we borrow from others quickly. If our credit
is good, then people are likely to help us when we need to borrow the second time.
In programs, dynamically allocated resources should follow this rule as well.
Otherwise, a memory leak may happen. In the worst cases, it will lead to results be-
yond our expectations. The FILE pointer in file operations is also a resource. We ob-
tain it by successfully calling fopen function. As a result, we have to return this
resource after using the file. The return here refers to closing the file. Readers may
have noticed that we always call fclose function after we are done with the file in
previous examples. fclose is the function we use to close files. It is defined as follows:
— Prototype: int fclose(FILE *fp)
— Functionality: it closes the file pointed to by the file pointer, handles the data
in the buffer, and releases the buffer eventually.
— Output: if an exception happens, the function returns a nonzero value; other-
wise, it returns O.

Note: we should close a file in time after we use it. Otherwise, data may get lost.
Data are not written into the file until the buffer is full. If we terminate the program
when the buffer is not yet full, data in the buffer will be discarded.

5.5 Operations on files using programs =—— 249

Example 5.4 Example of files 4

Analysis

0 N O A W N =

Nl

10
11
12
13
14
15
16
17
18

//Write 10 record into data. txt
#include <stdio.h>
int main(void)
{
FILE *fp; //FILE is the file type
inti;
int x;

fp=fopen("data.txt","w"); //Open data.txt in text write mode ‘w’

for(i=1;i<=10; i++)
{
scanf("%d",&x);
fprintf(fp,"%d",x); //0utput x into the file pointed to by fp
}
fclose(fp); //Close the file
return 0;

3

Program result: we can find the newly created file data.txt in the directory of our project after
the program terminates. We will see the 10 records read from keyboard input in it.

5.5.4 Random access

We have introduced the three steps of file operations in previous examples. Readers
may have noticed that we could only read the file from the very beginning to the
very end, one byte after another. Is it always acceptable in practice?

Apparently, such a rigid method is not always suitable in real life. Suppose we

have a file of student information, the records are stored in the order of student ID.
We wish to quickly locate a row using its index like we do with arrays. It is obvious
that we cannot do this with sequential access. In response to our needs, C provides
the fseek function that can relocate the file pointer. It is defined as follows:

Prototype: fseek(FILE pointer, offset, beginning location)

Functionality: relocate the file pointer. It moves the pointer by “offset” bytes
from the “beginning location” (Value of the beginning location: beginning of
the file is represented by SEEK_SET, whose value is 0; current location is repre-
sented by SEEK_CUR, whose value is 1; the end of the file is represented by
SEEK_END, whose value is 2).

Return value: 0 is returned upon success, while —1 is returned upon a failure.

250 —— 5 Files: operations on external data

Example 5.5 Example of files 5
We have records of students in the file stu_list.txt. Write a program that reads the data of the
second student.

Analysis

Code implementation:
//Read from specified location in a file: random access of files
#include "stdio.h"
#include "stdlib.h"

{

char name[101];

int num;
9 int age;
10 char addr[15];
11 } boy,*qPtr; //Define a structure variable boy and a structure pointer gPtr
12
13 int main(void)
14 {
15 FILE *fp;
16 char ch;
17 inti=1; //Skip the first i rows
18 gPtr =&boy; //gPtr points to the beginning address of boy
19
20 if ((fp=fopen("stu_list.txt","rb"))==NULL)
21 ¢
22 printf("Cannot open file!");
23 exit(0);
24 '}
25 //Relocate the pointer to the beginning of the file
26 rewind(fp);
27 //Move the pointer by (i*structureSize) bytes
28 fseek(fp,ixsizeof(struct stu),0);
29 //Read the current row from the file, and store into address pointed to by gqPtr
30 fread(gPtr, sizeof(struct stu),1,fp);
31 printf("%st%5d %7d %sn", gPtr->name,
32 gPtr->num, gPtr->age, gPtr->addr);
33 fclose(fp);
34 return@;

1
2
3
4
5 struct stu //Structure of student information
6
7
8

Note: To make this program work, the file has to be written and opened in binary mode. For exam-
ple, we use fopen(“stu_list.txt”,“rb”) on line 20. Only in this case are the contents of the file bi-
nary data stored sequentially. Besides, we cannot use fseek(fp,i*sizeof(struct stu),0) on line 28 to
move the pointer if the file is not accessed in binary mode.

5.6 Discussion on file reading and writing functions = 251

5.6 Discussion on file reading and writing functions

When checking the file after we write to it, sometimes we find nothing but garbled
characters. Sometimes, the binary data we read from a file are not what we have
expected. What happened behind the scene?

We shall briefly discuss this problem by introducing several combinations of
file open modes and file operating functions.

5.6.1 Case 1: fprintf and fscanf

In this case, we read the file data.txt in binary mode, use fprintf to write data, and
use fscanf to read data from it.

//File reading and writing
#include <stdio.h>
#include <stdlib.h>

int main(void)

{
FILE *fp; //FILE is the file type
inti;

0 N O O W N =

w0

int x;

int b=0;

char ch;

fp=fopen("data.txt","wb"); //Open data.txt in “wb” mode

- a4 a4
A w N =2,

if (fp==NULL) //Fail to open
{

16 printf("1:cannot open this file\n");

17 exit(@); //Terminate the programwith exit
18 3}

19 //**xUsing fprintf towrite data**x*

20 for(i=1; i<7; i++)

21 {

22 scanf("%d",&x);

23 fprintf(fp,"%d",x); //Output x to the file pointed to by fp
24 3}

25 fclose(fp); //Close the file

—
o

27 fp=fopen("data.txt","rb"); //Open text file data.txt in read-only mode
28 if (fp==NULL) //Fail to open

29 {

30 printf("2:cannot open this file\n");

31 exit(@); //Terminate the programwith exit

32 3}

252 —— 5 Files: operations on external data

33

34 //x*xx%x% Using fscanf to read data *x**xxkxx

35 fscanf(fp,"%d",&x); //Readan int value into x
36 while (!feof(fp)) //Check whether the file ends
37 {

38 printf("%d ",x);

39 fscanf(fp,"%d",&x);

40 3}

41 fclose(fp); //Close the file

42 return0;

43 3}

Program result:
Input: 234567
Qutput: 2 3 456 7

If we open data.txt manually, we will find that the contents are 234567, which can be
displayed normally. If we use text editors like EditPlus to open the file in hexadecimal
mode, we will find the bytes being ASCII values “32 OA 33 OA 34 0A 35 0A 36 0A 37 0A.”

5.6.2 Case 2: fwrite and fread

In this case, we read the file data.txt in binary mode, use fwrite to write data and
use fread to read data from it. The code implementation can be obtained by replac-
ing the code segments in squares in case 1 with the code segments as follows:

//**x Using fwrite towrite data *x*x
for(i=1; i<7; i++) //Write 6 int values into the file
{
scanf ("%d",&x);
fwrite(&x,sizeof(int),1,fp); //0utput x to the file pointed to by fp
}

//**x Using fscanf to read data x*x*

for(i=1; i<7; i++)

{
fread(8&b,sizeof(int),1,fp);
printf("b=%x\n",b);

3

Program result:

Input:

234567

Output:

b=2

b=3

b=4

5.6 Discussion on file reading and writing functions =——— 253

b=5
b=6
b=7

If we manually open data.txt in the operating system, we will find garbled charac-
ters in it. Opening the file in hexadecimal mode, we will see the bytes “02 00 00 00
03 00 00 00 04 00 00 00 05 00 00 0006 00 00 00 07 00 00 00.” These bytes are
precisely the binary byte stream of integers 2 to 7, in which each integer takes up 4
bytes. They are displayed as garbled characters because they are not stored as
ASCII values. In the program above, however, the numbers can be correctly read
because the fread function does read them as binary integer data.

5.6.3 Case 3: fprintf and fscanf

In this case, we read the file data.txt in binary mode, use fprintf to write data,
and use fscanf to read data from it. The code implementation is the same as in
the first case, except the code in the second square is replaced with the following
statements:

//**xUsing fread to read data****
for(i=1; i<7; i++)

{

fread(&b,sizeof (int),1,fp);
printf("b=%x\n",b);

}

Program result:
Input:
234567
Output:
b=0a330a32
b=0a350a34
b=0a370a36
b=0a370a36
b=0a370a36
b=0a370a36

If we open data.txt manually, we will see numbers 234567 displayed correctly, as
they were in case 1. However, the numbers displayed are different from the inputs
because we use fread to read them as binary integers.

254 —— 5 Files: operations on external data

5.6.4 Case 4: fwrite and fscanf

In this case, we read the file data.txt in binary mode, use fwrite to write data and
use fread to read data from it. The code implementation is the same as in the first
case, except the code in the first square is replaced with the following statements:

//*x*Using fwrite to write dataxx**
for(i=1; i<7; i++) //Write 6 integers into the file
{
scanf ("%d",&x);
fwrite(&x,sizeof(int),1,fp); //0utput x into the file pointed to by fp
>

Program result:

Input:

234567

Output:

Output “7” infinitely

The contents of the data.txt file are the same as in case 2. Nonetheless, the program
runs into exception because fscanf cannot recognize binary bit stream correctly.

We used binary mode to read data in all 4 cases. Will the results be different if we
use text mode? It is not hard to infer from our analysis in these cases that the results
will be similar. Interested readers may try text mode in these 4 cases on their own.

Conclusion
When operating files, we should use matching functions for reading and writing. In this case, we
can guarantee the data are correctly recognized regardless of using binary mode or text mode.
Whether the generated file can be displayed correctly is determined by the writing function,
instead of the file opening mode. When we use fprintf, the file contains ASCII values, which can
be displayed normally. When we use fwrite, data are written into the file as a binary bit stream.
Whether they are normally displayed depends on whether they are valid ASCII values. We see
garbled characters because they are not ASClI values in most cases.

5.7 Debugging and 1/0 redirection

After designing an algorithm and writing the code, we need to use test data to test
the program in the debugging environment. Because we often find bugs in our pro-
grams, we need to rerun them and input test data repeatedly. In programs with
many input data, it takes a long time to type on the keyboard. Is there a better way
to do this? Here come files to save the day.

5.7 Debugging and I/0 redirection =——— 255

We can put input data in a file and read them with file reading functions and
write results into specified files with file writing functions. Based on the character-
istics of the test data, we should select suitable file operation functions. There are
two code templates for this process.

5.7.1 Code template 1 Using fscanf and fprintf

#include <stdio.h>

int main(void)

{
FILE *fp1, *xfp2;
fpl=fopen("data.in","r"); //0Open input file data.in in read-only mode
fp2=fopen("data.out","w"); //Open output file data.out inwrite-only mode

//We process our data here. Note that we should fscanf to read and fprintf to print
fclose(fpl);
fclose(fp2);
return 0;

3

This program simply uses basic file operations we have learned. Now we are going
to see a program using freopen function.

5.7.2 Using freopen function

— Prototype: FILE *freopen(const char*path,const char *mode,FILE *stream);
— Parameters:
path: it is the filename used to store the custom input/output file name;
mode: file opening mode, which is the same as in fopen;
stream: a file, which is usually the standard stream files.
— Functionality: redirect the standard stream file to the file specified by path.
— Return value: the function returns a pointer to the file specified by path upon
success; otherwise, it returns NULL (we rarely use its return value though).

Knowledge ABC Standard stream files n
When we run a C program, the operating system opens three files and provide the program with
pointers to them. These three file pointers are standard input stdin, standard output stdout,
and standard error stderr. They are declared in <stdio.h>.

Stdin: standard input stream. It outputs to screen by default.

Stdout: standard output stream. It outputs to screen by default.

Stderr: standard error stream. It outputs to screen by default.

256 =—— 5 Files: operations on external data

When a file is not accessible due to some reason, debugging information has to be printed to
the end of output with stderr. This is acceptable when we print to screen. However, it is not accept-
able when we write to files or write to other programs through pipes (a pipe is a buffer of fixed
size). Output to stderr will be displayed on the screen even if we redirect the standard output.

5.7.3 Code template 2 Using freopen function

#include <stdio.h>

int main(void)

{
freopen("data.in", "r", stdin);//Redirect input fromkeyboard to data.in
freopen("data.out", "w", stdout);

//Redirect output from screen to data.out

//The data processing code remains the same

fclose(stdin);
fclose(stdout);
return 9;

3

Using freopen is as simple as using fprintf and fscanf. Besides, we do not need to
modify our code because we use input/output redirection, which is more conve-
nient than the first template. Here is an example of redirection.

Example 5.6 Debugging the program that calculates a+b
(1) Keyboard input case.

1 #include <stdio.h>

2 intmain(void)

3 {

4 int a,b;

5

6 while(scanf("%d %d",&a,&b)!=EOF)
7 {

8 printf("%d\n",atb);

9 1

10 returno;

1 3

5.8 Summary =— 257

Program result:
56
IR
4

(2) Read data from in.txt and write result to out.txt.

#include <stdio.h>
int main(void)
{
int a,b;
//Redirect input, read data from in. txt under Debug directory of the
//current project
freopen("debug\\in.txt","r", stdin);
//Redirect output, write data to out.txt under Debug directory of the
//current project

freopen("debug\\out.txt","w",stdout);

while (scanf("%d %d",&a,&b)!=EOF)

{

printf("%d\n",atb);

}

fclose(stdin); //Close the file

fclose(stdout); //Close the file

return0;

00 N O OB W N =

—a a4 a4 a4 o a
~N O O W N =

18 }

Note:

(1) We read input data from in.txt under Debug directory of the current project. Before running
the program, we need to save our data “5 6” in in.txt (beware of the space between 5 and
6. Although the program is still valid if we omit the space, the result will not be what we
expected. Interested readers can try the program without the space, examine the result
and analyze why the result is different using what we have learned).

(2) We save output data to out.txt under Debug directory of the current project. After running the
program, we will find a out.txt file under Debug directory, which contains the number “11.”

5.8 Summary

Figure 5.8 shows main contents of this chapter and relations between them.

Files are persistent form of data,

We can save data in binary form or text form.
Programs follow three steps to operate files:
Namely opening, reading/writing, and closing.
To open a file, we need its path and filename;
To operate a file, we use library functions;
After operating the file, we must close it.

operations on external data

5 Files

258

*Sa)14 03 pajejal s3daduod Jejuaw

95024 pue uadoal} asn iz POy

epUNy UBDIM)I] SUOIR)DY :8°G dInSi4

Jjundy pue juedsy asn:T poylol

3|} payIdads e 0jul S} NSaJ 231UM 03 suoIPUNS BUIIM 3|13 9sh pue ‘wayy pead
03 suoiouny Buipead a1y @SN ‘|14 B 03Ul peal 3g 03 Blep 2401S oM :Bulues|y

194ing ayj asesjad pue Ajuadoud ejep palasing
9|puey ‘4a3uiod 3|1} ayy Aq 03 pajuiod 3j1 Byl SO|D :9S0|24

J213ui0d 31y DY) 91L10(34:33820|9Y

SS200y
$)@20|q eyep ‘sBulils paiewioy ‘siayoedeyd 931dM/pead Jo s19[qo

anjeA IIDSY S SI Ydiym ‘21Aq e se palo3s S| Ja10edeyd yoes 3|1 IXa]
2p0d Aleuiq se palois aJe ejep :391y Aleulg

3|14 9Y3 40J Alowaw ay3 Ul JayNng 3|1 e sa3edo||e:uado-
sJa4ynqg 9Jy Jo 81NN Y3 131

Ajpusuewuad padols 9q ued :sonisualdeIRY)
winipaw |BUJI9IXd UBR Ul pPaJd031S B1Rp pa1e|aJi0d Jo 19s (Sweud|ly) paweu y

uonoaIIpaY
0/1

Buissasoid

uonesuisse|d

5.9 Exercises =—— 259

5.9 Exercises
5.9.1 Multiple-choice questions

1. [Concept of files]
Which of the following statements is correct about files in C? ()
A) File is constructed by a series of data. It must be a binary file.
B) File is constructed by a series of structures. It could be a binary file or a text
file.
C) File is constructed by a series of data. It could be a binary file or a text file.
D) File is constructed by a series of characters. It must be a text file.

2. [Opening a file]
Suppose we have the following code segment:

FILE *fp;

if ((fp=fopen("test.txt", "w"))==NULL)
{printf("Failed to open file!");
exit(0);}

else
printf("File opened successfully!");

If the file test.txt does not exist and there is no other exception, which of the
following statements is wrong? ()

A) The output is “Failed to open file!”

B) The output is “File opened successfully!”

C) The system will create a file with the specified name.

D) The system will create a text file for write operation.

3. [fprintf]
Suppose we have the following program.

#include <stdio.h>

int main(void)

{ FILE f;
f=fopen("filea.txt","w");
fprintf(f,"abc");
fclose(f);
return 0;

If the content of filea.txt was originally: hello, then then content of it after run-
ning the program above will be ()
A) abclo B) abc C) helloabc D) abchello

260 —— 5 Files: operations on external data

4. [fseek and rewind]
Suppose we have the following program.

#include <stdio.h>
int main(void)

{
FILE *fp;
inti, a[61={1,2,3,4,5,6},k;
fp = fopen("data.dat", "w+");
fprintf(fp, "%