
Xingni Zhou, Qiguang Miao and Lei Feng
Programming in C

Also of interest

Programming in C, vol. : Composite Data Structures
and Modularization
Xingni Zhou, Qiguang Miao, Lei Feng 

ISBN ----, e-ISBN (PDF) ----,
e-ISBN (EPUB) ----

C++ Programming
Li Zheng, Yuan Dong, Fang Yang, 
ISBN ----, e-ISBN (PDF) ----,
e-ISBN (EPUB) ----

Elementary Synchronous Programming
Ali S Janfada, 
ISBN ----, e-ISBN (PDF) ----,
e-ISBN (EPUB) ----

MATLAB® Programming
Dingyü Xue, 
ISBN ----, e-ISBN (PDF) ----,
e-ISBN (EPUB) ----

Programming in C++
Laxmisha Rai, 
ISBN ----, e-ISBN (PDF) ----,
e-ISBN (EPUB) ----

Xingni Zhou, Qiguang Miao and Lei Feng

Programming in C

Volume 1: Basic Data Structures and Program
Statements

Author
Prof. Xingni Zhou
School of Telecommunication Engineering
Xidian University
Xi’an, Shaanxi Province
People’s Republic of China
xnzhou@xidian.edu.cn

Qiguang Miao
School of Computer Science
Xidian University
Xi’an, Shaanxi Province
People’s Republic of China
qgmiao@xidian.edu.cn

Lei Feng
School of Telecommunication Engineering
Xidian University
Xi’an, Shaanxi Province
People’s Republic of China
fenglei@mail.xidian.edu.cn

ISBN 978-3-11-069117-7
e-ISBN (PDF) 978-3-11-069232-7
e-ISBN (EPUB) 978-3-11-069249-5

Library of Congress Control Number: 2020940233

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

© 2020 Walter de Gruyter GmbH, Berlin/Boston
Cover image: roberthyrons/iStock/Getty Images Plus
Typesetting: Integra Software Services Pvt. Ltd.
Printing and Binding: CPI books GmbH, Leck

www.degruyter.com

http://dnb.dnb.de
http://www.degruyter.com

Preface

Ideas of the book

This book is written based on years of teaching experience. To clear up students’
confusion in programming learning, it is more focussed on introducing problems,
analyzing problems, and discussing solutions to the problems. In the process of
teaching programming courses (e.g., C programming, data structure) and discus-
sing with students after class, we discovered that the common problems in pro-
gramming learning could be generalized as four challenges: (1) concepts are too
abstract to understand, (2) there are too many rules to remember, (3) there are few
general principles to follow in programming, and (4) it is hard to debug programs.

Leonhard Euler, a well-known mathematician, once said that teaching mathe-
matics would be meaningless if we do not show students the thinking process of
solving problems. This holds for other subjects or courses as well. It is crucial in
our learning to understand the theory and know the way of thinking when solving
problems. While analyzing the difficulties that students face during learning to pro-
gram, we find that the main issue is it is hard to build up the concept of program-
ming in mind. Besides, it is hard to learn debugging techniques. We try to tackle
these issues, in the order of difficulty, using the following four strategies: (1) focus-
ing on thinking, (2) revealing the nature of problems, (3) putting more emphasis on
debugging, and (4) less on syntax. We also devote more words to the introduction
of problems and why some mechanisms are needed.

1 Focusing on thinking

Donald Knuth, recipient of ACM Turing Award and one of the pioneers of modern
computer science, wrote in his masterpiece, The Art of Computer Programming, that
programming is the process of translating solutions to problems into terms that
computers can “understand,” which is hard to grasp when we first try to use com-
puters [1]. Among all high-level programming languages, C is generally acknowl-
edged to be one of the hardest as it is tedious, abstruse, and has a large set of rules.

A computer is an automated tool. When we try to use computers to solve prob-
lems, limitations on what we can do exist due to their capabilities. In such systems,
where rules are different from the ones we are used to, the experience we had may
not be of any help. Many concepts in programming are unfamiliar to students who
have only had exposure to subjects like mathematics, physics, or chemistry. We
find that students struggle to understand when we simply follow a traditional
textbook.

In Presentation Zen, Garr Reynolds wrote that “Stories can be used for good –
for teaching, sharing, illuminating, and, of course, honest persuasion. . . Story is

https://doi.org/10.1515/9783110692327-202

https://doi.org/10.1515/9783110692327-202

an important way to engage the audience and appeal to people’s need for logic and
structure in addition to emotion” [2]. Many examples in this book start from inter-
esting stories. We extract programming-related topics from the stories, raise a prob-
lem, and guide readers to think. Then we compare how people and computers solve
the problem, analyze the similarities and differences, and eventually introduce the
programming concept behind the problem. To provide our readers with immersive
experiences, we engage Prof. Brown and his family into our discussions. Sometimes
Prof. Brown raises a question from a beginner’s perspective and tries to find a solu-
tion; at other times, he takes part in the discussions as an expert. Mrs. Brown, on
the other hand, knows nothing about programming and sometimes says funny
things regarding programming. Their son, Daniel, is still in elementary school and
often asks naive questions as well. Students, colleagues, and relatives of Prof.
Brown also make cameo appearances in our storytelling. This is also a practice of
lessons from Prof. Takeo Kanade, who talked about his success in research –
“Think like an amateur, do as an expert” [3].

As we work with the same concept from slightly different angles and investigate questions sur-
rounding it, we build even more and deeper connections. Collectively, this web of connections
and associations comprises what we think of informally as understanding . . . “For a memory to
persist, the incoming information must be thoroughly and deeply processed. This is accom-
plished by attending to the information and associating it meaningfully and systematically with
knowledge already well established in memory” . . . Rather than memorizing individual bits of in-
formation, we are dealing with patterns and strands of logic that allow us to come closer to see-
ing something whole. (The One World Schoolhouse: Education Reimagined, Salman Khan) [4]

By analyzing similarities and differences between how humans and computers
solve problems, this book explores methods of doing logical thinking based on
characteristics of computers. With these characteristics in mind, we introduce the
list method for reading programs, methods for designing algorithms, and classic de-
scription methods for algorithms. Using these methods, students can learn reading
programs before writing programs, which enable them to grasp general approaches
to programming at the macro level and to establish a mindset of programming.

2 Revealing the nature

Concentrating on the nature of problems is particularly important for programmers. The
amount of knowledge a programmer needs to know is enormous and is still increasing.
Programmers often find themselves falling behind the trend and focusing on nature is the only
solution. Many new technologies are based on concepts that have been established for dozens
of years. Never will knowledge of low-level architecture become obsolete, nor will that of algo-
rithms, data structures and programming theories. (Dark Time, Weipeng Liu) [5]

There is no formula for programming. Although one may find some patterns from
studying numerous examples, it can be tricky to figure out why certain rules exist

VI Preface

in programming languages. It is crucial to understand both how and why because
one’s understanding of syntax rules can be strengthened through exploring the the-
ories behind them. By this, one becomes more familiar with rules and can eventu-
ally apply them in practice. Focusing on the nature helps students learn to solve
problems with computers more efficiently. This book explains many concepts by in-
troducing problems in practice. We compare correlated concepts from different per-
spectives and extract key elements from important or correlated concepts so that
students can obtain a better understanding.

3 Emphasizing debugging

“No matter how well a program is designed or how self-explanatory its documents
are, it is worthless if it outputs wrong results. (Debugging C++: Troubleshooting for
Programmers, Chris H. Pappas & William H. Murray) [6]” Errors often exist in
human-made devices or equipment, with software being an exception. Software is
delivered in the form of binary code, which does not tolerate errors. However, the
way we think, that is, fuzzy and error-prone, makes it difficult to write completely
correct code in the first attempt.

Yinkui Zhang pointed out in his book Debugging Software that “debugging tech-
niques are the most powerful tools to solve complicated software problems. If solv-
ing these problems were a battle, debugging techniques would be an unstoppable
weapon that strikes critically. It is not hard to learn debugger commands, but it is
tricky to use debuggers to find bugs” [7]. It takes effort to gain experience and mas-
ter debugging skills, especially for beginners. This is also why many students be-
come afraid of programming.

“You can draw an analogy between program debugging and solving a homi-
cide. In virtually all murder mystery novels, the mystery is solved by careful analy-
sis of the clues and by piecing together seemingly insignificant details. (The Art of
Software Testing, Glenford J. Myers) [8]” “Debugging is somewhat like hunting or
fishing: the same emotions, passions, and excitement. Lying long in ambush is in
the long run rewarded by a victory invisible to the world. (Eugene Kotsuba) [9]” By
mastering debugging skills, readers can find and fix bugs independently in their
learning and developing, which in turn increases their interest and helps them gain
confidence.

In addition to finding errors in programs, debugging also helps us understand
many concepts in programming such as address, memory, assignment, passing ar-
guments, and scope. Demonstrating the debugging process gives students a more
intuitive explanation than describing the concepts using abstract words. “Not only
do debuggers help us finding errors in programs, they also walk us through other
software, the operating system, and underlying hardware. (Debugging Software,
Yinkui Zhang) [10]” Debuggers share very similar, if not identical, ways of working,

Preface VII

“The first debugger in the MS-DOS world was Debug.com . . . New debuggers ap-
pear like mushrooms after a warm rain. However, most of them are not far in ad-
vance of the prototype, differing from it only in the interface. (Hacker Debugging
Uncovered, Kris Kaspersky) [11]” Mastering debugging techniques helps learn other
computer science subjects, so it should be an essential part of programming
courses.

I had been a developer in industry for many years and spent over 4 years as a
member of the development team of a State Science and Technology Prize-winning
software. Furthermore, I engaged in other software engineering activities as well,
including installing and setting up software for users and customer services. This
allowed me to gain practical experience in testing and debugging. When my stu-
dents ask me for help on their codes, I could quickly find errors by debugging and
asking them if the results are as expected, even if I did not know the logic of their
tasks. I have always insisted on demonstrating the debugging process in class. I
would show the debugging process of example programs at students’ request.
However, I later discovered that students still failed to understand, even if I did this
in class. The reason is that debugging is a complex process, and it is tricky to ex-
plain different data structures, code logic, and debugging skills in a few words.
While students may manage to understand in class, there are few written resources
they can refer to when reviewing later. Hence, a large amount of debugging pro-
cesses of important examples and skills we used are “persisted” into this book, so
that students can refer to when learning to debug. Debugging can be extremely dif-
ferent for programs and the number of skills used can be large, so this book will
only cover the basics, yet there are few books of the same kind that cover as many
skills like these. Not many books exist that specialize in debugging either.

Programming is a process that requires continuous changes. A program often
needs to be tested and debugged multiple times. This book also covers how and
when test cases are designed to make readers realize the importance of testing and
grasp the concept of program robustness from the very beginning.

4 Less on syntax

“Putting less emphasis on syntax” does not mean ignoring it. Instead, we start from
core syntax rules and let beginners remember after understanding them. Therefore,
readers can master syntax step by step instead of feeling confused by being exposed
to all the rules of the C language at once. For advanced, sophisticated, or uncom-
mon syntax, it suffices to know how they are categorized and how to look up their
usage in documents.

VIII Preface

Introduction

This book explores the methodology of the entire process of solving problems with
computers. Following the workflow of how computers solve problems, the book
walks through how data are stored, processed, and the results are produced. This
book analyzes concepts by introducing problems and drawing analogies. It de-
scribes the entire workflow in a top-down manner: from the description of algo-
rithms, analysis of data and code implementation to testing, as well as debugging
and validation of results. In this way, it is easier for beginners to understand and
master programming thinking and methods. This book makes new concepts easy to
learn by introducing real-life problems and discussing their solutions, leading to a
less stressful and more exciting learning process. With the help of figures and ta-
bles, the contents of this book are straightforward for readers to understand easily.

https://doi.org/10.1515/9783110692327-203

https://doi.org/10.1515/9783110692327-203

Structure of content

This book studies the methodology of problem-solving with computers. Following
the workflow of computers, we walk through how data are stored, processed, and
how the result is produced. By introducing real-life examples and drawing analo-
gies, we describe the whole process in a top-down manner: from the description of
algorithms, analysis of data and code implementation to testing, as well as debug-
ging and validation of results.

The introduction to data starts from their basic forms. As the complexity of
problems increases, we gradually show how data are organized and stored in com-
puters by discussing different methods of organizing data, such as arrays, memory
addresses, compound data, and files. In addition, we also cover input and output
methods of data.

Algorithms describe procedures and ways of solving problems. Computer algo-
rithms should be designed following the traits of computers. Computer algorithms
are implemented by program statements, which have their own syntaxes or usages.
Programs have basic control flows and their development needs specific procedures
and methods.

As the problems become more sophisticated, it is necessary to use multiple
modules of code instead of one. This book demonstrates how to use functions by
showing mechanisms we need for larger-scale problems.

When coding is completed, we need to test the code and debug if the results
are not as expected. This book introduces the principles of designing test cases,
runtime environment of programs, and techniques of debugging.

There are various exercises in this book, from relatively simple warm-up and
basic exercises to normal and hard homework problems. This helps readers prog-
ress smoothly and stay motivated.

This textbook comprises two volumes. Volume I, Basic Data and Programming
Statements, covers basic programming concepts such as introduction to algorithms,
basic data, and programming statements; whereas Volume II, Composite Data and
Modularity, concentrates on advanced concepts such as arrays, composite types,
pointers, and functions.

https://doi.org/10.1515/9783110692327-204

https://doi.org/10.1515/9783110692327-204

Division of work

Among all chapters in the two volumes, the ones on preprocessing and files are
written by Lei Feng. Xingni Zhou wrote the rest. Final compilation and editing was
done by Qiguang Miao.

https://doi.org/10.1515/9783110692327-205

https://doi.org/10.1515/9783110692327-205

Notes

Created in 1972, C is “old” compared to many high-level programming languages.
Starting from the American National Standards Institute C programming (ANSI C),
there have been a series of standards after continuous revision. This book is based
on ANSI C standard and includes syntaxes that have been modified in C99 or C11.
As they do not interfere with the main contents of this book, we decided to follow
our “Less on Syntax” principle and did not modify them according to the latest
standard.

There are two types of examples in this book, namely “Example” and “Program
reading exercise.” An “Example” usually includes analysis of data structure, de-
scription of algorithms, code implementation, and debugging process. A “Program
reading exercise,” on the other hand, only describes the problem and demonstrates
the sample code, along with the analysis for the readers as a practice of the list
method.

To be typesetting-friendly, codes are formatted compactly. For instance, open-
ing brackets do not have their own lines.

All sample programs have been tested under Visual C++ 6.0 environment.
Despite being outdated, it has a smaller installation size and better compatibility.
Moreover, the theory behind debugging is universal and is not limited to a specific
language or runtime.

https://doi.org/10.1515/9783110692327-206

https://doi.org/10.1515/9783110692327-206

Acknowledgments

After working in the industry as a programmer for years, I came back to college to
become a teacher. During the first few years of teaching, I held many discussions
on methods and ideas in programming teaching with my father, who had been
teaching further mathematics all his life. Sometimes, he found my ideas valuable
and would encourage me to write them out.

After spending more time teaching C language and data structure courses, I grad-
ually realized what was challenging for students to learn programming during my
interaction with them. With this in mind, I tried to change my way of teaching so that
students could gain computational thinking. I was then suggested by my students in
the data structure class to write a book on data structure because they thought my
methods were helpful and could make a unique book. As teaching data structure and
teaching C language share the same ideas, I decided to write on both topics.

I would like to acknowledge my father for inspiring my dream and my students
for making this dream come true. Friendship with my students is heartwarming and
overwhelming. It is their support and help that makes this book possible. It is them
who had encouraged me to complete this book aiming to help beginners enter the
realm of programming. I wish this book can become a torch that lights up the road
of exploring for every learner so that they gain more satisfaction instead of frustra-
tion and enjoy their learning process.

I would like to appreciate Xin Dong from Xi an Academy of Fine Arts for the
beautiful illustrations in this book.

My appreciation also goes to my colleagues Zhiyuan Ren and Dechun Sun for
their help on exercises in this book.

I am grateful to my students Yucheng Qu, Renlong Tu, Meng Sun, Shan Huang,
Bin Yuan, Yu Ding, Liping Guo, Yunchong Song, and Jingzhe Fan for their help in
completing this book. My thanks also go to colleagues and students that shared
their opinions and suggestions. They made me to introspect about drawbacks in my
past teaching and writing. Consequently, I started to think from psychological and
cognitive perspectives and made improvements, such as reinforcing problem intro-
duction and changing my way of storytelling. These improvements can be found in
Data Structures and Algorithms Analysis – New Perspectives.

My thanks also go to Mr. Zhe Jiang for his work on localization of the manuscript.
Rewrite of this book after years (Chinese edition has already been reprinted) is

like a rebirth. I would like to quote my 2019 spring appreciation to conclude this

https://doi.org/10.1515/9783110692327-207

https://doi.org/10.1515/9783110692327-207

acknowledgment: “Profusion of flowers, blossoming of lives; along with auspicious
clouds, it is spring we celebrate.”

Xingni Zhou
xnzhou@xidian.edu.cn

In Chang’an, midsummer 2020

XVIII Acknowledgments

Contents

Preface V

Introduction IX

Structure of content XI

Division of work XIII

Notes XV

Acknowledgments XVII

1 Introduction to programs 1
1.1 Concept of flows 1
1.1.1 About flows 1
1.1.2 Expression of flows 4
1.1.2.1 Flowchart 5
1.1.2.2 Pseudo code 5
1.1.3 Basic logical structure of flows 6
1.1.3.1 Sequential structure 6
1.1.3.2 Branch structure 6
1.1.3.3 Loop structure 8
1.1.3.4 Logical structure of flows 11
1.1.3.5 Expression of basic flow structures 12
1.2 Concept of programs 13
1.2.1 Automatic flows 14
1.2.2 Concept of programs and programming languages 14
1.2.2.1 Programming languages 15
1.2.2.2 Machine languages 15
1.2.2.3 Assembly languages 16
1.2.2.4 High-level languages 16
1.2.3 Execution characteristics of programs 18
1.2.4 Workflow of computers 18
1.3 Components of programs 20
1.3.1 Problem-solving with computer: data 20
1.3.2 Problem-solving with computer: processing 22
1.3.3 Problem-solving with computers: results 23
1.4 Development process of programs 25
1.4.1 Case study 25
1.4.1.1 Using a calculator 25

1.4.1.2 Using a computer 25
1.4.2 Basic steps of program development 26
1.4.3 Example of problem-solving with computers 27
1.4.4 Flow of program development 34
1.5 Introduction to C programs 35
1.5.1 Sample C programs 36
1.5.2 Structure of C programs 39
1.5.3 Coding style requirements 41
1.6 Summary 42
1.7 Exercises 44
1.7.1 Multiple-choice questions 44

2 Algorithms 47
2.1 Concept of algorithms 47
2.1.1 Algorithms in practice 47
2.1.2 Definition of algorithms 48
2.1.3 Characteristics of algorithms 50
2.2 Representation of algorithms 50
2.2.1 Top-down stepwise refinement method 50
2.2.2 Example of representation of algorithms 52
2.3 Effectiveness of algorithms 55
2.3.1 Example of algorithms 57
2.3.2 Computational thinking 59
2.4 Universality of algorithms 60
2.4.1 Solutions to classic problems 60
2.4.2 Three phases of problem-solving with computers 62
2.4.3 Characteristics of computer algorithms 63
2.5 Comprehensiveness of algorithms 63
2.5.1 Algorithm analysis: Starting from normal cases 64
2.5.1.1 Problem analysis 64
2.5.1.2 Manual method 64
2.5.1.3 Analysis of computer solutions 65
2.5.1.4 Comparison of manual method and computer method 66
2.5.1.5 Algorithm description 66
2.5.1.6 Analysis of execution process 67
2.5.1.7 Testing 68
2.5.1.8 Summary of algorithm design procedures 70
2.5.2 Algorithm analysis: Starting from corner cases 70
2.5.2.1 Problem description 70
2.5.2.2 Ideas of algorithm 71
2.5.3 Keys of algorithm design 72

XX Contents

2.6 Procedures of algorithm design and characteristics
of algorithms 72

2.6.1 Position of algorithms in the process of solving problems with
computers 72

2.6.2 General process of algorithm design 73
2.6.3 Characteristics of algorithms 74
2.6.4 Characteristics of good algorithms 74
2.7 Summary 76
2.8 Exercises 77
2.8.1 Multiple-choice questions 77
2.8.2 Fill in the tables 79
2.8.3 Algorithm design 80

3 Basic data types 83
3.1 Constants and variables 83
3.1.1 Constants 83
3.1.2 Variables 86
3.1.2.1 Key elements of variables 86
3.1.2.2 Rules of variable naming 88
3.1.2.3 Method of requesting memory space 89
3.1.2.4 Usage of memory space 90
3.2 Data types 93
3.2.1 Representation of information in computers 94
3.2.1.1 Binary system 94
3.2.1.2 Binary representation 94
3.2.2 Processing of information in computers 95
3.2.2.1 Modular system 96
3.2.2.2 Binary modular system 96
3.2.2.3 Representation of numbers in binary modular system 97
3.2.2.4 Range of binary system 98
3.2.3 Basic data types in C 99
3.3 Storage rules of integers 101
3.3.1 Signed integers 102
3.3.2 Unsigned integers 102
3.3.3 Characters 103
3.4 Storage rules of real numbers 104
3.4.1 Representation of real numbers 105
3.4.2 Representation of floating-point numbers 105
3.4.3 Display precision and range of floating-point numbers 108
3.5 Operators and expressions 109
3.5.1 Operators 110
3.5.2 Expressions 110

Contents XXI

3.5.3 Precedence of operators 110
3.5.4 Associativity of operators 112
3.6 Numerical operations 113
3.6.1 Arithmetic operators and expressions 113
3.6.1.1 Arithmetic operators and expressions 113
3.6.1.2 Increment and decrement operation 116
3.6.2 Overflow problems in data operations 118
3.7 Logical operations 119
3.7.1 Relational operations 119
3.7.2 Logical operations 121
3.7.2.1 Example of Relation Problem 121
3.7.2.2 Definition of logical operations 121
3.7.2.3 Examples of Logical Operations 122
3.7.2.4 Rules of logical operations 125
3.8 Type conversion 125
3.8.1 Computation of data of mixed types in real life 125
3.8.2 Type conversion rules in C 127
3.8.3 Forced-type conversion 128
3.8.4 Automatic-type conversion 130
3.9 Other operations 131
3.9.1 Conditional expressions 131
3.9.2 sizeof operator 133
3.9.3 Assignment operator and expressions 133
3.9.4 Compound assignment operators 134
3.9.5 Comma operator and comma expressions 134
3.10 Summary 135
3.11 Exercises 136
3.11.1 Multiple-choice questions 136
3.11.2 Fill in the tables 138
3.11.3 Programming exercises 140

4 Input/output 141
4.1 Concept of input/output 141
4.1.1 Standard input/output 142
4.1.2 Standard library functions of C 142
4.1.3 Header files 143
4.2 Data output 144
4.2.1 Character output functions 144
4.2.2 String output function 145
4.2.3 Formatted output function 146
4.2.3.1 Syntax and signature of formatted output function 146
4.2.3.2 Output format specifiers 148

XXII Contents

4.2.3.3 Structure of format control sequence 148
4.2.3.4 Subspecifiers 148
4.3 Data input 150
4.3.1 Character input function 151
4.3.2 String input function 153
4.3.3 Formatted Input function 154
4.4 Typical problems of using formatted input function 160
4.4.1 Typical problems of scanf input 160
4.4.1.1 Common mistake of using scanf 1: wrong address argument 161
4.4.1.2 Common mistake of using scanf 2: argument type not compatible

with type specifier 162
4.4.1.3 Common mistake of using scanf 3: argument type compatible

with type specifier 163
4.4.1.4 Common mistake of using scanf 4: '\n' used as newline 165
4.5 Summary 166
4.6 Exercises 167
4.6.1 Multiple-choice questions 167
4.6.2 Fill in the tables 168
4.6.3 Programming exercises 170

5 Program statements 171
5.1 Sequential structure 171
5.2 Double branch structure 174
5.2.1 Syntax of double branch structure 174
5.2.2 Role of compound statements 175
5.2.3 Example of if statements 176
5.2.4 Nested if-else statements 179
5.2.4.1 Nesting rule of if-else 179
5.2.4.2 Note on using nested if-else 180
5.3 Multiple branch structure 182
5.3.1 Introduction of multiple branch problems 182
5.3.2 Syntax of multiple branch structure 185
5.3.2.1 Multiple branch structure model and grammatical

representation 185
5.3.2.2 Grammar test of switch statements 185
5.3.2.3 Refined switch statements model and grammar

representation 186
5.3.2.4 Execution process of switch statements 187
5.3.2.5 Testing the refined program 188
5.3.3 Example of multiple branch structure 188
5.3.4 Comparison of various branch structure statements 194
5.4 Introduction of loop problems 194

Contents XXIII

5.4.1 Analysis of key elements in loops 194
5.4.2 Three key elements of loops 197
5.4.3 Loop statements 198
5.5 While loops 199
5.5.1 Syntax of while loops 199
5.5.2 Validation of necessity of the key elements 199
5.5.3 Example of while loops 205
5.5.4 Methods of loop controlling 210
5.6 Do-while loops 210
5.6.1 Syntax of do-while loops 210
5.6.2 Use case of do-while 214
5.6.3 Example of do-while loops 214
5.7 Alternative form of while loops 216
5.7.1 Syntax of for loops 216
5.7.2 Example of for statements 217
5.8 Infinite loops 219
5.8.1 Infinite loops in practice 219
5.8.2 Infinite loops using while statement 220
5.8.3 Infinite loops using for statement 221
5.9 Interruption of loops 223
5.9.1 Interruption of loops in practice 223
5.9.1.1 Example of interruption of loops 223
5.9.1.2 Early termination mechanism of loops 224
5.9.2 Jumping out of loops with break statement 225
5.9.3 Jumping inside loops with continue statement 229
5.9.3.1 Functionality of continue statement 229
5.9.3.2 Role of continue in different loops 230
5.10 Free jump mechanism 232
5.10.1 Concept of free jump 232
5.10.2 Syntax of unconditional jump statement 233
5.10.3 Example of unconditional jump statement 234
5.10.4 Characteristics of goto statements 235
5.10.4.1 Jumping out of a nested loop directly 235
5.10.4.2 Flexible jumps 236
5.10.4.3 Note on using goto statements 236
5.11 Summary 237
5.12 Exercises 239
5.12.1 Multiple-choice questions 239
5.12.2 Fill in the tables 241
5.12.3 Programming exercises 243

XXIV Contents

6 Preprocessing: work before compilation 245
6.1 Introduction 245
6.1.1 Preprocessing 246
6.1.2 Preprocessing directives 246
6.2 Macro definition 247
6.2.1 Simple macro definition 247
6.2.2 Macro definitions with parameters 250
6.2.3 Side effects of macros 252
6.3 File inclusion 252
6.4 Conditional compilation 254
6.4.1 Format of conditional compilation 1 255
6.4.2 Format of conditional compilation 2 256
6.4.3 Format of conditional compilation 3 257
6.4.4 Nested conditional compilation directives 258
6.5 Summary 259
6.6 Exercises 261
6.6.1 Multiple-choice questions 261
6.6.2 Fill in the tables 262
6.6.3 Programming exercises 264

7 Execution of programs 267
7.1 Runtime environment of programs 267
7.1.1 Main screen of integrated environment 269
7.1.2 Create a project 270
7.1.3 Create a source file 273
7.1.4 Edit a source file 273
7.1.5 Compile a source file 275
7.1.6 Link programs 277
7.1.7 Execute program 278
7.2 Testing 279
7.2.1 Introduction 279
7.2.1.1 Defect in arithmetic question generator 279
7.2.1.2 Error handling in the n! program 280
7.2.2 Program testing 281
7.2.2.1 Errors and warnings 281
7.2.2.2 Definition of testing 282
7.2.2.3 Purpose of testing 282
7.2.2.4 Principles of test case design 283
7.2.2.5 Methods of testing 283
7.2.2.6 Basic approaches to test case design 284
7.2.2.7 Order of testing 284

Contents XXV

7.3 Concept of debugging 286
7.3.1 Bug and debug 286
7.3.2 Bugs are everywhere 287
7.3.3 Difficulties in debugging 287
7.4 Methodology of debugging 289
7.4.1 Introduction 289
7.4.1.1 Finding errors in a domino sequence 289
7.4.1.2 Collapse of the domino sequence 289
7.4.2 Basic flow of debugging 290
7.4.3 Discussion on methods of finding errors in programs 291
7.4.3.1 Analysis of flow of program execution 291
7.4.3.2 Relations between modules 292
7.4.3.3 Problems involved in error finding 292
7.4.4 Exploration of tracing methods 294
7.4.4.1 Trace by statements 294
7.4.4.2 Trace by segments 295
7.4.4.3 Reversed inspection of call stack 296
7.5 Debugging tools 297
7.5.1 Functions of debugger in IDE 297
7.5.2 Debugging commands 299
7.5.2.1 Enter the debugging environment 299
7.5.2.2 Commands controlling program execution 299
7.5.2.3 Set breakpoints 299
7.5.2.4 Inspect execution status 301
7.6 Examples of debugging 304
7.6.1 Demonstration of basic debugging steps 304
7.6.1.1 Tracing by setting breakpoints 304
7.6.1.2 Stepwise tracing 306
7.6.2 Example of debugging 308
7.6.2.1 Editing the code 309
7.6.2.2 Compilation 310
7.6.2.3 Linking 313
7.6.2.4 Execution 316
7.6.2.5 Debugging 316
7.6.3 Example of using the call stack 320
7.6.4 Example of using data breakpoint 324
7.6.4.1 Source code and execution result 324
7.6.4.2 Debugging plan 324
7.6.4.3 Tracing and debugging 325
7.7 Summary 327

XXVI Contents

7.8 Exercises 329
7.8.1 Multiple-choice questions 329
7.8.2 Debugging exercises 329

Appendix A Precedence and associativity of operators 333

Appendix B ASCII table 335

Appendix C Common library functions of C 337

Appendix D Common escape characters 347

Appendix E Bitwise operations 349

Index 353

Contents XXVII

1 Introduction to programs

Main contents
– Concept of flows
– Concept of programs
– Methods of program design
– A brief introduction to C programs

Learning objectives
– Know the concept of programs
– Understand the basic steps of program design
– Know the basic structure of C programs

1.1 Concept of flows

We use computers to help us work efficiently. How do computers work then? Before
answering this question, let us take a look at how humans solve problems and then
analyze how we think and what methods we use when solving problems.

1.1.1 About flows

Let us look at some flows in real life first.
There are several sessions in the opening ceremony at a college, as shown in

Figure 1.1, where the order of operation is an order of time and is represented by
the arrowed line. Arranging every session in the order of their time of completion,
we obtain a stream of procedures, which we call a flow.

Many of us have traveled by train before and have experience of purchasing
railway tickets. Figure 1.2 shows steps of buying tickets at the ticket office. As
shown in the figure, the flow of buying tickets is a description of the entire process
that starts from setting up a task and completes when achieving the goal by execut-
ing some actions.

Bread is a typical staple food. Baking bread is somewhat a complicated process.
The main steps of its production process are shown in Figure 1.3. We process raw
materials using specific devices in a particular order and eventually obtain finished
goods. This is called the “production flow.”

Many of us may travel by air for longer trips. The boarding flow shown in
Figure 1.4 can clearly guide first-time flyers.

By observing these examples, it is clear that the purpose of flow, be it a work
flow or a production flow, is to achieve a certain goal or to obtain a certain product.

https://doi.org/10.1515/9783110692327-001

https://doi.org/10.1515/9783110692327-001

Flow: a stream of
procedures that

complete in order
as time elapses

Speech by teacher representative

Speech by current student representative

Speech by headmaster

Playing the orientation video

Introducing college administration team

Singing the national anthem

Speech by incoming student representative

Singing the college anthem

Order of operation

Case Study 1

Flow of opening ceremony

session

Figure 1.1: Flow of opening ceremony.

Step 1: The passenger provides information on trip date, destination, etc.
Step 2: The staff finds trains available on that day
Step 3: The passenger chooses a train and determines number of tickets to buy
Step 4: The passenger pays the fare and collects tickets

Case Study 2

Flow of purchasing tickets through ticket office

Figure 1.2: Flow of purchasing tickets at the ticket office.

Case Study 3
Flow of baking bread

Collect ingredients Recover the dough

Knead the dough

Mold the dough

Ferment

Bake

Cool down

Finish

Figure 1.3: Flow of baking bread.

2 1 Introduction to programs

C
he

ck
-i

n

D
om

es
tic

fli

gh
t

In
te

rn
at

io
na

l
fli

gh
t

B
oa

rd
in

g
ga

te
B
oa

rd
in

g
br

oa
dc

as
t

B
oa

rd
in

g
pa

ss

ch
ec

k

S
hu

tt
le

bu

s

O
n-

bo
ar

d

A
ir
cr

af
t

st
an

d
A
ir
fie

ld

S
af

et
y

ch
ec

k

C
us

to
m

s
ch

ec
k

Im
m

ig
ra

tio
n

in
sp

ec
tio

n

S
af

et
y

ch
ec

k

In
sp

ec
tio

n
qu

ar
an

tin
e

S
ca

n
bo

ar
di

ng

pa
ss

C
as

e
S

tu
d

y
4

B
oa

rd
in

g
fl

ow

Fi
gu

re
1.
4:

B
oa

rd
in
g
fl
ow

in
ai
rp
or
ts
.

1.1 Concept of flows 3

It describes the entire process of completing a task, a job, or manufacturing a prod-
uct. Every flow, regardless of what it describes, consists of a series of sessions and
orders of operations as shown in Figure 1.5.

1.1.2 Expression of flows

Flows can be expressed in many ways, as seen in previous examples. The flow of
an opening ceremony is shown in a flowchart. The flow of purchasing tickets is de-
scribed in plain words. The boarding flow is shown in a figure. In addition, flows
can be expressed as a table, model, video, etc. In programming, flowcharts and
pseudo codes are often used to describe a flow as shown in Figure 1.6.

A flowchart depicts a process as a figure, whereas the pseudo code uses words and
symbols to describe a process. Pseudo code does not use graphical symbols, which

A flow describes the entire process of completing a task, a job or manufacturing a product.
A flow consists of a series of sessions and orders of operations.

Session: Phases or procedures during completion of a task, a job or manufacture of a
product.

Order of operation: Time order of sessions in a flow.

Flow

Figure 1.5: Concept of flows.

A flowchart is one way to express steps in a process in figures. It consists of some
shapes and flowlines , where shapes indicate type of operations, text and signs in
each shape describe content of an operation and flowlines indicate order of
operations.

flowlines , where shapes indicate type of operations, text and signs in

Flowchart

Pseudo code uses words and symbols that fall in between natural languages and
computer languages to describe processing process of problems.

Pseudo code

• Flowchart
• Text
• Table

Flowcharts and
pseudo code are

often used to
describe flows in

programming

Expressions of flows
• Figure
• Model
• Animation

Figure 1.6: Common ways of expression of flows in programming.

4 1 Introduction to programs

makes it easier to write and understand, more compact, and more convenient to
transform into programs.

This book uses pseudo code to describe program flows in most cases. Procedures
human use to solve a problem is also known as “algorithms.”

1.1.2.1 Flowchart
American National Standards Institute (ANSI) standardized some common flow-
chart symbols that have been adopted by programmers from all over the world. The
most frequently used symbols can be found in Figure 1.7. Process symbol, decision
symbol, and input/output symbol are used to represent sessions in different situa-
tions. The flowline symbol is an arrowed line, which is used to show the order of
operation. Using graphical symbols to represent a flow is more intuitive and easier
to comprehend.

1.1.2.2 Pseudo code
Pseudo code shows the execution process and algorithm of programs in the format of
code. It does not rely on a certain programming language. It uses the structure and
format of programming language to describe the execution process of a program.
Hence, it cannot be compiled by compilers. Using pseudo code allows to show the
execution process of programs in a way that is easier to understand and express.

Knowledge ABC Flowchart and pseudo code
From the late 1940s to the mid 1970s, flowchart has been the primary tool in process design.
The main advantages of flowcharts are: it uses standard and straightforward symbols, is easy
to draw, has a clear and logical structure, and is easier to describe and understand. Its intuitive
depiction of control flows allows beginners to handle them painlessly. Moreover, flowchart is
time honored and familiar to humans. Consequently, it is still widely used today although many
people advocate obsoleting it due to its disadvantages. A flowchart is a description of methods,
ideas, or algorithms people use to solve problems. However, avoiding flowcharts has been the lat-
est trend. One of its major disadvantages is that it takes up more space. Besides, the use of flow-
lines has few restrictions, thus one can make a flow growing in an arbitrary direction. This results in

Symbol Name Meaning

Terminal Indicates beginning and ending of a flow

Process Represents normal operations

Decision Determines whether a given condition is met and yields true or false.
Result needs to be labeled at exits

Input/Output Input and output of data

Flowline Connects process or decision symbol, shows path and direction of
flows

Connector Connects flowlines drawn in different places

Session

Order of
operation

Figure 1.7: Common flowchart symbols.

1.1 Concept of flows 5

challenges when reading or modifying a program. Secondly, flowchart is not helpful in the design
of structured programs. It is not a tool that allows continuous improvement because it forces pro-
grammers to consider the control flow rather than the overall structure of programs in an early
stage.

When implementing the same algorithm using different programming languages, people re-
alize that these implementations (note that it is not functionality) are often different as well. It
can be hard for a programmer who is proficient in one language to understand the functionality
of a program written in another language, as the form of programming languages puts limita-
tions on his/her understanding of the critical parts. Therefore, pseudo code was created.

We often use pseudo code when considering the functionality (instead of the implementa-
tion) of an algorithm. It is also used in computer science education so that all programmers can
understand.

Pseudo code is written in the form of programming languages to indicate the functionality of
an algorithm. It is similar to natural languages instead of programming languages (such as
Java, C++, Delphi, etc). Using pseudo code, the execution process of an algorithm can be de-
scribed in a way that is close to natural language. We may use any language in pseudo code, be
it Chinese or English, but the key is to show what the program intends to do. Pseudo code helps
us express algorithms without considering implementation.

1.1.3 Basic logical structure of flows

What logical features does the description of a flow that solves a problem have? We
shall discuss the answer soon.

Let us consider a real-life flow first: setting up a washing machine.

1.1.3.1 Sequential structure
Mr. Brown is a computer science professor in a college who seldom does housework
because he is usually busy working. However, his wife, Mrs. Brown, will be traveling
for a few days, so he has to learn how to use the washing machine. She only told him
the basic setup, as shown in Figure 1.8, as she was afraid that Mr. Brown could not
remember all the functionalities the washing machine has if she did not do so.

The operations of the washing machine are executed in an order that is deter-
mined by logical relations between each operation. For example, soaking should
happen before washing. Mr. Brown took notes carefully and made a flowchart of
washing operations based on the execution order as illustrated in Figure 1.9. In this
washing program, the preset operations are arranged sequentially. Thus, the struc-
ture of these operations is called a “sequential structure.”

1.1.3.2 Branch structure
In his first attempt, he put many clothes into the washing machine and then config-
ured it as how he was taught. However, he found that the washing machine was

6 1 Introduction to programs

not working smoothly, so he immediately called his wife for help. He was then told
that this washing program was designed for a medium load of clothes and was not
suitable for a large load.

The water level needs to be adjusted according to the clothes load. In this case,
we need to setup water level after determining the amount of clothes as shown
in Figure 1.10. We should choose a high water level for a large load. Otherwise, we
use a medium level, after which we continue with our basic washing program.

Mr. Brown drew a new flowchart (Figure 1.11), which was more intuitive. He
used different configurations for different clothes loads. Such flow where a decision
needs to be made is called “branch structure.” Note that the decision condition is
put in a diamond symbol to make it more noticeable. The diamond symbol means a
decision in the flowchart drawing standard.

Soak

Wash

Rinse

Spin-dry

Medium water level

Start

End

Figure 1.9: Flow of washing process with sequential structure.

Basic washing program
Medium load
Settings:
• Medium water level
• Soak for 20 minutes
• Wash for 20 minutes
• Rinse once for 5

minutes
• Spin-dry for 3 minutes

Washing
case 1

Each step is
executed in an
order that is

determined by
logical relations
between them

Sequential
structure

Figure 1.8: Washing case 1.

1.1 Concept of flows 7

Thinking about the problem caused by clothes load, Mr. Brown realized that
there should be another water level option for a small load. He later found that it
did exist after investigating the washing machine.

The complete flow of setting up water level is shown in Figure 1.12. If the
clothes load is small, we choose the low water level; if medium, we choose the me-
dium level; and if large, we choose the high level.

Mr. Brown then drew the multiple branch structure flowchart based on his
wife’s description as illustrated in Figure 1.13. This is a branch structure with three
branches. Note that the clothes load is represented as a rectangle instead of a dia-
mond as the diamond symbol is only used when there are two branches in a deci-
sion. More details are covered in the discussion of the selection structure.

1.1.3.3 Loop structure
Mr. Brown started to feel curious and started to investigate the washing machine as if
he was experimenting. He noticed that the washing machine could not rinse properly
with a huge load of clothes. This time he decided to solve the problem without calling

May run into
situation where

we need to make
a decision

Huge load

High water level Medium water level

Basic washing program

Start

End

Y N

Figure 1.11: Flow of washing process with a branch structure.

Configure according to clothes load:
If large load choose high water level
Otherwise choose medium water level
Continue the basic washing program

Branch
structure

Washing
case 2

Figure 1.10: Washing case 2.

8 1 Introduction to programs

Mrs. Brown for help. It seemed that he should increase the number of rinses in the
washing program. He then checked the machine and pressed the “Rinse” button one
more time. It turned out that the clothes were rinsed again. The case of multiple
rinses is shown in Figure 1.14, where Mr. Brown increased the number of rinses to
three without changing the rest of the washing program.

However, the way three rinses are expressed in the flow shown in Figure 1.15
seems cumbersome. It will be worse if we have even more rinses. Can we make any
improvements?

Consider all
clothes load

situations

Low water
level

High water
level

Basic washing
program

Start

End

Small Large

Clothes load

Medium
water level

Medium

Figure 1.13: Flow of washing process with multiple branch structures.

Consider all clothes load situations
Settings:
• If small load

Choose low water level
• If medium load

Choose medium water level
• If large load

Choose high water level
Continue the basic washing program

Washing
case 2

Branch
structure

Figure 1.12: Washing case 2 with multiple branches.

1.1 Concept of flows 9

The refined flow is shown in Figure 1.16. The machine continues rinsing if it has
not rinsed a preset number of times. Otherwise, it proceeds to execute other steps.
A flow with steps that may be repeatedly executed is said to have a loop structure.

Can we use a
better way to

express 3
rinses?

Soak

Rinse

Spin-dry

Wash

Rinse

Rinse

Water level settings Refinement of
incomplete rinsing
when clothes load

is large

End

Figure 1.15: Flow of washing program with three rinses.

If we want to rinse thoroughly
Settings:
• Water level settings
• Soak
• Wash
• Rinse 3 times
• Spin-dry

Washing
case 3

Figure 1.14: Washing case 3.

If we want to rinse
thoroughly
Settings:
• Water level settings
• Soak
• Wash
• Rinse 3 times
• Spin-dry

Washing
case 3

Loop
structure

Has
repeated

operations

Rinse

Spin-dry

Rinse 3
times?

Wash

End

Soak

Y

N

Figure 1.16: Flow of washing process with the loop structure.

10 1 Introduction to programs

1.1.3.4 Logical structure of flows
Based on these examples, the basic logical structure of flows is summarized in
Figure 1.17. A flow structure is the logical structure of the execution of each step.
If there is no decision to be made, it is a sequential structure; if there is a decision
but no repetition, it is a branch structure; otherwise, it is a loop structure with
both decision and repetition.

Sequential structure, branch structure, and loop structure are the three funda-
mental structures of programs. It has been proven in practice that any flow, no
matter how complex it is, can be constructed by these three basic structures as
shown in Figure 1.18. It is similar to how the three primary colors can be combined
to produce a gamut of colors. They can also be nested to generate programs that
are called “structured programs.”

FT

Problem analysis

Has
decision

Branch
structure

Has repetition

Sequential
structure

Loop
structure

FT

Start

End

Figure 1.17: Basic logical structure of flows.

Sequential, branch and
loop structures are the

three fundamental
structures of programs

Loop

Sequen-
tial

Branch

Figure 1.18: Fundamental structures of programs.

1.1 Concept of flows 11

1.1.3.5 Expression of basic flow structures
Now we can summarize expressions of basic flow structures.

The sequential structure consists of several steps that are executed in order. It is
the simplest and most fundamental structure that every algorithm has. To express a
sequential structure, simply list the operations in time order. The rectangle symbol in
flowcharts means “Process” and it represents operations as shown in Figure 1.19.

The branch structure tests a preset condition and controls the flow based on the
result as shown in Figure 1.20. In flowcharts, we put the condition into a diamond
symbol. The flow enters different branches based on whether the condition is evalu-
ated to be true or not. If true, the condition is met, the operation set A is executed
(herein the operation set means a set or series of operations); otherwise, the condi-
tion is not met and operation set B is executed. We need to pay attention to the in-
dentation of curly brackets when using pseudo code representation.

The loop structure contains steps that are executed repeatedly under certain condi-
tions. There are two kinds of loop structures: while loops and do-while loops.

Rectangle
process
symbol

Operation 1

Operation 2

Operation n

...

Operation n

Flowchart Pseudo code

Operation 1

Operation 2

Figure 1.19: Expression of sequential structure.

Condition

Operation set
A

Operation set
B

T F

Note
indentation
inside {}

if (condition)
{

Operation set A
}
else
{

Operation set B
}

Diamond
decision
symbol

Flowchart Pseudo code

Figure 1.20: Expression of branch structure.

12 1 Introduction to programs

“While loops” test the loop condition first. If it is met, the operation set A is
executed. Otherwise, the loop is terminated. In other words, it tests and executes as
shown in Figure 1.21.

Do-while loops execute operation set A first and test loop condition when the oper-
ations are completed. If the condition is met, the operation set A is executed again.
The loop would n be terminated until the condition is no longer satisfied. In other
words, it executes and tests as shown in Figure 1.22.

1.2 Concept of programs

In the previous section, we discussed methods, procedures humans use to solve
practical problems, and how they are represented. Herein we examine how com-
puters solve problems.

Operation set A

Condition

while (conditon)
{

Operation set A
}

Test and
execute

Flowchart Pseudo code

Figure 1.21: Expression of while loop structure.

do
{

Operation set A
} while (condition)

Condition

Operation set A

T

F

Execute
and test

Flowchart Pseudo code

Figure 1.22: Expression of do-while loop structure.

1.2 Concept of programs 13

1.2.1 Automatic flows

We have discussed how to configure the washing process in the introduction of the
concept of flows. Herein we are going to focus on how the washing machine runs.
To use a washing machine, we setup the washing program and start it. The machine
automatically completes the necessary operations as shown in Figure 1.23. A pro-
gram is a flow that machines can execute automatically after we setup the steps. In
fact, it is the computer program installed inside that enables washing machines to
run automatically.

Nowadays, it is quite convenient to buy tickets online. It is made possible by con-
verting the process of purchasing through the ticket office into an automatic flow
that computers can handle (Figure 1.24).

1.2.2 Concept of programs and programming languages

Based on the automatic flows mentioned, programs and programming languages
can be formally defined as shown in Figure 1.25.

We set up sessions in
advance and start the
machine, then it can

complete the operations
automatically

Configure

Add water

Wash

Drain

Dry

Add water

Rinse

Drain

Dry

Add detergent
Session

Order of operation

Figure 1.23: Automatic flow of washing machine.

Main steps of purchasing train tickets online

Step 1: Open the website
Step 2: “Search”, input trip date, destination, etc.
Step 3: “Book”, choose a train to book ticket
Step 4: Log into system
Step 5: Submit an order
Step 6: Pay ticket fare online
Step 8: Choose ticket collection method

Computers
can simulate
some manual

processes

Figure 1.24: Flow of purchasing tickets online.

14 1 Introduction to programs

1.2.2.1 Programming languages
Programming languages are languages used to write the computer programs. There
are many kinds of programming languages, but generally, they can be categorized
into machine languages, assembly languages, and high-level languages. Assembly
and high-level languages are being widely used nowadays.

1.2.2.2 Machine languages
Computers are built from numerous electronic components. Videos we watch and
music we listen to are merely variation and combination of high and low voltages.
Hence commands that computers receive are simply variation of voltages, namely
high and low voltages. Engineers and computer scientists use “0” and “1” to repre-
sent on and off. These 0’s and 1’s are called “binary codes.” Computers can only
recognize these codes.

Do we write programs using 0’s and 1’s then? The answer is yes. In the early
days of programming, people wrote programs by punching on one-inch wide cards.
There were eight holes on each line and each hole represented one binary bit.
A punched hole represented 1 and an unpunched hole represented 0. Combinations
of holes on each line represented commands. Code written using 0’s and 1’s in this
way is written in machine language. Machine language can transfer commands to
computers directly. Code written in machine languages is flexible and can be exe-
cuted directly and quickly. However, it takes effort for developers to write programs
and it is incredibly inefficient. Moreover, it is hard to comprehend a program in ma-
chine language. Reading and debugging are painful as well. Hence, machine lan-
guages are called “low-level languages.” Machine languages are not universal
either as they are machine-dependent. Specific machine languages can only be
used in certain kinds of machines.

A program converts the process of solving a practical problem into a sequence of
instructions using programming languages. To be more specific, it is a flow designed
to be executed by computers automatically, using data that can be accepted by
computers and intending to produce expected result.

Program

A programming language is a computer-recognizable language used in communication
between human and computers. Programming languages have fixed symbols and
grammar rules.

Programming language

Figure 1.25: Programs and programming languages.

1.2 Concept of programs 15

1.2.2.3 Assembly languages
It was not long before programmers found machine languages cumbersome, thus
they started to look for other means to communicate with computers. Is there a way
to write programs using symbols other than “0” and “1” and then translate them
into machine languages? It turned out to be a great idea as assembly languages
were created. In assembly languages, we use mnemonic symbols to replace ma-
chine commands. For example, ADD is used for adding numbers and SUB is used
for subtraction. These symbols make assembly languages more readable. After writ-
ing a program, we need a translation program that converts the program into ma-
chine commands. Such a program is called an assembler. The process of writing a
program in assembly language is shown in Figure 1.26.

The emergence of assembly languages allowed computers to be used in more areas.
However, different computers often have different assembly languages, thus they were
machine-dependent as well. Due to the weak universality, they were also categorized
as low-level language. Nevertheless, they are still being used by people nowadays be-
cause they can be executed more quickly, save memory space, and manipulate hard-
ware more efficiently. They can often be found in these areas: system (including
embedded system) programming, such as operating systems, compilers, drivers, wire-
less communication, DSP, PDA, GPS, etc.; software development where resource, per-
formance, speed, and efficiency are critical issues; as well as reverse engineering that
aims at information security, software maintenance, and cracking software. Even if we
are not going to work on system development or to become a hacker or a cracker,
knowing assembly language is helpful for learning computer architecture, debugging
software, and improving algorithms used in the critical part of programs.

1.2.2.4 High-level languages
To accelerate the developing process, humans created Fortran, the first high-level pro-
gramming language, in 1954. This marked the beginning of a new era of programming.

High-level languages are similar to natural languages and mathematical ex-
pressions. Compared to assembly languages, they combine multiple correlated ma-
chine instructions into single instruction and eliminate hardware manipulation
details that are unrelated to the functionalities of a program. Thus, instructions in a

Programmer

Assembly instructions

Assembler

Machine code

Computer

Figure 1.26: The process of writing program in assembly language.

16 1 Introduction to programs

program are largely simplified and programmers no longer need a large amount of
hardware knowledge.

The name “high-level language” means these languages are more advanced
than assembly languages. It does not refer to a specific language. Instead, it refers
to many programming languages, such as VB, C, C++, and Delphi, which vary in
syntax and instruction format.

Programs written in high-level languages cannot be recognized by computer di-
rectly. They must be converted for computers to execute. Depending on the way of
conversion, high-level languages can be categorized into two types:
– Interpreted languages: The conversion is similar to simultaneous interpretation

in real life. The interpreter of a language executes a program directly while
translating source code into target code (in machine language) at the same
time. This process is inefficient and applications cannot work without the inter-
preter as there are no executable files generated. However, using an interpreter
is more flexible as we can modify our applications dynamically.

– Compiled languages: Compilation is the process of applications being trans-
lated into object code (with .obj extensions) before being executed. Generated
object programs can be executed without the language runtime, thus it is more
convenient to use and more efficient. However, if any changes are needed, we
have to modify the source code and recompile it into object code to execute.
This can be inconvenient if we do not possess the source code. Many program-
ming languages are compiled languages such as C, C++, and Delphi.

One of the advantages of high-level languages is better portability, which means
programs can run on different types of computers. Compared to assembly lan-
guages, high-level languages are more comfortable to learn and master. Programs
written in these languages are also easier to maintain. However, programmers can-
not manipulate hardware and control operations of computers directly as high-level
languages do not target specific computer systems. Besides, object programs are
larger and run slowly compared to those generated from code written in assembly.

Knowledge ABC ANSI C and C standards
During the 1970s and 1980s, C was widely used on all types of computers, from mainframe com-
puters to microcomputers. This led to different versions of the language. In 1989, the ANSI estab-
lished an entire standard specification for C so that different companies could use the same set
of syntax. This was the C89 standard (also known as ANSI C), which was the earliest standard of C.
In 1990, the International Organization for Standardization (ISO) and the International Electronical
Commission (IEC) adopted the C89 standard as the international standard of C language (known
as C90 standard). After subsequent revisions, the C99 standard (published in 1999) became the
second official standard of C. The C11 standard (published in 2011) is the third official standard
and the latest one.

1.2 Concept of programs 17

1.2.3 Execution characteristics of programs

Programs are flows of operations executed by machines. What are their characteristics?
A program is a process of setting up operations and executing them sequen-

tially, which is similar to a domino show as illustrated in Figure 1.27. Many of us
are familiar with domino shows. Their rules are simple: dominoes are aligned in
sequence, each at a certain distance from the next. Builders can create patterns and
images based on meticulous design. Once the first domino has been toppled, a
chain reaction happens and the rest are toppled in order.

Another one of such systems that feature meticulous design and chain effect is the
Rube Goldberg machine. It is an extremely well-designed and complicated system
that completes a task in an indirect and overly complicated way. Designers of a Rube
Goldberg machine have to make sure everything is correctly calculated so that each
device in the system can achieve a stated goal at the perfect time. The Rube Goldberg
machine also creates visual effects similar to those of a domino show.

1.2.4 Workflow of computers

Programs are executed automatically in computers. Hence, we need to know how
computers work.

Meticulous design
in advance, chain

reaction once
started

Figure 1.27: Characteristics of automatically executed flows.

18 1 Introduction to programs

In the mid-1930s, John von Neumann, a Hungarian-American mathematician,
proposed to use the binary numeral system in digital computers and to write com-
puting programs in advance so that computers could follow the computation se-
quence to complete numerical calculations. Electronic computer systems designed
based on his concepts and theories are now called “von Neumann architecture”
computers. A computer should have data input, data processing, and result output
functionalities. To achieve this, computers must have five basic components as
shown in Figure 1.28.

They are:
– Input devices for data and programs: keyboards are the most common input

devices.
– Output devices for results of processing: monitors are the most common output

devices.
– Memory units for storing programs and data: there is nonvolatile memory

(hard disks) that can retrieve stored information even after having been power-
cycled and volatile memory such as random-access memory (RAM) that re-
quires power to maintain the stored information.

– Central processing unit (CPU) processes data and controls the execution of
programs.

CPU is the most critical component of computers. It consists of a processor and con-
trol units. The processor is used to complete arithmetic and logical operations. The
decision-making process we have seen in flowcharts is categorized as a logic opera-
tion in computers. The control unit performs instructions fetched from memory
units and provides control signals to other components.

Result
output

Information
input

Internal
memory (RAM)

Processing

External
memory

(Hard disks)

Information
processing

Computer

Programs, data Data

Figure 1.28: Basic components of computers.

1.2 Concept of programs 19

The workflow of a von Neumann architecture computer is shown in Figure 1.29.
The main steps are:
– Input programs and data: Programmers need to store programs to be executed

and related data into random access memory (RAM).
– Fetch instruction: The control unit fetches the first instruction from RAM.
– Fetch data: Based on the instruction in step 2, data are retrieved from memory

units and sent to processors.
– Process: Specified arithmetic and logical operations are carried out in processors.
– Store intermediate results: Intermediate results are sent to a specific address in

RAM. This is done continuously until all instructions are completed.
– Output final result to output devices.

1.3 Components of programs

In the workflow of computers, data are sent to memory units through input devices.
The processors perform logical and arithmetic operations under the control of con-
trol units. The final result is presented to users through output devices. The flow
that computers use to solve problems can be divided into three parts: data input,
data processing, and result output as shown in Figure 1.30.

1.3.1 Problem-solving with computer: data

Data in programs are units of information that can be stored in and processed by
computers. If we were computers, as tools for information processing, what issues we

CPU

Input
device

RAM Output
deviceData

Result output

Processor Control unit
Data stream
Control signal

Program 1

235

4

6

Figure 1.29: Workflow of computers.

Data ResultProcessing

Figure 1.30: Flow of problem-solving with computer.

20 1 Introduction to programs

need to handle between us and the data to be processed? Considering the workflow
we saw earlier, the main issues include how information is input, how data are stored
and processed, and how results are output as shown in Figure 1.31.

With hardware architecture and theories of computers in mind, we study the follow-
ing data-related issues: how data are input/output; how data are stored in internal
(and external) memory units, which address they are stored at and how much space
they take up; and how related data are combined and stored according to their char-
acteristics and types, which is a combinatorial data problem in programming.

Issues of data processing include how they are represented in programs and
their computation rules.

In summary, issues related to data in programs can be categorized into mem-
ory-related and input/output devices related as shown in Figure 1.32.

Internal
memory (RAM)

Processor +
Control unit

External
memory

(Hard disks)

•
•
•

Information
input Result output

Data in programs are information computers can store and process
Data

Figure 1.31: Relation between computers and data processing.

We treat external
memory as

input/output device in
programming

RAM

Input/Output
devices

Data Result

Basic data

Input/Output

Compound data

Data location

Processing

Figure 1.32: Problem-solving with computers: Data.

1.3 Components of programs 21

Memory-related issues include:
– Basic data issues that include how data are stored and calculated.
– Combinatorial data issues that include how data of same and different types

are combined and processed.
– Address issues that determine which location in RAM data should be stored in.

Input/output devices-related issues include how data are input and output. Note
that external memory is deemed input/output device in programming.

1.3.2 Problem-solving with computer: processing

Data processing consists of the description and implementation of the processing
process as shown in Figure 1.33.

The description of the processing process is nothing but an algorithm. We need to
consider the form of expression, method of description, and design principles when
talking about algorithms.

The implementation of the processing process comprises four topics. The actual
implementation is done by code. Flow structure is the logical structure of program
execution. Basic logical structures of flows include sequential structure, branch
structure, and loop structure. When the scale of a program is large enough, we
need to divide it into correlated parts based on their functionalities. This division is
called modularization. In our daily life, a complex task can be divided into multiple
easy tasks for different people to complete. Each task can be regarded as a module.
Modules are called “functions” in C programs. The structure of C programs consists
of the main function and child functions.

• Program statements: instruction we issue to
machines

• Flow structure: logical structure of program execution
• Modularization: when the scale of a program is large

enough, we need to divide it into correlated parts
based on their functionalities. A module is called a
“function” in C

• Structure of C programs: consists of main function
and child functions

• Description of processing process – algorithms
• Involves form of expression, method of description

and design principles

Data ResultProcessing

Implementation of
processing
process

Program statements

Structure of C programs

Modularization

Flow structure

Description of
processing
process

Algorithm

Figure 1.33: Problem-solving with computers: processing.

22 1 Introduction to programs

1.3.3 Problem-solving with computers: results

To obtain the results of data processing, we need to do some work before execution
as well as testing and debugging as shown in Figure 1.34. A program needs to be
compiled into machine code and linked with necessary resources before generating
executable instructions. Preprocessing is a series of code organizing tasks done be-
fore compilation. These tasks can include programs written by others (resource
linking mentioned above), character replacement, or conditional compilation. More
details of preprocessing can be found in the chapter “Execution of Programs.”

Knowledge ABC Preprocessing
Preprocessor directives are instructions that begin with a # sign. They are invoked before compi-
lation to complete some support tasks for compilers.

There are three kinds of preprocessor directives: macrodefinition directives, file inclusion di-
rectives, and conditional compilation directives.

Preprocessing is a series of work done by the preprocessor before the first scan (lexical scan
and syntax analysis) of compilation. When compiling a source file, the system automatically in-
vokes the preprocessor to complete preprocessing before the actual compilation. More details
can be found in the chapter “Preprocessing.”

We can compare the result returned by the program with our expected result. If the
result is correct, our programming task is completed. Nonetheless, it is not rare that
a sophisticated program produces wrong results at first. We need to find errors in
the program and fix them by testing and debugging.

Compilation and linking
A program needs to be compiled into machine code and linked with necessary
resources before generating executable instructions.
Preprocessing
Preprocessing is a series of code organizing tasks done before compilation.

Testing: input preset data, run program to obtain result, compare with expected result
Debugging: techniques of finding errors in programs

Pre-execution tasks

Data Results

Testing and debugging

Processing

Figure 1.34: Problem-solving with computers: results.

1.3 Components of programs 23

Computers solve problems with programs. Programs contain three components:
data, processing, and results. Figure 1.35 is the knowledge map of C language.
These concepts will be introduced in corresponding chapters.

If we compare data and code to raw materials, flow logical structure, and algo-
rithms to manufacturing methods and requirements, the program will be the final
product. This process can be generalized as a formula as shown in Figure 1.36.

A program is an instruction sequence composed of code and data. It completes spe-
cific tasks using algorithms designed in advance and following the logical structure
of the program flow.

Description of
processing process

Implementation of
processing process

Basic data

Input/Output

Compound data

Data location

Program statement

Structure of C program

Modularization

Pre-execution tasks

Testing and debugging

Flow structure

Algorithm

Data ResultProcessing

Figure 1.35: Knowledge map of C language.

Programs

Data

Program
statements

Flow
 structure

A
lgorithm

s

A program is an instruction sequence composed by code and data. It
completes specific tasks using algorithms designed in advance and
following the logical structure of the program flow.

Program

Data Statements Programs
Flow structure

Algorithms

Figure 1.36: Components of programs.

24 1 Introduction to programs

Niklaus Wirth, who is a Swiss computer scientist and recipient of Turing
Award, summarized the above description of components of programs as the fa-
mous “Wirth’s Equation” as shown in Figure 1.37. An algorithm is a strategy used to
solve the problems. A data structure is the model of data used to describe a prob-
lem, which consists of inherent logical relation of data, storage methods of data,
and operations allowed to be applied to data.

1.4 Development process of programs

Through discussion in previous sections, we roughly know how computers solve prob-
lems, but how about details behind the process? Let us examine an example first.

1.4.1 Case study

1.4.1.1 Using a calculator
We all know how to use a calculator to complete common calculations conve-
niently. The simplest arithmetic operations are addition, subtraction, multiplica-
tion, and division. Their corresponding operators are “+”, “‒”, “×,” and “/”. Let “a”
and “b” denote the operands. To complete a calculation, we need to press buttons
to input necessary information, including operands and operators, and the calcula-
tor performs corresponding calculation automatically and displays the result on the
screen. As shown in Figure 1.38, the key elements in this process are input, output,
and processing.

1.4.1.2 Using a computer
Suppose the age of two brothers is “a” and “b,” respectively and we need to use a
computer to determine who is elder. Although the flow is simple, where the only
difference from the calculator flow is that arithmetic operations are replaced with
comparison operation as shown in Figure 1.39, the comparison operation cannot be
done by a simple calculator. Compared with calculators, computers can complete
complicated logical operations. The key elements in this process are input, output,
and processing.

Algorithms + Data Structures = Programs

Wirth’s Equation

Figure 1.37: Construction of programs.

1.4 Development process of programs 25

1.4.2 Basic steps of program development

After years of practice, people have found that four main steps are needed to effec-
tively solve complicated practical problems with computers as shown in Figure 1.40.
The three key elements can also be found in these steps.

The first step is building a model that is done in the analysis phase. We extract
functionalities and data from the problem, summarize objects involved, which are
also information to be processed, and look for relations between them.

The second step is designing, which includes data structure design and algo-
rithm design. Data structure design tries to find a way to organize and store data,
whereas algorithm design tries to find a solution to the problem that satisfies re-
quirements on functionalities.

The third step is coding. We write code in a certain programming language to
implement the algorithm designed in the previous step.

Input: operands a, b, operators

Processing: a + b
(or subtraction, multiplication, division)

Output: calculation result

We use calculators to
complete common

calculations
conveniently

Case study 1

Using a calculator

Figure 1.38: Using a calculator.

Input: operands a, b

Processing: compare a and b

Output: comparison result

We can use
computers to

complete
complicated logical

operations

Case study 2

Using a computer

Figure 1.39: Using a computer.

26 1 Introduction to programs

The fourth step is testing, which is also known as software testing. We test the
code from step 3 and then try to debug if errors exist.

1.4.3 Example of problem-solving with computers

Example 1.1 Incentive system for employees
A company builds an incentive system to encourage its employees. The system works as illus-
trated in Figure 1.41. If the sales number is larger than or equal to five units, then the employee
who achieved this number will be rewarded ¥ 1000. If the sales number is greater than 10, but
not more than 50 units, the employee will be rewarded ¥ 200 times his/her sales number. If the
sales number is greater than 50 units, the reward will be ¥ 250 times the sales number.

Sales number Reward (¥)

sales number >=5 1000

10<=sales number<50 200*sales number

sales number >=50 250*sales number

Figure 1.41: The incentive system for employees.

Please design a program that outputs the amount of reward when given a sales number.

[Analysis]

1 Model building
Based on the information provided, let sales number be x and reward be y. We
can write a piecewise function and buildup the mathematical model as shown in
Figure 1.42.

Step Tasks

Build a model
• Extract required functionalities

• Extract data objects and analyze relations between them

Design Data structure design and algorithm design

Coding Write codes

Testing Software testing and debugging

Figure 1.40: Steps of problem-solving with computers.

1.4 Development process of programs 27

Knowledge ABC Mathematical model
Mathematical models use mathematical language to describe characteristics or numerical rela-
tions of a system approximately. They are mathematical relation structures that reflect certain
problems or certain systems. We may also consider them to be mathematical expressions of
relations between variables in a system.

2 Algorithm design
We can derive the value of y piecewise based on the domain of x in the mathemati-
cal model. The process is represented in the flowchart (Figure 1.43).

Note that determining which interval x falls in is a conditional statement, which is
a logical operation in computers that outputs either true or false. Following the
flowchart, we can describe the execution process as follows:
– Input x, if 5 ≤ x < 10, then y = 1000;
– otherwise, go to the no branch. If 10 ≤ x < 50, then y = 200x; otherwise y = 250x;

and
– output y.

1000, 5 10
200 , 10 50
250x, 50

x
y x x

x

≤ <⎧
⎪= ≤ <⎨
⎪ ≥⎩

Mathemati
cal mvodel

Sales number x Reward y
x>=5 1000

10<=x<50 200x
x>=50 250x

Figure 1.42: Model of the incentive system problem.

Start

Input

Output y

End

y=1000 y=200x y=250x

Logical decision, the result
is either hold or do not

hold. We can use yes and
no, or TRUE and FALSE, to

denote the result
5 x<10

10 x<50

Figure 1.43: Flowchart of the incentive system problem.

28 1 Introduction to programs

We can also write pseudo code based on the mathematical model as shown
in Figure 1.44. Note that we use indentation and alignment in pseudo code to indicate
different levels of logical operations. In this case, the entire no branch is indented.

With the pseudo code, we can write the corresponding code. The syntax is intro-
duced in the chapter “Program Statements,” readers may take them for granted at
this stage. In programming, each step of algorithms needs to be implemented by
the corresponding code. By comparing flowchart with pseudo code, it is observed
that flowcharts are more intuitive and easier to understand. However, it is hard to
draw a flowchart. If we draw flowlines at our will, it will be difficult for others to
read and modify. On the other hand, pseudo code avoids the use of graphical sym-
bols and has a more compact form. It is easier to write and understand pseudo
code. Converting pseudo code into real code is also effortless. Hence, it is now used
worldwide to describe algorithms.

3 Code implementation
Now we may present the full C code following C grammar and program structure.
Readers can run this program in their own environment.

#include <stdio.h>

int main(void)

{

int x;

int y;

printf("Please input sales number：");

scanf("%d",&x);

if (x>=5 && x<10) y=1000;

else

Pseudo code description Program statements description

input x scanf("%d",&x);

if then 5<=x<10 y=1000 if (x>=5 && x<10) y=1000;

else else

if then 5<=x<10 y=200x if (x>=10 && x<50) y=200*x

else y=250x else y=250*x;

output y printf("y=%f",y);

Figure 1.44: Pseudo code of the incentive system.

1.4 Development process of programs 29

{

if (x>=10 && x<50) y=200*x;

else y=250*x;

}

printf("Reward is ¥%d\n",y);

return 0;

}

If we type 12 when prompted to input a sales number, we will see “Reward is ¥ 2400”
is displayed. This is consistent with our expectations, so the program is correct.

4 Testing
Although the program produces a correct result, we still need to test it thoroughly.

Data for testing need to be designed in advance. This is also called the “test case
design.” Except for input data, we also need to know the expected results. More de-
tails on testing are covered in the chapter “Execution of Programs.” When testing a
program, we type in the input data and compare the output with expected results. If
they are not identical, there are errors in our program. Test cases for this problem are
shown in Figure 1.45. It is clear that the program outputs 2500 when x = 2 while we
expect to see 0, so apparently, something is wrong in our program.

Further investigation suggests that we forgot to handle the case where x < 5 when
designing the algorithm. After finding the error, we need to modify the algorithm
before we change the code. This example shows that algorithm designs can be opti-
mized if we consider test cases in advance.

Input data Expected
result Test result

Sales
number x Range of x Reward y Comparison

result
2 𝑥<5

5 ≤ 𝑥 < 10
10 ≤ 𝑥 < 50
10 ≤ 𝑥 < 50

0 Wrong
5 1000 Correct
10 200*10 Correct
20 200*20 Correct
50 𝑥≥50 250*50 Correct

Test cases

Figure 1.45: Test cases of incentive system program.

30 1 Introduction to programs

Example 1.2 Looking up telephone numbers
Telecommunication companies use a phone number record table to record information of their
customers. Please write a program to inquiry about private phone numbers in a certain city or
company. Given a name, the program should output the corresponding number if it exists in the
record. Otherwise, the program should output “No such number” sign.

[Analysis]
The phone number record table is shown in Figure 1.46. To keep our description of data simple,
we call each row a data element, which consists of multiple data items such as customer name,
phone number, address, etc. A key is the data item that can identify data elements. In other
words, a key is a data item that can uniquely identify data elements. For example, a phone num-
ber is unique, but an address may not be so.

Customer
name Cellphone number ID card number Address

Zhang1 138***** 6101131980*** ***
Li2 152***** 6101131981*** ***

Wang1 139***** 6101131990*** ***
Zhang2 139***** 6101131972*** ***

Li1 188***** 6101131976*** ***
… ……

Data
element

Key

Figure 1.46: Phone number record table.

Solution 1: Sequential structure and sequential search
The model, design, and implementation are shown in Figure 1.47.

When building the model, we notice that objects in this problem are customers and their data
items. Objects are arranged sequentially, which means they are arranged in the order of regis-
tration and not sorted.

• implementation of “Search” given in chapter “Arrays”

Objects involved Customers and their data items
Relation between objects Data elements listed sequentially

• Data structure design: stored as is
• Algorithm design: look for certain data item one by one, output it

Model

Design

Is it efficient?

Elements are
listed in the order

of registration

Coding

Figure 1.47: Sequential search solution for phone numbers.

1.4 Development process of programs 31

The design step consists of data structure design and algorithm design. Data structure design
controls how the table is stored and accessed in computers. Algorithm design determines how to
look up phone numbers. In this case, we query the “customer name” data item sequentially. If a
value hits, the corresponding “phone number” data item value is returned; otherwise, “No such
number” sign is returned.

Readers may refer to “Search” programs in chapter “Arrays” for the implementation of this
algorithm.

A search program that looks for a target record one by one in the table is called “sequential
search.” The number of comparisons needed is related to where the record locates in the table.
When the table is large, using a sequential search is time-consuming. To improve efficiency, we
can rearrange the table so that data elements are stored in alphabetical order of customer fam-
ily names.

Solution 2: Ordered structure and binary search
In an ordered structure, the customer names are in alphabetical order. We can perform a binary
search in such a table as shown in Figure 1.48.

The entire solution is shown in Fig. 1.49. In the modeling step, objects are still customers and
their data items; objects are now arranged in the order of a data item since the table has been
sorted alphabetically. We use the same data structure as before, while we opt in binary search
to find the record. Implementation can be found in the chapter “Arrays” where we will cover
code for binary search.

If the table is huge, we can also use indexed structure and layered search for higher effi-
ciency. The table of contents in a book is the most common indexed structure.

Customer
name

Cellphone
number ID card number Address

Li1 188***** 6101131976*** ***
Li2 152***** 6101131981*** ***
Wang1 139***** 6101131990*** ***
Wang2 138***** 6101131986*** ***
Zhang1 138***** 6101131980*** ***
Zhang2 139***** 6101131972*** ***

… ……

Data elements are
listed in

alphabetical order
of customer family

names

Compares the middle value in a sorted sequence with a given key,
If the key is larger, then it must be in the second half of the sorted sequence;
Otherwise it is in the first half.
The length of the sorted sequence is thus cut to half, we then compare the new middle value
with the given key again and repeat this process.

Binary search

Figure 1.48: Ordered structure and binary search.

32 1 Introduction to programs

Solution 3: Indexed structure and layered search
We can put records with the same family name together and create an index table of family
names, and the index table needs to be associated with the original table as shown in Figure 1.50.

The entire solution is shown in Figure 1.51. In the modeling step, we buildup the index table and
rearrange the original table accordingly. In the data structure design step, we need to find a suit-
able way of data organization so that we can store these two tables into computers. In the algo-
rithm design step, our algorithm should look up a family name in index table first and then look
up full name based on the address and length we obtain from the index table.

Objects involved Customers and their data items

Relation between objects Data elements listed in an order

• Data structure design: stored in alphabetical order
• Algorithm design: look for certain data item using binary

search, output it

Model

Design

implementation of “binary search” given in chapter “Arrays”Coding

Figure 1.49: Binary search solution of looking up phone numbers.

Customer
name

Cellphone
number ID card number Address

Li1 188***** 6101131976*** 0x2000
Li2 152***** 6101131981*** ***
… ……
Zhang1 138***** 6101131980*** 0x4000
Zhang2 139***** 6101131972*** ***
… ……
Wang1 139***** 6101131990*** 0x6000
Wang2 138***** 6101131986*** ***
… ……

Family
name

Address in
data table Quantity

Li 0x2000 ***
Zhang 0x4000 ***
Wang 0x6000 ***

… ……

Index Table

Data table

Figure 1.50: Index table.

Objects involved
Index table Customer family names and corresponding

addresses in data table
Data table Customers and their data item

Relation between
objects

Index table Data elements listed in an order

Data table Data elements listed sequentially

• Data structure design: index table storage

• Algorithm design: look up in index table first, then in data table

Model

Design

Figure 1.51: Indexed search solution of phone numbers.

1.4 Development process of programs 33

1.4.4 Flow of program development

We should now have some general knowledge about solving practical problems by
programming after studying the examples above. Usually, the main steps of prob-
lem-solving with computers are as shown in Figure 1.52. The rectangle symbol in
the figure is a phase or result in the problem solving process, whereas the ellipse
symbol represents a step.

The full flow contains:
– Practical problem: It needs to provide known conditions and descriptions of re-

quired functionalities.
– Abstraction: First, extract functionalities and information from the problem de-

scription. Then, look for relations between these data and buildup a mathematical
model. Test cases are also designed in this step. By building a model, the problem
is converted into a form that computers can “understand” and “accept.”

– Data analysis: We analyze what data are contained in the information pro-
vided, how they are correlated, and how they can be stored in computers.
Based on our analysis, we designed proper data structures. While this book fo-
cuses on fundamental topics in programming, such as algorithms and pro-
gramming concepts and methods, readers can refer to “Data Structure” courses
for sophisticated data structure designing.

Practical problem

Test cases

Algorithm

Executable

Code
modification

Warnings or errors
Testing

Source code

Result

Problem model

Test results End

Testing

Start

Data structure

Abstraction

Data analysis

Algorithm
design

Program design

Compilation
and linking

Execution

Correct
Program problem

Algorithm problem

Data structure problem

Modelling problem

Wrong

Figure 1.52: Flow of program development.

34 1 Introduction to programs

– Algorithm design: We formalize a solution to the problem based on the func-
tionalities required.

– Program design: We “translate” the algorithm we designed into code to obtain
source files.

– Compilation and linking: Programmers use compilers to translate code into ma-
chine code that computers can execute. If errors or warnings exist, we need to
modify the code until it is successfully compiled and linked.

– Execution: Executable programs will produce results after executed in a run-
time environment.

– Testing: We compare the results of our program with test cases. If they are
identical, we have successfully solved the problem; otherwise, we need to
debug to find where the defect lies. Once the mistake is found, we return to the
corresponding phase or step to revise our solution and start over from there
until we obtain the correct results.

1.5 Introduction to C programs

We are going to introduce C programs in this section briefly.
Computers solve problems using programs, which consist of data, processing,

and results. The processing part is done through programming. Programming is
similar to writing, where we carefully select words to use, arrange them into para-
graphs, and organize contents into chapters. If we compare program statements to
words, flow structure would be paragraph structure. Consequently, functions and C
program templates would be chapter structure as shown in Figure 1.53.

Implementation
of processing

process

Proce-
ssingData Result

Program
statements

Structure of C
programs

Modularization
(functions)

Flow structure

(Wording)

(Paragraph structure)

(Chapter structure)

Figure 1.53: Implementation architecture of processing process.

1.5 Introduction to C programs 35

1.5.1 Sample C programs

Example 1.3 Sample program 1
The program shown in Figure 1.54 displays “hello world!” on screen.

01 // Display hello world on screen
02 #include <stdio.h>
03
04 // Program starts from main function
05 int main(void)
06 {
07 printf("hello world!\n");
08
09 return 0;
10 } // main function ends

Line numbers are used
to read programs

conveniently, they are
not parts of the

program

Functionality of program: display hello world on screen

Figure 1.54: Sample program 1.

1 Functions
A segment of code that has its own functionality is called a function in C. Code be-
tween lines 5 and 10 in Figure 1.55 is a function, which we call the main function.
The structure of C programs contains the main function and child functions al-
though there is no child function in this example. The curly brackets on lines 6 and
10 are used to wrap the body of the main function. They mark the beginning and
the end of the main function. In programs, a line that ends with a semicolon is
called a statement.

01 // Display hello world on screen
02 #include <stdio.h>
03
04 // Program starts from main function
05 int main(void)
06 {
07 printf("hello world!\n");
08
09 return 0;
10 } // main function ends

main function

A segment of code that has its own functionality is called a function in C.
Function

Structure of C
programs consists
of main function

and child functions

Figure 1.55: Functions in sample program 1.

36 1 Introduction to programs

2 Comments
In Figure 1.56, the sentence that starts with // on line 1 is a “comment.” A comment
is not a program statement. Note that it is not terminated by semicolon either.
During compilation, comments will be ignored and not be translated into machine
code. Comments are used to provide extra information about the code. As program
statements are abstract expressions, other programmers may not fully understand
them without explanations. Even the author may become confused if the code was
written a long time ago.

Good habits in programming
Normally, at least 20% of all comments written should be effective comments. The general rule
of thumb is that effective comments should help us understand the program. Comments must
be accurate, simple, and easy to comprehend.

3 Library functions and file inclusion
In Figure 1.57, printf() on line 7 is a printing function. In this case, it prints out “hello
world!” onto the screen. The implementation of printf() is rather complicated, but
programmers use it a lot. Hence, programs like printf() are implemented in advance
and collected in a system library. They are called “library functions.”

At line 2 is a preprocessing directive in C, which denotes “file inclusion.” We
can include an entire source file in our source code so that we can use it in our pro-
gram. stdio is short for standard input and output.

01 // Display hello world on screen
02 #include <stdio.h>
03
04 // Program starts from main function
05 int main(void)
06 {
07 printf("hello world!\n");
08
09 return 0;
10 } // main function ends

Comment

Character sequences wrapped by /* and */, or character sequences
beginning with //. They are used to explain meanings of program
statements

Comments

Experience shows that
percentage of effective
comments among all

comments should
normally be above

20%.

Figure 1.56: Comments in sample program 1.

1.5 Introduction to C programs 37

Definition of printf() is done in header stdio.h. Programmers can use printf() by
using #include. printf() prints contents between quotation marks inside parenthe-
ses onto the screen. Programmers can fill in characters as needed.

Knowledge ABC Library functions, header files, and file inclusion
– Library functions: Library functions are not part of the C language. It is compilers that collect

a series of programs that implement frequently used functionalities and put them into a sys-
tem library. Users can include corresponding definition files (header files) to use these pro-
grams. In other words, we can use library functions by using “file inclusion” commands.

– Building libraries provides a collection of reusable functions that can be shared by other pro-
grammers and programs. For example, multiple programs may need the same helper functions.
We may put them into a library and link them into our programs with a linker, without copying
and pasting their source code into each program. This simplifies code writing and maintenance.

– Header files: The purpose of using header files is to put code shared by several C programs
into one file so that the overall code size is reduced. Header files have extension “.h.” Each
library function needs a corresponding header file that contains the prototype of the function.
To use a library function in programs, one must include the header file with the prototype of
that function. Header files in C contain prototypes of every function in the standard library.

– Refer to Appendix C for common library functions in C.
– File inclusion: File inclusion replaces include statements with the included file so that it is

linked with the current file to form a single source file.
– Usage: #include <filename> (or #include “filename”)

Notes:
(1) The included file can be provided by the system or written by programmers.
(2) One include statement can only include one file. Use multiple include statements if multi-

ple files are needed.
(3) If the file name is surrounded by angle brackets, compilers will look for the file in a system

specified directory. If it is in quotation marks, compilers will first look for it in the directory
of the current source file. If no such file is found, compilers proceed to search it in the sys-
tem directory.

01 // Display hello world on screen
02 #include <stdio.h>
03
04 // Program starts from main function
05 int main(void)
06 {
07 printf("hello world!\n");
08
09 return 0;
10 } // main function ends

File inclusion

Include contents of another source file in current source file, i.e. include
other files in current file

File inclusion

Include directive #include
Header file stdio.h

#include <stdio.h>

Header file
Each standard library function has its own header file, which contains its
definition. Programmers can also define their own header files.

Library function

Figure 1.57: Library functions and files inclusion in sample program 1.

38 1 Introduction to programs

Example 1.4 Sample program 2
This is a program with multiple functions. The main function asks for two integers from key-
board input, calls child function to calculate the maximum of them, and displays results onto
screen.

The program is shown in Figure 1.58. main() receives two integers a and b from the input,
calls child function max() to compute the maximum, stores result in c, and outputs to screen.

01 #include <stdio.h> //File inclusion
02 int max(intx, int y) //Function declaration or function prototype
03 int main(void)
04 {
05 int a,b,c; //Variable definition
06
07 scanf(“%d,%d”,&a,&b); //Input integer a, b from keyboard
08 c=max(a,b); //Call max() to compute the larger between a and b and store in c
09 printf(“max=%d”,c); //Output value of c to screen
10 return 0;
11 }
12
13 int max(intx, int y) //Information function max needs to handle is two integers x, y
14 {
15 int z;
16
17 if (x>y) z=x; //Compare x and y, use z to store the larger one
18 else z=y;
19 return (z); //Tell caller the value of z
20 }

Figure 1.58: Sample program 2.

Except for the main function, there is also a child function max() in this program. Similar to
main(), the function body is also surrounded by curly brackets. The main function lies between
lines 3 and 11, whereas child function max() is located between lines 13 and 20.

On line 7, inputs from the keyboard are stored into variables a and b. scanf() is a library func-
tion used to receive input from the keyboard and is defined in stdio.h as well. On line 8, child
function max() is called to calculate the maximum of a and b. The result is stored in c and output
to screen on line 9.

The only thing that child function max() does is to distinguish the larger number in its inputs.
The input is obtained from x and y in the parentheses on line 13. This is the convention of how
child functions get input data. The calculation result z is returned to main() through return the
statement on line 19.

Main and child functions complete tasks that are relatively independent of each
other. They work together through function calls to perform complex functionalities.

1.5.2 Structure of C programs

The normal structure of C programs is shown in Figure 1.59. Preprocessing state-
ments are at the beginning of the program. The include directive seen earlier is also
a preprocessing statement. There must be a main function in C programs. It is the

1.5 Introduction to C programs 39

C
om

po
ne

nt
s

of
 p

ro
gr

am
Ex

am
pl

e
N

ot
es

Pr
ep

ro
ce

ss
in

g
di

re
ct

iv
es

#
in

cl
ud

e
<

st
di

o.
h>

in
t

m
ai

n(
vo

id
)

{
Fu

nc
tio

n
bo

dy
}

in
t

m
ai

n(
vo

id
)

{

in
t

a,
b,

c;
sc

an
f(

“%
d,

%
d”

,&
a,

&
b)

;
c=

m
ax

(a
,b

);
pr

in
tf

(“
m

ax
=

%
d”

,c
);

re
tu

rn
 0

;
}

M
ai

n
fu

nc
tio

n

Fu
nc

tio
n

ty
pe

 f
1

(p
ar

am
et

er
 li

st
)

{
Fu

nc
tio

n
bo

dy
}

in
tm

ax
(i

nt
 x

,
 in

t
y)

in

t
z;

if
(x

>
y)

 z

=
x;

el

se
 z

=
y;

re
tu

rn
 (

z)
;

}

C
hi

ld
 f

un
ct

io
n

…
…

..
..

..
Fu

nc
tio

n
ty

pe
 f

n
(p

ar
am

et
er

 li
st

)
{

 Fu

nc
tio

n
bo

dy
}

C
hi

ld
 f

un
ct

io
n

Th
er

e
is

 o
ne

 a
nd

on

ly
 o

ne
 m

ai
n

fu
nc

tio
n

Th
er

e
ca

n
be

 z
er

o
or

 m
or

e
ch

ild

fu
nc

tio
ns

Fu
nc

tio
ns

 a
re

co

nn
ec

te
d

th
ro

ug
h

fu
nc

tio
n

ca
ll

{

Fi
gu

re
1.
59

:S
tr
uc

tu
re

of
C
Pr
og

ra
m
s.

40 1 Introduction to programs

entry point of execution. There can be zero or more child functions. Functions are
connected through function calls.

More details of functions are covered in the chapter “Functions.”

1.5.3 Coding style requirements

As we need to follow format conventions when writing articles, we need to follow
some guidelines when writing programs. The purpose is to make our code less con-
fusing and more readable. Detailed requirements are shown in Figure 1.60.

C programs use spaces and newlines to split lexical terms. Special characters are
used to identify syntax. For instance, semicolon represents the end of a statement.
The flexible format makes a flexible coding style possible.

When writing programs, we should follow these guidelines on coding style:
– Enough comments: We need to provide adequate and precise comments to ex-

plain the functionalities of programs and the meaning of statements. At the be-
ginning of a program, we should briefly introduce the functionality of this
program. Critical variables should be commented with their usages. Our sole
purpose in doing these is to improve the “readability of program.” Programs
with good readability allow users to understand them easily. Readable code
also allows authors to recall how their programs work when they review them
after a while.

• Enough comments
• Align {}
• Good indentation
• Use newlines when approriate

Good habits in programming01 #include <stdio.h>
02 int max(int x, int y); //Compute the larger of two numbers
03 int main(void)
04 {
05 int a,b,c; //Variable definition
06
07 scanf(“%d,%d”,&a,&b); //Input integer a, b from keyboard
08 c=max(a,b); //Call max() to compute the larger between a

//and b and store in c
09 printf(“max=%d”,c); //Output value of c to screen
10 return 0;
11 }
12
13 int max(int x, int y) //Information function max needs to handle is

//two integers x, y
14 {
15 int z;
16
17 if (x>y) z=x; //Compare x and y, use z to store the larger one
18 else z=y;
19 return (z); //Tell caller the value of z
20 }

Figure 1.60: Coding style requirements.

1.5 Introduction to C programs 41

– Indentation: Users should choose an indentation style at their will and use it
consistently in their programs. Tab key can be used for this purpose. Tab key is
the “tabulator key” on keyboards. Pressing tab usually inserts four spaces in
programs. The main difference between the tab key and the space key is that it
indents more efficiently. However, the size of tab may vary in different editors,
therefore we need to be careful when using it.

– Alignment of {}: There could be multiple pairs of curly brackets in a function.
Each pair should be aligned vertically. Together with indentation, it makes our
programs easier to read as the structure is clearer and the scope of statements
is more obvious.

– Appropriate use of newlines: We can use newlines to separate different func-
tionality blocks, such as variable declaration, variable assignment, and execu-
tion statements. This creates a better visual effect and highlights the structure
of the program.

Knowledge ABC Programming trivia
The relation between software and program:

It is quite common to hear people say “programming is writing software.” However, software
and program are two different concepts. Software should contain the following elements:
– Collection of commands or programs that can satisfy specific requirements when executed.
– Data structures that allow the programs to process information reasonably.
– Documents that describe requirements and usage of the programs.

Hence, we may conclude that software = program + data + document.

1.6 Summary

Concepts related to programs and their expressions are shown in Figure 1.61.
We can use flows to describe a series of operations in order.
Flowcharts are intuitive, whereas pseudo codes are convenient.
Sequential, branch, and loop are the three basic logical structures of flows,
And they are the building blocks of programs.

To solve a problem with computers, we need to extract data and functionalities.
Data are processed to obtain the solution.
Data can be received, stored, computed, and output, each operation has its own
methods.
Description of the problem-solving process is called an algorithm.
We need testing and debugging to verify our results.

42 1 Introduction to programs

Programs are flows that can be executed automatically by machines, and we
need to write code for them.
Writing code is like writing an essay, and we need to be deliberate on every
detail.
Program statements are like words and comments are explanations.
Function modules are paragraphs and we build them up to form programs.
Referencing others’ work, appellation, and whether we include a paragraph is
done by preprocessing.
Sometimes spaces, sometimes newlines, we need them to achieve a good cod-
ing style.

Flow

Common
expressions

Logical
structure

Automatic flow

Flowchart: intuitive, hard to draw, few restriction on
flowline direction
Pseudo code: text description, easy to write, suitable for
top-down progressive description, easy to convert to
code

Design procedures in advance, execute
automatically

Sequential
Branch: double branch, multi-
branch
Loop: while loop, do-while loop

Characteristics

Construction

Development
process

Data: input/output, storage and access,
computation

Processing: description, implementation

Result: pre
debugging

-execution tasks, testing and

Modelling: extract data and functionalities
from problem
Design: data structure design, algorithm
design
Coding: code implementation, program
execution

Testing: testing and debugging

Structure of C
programs

Function: main function, child function, library
function

Header file, preprocessing (file inclusion, etc.)

Statements, comments

Coding style

Figure 1.61: Concepts and expression of programs.

1.6 Summary 43

1.7 Exercises

1.7.1 Multiple-choice questions

(1) [Concept of programs]
A command sequence that is designed to solve a particular problem is called a ().
A) Document B) Language C) System D) Program

(2) [Concept of programs]
Which of the following statements is correct? ()
A) Algorithm + data structure = program B) An algorithm is a program
C) A data structure is a program D) An algorithm consists of data structures

(3) [Concept of programs]
Which of the following statements is wrong? ()
A) Computers can recognize programs in hexadecimal code.
B) A collection of commands that can be executed sequentially is called a

“program.”
C) A “program” is a language we use to “communicate” with computers.
D) Computers can recognize machine language code in 0’s and 1’s.

(4) [Concept of software]
A piece of software consists of ()
A) Algorithm and data B) Program and data
C) Program and documents D) Program, data, and documents

(5) [Concept of debugging]
What is the purpose of debugging? ()
A) Diagnosing and correcting errors in programs
B) Finding as many errors as possible in programs
C) Finding and correcting all errors in programs
D) Determining the nature of errors in programs

(6) [Concept of data structure]
A data structure consists of three components, namely ().
A) Storage structure of data, relations between data, and their representations.
B) Logic structure of data, relations between data, and their representations.
C) Logic structure of data, relations between data, and their storage structure.
D) Logic structure of data, storage structure of data, and operations on data.

(7) [Steps of problem-solving with computers]
There are four major steps (①~④) in the process of problem-solving with com-
puters. Please determine the correct order of them. ()
① Debugging ② Problem analysis ③ Algorithm design ④ Coding
A) ①②③④ B) ②③①④ C) ②③④① D) ③②④①

44 1 Introduction to programs

(8) [Flowcharts]
A flowchart is a tool to describe algorithms. Standard flowcharts are con-
structed by a few basic shapes. Which of the following shape stands for input/
output? ()
A) Parallelogram B) Rectangle C) Ellipse D) Diamond

(9) [Programming languages]
Which of the following statements about programming languages is correct? ()
A) High-level language is a natural language.
B) C is independent of platforms. C programs are platform-independent.
C) Machine languages are closely related to computer hardware. Programs in

machine languages have better portability.
D) Programs must be translated before being executed on computers, regard-

less of which language they are written in.

(10) [Programming languages]
Which of the following statements is wrong about the characteristics of C? ()
A) C has both merits of high-level languages and low-level languages and is

highly efficient.
B) We can use C to write applications and system software.
C) Portability of C is poor.
D) C is a structured programming language.

(11) [Program structure]
Which of the following statements is correct? ()
A) C program must use main as the name of its main function, starting from

which the program is executed.
B) Users can use any function as the main function, starting from which the

program is executed.
C) A C program is executed starting from the first function in the source file.
D) We can use different spelling forms of main (such as MAIN and Main) in the

main function

(12) [Control structure]
Which of the following statements is wrong? ()
A) Programs using the three fundamental structures can only solve simple

problems.
B) A structured program is constructed by the three fundamental structures,

namely sequential structure, branch structure, and loop structure.
C) C is a structured programming language.
D) The idea of modularization is recommended in structured programming.

1.7 Exercises 45

(13) [Compilation and linking]
Which of the following statements is wrong?
A) Every executable statement and nonexecutable statement in a C program is

converted to a binary machine instruction.
B) A C program must be compiled and linked to generate an executable binary

machine instruction file.
C) A program written in C is called a source program. It is stored in a text file

as ASC II code.
D) A source program in C is converted into an object program after

compilation.

(14) [Grammar rules]
Which of the following statements is correct? ()
A) C program must be stored in a single program file.
B) We can only write one statement in a line.
C) Comments in a C program must be at the beginning of the file or after

statements.
D) The syntax of C is flexible. We can write a statement across multiple lines.

(15) [Grammar rules]
Which of the following statements is correct about comments in programs? ()
A) Comments must be written between /* and */ or after //.
B) A comment must be in the front of or after the statement it explains.
C) We can write a comment in another comment.
D) Errors in comments lead to compilation errors.

(16) [Grammar rules]
The termination mark of statements in C is ().
A) ， B) ； C) 。 D) 、

46 1 Introduction to programs

2 Algorithms

Main contents
– Concept of algorithms
– Representation of algorithms
– Effectiveness of algorithms
– Universality of algorithms
– Comprehensiveness of algorithms

Learning objectives
– Know concepts related to algorithms
– Know the characteristics of computer algorithms
– Know representations of algorithms
– Know general procedures of algorithm design
– Can design algorithms in top-down stepwise refinement method

Donald Ervin Knuth once said, “Programs are like blue poems.” If that is true, then algorithms
are the soul of these poems.

2.1 Concept of algorithms

2.1.1 Algorithms in practice

Let us take a look at a real-life algorithm: ticket purchasing at the ticket office. When
there was no internet, Mr. Brown had to buy train tickets at ticket offices when he needed
to take business trips. The main procedures of purchasing tickets are shown in Figure 2.1,
in which the key information includes the date, destination, train number, price, and
fare. In fact, everything is done under certain conditions and through performing a se-
ries of operations. Algorithms are methods and procedures used to solve the problems.

Nowadays, Mr. Brown can purchase tickets easily online. The main steps of online pur-
chasing are shown in Figure 2.2. Compared with offline purchasing, online purchasing
uses the same set of crucial information, except that we are dealing with computer sys-
tems instead of a human.

Step 1: The passenger provides information on trip date, destination, etc.
Step 2: The staff finds trains available on that day
Step 3: The passenger chooses a train and determines number of tickets to buy
Step 4: The passenger pays the fare and collects tickets

Algorithms are
methods and

procedures used to
solve problems.

Case Study 1

Purchasing tickets through ticket office

Figure 2.1: Flow of purchasing tickets at the ticket office.

https://doi.org/10.1515/9783110692327-002

https://doi.org/10.1515/9783110692327-002

Computers can partially simulate human minds. They can complete some tasks
for our brains in a faster and more accurate manner. They liberate us from dull men-
tal work. Nonetheless, they cannot, at least for now, solve problems on their own.
Operations that computers can complete are determined by humans in advance.

Another example is setting up a washing machine. We set up a washing pro-
gram and the machine executes corresponding operations after being started as
shown in Figure 2.3. These operations that can be executed automatically by ma-
chines are programs. Note that programs are operations executed by programs, but
algorithms are procedures humans or machines use to solve problems.

2.1.2 Definition of algorithms

Through these examples, we should roughly understand what algorithms are by
now. Algorithms can be considered as an entire solution consisting of basic opera-
tions and order of operations. We may also deem algorithms as finite, definite com-
putation sequences designed under specific requirements to solve a certain type of
problem. Definition of algorithms is given in Figure 2.4, in which computer algo-
rithms mean algorithms that can be executed by computers. In other words, steps
in computer algorithms are intentionally designed to conform to computer charac-
teristics: operations should be simple to be executed repeatedly. Problem-solving

Step 1: Open the website
Step 2: Click “Search” in search page, input trip date, destination, etc.
Step 3: Click “Book” in ticket booking page, choose a train to book ticket
Step 4: Log into system (if you have an account)
Step 5: Confirm passenger information, seat class, and submit the order
Step 6: Pay ticket fare online
Step 7: Choose ticket collection method

Case Study 2

Purchasing ticket online

Computers can
partially simulate

human minds. They
are faster and more

accurate.

Figure 2.2: Flow of purchasing tickets online.

• Medium water level
• Soak for 20 minutes
• Wash for 20 minutes
• Rinse once for 5 minutes
• Spin-dry for 3 minutes

Case Study 3

Setting up a washing machine
We can configure the

steps in advance, then
machines can

automatically complete
these operations once

started.

Figure 2.3: Setting up a washing machine.

48 2 Algorithms

with computers has limitations as well. A solution feasible in daily life may not
work on computers, that is, not all the methods we use to solve problems can be
used by computers. We will elaborate on this topic in Section 2.3.

Characteristics of computer algorithms are summarized from the perspective of
computers. Computers receive input data, execute certain operations, and produce
results that fulfil functionality requirements. Hence, we consider input, functional-
ity, and result to be the three key elements of algorithms as shown in Figure 2.5.

Example 2.1 Example of computer algorithms: price guessing game
The TV show Number Guessing has the following rule: participants can obtain a product if they
can correctly guess its price in the given time. The host will give hints to participants after a
guess, telling them whether it is “too high” or “too low.” Suppose the price of a product lies in
the interval 0–2000 (the price is an integer), what strategy should we use to guess the answer
in the shortest time on average?

[Analysis]
There is a classic solution to this problem called the “binary search.” To use binary search, the
search interval has to be sequentially increasing. The data in this game are prices that sequen-
tially increase in the given interval so that we may apply binary search.

To be more specific, we should use a strategy called “guess the middle value” in this game as
shown in Figure 2.6. We can see that there are inputs and outputs in this algorithm. Also, each
step is feasible and we can find out a solution in finite steps.

Algorithm

Input data

Result

Three key elements of algorithms
• Input
• Functionality
• Result

Algorithms receive a
set of data to process
and produce results

that fulfill functionality
requirements.

Figure 2.5: Key elements of computer algorithms.

Algorithm
An algorithm is a step by step method to solve a problem or complete a task

Computer algorithm
A computer algorithm is an algorithm that can be executed by computers.

Not all methods of
solving problems are
suitable for computers

Figure 2.4: Definition of algorithms.

2.1 Concept of algorithms 49

Step 1: guess the middle value T of the price interval (1000 initially)

Step 2: based on the hint given by the host, determine the correct price interval

• Too high: next price interval is (1, T)

• Too low: next price interval is (T, 2000)

• Correct or time is up: game ends

Step 3: Repeat step 1 and 2 until game ends

• Input and output
• Method is feasible
• Finite steps

Guess the middle value

Figure 2.6: Using binary search.

2.1.3 Characteristics of algorithms

We can now summarize the characteristics of algorithms as shown in Figure 2.7.
Note that an algorithm may accept zero input in some cases. For instance, when
solving an equation, an algorithm can find out the solution following each step of
the algorithm and given conditions without any input data.

2.2 Representation of algorithms

2.2.1 Top-down stepwise refinement method

Algorithms describe the steps and methods used to solve problems. Given a complex
problem, we can use a global than local strategy to describe it in a top-down manner.
For example, some daily activities of Mr. Brown are illustrated in Figure 2.8. In differ-
ent time periods, each activity can be divided into multiple steps or subactivities.

When describing a problem, designers need a comprehensive understanding of
the system to be designed. With this in mind, they can divide the system into several
parts, do the same to each subsystem, and repeat this process. This is the standard
way of program development, “top-down stepwise refinement” method as shown
in Figure 2.9. We should not try to complete a program in one attempt. Instead, we
do this in multiple steps, each implementation being more detailed than the last.

• Input: have zero or more input
• Output: produce result that fulfills functionality requirement
• Finiteness: an algorithm should contain finite steps
• Definiteness: each step of an algorithm should be precisely defined without ambiguity
• Effectiveness: each step of an algorithm can be done effectively and generate certain result

Characteristics of algorithms

Figure 2.7: Characteristics of algorithms.

50 2 Algorithms

W
ak

e
up

W
as

h
up

B
re

ak
fa

st

Morning Commute

H
av

e
br

ea
kf

as
t,

 w
at

ch
 T

V
 n

ew
s

B
ru

sh
 t

ee
th

,
w

as
h

fa
ce

,
et

c.

Pu
t

on
 c

lo
th

es
,

sh
oe

s,
 e

tc
.

C
ho

os
e

dr
iv

in
g

or
ta

ki
ng

 s
hu

tt
le

bu
s

de
pe

nd
in

g
on

 h
is

 s
ch

ed
ul

e

D
ri
ve

:
go

 t
o

ga
ra

ge
,

dr
iv

e
th

e
ca

r

Ta
ke

 s
hu

tt
le

 b
us

:
go

 t
o

bu
s

st
op

 t
o

w
ai

t
fo

r
it

School

Te
ac

hi
ng

W
or

ki
ng

S
em

in
ar

M
ee

tin
g

..
.

C
om

pl
et

e
hi

s
ta

sk
s

de
pe

nd
in

g
on

 h
is

 s
ch

ed
ul

e

Te
ac

hi
ng

:
pr

ep
ar

e
fo

r
th

e
cl

as
s,

 t
ea

ch
 in

 c
la

ss
ro

om

W
or

ki
ng

:
ha

nd
le

 e
m

ai
ls

,
lo

ok
 f

or
 r

es
ou

rc
es

,
w

ri
te

 r
ep

or
ts

,
et

c.

M
ee

tin
g:

 …
…

S
em

in
ar

:
…

…

G
lo

ba
l t

he
n

lo
ca

l,
to

p-
do

w
n

de
sc

ri
pt

io
n

D
ri
ve

S
ch

oo
l s

hu
tt

le

Fi
gu

re
2.
8
:D

ai
ly

lif
e
of

M
r.
B
ro
w
n.

2.2 Representation of algorithms 51

Knowledge ABC Methods of program development
1. Structured programming
Structured programming is a design principle that concentrates on module functionalities and
process design. The concept, being a milestone in the history of software, was first proposed by
E. W. Dijkstra in 1965. It advocates the use of a top-down stepwise refinement method of pro-
gramming. Every program should be constructed using the three basic control structures,
namely sequential, decision, and loop structure. Structured programming aims at improving the
readability of programs.
2. Top-down and stepwise refinement
When programming, we should consider outline before details, global objectives before local
objectives. Instead of bothering with numerous details, we should design our system starting
from a global goal and proceed gradually. For complex problems, we should also set some sub-
objectives to achieve a smooth transition.

It seems tedious to program in this way, but it has many merits. It makes programs more
comfortable to read, write, debug, maintain, validate, and verify. It brought a revolution to pro-
gramming and soon became standard practice, especially in software engineering, which
quickly developed later.
3. Modularized programming
A complex problem can usually be divided into several simpler problems. Modularization split
the objective of a program into subobjectives that are easier to achieve and repeat the split pro-
cess. Each subobjective is called a module.

2.2.2 Example of representation of algorithms

Let us consider an example of describing algorithms using pseudo code.

Example 2.2 Scoring in competitions
In TV karaoke shows or diving competitions, scores are computed by discarding the highest and
lowest scores from the judges and computing the average of the rest. The main steps are shown
in Figure 2.10, where some steps need further processing, for example, “discard the highest” and
“compute the sum.”We shall cover the details now.

Don’t try to write executable program in one attempt. Instead, we achieve this
step by step and make improvements in each step. The algorithm written in the
first step is highly abstract, while the one written in the second step is more
detailed…… Finally we can write executable program in the last step.

Top-down stepwise refinement

Standard method
of program
development

Figure 2.9: Method of program development.

52 2 Algorithms

Step 1: each judge presents their own score
Step 2: find the highest score
Step 3: find the lowest score
Step 4: discard both the highest and the lowest score
Step 5: compute sum of the rest
Step 6: compute average

Scoring by judges Some steps need
further processing

to obtain result

Figure 2.10: Flow of scoring in competitions.

1 Finding maximum
Given n numbers, find out and display the maximum.

[Analysis]
We will focus on finding the maximum. Without loss of generality, we suppose n = 10.

Unlike how it appears, this problem takes several steps to solve. The step-by-step solution is
given in pseudo code as shown in Figure 2.11. Top-level pseudo code is a brief description of
the problem. The first refinement indicates input, processing steps, and output. As it is already
trivial to write actual code after the second refinement, we no longer need further refinement.

Top level
pseudo code
description

First refinement Second refinement

Input 10 numbers,
find the maximum

Treat the first input as
Largest

Counter N = 1;
Input a number x;
Largest = x;

Input the rest 9
numbers and compare
with Largest, update
Largest with the larger
in each comparison

When N < 10;
Input a number x;
If (Largest < x) Largest

= x;
N increases by 1 ;

Output Largest Output Largest ;

Split a complex task
into smaller and

simpler sub-tasks:
“top-down stepwise

refinement”

Figure 2.11: Finding maximum.

We solved the problem by splitting a complex task into simpler tasks. This is what
we call the “top-down stepwise refinement” approach.

2 Computing sum of scores
Given keyboard inputs of some positive integers, calculate and display the sum of
them. Suppose that the user uses “−1” to mark the end of the input data.

[Analysis]
Pseudo code of the solution is given in Figure 2.12. Note how we make the solution more de-
tailed with each refinement until we can quickly write out code.

2.2 Representation of algorithms 53

Top level pseudo
code description First refinement Second

refinement

Input a series of
positive integers,
computer their sum.
“-1” is used to mark
the end of all input

Input a number Input a number x;

If the input number is not “–1”
1. Add the input number to

existing sum
2. Continue inputting data

let sum = 0
While (x not equal
to –1)

sum = sum + x;
Input x;

Output result Output sum

Figure 2.12: Computing sum of scores.

The input of this problem is x. The required functionality is to add x to sum, whereas x is not the
ending mark. The output is the sum.

The actual code of these two problems can be easily written after learning the syntax of C in
chapter “Program Statements.”

Example 2.3 Sorting poker cards
When playing poker, we want the cards to be sorted in order after we have drawn all cards. We
may sort our cards as follows. Suppose we draw a 9 followed by a 3. As 3 is smaller than 9, we
put it in front of 9. We then draw a 4 and put it behind 3 because 4 is larger. We then draw a 2
and put it in front of 3 and so on.

This sorting method is called a straight insertion sort in classic sorting algorithms. The basic
idea behind it is to split the list to be sorted into two lists: one is the sorted list and the other is
the list to be sorted. We then insert every single element from the list to be sorted into the
sorted list until there is nothing left. Figure 2.13 shows an example of straight insertion sort. In
step 3 of this example, the sorted list from step 2 contains 3 and 9 and the element to be in-
serted is 4. Because 4 is between 3 and 9, the new sorted list should be “3, 4, 9.” There are
eight elements in total, so we need seven such operations.

Step Sorted list List to be sorted

① 9 9 3 4 2 6 7 5 1

② 3 9 3 4 2 6 7 5 1

③ 3 4 9 4 2 6 7 5 1

④ 2 3 4 9 2 6 7 5 1

⑤ 2 3 4 6 9 6 7 5 1

⑥ 2 3 4 6 7 9 7 5 1

⑦ 2 3 4 5 6 7 9 5 1

⑧ 1 2 3 4 5 6 7 9 1

Data to be
inserted

This insertion
is done in the

original
memory space

Figure 2.13: Straight insertion sort.

When we start sorting, we may consider the first element as the first sorted list. Note that the
implementation operates on the original memory space of the number list. In other words, we do
not need temporary space for the lists. Instead, it suffices to use extra space of only one element.

54 2 Algorithms

Next we analyze the process of inserting an element carefully. Let us take steps 3 and 4 from
Figure 2.13 as an example as illustrated in Figure 2.14. The sorted list now has “3, 4, 9” and the
element to be inserted is 2. As previous element 9 is larger than 2, we need to move 9 to its
right. However, it will overwrite the element that is already in that position, namely 2. To avoid
this, we need a “sentry” that records the element to be inserted. After moving 9, we also need
to move 4 and 3. Finally, we may put 2 into the first position.

Sorted list
3 4 9 2

3 4 9

3 4 9

3 4 9

2 3 4 9

Data to be
inserted

2

To prevent data to be inserted
from being overwritten by moving

other data, we use temporary
“sentry” unit to record itSentry

 Compare numbers in
sorted list with the

“sentry”, move them
back if they are larger

 Insert data

Figure 2.14: Insertion process of one element.

We can write out pseudo code for the algorithm based on the description above as shown in
Figure 2.15.

Except for straight insertion sort, there are many other sorting algorithms as well. We will cover
some of them such as bubble sort and selection sort, in the chapter “Arrays.” Related concepts are
usually introduced in data structure courses as well.

2.3 Effectiveness of algorithms

We have seen algorithms for some problems by now. Essentially, what are the dif-
ferences between solving problems by humans and by computers?

In fact, the strategies humans use to solve problems can often be used with
computers as well. However, exceptions do exist. To design an algorithm suitable
for computers, we need to think from the perspective of computers. In other words,
we need to have a computer mindset. Let us examine some examples of algorithm
design.

2.3 Effectiveness of algorithms 55

To
p

le
ve

l p
se

ud
o

co
de

Fi
rs

t
re

fin
em

en
t

S
ec

on
d

re
fin

em
en

t

Pr
oc

es
s

re
cu

rr
en

tly
 f

ro
m

th
e

se
co

nd
 n

um
be

r
Pr

oc
es

s
re

cu
rr

en
tly

 f
ro

m
 t

he
 i-

th
 n

um
be

r
S
up

po
se

 t
he

re
 a

re
 N

 n
um

be
rs

,
da

ta
[i

]
re

pr
es

en
ts

 t
he

 i-
th

 n
um

be
r

C
om

pa
re

 n
um

be
rs

 in

so
rt

ed
 li

st
 w

ith
 t

he

“s
en

tr
y”

 o
ne

 b
y

on
e,

m

ov
e

ba
ck

 if
 la

rg
er

If
 t

he
 i-

th
 n

um
be

r
is

 s
m

al
le

r
th

an
 t

he
 (

i-
1)

-t
h

if
(d

at
a[

i]
 <

 d
at

a[
i-

1]
)

U
se

 t
he

 i-
th

 n
um

be
r

as
 “

se
nt

ry
”

te
m

p
te

m
p=

da
ta

[i
]

In
 t

he
 s

or
te

d
lis

t
j
=

 i–
1

~
 0

M
ov

e
nu

m
be

r
in

 f
ro

nt
 o

f
j
ba

ck
 if

 it
 is

 la
rg

er

th
an

 t
em

p

j
=

 i-
1

w
hi

le
 (

j
>

=
 0

 a
nd

 d
at

a[
j]

 >
 t

em
p)

a[
j+

1]
=

a[
j]

;
j=

j-
1

In
se

rt
 “

se
nt

ry
”

va
lu

e
in

to

ri
gh

t
po

si
tio

n
In

se
rt

 t
em

p
in

to
 t

he
 e

m
pt

y
po

si
tio

n
a[

j+
1]

=
te

m
p

i=
i+

1

Fi
gu

re
2.
15
:T

op
-d
ow

n
st
ep

w
is
e
re
fi
ne

m
en

t
ps

eu
do

co
de

de
sc
ri
pt
io
n
of

st
ra
ig
ht

in
se

rt
io
n
so

rt
.

56 2 Algorithms

2.3.1 Example of algorithms

Example 2.4 Sample algorithm 1: data swapping
Swap data stored in two storage units without losing any after the swap.

[Analysis]
We usually swap data with the help of a third empty storage unit as shown in Figure 2.16. Double
slashes in each step mark the beginning of comments in C.

Suppose we have data A = 10, B = 12, and a temporary unit TEMP
Step 1: TEMP = A; // TEMP = 10, content of A is put into TEMP
Step 2: A =B; // A = 12, content of B is put into A
Step 3: B = TEMP; // B = 10, content of TEMP is put into B

A method
suitable for
computers

A B

Step 3Step 1

Step 2

TEMP

Data swap

Figure 2.16: Flow of data swap.

In addition, we can use some “unconventional” methods as follows.
– Throw into the sky: suppose A and B are objects, we can throw them to the target location

like how people in the circus would do.
– Transfer with tubes: we “connect” two storage units using two tubes and transfer A and B

through them.
– Move trivially: if storage units of A and B are large enough to store both of them, we can

simply move B to the unit of A, then move A to that of B.

In the real world, we can use all the conventional and unconventional methods.
However, only the conventional swap and trivial move methods under certain con-
ditions will work in computers.

Example 2.5 Sample algorithm 2: simulating elementary school students solving division problems
To simplify the problem, we suppose that all divisions are two-digit numbers divided by single-
digit numbers and quotients have one digit, for example, 23 ÷ 3 = 7 r 2.

[Analysis]
Elementary school teachers may tell students to do divisions by trying quotients. As an example,
the process of solving 23 ÷ 3 is shown in Figure 2.17. However, this method is limited in a way
that we need to follow different rules for different divisions. For instance, when computing 37 ÷ 6,
we need to figure out a number that yields a result between 30 and 40 when multiplied by 6. It is
not an easy and efficient method for computers to use as processing rules vary with data.

2.3 Effectiveness of algorithms 57

(1) Find a number that yields a result between 20 and 30 when multiplied by 3. It could be 9, 8 and 7

(2) Compare 23 with 3*9, 3*8 and 3*7 respectively

(3) Finish when the remainder is smaller than the divisor 3

This method is too
flexible to implement

in computers

Trying quotients

Figure 2.17: Solving divisions by trying quotients.

There are two methods suitable for computers as shown in Figure 2.18. The first one is trying
quotients as well, except that we always choose 9 as our first attempt. This makes the rule sim-
ple and unified, so programmers can write code efficiently. The second method is to use
“chunking,” which means repeated subtraction. By definition of division, we can repeatedly
subtract the divisor from the dividend and obtain quotient eventually. In fact, this is how divi-
sion is done in computers internally.

Trying quotients: try from 9 in all cases
Chunking: repeatedly subtract the divisor from the dividend

Solutions that are
suitable for computers
have simple rules so it
is easier to implement

them

Trying quotients in a way that is suitable for computers

Figure 2.18: Trying quotients in a way that is suitable for computers.

Solutions suitable for computers should have a simple rule that is easy to follow.
Being able to complete simple tasks tirelessly is considered by some people the
“fundamental quality of computers.”

Example 2.6 Sample algorithm 3: evaluate expressions
In C language, we call statements formed by connecting operators and operands expressions.
For example, 1 +(5–6/2) *3 is an arithmetic expression. Note that division and multiplication are
represented by slash and asterisk, respectively. All symbols in C should appear on keyboards
as well so that we can insert them easily.

Figure 2.19 shows how we are taught to evaluate expressions in elementary school and how
computers evaluate expressions. Computers use a method called “Polish notation.” Polish
mathematician, Jan Łukasiewicz, first proposed it in 1920. It simplifies evaluation through two
steps.

Method taught in elementary school
1. Do multiplication and division before addition and subtraction
2. Parentheses have higher priority

Method used in computers——Polish notation
1. Eliminate parentheses from expressions
2. No need to consider data operation of operators

Evaluation of expressions

Pairing parentheses or
determining precedence

of operators is
cumbersome for

computers since there
are too many cases

Figure 2.19: Evaluation of expressions.

58 2 Algorithms

The expression 1 +(5–6/2) *3 will become 1562/−3*+ after conversion. Details of such conver-
sions are covered in data structure courses. Interested readers may refer to other resources for
them. We shall take a look at how an expression in Polish notation is evaluated.

The # sign in Figure 2.20 is used to mark the end of expressions, while cells in which num-
bers are stored represent memory units. Herein we show changes in the stored data in each
step. The figure also shows possible cases in expression scanning and corresponding opera-
tions computer take. After six steps of processing, the value left in memory is the final result.

1 5 6 2 / - 3 * + #

1

5

6

2

1

5

3

1

2

3

1

6

7

Processing steps
(1) See number 1,5,6,2, store them
(2) See operator “/”, compute 6 / 2 = 3, store 3
(3) See operator “-”, computer 5 –3 = 2, store 2
(4) See number 3, store it
(5) See operator “*”, compute 2 * 3 = 6, store 6
(6) See operator “+”, compute 6 + 1 = 7, store 7
(7) See #, withdraw 7, end 1

2

(1) (2) (3) (4) (5) (6)

Scan
Expression

Store if a number is scanned
Withdraw number twice, compute and store result if an
operator is scanned
Withdraw result and end if # is scanned

Figure 2.20: Evaluation of expression in Polish notation.

2.3.2 Computational thinking

We have seen that methods we usually use may not work in computers in the last
section. To design algorithms suitable for computers to execute, we need to know the
characteristics of how computers solve problems, called “computational thinking.”
Professor Jeannette Wing from Carnegie Mellon University wrote that “Computational
thinking builds on the power and limits of computing processes … Computational
thinking involves solving problems, designing systems, and understanding human
behavior by drawing on the concepts fundamental to computer science.” The essence
of computational thinking is abstraction and automation. In procedure-oriented pro-
gramming, we may also describe it as “program thinking.”

2.3 Effectiveness of algorithms 59

Knowledge ABC Program thinking
Abstraction in programming uses identifiers, constants, variables, arrays, and structures to de-
scribe and record information and relations between information. Automation is the process of
operating information using statements and operators to achieve a particular goal. Functions
are formed by organizing statements based on functionality. Functions are used to decompose
a larger problem into multiple subproblems that are independent of but related to each other.
Algorithms describe the steps and procedures of solutions to problems. To fit how humans
think, they are expressed in a top-down stepwise refinement manner. Together, these concepts
construct procedure-oriented programming and procedure-oriented languages.

2.4 Universality of algorithms

Universality requires that data in problems of the same type are handled consis-
tently. Let us look at solutions to some classic problems first.

2.4.1 Solutions to classic problems

Example 2.7 Things whose number is unknown
There is a well-known problem in Sunzi Suanjing, a mathematical treatise in ancient China,
called “things whose number is unknown.” The problem is as follows: there are certain things
whose number is unknown. If we count them by threes, we have two left over; by fives, we have
three left over; and by sevens, two are left over. How many things are there?

[Analysis]
The problem does not restrict the number of solutions and there might be multiple solutions.
As shown in Figure 2.21, we may apply exclusive induction. We look for three sets of numbers
that satisfy the three conditions, respectively and seek common numbers among them. Readers
may quickly notice from the figure that the minimal number of things that satisfy all three con-
ditions is 23.

Step 1: find numbers that yield remainder 2 when divided by 3, obtain set 1: 5, 8, 11, 14, 17, 20, 23, 26, …
Step 2: find numbers that yield remainder 3 when divided by 5, obtain set 2: 8, 23, …
Step 3: find numbers that yield remainder 2 when divided by 7, obtain set 3: 23, …

It takes effort to
find more solutions

by manual
computation

Exclusive induction

23

Figure 2.21: The first solution to “things whose number is unknown”.

60 2 Algorithms

Now we examine how computers solve this problem. In C language, whether a number x has re-
mainder 2 when divided by 3 is represented as x% 3 == 2, where % is the remainder operator
and = = (note that there are two equal signs) checks whether its operands are equal. Pseudo code
of the algorithm is shown in Figure 2.22. The loop condition in the second refinement is “always
true,” which means the solution-finding process can run forever because we do not know the
exact number.

But when should the algorithm terminate if the loop condition is “always true”? If we do not
need all solutions, we can add a terminating statement, which, for instance, terminates the
loop when x > 2000. More details about “always true” loops are covered in the section of loop
statements.

Guessing solutions one by one, like we just saw in this example, is another demonstra-
tion of how computers can complete simple tasks repeatedly and tirelessly.

Example 2.8 Chickens and rabbits in the same cage
This is another classic problem from Sunzi Suanjing. Suppose there are several chickens and
rabbits in the same cage. The total number of heads is 35 and the total number of legs is 94.
How many chickens and rabbits are there in the cage?

[Analysis]
We can solve this problem using linear equations as shown in Figure 2.23. However, determin-
ing the positivity of coefficients of variables or doing substitution is tricky and cumbersome to
implement on computers. Besides, different systems require different methods to solve.

Top level pseudo code description First refinement

x start from 1 let x = 1

find result that satisfies all conditions
repeat following operations
if x satisfies following conditions at the same time

“2 remaining if divided by 3, 3 remaining if
divided by 5, 2 remaining if divided by 7”

then output value of x
x increases by 1output result

Second refinement

x=1
while (loop condition is always true)

if (x%3==2 and x%5==3 and x%7==2)
output x

x increases by 1

When will the
algorithm

terminate if the
loop condition is

always true?

Figure 2.22: Second solution to “things whose number is unknown”.

2.4 Universality of algorithms 61

Step 1: suppose there are x chickens and y rabbits

Step 2: write equations

Step 3: solve equations
 to find solution

Solving linear equations

We can use elimination by
addition or subtraction or
elimination by substitution

to solve the equations

2 4 94 (2)

+ = 35 (1)⎧
⎨

+ =⎩

x y

x y

⎧
⎨
⎩

x = 23

y = 12

Figure 2.23: The first solution of chickens and rabbits in the same cage problem.

The universal solution is shown in Figure 2.24. Similar to the previous problem, we try every possi-
ble value of each variable to find the solution that satisfies all conditions.

Top level pseudo code
description First refinement Second refinement

both x and y start from 1 x=1 y=1 x=1 y=1

find results that satisfy the
equations

while x < 35, repeat following
operations

if there is a value of y
between 1 and 35 that
satisfies the equations
output results

x increases by 1

while (x<35)
while (y<35)

if x+y=35 and 2x+4y=94
output x and y

y increases by 1
x increases by 1output results

Figure 2.24: The second solution of chickens and rabbits in the same cage problem.

In the first refinement, both x and y have a value of 1 and terminating condition “less than 35,” as
there are 35 heads in total. When x = 1, we substitute every possible value of y, from 1 to 35 into
the equations to test whether they are the solution. If none of these combinations work, we in-
crease x by 1, and test possible values of y again. We repeat this process until x = 35. Note that
this is a nested loop of two layers.

In the second refinement, the condition is further specified as “if x + y = 35 and 2x + 4y = 94”
and we find a solution if it is met.

2.4.2 Three phases of problem-solving with computers

Based on the above-mentioned examples, we may conclude that there are three phases
when solving problems with computers, namely, the beginning phase, the processing
phase, and the ending phase. Each phase contains a set of operations that should be
done as shown in Figure 2.25.

62 2 Algorithms

2.4.3 Characteristics of computer algorithms

Having seen these examples, we can now summarize the characteristics of prob-
lem-solving with computers as shown in Figure 2.26. Each operation done by a com-
puter should be simple, yet these simple operations can be combined to provide
complex functionalities. Given problems of the same type, there should be a univer-
sal set of rules to process corresponding data.

2.5 Comprehensiveness of algorithms

After midterm exams, Mr. Brown’s son, Daniel, asked his mom whether they could
go for a weekend trip. He then started to talk about what he wanted to do and
bring. However, Mrs. Brown smiled and asked, “What if it rains?” Daniel was
caught off guard. He thought for a while and suggested, “Then we can go to mov-
ies, as long as we don’t just stay at home.”

Like Mrs. Brown, experienced people try to consider every situation when solv-
ing practical problems so that they would not make mistakes or lose anything.
Similarly, when solving problems with computers, we hope our algorithms are com-
prehensive so that they can handle all types of input data. In other words, our algo-
rithms should:
– Correctly process normal data
– Correctly handle abnormal data

Beginning phase determine initial conditions of program execution

Processing phase complete data processing based on requirements of problem, fulfill functionality requirements

Ending phase determine terminating conditions of program, obtain final results

Three phases of problem solving with computers

Figure 2.25: Three phases of problem-solving with computers.

Rules are simple: each step in data processing is simple

Rules are universal: operation rules for corresponding data in problems of the same type should be consistent

Characteristics of problem solving with computers

Figure 2.26: Characteristics of problem-solving with computers.

2.5 Comprehensiveness of algorithms 63

2.5.1 Algorithm analysis: Starting from normal cases

We shall explain the comprehensiveness of algorithms by analyzing the algorithm
for n! problem.

2.5.1.1 Problem analysis
The mathematical definition of n! is shown in Figure 2.27. There is only an abstract
variable n and we do not know its value. How should we compute it? For general-
ized problems like this where we do not know the exact value of variables, we can
find a value that satisfies the condition and is easy to compute, for instance, n = 5,
to analyze the pattern and characteristics of the problem.

Before designing a computer algorithm, we observe the universal method to compute 5!
manually. Herein universal means that the method works for values other than 5 as
well.

2.5.1.2 Manual method
To simplify the description, let variable S be the product of repeated multiplication.
We may consider the variable as a box. Data can be put into or taken out of the box.
Data stored in the box can also be modified. Detailed procedures of computing fac-
torial are shown in Figure 2.28, where the arrow symbol in representation column
means “put into.”

How do we design
the algorithm if we

don’t know value of n?
Let
n=5

We find solutions
to general cases

by observing
special cases

When n = 0

When n ≥ 1

Figure 2.27: n! problem.

64 2 Algorithms

2.5.1.3 Analysis of computer solutions
Now we examine the universal method for computers to compute n!. We can think
of computers as more advanced calculators, but they would not do anything unless
we have provided the necessary data and algorithms “bit by bit.” The necessary in-
formation in this problem is given in Figure 2.29. They can be obtained by com-
puters using the following methods.

Method 1: Type each number into the computer using a keyboard. Type one
number after computer completes a calculation.

Unfortunately, this method becomes tedious when n is large, thus we need
an alternative one. Considering the characteristics of factorial, we notice that
each multiplier can be obtained by adding one to the previous one, except the
very first multiplier, 1. Hence, we get our second method.

Method 2: Each multiplier is obtained by adding one to the previous multi-
plier or the multiplier from the previous iteration, except 1.

It is not hard to see that the second method is easier; therefore, we shall
use it in further discussion as well. We will represent the multiplier as T, which
is a variable as well, for easier referencing.

1, 2, 3, 4, 5Data

continuous multiplicationOperation

Information needed by computer
How do

computers obtain
these numbers?

Figure 2.29: Information needed by computer.

Let variable S be
product of repeated
multiplication

Characteristics of variables
• Can be stored
• Can be accessed
• Can be updated

Manual computation

Variables can
be regarded as

boxes

Step Operation Representation
1 1 times 2 yields 2, store into S 1*2 S
2 Multiply value of S, 2, with 3, obtain 6, store into S S*3 S
3 Multiply value of S, 6, with 4, obtain 24, store into S S*4 S
4 Multiply value of S, 5, with 5, obtain 30, store into S S*5 S

Figure 2.28: The first algorithm of computing n!.

2.5 Comprehensiveness of algorithms 65

2.5.1.4 Comparison of manual method and computer method
We have analyzed both the manual and the computer methods. We may learn char-
acteristics of problem-solving with computers by listing differences between these
two methods as given in Figure 2.30.

Although these two methods use the same model of computation and share com-
mon steps, they vary in the way of handling data: human use known information
directly, whereas computers need to be “provided” with data and operations.

Computers are tools as well. We need to respect their limitations when using
tools. We also need to keep their features in mind when designing methods and steps
in solutions. The most significant thing in programming learning is to know the char-
acteristics of problem-solving with computers, namely “computational thinking.”

2.5.1.5 Algorithm description
The algorithm description of computing n! is shown in Figure 2.31. In the second
refinement, the loop keeps running when T ≤ 5. Note that expressions of loop condi-
tion in both refinements are in fact equivalent.

In accordance with the pseudo code in the second refinement, we may draw the
flowchart as illustrated in Figure 2.32.

Let variable S denote the cumulative product and variable T denote the multiplier

Computation
model Major steps in solution Characteristics of problem–

solving process

Manual

5 = 1*2*3*4*5

• Use factorial formula
• Use multiplier directly
• Store product into S

Directly use known information
given in the problem

Computer

• Use factorial formula
• Multiplier obtained by

iteration:T+1->T
• Store product into S: S*T->S

Data and operations need to be
“provided” in advance

Figure 2.30: Comparison of manual and computer method.

Top level pseudo
code description First refinement Second refinement

Compute 5!

Start from 1 * 2 Let product S = 1, multiplier T = 2
Repeat following operations

Store product into S
Increase multiplier by 1

do
S*T→S
T+1→T

End until multiplier is larger than 5 while (T<=5)
Output result Output result Output S

Pay attention to the
description and

expression of loop
conditions here

Figure 2.31: Pseudo code of n! algorithm.

66 2 Algorithms

The execution process of the algorithm is more clearly shown in the flowchart. We
first initialize product S and multiplier T. Further, we repeat multiplication and incre-
ment until T is larger than 5. At the end of each iteration, we check whether T satisfies
the loop condition. The loop continues if the checking yields true and terminates
otherwise.

Initial value of T is 2 and iteration equation is T = T + 1. The initial value of S is 1
and the iteration equation is S = S * T. We call methods “that start from known
terms and gradually work out unknown terms using iteration equation” as iterative
methods. “Step by step” is one of the features of computers. The result from previ-
ous computation is often needed in the next computation.

Knowledge ABC Iterative methods
An iterative method is a procedure that uses an initial term to generate the required unknown
term through a finite series of iterations. Any problem that contains an iteration equation can
be solved using iterative methods.

Iteration steps:
(1) List known terms in the problem.
(2) Write out iteration equation based on relations in the problem.
(3) Iterate finite times using the iteration equation until we find the solution.

2.5.1.6 Analysis of execution process
Let us check how S and T change during the execution of the algorithm. We may
use a table as shown in Figure 2.33, to list values of S and T in each step of the flow
so that the execution process can be clearly seen.

Start

S=1,T=2

S*T → S

T+1 → T

T<=5

End

F

T

Start from initial term, compute unknown
terms gradually using iteration equation

Iterative methods

Initial value of T is 2,
Iteration equation is T = T + 1
Initial value of S is 1,
Iteration equation is S = S * T

Figure 2.32: Flowchart of n! algorithm.

2.5 Comprehensiveness of algorithms 67

In the first column, S and T have initial values 1 and 2. Step 3 has not been exe-
cuted, so the cell is left blank. Step 1 gets executed, the value of S becomes S times
T, namely, 2. Step 2 is executed next and T becomes 3 after increasing by 1. T is then
checked in step 3. 3 is less than 5, so the loop condition holds true and the flow goes
to branch “True.” Consequently, step 1 is executed again and S is 2 *3 = 6. T increases
to 4 in step 2. The loop condition is met again, so steps 1, 2, and 3 are executed once
again until T is larger than 5 and the flow ends.

This is the algorithm of computing 5!, but computing 5! is not our ultimate goal.
To make the algorithm universal, we need to tackle some other challenges.

2.5.1.7 Testing
(1) What if we want to compute 10!?

We can change the condition in step 3 to T ≤ 10.
(2) How about factorials of other integers?

We can modify the condition in step 3 to T ≤ n, where the value of n is obtained
from keyboard input.

(3) Can the algorithm correctly compute 1!?
When step 3 is executed, T = 3 and n = 1. The program ends because T is larger
than n. The value of S is thus 2, which is incorrect.
To correct our result, we can change the initial value of T from 2 to 1.
The refined flow, shown in Figure 2.34, has an input of n and changes initial
value of T.

(4) What if the user inputs invalid data, n = −1, for instance?
In this case, the loop will be executed once and the result will be S = 1, which is
once again wrong.

Can the algorithm
correctly compute

1!?

How about
factorials of

other integers?

Start

S=1, T=2

S*T → S

T+1 → T

T <= 5

End

F

T

1

2

3

S*T → S 1 2 6 24 120
T+1 → T 2 3 4 5 6

T <= 5 / T T T F

1
2

3

What if we
want to

compute 10!?

Figure 2.33: Analysis of the n! flow.

68 2 Algorithms

To prevent users from providing invalid data, we need to add validation of
input. If the input is invalid, a warning will be prompted to users. Further refined
flow is shown in Figure 2.35. In general, programs should have a mechanism for
errors so that they can correctly handle “illegal” input data.

What if
users input

n = -1?

Start

S=1,T=1

S*T → S

T+1 → T

T<=n

End

F

Input n

T

Figure 2.34: The first refined version of n! flow.

Let n=5 General case
S=1 T=1 Initial value
T > n Terminating condition
n=0 n=1 Corner cases
n < 0 Invalid case

A program should validate all input to prevent
erroneous data from affecting computation

Prevent program errors
Start

S=1,T=1

S*T → S

T+1 → T

T<=n

End
F

Input n

FN is
valid

T

Stepwise
refinement

Figure 2.35: The second refined version of n! flow.

2.5 Comprehensiveness of algorithms 69

2.5.1.8 Summary of algorithm design procedures
Having considered the above cases, we have a comprehensive algorithm. Recall our
design process and there are the following key steps:
(1) Let n = 5: consider the process starting from a normal case.
(2) S = 1, T = 1: determine initial values in algorithm.
(3) T > n: determine the terminating condition of the algorithm.
(4) n = 0, n = 1: consider corner cases.
(5) n < 0: consider error handling.

In this example, we considered corner cases and error handling after we had set
up the basic flow. It is clearer to solve problems step by step like we just did.
Algorithm design cannot be done all at once. It is a process of improvement. Good
algorithms cannot be created without effort and refinement. This is also true for
problem-solving.

2.5.2 Algorithm analysis: Starting from corner cases

We designed our n! algorithm starting from normal cases in the last section. In fact,
we may also look at corner cases first as shown in the example given further.

2.5.2.1 Problem description

Neighboring zone problem
An n*m matrix is divided into t rectangle zones, each represented by a number be-
tween 1 and t. Cells in the same zone are all represented by the number of that
zone. As can be seen from Figure 2.36, a 6*8 matrix is divided into eight zones la-
beled as 1 to 8. We say that two zones are neighbors if they share an edge. For ex-
ample, zone 5 has six neighbors, namely, zones 1, 2, 3, 6, 7, and 8, whereas zone 4
is not its neighbor. Please design an algorithm to find all neighbors of zone k.

Suppose there are t = 8
rectangle zones whose
distribution is shown in

the figure, find number of
neighbors of zone k = 5

1 1 2 2 2 3 3 4

1 1 2 2 2 3 3 4

1 1 2 2 2 3 3 4

1 1 5 5 5 5 5 6

1 1 5 5 5 5 5 6

7 7 7 7 7 8 8 8

n

m

The zone labelled by
k = 5 is neighbor

with 6 zones, namely
zone 1, 2, 3, 6, 7, 8

Figure 2.36: Neighboring zone problem.

70 2 Algorithms

2.5.2.2 Ideas of algorithm
There are several corner cases in this problem: there may be only one zone, zone k
may have only one element, and so on. On the other hand, it would be tricky to start
from general cases, where zone k has multiple cells as there could be many neighbor
configurations, which makes it challenging to write decision conditions. However,
zone k must have four neighbors, each sharing one edge with it, if it has only one
cell as shown in Figure 2.37. This is a simple base case. In this case, we can check
each cell in the matrix. If the value of a cell is k, we count the number of its neighbors
that do not have value k. This is a method that is suitable for computers.

Concerning comprehensiveness, we shall consider corner cases in this problem.
Readers may have noticed that cells on the edge of the matrix do not have four
neighbors. For these cells, we can add cells labeled by 0 outside the matrix as “sup-
plement” and restrict our search in the original matrix as shown in Figure 2.38.

A zone of one cell
has 4 neighbors

which is located on
its top, bottom, left

and right

1 1 2 2 2 3 3 4

1 1 2 2 2 3 3 4

1 1 2 2 2 3 3 4

1 1 5 5 5 5 5 6

1 1 5 5 5 5 5 6

7 7 7 7 7 8 8 8

n

m

Figure 2.37: Analysis of neighboring zone problem.

0 0 0 0 0 0 0 0 0 0

0 1 2 2 2 3 3 4 0

0 1 1 2 2 2 3 3 4 0

0 1 1 2 2 2 3 3 4 0

0 1 1 5 5 5 5 5 6 0

0 1 1 5 5 5 5 5 6 0

0 7 7 7 7 7 8 8 8 0

0 0 0 0 0 0 0 0 0 0

n

m

Figure 2.38: Search region design of neighboring zone problem.

2.5 Comprehensiveness of algorithms 71

2.5.3 Keys of algorithm design

Having seen these examples, we realize that solutions to problems can be derived
from general cases as well as corner cases. Whichever cases we choose, they need to
be simple but universal, thus suitable for computers. Unlike solving physics or math-
ematics problems where we are usually able to apply existing formulas, solving prob-
lems with computers requires us to analyze traits of problems. However, there are
still some patterns in algorithm design, which are summarized in Figure 2.39.

From these steps, we can see that verification is needed to determine whether an algo-
rithm is well-designed and can function as expected. To verify, we should design test
data before designing the algorithm. We can use general methods of software testing to
test algorithms. They are covered in detail in the chapter “Execution of Programs.”

Knowledge ABC Software testing and test cases
– Software testing: it is the assessment process of running the software under specified

conditions, looking for bugs, determining quality, and evaluating whether design requirements
are fulfilled. This is a classic definition. We may also consider software testing to be a
comparison of actual output and expected output.

– Test cases: these include test input, execution requirements, and expected output designed
for a specific target. They are used to test an execution path or to verify if certain
requirements are fulfilled.

2.6 Procedures of algorithm design and characteristics
of algorithms

2.6.1 Position of algorithms in the process of solving problems with computers

In the chapter “Introduction to Programs,” we have seen that the process of solving
problems with computers, starting from raising a problem and ending with a solu-
tion, has four major steps, namely, modeling, data structure and algorithm design,
as well as coding and testing.

Keys of algorithm design
(1) Find a general case that is as simple as possible, use it in the basic processing flow
(2) Determine initial values
(3) Determine terminating conditions
(4) Consider handling corner cases or special cases
(5) Consider invalid cases

We may not
need to use all 5

steps when
solving concrete

problems

Figure 2.39: Keys of algorithm design.

72 2 Algorithms

Modeling extracts functionalities and data from problems and seeks relations
between the information by analysis. Data structure design tries to find a way to
organize and store data. Algorithm design attempts to seek a solution. Coding con-
verts the algorithm into code. Last but not least, testing is done to test our code.

2.6.2 General process of algorithm design

We have discussed key points in algorithm design. They are general rules for imple-
menting algorithms with restriction of the three key elements of algorithms, namely
input, functionality, and result. From the perspective of algorithm design, there are
other challenges in addition to implementing algorithm: whether there is a classic
algorithm strategy, which solution of all possible ones are better than the rest,
whether there is a universal method to assess algorithms, and others. In accordance
with procedures of program development, algorithm design can be done through
the following steps:
(1) Determine key elements of the algorithm

We need to correctly understand input and find out what functionalities and
results are desired.

(2) Design and describe the algorithm
We use the top-down stepwise refinement approach to design an algorithm fol-
lowing general rules of algorithm design. During the design process, we can
learn from existing algorithms. Classic algorithms include brute force, divide
and conquer, decrease and conquer, dynamic programming, greedy algorithm,
backtracking, branch and bound, approximation algorithm, randomized algo-
rithm, and so on. To design an algorithm for a new problem, we can use these
strategies flexibly to create a new one. Finally, we need to choose an algorithm
description method to record the procedures in our solution clearly.

(3) Manual check
Logic errors cannot be detected by computers because computers execute pro-
grams without understanding the motivation behind. Experience and research
suggest that running algorithms manually with test cases is one way to detect
logic errors in algorithms. Test cases should be designed in a way that exposes
as many errors as possible.

(4) Analyze the efficiency of the algorithm
Efficiency can be assessed by the amount of computing resources used, which
can be time or space. Time efficiency indicates the speed of execution, whereas
space efficiency shows the amount of extra memory space needed. Details on
efficiency are usually covered in the data structure class.

(5) Implement the algorithm
Finally, we convert our algorithm into programs using certain programming
languages. Note that a good algorithm is the result of effort and refinement.

2.6 Procedures of algorithm design and characteristics of algorithms 73

2.6.3 Characteristics of algorithms

In previous discussions of example algorithms, careful readers may have noticed
that there exist restrictions on the three key elements of algorithms. They are called
“characteristics of algorithms” as shown in Figure 2.40. Finiteness, definiteness,
and effectiveness are restrictions or requirements on how algorithm implements
functionalities required.

(1) Input: An algorithm has zero or more inputs, which are taken from the informa-
tion of the problem to solve. An algorithm can have zero input in special cases.
For example, no input data are needed when solving an equation following
specified procedures and conditions.

(2) Output: An algorithm has one or more output (an algorithm must have at least
one input). The outputs are determined by functionalities required.

(3) Finiteness: An algorithm must always terminate after a finite number of steps
(for any valid input) and such step must be completed in finite time. In contrast
to the same concept in mathematics, the finiteness of algorithms means they
are reasonable and acceptable in applications.

(4) Definiteness: Each step of an algorithm must be precisely defined without ambi-
guity. Identical input should generate identical output under all circumstances.

(5) Effectiveness: The operations in an algorithm can be done by finite basic steps
that are already implemented.

2.6.4 Characteristics of good algorithms

There can be multiple solutions to the same problem. To assess these solutions, we
need a standard. A generally acknowledged standard is that a good algorithm needs
to have the following features in addition to five characteristics of algorithms.
(1) Correctness

The fundamental goal of algorithm design is that algorithms should have re-
quired functionalities. “Correctness” may refer to many things, but they can
generally be sorted into the following four categories:

• Input: have zero or more input
• Output: produce result that fulfills functionality requirement
• Finiteness: an algorithm should contain finite steps
• Definiteness: each step of an algorithm should be precisely defined without ambiguity
• Effectiveness: each step of an algorithm can be done effectively and generate certain result

Characteristics of algorithms

Figure 2.40: Characteristics of algorithms.

74 2 Algorithms

1) Programs do not contain syntax errors.
2) Programs generate results that meet functionality requirements for multiple

input data.
3) Programs generate results that meet functionality requirements for input

data in chosen cases that are typical but strict and difficult at the same
time.

4) Programs generate results that meet functionality requirements for all valid
input data.
We usually use the third definition to evaluate whether a program is correct.

(2) Readability
Suppose an algorithm is correct, then readability should be the most crucial
factor. In other words, it is our first priority to make sure that programmers can
work efficiently. This is particularly significant as large software systems are
usually created by multiple programmers nowadays. Moreover, errors may be
hidden in unreadable programs and it can be painful to debug them.

(3) Robustness
It refers to the ability of algorithms to cope with invalid input data. It is also
called fault tolerance. A good algorithm should be able to identify erroneous
input data and handle them properly.

Reasonable and effective test cases can help us find as many errors as pos-
sible in testing and guarantee the robustness of algorithms.

(4) High efficiency
An algorithm is highly efficient if it executes efficiently. High efficiency may
refer to two things.
1) High time efficiency. Time efficiency is a measure of the execution time of

algorithms. An algorithm is highly time-efficient if it can be executed in a
short period of time.

2) High space efficiency. The memory space of algorithms is the maximum
memory space that is needed during the execution of algorithms. We
mainly focus on the supplementary memory space needed during execu-
tion. An algorithm that needs less memory space is called an algorithm
with low memory requirements.

Research shows that there is much more room for improvement of time efficiency
than of space efficiency in most cases. In addition, we can sacrifice one of them for
the other.

2.6 Procedures of algorithm design and characteristics of algorithms 75

2.7 Summary

An algorithm can be considered as a complete solution consisting of basic operations
and order of these operations. We may also deem algorithms as finite, definite computa-
tion sequences designed under certain requirements to solve a certain type of problem.

Methods and steps in computer algorithms should be consistent with the char-
acteristics of computers. Each step should be simple so that it can be executed by
computers tirelessly. There are limitations in computers as well. Feasible solutions
in daily life may not work on computers.

Although we may be able to directly write out code for easy problems during the
early phase of programming learning, we need to form good programming habits
and follow general rules of algorithm design. It prevents us from giving incomplete
solutions due to missing steps in the design process when solving complex problems.

Major concepts of this chapter and their relations are shown in Figure 2.41.

Steps of solutions are called algorithms.
We need to base our solutions on the characteristics of computers when using
them to solve problems.
Input data, functionality, and result output are the three key elements of
algorithms.
We need to start from top level when solving complex problems with the help
of classic technique “divide and conquer,”

Computer
algorithms

Description
method

Key elements

Characteristics

Top-down stepwise refinement: split complex tasks into
smaller and simpler sub-tasks

Input: have zero or more input
Functionality: purpose of the problem

Result: requirements to be fulfilled after solving
problems

Design rules

Limitation: data and operations need to be provided
Simplicity: Processing rules in each step are simple
Universality: operating rules are consistent for
corresponding data in problems of the same type

Phases: initial conditions, processing, terminating
conditions

Robustness: handle valid data correctly, react to invalid
data properly

Beginning phase: determine initial values

Processing phase: find a general case that is as simple
as possible, use it in the basic processing flow, then
consider handling corner cases, special cases and invalid
cases

Figure 2.41: Concepts of algorithms and their relations.

76 2 Algorithms

And use top-down stepwise refinement method to decompose the task,
Into subtasks that can be easily implemented in programming languages.
Finally, we combine these modules, simply and flexibly.

Computers think in a different way from us, which seems stubborn.
Data and operations need to be provided without mistakes.
Each operation is essentially binary code.
We should handle data of the same type consistently, so that computers can
solve different problems using the same method.
The flow of algorithms consists of three phases: initial data, terminating condition,
and processing process where we implement required functionalities.
We may consider general cases first,
and carefully investigate all corner cases.
Test cases should cover edge cases, special cases, and errors,
So that the program becomes more robust.
We should learn and master classic algorithms,
In order to apply them when solving new problems.
There is a standard to assess algorithms,
Where the most important thing being correctness,
Readable, robust,
Time-efficient, and space-efficient,
These are virtues of good algorithms.

2.8 Exercises

2.8.1 Multiple-choice questions

(1) [Concept of algorithms]
Which of the following statements is correct about algorithms? ()
A) An algorithm is equivalent to the solution to a problem.
B) One algorithm can only solve one problem. It cannot be reused.
C) An algorithm is executed step by step. Operations in each step must be pre-

cisely described.
D) There is only one algorithm that solves problems of a certain type.

(2) [Characteristics of algorithms]
Which of the following statements is wrong about the characteristics of algo-
rithms? ()
A) Finiteness: an algorithm must terminate in finite steps.
B) Input: an algorithm must have at least one input.
C) Definiteness: the steps of an algorithm must be clearly described.
D) Output: an algorithm must have at least one output.

2.8 Exercises 77

(3) [Principle of programming]
Which of the following is not a fundamental principle of structured program-
ming? ()
A) Polymorphism B) Top-down
C) Modularization D) Stepwise refinement

(4) [Structured design]
Which of the following statements is wrong about modularization of programs? ()
A) We can use the bottom-up stepwise refinement design method to construct

programs using independent modules.
B) Dividing programs into independent and single-function modules makes

code reuse easier.
C) Dividing programs into independent modules makes coding and debugging

easier.
D) We can use the top-down stepwise refinement design method to construct

programs using independent modules.

(5) [Characteristics of algorithms]
Finiteness of algorithms means that ()
A) The run time of an algorithm is finite.
B) The amount of data an algorithm can process is finite.
C) The length of an algorithm is finite.
D) An algorithm can only be used by finite users.

(6) [Description of algorithms]
Which of the following cannot be used to describe algorithms? ()
A) Text description B) Programming statements
C) Pseudo code and flowcharts D) E-R diagrams

(7) [Algorithm design]
Which of the following statements is correct? ()
A) The so-called algorithm is a method of computation.
B) Programs are also one way to describe algorithms.
C) We only need to consider how to obtain computation results in algorithm

design.
D) We can ignore computation time in algorithm design.

78 2 Algorithms

(8) [Software testing]
Which of the following statements is wrong about software testing? ()
A) We must follow the testing plan to eradicate randomness.
B) We should select test data randomly.
C) We should select test data meticulously.
D) Software testing is an important way to guarantee software quality.

2.8.2 Fill in the tables

(1) [Finding the maximum]
Based on the flow of the maximum finding algorithm, fill in the table in Figure 2.42
with the current value of Max in each iteration.
The input data: 12， −3，25，120， 0，20

(2) [Finding the minimum]
Based on the flow of the minimum finding algorithm, determine whether we need
to update the value of Min in each iteration and fill in the table in Figure 2.43.
The input data: 12， −3 ，25，120， 0，20

(3) [Sequential search]
Based on the flow of sequential search, fill in the table in Figure 2.44 with the
number of comparisons needed to find 33.
Note: we look for the number in the sequence sequentially.

Iteration 1 2 3 4 5 6

Max

Figure 2.42: Algorithms: fill in the tables question 1.

Iteration 1 2 3 4 5 6
Update

Figure 2.43: Algorithms: fill in the tables question 2.

Data to be
searched

32 13 65 77 33 71 93

Figure 2.44: Algorithms: fill in the tables question 3.

2.8 Exercises 79

(4) [Binary search]
Based on the flow of binary searching, determine whether we can find 33 in the
numbers given and fill in the table in Figure 2.45.

(5) [Recursion]
A monkey picked several peaches on day 1. He ate half of them and ate another
later. On day 2, he ate half of the remaining and ate another later. He did this in
the following days as well. On day 5, he had only one peach left before eating.
Please fill in the table in Figure 2.46.

2.8.3 Algorithm design

Describe an algorithm for each problem below in the form of pseudo code or flowchart.
(1) Design an algorithm for each of the following problems:

a) Read two numbers from keyboard input, compute and display the sum of
them.

b) Read two numbers from keyboard input, figure out and display the larger
one of them.

c) Read n positive numbers from keyboard input, compute their sum.
(2) Read several nonzero real numbers, count the number of positive ones and the

number of negative ones. The algorithm terminates upon receiving 0.
(3) Read a five-digit integer, and determine whether it is a palindromic number.
(4) A natural number (1, 2, 3, 4, 5, 6, etc.) is called a prime number (or a prime) if it

is greater than 1 and cannot be written as the product of two smaller natural
numbers. For example, 2, 3, 5, and 7 are prime numbers, whereas 4, 6, 8, and 9
are not. Write an algorithm that determines whether a natural number is a prime.

(5) In the Fibonacci sequence, each number is the sum of two preceding ones. The
first few numbers in the sequence are 0, 1, 1, 2, 3, 5, 8, 13, 21… Write an algo-
rithm to compute the nth Fibonacci number.

Day 5 4 3 2 1

Number of
remaining peaches

Figure 2.46: Algorithms: fill in the tables question 5.

Data to be
searched

71 32 13 33 93 65 77

Figure 2.45: Algorithms: fill in the tables question 4.

80 2 Algorithms

(6) Charges of a telecommunication company are as follows: local calls cost ¥0.22
per minute if the call lasts less than 3 min; if a call lasts more than 3 min, the
part which exceeds 3 min costs ¥0.1 per minute (or part thereof). Design an al-
gorithm to compute charges.

(7) Five people are sitting together. When asked about their age, the fifth person
says he is two years older than the fourth person. The fourth person says he is
two years older than the third. The third person says he is 2 years older than
the second, who is 2 years older than the first. The first person answers that he
is 10. How old is the fifth person? Figure out a universal computation formula
and algorithm (using recursion).

2.8 Exercises 81

3 Basic data types

Main contents
– Basic data types, the essence of types, storage mechanism of integers, and floating-point

numbers
– Definition of variables, referencing method, and their way of storage in memory
– Operators and their usage, the concept of expressions, categorization of results of operations
– Summary of data elements

Learning objectives
– Understand and master concept of data types, data storage, data referencing, and data

operation
– Know how to use common operators and expressions
– Understand and master the usage of constants and variables

3.1 Constants and variables

At the checkout in supermarkets, we are given a receipt by a cashier, on which in-
formation of our purchases is written as shown in Figure 3.1.

The column total is computed by multiplying per-unit price with quantity, where
the per-unit price is a constant and quantity is a variable. Some values are fixed,
whereas others keep changing in many problems. For example, we have speed, time,
and distance in moving object problems. In circles, we have a radius, perimeter, and
Pi. In the shopping example above, we have the number of purchased goods, per-
unit price, and total.

Data in programs can be categorized into two types based on how they are used:
constants and variables. The value of a constant cannot be modified during the execu-
tion of programs, whereas the value of a variable can be changed during execution.

3.1.1 Constants

There are two kinds of constants: literals and symbolic constants. One can use lit-
eral constants directly in programs as needed without having to define in advance.
However, if a constant is used multiple times in a program, we can use a symbolic
constant instead to allow easy modification. In this case, we only need to modify
once if we need to change the value of the constant. Symbolic constants should be
defined before being used. To define one, we need to use the define macro. For ex-
ample, #define LEN 128 means that every occurrence of LEN represents 128. More
on macros will be covered in the chapter “Preprocessing.”

https://doi.org/10.1515/9783110692327-003

https://doi.org/10.1515/9783110692327-003

Example 3.1 Example of constants in programs
The per-unit price of a notebook is ¥15.6. Write a program that outputs the per-unit price and
total price of two notebooks.

01 #include <stdio.h >

02 #define PRICE 15.6 //Define symbolic constant PRICE which represents 15.6

03 int main(void)

04 {

05 printf("Per-unit price：%f\n", PRICE); //PRICE – symbolic constant

06 printf("Total：%f\n", PRICE*2); //2 - literal

07 return 0；

08 }

On line 2, we use macro define to define the symbolic constant PRICE. Thus, every
occurrence of PRICE in the program, in lines 5 and 6 for instance, represents value
15.6. To update the price, we can simply modify line 2. This way of representation is
more precise than using numeral 15.6 and improves the readability of our program.

Good habit in programming
Instead of numerals, we should use meaningful symbols for constants related to the physical
world or with physics meaning. In C language, this is done by using meaningful enumerations or
macros. The concept of enumerations will be introduced in the chapter “Composite Data Types.”

C has many types of constants as shown in Figure 3.2.
Integer numerals include decimal, octal, and hexadecimal numerals. Decimal nu-

merals are the ones we are familiar with. The octal numeral system only uses digits
0–7 and an octal number is prefixed with 0 to distinguish from decimal numbers.
The hexadecimal numeral system uses symbols “0” to “9” to represent values zero to

============================
Item Name Price Per-Unit Quantity Total
--
Notebook 15.60 1 15.60
Battery 8.00 2 16.00
Bread 3.60 2 7.20
Milk 26.80 1 26.80
--
Subtotal 6 65.60
Discount 3.60 Total 62.00
Received 100.00 Change 38.00
--

Total= per-unit price × quantity

Constant
value

Changeable
value

Constant Variable

Case Study

Shopping receipt

Figure 3.1: Shopping receipt.

84 3 Basic data types

nine and “A” to “F” (or lowercase counterparts) to represent values 10 to 15. To dis-
tinguish from decimal numbers, we prefix hexadecimal numbers with 0x or 0X.

Form Representation rule Example

Integer

Decimal Using digits 0 to 9
Octal Using digits 0 to 7, prefixed by 0

Hexadecimal Using digits 0 to 9 and A to F/a to F, prefixed
with 0x or 0X 0x23, 0xc8

Real number
Decimal Numbers with decimal point 1.0 +12.0 -2.0
Exponential Number e/E number 1.8e-3 -23E+6

Character

Printable
character

Single printable character wrapped by single
quotation marks 'a' 'A' '+' '3'

Escape character ‘\’ and printable character wrapped by single
quotation marks ' \n '

String Character sequence wrapped by double
quotation marks

23 127
023 0127

"ABC" "123" "a"

Figure 3.2: Types of constants.

Real numerals can be written in decimal form or exponential form. Decimal form
is a number with a decimal point. Exponential form, on the other hand, is also
called “scientific notation,” in which 1.8 * 10–3 is represented by 1.8e-3 and −23 *
106 is represented by −23E + 6, as shown in Figure 3.2. Herein e and E can be used
interchangeably.

Character literals include printable character, escape character, and string literals.
Printable character literals are single printable characters wrapped by single quotation
marks, where they are characters that can be displayed on a screen. For example, the
character “a,” symbol “+,” and character “3” are all printable characters. Note that
character 3, which has ASCII value 51, is different from decimal numeral 3.

There are also special characters that cannot be displayed on screens. A new-
line is one example of these characters. We use escape characters to represent them
in C. The escape character table of C is given in Appendix D. At this stage of learn-
ing, we only need to remember newline is represented by “\n.”

String literals are sequences of characters wrapped by double quotation marks,
for example, “ABC” and “123.”

Knowledge ABC Story behind “return and newline”
Before computers were even created, there was a kind of machine called teleprinters. Such ma-
chines could print 10 characters in a second. However, it took 0.2 seconds for them to move to
the next line, during which two characters could be printed. If new characters were typed during
this 0.2 second, they would be discarded.

To solve this problem, the creators of these machines added two unique characters to the end
of each line. One of them was “Carriage Return,” namely “Return,” which instructed the printer to
reset the position of carriage to the beginning of a line. The other was “Line Feed,” namely
“Newline,” which fed the paper to advance to the next line. This was how “Newline” and “Return”
were created. They were later introduced to computers when computers were invented.

3.1 Constants and variables 85

Knowledge ABC ASCII and Chinese character encoding
All kinds of information, including numbers, characters, sounds, and images, are stored in com-
puters as binary codes.
– American Standard Code for Information Interchange (ASCII)
ASCII is a character encoding standard used in computers to display modern English and other
western European languages, which are based on Latin characters. It is the most frequently
used single-byte character encoding system nowadays.

ASCII uses combinations of seven or eight binary digits to represent 128 or 256 possible
characters. Standard ASCII, or basic ASCII, uses seven binary digits to represent all English
characters (of both upper and lower cases), number 0 to 9, punctuation marks, and special con-
trol characters used in American English.

The remaining 128 characters in the 256-character version are called extended ASCII codes.
They are supported in many x86-based systems. Extended ASCII codes use the additional
eighth position to represent 128 other special characters, characters in other languages, and
graphical symbols.
– Chinese character encoding
Chinese character encodings are used in computers to represent Chinese characters. Chinese
characters are represented as 16-digit binary codes in computers. In 1981, the Standardization
Administration of the People’s Republic of China published GB2312, which included 6,763
Chinese characters, as a unified standard for designing input/output devices so that informa-
tion could be exchanged smoothly.

3.1.2 Variables

3.1.2.1 Key elements of variables
Let us take a look at a storage problem in real life. When Mrs. Brown goes to the
supermarket, she needs to store her personal belongings into an electronic locker
before shopping. To do so, she needs to press the “Store” button on the locker first.
A receipt labeled with a number is then printed and the compartment with the cor-
responding number is opened automatically. Finally, she puts her belongings in
and closes the compartment.

However, the locker at this supermarket is specially designed as shown in Figure
3.3. There is an animal sticker on the door of each compartment. They are useful for
the help desk staff to find the correct compartment for customers who lost their receipt
and couldn’t recall the number or position of their compartment. Customers find ani-
mal stickers convenient because they are intuitive and easy to remember. Supermarket
staff finds the numbering scheme of compartments convenient because it indicates the
location of compartments.

A locker compartment can store belongings of customers. The actual location of
a customer’s compartment is allocated by the locker system based on the current
locker space. Hence, the key elements of locker compartments are a name that can
be used to address it, objects that can be stored in it as well as withdrawn from it,
and a location that can be allocated.

86 3 Basic data types

The process of programs storing and accessing data is similar to how customers
store their belongings into and retrieve them from a locker. The space data are stored
in, which is called a storage unit, is similar to a locker compartment as shown in
Figure 3.4. The name of a storage unit is called variable name in programming lan-
guages, which is “a” in this example. The name can be other words or letters as well.
The value of data stored in a storage unit is called the value of the variable. In this
example, we say the variable “a” has value 6. The value of a variable can be updated
as needed. The location of a storage unit is called an address in computers. In general,
variables are objects that associate with memory space where their contents are stored
and accessed.

Hence, we may summarize the three key elements of variables: variable name, vari-
able value, and memory location. What rules should we have regarding these ele-
ments then?

Accessible

Allocated

Identifiable

Key elements of
locker compartments

Locker compartment

036

Name

Stored items

Number

Figure 3.3: Key elements of locker compartments.

Accessible

Allocated

IdentifiableStorage unit

6
a

Variable name

Variable value

Memory address
18ff32

Storage unit name

Stored data

Storage unit number

Variables occupy
storage space,
their contents
can be stored

and used

Figure 3.4: Key elements of storage units.

3.1 Constants and variables 87

Basically, we need to determine the rules of naming a variable, requesting mem-
ory space, and using allocated memory space.

3.1.2.2 Rules of variable naming
There are rules for naming variables. Names of variables and constants in C are
marked by identifiers. As shown in Figure 3.5, identifiers consist of letters, numbers,
and underscores with the exception that an identifier cannot begin with a number.
Underscore and both cases of letters are used to increase readability. In C programs,
variable names are case-sensitive and we usually use lower case letters in identifiers.
Variable names should be meaningful to be remembered and read easily. For exam-
ple, we should try to use English words and their combinations as often as possible.
Some variables are named following some conventions. One notable example is
using i, j, and k for loop variables. Some keywords have been used as identifiers by
the language itself. Thus, we cannot use them as variable names. ANSI C has 32 key-
words (or reserved words) that cannot be used otherwise. There are 12 other identi-
fiers used for preprocessing, which should be prefixed by a # sign when using.

Good habit in programming
(1) Variable names consisting of multiple words make a program more readable.
(2) Meaningful identifiers make programs self-explained (have fewer comments).

For example, compare the following variable names:
– variablename
– variable_name
– VariableName

Composition Naming
convention Beware Prohibited

Letter, number,
underscore Meaningful Case-

sensitive Keyword

Keywords (reserved words) defined by ANSI C
auto, break, case, char, const, continue, default, do, double, else, enum, extern,

float, for, goto, if, int, long, register, return, short, signed, sizeof, static, struct, switch,
typedef, union, unsigned, void, volatile, while

Special words in preprocessing
define, elif, else, endif, error, if, ifdef, ifndef, include, line, progma, undef

Keyword

Identifier
A symbol used to identify an object. In programs, an identifier is a word with
special meaning defined by programmers.

Cannot begin
with number

Figure 3.5: Identifiers and keywords.

88 3 Basic data types

The second one follows the UNIX naming convention, whereas the third one follows the
Windows naming convention. Apparently, the first one is less readable and the rest are more
obvious at a glance.

3.1.2.3 Method of requesting memory space
A locker compartment is opened by pressing the “Store” button. Requesting mem-
ory space is done by defining variables. A variable definition is made up of data-
type identifier and variable name as shown in Figure 3.6.

Data-type identifiers are names of data types in C. For instance, “int a” defines an
integer variable a, where “int” represents integer type. More on data types will be
covered later. After we define a variable, computers allocate memory space of a cer-
tain size at a suitable location in memory based on this definition.

If we store the value into a storage unit when defining a variable, this process is
then called variable initialization in programming languages as shown in Figure 3.7,
where the operation on the storage unit is called a variable assignment.

In essence, a variable definition is the process of programmers requesting a storage
unit of a certain size, which is determined by the system based on the type of the
variable. When requested, computers allocate memory of that size at a suitable lo-
cation in memory.

Format of variable definition

type name;

int a; // Define an integer type variable a

Data types are
specification of

storage unit sizes.

E.g.

Figure 3.6: Format of variable definition.

Variable initialization

Assign a value to a variable when defining it.

Define an integer type variable a, initialize it to be 6
E.g.

Figure 3.7: Variable initialization.

3.1 Constants and variables 89

3.1.2.4 Usage of memory space
We put data into memory space for storage and further use. Programmers use var-
iable names to access these data. This is called “variable referencing” as shown
in Figure 3.8.

Essentially, a variable is a named block of continuous memory space. We request
and name such space by defining variables and use it through variable names. This
space is used to store data and the variable type determines its size. Let us see some
examples of variables.

Example 3.2 Checking the three key elements of variables
Check the three key elements of variables in a debugger.

[Analysis]
We first write a simple program with only one variable. Then we trace how space, address, and
value change when the variable is defined and initialized.

1. Source code
01 #include <stdio.h>

02 int main(void)

03 {

04 int a=6; //Define variable a, initialize it as 6

05 printf("%d\n", a); //Display value of a onto screen

06 return 0；

07 }

2. Tracing and debugging
We define variable a and initialize it to be 6 on line 4. Then we output its value onto the screen
on line 5. Here, we reference variable a by using its value.

General methods of tracing and debugging can be found in the chapter “Execution of
Programs.”

In the Watch window of the debugger, we notice that the value of a is 6, as shown in Figure 3.9.
More details of the debugger are covered in the corresponding chapter. “&” sign is used to obtain
the address of a, namely, the memory address of the storage unit. sizeof(a) calculates the size of
the space variable a takes up in memory, where the size is measured in bytes. In our case, a takes
up 4 bytes. The size of the variables is determined by their types. Variable a is an integer, which
takes up 4 bytes in this system.

Programmers access data in storage units by using variable
names.

Variable referencing

Variables
can only be
used after
definition

Figure 3.8: Variable referencing.

90 3 Basic data types

Variable storage size –determined by variable type

Variable value –controlled by programmers

Variable address –address of storage unit

Figure 3.9: Key elements of variables.

Example 3.3 Definition and initialization of variables
Several cases of variable definition and initialization are listed in Figure 3.10. Analyze the attrib-
utes of these variables according to their definition and initial value.

Row Variable definition
Variable

name
Content of

storage unit
Length of

storage unit

1 int sum sum sizeof(int)
2 int sum=16 sum 16 sizeof(sum)

3 long m n=12
m sizeof(m)
n 12 sizeof(n)

4 double x=23.568, y;
x 23.568 sizeof(double)
y sizeof(y)

5 char ch1=‘a’,ch2=66;
ch1 97 sizeof(char)
ch2 66 sizeof(ch2)

What value is in
the storage unit
if a variable is
not initialized?

Why is the value in
the storage unit 97
when we initialize

variable ch1 with ‘a’?

Figure 3.10: Example of variable definition and initialization.

[Analysis]
In Figure 3.10, the column “content of the storage unit” records the value stored in the storage
unit when the variable is defined. This value can be changed as needed during the execution of
programs. Note that these variables are all defined inside a function.

On the third row, we define two long integer m and n, where m is not initialized and n is
initialized to 12.

On the fourth row, we define two real numbers x and y. To figure out the size of the storage
unit for a variable, we can simply put the variable name or variable type inside parentheses of
size of operator.

On the fifth row, we define two character variables ch1 and ch2, where ch1 is initialized to
character literal a. However, the value stored in its storage unit is 97 instead of a, why is this
the case? This is because characters are stored in computers after being encoded in C environ-
ment. ASCII value for character a is exactly decimal number 97.

What is stored in the storage unit if we don’t initialize the variable then?
In contrast to locker compartments that are empty when not being used, a storage unit

not in use still has data in it. However, it is an arbitrary number, which is meaningless to
programmers.

3.1 Constants and variables 91

Example 3.4 Assignment of variables and memory space viewing
1 // Variable assignment

2 #include<stdio.h>

3 int main(void)

4 {

5 char c1,c2;

6

7 c1=97; // Assign 97 to c1

8 c2='b'; // Assign 98 to c2

9 printf("%c %c\n ", c1, c2); //%c: output c1 and c2 as characters

10 printf("%d %d ", c1, c2); //%d: output c1 and c2 as integers

11 return 0；

12 }

Output:

a b

97 8

[Analysis]
1. Program analysis
The %c and %d on lines 9 and 10 are format specifiers of output function printf. They are used
to output data onto screen in certain formats.

Take variable c1 as an example, which has value 97 in its storage unit. When output is as a
character, the character for ASCII value 97 is displayed on the screen. When output is as a num-
ber, 97 is displayed instead.

The three key elements of variable c1 and c2 are shown in Figure 3.11.

Variable name Content of storage unit Length of storage unit ASCII value
c1 97 1 byte a
c2 98 1 byte b

Figure 3.11: Three key elements of variables.

2. Program tracing
In Figure 3.12, we see that variables c1 and c2 have initial value −52, which is an arbitrary num-
ber. Because −52 has no corresponding character in ASCII, “?” is displayed instead.

92 3 Basic data types

Figure 3.12: Debugging step 1 of variable assignment.

After we assign values to c1 and c2, c1 has value 97, which is represented by character a in
ASCII, whereas c2 has value 98, which is represented by character b as shown in Figure 3.13.

Figure 3.13: Debugging step 2 of variable assignment.

3.2 Data types

Computers can handle all kinds of data, each with different attributes. We may cat-
egorize data based on their property, form of representation, storage size, and form
of construction.
– Property: integers, decimals, characters, etc.
– Form of representation: data can be represented by constants or variables in

programs.
– Storage size: different types of data take up different sizes of memory space.
– Form of construction: data can be of basic types or composite types.

Basic data types in practical problems include the numeral type and character type
as shown in Figure 3.14. To solve problems with computers, we need to store data
into computers before executing any operations. Hence, we should consider how
these basic data should be categorized and stored in computers first.

3.2 Data types 93

3.2.1 Representation of information in computers

3.2.1.1 Binary system
A lightbulb, or a switch, being on or off is two different states, so they can be used
to represent 0 and 1 in logic. We call such an information system a binary system as
shown in Figure 3.15.

3.2.1.2 Binary representation
The combination of states of multiple lightbulbs can be used to represent a se-
quence of 0 and 1. Computers consist of many electronic components internally,
which are controlled by circuits. A switch in these circuits can be set to one of two
stable states. Thus, we can use a combination of switch states to represent multiple
0s and 1s as shown in Figure 3.16. We use one 0 or 1 to represent a bit in computers,
but the question is: what can be represented by these 0s and 1s?

We are all familiar with decimal numbers. In fact, they represent a positional
numeral system as shown in Figure 3.17. Take decimal number 256 as an example,
the second digit (counting from right-hand side) 5 represents 50, which is the prod-
uct of 5 and position value of the second digit, namely 10 raised to the first power.
The third digit 2 represents 200, which is the product of 2 and position value of this

Lightbulb

Voltage Switch

Electric current

On
1

Off
0

Closed
1

Open
0

High
1

Low
0

On
1

Off
0

We can use two different stable
states to represent 0 and 1

Binary
system

Figure 3.15: Binary system.

Numeral

Character

Basic
data

Integer

Real number

Figure 3.14: Basic data.

94 3 Basic data types

digit, namely 10 raised to the second power. The base of position value in the deci-
mal system is 10.

Similarly, digits in the binary system are 0 and 1 while the base of position value
is 2. When adding binary numbers, we carry 1 to the next digit when two digits add
up to 2. When subtracting binary numbers, we borrow 1 from the previous digit and
use it as 2 during subtraction of current digits.

If we list all possible four-digit binary numbers, it is not hard to notice that there
are 16 corresponding decimal numbers, namely 0 to 15 as shown in Figure 3.18. We
may conclude that n-digit binary numbers can represent 2n numbers.

3.2.2 Processing of information in computers

Having learned how information is represented in computers, we now focus on how
information is handled in computers.

What can be
represented
by these 0s

and 1s?
1 1 0 1 11 0 0 A bit

1 1 1 1 10 0 0 A micro information
system: use

combination of switch
states to represent

information

Figure 3.16: Binary sequence represented by switches.

Position 7 6 5 4 3 2 1 0

Digit
0~1 1 1 1 0 1 0 1 0

Position
value 27 26 25 24 23 22 21 20

Position 3rd 2nd 1st

Digit
0~9 2 5 6

Position
value 102 101 100

Decimal
Binary

Figure 3.17: Positional numeral system.

Binary number 0000 0001 0010 0011 0100 0101 0110 0111
Decimal number 0 1 2 3 4 5 6 7
Binary number 1000 1001 1010 1011 1100 1101 1110 1111
Decimal number 8 9 10 11 12 13 14 15

n-digit binary numbers can represent 2n numbers

4-digit binary
numbers can
represent 16

numbers

Figure 3.18: Number of digits in binary numbers and numbers they represent.

3.2 Data types 95

3.2.2.1 Modular system
After a full day of meetings, Mr. Brown returned to his office at 5 pm. He noticed
that his clock stopped at 9 o’clock. When winding the clock, he found that the num-
ber of hours he needed if winding clockwise and the number of hours he needed if
winding counterclockwise added up to 12. For example, turning the short hand 8 h
forward has the same effect of turning it 4 h backward. We say that 8 and 4 are the
complement of each other in the full cycle of a clock, namely 12 h. A clock can be
seen as a counter of time. We call the counting interval of a recurrent counting sys-
tem “modulus.” We can replace subtraction with addition in any counting system
with modulus as shown in Figure 3.19.

3.2.2.2 Binary modular system
There is a domain for data in modular systems, where the data can change and
recur. In fact, binary memory space is also a modular system. For instance, in a
memory space of four-digit binary numbers as shown in Figure 3.20, the value can
change into 1111 from 0000 by repeatedly adding 1, which matches the character-
istics of a modular system.

Turn 4 hours backward 9-4=5

Turn 8 hours forward 9+8=12+5=5

8 hours forward is
equivalent to 4 hours
backward. 8 and 4 are

complement of each other in
the full cycle of a clock,

namely 12 hours

• Counting interval of a recurrent counting system is called “modulus”
• The sum of a number and its complement is the modulus in a modular system
• Subtraction can be transformed to addition in a counter with modulus

Rules

Figure 3.19: Modular system.

Position 3 2 1 0
Minimum 0 0 0 0
Maximum 1 1 1 1

Modulus=[1111-0+1]2=[1,0000]2=[24]10=[16]10

Figure 3.20: Binary modular system.

96 3 Basic data types

We can calculate the modulus of four-digit binary numbers by subtracting the mini-
mum representable number from the maximum and adding one. The result is 16,
which is exactly 2 raised to the fourth power.

Mr. Brown wanted to verify whether subtraction can be replaced with addition
in this binary modular system. He planned to calculate 0 minus 6 and 0 plus 10 and
compare the results as shown in Figure 3.21.

Based on the conclusion above, the complement of −6 is 10 in a system with modu-
lus 16, so the results should be identical. 0 plus 10 is [1010]2, so [1010]2 ought to be
the complement of −6.

However, this leads to a question: should [1010]2 represent −6 or 10?
A rule of representing data in computers is thus needed, Mr. Brown thought.

We could use the most significant bit to distinguish between positive and negative
numbers, where 1 indicates negative and 0 indicates positive. As this bit is used to
indicate the sign of a number, it is also called “sign bit.”

Two problems are yet to be solved after the verification:
(1) We need to review the domain of four-digit binary numbers (0000 to 1111) after

introducing sign bit.
(2) We need to find a pattern of relations between positive and negative binary

numbers in a signed system.

3.2.2.3 Representation of numbers in binary modular system
Finding a pattern of relations between positive and negative binary numbers in a
signed binary system Mr. Brown decided to tackle the second problem first. To fig-
ure out relations between positive and negative numbers, it might be easier for us
to consider two numbers with the same absolute value. We could use an actual
number, for example, 6, and try to find a relation between binary representations of
6 and −6. As shown in Figure 3.22, Mr. Brown tried flipping and addition to see
whether there is any relation between them.

Subtraction Addition
Minuend 0 0000 0000 0 Addend

Subtrahend 6 0110 1010 10 Addend
Difference -6 1 0 1 0 10 Sum

Sign bit
1 Negative

0 Positive
Representation
rules of data in

computers

Discussion: verify that 0-6 = 0+10 in a system with modulus 16

Does 1010
represent -6 or

+10?

Figure 3.21: Complement in the binary system.

3.2 Data types 97

“Bitwise not” on the third row of the table means executing not operation (flip 0 to
1 and flip 1 to 0) on each bit.

After a bitwise not operation and adding by 1, Mr. Brown noticed that −6 be-
came its own absolute value, and 6 became the complement representation of −6.
This is the rule of complement representation as shown in Figure 3.22.

As complement representation is used in subtraction, there is no need to use it
on positive numbers. However, we define the complement representation of posi-
tive numbers to be the same to make our theory comprehensive.

One of the merits of complement representation is that subtraction, multiplica-
tion, and division can all be transformed into addition, which largely simplifies cir-
cuit design of arithmetic units in computers. Although signed integers can be
represented in multiple ways in computers, we usually use 2’s complement to repre-
sent them.

3.2.2.4 Range of binary system
With complement representation, Mr. Brown tried to solve the first problem, which is
to determine the range of signed four-digit binary numbers. As shown in Figure 3.23,
1 or 0 on the most significant bit now indicates sign. Using the fact that the absolute
value of the minimal negative number (obtained by applying bitwise not and adding
1) should be the largest, he found the minimum negative number and the maximum

-6 +6
Binary representation 1010 0110

Bitwise not 0101 1001
Add 1 0110 1010 Complement

representation of -6

Absolute value of -6

Complement: we compute complement representation of a negative number
by executing bitwise not and addition by 1 on its absolute value
Absolute value of complement: bitwise not and addition by 1

Rules of complement representation

Two’s complement is
the most frequently

used integer
representation method

in computers.

Figure 3.22: Two’s complement.

Position 3 2 1 0
Minimum negative number 1 0 0 0
Maximum positive number 0 1 1 1

Modulus=[0111-1000+1]2=[0111+1000+1]2=[24]10=[16]10

Range of signed 4-digit binary integers:-23~23-1

Sign bit

Range of signed n-digit binary integers -2n-1~2n-1-1

Derivation: make sure
the absolute value

after bitwise not and
addition by 1 is as
large as possible

Complement
of positive
number is

itself

Figure 3.23: Range of binary numbers.

98 3 Basic data types

positive number and noticed that modulus was still 16. Note that the sign bit was
also flipped and added by 1. Hence, the range of signed four-digit binary integers
is −23 to 23–1. Similarly, we can figure out the range of signed n-digit binary integers.

Think and discuss Does [1010]2 represent −6 or + 10 in a signed four-digit binary integer system?
Discussion: The range of such a system is −23 to 23–1, namely −8 to + 7, which doesn’t include + 10.
Hence, [1010]2 represents −6.

3.2.3 Basic data types in C

Data types indicate the size of the space that data need. We can figure out the do-
main and operations allowed of data by examining data type. There are three basic
types: integer, real numbers, and characters as shown in Figure 3.24.

Unsigned integers have no sign bit, so they only represent positive integers.
Real numbers are represented in a different way, which will be covered in remain-
ing later.

Each data type is of a certain size and has its own domain. It is worth noting
that the size of a type may vary on different computers. The size of long type in C is
always defined as word length of the machine, where word length is the maximum
number of bits of binary data a computer can process in an integer operation. PC
nowadays usually uses 32 bits for integers.

int, float, and char are the most frequently used basic types.
Although the size of types varies in different computers, there are still some

patterns and rules, which are given below.

Rules of data types
(1) The minimum length of a storage unit is 8 bits, which can be used for one character. One

byte is equal to 8 bits. Lengths of other storage units are multiples of 8 bits.
(2) The storage unit of pointer type records the “number of a storage unit,” which is an inte-

ger, thus it has the same length as integers.
(3) Floating-point numbers are usually 2 N times (N is an integer) the length of integers as

shown in Figure 3.25.
(4) There are two types of storage rules: integers, characters, and pointers follow integer

rules, whereas floating-point numbers have their own rules.

Think and discuss How do we test the size of types?
We mentioned that the size of types might vary in different systems. How do we know the size
of a type in the system we are using?
Discussion: C provides the sizeof operator for testing type sizes. sizeof is an operator in C/C ++,
which returns number of bytes an object or a type takes up in memory.

3.2 Data types 99

C
at

eg
or

y
H

as
 s

ig
n

K
ey

w
or

d
M

ea
ni

ng
Le

ng
th

R
an

ge

In
te

ge
r

Ye
s

in
t

In
te

ge
r

16
-2

15
~

21
5 -

1
-3

27
68

~
32

76
7

sh
or

t
S
ho

rt
 in

te
ge

r
16

-2
15

~
21

5 -
1

-3
27

68
~

32
76

7
lo

ng
Lo

ng
 in

te
ge

r
32

-2
31

~
23

1 -
1

N
o

un
si

gn
ed

 in
t

U
ns

ig
ne

d
in

te
ge

r
16

0~
21

6 -
1

0~
65

53
5

un
si

gn
ed

 s
ho

rt
U

ns
ig

ne
d

sh
or

t
in

te
ge

r
16

0~
21

6 -
1

0~
65

53
5

un
si

gn
ed

 lo
ng

U
ns

ig
ne

d
lo

ng
 in

te
ge

r
32

0~
23

2 -
1

 0

~
42

94
96

72
95

R
ea

l n
um

be
r

Ye
s

flo
at

S
in

gl
e-

pr
ec

is
io

n
re

al
 n

um
be

r
32

-2
12

8 ~
21

28

do
ub

le
D

ou
bl

e-
pr

ec
is

io
n

re
al

 n
um

be
r

64
-2

10
24

~
 2

10
24

C
ha

ra
ct

er
Ye

s
ch

ar
C
ha

ra
ct

er
8

-2
7 ~

27
-1

-1
28

~
12

7
N

o
un

si
gn

ed
 c

ha
r

U
ns

ig
ne

d
ch

ar
ac

te
r

8
0~

28
-1

 0

~
25

5

Fi
gu

re
3.
24

:B
as

ic
da

ta
ty
pe

s.

100 3 Basic data types

Example 3.5 Using sizeof operator to test type sizes
We can design a program to test sizes of common types.

1 //Use sizeof to test type sizes

2 #include<stdio.h>

3 int main(void)

4 {

5 printf("int size = %d\n", sizeof(int));

6 printf("short int size = %d\n", sizeof(short int));

7 printf("long int size = %d\n", sizeof(long int));

8 return 0;

9 }

Output:

int size = 4

short int size = 2

long int size = 4

Explanation: int size = 4 indicates that the size of int in the IDE in which this program is exe-
cuted is 4 bytes.

3.3 Storage rules of integers

There are four integer types in C:
– Basic type: Keyword is int, which are the first three letters of integer.
– Short type: Keyword is short [int] (note that content inside square brackets can

be omitted).
– Long type: Keyword is long [int].
– Unsigned type: There are three unsigned types, namely unsigned [int], un-

signed short, and unsigned long. They can only be used to store unsigned
integers.

Character char

Integer int

Real number float

Pointer Number of storage unit

2N times of integers

same as int

2N times of 8 bits

8bit——1byte

Figure 3.25: Size pattern of data types.

3.3 Storage rules of integers 101

3.3.1 Signed integers

We shall use −12 as an example to learn the characteristics and rules of storage of
signed integers. Suppose int type takes 16 bits in the following discussion.

The signed binary form of integer −12 is obtained by applying bitwise not and
addition by 1 to integer 12 as shown in Figure 3.26. Careful readers may have no-
ticed how the sign bit turns to 1 during this process. Comparing the binary represen-
tation of + 12 and −12, we find that sign bit is not the only difference.

Storage rules of signed integers can be summarized as follows: positive integers are
stored as its binary representation, whereas negative integers are stored as its com-
plement representation as shown in Figure 3.27.

3.3.2 Unsigned integers

Again, we suppose the size of unsigned int is 16 bits.
Unsigned integers can only represent positive integers and zero. The sign bit

used in signed integers is merely a normal bit in unsigned cases. The complement
of 12 in signed representation is now decimal number 65524 in unsigned representa-
tion as shown in Figure 3.28.

Hence, we need to pay extra attention when storing and displaying data, as a
binary number in the same storage unit can represent different things when used
differently.

Binary representation of +12 0000 0000 0000 1100
Bitwise not 1111 1111 1111 0011

Add 1 1111 1111 1111 0100

Signed number Storage form in memory
Integer +12 0000 0000 0000 1100
Integer -12 1111 1111 1111 0100

Sign bit: 0 – positive; 1 - negative

Storage of
integer +12

and -12

Figure 3.26: Storage of signed integers.

Signed integer Storage rule

Positive integer Binary representation
Negative integer Bitwise not and add 1 to its corresponding positive value

Figure 3.27: Storage rule of signed integers.

102 3 Basic data types

3.3.3 Characters

Character type has a size of 8 bits. When storing character A into computers, we are
in fact storing its ASCII value 65 (here it is a decimal number) into a storage unit. As
a result, character and integer data can be used interchangeably, where “inter-
changeably” means they share the same storage rules and operation rules as shown
in Figure 3.29.

Example 3.6 Example of integers
Output “a” and “b” as characters and as numbers as shown in Figure 3.30.

01 #include <stdio.h>
02 intmain(void)
03 {
04 printf("%c %c\n",'a','b'); //%c means the output will be formatted as characters
05 printf("%d %d\n", 'a','b'); //%d means the output will be formatted as integers
06 return 0 ;
07 } ASCII value of

character ‘a’ and
character ‘b’ are 97
and 98 respectively

Result:

97 98

Figure 3.30: Display of integers.

Storage form in memory Corresponding decimal
unsigned number

0000 0000 0000 1100 12
1111 1111 1111 0100 65524

No sign bit: it is used as a normal bit

Unsigned bit can only represent positive integers and zero
Rule

Complement
representation of

-12 in signed
number

representations

Figure 3.28: Storage of unsigned integers.

Character ASCII value Storage form in memory

A 65 0100 0001

A character is store as the binary form of its ASCII value

Rule

Characters and
integers can be

used
interchangeably

Fig. 3.29: Storage of characters.

3.3 Storage rules of integers 103

[Analysis]
On line 4, %c means the output will be formatted as characters, thus the result is character a
and b.

On line 5, %d means the output will be formatted as integers, thus the result is ASCII value
of a and b, namely 97 and 98.

Through this example, we learned that the same data can be displayed as different
things by changing the output format.

3.4 Storage rules of real numbers

Figure 3.31 shows an example program of displaying real numbers. Floating-point
numbers are how real numbers are stored in computers.

On line 4, we define a float variable f with initial value 123.456. On line 5, two con-
secutive equal signs form an operator that checks whether its two operands are
equal. The entire line outputs “Yes” to screen if f is equal to 123.456. On line 6, “No”
is output if the comparison yields false. Combining these statements, we see that
either yes or no shall be displayed. Line 7 outputs the value of f onto the screen.
Readers may have guessed that yes would be displayed. However, as shown in the
figure, the actual output may be surprising.

Aren’t computers accurate computing tools? Why is there a deviation in results?
Can we trust the results given by computers?

In fact, this is the error generated by binary representation. We use finite 32-bit
sequences to represent infinite real numbers. Thus, the representation is an approx-
imated value in most cases.

01 #include <stdio.h>
02 int main(void)
03 {
04 float f=123.456;
05 if (f == 123.456) printf("Yes"); //If f = 123.456, output Yes
06 else printf ("No"); //Otherwise output No
07 printf("f=%f \n",f); //Output value of f
08 return0
09 }

Result
No
123.456001

Case Study

Trap of floating -point numbers

Why is this
the case?

Figure 3.31: Trap of floating-point numbers.

104 3 Basic data types

3.4.1 Representation of real numbers

To figure out the reason behind the error, let us take a look at the representation of
real numbers.

When a number is extremely small or large, such as the mass of an electron
(9 × 10–28 g) or mass of the sun (2 × 1033 g), we can write it as a real number multi-
plied by the nth power of 10, where the integer part of the real number has only
one digit. This method is simple, convenient, yet accurate. Such representations
are called “scientific notation.”

3.4.2 Representation of floating-point numbers

Modern computers adopted the floating-point number representation as shown
in Figure 3.32. In essence, it uses scientific notation to describe real numbers.
Floating-point representations describe significant figures and range of repre-
sentable numbers separately. More specifically, they use a fraction, a base, an ex-
ponent, and a sign bit to represent real numbers.

We shall use 32-bit float type, whose bit layout is shown in Figure 3.33, as an exam-
ple. The fraction M occupies 23 bits. The exponent e, together with a bias, forms the
biased exponent. Exponent represents the exponential part and occupies 8 bits.
Since floating-point numbers are signed, one bit is needed for the sign bit.

The exponent occupies 8 bits, which can be used to represent numbers from
−128 to 127. IEEE-754 uses value −128 for special purposes, so the actual range e can
represent is −127 to + 127 and the exponent bias of float type is 127. Using exponent
bias makes the exponent an unsigned number so that operations can be done more
quickly.

The IEEE-754 standard regulates the representation method we just described. In
addition to 32-bit float type, there is also a 64-bit double type. Formula to compute
the real value assumed by these representation methods is shown in Figure 3.34.

123.456=1.23456 10 2

fraction base

exponent

Representation of real numbers in computer:
floating-point representation
Describe significant figures and range of representable numbers separately.
Use a fraction, a base, an exponent and a sign bit to represent real numbers.

We can move the
decimal point by

changing exponent
value so that we can
represent more real

numbers easily.

Figure 3.32: Representation of floating-point numbers.

3.4 Storage rules of real numbers 105

Knowledge ABC IEEE-754
In the 1960s and 1970s, computer manufacturers use different floating-point representations in a
wide variety of computers. It was extremely inconvenient to exchange data and cooperate without
a universal standard. To solve this problem, a floating-point number working group in the
Institute of Electrical and Electronics Engineers (IEEE) started to work on a standard for floating-
point numbers in the late 1970s. In 1980, Intel announced Intel 8087, a floating-point coprocessor
with advanced and reasonable floating-point representations and operations. Its floating-point
arithmetic was later adopted by IEEE as the standard and published in 1985. In fact, it had already
been adopted by various computer manufacturers in the early 1980s and had become a de-facto
industry standard.

Floating-point numbers in IEEE-754 consist of three fields: a sign bit on the left, a biased ex-
ponent, and a fraction on the right.

Example 3.7 Storage of real numbers
Convert −12 and 0.25 to 32-bit floating-point numbers.

[Analysis]
The conversion process is shown in Figure 3.35.

12 is 1100 in binary, which can be normalized as 1.1 * 23, so the exponent is 3. As it is nega-
tive, the sign bit is 1. The biased exponent, whose binary form is shown in the “biased expo-
nent” column in Figure 3.35, is calculated by adding exponent 3 and exponent bias 127.

Real value =[(-1)sign] [1.fraction] (2Biased exponent -bias)

Type
Storage format

Total number of
bits Bias

Sign bit Biased
Exponent Fraction

Short real numbers
(float) 1 8 23 32 127

Long real numbers
(double) 1 11 52 64 1023 The bias is

subtracted

Figure 3.34: Formula to compute the real value.

Sign bit s Biased exponent Fraction m

Number of bits 1 8 23

Describe significant
figures and range of

representable
numbers separately

B = M 2 e
B ——Binary number
M——Fraction, which determines representation precision
e ——Exponent, which determines representation range

Biased exponent = e + bias

High Low

Figure 3.33: Storage of float type.

106 3 Basic data types

Decimal Normalization Exponent Sign Biased exponent
(exponent + bias) Fraction

-12.0 -1.1x23 3 1 10000010 1000000 00000000 00000000

0.25 1.0x2-2 -2 0 01111101 0000000 00000000 00000000

(12)10 → (1100)2 → 1.1*23

Figure 3.35: Floating-point representation of real numbers.

To obtain the fraction, we omit the 1 left to the decimal point in the normalized number and
then pad the rest with 0.

Similarly, we can write out the 32-bit floating-point representation for 0.25.
Comparing the floating-point representation of −12 and complement representation of −12 as

shown in Figure 3.36, we may conclude that even integers and real numbers of the same value
are stored as completely different values inside computers.

Binary representation of +12 0000,0000,0000,0000,0000,0000,0000,1100
Bitwise not 1111,1111,1111,1111,1111,1111,1111,0011

Add 1 1111,1111,1111,1111,1111,1111,1111,0100

Representation in memory
Integer -12 1111,1111,1111,1111,1111,1111,1111,0100

Real number -12.0 1100,0001,0100,0000,0000,0000,0000,0000

Figure 3.36: Comparison of integer and real number storage.

Conclusion Storage rules of data
Integers and real numbers have different rules of storage. Even the same number can have dif-
ferent values when saved as integer and as real number. When some data are stored as a cer-
tain type, we should never use them as another type, unless we know the essence of these
data.

Example 3.8 Binary form of 123.456
Analyse the floating-point representation of 123.456.

[Analysis]
The 32-bit floating-point representation of 123.456 can be obtained after normalization and
computing biased exponent as shown in Figure 3.37. If we use the real value formula to convert
it back to a decimal number, we will find an extra 1 at the end. This is due to the display format
of floating-point numbers in programs.

3.4 Storage rules of real numbers 107

Decimal Normalization Exponent Sign Biased exponent
(exponent + bias) Fraction

123.456 1.111011
01110100101111001x26 6 0 1000,0101 1110110,11101001,01111001

Representation of 123.456 in memory (32 bits)

Convert binary representation of 123.456 into decimal
[(-1)^ sign]×[1.Fraction]×(2^[Biased exponent 127])
=[(-1)^0]*[1. 1110110,11101001,01111001]*2^[1000,0101-
0111,1111]
=1. 1110110,11101001,01111001*2^6
=1.92900002002716*64
=123.456001281738

Figure 3.37: Floating-point representation of 123.456.

3.4.3 Display precision and range of floating-point numbers

The biased exponent indicates the location of the decimal point in the data and de-
termines the range of floating-point numbers as shown in Figure 3.38. The range of
the biased exponent of float type is −127 to + 128; therefore, float can represent
numbers from −2128 to + 2128.

The number of bits in fraction determines the precision of float; 2 to the 23rd power
has seven digits when converted to decimal. This means that there are at most
seven significant figures, but only the first six are guaranteed to be correct. In other
words, the precision of float type is six or seven significant figures.

Similarly, the precision of double type is at most 16 digits.
In conclusion, as shown in Figure 3.39, both display and storage of decimal

real numbers have their own set of rules, which we need to understand. It is partic-
ularly worth noting that we should avoid checking whether two real numbers are
equal as the result may be unexpected.

Sign bit s Biased exponent Fraction m
Number of bits 1 8 23

Number of bits Range Equivalent range in decimal Notes
Exponent 8 -2 ~2 -1 -128~127 Signed number

Range of float -2 ~ +2 -3.40*10 ~ +3.40*10
Fraction 23 Unsigned number

Precision of float 2 8388608 7 digits At most 7 significant figures

Use 32-bit
float type as
an example

Figure 3.38: Display precision and range of floating-point numbers.

108 3 Basic data types

3.5 Operators and expressions

In the section of algorithms, we have seen problems like scoring, price guessing,
and things whose number is unknown. To solve them, we used operations such as
addition, subtraction, multiplication, division, comparison, and combination of
multiple comparisons as shown in Figure 3.40.

These can be categorized as the three most important types of operations in C as
shown in Figure 3.41.

The system converts them to binary form according to international standard and
stores them.

Storage of decimal real numbers

The system converts binary form stored in machines to decimal form according to
international standard, and then displays in a precision defined by users.

Display of decimal real numbers

Avoid checking whether two real numbers are equal.
Comparison rule of real numbers

Figure 3.39: Various rules of real numbers.

Problem Data Processing Operations involved

Scoring by judges
Discard highest and lowest score Comparison
Compute average Addition, division

Guessing price Guess is higher, lower or equal Comparison

Things whose number is
unknown

Remains 2 when divided by 3, remains 3 when
divided by 5, remains 2 when divided by 7

Division (compute remainder),
check multiple conditions
simultaneously

Figure 3.40: Operations used in data processing.

Type of operation Major cases Class Problems involved

Addition, division, etc.
Addition, subtraction,
multiplication, division, compute
remainder

Arithmetic
operation

Relational
operation

Logical
operation

• Operators and
precedence of
operators

• Associativity of
operators and data

• Retrieving rule of
operation result

Data comparison Larger than, smaller than, equal
to, not equal to

Check multiple
conditions
simultaneously

All conditions hold, not all
conditions hold, none of the
conditions holds

3 most common
operations in C

Figure 3.41: Categorization of operations used in data processing.

3.5 Operators and expressions 109

3.5.1 Operators

Operators of C are shown in Figure 3.42, in which the first four are used more fre-
quently. Their usage will be introduced later.

3.5.2 Expressions

Connecting operators and objects to be operated (or operands) following syntax
rules, we get statements that are called expressions in C as shown in Figure 3.43.
Depending on the operators used, there are various kinds of expressions such as
arithmetic expressions and assignment expressions.

3.5.3 Precedence of operators

As an expression may contain multiple operators, the order of execution can affect
the result. This is why we need to determine which operation should be executed
first when there is more than one of them. We call this order precedence of opera-
tors as shown in Figure 3.44.

Type Operators Use case
Arithmetic + - * / % ++ - - + - numerical computation
Assignment = and its extensions retrieve computation result
Relational > < >= <= = = != compare data
Logical && || ! check multiple conditions simultaneously
Bitwise & | ^ ~ << >> binary number computation
Conditional ? : easier comparison of data
Comma list multiple expressions
Other & sizeof obtain address, size of storage unit

Figure 3.42: Operators in C.

Expression
An expression is a statement that connects operands using operators following C grammar rules

Operand

Operator

2 * y + 5

(Operating object)

Figure 3.43: Expressions.

110 3 Basic data types

Operators are listed top to bottom in descending precedence, where operators
with the highest precedence are listed on the top and operators with the same level
of precedence are on the same row.

The last column indicates the associativity of operators, namely which opera-
tion gets executed first when given operations have the same level of precedence.

Normally, we don’t have to recite the precedence in C, but we need to keep in
mind that parentheses have the highest precedence so we can use them to override
the precedence of operators as shown in Figure 3.45.

Operator Description Associativity
() Parentheses From left to right

!, ++, --, sizeof NOT, increment, decrement,
compute size of type From right to left

*, /, % Multiplication, division, remainder From left to right
+, - Addition, subtraction From left to right

<, <=, >, >=
Less than, less than or equal to,
greater than, greater than or equal
to

From left to right

= =, != Equal to, not equal to From left to right
&& AND From left to right
|| OR From left to right
=,+=, *=, /=,
%= ,- =

Assignment operator and
compound assignment operators From right to left

Precedence of operators
The order of evaluation of different operators in an expression.

Figure 3.44: Precedence and associativity of operators.

• Parentheses have the highest level of
precedence

• Parentheses can be used to override
precedence

Parentheses

Arithmetic
operations

Relational
operations

&& ||
Assignment
operations

High precedence

Low precedence

Figure 3.45: A summary of precedence.

3.5 Operators and expressions 111

Good habit in programming
When using operators, we need to take good care of precedence. We should use parentheses to
determine precedence and avoid using default precedence. This keeps us from misunderstand-
ing a program when reading it and from making mistakes in our own programs by unintention-
ally using default precedence, which deviates from our design.

3.5.4 Associativity of operators

Associativity defines the order in which operators of the same precedence are eval-
uated in an expression as shown in Figure 3.46. Take 10/5*2 as an example. The
result will be different when we evaluate from left to right and from right to left.

Arithmetic operators are associated from left to right, that is, operators on the left
are evaluated first, which is the order we are familiar with.

In the case of expression x = y = z, if we assign from left to right, then we assign y
to x first and then z to y, which yields x = 1 and y = 2. In contrast, if we evaluate from
right to left, then we assign z to y first and then y to x, which yields x = 2 and y = 2.

Which one do we choose then, left to right or right to left? People have deter-
mined that the associativity of the assignment operator is from right to left, so the
second assignment should be executed first. Rules of precedence and associativity
are summarized in Figure 3.47.

Associativity of operators
• The direction that operators are associated is called associativity.
• When there are multiple operators with the same level of precedence in one expression, the

order of evaluation is determined by associativity.

10/5*2 Associativity
determines whether

evaluation starts
from left or from

right.

Left-associated
From left to right (10/5)*2
From right to left 10/(5*2)

From left to right x=1, y=2
From right to left x=2, y=2

int x, y= 1, z= 2;
x=y=z ;

Right-associated

Figure 3.46: Associativity of operators.

• Precedence and associativity determine order of execution of operators in an expression.
• Operators are first executed in the order of precedence; operators with the same level of

precedence are executed in the order determined by associativity.
• Left-associated means operators on the left are executed first, while right-associated means

operators on the right are executed first.

Rules of precedence and associativity of operators

Figure 3.47: Precedence and associativity.

112 3 Basic data types

3.6 Numerical operations

When shopping, we need to execute all kinds of operations on prices and quantities
to get the result. To do numerical computations in C, we have to define the repre-
sentation and rules of common mathematical entities, including arithmetic opera-
tors, numbers, and character operands as shown in Figure 3.48.

3.6.1 Arithmetic operators and expressions

3.6.1.1 Arithmetic operators and expressions
An arithmetic operation involves arithmetic operators and expressions as shown
in Figure 3.49. An arithmetic expression is a statement that connects operands
using arithmetic operators. Addition, subtraction, multiplication, and division oper-
ations are familiar to us, whereas operators of multiplication and division are repre-
sented by “*” and “/” in C due to limitation of keyboards. It is worth noting that
division of integers yields integer as well. We can use this rule to simplify algo-
rithms in many cases.

In addition, C defines a remainder operation, which is used to calculate the remain-
der in integer division. Essentially, division is merely repeated subtraction. We repeat

Mathematical
expressions

ab-c
1
x3

a+6
c+d

b2-4ac

How do we represent
arithmetic operators,

numbers and
character operands

in C?

Figure 3.48: Operations and their representations.

Operator Meaning Notes
+ Addition operator or positive sign
- Subtraction operator or negative sign
* Multiplication operator

/ Division operator Division of integers yields integer, the
fraction part is discarded

% Remainder operator Remainder operation requires operands
to be integers

An arithmetic expression is a statement that connects operands using arithmetic operators
Arithmetic expression

Figure 3.49: Arithmetic operators and expressions.

3.6 Numerical operations 113

subtraction until the dividend is smaller than the divisor and the remaining part is
called the remainder. Using the remainder operation can simplify algorithms as well.

However, writing arithmetic expressions in C is different from writing them in
mathematics as shown in Figure 3.50. In particular, the multiplication operator can-
not be omitted and we can use parentheses to override precedence.

Example 3.9 Example of arithmetic operations
Define two integers a and b, with initial values 7 and 3, respectively. Output sum, difference,
product, quotient, remainder, and mean of them onto the screen.

[Analysis]
The program and output are shown in Figure 3.51. We can write expressions inside formatted
output function printf() to output results.

#include<stdio.h>
int main(void)
{

int a=7;
int b=3;
printf("%d ",a+b); // Compute and output sum of a and b
printf("%d ",a-b); // Compute and output difference of a and b
printf("%d ",a*b); // Compute and output product of a and b
printf("%d ",a/b); // Compute and output quotient of a divided by b
printf("%d ",a%b); // Compute and output remainder of a divided by b
printf("%d ",(a+b)/2); // Compute and output average of a and b
return 0;

}
Output 10 4 21 2 1 5

We can’t tell which
operation yields
which number.

Figure 3.51: Example of arithmetic operations.

The output is a sequence of integers. Without the program, we won’t be able to tell which is the
sum or the product.

To get clearer results, we can add texts in the output function as shown in Figure 3.52. Note
that the integer division on line 10, which is 7 / 3, yields 2. Use of printf() function is covered in
detail in the chapter “Input/Output.”

Mathematical
expressions Expressions Notes

ab-c a*b-c

• Multiplication operator can’t be omitted
• Use parentheses to override precedence

1
x3 1/(x*x*x)

a+6
c+d (a+6)/(c+d)

b2-4ac=0 b*b-4*a*c

Figure 3.50: Mathematical expressions and C expressions.

114 3 Basic data types

01 #include<stdio.h>
02 int main(void)
03{
04 int a=7;
05 int b=3;
06
07 printf("a+b=%d\n",a+b); // Compute and output sum of a and b
08 printf("a-b=%d\n",a-b); // Compute and output difference of a and b
09 printf("a*b=%d\n",a*b); // Compute and output product of a and b
10 printf("a/b=%d\n",a/b); // Compute and output quotient of a divided by b
11 printf("a%%b=%d\n",a%b); // Compute and output remainder of a divided by b
12 printf("average is %d\n",(a+b)/2); // output average
13 return 0;
14 }

Improve
output format

Result
a+b=10
a-b=4
a*b=21
a/b=2
a%b=1
average is 5

Figure 3.52: Refinement of the example program.

Example 3.10 Time conversion
Convert input time in seconds into minutes and seconds, for example, 500 s is 8 min and 20 s.

[Analysis]
We are asked to write a program that output corresponding minute (variable minute) and sec-
ond (variable second) given time in seconds (variable time).

If time = 500, then minute = 8 and second = 20. The program is as follows.

01 #include<stdio.h>

02 int main(void)

03 {

04 int time; // Define an input variable

05 int minute, second;

06 printf("Please input a time in integer seconds"); // Screen prompt

07 scanf("%d",&time); // Obtain the time input

08 minute = time/60; // Calculate minute

09 second = time%60; // Calculate remaining seconds

10 printf("%d minutes %d seconds", minute,second);

11 return 0;

12 }

On line 6, we use printf() function to prompt users to input time value.
On line 7, we use scanf() function to obtain users’ keyboard input and store it into variable
time.
On line 8, we use integer division to calculate the number of minutes in time.
On line 9, we use the remainder operation to calculate the remaining seconds.
Finally, we output the desired result.

3.6 Numerical operations 115

3.6.1.2 Increment and decrement operation
When programming, we often need to write “i = i + 1” or “i = i – 1”. C provides short-
hands for these two operations as shown in Figure 3.53.

The ++ operator and –– operator are called increment operator and decrement opera-
tor, respectively. They are unary operators. ++ operator adds 1 to its operand, whereas
– operator subtracts 1 from its operand. Note that their operands must be integers.

Increment and decrement are not something we have experienced, so we need
to be careful and follow the rules when using them. Some examples are shown
in Figure 3.54 to help readers become more comfortable with these two operators.

In the first row, y = ++x will increment x first and then assign x to y. It is equivalent
to ++x; y = x.

In the second row, y = x++ means assigning and incrementing, which is equiva-
lent to y = x; x++. Examples of –– operators work in the same way.

Figure 3.55 shows two programs that differ in only one line. The program on the
left does increment before assignment while the other does assignment before the
increment. This difference leads to different outputs. If the operand of increment or
decrement is going to be accessed by other objects in the same statement, we need
to determine where to put these operators carefully.

Frequently
used

operations

int i;

i = i+1
i = i-1

i ++
i --

Shorthand
in C

• ++ and –– is an operator are called increment and decrement operator respectively. They are unary operators.
• ++ increases the operand by 1 while –– decreases the operand by 1.
Note that operands of increment and decrement operator should be integers.

Increment and decrement operator

Figure 3.53: Increment and decrement operator.

Operator Example Meaning Equivalent
statement

++
y = ++x Increase x by 1, then assign x to y ++x; y=x;

y = x++ Assign x to y, then increase x by 1 y=x; x++;

--
y = --x Decrease x by 1, then assign x to y --x; y=x;

y = x-- Assign x to y, then decrease x by 1 y=x; x--

int x, y;

Figure 3.54: Increment and decrement example 1.

116 3 Basic data types

We can make outputs of these programs identical by modifying the lines that
differ as shown in Figure 3.56.

As long as a statement consists of only the ++ operator and its operand (say vari-
able x), the operator simply adds 1 to x, regardless of its position relative to x. In
other words, it doesn’t matter where we put increment or decrement operators if
the object forms a statement on its own.

In C programming, we should use increment and decrement operators with cau-
tion. In particular, pay attention to the following issues:

int main(void)
{

int x, y ;
x=10 ;
y=++x ;
printf(″%d, %d \n″, x, y) ;
return 0 ;

}
The result is
11 11

int main(void)
{

int x, y ;
x=10 ;
y=x++

return 0 ;
}
The result is
11 10

If the operand of increment or decrement is going to be accessed by other objects in the
same statement, we need to carefully determine where to put these operators.

Conclusion 1

printf(″%d, %d \n″, x, y) ;

Figure 3.55: Increment and decrement example 2.

int main(void)
{

int x, y;
x=10;
++ x
y=x
printf(″%d, %d \n″, x, y);
return 0;

}

Result:
11 11

int main(void)
{

int x, y;
x=10;
x++
y=x
printf(″%d, %d \n″, x, y);
return 0;

}

Result:
11 11

If the operand of increment or decrement forms a statement on its own, it
doesn’t matter where we put the operator.

Conclusion 2

Figure 3.56: Increment and decrement example 3.

3.6 Numerical operations 117

(1) A statement with too many increment or decrement operations is hardly read-
able. One reason for writing incomprehensible code is probably that the gener-
ated machine code is more efficient. Nevertheless, unreadable programs will
only decrease programmers’ efficiency.

(2) Different compilers generate different results. This essentially prohibits us from
using too many increments or decrements in one statement.

(3) Doing so prevents us from debugging our program.

When a debugger is running, the minimum “execution step” is one line. If multiple
statements exist in a line, they are still executed in one “step.” Take x = a++*a++*a
++ as an example, the debugger will execute all four statements at once when we
trace the program step by step. As a result, it is hard to examine how the value of a
changes, which is exactly our purpose of debugging. If we can’t do this, then we
are denied the chance of debugging.

Good habit in programming
It is recommended to include at most one increment or decrement in a line.

3.6.2 Overflow problems in data operations

Every type has a value range. If operation on a variable yields values outside the
range, we won’t obtain the desired result.

Example 3.11 A problem of using unsigned number
Suppose we have the following variable:

unsigned char size;

What is the value of variable size after decrement if it initially has value 0?
Answer: As size is unsigned char, its value can’t be negative. In this case, it will become 0xFF.

Example 3.12 A problem of using character
Character type has value range −128 to 127 in C, so the following computation is risky:

char chr = 127;

int sum = 200;

chr +=1;

// 127 is the maximum value of char,

// so adding 1 causes overflow and yields -128 instead of 128

sum += chr; // As a result sum becomes 328 instead of 72

Preventing Program Errors
Pay attention to edge values when using variables.

118 3 Basic data types

3.7 Logical operations

3.7.1 Relational operations

In the price-guessing game, after a participant makes a guess, the host responds
with “too high,” “too low,” or “exactly.” The relation between the guess and actual
price can be obtained by comparison, which is one of “larger than,” “smaller than,”
and “equal to.” Such a comparison yields either true or false.

Let the participant’s guess be value and the actual price be ¥1680. We can write
the following relational expressions in C as shown in Figure 3.57. The results of
these comparisons can be represented by non-zero and zero.

“Relational operations” are in fact “comparison operations,” which compare two
data and determine whether certain relation holds between them. Relational ex-
pressions are obtained by connecting operands with relational operators as shown
in Figure 3.58.

Relational operators in C are shown in Figure 3.59. Some of them deviate from their
mathematical representations due to keyboard limitations. Readers should also

Possible case Representation Possible
result Representation

Comparison
of value and
1680

value is greater than 1680 value>1680 Met Non-zero value
value is less than 1680 value<1680

Not met 0value is equal to 1680 value==1680

We need to
compare data and
determine whether
a condition is metCase study

Price guessing game

Figure 3.57: Relational operation in the price-guessing game.

Relational operation

A relational operation compares two numbers and determines whether they satisfy a
given condition. If the condition is met, the operation yields true, which is represented
bya non-zero value; otherwise it yields false, which is represented by zero.

Relational expression

A relational expression is a statement that connects two operands (constants, variables
or expressions) using relational operators and execute relational operations.

Figure 3.58: Relational operations and relational expressions.

3.7 Logical operations 119

keep in mind that == operator, which is a relational operator, should not be con-
fused with = operator, which is an assignment operator.

Relational operations can yield two possible results: true if the relation holds;
false otherwise.

There is no Boolean value in C, instead, we use nonzero value to represent “true” and
zero for “false.” Hence, if a relation expression evaluates to zero, it represents “false”; if it
evaluates to a nonzero value, it represents “true” regardless of the sign of that value.

Example 3.13 Determine whether two real numbers are equal
Figure 3.60 shows the code and result of a program that checks whether two real numbers are
equal.

int main(void)
{

float x;
char k;
x=1.0/10;
if (x==0.1) k='y';
else k='n';
printf(" k=%c,x=%f \n" , k,x);
return 0;

}
Result:k=n
x=0.100000

Why the result
is like this?

Figure 3.60: Determine whether two real numbers are equal.

Is the result unexpected? The reason this happens is that float-type variables have limited pre-
cision in floating-point number storage format (IEEE-754).

If we have to compare x with 0.1, we can use expression (x ≥ 0.1 − ε) && (x ≤ 0.1 + ε), where ε
is the error bound. We can use ε = 10–5, but we cannot use a value that is too small due to lim-
ited precision of float type.

Preventing program errors
Avoid comparing real numbers or floating-point variables using “==” or “!=”.

Relational
operator Meaning

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

== Equal to

!= Not equal to

Relational operator “==“ is different from assignment operator “=“,
they can’t be used interchangeably.

Program error

Result of relational operation

0 Non-zero

False
condition is not met

True,
condition is met

Figure 3.59: Relational operators.

120 3 Basic data types

3.7.2 Logical operations

3.7.2.1 Example of Relation Problem
Let us take a look at another relation problem. There is a triangle whose edges have
lengths a, b, and c, respectively. We need to classify this triangle.

We need to check relations between edges and classify the triangle based on
mathematical definitions. The equilateral triangle requires a = b and a = c, so we
need to examine two conditions at the same time as shown in Figure 3.61.

We need to compare multiple
data relations, do logical
reasoning and determine
whether conditions are

metTriangle

triangle Condition Analysis

Equilateral triangle a==b and a==c Determine whether both conditions are met

Isosceles triangle a=b or a=c or b=c Determine whether at least one condition is met

Ordinary triangle a+b>c and a+c>b and b+c>a Determine whether all conditions are met

Non-triangle Doesn’t satisfy conditions of ordinary triangle Determine the opposite of a condition

Casestudy

Classification of Triangles

Figure 3.61: Classification of triangles.

In summary, we need to determine whether multiple conditions are met at the same
time or whether one of the conditions is met in practical problems. Sometimes, we
need to consider the opposite of the conditions we have. Essentially, we need to
compare multiple data relations, do logical reasoning, and determine whether con-
ditions are met.

3.7.2.2 Definition of logical operations
Definition of logical operations and logical expressions are shown in Figure 3.62.

There are three logical operators, namely AND, OR, and NOT, whose usages are shown
in Figure 3.63.

Logical operation

• A logical operation connects one or more conditions using logical operators and
determine whether these conditions are met.

• A logical expression evaluates to a Boolean value (true of false).

Logical expression

• A logical expression is a statement that connects one or more expressions using
logical operators and executes logical operations. We use logical expressions to
express combination of multiple conditions in C.

Figure 3.62: Logical operations and logical expressions.

3.7 Logical operations 121

(1) AND
AND yields true if two operands are both true, and false otherwise. Suppose the
operands are a and b, which are results of relational operations and are either
true (1) or false (0). If a and b are both true (or 1), a AND b yields true; if one of
them is false, the result is false. AND is similar to multiplication in their way of
working.

(2) OR
OR yields false if two operands are both false, and true otherwise. OR is similar
to addition in their way of working.

(3) NOT
NOT yields false if the operand is true, and true if the operand is false.

We can remember rules of logical operators easily using this tip: AND yields false if
one operand is false, OR yields true if one operand is true, NOT flips its operand.

3.7.2.3 Examples of Logical Operations

Example 3.14 Classify a triangle
There is a triangle whose edges have lengths a, b, and c, respectively. Use logical and condi-
tional expressions in C to describe conditions for different types of triangles.

[Analysis]
The conditions and corresponding C expressions are shown in Figure 3.64.

In the first row, an equilateral triangle requires a == b and a == c, which can be represented
by a == b && a == c.

Operand Result of logical
operation

a b a && b a || b !a

Boolean
value

0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 0

A and b are result of
relational operations,
where 1 represents

“true” and 0
represents “false”

Name Operator Operation rule
AND && It yields true if value of both operands are true and yields false otherwise.
OR || It yields false if value of both operands are false and yields true otherwise.
NOT It yields false if value of operand is true and yields true if value of operand is false.

Memorizing tip: AND yields false if one operand
is false, OR yields true if one operand is true,
NOT flips its operand.

Figure 3.63: Logical operators and their usage.

122 3 Basic data types

In the last row for nontriangle, the ! sign is used for NOT, which yields the complement of its
operand and is often called “logical complement” as well.

triangle Condition C expression
Equilateral trianglea==b AND a==c a==b && a==c
Isosceles triangle a=b OR a=c OR b=c a==b || a==c || b==c

Ordinary triangle a+b>c AND a+c>b AND b+c>a a+b>c && a+c>b && b+c>a

Non-triangle Doesn’t satisfy conditions of ordinary triangle (a+b>c && a+c>b && b+c>a)

Figure 3.64: Conditions of triangles and their C expressions.

Example 3.15 Classify a character
Given a character from keyboard input, store it into character variable c and determine whether
it is a number, an uppercase letter or a lowercase letter.

[Analysis]
According to the ASCII table, if the character is a number, c should be between character 0 and
character 9, which can be written as conditional expressions shown in Figure 3.65. Note that
c ≥ ‘0’ and c ≤ ‘9’ are two relational expressions. Only when both of them are met, namely they
both yield true, can c be a number. Similarly, we can write out expressions for other cases.

Class of character c Condition Expression
Number c is between character 0 and 9 c>='0'&& c<='9'
Not a number c is not between character 0 and 9 (c>='0'&& c<='9')
Upper case letter c is not between character A and Z c>='A'&& c<='Z'
Lower case letter c is between character A and Z c>='a'&& c<='b'

Figure 3.65: Classify a character.

Example 3.16 Determine result of expression
Let int x = 1, y = 1, z = 1. What are the values of x, y and z after executing operation ++x ||++y &&
++z?

[Analysis]
There are operators of more than one type with different precedences. We should refer to a man-
ual if we cannot recall their precedence. A better way is to use parentheses to express logical
relations described in the problem when programming.

First, we evaluate the expression to the left of OR, namely ++x. The result is 2 and will be
used as one operand of OR. In C, nonzero values are treated as “true,” represented by “TRUE”
in the figure. As OR yields true if one of the operands is true, we no longer need to evaluate the
expression to its right.

Similarly, the && operator yields false, if one of the operands is false. Omitting evaluation
like this is often called a side effect of logical operators. Thus, we need to use them carefully
when programming.

3.7 Logical operations 123

As a result, only increment of x is executed, whereas increment of y and z are skipped. In
fact, it is not recommended to use multiple increment or decrement in one statement as differ-
ent compilers may explain it in different ways and yield different results.

(++ x) || ((++ y) && (++z))
=2 || ((++ y) && (++z)))
=TRUE || This expression is not
evaluated
=TRUE The left operand of “||” operator is TRUE, so

we don’t need to do more evaluation.
Similar cases exist for && operator as well.

Side effect of
logical

operators

Don’t use operations that change value of variables when doing logical or
relational operations.

Advice

Result
Value of the expression is 1
x=2, y=1, z=1

Figure 3.66: Determine the result of an expression.

Example 3.17 A detective story
The police are questioning four theft suspects. They already know one of the suspects is the
real thief and every suspect either lies or tells the truth. Their answers to the policeman’s ques-
tion are as follows. Please determine who committed the crime.

A says, “B didn’t do it, it was D.”
B says, “I didn’t do it, it was C.”
C says, “A didn’t do it, it was B.”
D says, “I didn’t do it.”

[Analysis]
Let variables A, B, C, and D stand for these suspects. The value of each variable is either 0 or 1,
where 1 means this person is the thief and 0 means otherwise.

We know from the problem description that only one of them is the thief and each of them
either lies or tells the truth. We also notice that A, B and C use the same pattern “X didn’t do it,
it was Y.” Hence, regardless of them being honest or not, one of the two people they mentioned
must have committed the crime. Consequently, we can write the following expressions without
knowing who is being honest and who is not:

“B didn’t do it, it was D” can be represented by B + D = 1.
“B didn’t do it, it was C” can be represented by B + C = 1.
“A didn’t do it, it was B” can be represented by A + B = 1.

We can’t determine whether “I didn’t do it” is true or not, so we can write it as A + B + C + D = 1.
One of them is the thief is then equivalent to (B + D = = 1)&&(B + C = = 1)&&(A + B = = 1)&&
(A + B + C + D = = 1).

124 3 Basic data types

3.7.2.4 Rules of logical operations
Having seen these examples, we can summarize rules of logical operations as
shown in Figure 3.67.

3.8 Type conversion

3.8.1 Computation of data of mixed types in real life

Case Study 1 Computing total on shopping receipt
Looking at the shopping receipt on the table as given in Figure 3.68, Mr. Brown had
a question. The total price of each item on the receipt is calculated as price per unit
times quantity. The price is a real number, whereas quantity is an integer. In this
particular problem, it is only reasonable if the result is a real number as well;

Evaluate when necessary

Operands of logical operations should be either true or false.

True and false

Compilers don’t execute all logical operations when evaluating logical
expressions. Only when further computation is needed to determine value of
an expression will compilers execute next logical operation.

Rule of logical operations

Syntactically, it is not wrong to
use integers as operands of
logical operations, but we

should be aware of the actual
meaning when using them

Figure 3.67: Rules of logical operations.

What is the type of
calculation result of

data in different types?

Total = per-unit price x quantity

real number integer

Case Study

Shopping receipt
============================
Item Name Price PerUnit Quantity Total

Notebook 15.60 1 15.60
Battery 8.00 2 16.00
Bread 3.60 2 7.20
Milk 26.80 1 26.80

Subtotal 6 65.60
Discount 3.60 Total 62.00
Received 100.00 Change 38.00

Figure 3.68: Type conversion in shopping receipt.

3.8 Type conversion 125

therefore, a type conversion has happened in our brain naturally. A more general
question for computers is: What is the type of the computation result of data of
mixed types and how type conversion should be carried out?

Numerical operations have the following rule in C: when assigning result to a
variable, the result should be converted to the same type as the variable.

Case Study 2 Computing error of material fee
Mrs. Brown went to a handcraft workshop to learn ceramic art. All students needed
to pay for raw materials. There were two types of materials, namely A and B, which
were mixed in a 2:1 ratio. Twelve people came to the workshop. They used 18 bags
of A and nine bags of B. It is known that A costs ¥32.6 per bag and B costs ¥15.8 per
bag. What was the average material fee for each student?

The manual computation result by Mrs. Brown was ¥60.9. To examine rules of
mixed-type data computation in computers, Mr. Brown designed a program, which
is shown in Figure 3.69.

The calculation formula on line 8 was exactly what Mrs. Brown used. However, the
program output 32.6, which was far from the manual result. Why was this the case?

After careful observation, we can see that numA and numB are both integers.
We have learned that integer divided by integer, 12 in this case, yields another inte-
ger in C. This is why the result was incorrect.

We can change the way of computation to solve this problem without changing
existing computation rules. In other words, we only change the type of data as
needed. In particular, we can use a real number identifier on integer numA so that
it is used as a real number in computation.

cost=(18/12)*32.8+(9/12)*15.6
=60.9

Manual computation result

Program result 32.6

01 #include “stdio.h”
02 #define priceA 32.8
03 #define priceB 15.6
04 int main(void)
05 {
06 intnumA=18, numB=9; //Quantity of material
07 float cost; //Cost of material
08 cost=(numA/12)*priceA+(numB/12)*priceB;
09 printf("%f", cost);
10 return 0;
11 }

Case Study

Error in computation of material fee

The program result
is wrong, what is

wrong in the
program?

Figure 3.69: Computation of material fee.

126 3 Basic data types

3.8.2 Type conversion rules in C

Based on the method we just mentioned, a type conversion grammar was de-
signed in C. It can be used to convert data to another type during computation as
shown in Figure 3.70.

In programming, type conversion can happen in numerical computation, assign-
ment, output, and function call. C has conversion rules for each case as shown
in Figure 3.71. We need to master them through practices. The concept of function
is introduced in the corresponding chapter.

There are two kinds of type conversion as shown in Figure 3.72. One of them is
done by the system automatically, which is called “automatic conversion” or “im-
plicit conversion.” The other is done by us programmers manually, which is called
“forced conversion” or “explicit conversion.”

Data type conversion

Type conversion converts value of data from one type to another.

Figure 3.70: Data-type conversion.

Type Happens when Processing rule

Operation Data of different types are computed together Convert then compute

Assignment A value is assigned to a variable of different type Convert to target type

Output Result needs to be output in certain formats Output in required formats

Function call
Parameters and arguments are of different types Use parameter types
Return value and function are of different types Use function type

Figure 3.71: Different cases of type conversion.

Forced conversion
(explicit conversion)

Automatic conversion
(implicit conversion)

Type
conversion

Figure 3.72: Two ways of type conversion.

3.8 Type conversion 127

3.8.3 Forced-type conversion

Forced-type conversion is explicit, which converts the type of an expression to the
desired type. The format is shown in Figure 3.73, where we write the type we want
in front of the expression to be converted. Explicit means we explicitly write out the
type we need. It is worth noting that forced-type conversion changes the type of
value instead of the type of the original variable or expression.

Example 3.18 Revised material fee program
Mr. Brown used forced-type conversion to revise his program as shown in Figure 3.74. On line 8,
float was added in front of numA and numB. On line 8, he rechecked their values after computation.

01 #include “stdio.h”
02 #define priceA 32.8
03 #define priceB 15.6
04 int main(void)
05 {
06 int numA=18, numB=9; //Quantity of material
07 float cost; //Cost of material
08 cost=((float) numA/12)*priceA+((float) numB/12)*priceB;
09 printf("%f\n", cost);
10 printf("numA=%d numB=%d", numA, numB);
11 return 0;
12 }

Manual computation result :
cost=(18/12)*32.8+(9/12)*15.6
=60.9

Program result :
60.9
numA=18 numB=9

Value of numA
and numB are

unchanged

Figure 3.74: Revised material fee program.

The output result was correct this time. The value of numA and numB were also unchanged after
forced-type conversion.

Forced type conversion
Forced type conversions are explicit type conversions that convert
type of expressions into a desired one.

Format of force type conversion
(Identifier of desired type) expression

Forced type conversions yield
value of desired type. They
don’t change type of original

variables or expressions.

Figure 3.73: Forced-type conversion.

128 3 Basic data types

Example 3.19 Forced-type conversion
Verify that the value of a variable is not changed after forced-type conversion.

1. Code

1 // Example of forced type conversion

2 #include <stdio.h>

3 int main(void)

4 {

5 float x, y;

6 x=2.3;

7 y=4.5;

8

9 printf("(int)(x)+y=%f\n",(int)(x)+y);

10 printf("(int)(x + y)=%d\n",(int)(x + y));

11 printf("x=%f,y=%f\n",x,y);

12 return 0;

13 }

Output:

(int)(x)+y=6.500000

(int)(x + y)=6

x=2.300000,y=4.500000

Notes:
(1) On line 9: (int)(x) + y = (int)(2.3) + 4.5 = 2 + 4.5 = 6.5.
(2) On line 10: (int)(x + y) = (int)(2.3 + 4.5) = (int)(6.8) = 6.
(3) Forced-type conversion changed the type of expression without changing the value of x

and y.

2. Tracing and debugging
In the Watch window, as shown in Figure 3.75, we see that the program is going to execute re-
turn at this moment. Although forced-type conversion of variable x and y is done, their value is
left unchanged.

Figure 3.75: Tracing forced-type conversion program in the debugger.

3.8 Type conversion 129

Preventing program errors
Restrict the use of unnecessary type conversions.

3.8.4 Automatic-type conversion

We are going to introduce the automatic-type conversion in this section. Let us start
with an example.

Example 3.20 Discount on material fee
The handcraft workshop offered a holiday discount on the material fee. In addition to a 20%
discount, the price after discount was also rounded down.

[Analysis]
To be clearer, Mr. Brown used another variable d_cost for the discounted price as shown in
Figure 3.76. Note that it is of int type instead of float.

int numA=18, numB=9; //Quantity of material
float cost; //Cost of material
int d_cost; //Discounted price
cost=((float) numA/12)*priceA+((float) numB/12)*priceB;
d_cost= cost*0.8;
printf("cost=%f\n", cost);
printf("d_cost=%f\n", d_cost);

Manual computation
cost=(18/12)*32.8+(9/12)*15.6=60.9
d_cost=⌊ cost *0.8⌋=⌊48.72⌋=48

Program result
cost=60.9
d_cost=48

Program implementation

Note that d_cost
is truncated
instead of
rounded.

Figure 3.76: Discount on material fee.

The manual computation result was cost = 60.9. The value of d_cost was cost times 0.8 and
rounded down, which was 48.

The program also output d_cost = 48. Note that d_cost was int type and that the result was
truncated instead of rounded.

Automatic-type conversion is done at compile time by the compiler following a set
of rules without human interference. It is used in arithmetic operations, assign-
ments, function call, and so on. The most important rule is that the type of value on
the right-hand side of = sign is automatically and implicitly converted to the type of
the variable on the left-hand side during an assignment (Figure 3.77).

130 3 Basic data types

Automatic conversion
Automatic type conversion is done at compile time by the compiler following a set of rules without
human interference.

Arithmetic operations
• Convert all data into the longest type in the expression.
• Convert then compute

Assignment operations The type of value on the right-hand side of = sign is automatically and
implicitly converted to the type of variable on the left-hand side;

Function call
(a)Arguments are converted into types of parameters.
(b)Return value is converted into the type of function.

Rules of automatic conversion

Figure 3.77: Automatic conversion and its rules.

3.9 Other operations

3.9.1 Conditional expressions

There is a more straightforward yet equivalent representation of if-else statements
in C as shown in Figure 3.78.

In practice, we often use conditional expressions in assignment statements In C
programs. As the conditional operator is also an operator, it can appear multiple
times in an expression. C regulates that the associativity of the conditional operator
is from right to left as shown in Figure 3.79. Note that the operator consists of a ?
sign and a : sign. Using them in a complicated manner makes the logic confusing to
programmers, thus affecting the program readability.

Format of conditional expression Meaning

Expression 1 ? Expression 2 :
Expression 3

Expression 1 is true Use value of expression 2 as value of
the entire conditional expression

Expression 1 is false Use value of expression 3 as value of
the entire conditional expression

Condition Part 1 Part 2

TRUE

FALSE

First true
then false

if (expression 1) expression 2;
else expression 3;

Equivalent to

Figure 3.78: Conditional operator and expression.

3.9 Other operations 131

Example 3.21 Determine parity
Given a number input, determine whether it is odd or even.

int main(void)

{

int num;

printf("Please input a number: ");

scanf("%d",&num);

(num%2==0) ? printf("Even") : printf("Odd");

}

Example 3.22 Use conditional expression to compute maximum of three numbers
Method 1:

int a=90,b=80,c=100,max;

max=a>b?a:b;

max=max>c? max:c;

printf("The maximum of these numbers is：%d",max);

Value of max becomes 90 after line 2, and then becomes 100 after line 3.

Method 2:
int a=90,b=80,c=60;

printf("The maximum of these numbers is：%d", a>c?a>b? a: b :c);

Analysis:
There are two pairs of conditional operators in this method. As conditional operator is right-as-
sociated, we should look for the rightmost? Sign and pair it with the closest: sign. Hence, a > c?
a > b?a:b:c is equivalent to a > c?(a > b?a:b):c and the result of this expression is 100.

Expression
1

Expression
2

Expression
3: Expression

4
Expression

5:x =

First

Second
Right-

associated

Figure 3.79: Associativity of the conditional operator.

132 3 Basic data types

3.9.2 sizeof operator

sizeof operator can be used to compute number of bytes a variable, a constant or a
data type takes up in memory as shown in Figure 3.80.

Example 3.23 Example of sizeof operator

#include <stdio.h>

int main(void)

{

int size_constant, size_variable, size_datatype;

char c;

size_constant = sizeof(10);

printf("Number of bytes of constant 10：%d\n", size_constant);

size_variable=sizeof(c);

printf("Number of bytes of char variable：%d\n", size_variable);

size_datatype=sizeof(float);

printf("Number of bytes of float type：%d\n", size_datatype);

return 0;

}

Output:
Constant 10 uses 4 bytes; character variable uses 1 byte; float type uses 4 bytes.

3.9.3 Assignment operator and expressions

The basic assignment operator is “=”, which assigns value of an expression to a var-
iable as shown in Figure 3.81. Precedence of assignment operator is lower than that
of others, so it is often executed last.

Format Meaning

sizeof(variable) Compute number of bytes the variable occupies in memory

sizeof(constant) Compute number of bytes the constant occupies in memory

sizeof(datatype) Compute number of bytes the data type occupies in memory

Figure 3.80: sizeof operator.

3.9 Other operations 133

There are several things to remember when using assignment operations:
– “=” is an assignment operator instead of the equal sign.
– The object on the left of the assignment operator must be a variable. It cannot

be an expression. Assignment should be done from right to left.
– The value of assignment expression is the value of the expression on the right

of the assignment operator.

3.9.4 Compound assignment operators

Adding other binary operators in front of the assignment operator “ = ”, we obtain
compound assignment operators as shown in Figure 3.82.

3.9.5 Comma operator and comma expressions

For convenience, programmers want to compute the values of multiple expressions to-
gether when only one expression is allowed. For this purpose, C provides a convenient
syntax, which is the comma operator that “sticks” multiple expressions together.
Grammatically, these expressions become a single expression as shown in Figure 3.83.

In many cases, we use comma expression to obtain the value of each expres-
sion instead of obtaining and using the value of the entire comma expression.
Comma expressions are most frequently used in for statements. Comma operator
has the lowest precedence among all operators.

Operator Name Expression Equivalent
Expression

= Assignment operator a=5 a=5
+= Addition and assignment operator a+=5 a=a+5
-= Subtraction and assignment operator a-=x+y a=a-(x+y)
= Multiplication and assignment operator a=2*x a=a*2*x
/= Division and assignment operator a/=x-y a=a/(x-y)
%= Remainder and assignment operator a%=12 a=a%12

Format Meaning of compound operation
Variable binary operator = expression Variable = variable operator expression

Figure 3.82: Compound assignment operators.

Assignment
expression Meaning Example Notes

Variable = expression
1. Evaluate the expression
2. Assign to the variable

a=b+3*c Assign value of expression b+3*c to variable b

x=y=z=100; “=” is right-associated

a+(b=3) Use parentheses to override precedence

Figure 3.81: Assignment operator and expressions.

134 3 Basic data types

3.10 Summary

The main contents of this chapter and their relations are given in Figure 3.84.

Data are stored, referenced, computed, input, and output in programs.
Many rules exist, so we need to learn more and practice more.
Size of memory is determined by data type and can vary a lot.
Programmers need to choose the suitable type based on characteristics of data.
Constants can be used directly; variables need to be defined and allocated
memory.
Numeric literals can be represented as decimal, octal and hexadecimal numbers.
Decimal numbers are left unchanged, while octal numbers begin with 0 and
hexadecimal numbers begin with 0x.
We should view memory space when debugging and be proficient in number
system conversions.
Remainder operations compute the remainder; clever use of them can simplify
our algorithms.
Integer divided by integer yields another integer, which is a rule we have to
follow.

Comma expression Evaluation of expression

Expression 1, expression 2, … expression n
Compute value of each expression starting from
expression 1. The value of entire comma expression
is the value of expression n

Figure 3.83: Comma expression.

Data

Storage

Operation

Description of memory space size: type

Request memory space: variable definition

Access data in memory space: assignment, referencing

Form
Constant: integers (in different numeral systems), real numbers, characters

Variable: three key elements: name, value, storage unit

Methods

Arithmetic operation: computation that yields number

Relational operation: comparison that yields true or false

Logical operation: decision that yields true or false

Rules

Precedence: evaluation order of operators

Associativity: evaluation order of operator with the same
level of precedence
Type conversion: automatic conversion and forced
conversion

Figure 3.84: Contents of basic data and their relations.

3.10 Summary 135

Different types of data can be computed together; type of result is determined
by the type that takes up the most space in memory.
Automatic and forced are the most common types of conversions in computa-
tion.
Automatic-type conversions take place in assignments between two storage
units.
Data will be kept when converting from a smaller type to a larger one, whereas
truncation or rounding happens when converting oppositely.
Forced-type conversions are used if necessary, and data in the original storage
unit are unchanged.

3.11 Exercises

3.11.1 Multiple-choice questions

(1) [Concept of variables]
Which of the following statements is wrong about variables in C? ()
A) The memory unit address of a variable can be changed at any time.
B) The value of a variable can be changed during the program execution.
C) We must define variables before using them in programs.
D) ___ (three underscores) is a valid variable name.

(2) [Identifiers]
Which set of identifiers are all invalid? ()
A) A P_0 do B) float la0 _A C) b-a goto int D) _123 temp INT

(3) [Data types]
Which of the following statements is wrong about data types in C? ()
A) To process correlated data of different types (such as “employee informa-

tion”), we should define our own structure type.
B) We can use double type to store data with multiple digits in the fraction

part.
C) We should use logic type to handle “true” and “false.”
D) Natural numbers can be accurately represented by int type.

(4) [Symbolic constants]
Which of the following statements is correct about symbolic constants in C? ()
A) Names of symbolic constants must be identifiers in uppercase.
B) A symbolic constant is a symbol that represents a constant defined by a

macro.
C) The value of a symbolic constant cannot be redefined in a program.
D) Names of symbolic constants must be constants.

136 3 Basic data types

(5) [Character processing]

　 char c1，c2；

　　c1＝'A'+'8'－'4'；

　　c2＝'A'+'8'－'5'；

　　printf("%c, %d\n"，c1，c2)；

The ASCII value of character A is 65. What is the output of the program above? ()
A) E, 68 B) D, 69 C) E, D D) Nondeterministic

(6) [Forced-type conversion]
Suppose we have the following definition: double x = 5.16894;
The output of statement printf((“%lf\n ”, (int)(x*1000+0.5)/1000.) is ()
A) 5.16900
B) 5.16800
C) 0.00000
D) The type specifier is inconsistent with the output value, so an error message

is displayed.

(7) [Logic operations]
Which of the following statements is correct about operands of logic opera-
tions? ()
A) They can be any valid expressions.
B) They must be integers.
C) They can be structure-type data.
D) They must be 0 or 1.

(8) [Range]
Suppose an int type number takes up 2 bytes in the memory. What is the range
of unsigned int data? ()
A) 0–255 B) 1–32767 C) 0–65535 D) 0–2147483647

(9) [Base]
Which of the following bases cannot be used in C source programs? ()
A) Hexadecimal B) Octal C) Decimal D) Binary

(10) [Conditional operator]
Suppose a = 1,b = 2,c = 3,d = 4. What is the result of expression
a < b?a:c < d?c:d ? ()
A) 4 B) 3 C) 2 D) 1

3.11 Exercises 137

3.11.2 Fill in the tables

(1) [Range]
Sort the data types in Figure 3.85 in the order of their sizes on the same platform.

(2) [Forced-type conversion]
Fill in the table in Figure 3.86 with variable values after the following state-
ments are executed.

int x,z; float y = 12.4; x = (int)y; z = 3*y;

(3) [Increment and decrement]
Fill in the table in Figure 3.87 with variable values after the following state-
ments are executed.

int x = 10; int y = x–; int z = – x; int a = x++; int b = ++x;

(4) [Type conversion]
Figure out data types of expressions in Figure 3.88. Variables a, b, c, and d are
defined as follows:

char a = ‘A’; double b = 12.3; int c = 66; char d;

Data type short char int double float

Number

Figure 3.85: Basic data types: Fill in the tables question 1.

Variable x y z
Value

Figure 3.86: Basic data types: fill in the tables question 2.

z a bVariable x y
Value

Figure 3.87: Basic data types: fill in the tables question 3.

138 3 Basic data types

(5) [Arithmetic operations]
Figure out values of expressions in Figure 3.89.

mint x = 10; int y = 3; float z = 12.4;

(6) [Relational operations]
Figure out the logic values of expressions in Figure 3.90. Variables a, b, c, and
d are defined as follows:

char a = ‘A’; char b = ‘a’; char c = 66; char d = ‘A’ + 1;

(7) [Logic operations]
Figure out the logic values of expressions in Figure 3.91. Variables a, b, c, and d
are defined as follows:

int a = 12; int b = 0; int c = −1; int d = 1; int e = 0

Expression a+1 b+2*a 2.0*a+c

Data type

Figure 3.88: Basic data types: fill in the tables question 4.

Expression x/y x+y-z z+x/y z/x*y x%y
Value

(double)

Figure 3.89: Basic data types: fill in the tables question 5.

Expression a==b a==65 c==d c=='B'

Logic value

Figure 3.90: Basic data types: fill in the tables question 6.

Expression a!=12 b<c 1||b d&&e a != b < c || d&&e

Logic value

Figure 3.91: Basic data types: fill in the tables question 7.

3.11 Exercises 139

3.11.3 Programming exercises

(1) Arithmetic operations
Compute the product of three integers.

(2) Arithmetic Operations
Write a program that reads a five-digit integer and outputs the digits delimited
by spaces. (Hint: use division and mod operation.)

(3) Data swapping
Write a program that does the following:
1) Read three integers into variables a, b, and c.
2) Assign the initial value of a to b.
3) Assign the initial value of b to c.
4) Assign the initial value of c to a.

(4) Expressions
Figure out the conditional expression that determines whether a character is a
digit.

(5) Random function
For each of the following sets of integers, write a statement that displays a ran-
dom number in the set. (Hint: use the random function in the standard library.)
1) 2,4,6,8,10
2) 3,5,7,9,11
3) 6,10,14,18,22

140 3 Basic data types

4 Input/output

Main content
– Know the usage of basic input/output functions in C language.

Learning objective
– Can use basic input/output functions effectively.

4.1 Concept of input/output

Mrs. Brown had a question when logging into a ticket purchasing website as shown
in Figure 4.1.

A program can read data from keyboard input, so the next question is, naturally,
how does program exchange information with the real world? This is related to
input/output of program data.

The term input/output is used with respect to computer processors. Sending
data from a computer to external output devices is called “output,” whereas send-
ing data from input devices into computers is called “input” as shown in Figure 4.2.

• When purchasing tickets online, Mrs. Brown was asked to type
in password to log into the system.

• Mrs. Brown asked curiously, “The password is entered through
keyboard, how is it passed to the program?”

• Mr. Brown commended, “Good question!”

Case Study

How does a program read password?

How does a program
read information from

the real world, and
send the processing

result back?

Figure 4.1: Login password problem.

Input send data to computers through input devices

These term are
used from the
perspective of

computers

Output: send data from computers to external output devices

Figure 4.2: Input/output in computers.

https://doi.org/10.1515/9783110692327-004

https://doi.org/10.1515/9783110692327-004

4.1.1 Standard input/output

We usually call keyboards and monitors standard input/output devices. Consequently,
input/output through these devices are called standard input/output, respectively as
shown in Figure 4.3.

4.1.2 Standard library functions of C

Recall that functions are child programs that provide certain functionalities. Library
functions are functions inside a program library. Frequently used standard library
functions of C and related questions are shown in Figure 4.4.

The C language system provides its users with function libraries so that programmers
can use programs within it directly. Developers should accumulate experience of li-
brary functions and use them as frequently as possible rather than starting over on
every task. Using library functions shortens the development cycle, thus makes de-
velopers’ jobs easier. Moreover, it makes programs more portable.

Input/Output is a
complex process

that needs special
programs to handle

Standard
Input

Send data into computer memory through
standard input devices (keyboard)

Standard
Output

Send data from computer memory to
standard output devices (monitor)

Figure 4.3: Standard input/output.

Type

Common C standard
library functions

Arithmetic
Character processing
String processing
Input/Output
Utility

Function——sub-programs that complete certain tasks

The C language system has
implemented some commonly
used computation processes
and methods as programs to
construct the standard library

How do
programmers use
functions in the

library?

Figure 4.4: Standard library functions of C.

142 4 Input/output

Knowledge ABC Standard library functions
The ANSI (American National Standards Institute) C standard defines standard library functions
of C, which includes mathematical functions, input/output functions, string functions, graphical
functions, date and time functions, and so on. Each category contains dozens or even hundreds
of functions, each of which completes a specific task. They are usually supported, either par-
tially or entirely, by common C compiling environments. Readers may refer to the appendix of
this book or manuals of compilers for help on these functions.

The merit of using standard library functions is that users can use them without having to
define them again. When we are going to print out something as output, we can simply call an
output function with required arguments, as long as we know its functionality, input/output pa-
rameters, and return value.

4.1.3 Header files

Each category of standard library functions of C has a corresponding header file
that stores declarations of functions in this category as shown in Figure 4.5.

Header files are files storing function declarations. For example, library functions re-
lated to input/output are declared in header file stdio.h, where stdio is abbreviated
from “standard input/output” and the extension .h is the initial letter of “header.”

To use a library function, programmers need to “include” the corresponding
header file using the file inclusion directive. The function of the file inclusion direc-
tive is to fetch the specified file for use. For instance, to use the sqrt function
(a function that computes squared root), we need to add the following line to the
beginning of our program:

#include "math.h"

Type Header file
name

Common C
standard
library

functions

Arithmetic math.h
Character
processing ctype.h

String
processing string.h

Input/Output stdio.h
Utility stdlib.h

#include <header file name>
Syntax of file inclusion directive

stdio——standard input & output
h————head

#include <stdio.h>
E.g.

Header files————files storing
function declarations To use a library function,

we simply “include” the
corresponding header

file using the file inclusion
directive

Figure 4.5: File inclusion and header files.

4.1 Concept of input/output 143

4.2 Data output

There are two types of data output library functions: character output functions
and formatted output functions, which are declared in the standard input/output
header file as shown in Figure 4.6.

4.2.1 Character output functions

putchar is a character output function, whose function signature and functionality
are given in Figure 4.7. The “character” inside parentheses, which is either a char-
acter variable or a character literal, is the parameter of this function.

Example 4.1 Character output function
The first program we write when learning to program is usually a program that prints on screen
the following friendly words: "Hello, world!" We have seen this simplest C program in chapter
"Introduction to Programs." Now we are going to add a smiley face to the output to welcome
everyone. The revised program is given below, where the comments explain the meaning of
each putchar call.

#include <stdio.h>

int main(void)

{

printf(“Hello, world!\n”);

putchar（2）; //Output a smiley face (ASCII value 2) to screen

putchar(‘\n’); //Output a newline

return 0;

}

Data output
function

Character output
function

Formatted output
function

Include the standard
input/output header file
#include <stdio.h>

Figure 4.6: Data output library functions.

Signature putchar(character)

Functionality Output a character represented by “character” to
standard output devices (monitor)

Output one
character
at a time

Character output function

Figure 4.7: Character output function.

144 4 Input/output

Example 4.2 Character output function
Figure 4.8 shows the program and result, where c1 and c2 are both character variables.

01 #include "stdio.h"
02 int main(void)
03 {
04 char c1,c2; //Define two character variables
05
06 c1=‘a’ ; //Assign value to c1
07 c2=‘b’ ; //Assign value to c2
08 putchar(c1); //Output character a
09 putchar(c2); //Output character b
10 putchar(‘\n’); //Output newline
11 putchar(c1-32); //c1-32='a'-32=97-32=65 which corresponds to ‘A’
12 putchar(c2-32); //c1-32=‘b’-32=98-32=66 which corresponds to ‘B’
13 return 0;
14 }

Program result
ab
AB

Isn’t it cumbersome
to output characters

like this?

Figure 4.8: Character output function example 2.

[Analysis]
On line 8, the character output function is used to output character a stored in the storage unit
of variable c1 onto screen.

On line 10, \n stands for a newline. This statement moves the cursor to the beginning of the
next line.

On line 11, the argument c1-32 = 'a'-32 = 97-32 = 65 is the American Standard Code for
Information Interchange (ASCII) value of character 'A'.

Finally, we obtain the result.
After reading this program, have you noticed the drawback of putchar function?

4.2.2 String output function

puts is another character output function, but it is more convenient. It can print a se-
quence of characters in one go. Its signature and functionality are given in Figure 4.9.

Signature puts(address)

Functionality Output a string with newline to standard output devices (monitor)

String output function

Figure 4.9: String output function.

4.2 Data output 145

Example 4.3 String output function example
We can rewrite the second example of character output function using puts function as shown
in Figure 4.10.

01 #include "stdio.h"
02 int main(void)
03 {
04 char c[8]; //Define a character array of size 8
05
06 c[0]=‘a’; //Assign valueto c[0]
07 c[1]='b'; //Assign value to c[1]
08 c[2]=‘\n’; //Assignnewlineto c[2]
09 c[3]=c[0]-32; //c[3]-32=‘a’-32=97-32=65 which corresponds to 'A'
10 c[4]=c[1]-32; // c[4]-32=‘b’-32=98-32=66 which corresponds to 'B'
11 puts(c);
12 return0;
13 }

Program output:
ab
AB

Although output
efficiency has been

increased, why are there
Chinese characters?

Figure 4.10: String output function example.

[Analysis]
On line 4, we define a group of eight character variables that are stored sequentially. They are
represented by the name of the group c with the corresponding index. More information on
such variables are introduced in the chapter “Arrays.”

Nonetheless, the result seems to be weird. Some characters we have never used are printed at
the end of the result. In fact, this is due to how puts function works. puts will not stop printing char-
acters until a '\0', the terminating character, is met. As we did not assign the value of terminating
character in the storage unit after c[4], puts kept searching for it in the memory until one is found.

N.B.: The Chinese characters in Figure 4.10 are garbled output produced by the system, as
the system environment uses GBK character encoding by default.

4.2.3 Formatted output function

4.2.3.1 Syntax and signature of formatted output function
Let us look at a formatted output function that can output efficiently: the printf

function. There are several parameters inside parentheses. Its function signature
and functionality are given in Figure 4.11.

We shall cover the usage of printf through examples and introduce its rules after that.

Signature printf (format control sequence, parameter 1,…,parameter n)

Functionality
Output values of parameter 1 to parameter n to standard output
devices in format specified by “format control sequence”.
Parameters are expressions.

Formatted output function

Figure 4.11: Formatted output function.

146 4 Input/output

Example 4.4 Formatted output example: format coordination
Variable definitions and output cases are shown in Figure 4.12.

Suppose int a=12, b=56;
float x=10.8;

Output case 2 printf(“%d %d”, a, b);
Format control

sequence Argument Output

%d□%d a,b 12□56

Output case 1 printf(“%d ”, a);
Format control

sequence Argument Output

%d a 12 We use squares to
represent spaces for
clearer demonstration

Output case 4 printf("%d+%d =%d\n", a, b, a+b);
Format control

sequence Argument Output

%d+%d =%d\n a, b, a+b 12+56=68

Output case 3 printf(“%d %f”, a, x);
Format control

sequence Argument Output

%d□□%f a,x 12□□10.8

Rule

\n is an escape character
that represents newline.
It is output as defined in

grammar.

(replaced with arguments) and escape characters (output as defined in grammar)

specifiers and arguments

Figure 4.12: Formatted output example: format coordination.

[Analysis]
In output case 1, we print the value of an integer variable a. The format control sequence is the
content wrapped by double quotation marks, where %d means that the data will be output as
integers. The argument of this function is a, so 12 is output by printf.

In case 2, we print values of a and b, which are both integer variables. There are two %d iden-
tifiers in the format control sequence, indicating that two integers will be output. For clearer
demonstration, we use a square to indicate the existence of a space between numbers. The ar-
guments are a and b, separated by a comma. The output, in this case, is 12 space 56.

In case 3, we print values of integer variable a and floating-point variable x. %d in the format
control sequence corresponds to variable a, whereas %f corresponds to variable x. In the out-
put, two spaces are inserted between 12 and 1.8, namely values of a and x.

In case 4, we print the result of an arithmetic expression. We write the expression in the format
control sequence, where actual values are replaced with format specifiers. \n stands for a new-
line. It is an escape character that cannot be displayed on the screen. The arguments are a, b,

and a + b, separated by commas. Hence, the output is 12 + 56 = 68.

The output rules require that all characters are output as-is, except format speci-
fiers, which are replaced with argument values, and escape characters, which are
output as defined by the grammar.

4.2 Data output 147

4.2.3.2 Output format specifiers
In the format control sequence, there are symbols that indicate types of output
data. They are called “type specifiers.” Figure 4.13 shows the most frequently used
type specifiers, such as %d, %f, %c, %s, and so on. It suffices to know these in an
early stage of learning.

4.2.3.3 Structure of format control sequence
The format control sequence is a sequence of normal characters and format speci-
fiers wrapped by double quotation marks. It is used to specify types, formats, and
number of output data. The structure of the format control sequence of printf func-
tion is shown in Figure 4.14. Note that parts inside [] are optional.

4.2.3.4 Subspecifiers
As shown in Figure 4.15, we can insert subspecifiers between % and type specifiers
to adjust the number of significant figures (e.g., number of digits in the fractional
part) or justification of output data.

Example of subspecifiers:
– %ld: Output as long decimal integers.
– %lf: Output as double type.
– %m.nf: Right-justify output, m indicates the width of the output field, n indi-

cates the number of digits in the fractional part or the number of characters.
– %-m.nf: Left-justify output, m indicates the width of the output field, n indi-

cates the number of digits in the fractional part or the number of characters.

Type
specifier Meaning Notes

Integer

%d Output integer in signed decimal form
• The letter can be uppercase

in type specifier

• Sub-specifiers can be
inserted between % and
type specifiers

• ‘\0’ marks the end of a
string. It is inserted
automatically by the system.

%o Output integer in unsigned octal form
%x Output integer in unsigned hexadecimal form
%u Output integer in unsigned decimal form

Real
number

%f Output real number with fractional part
%e Output real number in exponential form
%g Output real number in the form with smallest width

Charact
er

%c Output a single character
%s Output string

(starting from the specified address and ending at ‘\0’)

Other %% Output character %

Figure 4.13: Output format specifiers.

% m . n h/l Type specifier
Beginning
specifier

[Flag
specifier]

[Width
specifier] [] [Precision

specifier]
[Length
specifier]

Type specifier
character

Figure 4.14: Format control sequence of printf function.

148 4 Input/output

Example 4.5 Output -1 in various forms
Output value of -1 as decimal, octal, hexadecimal, and unsigned numbers.

[Analysis]
Let int m = -1;

The output statement is printf(("m: %d, %o, %x, %u\n", m, m, m, m);
The actual output is m: -1, 177777, ffff, 65535
Are you surprised to see the above output of -1 in different forms?
The binary representation of -1 is 1111,1111,1111,1111. In other words, it is stored in memory as

a number consisting of only “1.” If we examine it in different formats, we will obtain different
representations. It is similar to how different languages use different words for “apples” while
they all describe the same object.

Example 4.6 Output example of character data
Examine the output of character variables and integer variables using type specifier %d and %c.

Variable definitions and output statements are given in Figure 4.16.

Statement Output Notes

printf("m: %d %c\n",m,m); m:□97□a The same variable is output
as different values using
different type specifiersprintf("ch: %d %c\n",ch,ch); ch:□65□A

printf("%s\n","student"); student %s——output a string

Suppose int m=97; char ch='A';

Figure 4.16: Output of character data.

[Analysis]
In the first row of the table in Figure 4.16, the statement prints two values using %d and %c, both
of which will be replaced by variable m. However, the first m is output as an integer, whereas the
second is output as a character. The value of m is defined to be 97, which is the ASCII value of
character a.

l Output as long integers (can be used in combination with d, o, x and u)

m Specify width of output (i.e. total number of digits, where decimal point
counts as well)

.n
(1) For floating-point data, output n digits in the fractional part
(2) For string, output the first n characters

+ Explicitly output sign of numerical data

- Left-justify data within the given output field

Figure 4.15: Subspecifiers.

4.2 Data output 149

Similarly, we see in the second and the third rows that output of the same variable can vary
when different type specifiers are used.

In the third row, the type specifier is %s. It is used to print strings. The argument is exactly a
string wrapped by double quotation marks.

Example 4.7 Using escape characters
We can learn the roles of escape characters by using formatted output function printf(). The
program is as follows:
1 //Using escape characters

2 #include <stdio.h>

3 int main(void)

4 {

5 char a,b,c;

6 a='n';

7 b='e';

8 c='\167'; //Octal number 167 stands for character ‘w’

9 printf("%c%c%c\n",a,b,c); //Output as character

10 printf("%c\t%c\t%c\n",a,b,c); //Jump to next field after a character

11 printf("%c\n%c\n%c\n",a,b,c); //Jump to new line after a character

12 return 0；

13 }

The output is as follows:
new
n□□□□□□□e□□□□□□□w
n
e
w

Note: \t is an escape character used to advance the cursor to the next field horizontally. Each
field takes up eight columns.

4.3 Data input

There are two types of data input functions in C: character input functions and for-
matted input functions. They are all declared in the standard input/output header
file as shown in Figure 4.17.

Data input
function

Character input function

Formatted input function

Include the standard
input/output header file
#include <stdio.h>

Figure 4.17: Data input function.

150 4 Input/output

4.3.1 Character input function

The function signature and functionality of character input function are shown in
Figure 4.18.

Dialogues between two people are often conducted in the form of questions and
answers. Likewise, humans and computers need a similar way for information ex-
change. One such exchanging method is interactive input, where a program keeps
waiting in the console and continues execution until it receives a character input
from the keyboard. A console window is a window used to display the execution
result of programs.

How do programs receive the passwords we type in using keyboards?

Example 4.8 Example of character input: reading user password
A bank requires its clients to use six-character passwords. The program used to read passwords
is shown in Figure 4.19.

01 #include <stdio.h>
02 int main(void)
03 {
04 char c1,c2,c3,c4,c5,c6;//Define 6 character variables to save 6 digits of password
05 c1= getchar();
06 c2= getchar();
07 c3= getchar();
08 c4= getchar();
09 c5= getchar();
10 c6= getchar();
11 return 0;
12 }

Did we use too
many getchar?

Figure 4.19: Password reading program.

Signature getchar()

Functionality Read a character interactively from
standard input devices (keyboard)

Interactive input: the program
keeps waiting in the console

and continues execution until it
receives a character input from

keyboard

Character input function

Figure 4.18: Character input function.

4.3 Data input 151

[Analysis]
On line 4, we define six character variables to store six characters in the password.

On line 5, a character is read from the keyboard and stored into variable c1.
Statements between lines 6 and 10 work in the same way as the one on line 5.
getchar reads one character each time. It is not hard to see that the program is cumbersome

due to repeated use of getchar. We will discuss input functions that read data more efficiently
later.

Example 4.9 Conversion between different cases of letters
1 #include "stdio.h"

2 int main(void)

3 {

4 char ch;

5 ch=getchar(); //Read a character from keyboard and store into ch

6 printf("%c %d\n",ch,ch); //Display ch and its ASCII value

7 printf("%c %d\n\n",ch-32,ch-32);

8 //Subtract 32 from ASCII value of ch,

//display corresponding character and the new value

9 return 0;

10 }

Output:
Input： m

Output： m 109

M 77

We can check the values of ch and ch-32 in the Watch window as shown in Figure 4.20. 'm' is the
character referencing result of letter m. Its ASCII value is 109. ASCII value of uppercase letter M is 77.
After investigating the ASCII table, we can conclude that the difference of ASCII values of the same
letter in upper and lower cases is exactly 32.

Figure 4.20: Inspection of variable ch in debugger.

Conclusion
We don’t have to recite the ASCII values of characters. Instead, we can use “character referenc-
ing” to display them.

152 4 Input/output

Knowledge ABC 32 and ASCII value of uppercase and lowercase letters
From the ASCII table, we know that ‘A’ = 65, ‘a’ = 97 and consequently ‘a’-’A’ = 32. Why is the
difference of ASCII values of the same letter in upper and lower cases 32? Let us convert them
into hexadecimal numbers first:

0A0 ¼ 65 ¼ 0x41; 0a0 ¼ 97 ¼ 0x61; so 0a0 �0 A0 ¼ 32 ¼ 0x20

It is clear that such a design makes it easier to convert letters into the other case in binary and
hexadecimal systems.

4.3.2 String input function

gets is a more convenient character input function. It reads a sequence of characters
at a time. The function signature and functionality of gets are shown in Figure 4.21.

Note: Function gets can read infinitely many characters, so programmers should
make sure the memory space used to store the string is large enough to avoid over-
flow in read operations.

Example 4.10 Example of function gets

Use function gets() to read a string from keyboard input.

[Analysis]
The program and test results are shown in Figure 4.22.

int main(void)
{

char str1[60];
gets(str1);
printf("%s\n",str1);
return 0;

}

Input: hello world!!

Ouput: hello world!!
Function gets

reads string from
keyboard. It is not
affected by spaces

in the string.

Figure 4.22: Example of function gets().

Signature gets(address)

Functionality Read a string which ends with a newline from standard input devices

String input function

Figure 4.21: String input function.

4.3 Data input 153

Using function gets() to read character sequence is not affected by spaces in the se-
quence. However, we need to make sure the memory space used to store the sequence
is large enough in case the input overflows. Note how it is different from Example 4.14.

Note: The C11 standard proposes a safer function gets_s() to replace gets().
Interested readers may update the above program and test again.

4.3.3 Formatted Input function

The function signature and functionality of the formatted input function are given
in Figure 4.23. The function name is scanf. There are several items inside parenthe-
ses, of which the format control sequence is similar to the one used in printf. It is
worth noting that the address argument is passed to the function by prefixing vari-
able names with “&” sign. The “&” sign is the address-of operator. It is not needed
if the variable is already an address.

Example 4.11 Example of formatted input function: log into Office of Registrar website
Mr. Brown wanted to log into the Office of Registrar website to upload the grades of students.
A username and a password are necessary to log in, where the username (ID) is the payroll number
and the password should be a sequence of digits and characters with a length no more than 20,
as per university policies. The login program is given in Figure 4.24.

[Analysis]
On line 8, the first scanf stores the username retrieved from keyboard input into the variable
id. id is defined as an integer variable, so the type specifier should be %d.

Signature scanf(format control sequence, address 1…, address n);

Functionality Read data from keyboard in the format specified by the format
control sequence and store them into corresponding variables

Formatted input function

Figure 4.23: Formatted input function.

154 4 Input/output

01 #include <stdio.h>
02 int main(void)
03 {
04 int id; // id is an integer variable
05 char password[20]; // Password is no longer than 20 and stored in an array
06
07 printf(“User ID ");
08 scanf(“%d”, &id); //&id is the address of variable id
09 printf(“Password ");
10 scanf("%s", password); // Array name password is already an address
11 printf("ID=%d\n",id);
12 printf(“Password=%s\n", password);
13 return 0;
14 }

Both being arguments
of scanf, why id is

prefixed with an & sign
while password is not?

Program result
User ID 2468
Password abc123
ID=2468
Password=abc123

Figure 4.24: Example of formatted input function: log into Office of Registrar website.

On line 10, the second scanf stores the password retrieved from keyboard input into array
password. Note that the type specifier here is %s, which is used for reading a sequence of char-
acters. “&” sign is not used here because password is an array name and array names are in
fact addresses in C. The concept of arrays is covered in the corresponding chapter.

On lines 11 and 12, the value of variable id and the value of password are printed out for viewing.

Example 4.12 Example of formatted input function: entry of students’ grades
1. Enter a student’s student number id and grade scores. Sample input: 1602 92.5.
2. Enter grades of course a and course b. Sample input: a = 76, b = 82.

[Analysis]
As per problem description, we can use formatted input function scanf() to read keyboard
input as shown in Figure 4.25.

No. Formatted input Keyboard input Variables read Delimiter

1 scanf("%d%f", &id, &scores); 1601□92.5 id=1601
scores=92.5

Space
(default)

2 scanf("a=%d, b=%d", &a, &b); a=76, b=82 a=76 b=82 Specified
character

Figure 4.25: Entry of students’ grades.

In the first row of the table, we type in a student number followed by a grade. The student num-
ber is an integer and the grade is a real number. We should be careful about the space between
the student number 1601 and the grade 92.5. The space is used to separate the inputs. Symbols
that are used to separate multiple input data are called “delimiters.” Space is the default
delimiter.

In the second row, there are other characters in addition to grades in the sample input, so
we need to include them in the format control sequence of scanf.

4.3 Data input 155

When typing, we need to type in characters like a = and b = as well. In this case, these char-
acters are the specified delimiters.

Forms of format control sequences and examples of delimiters are shown in Figure 4.26.

Knowledge ABC How input data of scanf are delimited
scanf handles strings, integers, and real numbers the same way, where newline, space, and tab
are all considered to be the end of input. However, characters are different from strings as
spaces and newlines may also be input as characters, so we need to be careful. When entering
strings, integers, or real numbers, these special characters will be treated as delimiters instead
of being read into character arrays or variables.

Example 4.13 Example of formatted input function: character input
1. Enter three characters a, b, and c from the keyboard and store them into character varia-

bles ch1, ch2, and ch3.
2. Enter two integers and store them into integer variables m and n, and enter a character d

and store it into character variable ch.

[Analysis]
Figure 4.27 presents correct and wrong sample inputs.

No. Statement Sample input Notes

1 scanf("%c%c%c",&ch1,&ch2,&ch3);
Wrong: a□b□c↙ A char variable can only

store one characterCorrect: abc↙

2 scanf(" %d%d ", &m, &n);
scanf(" %c ", &ch);

Wrong: 32□28↙ Cause of error : newline
is read as a character in
the second scanfCorrect: 32□28d↙

Figure 4.27: Example of formatted input function: Character input.

Two cases of format control sequence
(1) Type specifier only: use default delimiter
(2) Type specifier + characters:

· “characters” are read as-is
· If characters exist between type specifiers, they are used as delimiters

End of one
data item

When a space, a “newline” or a “tab” is met
When a certain width is reached
When there is an invalid input

End of scanf Scanf function terminates when every data item is read
and Return key is pressed

“Delimiter” is a
sign used to

separate multiple
data items

Note: a data item refers to an address parameter in scanf

Figure 4.26: How to read input and end input in scanf.

156 4 Input/output

Let us combine input statements in both questions in the following program and
run the program to test why errors occur.

01 #include <stdio.h>

02 int main(void)

03 {

04 char ch1,ch2,ch3;

05 int m,n;

06 char ch;

07

08 scanf("%c%c%c",&ch1,&ch2,&ch3);

09 scanf("%d%d", &m, &n);

10 scanf("%c", &ch);

11 printf("%c%c%c\n",ch1,ch2,ch3);

12 printf("%d,%d\n", m, n);

13 printf("%c\n", ch);

14 return 0;

15 }

The inputs and values of corresponding variables are shown in Figure 4.28, where <cr> stands
for a newline. The analysis of test data is given in Figure 4.29.

Input:
abc<cr>
32 28d<cr>
Output:
abc
32,28
d

Test case 2

Input:
abc<cr>
32 28<cr>
Output:
abc
32,28

Test case 3

Input:
a b c<cr>
Output:
a b
-858993460 -
858993460
c

Test case 1

Figure 4.28: Example of formatted input function: Test input of characters.

ch1 ch2 ch3 m n ch
a□b□c↙ a □ b Does not accept characters c
abc↙32□28d↙ a b c 32 28 d
abc↙32□28↙ a b c 32 28 ↙

Figure 4.29: Analysis of test input of characters.

4.3 Data input 157

In test case 1, we add spaces in input characters abc. As a result, values of variable ch2 and ch3

on line 8 are not as expected. The root cause is that spaces in input are also characters. The
program ended after we typed abc, as scanf on line 9 tried to read contents left by variables on
line 8. Type specifiers of variable m and n are both integer type, thus they don’t accept character
input. Hence, scanf on line 10 read the last character c in the test result.

In test case 3, we add a newline after number 28. In this case, it is no longer possible to
enter character d due to the similar fact that newline is also read as a character.

Test case 2 shows the correct input that produces expected result.
When using consecutive scanfs, we should be careful as the current input data may affect

the following input statements.

Knowledge ABC scanf and buffer
Because people type characters on the keyboard much slower than a CPU processes them, a
storage block (called a buffer) that collects and stores keyboard input temporarily is designed
in the system to reduce CPU’s time of waiting. ASCII values of characters we type in are stored
in the buffer, and the CPU fetches characters that comply with the format specified by input
function from the buffer in one go when a newline is input. The remaining characters are still
stored in the buffer.

As all input functions share the buffer, errors may occur when input includes both integers and
characters. Suppose the current input is an integer, if we don’t know whether the next one is a
character, it is recommended to add while(getchar() != '\n') continue; Use font for code. which
clears the buffer.

Example 4.14 Example of formatted input function: string input
Use scanf to read a sequence of characters. The program is given in Figure 4.30.

Note the
difference

between scanf
and gets

#include <stdio.h>
int main(void)
{

char str[80];

scanf("%s",str);
printf("%s",str);
return 0;

}

Input: hello world!!
Output: hello

%s stops
reading

characters
upon spaces

Figure 4.30: String input.

158 4 Input/output

[Analysis]
When using scanf to read character sequences, we should note that a single scanf cannot read
the entire sequence if there are spaces in it.

The input in this example is hello□world. Because %s stops reading at spaces, only hello is
stored into array str while world is not. Note how it is different from using gets function to read
strings.

Think and discuss How to find errors in scanf input quickly?
We have seen in these examples that data are often read incorrectly when reading input with
scanf. Is it possible to find errors without tracing in debuggers or printing out all input?

Discussion: In fact, scanf function provides a mechanism to check the correctness of input argu-
ments. Basically, it can tell its caller the number of correct inputs. If all inputs are wrong, scanf
will return 0. If we press Ctrl+z to exit, scanf will return -1 (which is character literal EOF).

The function signature of scanf is as follows:

int scanf(format control sequence, address 1, address 2, … address n);

A test program is given in the following example.

Example 4.15 Return value of scanf function
Examine the correctness of input data using the return value of scanf function.

[Analysis]
1. Test program

We use an integer count to store the return value of scanf. The program is as follows:
#include <stdio.h>

int main(void)

{

int a,b,c;

int count;

printf("Enter values of a, b and c, separated by space\n");

count=scanf("%d%d%d",&a,&b,&c);

printf("a=%d,b=%d,c=%d,count=%d\n",a,b,c,count);

return 0;

}

4.3 Data input 159

2. Test result
The test result is given in Figure 4.31. The value of count indicates the number of data that are
correctly read. If we don’t want to enter anything, we can press Ctrl + Z to exit.

Sample
input Result

2 3 6 a=2,b=3,c=6,count=3
2 3 a a=2,b=3,c=-858993460,count=2
2 3,6 a=2,b=3,c=-858993460,count=2
2,3,6 a=2,b=-858993460,c=-858993460,count=1
a b c a=-858993460,b=-858993460,c=-858993460,count=0
^Z a=-858993460,b=-858993460,c=-858993460,count=-1

Note: ^Z——Press ctrl+z to exit input mode

Figure 4.31: Test of formatted input function.

Knowledge ABC EOF sign
End of file (EOF) is a literal defined in header file stdio.h, which means “no more data for input.”
The reason for calling it the end of a “file” is that the program system treats standard input and
output as “files.” The ANSI standard emphasizes that EOF should be a negative integer, which
is usually -1 (though it is not necessary). As a result, the value of EOF may vary in different sys-
tems. We test whether the return value is EOF rather than -1 in programs for better portability.

In UNIX and many other systems, EOF sign is input by typing in <Return> combined with
<Ctrl+D>. In Microsoft’s Window systems, EOF is input by typing in <Ctrl+Z>.

4.4 Typical problems of using formatted input function

scanf() function is a tricky topic in C learning. We shall cover in the following sec-
tions some typical problems that often arise.

4.4.1 Typical problems of scanf input

It is not rare that beginners run into the following situation when practicing pro-
gramming on computers: the machine doesn’t continue program execution and
waits in the console although required input for scanf has been provided. The root
cause is that the machine doesn’t consider the input complete while users believe
they have entered input as required.

Figure 4.32 lists the most common mistakes beginners may make when using
scanf in practice. Although they seem to be minor mistakes, it is hard to find them

160 4 Input/output

during program execution. Beginners often obtain wrong results due to wrong input
when practicing, which eventually takes them a long time to figure out why results
are wrong and affects their efficiency. We will analyze each of these mistakes now.

4.4.1.1 Common mistake of using scanf 1: wrong address argument

4.4.1.1.1 Sample program

int a;

scanf("%d ", a);

4.4.1.1.2 Phenomenon
(a) Compilation: A warning is shown, but compilation succeeds (a program is exe-

cutable if compilation succeeds).

Warning C4700: local variable 'a' used without having been initialized

(b) Execution: When executing the program, a dialog box is shown, and the pro-
gram terminates after we enter an integer as shown in Figure 4.33 (note: “test.
exe” is the generated executable file).

1 Error window “access violation” pops up

2 Error window “debug error” pops up

3 Can’t return to program execution screen after pressing Return

4 Data overflow with no error message
char c;
scanf("%d", &c);

int a;
scanf("%d", a);

int a;
scanf("%d"\n", &a);

int a;
scanf("%f"\n", &a);

No. Errors encountered during inputting Sample statement

Figure 4.32: Common problems of using scanf.

Figure 4.33: Access violation dialog box.

4.4 Typical problems of using formatted input function 161

Note:
– Unhandled exception: An exception that is not handled.
– Access violation: Illegal access. An access violation error occurs when the pro-

gram that is currently executed by the computer tries to access memory that
doesn’t exist or is not accessible.

4.4.1.1.3 Analysis
The above error occurs because we forgot to enter “&” sign in front of the address
argument a. During execution, the value of a is treated as an address. For instance,
if the value is 100, the integer we input will be written into memory at address 100.
Consequently, the system protection mechanism interferes and terminates the
program.

Programming error
“&” sign in front of an address argument of scanf is missed. (Note: if the argument is a pointer,
& is not needed as it is already an address.)

4.4.1.2 Common mistake of using scanf 2: argument type not compatible with
type specifier

4.4.1.2.1 Sample program

int a;

scanf("%f",&a);

4.4.1.2.2 Phenomenon
– No error occurs in compilation and linking.
– Execution: When entering data required by scanf, for example, number 6 (re-

gardless of being integer or real number), an error dialog box pops up and the
program terminates as shown in Figure 4.34. After selecting “Ignore,” text in
the User screen window is shown in Figure 4.35.

4.4.1.2.3 Analysis
The error message of runtime error R6002 is as follows:
– A format string for a printf or scanf function contained a floating-point format

specification and the program did not contain any floating-point values or
variables.

– The argument type is not compatible with the type specifier, thus the program
can’t continue execution.

162 4 Input/output

Programming error
An argument type is not compatible with the type specifier in scanf.

4.4.1.3 Common mistake of using scanf 3: argument type compatible with type
specifier

4.4.1.3.1 Sample program

char c;

scanf("%d", &c);

4.4.1.3.2 Phenomenon
Entering an integer overrides the memory space after the character variable.

4.4.1.3.3 Analysis
The memory space after variable c is overridden because the storage unit of it is not
large enough for an int variable. In Figure 4.36, the address of character variable
c is 0x18ff44, the initial value starting from this address is four CC, where each CC
takes up 1 byte. Figure 4.37 shows the memory space of variable c after inputting
number 10. We notice that the 4 bytes after address 0x18ff44 are now “0A 00 00
00,” but variable c is of char type and only takes up 1 byte in memory.

Figure 4.34: Debug error dialog box.

Figure 4.35: Abnormal execution result message.

4.4 Typical problems of using formatted input function 163

We can design another test case, where we use another input statement in char-
acter type scanf("%c", &c). What we want to inspect is how the first byte and the
first four bytes after the address of variable c 0x18ff44 change. In Figure 4.38, we first
enter character a, whose ASCII value is 97 or 0 × 61 in hexadecimal. We can see this
61 in the memory window. It is the only byte that has been changed. In Figure 4.39,
we enter an integer 6 and it is clear that 4 bytes after address 0x18ff44 are all
changed. The above results prove that c is allocated 1 byte of memory by the system.

Figure 4.36: Tracing error 3 in debugger 1.

Figure 4.37: Tracing error 3 in debugger 2.

Figure 4.38: Tracing error 3 in debugger 3.

164 4 Input/output

If we enter a nonnumerical character, variable c will not be assigned a value.
Readers can try this test case on their own.

Programming error
Although the execution of the program continues when the argument type and type specifier
are compatible but not consistent, data read are incorrect.

4.4.1.4 Common mistake of using scanf 4: '\n' used as newline

4.4.1.4.1 Sample program

int a;

scanf("%d\n",&a);

4.4.1.4.2 Phenomenon
After entering 5 ↙, the computer pauses execution and waits at console window.

4.4.1.4.3 Analysis
Except from %d, everything in the format control sequence should be input as-is.
"\n" is not considered a “Carriage Return” in this case.

Programming error
“\n” is used in the format control sequence of scanf.

Figure 4.39: Tracing error 3 in debugger 4.

4.4 Typical problems of using formatted input function 165

4.5 Summary

Relations between the main concepts of this chapter are shown in Figure 4.40.
People need to communicate with computers using a keyboard and screen,
Keyboard for input, screen for output, they are called standard devices.
The actual communication is carried out by input/output library functions,
Programmers only need to fill in the arguments.
There are specialized functions to handle character and strings for reading and
displaying,
putchar and getchar handle character one at a time,
Whereas puts and gets can handle a series of characters efficiently.
Formatted functions printf and scanf are versatile and can handle all kinds of
input,
But we need to match argument type with type specifier.
%c is for char, namely a single character,

Input/
Output

Concepts

Input

Input: send data from input devices to computers
Output:send data from computersto externaloutput
devices
Standardinput/output: keyboards, monitors
Standardlibrary functions, header files, file inclusion

Output

Signature: putchar(character)

Functionality:displaycharacter one at a time

Character
input

Signature: getchar()

Functionality: read a characterfrom keyboard

Formatted
input

Signature: scanf(“format control sequence”,
address parameters)

Functionality: read input from keyboard and
store into specified addresses

Character
output

Formatted
output

Signature: printf(“format control sequence”,
output parameters)

Functionality: Output values in output
parameters in the format specified by format
control sequence

String
input

Signature: gets(address)

Functionality read a string from keyboard
and store into specifiedaddress

String
output

Signature: puts()

Functionality: output a string to monitor

Figure 4.40: Concepts related to input/output and their relations.

166 4 Input/output

%d is for int, %ld is for long,
%f is for float, %lf is for double,
We also have %s, which is used for strings.
Inside double quotation marks in scanf is the format control sequence,
Everything except the % specifier should be input as-is, and & is necessary for
address arguments,
Otherwise, data will be misread and results won’t be right.
After mastering scanf, printf should be easy-peasy.

4.6 Exercises

4.6.1 Multiple-choice questions

(1) [printf: ASCII values]
The ASCII value of character A is decimal number 65. What is the output of the
following program? ()
char ch1,ch2;
ch1='A'+'5'-'3';
ch2='A'+'6'-'3';
printf("%d,%c\n",ch1,ch2);
A) 67,D B) B,C C) C,D D) Nondeterministic

(2) [printf: % sign]
What is the output of the following program? ()
int a=2,c=5;
printf("a=%%d,b=%%d\n",a,c);
A) a=%2,b=%5 B) a=2,b=5 C) a=%%d,b=%%d D) a=%d,b=%d

(3) [printf: width and precision]
Suppose we have the following definitions:
int n = 1234;
double x = 3.1415;
What is the output of the statement printf("%3d,%1.3f\n", n, x) ?（）

A) 1234,3.142 B) 123,3.142 C) 1234,3.141 D) 123,3.141

(4) [Delimiter in scanf]
Suppose the variables are correctly defined as int variables. We want to assign 1
to a, 2 to b, and 3 to c with the statement scanf(“%d%d%d”,&a,&b,&c). Which
of the following inputs is correct? ()
(Note:□ represents a space)
A) 123<Return> B) 1,2,3 <Return> C) 1□2□3<Return> D) 1;2;3<Return>

4.6 Exercises 167

(5) [Delimiter in scanf]
Suppose we have defined int i and float f. We want to assign 100 to i and 765.12
to f with the statement scanf("i=%d,f=%f",&i,&f). Which of the following in-
puts is correct? ()
(Note:□ represents a space)
A) 100□765.12<Return>
B) i=100,f=765.12<Return>
C) 100<Return>765.12<Return>
D) x=100<Return>,y=765.12<Return>

(6) [scanf with characters]
char c1,c2,c3;
scanf("%c%c%c",&c1,&c2,&c3);
We want to assign letters A, B, and C to variables c1, c2, and c3, respectively.
Which of the following statements is correct about the input format? ()
A) We should use spaces as delimiters.
B) We shouldn’t use any delimiters.
C) We should use newlines as delimiters.
D) We should use tabs as delimiters.

4.6.2 Fill in the tables

(1) [putchar]
Fill in the table in Figure 4.41.

(2) [printf]
Fill in the table in Figure 4.42.
int a = 12; int b = 3;

Statement Output

putchar(D);

putchar(67);

putchar('a' + 10);

putchar('\\');

char ch_a = 'A'; putchar(ch_a);

Figure 4.41: Input/output: fill in the tables question 1.

168 4 Input/output

(3) [getchar]
Suppose we type in “boy”, <Return> and “g i r l” when executing the following
program. Fill in the table in Figure 4.43.

#include <stdio.h>

int main(void)

{

char ch_b, ch_o, ch_y, ch_g, ch_i,ch_r, ch_l;

ch_b = getchar();

ch_o = getchar();

ch_y = getchar();

ch_g = getchar();

ch_i = getchar();

ch_r = getchar();

ch_l = getchar();

return 0;

}

Output statement Output
printf("%d , %d\n", a,b);

printf("%d\n", a, b);

printf("%d , %d\n", a);

printf("*%2d*\n", a);

printf("*%10d*\n", a);

printf("*%10D*\n", a);

printf("*%+10.5d*\n", a);

printf("*%+10d*\n", a);

Figure 4.42: Input/output: fill in the tables question 2.

Variable ch_b ch_o ch_y ch_g ch_i ch_r ch_l

Value

Figure 4.43: Input/output: fill in the tables question 3.

4.6 Exercises 169

(4) [scanf]
Fill in the table in Figure 4.44 with final values of the variables.

#include <stdio.h>

int main(void)

{

int age, count, grade;

float salary;

count = 100;

count = scanf("age=%d,grade=%d", &age, &grade);

scanf("%f", salary);

return 0;

}

4.6.3 Programming exercises

(1) We use the following rule to convert a hundred-mark system grade into a letter
grade: ‘A’ = larger than 90, ‘B’ = 80~89, ‘C’ = 70~79, ‘D’ = 60~69, and ‘E’ = < 60.
Write a program that reads a number grade, calculates the corresponding letter
grade, and displays both grades (the number should have two digits in its frac-
tion part, for example, 78.5 should be displayed as 78.50).

(2) Write a program that does the following:
1) Read three integers into variables a, b, and c
2) Assign the initial value of a to b
3) Assign the initial value of b to c
4) Assign the initial value of c to a

(3) Write a program that does the following:
1) Read three double numbers
2) Calculate and output the average of them. The average should be rounded

and have one digit in its fraction part.

(4) Write a program that reads three characters and outputs them along with their
ASCII values.

Input 12 21 123.21

Variable count age grade salary
Value
Input age=12,grade=21 123.21

Variable count age grade salary
Value

Figure 4.44: Input/output: fill in the tables question 4.

170 4 Input/output

5 Program statements

Main contents
– Usage and rules of expressions that construct branches in programs
– The basic concept of loops
– Three constructions of loops and their use cases
– Nested loops
– Characteristics of statements of the same type, their relations and selection criteria
– Exercises of efficiently analyzing programs using flowcharts
– Exercises of top-down algorithm design
– Exercises of program reading
– Debugging methods and techniques of program statements

Learning objectives
– Know how to use basic statements to write programs in sequential, branch, and loop

structures.
– Know the syntax of expression statements and difference between expressions and

expression statements.
– Know how to use fundamental control structure and control statements in C.
– Know basic debugging techniques and how to select test cases.

5.1 Sequential structure

A program of sequential structure consists of statements that are executed in se-
quential order. Such programs have the simplest structure among all structured
programs as shown in Figure 5.1.

Example 5.1 Data swap
Define two integer variables, input two integers, swap values of these variables and output them.

[Analysis]
1. Algorithm description
The process flow is shown in Figure 5.2. We first define two integer variables a and b, then input
two integers and store them into a and b. Next, we swap their values and output them. Method
of swapping values of a and b has been covered in the section “Effectiveness of Algorithms” in
Chapter 2.

https://doi.org/10.1515/9783110692327-005

https://doi.org/10.1515/9783110692327-005

2. Program implementation

01 #include<stdio.h>

02 int main(void)

03 {

04 int a,b,temp;

05 printf("Enter a,b: ");

06 scanf("%d,%d",&a,&b);

07 printf("Before swap：a=%d,b=%d\n",a,b);

08 temp=a;

09 a=b;

10 b=temp;

11 printf("After swap：a=%d,b=%d\n",a,b);

12 return 0;

13 }

Note that on lines 7 and 11, we print values of both variables before and after swap to conve-
niently check whether execution result is correct.

Input two integers and
store them into a and b

Define two integer
variables a and b

swapping
values of a

and b
Output values of a and b

Start

End

a=b

temp=a

b=temp

Figure 5.2: Data swap.

Operation 1

Operation 2

Operation n

……

Figure 5.1: Sequential structure.

172 5 Program statements

Example 5.2 Grade processing
Type in student numbers and English exam grades of four students, print the data and output
average grade.

[Analysis]
1. Algorithm description
As shown in Figure 5.3, the program executes the following operations in order: input, computa-
tion, and output. The program is given below.

Input grades

Input student IDs

Compute sum and average of grades

Output in the format “ID grade”

Start

End

Figure 5.3: Flow of grade processing.

As the program needs to handle grades of four students, four variables are declared on line 4
and four are declared on line 5 to store student numbers and grades. We also noticed that four
repeated formatted output functions are used between lines 13 and 16 to output grades.

2. Program implementation

01 #include <stdio.h>

02 int main(void)

03 {

04 int number1,number2, number3, number4; //Declare 4 student numbers

05 float grade1, grade2, grade3, grade4; //Declare 4 grades

06 float ave; //Average grade

07 　

08 printf("input 4 numbers:\n "); //Student number input prompt

09 scanf("%d%d%d%d",&number1,&number2,&number3, &number4);

10 printf("input 4 grades:\n "); //Grade input prompt

11 scanf("%f%f%f%f", &grade1, &grade2, &grade3, &grade4);

12 ave=(grade1+ grade2+ grade3+ grade4)/4; //Compute average

13 printf("%d: %f\n ", number1, grade1);

14 printf("%d: %f\n ", number2, grade2);

15 printf("%d: %f\n ", number3, grade3);

16 printf("%d: %f\n ", number4, grade4);

17 printf("average=%f\n ", ave);

18 return 0;

19 }

5.1 Sequential structure 173

Result:
input numbers:

1 2 3 4

input grades:

86 92 75 64

1: 86.000000

2: 92.000000

3: 75.000000

4: 64.000000

average=79.250000

3. Discussion
Are there any shortcomings in this program?
Discussion: There are repeated statements for similar variables. It would be tedious to write in
this way if there were 100 students. We can improve it by using loops.

5.2 Double branch structure

5.2.1 Syntax of double branch structure

In the section of the basic structure of algorithms, we have seen that we need to
make judgments when configuring a washing machine. The results of such judg-
ments have two branches, namely “yes” and “no.” We extracted a generalized
model from this practical problem and used a flowchart or pseudo code to describe
the process. In practice, the conditional decision is implemented by expressions in
C. Such a branch structure with two exits is represented by an if-else statement as
shown in Figure 5.4.

Condition

Operation
set A

Operation
set B

T F

Flowchart
representation

if condition
{

Operation set A
}
else
{

Operation set B
}

Pseudo code
representation

if expression
{

Statement set A
}
else
{

Statement set B
}

C syntax
representation

Figure 5.4: Representation of branch structure.

174 5 Program statements

The syntax and flowchart representation of if-else statement are shown in Figure 5.5.
Essentially, if the value of the expression is true, statement set A is executed; other-
wise, statement set B is executed.

Think and discuss What type of expressions can be used as the “expression” in if-else
statements?

From a practical perspective, the answer should be conditional decision, namely relational and
logical expressions. Grammatically, however, all correct C expressions can be compiled without
errors. Although there are few restrictions put by grammar, we should still design our algorithm
based on the logic of practical problems.

There is also a special case of if-else statement as shown in Figure 5.6. The else branch can
be omitted to form a single branch structure.

5.2.2 Role of compound statements

In grammar rules of C, a single statement is sometimes required in a syntax.
However, one statement may not be sufficient to complete a task in practice. Hence,
a workaround is needed in the grammar, which is called “compound statements.”

Special case:
statement set B is
empty, namely a

single branch
structure

if expression
{

Statement set A
}

Expression
F

Statement
set A

T

Figure 5.6: Special case of if-else statement.

What types of
expressions can
be used here?

if expression
{

Statement set A
}
else
{

Statement set B
}

Expression

Statement
set A

Statement
set B

T F

Syntax of
if-else statement

Figure 5.5: Syntax of if-else statement.

5.2 Double branch structure 175

Formally, a compound statement is a set of multiple statements, but it is a
whole entity and works as a single statement grammatically. Whenever a single
statement is needed, a compound statement can be used instead as needed. The
definition and usage of compound statements are shown in Figure 5.7.

Example 5.3 Role of compound statements
Analyze the role of compound statements in the two programs given in Figure 5.8.

[Analysis]
In the first program, the condition after “if statement” checks whether 1 is larger than 2. According
to grammar rules, the first statement after if is executed if the condition evaluates to true, or
skipped otherwise. Hence the first printf statement is not executed and the output is “The second
statement The third statement.”

The second program uses brackets, thus the “if statement” has two printf statements in its
true branch. Hence the output is “The third statement.”

5.2.3 Example of if statements

Example 5.4 Use if statements to implement result check in the price guessing game
In the price guessing game, the host responds with “too high,” “too low,” or “exactly” for each
guess. Suppose the actual price of an item is ¥168 and let value denote the guesses of a partici-
pant. Write statements for the result check.

Compound statement
A compound statement is formed by surrounding a

group of statements with {}.
As defined by grammar of C, a compound statement

is treated as a single statement instead of multiple.

{} can appear
on the same line
of statements or
on their own line.

Figure 5.7: Compound statement.

include <stdio.h>
int main(void)
{

if (1 > 2)
printf(“The first statement\n");
printf(“The second statement\n");
printf(“The third statement\n");
return 0;

}
Result:
The second statement
The third statement

include <stdio.h>
int main(void)
{

if (1 > 2)
{

printf(“The first statement\n ");
printf(“The second statement\n ");

}
printf(“The third statement\n ");
return 0;

} Result:
The third statement

{} can control
scope of if
statement

Figure 5.8: Role of compound statements.

176 5 Program statements

[Analysis]
The program implementation is shown in Figure 5.9. The three if statements print correspond-
ing results when the value of variable value is greater than, less than, or equal to the actual
price 168.

What are the execution paths of these three branching statements?
Let us draw and study the flowchart as shown in Figure 5.10.

Logically, if value is greater than 168 and “too high” is printed, it is redundant to check whether
value is less than or equal to 168. A program like this has better readability but worse
efficiency.

Following the logic of the problem, we first revise the flowchart. As long as a check yields
true, we can print the result and terminate the flow. The corresponding program statements are
shown in Figure 5.11.

We first check whether value is greater than 168. If true, “too high” is printed. Otherwise, the
flow enters the branch for values less than or equal to 168. In this branch, we once again check
whether value is less than 168. If true, “too low” is printed. Otherwise, we check whether it is
equal to 168. In this case, the result has to be true, so “exactly” is printed.

Note how brackets of if-else statements are aligned in the figure. It is not easy to figure out
the execution logic of this refined program without a flowchart to refer to. In other words, we
have compromised readability for higher efficiency.

if (value>168) printf(“Too high");
if (value<168) printf(“Too low");
if (value==168) printf(“Exactly");

{} can be omitted
if there is only one
statement after if

Figure 5.9: Result check in the price guessing game.

if (value>168) printf(“Too high");
if (value<168) printf(“Too low");
if (value==168) printf(“Exactly");

Better readability,
lower efficiency

value>168 Too high

value<168

value=168

Too low

Exactly

T

T

T

F

F

F

Figure 5.10: Result check solution of the price guessing game.

5.2 Double branch structure 177

In fact, the last equality condition in the flow is logically redundant, thus we can further im-
prove the flow. The refined flow and corresponding statements are shown in Figure 5.12.

We first write the case of value greater than 168, where “too high” is printed. If the comparison
yields false, we continue to process the cases where value is less than or equal to 168. If it is
less than 168, “too low” gets printed; otherwise, “exactly” is printed.

It is clear from this refinement process that flowcharts help us study the execution
of programs more intuitively and clearly compared with program statements.

if (value>168)
{

printf(“Too high”);
}
else
{

if (value<168)
{

printf(“Too low”);
}
else
{

printf(“Exactly”);
}

}

value>168 “Too high”

value<168 “Too low”

“Exactly”

T

T

F

F

High efficiency and
good readability

Refinement
2

Figure 5.12: Refinement of the price guessing game solution 2.

Refinement
1

if (value>168)
{

printf(“Too high”);
}
else
{

if (value<168)
{

printf(“Too low”);
}
else
{

if (value==168)
{

printf(“Exactly”);
}

}
}

Higher efficiency,
worse readabilityvalue>168 “Too high”

value<168

value=168

“Too low”

“Exactly”

T

T

T

F

F

F

Figure 5.11: Refinement of the price guessing game solution 1.

178 5 Program statements

5.2.4 Nested if-else statements

5.2.4.1 Nesting rule of if-else
In examples above, we have seen that an if-else statement can be written inside an-
other if statement, constructing a nested if statement.

However, if two if statements are written in the way illustrated on the left side
of Figure 5.13, which if should be matched with else?

To avoid ambiguity, we need to design a rule for such situations in grammar. C re-
quires that an else is always matched with the closest if above it in a nested if state-
ment. This is also known as the “proximity rule.”

To achieve better readability in this example, a more formal way is to add
brackets to the first if to show its scope clearly.

What if the logic of a problem requires that the else in Figure 5.13 should be
matched with the first if?

In this case, we can apply the rule of compound statements to write it in the
way shown in Figure 5.14. In other words, we need to wrap the true branch with
brackets so that it is considered to be a compound statement and in the scope of
the first if. Now the first if is the closest one to else, with respect to the nesting rule
of if-else statement.

if ()
if () statement 1;
else statement 2;

Proximity
rule

Rule
In a nested if-else structure, else is always matched
with the closest if above it.

Which if is else
matched to?

if ()
{

if () statement 1;
else statement 2;

}

Regularization

Figure 5.13: Matching of nested if-else case 1.

if ()
{

if () statement 1;
}
else statement 2;

Compound
statement

A compound
statement is

regarded as a single
statement

grammatically

Figure 5.14: Matching of nested if-else case 2.

5.2 Double branch structure 179

5.2.4.2 Note on using nested if-else
It is hard to read a program using nested if-else with too many layers. As a fun-
damental conditional statement in all programming languages, if-else state-
ments are used excessively in programming. However, in the experience of
programming, it is not recommended to use a nested if-else with more than
three layers. Otherwise, the program becomes extremely unreadable and hard to
maintain later.

Good programming habit
Avoid using too many nested if-else statements.

Example 5.5 Compute maximum of three numbers
Compute the maximum of three integers a, b, and c (whose values are obtained from keyboard
input).

[Analysis]
1. Data analysis
As per procedures of algorithm design, we should first analyze relations between the data to be
processed; in this case, a, b, and c. Possible cases are listed in Figure 5.15.

Possible cases of data
General case a, b and c have distinct values

Special or edge case At least two of them are equal

Figure 5.15: Analysis of data in the maximum problem.

Following the first step of algorithm design, we should design the flow starting from general
cases. After designing a draft algorithm, we test it against special cases and edge cases and
update it accordingly.

2. Algorithm design solution 1
Based on the requirements in the problem description, we can write out top-level and refined
pseudo code as shown in Figure 5.16, with which we can draw the flowchart of execution in
Figure 5.17.

Top level pseudo code First refinement Second refinement

Compare three numbers
a, b and c, find the
maximum of them

Input three numbers a,b and c Input three numbers a,b and c

Compare a with b if a>b

If a is larger, compare a with c,
where the larger is the maximum

if a>c max=a
else max=c

Otherwise, compare b with c,
where the larger is the maximum

else
if b>c max=b

else max=c
Output result Output max

Figure 5.16: Maximum problem algorithm design solution 1.

180 5 Program statements

Input a, b and c

a>b

b>ca>c

max=a max=c max=b max=c

Output max

Y

YY

N

N N

Figure 5.17: Flowchart of maximum problem algorithm design solution 1.

3. Testing
We have designed the algorithm flow based on general cases; therefore, the next step is to test
it against special cases of data. Figure 5.18 shows the test result.

Case Result
a=b=c max=c
a=b max is the larger between b and c
a=c max is the larger between b and c
b=c max is the larger between a and c

Figure 5.18: Test result of algorithm for maximum problem.

After passing all tests, we can start coding with the second refinement pseudo code or the
flowchart.

4. Program implementation

1 //Compute maximum of a, b and c, store it into max

2 #include <stdio.h>

3 int main(void)

4 {

5 int a, b, c, max;

6

7 scanf("%d,%d,%d",&a, &b, &c); //Type in a, b and c

8 if (a>b)

9 {

10 if (a>c)

11 {

12 max=a;

13 }

14 else

15 {

16 max=c; //max is the bigger one between a and c

17 }

18 }

19 else

20 {

5.2 Double branch structure 181

21 if (b>c)

22 {

23 max=b;

24 }

25 else

26 {

27 max=c; //max is the bigger one between b and c

28 }

29 }

30 printf("max=%d", max); //Output result

31 return 0;

32 }

5. Algorithm design solution 2
In the first solution, as max records the maximum value, we can start to use it in the comparison
of a and b. The refined pseudo code is given in Figure 5.19.

First refinement
Input three numbers a,b and c
Compare a and b,store the larger one into max
Compare max and c,store the larger one into max
Output result

Figure 5.19: Maximum problem algorithm design solution 2.

6. Algorithm design solution 3
We can also use conditional expression:

max=(a>b)? a : b;

max=(max>c)? max : c;

5.3 Multiple branch structure

5.3.1 Introduction of multiple branch problems

Case study 1 Multiple branch problem in washing machine settings
In the discussion of fundamental structures of algorithms, we have seen that we may need to
choose from multiple options when configuring a washing machine. As shown in Figure 5.20,
there are multiple branches for the decision. Using the double branch structure to describe the
problem gives us the flow in Figure 5.21, in which it is not hard to see that we can only check
one condition at a time. We can imagine that it is necessary to check all possible conditions
layer by layer to cover all possible cases if there are many of them in a problem.

182 5 Program statements

Case study 2 Multiposition switches in real life
As shown in Figure 5.22, multiposition switches in real life are all examples of multiple-level
selection. Recall how we toggle a switch in practice: we determine a target position and toggle
the switch to it at one go.

Consider all
possible cases and

select an option

Low water level High water level

Basic washing
program

Start

End

Low

Clothes load

Medium water level

Medium High

Case study 1

Multiple options problem in washing machine setting

Figure 5.20: Example of multiple branch structure.

Implemented
using double

branch structure

Low water level

High
clothes

load

Basic washing program

Start

End

Y Low
clothes

load

Medium water level

N

High water level

N Y

Figure 5.21: Double branch structure implementation of multiple branch problem.

5.3 Multiple branch structure 183

Gear stick
in car

Temperature
control switch

Speed switch
of fan

Case study 2
Multi-position switches in real life

Figure 5.22: Multiposition switches in real life.

Think and discuss Differences between multiposition and multibranch
Essentially, what are the differences between toggling a multiposition switch and a multilayer
double branch structure?

Discussion: When toggling a multiposition switch, we simply toggle it to the desired position.
Meanwhile, a judgment is needed in each step when using a double branch structure for a mul-
tiple branch problem, which is inconvenient. If we have a mechanism similar to the multiposi-
tion switch in C language, it would be easier to deal with multiple branch problems in practice.

Case study 3 Mr. Brown’s memo book
Mr. Brown is pretty busy, so he usually writes down the schedule for the next week in an electronic
memo book in advance. There was a week where Mr. Brown had the schedule shown in Figure 5.23.
Figure 5.23 also shows the flowchart he made for the schedule, drawing on multiposition switches.
In such a flow, he could know the schedule on a certain day by simply querying the day of the week.

Monday——Meeting

Tuesday——Teaching

Wednesday——Lecture

Thursday——Office work

Friday——Teaching

Saturday——Seminar

Sunday——Field trip

Case study 3

Mr.Brown’s memo book Days of the
week

Field trip

Teaching

Meeting

Lecture

Office work

Teaching

Seminar

1

2

3

4

5

6

7

Figure 5.23: Mr. Brown’s memo book.

184 5 Program statements

5.3.2 Syntax of multiple branch structure

5.3.2.1 Multiple branch structure model and grammatical representation
Based on the flowchart above, we can summarize the abstract model framework of
multiple branch structures. Note that there is a case for “exceptions” after listing all
normal cases. It works as a processing path for exceptions after considering all
possible cases. It is designed to make the system complete. Switch statements are
introduced to C as an implementation of this model. Syntax of switch statements
is shown in Figure 5.24.

A switch statement works as follows: the value of the expression is evaluated and
compared with values of constant expressions below. In the case of a match, state-
ments after that constant expression are executed. The remaining comparisons are
then skipped and statements in these cases are executed as well. If none of the con-
stants is equal to the value of the expression, statements in the default case are
executed.

5.3.2.2 Grammar test of switch statements
Mr. Brown wrote a schedule querying program using switch statements and tried to
obtain his schedule for Wednesday. However, the result he obtained was as shown
in Figure 5.25. In addition to the schedule for Wednesday, the program output
schedule for the remaining days of the week as well as a warning. What was wrong
with the program?

After checking his program, Mr. Brown found that all printf statements in case
3 and cases below were executed given input 3. Comparing the grammar of switch
statements in Figure 5.24 and his flowchart, he realized that the execution process

switch (expression)

{

case constant1: statement set A;

case constant2: statement set B;

……

case constantN: statement set N;

default: statement set N+1;

}

C syntax representation

switch statement

Expression

Statement set 2

Statement set 1

Statement set 3

Statement set N

Case 1

Case 2

Case 3

Case N

≈

Statement set N+1Exception

Abstract model framework

≈

Figure 5.24: Multiple branch model and its representation.

5.3 Multiple branch structure 185

of the switch statement was not consistent with the logic of the flowchart. Hence,
the grammar model of switch statements needed to be updated.

5.3.2.3 Refined switch statements model and grammar representation
Mr. Brown thought that an interruption mechanism was necessary for switch state-
ments. After statements in a case were executed as required, the program should be
able to jump out of the switch statement as shown in Figure 5.26. This interruption

#include <stdio.h>
int main(void)
{

int a;
printf(“Input day of the week: ");
scanf("%d",&a);
switch (a)
{

case 1: printf(“Monday: meeting\n");
case 2: printf(“Tuesday: teaching\n");
case 3: printf(“Wednesday: lecture\n");
case 4: printf(“Thursday: office work\n");
case 5: printf(“Friday: teaching\n");
case 6: printf(“Saturday: seminar\n");
case 7: printf(“Sunday: field trip\n");
default: printf(“Invalid input\n");

}
return 0;

}

Program result
Input day of the week: 3
Wednesday: lecture
Thursday: office work
Friday: teaching
Saturday: seminar
Sunday: field trip
Invalid input

Figure 5.25: Mr. Brown’s weekly schedule querying program.

We can jump out
of the switch

structure by using
break statement

Expression

Statement set 2

Statement set 1

Statement set N

Case 1

Case 2

Case N

≈

Statement set N+1Default

break

break

break

No break

No break

No break

≈
≈

Figure 5.26: Logical flow of switch statements.

186 5 Program statements

mechanism is implemented by break statements in C. Programmers can choose to
use break or not based on the logic of the problem. By now, the switch statement
model is completed and can handle multiple-branch cases properly.

The syntax of switch statements based on the updated model is shown in Figure
5.27. Break statements can be added if necessary. We put them into square brackets in
the grammar description, meaning that they are optional.

5.3.2.4 Execution process of switch statements
The execution process of switch statements is as follows:
(1) When executing a switch statement, the expression inside the parentheses that

follow it is evaluated first. The program looks for a case value, from constant 1
to constant n, in the body of the switch statement that matches.

(2) If there is a match, statements between that case and the end of the switch
statement are executed, including all the remaining cases and default case.

(3) If there is no matching case and a default case exists, statements between de-
fault and the end of the switch statement are executed.

(4) If there is no matching case and no default case, the program jumps out of the
switch statement and executes statements after it.

Note:
(1) Break statement is used to jump out of the switch statement.
(2) Constants 1 through n are distinct numerical literals or character literals.
(3) Each case branch can comprise multiple statements. {} are optional.
(4) Do not omit the default case. In case an exception occurs, namely, the value of

the expression does not match any case, the program may crash.
(5) The value of the expression after switch can be of any type except floating-

point types. Why is this the case?

When we introduced data types, there was a rule on real numbers, which stated
that “avoid checking whether two real numbers are equal,” as such comparisons
may yield wrong results.

switch (expression)
{

case constant1: statement set A; [break;]
case constant2: statement set B; [break;]

……
case constantn: statement set N; [break;]
default: statement set N+1;

}

Are the “expression”
here and the “expression”

in an if statement the
same thing?

Syntax of switch statement

Figure 5.27: Syntax of switch statement.

5.3 Multiple branch structure 187

Think and discuss Are the “expression” in switch and the “expression” in if the same thing?
The expression in if: It is designed to check a condition and the result is either true or false,

thus it should be a relational or logical expression.
The expression in switch: It is designed to match one of all possible cases and the result is

an integer, thus it should be an arithmetic expression.

5.3.2.5 Testing the refined program
Using the refined grammar of switch statements, Mr. Brown added a break in his
querying program, which passed further tests as shown in Figure 5.28.

5.3.3 Example of multiple branch structure

Example 5.6 Grade conversion
Enter a 100-mark system grade, convert it into the corresponding grade in a five-level system.
and output. The conversion rule is shown in Figure 5.29.

#include <stdio.h>
int main(void)
{

int a;
printf(“Input day of the week: ");
scanf("%d",&a);
switch (a)
{

case 1: printf("Monday: meeting\n"); break;
case 2: printf("Tuesday: teaching\n"); break;
case 3: printf("Wednesday: lecture\n"); break;
case 4: printf("Thursday: office work\n"); break;
case 5: printf("Friday: teaching\n"); break;
case 6: printf("Saturday: seminar\n"); break;
case 7: printf("Sunday: field trip\n"); break;
default: printf("Invalid input\n");

}
return 0;

}

The refined
program uses
break statements

Program result:
Input day of the week: 3
Wednesday: lecture

Figure 5.28: Refined querying program.

grade=

A 90≤score≤100
B 80≤score<90
C 70≤score<80
D 60≤score<70
E score<60

Figure 5.29: Grade conversion table.

188 5 Program statements

1. Problem analysis
This is a segment problem which can be solved using if statement. It is not hard to write the
following program.

1 #include <stdio.h>

2 int main(void)

3 {

4 int score;

5 printf("Please input score: ");

6 scanf("%d", &score); //Input grade

7 if (score>100 || score <0)

8 printf("input error! "); //Error handling

9 else if (score >= 90) printf("%d--A\n", score);

10 else if (score >= 80) printf("%d--B\n", score);

11 else if (score >= 70) printf("%d--C\n", score);

12 else if (score >= 70) printf("%d--D\n", score);

13 else if (score >= 0) printf("%d--E\n", score);

14 else printf("Input error\n");

15 return 0;

16 }

Review: This program uses nested if-else statements. As there are many segments in the prob-
lem, the program uses many branches. As a result, it is hardly readable.

We shall discuss a solution using switch statement now.

2. Solution design
We first write out the skeleton of a switch statement:

switch (expression)

{

case constant1: printf("%d-----A\n", score); break；

case constant2: printf("%d-----B\n", score); break;

case constant3: printf("%d-----C\n", score); break;

case constant4: printf("%d-----D\n", score); break;

case constant5: printf("%d-----E\n", score); break;

default: printf("Input error\n");

}

The key is to determine the expression in switch (expression). The range of score is 0–100, it is
impossible to list all 100 cases. It is also tricky to find a formula to split the range unevenly into
five levels. Based on characteristics of this problem, we can divide score by 10 and split the
range into 10 levels. Consequently, the skeleton can be updated as follows:

5.3 Multiple branch structure 189

switch (score/10)

{

case 10:

case 9: printf("%d-----A\n", score); break；

case 8: printf("%d-----B\n", score); break;

case 7: printf("%d-----C\n", score); break;

case 6: printf("%d-----D\n", score); break;

case 5:

case 4:

case 3:

case 2:

case 1:

case 0: printf("%d-----E\n", score); break;

default: printf("Input error\n");

}

Note:
(1) The result of score/10 is integer as score is integer.
(2) When score = 100, score/10 = 10, the program jumps to the branch case 10. Because there

is no statement in this branch, the program executes the statement below, namely printf
("%d-----A\n", score) as per grammar of switch statement. The program jumps out of the
switch when a break is encountered.

(3) The program works similarly for the case score <60.

3. Testing and refinement
Based on data characteristics of this problem, we can design the following test cases as shown
in Figure 5.30.

When using these test cases to verify the result, we found an error: when 100 < score < 110,
score/10 = 10, and the program outputs “A.”

4. Refined program
Part of the refined program is given below:

scanf("%d", &score);

if (score>100 && score<110) score=110;//Treat numbers between 100 and 110 as 110

score score/10

>=110 default
100<score<110 default

100 10
90<= score<100 9
80<= score<90 8
70<= score<80 7
60<= score<70 6
0<= score<60 5/4/3/2/0

score<0 default Figure 5.30: Test cases of grade conversion problem.

190 5 Program statements

switch (score/10)

{

case 10:

case 9: printf("%d-----A\n", score); break；

case 8: printf("%d-----B\n", score); break;

case 7: printf("%d-----C\n", score); break;

case 6: printf("%d-----D\n", score); break;

case 5:

case 4:

case 3:

case 2:

case 1:

case 0: printf("%d-----E\n", score); break;

default: printf("Input error\n");

}

Example 5.7 Convert if statements into switch statement
Rewrite the following statements using switch statement (a is an integer).
if (a<5) && (a>=0)

{ if (a>2)

{ if (a<4) x=1;

else x=2;

}

else x=3;

}

[Analysis]
1. Program analysis
We want to use the switch statement to show what the value of x is given various values of a, so
we should find the relation between a and x first. The given statements have poor readability;
therefore, it is better to use a coordinate system and make a relation table of a and x as shown
in Figure 5.31. It is easier to write switch statements in this way.

2. Program implementation
switch (a)

{ case 0:

a
1 2 3 4 5

3

1

2

x
a x
0 3
1 3
2 3
3 1
4 2

Figure 5.31: Relation between a and x.

5.3 Multiple branch structure 191

case 1:

case 2: x=3; break;

case 3: x=1; break;

case 4: x=2; break;

default: printf("a is error\n");

}

3. Discussion
What if a is a real number?
Analysis: The value of the expression of a switch statement must be discrete rather than contin-
uous. If a is a real number, it changes continuously. Based on the coordinate system graph
given above, we can update the relation table of a and x as shown in Figure 5.32.

We can use truncation to handle values of a as if they were discrete as shown in Figure 5.33.

It is clear that x = 3 when a = 2 and x = 1 when 2 < a < 3. The program needs to distinguish these
two situations.
Program implementation:

switch ((int) a)

{ case 0:

case 1:

case 2: if (a>2) x=1;

else x=3; break;

case 3: x=1; break;

case 4: x=2; break;

default: printf("a is error\n");

}

4. Testing
According to principles of testing, we need to test normal values, corner values, special values
as well as error cases. Possible test data are shown in Figure 5.34.

a <0 0 1 2 2 3 3 4 >4

x Error 3 3 3 1 1 2 Error

Figure 5.34: Test data.

a x
0<=a<=2 3

2<a<4 1
4<=a<5 2 Figure 5.32: Updated relation between a and x.

a (int)a x

0<=a<=2
0

31
2

2<a<4 2 1
3 1

4<=a<5 4 2
Figure 5.33: Updated relation between a and x with
truncation.

192 5 Program statements

During testing, we need to rerun the program for each test case, which is inconve-
nient. Ideally, the program should be executed once and terminated after being
tested against all test data. We can achieve this goal after learning loop statements.

Example 5.8 Calculator for arithmetic operations
Design a program that does addition, subtraction, multiplication, and division given expres-
sions entered by users through the keyboard.

[Analysis]
1. Program analysis
Concerning the characteristics of the input data, the operator is the only information that can
be used to distinguish between expressions. The operators are of character type and hence in-
tegers as well. They can be used to distinguish between different cases, thus we use them as
the case values in the switch statement. Figure 5.35 shows all cases of input and output data.

2. Program implementation
1 #include <stdio.h>

2 int main(void)

3 {

4 float a,b; //Define the operands

5 char c; //Operator

6

7 printf("input expression: a+(-,*,/)b \n");//Input prompt

8 scanf("%f%c%f",&a,&c,&b); //Enter the expression in order

9 switch(c) //Compute based on type of operator

10 {

11 case '+':

12 printf("%f\n",a+b);

13 break;

14 case '-':

15 printf("%f\n",a-b);

16 break;

17 case '*':

18 printf("%f\n",a*b);

19 break;

20 case '/':

21 printf("%f\n",a/b); //Can’t handle division by 0

23 default:

case
Input Output

float char float float
'+' a + b a+b
'-' a - b a-b
'*' a * b a*b
'/' a / b a/b

Figure 5.35: Data analysis.

5.3 Multiple branch structure 193

24 printf("input error\n");

25 }

26 return 0;

27 }

5.3.4 Comparison of various branch structure statements

Branch statements include double branch statements and multiple branch statements,
which have different features and use cases as shown in Figure 5.36. Switch statements
are used to distinguish multiple cases. Using them makes program structure clearer.
However, they can only be used when the case expression evaluates to an integer.

Conditional statements are used for comparing data with intervals or with each other.
Switch statements and if statements complement each other in functionalities.

5.4 Introduction of loop problems

5.4.1 Analysis of key elements in loops

In the discussion of fundamental structures of algorithms, we have seen that re-
peated operations may be necessary when setting up a washing machine. Repeated
operations form a loop as shown in Figure 5.37.

In the grade processing program, discussed in the section of sequential struc-
ture, we have seen that statements for similar variables are repeated multiple times.
It would be tedious to write the program in this way if we have 100 students. As
shown in Figure 5.38, we can write the grade processing program in loops in the
same way as how we dealt with the loop flow of washing machines.

Used in classification operations

Can only check whether the expression
evaluates to certain integers

switch

Used to compare data with intervals or
with each other

Not intuitive for classification operations

if

Complement

Figure 5.36: Comparison of if and switch.

194 5 Program statements

The condition checked in this loop is whether number of inputs is less than num-
ber of students. Actual input, addition and output are done inside the loop body. It is
clear that it is beneficial to do work that requires multiple executions with loops.

Let us study some concrete examples of loops.

Example 5.9 Highest score in the scoring problem
Enter 10 numbers, find and display the maximum of them.

Representation
of repeated

operations: loop

Soak

Rinse

Spin-dry

Has
rinsed 3
times

Wash

Y
N

Case study 1
Repeated operations in washing
machine settings

Figure 5.37: Repeated operations in practice.

Pseudo code
When (number of inputs is less
than number of students)
Input student ID and grade
Add grade to sum
Output student ID and grade
Output average grade

Put tasks that need
to be repeatedly

completed in a loop
structure

• Less repeated code in source file
• Simplified program design
• Reduced source file size

“number of inputs” controls
whether loop enters next iteration

Operations are done in loop body

Case study 2

A problem in grade processing

Figure 5.38: Loop in the grade processing problem.

5.4 Introduction of loop problems 195

[Analysis]
The pseudo code of the algorithm and the loop control analysis is shown in Figure 5.39.

Pseudo code
Counter N=1;
Input x;
Largest=x
When (counter N < 10)

Input x;
If (Largest < x) Largest=x;
Increase N by 1;

Output Largest;

N controls whether loop enters
next iteration

Operations are done in loop body

Update value of N

N is the loop
control variable

• Initial value
• Condition
• Increment

Figure 5.39: Loop in the maximum score problem.

A counter N is used to count the number of score inputs. The loop keeps executing while N < 10.
In the loop body, the work to be done includes score inputting, comparing with the largest num-
ber Largest and increment of counter N.

The increment of N changes the value used in the loop condition. N is called the loop control
variable, which has the following features: it has an initial value, it is used in the condition
check, and its value changes in the loop.

Example 5.10 Sum of scores in the scoring problem
The detailed problem description is as follows: enter a series of positive integers through the
keyboard, compute and display the sum of them. Suppose that users use “-1” to mark “the end
of data input.”

[Analysis]
The pseudo code and the loop control analysis are given in Figure 5.40. The condition of loop
execution is whether the input is -1. The work to be done in the loop is repeatedly adding the
input score. The newly input x changes the value in the loop condition. Herein x is the loop con-
trol variable that has an initial value, is used in the condition check, and is updated in the loop.

Pseudo code
Input a number x;
Accumulated sum sum=0;
When (x is not equal to -1)

sum=sum+x;
Input number x;

Output sum

x controls whether loop enters
next iteration

Operations are done in loop body

Update value of x

x is the loop
control variable

• Initial value
• Condition
• Increment

Figure 5.40: Loop in the sum problem.

196 5 Program statements

5.4.2 Three key elements of loops

After studying these examples of loops, we find that whether the loop is executed is
determined by the loop control variable, which has three key elements as shown in
Figure 5.41. The work to be done in the loop is a set of statements that are executed
repeatedly, which is called the loop body in C.

We shall now analyze and extract key elements in one of the loop examples above.

Example 5.11 Reanalyze the grade processing problem
Analyze the three key elements of loops in the grade processing problem.

[Analysis]
The pseudo code was given in Figure 5.38.

First, it is clear that the loop control variable is the number of data inputs. The initial condi-
tion is the initial value of the number of data inputs, which should be 0 based on the logic of
the problem although not explicitly given in the pseudo code.

The execution condition is whether the number of inputs is less than the number of students,
whereas the loop increment is the increment of the number of inputs.

Hence, the complete description of the algorithm now includes all three key elements of
loops with the addition of initial condition. The refined pseudo code is shown in Figure 5.42.

(1) Initial condition: the initial value of loop control variable when the loop is started
(2) Execution condition: the condition that controls whether the loop enters next iteration
(3) Increment: how loop control variable is updated after each iteration

Three key elements of loops

A group of statements that are repeatedly executed construct the loop body.

Loop body

Figure 5.41: Three key elements of loops and the concept of loop body.

Initial condition Number of inputs = 0
Execution condition Number of inputs is less than number of students
Increment Increase number of inputs by 1

Refined pseudo code

Number of inputs =0
While (number of inputs is less than
number of students)

Input student ID and grade
Add grade to sum
Increase number of inputs by 1
Output student ID and grade

Output average grade

Original pseudo code

When (number of inputs is less
than number of students)

Input student ID and grade
Add grade to sum
Output student ID and grade

Output average grade
The

complete
design

Figure 5.42: Key elements analysis of the loop in the grade processing problem.

5.4 Introduction of loop problems 197

Based on the discussion above, we may summarize the general flow of loops with
three key elements as a flowchart as shown in Figure 5.43. An algorithm should
contain all three key elements as long as a loop is involved. Otherwise, the algo-
rithm description is incomplete.

5.4.3 Loop statements

We have learned in the chapter “Introduction to Programs” that there are two cate-
gories of loops based on whether the loop body is executed before the condition
check. They are while loops and do-while loops.

Syntactically, C has four statements that can be used to implement loops. As
shown in Figure 5.44, there are goto loops, while loops, do-while loops, and for
loops. We shall focus on the last three in the following sections.

if () … goto

while (expression) statement;

do {
statement;

} while(expression);

for(expression1; expression2; expression3)
statement;

The three elements of loops
can be found in all these three

forms. Despite of having
unique characteristics, they

can be used interchangeably in
most cases

Figure 5.44: Loop statements in C.

Increment can
be done inside
loop body

Execution
condition

Statements in
loop body

Initial condition

Increment

T

F

Figure 5.43: General form of flow of loops.

198 5 Program statements

5.5 While loops

5.5.1 Syntax of while loops

The syntax and flowchart of while statements in C are shown in Figure 5.45. One can
learn the execution process of while loops by observing the flowchart: if the expres-
sion evaluates to true, the loop body is executed. Otherwise, the loop is skipped.

The three key elements are not clearly shown in the syntax of while loops, so
programmers should look for them based on characteristics of loops used in prac-
tical problems. Otherwise, their code would not be complete. We shall learn this
again in subsequent examples.

5.5.2 Validation of necessity of the key elements

Example 5.12 Printing numbers with a pattern 2, 4, 6, 8, 10 using while loop

[Analysis]
1．Problem analysis
We first do a tabular analysis on the data we are going to process as shown in Figure 5.46.
Clearly, there is a correspondence between the number being printed and the number of prints
i. This is a loop process that ends when i becomes 6.

What are the three key elements in this case? It is easy to see that the elements are as shown in
Figure 5.47. The initial value is 1, the execution condition is if i less than 6 and the increment is
increasing by 1.

while (expression) statement;

Syntax of while loop Where are
the three key
elements?

Statement

F

T

Expression

Figure 5.45: Syntax and representation of while loop.

Number of prints i 1 2 3 4 5 6
printf 2 4 6 8 10 End

Figure 5.46: Data analysis of printing numbers with a pattern using while loop.

5.5 While loops 199

Initial condition i=1
Execution condition i< 6
Increment i++

Three key
elements

Figure 5.47: Three key elements of printing numbers with a pattern using while loop.

2．Algorithm description

– Based on the key elements, we can write the following pseudo code and draw the flowchart
shown in Figure 5.48. Comparing these two, we can infer that i less than 6 is the loop execution
condition and the loop body is composed of printing i * 2 and i increments by 1. The initial
value of the loop control variable i is not shown in the flowchart.

We can test what happens if we forget to initialize i when running the program.

What will happen
if we don’t
initialize i=1
before the loop?

Pseudo code
Number of prints i =1
while number of prints i < 6

Print i*2
Increase i by 1

i<6

Print i*2
Increase i by 1

F

T

Figure 5.48: Pseudo code and flowchart of printing numbers with a pattern using while loop.

3．Implementation and debugging
The complete implementation can be found in Figure 5.49. Before debugging, it is vital to deter-
mine what to examine. Notably, we want to focus on:
– the entire loop from the beginning to the end,
– what happens if we do not initialize i,
– what happens if we initialize i, and
– what is the value of i when the loop ends.

//Use while loop to print 2, 4, 6, 8, 10
#include <stdio.h>

int main(void)
{

int i;
// int i=1;

while (i< 6)
{

printf(" %d ",2*i);
i++;

}
return 0;

}

Key points in debugging
• The entire loop from the beginning to the end
• i is not initialized
• i is initialized
• Value of i when the loop ends

Debugging
plan

Figure 5.49: Implementation and key points in debugging.

200 5 Program statements

(1) Without initialization
In Figure 5.50, i is not initialized. Its value turns out to be a random negative number with a
large absolute value. As a result, the output of 2*i is not the expected value 2 and the loop
is executed far more than five times. With this value of i, the loop will not terminate until i
is greater than 6 after over 800 million iterations.

Figure 5.50: Loop control variable not initialized.

(2) With initialization
In Figure 5.51, i is initialized to 1. In Figure 5.52, its value becomes 2 in the second iteration.
In Figure 5.53, its value reaches 6 when the loop is completed. This proves that the loop
body has been executed five times.

Figure 5.51: Loop control variable initialized 1.

5.5 While loops 201

Figure 5.52: Loop control variable initialized 2.

Figure 5.53: Loop control variable initialized 3.

4．Conclusion
Using the debugger, we can conclude that the three key elements must work together to ensure
the loop body is executed a desired number of times. It is uncertain how many times the loop
will be executed if the loop variable is not initialized.

Example 5.13 Scoring problem with known number of judges
Type in scores given by eight judges, output the sum and average.

202 5 Program statements

[Analysis]
1. Algorithm design
The pseudo code is shown in Figure 5.54.

Algorithm description in pseudo code
Initialize the sum to be 0
Initialize the counter to be 0
while counter < 8

Input next score
Add the score to the sum
Counter increases by 1

The average is sum divided by 8
Output the sum and average

Figure 5.54: Algorithm of scoring problem with known number of judges.

2. Program implementation
1 int main(void)

2 {

3 int counter; //Counter

4 int grade; //Score

5 int total; //Sum

6 int average; //Average

7

8 //Initialization phase

9 total = 0; //Initialize sum

10 counter = 0; //Initialize counter

11 //Processing phase

12 while (counter < 8) //8 iterations

13 {

14 printf("Enter grade: "); //Input prompt

15 scanf("%d", &grade); //Read score

16 total = total + grade; //Add score to sum

17 counter = counter + 1; //Counter increases by 1

18 }

19 average = total / 8;

20 //Output result

21 printf(" total is %d\n", total);

22 printf(" average is %d\n", average);

23 return 0;

24 }

Think and discuss Is variable initialization necessary?
Why is initialization necessary for some variables but not for the others?

Discussion: Beginners often ignore this problem, but ignoring it can lead to errors in program
results. In the program above, variables counter and total need initialization, whereas grade
and average do not. Variables that need initialization are those that need a value before being

5.5 While loops 203

used the first time. Their values affect the following computation. In other words, the first oper-
ation on them is a “read operation.” Initialization is not necessary for variables that are first
used in “write operations.”

Example 5.14 Scoring problem with unknown number of judges
Type in scores given by several judges, output the average score.

[Analysis]
1. Algorithm design
As the number of judges is unknown in this problem, we need to reconsider the condition of
loop execution. We can use a number that is not a normal score as the termination mark for
score input, for example, “-1.” Then we can write out the pseudo code shown in Figure 5.55.

Algorithm description in pseudo code

Initialize the sum to be 0
Initialize the counter to be 0
Enter a score
while input data is not the termination mark

Enter a score
Add the score to the sum
Increase the counter by 1

Average=sum/counter
Output the average

Figure 5.55: Algorithm of the scoring problem with an unknown number of judges.

2. Testing and refinement of the program
What cases we need to consider when testing the algorithm given in Figure 5.55?
We should consider normal and abnormal cases.

(1) Normal case: The first input is a score.
(2) Abnormal case: The first input is the termination mark. In this case, the loop body of the

while loop would not be executed, thus the value of the counter is 0. This leads to a divi-
sion by 0 situation when computing the average, which is a severe logic error and will
cause the program to crash.

Programming error
If we have not initialized the counter or the sum, the program result may be incorrect. This is a
logic error.

The refined pseudo code is given in Figure 5.56. Readers should implement the program
themselves.

204 5 Program statements

Algorithm description in pseudo code
Initialize the sum to be 0
Initialize the counter to be 0
Enter a score
while input data is not the termination mark

Enter a score
Add the score to the sum
Increase the counter by 1

if counter is not 0
Average=sum/counter
Output the average

Else output “No input”

Figure 5.56: Refined algorithm of the scoring problem with an unknown number of judges.

5.5.3 Example of while loops

Example 5.15 Calculate the sum of integers
Type in a series of positive integers, compute and display the sum of them. Suppose users type
in “-1” to indicate “end of input.”

[Analysis]
1. Problem analysis
Computing the sum is the process of adding numbers repeatedly, whose algorithm was given in
the section “Representation of Algorithms.” As a loop exists in the algorithm, there should be
the three key elements of the loop as shown in Figure 5.57. However, the key elements, in this
case, are not as easy to identify as those in the example “printing numbers with a pattern.”

It is clear that the loop execution condition is x not equal to 1.
What is the initial condition of this loop? Because the loop execution condition checks the

value of x, it should exist before doing the check. Hence, the initial condition should be “input
the value of x.”

The increment of loop is done inside the loop body. The value of x we input has been used at
the beginning of the loop, thus we need to enter another value for x before rechecking the exe-
cution condition. Hence, the increment here is “re-input the value of x.”

Initial condition Input value of x
Execution condition x != -1
Increment Input value of x again

Three key
elements Suppose we

store input
integer in x

Figure 5.57: Key elements of the loop in calculating the sum of integers.

5.5 While loops 205

2. Algorithm description and program implementation
Given the second refinement, we can write the corresponding program statements and eventu-
ally convert them to a complete program as shown in Figure 5.58.

Second refinement Program statements
Accumulated sum sum=0; sum=0;
Input a number x; scanf(“%d”,&x);
When (x is not equal to -1) while (x != -1)

sum = sum+x; { sum=sum+x;
Input number x; scanf(“%d”,&x); }

Output sum printf(“sum=%d”,sum)

#include <stdio.h>
int main(void)
{

int x, sum=0;

scanf("%d",&x);
while (x != -1)
{

sum=sum+x;
scanf("%d",&x);

}
printf("sum=%d",sum);
return 0;

}

Figure 5.58: Program of computing sum of integers.

Example 5.16 Read and analyze a program
Analyze the execution process of the following program, describe the intermediate value of the
key variable and the final result of the program, and eventually figure out the functionality of
the program.

1 int main(void)

2 {

3 char ch;

4

5 while ((ch=getchar())!='@')

6 {

7 putchar(('A'<=ch && ch<='Z') ? ch-'A'+'a' : ch);

8 }

9 putchar('\n');

10 return 0;

11 }

[Analysis]
1. Make a table of the key variable
The variable used inside the loop in this example is ch, where the output is controlled by expres-
sion (‘A’ ≤ ch && ch ≤‘Z’) and done by character output function. We can list them in Figure 5.59
and use an uppercase letter, a lowercase letter, a nonletter character, and a predetermined termi-
nation mark as input data.

206 5 Program statements

Then we can list the value of the expression and the output result based on the program,
which helps us examine changes that happen during the execution clearly and find a pattern.

2. Functionality analysis:
We can conclude based on Figure 5.59 that the functionalities of this program include:

(1) If the input is an uppercase letter, output its lowercase counterpart; otherwise, it is out-
put without being changed.

(2) The process repeats until the character @ is met.

3. Discussion
What are the three key elements of the loop in this example?

Discussion:
(1) Initial condition: ch = getchar()
(2) Execution condition: ch! = ‘@’
(3) Increment: ch = getchar()

The “increment” here is the loop control variable ch reading a new character input from the key-
board. This is also one way of updating the loop control variable.

Knowledge ABC Methods of reading and analyzing programs
To read and analyze a program, we usually list variables, expressions, and operations related to
changes in the loop in a table. This helps examine changes that happen during the execution
clearly and find a pattern.

Example 5.17 Chickens and rabbits in the same cage
Write a program to find a solution to this problem.

[Analysis]
1. Algorithm analysis
We have introduced this problem in the section of the universality of algorithms, where the
stepwise refined algorithm was also given.

Suppose there are x chickens and y rabbits, which have 35 heads and 94 legs in total.
In Figure 5.60, the loop is a nested one of two layers. It is worth noting that logically y should

be initialized inside the first while loop but outside the second.

Variable ch=getchar() ('A'<=ch && ch<='Z‘)
Output of putchar

in the loop
ch-'A'+'a' ch

a no a
E yes e
& no &
@ End of loop

Figure 5.59: Analysis table of the character processing program.

5.5 While loops 207

2. Program implementation

01 //Chickens and rabbits in the same cage

02 #include<stdio.h>

03 int main(void)

04 {

05 int x,y;

06 x=1;

07 while (x<35)

08 {

09 y=1;

10 while (y<35)

11 {

12 if (x+y==35 && 2*x+4*y==94)

13 printf("There are %d chickens，%d rabbits\n",x,y);

14 y++;

15 }

16 x++;

17 }

18 return 0;

19 }

Execution result:
There are 23 chickens, 12 rabbits

Program reading exercise
Fibonacci’s rabbit mating problem
Over 700 years ago, the famous Italian mathematician, Fibonacci, wrote a problem of rabbit
mating in his book Liber Abaci. Suppose that a pair of rabbits can produce another pair of rab-
bits each month, and each newly born pair produce another pair in the third month after their
birth. If we have one pair of rabbits at first, how many pairs of rabbits are there after one year?

[Analysis]
We can solve this problem by listing the number of pairs in each month:

In the first month, the original pair give birth to another pair so we have 2 (1 + 1 = 2) pairs of
rabbits.

In the second month, the original pair give birth to another pair so we have 3 (1 + 2 = 3) pairs.

Second refinement
x=1, y=1
while (x<35)

while (y<35)
if x+y=35 and 2x+4y=94

output x y
increase y by 1

increase x by 1

Is y, the loop
control variable of

the inner loop,
initialized at the

right place?

Figure 5.60: Algorithm description of chickens and rabbits in the same cage problem.

208 5 Program statements

In the third month, the original pair produce another pair, whereas the pair born in the first
month also produce one pair of rabbits. Hence, we now have 5 (2 + 3–5) pairs of rabbits.

Following this pattern, we can list the number of pairs in each month as shown in Figure 5.61.
It is clear that we have 377 pairs of rabbits after one year if we start from one pair.

Fibonacci analyzed the number in each month and wrote the following recurrence
formula, where n represents the index of the sequence.

fib nð Þ ¼ fib n� 2ð Þ þ fib n� 1ð Þ n> ¼ 3ð Þ
Using this formula, we can solve the problem with a loop.

01 #include<stdio.h>

02 int main(void)

03 {

04 int n,i,fibn1,fibn2,fibn;

05

06 printf("Enter number of generations n>3：");

07 scanf("%d",&n);

08

09 fibn1=fibn2=1;

10 printf("Increasing rate starting from gen 1\n",n);

11 printf("1\t1\t");

12 i=3; //Initial value

13 while (i<=n) //Loop condition

14 {

15 fibn=fibn1+fibn2; //Find the nth item using recurrence formula

16 printf(i%5? "%d\t" : "%d\n", fibn);//Print 5 items on each line

17 fibn2=fibn1; //Update the value

18 fibn1=fibn;

19 i++; //Loop increment

20 }

21 printf("\n");

22 return 0;

23 }

Month 1 2 3 4 5 6 7 8 9 10 11 12

Number of pairs of
existing rabbits

1 2 3 5 8 13 21 34 55 89 144 233

Number of pairs of
new-born rabbits

1 1 2 3 5 8 13 21 34 55 89 144

Total number of
pairs of rabbits

2 3 5 8 13 21 34 55 89 144 233 377

Figure 5.61: Fibonacci sequence.

5.5 While loops 209

The execution result:

Enter number of generations n>3：20

Increasing rate starting from gen 1

1 1 2 3 5

8 13 21 34 55

89 144 233 377 610

987 1597 2584 4181 6765

5.5.4 Methods of loop controlling

We have seen two types of loops in examples above: loops with a known number of
iterations and loops without a known number of iterations. As shown in Figure 5.62,
they are controlled in different ways: one is controlled using counter, whereas the
other is controlled using a mark.

5.6 Do-while loops

5.6.1 Syntax of do-while loops

The syntax and flow of do-while loops in C are shown in Figure 5.63. One can learn
the execution process of do-while loops by observing the flowchart: the body gets
executed first, then the expression is evaluated. The loop continues if the result is
true and terminates otherwise.

Case Method of loop controlling

Known number of iterations Controlled by counter

Unknown number of iterations Controlled by mark

Figure 5.62: Method of loop controlling.

do
{

statement;
} while(expression);

Syntax of do-while loop Statement

F

T
Where are
the three key
elements?Expression

Figure 5.63: Do-while loop.

210 5 Program statements

Similar to while loops, the three key elements are not clearly shown in the syn-
tax of do-while loops. Programmers should complete the missing parts in their pro-
grams based on characteristics of loops used in practical problems.

Example 5.18 Print numbers with a pattern
Use do-while to print numbers with a pattern: 2, 4, 6, 8, 10.

[Analysis]
1. Algorithm description
This problem has been introduced in the section of while loops, where we have done data and
key elements analysis. The initial value is 1, execution condition is i < 6 and the increment is i
increases by 1 in each iteration.

With respect to the syntax of do-while loops and the three key elements of loops, we can use our
experience of while loops to figure out the flowchart and pseudo code as shown in Figure 5.64.

2. Execution analysis
First, the number of prints is initialized to be 1. Then the program enters the do-while loop and
prints 2; i becomes 2 after increment, the execution condition i < 6 is true, and the program en-
ters the next iteration. We can use a table to record changes of i, the execution condition and
the output as shown in Figure 5.65.

Pseudo code
number of prints i=1
do

Print i*2
Increase i by 1

while number of prints i < 6

i<6

Print i*2

Increase i by 1

T

i =1

F

Figure 5.64: Algorithm and flow of printing numbers with a pattern using do-while.

Pseudo code Program
number of prints i=1 i=1;
do do

Print i*2
{

printf(“%d”,2*i);
Increase i by 1 i++;

while number of prints i < 6 } while (i<6);

i 1 2 3 4 5
printf 2 4 6 8 10
i++ 2 3 4 5 6
i<6 T T T T T

Figure 5.65: Analysis of the program of printing numbers with a pattern using do-while.

5.6 Do-while loops 211

3. Comparison of implementations using while and do-while
Putting implementations using while and do-while side by side as shown in Figure 5.66, it is
clear that they share the same key elements, with the only difference being execution order of
loop body and condition checking.

Initial value i=1
Execution condition i<6
Increment i++

while implementation do-while implementation
i=1; i=1;
while (i<6) do
{ printf(“%d” ,2*i); { printf(“%d” ,2*i);

i++; i++;
} } while (i<6);

While
checks and executes

do while
executes and checks

Figure 5.66: Comparison of while and do-while loops.

Example 5.19 Repeated input problem with unknown number of data
Given integer inputs from keyboard, the program should repeatedly read them into variable
num and output the value. It terminates and outputs the total number of inputs when the input
is larger than a preset value N.

[Analysis]
1. Data analysis and algorithm description
According to the problem description, the three key elements are as follows:
The initial value is the first input of num.
The execution condition is num ≤ N.
The increment is the subsequent input of num.

Using these key elements with the addition of statements that provide required functionalities,
we can write the pseudo code of the algorithm as shown in Figure 5.67. Inside the loop body, the
input is read into num, which is immediately output. The counter is then increased by 1. When
num is less than or equal to the preset value N, the loop continues. Note that “enter an integer”
here includes both initial value and loop increment.

Initial value First input of num
Execution condition num <= N
Increment Input num again

do-while implementation
Preset integer value N
Set counter to 0

Do
Input integer num
Output num
Increase counter by 1

while (num ≤ N)
Output value of counter

Initial value,
increment

Figure 5.67: Repeated input problem with an unknown number of data.

212 5 Program statements

2. Comparison of solutions using while and do-while
Figure 5.68 shows two solutions side by side. They share the same loop body while the execu-
tion order of the loop body and condition check is different.

We shall test them using a special case, where the first input num is larger than the preset
value N.

The do-while loop outputs the value and terminates with the counter value being 1.
The loop body of the while loop is not executed as the condition is not met; therefore, there is

no output of num and the value of the counter is 0. According to the problem description, the value
should be output even if it is greater than N. Thus, the logic of while loop is not suitable here.

To solve the problem that the first input does not satisfy the condition of the while loop, we
need three additional lines before the loop as shown in Figure 5.69. However, this makes the
algorithm more complicated.

do-while implementation
Preset integer valueN
Set counter to 0

Do
Input integer num
Output num
Increase counter by 1

while (num ≤ N)
Output value of counter

Special case: the first input num > N

while implementation

Preset integer value N
Set counter to 0
Input integer num
while (num≤ N)

Output num
Increase counter by 1
Input num

Output value of counter

while loops are
not suitable for
the special case

Initial value

Increment

Initial value,
increment

Figure 5.68: Comparison of programs using two types of loops.

Refined while implementation

Preset integer value N
Set counter to 0
Input an integer num
Output num
Increase counter by 1
while (num ≤ N)

Input integer num
Output num
Increase counter by 1

Output value of counter

This is
complicated

Figure 5.69: Refined while loop.

5.6 Do-while loops 213

3. Program implementation
We can write the program based on the pseudo code above.

#include <stdio.h>

#define N 25

int main(void)

{

int i=0;

int num;

do

{

scanf("%d",&num);

i=i+1;

printf("number=%d\n",num);

} while (num <= N);

printf("total=%d\n", i);

return 0;

}

In addition to data to be output, we can also add some helper text to increase the
readability of the result.

5.6.2 Use case of do-while

From what we have seen above, we can conclude that while loops should be con-
sidered first when the loop structure is needed for solving the problem. However, if
the loop body must be executed at least once regardless of the execution condition,
it is more convenient to use do-while as shown in Figure 5.70.

5.6.3 Example of do-while loops

Program reading exercise
Undefeated general
There are 21 chess pieces and two players take away pieces in turn. Each player can only take
away one to four pieces each turn. The player who takes away the last piece loses the game.
Please write a computer program against which humans can play the game, where the human

If the loop body must be executed at least once regardless of the execution

condition, it is more convenient to use do-while than to use while

Conclusion

Figure 5.70: Use case of do-while.

214 5 Program statements

player should take away pieces first and the computer player should be an “undefeated gen-
eral” (can always win).

[Analysis]
As the computer is the second player to take away pieces, we need to find a strategy to make
the program an “undefeated general.” Because 21%5 = 1, the first player is guaranteed to get
the last piece as long as the number of pieces taken away by the first player and the corre-
sponding number of the second player always add up to 5. The program is as follows.

01 //A game of 21 chess pieces

02 #include<stdio.h>

03 int main(void)

04 {

05 int num=21,i;

06 printf("Game start\n");

07 while (num>0)

08 {

09 do

10 {

11 printf("Number of pieces (between 1 and %d) you want to take away”,

num>4?4:num);

12 scanf("%d",&i);

13 }

14 while (i>4||i<1||i>num); //Read valid input

15 if (num-i>0) printf(" There are %d pieces left\n",num-i);

16 if ((num-i)<=0)

17 {

18 printf(" You took away the last piece.\n");

19 printf(" You lost. Game over.\n"); //Output winning message

20 break;

21 }

22 else

23 printf(" The computer took away %d pieces.\n",5-i);

24 //Output number of pieces taken away by computer

25 num-=5;

26 printf("There are %d pieces left\n",num);

27 }

28 return 0;

29 }

If we change the number of chess pieces in this problem, the second player is no
longer guaranteed to win. In fact, the second player may be guaranteed to lose. In
this case, whether the second player wins is related to the initial number of pieces
and the maximum number of pieces allowed to take away each turn. Interested
readers can try to write a program to solve this problem.

5.6 Do-while loops 215

5.7 Alternative form of while loops

5.7.1 Syntax of for loops

There is another form of loops in C, which is the for loop. Its syntax and processing
flow are shown in Figure 5.71. There are three expressions after for, after which are
other statements. The execution flow is as follows:
Step 1: Evaluate expression 1.
Step 2: Evaluate expression 2. If the result is false, the loop terminates; otherwise,

the statements are executed.
Step 3: Evaluate expression 3 and then go back to step 2.

Comparing this execution flow with flows of normal loops, it is clear that the logic is
equivalent. Hence, the three expressions in the syntax of for are exactly the three key
elements of loops. As a result, we can easily write out for statements by extracting
the key elements from the problem that involves using loops as shown in Figure 5.72.
Note that contents wrapped by [] in the syntax are optional.

for ([expression1] [expression2] [expression3]) statement;
Syntax of for statement

expression3

T

F

expression1

statement

expression2

Increment

T

F

Initial condition

Statements in loop body

Execution
condition

Figure 5.71: Syntax and execution flow of for loops.

The three expressions in for statements are exactly the three key elements
Conclusion

for ([initial condition]; [execution condition]; [increment]) statement;

Figure 5.72: For statement and its three key elements.

216 5 Program statements

5.7.2 Example of for statements

Example 5.20 Use for statement to print numbers with a pattern: 2, 4, 6, 8, 10

[Analysis]
1. Problem analysis
Due to the characteristics of for loops, we can simply extract the key elements from the problem
and write them as the three expressions in the for statement as shown in Figure 5.73. It is easy
and simple to use for statement to implement loops although the program is not very intuitive.
We shall analyze the execution flow defined by the grammar.

2. Flow analysis
First, let us label each step in the flow in the order of execution as shown in Figure 5.74.
According to the execution flow, step 1 is executed first, where i is initialized to be 1. Then step
2 is executed, where the execution condition i < 6 is checked. Step 3 is the execution of the loop
body. As i = 1, 2 is printed according to the analysis table. Variable i is then increased by 1 in
step 4, after which the program returns to step 2 and rechecks the execution condition. The
next iteration gets executed if the check yields true; otherwise, the loop is terminated.

Think and discuss A question on body of for loop
Compare the following two program segments, what are their output?
(1) for (i = 1; i < 6; i++) printf("%d ", 2*i)
(2) for (i = 1; i < 6; i++)； printf("%d ", 2*i)

Discussion: The output of the first segment is 2 4 6 8 10. The loop body in the second segment
has nothing but a semicolon inside, so it is an empty statement. In other words, the loop body

Initial value i=1
Execution condition i<6
Increment i++

for (i=1; i<6; i++) printf("%d", 2*i);

Figure 5.73: The key elements of the for loop that prints numbers with a pattern.

i 1 2 3 4 5 6

printf 2 4 6 8 10 End of loop

1 42 3

for (i=1; i<6; i++) printf("%d", 2*i);

i < 6

i++

T

i=1

printf(2*i)

1

4

2

3

Figure 5.74: Execution process analysis of the for loop that prints numbers with a pattern.

5.7 Alternative form of while loops 217

does nothing during the execution. The value of i after the loop terminates is 6, thus the final
output is merely a 12.

Preventing program error
Putting semicolon right next to a for statement makes the loop body an empty statement, which
is usually a logic error.

Program reading exercise
Read the following program, describe its functionality and output:

1 #include<stdio.h>

2 int main(void)

3 {

4 int sum, i;

5 sum=0;

6

7 for (i=1; i<=100; i++)

8 {

9 sum=sum+i;

10 }

11 printf("%d", sum);

12 return 0;

13 }

[Analysis]
We can list the loop variable i and the sum in a table as shown in Figure 5.75. According to the
pattern of how sum changes over iterations, it can be shown that sum=1+2+3+…+100 = 5050.

Program reading experience
Tabular method
(1) List variables changed in the loop
When reading a program, we can use the tabular method to list key variables in the program. If
a loop exists, we also list changes of the loop control variable and increment in each step. In
fact, they are also examined when using debuggers to trace a program step by step. By record-
ing the dynamic process of variable changes into a table, we take a “snapshot” of each step to
carefully analyze characteristics and patterns of program execution, which makes it easier to
obtain results of the program.

(2) List computation method
When there are too many iterations, we do not have to list the values in each iteration. Instead, we
write out the computation method to find the relation between the final result and each iteration.

i 1 2 3 … 101

sum 0+1 1+2 1+2+3 … End

Figure 5.75: Program reading analysis table.

218 5 Program statements

Example 5.21 Chickens and rabbits in the same cage
We have solved this problem using while before and now we are going to solve it using for as
shown in Figure 5.76. It is clear that this implementation is simpler. As the code implementation
is trivial, we will omit it here.

Think and discuss The value of the loop control variable after the loop terminates
What are the values of x and y after the for loop ends?

Discuss: Each for loop is executed 34 times; therefore, both values are 35 after the loop termi-
nates. In other words, the program did some meaningless work after obtaining the result. How
should we enhance this? Can we use the interruption mechanism in multiple branch structure
here to jump out of the loop in time? We will cover how to jump out of the loop after certain
conditions are met in the section “Interruption of Loops.”

5.8 Infinite loops

5.8.1 Infinite loops in practice

In the example of printing numbers with a pattern using while loop, the loop body
will be executed many times if we did not initialize the loop control variable.
Similarly, can a loop be executed forever without being terminated?

We have also seen the problem called “things whose number is unknown” in the
chapter “Algorithms.” It was solved using loops, so the three key elements should
exist as shown in Figure 5.77. Based on the pseudo code, it is trivial to find out the
initial value and the increment. Nonetheless, the problem did not restrict the number
of solutions and there might be multiple solutions. Following this logic, the loop
should be executed forever. In this case, what is the execution condition of the loop?

In this problem, the execution condition is “always true” and the number of
iterations is unlimited. Hence, there should be a mechanism to enable such infinite
loops.

int x=1 y=1 int x=1 y=1

while (x<35)

while (y<35)

x+y=35 2x+4y=94

x y

y 1

x 1

for(x=1; x<35; x++)

for(y=1; y<35; y++)

{

if (=35&&2x+4y=94)

printf("%d%d",);

}

Second refinement Third refinement
int x=1 y=1 int x=1 y=1
while (x<35)

while (y<35)
if x+y=35 and 2x+4y=94

Output x and y
increase y by 1

increase x by 1

for(x=1; x<35; x++)
for(y=1; y<35; y++)
{

if (x+y=35&&2x+4y=94)
printf("%d%d",x,y);

}

Figure 5.76: Solving chickens and rabbits in the same cage problem using for loops.

5.8 Infinite loops 219

5.8.2 Infinite loops using while statement

C uses nonzero value, 1 in most cases, to represent true, while(1) then represents a
loop whose execution condition is always evaluated to true as shown in Figure 5.78.

Think and discuss How is a while loop executed when the execution condition expression is 1?
Discussion: The grammar flow of while answers the question. The expression is 1, so it is evalu-
ated to “true.” It is clear from the flowchart shown in Figure 5.79 that the loop runs forever if
the expression is always true.

When “expression”
is 1, it always

evaluates to true

Infinite loop

In programming, a loop that cannot terminate on its own is
called an “infinite loop” or a “dead loop”

while (1) statement;

statement

T

Fexpression

Figure 5.79: Representation of infinite loop using while.

Initial value x=1

Execution condition

Increment x++

Top-level pseudo code First refinement
x starts from 1 Let x=1

Find result that satisfies
requirements
Output the result

Do the following repeatedly

Output result if x satisfies following
conditions

2 remains when divided by 3, 3
remains when divided by 5, 2 remains
when divided by 7”
Increase x by 1

When should
we terminate

the loop?

Case study

Number of iterations in problem “things whose number is unknown”

Figure 5.77: Execution condition of the loop in problem “things whose number is unknown”.

First refinement
int x=1
while (condition is always true)

if (x%3==2 and x%5==3 and x%7==2)
output x

increase x by 1

while (1)

Figure 5.78: Representation of an “always true” loop execution condition.

220 5 Program statements

Similar to how the sun repeatedly rises in the east and sets in the west, infinite loops are
very important and are widely used inside computer systems. A program can only be exe-
cuted once and terminated without infinite loops, so an infinite loop mechanism is neces-
sary to keep the system running repeatedly and normally.

5.8.3 Infinite loops using for statement

For loops are equivalent to while loops in essence, so they can be used to imple-
ment infinite loops as well.

The C grammar defines that a for loop always enters the true branch if the exe-
cution condition is omitted. In other words, a for loop without execution condition
is equivalent to while(1) as shown in Figure 5.80.

There are some special cases of for statement in C as shown in Figure 5.81. Note
that all three expressions in for statement are wrapped by square brackets, meaning
that they are all optional. However, the semicolons cannot be omitted. In the ex-
treme case, all three expressions are omitted.

for ([initial value] [increment]) statement;

Increment

T

Initial value

Statements in
loop body

F

When [execution
condition] is left blank,

the “true” branch is
always selected

A for loop without “execution condition” is equivalent to while(1)
Conclusion

Execution
condition

Figure 5.80: Representation of infinite loop using for statement.

5.8 Infinite loops 221

Program reading exercise
A moving smiley face
Note: The library function gotoxy(x, y) moves the cursor to the xth row and yth column. For ex-
ample, gotoxy(0, 0) moves the cursor to the top left corner of the screen. Note that the loop on
line 15 is infinite so that the program keeps running.

01 #include <stdio.h>

02 #include <windows.h>

03 void gotoxy(int x, int y) //Move cursor to the x-th row and y-th column

04 {

05 COORD pos;

06 pos.X = x - 1;

07 pos.Y = y - 1;

08 SetConsoleCursorPosition(GetStdHandle(STD_OUTPUT_HANDLE),pos);

09 }

10

11 int main(void)

12 {

13 int x=0,y=0; //The top left corner of screen

14 int xv=1,yv=1; //Move speed is one char at a time

15 while（1） //Keep running until Ctrl+Z pressed

16 {

17 gotoxy(x,y); //Move cursor to specified coordinate

18

19 //Move the object at specified speed:

20 x += xv; //Horizontal speed is xv

21 y += yv; //Vertical speed is yv

22 gotoxy(x, y);

23

24 //Print smiley face

25 putchar（2）; //ASCII value of smiley face is 2

The three
“expressions” are all

optional, but
semicolons cannot

be omitted

expression3

T

F

expression1

statement for (; ;) statement;

Extreme
case

for ([expression1]; [expression2]; [expression3]) statement;

expression2

Figure 5.81: Special cases of for statement.

222 5 Program statements

26 system("cls"); //Clear the screen

27

28 //Bounce the object back at edge

29 if (x >= 80 || x <= 0) xv = -xv; //Width of screen is 80

30 if (y >= 25 || y <= 0) yv = -yv; //Height of screen is 25

31 }

32 return 0;

33 }

5.9 Interruption of loops

5.9.1 Interruption of loops in practice

5.9.1.1 Example of interruption of loops

Case study 1 Variant of “things whose number is unknown”: jumping out of the loop
We consider a variant of the problem “things whose number is unknown,” where we are asked
to find the maximum number within 2000 that has remainder 2 when divided by 3, has remain-
der 3 when divided by 5, and has remainder 2 when divided by 7.

In this case, we set the initial value to be 2000, test a number starting from 2000, and de-
crease it by 1 in each iteration. The loop increment is thus a negative number. There is no re-
striction on the execution condition as shown in Figure 5.82. Inside the loop body of the infinite
loop while(1) in the code implementation, we start from 2000 and repeatedly test whether the
value of x satisfies the given condition. If not, we decrease x by 1. Once we have found an x that
satisfies the condition, the operation should be terminated after printing the value. In other
words, the program should jump out of the infinite loop.

int x=2000;
while (1)
{

if x%3==2 && x%5==3 && x%7==2
{

printf("%d",x);
jump out of the loop after finding a solution

}
x - -;

}

Initial value x=2000
Execution condition Unlimited
Increment x - -

We want to stop
after finding one

solution

We want to stop
after finding a
solution that

satisfies
requirements

Case study

A variant of the problem “things whose number is unknown”

Figure 5.82: A variant of the problem “things whose number is unknown”.

5.9 Interruption of loops 223

Case study 2 “Partial sum”: jumping inside a loop
Type in 10 integers, compute the sum of positive integers among them.

[Analysis]
Suppose we read the input into x, store the sum in sum and use i as the counter. After determin-
ing the three key elements, it is not hard to obtain the processing flow shown in Figure 5.83.
With respect to the restriction counter i < 10, we check whether input integer x is positive: if it
is, we add it to sum; otherwise, we skip this iteration of the loop body, add 1 to the counter and
enter the next iteration.

If we implement this flow using a for loop, it is clear that the flow should jump to “loop incre-
ment” when x < 0, which is a jump within the loop. How do we write such jumps in for loops?

5.9.1.2 Early termination mechanism of loops
In the problems above, it was necessary to terminate the loop in advance during
processing. The difference was that we jumped out of the loop in one case, whereas
we terminated the current iteration and entered the next in the other case.

In response to the needs of jumping when dealing with problems in practice, C
provides two statements for early termination of loops: break statement and con-
tinue statement as shown in Figure 5.84. The break statement must be used in
loops or switch statements to jump out of the loop or switch structure. The continue
statement must be used in loop statements to terminate the current iteration of the

i<10

i++

T

Integer x, sum sum=0 counter i=0

Input x

sum+=x

x<0

Output
sum

F

T

Initial value i=0
Execution condition i<10
Increment i++

for(i=0;i<10;i++)
{

scanf("%d",&x);
if (x< 0) jump to “increment”
sum+=x;

}

How do
we jump?

Figure 5.83: Processing flow of partial sum problem.

Statement Use case Role

break
Loop statements Jump out of loop

switch statement Jump out of switch structure

continue Loop statements End current iteration

Jump to the end of
the loop body

containing continue

Figure 5.84: Two statements for early termination of loops.

224 5 Program statements

loop. In other words, the remaining statements in the current iteration are skipped
and the next iteration is started.

5.9.2 Jumping out of loops with break statement

To address requirements in practice, C provides the break statement for terminating
loops in advance as shown in Figure 5.85. In fact, we have seen its usage when in-
troducing the syntax of switch statement.

Example 5.22 Analysis of the variant of “things whose number is unknown” problem
What is the maximum number within 2000 that has remainder 2 when divided by 3, has remain-
der 3 when divided by 5, and has remainder 2 when divided by 7? Write two programs using
while and for, respectively.

[Analysis]
1. Algorithm design
This is a process of repeatedly testing whether an integer satisfies the given condition: we start
from x = 2000, test whether x satisfies the condition and decrease its value repeatedly. Once
we have found the solution, we jump out of the loop. As we do not know what range the solution
lies in, we cannot determine the execution condition. Figure 5.86 shows the key elements of the
loop and pseudo code.

Increment

T

Statement set 1

breakStatement set 2

Condition

End of loop

F

break can be
used in switch
statements as

well

Execution
condition

Initial value

Figure 5.85: Break statement in loop structure.

5.9 Interruption of loops 225

Top-level pseudo code Refinement

x starts from 2000 x= 2000

while () while ()

decrease x by 1 if x doesn’t satisfy given
conditions. Repeat until finding an x that
satisfies the conditions

if x%3==2 and x%5==3 an x%7==5
break

x-- ;
Output x Output x

Initial condition x=2000

Execution condition Unknown

Increment x--

Figure 5.86: Algorithm description of things whose number is unknown problem.

Note that the loop increment in this example is decreasing. Increment here means the change
of the loop control variable, which can be increasing or decreasing, regular or irregular. We
should use it with flexibility.

2. Program implementation

1 //Things whose number is unknown, solved using for loop

2 #include<stdio.h>

3 int main(void)

4 {

5 int i;

6

7 for (i=1; ; i++) //Execution condition is unknown, so we leave it blank

8 {

9 if (i%3==2 && i%5==3 && i%7==5)

10 {

11 printf("%d\n",i);

12 break;

13 }

14 }

15 return 0;

16 }

The program implementation using a while loop is shown in Figure 5.87. With the break state-
ment on line 10, the program produces only one result, 1913. If we delete this break statement
and change the execution condition on line 5 to x > 1, we can obtain all solutions that are less
than 2000.

226 5 Program statements

Example 5.23 Find the largest number that satisfies given condition
Find the largest number within 100 that can be divided by 19 exactly. Write the program using
for loop and trace it in a debugger.

[Analysis]
1. Algorithm design
The pseudo code is shown in Figure 5.88.

2. Program implementation
1 //Find the largest number that satisfies given condition

2 #include<stdio.h>

3 int main(void)

4 {

5 int i;

6 for (i=100; i>18 ; i--)

7 {

8 if ((i%19)==0) break;

9 }

01 #include <stdio.h>
02 int main(void)
03 {
04 int x=2000;
05 while (1)
06 {
07 if (x%3==2 && x%5==3 &&x%7==2)
08 {
09 printf("%d",x);
10 break;
11 }
12 x--;
13 }
14 return 0;
15 }

Result:
1913

Jump out
of loop

1913 1808 1703 1598 1493
1388 1283 1178 1073 968
863 758 653 548 443
338 233 128 23

Solutions
within
2000

Figure 5.87: Program implementation of the variant of things whose number is unknown problem.

Pseudo code Refinement
i starts from 100 i starts from 100
while i < 100 while i > 1

decrease i by 1 if it is not a
multiple of 19,

jump out of the loop if I is a multiple of 19

jump out of the loop when
finding an i that satisfies
given condition

decrease i by 1

output i output i

Figure 5.88: Algorithm of finding the largest number that satisfies given condition.

5.9 Interruption of loops 227

10 printf("%d\n",i);

11 return 0;

12 }

3. Program tracing
As we do not know the value of i that satisfies condition i%19 = = 0, we need to press hotkey of
stepwise tracing F10 again and again to trace step by step, which is inefficient.
In the for loop shown in Figure 5.89, we are interested in the value of i when i%19 = = 0, but the
program will jump to the printf statement at that moment due to the functionality of break statement.
How can we directly examine the value of i that satisfies given condition starting from i = 100?

There are two ways of fast tracing:
(1) Use run to cursor command to jump
In Figure 5.90, we move the cursor to the left of the printf statement (by clicking on the left of
printf using the mouse). After we have seen the flickering vertical bar, select “Run to cursor” in
the “Debug” menu.

Figure 5.89: Debugging program that finds the largest number that satisfies given condition
step 1.

Figure 5.90: Debugging program that finds the largest number that satisfies given condition step 2.

228 5 Program statements

When i%19 == 0 is met, the program jumps to the printf statement and stops as shown in
Figure 5.91. Note that the printf is not yet executed, and the value of i is 95. After executing
printf, “95” will be output.

(2) Using breakpoints
We can add a breakpoint before printf statement and then execute the Go command (by press-
ing hotkey F5) as shown in Figure 5.92. F5 is used for debugging one step with the breakpoint.
With a single press of F5, the program runs until the breakpoint is met as shown in Figure 5.93.

5.9.3 Jumping inside loops with continue statement

5.9.3.1 Functionality of continue statement
In the case study, “partial sum” in section 5.9.1, our brief analysis indicated that we
need to find a way for the flow to jump to “loop increment.”

Breakpoint
symbol

Insert/Delete
a breakpoint

Go

Figure 5.92: Debugging program that finds the largest number that satisfies given condition step 4.

Figure 5.91: Debugging program that finds the largest number that satisfies given condition step 3.

5.9 Interruption of loops 229

As it is tricky to observe the execution order of key elements in a for loop, we
shall write out the corresponding while statement and compare these two as shown
in Figure 5.94.

In a while loop, the jump can be completed by using a goto statement (which will
be covered in Section 5.10). However, it is usually not recommended to use the goto
statement in programming. Is there a “package solution” to jumping inside all kinds
of loops?

C provides a special statement, which is continue, to implement such jumps.
Nevertheless, the loop increment appears at a fixed position in for statement while
it can appear anywhere in a while loop. How do we design a unified rule for it?

C defines that a continue statement always jumps to the end of the loop, which
is the last bracket of loop statement for all three kinds of loops (Figure 5.95).

5.9.3.2 Role of continue in different loops
Now we discuss the role of continue in different loops from the perspective of
grammar.

Figure 5.93: Debugging program that finds the largest number that satisfies given condition step 5.

We can use
goto statement
to implement

jumping

i=0;
while (i<10)
{

scanf("%d",&x);
if (x<0) jump to “increment”
sum+=x;
i++

}

for (i=0; i<10; i++)
{

scanf("%d",&x);
if (x<0) jump to “increment”
sum+=x;

}

Is there a “package
solution” to jumping

inside all kinds of
loops?

Use
continue statement to jump

Increment appears at a
fixed position in for

statement, while it can
appear anywhere in a
while loop. How do we
design a unified rule

for it?

Rule
continue statement jumps
to the end of loop body

Figure 5.94: Internal jumps in for and while structure.

230 5 Program statements

The “loop increment” is not inside the loop body of a for loop; thus, the increment
statement is executed after the jump made by continue statement. See Figure 5.96 for
the flowchart.

Based on the requirements, the “loop increment” of a while loop can be put any-
where inside its loop body. In this case, the continue statement jumps to the condi-
tion checking statement as shown in Figure 5.97. In other words, the grammar does
not specify whether loop increment is done before the jump, so programmers need
to handle it based on the logic of concrete problems.

A continue statement in a do-while loop works in the same way as in a while
loop. As shown in Figure 5.98, it is not specified in the grammar whether the loop
increment is done before the jump.

Increment

T

Initial value

Statement set 1

continueStatement set 2

Condition

End of loop

F
for(initial value; execution condition; increment)
{

statement set 1;
if(condition) continue;
statement set 2;

} T

Execution
condition

“Increment” is
not a part of the
loop body of for

statements

Figure 5.96: Continue in for loops.

for (i=1; i<=n; i++)
{

loop body;
} i=1

while (i<=n)
{

loop body;
i++;

} i=1
do
{

loop body
i++;

} while (i<=n);

End of
loop

Rule
continue statement jumps to the end of loop body

Figure 5.95: The end of a loop.

5.9 Interruption of loops 231

Now let us take a look at the program implementation of the “partial sum” problem
shown in Figure 5.99. It is worth noting that i++ is executed in a for loop regardless
of execution of continue. However, whether continue is executed affects the execu-
tion of i++ in a while loop, thus the logic of the program is imperfect. Readers can
try to revise it on their own.

5.10 Free jump mechanism

5.10.1 Concept of free jump

One day, Mr. Brown went to the new campus of another university in his city for the
first time to join a seminar. He drove across the gate and was about to ask a pass-
erby about the direction. However, a sign showing the route was on the roadside.

T

Initial value

Statement set 1

continue

Statement set 2

Condition

End of loop

F

Initial value
while (execution condition)
{

statement set 1;
if(condition) continue;
statement set 2;

}

T“Increment” of a
while loop can be

in either statement
set 1 or statement

set 2

Execution
condition

Figure 5.97: Continue in while loops.

do
{

statement set 1;
if(condition) continue;
statement set 2;

}while(execution condition);

Initial value

Statement set 1

continue

Statement set 2

Condition

End of loop

F

T

T

“Increment” of a do-
while loop can be in
either statement set
1 or statement set 2

Execution
condition

Figure 5.98: Continue in do-while loops.

232 5 Program statements

He then drove to the destination successfully following the guidance on road signs
specially set for the meeting.

There are similar “guiding” statements in C as well. We have discussed jump
statements break and continue, which are designed for interrupting loops, in previ-
ous sections. The destination they can jump to is strictly restricted by the grammar
of C. Meanwhile, there exists a more flexible jump statement in many programming
languages. This is the unconditional jump statement, namely the goto statement.

5.10.2 Syntax of unconditional jump statement

The schematic and syntax of the unconditional jump statement are shown
in Figure 5.100.

int main(void)
{

int i=0,x,sum=0;
while (i<10)
{

scanf("%d",&x);
if (x<0) continue;
sum+=x;
i++;

}
printf("sum=%d",sum);
return 0;

}

int main(void)
{

int i,x,sum=0;

for (i=0; i<10; i++)
{

scanf("%d",&x);
if (x<0) continue;
sum+=x;

}
printf("sum=%d",sum);
return 0;

}

These two
programs have
different logic

Figure 5.99: Program implementations of “partial sum” problem.

goto label;

label statement goto label;

label statement

......

label

Statement
with the label

Syntax of goto statement

goto label;

Functionality of goto
statement: jump to
statement with the

label unconditionally
and continue

Figure 5.100: Unconditional jump statement.

5.10 Free jump mechanism 233

The “label” here is the “road sign,” whereas goto is an instruction of turning. A
goto statement can jump either backward or forward. A label is a sign written fol-
lowing the rule of identifiers. It is named in the same way as a variable, but we do
not need to allocate memory space or declare it in advance. A label is put in front of
a line followed by a colon. It is used to identify a statement and to pair with goto
statements. For example:

label: i++;

while(i<7) goto label;

C does not restrict the number of labels used in a program, but they must be
uniquely named. The goto statement changes the execution path of a program so
that the program jumps to the statement marked by the label.

5.10.3 Example of unconditional jump statement

Example 5.24 Print numbers with a pattern
Use goto statement to print numbers with a pattern: 2, 4, 6, 8, 10.

[Analysis]
1. Algorithm implementation
As the goto statement can jump either backward or forward, there are two options for implementa-
tion. The processing flows and pseudo code are given in Figs. 5.101, 5.102 and 5.103, respectively.

Print i*2
Increase i by 1

goto Loop

i<6 F

T
Loop

Pseudo code
Number of prints i =1
Loop number of prints i < 6

Print i*2
Increase i by 1
goto Loop

Similar to a
while loop

Form a loop
together with
conditional
statement

Figure 5.101: Use goto to print numbers with a pattern solution 1.

234 5 Program statements

Pseudo code
Number of prints i =1

Print i*2
Increase i by 1

if i < 6, goto Loop

i<6

T

i =1

F

Loop

Print i*2
Increase i by 1

goto Loop

Similar to a
do-while loop

Figure 5.102: Use goto to print numbers with a pattern solution 2.

01 //Use goto statement to print 2, 4, 6, 8, 10
02 #include <stdio.h>
03
04 int main(void)
05 {
06 int i=1;
07
08 Loop:
09 printf(" %d ",2*i);
10 i++;
11 if (i< 6) goto Loop;
12 return 0;
13 }

Labels and variables
have the same naming
conventions, but labels
don’t need declaration

Form a loop together
with if statement

Figure 5.103: Use goto to print numbers with a pattern solution 2.

It is not hard to notice that the backward jump solution is similar to a while loop and the for-
ward jump is similar to a do-while loop. The jumps here are more intuitive than the flow of loop
statements as they directly demonstrate the low-level implementation of loops.

2. Program implementation
Goto statements and conditional statements are often used together to provide functions like
conditional jumps, loops, and jumping out of a loop.

5.10.4 Characteristics of goto statements

5.10.4.1 Jumping out of a nested loop directly
The most important feature of goto statements is jumping out of nested loops di-
rectly. As shown in Figure 5.104, we need one break operation in each for loop if we

5.10 Free jump mechanism 235

want to jump out of a nested for loop of two layers, whereas a goto statement jumps
out of the nested loop directly and smoothly.

5.10.4.2 Flexible jumps
Although it is easy to compute the sum of integers 1 to 100 using a for loop, it is also
possible to complete the task in a complicated way using multiple goto statements.

5.10.4.3 Note on using goto statements
It is not recommended to use goto statements in modern structured programming.
Advice on using them is given in Figure 5.106.

Knowledge ABC Necessity of goto statements
In 1974, Donald E Knuth gave a thorough and fair assessment of goto statements. He claimed
that unrestricted use of goto statements, especially backward goto, made it difficult to under-
stand the structure of programs. Thus we should avoid using goto in such cases. In other cases,
however, he believed that limited use of goto statements was necessary to increase program
efficiency without affecting good program structures. Jumping out of nested loops was one such
example (Figure 5.105).

//Use goto to implement a loop

int a;
goto Init;

Init:
a = 1;
goto Print;

Forward:
a = a+1;

Print:
printf(“%d\n”,a);
goto Down;

Down:
if(a<100) goto Forward;

//Use loop statements to implement a loop

for(int i=1; i<=100; ++i)
printf(“%d\n”,i);

Equivalent

goto implementation uses too
many code segments, which
make system building and

tracing difficult and
affect readability

Figure 5.105: Different implementations of loop.

// Code using break
int flag=false;
// Used as a termination mark
for (int i=1; i<100; ++i)
{

for (int j=1; j<100; ++j)
if (i*j==128)

{
flag=true; break;

}
...

if (flag) break;
}

// Code using goto
for (int i=1; i<100; ++i)
{

for (int j=1; j<100; ++j)
{

if (i*j==128) goto End;
...

}
}
End: ...

Equivalent

goto statements
can jump out of
a nested loop

directly

Figure 5.104: Jumping out of a nested loop.

236 5 Program statements

Rule

goto can jump out of a loop but not the other way around

Drawback

It is hard to trace the control flow of programs using goto. It
is also hard to understand and modify these programs.

Suggestion

• Don’t use goto statements unless necessary
• Any program that uses goto can be rewritten without goto

Figure 5.106: Usage of goto statements.

5.11 Summary

The main concepts and relations between them are shown in Figure 5.107.

Program
statements

Conditional

Jump

if(expression)-else, expression evaluates to true or false
switch(expression), expression evaluates to an integer

Loop

while(expression), expression evaluates to true or false
do-while(expression), expression evaluates to true or false
for(initial value; execution condition; increment)
if (expression) goto label, expression evaluates to true or false
Three key elements: initial value, execution condition, increment

break: jump out of a loop or a switch statement
continue: terminate current iteration
goto: jump to specified label

Figure 5.107: Concepts related to program statements.

When using statements, sometimes expressions are required by the grammar. We
need to pay attention to the types of these expressions. As shown in Figure 5.108,

Statement Type of expression in the statement
if Conditional/Logical

switch Arithmetic
while Conditional/Logical

do-while Conditional/Logical

for
Expression 1 Expression 2 Expression 3
Assignment Conditional/Logical Arithmetic

Figure 5.108: Type of expressions in different statements.

5.11 Summary 237

different types of expressions can yield different results so they are not to be con-
fused with each other.

Types of results of different expressions are shown in Figure 5.109.

Grammatically, for statements are equivalent to while statements. It is recommended
to use for statements because they have a more straightforward and clearer form. Do-
while is more convenient than for and while if the loop body needs to be executed at
least once.

Program statements are instructions that drive computers.
There are three kinds of branch statements and four kinds of loop statements,
each with its own syntax.
If statement is used in single- and double-branch structures, whereas it is better
to use “switch” for multiple branches.
If we check a condition and select one branch from two based on the result, we
should use if statement.
If we compute a value, which may be one of many cases, the path correspond-
ing to the correct constant is chosen.
Default is used to handle exceptions not included in any case.
Doing things repeatedly and tirelessly is the merit of computers, do-while is
straightforward, thus it executes the loop body first anyways; while is smart,
thus it checks the condition to determine whether the loop body should be exe-
cuted; for is an alternative form of while that has a more straightforward form.
Using goto to implement loops is tricky; using it with care is the advice from
those masterminds.
Loops can be interrupted in special cases,
Where continue skips remaining statements in the current iteration and jumps
to condition checking;
While break terminates the loop immediately without hesitation.
These four kinds of loops provide the same functionality,
So they should share some common attributes.
The initial value, execution condition and loop increment are the three key
elements,
We should extract them from the problem if a loop is needed.

Expression Result

Arithmetic Numeral

Relational True/False

Logical True/False Figure 5.109: Type of result of expressions.

238 5 Program statements

5.12 Exercises

5.12.1 Multiple-choice questions

(1) [Exception in if]
int x = 0x13;
if (x = 0x12) printf("True");
printf("False\n");
What is the output of the program above? ()
A) True B) TrueFalse C) False D) TrueFalseTrue

(2) [While]
Which of the following is not an infinite loop? ()
A) for(y=0,x=1; x>++y; x=i++) i=x;
B) for(; ; x++=i);
C) while(1){x++;}
D) for(i=10; ;i--) sum+=i;

(3) [Do-while]
We want to compute s=1 + 2*2 + 3*3 + … + n*n +… until s>1000 with the follow-
ing program.
int s=1,n=1;
do
{ n=n+1;

s=s+n*n;
} while(s>1000);

printf("s=%d\n",s);
After executing the program, we find that the result is wrong. Which of the fol-
lowing changes make the program correct? ()
A) Change while(s>1000) to while(s<=1000)
B) Change s=1 to s=0
C) Change n=1 to n=0
D) Change n=n+1 to n=n*n

(4) [Break and continue]
Suppose x and y are both int variables. What is the value of y after executing
the following loop? ()

5.12 Exercises 239

for(y=1,x=1;y<=50;y++){

if(x>=10) break;

if(x%2==1) {x+=5;continue;}

x-=3;

}

A) 2 B) 4 C) 6 D) 8

(5) [Switch]
Suppose we have the following definitions: float x＝1.5; int a＝1, b＝3, c＝2;
Which of the following switch statements is correct? ()
A) switch(a+b)

{ case 1： printf("*")；　

case 2+1： printf("**")； }
B) switch((int)x)；

{ case 1： printf("*")；　

case 2： printf("**")； }
C) switch(x)

{ case 1.0： printf("*")；　

case 2.0： printf("**")； }
D) switch(a+b)

{ case 1： printf("*")；　

case c： printf("**")；}

(6) [While and switch]

int main(void)

{ int s;

scanf("%d", &s);

while(s>0)

{ switch(s)

{ case 1: printf("%d", s+5);

case 2: printf("%d", s+4); break;

case 3: printf("%d", s+3);

default: printf("%d", s+1); break;

}

scanf("%d", &s);

}

return 0；

}

240 5 Program statements

Suppose the input is 1 2 3 4 5 0<Return>. What is the output of the program
above? ()
A) 66656 B) 6566456 C) 66666 D) 6666656

(7) [For]
What is the output of the program below? ()
int x=10,y=10,i;
for(i=0;x>8;y=++i) printf("%d,%d; ",x--,y);
A) 10,1; 9, 2; B) 9, 8; 7, 6; C) 10, 9; 9, 0; D) 10,10; 9, 1;

5.12.2 Fill in the tables

(1) [Continue]
Fill in the table in Figure 5.110.

int main(void)

{

int i=0;

while(i<100)

{

i++;

if(i%2==0 ||i%3==0)continue;

printf("%d ",i);

}

return 0;

}

i 1 2 3 4 5 6 7 ... 99 100

Is a multiple of
2 or 3

False True

Output 1 None

The functional-
ity of the pro-

gram

Figure 5.110: Program statements: Fill in the tables question 1.

5.12 Exercises 241

(2) [Nested loop]
Fill in the table in Figure 5.111.

main()

{

int n,s,sum=0;

scanf("%d",&n);

for(int i=1;i<=n;i++)

{

s=0;

for(int j=1;j<=i;j++) s+=j;

sum+=s;

}

printf("%d",sum);

}

(3) [Nested for]
Fill in the table in Figure 5.112.

int main(void)

{

for (int i=0; i<2; i++)

for (int j=3; j>0; j--) printf("*");

return 0;

}

i 1 2 3 ... n

j 1 1~2 ...

s 1 1+2 ...

sum 1 1+(1+2) ...

Figure 5.111: Program statements: Fill in the tables question 2.

i 0 1 2
j

Out-put

Figure 5.112: Program statements: Fill in the tables question 3.

242 5 Program statements

5.12.3 Programming exercises

(1) The elevation of Mount Everest is 8844 m. Suppose we have a piece of paper of
infinite size. Its thickness is 0.05 mm. We want to repeatedly fold the paper in
half so that the total thickness exceeds the elevation of Mount Everest. How
many folds are needed?

(2) Given n numbers, find a pair of two numbers whose difference has the smallest
absolute value and output it.

(3) Suppose that abc + cba = n. a, b, and c are all one-digit numbers. n is in the
range (1000, 2000). Write a program that finds all possible combinations of a,
b, and c.

(4) The Renminbi has banknotes for 100, 50, 20, 10, 5, and 1 yuan. Given an integer
price, please figure out a way to pay exactly with as few notes as possible.

(5) Given two integers and an operator (+, -, *, /, %), compute and output the re-
sult. Note that the divisor cannot be 0 in division and remainder operations.

(6) Write a program that outputs lowercase English letters in the alphabetical order
and the reversed alphabetical order.

(7) Given a natural number N (N < 10), use a double for loop to compute N! and
ΣN!.

(8) Given two integers a and b, compute their greatest common divisor. (Hint:
when one of the numbers is 0, the gcd is the one that is not 0. When two num-
bers are relatively prime, their gcd is 1.)

(9) A ball falls off from the height of 100 m. Upon falling on the ground, it bounces
back to half of the original height. It then falls off and bounces back again.
Compute the total distance the ball has traveled when it falls on the ground the
n-th time and the bouncing height. Suppose 5≤n≤ 15.

(10)Compute the value of π using the following sequence.

π = 4−
4
3
+ 4

5
+ 4

7
+ 4
9
+ 4
11

+ ...

(11) Write a program that outputs the following pattern.
AAAAAAAAAAAA
BBBBBBBBBB
CCCCCCCC
DDDDDD
EEEE
FF

(12) Write a program that converts a line of input into an integer. The input consists
of digits separated by spaces (each digit, excluding the first and the last, is pre-
fixed and suffixed with a space) and ends with EOF (by pressing Ctrl + Z). For
example, the program should output “2483” given the input “2 4 8 3.”

5.12 Exercises 243

6 Preprocessing: work before compilation

Main contents
– Definition and characteristics of preprocessing;
– Definition and usage of macros;
– Meaning and usage of file inclusion;
– Rule and usage of conditional compilation;

Learning objectives
– Know usage and effect of file inclusion, be able to develop a program using multiple files

through #include
– Be able to use #define to create ordinary macros
– Understand conditional compilation

6.1 Introduction

The midterm exam of the programming course Mr. Brown taught was conducted
using an online judge system. There were five problems in the exam and the score
was calculated as follows: the five scores of each problem were sorted in descend-
ing order, and their weighted sum was computed with weight 0.3, 0.25, 0.2, 0.15,
and 0.1. Mr. Brown wrote a program to compute the grades of students. After calcu-
lating all the grades, he found that the passing rate was low. As a result, he updated
the calculation rule in the final exam, where a student passed the exam as long as
he/she was able to solve two problems. To achieve this goal, he changed the weight
to 0.3, 0.3, 0.15, 0.15, and 0.1 However, when he modified his program at the end of
the semester, he forgot which scores corresponded to 0.25, 0.2, and 0.15 because it
had been a long time since he wrote the program. It was quite tedious to review and
verify. Moreover, these weights were used multiple times in the program; therefore,
it was possible that he wrongly updated a weight or even forgot to update at all.

There was a large crossborder bank that asked Mr. Brown to write a piece of
software to manage multiple currencies. One of the desired functions was to display
the exchange rates in multiple languages. After analyzing this requirement, Mr.
Brown realized that although the exchange rate should be displayed in multiple
languages, the business logic of reading, calculating, and displaying exchange
rates remained unchanged. In other words, displaying exchange rates in multiple
languages was only a matter of user interface support. There would be two prob-
lems if he created a separate project for each language: first, a large amount of re-
peated work would be done as the same business logic needed to be implemented
in all the projects; and second, Mr. Brown must modify the same code in all projects
if he needed to change a logic processing flow.

https://doi.org/10.1515/9783110692327-006

https://doi.org/10.1515/9783110692327-006

Solutions above may not be preferable for many of us, but is there a better way
to meet these requirements in C? The answer is affirmative: the preprocessing direc-
tives we are going to introduce now are the solution.

6.1.1 Preprocessing

What is preprocessing? It is a simple concept. When we write C programs, we can
include some compilation instructions in the source code to tell the compiler how
the program should be compiled. When the program is compiled, these instructions
are executed before the compilation of source code. Hence, these instructions are
also called preprocessing directives. See Figure 6.1 for the process of compiling
source code into executable files.

6.1.2 Preprocessing directives

Preprocessing directives are defined by the American National Standards Institute C
standard. They include macro definition, file inclusion, and conditional compila-
tion. See Figure 6.2 for their corresponding keywords.

We can see from these keywords that all preprocessing directives start with the “#”
sign, whose scope extends to the first newline symbol after it. In essence, its scope
is one logical line. If a directive is too long in actual programs, the logical line can
be divided into multiple physical lines using “\”. Compilers can recognize these
lines before compilation and process them as a single logical line.

Source
code Compilation Object

program Linking Executable
program

Preprocessing

Figure 6.1: The process of compiling source code into executable files.

Type Keyword

Macro definition #define #undef
File inclusion #include
Conditional compilation #if #ifdef #else #elif #endif

Programming Error
Use semicolons after #define and #include directives

• Start with “#”
• Each on its own line
• No semicolon at the end

Preprocessing
directives are not

C statements

Figure 6.2: Preprocessing directives.

246 6 Preprocessing: work before compilation

In fact, preprocessing directives are not statements in C, but they enhance the
power of C programming. Reasonable use of these makes programs we write more
natural to read, modify, port, and debug. For example, we can adopt the modulari-
zation approach to divide a system into multiple relatively independent function
modules based on user requirements and functionality design by using file inclu-
sion directives. Besides, conditional compilation directives enable us to compile
programs into different versions to accommodate different requirements without
modifying the rudimentary code. The code reuse rate is thus increased.

Note that we should not add semicolons after preprocessing directives.
Preprocessing directives are not C statements and the end of their scope is the end
of a logical line.

6.2 Macro definition

6.2.1 Simple macro definition

Sometimes, a constant is used in multiple places in a program and its value may be
updated as needed during testing. A convenient way to do this is to use a dedicated
symbol and assign a value to the symbol when defining it. In this way, we can sim-
ply modify the value in the definition to update all occurrences of the constant
rather than updating every one of them. This prevents us from leaving one occur-
rence unchanged and creating a bug in the program. What we have just described
is the purpose of using macro definitions. In short, the macro definition is essen-
tially text replacement of the source code done before compilation.

The syntax of a simple macro definition is shown in Figure 6.3, where define
is the keyword of macro definition directive, < macro name > is an identifier, and
< string > can be a constant, an expression or a formatted sequence.

Note:
(1) The source code will be checked before compilation. Whenever a macro name

is encountered, it is replaced with the string specified in the macro definition.
The compilation will not be started until all replacements are completed.

(2) The replacement process is called macro replacement in American National
Standards Institute C.

Syntax of simple macro definition

#define <macro name> <string>

Figure 6.3: Syntax of simple macro definition.

6.2 Macro definition 247

(3) We usually use capital letters for macro names in C programs. This helps us find
macro replacements when reading a program and avoids confusion between macro
names and normal identifiers. Because a macro name is essentially an identifier,
spaces are not allowed in it. Moreover, it must be a combination of letters, numbers,
and underscores with the exception that the first character must not be a number.

(4) Good programming habits are beneficial. It is recommended to put shared macro
definitions at the beginning of a header file and use them through file inclusion
with #include directive. Modularization makes functionalities of files clearer. It
is also easier to modify these definitions later.

Let us take a look at how macro definitions work through some examples.

Example 6.1 Example of macros 1
Use a sequence to replace the identifier.

#define MAX 128

int main(void)

{

int max_value =MAX;

return 0 ;

}

[Analysis]
A macro MAX is defined in this example, which corresponds to 128. When the compiler processes
this program, it replaces the MAX in the source code with 128. In other words, the actual code
that will be compiled is “int max_value = 128.” It is worth noting that this is merely text replace-
ment. No variable assignment is done in this process. Variable MAX never existed in the program.
It is equivalent to use “Find-> Replace” to find MAX and replace it with 128 in a text editor.

Example 6.2 Example of macros 2
Use a sequence to replace the identifier.

#define TRUE 1

#define FALSE 0

printf(“%d %d %d”, FALSE, TRUE, TRUE+1);

Output:

0 1 2

[Analysis]
The output arguments of printf are provided by macro replacement. The printf statement is
replaced with printf(“%d %d %d”, 0, 1, 1 + 1) before compilation. It is worth noting that prepro-
cessing directives does not generate code or participate in code execution. They are simply a
porter of code. Hence, the actual computation of 1 + 1 will be done in the compilation phase.

248 6 Preprocessing: work before compilation

Example 6.3 Example of macros 3
The most common use of macros is defining names for constants.

[Analysis]
The following code uses macro MAX_SIZE as the length of the array.

#define MAX_SIZE 100

float balance[MAX_SIZE];

Example 6.4 Example of macros 4
Macro replacement is only done for identifiers. Values in strings are not replaced.

[Analysis]
A macro definition and statements using it are shown in Figure 6.4.

#define E_MS "standard error on input\n"

Note: macro replacement replaces an identifier, instead of a
string, with the sequence in macro definition

printf("E_MS");

printf("standard error on input\n") ;

2

printf("E_MS");

“E_MS” here is a
string but not an

identifier

printf(E_MS)

After compilation

1
Macro E_MS refers

to a string

After compilation

Figure 6.4: Macro in a string.

The first E_MS is an identifier, thus it is replaced with the corresponding string. The
second E_MS is a string wrapped in double quotation marks, thus it is not replaced.
Beginners may feel confused about the difference and make a mistake when pro-
gramming.

Furthermore, this example shows that we can define a macro if an output state-
ment with the same format, like the first E_MS above, is used multiple times in a
program. In this way, we do not have to write the same code again and again; there-
fore, it is less likely to output incorrectly formatted contents due to typos. Also,
we only need to update the definition if we want to change the format.

6.2 Macro definition 249

6.2.2 Macro definitions with parameters

We have introduced simple macro definitions, which are merely text replacement.
Now we are going to learn a more complex macro definition: macro definition with
parameters.

Macro definitions with parameters are more abstract and universal. We can de-
fine parameters in macros in a way similar to how we use parameters in function
definitions and pass arguments when calling functions. The syntax of macro defini-
tion with parameters is shown in Fig. 6.5, where:

(1) < macro name > is again an identifier.
(2) The number of parameters in the parameter list can be one or more. When there

are multiple parameters, they are separated by commas.
(3) < macro body > is the string for replacement, which is an expression consisting

of parameters in the parameter list.

Example 6.5 Example of macros 5
Figure 6.6 shows a macro definition with parameters.

Before compilation After compilation

result=SUB(2, 3); result=2-3;

result= SUB(x+1, y+2); result=x+1-y+2;

Macros with parameters are similar to functions, where
parameters in the <macro body> are replaced with
arguments passed to the macro during macro replacement

#define SUB(a,b) a-b

Figure 6.6: Example of macro with parameters 1.

The definition of macro SUB was an abstraction of subtraction a-b. In contrast to
macro definitions without parameters, a and b here are used as parameters, be-
cause we do not know their values when defining the macro. Arguments we pass in
when doing text replacement determine their values. Isn’t it similar to function

Syntax of macro with parameters

#define <macro name>(parameter list) <macro body>

Fig. 6.5: Syntax of macro with parameters.

250 6 Preprocessing: work before compilation

definitions? In macro replacement, we are replacing parameters in the < macro body >

with arguments. Let us see an example now (Figure 6.7).

Example 6.6 Example of macros 6

int main(void)
{

int x
x = 10
y = 20

#define MIN(a b) (a<b) ? a:b

y

printf("the minimum is: %d" MIN(x y));
return 0;

}

printf("the minimum is: %d" (x<y) ? x : y);

During compilation, x and y
are used as operands in the
replacement of MIN(a, b)

After
compilation

Figure 6.7: Example of macro with parameters 2.

It seems that MIN(x,y) in this example is a function call. However, expression
MIN(x,y), which is defined by macro MIN(a,b), will be replaced during compi-
lation. Arguments x and y will be used to replace a and b.

The merit of using macros instead of functions is that we use something in the
form of functions without the overhead of function call. The source code is written
in a similar style, but it can be executed faster as there is no expense of function
call. On the other hand, since macros are text replacements, we are still using re-
dundant code in our program, which in fact increases the length of our program
despite higher execution speed.

Although macros with parameters are similar to functions with parameters,
they are different things in essence. Figure 6.8 shows the differences between them.

Macro with parameter Function

Processing phase Preprocessing Runtime

Parameter type No type issues Need to define types of parameters
and arguments

Processing process No memory allocated,
simple text replacement

Memory allocated, compute values
of arguments and pass to function

Program length Increased Unchanged

Execution speed No extra expense Function call and return take time

Figure 6.8: Differences between macros and functions.

6.2 Macro definition 251

Good programming habit
When there are many references to a relatively long variable (usually member of a structure) in
the function, we can use an equivalent macro to replace it. This improves programming effi-
ciency and readability.

6.2.3 Side effects of macros

Careful readers may have noticed that the macro replacement in Example 6.5 is log-
ically wrong. Let us sift through this example. The code is as follows.

#define SUB(a,b) a-b

result=SUB(2, 3); //Replaced with：result=2-3;

result= SUB(x+1, y+2); //Replaced with：result=x+1-y+2;

We wanted to implement the subtraction of a and b with the macro. The replace-
ment of SUB(2–3) with result = 2-3 is correct and consistent with our design.
However, SUB(x + 1,y + 2) is replaced with result = x + 1-y + 2, instead of desired re-
sult result = x + 1-y-2.

The reason behind this error is that macro replacement is merely text replace-
ment. Neither concrete computation nor precedence of operators is actually in-
volved. Hence, we should design macros carefully to avoid side effects.

Is it impossible to use macros in such examples, then? The answer is no: we
can still use macros, but we need parentheses in their definitions. For example, if
we change the macro definition in Example 6.5 into #define SUB(a, b) (a)-(b), the
subtraction will be correctly implemented no matter what a and b we are using.

Now we are almost done with macros, but there is one more thing to remember:
we should avoid increment or decrement operators in macros. For example, if we
want to compute SUB(++x, ++x) in Example 6.5, it will be replaced with (++x)-(++x)

according to the macro definition. Although the subtraction logic is correct, the sys-
tem has no rule regarding which operand of “–” is read first. The value of this expres-
sion is compiler-dependent during execution.

6.3 File inclusion

When writing a large-scale program, we often divide the system into different modules
based on modularization principles. Each module is implemented by one or more files
and provides an interface for other modules to use. To use these interfaces or varia-
bles in a module, we often need to define the same variable (or function interface) in
multiple files. For example, when calculating the area of circle, annulus, and surface
of a sphere, we implement area calculations of different geometric objects in multiple

252 6 Preprocessing: work before compilation

C files for better extensibility because each shape has its own area formula. All these
formulas need the value of r2; therefore, we use a function pow to compute it as a prac-
tice of code reuse. However, we also know that if we define it in every C file, we are
making the mistake of repeatedly defining the same identifier in the same scope,
which is usually resolved by a single definition and multiple declarations. Even so, it
is still tedious to declare it multiple times. Is there a more convenient solution?

In this section, we are going to learn how file inclusion directives are used to
solve this problem.

A file inclusion directive inserts the specified file at its location so that the file
is linked with the current one to form a single source file. It can be considered as
enhanced text replacement.

The syntax of the file inclusion directive is shown in Figure 6.9.

In the syntax:
(1) include is the keyword.
(2) the filename is the full name of the file to be included. If it is in angle brackets,

the compiler will search for the header file in a directory specified by the system
(e.g., one or multiple standard system directories in UNIX systems); if it is in
double quotation marks, the compiler will first look for the header file in the
current directory and go to the system specified directory if none is found.

In the preprocessing phase, the preprocessing directive is replaced with the content
of the file to be included. The file after inclusion is then treated as a single source
file during compilation. The processing flow is shown in Figure 6.10.

Syntax of file inclusion directive

#include <filename>

#include “filename"

or

Figure 6.9: Syntax of file inclusion directive.

After
preproc
essing

#include "prg1.c"

Code B

Source file
prg2.c

Code B

Code A

Source file
prg2.c

Code A

Source file
prg1.c

Figure 6.10: Process of file inclusion.

6.3 File inclusion 253

File inclusion is beneficial in programming. When a program is too long, we can split
it into multiple shorter programs whose functions are independent of each other so
that multiple programmers can work on them simultaneously. Shared information in
these programs can be extracted and put into a separate file, which is used by other
files by adding include directive at the beginning. For example, constants and defini-
tions of functions can be put into a separate .h file (file with extension .h, also called
a header file). Then we use include directive at the beginning of other files to include
this header file so that we do not have to write these shared items in every file. Doing
so reduces development time and mistakes. We can either write our own header files
or use those provided by the system. For example, stdio.h is a header file related to
input/output operations provided by the system.

Note that there is no limit on file types. As shown in Figure 6.10, we can include
a “.c” file in another “.c” file. However, this is merely an example showing that
there is no limit on file types. In practice, we usually include “.h” files only for a
better coding style and avoiding redundant definitions.

Example 6.7 Edit a file and include it in another file
In Figure 6.11, the definition of function fun is done in file fun.c, whereas its declaration is
made in file fun.h; the file main.c obtains declaration of function fun by including fun.h and
calls the function in main function.

#include"fun.h"
void fun()
{

printf("Hello!");
}

#include"fun.h"
int main(void)
{

fun();
return 0;

}

#include“stdio.h"
void fun();

Saved as fun.h

Saved as fun.c

Saved as main.c

Figure 6.11: Multiple source files and file inclusion.

6.4 Conditional compilation

Conditional compilation directives instruct the compiler to compile different parts
of the program under different conditions to produce different object code files as
shown in Figure 6.12. In other words, we can set conditions by using conditional

254 6 Preprocessing: work before compilation

compilation directives so that some parts of the program would not be compiled
unless the conditions are met.

6.4.1 Format of conditional compilation 1

There are three commonly used formats of conditional compilation. Figure 6.13
shows the first one, where ifdef, else, and endif are the keywords. Code segments
1 and 2 consist of preprocessing directives and statements. The conditional compila-
tion here works as follows: if a #define directive has defined the identifier, then
code segment 1 will be compiled; otherwise, segment 2 will be compiled.

The #else in this form is optional, so it can also be written as follows:

#ifdef identifier
　　Code segment

#endif

Example 6.8 Example of conditional compilation 1

1 #include <stdio.h>

2 #define TIME

3 int main(void)

4 {

5 //#undef TIME Uncomment this line when we want to cancel the definition

6 #ifdef TIME

7 printf(“Now begin to work\n”);

Conditional compilation directives instruct the compiler to compile different parts of the
program under different conditions in order to produce different object code files

Conditional compilation

Figure 6.12: Definition of conditional compilation.

#ifdef identifier
code segment 1

#else
code segment 2

#endif

Format of conditional compilation 1

#define identifier

Syntax of identifier definition

Figure 6.13: Format of conditional compilation 1.

6.4 Conditional compilation 255

8 #else

9 printf(“You can have a rest\n”);

10 #endif

11 return 0;

12 }

Because conditional compilation directives are used in this example, which printf

is compiled depends on whether TIME has been defined using #define. If it has
been defined, “printf(“Now begin to work\n”);” on line 6 will be compiled, other-
wise “printf(“You can have a rest\n”);” on line 8 will be compiled. TIME has
been defined in this example, so the output is:

Now begin to work

If we want to change the compilation condition, for example, we want to output
“You can have a rest,” we do not have to write the program again. It can be done by
commenting line 2, which makes TIME undefined, or by canceling the definition of
TIME using #undef as shown on line 5 of the program.

6.4.2 Format of conditional compilation 2

The second format is shown in Figure 6.14.

The only difference between the first two formats is that the keyword ifdef is re-
placed with ifndef. In this case, code segment 1 is compiled if a #define directive
has not defined the identifier; otherwise, segment 2 is compiled. This is exactly the
opposite of the first form. Let us take a look at the following example:

#ifndef NULL
#define NULL ((void *)0)
#endif

#ifndef identifier
Code segment 1

#else
Code segment 2

#endif

Format of conditional compilation 2

Figure 6.14: Format of conditional compilation 2.

256 6 Preprocessing: work before compilation

This segment of code ensures that symbol NULL is defined as ((void *) 0) exactly
once. It works as follows: when the compiler first processes this directive, NULL has
not been defined. The compiler proceeds to the macro definition of NULL since the
condition of #ifndef is met. If the same directive appears again, the macro defini-
tion will not be processed because NULL has already been defined. Hence, NULL is
guaranteed to be defined only once.

Good programming habit
In practice, especially in large-scale programs, nested inclusion can often be found as the inclu-
sion relations between source files are complicated. For example, file1.h may include file2.h
and file3.h, whereas file2.h also includes file3.h. If there is no guarding mechanism, file3.h will
be included twice in file1.h, which leads to code redundancy in source files. Moreover, if there
are definitions of identifiers in file3.h, repeated definition errors will occur. Hence, we should
use a guarding mechanism like the second format introduced above and put everything before
#endif when defining header files. This effectively prevents double inclusions.

6.4.3 Format of conditional compilation 3

The third format is shown in Figure 6.15.

if, else and endif are the keywords of this format. Code segments 1 and 2 consist
of preprocessing directives and statements. It works as follows: if the constant ex-
pression evaluates to true, code segment 1 will be compiled; otherwise, segment 2
will be compiled. With this directive, our program can complete different tasks
under different conditions.

Example 6.9 Example of conditional compilation 2

1 #include <stdio.h>

2 #define R 1

3 int main(void)

#if constant expression

Code segment 1
#else

Code segment 2
#endif

Format of conditional compilation 3

Figure 6.15: Format of conditional compilation 3.

6.4 Conditional compilation 257

4 {

5 float c,s;

6 printf(“input a number: “);

7 scanf(“%f”,&c);

8 #if R

9 s=3.14*c*c;

10 printf(“area of round is:%f\n”,s);

11 #else

12 s=c*c;

13 printf(“area of square is%f\n”,s)；

14 #endif

15 return 0;

16 }

In this example, lines 9 and 10 are compiled if the expression R evaluates to true.

s=3.14159*c*c;

printf(“area of round is:%f\n”,s);

Otherwise, lines 12 and 13 are compiled.

s=c*c;

printf(“area of square is%f\n”,s)；

6.4.4 Nested conditional compilation directives

We can only implement a double-branch structure with #if and #else, thus C also pro-
vides #elif directive, which means “else if.” It can be used with #if and #else to form
an if-else-if structure for multiple branch cases. Its syntax is shown in Figure 6.16.

#if constant expression 1
code segment 1

#elif constant expression 2
code segment 2

#elif constant expression 3
code segment 3

......
#else

code segment n+1
#endif

Format of nested conditional compilation

Figure 6.16: Format of nested conditional
compilation.

258 6 Preprocessing: work before compilation

Example 6.10 Use cases of conditional compilation
There are two merits of using conditional compilation: easier debugging and better portability.
When a program has multiple versions, we can use the code segment shown in Figure 6.17 to
make porting easier. If the program is to be compiled and executed in the Borland C environ-
ment, we can add #define BORLAND_C at the beginning.

#ifdef TURBO_C
… //Turbo C exclusive code

#endif

#ifdef BORLAND_C
… //Borland Cexclusive code

#endif

#ifdef VISUAL_C
… //Visual Cexclusive code

#endif

#ifdef TURBO_C
… //Turbo C exclusive code

#endif

#ifdef BORLAND_C
… //Borland C exclusive code

#endif

#ifdef VISUAL_C
… //Visual C exclusive code

#endif

#define DEBUG
……

#ifdef DEBUG
print(……); //Temporary output

#endif

#define DEBUG
……

#ifdef DEBUG
print(……); //Temporary output

#endif

If we want to generate the Borland C version,
Insert: #define BORLAND_C
If we want to generate the Visual C version,
Insert1:#define VISUAL_C

Easier debugging

Better portability

Before debugging,
we can add some
print statements

to display
intermediate

results

Figure 6.17: Use cases of conditional compilation.

When debugging, we can use some print statements to display intermediate results.
After debugging is done, we can remove #define DEBUG so that these statements
would not be compiled.

Good programming habit
Instead of maintaining a release version and a debug version of source files simultaneously, it
is better to use a debug switch to switch between them, which makes maintenance easier.

6.5 Summary

The main concepts and their relations are given in Figure 6.18.
Compilation translates statements into machine code.
Preprocessing is work done before compilation.
File inclusion allows us to use existing files.
The macro definition does replacement, which makes code editing easier.
Conditional compilation compiles code as needed, which makes debugging
more convenient and enhances the flexibility of code.

6.5 Summary 259

Pr
ep

ro
ce

-s
si

ng

M
ac

ro

C
on

di
tio

na
l

co
m

pi
la

tio
n

D
ef

in
iti

on
:

m
ac

ro
 n

am
es

 a
re

 r
ep

la
ce

d
w

ith
 s

pe
ci

fie
d

st
ri
ng

s
be

fo
re

 c
om

pi
la

tio
n.

 T
he

re

pl
ac

em
en

t
pr

oc
es

s
is

 a
ls

o
ca

lle
d

m
ac

ro
 r

ep
la

ce
m

en
t

S
im

pl
e

m
ac

ro
:

#
de

fin
e

<
m

ac
ro

 n
am

e>
 <

st
ri
ng

>
M

ac
ro

 w
ith

 p
ar

am
et

er
s:

 #
de

fin
e

<
m

ac
ro

 n
am

e>
(p

ar
am

et
er

 li
st

)
<

m
ac

ro
 b

od
y>

Fi
le

in

cl
us

io
n

D
ef

in
iti

on
:

a
fil

e
in

cl
us

io
n

di
re

ct
iv

e
in

se
rt

s
th

e
sp

ec
ifi

ed
 f

ile
 a

t
its

 lo
ca

tio
n

so
 t

ha
t

th
e

fil
e

is
 li

nk
ed

 w
ith

 t
he

 c
ur

re
nt

 o
ne

 t
o

fo
rm

 a
 s

in
gl

e
so

ur
ce

 f
ile

Fo
rm

at
 1

:#
in

cl
ud

e
<

fil
en

am
e>

Fo
rm

at
 2

:#
in

cl
ud

e
“f

ile
na

m
e”

D
ef

in
iti

on
:

co
nd

iti
on

al
 c

om
pi

la
tio

n
di

re
ct

iv
es

 in
st

ru
ct

 t
he

 c
om

pi
le

r
to

 c
om

pi
le

di

ff
er

en
t

pa
rt

s
of

 t
he

 p
ro

gr
am

 u
nd

er
 d

iff
er

en
t

co
nd

iti
on

s
in

 o
rd

er
 t

o
pr

od
uc

e
di

ff
er

en
t

ob
je

ct
 c

od
e

fil
es

Fo
rm

at
 1

:#
ifd

ef
 #

el
se

 #
en

di
f

Fo
rm

at
 2

:
#

fin
de

r
#

el
se

 #
en

di
f

Fo
rm

at
 3

:#
if

 #
el

se
 #

en
di

f
Fo

rm
at

 4
:#

if
 #

el
fin

 #
el

if…
#

el
se

 #
en

di
f

Fi
gu

re
6
.1
8
:R

el
at
io
ns

be
tw

ee
n
co

nc
ep

ts
re
la
te
d
to

pr
ep

ro
ce
ss
in
g.

260 6 Preprocessing: work before compilation

6.6 Exercises

6.6.1 Multiple-choice questions

(1) [Simple macros]
In macro definition #define A 3.897678, A represents a ()
A) float number B) double number C) constant D) string

(2) [Define]
Which of the following statements is correct? ()
A) Preprocessing commands must be at the beginning of a file.
B) We can have multiple preprocessing commands on a single line.
C) Macro names must be capital letters.
D) Macro replacements are not done during program execution.

(3) [define]
C compilers process macros ()
A) at runtime
B) during linking
C) at the same time as they compile other statements
D) before they compile other statements

(4) [Define]
Which of the following statements is correct? ()
A) #define and printf are both C statements.
B) #define is a C statement, but printf is not.
C) printf is a C statement but #define is not.
D) Neither #define nor printf is a C statement.

(5) [Macro with parameters]
What is the output of the following program?

#include<stdio.h>#define PT 5.5

#define S(x) PT*x*x

int main(void)

{

int a=1，b=2;

printf("%4.1f\n"，S(a+b));

return 0;

}

A) 49.5 B) 9.5 C) 22.0 D) 45.0

6.6 Exercises 261

(6) [File inclusion]
In file inclusion preprocessing directives, how is the file searched when the fil-
ename is inside “ < >”? ()
A) It is searched in the system-defined directory.
B) It is searched in the directory of the source file first and then in the system-

defined directory.
C) It is only searched in the directory of the source file.
D) It is only searched in the current directory.

6.6.2 Fill in the tables

(1) [Define]
Suppose we have the following macro definitions. Fill in the table in Figure 6.19
with the statements after macro replacement.

#define MAX 10；#define PI 3.1415926

#define area(r) (PI*r*r)

#define A 3+2

#define INPUT "Please input your name.\n"

(2) [Conditional compilation]
Fill in the table in Figure 6.20.

#include <stdio.h>#define CHINESE //——————①

int main(void)

{

char name[MAX];

int age;

#ifdef CHINESE

Original statement Compilation result
int array[MAX];
printf(INPUT);

int temp = A/5;
printf("INPUT A");

float temp =
area(5.5);

Figure 6.19: Preprocessing: fill in the tables questions 1.

262 6 Preprocessing: work before compilation

printf("输入您的姓名和年龄：\n");

#else

printf("Please enter your name and age:\n");

#endif

scanf("%s %d",name, &age);

#ifdef CHINESE

printf("%s，您好！您已经%d岁了，欢迎加入C语言的学习大军！\n",name,

age);

#else

printf("Hello %s! You are %d years old!Welcom to C language!\n",name,

age);

#endif

return 0;

}

(3) [Conditional compilation]
Fill in the table in Figure 6.21.

#include <stdio.h>

#define DEBUG //——————①

int swap(int *p, int *q)

{

int temp=0;//——————②

#ifdef DEBUG

printf("debug：*p= %d, *q=%d \n",*p, *q);

#endif

if (*p > *q)

{

temp = *p;

*p = *q;

*q = temp;

temp=1;

}

Input Output
23

(Comment statement)
Bob 28

Figure 6.20: Preprocessing: fill in the tables questions 2.

6.6 Exercises 263

#ifdef DEBUG

printf("debug：*p= %d, *q= %d \n",*p, *q);

#endif

return temp; //——————③

}

int main()

{

int a = 5, b = 4;

int c = swap(&a, &b);

printf(" a= %d, b= %d, c= %d \n",a, b,c); //——————④

return 0;

}

6.6.3 Programming exercises

(1) Find the maximum of three numbers using functions and macros, respectively.
(2) Use conditional compilation to complete the following task:

Given a line of telegram text, output it in one of the two formats:
1) output as-is
2) convert each character to its next character in the alphabet, that is, “a” is
output as “b”, . . ., “z” is output as “a”
The program should use #define to control which format is used:
#define CHANGE 1 // Output encrypted text
#define CHANGE 0 // Output as-is

Variable a b *p *q
Value after statement

2

Value after statement
3

Program output

Functionality of
1

Program output after
commenting statement 1

Value after statement
4

statement

Figure 6.21: Preprocessing: fill in the tables questions 3.

264 6 Preprocessing: work before compilation

(3) Write a program that converts letter inputs to uppercase or lowercase, depend-
ing on the conditional compilation command.

(4) Given keyboard input y, use a macro to evaluate the value of the following
expression:

3 y2 þ 3y
� �þ 4 y2 þ 3y

� �þ y y2 þ 3y
� �

(5) Define a macro with parameters that swap its two parameters. Use the macro to
swap two input numbers and output the new values.

6.6 Exercises 265

7 Execution of programs

Main contents
– Introduction of VC6.0
– Debugging methods
– Testing methods

Learning objectives
– Know the typical process of software development, can follow this process to write programs
– Know the purpose and meaning of compilation and linking
– Know basic approaches of debugging
– Know testing methods

Even a genius can’t guarantee that his code is completely correct from the beginning. Every
single, if not all, program that is not trivial is written after debugging and modifying again and
again. –Experience of debugging

Debugging is the process of finding and correcting errors in programs. It is the most
fundamental skill that a programmer should possess. It is more important to learn
to debug than to learn a programming language. A programmer cannot write good
software without knowing how to debug, even if he/she knows a programming lan-
guage well.

Few, if not none, codes are correct when first being written. It is nearly impossi-
ble to debug by reading source code for programs of a reasonable scale. The most
efficient way of debugging is to use debugging tools.

Debugging helps programmers to learn the actual execution process of their
programs. It also allows programmers to check whether their design works as ex-
pected, which improves the development efficiency in return. Mastering debugging
techniques enables programmers to write codes that are easier to debug. They can
gain better perception and control of code.

Debugger tools can help us learn the computer system and other knowledge of
software and hardware. We can quickly learn modules, architecture, and working
flow of software or a system through debugging.

7.1 Runtime environment of programs

From being written to being executed and outputting a result, a program needs to
go through several processing phases as shown in Figure 7.1. The functions of each
phase are as follows.
– Edit: Type in source code and save it to generate C source file, whose extension

is .c (or .cpp in VC6.0 environment).

https://doi.org/10.1515/9783110692327-007

https://doi.org/10.1515/9783110692327-007

– Compile: Execute compile command. The compiler scans the source code for
syntax errors. If none is found, it generates code in machine language, which is
called the object program and has extension .obj. If syntax error exists, pro-
grammers should modify the code based on the warning or error message
given by the compiler until the program is successfully compiled.

– Link: Execute the link command. The system links obj files, which can be writ-
ten by programmers or library functions used in the program, together to gen-
erate an executable file, whose extension is .exe.

– Run: Execute run command. The program is executed to produce a result.
– Verify: Programmers check the output at the specified output location, for ex-

ample, a specified window or file, and compare it with the expected result to
determine whether the program is correct.

– Debug: If the result is wrong, programmers need to use various debugging
techniques to find the error and modify the code. The above steps are repeated
until a correct result is obtained.

All these activities related to program execution, including editing, compiling, link-
ing, executing, and debugging, can be done in an integrated development environ-
ment (IDE).

An IDE is an application that provides a program development environment. As
shown in Figure 7.2, it is a software that provides integrated services like code edit-
ing, compilation, debugging, and so on. All software that has such features can be
called IDEs.

The basic idea and general methods of debugging are applicable in all debug-
ging environments, thus it is important to master this fundamental knowledge.
Visual C++ 6.0 (VC 6.0 for short) is a small but robust IDE. It provides powerful de-
bugging tools and is compatible with multiple versions of the Windows operation
system; therefore, it is recommended for beginners of C. Moreover, it enables a

Compile LinkSource file Object
program

Executable
program

Execute

Execution
result

Library

VerifyVerification
resultDebugFind errors

end

Edit

Correct

start

.obj .exe.cpp

All works can be
done in an IDE

Figure 7.1: Process of program execution.

268 7 Execution of programs

smooth transition to the Visual Studio IDE, which provides similar functionalities
but has a more complex user interface. After comparing multiple IDEs, we shall use
VC6.0 to run and debug programs in this book.

Knowledge ABC Visual C++ 6.0 IDE
Microsoft visual C++ 6.0 (abbreviated as Visual C++, MSVC, VC++, or VC) is an application de-
velopment environment used to develop C++ programs created by Microsoft. It integrates tools
like code editor, compiler, debugger, and graphical user interface. VC 6.0 has been widely used
due to its good interface and usability.

Using the console operation provided by Visual C++ 6.0, we can create C applica-
tions. Win32 console applications are a type of Windows program, which communi-
cates with users through a standard console without using a complex graphical
user interface. We shall introduce how to use Visual C++ 6.0 to write simple C pro-
grams from the seven perspectives shown in Figure 7.3.

7.1.1 Main screen of integrated environment

After installing Visual C++ 6.0, we can start the application through the “Start”
menu or desktop shortcut. The IDE is shown in Figure 7.4. Similar to most Windows
applications, the menu bar and toolbar are on the top, and the three areas below
are workspace, editor panel, and output panel.

1 Main screen of integrated environment

2 Create a project

3 Create a source file

4 Edit a source file

5 Compile a source file

6 Link a program

7 Execute a program

Figure 7.3: Steps of using VC6.0 integrated environment.

Visual C++ 6.0 IDE is
designed for C++, but it
is also compatible with C

Integrated Development Environment (IDE)

An integrated development environment is a software that
provides integrated services like code editing, compilation,
debugging and so on. It provides software environment for
software development.

Figure 7.2: Definition of IDE.

7.1 Runtime environment of programs 269

The workspace records the status of users’ work and will be automatically
saved when VC6.0 is closed; code files are edited in the editor panel; the output
panel shows messages, errors, or results generated during the creation and debug-
ging of the program.

7.1.2 Create a project

The execution of a program is a systematic project, which is similar to a theater
play. Actors cannot start performing until every environment setting is done, in-
cluding stage, setting, light, sound, and so on.

IDE is such a “stage.” VC6.0 puts every environment resource needed for a play
into a “project.” Programs are like actors of the play. As shown in Figure 7.5, a proj-
ect is a series of correlated activities that are done following a set of rules with
given time and resources to achieve a specific goal.

Output panel

Workspace

Editor panel

1

2

3

Figure 7.4: Main screen of the Visual C + + 6.0 integrated environment.

Project

VC6 manages resources involved in program development process in
projects. Code files are only part of project files.

Figure 7.5: Definition of project.

270 7 Execution of programs

Knowledge ABC Projects
In Visual C++ IDE, a project is the set of correlated C++ source files that implement required func-
tionalities, resource files, and classes that support these files. Projects are the basic unit of pro-
gram development in Visual C++ IDE. They are used to manage all elements that construct an
application and eventually generate the application.

The steps of creating an application are as follows.
Figure 7.6 shows the screen of steps 1 and 2, where we select the “File” menu in

step 1 and the “New” sub-menu in step 2.

Figure 7.7 shows the screen of steps 3–7. In step 3, we switch to the “Project” tab; in
step 4, we select the “Win32 Console Application” as our project type, which is a
console application working in a 32-bit Windows environment (it is a character pro-
gram without a graphical interface); in step 5, we type in project name; in step 6,
we specify the save location; and in step 7, we click “OK” to confirm.

Figure 7.8 shows the screen of steps 8–10. After we confirm our input in the
Project tab, a wizard, which is shown on the left of Figure 7.8, pops up and guides
users to generate the framework of the program. In step 8, we select “An Empty
Project”; in step 9, we click “Finish” to close the wizard, then the dialog box on the
right pops up; and in step 10, we click “OK” to confirm.

Note that beginners often make the mistake of selecting project types other
than console application, which leads to linking errors later as shown in Figure 7.9.

Figure 7.6: Project creation step 1 and 2.

7.1 Runtime environment of programs 271

3

6

5

4

7

“Console Application” is a
character program without

graphical user interface

Figure 7.7: Project creation steps 3–7.

9

8

10

Figure 7.8: Project creation step 8 to 10.

error LNK2001: unresolved external symbol _WinMain
Example of linking error If a project other than

“Win32 Console
Application” is used, an
linking error may occur.

Figure 7.9: Example of linking error.

272 7 Execution of programs

7.1.3 Create a source file

The steps of creating a source file are as follows.
Steps 1 and 2 are shown in Figure 7.10. In step 1, we select the File menu; in

step 2, we select the “New” sub-menu.

Steps 3–7 are shown in Figure 7.11. In step 3, we choose the “File” tab; in step 4, we
select C++ Source File as the file type; in step 5, we check the box “Add to project”;
in step 6, we type in the file name; and in step 7, we click “OK” to confirm.

Notes on file names: (1) do not include file extensions; (2) use meaningful
names for easier management.

7.1.4 Edit a source file

As shown in Figure 7.12, we can perform various editing operations to source
files in the editor window, which includes opening and browsing files, input,
modification, copy, cut, paste, find, replace, undo, and so on. They can be done
either through the menu or through the buttons in the toolbar. In essence, every-
thing is similar to their counterparts in other Windows text editors, for example,
Word.

Figure 7.10: Source file creation step 1 and 2.

7.1 Runtime environment of programs 273

Figure 7.13 shows how to change the code format or font used. If the code is not
well formatted, we can format it using “Format Selection” in the menu “Edit-
Advanced,” whose hotkey is Alt + F8. “Format” here means adjusting the alignment
of code as required.

Notes on file names:
1. Don’t include file

extensions
2. Use meaningful names

for easier management

3

4

5

6

7

Figure 7.11: Source file creation steps 3–7.

Type in source
code in the file

editor panel

Figure 7.12: File editor panel.

274 7 Execution of programs

If we are not satisfied with the font used in the editor, we can customize it in
the “Format” tab of the “Options” dialog box in the “Tools” menu.

Note that Chinese punctuation marks are invalid. Moreover, we should remem-
ber to use Ctrl + S to save our code all the time.

Good programming habit Type in parentheses in pairs
When typing in programs in practice, it is better to enter parentheses in pairs. For example, we
should type main(){} first and insert statements inside {} later. Doing so prevents us from for-
getting the ending parenthesis even if the program is long, which is a common compilation
error created by beginners. It often takes a long time to find such errors because the error mes-
sage is not clear enough.

7.1.5 Compile a source file

The compile command is “Compile” in the menu “Build,” whose hotkey is Ctrl + F7.
The “Compile” button is located at the first position in the “Build MiniBar” toolbar as
shown in Figure 7.14. Users can use any one of these three to compile a source file.

If the compilation is completely successful, “0 error(s), 0 warning(s)” will be
shown in the message panel at the bottom.

Object file with extension .obj will be generated after a successful compilation
as shown in Figure 7.15.

If an error occurs during compilation or linking as shown in Figure 7.16, there
will be an error message indicating the line on which the error exists and the type of
error in the message panel at the bottom. For example, there is a message indicating

Format Edit→Advanced→Format Selection, or hotkey Alt+F8

Font settings Tools→Options→Format

Figure 7.13: Edit a file.

7.1 Runtime environment of programs 275

a “syntax error” on line 7. If we double click on the error message, a blue arrow ap-
pears in the editor pointing at the line of the error, so we can check the correspond-
ing code. The cause of the error here is the comma after return 0, which should be a
semicolon as defined by the grammar of C. We can modify the code, restart the com-
pilation and linking process, and repeat until there is no syntax error in the program.

Error messages are displayed during compilation to help programmers to find
the error and correct it. It is worth noting that the error location showed in the error
message may not be correct. If we cannot find an error in the line indicated by the

Figure 7.14: Compile command.

After successful
compilation, an
object file with

extension .obj is
generated

Figure 7.15: Successful compilation.

276 7 Execution of programs

error message, we should look for it in the lines above. Sometimes the error type is
not correct either because errors may occur in many cases or they are often corre-
lated. We need to analyze the code carefully to find the true error, instead of spend-
ing time looking for the exact error indicated by the error message.

Method of finding and correcting syntax errors: pay attention to the number of
errors and warnings in the message window; find and correct errors before warn-
ings; and correct errors in order. Do not try to find the next error before correcting
the current one.

7.1.6 Link programs

There are two types of linking commands: Build and Rebuild All in the “Build”
menu. Both of them are used to generate executable .exe files. Because a program
can consist of multiple files, these files need to be compiled separately to generate
the corresponding object file. The purpose of linking is to link these obj files and
other library files used in the program together to construct a single exe file, which
can be executed in the operating system.

In Figure 7.17, the difference between Build and Rebuild All is that the former
compiles the source file that is modified most recently and does linking while the
latter compiles all source files and links them regardless of their modification time.
If linking is completed successfully, an executable file will be generated. Note that
the file name is projectname.exe as shown in Figure 7.18.

After double clicking the
error message in the output
panel, a blue arrow pointing

to the corresponding line
appears in the editor panel

Figure 7.16: Error in compilation.

7.1 Runtime environment of programs 277

7.1.7 Execute program

To execute a program, we use the Execute command in the “Build” menu as shown in
Figure 7.19. The Execute button is the one with an exclamation mark in the Build

Figure 7.17: Link command.

After successful linking,
an executable file with

extension .exe is
generated

Figure 7.18: Successful linking.

278 7 Execution of programs

Minibar. There is another execution button on its right, which is called the Go com-
mand. They can both be used to execute a program, with the only difference being that
the console disappears after execution when Go is used while it remains active in the
case of Execute. It is easier to view the program result in the console using Execute.

We can check the execution result in the console. If the program is executed
successfully, the result will be output to the screen as shown in Figure 7.20.

7.2 Testing

7.2.1 Introduction

7.2.1.1 Defect in arithmetic question generator
We will first tell a story of Brown’s family. Mr. Brown wrote question-generator soft-
ware for his son Daniel. The program generated random arithmetic problems and
checked whether the answer entered was correct.

Daniel did exercises using the software happily, until one day, the program
crashed after he typed in two numbers. After asking his son about the input and the
operation he has done, Mr. Brown checked the value of a variable in his program
using the Watch window of the debugger. As shown in Figure 7.21, the value was 1.
#INF. The system suggested that he should check whether there was overflow
caused by division by zero. After investigating his code, Mr. Brown then realized
that he did not restrict the divisor to be nonzero value in division operations. The
program shown here is a simplified version for easier demonstration.

Figure 7.19: Execute command.

7.2 Testing 279

Division by zero is not just a minor problem. In 1997, the propulsion system of
USS Yorktown (CG-48) crashed due to a division-by-zero error. The ship was para-
lyzed and stuck in the water for nearly three hours. If there were war at that time, the
consequences could be disastrous. Of course, modern operating systems can handle
such errors elegantly by displaying warnings instead of crashing immediately.

7.2.1.2 Error handling in the n! program
In an example in the section “Comprehensiveness of Algorithms,” we found defects
in our n! algorithm by testing the program with a special input n = 1, which showed

Console window

Figure 7.20: Inspection of execution result.

If a value is 1.#INF0,
we should check

whether there is a
division-by-zero error

Figure 7.21: Division by zero error.

280 7 Execution of programs

that we should consider cases where “data are out of range” in addition to data
within the normal range as shown in Figure 7.22. Consequently, we need a complete
and reasonable mechanism of testing to find errors in programs and enhance their
quality. Meanwhile, we need to design test data before writing code; therefore, we
“have a guideline to follow” when programming. In other words, the test case de-
sign should happen before algorithm design.

Numerous problems arise in the world each year due to software defects. Loss due
to software defects is enormous. In 2002, research by the National Institute of
Standards and Technology showed that losses incurred by software defects were
at $59.5 billion per year. Over one-third of the losses could have been avoided
through software testing.

An undetected error in software may bring down the entire system or even lead
to disastrous consequences. Hence, testing of software products is of significant
importance.

7.2.2 Program testing

7.2.2.1 Errors and warnings
Errors and warnings may occur during compilation and execution as shown in
Figure 7.23.

(1) Compile-time error
There are two types of compile-time errors:
– Syntax errors: Arise when we do not use statements in the way specified by the

grammar. Wrongly spelled keywords, wrongly defined variable names, incorrect
use of punctuation marks, incomplete or unmatched branch and loop structure,
and missing or incompatible arguments in function calls are all syntax errors.

General case Edge case Error case

Input data n>1 and n is an integer n=0, n=1 n<0

Expected result Value of n! 1 Warning

Test cases

Ideally, test case
design should be

done before
algorithm design

n =
1, when n = 0
n*(n-1)! , when n ≥ 0

Figure 7.22: Test data of n! algorithm.

7.2 Testing 281

– Linking errors: Found by the linker during the construction of object programs.
Wrong library function names, missing files, and wrong path of included files are
all linking errors.

(2) Runtime error
There are two types of runtime errors:
– Logic errors: Errors in program design that make the result inconsistent with pro-

grammers’ expectations. For example, inappropriate execution conditions or num-
ber of iterations in loops falls into this category. Such errors cannot be found during
compilation or execution, thus it is hard to find and correct them. Programmers
have to rely on their proficiency in the language and programming experience to
find logic errors.

– Runtime exceptions: These arise when a program attempts to execute an invalid
operation during execution. Such operations include division by zero, invalid
input format, opening nonexisting files, and not enough space on the disk.

(3) Compilation warnings
When statements in a program are against grammar rules of C, the compiler will
show an error message. Sometimes, however, the compiler generates a warning
message, which indicates that the code is not technically wrong but unusual. An
error may exist in this case. During development, we should consider warnings to
be errors as well. Linking can be successfully completed with warnings.

7.2.2.2 Definition of testing
The definitions of testing and test cases are given in Figure 7.24.

7.2.2.3 Purpose of testing
No matter how proficient a programmer is in programming or how well-designed a
software product is, it is difficult to ensure high quality in software without testing
against adequate and appropriate test cases. The quality of software depends mostly
on the number and quality of test cases. Test case design involves complex analysis

Errors and warnings

Compile time

Runtime

Syntax error

Warning

Logic error

Exception

Linking error

Figure 7.23: Categorization of errors and warnings.

282 7 Execution of programs

of problems. Test-driven development is also a challenge for developers. A developer
cannot master program development without knowledge of test case design.

7.2.2.4 Principles of test case design
The goal of testing is to find defects in software using as few test cases, as little
time and as few people as possible so that quality is ensured. Figure 7.25 shows the
principles of selecting test cases. We should do a comprehensive test using a small
number of test cases that help us find errors efficiently. In addition to regular input,
we also need to consider invalid or abnormal input.

The test case design is a complex process. Readers can refer to resources on soft-
ware engineering for a detailed discussion on this topic.

7.2.2.5 Methods of testing
As shown in Figure 7.26, there are two types of testing, namely white-box and
black-box testing. The box here refers to the software being tested.

White-box testing treats the testing object as a transparent box. Testers have
full knowledge of the internal logic as well as other information about the program.
Test cases are designed to exercise all logic paths of the program.

In black-box tests, on the other hand, testers do not possess or choose to ignore
the knowledge of the internal logic and characteristics of the program. They check
whether a program works as intended based solely on the requirements and specifi-
cations of the program.

Testing

Testing is the process of comparing actual output of a program with its expected output and
determining whether the program satisfies design requirements.

Test case

A test case is a combination of certain input data, corresponding execution conditions and
expected execution results. It is carefully designed to test or verify whether a program
satisfies certain requirements.

Test case design should be done before algorithm design. We should consider as many
situations as possible during this process.

Figure 7.24: Definition of testing and test cases.

Principle of test case design

We should do a comprehensive test using a small amount of test cases that help us find errors
efficiently. In addition to normal input, we also need to consider invalid or abnormal input.

Figure 7.25: Principle of test case design.

7.2 Testing 283

7.2.2.6 Basic approaches to test case design
As shown in Figure 7.27, white-box and black-box testing use many concrete meth-
ods of test case design, where each of them produces a special set of test cases.
Using one of these methods cannot test programs comprehensively, so we often use
a combination of them to design test cases in real-life projects.

7.2.2.7 Order of testing
We can also divide testing methods into two categories based on the order of test-
ing: bottom-up testing and top-down testing as shown in Figure 7.28.

White box testing

Test cases in white box testing are designed based on program logic.
White box testing is also known as structural testing or logic-driven testing.

Black box testing

Black box testing examines functionality of a program through function
tests. It is also known as functional testing.

The “box” used in
both terms refers
to the software

being tested

Figure 7.26: Methods of testing.

White
box

testing

Logic coverage
We must test both true and false branches for
logical values

Path testing
All independent paths in each module should be
executed at least once

Black
box

testing

Equivalence partitioning
We divide all possible input data into several classes,
and select a few typical data from each class as test
cases

Boundary value analysis
We select valid and invalid boundary values as test
cases

Error guessing
We list all possible errors and special cases that are
error-prone of a program, and select test cases
based on them

Cause-effect graph
It is an approach that takes combinations of input
cases and constraints between input conditions into
consideration

Figure 7.27: Basic techniques of test case design.

Bottom-up testing
We first test modules on the lowest level, then modules on
a higher level, and finally the main module

Top-down testing
We first test the main module, then modules it calls, and
finally modules on the lowest level

Figure 7.28: Order of testing.

284 7 Execution of programs

Example 7.1 Palindrome checking program
A “Palindrome” is a word or sequence of characters that reads the same backward as forward.
Write a program that determines whether a sequence of characters is a palindrome.

[Analysis]
A test case consists of input data and expected output. We first consider possible cases of
input data; the length of the sequence can be odd or even and the sequence is either a palin-
drome or not. These cases are obtained by dividing all possible cases into equivalent classes.
There is also a special case where the length is zero as shown in Figure 7.29. This case is ob-
tained by corner case analysis.

Finally, we list the expected output: if the sequence is not a palindrome, the program returns 0;
otherwise, the program returns 1.

String length is odd String length is even Edge case

Test data Not a palindrome Palindrome Not a palindrome Palindrome Empty string

Expected
result

Return 0
“Not a palindrome”

Return 1
“Palindrome”

Return 0
“Not a palindrome”

Return 1
“Palindrome”

Return 0
“Not a palindrome”

deified
Madam,I'm Adam

Test case Was it a cat l saw
Live on no evil.

Figure 7.29: Test case design of the palindrome checking program.

Example 7.2 Testing a sorting program
Test a program that sorts data.

[Analysis]
In addition to general cases where data are distinct, some corner cases that need special test-
ing are listed below:
– There is no input data.
– There is only one input number.
– Numbers are already sorted in order.
– Numbers are sorted in reverse order.
– There are duplicates.

Figure 7.30 shows the expected results for different input cases.

Number sequence Special case Invalid case

Input data
• Distinct
• Has duplicates
• Already in order

Single number No data

Expected result Sorted sequence Single number Warning

Test case

Figure 7.30: Test case design of sorting program.

7.2 Testing 285

7.3 Concept of debugging

Mr. Brown has been working overtime lately. Sometimes he even stayed up all
night. Mrs. Brown asked his husband what he was working on. He blinked his eyes
and responded, “I have been producing bugs and debugging.” However, Mrs.
Brown became more confused after knowing the meaning of “bug” and “debug.”
She asked, “Why do programmers debug all the time? Why cannot you write pro-
grams without bugs?”

“Good question!” our professor commended. He then started to think about this
question raised by his wife, a complete amateur. Although the question seemed
funny, it reflected many problems in the lifespan of software products, from being
designed to going live.

7.3.1 Bug and debug

A bug refers to a small insect or a defect. People nowadays refer to defects or prob-
lems hidden in computer systems or programs as bugs and the process of finding
bugs as debugging.

There is a story behind this. On 9 September 1947, a computer operator found a
moth trapped next to relay #70 on the circuit when tracing an error in a Harvard
Mark II computer. It was the moth that led to the error. The moth was later removed
and taped to the logbook with the caption “First actual case of bug being found” as
shown in Figure 7.31. These operators also suggested using the word “debug,” thus

The first “bug”
in computers is
literally a bug

bug
A bug refers to a small insect or a defect. People nowadays refer to
defects or problems hidden in computer systems or programs as bugs

Figure 7.31: Bug in programs.

286 7 Execution of programs

creating the new term “debugging a computer program.” The plain meaning of the
word debug is to remove a bug, but in practice it also refers to the process of finding
and locating a bug, which is more complicated than removing bugs in most cases.

Since the 1950s, people have been using the word debug to refer to the process
of correcting errors, which solve problems in software through reproducing errors
and locating bugs. The definition of software testing is shown in Figure 7.32.
Debugging is the process of solving problems in software using debugging tools.
The goal of debugging is to find the root cause of software defects and figure out a
solution to it. In addition to debugging, debuggers are used for other purposes as
well. For example, we use debuggers to analyze how the software works, why a sys-
tem crashes, and to solve problems of the system and hardware.

7.3.2 Bugs are everywhere

Figure 7.33 shows the flowchart of program development, which we introduced in
the chapter “Introduction to Programs.” As shown in the flowchart, software design
is not an easy task. Errors may occur in any phase: problem abstraction, data analy-
sis, algorithm design, program design, and so on. Almost every program of a rea-
sonable scale has been debugged and modified again and again. Hence, debugging
is an essential skill in programming.

Except for problems that arise in the development, bugs may appear when
users are using the software as testing may not find all problems. As a result, the
most frequent job of programmers is to modify programs repeatedly, whether it is
during or after development. This is why amateurs have the impression that “pro-
grammers are always fixing bugs.”

7.3.3 Difficulties in debugging

Debugging is a thinking and analysis process of uncovering the root cause of a phe-
nomenon. It requires strong skills, thus it is hard even for experienced programmers.
Brian W. Kernighan, one of the creators of the C language, and Yinkui Zhang, author
of the book Software Debugging, have both commented on the difficulties in debug-
ging as shown in Figure 7.34.

Locating the root
cause is usually the
most difficult yet
most critical step

Debug
Debugging is the process of solving problems in software using

debugging tools. Goal of debugging is to find the root cause of
software defects and figure out a solution to it.

Figure 7.32: Definition of debugging.

7.3 Concept of debugging 287

R
ec

ta
ng

le
s

ar
e

ph
as

es
 o

r
re

su
lts

,
w

hi
le

 e
lli

ps
es

 a
re

ac

tio
ns

Pr
ac

tic
al

 p
ro

bl
em

Te
st

 c
as

es

A
lg

or
ith

m

Ex
ec

ut
ab

le
C
od

e
m

od
ifi

ca
tio

n

W
ar

ni
ng

s
or

 e
rr

or
s

Te
st

in
g

S
ou

rc
e

co
de

Ex
ec

ut
io

n
re

su
lt

Pr
ob

le
m

 m
od

el

Te
st

 r
es

ul
ts

En
d

D
eb

ug
gi

ng

S
ta

rt

D
at

a
st

ru
ct

ur
e

A
bs

tr
ac

tio
n

D
at

a
an

al
ys

is

A
lg

or
ith

m
 d

es
ig

n

Pr
og

ra
m

 d
es

ig
n

C
om

pi
la

tio
n

an
d

lin
ki

ng

Ex
ec

ut
io

n

C
or

re
ct

Pr
og

ra
m

 p
ro

bl
em

A
lg

or
ith

m
 p

ro
bl

em

D
at

a
st

ru
ct

ur
e

pr
ob

le
m

M
od

el
lin

g
pr

ob
le

m

W
ro

ng

Fi
gu

re
7.
33

:F
lo
w
of

pr
og

ra
m

de
ve
lo
pm

en
t.

288 7 Execution of programs

We shall discuss methods of debugging in the following sections.

7.4 Methodology of debugging

7.4.1 Introduction

7.4.1.1 Finding errors in a domino sequence
Daniel participated in a game of building large-scale domino sequences in the sum-
mer camp. “Large scale” here means that it is hard to figure out the global status of
the sequence at a glance. After Daniel’s team had set up their sequence, they top-
pled the first domino. However, some dominoes in the sequence did not fall, so
there must be something wrong. How could they find the problem? What strategies
could they take to find the problem? After a discussion, the team believed that they
could walk through the sequence and check the setup of each domino. They could
also divide the sequence into segments so that each member was in charge of the
inspection of one segment.

Structure and execution of programs are similar to dominoes, where a state-
ment is a domino and a program consisting of multiple statements or functions is
the sequence of dominoes. Hence, we can use the strategy of Daniel’s team in de-
bugging as well as shown in Figure 7.35.

7.4.1.2 Collapse of the domino sequence
After finding the error in the sequence, Daniel’s team started repairing at once. It
was late at night when they finished so they decided to test it the second day.

When they entered the stadium the next day, however, they found that some
parts of the sequence were completely ruined. The stadium was locked at night, so
they wondered what happened. A member then noticed that there was a surveillance

Debugging is a task frequently done in software development and maintenance.
It is not easy to find software defects in complex computer systems.
It often takes more time to debug a program than to write one.

—— Software Debugging, Yinkui Zhang

Brian W.Kernighan, one of creators of C ——

Debugging is twice as hard as writing the code in the first
place. Therefore, if you write the code as cleverly as possible,
you are, by definition, not smart enough to debug it.

Figure 7.34: Degree of difficulty of debugging.

7.4 Methodology of debugging 289

camera on-site so she suggested investigating the video recording by rewinding it
from the current time.

Similarly, when a program crashes, we can investigate the log to find out which
module of the program caused the crash if the execution process of the program
has been recorded. By playing the video recording backward, we can also figure out
call stacks of each module as shown in Figure 7.36.

7.4.2 Basic flow of debugging

Daniel’s team searched for the error in their sequence on site. The error was a domino
that fell down before the sequence was toppled. To find bugs in a program, we need
to reproduce the problem to be solved on the system. We will debug by repeating
steps that led to the failure, and analyze the root cause of the failure, derive a solu-
tion, modify the program, and verify whether the problem has been solved.

As shown in Figure 7.37, a complete debugging process should be a loop with
four phases, namely bug reproduction, root cause searching, solution exploration and
implementation, and solution verification. In root cause searching, we should use var-
ious debugging tools and methods to find the major source of software failure. In so-
lution exploration and implementation, we design and implement a solution based
on the root cause found in the last phase and resources we possess. Finally, we test
whether the solution is effective in the target environment in the verification phase.

The prerequisite of fixing a bug is finding its root cause. Root cause searching
is always the most critical yet most challenging step among all steps of debugging.
Finding the root cause is the core of debugging.

• Inspect one by one

• Inspect critical part
Structure and execution
of programs is similar to

domino sequences,
where each statement

can be seen as a dominoFlow structure
Sequential execution

What strategies
can be used in
error finding of

domino sequences?

Figure 7.35: Strategy of error finding.

Play the video recording
backwards

We can trace back and
find the crashing point
by recording execution

order of modules
Structure of programs is
multi-module structure

Log querying
Scene

reproduction

Figure 7.36: Inspection of crash log.

290 7 Execution of programs

How do we find errors in the logic of programs? We shall introduce the method-
ology based on the characteristics of programs and the execution of programs.

7.4.3 Discussion on methods of finding errors in programs

7.4.3.1 Analysis of flow of program execution
In the process of solving problems with programs, data are processed to produce
results. If data to be processed are inherent in the problem, that is, the logic struc-
ture of data is determined solely by the problem, then there is no error within them.
Consequently, we need to focus on “processing” and “result” to find errors. In
other words, finding errors is done by tracing how data are processed and inspect-
ing results as shown in Figure 7.38.

Reproduce issue

Locate root cause

Find and implement
a solution

Verify solution

Close issue
T

Error finding of
domino sequences

is done on siteChallenge in
debugging

F

Issue solved?

Figure 7.37: Basic flow of debugging.

We should trace data
processing process

and inspect the
result to find logic
errors in programs

Data Proce-
ssing Result

Process
tracing

Result
inspection

Figure 7.38: Steps in program execution flow to focus on when finding errors.

7.4 Methodology of debugging 291

Knowledge ABC Logic errors in programs
Logic errors of a program are reflected in the differences between execution results and the ex-
pected results of the program. For example, if we forget to add parentheses to make addition
evaluated before multiplication in an expression, the result may be wrong. Programs with logic
errors can be executed successfully most of the time, so there is no error message indicating
the location of the error.

7.4.3.2 Relations between modules
Modules interact with each other through calls. Let us examine a concrete example
first. There are three child functions in Figure 7.39, namely function a, b, and c. The
calling stack of the main function and these child functions is shown in the figure
as numbers: the main function calls function a first, function a calls function b,
which later calls function c. Once function c is completed, it returns to the remain-
ing instructions in function b, which later returns to function a when it is done.
Finally, function a returns to the main function when the remaining statements in
it are completed.

The general rule of nested call of multiple functions is: the last called function
returns first.

We can imagine the CPU as a stage. Only one scene can be presented on stage
at a time; similarly, only one function can be executed at a time. To call another
function, the CPU pauses execution of the current one and switches to the child
function called. Due to the way CPU executes programs, some information should
be stored so that the CPU can complete what has been left in the calling function
after the child function called is done.

The context information of a function call stored by the system includes return
address and some variables and parameters. Similar to the order of calling and re-
turning, the process of saving and restoring contexts follows a “Last-In-First-Out”
order as shown in Figure 7.40. The numbers in the figure correspond to those in
Figure 7.39, where numbers 1–4 refer to the saving order and numbers 6–8 refer to
the restoring order. The “Last-In-First-Out” principle followed by memory space
management of context information is the classic way stacks work. In this way, the
execution path of modules of a program is recorded.

7.4.3.3 Problems involved in error finding
The execution path is constructed based on the structure of the program as shown
in Figure 7.41. Programs are constructed by multiple modules, so we should trace
errors both inside modules and between modules.

Based on how data are organized and stored, result inspection involves inspect-
ing a single variable, address of a variable and a series of variables with continuous
addresses, which is also called an array.

292 7 Execution of programs

M
od

ul
es

 a
re

co

nn
ec

te
d

th
ro

ug
h

fu
nc

tio
n

ca
lls

Im
ag

in
e

th
e

C
PU

 a
s

a
st

ag
e,

 o
nl

y
on

e
sc

en
e

(f
un

ct
io

n)
 c

an

be
 p

re
se

nt
ed

 o
n

st
ag

e
at

 a
 t

im
e

Fu
n

ct
io

n
 c

al
l

Th
e

C
PU

 p
au

se
s

ex
ec

ut
io

n
of

 t
he

 c
ur

re
nt

 o
ne

 a
nd

 s
w

itc
he

s
to

 t
he

 c
hi

ld
 f
un

ct
io

n
ca

lle
d.

 N
ec

es
sa

ry
 in

fo
rm

at
io

n
ar

e
st

or
ed

 s
o

th
at

 t
he

 C
PU

 c
an

 c
om

pl
et

e
w

ha
t

ha
s

be
en

 le
ft

 in
 t

he
 c

al
lin

g
fu

nc
tio

n
af

te
r

th
e

ch
ild

 f
un

ct
io

n
ca

lle
d

is
 d

on
e.

C
al

lin
g

ru
le

:
th

e
la

st
 c

al
le

d
fu

nc
tio

n
re

tu
rn

s
fir

st

m
ai

n
fu

nc
tio

n
m

ai
n

fu
nc

tio
n

C
al

l f
un

ct
io

n
a

Fu
nc

tio
n

a
st

ar
ts

Fu
nc

tio
n

a
st

ar
ts

C
al

l f
un

ct
io

n
b

Fu
nc

tio
n

c
st

ar
ts

Fu
nc

tio
n

c
st

ar
ts

m
ai

n
te

rm
in

at
es

m
ai

n
te

rm
in

at
es

Fu
nc

tio
n

a
te

rm
in

at
es

Fu
nc

tio
n

a
te

rm
in

at
es

Fu
nc

tio
n

c
te

rm
in

at
es

Fu
nc

tio
n

c
te

rm
in

at
es

Fu
nc

tio
n

b
st

ar
ts

Fu
nc

tio
n

b
st

ar
ts

C
al

l f
un

ct
io

n
c

Fu
nc

tio
n

b
te

rm
in

at
es

Fu
nc

tio
n

b
te

rm
in

at
es

2
3

4
1

5

6
7

8

Fi
gu

re
7.
39

:C
al
lin

g
re
la
ti
on

be
tw

ee
n
m
od

ul
es

.

7.4 Methodology of debugging 293

We shall discuss concrete strategies for tracing programs.

7.4.4 Exploration of tracing methods

To find errors in a domino sequence, we can inspect dominoes one by one or seg-
ment by segment, where we randomly check certain places in each segment. We
can also combine these two methods together. During the inspection, we can stop,
observe, think, and rebuild the sequence at any time. Similarly, we need a pausing
mechanism for program execution to inspect data and processing results. Such a
mechanism is provided by the IDE, enabling us to use an error finding strategy sim-
ilar to the one used in dominoes.

7.4.4.1 Trace by statements

7.4.4.1.1 Stepwise tracing
The debugger starts from the main function and executes statements one by one
using stepwise commands. A child function is also treated as a statement. For

Context of function c

Context of function b

Context of function a

Context of main function

Restoring order

1

2

3

4
Execution path
of modules is

recorded
stack

Information is
managed in a
“Last-In-First-
Out” manner

8

7

6

Saving order

Figure 7.40: Saving and restoring context information.

Error
finding

Process tracing

Result inspection

Single module

Multiple modules
Trace by segments
Display of order of function calls

Trace by steps

Inspection of a single variable
Inspection of array variables
Inspection of addresses of variables

Figure 7.41: Problems involved in error finding.

294 7 Execution of programs

example, the calling of function func in main function shown in Figure 7.42 is han-
dled as a single statement in stepwise tracing.

7.4.4.1.2 Statement-wise tracing
The debugger starts from the main function and executes statements one by one using
stepwise commands. Upon reaching a child function call, the debugger enters the
child function using the step-into command as shown in Figure 7.43. Statements in-
side the child function are again executed one by one. After the child function is done,
the debugger returns to the calling function and executes the remaining statements.

7.4.4.2 Trace by segments
We first set breakpoints at the line we want to inspect. As shown in Figure 7.44, a dot
is inserted to pause the program execution, which is resumed after we have inspected
data we would like to see. We can use multiple breakpoints and the jump to break-
point command so that programs are stopped when a breakpoint is encountered. The

int main(void)

{

......

......

func();

......

......

}

Treat func()
as a single
statement

Stepwise
command

Figure 7.42: Stepwise tracing.

int main()

{

......

......

func ();

......

......

}

void func ()

{

......

......

......

......

......

}

Stepwise
command Stepwise

command

Step-into
command

Enter child
function
and trace

Figure 7.43: Statement-wise tracing.

7.4 Methodology of debugging 295

execution is done after multiple jumps. The action of setting breakpoints is called
“Break” in computers.

7.4.4.3 Reversed inspection of call stack
The execution path of modules is automatically recorded into a call stack by the
system during program execution. When a program crashes, we can quickly locate
the function in which error occurs by checking the information in the call stack as
shown in Figure 7.45. Which module does the problem arise in? As the program ter-
minates when crashing, the error should be in the function on the top of the stack.

int main(void)

{

......

......

......

......

......

}

Jump to breakpoint

Insert a breakpoint

Jump to breakpoint

Run until the end

When a special event (interrupting event) happens, a computer will pause the
task (program) that is currently being executed, switch to another task (interrupt
handler) and eventually resume the initial task.

Interruption

1

2

3

Figure 7.44: Interruption and tracing by segments.

Context of function 3

Context of function 2

Context of function 1

Context of main function

Saving order Restoring order

1

2

3

4

When a program
crashes, we can quickly
locate the function in
which error occurs by

checking information in
the call stackstack

Figure 7.45: Record of execution path.

296 7 Execution of programs

We have discussed the methodology of debugging and now we are going to intro-
duce how to apply these strategies in an IDE.

7.5 Debugging tools

In the world of software, inspection and repairing tools like corkscrew or multimeter no longer
work. They are replaced by debugging tools with the debugger as the core. – Software
Debugging, Yinkui Zhang

Debugging is of vital importance to software. Inspection tools in the world of soft-
ware are debugging tools. Using the right debugging tools properly can largely in-
crease the efficiency of finding bugs.

7.5.1 Functions of debugger in IDE

Typically, programs are executed continuously. However, debugging can control
the pace of program execution. Execution of a program can be paused, done step
by step, or done with jumps. When a program is paused, we can inspect its status.
The debugger provides functions like controlling execution pace or inspecting exe-
cution status in IDE. More specifically, it traces and records how the CPU executes a
program and takes snapshots of this dynamic process for programmers to inspect
and analyze as shown in Figure 7.46.

By controlling the execution pace, the debugger controls the number of lines exe-
cuted in each step so that programmers can better observe the execution path.
Stepwise execution uses a line of code or a function as a step in program execution.
In contrast, jumping execution can run a program to the cursor or breakpoints set
by programmers. Stepwise execution is an effective method of diagnosing dynamic
characteristics of software. However, stepwise tracing a program or even a module
is usually not efficient. A commonly used comprehensive debugging approach is to

Function Meaning Case

Control execution pace
• Control size of step
• Inspect execution path

Stepwise execution: use a statement or a
function as a step in program execution
Jumping execution: run a program to the
cursor or a breakpoint set by programmers

Inspect execution status Inspect internal data when
a program is paused

Variable values, memory values, register
values, stack, etc.

Figure 7.46: Functions of the debugger in IDE.

7.5 Debugging tools 297

run the program to the line we are interested in using breakpoint and execute criti-
cal code stepwise after that.

With the execution status displayed, the debugger allows us to observe internal
data of a computer when the program is paused. We can inspect variable value,
memory value, register value, and stack value in the IDE. Observing the status of a
program during execution is one of the most critical tasks in debugging. To efficiently
debug a program, we need to combine these functions and use them flexibly.

Knowledge ABC Debug version and release version of programs
To enable us to debug a project using debuggers, the information needed for debugging must
be stored in the compilation units. Consequently, we need to use the compiler to insert debug-
ging information into compilation units before using debuggers.

The debug version of a program contains the debugging information. We can debug the pro-
gram conveniently through stepwise execution and tracing. No optimization is done for the
debug version, thus the executable file generated is larger in size and runs slowly.

The release version often contains a series of optimization. The size and execution speed of
the generated file is fully optimized for better user experience. However, we cannot use debug-
gers in the release version.

There is a compilation option for switching between these two versions. It is located in the
menu Build- > Batch Build, in which we can choose to compile one of them or both as shown in
Figure 7.47. The debug version uses a group of compilation options to support debugging. Before
a program is published after being written and debugged, we can discard debugging information
through the compilation option and generate the release version with efficient code.

Figure 7.47: Option of debug and release version.

We shall introduce various commands of debuggers and their usage in the follow-
ing sections.

298 7 Execution of programs

7.5.2 Debugging commands

7.5.2.1 Enter the debugging environment
As shown in Figure 7.48, we can enter debugging environment through three steps:
(1) select “Build” in the menu bar, (2) select “Start Debug” in the Build menu, and
(3) click “Step Into” command (whose hotkey is F11). Alternatively, we can press
hotkey F10 (Step Over) to enter the debugging environment. After that, we have en-
tered the fourth step, where the Build menu has turned into the Debug menu,
which contains various debugging commands.

7.5.2.2 Commands controlling program execution
Together with breakpoints and jump command, commands controlling program ex-
ecution are used to complete stepwise execution and jumping execution. We shall
see their usages in concrete debugging examples. Major commands are shown in
Figure 7.49.

7.5.2.3 Set breakpoints
Setting breakpoints is one of the most commonly used techniques to trace a large
scale program.

A breakpoint is a mark set in programs by the debugger. When the program runs
to a breakpoint, its execution is paused and the program returns to the debugger so

Use
Step Into

1

2

3

“Build” turns into
“Debug”

4

Or use
Step Over

Figure 7.48: Enter debugging environment.

7.5 Debugging tools 299

that programmers can inspect the code or variable values. After a program is paused,
we can further execute it step by step to determine whether it is running as expected.

There are three kinds of breakpoints in the IDE, namely location breakpoints,
data breakpoints, and message breakpoints. Only the first two are involved in console
applications of C. The configuration screen of breakpoints is shown in Figure 7.50,
which can be invoked by selecting the “Breakpoints” sub-menu inside the “Edit”

Menu command Hotkey Notes

Go F5 Run to a breakpoint. Used with breakpoints
Step Over F10 Stepwise command that doesn’t enter child functions
Step Into F11 Stepwise command that enters child functions
Run to Cursor Ctrl+F10 Run to the cursor. Used with cursor setting
Step Out Shift +F11 Run to the end of current function and return to the calling function

F9 Insert/Delete (a location breakpoint)
Stop Debugging Shift+F5 Exit debugging and return to editing mode

This is the Debug toolbar.
Icons in it correspond to
commands in the Debug

menu. It is recommended
to use hotkeys though

Figure 7.49: Major commands of program execution controlling.

Location breakpoint
Data breakpoint
Message breakpoint

We only use the
first two in C

console
applications

Figure 7.50: Configuration screen of breakpoints.

300 7 Execution of programs

menu on the main menu bar. There are multiple breakpoint options that we can use
as needed.

(1) Location breakpoint
Location breakpoints are the most commonly used breakpoints. They are usually
inserted at a specified line of source code, the beginning of a function, or a speci-
fied address in memory.

We can insert a breakpoint by selecting “Edit->Breakpoints” in the menu or
pressing hotkey F9. To use the shortcut for breakpoints, we first move the cursor to
the line where we want to insert the breakpoint, then press hotkey F9 or click the
“Hand” shape button in Build Minibar. A dark red dot will appear on the left of that
line after insertion. To clear the breakpoint, we press F9 or click the button one
more time. The hotkey for clearing all breakpoints is Ctrl + Shift + F9.

(2) Data breakpoint
Data breakpoints are set on variables or expressions. Program execution is paused
when the value of the variable or expression is changed.

(3) Message breakpoint
Message breakpoint is set on window function WndProc. Program execution is
paused when a particular message is received.

7.5.2.4 Inspect execution status
The most crucial thing in debugging is to inspect the status of the program during
execution. It is through this process that we find errors in the program. The status
here refers to values of variables and values in registers, memory, and stack. There
are windows to view these values in the IDE as shown in Figure 7.51. Inspection of
these values must be done during stepwise tracing or pausing upon breakpoints.

The window for execution status inspection and items it can display is shown
in Figure 7.52. When debugging, we determine which window we should inspect
based on program logic and execution controlling commands. The usage of these
windows are introduced in corresponding sections. This section only covers some
examples of them. A sample of these windows is shown in Figure 7.53.

(1) Watch window
By typing in the variable or expression we want to inspect in the Watch window, we
can obtain its value. During stepwise debugging, we can inspect variable values dy-
namically inside the Watch window, which helps us determine whether the pro-
gram is running correctly.

7.5 Debugging tools 301

(2) Variables window
It automatically shows the values of variables that are visible in the current context.
In particular, the variables involved in the current statement are displayed in red. If
there are many local variables, it can be tricky to inspect them in this window. It is
recommended to use the Watch window in this case.

(3) Memory window
It shows the memory starting from a specific address, which defaults to 0x00000000.
Length of memory we can view in Watch window is limited by sizes of variables, but
the Memory window can show memory in a range of continuous addresses. To use
this window, we need to type in the starting address, which can be found in the
Watch window. The watch window shows the values and addresses of variables.

(4) Register window
Displays the current values of all registers.

Data
windows

Figure 7.51: Debug windows.

Window Function

Watch Display values of expressions or variables we type in the window
Variables Automatically display values of all variables that are visible in the current context
Memory Display the memory starting from a specific address
Registers Display current values of all registers
Call Stack Display all functions that have been called and not yet terminated in the order of calling

Figure 7.52: Functions of debug windows.

302 7 Execution of programs

(5) Call stack
It reflects which functions called the function currently being paused and how this
function is called. The call stack window shows a series of function calls, where the
current function stays on top and callers are listed below in the order of calling. We
can jump to corresponding functions by clicking on the function names.

(6) Display format of data
Each window provides various display formats of data as shown in Figure 7.54. For
example, the Memory window can display addresses in Byte Format or Long Hex
Format. We can choose the format we are comfortable with by right-clicking in the
Memory window and selecting the corresponding item in the popup menu. Note
that memory is displayed in byte in a reversed order when using Byte format. Lower
bits are on the left and higher bits are on the right. The values of variables are dis-
played as decimal numbers by default in the Watch window. We can also choose to
display in hexadecimal format.

Knowledge ABC Online help
Visual C++ 6.0 provides detailed help information. Microsoft Developer Network (MSDN) is an
information service for software developers provided by Microsoft. Programmers can use MSDN
in various ways based on their needs: they can either install it locally or use it online.

After installing MSDN locally, we can enter the help system by selecting “Contents” under
the “Help” menu. Alternatively, we can enter the help system of Visual C++ 6.0 by moving the

Variable
inspection

Memory
inspection

Variable
inspection

Figure 7.53: Sample of data windows.

7.5 Debugging tools 303

cursor in the editor to a word we want to look up and press F1. Users can obtain almost all tech-
nical information on Visual C++ 6.0 through the help system, which is one of the reasons Visual
C++ is called a friendly development environment.

7.6 Examples of debugging

7.6.1 Demonstration of basic debugging steps

We shall use a simple program to learn the necessary steps of debugging. The pro-
gram is given in Figure 7.55.

7.6.1.1 Tracing by setting breakpoints
As shown in Figure 7.55, we insert a breakpoint at the printf statement.

To run the program to breakpoint, we select command Build→Start Debug→Go
or press hotkey F5. The program will be executed until the first breakpoint is en-
countered. A yellow arrow was inserted to the left of the current line by the de-
bugger, indicating the next statement to be executed. Users can inspect data like

Default format

Default format

Note that bytes are
displayed in

reversed order

Figure 7.54: Display formats of Debug windows.

304 7 Execution of programs

variables or expressions. By executing the Go command again, we run the program
to the next breakpoint or to the end if there is no more breakpoint.

We can use the View→Debug Windows→Watch command to inspect the values
of variables. By entering the variable name in the Watch window, we can view its
value as shown in Figure 7.56. Column Name lists expressions or variables we are
watching, whereas column Value displays their corresponding values. We can ob-
serve changes in expression values during program execution in this window.

We resume the execution by pressing F5, and the result is shown in Figure 7.57. The
console window will appear for a moment and quickly disappear, leaving no time
for us to see the result. To prevent the console from disappearing after the program
terminates, we can execute the program using command Build→Execute (Ctrl + F5).

Figure 7.55: Tracing by setting breakpoints step 1.

Figure 7.56: Tracing by setting breakpoints step 2.

7.6 Examples of debugging 305

7.6.1.2 Stepwise tracing
We can start stepwise tracing by selecting command Build→Start Debug→Step Into
or pressing hotkey F11.

The program will be executed starting from main function as shown in Figure 7.58.
Note that the Build menu will turn into the Debug menu.

To run the program step by step, we can use command Debug→Step Over or press
hotkey F10.

Figure 7.59 shows the second step of stepwise tracing. Upon each press of F10,
one statement in the program is executed and the statement indication arrow
moves to the next line.

The third step is shown in Figure 7.60, where we inspect related variables in the
Watch window. Values of variable b and c are different from what are assigned to
them in the program because the assignment statements have not been executed at
this time. Hence random values are displayed here instead of the assigned values.

To run a program until a specified location, we can use the command
Debug→Run to Cursor or press hotkey Ctrl + F10.

Figure 7.61 shows the fourth step of stepwise tracing.
We first move the cursor to a specific location, for example, the return 0 state-

ment, then press Ctrl + F10 to run the program until the statement before return 0.

Figure 7.57: Tracing by setting breakpoints step 3.

Figure 7.58: Stepwise tracing step 1.

306 7 Execution of programs

Figure 7.59: Stepwise tracing step 2.

Figure 7.60: Stepwise tracing step 3.

Figure 7.61: Stepwise tracing step 4.

7.6 Examples of debugging 307

The yellow arrow now points to statement return 0. As shown in Figure 7.62, we
can inspect values and addresses (variable names prefixed with & sign) of varia-
bles, and the console output.

Figure 7.63 presents multiple windows. 0x19ff2c is the address of variable a, whose
value is shown in Memory window. In Memory window, the leftmost column dis-
plays addresses in memory, while the first four columns to its right present contents
stored in these addresses in hexadecimal form. The last column is the text represen-
tation of memory contents.

7.6.2 Example of debugging

Mr. Brown prepared an assignment for his students, in which they were asked to
read a string that ended with a newline and output the string backward. For in-
stance, “ABCD” should be output as “DCBA.”

A student emailed his source code to Mr. Brown for help as shown in Figure 7.64.
He claimed there was a bug, but he could not find it.

We shall debug the program using the debugging environment in the IDE.
Steps of creating a project and a file were introduced in sections 7.1.1 and 7.1.2. In
this example, the project is located at D:\MYWIN32APP\ with the name test and the
source file name is Debugdemo.

Figure 7.62: Console window.

Figure 7.63: Information in multiple windows.

308 7 Execution of programs

7.6.2.1 Editing the code
After setting up the project, Mr. Brown copied the file attached in the email to the
editor in IDE, only to find many “?” in the code as shown in Figure 7.65. Why was
this the case? It turned that programs copied from other files might contain other
characters due to using a different encoding. These characters should be eliminated
before compilation. To remove all “?” in this example in batch, we can use the
Replace command in the menu Edit.

#include<stdio.h>
int main(void)
{

int i,k,tmp;
char str[];
printf(“input a string:”);
i=0;
while((str[i]=getchar())!=’\n’)

i++;
str[i]=’\0’;
k=i-1;
for(i=0;i<k;i++)
{ tmp=str[i];

str[i]=str[k];
str[k]=tmp;
k++;

}
for(i=0;str[i]!=’\0’;i++)

putchar(str[i]);

Problem

Enter a string (less than 80 characters) that ends with
newline, output the string backwards. For example,
given input “ABCD”, the output should be “DCBA”.

Debug

Main steps of debugging

• Create a project and a source file
• Format the code (modify in batch, format)
• Compile and check error messages
• Insert/Delete breakpoints and execute with Go

command
• Input in the console window
• Inspect in Watch and Memory windows
• Modify values in Watch window

Figure 7.64: Debugging the reversed string program.

Figure 7.65: Copied program.

7.6 Examples of debugging 309

After removing abnormal characters, Mr. Brown noticed that the code was not
aligned as required in the coding style. Because adjusting the alignment line by
line was tedious, it would be helpful if there were a “One-click align” command.
Fortunately, VC6 provides the “Format Selection” command, whose hotkey is Alt +
F8. As shown in Figure 7.66, the format of the code can be adjusted with a single
click using this command.

7.6.2.2 Compilation
Mr. Brown clicked the compile button on the left end of Build MiniBar to compile
the source code currently being opened. Upon the first compilation, a dialog box
popped up as shown in Figure 7.67, asking whether he would like to create a project
workspace. He selected “Yes.”

The compilation result was shown in the message panel as shown in Figure 7.68.
There were 27 errors in total.

He double-clicked the first error, a tiny blue arrow appeared in the editor as
shown in Figure 7.69. The error message stated that the size of array str was un-
known, which is indeed a bug as the size of an array was necessary.

However, errors still existed after he changed the array size to 8 so he double-
clicked on the first error again and the screen was as shown in Figure 7.70. The
error message was “unknown character.” However, the print statement seemed
correct at a glance. Having no idea what was wrong, the professor had to type in
this line again. After careful observation, he noticed that the double quotation
marks were incorrect. Both half-width characters and full-width characters were

Figure 7.66: Format selected text.

310 7 Execution of programs

acceptable in the editor, but only half-width punctuation marks were correct in
programs.

Mr. Brown recompiled the program after fixing the problem. There were 19 er-
rors this time as shown in Figure 7.71. The number had decreased a lot compared
with the initial one.

Figure 7.67: First compilation.

Figure 7.68: 27 errors in compilation result.

7.6 Examples of debugging 311

Compilation
error 1

Compilation
error 1

Compilation
error 1

Compilation
error 1

Compilation
error 1

Compilation
error 1

Blue arrow

Compilation
error 1

Figure 7.69: Compilation error 1.

Compilation
error 2

Compilation
error 2

Figure 7.70: Compilation error 2.

312 7 Execution of programs

Double-clicking on the first error again, he found that the error indication arrow
was on the line of while statement as shown in Figure 7.72. Having seen the full-
width quotation mark error above, Mr. Brown immediately figured out that the single
quotation marks were the error. There were multiple occurrences of this error in the
program so he fixed them all at once. As shown in Figure 7.73, the number of errors
decreased to three after compilation again, which was reduced a lot.

After double-clicking on the first error, the error indication arrow was on the
line of the return statement as shown in Figure 7.74. Mr. Brown quickly noticed that
it was the full-width semicolon that led to the error. Compilation succeeded after
this error was fixed as shown in Figure 7.75.

We can conclude from the above compilation process that the number of errors
is often reduced a lot if we recompile after fixing one error. This demonstrates that
an error can cause subsequent errors. Hence, we only examine the first error and fix
errors one by one when inspecting the compilation result.

7.6.2.3 Linking
Mr. Brown clicked the second button in Build MiniBar to link files after compila-
tion succeeded. DebugDemo.exe was generated after linking succeeded as shown
in Figure 7.76.

Figure 7.71: 19 errors in compilation result.

7.6 Examples of debugging 313

Compilation
error 3

Figure 7.72: Compilation error 3.

Figure 7.73: 3 errors in compilation result.

314 7 Execution of programs

Compilation
error 4

Figure 7.74: Compilation error 4.

Figure 7.75: Compilation succeeded.

7.6 Examples of debugging 315

7.6.2.4 Execution
Mr. Brown clicked the exclamation mark button in the Build MiniBar, and the result
of the program was shown in the console. As shown in Figure 7.77, given the input
“hello,” only character “o” was output, which was incorrect.

7.6.2.5 Debugging

7.6.2.5.1 Insert breakpoint
Mr. Brown noticed that the input was read into array str character by character using
a while loop, thus he decided to verify whether the input was correctly read first.

Figure 7.76: Generate exe file by linking.

Figure 7.77: Wrong execution result.

316 7 Execution of programs

He inserted a breakpoint by left-clicking on the line after while loop and clicking
the hand shape button in Build MiniBar as shown in Figure 7.78.

After entering stepwise tracing by pressing F10, the debugger will add a yellow
arrow on the left of program lines, indicating the next statement to be executed.
Upon one F10 click, one line of code will be executed (if there are multiple state-
ments in a line, all of them will be executed).

Before while loop was executed, there was no input. The value of i was 0. The
address of array str was 0x18ff2c and the elements in it were all -52, which corre-
sponded to the Chinese character “烫” and hexadecimal number CC. To be able to
type in more characters, Mr. Brown changed the size of the array to 16.

Good programming habit
Write one statement in a line for easier debugging.

7.6.2.5.2 Inspect input
After clicking the Go button (next to the exclamation mark button) in Build
MiniBar, the console window popped up with the message “input a string:” Mr.
Brown typed in “hello,” the debugger returned to the main screen of IDE, where
the program was paused at the breakpoint as shown in Figure 7.79. Meanwhile,
in the Watch and Memory window, the value of i was changed to 5 and str[5] was
ASCII value 10, which corresponded to a newline. In conclusion, the input was
read correctly.

As the input was correct, he proceeded to check whether data processing was
correct.

Next statement mark

Figure 7.78: Insert a breakpoint.

7.6 Examples of debugging 317

7.6.2.5.3 Trace
There were two for loops in the processing part. The first one was used to reverse
the string, whereas the second one was used for output. Mr. Brown started with the
first loop. In each iteration, values of str[i] and str[k] were swapped; therefore, vari-
ables he needed to watch were i, k, str[i] and str[k], which were listed in the Watch
window. As shown in Figure 7.80, i = 0 and k = 4 before the swap, which were the
0th and last index in the input string. Values of str[i] and str[k] were str[i] = ‘h’ and
str[k] = ‘o’, which would be swapped in the loop body.

Figure 7.79: Input data.

Input string “hello”

Figure 7.80: Process tracing 1.

318 7 Execution of programs

In Figure 7.81, the swap in the loop body had been executed and the result indi-
cated that the swap was successful.

In Figure 7.82, i = 1 and the program had entered the next iteration. The characters
to be swapped this time were ‘e’ and ‘l.’ Although str[i] = ‘e’ in the Watch window,
the value of str[k] was 0. Professor found the problem after careful inspection: logi-
cally, the value of k should decrease but not increase, so k++ was the root cause.

7.6.2.5.4 Fix the error
Mr. Brown did not exit debugging to modify the code after finding the error. Instead,
he changed the value of k in the Watch window to 3 and continued tracing as shown
in Figure 7.83.

He then repeated this process by modifying the value of k in each iteration
until the array str was completely reversed as shown in Figure 7.84. The second for
loop should be correct as all it did was outputting the contents of array str.
Professor inserted another breakpoint at the return statement.

After clicking the Go button, the correct output “olleh” was displayed in the con-
sole as shown in Figure 7.85.

Value of k should decrease
instead of increasing

Figure 7.82: Process tracing 3.

‘h’ and ‘o’ are
swapped successfully

Figure 7.81: Process tracing 2.

7.6 Examples of debugging 319

As debugging was done, Mr. Brown added captions to the screenshots of the de-
bugging process and sent them back to the student. When reviewing them later, he
noticed that there was a typo in the file name and multiple screenshots were affected.
He really hoped the compiler could do a spell check, but that would be another story.

7.6.3 Example of using the call stack

We mentioned in Section 7.4.4 that the execution path of a program is automatically
recorded in a stack. Doing so enables us to quickly locate the function in which errors
occur by inspecting the top of the stack upon a program crash. In particular, this
stack refers to the Call Stack in IDE, which we can see in Debug windows as shown
in Figure 7.86.

Figure 7.84: Process tracing 5.

Directly change
value of k to 3

Figure 7.83: Process tracing 4.

320 7 Execution of programs

Figure 7.85: Process tracing 6.

Figure 7.86: Call stack.

7.6 Examples of debugging 321

We shall use an actual program as shown in Figure 7.87, to demonstrate how this
stack works. Upon execution, we enter the main function first and the stepwise trac-
ing arrow points to the function to be called, namely max(). In the Call Stack win-
dow shown in Figure 7.88, we can see that the current function arrow points main,
line 8. We count line numbers starting from the line of include (empty lines also
count). The function call happens exactly on line 8.

Observing the Call Stack window after the program jumps to child function max, we
notice that max becomes the current function and the program is currently at line
14. Arguments of the function are also displayed, which are consistent with the ar-
guments shown in the Watch window as shown in Figure 7.89.

As shown in Figures 7.90 and 7.91, the value of line in Call Stack increases as
stepwise tracing continues. Hence, we do not have to trace a program step by step

Figure 7.87: Call stack inspection 1.

Figure 7.88: Call stack inspection 2.

322 7 Execution of programs

Figure 7.89: Call stack inspection 3.

Figure 7.90: Call stack inspection 4.

Figure 7.91: Call stack inspection 5.

7.6 Examples of debugging 323

when some statement causes system failure. As long as the failure is reproducible,
we can find the error statement by inspecting the top of the call stack.

7.6.4 Example of using data breakpoint

We have seen examples of location breakpoints and now we are going to cover how
to set and use data breakpoints.

7.6.4.1 Source code and execution result
The source code and execution result are shown in Figure 7.92.

The program is straightforward. There are two character arrays, str1 and str2. The
value of str1 is determined during initialization, whereas that of str2 comes from
keyboard input. At the end of the program, characters in these arrays are output.

The execution result is problematic, in any case. The output of str1 was correct
before str2 was input. However, it was changed after str2 was input.

7.6.4.2 Debugging plan
According to the erroneous result being displayed, the first half of str is changed
while the second half is not. Values of str1[0] and str1[1] are 5 and 6, respectively.

#include "stdio.h"
#include"string.h"

int main(void)
{

char str1[12]="hello world";
char str2[4];
int i=0;

printf(“str1 %s\n", str1);
printf(“putchar str2: 12345678\n");
do
{

str2[i]=getchar();
}

while (str2[i++]!='\n');
// str2[i]='\0';

printf(“str1 %s\n", str1);
printf("str2 %s\n", str2);
return 0;

}

str1 hello world
putchar str2: 12345678
12345678
str1 5678
world
str2 12345678
world

Figure 7.92: Example program of debugging using data breakpoints.

324 7 Execution of programs

Because 5 is entered before 6, the error must have happened when str1[0] was
changed. By pausing the program at this point, we can investigate the root cause of
the error. Our debugging steps are as follows:
– Execute the program step by step, observe str1 and str2 before str2 is input.
– Insert a data breakpoint to watch str1[0].
– Type in all input data at once in the console in tracing mode.
– Execute Go command and wait for the moment data breakpoint is encountered,

which is also the moment error occurs.

7.6.4.3 Tracing and debugging

7.6.4.3.1 Inspect contents of array str1 and str2 before str2 is assigned a value
As shown in Figure 7.93, the content of str1 is its initial value. However, the content
of str2 is weird. This is because the IDE stops the display of character array upon
seeing the terminating character. The length of str2 is 4, which corresponds to two
Chinese characters, “烫烫” (recall that a Chinese character takes up 2 bytes).

7.6.4.3.2 Insert data breakpoint
As shown in Figure 7.94, we select the breakpoints sub-menu in the menu “Edit” and
choose the “Data” tab. After that, we enter the expression to be watched, str1[0], in
the text area, “Enter the expression to be evaluated.” The IDE then automatically
completes other configurations and adds a breakpoint at the end of the program.

Figure 7.93: Debugging using data breakpoint step 1.

7.6 Examples of debugging 325

Returning to stepwise tracing, we enter “12345678” in one go when encounter-
ing getchar() in the do-while loop as shown in Figure 7.95. Then we continue the
execution by pressing the “Go” button in Build MiniBar. A window pops up, indi-
cating that a break has happened and the value of str1[0] has been modified as
shown in Figure 7.96.

In the Watch window shown in Figure 7.97, we see that str1[0] has been changed to
5. The value of i is 4, so the change happened when assigning values to elements of
str2 in the do-while loop. The root cause of this error is that str1 is right after str2 in
memory. The size of array str2 is 4 bytes, thus a string longer than 4 bytes will over-
ride elements of str1. It is not hard to find the error in this case. One could figure
out the error if he noticed the addresses of two arrays. However, the lesson we can
learn from this example is that with proper use of breakpoints, we can capture the
moment an error occurs without tracing the program step by step.

Inserted by the
IDE automatically

Figure 7.94: Debugging using data breakpoint step 2.

Figure 7.95: Debugging using data breakpoint step 3.

326 7 Execution of programs

7.7 Summary

The main concepts in this chapter and their relations are shown in Figure 7.98.
We need to design test cases carefully before debugging.
Input and expected output should be determined.
Normal, exceptional, and edge cases should be considered.
We must be detail-oriented to be perfect

Do not panic when errors occur in the compilation.
Read the error message carefully to find what is wrong.
Errors may be caused by other errors.

Figure 7.97: Debugging using data breakpoint step 5.

Figure 7.96: Debugging using data breakpoint step 4.

7.7 Summary 327

So we should fix them one at a time.
We should compare execution result with the expected result,
And review the program logic if they are inconsistent.
Setting breakpoints, tracing step by step, watching variables, inspecting mem-
ory are all debugging techniques.
We find bugs by thinking and analyzing carefully, and eventually, we get the
result right.

Program
execution

Debugging

Vc development
environment

Create a project: set up resource environment for the program to be
executed
Create a source file: create a file for the program
Edit a source file: edit the program, the file extension is .cpp
Compile: check for syntax errors in the program and generate object
program with extension .obj
Link: link and construct executable program using object program,
the file extension is .exe
Execute: execute the .exe file
Result: see result in the console window

Testing

Testing: a process of comparing actual output with expected output
Test case: a combination of input data, execution conditions and
expected results used to test whether the program is written as
required
Principle of designing test cases: use a small amount of test cases
that help us find errors efficiently, consider both valid and invalid
input, be as comprehensive as possible
Testing method: white-box testing, black-box testing
Testing order: bottom-up, top-down

Bug: defects or problems in computer systems
or programs
Debug: the process of solving problems in
software using debugging tools

Debugging
strategy

Process tracing: trace by statements, trace by
segments, display the order of function call
Result inspection: display of a single variable,
array variables and variable addresses

Definition

Debugger
function

Execution pace controlling: stepwise execution,
jumping execution
Execution status inspection: variable values,
memory values, register values, stack

Debugging
command

Execution controlling commands: step-over,
step-into, breakpoints, step-out
Execution status inspection windows: Watch,
Variables, Memory, Registers, Call Stack

Figure 7.98: Concepts related to program execution and their relations.

328 7 Execution of programs

7.8 Exercises

7.8.1 Multiple-choice questions

(1) [Program errors]
Which of the following errors is not detectable by computers during de-
bugging? ()
A) Compilation error
B) Runtime error
C) Logic error
D) All errors are detectable

(2) [Debugging and testing]
Which of the following statements is wrong? ()
A) The purpose of testing is finding and correcting errors.
B) Locating the error is a necessary step in debugging.
C) We call the process of finding bugs “debug.”
D) We should follow the testing plan in testing to eradicate randomness.

(3) [Software testing]
When using the white-box testing method, we should design test cases based on
()
A) The internal logic of the program
B) Complex structure of the program
C) The functionality of the program
D) Manual

7.8.2 Debugging exercises

Note: In each problem, we show the lines with bugs. Please correct them without
adding or deleting any line.

(1) Functionality
Given an integer n, the program outputs the sum of its digits (e.g., if n = 1308,
the program outputs 12. If n = −3204, the program outputs 9.)
There is an error on line 6 and one on line 9.

01 #include <stdio.h>

02 int main(void)

03 {

04 int n,s=0;

7.8 Exercises 329

05 scanf("%d",&n);

06 while (n<0)

07 {

08 s=s+n%10;

09 n=n%10;

10 }

11 printf("%d\n",s);

12 return 0;

13 }

(2) Functionality
Given a string input, the program stores its characters into a string t, reverses
the string and appends it to t*. For example, given input “ABCD”, the string t
should be “ABCDDCBA.”
There is an error on line 10 and one on line 11.

01 #include <stdio.h>

02 #include <string.h>

03 void fun(char *s,char *t)

04 {

05 int i,sl;

06 sl=strlen(s);

07 for (i=0; i<sl; i++)

08 t[i]=s[i];

09 for (i=0; i<sl; i++)

10 t[sl+i]=s[sl-i];

11 t[sl]="\0";

12 }

13

14 int main(void)

15 {

16 char s[100],t[100];

17 scanf("%s",s);

18 fun(s,t);

19 printf("%s",t);

20 return 0;

21 }

330 7 Execution of programs

(3) Functionality
Given input a = 3 and n = 6, the program outputs the value of the following ex-
pression: 3 + 33 + 333 + 3333 + 33333 + 333333
There are two errors on lines 10 and 11.

01 #include <stdio.h>

02 int main(void)

03 {

04 int i,a,n;

05 long t=0,s=0;

06 scanf("%d%d",&a,&n);

07 t=a;

08 for (i=1; i<=n; i++)

09 {

10 t=t*10+i;

11 s=s+t;

12 }

13 printf("%ld\n",s);

14 return 0;

15 }

(4) Functionality
Given input n, the program outputs all prime factors of it (e.g., if n = 13860, the
program outputs 2, 2, 3, 3, 5, 7, 11)
There is an error on line 7 and one on line 15.

01 #include <stdio.h>

02 int main(void)

03 {

04 int n,i;

05 scanf("%d",&n);

06

07 i=1;

08 while (n>1)

09 if (n%i==0)

10 {

11 printf("%d\t",i);

12 n/=i;

7.8 Exercises 331

13 }

14 else

15 n++;

16 return 0;

17 }

332 7 Execution of programs

Appendix A Precedence and associativity
of operators

In the C language, we call the number of operands of an operator its “arity.” A unary
operator has only one operand. For example, +i, ‒j and x+\+ are unary operations.
A binary operator has two operands. x+y and p%q are both binary operations.

When we use the same operator multiple times in a statement, some operators
are evaluated from left to right, whereas some are evaluated from right to left. This
attribute is called the associativity of operators in C (see Table A.1).

Table A.1: Operators in C.

Precedence Operator Meaning Type Associativity

 ()
[]
‒>
,

Parentheses
Index operator
Structure pointer member operator
Structure member operator

Unary Left-to-right

 !
～

++ ––
(type)
+ ‒
*
&
sizeof

Negation operator
Bitwise not operator
Increment and decrement operators
Forced-type conversion
Positive and negative operators
Dereference operator
Address-of operator
Size operator

Unary Right-to-left

 * / % Multiplication, division,
and remainder operators

Binary Left-to-right

 + – Addition and subtraction operator Binary Left-to-right

 <<
>>

Left-shift operator
Right-shift operator

Binary Left-to-right

 < <= > >= Less than, less than or equal to,
greater than, greater than or equal to

Relational Left-to-right

 == != Equal to, not equal to Relational Left-to-right

 & Bitwise and operator Bitwise Left-to-right

 ^ Bitwise xor operator Bitwise Left-to-right

 | Bitwise or operator Bitwise Left-to-right

https://doi.org/10.1515/9783110692327-008

https://doi.org/10.1515/9783110692327-008

Table A.1 (continued)

Precedence Operator Meaning Type Associativity

 && Conjunction operator Bitwise Left-to-right

 || Disjunction operator Bitwise Left-to-right

 ? : Conditional operator Ternary Right-to-left

 = += –= *= /= %=
<<= >>= &= ^= |=

Assignment operator Binary Right-to-left

 , Comma operator Sequential Left-to-right

334 Appendix A Precedence and associativity of operators

Appendix B ASCII table

ASCII value Character ASCII value Character ASCII value Character ASCII value Character

 NUT  (Space)  @  `

 SOH  ！  A  a

 STX  "  B  b

 ETX  #  C  c

 EOT  $  D  d

 ENQ  %  E  e

 ACK  &  F  f

 BEL  '  G  g

 BS  ( H  h

 HT )  I  i

 LF  *  J  j

 VT  +  K  k

 FF  ，  L  l

 CR  –  M  m

 SO  .  N  n

 SI  /  O  o

 DLE    P  p

 DCI    Q  q

 DC    R  r

 DC    S  s

 DC    T  t

 NAK    U  u

 SYN    V  v

 TB    W  w

 CAN    X  x

 EM    Y  y

 SUB  :  Z  z

https://doi.org/10.1515/9783110692327-009

https://doi.org/10.1515/9783110692327-009

(continued)

ASCII value Character ASCII value Character ASCII value Character ASCII value Character

 ESC  ;  [ {

 FS  <  \  |

 GS  = ]  }

 RS  >  ^  ～

 US  ?  _  DEL

336 Appendix B ASCII table

Appendix C Common library functions of C

Library functions are not part of the C language. They are programs provided by
compilers based on users’ needs. Each C compiler has a collection of library func-
tions. Each collection has a different number of functions. Functions in each com-
piler have different names and functionality. The American National Standards
Institute (ANSI) C standard proposes a set of standard library functions for com-
pilers to provide. This set includes library functions in most C compilers. However,
these are still some functions in the set that have never been implemented in some
compilers. Concerning generality, this appendix lists standard library functions pro-
posed by ANSI C.

There are many types of library functions (e.g., screen and graphical functions,
date/time functions, and system functions). Each of these types contains a series of
functions that have different functionality. We cannot introduce all of them due to
space limitations. Hence, we only list those needed in classes. When writing C pro-
grams, readers may refer to function manuals of the compiler they use.

1 Mathematical functions

To use mathematical functions (see Table C.1), we should use the following prepro-
cessing command in our source file.

#include <math.h> or #include "math.h"

Table C.1: Mathematical functions.

Name Prototype Functionality Return value

acos double acos
(double x);

Compute the value of arccos x, where −≤x≤. Computation result

asin double asin
(double x);

Compute the value of arcsin x, where −≤x≤. Computation result

atan double atan
(double x);

Compute the value of arctan x. Computation result

atan double
atan(double x,
double y);

Compute the value of arctan x/y. Computation result

cos double cos
(double x);

Compute the value of cos x, where x is measured
in radians.

Computation result

https://doi.org/10.1515/9783110692327-010

https://doi.org/10.1515/9783110692327-010

Table C.1 (continued)

Name Prototype Functionality Return value

cosh double cosh
(double x);

Compute the value of cosh x (hyperbolic cosine). Computation result

exp double exp
(double x);

Compute the value of ex. Computation result

fabs double fabs
(double x);

Compute the absolute value of x. Computation result

floor double floor
(double x);

Compute the greatest integer less than or
equal to x.

Double
representation of
the integer

fmod double fmod
(double x,
double y);

Compute the floating point remainder of x/y. Double
representation of
the remainder

frexp Double frexp
(double val,
int *eptr);

Break double number val into its binary significand
and an exponent of , namely val=x*n. n is stored
in a variable pointed to by eptr.

Significand x,
where
.≤x<

log double log
(double x);

Compute the value of lnx. Computation result

log double
log(double x);

Compute the value of logx. Computation result

modf double modf
(double val,
int *iptr);

Break double number val into its integer part and
fraction part. The integer part is stored in a
variable pointed to by iptr.

Fraction part of val

pow double pow
(double x,
double y);

Compute the value of xy. Computation result

sin double sin
(double x);

Compute the value of sin x, where x is measured
in radians.

Computation result

sinh double sinh
(double x);

Compute the value of sinh x (hyperbolic sine). Computation result

sqrt double sqrt
(double x);

Compute the square root of x, where x≥. Computation result

tan double tan
(double x);

Compute the value of tan x, where x is measured
in radians.

Computation result

tanh double tanh
(double x);

Compute the value of tanh x (hyperbolic tangent). Computation result

338 Appendix C Common library functions of C

2 Character functions

To use character functions (see Table C.2), we should use the following preprocess-
ing command in our source file.

#include <ctype.h> or #include "ctype.h"

Table C.2: Character functions.

Name Prototype Functionality Return value

isalnum int isalnum
(int ch);

Check if ch is a letter or a number.  if ch is either a number
or a letter,  otherwise

isalpha int isalpha
(int ch);

Check if ch is a letter.  if ch is a letter,
 otherwise

iscntrl int iscntrl
(int ch);

Check if ch is a control character (ASCII value
between  and xF, both inclusive).

 if ch is a control
character,  otherwise

isdigit int isdigit
(int ch);

Check if ch is a digit.  if ch is a digit,
 otherwise

isgraph int isgraph
(int ch);

Check if ch has a graphical representation (ASCII
value between x and xe, both inclusive).

 if ch has a graphical
representation,
 otherwise

islower int islower
(int ch);

Check if ch is a lowercase letter.  if ch is a lowercase
letter,  otherwise

isprint int isprint
(int ch);

Check if ch is a printable character (ASCII value
between x and xe, both inclusive).

 if ch is a printable
character,  otherwise

ispunct int ispunct
(int ch);

Check if ch is a punctuation character (printable
characters except letters, digits, and space).

 if ch is a punctuation
character,  otherwise

sspace int isspace
(int ch);

Check if ch is a white-space (space, tab,
or newline).

 if ch is a white-space,
 otherwise

isupper int isupper
(int ch);

Check if ch is an uppercase letter.  if ch is an uppercase
letter,  otherwise

isxdigit int isxdigit
(int ch);

Check if ch is a hexadecimal digit (–, A-F, a-f).  if ch is a hexadecimal
digit,  otherwise

tolower int tolower
(int ch);

Convert ch into lowercase. Lowercase letter of ch

toupper int toupper
(int ch);

Convert ch into uppercase. Uppercase letter of ch

2 Character functions 339

3 String functions

To use string functions (see Table C.3), we should use the following preprocessing
command in our source file.

#include <string.h> or #include "string.h"

Table C.3: String functions.

Name Prototype Functionality Return value

memchr void memchr(void
*buf,
char ch, unsigned
count);

Locate the first occurrence of ch
in the first count characters in
memory block buf.

A pointer to the first occurrence
of ch in the block of memory
pointed by buf.
If ch is not found, the function
returns NULL.

memcmp int memcmp(void
*buf, void*buf,
unsigned count)

Compare the first count bytes of
the block of memory pointed by
buf to the first num bytes
pointed by buf.

buf<buf, return a negative
number
buf=buf，return 

buf>buf，return a positive
number

memcpy void *memcpy
(void *to,
void*from,
unsigned count);

Copy the values of count bytes
from the location pointed to by
from directly to the memory
block pointed to by to. The
arrays should not overlap.

to

memove void *memove
(void *to,
void*from,
unsigned count);

Copy the values of count bytes
from the location pointed to by
from directly to the memory
block pointed to by to. The
arrays may overlap.

to

memset void *memset
(void *buf, char
ch, unsigned
count);

Set the first count bytes of the
block of memory pointed by buf
to the specified character ch.

buf

strcat char *strcat(char
*str, char *str);

Append a copy of string str to
str. The first character of str
overwrites the terminating null
character ‘\ʹ in str.

str

strchr char *strchr(char
*str, int ch);

Find the first occurrence of ch in
the string str.

A pointer to the first occurrence
of ch in str.
If ch is not found, the function
returns NULL.

340 Appendix C Common library functions of C

Table C.3 (continued)

Name Prototype Functionality Return value

strcmp int *strcmp(char
*str, char *str);

Compare the string str to the
string str.

str<str, return a negative
number
str=str, return 

str>str, return a positive
number

strcpy char *strcpy(char
*str, char *str);

Copies the string pointed by str
into the array pointed by str,
including the terminating null
character.

str

strlen unsigned int
strlen(char *str);

Return the length of the string
str (without including ‘\ʹ).

The length of string

strncat char*strncat
(char*str,
char*str,
unsigned count);

Append the first count characters
of str to str, plus a terminating
null-character.

str

strncmp int strncmp(char
*str, *str,
unsigned count);

Compare up to count characters
of the C string str to those of
the C string str.

str<str, return a negative
number
str=str, return 

str>str, return a positive
number

strncpy char*strncpy
(char*str, *str,
unsigned count);

Copy the first count characters of
str to str.

str

strnset void *setnset
(char *buf, char
ch,
unsigned count);

Set the first count characters of
string buf to character ch.

buf

strset void *setset(void
*buf, char ch);

Set all characters of string buf to
character ch.

buf

strstr char *strstr(char
*str, *str);

Find first occurrence of str
in str.

A pointer to the first occurrence
in str of the entire sequence of
characters specified in str, or a
null pointer if the sequence is
not present in str.

3 String functions 341

4 Input/output functions

To use input/output functions (see Table C.4), we should use the following prepro-
cessing command in our source file.

#include <stdio.h> or #include "stdio.h"

Table C.4: Input/output functions.

Name Prototype Functionality Return value

clearerr void clearer
(FILE*fp);

Reset both the error and the eof
indicators of the file stream fp.

None

eof int eof(int fp); Check if the file pointed by fp has
reached end.

 if the file ends,  otherwise

fclose int fclose(FILE *fp); Close the file associated with fp,
and release the buffer.

 if successfully closed,
nonzero value otherwise

feof int feof(FILE *fp); Check whether the eof indicator
associated with fp is set.

A nonzero value if set,
 otherwise

ferror int ferror(FILE *fp); Check if the error indicator
associated with fp is set.

A nonzero value if set,
 otherwise

fflush int fflush(FILE *fp); Save all control information and
data of the file pointed by fp.

 if successfully saved, nonzero
value otherwise

fgets char *fgets(char
*buf, int n, FILE
*fp);

Read characters from fp and stores
them as a C string into buf until (n-
) characters have been read.

buf on success. EOF if end-of-
file reached or error occurs.

fgetc int fgetc(FILE *fp); Return the character currently
pointed by the internal file
position indicator of the specified
fp.

The character read is returned.
If error occurs, EOF is returned.

fopen FILE*fopen
(char*filename,
char *mode);

Open the file whose name is
filename in the specified mode.

A pointer to the file on success,
 otherwise

fprintf int fprintf(FILE *fp,
char *format,
args, . . .);

Write the C string pointed by
format to fp.

Total number of characters
written

fputc int fputc(char ch,
FILE *fp);

Write a character ch to fp. The character written is
returned on success, EOF is
returned if an error occurs

342 Appendix C Common library functions of C

Table C.4 (continued)

Name Prototype Functionality Return value

fputs int fputs(char str,
FILE *fp);

Writes the C string pointed by str
to fp.

 on success, EOF on error

fread int fread(char*pt,
unsigned size,
unsigned n, FILE
*fp);

Read an array of n elements, each
one with a size of size bytes, from
fp and store them in the block of
memory specified by pt.

The total number of elements
successful read is returned. If
an error occurs or the end-of-
file is reached,  is returned.

fscanf int fscanf(FILE *fp,
char *format,
args, . . .);

Read data from fp and store them
according to the parameter format
into the locations pointed by args.

Number of items successfully
filled

fseek int fseek(FILE *fp,
long offset, int
base);

Set the position indicator
associated with fp to a new
position (base + offset).

The current position is returned
on success, − is returned
otherwise

ftell long ftell(FILE *fp); Return the current value of the
position indicator of fp.

The current position is returned
on success,  otherwise

fwrite int fwrite(char *ptr,
unsigned size,
unsigned n, FILE
*fp);

Write an array of n elements, each
one with a size of size bytes, from
the block of memory pointed by
ptr to the current position in fp.

The total number of elements
successfully written is returned

getc int getc(FILE *fp); Return the character currently
pointed by the internal file
position indicator of fp.

The character read is returned on
success, − is returned if end-of-
file is reached or an error occurs.

getchar int getchar(); Return the next character from the
standard input.

The character read is returned on
success, − is returned if end-of-
file is reached or an error occurs.

gets char *gets(char
*str);

Reads characters from the
standard input and stores them as
a C string into str.

str on success, NULL otherwise
[Note: C standard introduces
a safer function, gets_s(), to
substitute gets()].

printf int printf(char
*format,
args, . . .);

Write the C string pointed by
format to the standard output. The
additional arguments following
format are formatted and inserted
in the resulting string replacing
their respective specifiers.

The total number of characters
written is returned on success,
a negative number is returned
on error.

putc int prtc(int ch, FILE
*fp);

Write a character ch to fp and
advance the position indicator.

The character written on
success, EOF on error

putchar int putchar
(char ch);

Write a character ch to the
standard output.

The character written on
success, EOF on error

4 Input/output functions 343

5 Dynamic storage allocation functions

To use dynamic storage allocation functions (see Table C.5), we should use the fol-
lowing preprocessing command in our source file.

#include <stdlib.h> or #include "stdlib.h"

Table C.4 (continued)

Name Prototype Functionality Return value

puts int puts(char *str); Write the C string pointed by str to
the standard output and appends a
newline character ('\n').

A non-negative value on
success, EOF on error

read int read(int fd,
char *buf,
unsigned count);

Read up to count bytes from file
descriptor fd into the buffer
starting at buf.

The number of bytes read on
success, − on error

remove int remove(char
*fname);

Delete the file whose name is
specified in fname.

 on success, − on error

rename int remove(char
*oname, char
*nname);

Change the name of the file or
directory specified by oname to
nname.

 on success, − on error

rewind void rewind
(FILE *fp);

Set the position indicator
associated with fp to the
beginning of the file, clear the
end-of-file and error internal
indicators.

None

scanf int scanf
(char *format,
args, . . .);

Read data from stdin and stores
them according to the parameter
format into the locations pointed
by the additional arguments.

The number of items of the
argument list successfully
filled. EOF if end-of-file is
reached.
 on error.

sscanf nt sscanf
(const char *str,
const char *
format,
.);

Read data from str and stores
them according to parameter
format into the locations given by
the additional arguments, as if
scanf was used, but reading from s
instead of the standard input.

The number of items in the
argument list successfully
filled. − on error, and the error
reason is stored in errno.

write int write(int fd,
char *buf,
unsigned count);

Write up to count bytes from the
buffer starting at buf to the file
referred to by the file descriptor fd.

The number of bytes written on
success, − on error.

344 Appendix C Common library functions of C

6 Other functions

Table C.6 lists functions that are not in the above categories. We should use the fol-
lowing preprocessing command in our source file to use these functions.

#include <stdlib.h> or #include "stdlib.h"

Table C.5: Dynamic storage allocation functions.

Name Prototype Functionality Return value

callloc void*calloc
(unsigned n,
unsigned
size);

Allocate a block of memory for an
array of n elements, each of them
size bytes long, and initialize all its
bits to zero.

A pointer to the beginning of the
memory block allocated by the
function on success,  otherwise.

free void free(void
*p);

A block of memory p previously
allocated by a call to malloc, calloc
or realloc is deallocated.

None

malloc void*malloc
(unsigned
size);

Allocate a block of size bytes of
memory.

A pointer to the beginning of the
memory block allocated by the
function on success,  if not
enough memory.

realloc void*realloc
(void *p,
unsigned
size);

Change the size of the memory
block pointed to by p to size. size
can be either larger or smaller than
the original size.

A pointer to the reallocated memory
block on success, NULL on failure.

Table C.6: Other functions.

Name Prototype Functionality Return value

abs int abs(int num); Compute the absolute value of num. Computation result

atof double atof(char
*str);

Parse the C string str, interpreting its content
as a floating point number.

Computation result
in double precision

atoi int atoi(char *str); Parse the C-string str, interpreting its content
as an integral number of type int.

Conversion result

atol long atol(char
*str);

Parse the C-string str, interpreting its content
as an integral number of type long.

Conversion result

exit void exit(int
status);

Terminate the program, return status to the
caller.

None

6 Other functions 345

Table C.6 (continued)

Name Prototype Functionality Return value

itoa char *itoa(int n,
char *str, int
radix);

Convert an integer n to a null-terminated string
using base radix and store the result in the
array given by str.

A pointer to str

labs long labs(long
num);

Compute the absolute value of long integer
num.

Computation result

ltoa char *ltoa(long n,
char *str, int
radix);

Convert a long integer n to a null-terminated
string using base radix and store the result in
the array given by str.

A pointer to str

rand int rand(); Return a pseudo-random integral number in the
range between  and RAND_MAX. RAND_MAX is
defined in the header file.

A pseudo-random
integer

random int random(int
num);

Generate a random integer between  and num. A random integer

346 Appendix C Common library functions of C

Appendix D Common escape characters

Escape characters are character sequences starting with “\”. They are special char-
acter constants in C. Table D.1 lists common escape characters.

Table D.1: Common escape characters.

Character Meaning ASCII
value

\ Null character 

\n Newline, which moves the cursor to the beginning of the next line 

\t Horizontal tab, which moves the cursor to the next output field (each field
has eight columns)



\v Vertical tab

\b Backspace, which moves the cursor back by one column 

\r Carriage return, which moves the cursor to the beginning of the current line 

\f Form feed, which moves the cursor to the beginning of the next page 

\a Alarm

\\ Backslash 

\' Single quote 

\" Double quote 

\? Question mark 

\ddd Octal number with three digits

\xhh Hexadecimal number with two digits

https://doi.org/10.1515/9783110692327-011

https://doi.org/10.1515/9783110692327-011

Appendix E Bitwise operations

1 Bitwise AND (&)

Bitwise AND (&) is mainly used for two purposes:
(1) Zeroing out

For example, we have a number x = 0010 1011. Then we can use y = 1101 0100
or y = 0000 0000 to zero out x so that x&y = 0.

(2) Extracting the specified bit
For example, suppose we have a number a = 0010 1100 1010 1100, which takes
up two bytes. To obtain its lower byte, we can use a number y = 0000 0000 1111
1111 and do

a&y=00000000 1010 1100

Suppose we have a number a = 0101 0100, and we want to preserve the 3rd, 4th,
5th, 7th, and 8th bits of it (counting from the left). We can use a number b = 0011
1011 and do

c= a&b=0001 0000

2 Bitwise OR (|)

Suppose a = 0011 0000, b = 0000 1111, then a|b = 0011 1111.
Usage: We use bitwise OR to change specified bits of a binary number to

1, without knowing what those bits were.
Mask: The specified bits of the mask are 1’s, whereas the remaining bits are 0’s.
For example, suppose we have int a = 055555 and we want to change the highest

bit to 1. Then we can use a mask b = 0x8000.
a: 0101 1011 0110 1101
b: 1000 0000 0000 0000
a|b: 1101 1011 0110 1101

3 Bitwise XOR (^)

The bitwise XOR operation takes two binary operands of equal length. The result in
each position is 1 if and only if the two bits in this position are different. Bitwise
XOR is also known as bitwise addition (corresponding bits are added, and the carry
is discarded). It is used for the following purposes:

https://doi.org/10.1515/9783110692327-012

https://doi.org/10.1515/9783110692327-012

(1) Flipping specified bits (1 changed to 0, 0 changed to 1)
Mask: The specified bits of the mask are 1’s, while the remaining bits are 0’s.

For example, suppose we have a = 0x0F 0000 0000 0000 1111. Then we
can use number b = 0x18 0000 0000 0001 1000 and

ab =0000000000010111

(2) XOR with 0 to preserve the value
(3) Swapping values of two variables without any intermediate variable

The method is as follow:

a= a^b; b= b^a; a= a^b;

Proof: Based on the second equation, we have

b=b^a= b^ða^bÞ=b^a^b= a^b^b= a^0= a

Based on the third equation, we have

a= a^b= ða^bÞðb^ða^bÞÞ= a^b^bða^bÞ= a^0^a^b= a^a^b=0^b= b

4 Bitwise NOT (~)

~ is a unary operator for bitwise NOT.
For example, ~025, namely ~0000 0000 0001 0101, is 1111 1111 1110 1010.

Note:
(1) ~025 is not −025.
(2) Performing bitwise NOT on a number twice yields the original number.
(3) We often use bitwise NOT together with bitwise AND, bitwise OR or shift opera-

tions to complete specific tasks.

For example, the expression x&~077 extracts the bits in front of the lower 6 bits of x
and zeroes out the lower 6 bits.

5 Shift operations (>>, <<)

Shift operations are in the form m<<n and m>>n, in which m is the number to be
shifted and n is the number of bits of the shift. m and n are both integer expres-
sions. The type of the result depends on the type of m.

In a << operation, the higher bits of operand m, which are shifted out of the left
end, are discarded. The remaining bits are padded with 0 on the right.

In a >> operations, the lower bits of operand m, which are shifted out of the
right end, are discarded. If m is an unsigned number, the remaining bits are padded

350 Appendix E Bitwise operations

with 0 on the left. If m is signed, a sign is added in an arithmetic shift, and 0 are
padded in a logical shift.

Associativity: << and >> are left-associated. A left shift is equivalent to multiplying
a power of 2 and a right shift is equivalent to dividing the operand with a power of 2.

Table E.1 shows examples of multiplication and division operations using shift
operations.

Bitwise operators can be used with assignment operators to obtain extended assign-
ment operators such as &= , |=, >>=, <<=, and ^=.

a&= b is equivalent to a = a&b
a<<= 2 is equivalent to a = a<<2
For example, the expression x>>p+1-n&~(~0<<n) does the following: it extracts

n bits of x starting from the pth position (counting from the right end, which is the
0th position) and stores these bits in the lower bits. Suppose p =4 and n = 3. Then
the result is bits of x between the second bit and the fourth bit.

Table E.1: Multiplication and division with
shift operations.

Character x x after shift Value of x

x =   

x≪  

x≪  

x≪  

x≫  

x≫  

5 Shift operations (>>, <<) 351

Index

Algorithm 5, 6, 12, 22, 24–27, 30, 32–35,
42–44, 47, 49, 50, 52, 55, 61, 62, 64,
72–80, 171, 173, 175, 180–182, 196–198,
203–208, 211–213, 225–227, 234, 280,
281, 283, 287, 288

Bug 247, 286, 287, 290, 308, 310, 328

Compilation 17, 23, 34, 35, 37, 46, 161, 162,
246, 248–251, 253–255, 257–260,
267–269, 275–277, 281, 282, 288, 298,
309, 310, 312, 313, 327, 329

Console window 151, 165, 280, 305, 308, 309,
317, 328

Constant 83, 84, 133, 135, 136, 185, 187, 238,
247, 257, 261

Data operation 83
–arithmetic operation 20, 25, 109, 111, 113, 114,

130, 131, 135, 139, 140, 193
–assignment VII 42, 89, 92, 93, 110–112, 116,

120, 127, 130, 131, 133–135, 237, 248, 306,
334, 351

–expression 58, 83, 110
–logical operation 19, 20, 25, 26, 28, 29, 109,

121, 122, 125, 135
–operator 25, 58, 83, 110–112, 333
–precedence 58, 109–112, 114, 123,

133–135, 252
–relational operation 109, 111, 119, 120, 122,

124, 135, 139
Data type 83, 84, 89, 93, 99–101, 133, 135,

136, 187
–character 103
–character type 93, 118, 193
–floating-point 83, 99, 104–108, 120, 121, 147,

149, 162
–integer type 89, 101, 157
Debug V, VIII, XI 27, 35, 52, 75, 161, 163, 228,

247, 259, 267–270, 286, 287, 289, 290,
298–300, 302, 304–306, 308, 309, 320,
328, 329

Debugging 297

Execute 10, 13, 14, 17, 35, 43, 49, 59, 73, 118,
119, 125, 129, 229, 268, 269, 278, 279,
282, 298, 300, 305, 309, 325, 328

File 38, 45, 46, 160, 161, 195, 253, 268, 271,
273–277, 298, 308–309, 316, 320, 328,
337, 339, 340, 342–345

Flow XI 1–12, 14, 15, 20, 22, 24, 25, 34, 35,
43, 47, 48, 53, 57, 68–70, 72, 76, 77, 79,
80, 153, 171, 173, 177, 178, 180–182,
184, 186, 194, 198, 210, 211, 216, 217,
220, 224, 229, 235, 237, 245, 253, 267,
290, 291

Flowchart 4–8, 28, 29, 43, 45, 66, 67, 80, 174,
175, 177, 180, 181, 184–186, 198–200, 210,
211, 220, 231, 287

Function 22, 27, 35, 36, 39–43, 60, 127, 131,
142, 145, 146, 247, 250–254, 281, 289,
293, 295–297, 301–303, 320, 328

–child function 22, 36, 39–41, 43, 292–295,
300, 322

–input function 150–158, 160
–library function 37–39, 43, 142–144, 166,

222, 268, 282, 337
–main function 22, 36, 40, 43, 254, 292–296,

306, 322
–output function 92, 114, 141, 143–146, 150,

173, 206

Input/Output 5, 21, 22, 24, 43, 86, 114,
141–144, 150, 166, 168–170, 254, 342

Linking 23, 34, 35, 46, 162, 246, 261, 267, 268,
271, 272, 275–278, 282, 288, 313, 316

Modularization 22, 24, 35, 45, 52, 78, 247,
248, 252

Preprocessing 23, 37, 39, 40, 43, 83, 88,
245–248, 251, 253, 255, 257, 259–262,
264, 337, 339, 340, 342, 344, 345

–conditional compilation 23, 245–247,
254–260, 262–265

https://doi.org/10.1515/9783110692327-013

https://doi.org/10.1515/9783110692327-013

–file inclusion 23, 37–39, 43, 143, 166,
245–248, 253, 254, 259, 260, 262

–header file 38, 43, 143, 144, 150, 160, 248,
253, 254, 346

–macro 83, 84, 136, 246–250, 252, 257,
259–262, 265

–macro replacement 247–252, 260, 262
Program V, VII, VIII, XI 1, 5–10, 14–18, 20,

22–24, 27, 30–32, 34, 36–38, 40–42, 48,
50, 52, 59, 60, 63, 69, 73, 75, 77, 83, 84,
88, 90, 112, 113, 118, 120, 121, 130, 131,
141, 142, 144, 151, 160–162, 165, 171, 180,
185–187, 193, 195, 203, 204, 206, 207,
218, 219, 245–247, 252, 267, 268, 282,
283, 287–289, 320, 328, 329

–code IX, VII, VIII, XI, XV 5, 15–17, 22–24, 26,
29, 34–38, 41, 43, 58, 73, 76, 77, 86,
118, 195, 246, 247, 249, 253, 259,
267–269, 274, 275, 281, 282, 288, 289,
298, 300, 301

–comment 37, 41, 43, 57
–object program 17, 246, 268, 282, 328
–source program 46, 137
Program statement 22, 24, 29, 35, 37, 43, 54,

78, 171, 177, 178, 206, 237, 238, 241, 242
–break statement 186–188, 224–226, 228
–compound statement 175, 176, 179
–conditional statement 28, 180, 194, 234, 235
–continue statement 224, 230, 231
–goto statement 230, 233–237
–loop statement 62, 193, 198, 224, 225, 230,

235, 236, 238
–switch statement 185–194, 224, 225,

237, 240
Program structure 29, 45, 194, 236

–branch structure 7–9, 11, 12, 174, 175,
182–185, 219, 238, 258

–loop structure 10–13, 22, 52, 195, 214
–sequential structure 6, 7, 11, 12, 22, 171, 194
Project 245, 269–273, 298, 308–310, 328
Pseudo code 4–6, 12, 29, 43, 52, 53, 55, 56,

61–63, 66, 67, 78, 80, 174, 180–182,
195–197, 200, 203, 204, 211, 212, 214, 219,
220, 225–227, 234, 235

Reserved word 88

Statement XI 24

Test case 30, 157, 158, 164, 165, 193,
281–285, 328

Testing IX, VII, VIII, XI 23, 24, 27, 30, 35, 42,
43, 72, 73, 75, 79, 99, 193, 204, 225, 247,
267, 280–285, 287, 288, 328, 329

Type conversion 126–128, 135, 138
–automatic-type conversion 130, 131, 135, 136
–forced-type conversion 128, 129,

136–138, 333

Variable 28, 39, 41, 42, 60, 62, 64–66, 83–89,
91–93, 104, 115, 117, 119–121, 123, 124,
126–131, 133–136, 138–140, 144–147,
149–152, 155–157, 161–165, 167, 168,
170–174, 177, 194, 196, 197, 200–204,
206–208, 212, 217–219, 226, 234, 235,
239, 248, 252, 264, 279, 292, 294, 297,
298, 300–303, 305, 306, 318, 328

–initialization 89, 91, 201, 203, 324
–variable definition 89, 91, 135
–variable name 87–91, 136, 154, 281, 305, 308

354 Index

	Preface
	Introduction
	Structure of content
	Division of work
	Notes
	Acknowledgments
	Contents
	1 Introduction to programs
	2 Algorithms
	3 Basic data types
	4 Input/output
	5 Program statements
	6 Preprocessing: work before compilation
	7 Execution of programs
	Appendix A: Precedence and associativity of operators
	Appendix B: ASCII table
	Appendix C: Common library functions of C
	Appendix D: Common escape characters
	Appendix E: Bitwise operations
	Index

