Xingni Zhou, Qiguang Miao and Lei Feng
Programming in C

Also of interest

C++ -
PROGRAMMING

ELEMENTARY
SYNCHRONOUS
PROGRAMMING

Programming in C, vol. 2: Composite Data Structures

and Modularization

Xingni Zhou, Qiguang Miao, Lei Feng 2020

ISBN 978-3-11-069229-7, e-ISBN (PDF) 978-3-11-069230-3,
e-ISBN (EPUB) 978-3-11-069250-1

C++ Programming

Li Zheng, Yuan Dong, Fang Yang, 2019

ISBN 978-3-11-046943-1, e-ISBN (PDF) 978-3-11-047197-7,
e-ISBN (EPUB) 978-3-11-047066-6

Elementary Synchronous Programming

Ali S Janfada, 2019

ISBN 978-3-11-061549-4, e-ISBN (PDF) 978-3-11-061648-4,
e-ISBN (EPUB) 978-3-11-061673-6

MATLAB® Programming

Dingyii Xue, 2020

ISBN 978-3-11-066356-3, e-ISBN (PDF) 978-3-11-066695-3,
e-ISBN (EPUB) 978-3-11-066370-9

Programming in C++

Laxmisha Rai, 2019

ISBN 978-3-11-059539-0, e-ISBN (PDF) 978-3-11-059384-6,
e-ISBN (EPUB) 978-3-11-059295-5

Xingni Zhou, Qiguang Miao and Lei Feng

Programming in C

Volume 1: Basic Data Structures and Program
Statements

DE GRUYTER

Author

Prof. Xingni Zhou Qiguang Miao

School of Telecommunication Engineering School of Computer Science
Xidian University Xidian University

Xi’an, Shaanxi Province Xi’an, Shaanxi Province
People’s Republic of China People’s Republic of China
xnzhou@xidian.edu.cn ggmiao@xidian.edu.cn

Lei Feng

School of Telecommunication Engineering
Xidian University

Xi’an, Shaanxi Province

People’s Republic of China
fenglei@mail.xidian.edu.cn

ISBN 978-3-11-069117-7
e-ISBN (PDF) 978-3-11-069232-7
e-ISBN (EPUB) 978-3-11-069249-5

Library of Congress Control Number: 2020940233

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

© 2020 Walter de Gruyter GmbH, Berlin/Boston
Cover image: roberthyrons/iStock/Getty Images Plus
Typesetting: Integra Software Services Pvt. Ltd.
Printing and Binding: CPl books GmbH, Leck

www.degruyter.com

http://dnb.dnb.de
http://www.degruyter.com

Preface
Ideas of the book

This book is written based on years of teaching experience. To clear up students’
confusion in programming learning, it is more focussed on introducing problems,
analyzing problems, and discussing solutions to the problems. In the process of
teaching programming courses (e.g., C programming, data structure) and discus-
sing with students after class, we discovered that the common problems in pro-
gramming learning could be generalized as four challenges: (1) concepts are too
abstract to understand, (2) there are too many rules to remember, (3) there are few
general principles to follow in programming, and (4) it is hard to debug programs.

Leonhard Euler, a well-known mathematician, once said that teaching mathe-
matics would be meaningless if we do not show students the thinking process of
solving problems. This holds for other subjects or courses as well. It is crucial in
our learning to understand the theory and know the way of thinking when solving
problems. While analyzing the difficulties that students face during learning to pro-
gram, we find that the main issue is it is hard to build up the concept of program-
ming in mind. Besides, it is hard to learn debugging techniques. We try to tackle
these issues, in the order of difficulty, using the following four strategies: (1) focus-
ing on thinking, (2) revealing the nature of problems, (3) putting more emphasis on
debugging, and (4) less on syntax. We also devote more words to the introduction
of problems and why some mechanisms are needed.

1 Focusing on thinking

Donald Knuth, recipient of ACM Turing Award and one of the pioneers of modern
computer science, wrote in his masterpiece, The Art of Computer Programming, that
programming is the process of translating solutions to problems into terms that
computers can “understand,” which is hard to grasp when we first try to use com-
puters [1]. Among all high-level programming languages, C is generally acknowl-
edged to be one of the hardest as it is tedious, abstruse, and has a large set of rules.

A computer is an automated tool. When we try to use computers to solve prob-
lems, limitations on what we can do exist due to their capabilities. In such systems,
where rules are different from the ones we are used to, the experience we had may
not be of any help. Many concepts in programming are unfamiliar to students who
have only had exposure to subjects like mathematics, physics, or chemistry. We
find that students struggle to understand when we simply follow a traditional
textbook.

In Presentation Zen, Garr Reynolds wrote that “Stories can be used for good —
for teaching, sharing, illuminating, and, of course, honest persuasion. . . Story is

https://doi.org/10.1515/9783110692327-202

https://doi.org/10.1515/9783110692327-202

VI —— Preface

an important way to engage the audience and appeal to people’s need for logic and
structure in addition to emotion” [2]. Many examples in this book start from inter-
esting stories. We extract programming-related topics from the stories, raise a prob-
lem, and guide readers to think. Then we compare how people and computers solve
the problem, analyze the similarities and differences, and eventually introduce the
programming concept behind the problem. To provide our readers with immersive
experiences, we engage Prof. Brown and his family into our discussions. Sometimes
Prof. Brown raises a question from a beginner’s perspective and tries to find a solu-
tion; at other times, he takes part in the discussions as an expert. Mrs. Brown, on
the other hand, knows nothing about programming and sometimes says funny
things regarding programming. Their son, Daniel, is still in elementary school and
often asks naive questions as well. Students, colleagues, and relatives of Prof.
Brown also make cameo appearances in our storytelling. This is also a practice of
lessons from Prof. Takeo Kanade, who talked about his success in research —
“Think like an amateur, do as an expert” [3].

As we work with the same concept from slightly different angles and investigate questions sur-
rounding it, we build even more and deeper connections. Collectively, this web of connections
and associations comprises what we think of informally as understanding . . . “For a memory to
persist, the incoming information must be thoroughly and deeply processed. This is accom-
plished by attending to the information and associating it meaningfully and systematically with
knowledge already well established in memory” . . . Rather than memorizing individual bits of in-
formation, we are dealing with patterns and strands of logic that allow us to come closer to see-
ing something whole. (The One World Schoolhouse: Education Reimagined, Salman Khan) [4]

By analyzing similarities and differences between how humans and computers
solve problems, this book explores methods of doing logical thinking based on
characteristics of computers. With these characteristics in mind, we introduce the
list method for reading programs, methods for designing algorithms, and classic de-
scription methods for algorithms. Using these methods, students can learn reading
programs before writing programs, which enable them to grasp general approaches
to programming at the macro level and to establish a mindset of programming.

2 Revealing the nature

Concentrating on the nature of problems is particularly important for programmers. The
amount of knowledge a programmer needs to know is enormous and is still increasing.
Programmers often find themselves falling behind the trend and focusing on nature is the only
solution. Many new technologies are based on concepts that have been established for dozens
of years. Never will knowledge of low-level architecture become obsolete, nor will that of algo-
rithms, data structures and programming theories. (Dark Time, Weipeng Liu) [5]

There is no formula for programming. Although one may find some patterns from
studying numerous examples, it can be tricky to figure out why certain rules exist

Preface — VII

in programming languages. It is crucial to understand both how and why because
one’s understanding of syntax rules can be strengthened through exploring the the-
ories behind them. By this, one becomes more familiar with rules and can eventu-
ally apply them in practice. Focusing on the nature helps students learn to solve
problems with computers more efficiently. This book explains many concepts by in-
troducing problems in practice. We compare correlated concepts from different per-
spectives and extract key elements from important or correlated concepts so that
students can obtain a better understanding.

3 Emphasizing debugging

“No matter how well a program is designed or how self-explanatory its documents
are, it is worthless if it outputs wrong results. (Debugging C++: Troubleshooting for
Programmers, Chris H. Pappas & William H. Murray) [6]” Errors often exist in
human-made devices or equipment, with software being an exception. Software is
delivered in the form of binary code, which does not tolerate errors. However, the
way we think, that is, fuzzy and error-prone, makes it difficult to write completely
correct code in the first attempt.

Yinkui Zhang pointed out in his book Debugging Software that “debugging tech-
niques are the most powerful tools to solve complicated software problems. If solv-
ing these problems were a battle, debugging techniques would be an unstoppable
weapon that strikes critically. It is not hard to learn debugger commands, but it is
tricky to use debuggers to find bugs” [7]. It takes effort to gain experience and mas-
ter debugging skills, especially for beginners. This is also why many students be-
come afraid of programming.

“You can draw an analogy between program debugging and solving a homi-
cide. In virtually all murder mystery novels, the mystery is solved by careful analy-
sis of the clues and by piecing together seemingly insignificant details. (The Art of
Software Testing, Glenford J. Myers) [8]” “Debugging is somewhat like hunting or
fishing: the same emotions, passions, and excitement. Lying long in ambush is in
the long run rewarded by a victory invisible to the world. (Eugene Kotsuba) [9]” By
mastering debugging skills, readers can find and fix bugs independently in their
learning and developing, which in turn increases their interest and helps them gain
confidence.

In addition to finding errors in programs, debugging also helps us understand
many concepts in programming such as address, memory, assignment, passing ar-
guments, and scope. Demonstrating the debugging process gives students a more
intuitive explanation than describing the concepts using abstract words. “Not only
do debuggers help us finding errors in programs, they also walk us through other
software, the operating system, and underlying hardware. (Debugging Software,
Yinkui Zhang) [10]” Debuggers share very similar, if not identical, ways of working,

VIII —— Preface

“The first debugger in the MS-DOS world was Debug.com . .. New debuggers ap-
pear like mushrooms after a warm rain. However, most of them are not far in ad-
vance of the prototype, differing from it only in the interface. (Hacker Debugging
Uncovered, Kris Kaspersky) [11]” Mastering debugging techniques helps learn other
computer science subjects, so it should be an essential part of programming
courses.

I had been a developer in industry for many years and spent over 4 years as a
member of the development team of a State Science and Technology Prize-winning
software. Furthermore, I engaged in other software engineering activities as well,
including installing and setting up software for users and customer services. This
allowed me to gain practical experience in testing and debugging. When my stu-
dents ask me for help on their codes, I could quickly find errors by debugging and
asking them if the results are as expected, even if I did not know the logic of their
tasks. I have always insisted on demonstrating the debugging process in class. I
would show the debugging process of example programs at students’ request.
However, I later discovered that students still failed to understand, even if I did this
in class. The reason is that debugging is a complex process, and it is tricky to ex-
plain different data structures, code logic, and debugging skills in a few words.
While students may manage to understand in class, there are few written resources
they can refer to when reviewing later. Hence, a large amount of debugging pro-
cesses of important examples and skills we used are “persisted” into this book, so
that students can refer to when learning to debug. Debugging can be extremely dif-
ferent for programs and the number of skills used can be large, so this book will
only cover the basics, yet there are few books of the same kind that cover as many
skills like these. Not many books exist that specialize in debugging either.

Programming is a process that requires continuous changes. A program often
needs to be tested and debugged multiple times. This book also covers how and
when test cases are designed to make readers realize the importance of testing and
grasp the concept of program robustness from the very beginning.

4 Less on syntax

“Putting less emphasis on syntax” does not mean ignoring it. Instead, we start from
core syntax rules and let beginners remember after understanding them. Therefore,
readers can master syntax step by step instead of feeling confused by being exposed
to all the rules of the C language at once. For advanced, sophisticated, or uncom-
mon syntax, it suffices to know how they are categorized and how to look up their
usage in documents.

Introduction

This book explores the methodology of the entire process of solving problems with
computers. Following the workflow of how computers solve problems, the book
walks through how data are stored, processed, and the results are produced. This
book analyzes concepts by introducing problems and drawing analogies. It de-
scribes the entire workflow in a top-down manner: from the description of algo-
rithms, analysis of data and code implementation to testing, as well as debugging
and validation of results. In this way, it is easier for beginners to understand and
master programming thinking and methods. This book makes new concepts easy to
learn by introducing real-life problems and discussing their solutions, leading to a
less stressful and more exciting learning process. With the help of figures and ta-
bles, the contents of this book are straightforward for readers to understand easily.

https://doi.org/10.1515/9783110692327-203

https://doi.org/10.1515/9783110692327-203

Structure of content

This book studies the methodology of problem-solving with computers. Following
the workflow of computers, we walk through how data are stored, processed, and
how the result is produced. By introducing real-life examples and drawing analo-
gies, we describe the whole process in a top-down manner: from the description of
algorithms, analysis of data and code implementation to testing, as well as debug-
ging and validation of results.

The introduction to data starts from their basic forms. As the complexity of
problems increases, we gradually show how data are organized and stored in com-
puters by discussing different methods of organizing data, such as arrays, memory
addresses, compound data, and files. In addition, we also cover input and output
methods of data.

Algorithms describe procedures and ways of solving problems. Computer algo-
rithms should be designed following the traits of computers. Computer algorithms
are implemented by program statements, which have their own syntaxes or usages.
Programs have basic control flows and their development needs specific procedures
and methods.

As the problems become more sophisticated, it is necessary to use multiple
modules of code instead of one. This book demonstrates how to use functions by
showing mechanisms we need for larger-scale problems.

When coding is completed, we need to test the code and debug if the results
are not as expected. This book introduces the principles of designing test cases,
runtime environment of programs, and techniques of debugging.

There are various exercises in this book, from relatively simple warm-up and
basic exercises to normal and hard homework problems. This helps readers prog-
ress smoothly and stay motivated.

This textbook comprises two volumes. Volume I, Basic Data and Programming
Statements, covers basic programming concepts such as introduction to algorithms,
basic data, and programming statements; whereas Volume II, Composite Data and
Modularity, concentrates on advanced concepts such as arrays, composite types,
pointers, and functions.

https://doi.org/10.1515/9783110692327-204

https://doi.org/10.1515/9783110692327-204

Division of work

Among all chapters in the two volumes, the ones on preprocessing and files are
written by Lei Feng. Xingni Zhou wrote the rest. Final compilation and editing was

done by Qiguang Miao.

https://doi.org/10.1515/9783110692327-205

https://doi.org/10.1515/9783110692327-205

Notes

Created in 1972, C is “old” compared to many high-level programming languages.
Starting from the American National Standards Institute C programming (ANSI C),
there have been a series of standards after continuous revision. This book is based
on ANSI C standard and includes syntaxes that have been modified in C99 or C11.
As they do not interfere with the main contents of this book, we decided to follow
our “Less on Syntax” principle and did not modify them according to the latest
standard.

There are two types of examples in this book, namely “Example” and “Program
reading exercise.” An “Example” usually includes analysis of data structure, de-
scription of algorithms, code implementation, and debugging process. A “Program
reading exercise,” on the other hand, only describes the problem and demonstrates
the sample code, along with the analysis for the readers as a practice of the list
method.

To be typesetting-friendly, codes are formatted compactly. For instance, open-
ing brackets do not have their own lines.

All sample programs have been tested under Visual C++ 6.0 environment.
Despite being outdated, it has a smaller installation size and better compatibility.
Moreover, the theory behind debugging is universal and is not limited to a specific
language or runtime.

https://doi.org/10.1515/9783110692327-206

https://doi.org/10.1515/9783110692327-206

Acknowledgments

After working in the industry as a programmer for years, I came back to college to
become a teacher. During the first few years of teaching, I held many discussions
on methods and ideas in programming teaching with my father, who had been
teaching further mathematics all his life. Sometimes, he found my ideas valuable
and would encourage me to write them out.

After spending more time teaching C language and data structure courses, I grad-
ually realized what was challenging for students to learn programming during my
interaction with them. With this in mind, I tried to change my way of teaching so that
students could gain computational thinking. I was then suggested by my students in
the data structure class to write a book on data structure because they thought my
methods were helpful and could make a unique book. As teaching data structure and
teaching C language share the same ideas, I decided to write on both topics.

I would like to acknowledge my father for inspiring my dream and my students
for making this dream come true. Friendship with my students is heartwarming and
overwhelming. It is their support and help that makes this book possible. It is them
who had encouraged me to complete this book aiming to help beginners enter the
realm of programming. I wish this book can become a torch that lights up the road
of exploring for every learner so that they gain more satisfaction instead of frustra-
tion and enjoy their learning process.

I would like to appreciate Xin Dong from Xi an Academy of Fine Arts for the
beautiful illustrations in this book.

My appreciation also goes to my colleagues Zhiyuan Ren and Dechun Sun for
their help on exercises in this book.

I am grateful to my students Yucheng Qu, Renlong Tu, Meng Sun, Shan Huang,
Bin Yuan, Yu Ding, Liping Guo, Yunchong Song, and Jingzhe Fan for their help in
completing this book. My thanks also go to colleagues and students that shared
their opinions and suggestions. They made me to introspect about drawbacks in my
past teaching and writing. Consequently, I started to think from psychological and
cognitive perspectives and made improvements, such as reinforcing problem intro-
duction and changing my way of storytelling. These improvements can be found in
Data Structures and Algorithms Analysis — New Perspectives.

My thanks also go to Mr. Zhe Jiang for his work on localization of the manuscript.

Rewrite of this book after years (Chinese edition has already been reprinted) is
like a rebirth. I would like to quote my 2019 spring appreciation to conclude this

https://doi.org/10.1515/9783110692327-207

https://doi.org/10.1515/9783110692327-207

XVIII —— Acknowledgments

acknowledgment: “Profusion of flowers, blossoming of lives; along with auspicious
clouds, it is spring we celebrate.”

Xingni Zhou
xnzhou@xidian.edu.cn
In Chang’an, midsummer 2020

Contents

Preface —V

Introduction — IX
Structure of content — XI
Division of work — XIII
Notes — XV

Acknowledgments — XVII

1 Introduction to programs —1

1.1 Concept of flows —1

1.11 About flows —1

1.1.2 Expression of flows — 4

1.1.2.1 Flowchart —5

1.1.2.2 Pseudo code —5

1.1.3 Basic logical structure of flows — 6
1.1.3.1 Sequential structure — 6

1.1.3.2 Branch structure — 6

1.1.3.3 Loop structure — 8

1.1.3.4 Logical structure of flows — 11

1.1.3.5 Expression of basic flow structures — 12
1.2 Concept of programs — 13

1.2.1 Automatic flows — 14

1.2.2 Concept of programs and programming languages — 14

1.2.21 Programming languages — 15
1.2.2.2 Machine languages — 15
1.2.2.3 Assembly languages — 16
1.2.2.4 High-level languages — 16

1.2.3 Execution characteristics of programs — 18

1.2.4 Workflow of computers — 18

1.3 Components of programs — 20

1.3.1 Problem-solving with computer: data — 20

1.3.2 Problem-solving with computer: processing — 22
1.3.3 Problem-solving with computers: results — 23
1.4 Development process of programs — 25

1.4.1 Case study — 25

1.4.1.1 Using a calculator — 25

XX —— Contents

1.4.1.2
1.4.2
1.4.3
1.4.4
1.5
1.5.1
1.5.2
1.5.3
1.6
1.7
1.7.1

2.1
2141
2.1.2
2.1.3
2.2
2.21
2.2.2
2.3
2.31
2.3.2
2.4
2.41
2.4.2
2.4.3
2.5
2.5.1
2.5.1.1
2.5.1.2
2.5.1.3
2.5.1.4
2.5.1.5
2.5.1.6
2.5.1.7
2.5.1.8
2.5.2
2.5.21
2.5.2.2
2.5.3

Using a computer — 25

Basic steps of program development — 26
Example of problem-solving with computers — 27
Flow of program development — 34
Introduction to C programs — 35

Sample C programs — 36

Structure of C programs — 39

Coding style requirements — 41
Summary — 42

Exercises — 44

Multiple-choice questions — 44

Algorithms — 47
Concept of algorithms — 47
Algorithms in practice — 47
Definition of algorithms — 48
Characteristics of algorithms — 50
Representation of algorithms — 50
Top-down stepwise refinement method — 50
Example of representation of algorithms — 52
Effectiveness of algorithms — 55
Example of algorithms — 57
Computational thinking — 59
Universality of algorithms — 60
Solutions to classic problems — 60
Three phases of problem-solving with computers — 62
Characteristics of computer algorithms — 63
Comprehensiveness of algorithms — 63
Algorithm analysis: Starting from normal cases — 64
Problem analysis — 64
Manual method — 64
Analysis of computer solutions — 65
Comparison of manual method and computer method — 66
Algorithm description — 66
Analysis of execution process — 67
Testing — 68
Summary of algorithm design procedures — 70
Algorithm analysis: Starting from corner cases — 70
Problem description — 70
Ideas of algorithm — 71
Keys of algorithm design — 72

2.6

2.6.1

2.6.2
2.6.3
2.6.4
2.7

2.8

2.8.1
2.8.2
2.8.3

3

3.1
3.1.1
3.1.2
3.1.2.1
3.1.2.2
3.1.2.3
3.1.2.4
3.2
3.21
3.2.1.1
3.2.1.2
3.2.2
3.2.21
3.2.2.2
3.2.2.3
3.2.2.4
3.2.3
3.3
3.3.1
3.3.2
3.3.3
3.4
3.4.1
3.4.2
3.4.3
3.5
3.5.1
3.5.2

Contents =— XXI

Procedures of algorithm design and characteristics
of algorithms — 72

Position of algorithms in the process of solving problems with
computers — 72

General process of algorithm design — 73
Characteristics of algorithms — 74
Characteristics of good algorithms — 74
Summary — 76

Exercises — 77

Multiple-choice questions — 77

Fillin the tables — 79

Algorithm design — 80

Basic data types — 83
Constants and variables — 83
Constants — 83
Variables — 86
Key elements of variables — 86
Rules of variable naming — 88
Method of requesting memory space — 89
Usage of memory space — 90
Data types — 93
Representation of information in computers — 94
Binary system — 94
Binary representation — 94
Processing of information in computers — 95
Modular system — 96
Binary modular system — 96
Representation of numbers in binary modular system — 97
Range of binary system — 98
Basic data types in C—99
Storage rules of integers — 101
Signed integers — 102
Unsigned integers — 102
Characters — 103
Storage rules of real numbers — 104
Representation of real numbers — 105
Representation of floating-point numbers — 105
Display precision and range of floating-point numbers — 108
Operators and expressions — 109
Operators — 110
Expressions — 110

XXl —— Contents

3.5.3 Precedence of operators — 110

3.5.4 Associativity of operators — 112

3.6 Numerical operations — 113

3.6.1 Arithmetic operators and expressions — 113
3.6.1.1 Arithmetic operators and expressions — 113
3.6.1.2 Increment and decrement operation — 116
3.6.2 Overflow problems in data operations — 118
3.7 Logical operations — 119

3.71 Relational operations — 119

3.7.2 Logical operations — 121

3.7.21 Example of Relation Problem — 121
3.7.2.2 Definition of logical operations — 121
3.7.2.3 Examples of Logical Operations — 122
3.7.2.4 Rules of logical operations — 125

3.8 Type conversion — 125

3.8.1 Computation of data of mixed types in real life — 125
3.8.2 Type conversion rules in C — 127

3.8.3 Forced-type conversion — 128

3.8.4 Automatic-type conversion — 130

3.9 Other operations — 131

3.9.1 Conditional expressions — 131

3.9.2 sizeof operator — 133

3.9.3 Assignment operator and expressions — 133
3.9.4 Compound assignment operators — 134
3.9.5 Comma operator and comma expressions — 134
3.10 Summary — 135

3.11 Exercises — 136

3.11.1 Multiple-choice questions — 136

3.11.2 Fillin the tables — 138

3.11.3 Programming exercises — 140

4 Input/output — 141

41 Concept of input/output — 141

411 Standard input/output — 142

4.1.2 Standard library functions of C — 142

4.1.3 Header files — 143

4.2 Data output — 144

4.2.1 Character output functions — 144

4.2.2 String output function — 145

4.2.3 Formatted output function — 146

4.2.3.1 Syntax and signature of formatted output function — 146
4.2.3.2 Output format specifiers — 148

4.2.3.3
4.2.3.4
4.3
4.3.1
4.3.2
4.3.3
4.4
4.4.1
4.41.1
4.4.1.2

4.4.1.3

4.4.1.4
4.5

4.6
4.6.1
4.6.2
4.6.3

5.1

5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.4.1
5.2.4.2
5.3
5.3.1
5.3.2
5.3.2.1

5.3.2.2
5.3.2.3

5.3.2.4
5.3.2.5
5.3.3
5.3.4
5.4

Contents =— XXIII

Structure of format control sequence — 148

Subspecifiers — 148

Data input — 150

Character input function — 151

String input function — 153

Formatted Input function — 154

Typical problems of using formatted input function — 160
Typical problems of scanf input — 160

Common mistake of using scanf 1: wrong address argument — 161
Common mistake of using scanf 2: argument type not compatible
with type specifier — 162

Common mistake of using scanf 3: argument type compatible
with type specifier — 163

Common mistake of using scanf 4: '\n' used as newline — 165
Summary — 166

Exercises — 167

Multiple-choice questions — 167

Fillin the tables — 168

Programming exercises — 170

Program statements — 171

Sequential structure — 171

Double branch structure — 174

Syntax of double branch structure — 174

Role of compound statements — 175

Example of if statements — 176

Nested if-else statements — 179

Nesting rule of if-else — 179

Note on using nested if-else — 180

Multiple branch structure — 182

Introduction of multiple branch problems — 182
Syntax of multiple branch structure — 185
Multiple branch structure model and grammatical
representation — 185

Grammar test of switch statements — 185
Refined switch statements model and grammar
representation — 186

Execution process of switch statements — 187
Testing the refined program — 188

Example of multiple branch structure — 188
Comparison of various branch structure statements — 194
Introduction of loop problems — 194

XXIV — Contents

5.4.1
5.4.2
5.4.3
5.5
5.5.1
5.5.2
5.5.3
5.5.4
5.6
5.6.1
5.6.2
5.6.3
5.7
5.7.1
5.7.2
5.8
5.8.1
5.8.2
5.8.3
5.9
5.9.1
5.9.11
5.9.1.2
5.9.2
5.9.3
5.9.3.1
5.9.3.2
5.10
5.10.1
5.10.2
5.10.3
5.10.4
5.10.4.1
5.10.4.2
5.10.4.3
5.11
5.12
5.12.1
5.12.2
5.12.3

Analysis of key elements in loops — 194

Three key elements of loops — 197

Loop statements — 198

While loops — 199

Syntax of while loops — 199

Validation of necessity of the key elements — 199
Example of while loops — 205

Methods of loop controlling — 210

Do-while loops — 210

Syntax of do-while loops — 210

Use case of do-while — 214

Example of do-while loops — 214

Alternative form of while loops — 216

Syntax of for loops — 216

Example of for statements — 217

Infinite loops — 219

Infinite loops in practice — 219

Infinite loops using while statement — 220
Infinite loops using for statement — 221
Interruption of loops — 223

Interruption of loops in practice — 223

Example of interruption of loops — 223

Early termination mechanism of loops — 224
Jumping out of loops with break statement — 225
Jumping inside loops with continue statement — 229
Functionality of continue statement — 229

Role of continue in different loops — 230

Free jump mechanism — 232

Concept of free jump — 232

Syntax of unconditional jump statement — 233
Example of unconditional jump statement — 234
Characteristics of goto statements — 235
Jumping out of a nested loop directly — 235
Flexible jumps — 236

Note on using goto statements — 236
Summary — 237

Exercises — 239

Multiple-choice questions — 239

Fillin the tables — 241

Programming exercises — 243

Contents =— XXV

6 Preprocessing: work before compilation — 245
6.1 Introduction — 245

6.1.1 Preprocessing — 246

6.1.2 Preprocessing directives — 246

6.2 Macro definition — 247

6.2.1 Simple macro definition — 247

6.2.2 Macro definitions with parameters — 250
6.2.3 Side effects of macros — 252

6.3 File inclusion — 252

6.4 Conditional compilation — 254

6.4.1 Format of conditional compilation 1 — 255
6.4.2 Format of conditional compilation 2 — 256
6.4.3 Format of conditional compilation 3 — 257
6.4.4 Nested conditional compilation directives — 258
6.5 Summary — 259

6.6 Exercises — 261

6.6.1 Multiple-choice questions — 261

6.6.2 Fillin the tables — 262

6.6.3 Programming exercises — 264

7 Execution of programs — 267

7.1 Runtime environment of programs — 267
7.1.1 Main screen of integrated environment — 269
7.1.2 Create a project — 270

7.1.3 Create a source file — 273

7.1.4 Edit a source file — 273

7.1.5 Compile a source file — 275

7.1.6 Link programs — 277

7.1.7 Execute program — 278

7.2 Testing — 279

7.21 Introduction — 279

7.2.11 Defect in arithmetic question generator — 279
7.2.1.2 Error handling in the n! program — 280
7.2.2 Program testing — 281

7.2.2.1 Errors and warnings — 281

7.2.2.2 Definition of testing — 282

7.2.2.3 Purpose of testing — 282

7.2.2.4 Principles of test case design — 283

7.2.2.5 Methods of testing — 283

7.2.2.6 Basic approaches to test case design — 284
7.2.2.7 Order of testing — 284

XXVI —— Contents

7.3 Concept of debugging — 286

7.3.1 Bug and debug — 286

7.3.2 Bugs are everywhere — 287

7.3.3 Difficulties in debugging — 287

7.4 Methodology of debugging — 289

7.4.1 Introduction — 289

7.4.1.1 Finding errors in a domino sequence — 289
7.4.1.2 Collapse of the domino sequence — 289
7.4.2 Basic flow of debugging — 290

7.4.3 Discussion on methods of finding errors in programs — 291
7.4.3.1 Analysis of flow of program execution — 291
7.4.3.2 Relations between modules — 292

7.4.3.3 Problems involved in error finding — 292
7.4.4 Exploration of tracing methods — 294

7.4.4.1 Trace by statements — 294
7.4.4.2 Trace by segments — 295

7.4.4.3 Reversed inspection of call stack — 296

7.5 Debugging tools — 297

7.5.1 Functions of debugger in IDE — 297

7.5.2 Debugging commands — 299

7.5.2.1 Enter the debugging environment — 299

7.5.2.2 Commands controlling program execution — 299
7.5.2.3 Set breakpoints — 299

7.5.2.4 Inspect execution status — 301

7.6 Examples of debugging — 304

7.6.1 Demonstration of basic debugging steps — 304

7.6.1.1 Tracing by setting breakpoints — 304
7.6.1.2 Stepwise tracing — 306

7.6.2 Example of debugging — 308

7.6.2.1 Editing the code — 309

7.6.2.2 Compilation — 310

7.6.2.3 Linking — 313

7.6.2.4 Execution — 316

7.6.2.5 Debugging — 316

7.6.3 Example of using the call stack — 320
7.6.4 Example of using data breakpoint — 324
7.6.4.1 Source code and execution result — 324

7.6.4.2 Debugging plan — 324
7.6.4.3 Tracing and debugging — 325
7.7 Summary — 327

7.8 Exercises — 329
7.8.1 Multiple-choice questions — 329
7.8.2 Debugging exercises — 329

Appendix A Precedence and associativity of operators — 333
Appendix B ASCII table — 335

Appendix C Common library functions of C — 337

Appendix D Common escape characters — 347

Appendix E Bitwise operations — 349

Index — 353

Contents =—— XXVII

1 Introduction to programs

Main contents
— Concept of flows
— Concept of programs
— Methods of program design
— Abrief introduction to C programs

Learning objectives
— Know the concept of programs
— Understand the basic steps of program design
— Know the basic structure of C programs

1.1 Concept of flows

We use computers to help us work efficiently. How do computers work then? Before
answering this question, let us take a look at how humans solve problems and then
analyze how we think and what methods we use when solving problems.

1.1.1 About flows

Let us look at some flows in real life first.

There are several sessions in the opening ceremony at a college, as shown in
Figure 1.1, where the order of operation is an order of time and is represented by
the arrowed line. Arranging every session in the order of their time of completion,
we obtain a stream of procedures, which we call a flow.

Many of us have traveled by train before and have experience of purchasing
railway tickets. Figure 1.2 shows steps of buying tickets at the ticket office. As
shown in the figure, the flow of buying tickets is a description of the entire process
that starts from setting up a task and completes when achieving the goal by execut-
ing some actions.

Bread is a typical staple food. Baking bread is somewhat a complicated process.
The main steps of its production process are shown in Figure 1.3. We process raw
materials using specific devices in a particular order and eventually obtain finished
goods. This is called the “production flow.”

Many of us may travel by air for longer trips. The boarding flow shown in
Figure 1.4 can clearly guide first-time flyers.

By observing these examples, it is clear that the purpose of flow, be it a work
flow or a production flow, is to achieve a certain goal or to obtain a certain product.

https://doi.org/10.1515/9783110692327-001

https://doi.org/10.1515/9783110692327-001

2 —— 1 Introduction to programs

| Flow of opening ceremony

| Singing the national anthem ./I |session|
I

| Introducing college administration team |

e 1 Order of operation

| Playing the orientation video |
I
| Speech by teacher representative

| o
°0

|Speech by current student representative|
I

Flow: a stream of
procedures that
complete in order
as time elapses

| Speech by incoming student representative |
I
| Speech by headmaster |

[
| Singing the college anthem |

Figure 1.1: Flow of opening ceremony.

| Flow of purchasing tickets through ticket office

Step 1: The passenger provides information on trip date, destination, etc.

Step 2: The staff finds trains available on that day

Step 3: The passenger chooses a train and determines number of tickets to buy
Step 4: The passenger pays the fare and collects tickets

Figure 1.2: Flow of purchasing tickets at the ticket office.

| Flow of baking bread

Collect ingredients		Recover the dough
Knead the dough		Bake
Ferment		cool down
Mold e dough		Finish

£

Figure 1.3: Flow of baking bread.

1.1 Concept of flows

pueis JeJody

pJeoq
ICO
snq PRIV

amnus
——
ssed NEEITe)
1seopeouq 2106
Buipteoq ssed
ueoss Buip.eog Buip.eog Buipieog

‘syodiie ulp moyy Suipieog g 2unSi4

7 PRy Ayajes

uooadsul
uonedbrwwi

aunuelenb
uoloadsul
| b1l
Yoayd |euoijeulaiu]
swoisn)
ul-32syd
Ayaje
19485 b1l

onsawoq

mojlj buipieog

t Apnis ase)

4 —— 1 Introduction to programs

It describes the entire process of completing a task, a job, or manufacturing a prod-
uct. Every flow, regardless of what it describes, consists of a series of sessions and
orders of operations as shown in Figure 1.5.

A flow describes the entire process of completing a task, a job or manufacturing a product.
A flow consists of a series of sessions and orders of operations.

Session: Phases or procedures during completion of a task, a job or manufacture of a
product.

Order of operation: Time order of sessions in a flow.

Figure 1.5: Concept of flows.

1.1.2 Expression of flows

Flows can be expressed in many ways, as seen in previous examples. The flow of
an opening ceremony is shown in a flowchart. The flow of purchasing tickets is de-
scribed in plain words. The boarding flow is shown in a figure. In addition, flows
can be expressed as a table, model, video, etc. In programming, flowcharts and
pseudo codes are often used to describe a flow as shown in Figure 1.6.

Flowcharts and
pseudo code are
often used to
describe flows in
programming

Expressions of flows
* Flowchart < Figure

¢ Text * Model
+ Table * Animation OOO

A flowchart is one way to express steps in a process in figures. It consists of some
shapes and flowlines , where shapes indicate type of operations, text and signs in
each shape describe content of an operation and flowlines indicate order of
operations.

Pseudo code uses words and symbols that fall in between natural languages and
computer languages to describe processing process of problems.

Figure 1.6: Common ways of expression of flows in programming.

A flowchart depicts a process as a figure, whereas the pseudo code uses words and
symbols to describe a process. Pseudo code does not use graphical symbols, which

1.1 Concept of flows —— 5

makes it easier to write and understand, more compact, and more convenient to
transform into programs.

This book uses pseudo code to describe program flows in most cases. Procedures
human use to solve a problem is also known as “algorithms.”

1.1.2.1 Flowchart

American National Standards Institute (ANSI) standardized some common flow-
chart symbols that have been adopted by programmers from all over the world. The
most frequently used symbols can be found in Figure 1.7. Process symbol, decision
symbol, and input/output symbol are used to represent sessions in different situa-
tions. The flowline symbol is an arrowed line, which is used to show the order of
operation. Using graphical symbols to represent a flow is more intuitive and easier
to comprehend.

Symbol Name Meaning
() |Terminal Indicates beginning and ending of a flow
[|Process Represents normal operations
<> [pedsion | R eeds to be labeied at exits Y e o e
[T Input/Output |Input and output of data
Flowline Connects process or decision symbol, shows path and direction of]_'m‘
- flows operation
O Connector Connects flowlines drawn in different places

Figure 1.7: Common flowchart symbols.

1.1.2.2 Pseudo code

Pseudo code shows the execution process and algorithm of programs in the format of
code. It does not rely on a certain programming language. It uses the structure and
format of programming language to describe the execution process of a program.
Hence, it cannot be compiled by compilers. Using pseudo code allows to show the
execution process of programs in a way that is easier to understand and express.

Knowledge ABC Flowchart and pseudo code

From the late 1940s to the mid 1970s, flowchart has been the primary tool in process design.
The main advantages of flowcharts are: it uses standard and straightforward symbols, is easy
to draw, has a clear and logical structure, and is easier to describe and understand. Its intuitive
depiction of control flows allows beginners to handle them painlessly. Moreover, flowchart is
time honored and familiar to humans. Consequently, it is still widely used today although many
people advocate obsoleting it due to its disadvantages. A flowchart is a description of methods,
ideas, or algorithms people use to solve problems. However, avoiding flowcharts has been the lat-
est trend. One of its major disadvantages is that it takes up more space. Besides, the use of flow-
lines has few restrictions, thus one can make a flow growing in an arbitrary direction. This results in

6 = 1 Introduction to programs

challenges when reading or modifying a program. Secondly, flowchart is not helpful in the design
of structured programs. It is not a tool that allows continuous improvement because it forces pro-
grammers to consider the control flow rather than the overall structure of programs in an early
stage.

When implementing the same algorithm using different programming languages, people re-
alize that these implementations (note that it is not functionality) are often different as well. It
can be hard for a programmer who is proficient in one language to understand the functionality
of a program written in another language, as the form of programming languages puts limita-
tions on his/her understanding of the critical parts. Therefore, pseudo code was created.

We often use pseudo code when considering the functionality (instead of the implementa-
tion) of an algorithm. It is also used in computer science education so that all programmers can
understand.

Pseudo code is written in the form of programming languages to indicate the functionality of
an algorithm. It is similar to natural languages instead of programming languages (such as
Java, C++, Delphi, etc). Using pseudo code, the execution process of an algorithm can be de-
scribed in a way that is close to natural language. We may use any language in pseudo code, be
it Chinese or English, but the key is to show what the program intends to do. Pseudo code helps
us express algorithms without considering implementation.

1.1.3 Basic logical structure of flows

What logical features does the description of a flow that solves a problem have? We
shall discuss the answer soon.
Let us consider a real-life flow first: setting up a washing machine.

1.1.3.1 Sequential structure

Mr. Brown is a computer science professor in a college who seldom does housework
because he is usually busy working. However, his wife, Mrs. Brown, will be traveling
for a few days, so he has to learn how to use the washing machine. She only told him
the basic setup, as shown in Figure 1.8, as she was afraid that Mr. Brown could not
remember all the functionalities the washing machine has if she did not do so.

The operations of the washing machine are executed in an order that is deter-
mined by logical relations between each operation. For example, soaking should
happen before washing. Mr. Brown took notes carefully and made a flowchart of
washing operations based on the execution order as illustrated in Figure 1.9. In this
washing program, the preset operations are arranged sequentially. Thus, the struc-
ture of these operations is called a “sequential structure.”

1.1.3.2 Branch structure
In his first attempt, he put many clothes into the washing machine and then config-
ured it as how he was taught. However, he found that the washing machine was

1.1 Concept of flows = 7

Washing Sequential
case 1 structure

Basic washing program
Medium load OO
Settings: O
* Medium water level

+ Soak for 20 minutes
» Wash for 20 minutes

« Rinse once for 5
minutes

* Spin-dry for 3 minutes

ach step is
executed in an
order that is
determined by
logical relations
between them

Figure 1.8: Washing case 1.

| Medium water level |
] Slak \
] sth \
] Rirllse \
] Spinl-dry \

End

Figure 1.9: Flow of washing process with sequential structure.

not working smoothly, so he immediately called his wife for help. He was then told
that this washing program was designed for a medium load of clothes and was not
suitable for a large load.

The water level needs to be adjusted according to the clothes load. In this case,
we need to setup water level after determining the amount of clothes as shown
in Figure 1.10. We should choose a high water level for a large load. Otherwise, we
use a medium level, after which we continue with our basic washing program.

Mr. Brown drew a new flowchart (Figure 1.11), which was more intuitive. He
used different configurations for different clothes loads. Such flow where a decision
needs to be made is called “branch structure.” Note that the decision condition is
put in a diamond symbol to make it more noticeable. The diamond symbol means a
decision in the flowchart drawing standard.

8 —— 1 Introduction to programs

Branch

Washin
o structure

case 2

Configure according to clothes load:
If large load choose high water level
Otherwise choose medium water level
Continue the basic washing program

Figure 1.10: Washing case 2.

May run into
situation where
we need to make
a decision

Huge load
Y N

J

| High water level | | Medium water level |
e}
| | ©

O

|Basic washing program|

End

Figure 1.11: Flow of washing process with a branch structure.

Thinking about the problem caused by clothes load, Mr. Brown realized that
there should be another water level option for a small load. He later found that it
did exist after investigating the washing machine.

The complete flow of setting up water level is shown in Figure 1.12. If the
clothes load is small, we choose the low water level; if medium, we choose the me-
dium level; and if large, we choose the high level.

Mr. Brown then drew the multiple branch structure flowchart based on his
wife’s description as illustrated in Figure 1.13. This is a branch structure with three
branches. Note that the clothes load is represented as a rectangle instead of a dia-
mond as the diamond symbol is only used when there are two branches in a deci-
sion. More details are covered in the discussion of the selection structure.

1.1.3.3 Loop structure

Mr. Brown started to feel curious and started to investigate the washing machine as if
he was experimenting. He noticed that the washing machine could not rinse properly
with a huge load of clothes. This time he decided to solve the problem without calling

1.1 Concept of flows =— 9

Washing Branch
case 2 structure

Consider all clothes load situations
Settings:
« If small load

Choose low water level
e If medium load

Choose medium water level
« If large load

Choose high water level
Continue the basic washing program

Figure 1.12: Washing case 2 with multiple branches.

Consider all
clothes load

o0 O R .
situations

Clothes load

Small Medium Large
Low water Medium High water
level water level level

Basic washing
program

End

Figure 1.13: Flow of washing process with multiple branch structures.

Mrs. Brown for help. It seemed that he should increase the number of rinses in the
washing program. He then checked the machine and pressed the “Rinse” button one
more time. It turned out that the clothes were rinsed again. The case of multiple
rinses is shown in Figure 1.14, where Mr. Brown increased the number of rinses to
three without changing the rest of the washing program.

However, the way three rinses are expressed in the flow shown in Figure 1.15
seems cumbersome. It will be worse if we have even more rinses. Can we make any
improvements?

10 —— 1 Introduction to programs

Washing
case 3

If we want to rinse thoroughly
Settings:

« Water level settings

+ Soak

+ Wash

* Rinse 3 times

* Spin-dry

Figure 1.14: Washing case 3.

| Water level settings |

Refinement of
incomplete rinsing

| Soak | when clothes load
| Wallsh | is large

I
| Rinse | o O

I
| Rinse | Can we use a
| Rirl15e | °O0O " better way to

I express 3
| Spin-dry | rinses?

End

Figure 1.15: Flow of washing program with three rinses.

The refined flow is shown in Figure 1.16. The machine continues rinsing if it has
not rinsed a preset number of times. Otherwise, it proceeds to execute other steps.
A flow with steps that may be repeatedly executed is said to have a loop structure.

!
Washing Loop | Soak |
case 3 structure

If we want to rinse
thoroughly

Settings:

e Water level settings
Soak

Wash

Rinse 3 times
Spin-dry

Has
repeated
operations

End

Figure 1.16: Flow of washing process with the loop structure.

1.1 Concept of flows =— 11

1.1.3.4 Logical structure of flows

Based on these examples, the basic logical structure of flows is summarized in
Figure 1.17. A flow structure is the logical structure of the execution of each step.
If there is no decision to be made, it is a sequential structure; if there is a decision
but no repetition, it is a branch structure; otherwise, it is a loop structure with

both decision and repetition.

’ Problem analysis ‘

Has
decision
T » F
Has repetition

Loop Branch Sequential
structure structure structure
End

Figure 1.17: Basic logical structure of flows.

Sequential structure, branch structure, and loop structure are the three funda-
mental structures of programs. It has been proven in practice that any flow, no
matter how complex it is, can be constructed by these three basic structures as
shown in Figure 1.18. It is similar to how the three primary colors can be combined
to produce a gamut of colors. They can also be nested to generate programs that
are called “structured programs.”

Sequential, branch and
loop structures are the
three fundamental
structures of programs

Sequen-

Figure 1.18: Fundamental structures of programs.

12 —— 1 Introduction to programs

1.1.3.5 Expression of basic flow structures
Now we can summarize expressions of basic flow structures.

The sequential structure consists of several steps that are executed in order. It is
the simplest and most fundamental structure that every algorithm has. To express a
sequential structure, simply list the operations in time order. The rectangle symbol in
flowcharts means “Process” and it represents operations as shown in Figure 1.19.

Flowchart Pseudo code

Operation 1 Operation 1
Operation 2 Operation 2

Rectangle

Qo |
z;cr)ﬁgz? Operation n

Figure 1.19: Expression of sequential structure.

The branch structure tests a preset condition and controls the flow based on the
result as shown in Figure 1.20. In flowcharts, we put the condition into a diamond
symbol. The flow enters different branches based on whether the condition is evalu-
ated to be true or not. If true, the condition is met, the operation set A is executed
(herein the operation set means a set or series of operations); otherwise, the condi-
tion is not met and operation set B is executed. We need to pay attention to the in-
dentation of curly brackets when using pseudo code representation.

if (condition)

Diamond
decision
symbol

Operation set A

b °0
O Note
%Ise indentation
Operation set B inside {}
}

Figure 1.20: Expression of branch structure.

The loop structure contains steps that are executed repeatedly under certain condi-
tions. There are two kinds of loop structures: while loops and do-while loops.

1.2 Concept of programs =— 13

“While loops” test the loop condition first. If it is met, the operation set A is
executed. Otherwise, the loop is terminated. In other words, it tests and executes as
shown in Figure 1.21.

Flowchart

°

Operation set A \?hile (conditon)
Operation set A

@% }

°0

Test and
execute

Figure 1.21: Expression of while loop structure.

Do-while loops execute operation set A first and test loop condition when the oper-
ations are completed. If the condition is met, the operation set A is executed again.
The loop would n be terminated until the condition is no longer satisfied. In other
words, it executes and tests as shown in Figure 1.22.

Flowchart

Execute

| Operation set A o0Or and test
do
T {
Operation set A
@ } while (condition)
F

l

Figure 1.22: Expression of do-while loop structure.

1.2 Concept of programs

In the previous section, we discussed methods, procedures humans use to solve
practical problems, and how they are represented. Herein we examine how com-
puters solve problems.

14 —— 1 Introduction to programs

1.2.1 Automatic flows

We have discussed how to configure the washing process in the introduction of the
concept of flows. Herein we are going to focus on how the washing machine runs.
To use a washing machine, we setup the washing program and start it. The machine
automatically completes the necessary operations as shown in Figure 1.23. A pro-
gram is a flow that machines can execute automatically after we setup the steps. In
fact, it is the computer program installed inside that enables washing machines to
run automatically.

? / Order of operation

!
1
[Add detergent}—{Add water] [Add water]
I
Wash Ri O()() /~ We set up sessions in
| ais | | |r;se | advance and start the
. - machine, then it can
| Drain | | Drain | complete the operations
| [automatically,
[Dry | [Dry Jo
¥ 1)

Figure 1.23: Automatic flow of washing machine.

Nowadays, it is quite convenient to buy tickets online. It is made possible by con-
verting the process of purchasing through the ticket office into an automatic flow
that computers can handle (Figure 1.24).

Main steps of purchasing train tickets online

Step 1: Open the website

Step 2: “Search”, input trip date, destination, etc.

Step 3: “Book”, choose a train to book ticket Computers
Step 4: Log into system can simulate

Step 5: Submit an order some manual
Step 6: Pay ticket fare online o O O processes
Step 8: Choose ticket collection method

Figure 1.24: Flow of purchasing tickets online.

1.2.2 Concept of programs and programming languages

Based on the automatic flows mentioned, programs and programming languages
can be formally defined as shown in Figure 1.25.

1.2 Concept of programs —— 15

A program converts the process of solving a practical problem into a sequence of
instructions using programming languages. To be more specific, it is a flow designed
to be executed by computers automatically, using data that can be accepted by
computers and intending to produce expected result.

Programming language

A programming language is a computer-recognizable language used in communication
between human and computers. Programming languages have fixed symbols and
grammar rules.

Figure 1.25: Programs and programming languages.

1.2.2.1 Programming languages

Programming languages are languages used to write the computer programs. There
are many kinds of programming languages, but generally, they can be categorized
into machine languages, assembly languages, and high-level languages. Assembly
and high-level languages are being widely used nowadays.

1.2.2.2 Machine languages

Computers are built from numerous electronic components. Videos we watch and
music we listen to are merely variation and combination of high and low voltages.
Hence commands that computers receive are simply variation of voltages, namely
high and low voltages. Engineers and computer scientists use “0” and “1” to repre-
sent on and off. These 0’s and 1’s are called “binary codes.” Computers can only
recognize these codes.

Do we write programs using 0’s and 1’s then? The answer is yes. In the early
days of programming, people wrote programs by punching on one-inch wide cards.
There were eight holes on each line and each hole represented one binary bit.
A punched hole represented 1 and an unpunched hole represented 0. Combinations
of holes on each line represented commands. Code written using 0’s and 1’s in this
way is written in machine language. Machine language can transfer commands to
computers directly. Code written in machine languages is flexible and can be exe-
cuted directly and quickly. However, it takes effort for developers to write programs
and it is incredibly inefficient. Moreover, it is hard to comprehend a program in ma-
chine language. Reading and debugging are painful as well. Hence, machine lan-
guages are called “low-level languages.” Machine languages are not universal
either as they are machine-dependent. Specific machine languages can only be
used in certain kinds of machines.

16 = 1 Introduction to programs

1.2.2.3 Assembly languages

It was not long before programmers found machine languages cumbersome, thus
they started to look for other means to communicate with computers. Is there a way
to write programs using symbols other than “0” and “1” and then translate them
into machine languages? It turned out to be a great idea as assembly languages
were created. In assembly languages, we use mnemonic symbols to replace ma-
chine commands. For example, ADD is used for adding numbers and SUB is used
for subtraction. These symbols make assembly languages more readable. After writ-
ing a program, we need a translation program that converts the program into ma-
chine commands. Such a program is called an assembler. The process of writing a
program in assembly language is shown in Figure 1.26.

Assembly instructions Machine code

10001001 11011000 g

Programmer Assembler Computer

Figure 1.26: The process of writing program in assembly language.

The emergence of assembly languages allowed computers to be used in more areas.
However, different computers often have different assembly languages, thus they were
machine-dependent as well. Due to the weak universality, they were also categorized
as low-level language. Nevertheless, they are still being used by people nowadays be-
cause they can be executed more quickly, save memory space, and manipulate hard-
ware more efficiently. They can often be found in these areas: system (including
embedded system) programming, such as operating systems, compilers, drivers, wire-
less communication, DSP, PDA, GPS, etc.; software development where resource, per-
formance, speed, and efficiency are critical issues; as well as reverse engineering that
aims at information security, software maintenance, and cracking software. Even if we
are not going to work on system development or to become a hacker or a cracker,
knowing assembly language is helpful for learning computer architecture, debugging
software, and improving algorithms used in the critical part of programs.

1.2.2.4 High-level languages

To accelerate the developing process, humans created Fortran, the first high-level pro-

gramming language, in 1954. This marked the beginning of a new era of programming.
High-level languages are similar to natural languages and mathematical ex-

pressions. Compared to assembly languages, they combine multiple correlated ma-

chine instructions into single instruction and eliminate hardware manipulation

details that are unrelated to the functionalities of a program. Thus, instructions in a

1.2 Concept of programs =— 17

program are largely simplified and programmers no longer need a large amount of
hardware knowledge.

The name “high-level language” means these languages are more advanced
than assembly languages. It does not refer to a specific language. Instead, it refers
to many programming languages, such as VB, C, C++, and Delphi, which vary in
syntax and instruction format.

Programs written in high-level languages cannot be recognized by computer di-
rectly. They must be converted for computers to execute. Depending on the way of
conversion, high-level languages can be categorized into two types:

— Interpreted languages: The conversion is similar to simultaneous interpretation
in real life. The interpreter of a language executes a program directly while
translating source code into target code (in machine language) at the same
time. This process is inefficient and applications cannot work without the inter-
preter as there are no executable files generated. However, using an interpreter
is more flexible as we can modify our applications dynamically.

— Compiled languages: Compilation is the process of applications being trans-
lated into object code (with .obj extensions) before being executed. Generated
object programs can be executed without the language runtime, thus it is more
convenient to use and more efficient. However, if any changes are needed, we
have to modify the source code and recompile it into object code to execute.
This can be inconvenient if we do not possess the source code. Many program-
ming languages are compiled languages such as C, C++, and Delphi.

One of the advantages of high-level languages is better portability, which means
programs can run on different types of computers. Compared to assembly lan-
guages, high-level languages are more comfortable to learn and master. Programs
written in these languages are also easier to maintain. However, programmers can-
not manipulate hardware and control operations of computers directly as high-level
languages do not target specific computer systems. Besides, object programs are
larger and run slowly compared to those generated from code written in assembly.

Knowledge ABC ANSI C and C standards

During the 1970s and 1980s, C was widely used on all types of computers, from mainframe com-
puters to microcomputers. This led to different versions of the language. In 1989, the ANSI estab-
lished an entire standard specification for C so that different companies could use the same set
of syntax. This was the C89 standard (also known as ANSI C), which was the earliest standard of C.
In 1990, the International Organization for Standardization (ISO) and the International Electronical
Commission (IEC) adopted the C89 standard as the international standard of C language (known
as C90 standard). After subsequent revisions, the C99 standard (published in 1999) became the
second official standard of C. The C11 standard (published in 2011) is the third official standard
and the latest one.

18 — 1 Introduction to programs

1.2.3 Execution characteristics of programs

Programs are flows of operations executed by machines. What are their characteristics?

A program is a process of setting up operations and executing them sequen-
tially, which is similar to a domino show as illustrated in Figure 1.27. Many of us
are familiar with domino shows. Their rules are simple: dominoes are aligned in
sequence, each at a certain distance from the next. Builders can create patterns and
images based on meticulous design. Once the first domino has been toppled, a
chain reaction happens and the rest are toppled in order.

p= ik e
vod O iR GickCh S

Sl Casg et G,,,mwf £o¢ ST A0 Lot

‘nf ek \IO\A

Fov

Meticulous design
in advance, chain

reaction once
started

“vod Guikth ¥ -

I'FﬂoQ Lot | "eak e wo_‘\'UW‘ Q\QQ \0“‘3 2;\4

Mo\ofme #mc\uae o
h v

- 5 JeCourt

Figure 1.27: Characteristics of automatically executed flows.

Another one of such systems that feature meticulous design and chain effect is the
Rube Goldberg machine. It is an extremely well-designed and complicated system
that completes a task in an indirect and overly complicated way. Designers of a Rube
Goldberg machine have to make sure everything is correctly calculated so that each
device in the system can achieve a stated goal at the perfect time. The Rube Goldberg
machine also creates visual effects similar to those of a domino show.

1.2.4 Workflow of computers

Programs are executed automatically in computers. Hence, we need to know how
computers work.

1.2 Concept of programs =— 19

In the mid-1930s, John von Neumann, a Hungarian-American mathematician,

proposed to use the binary numeral system in digital computers and to write com-
puting programs in advance so that computers could follow the computation se-
quence to complete numerical calculations. Electronic computer systems designed
based on his concepts and theories are now called “von Neumann architecture”
computers. A computer should have data input, data processing, and result output
functionalities. To achieve this, computers must have five basic components as
shown in Figure 1.28.

Computer

Internal
memory (RAM)

@7 Processing
&

Information External Result

input memory output
(Hard disks)

Programs, data Data

Information
processing

Figure 1.28: Basic components of computers.

They are:

Input devices for data and programs: keyboards are the most common input
devices.

Output devices for results of processing: monitors are the most common output
devices.

Memory units for storing programs and data: there is nonvolatile memory
(hard disks) that can retrieve stored information even after having been power-
cycled and volatile memory such as random-access memory (RAM) that re-
quires power to maintain the stored information.

Central processing unit (CPU) processes data and controls the execution of
programs.

CPU is the most critical component of computers. It consists of a processor and con-
trol units. The processor is used to complete arithmetic and logical operations. The
decision-making process we have seen in flowcharts is categorized as a logic opera-
tion in computers. The control unit performs instructions fetched from memory
units and provides control signals to other components.

20 —— 1 Introduction to programs

The workflow of a von Neumann architecture computer is shown in Figure 1.29.
The main steps are:

— Input programs and data: Programmers need to store programs to be executed
and related data into random access memory (RAM).

— Fetch instruction: The control unit fetches the first instruction from RAM.

— Fetch data: Based on the instruction in step 2, data are retrieved from memory
units and sent to processors.

— Process: Specified arithmetic and logical operations are carried out in processors.

— Store intermediate results: Intermediate results are sent to a specific address in
RAM. This is done continuously until all instructions are completed.

— Output final result to output devices.

Program Output o
— > device Result output
Data

—> Data stream
------- > Control signal

Figure 1.29: Workflow of computers.

1.3 Components of programs

In the workflow of computers, data are sent to memory units through input devices.
The processors perform logical and arithmetic operations under the control of con-
trol units. The final result is presented to users through output devices. The flow
that computers use to solve problems can be divided into three parts: data input,
data processing, and result output as shown in Figure 1.30.

(o D(Erossang) o

Figure 1.30: Flow of problem-solving with computer.

1.3.1 Problem-solving with computer: data

Data in programs are units of information that can be stored in and processed by
computers. If we were computers, as tools for information processing, what issues we

1.3 Components of programs =— 21

need to handle between us and the data to be processed? Considering the workflow
we saw earlier, the main issues include how information is input, how data are stored
and processed, and how results are output as shown in Figure 1.31.

A datum (basichdaéa) Multiple data (compound data)
- Storage metho J ,— A set of data of the same type
» Storage location \ A set of data of mixed types

- Storage size

Internal
|Computation method H il (T /——1 Output method |

Information Processor +
input Control unit [EE Result output
Input method External
memory

(Hard disks)

\ | Storage and

access method
Data in programs are information computers can store and process

Figure 1.31: Relation between computers and data processing.

With hardware architecture and theories of computers in mind, we study the follow-
ing data-related issues: how data are input/output; how data are stored in internal
(and external) memory units, which address they are stored at and how much space
they take up; and how related data are combined and stored according to their char-
acteristics and types, which is a combinatorial data problem in programming.

Issues of data processing include how they are represented in programs and
their computation rules.

In summary, issues related to data in programs can be categorized into mem-
ory-related and input/output devices related as shown in Figure 1.32.

Compound data

Data location
Input/Output

We treat external
memory as

input/output device i
programming

© 0

Input/Output _[
devices

Figure 1.32: Problem-solving with computers: Data.

22 —— 1 Introduction to programs

Memory-related issues include:
— Basic data issues that include how data are stored and calculated.
— Combinatorial data issues that include how data of same and different types
are combined and processed.
— Address issues that determine which location in RAM data should be stored in.

Input/output devices-related issues include how data are input and output. Note
that external memory is deemed input/output device in programming.
1.3.2 Problem-solving with computer: processing

Data processing consists of the description and implementation of the processing
process as shown in Figure 1.33.

Description of
processing
process

Description of processing process

« Description of processing process - algorithms
« Involves form of expression, method of description
and design principles

Implementation of processing process

« Program statements: instruction we issue to
machines
« Flow structure: logical structure of program execution
« Modularization: when the scale of a program is large
enough, we need to divide it into correlated parts
based on their functionalities. A module is called a
“function” in C
« Structure of C programs: consists of main function
Structure of C programSI and child functions

Algorithm

Program statements

Implementation of
processing
process

|
lFIow structure ‘
|

lModuIarization

Figure 1.33: Problem-solving with computers: processing.

The description of the processing process is nothing but an algorithm. We need to
consider the form of expression, method of description, and design principles when
talking about algorithms.

The implementation of the processing process comprises four topics. The actual
implementation is done by code. Flow structure is the logical structure of program
execution. Basic logical structures of flows include sequential structure, branch
structure, and loop structure. When the scale of a program is large enough, we
need to divide it into correlated parts based on their functionalities. This division is
called modularization. In our daily life, a complex task can be divided into multiple
easy tasks for different people to complete. Each task can be regarded as a module.
Modules are called “functions” in C programs. The structure of C programs consists
of the main function and child functions.

1.3 Components of programs =— 23

1.3.3 Problem-solving with computers: results

To obtain the results of data processing, we need to do some work before execution
as well as testing and debugging as shown in Figure 1.34. A program needs to be
compiled into machine code and linked with necessary resources before generating
executable instructions. Preprocessing is a series of code organizing tasks done be-
fore compilation. These tasks can include programs written by others (resource
linking mentioned above), character replacement, or conditional compilation. More
details of preprocessing can be found in the chapter “Execution of Programs.”

Pre-execution tasks

Pre-execution tasks }

Testing and debugging}

Compilation and linking

A program needs to be compiled into machine code and linked with necessary
resources before generating executable instructions.

Preprocessing
Preprocessing is a series of code organizing tasks done before compilation.

Testing and debugging

Testing: input preset data, run program to obtain result, compare with expected result
Debugging: techniques of finding errors in programs

Figure 1.34: Problem-solving with computers: results.

Knowledge ABC Preprocessing
Preprocessor directives are instructions that begin with a # sign. They are invoked before compi-
lation to complete some support tasks for compilers.

There are three kinds of preprocessor directives: macrodefinition directives, file inclusion di-
rectives, and conditional compilation directives.

Preprocessing is a series of work done by the preprocessor before the first scan (lexical scan
and syntax analysis) of compilation. When compiling a source file, the system automatically in-
vokes the preprocessor to complete preprocessing before the actual compilation. More details
can be found in the chapter “Preprocessing.”

We can compare the result returned by the program with our expected result. If the
result is correct, our programming task is completed. Nonetheless, it is not rare that
a sophisticated program produces wrong results at first. We need to find errors in
the program and fix them by testing and debugging.

24 —— 1 Introduction to programs

Computers solve problems with programs. Programs contain three components:
data, processing, and results. Figure 1.35 is the knowledge map of C language.
These concepts will be introduced in corresponding chapters.

Description of
processing process

Implementation of
processing process

Algorithm

Compound data

Pre-execution tasks }

Testing and debugging}

Data location
Input/Output

Program statement

[Modularization

l
[Flow structure]
l
|

Structure of C program

Figure 1.35: Knowledge map of C language.

If we compare data and code to raw materials, flow logical structure, and algo-
rithms to manufacturing methods and requirements, the program will be the final
product. This process can be generalized as a formula as shown in Figure 1.36.

Programs

swiyjuob|y

Program
statements

Flow structure
[oo] [Semens | S,
Algorithms

24N30NJ3S MO|4

Program
A program is an instruction sequence composed by code and data. It
completes specific tasks using algorithms designed in advance and
following the logical structure of the program flow.

Figure 1.36: Components of programs.

A program is an instruction sequence composed of code and data. It completes spe-
cific tasks using algorithms designed in advance and following the logical structure
of the program flow.

1.4 Development process of programs =—— 25

Niklaus Wirth, who is a Swiss computer scientist and recipient of Turing
Award, summarized the above description of components of programs as the fa-
mous “Wirth’s Equation” as shown in Figure 1.37. An algorithm is a strategy used to
solve the problems. A data structure is the model of data used to describe a prob-
lem, which consists of inherent logical relation of data, storage methods of data,

and operations allowed to be applied to data.
Wirth’s Equation
200

Algorithms + Data Structures = Programs

Figure 1.37: Construction of programs.

1.4 Development process of programs

Through discussion in previous sections, we roughly know how computers solve prob-
lems, but how about details behind the process? Let us examine an example first.

1.4.1 Case study

1.4.1.1 Using a calculator

We all know how to use a calculator to complete common calculations conve-
niently. The simplest arithmetic operations are addition, subtraction, multiplica-
tion, and division. Their corresponding operators are “+”, “-”, “x,” and “/”. Let “a”
and “b” denote the operands. To complete a calculation, we need to press buttons
to input necessary information, including operands and operators, and the calcula-
tor performs corresponding calculation automatically and displays the result on the
screen. As shown in Figure 1.38, the key elements in this process are input, output,
and processing.

1.4.1.2 Using a computer

Suppose the age of two brothers is “a” and “b,” respectively and we need to use a
computer to determine who is elder. Although the flow is simple, where the only
difference from the calculator flow is that arithmetic operations are replaced with
comparison operation as shown in Figure 1.39, the comparison operation cannot be
done by a simple calculator. Compared with calculators, computers can complete
complicated logical operations. The key elements in this process are input, output,
and processing.

26 = 1 Introduction to programs

| Using a calculator

l

’ Input: operands a, b, operators ‘

[

Processing: a + b
(or subtraction, multiplication, division)

l

’ Output: calculation result ‘

l

Figure 1.38: Using a calculator.

| Using a computer

l

’ Input: operands a, b ‘

[

’ Processing: compare a and b ‘

We use calculators to
complete common
calculations
conveniently

We can use
computers to
complete
complicated logical
operations

’ Output: comparison result ‘

Figure 1.39: Using a computer.

1.4.2 Basic steps of program development

After years of practice, people have found that four main steps are needed to effec-
tively solve complicated practical problems with computers as shown in Figure 1.40.
The three key elements can also be found in these steps.

The first step is building a model that is done in the analysis phase. We extract
functionalities and data from the problem, summarize objects involved, which are
also information to be processed, and look for relations between them.

The second step is designing, which includes data structure design and algo-
rithm design. Data structure design tries to find a way to organize and store data,
whereas algorithm design tries to find a solution to the problem that satisfies re-
quirements on functionalities.

The third step is coding. We write code in a certain programming language to
implement the algorithm designed in the previous step.

1.4 Development process of programs =— 27

Step Tasks

. + Extract required functionalities
Build a model .)
» Extract data objects and analyze relations between them

Design Data structure design and algorithm design
Coding Write codes
Testing Software testing and debugging

Figure 1.40: Steps of problem-solving with computers.

The fourth step is testing, which is also known as software testing. We test the
code from step 3 and then try to debug if errors exist.

1.4.3 Example of problem-solving with computers

Example 1.1 Incentive system for employees

A company builds an incentive system to encourage its employees. The system works as illus-
trated in Figure 1.41. If the sales number is larger than or equal to five units, then the employee
who achieved this number will be rewarded ¥ 1000. If the sales number is greater than 10, but
not more than 50 units, the employee will be rewarded ¥ 200 times his/her sales number. If the
sales number is greater than 50 units, the reward will be ¥ 250 times the sales number.

Sales number Reward (¥)
sales number >=5 1000
10<=sales number<50 200*sales number
sales number >=50 250*sales number

Figure 1.41: The incentive system for employees.

Please design a program that outputs the amount of reward when given a sales number.

[Analysis]

1 Model building

Based on the information provided, let sales number be x and reward be y. We
can write a piecewise function and buildup the mathematical model as shown in
Figure 1.42.

28 —— 1 Introduction to programs

Sales number x Reward y

1000, 5< x < 10 f
>—5 1000 - g Mathemati
y=49200x, 106 < x< 50 o cal mvodel

10<=x<50 200x 250x, X > 50

Xx>=50 250x

Figure 1.42: Model of the incentive system problem.

Knowledge ABC Mathematical model

Mathematical models use mathematical language to describe characteristics or numerical rela-
tions of a system approximately. They are mathematical relation structures that reflect certain
problems or certain systems. We may also consider them to be mathematical expressions of
relations between variables in a system.

2 Algorithm design
We can derive the value of y piecewise based on the domain of x in the mathemati-
cal model. The process is represented in the flowchart (Figure 1.43).

/ Tnput /

®® o 0O

]y=1looo | | y=2|00x \ y yzzlsox\

End

Logical decision, the result
is either hold or do not
hold. We can use yes and
no, or TRUE and FALSE, to
denote the result

Figure 1.43: Flowchart of the incentive system problem.

Note that determining which interval x falls in is a conditional statement, which is
a logical operation in computers that outputs either true or false. Following the
flowchart, we can describe the execution process as follows:
— Input x, if 5 <x <10, then y = 1000;
— otherwise, go to the no branch. If 10 < x <50, then y = 200x; otherwise y = 250x;
and
— outputy.

1.4 Development process of programs = 29

We can also write pseudo code based on the mathematical model as shown
in Figure 1.44. Note that we use indentation and alignment in pseudo code to indicate
different levels of logical operations. In this case, the entire no branch is indented.

Pseudo code description Program statements description
input x scanf("%d",&x);
if then 5<=x<10 M y=1000 if (x>=5 && x<10) y=1000;
else else
if then 5<=x<10 M y=200x if (x>=10 && x<50) y=200%*x
else y=250x else y=250%x;
output y printf("y=%f",y);

Figure 1.44: Pseudo code of the incentive system.

With the pseudo code, we can write the corresponding code. The syntax is intro-
duced in the chapter “Program Statements,” readers may take them for granted at
this stage. In programming, each step of algorithms needs to be implemented by
the corresponding code. By comparing flowchart with pseudo code, it is observed
that flowcharts are more intuitive and easier to understand. However, it is hard to
draw a flowchart. If we draw flowlines at our will, it will be difficult for others to
read and modify. On the other hand, pseudo code avoids the use of graphical sym-
bols and has a more compact form. It is easier to write and understand pseudo
code. Converting pseudo code into real code is also effortless. Hence, it is now used
worldwide to describe algorithms.

3 Code implementation
Now we may present the full C code following C grammar and program structure.
Readers can run this program in their own environment.

#include <stdio.h>
int main(void)
{
int x;
inty;
printf("Please input sales number: ");
scanf ("%d",&x);
if (x>=5 && x<10) y=1000;
else

30 —— 1 Introduction to programs

{
if (x>=10 && x<50) y=200*x;
else y=250%x;
3
printf("Reward is ¥%d\n",y);
return 0;

If we type 12 when prompted to input a sales number, we will see “Reward is ¥ 2400”
is displayed. This is consistent with our expectations, so the program is correct.

4 Testing
Although the program produces a correct result, we still need to test it thoroughly.
Data for testing need to be designed in advance. This is also called the “test case
design.” Except for input data, we also need to know the expected results. More de-
tails on testing are covered in the chapter “Execution of Programs.” When testing a
program, we type in the input data and compare the output with expected results. If
they are not identical, there are errors in our program. Test cases for this problem are
shown in Figure 1.45. It is clear that the program outputs 2500 when x =2 while we
expect to see 0, so apparently, something is wrong in our program.

Test cases

Input data Expected Test result
result
n:nill;e:r X Range of x | Reward y Con:g:l::is:on
2 x<5 0 Wrong
5 5<x<10 1000 Correct
10 10 £ x <50 200*10 Correct
20 10 < x <50 200*20 Correct
50 x=50 250*50 Correct

Figure 1.45: Test cases of incentive system program.

Further investigation suggests that we forgot to handle the case where x <5 when
designing the algorithm. After finding the error, we need to modify the algorithm
before we change the code. This example shows that algorithm designs can be opti-
mized if we consider test cases in advance.

1.4 Development process of programs =—— 31

Example 1.2 Looking up telephone numbers

Telecommunication companies use a phone number record table to record information of their
customers. Please write a program to inquiry about private phone numbers in a certain city or
company. Given a name, the program should output the corresponding number if it exists in the
record. Otherwise, the program should output “No such number” sign.

[Analysis]

The phone number record table is shown in Figure 1.46. To keep our description of data simple,
we call each row a data element, which consists of multiple data items such as customer name,
phone number, address, etc. A key is the data item that can identify data elements. In other
words, a key is a data item that can uniquely identify data elements. For example, a phone num-
ber is unique, but an address may not be so.

CUStOmeR Cellphone number | ID card number |Address
hang
Zhangl 138%**** 6101131980%** | ¥ element
| Li2 | is2wrRxx | 6101131981%%* | *xx |
Wang1 139%*k%x 6101131990%** | ***
Zhang2 139% k%% 6101131972%** | *xx
Li1 188 kxkx 6101131976%%* | *xx

A
Y

Ke

Figure 1.46: Phone number record table.

Solution 1: Sequential structure and sequential search
The model, design, and implementation are shown in Figure 1.47.

@ Objects involved Customers and their data items

‘ Relation between objects Data elements listed sequentially

Elements are
listed in the order.
of registration

Design

- Data structure design: stored as is
+ Algorithm design: look for certain data item one by one, output it °oo
Coding
= implementation of “Search” given in chapter “Arrays”

Figure 1.47: Sequential search solution for phone numbers.

When building the model, we notice that objects in this problem are customers and their data
items. Objects are arranged sequentially, which means they are arranged in the order of regis-
tration and not sorted.

32 — 1 Introduction to programs

The design step consists of data structure design and algorithm design. Data structure design
controls how the table is stored and accessed in computers. Algorithm design determines how to
look up phone numbers. In this case, we query the “customer name” data item sequentially. If a
value hits, the corresponding “phone number” data item value is returned; otherwise, “No such
number” sign is returned.

Readers may refer to “Search” programs in chapter “Arrays” for the implementation of this
algorithm.

A search program that looks for a target record one by one in the table is called “sequential
search.” The number of comparisons needed is related to where the record locates in the table.
When the table is large, using a sequential search is time-consuming. To improve efficiency, we
can rearrange the table so that data elements are stored in alphabetical order of customer fam-
ily names.

Solution 2: Ordered structure and binary search
In an ordered structure, the customer names are in alphabetical order. We can perform a binary
search in such a table as shown in Figure 1.48.

Customer cBligiems ID card number Address
name number

Lil 188****kx 6101131976*** *kk
OftLi2 152%**xx 6101131981 %** *xx
Data elements are Wang1 139%kcxck 6101131990%** Hokok
listed in Wang2 e ittt 6101131986%*** *okk
alphabetical order Zhang1l 138**xxx 6101131980%*** %k
of customer family Zhang2 139%**x% 6101131972%** FRE

Binary search —

Compares the middle value in a sorted sequence with a given key,
If the key is larger, then it must be in the second half of the sorted sequence;
Otherwise it is in the first half.

The length of the sorted sequence is thus cut to half, we then compare the new middle value
with the given key again and repeat this process.

Figure 1.48: Ordered structure and binary search.

The entire solution is shown in Fig. 1.49. In the modeling step, objects are still customers and
their data items; objects are now arranged in the order of a data item since the table has been
sorted alphabetically. We use the same data structure as before, while we opt in binary search
to find the record. Implementation can be found in the chapter “Arrays” where we will cover
code for binary search.

If the table is huge, we can also use indexed structure and layered search for higher effi-
ciency. The table of contents in a book is the most common indexed structure.

Model) Opjects involved

Relation between objects

1.4 Development process of programs =—— 33

Customers and their data items

Data elements listed in an order

search, output it

Data structure design: stored in alphabetical order
« Algorithm design: look for certain data item using binary

@ implementation of “binary search” given in chapter “Arrays”

Figure 1.49: Binary search solution of looking up phone numbers.

Solution 3: Indexed structure and layered search
We can put records with the same family name together and create an index table of family
names, and the index table needs to be associated with the original table as shown in Figure 1.50.

Data table
Customer | Cellphone ID card number | Address
Index Table name number
. . L1 188 xxxx 6101131976*** | 0x2000
Famlly Address in Quantity L2 152%* %% 6101131981 **x* *okk
name | data table R
oL 000 " 4 5{zhangt 138%%%*% | 6101131980%** | 0x4000
zhang | 0x4000 T [Zhang2 139%***% | 6101131972%%% | **x
Wang 0x6000 e
Wang1l 139%**** 6101131990*** | 0x6000
------ Wang?2 138***** | 6101131986%** Hkok

Figure 1.50: Index table.

The entire solution is shown in Figure 1.51. In the modeling step, we buildup the index table and
rearrange the original table accordingly. In the data structure design step, we need to find a suit-
able way of data organization so that we can store these two tables into computers. In the algo-
rithm design step, our algorithm should look up a family name in index table first and then look
up full name based on the address and length we obtain from the index table.

Customer family names and corresponding

Objects involved Index table addresses in data table
Data table Customers and their data item
Relation between Index table Data elements listed in an order
objects Data table Data elements listed sequentially

Design

- Data structure design: index table storage

Algorithm design: look up in index table first, then in data table

Figure 1.51: Indexed search solution of phone numbers.

34 —— 1 Introduction to programs

1.4.4 Flow of program development

We should now have some general knowledge about solving practical problems by
programming after studying the examples above. Usually, the main steps of prob-
lem-solving with computers are as shown in Figure 1.52. The rectangle symbol in
the figure is a phase or result in the problem solving process, whereas the ellipse

symbol represents a step.

Algorithm
design

Algorithm

Program design
Source code

Compilation
and linking

Executable

Figure 1.52: Flow of program development.

Test cases

Warnings or errors

Code

modification

The full flow contains:

quired functionalities.

Modelling problem —

Data structure problem —

Algorithm problem

Program problem

Execution

Wrong

‘ Correct

‘ Test results F/’[End]

3

Practical problem: It needs to provide known conditions and descriptions of re-

Abstraction: First, extract functionalities and information from the problem de-

scription. Then, look for relations between these data and buildup a mathematical
model. Test cases are also designed in this step. By building a model, the problem
is converted into a form that computers can “understand” and “accept.”

Data analysis: We analyze what data are contained in the information pro-

vided, how they are correlated, and how they can be stored in computers.
Based on our analysis, we designed proper data structures. While this book fo-
cuses on fundamental topics in programming, such as algorithms and pro-
gramming concepts and methods, readers can refer to “Data Structure” courses
for sophisticated data structure designing.

1.5 Introduction to C programs =— 35

— Algorithm design: We formalize a solution to the problem based on the func-
tionalities required.

— Program design: We “translate” the algorithm we designed into code to obtain
source files.

— Compilation and linking: Programmers use compilers to translate code into ma-
chine code that computers can execute. If errors or warnings exist, we need to
modify the code until it is successfully compiled and linked.

— Execution: Executable programs will produce results after executed in a run-
time environment.

— Testing: We compare the results of our program with test cases. If they are
identical, we have successfully solved the problem; otherwise, we need to
debug to find where the defect lies. Once the mistake is found, we return to the
corresponding phase or step to revise our solution and start over from there
until we obtain the correct results.

1.5 Introduction to C programs

We are going to introduce C programs in this section briefly.

Computers solve problems using programs, which consist of data, processing,
and results. The processing part is done through programming. Programming is
similar to writing, where we carefully select words to use, arrange them into para-
graphs, and organize contents into chapters. If we compare program statements to
words, flow structure would be paragraph structure. Consequently, functions and C
program templates would be chapter structure as shown in Figure 1.53.

Program
statements

(Wording)

Implementation
of processing
process

Flow structure (Paragraph structure)

Modularization
(functions)

(Chapter structure)

Structure of C
programs

Lo

Figure 1.53: Implementation architecture of processing process.

36 = 1 Introduction to programs

1.5.1 Sample C programs

Example 1.3 Sample program 1
The program shown in Figure 1.54 displays “hello world!” on screen.

01 // Display hello world on screen

02 #include <stdio.h>

03

04 // Program starts from main function
05 int main(void)

Line numbers are used
to read programs
conveniently, they are
not parts of the \
program

/1

{
07 printf("hello world!\n"); o O ()

09 return 0;
10 } // main function ends

‘Functionality of program: display hello world on screen

Figure 1.54: Sample program 1.

1 Functions

A segment of code that has its own functionality is called a function in C. Code be-
tween lines 5 and 10 in Figure 1.55 is a function, which we call the main function.
The structure of C programs contains the main function and child functions al-
though there is no child function in this example. The curly brackets on lines 6 and
10 are used to wrap the body of the main function. They mark the beginning and
the end of the main function. In programs, a line that ends with a semicolon is
called a statement.

01 // Display hello world on screen
02 #include <stdio.h>

04 // Program starts from main function

05 int main(void)
06 {

07 printf("hello world!\n");

\(
08 K Structure of C
p

09 return 0; .
. . rograms consists
10 } // main function ends of main function

0O Q “and child functions

BN
A segment of code that has its own functionality is called a function in C. ‘

Figure 1.55: Functions in sample program 1.

1.5 Introduction to C programs =— 37

2 Comments

In Figure 1.56, the sentence that starts with // on line 1is a “comment.” A comment
is not a program statement. Note that it is not terminated by semicolon either.
During compilation, comments will be ignored and not be translated into machine
code. Comments are used to provide extra information about the code. As program
statements are abstract expressions, other programmers may not fully understand
them without explanations. Even the author may become confused if the code was
written a long time ago.

01 // Display hello world on screen

02 #include <stdio.h>

03 - S
04 // Program starts from main function — ~ 7 \
05 int main(void)

Experience shows that

06 { percentage of effective /&
07 printf("hello world!'\n"); comments among all ’
08 comments should

09 return O; normally be above \/
10 } // main function ends Ne 20%. /

ST

Character sequences wrapped by /* and */, or character sequences
beginning with //. They are used to explain meanings of program
statements

Figure 1.56: Comments in sample program 1.

Good habits in programming

Normally, at least 20% of all comments written should be effective comments. The general rule
of thumb is that effective comments should help us understand the program. Comments must
be accurate, simple, and easy to comprehend.

3 Library functions and file inclusion
In Figure 1.57, printf() on line 7 is a printing function. In this case, it prints out “hello
world!” onto the screen. The implementation of printf() is rather complicated, but
programmers use it a lot. Hence, programs like printf() are implemented in advance
and collected in a system library. They are called “library functions.”

At line 2 is a preprocessing directive in C, which denotes “file inclusion.” We
can include an entire source file in our source code so that we can use it in our pro-
gram. stdio is short for standard input and output.

38

—— 1 Introduction to programs

01 // Display hello world on screen

02 #include <stdio.h> —

03
04 // Program starts from main function
05 int main(void)

06 {
Library function 0 printf("hello world!\n");
gg return 0: #include <stdio.h>
10 } // main function ends Include directive #include

Figu

m Header file stdio.h

Include contents of another source file in current source file, i.e. include
other files in current file

Header file

Each standard library function has its own header file, which contains its
definition. Programmers can also define their own header files.

re 1.57: Library functions and files inclusion in sample program 1.

Definition of printf() is done in header stdio.h. Programmers can use printf() by

using #include. printf() prints contents between quotation marks inside parenthe-

ses

ﬂKn

No
()}
@

€)

onto the screen. Programmers can fill in characters as needed.

owledge ABC Library functions, header files, and file inclusion

Library functions: Library functions are not part of the C language. It is compilers that collect
a series of programs that implement frequently used functionalities and put them into a sys-
tem library. Users can include corresponding definition files (header files) to use these pro-
grams. In other words, we can use library functions by using “file inclusion” commands.
Building libraries provides a collection of reusable functions that can be shared by other pro-
grammers and programs. For example, multiple programs may need the same helper functions.
We may put them into a library and link them into our programs with a linker, without copying
and pasting their source code into each program. This simplifies code writing and maintenance.
Header files: The purpose of using header files is to put code shared by several C programs
into one file so that the overall code size is reduced. Header files have extension “.h.” Each
library function needs a corresponding header file that contains the prototype of the function.
To use a library function in programs, one must include the header file with the prototype of
that function. Header files in C contain prototypes of every function in the standard library.
Refer to Appendix C for common library functions in C.

File inclusion: File inclusion replaces include statements with the included file so that it is
linked with the current file to form a single source file.

Usage: #include <filename> (or #include “filename”)

tes:
The included file can be provided by the system or written by programmers.
One include statement can only include one file. Use multiple include statements if multi-
ple files are needed.
If the file name is surrounded by angle brackets, compilers will look for the file in a system
specified directory. If it is in quotation marks, compilers will first look for it in the directory
of the current source file. If no such file is found, compilers proceed to search it in the sys-
tem directory.

1.5 Introduction to C programs =— 39

Example 1.4 Sample program 2
This is a program with multiple functions. The main function asks for two integers from key-
board input, calls child function to calculate the maximum of them, and displays results onto
screen.

The program is shown in Figure 1.58. main() receives two integers a and b from the input,
calls child function max() to compute the maximum, stores result in ¢, and outputs to screen.

01 #include <stdio.h> //File inclusion

02 int max(intx, inty); //Function declaration or function prototype
03 intmain(void)

04 {

05 inta,b,g //Variable definition
06

07 scanf(“%d,%d",&a,&b); //Input integer a, b from keyboard

08 c=max(@,b); //Call max() to compute the larger between a and b and store in c
09 printf("max=%d",c); //Output value of c to screen

10 returnO;

113

12

13 int max(intx, inty) //Information function max needs to handle is two integers x, y

14 { . =
15 intz; Child function

16

17 if (x>y) z=x; //Compare x and y, use z to store the larger one
18 else z=y;

19 return(z); //Tell caller the value of z

20 }

Figure 1.58: Sample program 2.

Except for the main function, there is also a child function max() in this program. Similar to
main(), the function body is also surrounded by curly brackets. The main function lies between
lines 3 and 11, whereas child function max() is located between lines 13 and 20.

On line 7, inputs from the keyboard are stored into variables a and b. scanf() is a library func-
tion used to receive input from the keyboard and is defined in stdio.h as well. On line 8, child
function max() is called to calculate the maximum of a and b. The result is stored in ¢ and output
to screen on line 9.

The only thing that child function max() does is to distinguish the larger number in its inputs.
The input is obtained from x and y in the parentheses on line 13. This is the convention of how
child functions get input data. The calculation result z is returned to main() through return the
statement on line 19.

Main and child functions complete tasks that are relatively independent of each
other. They work together through function calls to perform complex functionalities.

1.5.2 Structure of C programs
The normal structure of C programs is shown in Figure 1.59. Preprocessing state-

ments are at the beginning of the program. The include directive seen earlier is also
a preprocessing statement. There must be a main function in C programs. It is the

1 Introduction to programs

40

Suonduny
PIIYo 10W Jo
019z 8q Ued 818y

|22

_ uonouny ybnoaya
pa302uu0d

aJe suolpung

'sweiSold D JO 21N1INIIS :65°T a1nS14

uonduNy plIyd

{
¢ Apoqg uoiduny
}

(3s1] 41932wWeled) uj adA} uoilpuny

—_

uoRdUNy PlIYD

O 0o

1(z) uanyau

A=z as|o

Ix=z (A<Xx) 4l
zyur 3
(Aur “x jur)xewaul

¢ Apoqg uoipuny
}

(3s1] 4@dPweded) 14 2dAy uonduNn4

uopouny
ulew auo Ajuo
pue auo s| alay |

uoiouNy ulep

7

{
‘0 udnyad
(2", p%=xew,)aund
(a3'er’,p%’P%.)sueds
o'gq'equr ¥
(proa)utew yul

¢ Apog uoipuny
}

(' proa)urew yul

<y oIpIs> apnpul#

SaAIDa.1p Buissadoddald

S910N

9|dwex3

welboid jo sjusuodwo)

1.5 Introduction to C programs =—— 41

entry point of execution. There can be zero or more child functions. Functions are
connected through function calls.
More details of functions are covered in the chapter “Functions.”

1.5.3 Coding style requirements
As we need to follow format conventions when writing articles, we need to follow

some guidelines when writing programs. The purpose is to make our code less con-
fusing and more readable. Detailed requirements are shown in Figure 1.60.

01 #include <stdio.h> m
02 int max(int x, inty); //Compute the larger of two numbers
03 int main(void) » Enough comments
04 * Align {}
05 intab.c; //Variable definition + Good indentation
06 | + Use newlines when approriate
07 scanf(“%d,%d",&a,&b); //Input integer a, b from keyboard
08 c=max(a,b); //Call max() to compute the larger between a
//and b and store in c

09 printf(“max=%d",c); //Output value of c to screen
10 return 0;
11 [y
12 [
13 int max(int x, inty) //Information function max needs to handle is

M //two integers X, y
14
15 int z;
16
17 if (x>y) z=x; //Compare x and y, use z to store the larger one
18 else z=y;
19 return (z); //Tell caller the value of z
200y

Figure 1.60: Coding style requirements.

C programs use spaces and newlines to split lexical terms. Special characters are
used to identify syntax. For instance, semicolon represents the end of a statement.
The flexible format makes a flexible coding style possible.

When writing programs, we should follow these guidelines on coding style:

— Enough comments: We need to provide adequate and precise comments to ex-
plain the functionalities of programs and the meaning of statements. At the be-
ginning of a program, we should briefly introduce the functionality of this
program. Critical variables should be commented with their usages. Our sole
purpose in doing these is to improve the “readability of program.” Programs
with good readability allow users to understand them easily. Readable code
also allows authors to recall how their programs work when they review them
after a while.

42 —— 1 Introduction to programs

— Indentation: Users should choose an indentation style at their will and use it
consistently in their programs. Tab key can be used for this purpose. Tab key is
the “tabulator key” on keyboards. Pressing tab usually inserts four spaces in
programs. The main difference between the tab key and the space key is that it
indents more efficiently. However, the size of tab may vary in different editors,
therefore we need to be careful when using it.

— Alignment of {}: There could be multiple pairs of curly brackets in a function.
Each pair should be aligned vertically. Together with indentation, it makes our
programs easier to read as the structure is clearer and the scope of statements
is more obvious.

— Appropriate use of newlines: We can use newlines to separate different func-
tionality blocks, such as variable declaration, variable assignment, and execu-
tion statements. This creates a better visual effect and highlights the structure
of the program.

Knowledge ABC Programming trivia
The relation between software and program:
It is quite common to hear people say “programming is writing software.” However, software
and program are two different concepts. Software should contain the following elements:
— Collection of commands or programs that can satisfy specific requirements when executed.
- Data structures that allow the programs to process information reasonably.
— Documents that describe requirements and usage of the programs.

Hence, we may conclude that software = program + data + document.

1.6 Summary

Concepts related to programs and their expressions are shown in Figure 1.61.
We can use flows to describe a series of operations in order.
Flowcharts are intuitive, whereas pseudo codes are convenient.
Sequential, branch, and loop are the three basic logical structures of flows,
And they are the building blocks of programs.

To solve a problem with computers, we need to extract data and functionalities.
Data are processed to obtain the solution.

Data can be received, stored, computed, and output, each operation has its own
methods.

Description of the problem-solving process is called an algorithm.

We need testing and debugging to verify our results.

1.6 Summary =— 43

Sequential
Logical Branch: double branch, multi-
structure branch

Loop: while loop, do-while loop

Flowchart: intuitive, hard to draw, few restriction on
flowline direction

Common
expressions

Pseudo code: text description, easy to write, suitable for
top-down progressive description, easy to convert to
code

- Design procedures in advance, execute
Characteristics automatically

Data: input/output, storage and access,
computation

Processing: description, implementation

Result: pre-execution tasks, testing and
debugging

!

Automatic flow

Modelling: extract data and functionalities
from problem

D | t Design: data structure design, algorithm
| | Developmen design
process . - "
Coding: code implementation, program
execution

Testing: testing and debugging

Function: main function, child function, library
function

| | Structure of C
programs

Header file, preprocessing (file inclusion, etc.)

Statements, comments

Coding style

Figure 1.61: Concepts and expression of programs.

Programs are flows that can be executed automatically by machines, and we
need to write code for them.

Writing code is like writing an essay, and we need to be deliberate on every
detail.

Program statements are like words and comments are explanations.

Function modules are paragraphs and we build them up to form programs.
Referencing others’ work, appellation, and whether we include a paragraph is
done by preprocessing.

Sometimes spaces, sometimes newlines, we need them to achieve a good cod-
ing style.

44

—— 1 Introduction to programs

1.7 Exercises

1.7.1 Multiple-choice questions

@

@

(4)

)

(6)

@)

[Concept of programs]
A command sequence that is designed to solve a particular problem is called a ().
A) Document B) Language C) System D) Program

[Concept of programs]

Which of the following statements is correct? ()

A) Algorithm + data structure = program B) An algorithm is a program

C) A data structure is a program D) An algorithm consists of data structures

[Concept of programs]

Which of the following statements is wrong? ()

A) Computers can recognize programs in hexadecimal code.

B) A collection of commands that can be executed sequentially is called a
“program.”

C) A “program” is a language we use to “communicate” with computers.

D) Computers can recognize machine language code in 0’s and 1’s.

[Concept of software]

A piece of software consists of ()

A) Algorithm and data B) Program and data

C) Program and documents D) Program, data, and documents

[Concept of debugging]

What is the purpose of debugging? ()

A) Diagnosing and correcting errors in programs
B) Finding as many errors as possible in programs
C) Finding and correcting all errors in programs
D) Determining the nature of errors in programs

[Concept of data structure]

A data structure consists of three components, namely ().

A) Storage structure of data, relations between data, and their representations.
B) Logic structure of data, relations between data, and their representations.
C) Logic structure of data, relations between data, and their storage structure.
D) Logic structure of data, storage structure of data, and operations on data.

[Steps of problem-solving with computers]

There are four major steps (D~@) in the process of problem-solving with com-
puters. Please determine the correct order of them. ()

(D Debugging (@ Problem analysis (3 Algorithm design @ Coding

A) D@B@ B @BOL@® @@L D)E®@@®D

(8)

)

1.7 Exercises = 45

[Flowcharts]

A flowchart is a tool to describe algorithms. Standard flowcharts are con-
structed by a few basic shapes. Which of the following shape stands for input/
output? ()

A) Parallelogram B) Rectangle C) Ellipse D) Diamond

[Programming languages]

Which of the following statements about programming languages is correct? ()

A) High-level language is a natural language.

B) Cis independent of platforms. C programs are platform-independent.

C) Machine languages are closely related to computer hardware. Programs in
machine languages have better portability.

D) Programs must be translated before being executed on computers, regard-
less of which language they are written in.

(10) [Programming languages]

Which of the following statements is wrong about the characteristics of C? ()

A) C has both merits of high-level languages and low-level languages and is
highly efficient.

B) We can use C to write applications and system software.

C) Portability of C is poor.

D) Cis a structured programming language.

(11) [Program structure]

Which of the following statements is correct? ()

A) C program must use main as the name of its main function, starting from
which the program is executed.

B) Users can use any function as the main function, starting from which the
program is executed.

C) A C program is executed starting from the first function in the source file.

D) We can use different spelling forms of main (such as MAIN and Main) in the
main function

(12) [Control structure]

Which of the following statements is wrong? ()

A) Programs using the three fundamental structures can only solve simple
problems.

B) A structured program is constructed by the three fundamental structures,
namely sequential structure, branch structure, and loop structure.

C) Cis a structured programming language.

D) The idea of modularization is recommended in structured programming.

46 =— 1 Introduction to programs

(13) [Compilation and linking]

Which of the following statements is wrong?

A) Every executable statement and nonexecutable statement in a C program is
converted to a binary machine instruction.

B) A C program must be compiled and linked to generate an executable binary
machine instruction file.

C) A program written in C is called a source program. It is stored in a text file
as ASC II code.

D) A source program in C is converted into an object program after
compilation.

(14) [Grammar rules]
Which of the following statements is correct? ()
A) C program must be stored in a single program file.
B) We can only write one statement in a line.
C) Comments in a C program must be at the beginning of the file or after
statements.
D) The syntax of C is flexible. We can write a statement across multiple lines.

(15) [Grammar rules]
Which of the following statements is correct about comments in programs? ()
A) Comments must be written between /* and */ or after //.
B) A comment must be in the front of or after the statement it explains.
C) We can write a comment in another comment.
D) Errors in comments lead to compilation errors.

(16) [Grammar rules]
The termination mark of statements in Cis ().
A) , B) ; Q) - D) .

2 Algorithms

Main contents
— Concept of algorithms
— Representation of algorithms
— Effectiveness of algorithms
— Universality of algorithms
— Comprehensiveness of algorithms

Learning objectives
— Know concepts related to algorithms
— Know the characteristics of computer algorithms
— Know representations of algorithms
— Know general procedures of algorithm design
— Can design algorithms in top-down stepwise refinement method

Donald Ervin Knuth once said, “Programs are like blue poems.” If that is true, then algorithms
are the soul of these poems.

2.1 Concept of algorithms
2.1.1 Algorithms in practice

Let us take a look at a real-life algorithm: ticket purchasing at the ticket office. When
there was no internet, Mr. Brown had to buy train tickets at ticket offices when he needed
to take business trips. The main procedures of purchasing tickets are shown in Figure 2.1,
in which the key information includes the date, destination, train number, price, and
fare. In fact, everything is done under certain conditions and through performing a se-
ries of operations. Algorithms are methods and procedures used to solve the problems.

Purchasing tickets through ticket office

Step 1: The passenger provides information on trip date, destination, etc.
Step 2: The staff finds trains available on that day
Step 3: The passenger chooses a train and determines number of tickets to buy
Step 4: The passenger pays the fare and collects tickets

Algorithms are
methods and
procedures used to

solve problems.

Figure 2.1: Flow of purchasing tickets at the ticket office.

Nowadays, Mr. Brown can purchase tickets easily online. The main steps of online pur-
chasing are shown in Figure 2.2. Compared with offline purchasing, online purchasing
uses the same set of crucial information, except that we are dealing with computer sys-
tems instead of a human.

https://doi.org/10.1515/9783110692327-002

https://doi.org/10.1515/9783110692327-002

48 =—— 2 Algorithms

| Purchasing ticket online

Step 1: Open the website

Step 2: Click “Search” in search page, input trip date, destination, etc.
Step 3: Click “Book” in ticket booking page, choose a train to book ticket
Step 4: Log into system (if you have an account)

Step 5: Confirm passenger information, seat class, and submit the order
Step 6: Pay ticket fare online

Step 7: Choose ticket collection method

Computers can
partially simulate
human minds. They
are faster and more
accurate.

Figure 2.2: Flow of purchasing tickets online.

Computers can partially simulate human minds. They can complete some tasks
for our brains in a faster and more accurate manner. They liberate us from dull men-
tal work. Nonetheless, they cannot, at least for now, solve problems on their own.
Operations that computers can complete are determined by humans in advance.

Another example is setting up a washing machine. We set up a washing pro-
gram and the machine executes corresponding operations after being started as
shown in Figure 2.3. These operations that can be executed automatically by ma-
chines are programs. Note that programs are operations executed by programs, but
algorithms are procedures humans or machines use to solve problems.

| Setting up a washing machine

» Medium water level

» Soak for 20 minutes

+ Wash for 20 minutes

» Rinse once for 5 minutes
+ Spin-dry for 3 minutes

We can configure the
steps in advance, then
machines can
automatically complete
these operations once
started.

Figure 2.3: Setting up a washing machine.

2.1.2 Definition of algorithms

Through these examples, we should roughly understand what algorithms are by
now. Algorithms can be considered as an entire solution consisting of basic opera-
tions and order of operations. We may also deem algorithms as finite, definite com-
putation sequences designed under specific requirements to solve a certain type of
problem. Definition of algorithms is given in Figure 2.4, in which computer algo-
rithms mean algorithms that can be executed by computers. In other words, steps
in computer algorithms are intentionally designed to conform to computer charac-
teristics: operations should be simple to be executed repeatedly. Problem-solving

2.1 Concept of algorithms = 49

An algorithm is a step by step method to solve a problem or complete a task

- S Not all methods of
Computer algorithm solving problems are
A computer algorithm is an algorithm that can be executed by computers. suitable for computers

Figure 2.4: Definition of algorithms.

with computers has limitations as well. A solution feasible in daily life may not
work on computers, that is, not all the methods we use to solve problems can be
used by computers. We will elaborate on this topic in Section 2.3.

Characteristics of computer algorithms are summarized from the perspective of
computers. Computers receive input data, execute certain operations, and produce
results that fulfil functionality requirements. Hence, we consider input, functional-
ity, and result to be the three key elements of algorithms as shown in Figure 2.5.

Three key elements of algorithms

Algorithm * Input

+ Functionality

- Resul

Algorithms receive a
set of data to process
and produce results
that fulfill functionality
requirements.

Figure 2.5: Key elements of computer algorithms.

Example 2.1 Example of computer algorithms: price guessing game

The TV show Number Guessing has the following rule: participants can obtain a product if they
can correctly guess its price in the given time. The host will give hints to participants after a
guess, telling them whether it is “too high” or “too low.” Suppose the price of a product lies in
the interval 0-2000 (the price is an integer), what strategy should we use to guess the answer
in the shortest time on average?

[Analysis]
There is a classic solution to this problem called the “binary search.” To use binary search, the
search interval has to be sequentially increasing. The data in this game are prices that sequen-
tially increase in the given interval so that we may apply binary search.

To be more specific, we should use a strategy called “guess the middle value” in this game as
shown in Figure 2.6. We can see that there are inputs and outputs in this algorithm. Also, each
step is feasible and we can find out a solution in finite steps.

50 — 2 Algorithms

. Guess the middle value

Step 1: guess the middle value T of the price interval (1000 initially)

Step 2: based on the hint given by the host, determine the correct price interva

°0

» Too high: next price interval is (1, T) o

« Input and output
« Method is feasible
« Finite steps

» Too low: next price interval is (T, 2000)

» Correct or time is up: game ends

Step 3: Repeat step 1 and 2 until game ends

Figure 2.6: Using binary search.

2.1.3 Characteristics of algorithms

We can now summarize the characteristics of algorithms as shown in Figure 2.7.
Note that an algorithm may accept zero input in some cases. For instance, when
solving an equation, an algorithm can find out the solution following each step of
the algorithm and given conditions without any input data.

Characteristics of algorithms

Input: have zero or more input

Output: produce result that fulfills functionality requirement

Finiteness: an algorithm should contain finite steps

Definiteness: each step of an algorithm should be precisely defined without ambiguity
Effectiveness: each step of an algorithm can be done effectively and generate certain result

Figure 2.7: Characteristics of algorithms.

2.2 Representation of algorithms
2.2.1 Top-down stepwise refinement method

Algorithms describe the steps and methods used to solve problems. Given a complex
problem, we can use a global than local strategy to describe it in a top-down manner.
For example, some daily activities of Mr. Brown are illustrated in Figure 2.8. In differ-
ent time periods, each activity can be divided into multiple steps or subactivities.

When describing a problem, designers need a comprehensive understanding of
the system to be designed. With this in mind, they can divide the system into several
parts, do the same to each subsystem, and repeat this process. This is the standard
way of program development, “top-down stepwise refinement” method as shown
in Figure 2.9. We should not try to complete a program in one attempt. Instead, we
do this in multiple steps, each implementation being more detailed than the last.

51

2.2 Representation of algorithms

Jeulwas

NI EEIN

_ '012 ‘syodad 931IM ‘S904Nn0Sal J0) X00| ‘s|iews a|puey :buyaom _A|

WwI00J4sse|d ul yoea)] ‘ssed ayj Joj atedaud :buiyoes | _A|

11 10}

J1em 03 dojs snq 03 06 :snq 9;1INys axel |5

Jed ay3 aAlp ‘abeseb 03 0b :aAlIQ _A|

‘umoig I\ 40 a1 Ajreq :8'z ansSyy

3|Npayds siy uo
Buipuadap sysej
siy 219|dwo)

bunesy

leujwas
Budop
buiyoea |

3|Npayds siy uo
Buipuadap snqg
3mnys buniey

1o Buiaup asooy)d

2MNys |00yds

EYNITq]

_ SMaU AL YdJem ‘1Sejealq SAeH T[

_ "232 ‘ooe) ysem ‘Uy3e91 ysnig _A|

uondiiosap
umop-doy

Oo-|

039 ‘seoys ‘sayjo|d uo ind _T

‘|edo] uayy [eqo|D

isepjealg
dn ysem
dn axem

il

Commute School

Morning

52 — 2 Algorithms

Top-down stepwise refinement

Don't try to write executable program in one attempt. Instead, we achieve this
step by step and make improvements in each step. The algorithm written in the
first step is highly abstract, while the one written in the second step is more

detailed...... Finally we can write executable program in the last step. e @

Standard method
of program
development

Figure 2.9: Method of program development.

Knowledge ABC Methods of program development

1. Structured programming

Structured programming is a design principle that concentrates on module functionalities and
process design. The concept, being a milestone in the history of software, was first proposed by
E. W. Dijkstra in 1965. It advocates the use of a top-down stepwise refinement method of pro-
gramming. Every program should be constructed using the three basic control structures,
namely sequential, decision, and loop structure. Structured programming aims at improving the
readability of programs.

2. Top-down and stepwise refinement

When programming, we should consider outline before details, global objectives before local
objectives. Instead of bothering with numerous details, we should design our system starting
from a global goal and proceed gradually. For complex problems, we should also set some sub-
objectives to achieve a smooth transition.

It seems tedious to program in this way, but it has many merits. It makes programs more
comfortable to read, write, debug, maintain, validate, and verify. It brought a revolution to pro-
gramming and soon became standard practice, especially in software engineering, which
quickly developed later.

3. Modularized programming

A complex problem can usually be divided into several simpler problems. Modularization split
the objective of a program into subobjectives that are easier to achieve and repeat the split pro-
cess. Each subobijective is called a module.

2.2.2 Example of representation of algorithms
Let us consider an example of describing algorithms using pseudo code.

Example 2.2 Scoring in competitions

In TV karaoke shows or diving competitions, scores are computed by discarding the highest and
lowest scores from the judges and computing the average of the rest. The main steps are shown
in Figure 2.10, where some steps need further processing, for example, “discard the highest” and
“compute the sum.” We shall cover the details now.

2.2 Representation of algorithms =— 53

. Scoring by judges

Some steps need

Step 1: each judge presents their own score further processing
Step 2: find the highest score to obtain result
Step 3: find the lowest score

Step 4: discard both the highest and the lowest score

Step 5:
Step 6:

compute sum of the rest
compute average

Figure 2.10: Flow of scoring in competitions.

1 Finding maximum
Given n numbers, find out and display the maximum.

[Analysis]
We will focus on finding the maximum. Without loss of generality, we suppose n = 10.

Unlike how it appears, this problem takes several steps to solve. The step-by-step solution is
given in pseudo code as shown in Figure 2.11. Top-level pseudo code is a brief description of
the problem. The first refinement indicates input, processing steps, and output. As it is already
trivial to write actual code after the second refinement, we no longer need further refinement.

Top level
pseudo code First refinement Second refinement Split a complex task
description into smaller and

o Counter N = 1; simpler sub-tasks:
I:agstthe firstinput as 1050t a number x; tOP'd?_W” stepwise
9 Largest = x; Q) refinement
When N < 10;

Input 10 numbers, | Input the rest 9

numbers and compare
with Largest, update
Largest with the larger
in each comparison

find the maximum

Output Largest

Input a number x;

If (Largest < x) Largest
=x;

N increases by 1 ;
Output Largest ;

Figure 2.11: Finding maximum.

We solved the problem by splitting a complex task into simpler tasks. This is what
we call the “top-down stepwise refinement” approach.

2 Computing sum of scores
Given keyboard inputs of some positive integers, calculate and display the sum of
them. Suppose that the user uses “~1” to mark the end of the input data.

[Analysis]
Pseudo code of the solution is given in Figure 2.12. Note how we make the solution more de-
tailed with each refinement until we can quickly write out code.

54 — 2 Algorithms

Top level p§el:|do First refinement Sgcond
code description refinement
Input a number Input a number x;
: let sum =0
Input a series of . ; w_qn
e If the input number is not “-1 While (x not equal
positive mteggrs, 1. Add the input number to -1 (q
computer their sum. to -1)

N1 dt K existing sum _ ;
-lrisused to mark | 5 - continue inputting data sum =sum +X;

the end of all input Input x;

Output result Output sum

Figure 2.12: Computing sum of scores.

The input of this problem is x. The required functionality is to add x to sum, whereas x is not the
ending mark. The output is the sum.

The actual code of these two problems can be easily written after learning the syntax of C in
chapter “Program Statements.”

Example 2.3 Sorting poker cards
When playing poker, we want the cards to be sorted in order after we have drawn all cards. We
may sort our cards as follows. Suppose we draw a 9 followed by a 3. As 3 is smaller than 9, we
put it in front of 9. We then draw a 4 and put it behind 3 because 4 is larger. We then draw a 2
and put it in front of 3 and so on.

This sorting method is called a straight insertion sort in classic sorting algorithms. The basic
idea behind it is to split the list to be sorted into two lists: one is the sorted list and the other is
the list to be sorted. We then insert every single element from the list to be sorted into the
sorted list until there is nothing left. Figure 2.13 shows an example of straight insertion sort. In
step 3 of this example, the sorted list from step 2 contains 3 and 9 and the element to be in-
serted is 4. Because 4 is between 3 and 9, the new sorted list should be “3, 4, 9.” There are
eight elements in total, so we need seven such operations.

Step Sorted list List to be sorted
@ 9 9| 3|4(2|6|7|5]|1
@ 319 3|4|2|6|7|5]|1
® 314|9 4| 2| 6|7|5]|1
® 2131419 2| 67|51 |
=
@ 2 3 416 9 6|7 5 L /This insertion
® 234679 7|51 ~ is done in the
@ > 3 4 5 61 71 9 5 1 ux"O‘%\ original
memory space
121345679 1 |
Data to be
inserted

Figure 2.13: Straight insertion sort.

When we start sorting, we may consider the first element as the first sorted list. Note that the
implementation operates on the original memory space of the number list. In other words, we do
not need temporary space for the lists. Instead, it suffices to use extra space of only one element.

2.3 Effectiveness of algorithms =— 55

Next we analyze the process of inserting an element carefully. Let us take steps 3 and 4 from
Figure 2.13 as an example as illustrated in Figure 2.14. The sorted list now has “3, 4, 9” and the
element to be inserted is 2. As previous element 9 is larger than 2, we need to move 9 to its
right. However, it will overwrite the element that is already in that position, namely 2. To avoid
this, we need a “sentry” that records the element to be inserted. After moving 9, we also need
to move 4 and 3. Finally, we may put 2 into the first position.

Data to be
Sorted list inserted
(O Compare numbers in

sorted list with the 3419

“sentry”, move them 314
back if they are larger

3
@]Insert data }—\ 21304

To prevent data to be inserted
from being overwritten by moving
other data, we use temporary
“sentry” unit to record it

w
N
vlo|lo|v|N

N

Figure 2.14: Insertion process of one element.

We can write out pseudo code for the algorithm based on the description above as shown in
Figure 2.15.

Except for straight insertion sort, there are many other sorting algorithms as well. We will cover
some of them such as bubble sort and selection sort, in the chapter “Arrays.” Related concepts are
usually introduced in data structure courses as well.

2.3 Effectiveness of algorithms

We have seen algorithms for some problems by now. Essentially, what are the dif-
ferences between solving problems by humans and by computers?

In fact, the strategies humans use to solve problems can often be used with
computers as well. However, exceptions do exist. To design an algorithm suitable
for computers, we need to think from the perspective of computers. In other words,
we need to have a computer mindset. Let us examine some examples of algorithm
design.

2 Algorithms

56

*}10s uoipasul ysies3s jo uoididsap apod opnasd juswauyal asimdals umop-do] g1z ainSi4

T+I=I

dway=[1+(]e

uonisod Aydwa ayj ojul dwa) Jasu

uonisod ybu
0jul anjeA ,AJjuas, Hasul

1-[=(

‘[Me=[1+(]e
(dwsy < [[Jezep pue g =< [) apym
T-1=1[

dway ueyy
Jabue| si 31 1 >deq [Jo Juody ul Jaquinu SA0I
0 ~ T-1 = [13s]] payos ay3 uI

[1]erep=dwsa)

dway ,Anuss, se Jaquinu yi-1 ayy asn

([1-1]erep > [1]eiep) 4

U1-(T-1) @Y1 UBY] J3|[BWS SI JAGWINU Y3-I U3 JI

Jabue| J1 oeq anow
‘auo Aq auo ,Aijuas,
941 YaIM 1si| pa1dos
u| slaqwinu aJedwo)

Jagwinu yi-1 ay3 syussaidau
[1]ejep ‘suisquinu N aJe aiay) asoddns

Jdaquinu yi-1 ayj wodj >_ucw_._juw._ SS200.d

Jaqwinu puodas ay3}
woJy A[3ualindal ssa00.1d

jUSWauUlal puodas

juswiaulal 3si4

9pod opnasd |9A9| doy.

2.3 Effectiveness of algorithms = 57

2.3.1 Example of algorithms

Example 2.4 Sample algorithm 1: data swapping
Swap data stored in two storage units without losing any after the swap.

[Analysis]
We usually swap data with the help of a third empty storage unit as shown in Figure 2.16. Double
slashes in each step mark the beginning of comments in C.

A method
suitable for
computers

TEMP

. Data swap

Suppose we have data A = 10, B = 12, and a temporary unit TEMP

Step 1: TEMP = A; // TEMP = 10, content of A is put into TEMP o e
Step 2: A =B; // A = 12, content of B is put into A
Step 3: B = TEMP; // B = 10, content of TEMP is put into B Step 2

Figure 2.16: Flow of data swap.

In addition, we can use some “unconventional” methods as follows.
— Throw into the sky: suppose A and B are objects, we can throw them to the target location
like how people in the circus would do.
— Transfer with tubes: we “connect” two storage units using two tubes and transfer A and B
through them.
— Move trivially: if storage units of A and B are large enough to store both of them, we can
simply move B to the unit of A, then move A to that of B.

In the real world, we can use all the conventional and unconventional methods.
However, only the conventional swap and trivial move methods under certain con-
ditions will work in computers.

Example 2.5 Sample algorithm 2: simulating elementary school students solving division problems
To simplify the problem, we suppose that all divisions are two-digit numbers divided by single-
digit numbers and quotients have one digit, for example, 23 +3=7r2.

[Analysis]

Elementary school teachers may tell students to do divisions by trying quotients. As an example,
the process of solving 23 + 3 is shown in Figure 2.17. However, this method is limited in a way
that we need to follow different rules for different divisions. For instance, when computing 37 + 6,
we need to figure out a number that yields a result between 30 and 40 when multiplied by 6. It is
not an easy and efficient method for computers to use as processing rules vary with data.

58 —— 2 Algorithms

| Trying quotients This method is too
flexible to implement
23 + 3 = 7 2 o in computers
37 + 6 = 6 .. 1 °

(1) Find a number that yields a result between 20 and 30 when multiplied by 3. It could be 9, 8 and 7
(2) Compare 23 with 3*9, 3*8 and 3*7 respectively
(3) Finish when the remainder is smaller than the divisor 3

Figure 2.17: Solving divisions by trying quotients.

There are two methods suitable for computers as shown in Figure 2.18. The first one is trying
quotients as well, except that we always choose 9 as our first attempt. This makes the rule sim-
ple and unified, so programmers can write code efficiently. The second method is to use
“chunking,” which means repeated subtraction. By definition of division, we can repeatedly
subtract the divisor from the dividend and obtain quotient eventually. In fact, this is how divi-
sion is done in computers internally.

Solutions that are

suitable for computers

Trying quotients: try from 9 in all cases have simple rules so it
ooO%*

Chunking: repeatedly subtract the divisor from the dividend is easier tﬁ implement
them

l Trying quotients in a way that is suitable for computers

Figure 2.18: Trying quotients in a way that is suitable for computers.

Solutions suitable for computers should have a simple rule that is easy to follow.
Being able to complete simple tasks tirelessly is considered by some people the
“fundamental quality of computers.”

Example 2.6 Sample algorithm 3: evaluate expressions

In C language, we call statements formed by connecting operators and operands expressions.
For example, 1+(5-6/2) *3 is an arithmetic expression. Note that division and multiplication are
represented by slash and asterisk, respectively. All symbols in C should appear on keyboards
as well so that we can insert them easily.

Figure 2.19 shows how we are taught to evaluate expressions in elementary school and how
computers evaluate expressions. Computers use a method called “Polish notation.” Polish
mathematician, Jan tukasiewicz, first proposed it in 1920. It simplifies evaluation through two
steps.

' Evaluation of expressions

Method taught in elementary school Pairi

airing parentheses or
1. Do multiplication and division before addition and subtraction determginping precedence
2. Parentheses have higher priority of operators is

1

Method used in computers——Polish notation OQ con:;TtZiS;?ceeftol:ere
1. Eliminate parentheses from expressions o are too many cases
2. No need to consider data operation of operators

Figure 2.19: Evaluation of expressions.

2.3 Effectiveness of algorithms =—— 59

The expression 1 +(5-6/2) *3 will become 1562/-3*+ after conversion. Details of such conver-
sions are covered in data structure courses. Interested readers may refer to other resources for
them. We shall take a look at how an expression in Polish notation is evaluated.

The # sign in Figure 2.20 is used to mark the end of expressions, while cells in which num-
bers are stored represent memory units. Herein we show changes in the stored data in each
step. The figure also shows possible cases in expression scanning and corresponding opera-
tions computer take. After six steps of processing, the value left in memory is the final result.

1562/ -3 *+#

Store if a number is scanned

Scan Withdraw number twice, compute and store result if an
Expression operator is scanned
Withdraw result and end if # is scanned
Processing steps ol
(1) See number 1,5,6,2, store them o e O e O e O e O |
(2) See operator “/”, compute 6 / 2 = 3, store 3 2
(3) See operator “-”, computer 5-3 =2,store2 | _| (| [| 4 | | [|
(4) See number 3, store it i i I i I I
(5) See operator “*”, compute 2 * 3 = 6, store 6 | g 5 2 2 6
(6) See operator “+”, compute 6 + 1 =7,store 7 |— —— [— — —1 [—1
(7) See #, withdraw 7, end 1] |1] (1] [(1] |7]
1 @ B3 @ ©6G) (6

Figure 2.20: Evaluation of expression in Polish notation.

2.3.2 Computational thinking

We have seen that methods we usually use may not work in computers in the last
section. To design algorithms suitable for computers to execute, we need to know the
characteristics of how computers solve problems, called “computational thinking.”
Professor Jeannette Wing from Carnegie Mellon University wrote that “Computational
thinking builds on the power and limits of computing processes ... Computational
thinking involves solving problems, designing systems, and understanding human
behavior by drawing on the concepts fundamental to computer science.” The essence
of computational thinking is abstraction and automation. In procedure-oriented pro-
gramming, we may also describe it as “program thinking.”

60 — 2 Algorithms

Knowledge ABC Program thinking

Abstraction in programming uses identifiers, constants, variables, arrays, and structures to de-
scribe and record information and relations between information. Automation is the process of
operating information using statements and operators to achieve a particular goal. Functions
are formed by organizing statements based on functionality. Functions are used to decompose
a larger problem into multiple subproblems that are independent of but related to each other.
Algorithms describe the steps and procedures of solutions to problems. To fit how humans
think, they are expressed in a top-down stepwise refinement manner. Together, these concepts
construct procedure-oriented programming and procedure-oriented languages.

2.4 Universality of algorithms

Universality requires that data in problems of the same type are handled consis-
tently. Let us look at solutions to some classic problems first.

2.4.1 Solutions to classic problems

Example 2.7 Things whose number is unknown

There is a well-known problem in Sunzi Suanjing, a mathematical treatise in ancient China,
called “things whose number is unknown.” The problem is as follows: there are certain things
whose number is unknown. If we count them by threes, we have two left over; by fives, we have
three left over; and by sevens, two are left over. How many things are there?

[Analysis]

The problem does not restrict the number of solutions and there might be multiple solutions.
As shown in Figure 2.21, we may apply exclusive induction. We look for three sets of numbers
that satisfy the three conditions, respectively and seek common numbers among them. Readers
may quickly notice from the figure that the minimal number of things that satisfy all three con-
ditions is 23.

' Exclusive induction

Step 1: find numbers that yield remainder 2 when divided by 3, obtain set 1: 5, 8, 11, 14, 17, 20, 23, 26, ...
Step 2: find numbers that yield remainder 3 when divided by 5, obtain set 2: 8, 23, ...
Step 3: find numbers that yield remainder 2 when divided by 7, obtain set 3: 23, ...

It takes effort to
find more solutions
by manual

computation

Figure 2.21: The first solution to “things whose number is unknown”.

2.4 Universality of algorithms =— 61

Now we examine how computers solve this problem. In C language, whether a number x has re-
mainder 2 when divided by 3 is represented as x% 3 == 2, where % is the remainder operator
and = = (note that there are two equal signs) checks whether its operands are equal. Pseudo code
of the algorithm is shown in Figure 2.22. The loop condition in the second refinement is “always
true,” which means the solution-finding process can run forever because we do not know the
exact number.

Top level pseudo code description First refinement

x start from 1 letx=1

repeat following operations

find result that satisfies all conditions | if X satisfies following conditions at the same time
"2 remaining if divided by 3, 3 remaining if
divided by 5, 2 remaining if divided by 7”

then output value of x

X increases by 1

output result

Second refinement

x=1 When will the

algorithm
terminate if the
loop condition is
always true?

while (loop condition is always true)
if (x%3==2 and x%5==3 and x%7==2) °O
output x

X increases by 1

Figure 2.22: Second solution to “things whose number is unknown”.

But when should the algorithm terminate if the loop condition is “always true”? If we do not
need all solutions, we can add a terminating statement, which, for instance, terminates the
loop when x>2000. More details about “always true” loops are covered in the section of loop
statements.

Guessing solutions one by one, like we just saw in this example, is another demonstra-
tion of how computers can complete simple tasks repeatedly and tirelessly.

Example 2.8 Chickens and rabbits in the same cage

This is another classic problem from Sunzi Suanjing. Suppose there are several chickens and
rabbits in the same cage. The total number of heads is 35 and the total number of legs is 94.
How many chickens and rabbits are there in the cage?

[Analysis]

We can solve this problem using linear equations as shown in Figure 2.23. However, determin-
ing the positivity of coefficients of variables or doing substitution is tricky and cumbersome to
implement on computers. Besides, different systems require different methods to solve.

62 —— 2 Algorithms

. Solving linear equations

to find solution

Step 1: suppose there are x chickens and y rabbits

x+y =35 ()]
Step 2: write equations 2x+4y =94 (2)
Step 3: solve equations {x:23

y=12

OOO

We can use elimination by
addition or subtraction or
elimination by substitution
to solve the equations

Figure 2.23: The first solution of chickens and rabbits in the same cage problem.

The universal solution is shown in Figure 2.24. Similar to the previous problem, we try every possi-
ble value of each variable to find the solution that satisfies all conditions.

Top level pseudo code
description

First refinement

Second refinement

find results that satisfy the
equations

if there is a value of y
between 1 and 35 that

both x and y start from 1 x=1,y=1 x=1,y=1
while x < 35, repeat following | while (x<35)
operations while (y<35)

if x+y=35 and 2x+4y=94
output x and y

satisfies the equations
output results
X increases by 1

y increases by 1
X increases by 1

output results

Figure 2.24: The second solution of chickens and rabbits in the same cage problem.

In the first refinement, both x and y have a value of 1 and terminating condition “less than 35,” as
there are 35 heads in total. When x =1, we substitute every possible value of y, from 1 to 35 into
the equations to test whether they are the solution. If none of these combinations work, we in-
crease x by 1, and test possible values of y again. We repeat this process until x=35. Note that
this is a nested loop of two layers.

In the second refinement, the condition is further specified as “if x +y =35 and 2x + 4y = 94”
and we find a solution if it is met.

2.4.2 Three phases of problem-solving with computers

Based on the above-mentioned examples, we may conclude that there are three phases
when solving problems with computers, namely, the beginning phase, the processing
phase, and the ending phase. Each phase contains a set of operations that should be

done as shown in Figure 2.25.

2.5 Comprehensiveness of algorithms = 63

Three phases of problem solving with computers
Beginning phase |determine initial conditions of program execution

Processing phase |complete data processing based on requirements of problem, fulfill functionality requirements

Ending phase determine terminating conditions of program, obtain final results

Figure 2.25: Three phases of problem-solving with computers.

2.4.3 Characteristics of computer algorithms

Having seen these examples, we can now summarize the characteristics of prob-
lem-solving with computers as shown in Figure 2.26. Each operation done by a com-
puter should be simple, yet these simple operations can be combined to provide
complex functionalities. Given problems of the same type, there should be a univer-
sal set of rules to process corresponding data.

Characteristics of problem solving with computers

Rules are simple: each step in data processing is simple

Rules are universal: operation rules for corresponding data in problems of the same type should be consistent

Figure 2.26: Characteristics of problem-solving with computers.

2.5 Comprehensiveness of algorithms

After midterm exams, Mr. Brown’s son, Daniel, asked his mom whether they could
go for a weekend trip. He then started to talk about what he wanted to do and
bring. However, Mrs. Brown smiled and asked, “What if it rains?” Daniel was
caught off guard. He thought for a while and suggested, “Then we can go to mov-
ies, as long as we don’t just stay at home.”

Like Mrs. Brown, experienced people try to consider every situation when solv-
ing practical problems so that they would not make mistakes or lose anything.
Similarly, when solving problems with computers, we hope our algorithms are com-
prehensive so that they can handle all types of input data. In other words, our algo-
rithms should:

— Correctly process normal data
— Correctly handle abnormal data

64 =— 2 Algorithms

2.5.1 Algorithm analysis: Starting from normal cases

We shall explain the comprehensiveness of algorithms by analyzing the algorithm
for n! problem.

2.5.1.1 Problem analysis

The mathematical definition of n! is shown in Figure 2.27. There is only an abstract
variable n and we do not know its value. How should we compute it? For general-
ized problems like this where we do not know the exact value of variables, we can
find a value that satisfies the condition and is easy to compute, for instance, n=5,
to analyze the pattern and characteristics of the problem.

Il
o

1, When n
n!=
n*(n—1), When n

v

We find solutions

How do we design to general cases
the algorithm if we Let Jel@®) b%/ observing
don’t know value of n? n= 5 special cases

Figure 2.27: n! problem.

Before designing a computer algorithm, we observe the universal method to compute 5!
manually. Herein universal means that the method works for values other than 5 as
well.

2.5.1.2 Manual method

To simplify the description, let variable S be the product of repeated multiplication.
We may consider the variable as a box. Data can be put into or taken out of the box.
Data stored in the box can also be modified. Detailed procedures of computing fac-
torial are shown in Figure 2.28, where the arrow symbol in representation column
means “put into.”

2.5 Comprehensiveness of algorithms = 65

. Manual computation

Step Operation Representation
1 1 times 2 yields 2, store into S 1*2>S
2 Multiply value of S, 2, with 3, obtain 6, store into S S*3->S
3 Multiply value of S, 6, with 4, obtain 24, store into S S*¥4>S
4 Multiply value of S, 5, with 5, obtain 30, store into S S*5->S

Characteristics of variables

Let variable S be « Can be stored be regarded as
product of repeated . Can be accessed boxes
multiplication « Can be updated 0 O

Figure 2.28: The first algorithm of computing n!.

2.5.1.3 Analysis of computer solutions

Now we examine the universal method for computers to compute n!. We can think

Variables can

of computers as more advanced calculators, but they would not do anything unless
we have provided the necessary data and algorithms “bit by bit.” The necessary in-
formation in this problem is given in Figure 2.29. They can be obtained by com-

puters using the following methods.

Information needed by computer
1,23 45
o
continuous multiplication

How do
computers obtain
these numbers?

Figure 2.29: Information needed by computer.

Method 1: Type each number into the computer using a keyboard. Type one

number after computer completes a calculation.

Unfortunately, this method becomes tedious when n is large, thus we need
an alternative one. Considering the characteristics of factorial, we notice that
each multiplier can be obtained by adding one to the previous one, except the

very first multiplier, 1. Hence, we get our second method.

Method 2: Each multiplier is obtained by adding one to the previous multi-

plier or the multiplier from the previous iteration, except 1.

It is not hard to see that the second method is easier; therefore, we shall
use it in further discussion as well. We will represent the multiplier as T, which

is a variable as well, for easier referencing.

66 = 2 Algorithms

2.5.1.4 Comparison of manual method and computer method
We have analyzed both the manual and the computer methods. We may learn char-

acteristics of problem-solving with computers by listing differences between these

two methods as given in Figure 2.30.

Computation
model

Major steps in solution

Characteristics of problem-
solving process

Manual

51 = 1*2%3%4%*5

Computer

« Use factorial formula

Use multiplier directly

« Store product into S

Directly use known information
given in the problem

« Store product into S:

+ Use factorial formula
« Multiplier obtained by

iteration:T+1->T
S*T->S

Data and operations need to be
“provided” in advance

Let variable S denote the cumulative product and variable T denote the multiplier

Figure 2.30: Comparison of manual and computer method.

Although these two methods use the same model of computation and share com-
mon steps, they vary in the way of handling data: human use known information
directly, whereas computers need to be “provided” with data and operations.
Computers are tools as well. We need to respect their limitations when using
tools. We also need to keep their features in mind when designing methods and steps
in solutions. The most significant thing in programming learning is to know the char-
acteristics of problem-solving with computers, namely “computational thinking.”

2.5.1.5 Algorithm description

The algorithm description of computing n! is shown in Figure 2.31. In the second
refinement, the loop keeps running when T < 5. Note that expressions of loop condi-
tion in both refinements are in fact equivalent.

Top level pseudo

P Second refinement
code description

First refinement

Start from 1 * 2 Let product S = 1, multiplier T = 2
Repeat following operations do
Store product into S S*T>S Pay attention to the
Increase multiplier by 1 T+1>T description and

End until multiplier is larger than 5| while (T<=5) e’z%rﬁjistiigzsopggp
Output result Output S ©

Compute 5!

Output result

Figure 2.31: Pseudo code of n! algorithm.

In accordance with the pseudo code in the second refinement, we may draw the
flowchart as illustrated in Figure 2.32.

2.5 Comprehensiveness of algorithms = 67

Iterative methods

Start from initial term, compute unknown
terms gradually using iteration equation

Initial value of T is 2,
Iteration equationis T=T+ 1
Initial value of Sis 1,
Iteration equationis S =S * T

Figure 2.32: Flowchart of n! algorithm.

The execution process of the algorithm is more clearly shown in the flowchart. We
first initialize product S and multiplier T. Further, we repeat multiplication and incre-
ment until T is larger than 5. At the end of each iteration, we check whether T satisfies
the loop condition. The loop continues if the checking yields true and terminates
otherwise.

Initial value of T is 2 and iteration equation is T = T + 1. The initial value of S is 1
and the iteration equation is S=S * T. We call methods “that start from known
terms and gradually work out unknown terms using iteration equation” as iterative
methods. “Step by step” is one of the features of computers. The result from previ-
ous computation is often needed in the next computation.

Knowledge ABC Iterative methods
An iterative method is a procedure that uses an initial term to generate the required unknown
term through a finite series of iterations. Any problem that contains an iteration equation can
be solved using iterative methods.
Iteration steps:
(1) List known terms in the problem.
(2) Write out iteration equation based on relations in the problem.
(3) lIterate finite times using the iteration equation until we find the solution.

2.5.1.6 Analysis of execution process

Let us check how S and T change during the execution of the algorithm. We may
use a table as shown in Figure 2.33, to list values of S and T in each step of the flow
so that the execution process can be clearly seen.

68 = 2 Algorithms

6 24 120

What if we
want to
compute 10!?

How about
factorials of
other integers?

Can the algorithm
correctly compute
11?

Figure 2.33: Analysis of the n! flow.

In the first column, S and T have initial values 1 and 2. Step 3 has not been exe-
cuted, so the cell is left blank. Step 1 gets executed, the value of S becomes S times
T, namely, 2. Step 2 is executed next and T becomes 3 after increasing by 1. T is then
checked in step 3. 3 is less than 5, so the loop condition holds true and the flow goes
to branch “True.” Consequently, step 1 is executed again and S is 2 *3 = 6. T increases
to 4 in step 2. The loop condition is met again, so steps 1, 2, and 3 are executed once
again until T is larger than 5 and the flow ends.

This is the algorithm of computing 5!, but computing 5! is not our ultimate goal.
To make the algorithm universal, we need to tackle some other challenges.

2.5.1.7 Testing

(1) What if we want to compute 10!?
We can change the condition in step 3 to T < 10.

(2) How about factorials of other integers?
We can modify the condition in step 3 to T < n, where the value of n is obtained
from keyboard input.

(3) Can the algorithm correctly compute 1!?
When step 3 is executed, T =3 and n = 1. The program ends because T is larger
than n. The value of S is thus 2, which is incorrect.
To correct our result, we can change the initial value of T from 2 to 1.
The refined flow, shown in Figure 2.34, has an input of n and changes initial
value of T.

(4) What if the user inputs invalid data, n = -1, for instance?
In this case, the loop will be executed once and the result will be S = 1, which is
once again wrong.

2.5 Comprehensiveness of algorithms = 69

What if
users input
n=-1?

End

Figure 2.34: The first refined version of n! flow.

To prevent users from providing invalid data, we need to add validation of
input. If the input is invalid, a warning will be prompted to users. Further refined
flow is shown in Figure 2.35. In general, programs should have a mechanism for
errors so that they can correctly handle “illegal” input data.

Prevent program errors

A program should validate all input to prevent
erroneous data from affecting computation

Stepwise
refinement

Let n=5 General case
S=1,T=1 |Initial value
T>n Terminating condition
n=0, n=1 Corner cases

n<o0 Invalid case

Figure 2.35: The second refined version of n! flow.

70 —— 2 Algorithms

2.5.1.8 Summary of algorithm design procedures

Having considered the above cases, we have a comprehensive algorithm. Recall our
design process and there are the following key steps:

(1) Let n=>5: consider the process starting from a normal case.

(2) S=1, T=1: determine initial values in algorithm.

(3) T>n: determine the terminating condition of the algorithm.

(4) n=0, n=1: consider corner cases.

(5) n<O0: consider error handling.

In this example, we considered corner cases and error handling after we had set
up the basic flow. It is clearer to solve problems step by step like we just did.
Algorithm design cannot be done all at once. It is a process of improvement. Good
algorithms cannot be created without effort and refinement. This is also true for
problem-solving.

2.5.2 Algorithm analysis: Starting from corner cases

We designed our n! algorithm starting from normal cases in the last section. In fact,
we may also look at corner cases first as shown in the example given further.

2.5.2.1 Problem description

Neighboring zone problem

An n*m matrix is divided into t rectangle zones, each represented by a number be-
tween 1 and t. Cells in the same zone are all represented by the number of that
zone. As can be seen from Figure 2.36, a 6*8 matrix is divided into eight zones la-
beled as 1 to 8. We say that two zones are neighbors if they share an edge. For ex-
ample, zone 5 has six neighbors, namely, zones 1, 2, 3, 6, 7, and 8, whereas zone 4
is not its neighbor. Please design an algorithm to find all neighbors of zone k.

m !
2122 13134
>l212 | 3 4 The zone labelled by
Suppose there are t = 8 : X k = 5 is neighbor
rectangle zones whose 21212 3 3| 4 with 6 zones, namely
distribution is shown in zone1,2,3,6,7,8
the figure, find number of ™\ 5|5|5|5|5]6
neighbors of zone k,= 5 s[s|sl|s|sls
71717717 [8}8}8

Figure 2.36: Neighboring zone problem.

2.5 Comprehensiveness of algorithms —— 71

2.5.2.2 Ideas of algorithm

There are several corner cases in this problem: there may be only one zone, zone k
may have only one element, and so on. On the other hand, it would be tricky to start
from general cases, where zone k has multiple cells as there could be many neighbor
configurations, which makes it challenging to write decision conditions. However,
zone k must have four neighbors, each sharing one edge with it, if it has only one
cell as shown in Figure 2.37. This is a simple base case. In this case, we can check
each cell in the matrix. If the value of a cell is k, we count the number of its neighbors
that do not have value k. This is a method that is suitable for computers.

f m |

A zone of one cell

has 4 neighbors
which is located on
its top, bottom, left
and right
\

—

N | [N |IN|N

(oo 2 I) N e N S N

ol |lWwW|lw|Ww
ol |w| w|w

2
2
2
BN
5
7

N e e e N

Figure 2.37: Analysis of neighboring zone problem.

Concerning comprehensiveness, we shall consider corner cases in this problem.
Readers may have noticed that cells on the edge of the matrix do not have four
neighbors. For these cells, we can add cells labeled by 0 outside the matrix as “sup-
plement” and restrict our search in the original matrix as shown in Figure 2.38.

| m |
olo|o|o|lo|o|o|0o|O|oO
lo {2]2]2|3|3]|4]o0
0 2(2(2(3|3|4]o0
Lloft|1|2]2]2]3|3]4]0
0[1|1|5|5|5|5|5|6]0
0[1|1|5|5|5|5|5|6/0
|o|7|7|7]|7]|7|8|8|8]0
ojlo|o|o|lo|o|o|o0|O]|oO

Figure 2.38: Search region design of neighboring zone problem.

72 —— 2 Algorithms

2.5.3 Keys of algorithm design

Having seen these examples, we realize that solutions to problems can be derived
from general cases as well as corner cases. Whichever cases we choose, they need to
be simple but universal, thus suitable for computers. Unlike solving physics or math-
ematics problems where we are usually able to apply existing formulas, solving prob-
lems with computers requires us to analyze traits of problems. However, there are
still some patterns in algorithm design, which are summarized in Figure 2.39.

Keys of algorithm design

(1) Find a general case that is as simple as possible, use it in the basic processing flow
(2) Determine initial values

(3) Determine terminating conditions

(4) Consider handling corner cases or special cases e

(5) Consider invalid cases O

We may not
need to use all 5
steps when
solving concrete \
problems,

Figure 2.39: Keys of algorithm design.

From these steps, we can see that verification is needed to determine whether an algo-
rithm is well-designed and can function as expected. To verify, we should design test
data before designing the algorithm. We can use general methods of software testing to
test algorithms. They are covered in detail in the chapter “Execution of Programs.”

Knowledge ABC Software testing and test cases

— Software testing: it is the assessment process of running the software under specified
conditions, looking for bugs, determining quality, and evaluating whether design requirements
are fulfilled. This is a classic definition. We may also consider software testing to be a
comparison of actual output and expected output.

— Test cases: these include test input, execution requirements, and expected output designed
for a specific target. They are used to test an execution path or to verify if certain
requirements are fulfilled.

2.6 Procedures of algorithm design and characteristics
of algorithms

2.6.1 Position of algorithms in the process of solving problems with computers

In the chapter “Introduction to Programs,” we have seen that the process of solving
problems with computers, starting from raising a problem and ending with a solu-
tion, has four major steps, namely, modeling, data structure and algorithm design,
as well as coding and testing.

2.6 Procedures of algorithm design and characteristics of algorithms =—— 73

Modeling extracts functionalities and data from problems and seeks relations
between the information by analysis. Data structure design tries to find a way to
organize and store data. Algorithm design attempts to seek a solution. Coding con-
verts the algorithm into code. Last but not least, testing is done to test our code.

2.6.2 General process of algorithm design

We have discussed key points in algorithm design. They are general rules for imple-
menting algorithms with restriction of the three key elements of algorithms, namely
input, functionality, and result. From the perspective of algorithm design, there are
other challenges in addition to implementing algorithm: whether there is a classic
algorithm strategy, which solution of all possible ones are better than the rest,
whether there is a universal method to assess algorithms, and others. In accordance
with procedures of program development, algorithm design can be done through
the following steps:
(1) Determine key elements of the algorithm
We need to correctly understand input and find out what functionalities and
results are desired.
(2) Design and describe the algorithm
We use the top-down stepwise refinement approach to design an algorithm fol-
lowing general rules of algorithm design. During the design process, we can
learn from existing algorithms. Classic algorithms include brute force, divide
and conquer, decrease and conquer, dynamic programming, greedy algorithm,
backtracking, branch and bound, approximation algorithm, randomized algo-
rithm, and so on. To design an algorithm for a new problem, we can use these
strategies flexibly to create a new one. Finally, we need to choose an algorithm
description method to record the procedures in our solution clearly.
(3) Manual check
Logic errors cannot be detected by computers because computers execute pro-
grams without understanding the motivation behind. Experience and research
suggest that running algorithms manually with test cases is one way to detect
logic errors in algorithms. Test cases should be designed in a way that exposes
as many errors as possible.
(4) Analyze the efficiency of the algorithm
Efficiency can be assessed by the amount of computing resources used, which
can be time or space. Time efficiency indicates the speed of execution, whereas
space efficiency shows the amount of extra memory space needed. Details on
efficiency are usually covered in the data structure class.
(5) Implement the algorithm
Finally, we convert our algorithm into programs using certain programming
languages. Note that a good algorithm is the result of effort and refinement.

74

= 2 Algorithms

2.6.3 Characteristics of algorithms

In

previous discussions of example algorithms, careful readers may have noticed

that there exist restrictions on the three key elements of algorithms. They are called
“characteristics of algorithms” as shown in Figure 2.40. Finiteness, definiteness,
and effectiveness are restrictions or requirements on how algorithm implements
functionalities required.

Characteristics of algorithms

+ Input: have zero or more input

« Output: produce result that fulfills functionality requirement

» Finiteness: an algorithm should contain finite steps

« Definiteness: each step of an algorithm should be precisely defined without ambiguity

- Effectiveness: each step of an algorithm can be done effectively and generate certain result

Figure 2.40: Characteristics of algorithms.

@

@

€)

(4)

)

Input: An algorithm has zero or more inputs, which are taken from the informa-
tion of the problem to solve. An algorithm can have zero input in special cases.
For example, no input data are needed when solving an equation following
specified procedures and conditions.

Output: An algorithm has one or more output (an algorithm must have at least
one input). The outputs are determined by functionalities required.

Finiteness: An algorithm must always terminate after a finite number of steps
(for any valid input) and such step must be completed in finite time. In contrast
to the same concept in mathematics, the finiteness of algorithms means they
are reasonable and acceptable in applications.

Definiteness: Each step of an algorithm must be precisely defined without ambi-
guity. Identical input should generate identical output under all circumstances.
Effectiveness: The operations in an algorithm can be done by finite basic steps
that are already implemented.

2.6.4 Characteristics of good algorithms

There can be multiple solutions to the same problem. To assess these solutions, we
need a standard. A generally acknowledged standard is that a good algorithm needs
to have the following features in addition to five characteristics of algorithms.

@

Correctness

The fundamental goal of algorithm design is that algorithms should have re-
quired functionalities. “Correctness” may refer to many things, but they can
generally be sorted into the following four categories:

@

€)

(4)

2.6 Procedures of algorithm design and characteristics of algorithms =—— 75

1) Programs do not contain syntax errors.

2) Programs generate results that meet functionality requirements for multiple
input data.

3) Programs generate results that meet functionality requirements for input
data in chosen cases that are typical but strict and difficult at the same
time.

4) Programs generate results that meet functionality requirements for all valid
input data.

We usually use the third definition to evaluate whether a program is correct.

Readability

Suppose an algorithm is correct, then readability should be the most crucial

factor. In other words, it is our first priority to make sure that programmers can

work efficiently. This is particularly significant as large software systems are
usually created by multiple programmers nowadays. Moreover, errors may be
hidden in unreadable programs and it can be painful to debug them.

Robustness

It refers to the ability of algorithms to cope with invalid input data. It is also

called fault tolerance. A good algorithm should be able to identify erroneous

input data and handle them properly.
Reasonable and effective test cases can help us find as many errors as pos-
sible in testing and guarantee the robustness of algorithms.

High efficiency

An algorithm is highly efficient if it executes efficiently. High efficiency may

refer to two things.

1) High time efficiency. Time efficiency is a measure of the execution time of
algorithms. An algorithm is highly time-efficient if it can be executed in a
short period of time.

2) High space efficiency. The memory space of algorithms is the maximum
memory space that is needed during the execution of algorithms. We
mainly focus on the supplementary memory space needed during execu-
tion. An algorithm that needs less memory space is called an algorithm
with low memory requirements.

Research shows that there is much more room for improvement of time efficiency
than of space efficiency in most cases. In addition, we can sacrifice one of them for
the other.

76 =—— 2 Algorithms

2.7 Summary

An algorithm can be considered as a complete solution consisting of basic operations
and order of these operations. We may also deem algorithms as finite, definite computa-
tion sequences designed under certain requirements to solve a certain type of problem.

Methods and steps in computer algorithms should be consistent with the char-
acteristics of computers. Each step should be simple so that it can be executed by
computers tirelessly. There are limitations in computers as well. Feasible solutions
in daily life may not work on computers.

Although we may be able to directly write out code for easy problems during the
early phase of programming learning, we need to form good programming habits
and follow general rules of algorithm design. It prevents us from giving incomplete
solutions due to missing steps in the design process when solving complex problems.

Major concepts of this chapter and their relations are shown in Figure 2.41.

Key elements

Description
method

Input: have zero or more input

Functionality: purpose of the problem

Result: requirements to be fulfilled after solving
problems

Top-down stepwise refinement: split complex tasks into
smaller and simpler sub-tasks

Limitation: data and operations need to be provided

Computer
algorithms

Characteristics

Simplicity: Processing rules in each step are simple

Universality: operating rules are consistent for
corresponding data in problems of the same type

Phases: initial conditions, processing, terminating
conditions

Robustness: handle valid data correctly, react to invalid
data properly

Beginning phase: determine initial values

Processing phase: find a general case that is as simple
as possible, use it in the basic processing flow, then
consider handling corner cases, special cases and invalid
cases

Figure 2.41: Concepts of algorithms and their relations.

Steps of solutions are called algorithms.

We need to base our solutions on the characteristics of computers when using
them to solve problems.

Input data, functionality, and result output are the three key elements of
algorithms.

We need to start from top level when solving complex problems with the help
of classic technique “divide and conquer,”

2.8 Exercises =— 77

And use top-down stepwise refinement method to decompose the task,
Into subtasks that can be easily implemented in programming languages.
Finally, we combine these modules, simply and flexibly.

Computers think in a different way from us, which seems stubborn.

Data and operations need to be provided without mistakes.

Each operation is essentially binary code.

We should handle data of the same type consistently, so that computers can
solve different problems using the same method.

The flow of algorithms consists of three phases: initial data, terminating condition,
and processing process where we implement required functionalities.

We may consider general cases first,

and carefully investigate all corner cases.

Test cases should cover edge cases, special cases, and errors,

So that the program becomes more robust.

We should learn and master classic algorithms,

In order to apply them when solving new problems.

There is a standard to assess algorithms,

Where the most important thing being correctness,

Readable, robust,

Time-efficient, and space-efficient,

These are virtues of good algorithms.

2.8 Exercises

2.8.1 Multiple-choice questions

1)

@

[Concept of algorithms]

Which of the following statements is correct about algorithms? ()

A) An algorithm is equivalent to the solution to a problem.

B) One algorithm can only solve one problem. It cannot be reused.

C) An algorithm is executed step by step. Operations in each step must be pre-
cisely described.

D) There is only one algorithm that solves problems of a certain type.

[Characteristics of algorithms]

Which of the following statements is wrong about the characteristics of algo-
rithms? ()

A) Finiteness: an algorithm must terminate in finite steps.

B) Input: an algorithm must have at least one input.

C) Definiteness: the steps of an algorithm must be clearly described.

D) Output: an algorithm must have at least one output.

78

€)

(4)

(5)

(6)

@)

= 2 Algorithms

[Principle of programming]
Which of the following is not a fundamental principle of structured program-

ming? ()

A) Polymorphism B) Top-down

C) Modularization D) Stepwise refinement
[Structured design]

Which of the following statements is wrong about modularization of programs? ()

A) We can use the bottom-up stepwise refinement design method to construct
programs using independent modules.

B) Dividing programs into independent and single-function modules makes
code reuse easier.

C) Dividing programs into independent modules makes coding and debugging
easier.

D) We can use the top-down stepwise refinement design method to construct
programs using independent modules.

[Characteristics of algorithms]

Finiteness of algorithms means that ()

A) The run time of an algorithm is finite.

B) The amount of data an algorithm can process is finite.
C) The length of an algorithm is finite.

D) An algorithm can only be used by finite users.

[Description of algorithms]

Which of the following cannot be used to describe algorithms? ()
A) Text description B) Programming statements
C) Pseudo code and flowcharts D) E-R diagrams

[Algorithm design]

Which of the following statements is correct? ()

A) The so-called algorithm is a method of computation.

B) Programs are also one way to describe algorithms.

C) We only need to consider how to obtain computation results in algorithm
design.

D) We can ignore computation time in algorithm design.

(8)

2.8 Exercises =—— 79

[Software testing]

Which of the following statements is wrong about software testing? ()
A) We must follow the testing plan to eradicate randomness.

B) We should select test data randomly.

C) We should select test data meticulously.

D) Software testing is an important way to guarantee software quality.

2.8.2 Fillin the tables

@)

@

€)

[Finding the maximum]

Based on the flow of the maximum finding algorithm, fill in the table in Figure 2.42
with the current value of Max in each iteration.

The input data: 12, -3, 25, 120, 0, 20

Iteration 1 2 3 4 5 6
Max

Figure 2.42: Algorithms: fill in the tables question 1.

[Finding the minimum]

Based on the flow of the minimum finding algorithm, determine whether we need
to update the value of Min in each iteration and fill in the table in Figure 2.43.

The input data: 12, -3, 25, 120, 0, 20

Iteration 1 2 3 4 5 6
Update

Figure 2.43: Algorithms: fill in the tables question 2.

[Sequential search]

Based on the flow of sequential search, fill in the table in Figure 2.44 with the
number of comparisons needed to find 33.

Note: we look for the number in the sequence sequentially.

Datatobe | 5, 13 65 77 33 71 93

searched

Figure 2.44: Algorithms: fill in the tables question 3.

80

(4)

()

= 2 Algorithms

[Binary search]
Based on the flow of binary searching, determine whether we can find 33 in the
numbers given and fill in the table in Figure 2.45.

Datatobe | 32 13 33 93 65 77

searched

Figure 2.45: Algorithms: fill in the tables question 4.

[Recursion]

A monkey picked several peaches on day 1. He ate half of them and ate another
later. On day 2, he ate half of the remaining and ate another later. He did this in
the following days as well. On day 5, he had only one peach left before eating.
Please fill in the table in Figure 2.46.

Day 5 4 3 2 1

Number of
remaining peaches

Figure 2.46: Algorithms: fill in the tables question 5.

2.8.3 Algorithm design

Describe an algorithm for each problem below in the form of pseudo code or flowchart.

@

@

G)
%)

)

Design an algorithm for each of the following problems:

a) Read two numbers from keyboard input, compute and display the sum of
them.

b) Read two numbers from keyboard input, figure out and display the larger
one of them.

c) Read n positive numbers from keyboard input, compute their sum.

Read several nonzero real numbers, count the number of positive ones and the

number of negative ones. The algorithm terminates upon receiving 0.

Read a five-digit integer, and determine whether it is a palindromic number.

A natural number (1, 2, 3, 4, 5, 6, etc.) is called a prime number (or a prime) if it

is greater than 1 and cannot be written as the product of two smaller natural

numbers. For example, 2, 3, 5, and 7 are prime numbers, whereas 4, 6, 8, and 9

are not. Write an algorithm that determines whether a natural number is a prime.

In the Fibonacci sequence, each number is the sum of two preceding ones. The

first few numbers in the sequence are 0, 1, 1, 2, 3, 5, 8, 13, 21... Write an algo-

rithm to compute the nth Fibonacci number.

2.8 Exercises = 81

(6) Charges of a telecommunication company are as follows: local calls cost ¥0.22

@

per minute if the call lasts less than 3 min; if a call lasts more than 3 min, the
part which exceeds 3 min costs ¥0.1 per minute (or part thereof). Design an al-
gorithm to compute charges.

Five people are sitting together. When asked about their age, the fifth person
says he is two years older than the fourth person. The fourth person says he is
two years older than the third. The third person says he is 2 years older than
the second, who is 2 years older than the first. The first person answers that he
is 10. How old is the fifth person? Figure out a universal computation formula
and algorithm (using recursion).

3 Basic data types

Main contents
— Basic data types, the essence of types, storage mechanism of integers, and floating-point
numbers
— Definition of variables, referencing method, and their way of storage in memory
— Operators and their usage, the concept of expressions, categorization of results of operations
— Summary of data elements

Learning objectives

— Understand and master concept of data types, data storage, data referencing, and data
operation

— Know how to use common operators and expressions

— Understand and master the usage of constants and variables

3.1 Constants and variables

At the checkout in supermarkets, we are given a receipt by a cashier, on which in-
formation of our purchases is written as shown in Figure 3.1.

The column total is computed by multiplying per-unit price with quantity, where
the per-unit price is a constant and quantity is a variable. Some values are fixed,
whereas others keep changing in many problems. For example, we have speed, time,
and distance in moving object problems. In circles, we have a radius, perimeter, and
Pi. In the shopping example above, we have the number of purchased goods, per-
unit price, and total.

Data in programs can be categorized into two types based on how they are used:
constants and variables. The value of a constant cannot be modified during the execu-
tion of programs, whereas the value of a variable can be changed during execution.

3.1.1 Constants

There are two kinds of constants: literals and symbolic constants. One can use lit-
eral constants directly in programs as needed without having to define in advance.
However, if a constant is used multiple times in a program, we can use a symbolic
constant instead to allow easy modification. In this case, we only need to modify
once if we need to change the value of the constant. Symbolic constants should be
defined before being used. To define one, we need to use the define macro. For ex-
ample, #define LEN 128 means that every occurrence of LEN represents 128. More
on macros will be covered in the chapter “Preprocessing.”

https://doi.org/10.1515/9783110692327-003

https://doi.org/10.1515/9783110692327-003

84 —— 3 Basic data types

| Shopping receipt

Total= per-unit price x quantity

Notebook 15.60 1

Battery 8.00 2 16.00

Bread 3.60 2 720 Constant Changeable
Milk 26.80 1 26.80 value value
Subtotal 6 65.60 Constant Variable
Discount 3.60 Total 62.00

Received 100.00 Change 38.00

Figure 3.1: Shopping receipt.

Example 3.1 Example of constants in programs
The per-unit price of a notebook is ¥15.6. Write a program that outputs the per-unit price and
total price of two notebooks.

01 #include <stdio.h >
02 #define PRICE 15.6 //Define symbolic constant PRICE which represents 15.6
03 int main(void)

04 {

05 printf("Per-unit price: %f\n", PRICE); //PRICE - symbolic constant
06 printf("Total: %f\n", PRICE*2); //2-literal

o7 return 0;

08 3}

On line 2, we use macro define to define the symbolic constant PRICE. Thus, every
occurrence of PRICE in the program, in lines 5 and 6 for instance, represents value
15.6. To update the price, we can simply modify line 2. This way of representation is
more precise than using numeral 15.6 and improves the readability of our program.

Good habit in programming

Instead of numerals, we should use meaningful symbols for constants related to the physical
world or with physics meaning. In C language, this is done by using meaningful enumerations or
macros. The concept of enumerations will be introduced in the chapter “Composite Data Types.”

C has many types of constants as shown in Figure 3.2.

Integer numerals include decimal, octal, and hexadecimal numerals. Decimal nu-
merals are the ones we are familiar with. The octal numeral system only uses digits
0-7 and an octal number is prefixed with O to distinguish from decimal numbers.
The hexadecimal numeral system uses symbols “0” to “9” to represent values zero to

3.1 Constants and variables =—— 85

nine and “A” to “F” (or lowercase counterparts) to represent values 10 to 15. To dis-
tinguish from decimal numbers, we prefix hexadecimal numbers with 0x or 0X.

Form Representation rule Example
Decimal Using digits 0 to 9 23, 127
Integer Octal Using digits 0 to 7, prefixed by 0 023, 0127
Hexadecimal U§|ng digits 0 to 9 and A to F/a to F, prefixed 0x23, 0xc8
with Ox or 0X
Decimal Numbers with decimal point 1.0 +12.0 -2.0
Real number -
Exponential Number e/E number 1.8e-3 -23E+6
Printable Single printable character wrapped by single Al T 13
character |quotation marks
Character |Escape character \ and_prmtable character wrapped by single |, \n'
quotation marks
String Charac_ter sequence wrapped by double "ABC". "123". "3"
quotation marks

Figure 3.2: Types of constants.

Real numerals can be written in decimal form or exponential form. Decimal form
is a number with a decimal point. Exponential form, on the other hand, is also
called “scientific notation,” in which 1.8 * 10-3 is represented by 1.8e-3 and -23 *
106 is represented by -23E + 6, as shown in Figure 3.2. Herein e and E can be used
interchangeably.

Character literals include printable character, escape character, and string literals.
Printable character literals are single printable characters wrapped by single quotation
marks, where they are characters that can be displayed on a screen. For example, the
character “a,” symbol “+,” and character “3” are all printable characters. Note that
character 3, which has ASCII value 51, is different from decimal numeral 3.

There are also special characters that cannot be displayed on screens. A new-
line is one example of these characters. We use escape characters to represent them
in C. The escape character table of C is given in Appendix D. At this stage of learn-
ing, we only need to remember newline is represented by “\n.”

String literals are sequences of characters wrapped by double quotation marks,
for example, “ABC” and “123.”

Knowledge ABC Story behind “return and newline”

Before computers were even created, there was a kind of machine called teleprinters. Such ma-
chines could print 10 characters in a second. However, it took 0.2 seconds for them to move to
the next line, during which two characters could be printed. If new characters were typed during
this 0.2 second, they would be discarded.

To solve this problem, the creators of these machines added two unique characters to the end
of each line. One of them was “Carriage Return,” namely “Return,” which instructed the printer to
reset the position of carriage to the beginning of a line. The other was “Line Feed,” namely
“Newline,” which fed the paper to advance to the next line. This was how “Newline” and “Return”
were created. They were later introduced to computers when computers were invented.

86 —— 3 Basic datatypes

Knowledge ABC ASCII and Chinese character encoding
All kinds of information, including numbers, characters, sounds, and images, are stored in com-
puters as binary codes.

— American Standard Code for Information Interchange (ASCII)
ASCll is a character encoding standard used in computers to display modern English and other
western European languages, which are based on Latin characters. It is the most frequently
used single-byte character encoding system nowadays.

ASCIl uses combinations of seven or eight binary digits to represent 128 or 256 possible
characters. Standard ASCII, or basic ASCII, uses seven binary digits to represent all English
characters (of both upper and lower cases), number 0 to 9, punctuation marks, and special con-
trol characters used in American English.

The remaining 128 characters in the 256-character version are called extended ASCII codes.
They are supported in many x86-based systems. Extended ASCIl codes use the additional
eighth position to represent 128 other special characters, characters in other languages, and
graphical symbols.

— Chinese character encoding

Chinese character encodings are used in computers to represent Chinese characters. Chinese
characters are represented as 16-digit binary codes in computers. In 1981, the Standardization
Administration of the People’s Republic of China published GB2312, which included 6,763
Chinese characters, as a unified standard for designing input/output devices so that informa-
tion could be exchanged smoothly.

3.1.2 Variables

3.1.2.1 Key elements of variables
Let us take a look at a storage problem in real life. When Mrs. Brown goes to the
supermarket, she needs to store her personal belongings into an electronic locker
before shopping. To do so, she needs to press the “Store” button on the locker first.
A receipt labeled with a number is then printed and the compartment with the cor-
responding number is opened automatically. Finally, she puts her belongings in
and closes the compartment.

However, the locker at this supermarket is specially designed as shown in Figure
3.3. There is an animal sticker on the door of each compartment. They are useful for
the help desk staff to find the correct compartment for customers who lost their receipt
and couldn’t recall the number or position of their compartment. Customers find ani-
mal stickers convenient because they are intuitive and easy to remember. Supermarket
staff finds the numbering scheme of compartments convenient because it indicates the
location of compartments.

A locker compartment can store belongings of customers. The actual location of
a customer’s compartment is allocated by the locker system based on the current
locker space. Hence, the key elements of locker compartments are a name that can
be used to address it, objects that can be stored in it as well as withdrawn from it,
and a location that can be allocated.

3.1 Constants and variables = 87

Locker compartment

o Identifiable

Stored items Accessible

Key elements of
locker compartments

Figure 3.3: Key elements of locker compartments.

The process of programs storing and accessing data is similar to how customers
store their belongings into and retrieve them from a locker. The space data are stored
in, which is called a storage unit, is similar to a locker compartment as shown in
Figure 3.4. The name of a storage unit is called variable name in programming lan-
guages, which is “a” in this example. The name can be other words or letters as well.
The value of data stored in a storage unit is called the value of the variable. In this
example, we say the variable “a” has value 6. The value of a variable can be updated
as needed. The location of a storage unit is called an address in computers. In general,
variables are objects that associate with memory space where their contents are stored
and accessed.

Variable name

Storage unit
J /—| Storage unit name| Identifiable

Variable value
Stored data

Variables occupy
storage space,
their contents
can be stored
and used

| Accessible

Memory address
Storage unit number]|

Allocated

Figure 3.4: Key elements of storage units.

Hence, we may summarize the three key elements of variables: variable name, vari-
able value, and memory location. What rules should we have regarding these ele-
ments then?

88 —— 3 Basic datatypes

Basically, we need to determine the rules of naming a variable, requesting mem-
ory space, and using allocated memory space.

3.1.2.2 Rules of variable naming

There are rules for naming variables. Names of variables and constants in C are
marked by identifiers. As shown in Figure 3.5, identifiers consist of letters, numbers,
and underscores with the exception that an identifier cannot begin with a number.
Underscore and both cases of letters are used to increase readability. In C programs,
variable names are case-sensitive and we usually use lower case letters in identifiers.
Variable names should be meaningful to be remembered and read easily. For exam-
ple, we should try to use English words and their combinations as often as possible.
Some variables are named following some conventions. One notable example is
using i, j, and k for loop variables. Some keywords have been used as identifiers by
the language itself. Thus, we cannot use them as variable names. ANSI C has 32 key-
words (or reserved words) that cannot be used otherwise. There are 12 other identi-
fiers used for preprocessing, which should be prefixed by a # sign when using.

A symbol used to identify an object. In programs, an identifier is a word with
special meaning defined by programmers.

Cannot begin Composition Naming Beware Prohibited
with number convention
Letter, number, Meaningful Case- Keyword
underscore sensitive

Keywords (reserved words) defined by ANSI C
auto, break, case, char, const, continue, default, do, double, else, enum, extern,
float, for, goto, if, int, long, register, return, short, signed, sizeof, static, struct, switch,
typedef, union, unsigned, void, volatile, while

Special words in preprocessing
define, elif, else, endif, error, if, ifdef, ifndef, include, line, progma, undef

Figure 3.5: Identifiers and keywords.

Good habit in programming
(1) Variable names consisting of multiple words make a program more readable.
(2) Meaningful identifiers make programs self-explained (have fewer comments).

For example, compare the following variable names:
- variablename
- variable_name
- VariableName

3.1 Constants and variables =——— 89

The second one follows the UNIX naming convention, whereas the third one follows the
Windows naming convention. Apparently, the first one is less readable and the rest are more
obvious at a glance.

3.1.2.3 Method of requesting memory space

A locker compartment is opened by pressing the “Store” button. Requesting mem-
ory space is done by defining variables. A variable definition is made up of data-
type identifier and variable name as shown in Figure 3.6.

Format of variable definition

Data types are
specification of
~ storage unit sizes.

type name;

| inta; // Define an integer type variable a |

Figure 3.6: Format of variable definition.

Data-type identifiers are names of data types in C. For instance, “int a” defines an
integer variable a, where “int” represents integer type. More on data types will be
covered later. After we define a variable, computers allocate memory space of a cer-
tain size at a suitable location in memory based on this definition.

If we store the value into a storage unit when defining a variable, this process is
then called variable initialization in programming languages as shown in Figure 3.7,
where the operation on the storage unit is called a variable assignment.

Variable initialization

Assign a value to a variable when defining it.

| Define an integer type variable a, initialize it to be 6

Figure 3.7: Variable initialization.

In essence, a variable definition is the process of programmers requesting a storage
unit of a certain size, which is determined by the system based on the type of the
variable. When requested, computers allocate memory of that size at a suitable lo-
cation in memory.

90 — 3 Basic data types

3.1.2.4 Usage of memory space

We put data into memory space for storage and further use. Programmers use var-
iable names to access these data. This is called “variable referencing” as shown
in Figure 3.8.

Variables
can only be
used after
deﬁnitior)

Variable referencing °c0Q

Programmers access data in storage units by using variable
names.

Figure 3.8: Variable referencing.

Essentially, a variable is a named block of continuous memory space. We request
and name such space by defining variables and use it through variable names. This
space is used to store data and the variable type determines its size. Let us see some
examples of variables.

Example 3.2 Checking the three key elements of variables
Check the three key elements of variables in a debugger.

[Analysis]
We first write a simple program with only one variable. Then we trace how space, address, and
value change when the variable is defined and initialized.

1. Source code
01 #include <stdio.h>
02 intmain(void)

03 {

04 int a=6; //Define variable a, initialize it as 6
05 printf("%d\n", a); //Display value of aonto screen

06 return 0;

07 3}

2. Tracing and debugging
We define variable a and initialize it to be 6 on line 4. Then we output its value onto the screen
on line 5. Here, we reference variable a by using its value.

General methods of tracing and debugging can be found in the chapter “Execution of
Programs.”

In the Watch window of the debugger, we notice that the value of a is 6, as shown in Figure 3.9.
More details of the debugger are covered in the corresponding chapter. “&” sign is used to obtain
the address of a, namely, the memory address of the storage unit. sizeof(a) calculates the size of
the space variable a takes up in memory, where the size is measured in bytes. In our case, a takes
up 4 bytes. The size of the variables is determined by their types. Variable a is an integer, which
takes up 4 bytes in this system.

3.1 Constants and variables = 91

Name [Value /i Variable storage size —determined by variable type|
sizeof(a) 4 .
a 6 - —>| Variable value -controlled by programmers |
e &a : 0x0018ff44 * \| Variable address —address of storage unit |

Figure 3.9: Key elements of variables.

Example 3.3 Definition and initialization of variables
Several cases of variable definition and initialization are listed in Figure 3.10. Analyze the attrib-
utes of these variables according to their definition and initial value.

Variable | Content of Length of

sxow Variable definition name |storage unit | storage unit | /3t valueisin
the storage unit
1 int sum ; sum sizeof(int) y\ if a variable is
2 int sum=16; sum 16 sizeof(sum) not \mtuahzed?l
m sizeof(m
3 longm, n=12; - (m)
n 12 sizeof(n)))
x 23.568 sizeof(double) Why is the value in
4 double x=23.568, y; - the storage unit 97
y sizeof(y) when we initialize
chl 97 sizeof(char) variable ch1 with ‘a”?
5 char chi='a’,ch2=66; - ,
ch2 66 sizeof(ch2)

Figure 3.10: Example of variable definition and initialization.

[Analysis]

In Figure 3.10, the column “content of the storage unit” records the value stored in the storage
unit when the variable is defined. This value can be changed as needed during the execution of
programs. Note that these variables are all defined inside a function.

On the third row, we define two long integer m and n, where m is not initialized and n is
initialized to 12.

On the fourth row, we define two real numbers x and y. To figure out the size of the storage
unit for a variable, we can simply put the variable name or variable type inside parentheses of
size of operator.

On the fifth row, we define two character variables ch1 and ch2, where ch1 is initialized to
character literal a. However, the value stored in its storage unit is 97 instead of a, why is this
the case? This is because characters are stored in computers after being encoded in C environ-
ment. ASCII value for character a is exactly decimal number 97.

What is stored in the storage unit if we don’t initialize the variable then?

In contrast to locker compartments that are empty when not being used, a storage unit
not in use still has data in it. However, it is an arbitrary number, which is meaningless to
programmers.

92 — 3 Basic data types

Example 3.4 Assignment of variables and memory space viewing
// Variable assignment

#include<stdio.h>

int main(void)

{

char c1,c2;

c1=97; // Assign 97 to c1

c2="b"'; // Assign 98 to c2

9 printf("%c %c\n", c1, c2); //%c: output c1 and c2 as characters
10 printf("%d%d ", c1, c2); //%d: output c1 and c2 as integers

11 return 0;

12 3%

0 N o g~ W N =

Output:

97 8

[Analysis]

1. Program analysis

The %c and %d on lines 9 and 10 are format specifiers of output function printf. They are used
to output data onto screen in certain formats.

Take variable c1 as an example, which has value 97 in its storage unit. When output is as a
character, the character for ASCII value 97 is displayed on the screen. When output is as a num-
ber, 97 is displayed instead.

The three key elements of variable c1 and c2 are shown in Figure 3.11.

Variable name | Content of storage unit | Length of storage unit ASCII value

cl 97 1 byte a

c2 98 1 byte b

Figure 3.11: Three key elements of variables.

2. Program tracing
In Figure 3.12, we see that variables c1 and c2 have initial value -52, which is an arbitrary num-
ber. Because —52 has no corresponding character in ASCII, “?” is displayed instead.

3.2 Datatypes =— 93

#include “stdio.h™ - B
void main() -
{ char c¢1,c¢2;

Name Value
cl -52 '?
=3 c1:97; - c2 -52 '?
c2="b"; i
printf("%c Zc\n , c¢1, ¢2);
printf(“%d Zd *, c¢1, ¢2);

b

Figure 3.12: Debugging step 1 of variable assignment.

After we assign values to c1 and c2, c1 has value 97, which is represented by character a in
ASCIl, whereas c2 has value 98, which is represented by character b as shown in Figure 3.13.

#include "stdio.h" = a
void main()
{ char c1,c2;

Name |Value
cl 97 ‘a’
2 98 ‘b’

c1:=97;
c2:='b";
= printf(“%c %c\n ", cl1, ¢2);
printf(“%d %d “, c1, c2);
3

Figure 3.13: Debugging step 2 of variable assignment.

3.2 Data types

Computers can handle all kinds of data, each with different attributes. We may cat-
egorize data based on their property, form of representation, storage size, and form
of construction.

— Property: integers, decimals, characters, etc.

— Form of representation: data can be represented by constants or variables in

programs.
— Storage size: different types of data take up different sizes of memory space.
— Form of construction: data can be of basic types or composite types.

Basic data types in practical problems include the numeral type and character type
as shown in Figure 3.14. To solve problems with computers, we need to store data
into computers before executing any operations. Hence, we should consider how
these basic data should be categorized and stored in computers first.

94 — 3 Basic data types
!
Basic
data

Figure 3.14: Basic data.

3.2.1 Representation of information in computers

3.2.1.1 Binary system

A lightbulb, or a switch, being on or off is two different states, so they can be used
to represent 0 and 1 in logic. We call such an information system a binary system as
shown in Figure 3.15.

Lightbulb Electric current
We can use two different stable
— = - | states to represent 0 and 1
On Off Closed Open
1 0 1 0 °o
O
. Binary
Voltage Switch

system

Il

0l =0 =
High Low Oon Off
1 0 1 0

Figure 3.15: Binary system.

3.2.1.2 Binary representation

The combination of states of multiple lightbulbs can be used to represent a se-
quence of 0 and 1. Computers consist of many electronic components internally,
which are controlled by circuits. A switch in these circuits can be set to one of two
stable states. Thus, we can use a combination of switch states to represent multiple
0s and 1s as shown in Figure 3.16. We use one O or 1 to represent a bit in computers,
but the question is: what can be represented by these Os and 1s?

We are all familiar with decimal numbers. In fact, they represent a positional
numeral system as shown in Figure 3.17. Take decimal number 256 as an example,
the second digit (counting from right-hand side) 5 represents 50, which is the prod-
uct of 5 and position value of the second digit, namely 10 raised to the first power.
The third digit 2 represents 200, which is the product of 2 and position value of this

3.2 Datatypes =—— 95

1l1/1l0l1l0l10 A micro information
system: use
combination of switch
What can be " states to represent
represented \L \J: \L OO information
~— by these 0s T T T
and 1s?
1

-
=
o
-
-
o

V] A bit

Figure 3.16: Binary sequence represented by switches.

Position| 3rd 2nd ist | [Position|7
o,| Digit Q
0~1 00

=
~ [
o [«*
S
o [N

re e
o [«)°

o~9 | 2 5 6 Digit | 4

Position 102 10! 100 Position 27 [26(25|24 (23]2 21| 20
value value

Figure 3.17: Positional numeral system.

digit, namely 10 raised to the second power. The base of position value in the deci-
mal system is 10.

Similarly, digits in the binary system are O and 1 while the base of position value
is 2. When adding binary numbers, we carry 1 to the next digit when two digits add
up to 2. When subtracting binary numbers, we borrow 1 from the previous digit and
use it as 2 during subtraction of current digits.

If we list all possible four-digit binary numbers, it is not hard to notice that there
are 16 corresponding decimal numbers, namely O to 15 as shown in Figure 3.18. We
may conclude that n-digit binary numbers can represent 2" numbers.

Binary number 0000|0001| 0010(0011{0100{0101| 0110|0111
Decimal number 0 1 2 3 4 5 6 7
Binary number 1000/1001|{1010{1011{1100{1101| 11101111
Decimal number 8 9 10 | 11 | 12 | 13 14 | 15

4-digit binary
numbers can
represent 16
number

DOO

n-digit binary numbers can represent 2" numbers

Figure 3.18: Number of digits in binary numbers and numbers they represent.

3.2.2 Processing of information in computers

Having learned how information is represented in computers, we now focus on how
information is handled in computers.

96 —— 3 Basic data types

3.2.2.1 Modular system

After a full day of meetings, Mr. Brown returned to his office at 5 pm. He noticed
that his clock stopped at 9 o’clock. When winding the clock, he found that the num-
ber of hours he needed if winding clockwise and the number of hours he needed if
winding counterclockwise added up to 12. For example, turning the short hand 8 h
forward has the same effect of turning it 4 h backward. We say that 8 and 4 are the
complement of each other in the full cycle of a clock, namely 12 h. A clock can be
seen as a counter of time. We call the counting interval of a recurrent counting sys-
tem “modulus.” We can replace subtraction with addition in any counting system
with modulus as shown in Figure 3.19.

Turn 8 hours forward 94+48=124+5=5

8 hours forward is
equivalent to 4 hours
backward. 8 and 4 are
complement of each other in
the full cycle of a clock,
namely 12 hours

Turn 4 hours backward 9-4=5

Rules) Counting interval of a recurrent counting system is called “modulus”
The sum of a number and its complement is the modulus in a modular system
Subtraction can be transformed to addition in a counter with modulus

Figure 3.19: Modular system.

3.2.2.2 Binary modular system

There is a domain for data in modular systems, where the data can change and
recur. In fact, binary memory space is also a modular system. For instance, in a
memory space of four-digit binary numbers as shown in Figure 3.20, the value can
change into 1111 from 0000 by repeatedly adding 1, which matches the character-
istics of a modular system.

Position 3 2 1 0
Minimum 0 0 0 0
Maximum 1 1 1 1

Modulus=[1111-0+1],=[1,00001,=[2%1,0=[16140

Figure 3.20: Binary modular system.

3.2 Datatypes —— 97

We can calculate the modulus of four-digit binary numbers by subtracting the mini-
mum representable number from the maximum and adding one. The result is 16,
which is exactly 2 raised to the fourth power.

Mr. Brown wanted to verify whether subtraction can be replaced with addition
in this binary modular system. He planned to calculate O minus 6 and O plus 10 and
compare the results as shown in Figure 3.21.

Discussion: verify that 0-6 = 0+10 in a system with modulus 16

Subtraction| Addition
Minuend (1] 0000 0000 1] Addend
Subtrahend 6 0110 1010 10 Addend,|
Difference | -6 [flo1o 10 sum |” O
Does 1010

represent -6 or
+10?

Representation
rules of data in
computers

. bi —E 1 : Negative
Sign bit 0 : Positive

Qoo

Figure 3.21: Complement in the binary system.

Based on the conclusion above, the complement of -6 is 10 in a system with modu-
lus 16, so the results should be identical. 0 plus 10 is [1010],, so [1010], ought to be
the complement of 6.

However, this leads to a question: should [1010], represent —6 or 10?

A rule of representing data in computers is thus needed, Mr. Brown thought.
We could use the most significant bit to distinguish between positive and negative
numbers, where 1 indicates negative and O indicates positive. As this bit is used to
indicate the sign of a number, it is also called “sign bit.”

Two problems are yet to be solved after the verification:

(1) We need to review the domain of four-digit binary numbers (0000 to 1111) after
introducing sign bit.

(2) We need to find a pattern of relations between positive and negative binary
numbers in a signed system.

3.2.2.3 Representation of numbers in binary modular system

Finding a pattern of relations between positive and negative binary numbers in a
signed binary system Mr. Brown decided to tackle the second problem first. To fig-
ure out relations between positive and negative numbers, it might be easier for us
to consider two numbers with the same absolute value. We could use an actual
number, for example, 6, and try to find a relation between binary representations of
6 and -6. As shown in Figure 3.22, Mr. Brown tried flipping and addition to see
whether there is any relation between them.

98 —— 3 Basic data types

-6 +6
Binary representation 1010

Bitwise not 0101 1001 c I .
o= omplemen
Add 1 I I |1°1 representation of -6
Absolute value of -6

Rules of complement representation O

Complement: we compute complement representation of a negative number
by executing bitwise not and addition by 1 on its absolute value
Absolute value of complement: bitwise not and addition by 1

Two’s complement is
the most frequently
used integer
— representation method
in computers.

Figure 3.22: Two’s complement.

“Bitwise not” on the third row of the table means executing not operation (flip O to
1 and flip 1 to 0) on each bit.

After a bitwise not operation and adding by 1, Mr. Brown noticed that —6 be-
came its own absolute value, and 6 became the complement representation of -6.
This is the rule of complement representation as shown in Figure 3.22.

As complement representation is used in subtraction, there is no need to use it
on positive numbers. However, we define the complement representation of posi-
tive numbers to be the same to make our theory comprehensive.

One of the merits of complement representation is that subtraction, multiplica-
tion, and division can all be transformed into addition, which largely simplifies cir-
cuit design of arithmetic units in computers. Although signed integers can be
represented in multiple ways in computers, we usually use 2’s complement to repre-
sent them.

3.2.2.4 Range of binary system

With complement representation, Mr. Brown tried to solve the first problem, which is
to determine the range of signed four-digit binary numbers. As shown in Figure 3.23,
1 or O on the most significant bit now indicates sign. Using the fact that the absolute
value of the minimal negative number (obtained by applying bitwise not and adding
1) should be the largest, he found the minimum negative number and the maximum

Position 3 2 1 0
oe[Minimum negative number| 1 0 0 Derivation: make sure
™" |Maximum positive number | [0 1 | 1 | 1 the absolute value
Coofrggl;?iqveent g | | OO@ after bitwise not and
number is V addition by 1 is as
itself Sign bit large as possible

Modulus=[0111-1000+1],=[0111+1000+1],=[24];0=[161;, |

Range of signed 4-digit binary integers:-23~23-1

Range of signed n-digit binary integers : -271~20-1-1

Figure 3.23: Range of binary numbers.

3.2 Datatypes —— 99

positive number and noticed that modulus was still 16. Note that the sign bit was
also flipped and added by 1. Hence, the range of signed four-digit binary integers
is —2° to 2°~1. Similarly, we can figure out the range of signed n-digit binary integers.

Think and discuss Does [1010], represent —6 or + 10 in a signed four-digit binary integer system?
Discussion: The range of such a system is —23 to 23-1, namely -8 to + 7, which doesn’t include + 10.
Hence, [1010]2 represents —6.

3.2.3 Basic data typesin C

Data types indicate the size of the space that data need. We can figure out the do-
main and operations allowed of data by examining data type. There are three basic
types: integer, real numbers, and characters as shown in Figure 3.24.

Unsigned integers have no sign bit, so they only represent positive integers.
Real numbers are represented in a different way, which will be covered in remain-
ing later.

Each data type is of a certain size and has its own domain. It is worth noting
that the size of a type may vary on different computers. The size of long type in C is
always defined as word length of the machine, where word length is the maximum
number of bits of binary data a computer can process in an integer operation. PC
nowadays usually uses 32 bits for integers.

int, float, and char are the most frequently used basic types.

Although the size of types varies in different computers, there are still some
patterns and rules, which are given below.

Rules of data types

(1) The minimum length of a storage unit is 8 bits, which can be used for one character. One
byte is equal to 8 bits. Lengths of other storage units are multiples of 8 bits.

(2) The storage unit of pointer type records the “number of a storage unit,” which is an inte-
ger, thus it has the same length as integers.

(3) Floating-point numbers are usually 2 N times (N is an integer) the length of integers as
shown in Figure 3.25.

(4) There are two types of storage rules: integers, characters, and pointers follow integer
rules, whereas floating-point numbers have their own rules.

Think and discuss How do we test the size of types?

We mentioned that the size of types might vary in different systems. How do we know the size
of a type in the system we are using?

Discussion: C provides the sizeof operator for testing type sizes. sizeof is an operator in C/C ++,
which returns number of bytes an object or a type takes up in memory.

3 Basic data types

100

*sadA} ejep oiseg g g aunSi4

GGZ~0 T-gZ~0 8 J91pedeyd paubisun Jeyo paubisun ON
J93deieyd
LTT~8TT- 1-4C~,C- 8 Jepeleyd deys| saA
+201C ~vz01C- +9 Jaguwinu |eaJ uoispald-a|gnoq a|gnop
SoA Jaquinu |eay
0z1C~gz1C- r4s Jagwnu |eaJ uoispaid-a|buls 1eo|4
G62/96V6C2t~0 T-zcC~0| CE Jaba3ul Buo| paubisun| buo| paubisun
GEGS9~0 T-g1Z~0| 9T Jaba3ul poys paubisun| Moys paubisun ON
GESG9~0 T-91Z~0| OT Ja633ul paubisun jul paubisun
Jabajur
T-1eC~1eC- € Jabajul buo Buo|
£94TE~89/4CE- T-¢iC~giC-| 9T Jaba3ul poys Hoys| saA
£94TE~89/4CE- T-¢iC~grC-| 9T Jabajug ul
sbuey yabuan Buiues|y plomAa ubis sey | Atoba3e)

3.3 Storage rules of integers =—— 101

Character char 8bit——1byte
Integer int | 2N times of 8 bits
Real number float 2N times of integers
Pointer Number of storage unit | same as int

Figure 3.25: Size pattern of data types.

Example 3.5 Using sizeof operator to test type sizes
We can design a program to test sizes of common types.

O 00 N O O A W N =

//Use sizeof to test type sizes

#include<stdio.h>

int main(void)

{

printf("int size =%d\n", sizeof(int));
printf("short int size = %d\n", sizeof(short int));
printf("long int size = %d\n", sizeof(long int));
return 0;

}

Output:

int size=4
short int size =2
long int size=4

Explanation: int size = 4 indicates that the size of int in the IDE in which this program is exe-
cuted is 4 bytes.

3.3 Storage rules of integers

There are four integer types in C:

Basic type: Keyword is int, which are the first three letters of integer.

Short type: Keyword is short [int] (note that content inside square brackets can
be omitted).

Long type: Keyword is long [int].

Unsigned type: There are three unsigned types, namely unsigned [int], un-
signed short, and unsigned long. They can only be used to store unsigned
integers.

102 — 3 Basic data types

3.3.1 Signed integers

We shall use -12 as an example to learn the characteristics and rules of storage of
signed integers. Suppose int type takes 16 bits in the following discussion.

The signed binary form of integer —12 is obtained by applying bitwise not and
addition by 1 to integer 12 as shown in Figure 3.26. Careful readers may have no-
ticed how the sign bit turns to 1 during this process. Comparing the binary represen-
tation of + 12 and -12, we find that sign bit is not the only difference.

Binary representation of +12 | 0000 | 0000 | 0000 | 1100
Bitwise not 111111111111 {0011
Add 1 111111111111 {0100

Storage of
integer +12
and -12

Signed number | Storage form in memory
Integer +12 | 0000 | 0000 | 0000 | 1100 o) O
Integer -12 |1111]1111 /1111 /0100

T—| Sign bit: 0 - positive; 1 - negative |

Figure 3.26: Storage of signed integers.

Storage rules of signed integers can be summarized as follows: positive integers are
stored as its binary representation, whereas negative integers are stored as its com-
plement representation as shown in Figure 3.27.

Signed integer Storage rule

Positive integer Binary representation

Negative integer Bitwise not and add 1 to its corresponding positive value

Figure 3.27: Storage rule of signed integers.

3.3.2 Unsigned integers

Again, we suppose the size of unsigned int is 16 bits.

Unsigned integers can only represent positive integers and zero. The sign bit
used in signed integers is merely a normal bit in unsigned cases. The complement
of 12 in signed representation is now decimal number 65524 in unsigned representa-
tion as shown in Figure 3.28.

Hence, we need to pay extra attention when storing and displaying data, as a
binary number in the same storage unit can represent different things when used
differently.

3.3 Storage rules of integers = 103

Storage form in memory | Corresponding decimal
unsigned number

Cofmplement 0000 |0000 |0000 (1100 12
representation of 1111 |1111 |1111 |0100 65524
-12 in signed - - p

number No sign bit: it is used as a normal b|t|

representations

|Unsigned bit can only represent positive integers and zero

Figure 3.28: Storage of unsigned integers.

3.3.3 Characters

Character type has a size of 8 bits. When storing character A into computers, we are
in fact storing its ASCII value 65 (here it is a decimal number) into a storage unit. As
a result, character and integer data can be used interchangeably, where “inter-
changeably” means they share the same storage rules and operation rules as shown
in Figure 3.29.

Character |ASCII value| Storage form in memory
A 65 0100 0001

A character is store as the binary form of its ASCII value

Fig. 3.29: Storage of characters.

Characters and
integers can be
used
interchangeably

Example 3.6 Example of integers
Output “a” and “b” as characters and as numbers as shown in Figure 3.30.

01 #include <stdio.h>
02 intmain(void)

03¢

04 printf("%c %c\n",'a','b"); //%c means the output will be formatted as characters
05 printf("%d %d\n", 'a','b"); //%d means the output will be formatted as integers
06 return O ;

07 } Result: ASCII value of
a b =0 character ‘a’ and
97 98 character ‘b’ are 97

and 98 respectively

Figure 3.30: Display of integers.

104 — 3 Basic data types

[Analysis]
On line 4, %c means the output will be formatted as characters, thus the result is character a
and b.

On line 5, %d means the output will be formatted as integers, thus the result is ASCII value
of a and b, namely 97 and 98.

Through this example, we learned that the same data can be displayed as different
things by changing the output format.

3.4 Storage rules of real numbers

Figure 3.31 shows an example program of displaying real numbers. Floating-point
numbers are how real numbers are stored in computers.

| Trap of floating -point humbers

01 #include <stdio.h>

02 int main(void)

03¢

04 float f=123.456;

05 if (f == 123.456) printf("Yes"); //If f = 123.456, output Yes

Why is this
the case?

06 else printf ("No"); //Otherwise output No o

07 printf("f=%f \n",f); //Output value of f Res, I“

08 returnO ; et

09 } No
123.456001

Figure 3.31: Trap of floating-point numbers.

On line 4, we define a float variable f with initial value 123.456. On line 5, two con-
secutive equal signs form an operator that checks whether its two operands are
equal. The entire line outputs “Yes” to screen if f is equal to 123.456. On line 6, “No”
is output if the comparison yields false. Combining these statements, we see that
either yes or no shall be displayed. Line 7 outputs the value of f onto the screen.
Readers may have guessed that yes would be displayed. However, as shown in the
figure, the actual output may be surprising.

Aren’t computers accurate computing tools? Why is there a deviation in results?
Can we trust the results given by computers?

In fact, this is the error generated by binary representation. We use finite 32-bit
sequences to represent infinite real numbers. Thus, the representation is an approx-
imated value in most cases.

3.4 Storage rules of real numbers =— 105

3.4.1 Representation of real numbers

To figure out the reason behind the error, let us take a look at the representation of
real numbers.

When a number is extremely small or large, such as the mass of an electron
(9 x 1072 g) or mass of the sun (2 x 10> g), we can write it as a real number multi-
plied by the nth power of 10, where the integer part of the real number has only
one digit. This method is simple, convenient, yet accurate. Such representations
are called “scientific notation.”

3.4.2 Representation of floating-point numbers

Modern computers adopted the floating-point number representation as shown
in Figure 3.32. In essence, it uses scientific notation to describe real numbers.
Floating-point representations describe significant figures and range of repre-
sentable numbers separately. More specifically, they use a fraction, a base, an ex-
ponent, and a sign bit to represent real numbers.

123.456=1.23456 x 1 0 2~>EEH

We can move the
decimal point by
changing exponent
value so that we can
represent more real
numbers easily.

= e

Representation of real numbers in computer: S

floating-point representation

Describe significant figures and range of representable numbers separately.
Use a fraction, a base, an exponent and a sign bit to represent real numbers.

Figure 3.32: Representation of floating-point numbers.

We shall use 32-bit float type, whose bit layout is shown in Figure 3.33, as an exam-
ple. The fraction M occupies 23 bits. The exponent e, together with a bias, forms the
biased exponent. Exponent represents the exponential part and occupies 8 bits.
Since floating-point numbers are signed, one bit is needed for the sign bit.

The exponent occupies 8 bits, which can be used to represent numbers from
—128 to 127. IEEE-754 uses value —128 for special purposes, so the actual range e can
represent is —127 to + 127 and the exponent bias of float type is 127. Using exponent
bias makes the exponent an unsigned number so that operations can be done more
quickly.

The IEEE-754 standard regulates the representation method we just described. In
addition to 32-bit float type, there is also a 64-bit double type. Formula to compute
the real value assumed by these representation methods is shown in Figure 3.34.

106 — 3 Basic data types

+ B ——Binary number
B =+ M X 2_e M——Fraction, which determines representation precision
e ——Exponent, which determines representation range
.ngh. - Low - Describe significant
Sign bit s | Biased exponent | Fraction m ‘ figures and range of
Number of bits 1 8 23 °9 O representable

& numbers separately

Biased exponent = e + bias

Figure 3.33: Storage of float type.

Storage format
Total number of .
Type) . Biased) : Bias
Sign bit Evpe Fraction bits

Short real numbers

(float) 1 8 23 32 127
Long real numbers

(double) 1 11 52 64 1023 (The bias is

subtracted

Real value =[(-1)%9"]x[1.fraction]x (2Biased exponent -biasy | 5 O

Figure 3.34: Formula to compute the real value.

Knowledge ABC IEEE-754
In the 1960s and 1970s, computer manufacturers use different floating-point representations in a
wide variety of computers. It was extremely inconvenient to exchange data and cooperate without
a universal standard. To solve this problem, a floating-point number working group in the
Institute of Electrical and Electronics Engineers (IEEE) started to work on a standard for floating-
point numbers in the late 1970s. In 1980, Intel announced Intel 8087, a floating-point coprocessor
with advanced and reasonable floating-point representations and operations. Its floating-point
arithmetic was later adopted by IEEE as the standard and published in 1985. In fact, it had already
been adopted by various computer manufacturers in the early 1980s and had become a de-facto
industry standard.

Floating-point numbers in IEEE-754 consist of three fields: a sign bit on the left, a biased ex-
ponent, and a fraction on the right.

Example 3.7 Storage of real numbers
Convert =12 and 0.25 to 32-bit floating-point numbers.

[Analysis]
The conversion process is shown in Figure 3.35.

12 is 1100 in binary, which can be normalized as 1.1 * 23, so the exponent is 3. As it is nega-
tive, the sign bit is 1. The biased exponent, whose binary form is shown in the “biased expo-
nent” column in Figure 3.35, is calculated by adding exponent 3 and exponent bias 127.

3.4 Storage rules of real numbers =— 107

Decimal | Normalization|Exponent| Sign (Efssr?ei)tqfrt;ei:st) Fraction
-12.0 -1.1x23 3 1 10000010 1000000 00000000 00000000
0.25 1.0x2-2 -2 0 01111101 0000000 00000000 00000000

(12),5 = (1100), — 1.1*23

Figure 3.35: Floating-point representation of real numbers.

To obtain the fraction, we omit the 1 left to the decimal point in the normalized number and
then pad the rest with 0.

Similarly, we can write out the 32-bit floating-point representation for 0.25.

Comparing the floating-point representation of 12 and complement representation of —12 as
shown in Figure 3.36, we may conclude that even integers and real numbers of the same value
are stored as completely different values inside computers.

Binary representation of +12 | 0000,0000,0000,0000,0000,0000,0000,1100
Bitwise not 1111,1111,1111,1111,1111,1111,1111,0011
Add 1 1111,1111,1111,1111,1111,1111,1111,0100

Representation in memory
Integer -12 1111,1111,1111,1111,1111,1111,1111,0100
Real number -12.0 1100,0001,0100,0000,0000,0000,0000,0000

Figure 3.36: Comparison of integer and real number storage.

Conclusion Storage rules of data

Integers and real numbers have different rules of storage. Even the same number can have dif-
ferent values when saved as integer and as real number. When some data are stored as a cer-
tain type, we should never use them as another type, unless we know the essence of these
data.

Example 3.8 Binary form of 123.456
Analyse the floating-point representation of 123.456.

[Analysis]

The 32-bit floating-point representation of 123.456 can be obtained after normalization and
computing biased exponent as shown in Figure 3.37. If we use the real value formula to convert
it back to a decimal number, we will find an extra 1 at the end. This is due to the display format
of floating-point numbers in programs.

108 —— 3 Basic data types

[Representation of 123.456 in memory (32 bits)]

Decimal Normalization Exponent| Sign (Bel)?sgr?eﬁ)t(a—ogieagg Fraction
1.111011
123.456 01110100101111001x26 6 0 1000,0101 1110110,11101001,01111001

Convert binary representation of 123.456 into decimal}

[(-1)~ sign]x[1.Fraction]x(2~ [Biased exponent —127 1)
=[(-1)~0]*[1. 1110110,11101001,01111001]*2~[1000,0101-
0111,1111]

=1.1110110,11101001,01111001*2”6
=1.92900002002716*64

=123.456001281738

Figure 3.37: Floating-point representation of 123.456.

3.4.3 Display precision and range of floating-point numbers

The biased exponent indicates the location of the decimal point in the data and de-
termines the range of floating-point numbers as shown in Figure 3.38. The range of
the biased exponent of float type is —127 to + 128; therefore, float can represent
numbers from —2'%8 to + 2'%8,

Use 32-bit
float type as
an example

Fraction m
23

Sign bit s Biased exponent
Number of bits 1 8

Number of bits Range Equivalent range in decimal Notes
Exponent 8 -28-1~n28-1-1 |-128~127 Signed number
Range of float -2128 ~ 42128 |-3,40*1038% ~ +3.40*1038
Fraction 23 Unsigned number
Precision of float 223 8388608 (7 digits) At most 7 significant figures

Figure 3.38: Display precision and range of floating-point numbers.

The number of bits in fraction determines the precision of float; 2 to the 23rd power
has seven digits when converted to decimal. This means that there are at most
seven significant figures, but only the first six are guaranteed to be correct. In other
words, the precision of float type is six or seven significant figures.

Similarly, the precision of double type is at most 16 digits.

In conclusion, as shown in Figure 3.39, both display and storage of decimal
real numbers have their own set of rules, which we need to understand. It is partic-
ularly worth noting that we should avoid checking whether two real numbers are
equal as the result may be unexpected.

3.5 Operators and expressions = 109

Storage of decimal real numbers

The system converts them to binary form according to international standard and
stores them.

Display of decimal real numbers

The system converts binary form stored in machines to decimal form according to
international standard, and then displays in a precision defined by users.

Comparison rule of real numbers
Avoid checking whether two real numbers are equal. |

Figure 3.39: Various rules of real numbers.

3.5 Operators and expressions

In the section of algorithms, we have seen problems like scoring, price guessing,
and things whose number is unknown. To solve them, we used operations such as
addition, subtraction, multiplication, division, comparison, and combination of
multiple comparisons as shown in Figure 3.40.

Problem Data Processing Operations involved
. . Discard highest and lowest score Comparison
Scoring by judges Compute average Addition, division
Guessing price Guess is higher, lower or equal Comparison
Things whose number is Rgmains 2 when diyided by 3, rfemains 3 when [Division (cqmpute rgmainder),
unknown divided by 5, remains 2 when divided by 7 check multiple conditions

simultaneously

Figure 3.40: Operations used in data processing.

These can be categorized as the three most important types of operations in C as
shown in Figure 3.41.

Type of operation Major cases Class Problems involved

Addition, subtraction, Arithmetic

Addition, division, etc. |multiplication, division, compute ‘ + Operators and

remainder operation precedence of
operators

« Associativity of

. Larger than, smaller than, equal | Relational
Data comparison

to, not equal to operation operators and data
Chec_k_multiple All cqr!ditions hold, not all Logical « Retrieving rule of
conditions conditions hold, none of the operation operation result
simultaneously conditions holds perati
o
@)

3 most common
operations in C

Figure 3.41: Categorization of operations used in data processing.

110 —— 3 Basic data types

3.5.1 Operators

Operators of C are shown in Figure 3.42, in which the first four are used more fre-
quently. Their usage will be introduced later.

Type Operators Use case
Arithmetic + - * [/ % ++4+ -- + - numerical computation
Assignment = and its extensions retrieve computation result
Relational > < >= <= == I= compare data
Logical && || ! check multiple conditions simultaneously
Bitwise & | N~ << >> binary number computation
Conditional ?: easier comparison of data
Comma , list multiple expressions
Other & sizeof obtain address, size of storage unit

Figure 3.42: Operators in C.

3.5.2 Expressions

Connecting operators and objects to be operated (or operands) following syntax
rules, we get statements that are called expressions in C as shown in Figure 3.43.
Depending on the operators used, there are various kinds of expressions such as
arithmetic expressions and assignment expressions.

An expression is a statement that connects operands using operators following C grammar rules

Operator

\

Operand
(Operating object)

Figure 3.43: Expressions.

3.5.3 Precedence of operators

As an expression may contain multiple operators, the order of execution can affect
the result. This is why we need to determine which operation should be executed
first when there is more than one of them. We call this order precedence of opera-
tors as shown in Figure 3.44.

3.5 Operators and expressions —— 111

Precedence of operators
The order of evaluation of different operators in an expression.

Operator

Description

Associativity

(@)

Parentheses

From left to right

1, ++, --, sizeof

NOT, increment, decrement,
compute size of type

From right to left

*,/,% Multiplication, division, remainder From left to right
+, - Addition, subtraction From left to right
Less than, less than or equal to,
<, <=, >, >= greater than, greater than or equal |From left to right

to
==, 1= Equal to, not equal to From left to right
&& AND From left to right
|1 OR From left to right

Assignment operator and
compound assignment operators

From right to left

Figure 3.44: Precedence and associativity of operators.

Operators are listed top to bottom in descending precedence, where operators
with the highest precedence are listed on the top and operators with the same level
of precedence are on the same row.

The last column indicates the associativity of operators, namely which opera-
tion gets executed first when given operations have the same level of precedence.

Normally, we don’t have to recite the precedence in C, but we need to keep in
mind that parentheses have the highest precedence so we can use them to override
the precedence of operators as shown in Figure 3.45.

|High precedence| | Parentheses
|_!

Arithmetic
operations
Relational
Low precedence operations
P &8, ||
« Parentheses have the highest level of Assignment
precedence operations
» Parentheses can be used to override
precedence

Figure 3.45: A summary of precedence.

112 — 3 Basic data types

Good habit in programming

When using operators, we need to take good care of precedence. We should use parentheses to
determine precedence and avoid using default precedence. This keeps us from misunderstand-
ing a program when reading it and from making mistakes in our own programs by unintention-
ally using default precedence, which deviates from our design.

3.5.4 Associativity of operators

Associativity defines the order in which operators of the same precedence are eval-
uated in an expression as shown in Figure 3.46. Take 10/5*2 as an example. The
result will be different when we evaluate from left to right and from right to left.

Associativity of operators

» The direction that operators are associated is called associativity.
« When there are multiple operators with the same level of precedence in one expression, the
order of evaluation is determined by associativity.

Left-associated

10/5%2 From left to right : (10/5)*2
From right to left : 10/(5*2)

Right-associated

int x, y=1, z=2; | From left to right : x
X=y=2; From right to left : x

Associativity
determines whether
evaluation starts
from left or from
right.

=1,y=2

Figure 3.46: Associativity of operators.

Arithmetic operators are associated from left to right, that is, operators on the left
are evaluated first, which is the order we are familiar with.

In the case of expression x =y = z, if we assign from left to right, then we assign y
to x first and then z to y, which yields x =1 and y = 2. In contrast, if we evaluate from
right to left, then we assign z to y first and then y to x, which yields x=2 and y = 2.

Which one do we choose then, left to right or right to left? People have deter-
mined that the associativity of the assignment operator is from right to left, so the
second assignment should be executed first. Rules of precedence and associativity
are summarized in Figure 3.47.

Rules of precedence and associativity of operators

« Precedence and associativity determine order of execution of operators in an expression.

« Operators are first executed in the order of precedence; operators with the same level of
precedence are executed in the order determined by associativity.

« Left-associated means operators on the left are executed first, while right-associated means
operators on the right are executed first.

Figure 3.47: Precedence and associativity.

3.6 Numerical operations =— 113

3.6 Numerical operations

When shopping, we need to execute all kinds of operations on prices and quantities
to get the result. To do numerical computations in C, we have to define the repre-
sentation and rules of common mathematical entities, including arithmetic opera-
tors, numbers, and character operands as shown in Figure 3.48.

Mathematical
expressions How do we represent
ab-c arithmetic operators,
o) numbers and
13 Y character operands
X in C?
a+6
c+d
b2-4ac

Figure 3.48: Operations and their representations.

3.6.1 Arithmetic operators and expressions

3.6.1.1 Arithmetic operators and expressions

An arithmetic operation involves arithmetic operators and expressions as shown
in Figure 3.49. An arithmetic expression is a statement that connects operands
using arithmetic operators. Addition, subtraction, multiplication, and division oper-
ations are familiar to us, whereas operators of multiplication and division are repre-
sented by “*” and “/” in C due to limitation of keyboards. It is worth noting that
division of integers yields integer as well. We can use this rule to simplify algo-
rithms in many cases.

Arithmetic expression
An arithmetic expression is a statement that connects operands using arithmetic operators

Operator Meaning Notes
+ Addition operator or positive sign
- Subtraction operator or negative sign
* Multiplication operator
o Division of integers yields integer, the
/ 2L el fraction part is discarded
% Remainder operator Remainder operation requires operands

to be integers

Figure 3.49: Arithmetic operators and expressions.

In addition, C defines a remainder operation, which is used to calculate the remain-
der in integer division. Essentially, division is merely repeated subtraction. We repeat

114 — 3 Basic data types

subtraction until the dividend is smaller than the divisor and the remaining part is
called the remainder. Using the remainder operation can simplify algorithms as well.

However, writing arithmetic expressions in C is different from writing them in
mathematics as shown in Figure 3.50. In particular, the multiplication operator can-
not be omitted and we can use parentheses to override precedence.

Mathematical .
; Expressions Notes
expressions
ab-c a*b-c
1
= 1/(x*x*x
x3 /() » Multiplication operator can’t be omitted
Use parentheses to override precedence
até (a+6)/(c+d) P P
c+d
b2-4ac=0 b*b-4*a*c

Figure 3.50: Mathematical expressions and C expressions.

Example 3.9 Example of arithmetic operations
Define two integers a and b, with initial values 7 and 3, respectively. Output sum, difference,
product, quotient, remainder, and mean of them onto the screen.

[Analysis]
The program and output are shown in Figure 3.51. We can write expressions inside formatted
output function printf() to output results.

#include<stdio.h>
int main(void)

{
inta=7;
int b=3;
printf("%d ",a+b); // Compute and output sum of a and b
printf("%d ",a-b); // Compute and output difference of a and b
printf("%d ",a*b); // Compute and output product of a and b
printf("%d ",a/b); // Compute and output quotient of a divided by b

printf("%d ",a%0b); // Compute and output remainder of a divided by b
printf("%d ",(a+b)/2); // Compute and output average of a and b

return 0; We can't tell which
operation yields
which number.

Output : 10 4 21 2 1 5200

Figure 3.51: Example of arithmetic operations.

The output is a sequence of integers. Without the program, we won’t be able to tell which is the
sum or the product.

To get clearer results, we can add texts in the output function as shown in Figure 3.52. Note
that the integer division on line 10, which is 7 / 3, yields 2. Use of printf() function is covered in
detail in the chapter “Input/Output.”

3.6 Numerical operations —— 115

01 #include<stdio.h> Result :

02 int main(void) a+b=10
03¢ Improve a;b=4

04 inta=7; output format :/tl’)_:221

05 int b=3; o o) 2%b=1

06 average is 5

07 printf("a+b=%d\n",a+b); // Compute and output sum of a and b

08 printf("a-b=%d\n",a-b); // Compute and output difference of a and b

09 printf("a*b=%d\n",a*b); // Compute and output product of a and b

10 printf("a/b=%d\n",a/b); // Compute and output quotient of a divided by b
11 printf("a%%b=%d\n",a%b); // Compute and output remainder of a divided by b
12 printf("average is %d\n",(a+b)/2); // output average

13 return O;

14 }

Figure 3.52: Refinement of the example program.

Example 3.10 Time conversion
Convert input time in seconds into minutes and seconds, for example, 500 s is 8 min and 20 s.

[Analysis]
We are asked to write a program that output corresponding minute (variable minute) and sec-
ond (variable second) given time in seconds (variable time).

If time =500, then minute = 8 and second = 20. The program is as follows.

01 #include<stdio.h>
02 intmain(void)

03 {

04 int time; // Define an input variable

05 int minute, second;

06 printf("Please input a time in integer seconds"); // Screen prompt

07 scanf("%d",&time); // Obtain the time input
08 minute = time/60; // Calculate minute

09 second = time%60; // Calculate remaining seconds
10 printf("%d minutes %d seconds", minute,second);

11 return0;

12 3}

On line 6, we use printf() function to prompt users to input time value.

On line 7, we use scanf() function to obtain users’ keyboard input and store it into variable
time.

On line 8, we use integer division to calculate the number of minutes in time.

On line 9, we use the remainder operation to calculate the remaining seconds.

Finally, we output the desired result.

116 —— 3 Basic data types

3.6.1.2 Increment and decrement operation
When programming, we often need to write “i=1i+1” or “i =i — 1”. C provides short-
hands for these two operations as shown in Figure 3.53.

Frequently Pi= i
used . . 00 Sh?r:té\and

Increment and decrement operator

* ++ and -- is an operator are called increment and decrement operator respectively. They are unary operators.
* ++ increases the operand by 1 while —— decreases the operand by 1.
Note that operands of increment and decrement operator should be integers.

Figure 3.53: Increment and decrement operator.

The ++ operator and —— operator are called increment operator and decrement opera-
tor, respectively. They are unary operators. ++ operator adds 1 to its operand, whereas
— operator subtracts 1 from its operand. Note that their operands must be integers.
Increment and decrement are not something we have experienced, so we need
to be careful and follow the rules when using them. Some examples are shown
in Figure 3.54 to help readers become more comfortable with these two operators.

int x,vy;
Operator | Example Meaning GBI
statement
y = ++x | Increase x by 1, then assign x to y ++X; y=X;
i y = X++ Assign x to y, then increase x by 1 y=X; X++;
y = --X Decrease x by 1, then assign x toy --X; Y=X;
N y = X-- Assign x to y, then decrease x by 1 y=X; X--;

Figure 3.54: Increment and decrement example 1.

In the first row, y = ++x will increment x first and then assign x to y. It is equivalent
to ++X; y =X.

In the second row, y = x++ means assigning and incrementing, which is equiva-
lent to y = x; x++. Examples of —— operators work in the same way.

Figure 3.55 shows two programs that differ in only one line. The program on the
left does increment before assignment while the other does assignment before the
increment. This difference leads to different outputs. If the operand of increment or
decrement is going to be accessed by other objects in the same statement, we need
to determine where to put these operators carefully.

3.6 Numerical operations

— 117

int main(void)
{
intx,y;
x=10 ;
y=++X;
printf(”%d, %d \n”, X, y) ;
return O ;
b
The result is
11, 11

int main(void)
{
intx, y;
x=10;
y=x++ ;
printf(”%d, %d \n”, x, y) ;
return O ;
>
The result is
11, 10

If the operand of increment or decrement is going to be accessed by other objects in the
same statement, we need to carefully determine where to put these operators.

Figure 3.55: Increment and decrement example 2.

We can make outputs of these programs identical by modifying the lines that

differ as shown in Figure 3.56.

int main(void)
{
int x, y;
x=10;
++ X ;
y=X;
printf(”%d, %d \n”, x, y);
return 0;

Result:
11, 11

int main(void)
{
int x, y;
x=10;
X++ ;
y=X;
printf(”%d, %d \n”, X, y);
return 0;

3

Result:
11, 11

If the operand of increment or decrement forms a statement on its own, it
doesn’t matter where we put the operator.

Figure 3.56: Increment and decrement example 3.

As long as a statement consists of only the ++ operator and its operand (say vari-
able x), the operator simply adds 1 to x, regardless of its position relative to x. In
other words, it doesn’t matter where we put increment or decrement operators if
the object forms a statement on its own.

In C programming, we should use increment and decrement operators with cau-
tion. In particular, pay attention to the following issues:

118 —— 3 Basic data types

(1) A statement with too many increment or decrement operations is hardly read-
able. One reason for writing incomprehensible code is probably that the gener-
ated machine code is more efficient. Nevertheless, unreadable programs will
only decrease programmers’ efficiency.

(2) Different compilers generate different results. This essentially prohibits us from
using too many increments or decrements in one statement.

(3) Doing so prevents us from debugging our program.

When a debugger is running, the minimum “execution step” is one line. If multiple
statements exist in a line, they are still executed in one “step.” Take x = a++*a++*a
++ as an example, the debugger will execute all four statements at once when we
trace the program step by step. As a result, it is hard to examine how the value of a
changes, which is exactly our purpose of debugging. If we can’t do this, then we
are denied the chance of debugging.

Good habit in programming
It is recommended to include at most one increment or decrement in a line.

3.6.2 Overflow problems in data operations

Every type has a value range. If operation on a variable yields values outside the
range, we won’t obtain the desired result.

Example 3.11 A problem of using unsigned number
Suppose we have the following variable:

unsigned char size;

What is the value of variable size after decrement if it initially has value 0?
Answer: As size is unsigned char, its value can’t be negative. In this case, it will become OxFF.

Example 3.12 A problem of using character
Character type has value range —128 to 127 in C, so the following computation is risky:

char chr =127;

int sum=200;

chr +=1;

// 127 is the maximum value of char,

// so adding 1 causes overflow and yields -128 instead of 128
sum +=chr; // As a result sum becomes 328 instead of 72

Preventing Program Errors
Pay attention to edge values when using variables.

3.7 Logical operations =— 119

3.7 Logical operations
3.7.1 Relational operations

In the price-guessing game, after a participant makes a guess, the host responds
with “too high,” “too low,” or “exactly.” The relation between the guess and actual
price can be obtained by comparison, which is one of “larger than,” “smaller than,”
and “equal to.” Such a comparison yields either true or false.

Let the participant’s guess be value and the actual price be ¥1680. We can write
the following relational expressions in C as shown in Figure 3.57. The results of
these comparisons can be represented by non-zero and zero.

We need to
compare data and
determine whether
a condition is met

| Price guessing game

Possible case Representation P:_):sslilll)tle Representation
Comparison value is greater than 1680| value>1680 Met Non-zero value
of value and [value is less than 1680 value<1680
1680 value is equal to 1680 | value==1680 Not met 0

Figure 3.57: Relational operation in the price-guessing game.

“Relational operations” are in fact “comparison operations,” which compare two
data and determine whether certain relation holds between them. Relational ex-
pressions are obtained by connecting operands with relational operators as shown
in Figure 3.58.

A relational operation compares two numbers and determines whether they satisfy a
given condition. If the condition is met, the operation yields true, which is represented
bya non-zero value; otherwise it yields false, which is represented by zero.

Relational expression

A relational expression is a statement that connects two operands (constants, variables
or expressions) using relational operators and execute relational operations.

Figure 3.58: Relational operations and relational expressions.

Relational operators in C are shown in Figure 3.59. Some of them deviate from their
mathematical representations due to keyboard limitations. Readers should also

120 — 3 Basic data types

%?)l::iaotgil Meaning Result of relational operation
> Greater than 0 Nom-zero
S Greater than or equal to False True,
= Less than conditionis not met condition is met
= Less than or equal to
== Equal to

= Not equal to

Relational operator “=="is different from assignment operator “=",
they can’t be used interchangeably.

Figure 3.59: Relational operators.

keep in mind that == operator, which is a relational operator, should not be con-
fused with = operator, which is an assignment operator.

Relational operations can yield two possible results: true if the relation holds;
false otherwise.

There is no Boolean value in C, instead, we use nonzero value to represent “true” and
zero for “false.” Hence, if a relation expression evaluates to zero, it represents “false”; if it
evaluates to a nonzero value, it represents “true” regardless of the sign of that value.

Example 3.13 Determine whether two real numbers are equal
Figure 3.60 shows the code and result of a program that checks whether two real numbers are
equal.

int main(void)
{ fl
oat x;
char k; Why the result
x=1.0/10; is like this?
if (x==0.1) k="y";
else k="n"; oOO
intf(" k=%c,x=%f \n" , k,x);
Eer;urrf 0; BEESHEIN X) Result:k=n,
3 ' x=0.100000
|

Figure 3.60: Determine whether two real numbers are equal.

Is the result unexpected? The reason this happens is that float-type variables have limited pre-
cision in floating-point number storage format (IEEE-754).

If we have to compare x with 0.1, we can use expression (x20.1-¢€) && (x< 0.1+ €), where €
is the error bound. We can use € =107°, but we cannot use a value that is too small due to lim-
ited precision of float type.

Preventing program errors
Avoid comparing real numbers or floating-point variables using “==" or “!I=".

3.7 Logical operations = 121

3.7.2 Logical operations

3.7.2.1 Example of Relation Problem
Let us take a look at another relation problem. There is a triangle whose edges have
lengths a, b, and c, respectively. We need to classify this triangle.

We need to check relations between edges and classify the triangle based on
mathematical definitions. The equilateral triangle requires a=b and a=c, so we
need to examine two conditions at the same time as shown in Figure 3.61.

We need to compare multiple
data relations, do logical
reasoning and determine

whether conditions are

Classification of Triangles e metTriangle

triangle Condition Analysis
Equilateral triangle |a==b and a==c Determine whether both conditions are met
Isosceles triangle [a=b or a=c or b=c Determine whether at least one condition is met
Ordinary triangle a+b>c and a+c>b and b+c>a Determine whether all conditions are met
Non-triangle Doesn't satisfy conditions of ordinary triangle |Determine the opposite of a condition

Figure 3.61: Classification of triangles.

In summary, we need to determine whether multiple conditions are met at the same
time or whether one of the conditions is met in practical problems. Sometimes, we
need to consider the opposite of the conditions we have. Essentially, we need to
compare multiple data relations, do logical reasoning, and determine whether con-
ditions are met.

3.7.2.2 Definition of logical operations
Definition of logical operations and logical expressions are shown in Figure 3.62.

Logical operation

» A logical operation connects one or more conditions using logical operators and
determine whether these conditions are met.
» A logical expression evaluates to a Boolean value (true of false).

Logical expression

» A logical expression is a statement that connects one or more expressions using
logical operators and executes logical operations. We use logical expressions to
express combination of multiple conditions in C.

Figure 3.62: Logical operations and logical expressions.

There are three logical operators, namely AND, OR, and NOT, whose usages are shown
in Figure 3.63.

122 — 3 Basic data types

Name |Operator Operation rule
AND && It yields true if value of both operands are true and yields false otherwise.
OR I It yields false if value of both operands are false and yields true otherwise.
NOT ! It yields false if value of operand is true and yields true if value of operand is false.
Operand Result of logical
A and b are result of operation "
relational operations, a b |a&&bjaflb] !a
where 1 represents 0 0 0 0 1
“true” and 0
“ P Boolean| 0 1 0 1 1
represents “false O O | value 1 0 0 1)
1 1 1 1 0
Memorizing tip: AND yields false if one operand
is false, OR yields true if one operand is true,
NOT flips its operand.

Figure 3.63: Logical operators and their usage.

(1) AND
AND yields true if two operands are both true, and false otherwise. Suppose the
operands are a and b, which are results of relational operations and are either
true (1) or false (0). If a and b are both true (or 1), a AND b yields true; if one of
them is false, the result is false. AND is similar to multiplication in their way of
working.

(2) OR
OR vyields false if two operands are both false, and true otherwise. OR is similar
to addition in their way of working.

(3) NOT
NOT yields false if the operand is true, and true if the operand is false.

We can remember rules of logical operators easily using this tip: AND yields false if
one operand is false, OR yields true if one operand is true, NOT flips its operand.

3.7.2.3 Examples of Logical Operations

Example 3.14 Classify a triangle
There is a triangle whose edges have lengths a, b, and c, respectively. Use logical and condi-
tional expressions in C to describe conditions for different types of triangles.

[Analysis]
The conditions and corresponding C expressions are shown in Figure 3.64.

In the first row, an equilateral triangle requires a==b and a == ¢, which can be represented
bya==b&&a==c.

3.7 Logical operations =— 123

In the last row for nontriangle, the ! sign is used for NOT, which yields the complement of its
operand and is often called “logical complement” as well.

triangle Condition C expression
Equilateral trianglga==b AND a==c a==b && a==c
Isosceles triangle |a=b OR a=c OR b=c a==b || a==c || b==c
Ordinary triangle |a+b>c AND a+c>b AND b+c>a a+b>c && a+c>b && b+c>a
Non-triangle Doesn't satisfy conditions of ordinary triangle| ! (a+b>c && a+c>b && b+c>a)

Figure 3.64: Conditions of triangles and their C expressions.

Example 3.15 Classify a character
Given a character from keyboard input, store it into character variable ¢ and determine whether
it is a number, an uppercase letter or a lowercase letter.

[Analysis]

According to the ASCII table, if the character is a number, ¢ should be between character 0 and
character 9, which can be written as conditional expressions shown in Figure 3.65. Note that
c=‘0’ and c=<‘9’ are two relational expressions. Only when both of them are met, namely they
both yield true, can c be a number. Similarly, we can write out expressions for other cases.

Class of character c Condition Expression
Number c is between character 0 and 9 c>="0'&& c<="'9'
Not a number c is not between character 0 and 9 I (c>="0'&& c<="9")
Upper case letter c is not between character A and Z c>="A'&& c<="'Z"
Lower case letter c is between character A and Z c>="a'&& c<="b’

Figure 3.65: Classify a character.

Example 3.16 Determine result of expression
Letint x=1, y=1, z=1. What are the values of x, y and z after executing operation ++x ||++y &&
++2?

[Analysis]

There are operators of more than one type with different precedences. We should refer to a man-
ual if we cannot recall their precedence. A better way is to use parentheses to express logical
relations described in the problem when programming.

First, we evaluate the expression to the left of OR, namely ++x. The result is 2 and will be
used as one operand of OR. In C, nonzero values are treated as “true,” represented by “TRUE”
in the figure. As OR yields true if one of the operands is true, we no longer need to evaluate the
expression to its right.

Similarly, the && operator yields false, if one of the operands is false. Omitting evaluation
like this is often called a side effect of logical operators. Thus, we need to use them carefully
when programming.

124 — 3 Basic data types

As a result, only increment of x is executed, whereas increment of y and z are skipped. In
fact, it is not recommended to use multiple increment or decrement in one statement as differ-
ent compilers may explain it in different ways and yield different results.

(++x) I ((++y) & (++2))
=2 || ((++y) && (++2)))
=TRUE || This expression is not o O

evaluated :
=TRUE \ The left operand of *||” operator is TRUE, so
- fwe don’t need to do more evaluation.

Result : Similar cases exist for && operator as well.
Value of the expression is 1

x=2,y=1, z=1

Side effect of
logical

Don’t use operations that change value of variables when doing logical or
relational operations.

Figure 3.66: Determine the result of an expression.

Example 3.17 A detective story
The police are questioning four theft suspects. They already know one of the suspects is the
real thief and every suspect either lies or tells the truth. Their answers to the policeman’s ques-
tion are as follows. Please determine who committed the crime.

A says, “B didn’t do it, it was D.”

B says, “l didn’t do it, it was C.”

C says, “A didn’t do it, it was B.”

D says, “l didn’t do it.”

[Analysis]
Let variables A, B, C, and D stand for these suspects. The value of each variable is either 0 or 1,
where 1 means this person is the thief and 0 means otherwise.

We know from the problem description that only one of them is the thief and each of them
either lies or tells the truth. We also notice that A, B and C use the same pattern “X didn’t do it,
it was Y.” Hence, regardless of them being honest or not, one of the two people they mentioned
must have committed the crime. Consequently, we can write the following expressions without
knowing who is being honest and who is not:

“B didn’t do it, it was D” can be represented by B+D =1.

“B didn’t do it, it was C” can be represented by B+ C=1.

“A didn’t do it, it was B” can be represented by A+ B =1.

We can’t determine whether “I didn’t do it” is true or not, so we can write itasA+B+C+D=1.
One of them is the thief is then equivalent to (B+D==1)&&(B+C==1)&&(A+B==1)&&
(A+B+C+D==1).

3.8 Type conversion =— 125

3.7.2.4 Rules of logical operations
Having seen these examples, we can summarize rules of logical operations as
shown in Figure 3.67.

Syntactically, it is not wrong to
use integers as operands of
logical operations, but we
should be aware of the actual
meaning when using them

Rule of logical operations °

True and false
Operands of logical operations should be either true or false.
Evaluate when necessary

Compilers don’t execute all logical operations when evaluating logical
expressions. Only when further computation is needed to determine value of
an expression will compilers execute next logical operation.

Figure 3.67: Rules of logical operations.

3.8 Type conversion
3.8.1 Computation of data of mixed types in real life

Case Study 1 Computing total on shopping receipt

Looking at the shopping receipt on the table as given in Figure 3.68, Mr. Brown had
a question. The total price of each item on the receipt is calculated as price per unit
times quantity. The price is a real number, whereas quantity is an integer. In this
particular problem, it is only reasonable if the result is a real number as well;

| Shopping receipt

What is the type of

____________________________ calculation result of

ST T T data in different types?

Item Name Price PerUnit Quantity Total o O

Notebook 15.60 1 15.60 f . .
Total = per-unit price x quantit

Battery 8.00 2 16.00 P P g Y

Bread 3.60 2 7.20

Milk 26.80 1 26.80 real number integer

Subtotal 6 65.60

Discount 3.60 Total 62.00

Received 100.00 Change 38.00

Figure 3.68: Type conversion in shopping receipt.

126 — 3 Basic data types

therefore, a type conversion has happened in our brain naturally. A more general
question for computers is: What is the type of the computation result of data of
mixed types and how type conversion should be carried out?

Numerical operations have the following rule in C: when assigning result to a
variable, the result should be converted to the same type as the variable.

Case Study 2 Computing error of material fee
Mrs. Brown went to a handcraft workshop to learn ceramic art. All students needed
to pay for raw materials. There were two types of materials, namely A and B, which
were mixed in a 2:1 ratio. Twelve people came to the workshop. They used 18 bags
of A and nine bags of B. It is known that A costs ¥32.6 per bag and B costs ¥15.8 per
bag. What was the average material fee for each student?

The manual computation result by Mrs. Brown was ¥60.9. To examine rules of
mixed-type data computation in computers, Mr. Brown designed a program, which
is shown in Figure 3.69.

| Error in computation of material fee

01 #include “stdio.h” Manual computation result :

02 #define priceA 32.8 cost=(18/12)*32.8+(9/12)*15.6

03 #define priceB 15.6 e

8‘51 I{nt main(void) Program result : 32.6 |
[*)

06 intnumA=18, numB=9; //Quantity of material OO

07 float cost; //Cost of material

08 cost=(numA/12)*priceA+(numB/12)*priceB;
09 printf("%f", cost);

10 return O;

11}

The program result

is wrong, what is
wrong in the
program?

Figure 3.69: Computation of material fee.

The calculation formula on line 8 was exactly what Mrs. Brown used. However, the
program output 32.6, which was far from the manual result. Why was this the case?

After careful observation, we can see that numA and numB are both integers.
We have learned that integer divided by integer, 12 in this case, yields another inte-
ger in C. This is why the result was incorrect.

We can change the way of computation to solve this problem without changing
existing computation rules. In other words, we only change the type of data as
needed. In particular, we can use a real number identifier on integer numA so that
it is used as a real number in computation.

3.8 Type conversion = 127

3.8.2 Type conversion rules in C

Based on the method we just mentioned, a type conversion grammar was de-
signed in C. It can be used to convert data to another type during computation as
shown in Figure 3.70.

Data type conversion

Type conversion converts value of data from one type to another.

Figure 3.70: Data-type conversion.

In programming, type conversion can happen in numerical computation, assign-
ment, output, and function call. C has conversion rules for each case as shown
in Figure 3.71. We need to master them through practices. The concept of function
is introduced in the corresponding chapter.

Type Happens when Processing rule
Operation Data of different types are computed together Convert then compute
Assignment A value is assigned to a variable of different type|Convert to target type
Output Result needs to be output in certain formats Output in required formats
Function call Parameters and arguments are of different types|Use parameter types

Return value and function are of different types |Use function type

Figure 3.71: Different cases of type conversion.

There are two kinds of type conversion as shown in Figure 3.72. One of them is
done by the system automatically, which is called “automatic conversion” or “im-
plicit conversion.” The other is done by us programmers manually, which is called
“forced conversion” or “explicit conversion.”

Automatic conversion
(implicit conversion)

Type
conversion

Forced conversion
(explicit conversion)

Figure 3.72: Two ways of type conversion.

128 —— 3 Basic data types

3.8.3 Forced-type conversion

Forced-type conversion is explicit, which converts the type of an expression to the
desired type. The format is shown in Figure 3.73, where we write the type we want
in front of the expression to be converted. Explicit means we explicitly write out the
type we need. It is worth noting that forced-type conversion changes the type of
value instead of the type of the original variable or expression.

Forced type conversion

Forced type conversions are explicit type conversions that convert
type of expressions into a desired one.

Format of force type conversion
(Identifier of desired type) expressioré
(]

Forced type conversions yield
value of desired type. They
don't change type of original
variables or expressions.

Figure 3.73: Forced-type conversion.

Example 3.18 Revised material fee program
Mr. Brown used forced-type conversion to revise his program as shown in Figure 3.74. On line 8,
float was added in front of numA and numB. On line 8, he rechecked their values after computation.

01 #include “stdio.h”
02 #define priceA 32.8

) . Manual com ion r It :
Ul e e L5 coastia(1§c/)12p)lj‘t3a2t.g+(g;$2t)*15.6
04 int main(void) =60.97¢
05 {
06 int numA=18, numB=9; //Quantity of material
07 float cost; //Cost of material Value of numA

and numB are

08 cost=((float) numA/12)*priceA+((float) numB/12)*priceB;
unchanged

09 printf("%f\n", cost);

O
10 printf("numA=%d , numB=%d", numA, numB); 0O .
Program result :
11 return 0; 60.9
123} numA=18 , numB=9

Figure 3.74: Revised material fee program.

The output result was correct this time. The value of numA and numB were also unchanged after
forced-type conversion.

3.8 Type conversion = 129

Example 3.19 Forced-type conversion
Verify that the value of a variable is not changed after forced-type conversion.

1. Code
1 // Example of forced type conversion
2 #include <stdio.h>
3 intmain(void)
4 {
5 floatx, y;
6 x=2.3
7 y=4.5;
8
9 printf("(int)(x)+y=%f\n", (int)(x)+y);
10 printf("(int)(x +y)=%d\n", (int)(x +y))
11 printf("x=%f,y=%f\n",x,y);
12 return9;
13 3}
Output:
(int)(x)+y=6.500000
(int)(x +y)=6
X=2.300000,y=4.500000
Notes:
(1) Online 9: (in)(x) +y=(int)(2.3) + 4.5=2+4.5=6.5.
(2) On line 10: (int)(x + y) = (int)(2.3 + 4.5) = (int)(6.8) = 6.
(3) Forced-type conversion changed the type of expression without changing the value of x

andy.

2. Tracing and debugging

In the Watch window, as shown in Figure 3.75, we see that the program is going to execute re-
turn at this moment. Although forced-type conversion of variable x and y is done, their value is

left unchanged.

o

#include <stdio.h>

int main() a

(Name Value
float x, y; X 2.30000
x2.3; y 4.50000
y=4.5; (int)x 2

. _ _ (int)y)

printf("(int)(x)+y=%f\n", (int)(x)+y); (int)(x)+y 6.50000
printf("(int)(x + y)=Zd\n" (int)(x + Wl (int)(x + y) 6
printf(“x=%f,y=%f\n" ,x,y);
return 0;

}

Figure 3.75: Tracing forced-type conversion program in the debugger.

130 — 3 Basic data types

Preventing program errors
Restrict the use of unnecessary type conversions.

3.8.4 Automatic-type conversion

We are going to introduce the automatic-type conversion in this section. Let us start
with an example.

Example 3.20 Discount on material fee
The handcraft workshop offered a holiday discount on the material fee. In addition to a 20%
discount, the price after discount was also rounded down.

[Analysis]
To be clearer, Mr. Brown used another variable d_cost for the discounted price as shown in
Figure 3.76. Note that it is of int type instead of float.

Manual computation :
cost=(18/12)*32.8+(9/12)*15.6=60.9
d_cost=| cost *0.8|=|48.72|=48

Note that d_cost

is truncated
instead of

rQunded.

Program implementation

int n umA=18, numB=9; //Quantity of material

float cost; //Cost of material

int d_cost; //Discounted price
cost=((float) numA/12)*priceA+((float) numB/12)*priceB;

d_-cost“= COSt;“O-B;" Program result
pr!ntf("cost= /ofo\n 7 (.:.OSt); cost=60.9
printf("d_cost=%f\n", d_cost); d_cost=48

Figure 3.76: Discount on material fee.

The manual computation result was cost=60.9. The value of d_cost was cost times 0.8 and
rounded down, which was 48.

The program also output d_cost = 48. Note that d_cost was int type and that the result was
truncated instead of rounded.

Automatic-type conversion is done at compile time by the compiler following a set
of rules without human interference. It is used in arithmetic operations, assign-
ments, function call, and so on. The most important rule is that the type of value on
the right-hand side of = sign is automatically and implicitly converted to the type of
the variable on the left-hand side during an assignment (Figure 3.77).

3.9 Other operations =—— 131

Automatic conversion

Automatic type conversion is done at compile time by the compiler following a set of rules without
human interference.

Rules of automatic conversion

Convert all data into the longest type in the expression.
Convert then compute

Arithmetic operations

The type of value on the right-hand side of = sign is automatically and

Assignment operations implicitly converted to the type of variable on the left-hand side;

(a)Arguments are converted into types of parameters.

Functi Il
unction ca (b)Return value is converted into the type of function.

Figure 3.77: Automatic conversion and its rules.

3.9 Other operations
3.9.1 Conditional expressions

There is a more straightforward yet equivalent representation of if-else statements
in C as shown in Figure 3.78.

Format of conditional expression Meaning

Use value of expression 2 as value of
the entire conditional expression

Use value of expression 3 as value of
the entire conditional expression

T First true
TRUE
Equivalent to o

e
L [Condition] 7P [Part 1] : [Part 2]
if (expression 1) expression 2; ~———
else expression 3;

Expression 1 ? Expression 2 : Expression 1 is true

Expression 3

Expression 1 is false

FALSE

Figure 3.78: Conditional operator and expression.

In practice, we often use conditional expressions in assignment statements In C
programs. As the conditional operator is also an operator, it can appear multiple
times in an expression. C regulates that the associativity of the conditional operator
is from right to left as shown in Figure 3.79. Note that the operator consists of a ?
sign and a : sign. Using them in a complicated manner makes the logic confusing to
programmers, thus affecting the program readability.

132 — 3 Basic data types

Right-

Second associated

™~ 0 ©

Expression) Expression |, |[Expression ~|Expression| s Expression

X = 1 f 2 . 3 ‘ a . 5
First

Figure 3.79: Associativity of the conditional operator.

Example 3.21 Determine parity
Given a number input, determine whether it is odd or even.

int main(void)
{
int num;
printf("Please input a number: ");
scanf("%d",&num);
(num%2==0) ? printf("Even") : printf("0dd");

Example 3.22 Use conditional expression to compute maximum of three numbers
Method 1:

int a=90,b=80,c=100,max;

max=a>b?a:b;

max=max>c? max:c;

printf("The maximum of these numbers is: %d",max);

Value of max becomes 90 after line 2, and then becomes 100 after line 3.

Method 2:
int a=90,b=80,c=60;
printf("The maximum of these numbers is: %d", a>c?a>b?a: b :c);

Analysis:

There are two pairs of conditional operators in this method. As conditional operator is right-as-
sociated, we should look for the rightmost? Sign and pair it with the closest: sign. Hence, a > c?
a>b?a:b:cis equivalent to a > c?(a > b?a:b):c and the result of this expression is 100.

3.9 Other operations =— 133

3.9.2 sizeof operator

sizeof operator can be used to compute number of bytes a variable, a constant or a
data type takes up in memory as shown in Figure 3.80.

Format Meaning
sizeof(variable) Compute number of bytes the variable occupies in memory

sizeof(constant) |Compute number of bytes the constant occupies in memory
sizeof(datatype) |Compute number of bytes the data type occupies in memory

Figure 3.80: sizeof operator.

Example 3.23 Example of sizeof operator

#include <stdio.h>

int main(void)

{
int size_constant, size_variable, size_datatype;
char c;
size_constant = sizeof(10);
printf("Number of bytes of constant 10: %d\n", size_constant);
size_variable=sizeof(c);
printf("Number of bytes of char variable: %d\n", size_variable);
size_datatype=sizeof(float);
printf("Number of bytes of float type: %d\n", size_datatype);
return 0;

Output:
Constant 10 uses 4 bytes; character variable uses 1 byte; float type uses 4 bytes.

3.9.3 Assignment operator and expressions

The basic assignment operator is “=", which assigns value of an expression to a var-
iable as shown in Figure 3.81. Precedence of assignment operator is lower than that
of others, so it is often executed last.

134 — 3 Basic data types

There are several things to rememb

“_9

er when using assignment operations:

is an assignment operator instead of the equal sign.
The object on the left of the assignment operator must be a variable. It cannot

be an expression. Assignment should be done from right to left.

The value of assignment expressio
of the assignment operator.

n is the value of the expression on the right

Assignment

expression ilcaning

Example Notes

1. Evaluate the expression

Variable = i
ariable = expression 2. Assign to the variable

a=b+3*c;

Assign value of expression b+3*c to variable b

x=y=z=100;|"=" is right-associated

a+(b=3) Use parentheses to override precedence

Figure 3.81: Assignment operator and expressi

ons.

Format

Meaning of compound operation

Variable binary operator = expression

Variable = variable operator expression

. Equivalent
Operator Name Expression Expression
= Assignment operator a=5 a=5
+= Addition and assignment operator a+=5 a=a+5
-= Subtraction and assignment operator a-=x+y a=a-(x+y)
= Multiplication and assignment operator |a=2%*x a=a*2*x
/= Division and assignment operator a/=x-y a=a/(x-y)
%= Remainder and assignment operator a%=12 a=a%12
Figure 3.82: Compound assignment operators.
3.9.4 Compound assignment operators
Adding other binary operators in front of the assignment operator “ =", we obtain

compound assignment operators as shown in Figure 3.82.

3.9.5 Comma operator and comma expressions

For convenience, programmers want to compute the values of multiple expressions to-
gether when only one expression is allowed. For this purpose, C provides a convenient
that “sticks” multiple expressions together.
e a single expression as shown in Figure 3.83.

In many cases, we use comma expression to obtain the value of each expres-
sion instead of obtaining and using the value of the entire comma expression.
ly used in for statements. Comma operator

syntax, which is the comma operator
Grammatically, these expressions becom

Comma expressions are most frequent

has the lowest precedence among all operators.

3.10 Summary =— 135

Comma expression Evaluation of expression

Compute value of each expression starting from
Expression 1, expression 2, ... expression n [expression 1. The value of entire comma expression
is the value of expression n

Figure 3.83: Comma expression.

3.10 Summary

The main contents of this chapter and their relations are given in Figure 3.84.

Description of memory space size: type

Request memory space: variable definition

Access data in memory space: assignment, referencing

Constant: integers (in different numeral systems), real numbers, characters

Variable: three key elements: name, value, storage unit

Arithmetic operation: computation that yields number

Methods l—' Relational operation: comparison that yields true or false

Logical operation: decision that yields true or false

Operation

Precedence: evaluation order of operators

Associativity: evaluation order of operator with the same
level of precedence

Type conversion: automatic conversion and forced
conversion

Figure 3.84: Contents of basic data and their relations.

Data are stored, referenced, computed, input, and output in programs.

Many rules exist, so we need to learn more and practice more.

Size of memory is determined by data type and can vary a lot.

Programmers need to choose the suitable type based on characteristics of data.
Constants can be used directly; variables need to be defined and allocated
memory.

Numeric literals can be represented as decimal, octal and hexadecimal numbers.
Decimal numbers are left unchanged, while octal numbers begin with 0 and
hexadecimal numbers begin with Ox.

We should view memory space when debugging and be proficient in number
system conversions.

Remainder operations compute the remainder; clever use of them can simplify
our algorithms.

Integer divided by integer yields another integer, which is a rule we have to
follow.

136 —— 3 Basic data types

Different types of data can be computed together; type of result is determined
by the type that takes up the most space in memory.

Automatic and forced are the most common types of conversions in computa-
tion.

Automatic-type conversions take place in assignments between two storage
units.

Data will be kept when converting from a smaller type to a larger one, whereas
truncation or rounding happens when converting oppositely.

Forced-type conversions are used if necessary, and data in the original storage
unit are unchanged.

3.11 Exercises

3.11.1 Multiple-choice questions

@

@

€)

(4)

[Concept of variables]

Which of the following statements is wrong about variables in C? ()

A) The memory unit address of a variable can be changed at any time.

B) The value of a variable can be changed during the program execution.
C) We must define variables before using them in programs.

D) _ (three underscores) is a valid variable name.

[Identifiers]
Which set of identifiers are all invalid? ()
A) AP_.0Odo B) floatlaO _A C) b-agotoint D) _123 temp INT

[Data types]

Which of the following statements is wrong about data types in C? ()

A) To process correlated data of different types (such as “employee informa-
tion”), we should define our own structure type.

B) We can use double type to store data with multiple digits in the fraction
part.

C) We should use logic type to handle “true” and “false.”

D) Natural numbers can be accurately represented by int type.

[Symbolic constants]

Which of the following statements is correct about symbolic constants in C? ()

A) Names of symbolic constants must be identifiers in uppercase.

B) A symbolic constant is a symbol that represents a constant defined by a
macro.

C) The value of a symbolic constant cannot be redefined in a program.

D) Names of symbolic constants must be constants.

3.11 Exercises =— 137

(5) [Character processing]

(6)

@)

(8)

©)

char c1, c2;
cl="'A'+'8"—"4";
c2="A'+'8'—"5";
printf("%c, %d\n", c1, c2);

The ASCII value of character A is 65. What is the output of the program above? ()
A) E, 68 B) D, 69 C) E,D D) Nondeterministic

[Forced-type conversion]

Suppose we have the following definition: double x = 5.16894;

The output of statement printf((“%Ilf\n ”, (int)(x*1000+0.5)/1000.) is ()

A) 5.16900

B) 5.16800

C) 0.00000

D) The type specifier is inconsistent with the output value, so an error message
is displayed.

[Logic operations]

Which of the following statements is correct about operands of logic opera-
tions? ()

A) They can be any valid expressions.

B) They must be integers.

C) They can be structure-type data.

D) They must be O or 1.

[Range]

Suppose an int type number takes up 2 bytes in the memory. What is the range
of unsigned int data? ()

A) 0-255 B) 1-32767 C) 0-65535 D) 0-2147483647

[Base]
Which of the following bases cannot be used in C source programs? ()
A) Hexadecimal B) Octal C) Decimal D) Binary

(10) [Conditional operator]

Suppose a=1,b =2,c = 3,d = 4. What is the result of expression
a<b?a:c<d?c:d ? ()
A) 4 B) 3 C) 2 D) 1

138 —— 3 Basic data types

3.11.2 Fillin the tables

@

@

€)

(4)

[Range]
Sort the data types in Figure 3.85 in the order of their sizes on the same platform.

Data type short char int double float

Number

Figure 3.85: Basic data types: Fill in the tables question 1.

[Forced-type conversion]
Fill in the table in Figure 3.86 with variable values after the following state-
ments are executed.

int x,z; float y = 12.4; x = (int)y; z = 3*y;

Variable X y z
Value

Figure 3.86: Basic data types: fill in the tables question 2.

[Increment and decrement]
Fill in the table in Figure 3.87 with variable values after the following state-
ments are executed.

int x =10; int y = x—; int z = — X; int a = x++; int b = ++x;

Variable X y z a b

Value

Figure 3.87: Basic data types: fill in the tables question 3.

[Type conversion]
Figure out data types of expressions in Figure 3.88. Variables a, b, c, and d are
defined as follows:

char a=‘A’; double b =12.3; int c = 66; char d;

3.11 Exercises =—— 139

Expression a+l b+2*a 2.0*a+c

Data type

Figure 3.88: Basic data types: fill in the tables question 4.

(5) [Arithmetic operations]
Figure out values of expressions in Figure 3.89.

mint x =10; int y = 3; float z = 12.4;

Expression x/y X+y-Z z+x/y z/x*y x%y

Value
(double)

Figure 3.89: Basic data types: fill in the tables question 5.

(6) [Relational operations]
Figure out the logic values of expressions in Figure 3.90. Variables a, b, c, and

d are defined as follows:
chara=‘A’; char b=‘a’; char c=66; chard = ‘A’ +1;

Expression a==b a==65 c==d c=='B'

Logic value

Figure 3.90: Basic data types: fill in the tables question 6.

(7) [Logic operations]
Figure out the logic values of expressions in Figure 3.91. Variables a, b, c, and d

are defined as follows:
inta=12;intb=0;intc=-1;intd=1;inte=0

Expression al=12 b<c 1||b d&&e al=b<c|| d&&e

Logic value

Figure 3.91: Basic data types: fill in the tables question 7.

140 — 3 Basic data types

3.11.3 Programming exercises

1)

@

®)

(4)

)

Arithmetic operations
Compute the product of three integers.

Arithmetic Operations
Write a program that reads a five-digit integer and outputs the digits delimited
by spaces. (Hint: use division and mod operation.)

Data swapping

Write a program that does the following:

1) Read three integers into variables a, b, and c.
2) Assign the initial value of a to b.

3) Assign the initial value of b to c.

4) Assign the initial value of c to a.

Expressions

Figure out the conditional expression that determines whether a character is a
digit.

Random function

For each of the following sets of integers, write a statement that displays a ran-
dom number in the set. (Hint: use the random function in the standard library.)
1) 2,4,6,8,10

2) 3,57,9,11

3) 6,10,14,18,22

4 Input/output

Main content
— Know the usage of basic input/output functions in C language.

Learning objective
— Can use basic input/output functions effectively.

4.1 Concept of input/output

Mrs. Brown had a question when logging into a ticket purchasing website as shown
in Figure 4.1.

| How does a program read password?

* When purchasing tickets online, Mrs. Brown was asked to type
in password to log into the system.
« Mrs. Brown asked curiously, “The password is entered through
keyboard, how is it passed to the program?” O
* Mr. Brown commended, “Good question!” 0O

How does a program
read information from
the real world, and
send the processing
result back?

Figure 4.1: Login password problem.

A program can read data from keyboard input, so the next question is, naturally,
how does program exchange information with the real world? This is related to
input/output of program data.

The term input/output is used with respect to computer processors. Sending
data from a computer to external output devices is called “output,” whereas send-
ing data from input devices into computers is called “input” as shown in Figure 4.2.

These term are
Output: send data from computers to external output devices used from the

Input: send data to computers through input devices O pegg?fgﬁ'éiso}c
o]

Figure 4.2: Input/output in computers.

https://doi.org/10.1515/9783110692327-004

https://doi.org/10.1515/9783110692327-004

142 — 4 Input/output

4.1.1 Standard input/output

We usually call keyboards and monitors standard input/output devices. Consequently,
input/output through these devices are called standard input/output, respectively as
shown in Figure 4.3.

Standard Send data into computer memory through

Input/Output is a
complex process
that needs special \

programs to handle

Input standard input devices (keyboard)

Standard Send data from computer memory to
Output standard output devices (monitor)

Figure 4.3: Standard input/output.

4.1.2 Standard library functions of C

Recall that functions are child programs that provide certain functionalities. Library
functions are functions inside a program library. Frequently used standard library
functions of C and related questions are shown in Figure 4.4.

The C language system has

implemented some commonly

used computation processes

and methods as programs to

construct the standard library
1

Type
Arithmetic
Character processing —
String processing
Input/Output ©
Utility

Common C standard
library functions

How do
programmers use
functions in the
library?

o
Function——sub-programs that complete certain tasks

Figure 4.4: Standard library functions of C.

The C language system provides its users with function libraries so that programmers
can use programs within it directly. Developers should accumulate experience of li-
brary functions and use them as frequently as possible rather than starting over on
every task. Using library functions shortens the development cycle, thus makes de-
velopers’ jobs easier. Moreover, it makes programs more portable.

4.1 Concept of input/output =— 143

Knowledge ABC Standard library functions n
The ANSI (American National Standards Institute) C standard defines standard library functions

of C, which includes mathematical functions, input/output functions, string functions, graphical
functions, date and time functions, and so on. Each category contains dozens or even hundreds

of functions, each of which completes a specific task. They are usually supported, either par-

tially or entirely, by common C compiling environments. Readers may refer to the appendix of

this book or manuals of compilers for help on these functions.

The merit of using standard library functions is that users can use them without having to
define them again. When we are going to print out something as output, we can simply call an
output function with required arguments, as long as we know its functionality, input/output pa-
rameters, and return value.

4.1.3 Header files

Each category of standard library functions of C has a corresponding header file
that stores declarations of functions in this category as shown in Figure 4.5.

Type Header file Header files————files storing
YP name function declarations To use a library function,
Arithmetic math.h we simply “include” the
Character corresponding header
Common C| processing ctype.h file using the file inclusion
standard String directive
fibrary processing string.h stdio——standard input & output
functions - h————head
Input/Output stdio.h
Utility stdlib.h

Syntax of file inclusion directive
#include <header file name> #include <stdio.h>

Figure 4.5: File inclusion and header files.

Header files are files storing function declarations. For example, library functions re-
lated to input/output are declared in header file stdio.h, where stdio is abbreviated
from “standard input/output” and the extension .h is the initial letter of “header.”

To use a library function, programmers need to “include” the corresponding
header file using the file inclusion directive. The function of the file inclusion direc-
tive is to fetch the specified file for use. For instance, to use the sqrt function
(a function that computes squared root), we need to add the following line to the
beginning of our program:

#include "math.h"

144 — 4 Input/output

4.2 Data output

There are two types of data output library functions: character output functions
and formatted output functions, which are declared in the standard input/output
header file as shown in Figure 4.6.

Character output Include the standard
Data output function /_ in_put/output h_eader file
function Formatted output #include <stdio.h>
function

Figure 4.6: Data output library functions.

4.2.1 Character output functions

putchar is a character output function, whose function signature and functionality
are given in Figure 4.7. The “character” inside parentheses, which is either a char-
acter variable or a character literal, is the parameter of this function.

Character output function

Signature putchar(character) C

Output one
character
at a timg

Output a character represented by “character” to

Functionality standard output devices (monitor)

Figure 4.7: Character output function.

Example 4.1 Character output function

The first program we write when learning to program is usually a program that prints on screen
the following friendly words: "Hello, world!" We have seen this simplest C program in chapter
"Introduction to Programs." Now we are going to add a smiley face to the output to welcome
everyone. The revised program is given below, where the comments explain the meaning of
each putchar call.

#include <stdio.h>
int main(void)

{
printf(“Hello, world!\n”);
putchar (2) ; //0utput a smiley face (ASCII value 2) to screen
putchar(‘\n’); //0utput a newline
return 0;

}

4.2 Dataoutput =— 145

Example 4.2 Character output function
Figure 4.8 shows the program and result, where c1 and c2 are both character variables.

01 #include "stdio.h"
02 int main(void)

03 { Isn’t it cumbersome
04 char c1,c2; //Define two character variables to OUtlFi)tet tc:iaszacters
05 -
06 cl='a’; //Assign value to cl O O

07 c2='b’; //Assign value to c2 ’ Program result :

08 putchar(cl); //Output character a ab

09 putchar(c2); //Output character b AB

10 putchar(\n’); //Output newline

11 putchar(c1-32); //cl1-32='a'-32=97-32=65, which corresponds to ‘A’
12 putchar(c2-32); //c1-32="b'-32=98-32=66, which corresponds to ‘B’
13 return O;

14 3}

Figure 4.8: Character output function example 2.

[Analysis]
On line 8, the character output function is used to output character a stored in the storage unit
of variable c1 onto screen.

On line 10, \n stands for a newline. This statement moves the cursor to the beginning of the
next line.

On line 11, the argument c1-32="a'-32=97-32=65 is the American Standard Code for
Information Interchange (ASCII) value of character 'A".

Finally, we obtain the result.

After reading this program, have you noticed the drawback of putchar function?

4.2.2 String output function

puts is another character output function, but it is more convenient. It can print a se-
quence of characters in one go. Its signature and functionality are given in Figure 4.9.

String output function

Signature |puts(address)

Functionality | Output a string with newline to standard output devices (monitor)

Figure 4.9: String output function.

146 =— 4 Input/output

Example 4.3 String output function example
We can rewrite the second example of character output function using puts function as shown
in Figure 4.10.

01 #include "stdio.h"

02 int main(void)

03¢

04 charc[8]; //Define a character array of size 8
05

06 c[0]='a’; //Assign valueto c[0]

07 c[1]="b"; //Assign value to c[1]

08 c[2]=\n"; //Assigmewlineto c[2]

09 c[3]=c[0}32; //c[3}32="a*32=97-32=65 which corresponds to 'A’
10 c[4]=c[1132; // c[4132="b-32=9832=66 which corresponds to 'B'

Although output
efficiency has been

—_increased, why are there
Chinese charactelrs?

11 puts(c); Program output:
12 returnO; ab
133} AB% %2

Figure 4.10: String output function example.

[Analysis]

On line 4, we define a group of eight character variables that are stored sequentially. They are
represented by the name of the group c¢ with the corresponding index. More information on
such variables are introduced in the chapter “Arrays.”

Nonetheless, the result seems to be weird. Some characters we have never used are printed at
the end of the result. In fact, this is due to how puts function works. puts will not stop printing char-
acters until a '\@', the terminating character, is met. As we did not assign the value of terminating
character in the storage unit after c[4], puts kept searching for it in the memory until one is found.

N.B.: The Chinese characters in Figure 4.10 are garbled output produced by the system, as
the system environment uses GBK character encoding by default.

4.2.3 Formatted output function

4.2.3.1 Syntax and signature of formatted output function

Let us look at a formatted output function that can output efficiently: the printf
function. There are several parameters inside parentheses. Its function signature
and functionality are given in Figure 4.11.

Formatted output function

Signature |printf (format control sequence, parameter 1,...,parameter n)

Output values of parameter 1 to parameter n to standard output
Functionality |devices in format specified by “format control sequence”.
Parameters are expressions.

Figure 4.11: Formatted output function.

We shall cover the usage of printf through examples and introduce its rules after that.

4.2 Dataoutput =— 147

Example 4.4 Formatted output example: format coordination
Variable definitions and output cases are shown in Figure 4.12.

Suppose: int a=12, b=56;

float x=10.8;
Outp - printf("%d ”, a);
Format control
sequence Argument Output
%d a 12 We use squares to
Outp YW printf("%d %d”, a, b); _——1 represent spaces for
Format control clearer demonstration
sequence Argument Output
%dn%d a,b 12056
Outp LCRe] printf(“%d %f”, a, x); \n is an escape character
Format control that represents newline.
sequence IATEUITEIE Output ; It is output as defined in
%don%f a,x 120010.8 grammar.
Outp YWY printf("%d+%d =%d\n", a, b, a+b);
Format control Argument Output
sequence
Rule

(1) In formatted output function, there is a one-to-one correspondence between format
specifiers and arguments

(2) In format control sequence, all characters are output as-is except format specifiers
(replaced with arguments) and escape characters (output as defined in grammar)

Figure 4.12: Formatted output example: format coordination.

[Analysis]

In output case 1, we print the value of an integer variable a. The format control sequence is the
content wrapped by double quotation marks, where %d means that the data will be output as
integers. The argument of this function is a, so 12 is output by printf.

In case 2, we print values of a and b, which are both integer variables. There are two %d iden-
tifiers in the format control sequence, indicating that two integers will be output. For clearer
demonstration, we use a square to indicate the existence of a space between numbers. The ar-
guments are a and b, separated by a comma. The output, in this case, is 12 space 56.

In case 3, we print values of integer variable a and floating-point variable x. %d in the format
control sequence corresponds to variable a, whereas %f corresponds to variable x. In the out-
put, two spaces are inserted between 12 and 1.8, namely values of a and x.

In case 4, we print the result of an arithmetic expression. We write the expression in the format
control sequence, where actual values are replaced with format specifiers. \n stands for a new-
line. It is an escape character that cannot be displayed on the screen. The arguments are a, b,
and a +b, separated by commas. Hence, the output is 12 + 56 = 68.

The output rules require that all characters are output as-is, except format speci-
fiers, which are replaced with argument values, and escape characters, which are
output as defined by the grammar.

148 —— 4 Input/output

4.2.3.2 Output format specifiers

In the format control sequence, there are symbols that indicate types of output
data. They are called “type specifiers.” Figure 4.13 shows the most frequently used
type specifiers, such as %d, %f, %c, %s, and so on. It suffices to know these in an
early stage of learning.

Type

P Meaning Notes
specifier
%d Output integer in signed decimal form
Int %0 |Output integer in unsigned octal form . th lpegtg;ecca'?ebe uppercase
nteger I irer
g %X Output integer in unsigned hexadecimal form Y
%u Output integer in unsigned decimal form + Sub-specifiers can be
%f Output real number with fractional part . b_e_tween % and
Real - - type specifiers
number %e Output real number in exponential form
%g Output real number in the form with smallest width + "\0’ marks the end of a

S - string. It is inserted
Charact toc Output a single character automatically by the system.
3 "
er oS Output string
(starting from the specified address and ending at ‘\0")

Other %% Output character %

Figure 4.13: Output format specifiers.

4.2.3.3 Structure of format control sequence

The format control sequence is a sequence of normal characters and format speci-
fiers wrapped by double quotation marks. It is used to specify types, formats, and
number of output data. The structure of the format control sequence of printf func-
tion is shown in Figure 4.14. Note that parts inside [] are optional.

% m . n h/I Type specifier]
Beginning [Flag [Width [[Precision [Length |Type specifier
specifier| specifier] specifier] specifier] specifier] character

Figure 4.14: Format control sequence of printf function.

4.2.3.4 Subspecifiers
As shown in Figure 4.15, we can insert subspecifiers between % and type specifiers
to adjust the number of significant figures (e.g., number of digits in the fractional
part) or justification of output data.
Example of subspecifiers:
— %1d: Output as long decimal integers.
— %1f: Output as double type.
— %m.nf: Right-justify output, m indicates the width of the output field, n indi-
cates the number of digits in the fractional part or the number of characters.
— %-m.nf: Left-justify output, m indicates the width of the output field, n indi-
cates the number of digits in the fractional part or the number of characters.

4.2 Dataoutput = 149

| |Output as long integers (can be used in combination with d, o, x and u)

Specify width of output (i.e. total number of digits, where decimal point
counts as well)

(1) For floating-point data, output n digits in the fractional part
(2) For string, output the first n characters

+ | Explicitly output sign of numerical data

- | Left-justify data within the given output field

Figure 4.15: Subspecifiers.

Example 4.5 Output -1 in various forms
Output value of -1 as decimal, octal, hexadecimal, and unsigned numbers.

[Analysis]
Let int m=-1;

The output statement is printf(("m: %d, %0, %X, %u\n", m, m, m, m);

The actual output is m: -1, 177777, ffff, 65535

Are you surprised to see the above output of -1 in different forms?

The binary representation of -1 is 1111,1111,1111,1111. In other words, it is stored in memory as
a number consisting of only “1.” If we examine it in different formats, we will obtain different
representations. It is similar to how different languages use different words for “apples” while
they all describe the same object.

Example 4.6 Output example of character data
Examine the output of character variables and integer variables using type specifier %d and %c.
Variable definitions and output statements are given in Figure 4.16.

| Suppose :int m=97; char ch='A";

Statement Output Notes

printf("m: %d %c\n",m,m); m:097oa The same variable is output

. " R as different values using
printf("ch: %d %c\n",ch,ch); ch:0650A different type specifiers

printf("%s\n","student"); student %s——output a string

Figure 4.16: Output of character data.

[Analysis]

In the first row of the table in Figure 4.16, the statement prints two values using %d and %c, both
of which will be replaced by variable m. However, the first mis output as an integer, whereas the
second is output as a character. The value of m is defined to be 97, which is the ASCII value of
character a.

150 —— 4 Input/output

Similarly, we see in the second and the third rows that output of the same variable can vary
when different type specifiers are used.

In the third row, the type specifier is %s. It is used to print strings. The argument is exactly a
string wrapped by double quotation marks.

Example 4.7 Using escape characters

We can learn the roles of escape characters by using formatted output function printf(). The
program is as follows:

1 //Using escape characters

2 #include <stdio.h>

3 intmain(void)

4 {

5 char a,b,c;

6 a='n';

7 b='e';

8 c="\167"; //0ctal number 167 stands for character ‘w’

9 printf("%c%c%c\n",a,b,c); //0utput as character

10 printf("%c\t%c\t%c\n",a,b,c); //Jump to next field after a character
11 printf("%c\n%c\n%c\n",a,b,c); //Jump to new line after a character
12 return@;

133}

The output is as follows:

new

nOO00000O0eO00O00O00O0000w

n

e

w
Note: \t is an escape character used to advance the cursor to the next field horizontally. Each
field takes up eight columns.

4.3 Data input

There are two types of data input functions in C: character input functions and for-
matted input functions. They are all declared in the standard input/output header
file as shown in Figure 4.17.

Data i t Character input function Include the standard
ata inpu —|input/output header file
function | Formatted input function #include <stdio.h>

Figure 4.17: Data input function.

4.3.1 Character input function

4.3 Datainput —— 151

The function signature and functionality of character input function are shown in
Figure 4.18.

input function

Signature getchar()

Interactive input: the program
keeps waiting in the console

Read a character interactively from

Functionality standard input devices (keyboard)

and continues execution until it
receives a character input from
keyboard

Figure 4.18: Character input function.

Dialogues between two people are often conducted in the form of questions and
answers. Likewise, humans and computers need a similar way for information ex-
change. One such exchanging method is interactive input, where a program keeps
waiting in the console and continues execution until it receives a character input
from the keyboard. A console window is a window used to display the execution
result of programs.

How do programs receive the passwords we type in using keyboards?

Example 4.8 Example of character input: reading user password
A bank requires its clients to use six-character passwords. The program used to read passwords
is shown in Figure 4.19.

01 #include <stdio.h>

02 int main(void)

03 {

04 char c1,c2,c3,c4,c5,c6;//Define 6 character variables to save 6 digits of password
05 cl= getchar();

06 c2= getchar();

07 c3= getchar();

08 c4= getchar();

09 c5= getchar(); °0 QO Did we use too
10 c6= getchar(); many getchar?
11 return 0;

12 }

Figure 4.19: Password reading program.

152 — 4 Input/output

[Analysis]
On line 4, we define six character variables to store six characters in the password.

On line 5, a character is read from the keyboard and stored into variable c1.

Statements between lines 6 and 10 work in the same way as the one on line 5.

getchar reads one character each time. It is not hard to see that the program is cumbersome
due to repeated use of getchar. We will discuss input functions that read data more efficiently
later.

Example 4.9 Conversion between different cases of letters
1 #include "stdio.h"
2 int main(void)
3 {
4 char ch;
5 ch=getchar(); //Read a character from keyboard and store into ch
6 printf("%c %d\n",ch,ch); //Display ch and its ASCII value
7 printf("%c %d\n\n",ch-32,ch-32);
8 //Subtract 32 from ASCII value of ch,
//display corresponding character and the new value
9 return@;
10}

Output:
Input: m
Qutput: m109
M77

We can check the values of ch and ch-32 in the Watch window as shown in Figure 4.20. 'm' is the
character referencing result of letter m. Its ASCII value is 109. ASCII value of uppercase letter M is 77.
After investigating the ASCII table, we can conclude that the difference of ASCII values of the same
letter in upper and lower cases is exactly 32.

#include "stdio.h" a
void main()
{ Name [value
char ch; ch 109 'm’
ch=getchar(); ch-32 77
printf("%¢ %d\n",ch,ch);
printf(“%c %d\n\n",ch-32,ch-32);
}

Figure 4.20: Inspection of variable ch in debugger.

Conclusion
We don’t have to recite the ASCII values of characters. Instead, we can use “character referenc-
ing” to display them.

4.3 Datainput =— 153

Knowledge ABC 32 and ASClI value of uppercase and lowercase letters

From the ASCII table, we know that ‘A’= 65, ‘a’=97 and consequently ‘a’-’A’=32. Why is the
difference of ASCII values of the same letter in upper and lower cases 32? Let us convert them
into hexadecimal numbers first:

'A' = 65 = 0x41, 'a’ =97 = 0x61, so’d —' A’ =32 = 0x20

It is clear that such a design makes it easier to convert letters into the other case in binary and
hexadecimal systems.

4.3.2 String input function

gets is a more convenient character input function. It reads a sequence of characters
at a time. The function signature and functionality of gets are shown in Figure 4.21.

String input function

Signature

gets(address)

Functionality|

Read a string which ends with a newline from standard input devices

Figure 4.21: String input function.

Note: Function gets can read infinitely many characters, so programmers should
make sure the memory space used to store the string is large enough to avoid over-
flow in read operations.

Example 4.10 Example of function gets

Use function gets() to read a string from keyboard input.

[Analysis]

The program and test results are shown in Figure 4.22.

Input: hello world!!

Ouput: hello world!!

DOO

int main(void)

{
char stri[60];
gets(strl);
printf("%s\n",strl);
return O;

>

Figure 4.22: Example of function gets().

Function gets
reads string from
keyboard. It is not
affected by spaces
in the string.

154 —— 4 Input/output

Using function gets() to read character sequence is not affected by spaces in the se-
quence. However, we need to make sure the memory space used to store the sequence
is large enough in case the input overflows. Note how it is different from Example 4.14.

Note: The C11 standard proposes a safer function gets_s() to replace gets().
Interested readers may update the above program and test again.

4.3.3 Formatted Input function

The function signature and functionality of the formatted input function are given
in Figure 4.23. The function name is scanf. There are several items inside parenthe-
ses, of which the format control sequence is similar to the one used in printf. It is
worth noting that the address argument is passed to the function by prefixing vari-
able names with “&” sign. The “&” sign is the address-of operator. It is not needed
if the variable is already an address.

Formatted input function

Signature scanf(format control sequence, address 1..., address n);

Read data from keyboard in the format specified by the format

Functionality control sequence and store them into corresponding variables

Figure 4.23: Formatted input function.

Example 4.11 Example of formatted input function: log into Office of Registrar website

Mr. Brown wanted to log into the Office of Registrar website to upload the grades of students.
A username and a password are necessary to log in, where the username (ID) is the payroll number
and the password should be a sequence of digits and characters with a length no more than 20,
as per university policies. The login program is given in Figure 4.24.

[Analysis]
On line 8, the first scanf stores the username retrieved from keyboard input into the variable
id. id is defined as an integer variable, so the type specifier should be %d.

4.3 Datainput —— 155

Program result :
01 #include <stdio.h> User ID : 2468
02 int main(void) Password : abc123
03¢ ID=2468
04 int id; // id is an integer variable EEsEE e el 2
05 char password[20]; // Password is no longer than 20 and stored in an array
06
07 printf("User ID : ");
08 scanf(“%d”, &id); //&id is the address of variable id

09 printf("Password : ");
10 scanf("%s", password); // Array name password is already an address
11 printf("ID=%d\n",id);

12 printf(*Password=%s\n", password); . 00
13 return 0O;

14 3}

Both being arguments
of scanf, why id is
prefixed with an & sign
while password is not?

Figure 4.24: Example of formatted input function: log into Office of Registrar website.

On line 10, the second scanf stores the password retrieved from keyboard input into array
password. Note that the type specifier here is %s, which is used for reading a sequence of char-
acters. “&” sign is not used here because password is an array name and array names are in
fact addresses in C. The concept of arrays is covered in the corresponding chapter.

On lines 11 and 12, the value of variable id and the value of password are printed out for viewing.

Example 4.12 Example of formatted input function: entry of students’ grades
1. Enter a student’s student number id and grade scores. Sample input: 1602 92.5.
2. Enter grades of course a and course b. Sample input: a=76, b =82.

[Analysis]
As per problem description, we can use formatted input function scanf() to read keyboard
input as shown in Figure 4.25.

No. Formatted input Keyboard input | Variables read | Delimiter
WOLAOLEN Ri . id=1601 Space

1 |scanf("%d%f", &id, &scores); 1601092.5 scores=92.5 (default)

wa o/ . _ _ _ _ Specified

2 |scanf("a=%d, b=%d", &a, &b); a=76, b=82 a=76 b=82 character

Figure 4.25: Entry of students’ grades.

In the first row of the table, we type in a student number followed by a grade. The student num-
ber is an integer and the grade is a real number. We should be careful about the space between
the student number 1601 and the grade 92.5. The space is used to separate the inputs. Symbols
that are used to separate multiple input data are called “delimiters.” Space is the default
delimiter.

In the second row, there are other characters in addition to grades in the sample input, so
we need to include them in the format control sequence of scanf.

156 = 4 Input/output

When typing, we need to type in characters like a=and b =as well. In this case, these char-
acters are the specified delimiters.
Forms of format control sequences and examples of delimiters are shown in Figure 4.26.

Two cases of format control sequence

(1) Type specifier only: use default delimiter
(2) Type specifier + characters:
- “characters” are read as-is

- If characters exist between type specifiers, they are used as delimiters) .
7~ “Delimiter” is a

(M When a space, a “newline” or a “tab” is met g sign used to

End of one

. @ When a certain width is reached separate multiple
data item

(3 When there is an invalid input data items

Scanf function terminates when every data item is read
and Return key is pressed

End of scanf

Note: a data item refers to an address parameter in scanf

Figure 4.26: How to read input and end input in scanf.

Knowledge ABC How input data of scanf are delimited

scanf handles strings, integers, and real numbers the same way, where newline, space, and tab
are all considered to be the end of input. However, characters are different from strings as
spaces and newlines may also be input as characters, so we need to be careful. When entering
strings, integers, or real numbers, these special characters will be treated as delimiters instead
of being read into character arrays or variables.

Example 4.13 Example of formatted input function: character input

1. Enter three characters a, b, and c from the keyboard and store them into character varia-
bles ch1, ch2, and ch3.

2. Enter two integers and store them into integer variables m and n, and enter a character d
and store it into character variable ch.

[Analysis]
Figure 4.27 presents correct and wrong sample inputs.

No. Statement Sample input Notes
. . Wrong: aobocy A char variable can only
1 | scanf("%c%c%c",&ch1,&ch2,&ch3); Correct: abce store one character
5 scanf(" %d%d ", &m, &n); Wrong: 32028v i(;a#esaedoafse;rgga:rgstzl:ri\s
scanf(" %c ", &ch); Correct: 32028dv

the second scanf

Figure 4.27: Example of formatted input function: Character input.

4.3 Datainput —— 157

Let us combine input statements in both questions in the following program and
run the program to test why errors occur.

01 #include <stdio.h>
02 intmain(void)

03 {

04 char ch1,ch2,ch3;

05 intm,n;

06 char ch;

07

08 scanf ("%c%c%e" ,&ch1,&ch2,&ch3);
09 scanf ("%d%d", &, &n);

10 scanf("%c", &ch);

11 printf("%c%c%c\n",ch1,ch2,ch3);
12 printf("%d,%d\n", m, n);

13 printf("%c\n", ch);

14 return0;

15 3}

The inputs and values of corresponding variables are shown in Figure 4.28, where <cr> stands
for a newline. The analysis of test data is given in Figure 4.29.

4@ | Testcase?2
Input: Name |Value Input: Name |Value
abc<cr> chlt 97 'a' abc<cr> chl 97 'a'
Output: ch2 32 '' 32 28d<cr> ch2 98 'b'
ab ch3 98 'b’ Output: ch3 99 '¢'
-858993460 - m -858993460 abc m 32
858993460 n -858993460 32,28 n 28
c ch 99 '¢' d ch 100 'd’
Test case 3 [|Name IVaIue

o, (IS

32 28<cr> 2:§ Zg 2

Output: m 32

abc n 28

32,28 ch 10

Figure 4.28: Example of formatted input function: Test input of characters.

chl | ch2 | ch3 m n ch
aobocv a u] b | Does not accept characters | ¢
abcv32028dv a b [¢ 32 28
abcv32028v a b [¢ 32 28 /

Figure 4.29: Analysis of test input of characters.

158 —— 4 Input/output

In test case 1, we add spaces in input characters abc. As a result, values of variable ch2 and ch3
on line 8 are not as expected. The root cause is that spaces in input are also characters. The
program ended after we typed abc, as scanf on line 9 tried to read contents left by variables on
line 8. Type specifiers of variable mand n are both integer type, thus they don’t accept character
input. Hence, scanf on line 10 read the last character c in the test result.

In test case 3, we add a newline after number 28. In this case, it is no longer possible to
enter character d due to the similar fact that newline is also read as a character.

Test case 2 shows the correct input that produces expected result.

When using consecutive scanfs, we should be careful as the current input data may affect
the following input statements.

Knowledge ABC scanf and buffer

Because people type characters on the keyboard much slower than a CPU processes them, a
storage block (called a buffer) that collects and stores keyboard input temporarily is designed
in the system to reduce CPU’s time of waiting. ASCII values of characters we type in are stored
in the buffer, and the CPU fetches characters that comply with the format specified by input
function from the buffer in one go when a newline is input. The remaining characters are still
stored in the buffer.

As all input functions share the buffer, errors may occur when input includes both integers and
characters. Suppose the current input is an integer, if we don’t know whether the next one is a
character, it is recommended to add while(getchar() != '\n') continue; Use font for code. which
clears the buffer.

Example 4.14 Example of formatted input function: string input
Use scanf to read a sequence of characters. The program is given in Figure 4.30.

#include <stdio.h> ~
int main(void) /ro:afjti?]gs
{ characters
char str[80]; upon spaces
Note the
— e) difference
scanf("%s",str);) between scanf
printf("%s",str); Input: hello world!! Ne) O and gets
return 0; Output: hello
y |

Figure 4.30: String input.

4.3 Datainput =— 159

[Analysis]
When using scanf to read character sequences, we should note that a single scanf cannot read
the entire sequence if there are spaces in it.

The input in this example is helloClworld. Because %s stops reading at spaces, only hello is
stored into array str while world is not. Note how it is different from using gets function to read
strings.

Think and discuss How to find errors in scanf input quickly?
We have seen in these examples that data are often read incorrectly when reading input with
scanf. Is it possible to find errors without tracing in debuggers or printing out all input?

Discussion: In fact, scanf function provides a mechanism to check the correctness of input argu-
ments. Basically, it can tell its caller the number of correct inputs. If all inputs are wrong, scanf
will return 0. If we press Ctrl+z to exit, scanf will return -1 (which is character literal EOF).

The function signature of scanf is as follows:

int scanf(format control sequence, address 1, address 2, .. address n);

A test program is given in the following example.

Example 4.15 Return value of scanf function
Examine the correctness of input data using the return value of scanf function.

[Analysis]
1. Test program
We use an integer count to store the return value of scanf. The program is as follows:
#include <stdio.h>
int main(void)
{
int a,b,c;
int count;
printf("Enter values of a, b and ¢, separated by space\n");
count=scanf ("%d%d%d" ,&a,&b,&c);
printf("a=%d,b=%d,c=%d,count=%d\n",a,b,c,count);
return 0;

160 — 4 Input/output

2. Test result
The test result is given in Figure 4.31. The value of count indicates the number of data that are
correctly read. If we don’t want to enter anything, we can press Ctrl + Z to exit.

Sample
input

236 a=2,b=3,c=6,count=3

23a a=2,b=3,c=-858993460,count=2

23,6 a=2,b=3,c=-858993460,count=2

2,3,6 a=2,b=-858993460,c=-858993460,count=1

abc a=-858993460,b=-858993460,c=-858993460,count=0
~Z a=-858993460,b=-858993460,c=-858993460,count=-1

Result

Note: ~Z——Press ctrl+z to exit input mode

Figure 4.31: Test of formatted input function.

Knowledge ABC EOF sign
End of file (EOF) is a literal defined in header file stdio.h, which means “no more data for input.”
The reason for calling it the end of a “file” is that the program system treats standard input and
output as “files.” The ANSI standard emphasizes that EOF should be a negative integer, which
is usually -1 (though it is not necessary). As a result, the value of EOF may vary in different sys-
tems. We test whether the return value is EOF rather than -1in programs for better portability.

In UNIX and many other systems, EOF sign is input by typing in <Return> combined with
<Ctrl+D>. In Microsoft’s Window systems, EOF is input by typing in <Ctrl+Z>.

4.4 Typical problems of using formatted input function

scanf () function is a tricky topic in C learning. We shall cover in the following sec-
tions some typical problems that often arise.

4.4.1 Typical problems of scanf input

It is not rare that beginners run into the following situation when practicing pro-
gramming on computers: the machine doesn’t continue program execution and
waits in the console although required input for scanf has been provided. The root
cause is that the machine doesn’t consider the input complete while users believe
they have entered input as required.

Figure 4.32 lists the most common mistakes beginners may make when using
scanf in practice. Although they seem to be minor mistakes, it is hard to find them

4.4 Typical problems of using formatted input function =——— 161

No. Errors encountered during inputting Sample statement

ind “ iolation” int a;

1 | Error window “access violation” pops up scanf("%d", a);
. int a;

2 | Error window “debug error” pops up scanf("%f"\n", &a);

3 | Can’t return to program execution screen after pressing Return Isnctzara1;f("°/od"\n" &a);

char c;
4 | Data overflow with no error message scanf(:'%d" &c);

Figure 4.32: Common problems of using scanf.

during program execution. Beginners often obtain wrong results due to wrong input
when practicing, which eventually takes them a long time to figure out why results
are wrong and affects their efficiency. We will analyze each of these mistakes now.

4.4.1.1 Common mistake of using scanf 1: wrong address argument

4.4.1.1.1 Sample program

int a;
scanf("%d ", a);

4.4.1.1.2 Phenomenon
(a) Compilation: A warning is shown, but compilation succeeds (a program is exe-
cutable if compilation succeeds).

Warning C4700: local variable 'a' used without having been initialized
(b) Execution: When executing the program, a dialog box is shown, and the pro-

gram terminates after we enter an integer as shown in Figure 4.33 (note: “test.
exe” is the generated executable file).

IS

B test.cpp Microsoft Visual C++ x
#include<{stdio.h>
i“t main() .@ Unhandled exception in test.exe: 0xC0000005: Access Violation.

int a;
=3 scanf("%d", a);

e
}

Figure 4.33: Access violation dialog box.

162 =— 4 Input/output

Note:
— Unhandled exception: An exception that is not handled.
— Access violation: Illegal access. An access violation error occurs when the pro-
gram that is currently executed by the computer tries to access memory that
doesn’t exist or is not accessible.

4.4.1.1.3 Analysis

The above error occurs because we forgot to enter “&” sign in front of the address
argument a. During execution, the value of a is treated as an address. For instance,
if the value is 100, the integer we input will be written into memory at address 100.
Consequently, the system protection mechanism interferes and terminates the
program.

Programming error
“&” sign in front of an address argument of scanf is missed. (Note: if the argument is a pointer,
& is not needed as it is already an address.)

4.4.1.2 Common mistake of using scanf 2: argument type not compatible with
type specifier

4.4.1.2.1 Sample program

int a;
scanf("%f",8&a);

4.4.1.2.2 Phenomenon

— No error occurs in compilation and linking.

— Execution: When entering data required by scanf, for example, number 6 (re-
gardless of being integer or real number), an error dialog box pops up and the
program terminates as shown in Figure 4.34. After selecting “Ignore,” text in
the User screen window is shown in Figure 4.35.

4.4.1.2.3 Analysis
The error message of runtime error R6002 is as follows:

— A format string for a printf or scanf function contained a floating-point format
specification and the program did not contain any floating-point values or
variables.

— The argument type is not compatible with the type specifier, thus the program
can’t continue execution.

4.4 Typical problems of using formatted input function = 163

7~

Vicrosoft Visual C++ Debug Libra
9 y
#tinclude<stdio.h>
int main() & Debug Error!
{ 2
int a; Program:
> scanf("%f", &a); ...ownloads\Download\VC6.0\pvc6\MyProjects\MYtest\Debug\test.exe
return 8;
¥ runtime error

(Press Retry to debug the application)

Abort . Retry Ignore

Figure 4.34: Debug error dialog box.

6

runtime error RE0O2
- floating point not loaded
Press any key to continueg

Figure 4.35: Abnormal execution result message.

Programming error
An argument type is not compatible with the type specifier in scanf.

4.4.1.3 Common mistake of using scanf 3: argument type compatible with type
specifier

4.4.1.3.1 Sample program

char c;
scanf("%d", &c);

4.4.1.3.2 Phenomenon
Entering an integer overrides the memory space after the character variable.

4.4.1.3.3 Analysis

The memory space after variable c is overridden because the storage unit of it is not
large enough for an int variable. In Figure 4.36, the address of character variable
c is 0x18ff44, the initial value starting from this address is four CC, where each CC
takes up 1 byte. Figure 4.37 shows the memory space of variable c after inputting
number 10. We notice that the 4 bytes after address 0x18ff44 are now “0OA 00 00
00,” but variable c is of char type and only takes up 1 byte in memory.

164 =— 4 Input/output

#include <stdio. h> Watch

Name lVaIue

| A

int main(void)

¢ -52'?
@ & 0x0018ff44 "ZZ21"

char c;

M
scanf ("%d", &c); S

N

Address: |0x18ffa4

return 0; 018FF44 CC CC CC CC RZ ~
018FF48 88 FF 18 00

v

Figure 4.36: Tracing error 3 in debugger 1.

Figure 4.37: Tracing error 3 in debugger 2.

#include <stdio. h> Watch =
int main(void) Hune Folue I
c 10

' A
char c; Memory =

scanf ("%d", &); Address: [0x18ff44
5 return 0: 0018FF44 OA 00 00 00 ~
} 0018FF48 88 FF 18 00 ~
=7 DAMyWin32App\Win32App\Debug\ . — B -
10 At

We can design another test case, where we use another input statement in char-
acter type scanf("%c", &c). What we want to inspect is how the first byte and the
first four bytes after the address of variable ¢ 0x18ff44 change. In Figure 4.38, we first
enter character a, whose ASCII value is 97 or O x 61 in hexadecimal. We can see this
61 in the memory window. It is the only byte that has been changed. In Figure 4.39,
we enter an integer 6 and it is clear that 4 bytes after address 0x18ff44 are all
changed. The above results prove that c is allocated 1 byte of memory by the system.

#include <stdio. h> Watch

int main(void)

Name |\I’alue

[A

char ¢;

¢ 97 'a’
@ & 0x0018ff44 "aifEE 1"

v

[P\ Watchl { Watch2 % Watch3 \ ¥a

scanf ("%c", &c);

> | scanf ("%d", &); |Memory [< |
) Address: [0x18ffa4

} return 0; 0018FF44 61 CC CC CC aZ. ~

0018FF48 88 FF 18 00 ~

Figure 4.38: Tracing error 3 in debugger 3.

4.4 Typical problems of using formatted input function =—— 165

#include <stdio. h> Watch n
int main(void) Name |\':|L:e. I~
c _

m & 0x0018ff44 "-" v
char c; *|\ Watchl { Watch2) Watch3) Wa
scanf ("%c", &c) ;
scanf ("%d", &); |Memory B

i> _ Address: |Ux18ﬁ44
} return 0; 0018FF44 06 00 00 00 ~
0018FF48 88 FF 18 00 ~

Figure 4.39: Tracing error 3 in debugger 4.

If we enter a nonnumerical character, variable ¢ will not be assigned a value.
Readers can try this test case on their own.

Programming error
Although the execution of the program continues when the argument type and type specifier
are compatible but not consistent, data read are incorrect.

4.4.1.4 Common mistake of using scanf 4: "\n' used as newline

4.4.1.4.1 Sample program

int a;
scanf("%d\n",8&a);

4.4.1.4.2 Phenomenon
After entering 5 ¥, the computer pauses execution and waits at console window.

4.4.1.4.3 Analysis
Except from %d, everything in the format control sequence should be input as-is.
"\n" is not considered a “Carriage Return” in this case.

Programming error
“\n” is used in the format control sequence of scanf.

166 =—— 4 Input/output

4.5 Summary

Relations between the main concepts of this chapter are shown in Figure 4.40.
People need to communicate with computers using a keyboard and screen,
Keyboard for input, screen for output, they are called standard devices.

The actual communication is carried out by input/output library functions,
Programmers only need to fill in the arguments.

There are specialized functions to handle character and strings for reading and
displaying,

putchar and getchar handle character one at a time,

Whereas puts and gets can handle a series of characters efficiently.

Formatted functions printf and scanf are versatile and can handle all kinds of
input,

But we need to match argument type with type specifier.

%c is for char, namely a single character,

Input: send data from input devices to computers

Output: send data from computersto external output
devices

Standardinput/output: keyboards, monitors
Standardlibrary functions, header files, file inclusion

Signature: putchar(character)
output Functionality:display character one at a time

String Signature puts()
Output tout
outpu Functionality. outputa string to monitor

Signature: printf(“format control sequence”,
output parameters)

Formatted
output Functionality: Output values in output

parameters in the format specified by format
control sequence

Signature: getchar()
input Functionality: read a characterfrom keyboard

Signature gets(address)

String
input Functionality : read a string from keyboard
and store into specified address

Signature: scanf(*format control sequence”,

Formatted address parameters)
input Functionality: read input from keyboard and

store into specified addresses

Figure 4.40: Concepts related to input/output and their relations.

4.6 Exercises —— 167

%d is for int, %1d is for long,

%f is for float, %1f is for double,

We also have %s, which is used for strings.

Inside double quotation marks in scanf is the format control sequence,
Everything except the % specifier should be input as-is, and & is necessary for
address arguments,

Otherwise, data will be misread and results won’t be right.

After mastering scanf, printf should be easy-peasy.

4.6 Exercises

4.6.1 Multiple-choice questions

1)

@

€)

(4)

[printf: ASCII values]

The ASCII value of character A is decimal number 65. What is the output of the
following program? ()

char chi,ch2;

chil='A'+'5'-'3";

ch2="A'+'6'-'3";

printf("%d,%c\n",ch1,ch2);

A) 67,0 B) B,C C) C,D D) Nondeterministic

[printf: % sign]

What is the output of the following program? ()

int a=2,c=5;

printf("a=%%d,b=%%d\n",a,c);

A) a=%2,b=%5 B) a=2,b=5 () a=%%d,b=%%d D) a=%d,b=%d

[printf: width and precision]

Suppose we have the following definitions:

int n =1234;

double x = 3.1415;

What is the output of the statement printf("%3d,%1.3f\n", n, x) ? O
A) 1234,3.142 B) 123,3.142 C) 1234,3.141 D) 123,3.141

[Delimiter in scanf]

Suppose the variables are correctly defined as int variables. We want to assign 1
to a, 2 to b, and 3 to ¢ with the statement scanf(“%d%d%d”,&a,&b,&c). Which
of the following inputs is correct? ()

(Note: [represents a space)

A) 123<Return> B) 1,2,3 <Return> C) 10203<Return> D) 1;2;3<Return>

168 = 4 Input/output

(5) [Delimiter in scanf]
Suppose we have defined int i and float f. We want to assign 100 to i and 765.12
to f with the statement scanf("i=%d,f=%f",&i,&f). Which of the following in-
puts is correct? ()
(Note: O represents a space)
A) 1000765.12<Return>
B) i=100,f=765.12<Return>
C) 100<Return>765.12<Return>
D) x=100<Return>,y=765.12<Return>

(6) [scanf with characters]
char cl1,c2,c3;
scanf("%c%c%c",&c1,&c2,&c3);
We want to assign letters A, B, and C to variables c1, c2, and c3, respectively.
Which of the following statements is correct about the input format? ()
A) We should use spaces as delimiters.
B) We shouldn’t use any delimiters.
C) We should use newlines as delimiters.
D) We should use tabs as delimiters.

4.6.2 Fillin the tables

(1) [putchar]
Fill in the table in Figure 4.41.

Statement Output
putchar(‘D’);
putchar(67);

putchar('a' + 10);

putchar("\\');
char ch_a ="A’; putchar(ch_a);

Figure 4.41: Input/output: fill in the tables question 1.

(2) [printf]
Fill in the table in Figure 4.42.
inta=12;intb=3;

4.6 Exercises =—— 169

Output statement Output
printf("%d , %d\n", a,b);

printf("%d\n", a, b);

printf("%d , %d\n", a);

printf("*%2d*\n", a);

printf("*%10d*\n", a);

printf("*%10D*\n", a);

printf("*%+10.5d*\n", a);

printf("*%+10d*\n", a);

Figure 4.42: Input/output: fill in the tables question 2.

(3) [getchar]
Suppose we type in “boy”, <Return> and “g i r 1” when executing the following
program. Fill in the table in Figure 4.43.

#include <stdio.h>

int main(void)

{
char ch_b, ch_o, ch_y, ch_g, ch_i¢h_r, ch_1;
ch_b =getchar();
ch_o =getchar();
ch_y = getchar();
ch_g =getchar();
ch_i =getchar();
ch_r =getchar();
ch_1 =getchar();
return9;

Variable ch_b ch_o ch_y ch_g ch_i ch_r ch_l

Value

Figure 4.43: Input/output: fill in the tables question 3.

170 =— 4 Input/output

(4)

[scanf]
Fill in the table in Figure 4.44 with final values of the variables.

#include <stdio.h>
int main(void)
{
int age, count, grade;
float salary;
count =100;
count = scanf("age=%d, grade=%d", &age, &grade);
scanf("%f", salary);

return0;
¥

Input 120210123.21
Variable | count age grade salary
Value

Input age=12,grade=21 0123.21
Variable | count age grade salary
Value

Figure 4.44: Input/output: fill in the tables question 4.

4.6.3 Programming exercises

@

@

€)

%)

We use the following rule to convert a hundred-mark system grade into a letter
grade: ‘A’ =larger than 90, ‘B’ =80~89, ‘C’ =70~79, ‘D’ =60~69, and ‘E’ = < 60.
Write a program that reads a number grade, calculates the corresponding letter
grade, and displays both grades (the number should have two digits in its frac-
tion part, for example, 78.5 should be displayed as 78.50).

Write a program that does the following:

1) Read three integers into variables a, b, and ¢
2) Assign the initial value of a to b

3) Assign the initial value of b to ¢

4) Assign the initial value of c to a

Write a program that does the following:

1) Read three double numbers

2) Calculate and output the average of them. The average should be rounded
and have one digit in its fraction part.

Write a program that reads three characters and outputs them along with their
ASCII values.

5 Program statements

Main contents
— Usage and rules of expressions that construct branches in programs
— The basic concept of loops
— Three constructions of loops and their use cases
— Nested loops
— Characteristics of statements of the same type, their relations and selection criteria
— Exercises of efficiently analyzing programs using flowcharts
— Exercises of top-down algorithm design
— Exercises of program reading
— Debugging methods and techniques of program statements

Learning objectives

— Know how to use basic statements to write programs in sequential, branch, and loop
structures.

— Know the syntax of expression statements and difference between expressions and
expression statements.

— Know how to use fundamental control structure and control statements in C.

— Know basic debugging techniques and how to select test cases.

5.1 Sequential structure

A program of sequential structure consists of statements that are executed in se-
quential order. Such programs have the simplest structure among all structured
programs as shown in Figure 5.1.

Example 5.1 Data swap
Define two integer variables, input two integers, swap values of these variables and output them.

[Analysis]

1. Algorithm description

The process flow is shown in Figure 5.2. We first define two integer variables a and b, then input
two integers and store them into a and b. Next, we swap their values and output them. Method
of swapping values of a and b has been covered in the section “Effectiveness of Algorithms” in
Chapter 2.

https://doi.org/10.1515/9783110692327-005

https://doi.org/10.1515/9783110692327-005

172 — 5 Program statements

Operation 1

Operation 2

Operation n

Define two integer
variables a and b
Input two integers and
store them into a and b
swapping

values of a
and b

Output values of a and b

5.1 Sequential structure =— 173

Example 5.2 Grade processing
Type in student numbers and English exam grades of four students, print the data and output
average grade.

[Analysis]

1. Algorithm description

As shown in Figure 5.3, the program executes the following operations in order: input, computa-
tion, and output. The program is given below.

| Input student IDs
I

|
l Input grades ‘
|
|

I

I Compute sum and average of grades
I

I Output in the format “ID grade”

End

Figure 5.3: Flow of grade processing.

As the program needs to handle grades of four students, four variables are declared on line 4
and four are declared on line 5 to store student numbers and grades. We also noticed that four
repeated formatted output functions are used between lines 13 and 16 to output grades.

2. Program implementation

01 #include <stdio.h>
02 int main(void)

03 {

04 int number1, number2, number3, number4; //Declare 4 student numbers
05 float gradel, grade2, grade3, grade4; //Declare 4 grades

06 float ave; //Average grade

07

08 printf("input 4 numbers:\n "); //Student number input prompt
09 scanf ("%d%d%d%d" , &number1,&number2,&number3, &umber4);

10 printf("input 4 grades:\n "); //Grade input prompt

11 scanf ("%f%f%f%f", &gradel, &grade2, &grade3, &grade4);

12 ave=(gradel+ grade2+ grade3+ grade4)/4; //Compute average

13 printf("%d: %f\n ", number1, gradel);

14 printf("%d: %f\n ", number2, grade2);

15 printf("%d: %f\n ", number3, grade3);
16 printf("%d: %f\n ", number4, grade4);
17 printf("average=%f\n", ave);

18 return Q;

19 }

174 —— 5 Program statements

Result:

input numbers:
1234

input grades:

86 92 75 64

1: 86.000000

2: 92.000000

3: 75.000000

4: 64.000000
average=79.250000

3. Discussion

Are there any shortcomings in this program?

Discussion: There are repeated statements for similar variables. It would be tedious to write in
this way if there were 100 students. We can improve it by using loops.

5.2 Double branch structure
5.2.1 Syntax of double branch structure

In the section of the basic structure of algorithms, we have seen that we need to
make judgments when configuring a washing machine. The results of such judg-
ments have two branches, namely “yes” and “no.” We extracted a generalized
model from this practical problem and used a flowchart or pseudo code to describe
the process. In practice, the conditional decision is implemented by expressions in
C. Such a branch structure with two exits is represented by an if-else statement as
shown in Figure 5.4.

R [ﬂ
: -|- F : if (condition) if (expression)
| ! {
|
: : Operation set A Statement set A
: Operation Operation : b b
i|_set A setB | %Ise else
| |
! | i | | Operation set B Statement set B

} b
Flowchart Pseudo code C syntax
representation representation representation

Figure 5.4: Representation of branch structure.

5.2 Double branch structure = 175

The syntax and flowchart representation of if-else statement are shown in Figure 5.5.
Essentially, if the value of the expression is true, statement set A is executed; other-
wise, statement set B is executed.

Think and discuss What type of expressions can be used as the “expression” in if-else “
statements?

Syntax of
if-else statement @
o0
T F

What types of
expressions can
be used here?

if (expression)

) Statement set A Statement Statement

set A set B

| |
l

else

Statement set B

b

Figure 5.5: Syntax of if-else statement.

From a practical perspective, the answer should be conditional decision, namely relational and
logical expressions. Grammatically, however, all correct C expressions can be compiled without
errors. Although there are few restrictions put by grammar, we should still design our algorithm
based on the logic of practical problems.

There is also a special case of if-else statement as shown in Figure 5.6. The else branch can
be omitted to form a single branch structure.

Special case:
statement set B is
empty, namely a

single branch

structure
\

if (expression)

Statement set A

b

Statement
set A

Figure 5.6: Special case of if-else statement.

5.2.2 Role of compound statements

In grammar rules of C, a single statement is sometimes required in a syntax.
However, one statement may not be sufficient to complete a task in practice. Hence,
a workaround is needed in the grammar, which is called “compound statements.”

176 —— 5 Program statements

Formally, a compound statement is a set of multiple statements, but it is a
whole entity and works as a single statement grammatically. Whenever a single
statement is needed, a compound statement can be used instead as needed. The
definition and usage of compound statements are shown in Figure 5.7.

Compound statement

A compound statement is formed by surrounding a
group of statements with {}.

As defined by grammar of C, a compound statement
is treated as a single statement instead of multiple. ©

{3} can appear
on the same line
of statements or
on their own line.

Figure 5.7: Compound statement.

Example 5.3 Role of compound statements
Analyze the role of compound statements in the two programs given in Figure 5.8.

[Analysis]
In the first program, the condition after “if statement” checks whether 1 is larger than 2. According
to grammar rules, the first statement after if is executed if the condition evaluates to true, or
skipped otherwise. Hence the first printf statement is not executed and the output is “The second
statement The third statement.”

The second program uses brackets, thus the “if statement” has two printf statements in its
true branch. Hence the output is “The third statement.”

include <stdio.h> # include <stdio.h> {3 can control
int main(void) int main(void) scope of if
) { 00O statement
if (1 >2) if (1 >2)
printf("*The first statement\n"); {
printf("The second statement\n"); printf("The first statement\n ");
printf("The third statement\n"); printf("The second statement\n ");
return 0; }
printf("The third statement\n ");
Result: return O;
The second statement b Result:

The third statement

The third statement

Figure 5.8: Role of compound statements.

5.2.3 Example of if statements

Example 5.4 Use if statements to implement result check in the price guessing game

In the price guessing game, the host responds with “too high,” “too low,” or “exactly” for each
guess. Suppose the actual price of an item is ¥168 and let value denote the guesses of a partici-
pant. Write statements for the result check.

5.2 Double branch structure = 177

[Analysis]
The program implementation is shown in Figure 5.9. The three if statements print correspond-
ing results when the value of variable value is greater than, less than, or equal to the actual
price 168.

{} can be omitted
if there is only one
statement after if

if (value>168) printf(*Too high");
if (value<168) printf(“Too low"); 000
if (value==168) printf(“Exactly");

Figure 5.9: Result check in the price guessing game.

What are the execution paths of these three branching statements?
Let us draw and study the flowchart as shown in Figure 5.10.

if (value>168) printf(*Too high");
if (value<168) printf("Too low");
if (value==168) printf(“Exactly");

Better readability,
lower efficiency

Figure 5.10: Result check solution of the price guessing game.

Logically, if value is greater than 168 and “too high” is printed, it is redundant to check whether
value is less than or equal to 168. A program like this has better readability but worse
efficiency.

Following the logic of the problem, we first revise the flowchart. As long as a check yields
true, we can print the result and terminate the flow. The corresponding program statements are
shown in Figure 5.11.

We first check whether value is greater than 168. If true, “too high” is printed. Otherwise, the
flow enters the branch for values less than or equal to 168. In this branch, we once again check
whether value is less than 168. If true, “too low” is printed. Otherwise, we check whether it is
equal to 168. In this case, the result has to be true, so “exactly” is printed.

Note how brackets of if-else statements are aligned in the figure. It is not easy to figure out
the execution logic of this refined program without a flowchart to refer to. In other words, we
have compromised readability for higher efficiency.

178 =— 5 Program statements

1

if (value>168)
printf(“Too high”);

printf(“Too low”);
else
if (value==168)
printf(“Exactly”);
3

b

else
{ c0Q ¢ Higher efficiency,
if (value<168) worse readability

Figure 5.11: Refinement of the price guessing game solution 1.

In fact, the last equality condition in the flow is logically redundant, thus we can further im-
prove the flow. The refined flow and corresponding statements are shown in Figure 5.12.

Refinzement

if (value>168)
printf(“Too high”);
else
if (value<168 °
{() °q
printf(“Too low”); H
¥
else

printf(“"Exactly”);

Figure 5.12: Refinement of the price guessing game solution 2.

igh efficiency and
good readability

We first write the case of value greater than 168, where “too high” is printed. If the comparison
yields false, we continue to process the cases where value is less than or equal to 168. If it is
less than 168, “too low” gets printed; otherwise, “exactly” is printed.

It is clear from this refinement process that flowcharts help us study the execution
of programs more intuitively and clearly compared with program statements.

5.2 Double branch structure = 179

5.2.4 Nested if-else statements

5.2.4.1 Nesting rule of if-else
In examples above, we have seen that an if-else statement can be written inside an-
other if statement, constructing a nested if statement.

However, if two if statements are written in the way illustrated on the left side
of Figure 5.13, which if should be matched with else?

Which if is else
matched to?

-0% if ()

Regularization {

if ()
Proximity if () statement 1;
rule else statement 2;

In a nested if-else structure, else is always matched
with the closest if above it.

if () statement 1;
else statement 2;

b

Figure 5.13: Matching of nested if-else case 1.

To avoid ambiguity, we need to design a rule for such situations in grammar. C re-
quires that an else is always matched with the closest if above it in a nested if state-
ment. This is also known as the “proximity rule.”

To achieve better readability in this example, a more formal way is to add
brackets to the first if to show its scope clearly.

What if the logic of a problem requires that the else in Figure 5.13 should be
matched with the first if?

In this case, we can apply the rule of compound statements to write it in the
way shown in Figure 5.14. In other words, we need to wrap the true branch with
brackets so that it is considered to be a compound statement and in the scope of
the first if. Now the first if is the closest one to else, with respect to the nesting rule
of if-else statement.

if () A compound
c p £ statement is
ompoun . regarded as a single
3 1P) S 1,c OO statement
grammatically
else statement 2;

Figure 5.14: Matching of nested if-else case 2.

180 —— 5 Program statements

5.2.4.2 Note on using nested if-else
It is hard to read a program using nested if-else with too many layers. As a fun-
damental conditional statement in all programming languages, if-else state-
ments are used excessively in programming. However, in the experience of
programming, it is not recommended to use a nested if-else with more than
three layers. Otherwise, the program becomes extremely unreadable and hard to
maintain later.

Good programming habit
Avoid using too many nested if-else statements.

Example 5.5 Compute maximum of three numbers
Compute the maximum of three integers a, b, and ¢ (whose values are obtained from keyboard
input).

[Analysis]

1. Data analysis

As per procedures of algorithm design, we should first analyze relations between the data to be
processed; in this case, a, b, and c. Possible cases are listed in Figure 5.15.

General case a, b and c have distinct values

Possible cases of data
Special or edge case At least two of them are equal

Figure 5.15: Analysis of data in the maximum problem.

Following the first step of algorithm design, we should design the flow starting from general
cases. After designing a draft algorithm, we test it against special cases and edge cases and
update it accordingly.

2. Algorithm design solution 1

Based on the requirements in the problem description, we can write out top-level and refined
pseudo code as shown in Figure 5.16, with which we can draw the flowchart of execution in
Figure 5.17.

Top level pseudo code First refinement Second refinement

Input three numbers a,b and c Input three numbers a,b and c

Compare a with b if a>b
Compare three numbers | If a is larger, compare a with c, if a>c max=a
a, b and ¢, find the where the larger is the maximum else max=c
maximum of them else

Otherwise, compare b with c, TTEE CEeh

where the larger is the maximum
ere the larger is the ma u o Crren

Output result Output max

Figure 5.16: Maximum problem algorithm design solution 1.

5.2 Double branch structure = 181

| Input a, band c |

Y N

a>b
Y N Y N
a>c b>c

| max=a| | max=c | | max=b | | max=c |

Output max

Figure 5.17: Flowchart of maximum problem algorithm design solution 1.

3. Testing
We have designed the algorithm flow based on general cases; therefore, the next step is to test
it against special cases of data. Figure 5.18 shows the test result.

Case Result

a=b=c max=c
a=b max is the larger between b and c
a=c max is the larger between b and c
b=c max is the larger between a and c

Figure 5.18: Test result of algorithm for maximum problem.

After passing all tests, we can start coding with the second refinement pseudo code or the
flowchart.

4. Program implementation

1 //Compute maximum of a, b and c, store it into max

2 #include <stdio.h>

3 intmain(void)

4 {

5 int a, b, c, max;

6

7 scanf("%d,%d,%d",&a, &, &c); //Type ina, b and c
8 if (a>b)

9 {

10 if (a>c)

11 {

12 max=a;

13 }

14 else

15 {

16 max=c; //max is the bigger one between a and c
17 }

18 }

19 else

N
S
-~

182 —— 5 Program statements

21 if (b>c)

22 {

23 max=b;

24 }

25 else

26 {

27 max=c; //max is the bigger one between b and c
28 }

29 }

30 printf("max=%d", max); //Output result
31 return@;
32 3}

5. Algorithm design solution 2
In the first solution, as max records the maximum value, we can start to use it in the comparison
of a and b. The refined pseudo code is given in Figure 5.19.

First refinement
Input three numbers a,b and c
Compare a and b,store the larger one into max
Compare max and c,store the larger one into max
Output result

Figure 5.19: Maximum problem algorithm design solution 2.

6. Algorithm design solution 3

We can also use conditional expression:
max=(a>b)? a: b;
max=(max>c)? max : c;

5.3 Multiple branch structure

5.3.1 Introduction of multiple branch problems

Case study 1 Multiple branch problem in washing machine settings

In the discussion of fundamental structures of algorithms, we have seen that we may need to
choose from multiple options when configuring a washing machine. As shown in Figure 5.20,
there are multiple branches for the decision. Using the double branch structure to describe the
problem gives us the flow in Figure 5.21, in which it is not hard to see that we can only check
one condition at a time. We can imagine that it is necessary to check all possible conditions
layer by layer to cover all possible cases if there are many of them in a problem.

5.3 Multiple branch structure =— 183

Multiple options problem in washing machine setting

Clothes load

Low Medium High

Consider all
possible cases and
select an option

\

[Low water level | [Medium water level| [High water level |

Basic washing
program

Figure 5.20: Example of multiple branch structure.

Implemented
using double
branch structure

clothes
oad

| Low water level | | Medium water level | | High water level |

—>| Basic washing program |<—

Figure 5.21: Double branch structure implementation of multiple branch problem.

Case study 2 Multiposition switches in real life

As shown in Figure 5.22, multiposition switches in real life are all examples of multiple-level
selection. Recall how we toggle a switch in practice: we determine a target position and toggle
the switch to it at one go.

184 —— 5 Program statements

| Multi-position switches in real life

Speed switch Temperature Gear stick
of fan control switch in car

Figure 5.22: Multiposition switches in real life.

Think and discuss Differences between multiposition and multibranch
Essentially, what are the differences between toggling a multiposition switch and a multilayer
double branch structure?

Discussion: When toggling a multiposition switch, we simply toggle it to the desired position.
Meanwhile, a judgment is needed in each step when using a double branch structure for a mul-
tiple branch problem, which is inconvenient. If we have a mechanism similar to the multiposi-
tion switch in C language, it would be easier to deal with multiple branch problems in practice.

Case study 3 Mr. Brown’s memo book

Mr. Brown is pretty busy, so he usually writes down the schedule for the next week in an electronic
memo book in advance. There was a week where Mr. Brown had the schedule shown in Figure 5.23.
Figure 5.23 also shows the flowchart he made for the schedule, drawing on multiposition switches.
In such a flow, he could know the schedule on a certain day by simply querying the day of the week.

| Mr.Brown’s memo book Days of the

week

le—

Monday——Meeting Meeting

[y

Tuesday——Teaching Teaching

Wednesday——Lecture

;

Thursday——Office work Lecture

Friday——Teaching 4 Office work

Saturday——Seminar 5
Sunday——Field trip

Field trip

~N

P
[o

Figure 5.23: Mr. Brown’s memo book.

5.3 Multiple branch structure =— 185

5.3.2 Syntax of multiple branch structure

5.3.2.1 Multiple branch structure model and grammatical representation

Based on the flowchart above, we can summarize the abstract model framework of
multiple branch structures. Note that there is a case for “exceptions” after listing all
normal cases. It works as a processing path for exceptions after considering all
possible cases. It is designed to make the system complete. Switch statements are
introduced to C as an implementation of this model. Syntax of switch statements
is shown in Figure 5.24.

switch statement

Expression

Statement set 1 switch (expression)

Statement set 2 {

Statement set 3 case constantl: statement set A;

case constant2: statement set B;

R
Q

Statement set N case constantN: statement set N;

default: statement set N+1;

Exception Statement set N+1

Abstract model framework C syntax representation

Figure 5.24: Multiple branch model and its representation.

A switch statement works as follows: the value of the expression is evaluated and
compared with values of constant expressions below. In the case of a match, state-
ments after that constant expression are executed. The remaining comparisons are
then skipped and statements in these cases are executed as well. If none of the con-
stants is equal to the value of the expression, statements in the default case are
executed.

5.3.2.2 Grammar test of switch statements
Mr. Brown wrote a schedule querying program using switch statements and tried to
obtain his schedule for Wednesday. However, the result he obtained was as shown
in Figure 5.25. In addition to the schedule for Wednesday, the program output
schedule for the remaining days of the week as well as a warning. What was wrong
with the program?

After checking his program, Mr. Brown found that all printf statements in case
3 and cases below were executed given input 3. Comparing the grammar of switch
statements in Figure 5.24 and his flowchart, he realized that the execution process

186 —— 5 Program statements

#include <stdio.h>
int main(void)

int a;
printf(*Input day of the week: ");
scanf("%d",&a);
switch (a)
{
case 1: printf(*Monday: meeting\n");
case 2: printf(“"Tuesday: teaching\n");

case 3: printf(*"Wednesday: lecture\n"); Program result :
case 4: printf("Thursday: office work\n"); [HHENCARUERTEC SRS
case 5: printf(“Friday: teaching\n"); Wednesday: lecture
case 6: printf(*Saturday: seminar\n"); Thursday: office work
case 7: printf(*Sunday: field trip\n"); Friday: teaching
default: printf(“Invalid input\n"); Saturday: seminar

¥ Sund_ay_: field trip

return O; Invalid input

b

Figure 5.25: Mr. Brown’s weekly schedule querying program.

of the switch statement was not consistent with the logic of the flowchart. Hence,
the grammar model of switch statements needed to be updated.

5.3.2.3 Refined switch statements model and grammar representation

Mr. Brown thought that an interruption mechanism was necessary for switch state-
ments. After statements in a case were executed as required, the program should be
able to jump out of the switch statement as shown in Figure 5.26. This interruption

Expression

We can jump out
of the switch
structure by using
break statement

Statement set 1

Statement set N+1

®<¢
L o

Figure 5.26: Logical flow of switch statements.

5.3 Multiple branch structure =— 187

mechanism is implemented by break statements in C. Programmers can choose to
use break or not based on the logic of the problem. By now, the switch statement
model is completed and can handle multiple-branch cases properly.

The syntax of switch statements based on the updated model is shown in Figure
5.27. Break statements can be added if necessary. We put them into square brackets in
the grammar description, meaning that they are optional.

Syntax of switch statement

switch (expression) °0
Are the “expression”
case constantl: statement set A; [break;] here and the “expression”
case constant2: statement set B; [break;] in an if statement the

------ same thing?
case constantn: statement set N; [break;]
default: statement set N+1;

by

Figure 5.27: Syntax of switch statement.

5.3.2.4 Execution process of switch statements

The execution process of switch statements is as follows:

(1) When executing a switch statement, the expression inside the parentheses that
follow it is evaluated first. The program looks for a case value, from constant 1
to constant n, in the body of the switch statement that matches.

(2) If there is a match, statements between that case and the end of the switch
statement are executed, including all the remaining cases and default case.

(3) If there is no matching case and a default case exists, statements between de-
fault and the end of the switch statement are executed.

(4) If there is no matching case and no default case, the program jumps out of the
switch statement and executes statements after it.

Note:

(1) Break statement is used to jump out of the switch statement.

(2) Constants 1 through n are distinct numerical literals or character literals.

(3) Each case branch can comprise multiple statements. {} are optional.

(4) Do not omit the default case. In case an exception occurs, namely, the value of
the expression does not match any case, the program may crash.

(5) The value of the expression after switch can be of any type except floating-
point types. Why is this the case?

When we introduced data types, there was a rule on real numbers, which stated
that “avoid checking whether two real numbers are equal,” as such comparisons
may yield wrong results.

188 — 5 Program statements

Think and discuss Are the “expression” in switch and the “expression” in if the same thing?
The expression in if: It is designed to check a condition and the result is either true or false,

thus it should be a relational or logical expression.
The expression in switch: It is designed to match one of all possible cases and the result is

an integer, thus it should be an arithmetic expression.

5.3.2.5 Testing the refined program
Using the refined grammar of switch statements, Mr. Brown added a break in his
querying program, which passed further tests as shown in Figure 5.28.

#include <stdio.h>
int main(void)

int a;

scanf("%d",&a);
switch (a)

b

return 0;

}

printf("Input day of the week: ");

case 1: printf("Monday: meeting\n");
case 2: printf("Tuesday: teaching\n");
case 3: printf("Wednesday: lecture\n");
case 4: printf("Thursday: office work\n");
case 5: printf("Friday: teaching\n");
case 6: printf("Saturday: seminar\n");
case 7: printf("Sunday: field trip\n");
default: printf("Invalid input\n");

break;
break;
break;
break;
break;
break;
break;

o0 O

break statements
/\\

Program result:

Input day of the week: 3
Wednesday: lecture

Figure 5.28: Refined querying program.

5.3.3 Example of multiple branch structure

Example 5.6 Grade conversion
Enter a 100-mark system grade, convert it into the corresponding grade in a five-level system.
and output. The conversion rule is shown in Figure 5.29.

grade=

A 90<score<100
B 80<score<90
C 70<score<80
D 60<score<70
E score<60

Figure 5.29: Grade conversion table.

L ——
The refined
program uses)

5.3 Multiple branch structure =— 189

1. Problem analysis
This is a segment problem which can be solved using if statement. It is not hard to write the
following program.

1 #include <stdio.h>

2 int main(void)

3 {

4 int score;

5 printf("Please input score: ");

6 scanf("%d", &score); //Input grade

7 if (score>100 || score <o)

8 printf("input error! "); //Error handling

9 else if (score >=90) printf("%d--A\n", score);
10 else if (score >=80) printf("%d--B\n", score);
11 else if (score >=70) printf("%d--C\n", score);
12 else if (score >=70) printf("%d--D\n", score);
13 else if (score >=0) printf("%d--E\n", score);
14 else printf("Input error\n");

15 return 9;

16 }

Review: This program uses nested if-else statements. As there are many segments in the prob-
lem, the program uses many branches. As a result, it is hardly readable.
We shall discuss a solution using switch statement now.

2. Solution design
We first write out the skeleton of a switch statement:

switch (expression)

{
case constantl: printf("%d----- A\n", score); break;
case constant2: printf("%d----- B\n", score); break;
case constant3: printf("%d----- C\n", score); break;
case constant4: printf("%d----- D\n", score); break;
case constant5: printf("%d----- E\n", score); break;
default: printf("Input error\n");

}

The key is to determine the expression in switch (expression). The range of score is 0-100, it is
impossible to list all 100 cases. It is also tricky to find a formula to split the range unevenly into
five levels. Based on characteristics of this problem, we can divide score by 10 and split the
range into 10 levels. Consequently, the skeleton can be updated as follows:

190 — 5 Program statements

switch (score/10)

{
case 10:
case 9: printf("%d----—- A\n", score); break;
case 8: printf("%d----- B\n", score); break;
case 7: printf("%d----- C\n", score); break;
case 6: printf("%d----- D\n", score); break;
case 5:
case 4:
case 3:
case 2:
case 1:
case 0: printf("%d----- E\n", score); break;
default: printf("Input error\n");

}

Note:

(1) The result of score/10 is integer as score is integer.

(2) When score =100, score/10 = 10, the program jumps to the branch case 10. Because there
is no statement in this branch, the program executes the statement below, namely printf
("%d-----A\n", score) as per grammar of switch statement. The program jumps out of the
switch when a break is encountered.

(3) The program works similarly for the case score <60.

3. Testing and refinement
Based on data characteristics of this problem, we can design the following test cases as shown
in Figure 5.30.

score score/10
>=110 default
100<score<110 default
100 10
90<= score<100 9
80<= score<90 8
70<= score<80 7
60<= score<70 6
0<= score<60 5/4/3/2/0
score<0 default Figure 5.30: Test cases of grade conversion problem.

When using these test cases to verify the result, we found an error: when 100 < score < 110,
score/10 = 10, and the program outputs “A.”

4. Refined program
Part of the refined program is given below:

scanf("%d", &score);
if (score>100 && score<110) score=110;//Treat numbers between 100 and 110 as 110

5.3 Multiple branch structure =— 191

switch (score/10)

{
case 10:
case 9: printf("%d----- A\n", score); break;
case 8: printf("%d----- B\n", score); break;
case 7: printf("%d----- C\n", score); break;
case 6: printf("%d----- D\n", score); break;
case 5:
case 4:
case 3:
case 2:
case 1:
case 0: printf("%d----- E\n", score); break;
default: printf("Input error\n");

}

Example 5.7 Convert if statements into switch statement
Rewrite the following statements using switch statement (a is an integer).
if (a<b) && (a>=0)
{ if (a>2)
{ if (a<4) x=1;
else x=2;
¥

else x=3;

[Analysis]

1. Program analysis

We want to use the switch statement to show what the value of x is given various values of a, so
we should find the relation between a and x first. The given statements have poor readability;
therefore, it is better to use a coordinate system and make a relation table of a and x as shown
in Figure 5.31. It is easier to write switch statements in this way.

X
a X
3609 0 3
20 &---0 1 S
1(|) 0----8----0 2 3
3 1
0—0—0—0—0—0— a 2 >

1 2 3 4 5

Figure 5.31: Relation between a and x.

2. Program implementation
switch (a)
{ case0:

192 — 5 Program statements

case 1:

case2: x=3; break;

case 3: x=1; break;

case 4: x=2; break;

default: printf("aiserror\n");

3. Discussion

What if a is a real number?

Analysis: The value of the expression of a switch statement must be discrete rather than contin-
uous. If a is a real number, it changes continuously. Based on the coordinate system graph
given above, we can update the relation table of a and x as shown in Figure 5.32.

a X

O<=a<=2 3

2<a<4 1
4<=a<> 2 Figure 5.32: Updated relation between a and x.

We can use truncation to handle values of a as if they were discrete as shown in Figure 5.33.

a (int)a X
0
O<=a<=2 1 3
2
2<a<4 2 L
3 1 Figure 5.33: Updated relation between a and x with
4<=a<5 4 2 truncation.

It is clear that x=3 when a=2 and x=1when 2<a< 3. The program needs to distinguish these
two situations.
Program implementation:

switch ((int)a)
{ case 0:
case 1:
case 2: if (a>2) x=1;
else x=3; break;
case 3: x=1; break;
case 4: x=2; break;
default: printf("aiserror\n");

4. Testing
According to principles of testing, we need to test normal values, corner values, special values
as well as error cases. Possible test data are shown in Figure 5.34.

a <0 0 1 2 2~3 3 4 >4

X Error 3 3 3 1 1 2 Error

Figure 5.34: Test data.

5.3 Multiple branch structure =— 193

During testing, we need to rerun the program for each test case, which is inconve-
nient. Ideally, the program should be executed once and terminated after being
tested against all test data. We can achieve this goal after learning loop statements.

Example 5.8 Calculator for arithmetic operations
Design a program that does addition, subtraction, multiplication, and division given expres-

sions entered by users through the keyboard.

[Analysis]

1. Program analysis
Concerning the characteristics of the input data, the operator is the only information that can
be used to distinguish between expressions. The operators are of character type and hence in-
tegers as well. They can be used to distinguish between different cases, thus we use them as
the case values in the switch statement. Figure 5.35 shows all cases of input and output data.

Input Output
case
float char float float
'+! a + b a+b
! a - b a-b
k! a * b a*b
/! a / b a/b

Figure 5.35: Data analysis.

2.
1
2
3
4
5
6
7
8

9

10
11
12
13
14
18
16
17
18
19
20
21
23

Program implementation
#include <stdio.h>
int main(void)

{

float a,b;
char c;

//Define the operands
//Operator

printf("input expression: a+(-,*,/)b \n");//Input prompt
scanf("%f%c%f",&a,&c,8&b); //Enter the expression in order

switch(c)

{

case '+':

printf("%f\n",atb);

break;

case - ':

printf("%f\n",a-b);

break;
case 'x':

printf("%f\n",a*b);

break;
case '/":

//Compute based on type of operator

printf("%f\n",a/b); //Can’t handle division by @

default:

194 — 5 Program statements

24 printf("input error\n");
25}

26 returno;

27 3

5.3.4 Comparison of various branch structure statements

Branch statements include double branch statements and multiple branch statements,
which have different features and use cases as shown in Figure 5.36. Switch statements
are used to distinguish multiple cases. Using them makes program structure clearer.
However, they can only be used when the case expression evaluates to an integer.

(switch). Cif D

Used to compare data with intervals or
with each other

Used in classification operations

Complement

Can only check whether the expression
evaluates to certain integers

Not intuitive for classification operations

Figure 5.36: Comparison of if and switch.

Conditional statements are used for comparing data with intervals or with each other.
Switch statements and if statements complement each other in functionalities.

5.4 Introduction of loop problems
5.4.1 Analysis of key elements in loops

In the discussion of fundamental structures of algorithms, we have seen that re-
peated operations may be necessary when setting up a washing machine. Repeated
operations form a loop as shown in Figure 5.37.

In the grade processing program, discussed in the section of sequential struc-
ture, we have seen that statements for similar variables are repeated multiple times.
It would be tedious to write the program in this way if we have 100 students. As
shown in Figure 5.38, we can write the grade processing program in loops in the
same way as how we dealt with the loop flow of washing machines.

5.4 Introduction of loop problems =— 195

| Repeated operations in washing
machine settings

l

| Soak |

Representation
of repeated
operations: loop

| Spin-dry |

Figure 5.37: Repeated operations in practice.

| A problem in grade processing

Pseudo code

When (number of inputs is less | “number of inputs” controls

than number of students) whether loop enters next iteration
Input student ID and grade A

Add grade to sum — Operations are done in loop body
Output student ID and grade U

Output average grade

e Less repeated code in source file
- ® Simplified program design

Put tasks that need
O e Reduced source file size

to be repeatedly
completed in a loop
structure

Figure 5.38: Loop in the grade processing problem.

The condition checked in this loop is whether number of inputs is less than num-
ber of students. Actual input, addition and output are done inside the loop body. It is
clear that it is beneficial to do work that requires multiple executions with loops.

Let us study some concrete examples of loops.

Example 5.9 Highest score in the scoring problem
Enter 10 numbers, find and display the maximum of them.

196 — 5 Program statements

[Analysis]
The pseudo code of the algorithm and the loop control analysis is shown in Figure 5.39.

Pseudo code N is the loop Initial value
Counter N=1: obOYr— control variable ™ Condition
! Increment
Input Xx;
Largest=x ;
When (counter N < 10) N cor}trols_whether loop enters
next iteration

Input Xx;

If (Largest < x) Largest=x; Operations are done in loop body

Increase N by 1;]—— Update value of N

Output Largest;

Figure 5.39: Loop in the maximum score problem.

A counter N is used to count the number of score inputs. The loop keeps executing while N < 10.
In the loop body, the work to be done includes score inputting, comparing with the largest num-
ber Largest and increment of counter N.

The increment of N changes the value used in the loop condition. N is called the loop control
variable, which has the following features: it has an initial value, it is used in the condition
check, and its value changes in the loop.

Example 5.10 Sum of scores in the scoring problem

The detailed problem description is as follows: enter a series of positive integers through the
keyboard, compute and display the sum of them. Suppose that users use “-1” to mark “the end
of data input.”

[Analysis]

The pseudo code and the loop control analysis are given in Figure 5.40. The condition of loop
execution is whether the input is -1. The work to be done in the loop is repeatedly adding the
input score. The newly input x changes the value in the loop condition. Herein x is the loop con-
trol variable that has an initial value, is used in the condition check, and is updated in the loop.

x is the loop énitia.l yalue
Pseudo code control variable ondition
o O Increment

Input a number x; °
Accumulated sum sum=0; x controls whether loop enters
When (x is not equal to -1) ||~ next iteration

sum=sum+x;]—- Operations are done in loop body

Input number x;

P Update value of x

Output sum

Figure 5.40: Loop in the sum problem.

5.4 Introduction of loop problems =— 197

5.4.2 Three key elements of loops

After studying these examples of loops, we find that whether the loop is executed is
determined by the loop control variable, which has three key elements as shown in
Figure 5.41. The work to be done in the loop is a set of statements that are executed
repeatedly, which is called the loop body in C.

Three key elements of loops

(1) Initial condition: the initial value of loop control variable when the loop is started
(2) Execution condition: the condition that controls whether the loop enters next iteration
(3) Increment: how loop control variable is updated after each iteration

Loop body

A group of statements that are repeatedly executed construct the loop body.

Figure 5.41: Three key elements of loops and the concept of loop body.
We shall now analyze and extract key elements in one of the loop examples above.

Example 5.11 Reanalyze the grade processing problem
Analyze the three key elements of loops in the grade processing problem.

[Analysis]
The pseudo code was given in Figure 5.38.

First, it is clear that the loop control variable is the number of data inputs. The initial condi-
tion is the initial value of the number of data inputs, which should be 0 based on the logic of
the problem although not explicitly given in the pseudo code.

The execution condition is whether the number of inputs is less than the number of students,
whereas the loop increment is the increment of the number of inputs.

Hence, the complete description of the algorithm now includes all three key elements of
loops with the addition of initial condition. The refined pseudo code is shown in Figure 5.42.

Initial condition Number of inputs = 0
Execution condition Number of inputs is less than number of students
Increment Increase number of inputs by 1
Original pseudo code Refined pseudo code
When (number of inputs is less Number of inputs =0
than number of students) While (number of inputs is less than
Input student ID and grade number of students)
Add grade to sum Input student ID and grade
Output student ID and grade Add grade to sum
Output average grade O Increase number of inputs by 1
The Output student ID and grade
complete
design Output average grade

Figure 5.42: Key elements analysis of the loop in the grade processing problem.

198 — 5 Program statements

Based on the discussion above, we may summarize the general flow of loops with
three key elements as a flowchart as shown in Figure 5.43. An algorithm should
contain all three key elements as long as a loop is involved. Otherwise, the algo-

rithm description is incomplete.

Increment can

Initial condition

Execution
condition

be done inside
loop body A Qoo

Statements in
loop body

Figure 5.43: General form of flow of loops.

5.4.3 Loop statements

We have learned in the chapter “Introduction to Programs” that there are two cate-
gories of loops based on whether the loop body is executed before the condition
check. They are while loops and do-while loops.

Syntactically, C has four statements that can be used to implement loops. As
shown in Figure 5.44, there are goto loops, while loops, do-while loops, and for
loops. We shall focus on the last three in the following sections.

if ().. goto

while (expression) statement;

} while(expression);

do { 0O
statement;

for(expressionl; expression2; expression3)
statement;

Figure 5.44: Loop statements in C.

The three elements of loops
can be found in all these three
forms. Despite of having
unique characteristics, they
can be used interchangeably in
n\ﬂost cases

5.5 While loops =—— 199

5.5 While loops
5.5.1 Syntax of while loops

The syntax and flowchart of while statements in C are shown in Figure 5.45. One can
learn the execution process of while loops by observing the flowchart: if the expres-
sion evaluates to true, the loop body is executed. Otherwise, the loop is skipped.

The three key elements are not clearly shown in the syntax of while loops, so
programmers should look for them based on characteristics of loops used in prac-
tical problems. Otherwise, their code would not be complete. We shall learn this
again in subsequent examples.

Syntax of while loop

Where are
_ the three key ~N
elements?

while (expression) statement;

Statement

Figure 5.45: Syntax and representation of while loop.

5.5.2 Validation of necessity of the key elements

Example 5.12 Printing numbers with a pattern 2, 4, 6, 8, 10 using while loop

[Analysis]

1. Problem analysis

We first do a tabular analysis on the data we are going to process as shown in Figure 5.46.
Clearly, there is a correspondence between the number being printed and the number of prints
i. This is a loop process that ends when i becomes 6.

Number of prints i 1 2 3 4 5 6
printf 2 4 6 8 | 10 |End

Figure 5.46: Data analysis of printing numbers with a pattern using while loop.

What are the three key elements in this case? It is easy to see that the elements are as shown in
Figure 5.47. The initial value is 1, the execution condition is if i less than 6 and the increment is
increasing by 1.

200 —— 5 Program statements

Three key
elements_/1pitial condition i=1

Execution condition i<6

Increment i++

Figure 5.47: Three key elements of printing numbers with a pattern using while loop.

2. Algorithm description

— Based on the key elements, we can write the following pseudo code and draw the flowchart
shown in Figure 5.48. Comparing these two, we can infer that i less than 6 is the loop execution
condition and the loop body is composed of printing i * 2 and i increments by 1. The initial
value of the loop control variable i is not shown in the flowchart.

We can test what happens if we forget to initialize i when running the program.

|

Pseudo code
Number of printsi =1
while number of printsi < 6 T

Print i*2
Increase i by 1

Print i*2

@FOOO

Increase i by 1

—

What will happen
if we don't

— initialize i=1
before the qup?

Figure 5.48: Pseudo code and flowchart of printing numbers with a pattern using while loop.

3. Implementation and debugging

The complete implementation can be found in Figure 5.49. Before debugging, it is vital to deter-

mine what to examine. Notably, we want to focus on:
— the entire loop from the beginning to the end,
— what happens if we do not initialize i,
- what happens if we initialize i, and
— what is the value of i when the loop ends.

Figure 5.49: Implementation and key points in debugging.

//Use while loop to print 2, 4, 6, 8, 10
#include <stdio.h>
int main(void)
{
inti;
‘J’;Vh'le (i<6) Key points in debugging plan
) B W om y L * The entire loop from the beginning to the end
printf(™ %d *,2%1); + iis not initialized
I+ . iis initialized
¥ * Value of i when the loop ends
return 0;
>

(1) Without initialization

5.5 While loops =—— 201

In Figure 5.50, i is not initialized. Its value turns out to be a random negative number with a
large absolute value. As a result, the output of 2*i is not the expected value 2 and the loop
is executed far more than five times. With this value of i, the loop will not terminate until i
is greater than 6 after over 800 million iterations.

#include <stdio.h>
int main(void)
{ . .
int 1:
// int i=1;
while (i< 8)

{
= printf(" %d ",2%i);
i++;
)

return 0;

Watch

Name]VMue
i -858993460
2xi -1717986920

Figure 5.50: Loop control variable not initialized.

(2) With initialization

In Figure 5.51, i is initialized to 1. In Figure 5.52, its value becomes 2 in the second iteration.
In Figure 5.53, its value reaches 6 when the loop is completed. This proves that the loop

body has been executed five times.

#include <stdio.h>

int main({void)

{

/7 int i;
int i=1;
while (i< 6)
{

=3 printf(= %d ", 2x%i);
it

3
return 0;

)

Watch

Name

Name

i
2x1i

1
2

Figure 5.51: Loop control variable initialized 1.

20

2 —— 5 Program statements

#include <stdio.h>
int main(void)
{
// int 1i;
int i=1;
while (i< 6)
B printf(" %d ",2xi);
i++;
}
return 0;
)

Watch

Name IVaIue

i ‘2
2x%i 4

Figure 5.52: Loop control variable initialized 2.

AN

#include <stdio.h>

int main(void)

{
// int i;
int i=1;
while (i< 86)
printf(" %d ",2xi);
i++;
3
return 0;
3

Watch

Name IVaIue

1 6
2xi 12

Figure 5.53: Loop control variable initialized 3.

4.

Using the debugger, we can conclude that the three key elements must work together to ensure
the loop body is executed a desired number of times. It is uncertain how many times the loop

Conclusion

will be executed if the loop variable is not initialized.

Example 5.13 Scoring problem with known number of judges
Type in scores given by eight judges, output the sum and average.

5.5 While loops

[Analysis]
1. Algorithm design
The pseudo code is shown in Figure 5.54.

Algorithm description in pseudo code

Initialize the sum to be 0
Initialize the counter to be 0
while counter < 8

Input next score

Add the score to the sum

Counter increases by 1
The average is sum divided by 8
Output the sum and average

Figure 5.54: Algorithm of scoring problem with known number of judges.

2. Program implementation
1 int main(void)

2 {

3 int counter; //Counter

4 int grade; //Score

5 int total; //Sum

6 int average; //Average

7

8 //Initialization phase

9 total = 0; //Initialize sum

10 counter =0; //Initialize counter

11 //Processing phase
12 while (counter<8) //8 iterations

13 {

14 printf("Enter grade: "); //Input prompt

15 scanf("%d", &grade); //Read score

16 total = total + grade; //Add score to sum

17 counter = counter +1; //Counter increases by 1
18 3}

19 average = total / 8;

20 //Output result

21 printf(" total is %d\n", total);

22 printf(" average is %d\n", average);
23 return9;

24}

Think and discuss Is variable initialization necessary?
Why is initialization necessary for some variables but not for the others?

— 203

Discussion: Beginners often ignore this problem, but ignoring it can lead to errors in program
results. In the program above, variables counter and total need initialization, whereas grade
and average do not. Variables that need initialization are those that need a value before being

204 —— 5 Program statements

used the first time. Their values affect the following computation. In other words, the first oper-
ation on them is a “read operation.” Initialization is not necessary for variables that are first
used in “write operations.”

Example 5.14 Scoring problem with unknown number of judges
Type in scores given by several judges, output the average score.

[Analysis]

1. Algorithm design

As the number of judges is unknown in this problem, we need to reconsider the condition of
loop execution. We can use a number that is not a normal score as the termination mark for
score input, for example, “-1.” Then we can write out the pseudo code shown in Figure 5.55.

Algorithm description in pseudo code

Initialize the sum to be 0

Initialize the counter to be 0

Enter a score

while input data is not the termination mark

Enter a score

Add the score to the sum

Increase the counter by 1

Average=sum/counter

Output the average

Figure 5.55: Algorithm of the scoring problem with an unknown number of judges.

2. Testing and refinement of the program
What cases we need to consider when testing the algorithm given in Figure 5.55?
We should consider normal and abnormal cases.

(1) Normal case: The first input is a score.

(2) Abnormal case: The first input is the termination mark. In this case, the loop body of the
while loop would not be executed, thus the value of the counter is 0. This leads to a divi-
sion by 0 situation when computing the average, which is a severe logic error and will
cause the program to crash.

Programming error
If we have not initialized the counter or the sum, the program result may be incorrect. This is a
logic error.

The refined pseudo code is given in Figure 5.56. Readers should implement the program
themselves.

5.5 While loops =— 205

Algorithm description in pseudo code
Initialize the sum to be 0
Initialize the counter to be 0
Enter a score
while input data is not the termination mark
Enter a score
Add the score to the sum
Increase the counter by 1
if counter is not 0
Average=sum/counter
Output the average
Else output “No input”

Figure 5.56: Refined algorithm of the scoring problem with an unknown number of judges.

5.5.3 Example of while loops

Example 5.15 Calculate the sum of integers
Type in a series of positive integers, compute and display the sum of them. Suppose users type
in “-1” to indicate “end of input.”

[Analysis]

1. Problem analysis

Computing the sum is the process of adding numbers repeatedly, whose algorithm was given in
the section “Representation of Algorithms.” As a loop exists in the algorithm, there should be
the three key elements of the loop as shown in Figure 5.57. However, the key elements, in this
case, are not as easy to identify as those in the example “printing numbers with a pattern.”

It is clear that the loop execution condition is x not equal to 1.

What is the initial condition of this loop? Because the loop execution condition checks the
value of x, it should exist before doing the check. Hence, the initial condition should be “input
the value of x.”

The increment of loop is done inside the loop body. The value of x we input has been used at
the beginning of the loop, thus we need to enter another value for x before rechecking the exe-
cution condition. Hence, the increment here is “re-input the value of x.”

Three key
elements _J1nitial condition Input value of x

Suppose we

store input
Execution condition x!=-1 ooOf integer in x
Increment Input value of x again ’

Figure 5.57: Key elements of the loop in calculating the sum of integers.

206 =— 5 Program statements

2. Algorithm description and program implementation
Given the second refinement, we can write the corresponding program statements and eventu-
ally convert them to a complete program as shown in Figure 5.58.

Second refinement

Program statements

Accumulated sum sum=0;

sum=0;

Input a number x;

scanf(*%d",&x);

When (x is not equal to -1)

while (x !'= -1)

sum = sum+x;

{ sum=sum+x;

Input number x;

scanf(“%d”,&x);)

Output sum

printf("sum=%d",sum)

#include <stdio.h>
int main(void)
{

int x, sum=0;

scanf("%d",&x);
while (x = -1)
{
sum=sum-+x;
scanf("%d",&x);

printf("sum=%d",sum);
return O;

Figure 5.58: Program of computing sum of integers.

Example 5.16 Read and analyze a program

Analyze the execution process of the following program, describe the intermediate value of the
key variable and the final result of the program, and eventually figure out the functionality of
the program.

int main(void)
{

char ch;

{

putchar(('A'<=ch && ch<='Z"'") ? ch-'A'+'a’

1

2

3

4

5 while ((ch=getchar())!='@")
6

7 : ch);
8

}
9 putchar('\n');
10 return 0;

11 3}

[Analysis]

1. Make a table of the key variable

The variable used inside the loop in this example is ch, where the output is controlled by expres-
sion (‘A’ < ch && ch <Z2’) and done by character output function. We can list them in Figure 5.59
and use an uppercase letter, a lowercase letter, a nonletter character, and a predetermined termi-
nation mark as input data.

5.5 While loops = 207

Output of putchar

Variable ch=getchar() | ('A'<=ch && ch<='Z") ? in the loop
ch-'A'+'a’ ch
a no a
E yes e
& no &
@ End of loop

Figure 5.59: Analysis table of the character processing program.

Then we can list the value of the expression and the output result based on the program,
which helps us examine changes that happen during the execution clearly and find a pattern.

2. Functionality analysis:

We can conclude based on Figure 5.59 that the functionalities of this program include:
(1) If the input is an uppercase letter, output its lowercase counterpart; otherwise, it is out-

put without being changed.
(2) The process repeats until the character @ is met.

3. Discussion

What are the three key elements of the loop in this example?

Discussion:

(1) Initial condition: ch = getchar()
(2) Execution condition: ch! =‘@’
(3) Increment: ch = getchar()

The “increment” here is the loop control variable ch reading a new character input from the key-

board. This is also one way of updating the loop control variable.

Knowledge ABC Methods of reading and analyzing programs

To read and analyze a program, we usually list variables, expressions, and operations related to
changes in the loop in a table. This helps examine changes that happen during the execution

clearly and find a pattern.

Example 5.17 Chickens and rabbits in the same cage
Write a program to find a solution to this problem.

[Analysis]
1. Algorithm analysis

We have introduced this problem in the section of the universality of algorithms, where the

stepwise refined algorithm was also given.

Suppose there are x chickens and y rabbits, which have 35 heads and 94 legs in total.
In Figure 5.60, the loop is a nested one of two layers. It is worth noting that logically y should

be initialized inside the first while loop but outside the second.

208 —— 5 Program statements

Second refinement

x=1, y=1
while (x<35) Is y, the loop
while (y<35) control variable of
if x+y=35 and 2x+4y=94 the inner loop,
output x. y) initialized at the

increase y by 1

right place?l
increase x by 1 N

Figure 5.60: Algorithm description of chickens and rabbits in the same cage problem.

2. Program implementation

01 //Chickens and rabbits in the same cage
02 #include<stdio.h>

03 int main(void)

04 {

05 int x,y;

06 x=1;

07 while (x<35)

08 {

09 y=1;

10 while (y<35)

11 {

12 if (x+y==35 && 2*x+4xy==94)
13 printf("There are %d chickens, %d rabbits\n",6x,y);
14 y++;

15 3}

16 XGISEE

17 3}

18 return 9;

19}

Execution result:
There are 23 chickens, 12 rabbits

Program reading exercise

Fibonacci’s rabbit mating problem

Over 700 years ago, the famous Italian mathematician, Fibonacci, wrote a problem of rabbit
mating in his book Liber Abaci. Suppose that a pair of rabbits can produce another pair of rab-
bits each month, and each newly born pair produce another pair in the third month after their
birth. If we have one pair of rabbits at first, how many pairs of rabbits are there after one year?

[Analysis]
We can solve this problem by listing the number of pairs in each month:

In the first month, the original pair give birth to another pair so we have 2 (1+1=2) pairs of
rabbits.

In the second month, the original pair give birth to another pair so we have 3 (1 + 2 = 3) pairs.

5.5 While loops = 209

In the third month, the original pair produce another pair, whereas the pair born in the first
month also produce one pair of rabbits. Hence, we now have 5 (2 + 3-5) pairs of rabbits.

Following this pattern, we can list the number of pairs in each month as shown in Figure 5.61.
It is clear that we have 377 pairs of rabbits after one year if we start from one pair.

Month 1 2 3 4 5 6 7 8 9 10 | 11 | 12

Number of pairsof | 'y | 5 | 3 | 5 | g | 13 | 21 | 34 | 55 | 89 | 144 | 233
existing rabbits

Number of pairsof |y | 4 | 2 | 3 | 5 | 8 | 13| 21| 34 | 55 | 89 | 144
new-born rabbits

Total numberof | 5 | 3 | 5 | g | 13 |21 | 34 | 55 | 89 | 144 | 233|377
pairs of rabbits

Figure 5.61: Fibonacci sequence.

Fibonacci analyzed the number in each month and wrote the following recurrence
formula, where n represents the index of the sequence.

fib(n) =fib(n—2) +fib(n—1) (n> =3)

Using this formula, we can solve the problem with a loop.

01 #include<stdio.h>
02 int main(void)

03 {

04 intn,i,fibn1,fibn2,fibn;

05

06 printf("Enter number of generations n>3: ");
07 scanf("%d",&n);

08

09 fibn1=fibn2=1;
10 printf("Increasing rate starting fromgen 1\n",n);
11 printf("1\t1\t");

12 i=3; //Initial value

13 while (i<=n) //Loop condition

14 {

15 fibn=fibn1+fibn2; //Find the nth item using recurrence formula
16 printf(i%5? "%d\t" : "%d\n", fibn);//Print 5 items on each line
17 fibn2=fibn1; //Update the value

18 fibn1=fibn;

19 i++; //Loop increment

20 }

21 printf("\n");
22 return0;
23}

210 —— 5 Program statements

The execution result:

Enter number of generations n>3: 20
Increasing rate starting fromgen 1
1 1 2 3 5)

8 13 21 34 55

89 144 233 377 610

987 1597 2584 4181 6765

5.5.4 Methods of loop controlling

We have seen two types of loops in examples above: loops with a known number of
iterations and loops without a known number of iterations. As shown in Figure 5.62,
they are controlled in different ways: one is controlled using counter, whereas the
other is controlled using a mark.

Case Method of loop controlling
Known number of iterations Controlled by counter
Unknown number of iterations Controlled by mark

Figure 5.62: Method of loop controlling.

5.6 Do-while loops
5.6.1 Syntax of do-while loops

The syntax and flow of do-while loops in C are shown in Figure 5.63. One can learn
the execution process of do-while loops by observing the flowchart: the body gets
executed first, then the expression is evaluated. The loop continues if the result is
true and terminates otherwise.

Syntax of do-while loop

do
{

o
©°0 Where are
the three key
elements?
statement;
} while(expression);

Figure 5.63: Do-while loop.

5.6 Do-while loops =— 211

Similar to while loops, the three key elements are not clearly shown in the syn-
tax of do-while loops. Programmers should complete the missing parts in their pro-
grams based on characteristics of loops used in practical problems.

Example 5.18 Print numbers with a pattern
Use do-while to print numbers with a pattern: 2, 4, 6, 8, 10.

[Analysis]
1. Algorithm description
This problem has been introduced in the section of while loops, where we have done data and
key elements analysis. The initial value is 1, execution condition is i< 6 and the increment is i
increases by 1in each iteration.

With respect to the syntax of do-while loops and the three key elements of loops, we can use our
experience of while loops to figure out the flowchart and pseudo code as shown in Figure 5.64.

i =1 Pseudo code
number of prints i=1
do
Print i*2
Print i*2
i I_ Increase i by 1
Increase i by 1 while number of prints i < 6

T

Figure 5.64: Algorithm and flow of printing numbers with a pattern using do-while.

2. Execution analysis

First, the number of prints is initialized to be 1. Then the program enters the do-while loop and
prints 2; i becomes 2 after increment, the execution condition i< 6 is true, and the program en-
ters the next iteration. We can use a table to record changes of i, the execution condition and
the output as shown in Figure 5.65.

Pseudo code Program
number of prints i=1 i=1; i 11213145
do ‘;° printf | 2 | 4 | 6 | 8 |10
Print i*2 PP i++ 2|1 3|4|5]|6
printf(“%d", 2*i); <6 e e e B e
Increase i by 1 larars
while number of printsi < 6 |} while (i<6);

Figure 5.65: Analysis of the program of printing numbers with a pattern using do-while.

212 — 5 Program statements

3. Comparison of implementations using while and do-while

Putting implementations using while and do-while side by side as shown in Figure 5.66, it is
clear that they share the same key elements, with the only difference being execution order of
loop body and condition checking.

Initial value i=1
Execution condition i<6
Increment i++

while implementation do-while implementation
i=1; i=1;
while (i<6) do
{ printf(“%d" ,2*i); { printf(“%d" ,2*i);

i++; i++;
s } while (i<6);

While W do while }
checks and executes executes and checks

Figure 5.66: Comparison of while and do-while loops.

Example 5.19 Repeated input problem with unknown number of data

Given integer inputs from keyboard, the program should repeatedly read them into variable
num and output the value. It terminates and outputs the total number of inputs when the input
is larger than a preset value N.

[Analysis]

1. Data analysis and algorithm description

According to the problem description, the three key elements are as follows:
The initial value is the first input of num.

The execution condition is num < N.

The increment is the subsequent input of num.

Using these key elements with the addition of statements that provide required functionalities,
we can write the pseudo code of the algorithm as shown in Figure 5.67. Inside the loop body, the
input is read into num, which is immediately output. The counter is then increased by 1. When
num is less than or equal to the preset value N, the loop continues. Note that “enter an integer”
here includes both initial value and loop increment.

do-while implementation
Preset integer value N
Set counter to 0

Initial value First input of num

Execution condition num <= N Do .
: Initial value,
Increment Input num again Input integer num — increment
Output num
Increase counter by 1
while (num < N)
Output value of counter

Figure 5.67: Repeated input problem with an unknown number of data.

5.6 Do-while loops =— 213

2. Comparison of solutions using while and do-while
Figure 5.68 shows two solutions side by side. They share the same loop body while the execu-
tion order of the loop body and condition check is different.

We shall test them using a special case, where the first input num is larger than the preset

value N.

The do-while loop outputs the value and terminates with the counter value being 1.

The loop body of the while loop is not executed as the condition is not met; therefore, there is
no output of num and the value of the counter is 0. According to the problem description, the value
should be output even if it is greater than N. Thus, the logic of while loop is not suitable here.

do-while implementation

while implementation

Preset integer valueN

Set counter to 0

Do

Initial value,
increment

Input integer num

Output num

Increase counter by 1

while (num < N)

Output value of counter

Preset integer value N

Set counterto 0

Inputinteger num

while (num < N)

Output num

Increase counter by 1

Input num

Output value of counter

while loops are
not suitable for
the special case

Initial value

~
Increment

Special case: the first input num > N
Figure 5.68: Comparison of programs using two types of loops.
To solve the problem that the first input does not satisfy the condition of the while loop, we

need three additional lines before the loop as shown in Figure 5.69. However, this makes the
algorithm more complicated.

Refined while implementation

Preset integer value N
Set counter to 0
Input an integer num
Output num
Increase counter by 1
while (num < N)
Input integer num
Output num
Increase counter by 1
Output value of counter

This is
complicated

20O

Figure 5.69: Refined while loop.

214 — 5 Program statements

3. Program implementation
We can write the program based on the pseudo code above.

#include <stdio.h>
#define N 25
int main(void)
{
int i=0;
int num;

do

{

scanf("%d",&num);

i=i+1;

printf("number=%d\n",num);
}while (num<=N);
printf("total=%d\n", i);
return 0;

In addition to data to be output, we can also add some helper text to increase the
readability of the result.

5.6.2 Use case of do-while

From what we have seen above, we can conclude that while loops should be con-
sidered first when the loop structure is needed for solving the problem. However, if
the loop body must be executed at least once regardless of the execution condition,
it is more convenient to use do-while as shown in Figure 5.70.

B concusion

If the loop body must be executed at least once regardless of the execution

condition, it is more convenient to use do-while than to use while

Figure 5.70: Use case of do-while.
5.6.3 Example of do-while loops

Program reading exercise

Undefeated general

There are 21 chess pieces and two players take away pieces in turn. Each player can only take
away one to four pieces each turn. The player who takes away the last piece loses the game.
Please write a computer program against which humans can play the game, where the human

5.6 Do-while loops =— 215

player should take away pieces first and the computer player should be an “undefeated gen-
eral” (can always win).

[Analysis]

As the computer is the second player to take away pieces, we need to find a strategy to make
the program an “undefeated general.” Because 21%5 =1, the first player is guaranteed to get
the last piece as long as the number of pieces taken away by the first player and the corre-
sponding number of the second player always add up to 5. The program is as follows.

01 //A game of 21 chess pieces
02 #include<stdio.h>

03 int main(void)

04 {

05 int num=21,1;

06 printf("Game start\n");
07 while (num>0)

08 {

09 do

10 {

1N printf("Number of pieces (between 1 and %d) you want to take away”,
num>4?74:num);

12 scanf ("%d",&i);

13 }

14 while (i>4||i<1||i>num); //Read valid input

15 if (num-1i>0) printf (" There are %d pieces left\n", num-i);

16 if ((num-1i)<=0)

17 {

18 printf(" You took away the last piece.\n");

19 printf(" You lost. Game over.\n"); //Output winning message

20 break;

21 }

22 else

23 printf(" The computer took away %d pieces.\n",5-1);

24 //0utput number of pieces taken away by computer

25 num-=5;

26 printf("There are %d pieces left\n", num);

27 3}

28 return9;

29 3}

If we change the number of chess pieces in this problem, the second player is no
longer guaranteed to win. In fact, the second player may be guaranteed to lose. In
this case, whether the second player wins is related to the initial number of pieces
and the maximum number of pieces allowed to take away each turn. Interested
readers can try to write a program to solve this problem.

216 = 5 Program statements

5.7 Alternative form of while loops
5.7.1 Syntax of for loops

There is another form of loops in C, which is the for loop. Its syntax and processing

flow are shown in Figure 5.71. There are three expressions after for, after which are

other statements. The execution flow is as follows:

Step 1: Evaluate expression 1.

Step 2: Evaluate expression 2. If the result is false, the loop terminates; otherwise,
the statements are executed.

Step 3: Evaluate expression 3 and then go back to step 2.

Syntax of for statement
for ([expressionl] ; [expression2] ; [expression3]) statement;

| l

| expressionl | | Initial condition |

Statements in loop body

statement

expression3 Increment

——

Figure 5.71: Syntax and execution flow of for loops.

Comparing this execution flow with flows of normal loops, it is clear that the logic is
equivalent. Hence, the three expressions in the syntax of for are exactly the three key
elements of loops. As a result, we can easily write out for statements by extracting
the key elements from the problem that involves using loops as shown in Figure 5.72.
Note that contents wrapped by [] in the syntax are optional.

’ for ([initial condition]; [execution condition]; [increment]) statement; ‘

The three expressions in for statements are exactly the three key elements ‘

Figure 5.72: For statement and its three key elements.

5.7 Alternative form of while loops =— 217

5.7.2 Example of for statements

Example 5.20 Use for statement to print numbers with a pattern: 2, 4, 6, 8, 10

[Analysis]

1. Problem analysis

Due to the characteristics of for loops, we can simply extract the key elements from the problem
and write them as the three expressions in the for statement as shown in Figure 5.73. It is easy
and simple to use for statement to implement loops although the program is not very intuitive.
We shall analyze the execution flow defined by the grammar.

Initial value i=1
Execution condition i<6
Increment i++

|f0r(i=1; i<6; i++) printf("%d", 2*i);

Figure 5.73: The key elements of the for loop that prints numbers with a pattern.

2. Flow analysis

First, let us label each step in the flow in the order of execution as shown in Figure 5.74.
According to the execution flow, step 1 is executed first, where i is initialized to be 1. Then step
2 is executed, where the execution condition i< 6 is checked. Step 3 is the execution of the loop
body. As i=1, 2 is printed according to the analysis table. Variable i is then increased by 1 in
step 4, after which the program returns to step 2 and rechecks the execution condition. The
next iteration gets executed if the check yields true; otherwise, the loop is terminated.

l
o = | for (i=1; i<6; i++) printf("%d", 2*i); |
[1/123|4]5 6
printf(2%*i) printf | 2 | 4 | 6 | 8 | 10 | End of loop

i++

Figure 5.74: Execution process analysis of the for loop that prints numbers with a pattern.

Think and discuss A question on body of for loop

Compare the following two program segments, what are their output?
@) for (i=1;i<6;i++) printf("%d ", 2*i)

2) for (i=1;i<6;i++); printf("%d ", 2*i)

Discussion: The output of the first segment is 2 4 6 8 10. The loop body in the second segment
has nothing but a semicolon inside, so it is an empty statement. In other words, the loop body

218 — 5 Program statements

does nothing during the execution. The value of i after the loop terminates is 6, thus the final
output is merely a 12.

Preventing program error
Putting semicolon right next to a for statement makes the loop body an empty statement, which
is usually a logic error.

Program reading exercise
Read the following program, describe its functionality and output:

1 #include<stdio.h>
2 int main(void)
34

4 int sum, i;

5 sum=0;

6

7 for (i=1; i<=100; i++)
8 {

9 sum=sum+i;

10 3}

11 printf("%d", sum);
12 return@;
13 }

[Analysis]
We can list the loop variable i and the sum in a table as shown in Figure 5.75. According to the
pattern of how sum changes over iterations, it can be shown that sum=1+2+3+...+100 = 5050.

i 1 2 3 101
sum 0+1 1+2 1+2+43 End

Figure 5.75: Program reading analysis table.

Program reading experience

Tabular method

(1) List variables changed in the loop

When reading a program, we can use the tabular method to list key variables in the program. If
a loop exists, we also list changes of the loop control variable and increment in each step. In
fact, they are also examined when using debuggers to trace a program step by step. By record-
ing the dynamic process of variable changes into a table, we take a “snapshot” of each step to
carefully analyze characteristics and patterns of program execution, which makes it easier to
obtain results of the program.

(2) List computation method
When there are too many iterations, we do not have to list the values in each iteration. Instead, we
write out the computation method to find the relation between the final result and each iteration.

5.8 Infinite loops = 219

Example 5.21 Chickens and rabbits in the same cage

We have solved this problem using while before and now we are going to solve it using for as
shown in Figure 5.76. It is clear that this implementation is simpler. As the code implementation
is trivial, we will omit it here.

Second refinement Third refinement
int x=1, y=1 int x=1, y=1
while (x<35) for(x=1; x<35; x++)
while (y<35) for(y=1; y<35; y++)
if x+y=35 and 2x+4y=94 |{
Output x and y if (x+y=35&&2x+4y=94)
increase y by 1 printf("%d%d",x,y);
increase x by 1 ¥

Figure 5.76: Solving chickens and rabbits in the same cage problem using for loops.

Think and discuss The value of the loop control variable after the loop terminates
What are the values of x and y after the for loop ends?

Discuss: Each for loop is executed 34 times; therefore, both values are 35 after the loop termi-
nates. In other words, the program did some meaningless work after obtaining the result. How
should we enhance this? Can we use the interruption mechanism in multiple branch structure
here to jump out of the loop in time? We will cover how to jump out of the loop after certain
conditions are met in the section “Interruption of Loops.”

5.8 Infinite loops
5.8.1 Infinite loops in practice

In the example of printing numbers with a pattern using while loop, the loop body
will be executed many times if we did not initialize the loop control variable.
Similarly, can a loop be executed forever without being terminated?

We have also seen the problem called “things whose number is unknown” in the
chapter “Algorithms.” It was solved using loops, so the three key elements should
exist as shown in Figure 5.77. Based on the pseudo code, it is trivial to find out the
initial value and the increment. Nonetheless, the problem did not restrict the number
of solutions and there might be multiple solutions. Following this logic, the loop
should be executed forever. In this case, what is the execution condition of the loop?

In this problem, the execution condition is “always true” and the number of
iterations is unlimited. Hence, there should be a mechanism to enable such infinite
loops.

220 —— 5 Program statements

| Number of iterations in problem “things whose number is unknown”

Top-level pseudo code First refinement Initial value x=1
x starts from 1 Let x=1 Execution condition ?
Do the following repeatedly Increment X++
Output result if x satisfies following °
Find result that satisfies conditions o

requirements “2 remains when divided by 3, 3
Output the result remains when divided by 5, 2 remains
when divided by 7”

Increase x by 1

When should
we terminate
the loop?

Figure 5.77: Execution condition of the loop in problem “things whose number is unknown”.

5.8.2 Infinite loops using while statement

C uses nonzero value, 1 in most cases, to represent true, while(1) then represents a
loop whose execution condition is always evaluated to true as shown in Figure 5.78.

First refinement

int x=1
hile (1
while (condition is always true) /@

if (x%3==2 and x%5==3 and x%7==2)
output x
increase x by 1

Figure 5.78: Representation of an “always true” loop execution condition.

n Think and discuss How is a while loop executed when the execution condition expression is 1?
Discussion: The grammar flow of while answers the question. The expression is 1, so it is evalu-
ated to “true.” It is clear from the flowchart shown in Figure 5.79 that the loop runs forever if
the expression is always true.

Infinite loop

In programming, a loop that cannot terminate on its own is
called an “infinite loop” or a “dead loop”

while (1) statement;

When “expression”
is 1, it always
evaluates to true N

I expression

Figure 5.79: Representation of infinite loop using while.

5.8 Infinite loops =— 221

Similar to how the sun repeatedly rises in the east and sets in the west, infinite loops are
very important and are widely used inside computer systems. A program can only be exe-
cuted once and terminated without infinite loops, so an infinite loop mechanism is neces-
sary to keep the system running repeatedly and normally.

5.8.3 Infinite loops using for statement

For loops are equivalent to while loops in essence, so they can be used to imple-
ment infinite loops as well.

The C grammar defines that a for loop always enters the true branch if the exe-
cution condition is omitted. In other words, a for loop without execution condition
is equivalent to while(1) as shown in Figure 5.80.

for ([initial value] ; ; [increment]) statement;

Initial value
- When [execution
xecution - -
oO() condition] is left blank,
the “true” branch is
T always selected
Statements in

loop body

Increment

A for loop without “execution condition” is equivalent to while(1) |

Figure 5.80: Representation of infinite loop using for statement.

There are some special cases of for statement in C as shown in Figure 5.81. Note
that all three expressions in for statement are wrapped by square brackets, meaning
that they are all optional. However, the semicolons cannot be omitted. In the ex-
treme case, all three expressions are omitted.

222 —— 5 Program statements

for ([expressionl]; [expression2]; [expression3]) statement;

O
O
The three

“expressions” are all
optional, but

— semicolons cannot

be omitted ,

expressionl

expression

statement

for (; ;) statement;

°o

Extreme
case

expression3

Figure 5.81: Special cases of for statement.

Program reading exercise

A moving smiley face

Note: The library function gotoxy(x, y) moves the cursor to the xth row and yth column. For ex-
ample, gotoxy(0, 0) moves the cursor to the top left corner of the screen. Note that the loop on
line 15 is infinite so that the program keeps running.

01 #include <stdio.h>

02 #include <windows.h>

03 void gotoxy(int x, inty) //Move cursor to the x-th row and y-th column
04 {

05 COORD pos;

06 pos.X=x-1;

o7 pos.Y=y - 1;

08 SetConsoleCursorPosition(GetStdHandle (STD_OUTPUT_HANDLE), pos);

09 }

10

11 int main(void)

124

13 int x=0,y=0; //The top left corner of screen

14 int xv=1,yv=1; //Move speed is one char at a time
15 while (1) //Keep running until Ctrl+Z pressed

16 {

17 gotoxy(x,y); //Move cursor to specified coordinate
18

19 //Move the object at specified speed:

20 X +=xv; //Horizontal speed is xv

21 y +=yv; //Vertical speedis yv

22 gotoxy(x, y);

23

24 //Print smiley face

25 putchar (2) ; //ASCII value of smiley face is 2

5.9 Interruption of loops =—— 223

26 system("cls"); //Clear the screen

27

28 //Bounce the object back at edge

29 if (x>=80 || x<=0) xv=-xv; //Width of screen is 80
30 if (y>=25]|| y<=0)yv=-yv; //Height of screen is 25
31 %}

32 returno;

33}

5.9 Interruption of loops
5.9.1 Interruption of loops in practice

5.9.1.1 Example of interruption of loops

Case study 1 Variant of “things whose number is unknown”: jumping out of the loop

We consider a variant of the problem “things whose number is unknown,” where we are asked
to find the maximum number within 2000 that has remainder 2 when divided by 3, has remain-
der 3 when divided by 5, and has remainder 2 when divided by 7.

In this case, we set the initial value to be 2000, test a number starting from 2000, and de-
crease it by 1 in each iteration. The loop increment is thus a negative number. There is no re-
striction on the execution condition as shown in Figure 5.82. Inside the loop body of the infinite
loop while(1) in the code implementation, we start from 2000 and repeatedly test whether the
value of x satisfies the given condition. If not, we decrease x by 1. Once we have found an x that
satisfies the condition, the operation should be terminated after printing the value. In other
words, the program should jump out of the infinite loop.

I A variant of the problem “things whose number is unknown”

Initial value x=2000
Execution condition Unlimited We want to stop
Increment X - - __ after finding one
— solution
int x=2000;
while (1)
¢ We want to stop

if (x%3==2 && Xx%5==3 && x%7==2)

{
printf("%d",x); Jo@

jump out of the loop after finding a solution

after finding a
solution that
satisfies
requirements

1

X

b

Figure 5.82: A variant of the problem “things whose number is unknown”.

224 — 5 Program statements

Case study 2 “Partial sum”: jumping inside a loop
Type in 10 integers, compute the sum of positive integers among them.

[Analysis]

Suppose we read the input into x, store the sum in sum and use i as the counter. After determin-
ing the three key elements, it is not hard to obtain the processing flow shown in Figure 5.83.
With respect to the restriction counter i <10, we check whether input integer x is positive: if it
is, we add it to sum; otherwise, we skip this iteration of the loop body, add 1 to the counter and
enter the next iteration.
If we implement this flow using a for loop, it is clear that the flow should jump to “loop incre-
ment” when x < 0, which is a jump within the loop. How do we write such jumps in for loops?

[Integer x, sum sum=0, counteri=0 | |Initial value i=0
Execution condition i<10
F — Increment i++

for(i=0;i<10;i++)

{
scanf("%d",&x);
if (x< 0) jump to “increment”
Output sum+=x;
i++ sum ¥

Figure 5.83: Processing flow of partial sum problem.

5.9.1.2 Early termination mechanism of loops
In the problems above, it was necessary to terminate the loop in advance during
processing. The difference was that we jumped out of the loop in one case, whereas
we terminated the current iteration and entered the next in the other case.

In response to the needs of jumping when dealing with problems in practice, C
provides two statements for early termination of loops: break statement and con-
tinue statement as shown in Figure 5.84. The break statement must be used in
loops or switch statements to jump out of the loop or switch structure. The continue
statement must be used in loop statements to terminate the current iteration of the

Statement Use case Role
Loop statements |Jump out of loop
break - -
switch statement |Jump out of switch structure
continue Loop statements |End current iteration

o

Figure 5.84: Two statements for early termination of loops.

Jump to the end of
the loop body
containing continue

5.9 Interruption of loops =—— 225

loop. In other words, the remaining statements in the current iteration are skipped
and the next iteration is started.

5.9.2 Jumping out of loops with break statement
To address requirements in practice, C provides the break statement for terminating

loops in advance as shown in Figure 5.85. In fact, we have seen its usage when in-
troducing the syntax of switch statement.

| Initial value |

Execution
condition

break can be
used in switch
statements as
well

| Statement set 2 |

!

—| Increment | End of loop |<—

Figure 5.85: Break statement in loop structure.

Example 5.22 Analysis of the variant of “things whose number is unknown” problem

What is the maximum number within 2000 that has remainder 2 when divided by 3, has remain-
der 3 when divided by 5, and has remainder 2 when divided by 7? Write two programs using
while and for, respectively.

[Analysis]

1. Algorithm design

This is a process of repeatedly testing whether an integer satisfies the given condition: we start
from x =2000, test whether x satisfies the condition and decrease its value repeatedly. Once
we have found the solution, we jump out of the loop. As we do not know what range the solution
lies in, we cannot determine the execution condition. Figure 5.86 shows the key elements of the
loop and pseudo code.

226 = 5 Program statements

Initial condition x=2000
Execution condition Unknown
Increment X--
Top-level pseudo code Refinement
x starts from 2000 x= 2000
while () while ()
decrease x by 1 if x doesn't satisfy given if (x%3==2 and x%5==3 an x%7==5)
conditions. Repeat until finding an x that break ;
satisfies the conditions X-- ;
Output x Output x

Figure 5.86: Algorithm description of things whose number is unknown problem.

Note that the loop increment in this example is decreasing. Increment here means the change
of the loop control variable, which can be increasing or decreasing, regular or irregular. We
should use it with flexibility.

2. Program implementation

1 //Things whose number is unknown, solved using for loop
2 #include<stdio.h>

3 int main(void)

4{

5 inti;

6

7 for (i=1; ; i++) //Execution condition is unknown, so we leave it blank
8 {

9 if (1%3==2 && i%5==3 && i%7==5)
10 {

11 printf("%d\n",i);

12 break;

13 }

14 3}

15 return@;

16}

The program implementation using a while loop is shown in Figure 5.87. With the break state-
ment on line 10, the program produces only one result, 1913. If we delete this break statement
and change the execution condition on line 5 to x>1, we can obtain all solutions that are less
than 2000.

5.9 Interruption of loops = 227

01 #include <stdio.h>
02 int main(void)

03 {

04 int x=2000;

05 while (1)

06 «{

07 if (X%3==2 && X%5==3 &&X%7==2)
08

09 printf("%d",x);

10 break; 200
11 3}

12 X--;

13 3

14 return O;

153}

Solutions
within
Jump out 2000

of loop

O

1913 1808 1703 1.598 1493

1388 1283 1178 1073 968
863 758 653 548 443
338 233 128 23

Figure 5.87: Program implementation of the variant of things whose number is unknown problem.

Example 5.23 Find the largest number that satisfies given condition
Find the largest number within 100 that can be divided by 19 exactly. Write the program using

for loop and trace it in a debugger.

[Analysis]
1. Algorithm design

The pseudo code is shown in Figure 5.88.

Pseudo code

Refinement

i starts from 100

i starts from 100

while i < 100

while i > 1

decrease i by 1 if it is not a
multiple of 19,

jump out of the loop if I is a multiple of 19

jump out of the loop when
finding an i that satisfies
given condition

decrease i by 1

output i

output i

Figure 5.88: Algorithm of finding the largest number that satisfies given condition.

2. Program implementation

1 //Find the largest number that satisfies given condition

2 #include<stdio.h>

3 int main(void)

4{

5 inti;

6 for (i=100; i>18; i—-)
7 {

8 if ((i%19)==0) break;
9 2

228 —— 5 Program statements

10 printf("%d\n",i);
11 return@;
123}

3. Program tracing

As we do not know the value of i that satisfies condition i%19 == 0, we need to press hotkey of
stepwise tracing F10 again and again to trace step by step, which is inefficient.

In the for loop shown in Figure 5.89, we are interested in the value of i when i%19 = = 0, but the
program will jump to the printf statement at that moment due to the functionality of break statement.
How can we directly examine the value of i that satisfies given condition starting from i =100?

#include <stdio.h> o ‘

Yateh ‘
int main() al
{ int i; Name IVaIue

i 99

s

for (i=100; i>18; i--)

{
=5 if ((i%19)=:=0) break;
3

printf("%d\n", i);

Figure 5.89: Debugging program that finds the largest number that satisfies given condition
step 1.

There are two ways of fast tracing:

(1) Use run to cursor command to jump

In Figure 5.90, we move the cursor to the left of the printf statement (by clicking on the left of
printf using the mouse). After we have seen the flickering vertical bar, select “Run to cursor” in
the “Debug” menu.

#include <stdio.h> ey
int main() —
(int is Name |Value
~:l.uﬁ_ 99
for (i=100; i>18; i--) ([]
{
=3 if ((i%19)=:=0) break;
)
| printf("%d\n",i);
}
[¢]

Figure 5.90: Debugging program that finds the largest number that satisfies given condition step 2.

5.9 Interruption of loops =—— 229

When i%19 == 0 is met, the program jumps to the printf statement and stops as shown in
Figure 5.91. Note that the printf is not yet executed, and the value of i is 95. After executing

printf, “95” will be output.

#include <stdio.h>
int main()
{ int 1i:

for (i=100; 1i>18; i--)
if ((i%19)==0) break;

}
= | printf(“%d\n",i);

3

Name

Value

1

95

Figure 5.91: Debugging program that finds the largest number that satisfies given condition step 3.

(2) Using breakpoints

We can add a breakpoint before printf statement and then execute the Go command (by press-
ing hotkey F5) as shown in Figure 5.92. F5 is used for debugging one step with the breakpoint.
With a single press of F5, the program runs until the breakpoint is met as shown in Figure 5.93.

- o |

[test ~|[win32 Debug

|| e

[(Globals)

v |[(All global mem ~ || #main

#include <stdio.h>
void main()
{ int i;

for (i=100; i>18; i--)

if ((i%19)::=0) break;

symbol
®
}

printf(“%d\n",i);

the
Insert/Delete
a breakpoint

Figure 5.92: Debugging program that finds the largest number that satisfies given condition step 4.

5.9.3 Jumping inside loops with continue statement

5.9.3.1 Functionality of continue statement

In the case study, “partial sum” in section 5.9.1, our brief analysis indicated that we
need to find a way for the flow to jump to “loop increment.”

230 — 5 Program statements

#include <stdio.h> a
int main()
(int i: Name |Va|ue

i 95

for (1=100; i>18; i--)
if ((i%19)==0) break;

)
D) printf("%d\n",i);
}

Figure 5.93: Debugging program that finds the largest number that satisfies given condition step 5.

As it is tricky to observe the execution order of key elements in a for loop, we
shall write out the corresponding while statement and compare these two as shown
in Figure 5.94.

Use for (i=0; i<10; i++)
continue statement to jump | {

Is there a “package
solution” to jumping

inside all kinds of
loops?

scanf("%d",&x);

if (x<0) jump to “increment”

sum+=x; 0O
b

i=0;
while (i<10)

We can use
goto statement
to implement
jumping

Increment appears at a
fixed position in for
statement, while it can
appear anywhere in a

{
O o scanf("%d",&x);
if (x<0) jump to “increment”

s while loop. How do we
Rule sum+=x; \ - s
continue statement jumps i++; O design a unified rule
to the end of loop body ¥

Figure 5.94: Internal jumps in for and while structure.

In a while loop, the jump can be completed by using a goto statement (which will
be covered in Section 5.10). However, it is usually not recommended to use the goto
statement in programming. Is there a “package solution” to jumping inside all kinds
of loops?

C provides a special statement, which is continue, to implement such jumps.
Nevertheless, the loop increment appears at a fixed position in for statement while
it can appear anywhere in a while loop. How do we design a unified rule for it?

C defines that a continue statement always jumps to the end of the loop, which
is the last bracket of loop statement for all three kinds of loops (Figure 5.95).

5.9.3.2 Role of continue in different loops
Now we discuss the role of continue in different loops from the perspective of
grammatr.

5.9 Interruption of loops =—— 231

for (i=1; i<=n; i++)

loop body; Rule
o) i=1; continue statement jumps to the end of loop body

while (i<=n)

loop body;
i++;
) i=1,
do
aao {
o loop body ;
i++;
o} while (i<=n);

Figure 5.95: The end of a loop.

The “loop increment” is not inside the loop body of a for loop; thus, the increment
statement is executed after the jump made by continue statement. See Figure 5.96 for
the flowchart.

Initial value

Execution
condition

for(initial value; execution condition; increment)

{

statement set 1;
if(condition) continue;
statement set 2;

b

“Increment” is
not a part of the
loop body of for
statements

Statement set 2 continue

End of loop

Figure 5.96: Continue in for loops.

Based on the requirements, the “loop increment” of a while loop can be put any-
where inside its loop body. In this case, the continue statement jumps to the condi-
tion checking statement as shown in Figure 5.97. In other words, the grammar does
not specify whether loop increment is done before the jump, so programmers need
to handle it based on the logic of concrete problems.

A continue statement in a do-while loop works in the same way as in a while
loop. As shown in Figure 5.98, it is not specified in the grammar whether the loop
increment is done before the jump.

232 — 5 Program statements

Initial value Initial value

while (execution condition)

{)
statement set 1; Execution
if(condition) continue; condition

, statement set 2; F T

| Statement set 1 |

-
‘@» continue

| Statement set 2 I—
End of loop

“Increment” of a
while loop can be

in either statement
set 1 or statement
set 2

Figure 5.97: Continue in while loops.

Initial value

Statement set 1

T .
@ continue

do

{
statement set 1;
if(condition) continue;
statement set 2;

}while(execution condition);

Execution

Increment” of a do condition

while loop can be in
either statement set
1 or statement set 2

End of loop

Figure 5.98: Continue in do-while loops.

Now let us take a look at the program implementation of the “partial sum” problem
shown in Figure 5.99. It is worth noting that i++ is executed in a for loop regardless
of execution of continue. However, whether continue is executed affects the execu-
tion of i++ in a while loop, thus the logic of the program is imperfect. Readers can
try to revise it on their own.

5.10 Free jump mechanism
5.10.1 Concept of free jump
One day, Mr. Brown went to the new campus of another university in his city for the

first time to join a seminar. He drove across the gate and was about to ask a pass-
erby about the direction. However, a sign showing the route was on the roadside.

5.10 Free jump mechanism =— 233

int main(void)
{

inti,x,sum=0;

sum+=x;

b

return 0;

b

for (i=0; i<10; i++)

scanf("%d",&x);
if (x<0) continue;

printf("sum=%d",sum);

int main(void)

{

b

int i=0,x,sum=0;

while (i<10)
. P RN

_s‘.canf("°/od”,&x); OQ{ Tgese two D)
if (x<0) continue; (_ programs have j
sum+=x; (___ different logic)

) I++; — S

printf("sum=%d",sum);

return 0;

Figure 5.99: Program implementations of “partial sum” problem.

He then drove to the destination successfully following the guidance on road signs
specially set for the meeting.
There are similar “guiding” statements in C as well. We have discussed jump
statements break and continue, which are designed for interrupting loops, in previ-
ous sections. The destination they can jump to is strictly restricted by the grammar
of C. Meanwhile, there exists a more flexible jump statement in many programming
languages. This is the unconditional jump statement, namely the goto statement.

5.10.2 Syntax of unconditional jump statement

The schematic and syntax of the unconditional jump statement are shown

in Figure 5.100.

goto label;

label : statement

goto label;

Statement
with the label

Syntax of goto statement

O

label . statement

goto label;

Functionality of goto
statement: jump to
statement with the
label unconditionally
and continue

A\

Figure 5.100: Unconditional jump statement.

234 — 5 Program statements

The “label” here is the “road sign,” whereas goto is an instruction of turning. A
goto statement can jump either backward or forward. A label is a sign written fol-
lowing the rule of identifiers. It is named in the same way as a variable, but we do
not need to allocate memory space or declare it in advance. A label is put in front of
a line followed by a colon. It is used to identify a statement and to pair with goto
statements. For example:

label: i++;
while(i<7) goto label;

C does not restrict the number of labels used in a program, but they must be
uniquely named. The goto statement changes the execution path of a program so
that the program jumps to the statement marked by the label.

5.10.3 Example of unconditional jump statement

Example 5.24 Print numbers with a pattern
Use goto statement to print numbers with a pattern: 2, 4, 6, 8, 10.

[Analysis]

1. Algorithm implementation

As the goto statement can jump either backward or forward, there are two options for implementa-
tion. The processing flows and pseudo code are given in Figs. 5.101, 5.102 and 5.103, respectively.

l Pseudo code

Number of printsi =1

Loop : number of printsi < 6
Print i*2 °0

Print i*2 Increase i by 1

Increase i by 1 goto Loop

goto Loop

Similar to a
while loop

Form a loop
together with
conditional

statement

Figure 5.101: Use goto to print numbers with a pattern solution 1.

5.10 Free jump mechanism =— 235

le—

i=1 Pseudo code
m_» Number of prints i =1
Print i*2

Print i*2 Increase i by 1
Increase i by 1 if i < 6, goto Loop

F o
¢ © O
T

—

Figure 5.102: Use goto to print numbers with a pattern solution 2.

Similar to a
do-while loop

01 //Use goto statement to print 2, 4, 6, 8, 10
02 #include <stdio.h>
03

04 int main(void)

05 {

06 inti=1;

07

08 Loop: O O
09 printf(" %d ",2%i); ©

10 i++;

11 if (i< 6) goto Loop;

12 return O;
13 3} Form a loop together

with if statement

Labels and variables

have the same naming

—_ conventions, but labels \
don’t need declaration

Figure 5.103: Use goto to print numbers with a pattern solution 2.

It is not hard to notice that the backward jump solution is similar to a while loop and the for-
ward jump is similar to a do-while loop. The jumps here are more intuitive than the flow of loop
statements as they directly demonstrate the low-level implementation of loops.

2. Program implementation
Goto statements and conditional statements are often used together to provide functions like
conditional jumps, loops, and jumping out of a loop.

5.10.4 Characteristics of goto statements

5.10.4.1 Jumping out of a nested loop directly
The most important feature of goto statements is jumping out of nested loops di-
rectly. As shown in Figure 5.104, we need one break operation in each for loop if we

236 = 5 Program statements

// Code using break // Code using goto
int flag=false; for (inti=1; i<100; ++i)
// Used as a termination mark {
for (int i=1; i<100; ++i) for (int j=1; j<100; ++j)
{ {
for (int j=1; j<100; ++j) Equivalent if (i*j==128) goto End;
if (i*j==128) °0
{ } Q
flag=true; break; ¥ goto statements
¥ End: ... can jump out of
a nested loop
if (flag) break; directly

Figure 5.104: Jumping out of a nested loop.

want to jump out of a nested for loop of two layers, whereas a goto statement jumps

out of the nested loop directly and smoothly.

5.10.4.2 Flexible jumps

Although it is easy to compute the sum of integers 1 to 100 using a for loop, it is also
possible to complete the task in a complicated way using multiple goto statements.

5.10.4.3 Note on using goto statements

It is not recommended to use goto statements in modern structured programming.

Advice on using them is given in Figure 5.106.

Knowledge ABC Necessity of goto statements

In 1974, Donald E Knuth gave a thorough and fair assessment of goto statements. He claimed
that unrestricted use of goto statements, especially backward goto, made it difficult to under-
stand the structure of programs. Thus we should avoid using goto in such cases. In other cases,
however, he believed that limited use of goto statements was necessary to increase program
efficiency without affecting good program structures. Jumping out of nested loops was one such

example (Figure 5.105).

//Use goto to implement a loop //Use loop statements to implement a loop
int a; Equivalent for(int i=1; i<=100; ++i)
goto Init; printf(“%d\n”,i);

Init:
a=1;
goto Print; OOO

Forward: goto implementation uses too
a=a+l1; many code segments, which

Print: make system building and
printf("%d\n”,a); tracing difficult and
goto Down; affect readability

Down:
if(a<100) goto Forward;

Figure 5.105: Different implementations of loop.

5.11 Summary

goto can jump out of a loop but not the other way around

It is hard to trace the control flow of programs using goto. It
is also hard to understand and modify these programs.

- Don't use goto statements unless necessary
- Any program that uses goto can be rewritten without goto

Figure 5.106: Usage of goto statements.

5.11 Summary

The main concepts and relations between them are shown in Figure 5.107.

— 237

if(expression)-else, expression evaluates to true or false

Conditional

switch(expression), expression evaluates to an integer

while(expression), expression evaluates to true or false

do-while(expression), expression evaluates to true or false

for(initial value; execution condition; increment)

Program
statements

if (expression) goto label, expression evaluates to true or false

Three key elements: initial value, execution condition,

increment

break: jump out of a loop or a switch statement
continue: terminate current iteration
goto: jump to specified label

Figure 5.107: Concepts related to program statements.

When using statements, sometimes expressions are required by the grammar. We
need to pay attention to the types of these expressions. As shown in Figure 5.108,

Statement Type of expression in the statement
if Conditional/Logical
switch Arithmetic
while Conditional/Logical
do-while Conditional/Logical
for Expression 1 Expression 2 Expression 3
Assignment Conditional/Logical Arithmetic

Figure 5.108: Type of expressions in different statements.

238 —— 5 Program statements

different types of expressions can yield different results so they are not to be con-
fused with each other.
Types of results of different expressions are shown in Figure 5.109.

Expression Result
Arithmetic Numeral
Relational True/False
Logical True/False Figure 5.109: Type of result of expressions.

Grammatically, for statements are equivalent to while statements. It is recommended
to use for statements because they have a more straightforward and clearer form. Do-
while is more convenient than for and while if the loop body needs to be executed at
least once.

Program statements are instructions that drive computers.

There are three kinds of branch statements and four kinds of loop statements,

each with its own syntax.

If statement is used in single- and double-branch structures, whereas it is better

to use “switch” for multiple branches.

If we check a condition and select one branch from two based on the result, we

should use if statement.

If we compute a value, which may be one of many cases, the path correspond-

ing to the correct constant is chosen.

Default is used to handle exceptions not included in any case.

Doing things repeatedly and tirelessly is the merit of computers, do-while is

straightforward, thus it executes the loop body first anyways; while is smart,

thus it checks the condition to determine whether the loop body should be exe-

cuted; for is an alternative form of while that has a more straightforward form.

Using goto to implement loops is tricky; using it with care is the advice from

those masterminds.

Loops can be interrupted in special cases,

Where continue skips remaining statements in the current iteration and jumps

to condition checking;

While break terminates the loop immediately without hesitation.

These four kinds of loops provide the same functionality,

So they should share some common attributes.

The initial value, execution condition and loop increment are the three key

elements,

We should extract them from the problem if a loop is needed.

5.12 Exercises =— 239

5.12 Exercises

5.12.1 Multiple-choice questions

)

@

€)

(4)

[Exception in if]

int x = 0x13;

if (x = 0x12) printf("True");

printf("False\n");

What is the output of the program above? ()

A) True B) TrueFalse C) False D) TrueFalseTrue

[While]

Which of the following is not an infinite loop? ()
A) for(y=0,x=1; x>++y; X=i++) i=X;

B) for(;; x++=i);

C) while(1){x++;}

D) for(i=10; ;i--) sum+=i;

[Do-while]
We want to compute s=1 + 2*2 + 3*3 + ... + n*n +... until s>1000 with the follow-
ing program.
int s=1,n=1;

do

{n=n+1;

S=s+n*n;
} while(s>1000);

printf("s=%d\n",s);
After executing the program, we find that the result is wrong. Which of the fol-
lowing changes make the program correct? ()
A) Change while(s>1000) to while(s<=1000)
B) Change s=1to s=0
C) Change n=1to n=0
D) Change n=n+1to n=n*n

[Break and continue]
Suppose x and y are both int variables. What is the value of y after executing
the following loop? ()

240 — 5 Program statements

for(y=1,x=1;y<=50; y++){
if(x>=10) break;
if (x%2==1) {x+=5;continue;?}
x-=3;

A)2 B4 C6 D)8

(5) [Switch]
Suppose we have the following definitions: float x=1.5; int a=1, b=3, c=2;
Which of the following switch statements is correct? ()
A) switch(a+b)
{case1: printf("*"),
case 2+1: printf("**"); }
B) switch((int)x);
{case1: printf("*");
case 2: printf("**"); }
C) switch(x)
{case 1.0: printf("*");
case 2.0: printf("**"); }
D) switch(a+b)
{case1: printf("*");
case c: printf("**"); }

(6) [While and switch]

int main(void)
{ints;
scanf("%d", &s);
while(s>0)
{ switch(s)
{ case 1: printf("%d", s+5);
case 2: printf("%d", s+4); break;
case 3: printf("%d", s+3);
default: printf("%d", s+1); break;
}
scanf("%d", &s);
3
return 0;

}

5.12 Exercises =— 241

Suppose the input is 1 2 3 4 5 O<Return>. What is the output of the program
above? ()
A) 66656 B) 6566456 C) 66666 D) 6666656

(7) [For]
What is the output of the program below? ()
int x=10,y=10,i;
for(i=0;x>8;y=++i) printf("%d,%d; ",x--,y);
A) 10,1;9,2; B) 9,8;7,6; () 10,9;9,0; D) 10,10;9, 1;

5.12.2 Fill in the tables

(1) [Continue]
Fill in the table in Figure 5.110.

int main(void)
{
int i=0;
while(i<100)
{
it++;
if(i%2==0 | |i%3==0)continue;
printf("%d",i);
}

return0;

i 1 2 3 4 5 6 7 99 100
Is a multiple of | False | True
2o0r3
Output 1 None

The functional-
ity of the pro-
gram

Figure 5.110: Program statements: Fill in the tables question 1.

242 — 5 Program statements

(2) [Nested loop]
Fill in the table in Figure 5.111.

main()

{
intn,s,sum=0;
scanf("%d",&n);
for(int i=1;i<=n;i++)

{
s=0;
for(int j=1;j<=1i;j++) s+=j;
sum+=s;

}

printf("%d",sum);

¥

i 1 2 3 n

j 1 1~2

S 1 1+2

sum 1 1+(1+2)

Figure 5.111: Program statements: Fill in the tables question 2.

(3) [Nested for]
Fill in the table in Figure 5.112.

int main(void)

{
for (int i=0; i<2; i++)
for (int j=3; j>0; j--) printf("*");
return 0;

i 0 1 2
j
Out-put

Figure 5.112: Program statements: Fill in the tables question 3.

5.12 Exercises =— 243

5.12.3 Programming exercises

(1) The elevation of Mount Everest is 8844 m. Suppose we have a piece of paper of
infinite size. Its thickness is 0.05 mm. We want to repeatedly fold the paper in
half so that the total thickness exceeds the elevation of Mount Everest. How
many folds are needed?

(2) Given n numbers, find a pair of two numbers whose difference has the smallest
absolute value and output it.

(3) Suppose that abc +cha=n. a, b, and c are all one-digit numbers. n is in the
range (1000, 2000). Write a program that finds all possible combinations of a,
b, and c.

(4) The Renminbi has banknotes for 100, 50, 20, 10, 5, and 1 yuan. Given an integer
price, please figure out a way to pay exactly with as few notes as possible.

(5) Given two integers and an operator (+, -, *, /, %), compute and output the re-
sult. Note that the divisor cannot be 0 in division and remainder operations.

(6) Write a program that outputs lowercase English letters in the alphabetical order
and the reversed alphabetical order.

(7) Given a natural number N (N <10), use a double for loop to compute N! and
N

(8) Given two integers a and b, compute their greatest common divisor. (Hint:
when one of the numbers is 0, the gcd is the one that is not 0. When two num-
bers are relatively prime, their gcd is 1.)

(9) A ball falls off from the height of 100 m. Upon falling on the ground, it bounces
back to half of the original height. It then falls off and bounces back again.
Compute the total distance the ball has traveled when it falls on the ground the
n-th time and the bouncing height. Suppose 5<n<15.

(10) Compute the value of m using the following sequence.

m=4- é+ &+ é+é+i+...
3 5 7 9 1
(11) Write a program that outputs the following pattern.
AAAAAAAAAAAA
BBBBBBBBBB
cccececececece
DDDDDD
EEEE
FF

(12) Write a program that converts a line of input into an integer. The input consists
of digits separated by spaces (each digit, excluding the first and the last, is pre-
fixed and suffixed with a space) and ends with EOF (by pressing Ctrl + Z). For
example, the program should output “2483” given the input “2 4 8 3.”

6 Preprocessing: work before compilation

Main contents
— Definition and characteristics of preprocessing;
— Definition and usage of macros;
— Meaning and usage of file inclusion;
— Rule and usage of conditional compilation;

Learning objectives

— Know usage and effect of file inclusion, be able to develop a program using multiple files
through #include

— Beable to use #define to create ordinary macros

— Understand conditional compilation

6.1 Introduction

The midterm exam of the programming course Mr. Brown taught was conducted
using an online judge system. There were five problems in the exam and the score
was calculated as follows: the five scores of each problem were sorted in descend-
ing order, and their weighted sum was computed with weight 0.3, 0.25, 0.2, 0.15,
and 0.1. Mr. Brown wrote a program to compute the grades of students. After calcu-
lating all the grades, he found that the passing rate was low. As a result, he updated
the calculation rule in the final exam, where a student passed the exam as long as
he/she was able to solve two problems. To achieve this goal, he changed the weight
to 0.3, 0.3, 0.15, 0.15, and 0.1 However, when he modified his program at the end of
the semester, he forgot which scores corresponded to 0.25, 0.2, and 0.15 because it
had been a long time since he wrote the program. It was quite tedious to review and
verify. Moreover, these weights were used multiple times in the program; therefore,
it was possible that he wrongly updated a weight or even forgot to update at all.

There was a large crossborder bank that asked Mr. Brown to write a piece of
software to manage multiple currencies. One of the desired functions was to display
the exchange rates in multiple languages. After analyzing this requirement, Mr.
Brown realized that although the exchange rate should be displayed in multiple
languages, the business logic of reading, calculating, and displaying exchange
rates remained unchanged. In other words, displaying exchange rates in multiple
languages was only a matter of user interface support. There would be two prob-
lems if he created a separate project for each language: first, a large amount of re-
peated work would be done as the same business logic needed to be implemented
in all the projects; and second, Mr. Brown must modify the same code in all projects
if he needed to change a logic processing flow.

https://doi.org/10.1515/9783110692327-006

https://doi.org/10.1515/9783110692327-006

246 =— 6 Preprocessing: work before compilation

Solutions above may not be preferable for many of us, but is there a better way
to meet these requirements in C? The answer is affirmative: the preprocessing direc-
tives we are going to introduce now are the solution.

6.1.1 Preprocessing

What is preprocessing? It is a simple concept. When we write C programs, we can
include some compilation instructions in the source code to tell the compiler how
the program should be compiled. When the program is compiled, these instructions
are executed before the compilation of source code. Hence, these instructions are
also called preprocessing directives. See Figure 6.1 for the process of compiling
source code into executable files.

Source ; o Object Executable
Preprocessin
code Compllation program program

Figure 6.1: The process of compiling source code into executable files.

6.1.2 Preprocessing directives

Preprocessing directives are defined by the American National Standards Institute C
standard. They include macro definition, file inclusion, and conditional compila-
tion. See Figure 6.2 for their corresponding keywords.

Type LCPLTER - Start with “#”
Macro definition #define, #undef Q « Each on its own line
File inclusion #include e No semicolon at the end
Conditional compilation | #if. #ifdef. #else. #elif. #endif |

Preprocessing
directives are not
C statement

Programming Error Ne
Use semicolons after #define and #include directives

Figure 6.2: Preprocessing directives.

We can see from these keywords that all preprocessing directives start with the “#”
sign, whose scope extends to the first newline symbol after it. In essence, its scope
is one logical line. If a directive is too long in actual programs, the logical line can
be divided into multiple physical lines using “\”. Compilers can recognize these
lines before compilation and process them as a single logical line.

6.2 Macro definition = 247

In fact, preprocessing directives are not statements in C, but they enhance the
power of C programming. Reasonable use of these makes programs we write more
natural to read, modify, port, and debug. For example, we can adopt the modulari-
zation approach to divide a system into multiple relatively independent function
modules based on user requirements and functionality design by using file inclu-
sion directives. Besides, conditional compilation directives enable us to compile
programs into different versions to accommodate different requirements without
modifying the rudimentary code. The code reuse rate is thus increased.

Note that we should not add semicolons after preprocessing directives.
Preprocessing directives are not C statements and the end of their scope is the end
of a logical line.

6.2 Macro definition
6.2.1 Simple macro definition

Sometimes, a constant is used in multiple places in a program and its value may be
updated as needed during testing. A convenient way to do this is to use a dedicated
symbol and assign a value to the symbol when defining it. In this way, we can sim-
ply modify the value in the definition to update all occurrences of the constant
rather than updating every one of them. This prevents us from leaving one occur-
rence unchanged and creating a bug in the program. What we have just described
is the purpose of using macro definitions. In short, the macro definition is essen-
tially text replacement of the source code done before compilation.

The syntax of a simple macro definition is shown in Figure 6.3, where define
is the keyword of macro definition directive, < macro name > is an identifier, and
< string > can be a constant, an expression or a formatted sequence.

Syntax of simple macro definition

#define <macro name> <string>

Figure 6.3: Syntax of simple macro definition.

Note:

(1) The source code will be checked before compilation. Whenever a macro name
is encountered, it is replaced with the string specified in the macro definition.
The compilation will not be started until all replacements are completed.

(2) The replacement process is called macro replacement in American National
Standards Institute C.

248 —— 6 Preprocessing: work before compilation

(3) We usually use capital letters for macro names in C programs. This helps us find
macro replacements when reading a program and avoids confusion between macro
names and normal identifiers. Because a macro name is essentially an identifier,
spaces are not allowed in it. Moreover, it must be a combination of letters, numbers,
and underscores with the exception that the first character must not be a number.
(4) Good programming habits are beneficial. It is recommended to put shared macro
definitions at the beginning of a header file and use them through file inclusion
with #include directive. Modularization makes functionalities of files clearer. It
is also easier to modify these definitions later.

Let us take a look at how macro definitions work through some examples.

Example 6.1 Example of macros 1
Use a sequence to replace the identifier.

#define MAX 128

int main(void)

{
int max_value =MAX;
return 0 ;

3

[Analysis]

A macro MAX is defined in this example, which corresponds to 128. When the compiler processes
this program, it replaces the MAX in the source code with 128. In other words, the actual code
that will be compiled is “int max_value =128.” It is worth noting that this is merely text replace-
ment. No variable assignment is done in this process. Variable MAX never existed in the program.
It is equivalent to use “Find-> Replace” to find MAX and replace it with 128 in a text editor.

Example 6.2 Example of macros 2
Use a sequence to replace the identifier.

#define TRUE 1

#define FALSE 0

printf(“%d %d %d”, FALSE, TRUE, TRUE+1);
Output:

012

[Analysis]

The output arguments of printf are provided by macro replacement. The printf statement is
replaced with printf(“%d %d %d”, @, 1, 1+1) before compilation. It is worth noting that prepro-
cessing directives does not generate code or participate in code execution. They are simply a
porter of code. Hence, the actual computation of 1+ 1 will be done in the compilation phase.

6.2 Macro definition =—— 249

Example 6.3 Example of macros 3
The most common use of macros is defining names for constants.

[Analysis]
The following code uses macro MAX_SIZE as the length of the array.

#define MAX_SIZE 100
float balance[MAX_SIZE];

Example 6.4 Example of macros 4
Macro replacement is only done for identifiers. Values in strings are not replaced.

[Analysis]
A macro definition and statements using it are shown in Figure 6.4.

#define E_MS

Qprintf(E_MS) ;
| printf("standard error on input\n"); . After compilation
@ ey oo Ersheess 1
P ()i O / string but not an
printf"E_MST; %—{Aﬂer compilation

Note: macro replacement replaces an identifier, instead of a
string, with the sequence in macro definition

Macro E_MS refers

"standard error on input\n" _ , o
to a string

Figure 6.4: Macro in a string.

The first E_MS is an identifier, thus it is replaced with the corresponding string. The
second E_MS is a string wrapped in double quotation marks, thus it is not replaced.
Beginners may feel confused about the difference and make a mistake when pro-
gramming.

Furthermore, this example shows that we can define a macro if an output state-
ment with the same format, like the first E_MS above, is used multiple times in a
program. In this way, we do not have to write the same code again and again; there-
fore, it is less likely to output incorrectly formatted contents due to typos. Also,
we only need to update the definition if we want to change the format.

250 —— 6 Preprocessing: work before compilation

6.2.2 Macro definitions with parameters

We have introduced simple macro definitions, which are merely text replacement.
Now we are going to learn a more complex macro definition: macro definition with
parameters.

Macro definitions with parameters are more abstract and universal. We can de-
fine parameters in macros in a way similar to how we use parameters in function
definitions and pass arguments when calling functions. The syntax of macro defini-
tion with parameters is shown in Fig. 6.5, where:

Syntax of macro with parameters

#define <macro name>(parameter list) <macro body>

Fig. 6.5: Syntax of macro with parameters.

(1) <macro name > is again an identifier.

(2) The number of parameters in the parameter list can be one or more. When there
are multiple parameters, they are separated by commas.

(3) < macro body > is the string for replacement, which is an expression consisting
of parameters in the parameter list.

Example 6.5 Example of macros 5
Figure 6.6 shows a macro definition with parameters.

#define SUB(a,b) a-b |

Before compilation After compilation
result=SUB(2, 3); result=2-3;
result= SUB(x+1, y+2); |result=x+1-y+2;

\ Macros with parameters are similar to functions, where
parameters in the <macro body> are replaced with
arguments passed to the macro during macro replacement

Figure 6.6: Example of macro with parameters 1.

The definition of macro SUB was an abstraction of subtraction a-b. In contrast to
macro definitions without parameters, a and b here are used as parameters, be-
cause we do not know their values when defining the macro. Arguments we pass in
when doing text replacement determine their values. Isn’t it similar to function

6.2 Macro definition = 251

definitions? In macro replacement, we are replacing parameters in the < macro body >
with arguments. Let us see an example now (Figure 6.7).

Example 6.6 Example of macros 6

#define MIN(a,b) (a<b) ? a:b
int main(void)
{ .
int X, Y
x =10,
y =20,
printf("the minimum is: %d" , MIN(X, Y)); During compilation, x and y
return O; are used as operands in the
S / replacement of MIN(a, b)

After) printf("the minimum is: %d" (x<6 ?X:Y); |
compilation : : s

Figure 6.7: Example of macro with parameters 2.

It seems that MIN(x, y) in this example is a function call. However, expression
MIN(x,y), which is defined by macro MIN(a, b), will be replaced during compi-
lation. Arguments x and y will be used to replace a and b.

The merit of using macros instead of functions is that we use something in the
form of functions without the overhead of function call. The source code is written
in a similar style, but it can be executed faster as there is no expense of function
call. On the other hand, since macros are text replacements, we are still using re-
dundant code in our program, which in fact increases the length of our program
despite higher execution speed.

Although macros with parameters are similar to functions with parameters,
they are different things in essence. Figure 6.8 shows the differences between them.

Macro with parameter Function

Processing phase Preprocessing Runtime

Need to define types of parameters
and arguments

No memory allocated, | Memory allocated, compute values
simple text replacement| of arguments and pass to function

Parameter type No type issues

Processing process

Program length Increased Unchanged

Execution speed No extra expense Function call and return take time

Figure 6.8: Differences between macros and functions.

252 —— 6 Preprocessing: work before compilation

Good programming habit

When there are many references to a relatively long variable (usually member of a structure) in
the function, we can use an equivalent macro to replace it. This improves programming effi-
ciency and readability.

6.2.3 Side effects of macros

Careful readers may have noticed that the macro replacement in Example 6.5 is log-
ically wrong. Let us sift through this example. The code is as follows.

#define SUB(a,b) a-b
result=SUB(2, 3); //Replacedwith: result=2-3;
result= SUB(x+1, y+2); //Replacedwith: result=x+1-y+2;

We wanted to implement the subtraction of a and b with the macro. The replace-
ment of SUB(2-3) with result=2-3 is correct and consistent with our design.
However, SUB(x + 1,y +2) is replaced with result = x + 1-y + 2, instead of desired re-
sult result =x+1-y-2.

The reason behind this error is that macro replacement is merely text replace-
ment. Neither concrete computation nor precedence of operators is actually in-
volved. Hence, we should design macros carefully to avoid side effects.

Is it impossible to use macros in such examples, then? The answer is no: we
can still use macros, but we need parentheses in their definitions. For example, if
we change the macro definition in Example 6.5 into #define SUB(a, b) (a)-(b), the
subtraction will be correctly implemented no matter what a and b we are using.

Now we are almost done with macros, but there is one more thing to remember:
we should avoid increment or decrement operators in macros. For example, if we
want to compute SUB(++x, ++x) in Example 6.5, it will be replaced with (++x)-(++x)
according to the macro definition. Although the subtraction logic is correct, the sys-
tem has no rule regarding which operand of “—” is read first. The value of this expres-
sion is compiler-dependent during execution.

6.3 File inclusion

When writing a large-scale program, we often divide the system into different modules
based on modularization principles. Each module is implemented by one or more files
and provides an interface for other modules to use. To use these interfaces or varia-
bles in a module, we often need to define the same variable (or function interface) in
multiple files. For example, when calculating the area of circle, annulus, and surface
of a sphere, we implement area calculations of different geometric objects in multiple

6.3 Fileinclusion = 253

C files for better extensihility because each shape has its own area formula. All these
formulas need the value of r’; therefore, we use a function pow to compute it as a prac-
tice of code reuse. However, we also know that if we define it in every C file, we are
making the mistake of repeatedly defining the same identifier in the same scope,
which is usually resolved by a single definition and multiple declarations. Even so, it
is still tedious to declare it multiple times. Is there a more convenient solution?

In this section, we are going to learn how file inclusion directives are used to
solve this problem.

A file inclusion directive inserts the specified file at its location so that the file
is linked with the current one to form a single source file. It can be considered as
enhanced text replacement.

The syntax of the file inclusion directive is shown in Figure 6.9.

Syntax of file inclusion directive

#include <filename> |

or)

#include “filename” | Figure 6.9: Syntax of file inclusion directive.

In the syntax:

(1) include is the keyword.

(2) the filename is the full name of the file to be included. If it is in angle brackets,
the compiler will search for the header file in a directory specified by the system
(e.g., one or multiple standard system directories in UNIX systems); if it is in
double quotation marks, the compiler will first look for the header file in the
current directory and go to the system specified directory if none is found.

In the preprocessing phase, the preprocessing directive is replaced with the content
of the file to be included. The file after inclusion is then treated as a single source
file during compilation. The processing flow is shown in Figure 6.10.

Y

#include "prgl.c"

After
reproc

Source file Source file Source file
prgl.c prg2.c prg2.c

Figure 6.10: Process of file inclusion.

254 —— 6 Preprocessing: work before compilation

File inclusion is beneficial in programming. When a program is too long, we can split
it into multiple shorter programs whose functions are independent of each other so
that multiple programmers can work on them simultaneously. Shared information in
these programs can be extracted and put into a separate file, which is used by other
files by adding include directive at the beginning. For example, constants and defini-
tions of functions can be put into a separate .h file (file with extension .h, also called
a header file). Then we use include directive at the beginning of other files to include
this header file so that we do not have to write these shared items in every file. Doing
so reduces development time and mistakes. We can either write our own header files
or use those provided by the system. For example, stdio.h is a header file related to
input/output operations provided by the system.

Note that there is no limit on file types. As shown in Figure 6.10, we can include
a “.c” file in another “.c” file. However, this is merely an example showing that
there is no limit on file types. In practice, we usually include “.h” files only for a
better coding style and avoiding redundant definitions.

Example 6.7 Edit a file and include it in another file

In Figure 6.11, the definition of function fun is done in file fun.c, whereas its declaration is
made in file fun.h; the file main.c obtains declaration of function fun by including fun.h and
calls the function in main function.

#include"stdio.h" Saved as fun.h

void fun(); Lg

#include"fun.h"

void fun()
{

printf("Hello!");

#include"fun.h"
int main(void)

fun(); /—~| Saved as main.c

return O; o

Figure 6.11: Multiple source files and file inclusion.

6.4 Conditional compilation

Conditional compilation directives instruct the compiler to compile different parts
of the program under different conditions to produce different object code files as
shown in Figure 6.12. In other words, we can set conditions by using conditional

6.4 Conditional compilation =— 255

Conditional compilation

Conditional compilation directives instruct the compiler to compile different parts of the
program under different conditions in order to produce different object code files

Figure 6.12: Definition of conditional compilation.

compilation directives so that some parts of the program would not be compiled
unless the conditions are met.

6.4.1 Format of conditional compilation 1

There are three commonly used formats of conditional compilation. Figure 6.13
shows the first one, where ifdef, else, and endif are the keywords. Code segments
1 and 2 consist of preprocessing directives and statements. The conditional compila-
tion here works as follows: if a #define directive has defined the identifier, then
code segment 1 will be compiled; otherwise, segment 2 will be compiled.

Format of conditional compilation 1

#ifdef identifier
code segment 1

#else
code segment 2 Syntax of identifier definition

#endif

#define identifier

Figure 6.13: Format of conditional compilation 1.

The #else in this form is optional, so it can also be written as follows:

#ifdef identifier
Code segment
#endif

Example 6.8 Example of conditional compilation 1

1 #include <stdio.h>

2 #define TIME

3 int main(void)

4 {

5 //#undef TIME Uncomment this 1ine when we want to cancel the definition
6 #ifdef TIME

7 printf(“Now begin to work\n”);

256 —— 6 Preprocessing: work before compilation

8 #else

9 printf(“You can have a rest\n”);
10 #endif

11 return 0;

12 %}

Because conditional compilation directives are used in this example, which printf
is compiled depends on whether TIME has been defined using #define. If it has
been defined, “printf(“Now begin to work\n”);” on line 6 will be compiled, other-
wise “printf(“You can have a rest\n”);” on line 8 will be compiled. TIME has
been defined in this example, so the output is:

Now begin to work

If we want to change the compilation condition, for example, we want to output
“You can have a rest,” we do not have to write the program again. It can be done by
commenting line 2, which makes TIME undefined, or by canceling the definition of
TIME using #undef as shown on line 5 of the program.

6.4.2 Format of conditional compilation 2

The second format is shown in Figure 6.14.

Format of conditional compilation 2

#ifndef identifier
Code segment 1
#else
Code segment 2
#endif

Figure 6.14: Format of conditional compilation 2.

The only difference between the first two formats is that the keyword ifdef is re-
placed with ifndef. In this case, code segment 1 is compiled if a #define directive
has not defined the identifier; otherwise, segment 2 is compiled. This is exactly the
opposite of the first form. Let us take a look at the following example:

#ifndef NULL
#define NULL ((void *)0)
#endif

6.4 Conditional compilation =—— 257

This segment of code ensures that symbol NULL is defined as ((void *) @) exactly
once. It works as follows: when the compiler first processes this directive, NULL has
not been defined. The compiler proceeds to the macro definition of NULL since the
condition of #ifndef is met. If the same directive appears again, the macro defini-
tion will not be processed because NULL has already been defined. Hence, NULL is
guaranteed to be defined only once.

Good programming habit

In practice, especially in large-scale programs, nested inclusion can often be found as the inclu-
sion relations between source files are complicated. For example, filel.h may include file2.h
and file3.h, whereas file2.h also includes file3.h. If there is no guarding mechanism, file3.h will
be included twice in filel.h, which leads to code redundancy in source files. Moreover, if there
are definitions of identifiers in file3.h, repeated definition errors will occur. Hence, we should
use a guarding mechanism like the second format introduced above and put everything before
#endif when defining header files. This effectively prevents double inclusions.

6.4.3 Format of conditional compilation 3

The third format is shown in Figure 6.15.

Format of conditional compilation 3

#if constant expression
Code segment 1
#else
Code segment 2
#endif

Figure 6.15: Format of conditional compilation 3.

if, else and endif are the keywords of this format. Code segments 1 and 2 consist
of preprocessing directives and statements. It works as follows: if the constant ex-
pression evaluates to true, code segment 1 will be compiled; otherwise, segment 2
will be compiled. With this directive, our program can complete different tasks
under different conditions.

Example 6.9 Example of conditional compilation 2

1 #include <stdio.h>
2 #defineR 1
3 int main(void)

258 —— 6 Preprocessing: work before compilation

float c,s;

printf(“input a number: “);

scanf (“%f”,&c);

#if R

9 s=3.14*c*c;

10 printf(“areaof round is:%f\n”,s);

o N o o1 b»

11 #else

12 s=c*c;

13 printf(“area of square is%f\n”,s);
14 #endif

15 returno;

16 3}

In this example, lines 9 and 10 are compiled if the expression R evaluates to true.

s=3.14159*%cx*c;
printf(“areaof round is:%f\n”,s);

Otherwise, lines 12 and 13 are compiled.

S=C*C;
printf(“area of square is%f\n”,s);

6.4.4 Nested conditional compilation directives

We can only implement a double-branch structure with #if and #else, thus C also pro-
vides #elif directive, which means “else if.” It can be used with #if and #else to form
an if-else-if structure for multiple branch cases. Its syntax is shown in Figure 6.16.

Format of nested conditional compilation

#if constant expression 1
code segment 1

#elif constant expression 2
code segment 2

#elif constant expression 3
code segment 3

#else
code segment n+1 Figure 6.16: Format of nested conditional
#endif compilation.

6.5 Summary =— 259

Example 6.10 Use cases of conditional compilation
There are two merits of using conditional compilation: easier debugging and better portability.

When a program has multiple versions, we can use the code segment shown in Figure 6.17 to
make porting easier. If the program is to be compiled and executed in the Borland C environ-
ment, we can add #define BORLAND_C at the beginning.

If we want to generate the Borland C version,

Better portability Insert: #define BORLAND_C
- If we want to generate the Visual C version,
#lfdef TURBO_C Insertl:#define VISUAL_C

//Turbo C exclusive code
#endif

Before debugging,
we can add some
Easier debugging print statements
" to display
#define DEBUG intermediate
""" results

#ifdef BORLAND_C
//Borland C exclusive code
#endif

#ifdef VISUAL_C
//Visual C exclusive code int(......
#endif #endif

Figure 6.17: Use cases of conditional compilation.

When debugging, we can use some print statements to display intermediate results.
After debugging is done, we can remove #define DEBUG so that these statements

would not be compiled.

Good programming habit
Instead of maintaining a release version and a debug version of source files simultaneously, it

is better to use a debug switch to switch between them, which makes maintenance easier.

6.5 Summary

The main concepts and their relations are given in Figure 6.18.
Compilation translates statements into machine code.
Preprocessing is work done before compilation.
File inclusion allows us to use existing files.
The macro definition does replacement, which makes code editing easier.
Conditional compilation compiles code as needed, which makes debugging
more convenient and enhances the flexibility of code.

work before compilation

6 Preprocessing

260

*8ujssatoidaid 03 paje)as s3deduo0d usamiaq suolje)ay :81°9 ainsiy

JpUs# SS|P# IlI9# ULR# Jl#:{p Jeulod

JIpUS# OS[o# JI#:€ Jewlod

JIpUS# 9S[o# JopUl# 17 JUlIo]

JIpUS# 9SO JOpJI# T 1euliod

Sa|1} 9p0od 303[q0 JUAIAYIP
2onpoJd 03 JBpPJO Ul SUOI}IPUOD JuBI3Ip Jopun welbold ay3 Jo sued Juaiayip
311dwod 03 J3(1dwod By3 PNJISUl SBAIRDBJIP Uolie|idwod |_UO}IPUOD :UoRIULRd

LAWEUSJY, 9PNPUI#:Z 104

uone|idwod
|euonipuod

<{WeUl|lJ> apnpul#:T jew.ldod

3|1} ©24n0s 3|6UIS B W0 0] SUO JUSIIND 3YJ YIM paxul] SI 31} 8yl
1e4] 0S UO0I1LJ0| S1I 18 3|1 paidads sy SIBSUI AP UOISNDUL 31 B :uoniuadg

<Apog osoew > (3sl] Jojoweled)<dweu 0JdeW > dUSP# :Siajoweled YiiMm 01de

buiss-
2o0.4daud

uolisnpul
9|l

<BuLIIS> <dWeu osoew > aulyap# :odew sjdwis

jJuawaoe|dad oadew paj|ed 0S|k SI ssa20.d jJuswade|dad
9yl -"uonejidwod a10jq sbulys paynads yim pase|dad ale ssweu 0Jdew :uoniulag

6.6 Exercises

6.6 Exercises

6.6.1 Multiple-choice questions

)

@

®)

(4)

)

[Simple macros]
In macro definition #define A 3.897678, A represents a ()
A) float number B) double number C) constant D) string

[Define]

Which of the following statements is correct? ()

A) Preprocessing commands must be at the beginning of a file.

B) We can have multiple preprocessing commands on a single line.
C) Macro names must be capital letters.

D) Macro replacements are not done during program execution.

[define]

C compilers process macros ()

A) at runtime

B) during linking

C) at the same time as they compile other statements
D) before they compile other statements

[Define]

Which of the following statements is correct? ()
A) #define and printf are both C statements.

B) #define is a C statement, but printf is not.

C) printf is a C statement but #define is not.

D) Neither #define nor printf is a C statement.

[Macro with parameters]
What is the output of the following program?

#include<stdio.h>#define PT 5.5

#define S(x) PTxx*x

int main(void)

{
int a=1, b=2;
printf("%4.1f\n", S(atb));
return 0;

A)49.5 B)9.5 ()220 D)45.0

— 261

262 —— 6 Preprocessing: work before compilation

(6) [File inclusion]
In file inclusion preprocessing directives, how is the file searched when the fil-
ename is inside “<>”? ()
A) Itis searched in the system-defined directory.
B) It is searched in the directory of the source file first and then in the system-
defined directory.
C) It is only searched in the directory of the source file.
D) It is only searched in the current directory.

6.6.2 Fillin the tables

(1) [Define]
Suppose we have the following macro definitions. Fill in the table in Figure 6.19
with the statements after macro replacement.

#define MAX 10; #define PI 3.1415926
#define area(r) (PIxr*r)

#define A 3+2

#define INPUT "Please input your name.\n"

Original statement Compilation result
int array[MAX];
printf(INPUT);
int temp = A/5;

printf("INPUT A");

float temp =
area(5.5);

Figure 6.19: Preprocessing: fill in the tables questions 1.

(2) [Conditional compilation]
Fill in the table in Figure 6.20.

#include <stdio.h>#define CHINESE //———Q@)
int main(void)

{

char name[MAX];

int age;

#ifdef CHINESE

6.6 Exercises —— 263

printf("FNEHILEZFER: \n");
#else
printf("Please enter your name and age:\n");
#endif
scanf("%s %d",name, &age);
#ifdef CHINESE
printf("%s, &IF! BEL%S T, WHMACET 2= KZE! \n", name,
age);
#else
printf("Hello %s! You are %d years old!Welcom to C language!\n", name,
age);
#endif
return 0;

}

Input Output

k=23

(Comment statement @)
Bob 28

Figure 6.20: Preprocessing: fill in the tables questions 2.

(3) [Conditional compilation]
Fill in the table in Figure 6.21.

#include <stdio.h>

#define DEBUG //————
int swap(int *p, int *q)
{

int temp=0;//————®)

#ifdef DEBUG
printf("debug: *p=%d, *g=%d \n",*p, *q);

#endif

if (*xp>*q)

{
temp = *p;
*p = *q;
*q = temp;
temp=1;

264 =—— 6 Preprocessing: work before compilation

#ifdef DEBUG
printf("debug: *p=%d, *g= %d \n",*p, *q);
#endif
return temp; //————@)
}
int main()
{
inta=5, b=4;
int c = swap(&a, &b);
printf(" a= %d, b=%d, c=%d \n",a, b,c); //——@
return 0;

Variable a b *p *q

Value after statement
®

Value after statement
®

Value after statement

@

Program output

Program output after
commenting statement (0)

Functionality of
statement @

Figure 6.21: Preprocessing: fill in the tables questions 3.

6.6.3 Programming exercises

(1) Find the maximum of three numbers using functions and macros, respectively.

(2) Use conditional compilation to complete the following task:
Given a line of telegram text, output it in one of the two formats:
1) output as-is

(TP I

2) convert each character to its next character in the alphabet, that is, “a
output as “b”, . . ., “z” is output as “a”

The program should use #define to control which format is used:

#define CHANGE 1 // Output encrypted text

#define CHANGE 0 // Output as-is

€)

(4)

)

6.6 Exercises =—— 265

Write a program that converts letter inputs to uppercase or lowercase, depend-
ing on the conditional compilation command.

Given keyboard input y, use a macro to evaluate the value of the following
expression:

3(y* +3y) + 4(y*+3y) + (v’ +3y)

Define a macro with parameters that swap its two parameters. Use the macro to
swap two input numbers and output the new values.

7 Execution of programs

Main contents
— Introduction of VC6.0
— Debugging methods
— Testing methods

Learning objectives

— Know the typical process of software development, can follow this process to write programs
— Know the purpose and meaning of compilation and linking

— Know basic approaches of debugging

— Know testing methods

Even a genius can’t guarantee that his code is completely correct from the beginning. Every
single, if not all, program that is not trivial is written after debugging and modifying again and
again. —Experience of debugging

Debugging is the process of finding and correcting errors in programs. It is the most
fundamental skill that a programmer should possess. It is more important to learn
to debug than to learn a programming language. A programmer cannot write good
software without knowing how to debug, even if he/she knows a programming lan-
guage well.

Few, if not none, codes are correct when first being written. It is nearly impossi-
ble to debug by reading source code for programs of a reasonable scale. The most
efficient way of debugging is to use debugging tools.

Debugging helps programmers to learn the actual execution process of their
programs. It also allows programmers to check whether their design works as ex-
pected, which improves the development efficiency in return. Mastering debugging
techniques enables programmers to write codes that are easier to debug. They can
gain better perception and control of code.

Debugger tools can help us learn the computer system and other knowledge of
software and hardware. We can quickly learn modules, architecture, and working
flow of software or a system through debugging.

7.1 Runtime environment of programs

From being written to being executed and outputting a result, a program needs to
go through several processing phases as shown in Figure 7.1. The functions of each
phase are as follows.
— Edit: Type in source code and save it to generate C source file, whose extension
is .c (or .cpp in VC6.0 environment).

https://doi.org/10.1515/9783110692327-007

https://doi.org/10.1515/9783110692327-007

268 —— 7 Execution of programs

@ Library
Source file Object Executable
program program
(.cpp) (.obj) (.exe) @
: Verification Execution
Find errors result result

Correct

All works can be

done in an IDE

Figure 7.1: Process of program execution.

— Compile: Execute compile command. The compiler scans the source code for
syntax errors. If none is found, it generates code in machine language, which is
called the object program and has extension .obj. If syntax error exists, pro-
grammers should modify the code based on the warning or error message
given by the compiler until the program is successfully compiled.

— Link: Execute the link command. The system links obj files, which can be writ-
ten by programmers or library functions used in the program, together to gen-
erate an executable file, whose extension is .exe.

— Run: Execute run command. The program is executed to produce a result.

— Verify: Programmers check the output at the specified output location, for ex-
ample, a specified window or file, and compare it with the expected result to
determine whether the program is correct.

— Debug: If the result is wrong, programmers need to use various debugging
techniques to find the error and modify the code. The above steps are repeated
until a correct result is obtained.

All these activities related to program execution, including editing, compiling, link-
ing, executing, and debugging, can be done in an integrated development environ-
ment (IDE).

An IDE is an application that provides a program development environment. As
shown in Figure 7.2, it is a software that provides integrated services like code edit-
ing, compilation, debugging, and so on. All software that has such features can be
called IDEs.

The basic idea and general methods of debugging are applicable in all debug-
ging environments, thus it is important to master this fundamental knowledge.
Visual C++ 6.0 (VC 6.0 for short) is a small but robust IDE. It provides powerful de-
bugging tools and is compatible with multiple versions of the Windows operation
system; therefore, it is recommended for beginners of C. Moreover, it enables a

7.1 Runtime environment of programs = 269

Integrated Development Environment (IDE) Visual C++ 6.0 IDE is

An integrated development environment is a software that designed for C++, but it
provides integrated services like code editing, compilation, [is also compatible with C\
debugging and so on. It provides software environment for
software development.

Figure 7.2: Definition of IDE.

smooth transition to the Visual Studio IDE, which provides similar functionalities
but has a more complex user interface. After comparing multiple IDEs, we shall use
VC6.0 to run and debug programs in this book.

Knowledge ABC Visual C++ 6.0 IDE n
Microsoft visual C++ 6.0 (abbreviated as Visual C++, MSVC, VC++, or VC) is an application de-
velopment environment used to develop C++ programs created by Microsoft. It integrates tools

like code editor, compiler, debugger, and graphical user interface. VC 6.0 has been widely used

due to its good interface and usability.

Using the console operation provided by Visual C++ 6.0, we can create C applica-
tions. Win32 console applications are a type of Windows program, which communi-
cates with users through a standard console without using a complex graphical
user interface. We shall introduce how to use Visual C++ 6.0 to write simple C pro-
grams from the seven perspectives shown in Figure 7.3.

Main screen of integrated environment

Create a project

Create a source file

Edit a source file

Compile a source file

Link a program w

Execute a program 7

N|jolu|h~h|W|N|H

Figure 7.3: Steps of using V(6.0 integrated environment.

7.1.1 Main screen of integrated environment

After installing Visual C++ 6.0, we can start the application through the “Start”
menu or desktop shortcut. The IDE is shown in Figure 7.4. Similar to most Windows
applications, the menu bar and toolbar are on the top, and the three areas below
are workspace, editor panel, and output panel.

270 —— 7 Execution of programs

L] Microsoft Visual C++ (=G -
File Edit View Insert Project Build Tools Window Help

2 = mEE w7 <l

[=l B2 =]

Workspace

Editor panel

Output panel

*I\ Build { Debug 3 Find in Fil{ || e

Ready

Figure 7.4: Main screen of the Visual C + + 6.0 integrated environment.

The workspace records the status of users’ work and will be automatically
saved when V(6.0 is closed; code files are edited in the editor panel; the output
panel shows messages, errors, or results generated during the creation and debug-
ging of the program.

7.1.2 Create a project

The execution of a program is a systematic project, which is similar to a theater
play. Actors cannot start performing until every environment setting is done, in-
cluding stage, setting, light, sound, and so on.

IDE is such a “stage.” VC6.0 puts every environment resource needed for a play
into a “project.” Programs are like actors of the play. As shown in Figure 7.5, a proj-
ect is a series of correlated activities that are done following a set of rules with
given time and resources to achieve a specific goal.

VC6 manages resources involved in program development process in
projects. Code files are only part of project files.

Figure 7.5: Definition of project.

7.1 Runtime environment of programs =— 271

Knowledge ABC Projects
In Visual C++ IDE, a project is the set of correlated C++ source files that implement required func-
tionalities, resource files, and classes that support these files. Projects are the basic unit of pro-

gram development in Visual C++ IDE. They are used to manage all elements that construct an
application and eventually generate the application.

The steps of creating an application are as follows.
Figure 7.6 shows the screen of steps 1 and 2, where we select the “File” menu in
step 1 and the “New” sub-menu in step 2.

1 JEiIe Edit View Insert Project Build Tools Window Help
Jalso@|s ma|a- o BE % ~1|
= oo

B
w
&

PR O New.. culeN |
JJ & Open... ctrl+0 i
Close |

Open Workspace...
Save Workspace
Close Workspace

H Save Ctrl+S
Save As...
& Save All

Page Setup...
& Print... Ctrl+P

Recent Files »
Recent Workspaces » =

Exit

"]\ Build Find in Fil] <[] >

Ready ﬁ|

Figure 7.6: Project creation step 1and 2.

Figure 7.7 shows the screen of steps 3-7. In step 3, we switch to the “Project” tab; in
step 4, we select the “Win32 Console Application” as our project type, which is a
console application working in a 32-bit Windows environment (it is a character pro-
gram without a graphical interface); in step 5, we type in project name; in step 6,
we specify the save location; and in step 7, we click “OK” to confirm.

Figure 7.8 shows the screen of steps 8—10. After we confirm our input in the
Project tab, a wizard, which is shown on the left of Figure 7.8, pops up and guides
users to generate the framework of the program. In step 8, we select “An Empty
Project”; in step 9, we click “Finish” to close the wizard, then the dialog box on the
right pops up; and in step 10, we click “OK” to confirm.

Note that beginners often make the mistake of selecting project types other
than console application, which leads to linking errors later as shown in Figure 7.9.

272 —— 7 Execution of programs

New

Files Projects |Workspaces OtherDocumentsl

£ ATL COM AppWizard

I=2| Cluster Resource Type Wizard
=" Custom AppWizard

‘& Database Project

% DevStudio Add-in Wizard

= Extended Stored Proc Wizard
a2 ISAPI Extension Wizard

- Makefile

R MFC AppWizard (exe)
7] Utility Project
= Win32 Applicativn

% Win32 Dynamic-Link Library
2| Win32 Static Library

“Console Application” is a
character program without
graphical user interface

Project name:

[win32app

Location:

[p:AMYWIN32APPWin32App

(@ Create new workspace
(" Add to current workspace
|~ Dependency of:

I

Platforms:

VIWin32

a OK | Cancel

Figure 7.7: Project creation steps 3-7.

Win32 Console Application - Step 1 of 1 "“

New Project Information

What kind of Console Application do you Win32 Console Application will create a new skeleton project with the following
want to create? specifications:

A simple application.
(A'Hello, World!" application.
C An application that supports MFC.

»»»»»»»»»»»»»»»»» + Empty console application.
+ No files will be created or added to the project.

o Project Directory:

< Back Next > | Finish Cancel DAMYWIN3I2APPWin32App

Figure 7.8: Project creation step 8 to 10.

Example of linking error
error LNK2001: unresolved external symbol _WinMain

0O

Figure 7.9: Example of linking error.

10

“Win32 Console

Application” is used, an
linking error may occur.

If a project other than

7.1 Runtime environment of programs =—— 273

7.1.3 Create a source file

The steps of creating a source file are as follows.
Steps 1 and 2 are shown in Figure 7.10. In step 1, we select the File menu; in
step 2, we select the “New” sub-menu.

2 sdd|s me|o-o- [BER|®[

O New... Ctrl+N L"
“ = Open... Ctrl+O

Close

Open Workspace...
Save Workspace
Close Workspace

H save Ctrl+S
Save As...
& save All

Page Setup...
& Print... Ctrl+P

Recent Files >
Recent Workspaces » [=]

Exit

-
[“[*I\Build {Debug) Find in Filj«[]| »

Ready 4

Figure 7.10: Source file creation step 1 and 2.

Steps 3-7 are shown in Figure 7.11. In step 3, we choose the “File” tab; in step 4, we
select C++ Source File as the file type; in step 5, we check the box “Add to project”;
in step 6, we type in the file name; and in step 7, we click “OK” to confirm.

Notes on file names: (1) do not include file extensions; (2) use meaningful
names for easier management.

7.1.4 Edit a source file

As shown in Figure 7.12, we can perform various editing operations to source
files in the editor window, which includes opening and browsing files, input,
modification, copy, cut, paste, find, replace, undo, and so on. They can be done
either through the menu or through the buttons in the toolbar. In essence, every-
thing is similar to their counterparts in other Windows text editors, for example,
Word.

274 —— 7 Execution of programs

New &]ﬁ

Files I Projects | Workspaces | Other Documents I

2)Active Scrver Magce e [¥ Add to project:

i Binary File -

Bitmap Filc [win32app ~]
[) C/{C++ Header File

EJC1 1 Source Filc|

= Cursor File File

[8) HTML Page
[Alcon File . |demo

wMacro File =
&5 Resource Script o Lacation:

¥ Resource Template O [DAMYWIN32APPWin32App .|
SQL Script File
B Text File

Notes on file names:
1. Don't include file

extensions
2. Use meaningful names

for easier management

OK Cancel
Figure 7.11: Source file creation steps 3-7.
@ Win32App - Microsoft Visual C++ E
File Edit View Insert Project Build Tools Window Help
e =] 22y o EY| S ~lw|SEx L E
2l [demo.cpp *
(@ Workspace 'Win32App': 1 project(s) I
- EI win32app files
- <3 Source Files
[#] demo .cpp
() Header Files o
[Resource Files o O
Type in source
code in the file
editor panel
< >
"5 ClassView | £ FiIeViewI

Figure 7.12: File editor panel.

Figure 7.13 shows how to change the code format or font used. If the code is not
well formatted, we can format it using “Format Selection” in the menu “Edit-
Advanced,” whose hotkey is Alt + F8. “Format” here means adjusting the alignment
of code as required.

7.1 Runtime environment of programs =— 275

& Win32App - Microsoft Visual C++ o[@ ’
File Edit View Insert Project Build Tools Window Help
2 ZE0 B@ 2- oEE G cn|SE RO
21 A demo.cpp *

[Workspace 'Win32app': 1 project(s)
- Evwin32app files
- ‘4 Source Files

// Displays hello world on screen
#include <stdio.h>
// Execution starts from main function

[#] demo .cpp int main(void)
1 Header Files {
[1Resource Files printf("hello worldf\n");
return 0;

y /7 End of main function

< >
"= ClassView | Z FileView ‘
Format Edit—»Advanced—Format Selection, or hotkey Alt+F8

Font settings Tools—Options—Format

Figure 7.13: Edit a file.

If we are not satisfied with the font used in the editor, we can customize it in
the “Format” tab of the “Options” dialog box in the “Tools” menu.

Note that Chinese punctuation marks are invalid. Moreover, we should remem-
ber to use Ctrl + S to save our code all the time.

Good programming habit Type in parentheses in pairs

When typing in programs in practice, it is better to enter parentheses in pairs. For example, we
should type main({} first and insert statements inside {} later. Doing so prevents us from for-
getting the ending parenthesis even if the program is long, which is a common compilation

error created by beginners. It often takes a long time to find such errors because the error mes-
sage is not clear enough.

7.1.5 Compile a source file

The compile command is “Compile” in the menu “Build,” whose hotkey is Ctrl + F7.
The “Compile” button is located at the first position in the “Build MiniBar” toolbar as
shown in Figure 7.14. Users can use any one of these three to compile a source file.

If the compilation is completely successful, “0 error(s), O warning(s)” will be
shown in the message panel at the bottom.

Object file with extension .obj will be generated after a successful compilation
as shown in Figure 7.15.

If an error occurs during compilation or linking as shown in Figure 7.16, there
will be an error message indicating the line on which the error exists and the type of
error in the message panel at the bottom. For example, there is a message indicating

276 =—— 7 Execution of programs

Compile
button
@B Win32App - Microsoft Visual C++ A ——

|[file | Edit View tnsert Project [guilc] Tools window Help

ompile = -
€ Compile demo.cpp culerr PIE® W)
N
Build Win32App.exe F7 s’iJ [A demo.cpp *
f /7 Displays hell 1d
£ Rebuild Al winclage <stdio.n> oo Build MiniBar
Batch Build... /7 Execution starts from main function

int main(void)
Clean
printf(“hello world!\n");

» return 0;
Start Debug } #/ End of main function

Debugger Remote Connection...

_ > °0 O
Execute Win32App.exe Ctrl+F5
2 We can use the menu
Set Active Configuration... command, the hotkey
Configurations or the compile button
Profile...

Figure 7.14: Compile command.

@ Win32App - Microsoft Visual C++

File Edit View Insert Project Build Tools Window Help
A =EHE DI oE G

[demo.cpp
// Displays hello world on screen
#include <stdio.h>
// Execution starts from main function
int main{void)

{

printf(“hello world?\n");
return 0;
} 7/ End of main function

After successful

IKIN| compilation, an
1 object file with
| Configuration: Win32App - Win32 Debug---- extension .obj is
lcompiling. .. O generated
demo .cpp O

o
demo.obj - 0 error(s), O warning(s)

Figure 7.15: Successful compilation.

a “syntax error” on line 7. If we double click on the error message, a blue arrow ap-
pears in the editor pointing at the line of the error, so we can check the correspond-
ing code. The cause of the error here is the comma after return 0, which should be a
semicolon as defined by the grammar of C. We can modify the code, restart the com-
pilation and linking process, and repeat until there is no syntax error in the program.

Error messages are displayed during compilation to help programmers to find
the error and correct it. It is worth noting that the error location showed in the error
message may not be correct. If we cannot find an error in the line indicated by the

7.1 Runtime environment of programs =— 277

& Win32App - Microsoft Visual C++

‘Eile Edit View Insert Project Build Tools Window Help
(0 cEd@ | me |2 | B[E® @)

[® demo.cpp

/7 Displays hello world on screen
#tinclude <stdio.h>

// Execution starts from main function
int main(void)

{

printf{ "hello world?\n"),

After double clicking the
=| return 8,

error message in the output

¥ /7 End of main function o (O O panel, a blue arrow pointing
to the corresponding line
appears in the editor panel —
e | 2
E| Configuration: Win32App - Win32 Debug -
K] Compiling...

| |[demo .cpp
D :\HYWIN32APP\Win32App\demo.cpp(7) : error C2059: syntax error : ‘return’

; D :\MYWIN32APP\Win32App\demo.cpp(8) : warning C4508: 'main’ : function should return a value;
| [Error executing cl.exe.

||demo.obj - 1 error(s), 1 warning(s)

Figure 7.16: Error in compilation.

error message, we should look for it in the lines above. Sometimes the error type is
not correct either because errors may occur in many cases or they are often corre-
lated. We need to analyze the code carefully to find the true error, instead of spend-
ing time looking for the exact error indicated by the error message.

Method of finding and correcting syntax errors: pay attention to the number of
errors and warnings in the message window; find and correct errors before warn-
ings; and correct errors in order. Do not try to find the next error before correcting
the current one.

7.1.6 Link programs

There are two types of linking commands: Build and Rebuild All in the “Build”
menu. Both of them are used to generate executable .exe files. Because a program
can consist of multiple files, these files need to be compiled separately to generate
the corresponding object file. The purpose of linking is to link these obj files and
other library files used in the program together to construct a single exe file, which
can be executed in the operating system.

In Figure 7.17, the difference between Build and Rebuild All is that the former
compiles the source file that is modified most recently and does linking while the
latter compiles all source files and links them regardless of their modification time.
If linking is completed successfully, an executable file will be generated. Note that
the file name is projectname.exe as shown in Figure 7.18.

278 —— 7 Execution of programs

Eile |Edit View Insert Brojectl Build IIoo\s Window Help
. &
| & Compile demo.cpp Ctrl+F7 B ‘% | i ! %E] |
Build Win32App.exe @ F7 = |
Rebuild All [] // Displays hello world on screen
= . #include <stdio.h>
Batch Build... // Execution starts from main function
Clean int main{void)
= {
Start Debu » printf{ “hello world?\n");
i 9 return 8;
Debugger Remote Connection... } /7 End of main function
! Execute Win32App.exe Ctrl+F5
5 5 H | ® Build
] S ARG Gt g BT A Compile last modified source file and link
1 Configurations... | e Rebuild Al
Profile... Compile all source files and link
Figure 7.17: Link command.
& Win32App - Microsoft Visual C++ =N =R <"

File Edit | View Insert Project Build Tools Window Help
A EEO e 2 DER @)

[demo.cpp
// Displays hello world on screen
#include <stdio.h>
// Execution starts from main function
int main{void)

printf{ "hello world?\n");
return 6;
} 77 End of main function

After successful linking,
an executable file with
extension .exe is
generated

o) ——] Configuration: Win32App -
4 Linking... e

Win32App.exe 8 error(s), O warning(s)

Figure 7.18: Successful linking.

7.1.7 Execute program

To execute a program, we use the Execute command in the “Build” menu as shown in
Figure 7.19. The Execute button is the one with an exclamation mark in the Build

7.2 Testing —— 279

Execute button

[en Win32App - Microsoft Visual C++ I . \'iﬁi B
Eile | Edit View Insert Brojectl_liuild I'l_’ools Window Help
3
| £ Compile demo.cpp Ctrl+F7 | G ! <M
Build Win32App.exe F7 demo.cpp *
f /# Displays hello world on screen
& Rebuild {\" #include <stdio.h>
Batch Build... // Execution starts from main function
Clean int main(uoid)
b {
printf({ "hello worldfyn");
Start Debug < return 0;
Debugger Remote Connection... } /7 End of main function
! Execute Win32App.exe Ctrl+F5 @ m
Set Active Canfiguration... <l |
Configurations...
Profile...

Figure 7.19: Execute command.

Minibar. There is another execution button on its right, which is called the Go com-
mand. They can both be used to execute a program, with the only difference being that
the console disappears after execution when Go is used while it remains active in the
case of Execute. It is easier to view the program result in the console using Execute.

We can check the execution result in the console. If the program is executed
successfully, the result will be output to the screen as shown in Figure 7.20.

7.2 Testing
7.2.1 Introduction

7.2.1.1 Defect in arithmetic question generator

We will first tell a story of Brown’s family. Mr. Brown wrote question-generator soft-
ware for his son Daniel. The program generated random arithmetic problems and
checked whether the answer entered was correct.

Daniel did exercises using the software happily, until one day, the program
crashed after he typed in two numbers. After asking his son about the input and the
operation he has done, Mr. Brown checked the value of a variable in his program
using the Watch window of the debugger. As shown in Figure 7.21, the value was 1.
#INF. The system suggested that he should check whether there was overflow
caused by division by zero. After investigating his code, Mr. Brown then realized
that he did not restrict the divisor to be nonzero value in division operations. The
program shown here is a simplified version for easier demonstration.

280 —— 7 Execution of programs

=

"D:AMYWIN32APP\Win32App\Debug\Win32App.exe"

- o

hello world!?
Press any key to continue_

OOO

Console window

Figure 7.20: Inspection of execution result.

return 0;

Figure 7.21: Division by zero error.

#include <stdio.h> Watch B
int main() Name Value
int x; ’7 4
ntx; | | y 1. #INFO | 5
printf("#Ax:"); |}
anf ("%d", &x) ;

If a value is 1.#INFO,
we should check
whether there is a
division-by-zero error

Division by zero is not just a minor problem. In 1997, the propulsion system of
USS Yorktown (CG-48) crashed due to a division-by-zero error. The ship was para-
lyzed and stuck in the water for nearly three hours. If there were war at that time, the
consequences could be disastrous. Of course, modern operating systems can handle
such errors elegantly by displaying warnings instead of crashing immediately.

7.2.1.2 Error handling in the n! program
In an example in the section “Comprehensiveness of Algorithms,” we found defects
in our n! algorithm by testing the program with a special input n =1, which showed

7.2 Testing =— 281

that we should consider cases where “data are out of range” in addition to data
within the normal range as shown in Figure 7.22. Consequently, we need a complete
and reasonable mechanism of testing to find errors in programs and enhance their
quality. Meanwhile, we need to design test data before writing code; therefore, we
“have a guideline to follow” when programming. In other words, the test case de-
sign should happen before algorithm design.

ni= L, whenn =0 Ideally, test case
n*(n-1)!, whenn =0 design should be
done before
algorithm desi
o o O
General case Edge case Error case
Input data n>1 and n is an integer n=0, n=1 n<0
Expected result Value of n! 1 Warning

Figure 7.22: Test data of n! algorithm.

Numerous problems arise in the world each year due to software defects. Loss due
to software defects is enormous. In 2002, research by the National Institute of
Standards and Technology showed that losses incurred by software defects were
at $59.5 billion per year. Over one-third of the losses could have been avoided
through software testing.

An undetected error in software may bring down the entire system or even lead
to disastrous consequences. Hence, testing of software products is of significant
importance.

7.2.2 Program testing

7.2.2.1 Errors and warnings
Errors and warnings may occur during compilation and execution as shown in
Figure 7.23.

(1) Compile-time error

There are two types of compile-time errors:

— Syntax errors: Arise when we do not use statements in the way specified by the
grammar. Wrongly spelled keywords, wrongly defined variable names, incorrect
use of punctuation marks, incomplete or unmatched branch and loop structure,
and missing or incompatible arguments in function calls are all syntax errors.

282 —— 7 Execution of programs

Linking error

Compile time

Errors and warnings

Runtime

Figure 7.23: Categorization of errors and warnings.

— Linking errors: Found by the linker during the construction of object programs.
Wrong library function names, missing files, and wrong path of included files are
all linking errors.

(2) Runtime error

There are two types of runtime errors:

— Logic errors: Errors in program design that make the result inconsistent with pro-
grammers’ expectations. For example, inappropriate execution conditions or num-
ber of iterations in loops falls into this category. Such errors cannot be found during
compilation or execution, thus it is hard to find and correct them. Programmers
have to rely on their proficiency in the language and programming experience to
find logic errors.

— Runtime exceptions: These arise when a program attempts to execute an invalid
operation during execution. Such operations include division by zero, invalid
input format, opening nonexisting files, and not enough space on the disk.

(3) Compilation warnings

When statements in a program are against grammar rules of C, the compiler will
show an error message. Sometimes, however, the compiler generates a warning
message, which indicates that the code is not technically wrong but unusual. An
error may exist in this case. During development, we should consider warnings to
be errors as well. Linking can be successfully completed with warnings.

7.2.2.2 Definition of testing
The definitions of testing and test cases are given in Figure 7.24.

7.2.2.3 Purpose of testing

No matter how proficient a programmer is in programming or how well-designed a
software product is, it is difficult to ensure high quality in software without testing
against adequate and appropriate test cases. The quality of software depends mostly
on the number and quality of test cases. Test case design involves complex analysis

7.2 Testing =— 283

Testing is the process of comparing actual output of a program with its expected output and
determining whether the program satisfies design requirements.

Test case

A test case is a combination of certain input data, corresponding execution conditions and
expected execution results. It is carefully designed to test or verify whether a program
satisfies certain requirements.

Test case design should be done before algorithm design. We should consider as many
situations as possible during this process.

Figure 7.24: Definition of testing and test cases.

of problems. Test-driven development is also a challenge for developers. A developer
cannot master program development without knowledge of test case design.

7.2.2.4 Principles of test case design

The goal of testing is to find defects in software using as few test cases, as little
time and as few people as possible so that quality is ensured. Figure 7.25 shows the
principles of selecting test cases. We should do a comprehensive test using a small
number of test cases that help us find errors efficiently. In addition to regular input,
we also need to consider invalid or abnormal input.

Principle of test case design

We should do a comprehensive test using a small amount of test cases that help us find errors
efficiently. In addition to normal input, we also need to consider invalid or abnormal input.

Figure 7.25: Principle of test case design.

The test case design is a complex process. Readers can refer to resources on soft-
ware engineering for a detailed discussion on this topic.

7.2.2.5 Methods of testing
As shown in Figure 7.26, there are two types of testing, namely white-box and
black-box testing. The box here refers to the software being tested.

White-box testing treats the testing object as a transparent box. Testers have
full knowledge of the internal logic as well as other information about the program.
Test cases are designed to exercise all logic paths of the program.

In black-box tests, on the other hand, testers do not possess or choose to ignore
the knowledge of the internal logic and characteristics of the program. They check
whether a program works as intended based solely on the requirements and specifi-
cations of the program.

284 —— 7 Execution of programs

White box testing
Test cases in white box testing are designed based on program logic.
White box testing is also known as structural testing or logic-driven testing.
The “box” used in
. both terms refers
Black box testing to the software

Black box testing examines functionality of a program through function being tested
tests. It is also known as functional testing.

Figure 7.26: Methods of testing.

7.2.2.6 Basic approaches to test case design

As shown in Figure 7.27, white-box and black-box testing use many concrete meth-
ods of test case design, where each of them produces a special set of test cases.
Using one of these methods cannot test programs comprehensively, so we often use
a combination of them to design test cases in real-life projects.

We must test both true and false branches for

White Logic coverage logical values
box
testing All independent paths in each module should be

Path testing executed at least once

We divide all possible input data into several classes,
Equivalence partitioning and select a few typical data from each class as test
cases

. We select valid and invalid boundary values as test
Boundary value analysis

cases
Black
bo_x We list all possible errors and special cases that are
testing Error guessing error-prone of a program, and select test cases

based on them

It is an approach that takes combinations of input
Cause-effect graph cases and constraints between input conditions into
consideration

Figure 7.27: Basic techniques of test case design.

7.2.2.7 Order of testing
We can also divide testing methods into two categories based on the order of test-
ing: bottom-up testing and top-down testing as shown in Figure 7.28.

We first test modules on the lowest level, then modules on

Bottom-up testing | , higher level, and finally the main module

We first test the main module, then modules it calls, and

Top-down testing | gina)ly modules on the lowest level

Figure 7.28: Order of testing.

7.2 Testing =— 285

Example 7.1 Palindrome checking program
A “Palindrome” is a word or sequence of characters that reads the same backward as forward.
Write a program that determines whether a sequence of characters is a palindrome.

[Analysis]
A test case consists of input data and expected output. We first consider possible cases of
input data; the length of the sequence can be odd or even and the sequence is either a palin-
drome or not. These cases are obtained by dividing all possible cases into equivalent classes.
There is also a special case where the length is zero as shown in Figure 7.29. This case is ob-
tained by corner case analysis.

Finally, we list the expected output: if the sequence is not a palindrome, the program returns 0;
otherwise, the program returns 1.

Madam,I'm Adam Live on no evil.
Was it a cat | saw deified
String length is odd String length is even Edge case
Test data Not a palindrome Palindrome Not a palindrome Palindrome Empty string
Expected Return 0 Return 1 Return 0 Return 1 Return 0
result “Not a palindrome” | “Palindrome” | “Not a palindrome” | “Palindrome”| “Not a palindrome”

Figure 7.29: Test case design of the palindrome checking program.

Example 7.2 Testing a sorting program
Test a program that sorts data.

[Analysis]
In addition to general cases where data are distinct, some corner cases that need special test-
ing are listed below:

— There is no input data.

— There is only one input number.

— Numbers are already sorted in order.

— Numbers are sorted in reverse order.

— There are duplicates.

Figure 7.30 shows the expected results for different input cases.

Number sequence Special case Invalid case
» Distinct
Input data * Has duplicates Single number No data

* Already in order

Expected result Sorted sequence Single number Warning

Figure 7.30: Test case design of sorting program.

286 —— 7 Execution of programs

7.3 Concept of debugging

Mr. Brown has been working overtime lately. Sometimes he even stayed up all
night. Mrs. Brown asked his husband what he was working on. He blinked his eyes
and responded, “I have been producing bugs and debugging.” However, Mrs.
Brown became more confused after knowing the meaning of “bug” and “debug.”
She asked, “Why do programmers debug all the time? Why cannot you write pro-
grams without bugs?”

“Good question!” our professor commended. He then started to think about this
question raised by his wife, a complete amateur. Although the question seemed
funny, it reflected many problems in the lifespan of software products, from being
designed to going live.

7.3.1 Bug and debug

A bug refers to a small insect or a defect. People nowadays refer to defects or prob-
lems hidden in computer systems or programs as bugs and the process of finding
bugs as debugging.

There is a story behind this. On 9 September 1947, a computer operator found a
moth trapped next to relay #70 on the circuit when tracing an error in a Harvard
Mark II computer. It was the moth that led to the error. The moth was later removed
and taped to the logbook with the caption “First actual case of bug being found” as
shown in Figure 7.31. These operators also suggested using the word “debug,” thus

06w Owkom w {/-lha 9.037 sy 015
/000 ; \,w ~ onfom / 9.087 ¥YC 295 corgeh
1Wuc 09 mene EFSred) ebd) 705725055

03y PRO> 2. 130¢30YyiS

Caw ik 243069095 :
Roys 4 = 033 bl spuid 1y0d ek 5
The first “bug” bt ol i g RV i
in comDUters is 179 >14rﬁl Co;m: Iapr. (Sl'\c dc\k)
literally a bug S focted [ubts Adder Tec

Relow*r0 @une| F
\MnT‘S’:\-\ f'w‘.\au\ '

I‘\ 3y ’.\k .. b el ounA.
e 1.5:.5‘.,‘} B wal case o-f uz’ b m1 {q A
[P Gy ey

A bug refers to a small insect or a defect. People nowadays refer to
defects or problems hidden in computer systems or programs as bugs

Figure 7.31: Bug in programs.

7.3 Concept of debugging =— 287

creating the new term “debugging a computer program.” The plain meaning of the
word debug is to remove a bug, but in practice it also refers to the process of finding
and locating a bug, which is more complicated than removing bugs in most cases.

Since the 1950s, people have been using the word debug to refer to the process
of correcting errors, which solve problems in software through reproducing errors
and locating bugs. The definition of software testing is shown in Figure 7.32.
Debugging is the process of solving problems in software using debugging tools.
The goal of debugging is to find the root cause of software defects and figure out a
solution to it. In addition to debugging, debuggers are used for other purposes as
well. For example, we use debuggers to analyze how the software works, why a sys-
tem crashes, and to solve problems of the system and hardware.

Locating the root
Debugging is the process of solving problems in software using | cause is usually the

debugging tools. Goal of debugging is to find the root cause of most difficult yet

software defects and figure out a solution to it. most critical step

Figure 7.32: Definition of debugging.
7.3.2 Bugs are everywhere

Figure 7.33 shows the flowchart of program development, which we introduced in
the chapter “Introduction to Programs.” As shown in the flowchart, software design
is not an easy task. Errors may occur in any phase: problem abstraction, data analy-
sis, algorithm design, program design, and so on. Almost every program of a rea-
sonable scale has been debugged and modified again and again. Hence, debugging
is an essential skill in programming.

Except for problems that arise in the development, bugs may appear when
users are using the software as testing may not find all problems. As a result, the
most frequent job of programmers is to modify programs repeatedly, whether it is
during or after development. This is why amateurs have the impression that “pro-
grammers are always fixing bugs.”

7.3.3 Difficulties in debugging

Debugging is a thinking and analysis process of uncovering the root cause of a phe-
nomenon. It requires strong skills, thus it is hard even for experienced programmers.
Brian W. Kernighan, one of the creators of the C language, and Yinkui Zhang, author
of the book Software Debugging, have both commented on the difficulties in debug-
ging as shown in Figure 7.34.

7 Execution of programs

288

_ 3INSaJ uoIINdaX3

sjInsaJ 1sa
1094400

Buoim

buibbngaq

suopoe
aJe sasd|||9 a|iym
‘syinsaJ Jo saseyd
aJe sa|bueloay

—— wdjqodd weubo.d

—— w|qoJd wylob|y

L wsajqo.id a1nyonais exeq

— wajqoid buij|sapon

‘Juswdojanap weisoid jo moy4 €€/ aanSi4

3|geindax3

bupjul pue uonejidwo)

ubisap weiboud

_ wyaoby _

Goneoiyipow apod

S10443 Jo sbuluiepp

ubisap wyjlob|y

a4nna3s eleq

m_m>_mcm an_

|[apow wa|qold

uonoe.asqy

_ wa|qoJd |eondely _

S9sSed 1so]

7.4 Methodology of debugging =—— 289

Debugging is twice as hard as writing the code in the first N
place. Therefore, if you write the code as cleverly as possible,
you are, by definition, not smart enough to debug it.

——Brian W.Kernighan, one of creators of C

! Debugging is a task frequently done in software development and maintenance.
I It is not easy to find software defects in complex computer systems.
It often takes more time to debug a program than to write one.

—— Software Debugging, Yinkui Zhang

Figure 7.34: Degree of difficulty of debugging.

We shall discuss methods of debugging in the following sections.

7.4 Methodology of debugging
7.4.1 Introduction

7.4.1.1 Finding errors in a domino sequence

Daniel participated in a game of building large-scale domino sequences in the sum-
mer camp. “Large scale” here means that it is hard to figure out the global status of
the sequence at a glance. After Daniel’s team had set up their sequence, they top-
pled the first domino. However, some dominoes in the sequence did not fall, so
there must be something wrong. How could they find the problem? What strategies
could they take to find the problem? After a discussion, the team believed that they
could walk through the sequence and check the setup of each domino. They could
also divide the sequence into segments so that each member was in charge of the
inspection of one segment.

Structure and execution of programs are similar to dominoes, where a state-
ment is a domino and a program consisting of multiple statements or functions is
the sequence of dominoes. Hence, we can use the strategy of Daniel’s team in de-
bugging as well as shown in Figure 7.35.

7.4.1.2 Collapse of the domino sequence
After finding the error in the sequence, Daniel’s team started repairing at once. It
was late at night when they finished so they decided to test it the second day.

When they entered the stadium the next day, however, they found that some
parts of the sequence were completely ruined. The stadium was locked at night, so
they wondered what happened. A member then noticed that there was a surveillance

290 — 7 Execution of programs

What strategies
can be used in
error finding of
domino sequences?

Inspect one by one
Oopr Inspect critical part

Structure and execution
of programs is similar to
domino sequences,
where each statement

Flow structure can be seen as a domino
Sequential execution o O O

Figure 7.35: Strategy of error finding.

camera on-site so she suggested investigating the video recording by rewinding it
from the current time.

Similarly, when a program crashes, we can investigate the log to find out which
module of the program caused the crash if the execution process of the program
has been recorded. By playing the video recording backward, we can also figure out
call stacks of each module as shown in Figure 7.36.

Log querying
Scene
reproductign

Play the video recording
Qoo backwards

We can trace back and
find the crashing point
by recording execution

Structure of programs is
prog 000 order of modules

multi-module structure

Figure 7.36: Inspection of crash log.

7.4.2 Basic flow of debugging

Daniel’s team searched for the error in their sequence on site. The error was a domino
that fell down before the sequence was toppled. To find bugs in a program, we need
to reproduce the problem to be solved on the system. We will debug by repeating
steps that led to the failure, and analyze the root cause of the failure, derive a solu-
tion, modify the program, and verify whether the problem has been solved.

As shown in Figure 7.37, a complete debugging process should be a loop with
four phases, namely bug reproduction, root cause searching, solution exploration and
implementation, and solution verification. In root cause searching, we should use var-
ious debugging tools and methods to find the major source of software failure. In so-
lution exploration and implementation, we design and implement a solution based
on the root cause found in the last phase and resources we possess. Finally, we test
whether the solution is effective in the target environment in the verification phase.

The prerequisite of fixing a bug is finding its root cause. Root cause searching
is always the most critical yet most challenging step among all steps of debugging.
Finding the root cause is the core of debugging.

7.4 Methodology of debugging =— 291

Error finding of
domino sequences
is done on site

| Reproduce issue

O0° l
Locate root cause |

Challenge in
debugging

Find and implement
a solution

l

| Verify solution |

=
Issue solved?

F

—>

Close issue

Figure 7.37: Basic flow of debugging.

How do we find errors in the logic of programs? We shall introduce the method-
ology based on the characteristics of programs and the execution of programs.

7.4.3 Discussion on methods of finding errors in programs

7.4.3.1 Analysis of flow of program execution

In the process of solving problems with programs, data are processed to produce
results. If data to be processed are inherent in the problem, that is, the logic struc-
ture of data is determined solely by the problem, then there is no error within them.
Consequently, we need to focus on “processing” and “result” to find errors. In
other words, finding errors is done by tracing how data are processed and inspect-
ing results as shown in Figure 7.38.

Result
inspection

Proce-
ssing

We should trace data
processing process
and inspect the

result to find logic

errors in programs

Process
tracing

Figure 7.38: Steps in program execution flow to focus on when finding errors.

292 — 7 Execution of programs

Knowledge ABC Logic errors in programs

Logic errors of a program are reflected in the differences between execution results and the ex-
pected results of the program. For example, if we forget to add parentheses to make addition
evaluated before multiplication in an expression, the result may be wrong. Programs with logic
errors can be executed successfully most of the time, so there is no error message indicating
the location of the error.

7.4.3.2 Relations between modules

Modules interact with each other through calls. Let us examine a concrete example
first. There are three child functions in Figure 7.39, namely function a, b, and c. The
calling stack of the main function and these child functions is shown in the figure
as numbers: the main function calls function a first, function a calls function b,
which later calls function c. Once function c is completed, it returns to the remain-
ing instructions in function b, which later returns to function a when it is done.
Finally, function a returns to the main function when the remaining statements in
it are completed.

The general rule of nested call of multiple functions is: the last called function
returns first.

We can imagine the CPU as a stage. Only one scene can be presented on stage
at a time; similarly, only one function can be executed at a time. To call another
function, the CPU pauses execution of the current one and switches to the child
function called. Due to the way CPU executes programs, some information should
be stored so that the CPU can complete what has been left in the calling function
after the child function called is done.

The context information of a function call stored by the system includes return
address and some variables and parameters. Similar to the order of calling and re-
turning, the process of saving and restoring contexts follows a “Last-In-First-Out”
order as shown in Figure 7.40. The numbers in the figure correspond to those in
Figure 7.39, where numbers 1-4 refer to the saving order and numbers 6-8 refer to
the restoring order. The “Last-In-First-Out” principle followed by memory space
management of context information is the classic way stacks work. In this way, the
execution path of modules of a program is recorded.

7.4.3.3 Problems involved in error finding
The execution path is constructed based on the structure of the program as shown
in Figure 7.41. Programs are constructed by multiple modules, so we should trace
errors both inside modules and between modules.

Based on how data are organized and stored, result inspection involves inspect-
ing a single variable, address of a variable and a series of variables with continuous
addresses, which is also called an array.

293

7.4 Methodology of debugging

*S9|npow usamiaq uoljejal Sujje)d :6€°L ainsy

*2UO0p S| Pa||RD UOdUNY PJIYD BY3 Jae uoiduny buijjed ay3 ul P3| usaq
sey jeym 239|dwod ued NdD Y3 3Byl 0S palols aJe UolewWIojUl AIRSS9D3N "paj|ed
uoPUNY PlIYd 9Y3 03 SOYIIMS puB SUO JUSIIND B3 JO U0ojINdaxXa sasned NdD ayL

O©°°

2w} e je abels
uo pajuasaud aq

s||ed uopduNny

ued (uoouny) auads ybnoayy
auo Ajuo ‘sbeis e pa32auuod
se NdD @y3 auibew] 94e S9INpo

_ 351} SUJN3aJ uolPUNY pajed 3se| ay3 :3|nJ buijed _o

Sojeulwdal 3 uoijoung _ S9jeulwlal q uondung _ _ S9jeulwlal e uoiodung _ _ sajeulwla) ulewl _

2 uonduny [jed

S}Jels D uolppung S}els g uoidung

_ s}els e uolpoung uoipouny uiew

294 —— 7 Execution of programs

Information is
managed in a
“Last-In-First-
Out” manner

Saving order /> Restoring order

A\

/
/

o Context(%of funcéon c
9 Context of function b o 0
@)| Context of function a @)
o Context of main function

Execution path
of modules is
recorded

Figure 7.40: Saving and restoring context information.

—I Single module H Trace by steps

Process tracing

Error
finding

- Trace by segments
—|Mult|ple modules - -
Display of order of function calls

Inspection of a single variable
Inspection of array variables
Inspection of addresses of variables

Result inspection

Figure 7.41: Problems involved in error finding.

We shall discuss concrete strategies for tracing programs.

7.4.4 Exploration of tracing methods

To find errors in a domino sequence, we can inspect dominoes one by one or seg-
ment by segment, where we randomly check certain places in each segment. We
can also combine these two methods together. During the inspection, we can stop,
observe, think, and rebuild the sequence at any time. Similarly, we need a pausing
mechanism for program execution to inspect data and processing results. Such a
mechanism is provided by the IDE, enabling us to use an error finding strategy sim-
ilar to the one used in dominoes.

7.4.4.1 Trace by statements

7.4.4.1.1 Stepwise tracing
The debugger starts from the main function and executes statements one by one
using stepwise commands. A child function is also treated as a statement. For

7.4 Methodology of debugging =— 295

example, the calling of function func in main function shown in Figure 7.42 is han-
dled as a single statement in stepwise tracing.

int main(void)
command
= {

=
Y
=|...... /(Treat func()
. as a single
= | func(); °OO>\ statement
=>|..u... \K)\
=|......

Figure 7.42: Stepwise tracing.

7.4.4.1.2 Statement-wise tracing

The debugger starts from the main function and executes statements one by one using
stepwise commands. Upon reaching a child function call, the debugger enters the
child function using the step-into command as shown in Figure 7.43. Statements in-
side the child function are again executed one by one. After the child function is done,
the debugger returns to the calling function and executes the remaining statements.

i O

command Enter child
function

k\ and trace
............ N

func(); bl Step-into [N wedll I
______ command

Figure 7.43: Statement-wise tracing.

7.4.4.2 Trace by segments

We first set breakpoints at the line we want to inspect. As shown in Figure 7.44, a dot
is inserted to pause the program execution, which is resumed after we have inspected
data we would like to see. We can use multiple breakpoints and the jump to break-
point command so that programs are stopped when a breakpoint is encountered. The

296 =—— 7 Execution of programs

int main(void)

Jump to breakpoint {

Jump to breakpoint

Run until the end

Interruption

When a special event (interrupting event) happens, a computer will pause the

task (program) that is currently being executed, switch to another task (interrupt

handler) and eventually resume the initial task.

Figure 7.44: Interruption and tracing by segments.

execution is done after multiple jumps. The action of setting breakpoints is called

“Break” in computers.

7.4.4.3 Reversed inspection of call stack

The execution path of modules is automatically recorded into a call stack by the
system during program execution. When a program crashes, we can quickly locate
the function in which error occurs by checking the information in the call stack as
shown in Figure 7.45. Which module does the problem arise in? As the program ter-
minates when crashing, the error should be in the function on the top of the stack.

Saving order X /\ Restoring order

Context of function 3

Context of function 2

Context of function 1

Context of main function

stack

Figure 7.45: Record of execution path.

s 00

When a program
crashes, we can quickly
locate the function in
which error occurs by
checking information in
the call stack

7.5 Debugging tools =— 297

We have discussed the methodology of debugging and now we are going to intro-
duce how to apply these strategies in an IDE.

7.5 Debugging tools

In the world of software, inspection and repairing tools like corkscrew or multimeter no longer
work. They are replaced by debugging tools with the debugger as the core. — Software
Debugging, Yinkui Zhang

Debugging is of vital importance to software. Inspection tools in the world of soft-
ware are debugging tools. Using the right debugging tools properly can largely in-
crease the efficiency of finding bugs.

7.5.1 Functions of debugger in IDE

Typically, programs are executed continuously. However, debugging can control
the pace of program execution. Execution of a program can be paused, done step
by step, or done with jumps. When a program is paused, we can inspect its status.
The debugger provides functions like controlling execution pace or inspecting exe-
cution status in IDE. More specifically, it traces and records how the CPU executes a
program and takes snapshots of this dynamic process for programmers to inspect
and analyze as shown in Figure 7.46.

Function Meaning Case

Stepwise execution: use a statement or a
Control size of step function as a step in program execution

Control execution pace . - -
Inspect execution path | Jumping execution: run a program to the

cursor or a breakpoint set by programmers

Inspect internal data when| Variable values, memory values, register
a program is paused values, stack, etc.

Inspect execution status

Figure 7.46: Functions of the debugger in IDE.

By controlling the execution pace, the debugger controls the number of lines exe-
cuted in each step so that programmers can better observe the execution path.
Stepwise execution uses a line of code or a function as a step in program execution.
In contrast, jumping execution can run a program to the cursor or breakpoints set
by programmers. Stepwise execution is an effective method of diagnosing dynamic
characteristics of software. However, stepwise tracing a program or even a module
is usually not efficient. A commonly used comprehensive debugging approach is to

298 —— 7 Execution of programs

run the program to the line we are interested in using breakpoint and execute criti-
cal code stepwise after that.

With the execution status displayed, the debugger allows us to observe internal
data of a computer when the program is paused. We can inspect variable value,
memory value, register value, and stack value in the IDE. Observing the status of a
program during execution is one of the most critical tasks in debugging. To efficiently
debug a program, we need to combine these functions and use them flexibly.

Knowledge ABC Debug version and release version of programs
To enable us to debug a project using debuggers, the information needed for debugging must
be stored in the compilation units. Consequently, we need to use the compiler to insert debug-
ging information into compilation units before using debuggers.

The debug version of a program contains the debugging information. We can debug the pro-
gram conveniently through stepwise execution and tracing. No optimization is done for the
debug version, thus the executable file generated is larger in size and runs slowly.

The release version often contains a series of optimization. The size and execution speed of
the generated file is fully optimized for better user experience. However, we cannot use debug-
gers in the release version.

There is a compilation option for switching between these two versions. It is located in the
menu Build- > Batch Build, in which we can choose to compile one of them or both as shown in
Figure 7.47. The debug version uses a group of compilation options to support debugging. Before
a program is published after being written and debugged, we can discard debugging information
through the compilation option and generate the release version with efficient code.

Batch Build

Project configurations:

Vixvin32App - Win32 Helease
V¥Win32App - Win32 Debug Rebuild All

Clean

Cancel

e

[~ Selection only

Figure 7.47: Option of debug and release version.

We shall introduce various commands of debuggers and their usage in the follow-
ing sections.

7.5 Debugging tools =—— 299

7.5.2 Debugging commands

7.5.2.1 Enter the debugging environment

As shown in Figure 7.48, we can enter debugging environment through three steps:
(1) select “Build” in the menu bar, (2) select “Start Debug” in the Build menu, and
(3) click “Step Into” command (whose hotkey is F11). Alternatively, we can press
hotkey F10 (Step Over) to enter the debugging environment. After that, we have en-
tered the fourth step, where the Build menu has turned into the Debug menu,
which contains various debugging commands.

“Build” turns into

“Debug”

test - Microsoft Visual C++ - [tesi

oguild Tools Window Help egebug Tools Window Help
& Compile test.cpp Ctrl+F7 F " El Go F5
; Build test.exe F7 = % Restart Ctrl+Shift+F5
. 4 Rebuild All 2 Stop Debugging Shift+F5
Batch Build...]
Clean
O R - . ;| Psepime
Debugger Remote Connection... e(ﬁi Step Into F11 I J ¥ Step Over F10
! Execute test.exe Ctrl+F5 *0} Run to Cursor Ctrl+F10 (@ Step Out Shift+F11
Attach to Process... *{} Run to Cursor Ctrl+F10
Set Active Configuration... — :
Configurations... Or use & Exceptions...
T Step Over 2l Threads...
Modules...

2 Show Next Statement ~ Alt+Num *
& QuickWatch... Shift+F9

Figure 7.48: Enter debugging environment.

7.5.2.2 Commands controlling program execution

Together with breakpoints and jump command, commands controlling program ex-
ecution are used to complete stepwise execution and jumping execution. We shall
see their usages in concrete debugging examples. Major commands are shown in
Figure 7.49.

7.5.2.3 Set breakpoints
Setting breakpoints is one of the most commonly used techniques to trace a large
scale program.

A breakpoint is a mark set in programs by the debugger. When the program runs
to a breakpoint, its execution is paused and the program returns to the debugger so

300 — 7 Execution of programs

Menu command Hotkey Notes
Go F5 Run to a breakpoint. Used with breakpoints
Step Over F10 Stepwise command that doesn’t enter child functions
Step Into F11 Stepwise command that enters child functions
Run to Cursor Ctrl+F10 Run to the cursor. Used with cursor setting
Step Out Shift +F11 [Run to the end of current function and return to the calling function
F9 Insert/Delete (a location breakpoint)
Stop Debugging | Shift+F5 Exit debugging and return to editing mode This is the Debug toolbar.
Debug B0 commands m e besug
£ A T HPHRN v BRUEBOREEE menu. It is recommended
to use hotkeys though

Figure 7.49: Major commands of program execution controlling.

that programmers can inspect the code or variable values. After a program is paused,
we can further execute it step by step to determine whether it is running as expected.

There are three kinds of breakpoints in the IDE, namely location breakpoints,
data breakpoints, and message breakpoints. Only the first two are involved in console
applications of C. The configuration screen of breakpoints is shown in Figure 7.50,
which can be invoked by selecting the “Breakpoints” sub-menu inside the “Edit”

e | ocation breakpoint

e Data breakpoint

e Message breakpoint

SN @)

We only use the

first two in C
console
applications

Break at:

Breakpoints

[J [J
Location I Data | Messages |

|

Click the Condition button if
you want to set conditional
parameters for your
breakpoint.

i

Breakpoints:

Figure 7.50: Configuration screen of breakpoints.

7.5 Debugging tools = 301

menu on the main menu bar. There are multiple breakpoint options that we can use
as needed.

(1) Location breakpoint
Location breakpoints are the most commonly used breakpoints. They are usually
inserted at a specified line of source code, the beginning of a function, or a speci-
fied address in memory.

We can insert a breakpoint by selecting “Edit->Breakpoints” in the menu or
pressing hotkey F9. To use the shortcut for breakpoints, we first move the cursor to
the line where we want to insert the breakpoint, then press hotkey F9 or click the
“Hand” shape button in Build Minibar. A dark red dot will appear on the left of that
line after insertion. To clear the breakpoint, we press F9 or click the button one
more time. The hotkey for clearing all breakpoints is Ctrl + Shift + F9.

(2) Data breakpoint
Data breakpoints are set on variables or expressions. Program execution is paused
when the value of the variable or expression is changed.

(3) Message breakpoint
Message breakpoint is set on window function WndProc. Program execution is
paused when a particular message is received.

7.5.2.4 Inspect execution status
The most crucial thing in debugging is to inspect the status of the program during
execution. It is through this process that we find errors in the program. The status
here refers to values of variables and values in registers, memory, and stack. There
are windows to view these values in the IDE as shown in Figure 7.51. Inspection of
these values must be done during stepwise tracing or pausing upon breakpoints.
The window for execution status inspection and items it can display is shown
in Figure 7.52. When debugging, we determine which window we should inspect
based on program logic and execution controlling commands. The usage of these
windows are introduced in corresponding sections. This section only covers some
examples of them. A sample of these windows is shown in Figure 7.53.

(1) Watch window

By typing in the variable or expression we want to inspect in the Watch window, we
can obtain its value. During stepwise debugging, we can inspect variable values dy-
namically inside the Watch window, which helps us determine whether the pro-
gram is running correctly.

302 — 7 Execution of programs

View Insert Project Debug Tools Window Help

main

Data
Full Screen windows
Workspace Alt+0 o O
Output Alt+2 °
Watch Alt+3
Call Stack Alt+7
Memo Alt+6
Properties Alt+Enter . Y
Variables Alt+4
Registers Alt+5
Disassembly Alt+8
Figure 7.51: Debug windows.
Window Function

Watch | Display values of expressions or variables we type in the window
Variables | Automatically display values of all variables that are visible in the current context

Memory | Display the memory starting from a specific address

Registers | Display current values of all registers

Call Stack| Display all functions that have been called and not yet terminated in the order of calling

Figure 7.52: Functions of debug windows.

(2) Variables window

It automatically shows the values of variables that are visible in the current context.
In particular, the variables involved in the current statement are displayed in red. If
there are many local variables, it can be tricky to inspect them in this window. It is
recommended to use the Watch window in this case.

(3) Memory window

It shows the memory starting from a specific address, which defaults to 0x00000000.
Length of memory we can view in Watch window is limited by sizes of variables, but
the Memory window can show memory in a range of continuous addresses. To use
this window, we need to type in the starting address, which can be found in the
Watch window. The watch window shows the values and addresses of variables.

(4) Register window
Displays the current values of all registers.

7.5 Debugging tools = 303

Watch [= |
Name |Va|ue
a 123
b 456 Variable
279 inspection
0x0018ff44
0x0018ff40 [
_ 0x0018ff3c

Watch Alt+3 @
Call Stack Alt+7

Memory Memory

5 Address: _[IxI8f30 / inspection
0018FF3C 00000243 ~

Memory Alt+6 @
Variables Alt+4 @ 0018FF40 000001C8
s 0018FF44 0000007B
Registers Alt+5
Disassembly Alt+8 Vsl a
antexl:|main[] L'
Name |Value Variable
a 123 /4 inspection
b 456]
sum 579
\ Auto (Locals % this /|

Figure 7.53: Sample of data windows.

(5) Call stack

It reflects which functions called the function currently being paused and how this
function is called. The call stack window shows a series of function calls, where the
current function stays on top and callers are listed below in the order of calling. We
can jump to corresponding functions by clicking on the function names.

(6) Display format of data

Each window provides various display formats of data as shown in Figure 7.54. For
example, the Memory window can display addresses in Byte Format or Long Hex
Format. We can choose the format we are comfortable with by right-clicking in the
Memory window and selecting the corresponding item in the popup menu. Note
that memory is displayed in byte in a reversed order when using Byte format. Lower
bits are on the left and higher bits are on the right. The values of variables are dis-
played as decimal numbers by default in the Watch window. We can also choose to
display in hexadecimal format.

Knowledge ABC Online help
Visual C++ 6.0 provides detailed help information. Microsoft Developer Network (MSDN) is an
information service for software developers provided by Microsoft. Programmers can use MSDN
in various ways based on their needs: they can either install it locally or use it online.

After installing MSDN locally, we can enter the help system by selecting “Contents” under
the “Help” menu. Alternatively, we can enter the help system of Visual C++ 6.0 by moving the

304 —— 7 Execution of programs

cursor in the editor to a word we want to look up and press F1. Users can obtain almost all tech-
nical information on Visual C++ 6.0 through the help system, which is one of the reasons Visual
C++ is called a friendly development environment.

Default format

Memory : Memory =
. Address: |0x18ff3c
Address: [0x18fi3c |—" [018FF3C 43 02 00 00 G... ~
001€ 0018FF40 C8 01 00 00o
001¢ Byte Format ootsFFaa 78 000000 (.0 O O Note that bytes are
gg:g Short Hex Format displayed in
001€ ¥ | Long Hex Format reversed order
0a1€ v Toolbar RIEIOn -
83:2 Address: [0x18ff3c
001€ v Docking View 0018FF3C Q0000243 ~
ida 0018FF40 000001C8
Q18 L 0018FF44 00000078
Watch [= |
Name |\Ialue
a 0x0000007b
b 0x000001¢8 (Warchy : | Default format
sum 0x00000243 Hame T
ga 0x0018f 44 2 e
&b 0x0018ff40 sum 579
&sum 0x0018ff3c &a 0x0018ff44
i &b 0x0018Ff40
@ &sum 0x0018ff3c
v Hexadecimal Display —
— Watch [< |
¥ Docking View Name [7alue
Hide \ a 0x0000007b
- b 0x000001c8
Properties sum 0x00000243
= ga 0x0018ff44
&b 0x0018f£40
&sum 0x0018ff3c

Figure 7.54: Display formats of Debug windows.

7.6 Examples of debugging
7.6.1 Demonstration of basic debugging steps

We shall use a simple program to learn the necessary steps of debugging. The pro-
gram is given in Figure 7.55.

7.6.1.1 Tracing by setting breakpoints
As shown in Figure 7.55, we insert a breakpoint at the printf statement.

To run the program to breakpoint, we select command Build—>Start Debug->Go
or press hotkey F5. The program will be executed until the first breakpoint is en-
countered. A yellow arrow was inserted to the left of the current line by the de-
bugger, indicating the next statement to be executed. Users can inspect data like

7.6 Examples of debugging =— 305

. -
[demo.cpp *
finclude <{stdio.h> =
int main{void) =
{
int a,b,c;
a=2;
b=3:
c=a+h;
> printf ("%d+%d=%d",a,b,c);
return 8; L1
¥
I ~|
|1 \ ﬂ V4

Figure 7.55: Tracing by setting breakpoints step 1.

variables or expressions. By executing the Go command again, we run the program
to the next breakpoint or to the end if there is no more breakpoint.

We can use the View—>Debug Windows—>Watch command to inspect the values
of variables. By entering the variable name in the Watch window, we can view its
value as shown in Figure 7.56. Column Name lists expressions or variables we are
watching, whereas column Value displays their corresponding values. We can ob-
serve changes in expression values during program execution in this window.

[demo.cpp * Watch B
#include <stdio.h> Name [value
int main{void) a 2
{ . . b 3
int a,b,c: c 5
I——
b=3:
c=a+bh:
=] printf("%d+%d=%d",a,b,c);
return 8:
H
IL@ <[» [\ ¥atchl { Watch2

Figure 7.56: Tracing by setting breakpoints step 2.

We resume the execution by pressing F5, and the result is shown in Figure 7.57. The
console window will appear for a moment and quickly disappear, leaving no time
for us to see the result. To prevent the console from disappearing after the program
terminates, we can execute the program using command Build->Execute (Ctrl + F5).

306 —— 7 Execution of programs

B "D:\MYWIN32APP\Win32App\Debug\demo.exe"

2+3=bPress any key to continue

Figure 7.57: Tracing by setting breakpoints step 3.

7.6.1.2 Stepwise tracing
We can start stepwise tracing by selecting command Build—>Start Debug—>Step Into
or pressing hotkey F11.

The program will be executed starting from main function as shown in Figure 7.58.
Note that the Build menu will turn into the Debug menu.

[demo.cpp [o]-®
#include <stdio.h> =
int main(void) —

> {

int a,b,c;

a=2;

b=3;

c=a+b;

printf("%d+%d=%d",a,b,c);

return 8;]

A
=

o] oy

Figure 7.58: Stepwise tracing step 1.

To run the program step by step, we can use command Debug—>Step Over or press
hotkey F10.

Figure 7.59 shows the second step of stepwise tracing. Upon each press of F10,
one statement in the program is executed and the statement indication arrow
moves to the next line.

The third step is shown in Figure 7.60, where we inspect related variables in the
Watch window. Values of variable b and c are different from what are assigned to
them in the program because the assignment statements have not been executed at
this time. Hence random values are displayed here instead of the assigned values.

To run a program until a specified location, we can use the command
Debug—~>Run to Cursor or press hotkey Ctrl + F10.

Figure 7.61 shows the fourth step of stepwise tracing.

We first move the cursor to a specific location, for example, the return O state-
ment, then press Ctrl + F10 to run the program until the statement before return 0.

7.6 Examples of debugging =— 307

'Ia demo.cpp o |- =]

#include <stdio.h> =
int main{void) —
{
int a,b,c;
= a=2;
b=3;
c=a+h;
printf("%d+%d=%d",a,b,c);
return 08; L]
! -
-
L]

Figure 7.59: Stepwise tracing step 2.

[demo.cpp Watch B
#include <stdio.h> Name |Value
int main{void) a 2
{ b -858993460

int a,b,c; -858993460

a=2;
= b=3;
c=a+bh;
printf{"%d+2d=%d",a,b,c);
return 8;
3
[«]] »]\ watchl { Watch2

Figure 7.60: Stepwise tracing step 3.

[#) demo.cpp Watch [x |

#include <stdio.h> Name |Value

int main{void) a 2

{] . b 3
int a,b,c: c c
a=2; El&a 8x0819FF2c
b=3; N L
c=a+b; |l
printf("%d+%d=%d" ,a,b,c);

return 8;

> |
}
JQJ (| »]\ ¥atchl / Watch2

Figure 7.61: Stepwise tracing step 4.

308 —— 7 Execution of programs

The yellow arrow now points to statement return 0. As shown in Figure 7.62, we
can inspect values and addresses (variable names prefixed with & sign) of varia-
bles, and the console output.

m DAMYWIN32APP\Win32App\Debug\demo.exe
2+3=5

Figure 7.62: Console window.

Figure 7.63 presents multiple windows. 0x19ff2c is the address of variable a, whose
value is shown in Memory window. In Memory window, the leftmost column dis-
plays addresses in memory, while the first four columns to its right present contents
stored in these addresses in hexadecimal form. The last column is the text represen-
tation of memory contents.

& demo.cpp Watch E |Memory B
#tinclude <stdio.h> Name Value e .
int main{void) a |2 =) il
¢ b 3 pﬂ19FF2G 02 00 00 B0 A
int a,b.e: . BO19FF38 70 FF 19 88 p...
¢ > BO019FF34 39 12 40 80 9.@.
a=2; B &a BxBO19ff2c ||gp19FF38 01 00 00 60
b=3: ‘ BB19FF3C 98 OE 85 82
c=ath; BB19FF40 AB OD 85 B2
printf{"%d+%d=%d",a,b,c);) O019FF44 50 11 40 80 P.Q.
2 return B: BO19FF48 58 11 48 00 P.@.
3 B019FF4C 00 30 35 60 .65.
0019FF50 00 60 00 60
4] 4|»|\ ¥atchl { Watch2|||6019FF54 ©0 0O 00 680 Vv

Figure 7.63: Information in multiple windows.

7.6.2 Example of debugging

Mr. Brown prepared an assignment for his students, in which they were asked to
read a string that ended with a newline and output the string backward. For in-
stance, “ABCD” should be output as “DCBA.”

A student emailed his source code to Mr. Brown for help as shown in Figure 7.64.
He claimed there was a bug, but he could not find it.

We shall debug the program using the debugging environment in the IDE.
Steps of creating a project and a file were introduced in sections 7.1.1 and 7.1.2. In
this example, the project is located at D:\MYWIN32APP\ with the name test and the
source file name is Debugdemo.

7.6 Examples of debugging =— 309

Problem #include<stdio.h>

int main(void)
Enter a string (less than 80 characters) that ends with {
newline, output the string backwards. For example, inti,k,tmp;
given input "ABCD”, the output should be "DCBA”". char str[];
printf(“input a string:”);
i=0;
Main steps of debugging while((str[i]=getchar())!="\n")
i++;
» Create a project and a source file st,l-[i]zl'\ol;
« Format the code (modify in batch, format) k=i-1;
« Compile and check error messages for(i=0;i<k;i++)
« Insert/Delete breakpoints and execute with Go { tmp=str{i];
command str[i]=str[k];
+ Input in the console window str[k]=tmp;
« Inspect in Watch and Memory windows K++;
* Modify values in Watch window

b
for(i=0;str[i]'="\0";i++)
putchar(str[i]);

Figure 7.64: Debugging the reversed string program.

7.6.2.1 Editing the code

After setting up the project, Mr. Brown copied the file attached in the email to the
editor in IDE, only to find many “?” in the code as shown in Figure 7.65. Why was
this the case? It turned that programs copied from other files might contain other
characters due to using a different encoding. These characters should be eliminated
before compilation. To remove all “?” in this example in batch, we can use the
Replace command in the menu Edit.

@ Microsoft Visual C++ - [DA..\Win32App\DebugDome.cpp *]
[File Edit View Insert Project Build Tools Window Help
BeEd | ma(2-o-BEE® 0 =l

=1 =]l Tlx-[emes ¢ mel

#include<stdio. h>
int main(void)
?

| ‘IEN
It I
int i,k, tmp: | Find what: |‘_? LI J Find Next |

Replace

?? char str[]: Replace with: I =l j

2? printf(“input a string:” }: Replace
2?7 i=0: in——

29 while((str[il=getchar (}) 1= \n') [~ Match whole word only Replace in Replace All
29992 i++:’ , [~ Match case (" Selection

Z: itr [1i 1= 807 [~ Regular expression @ Whole file Cancel
?? k=i—-1: i

2? for (i=0;i<k; i++)
2?7 {? wmp=strlil;

2?2 for (i=0:str[il!=" \Q" :i++)

return

Figure 7.65: Copied program.

310 — 7 Execution of programs

After removing abnormal characters, Mr. Brown noticed that the code was not
aligned as required in the coding style. Because adjusting the alignment line by
line was tedious, it would be helpful if there were a “One-click align” command.
Fortunately, VC6 provides the “Format Selection” command, whose hotkey is Alt +
F8. As shown in Figure 7.66, the format of the code can be adjusted with a single
click using this command.

R — e A T W E:F...§WlnggﬁppﬁﬁiebuigEoimiei.cpipiﬁﬁ
[File |Edit View Insert Project Build Tools Window Help
|&] ©undo cul+z 7 ~1|%
— |® kel Ctrl+Y —le»:(vu®@é [} @‘
#incl & Cut Ctrl+X
'["t "& Copy Ctrl+C
ir @ Paste Ctrl+V
char
pr ir X Delete Del
i=0: salact Al Ctrl+A
whi
I+ @A Find... Ctrl+F
str|mmEge
k=i- % Find in Files...
1{‘”'“' Replace... Ctrl+H
SE’" Go To... Ctrl+G
;L: . % Bookmarks... Alt+F2
1
for | I crcmental Scarch cul-1
pu::: [E List Members Ctrl+Alt+T Format Selection Alt+F8
1 ke Type Info Ctrl+T Tabify Selection
%, Parameter Info Ctrl+Shift+Space Untabify Selection
42 Complete Word Ctrl+Space Make Selection Uppercase Ctrl+Shift+U
Make Selection Lowercase Ctrl+U
ab View Whitespace Ctrl+Shift+8

Figure 7.66: Format selected text.

7.6.2.2 Compilation

Mr. Brown clicked the compile button on the left end of Build MiniBar to compile
the source code currently being opened. Upon the first compilation, a dialog box
popped up as shown in Figure 7.67, asking whether he would like to create a project
workspace. He selected “Yes.”

The compilation result was shown in the message panel as shown in Figure 7.68.
There were 27 errors in total.

He double-clicked the first error, a tiny blue arrow appeared in the editor as
shown in Figure 7.69. The error message stated that the size of array str was un-
known, which is indeed a bug as the size of an array was necessary.

However, errors still existed after he changed the array size to 8 so he double-
clicked on the first error again and the screen was as shown in Figure 7.70. The
error message was “unknown character.” However, the print statement seemed
correct at a glance. Having no idea what was wrong, the professor had to type in
this line again. After careful observation, he noticed that the double quotation
marks were incorrect. Both half-width characters and full-width characters were

7.6 Examples of debugging =— 311

@ Micros isual C++ - [D:\..\Win p\DebugDome.cpp!
[Eile Edit View Insert Project Build Tools Window Help
DRI me oo [BEY W =l
=] | i [erms s m ol
2lx [#include<stdio. h>

int main(void)

int i.k, tmp:
char str[]:
printf(“input a string:"):

1=07
while((strlil=getchar 0)!=" \n')

1++;
strlil=" \0" :

=i-1:

@ This build command requires an active project workspace. Would
you like to create a default project workspace?

2(Y) | A(N)

Figure 7.67: First compilation.

=

Microsoft Visual C++ - [D:<...\Wm3mp<ﬁesugbome.cpp]

P
File Edit View [nsert Project Build Tools Window Help
D sEd | im0 |(BEE WP =1|%
| | BRI CEEREE]
24 [#include<stdio. h>

int main(void)

int i.k, tmp:
char str[]:
printf(“input a string:"):

i=0:
while ((str[il=getchar 0)!=" \n")
it+:

1 .
str[il=" \0' :
k=i-1:

@ This build command requires an active project workspace. Would
you like to create a default project workspace?

£(Y) | A(N)

Figure 7.68: 27 errors in compilation result.

acceptable in the editor, but only half-width punctuation marks were correct in

programs.

Mr. Brown recompiled the program after fixing the problem. There were 19 er-
rors this time as shown in Figure 7.71. The number had decreased a lot compared

with the initial one.

312 — 7 Execution of programs

@@ DebugDome - Microsoft Visual C++ - [DebugDome.cpp]
[File Edit View Insert Project Build Tools Window Help

SRR =) o R ~l'n

[(Glabals) _v|[(an global member v || @ main RS @ [ETR]

212 [#include<stdio. h>

EWorkspace 'DebugDome’: ° int main(void) e
--E DebugDome files { int ik tmp: co::_'::ra:'on
[# DebugDome. cpp | char strlls
printf(“input a string:"):
whlle((str[l] getchar 0)!=" \n")
for(l 0 i<k:it+t)
{ tmp=str[il:

strlil=strlk]:
str[k]=tmp;
s

]

for (i=0;str[il!=" \0" :i++)
putchar (str[i]):

return 0;

< >
"= ClassView | =] FileView 4

******************** Configuration: DebugDome — Win32 Debug————————
Compiling. .
DebugDome. cpp

[N

b : unknown size
\mywwn32app\W|n32app\debugdome CDD(()) error G2018: unknown character 'Oxal’
d:\mywin32app\win32app\debugdome. cpp (6) : error G2018: unknown character 'Qxb0’

Figure 7.69: Compilation error 1.

@ DebugDome - Microsoft Visual C++ - [DebugDome.cpp]
[File Edit View Insert Project Build Tools Window Help
2 =Edd R oE @ 1| %
[(Globals) _~|[tan global member || @ main BB D
2l #include<stdio. h>
E Workspace 'DebugDome’: ! int main(void)

- EdDebugDome files f c e
int i : ompilation
[#1 DebugDome. cpp int ik t'"p: [PTEL]
char str[8]: error 2
- printf(“input a string:")

i=

whl\e((str[l] getchar 0)1=" \n’)
str[i]=' \Q’

K .

for (i=0; i<k; i++)

{ tmp= striil:
strlil=strik]:
str[k]=tmp;
kt+:

1

for (i=0:str[il!=" \0" :it++)
putchar (str[il):

return 0;

1

< >

"= ClassView | =] FileView q

[E

******************** Configuration: DebugDome — Win32 Debug———————

\MyW\n32App\W|n32App\DebugDome cpp(é) : error G201 unknown character '0xb0’
D: \MyWin32App\Win32App\DebugDome. cpp (6) : error G206 "input' : undeclared identifier

Figure 7.70: Compilation error 2.

7.6 Examples of debugging =— 313

@ DebugDome - Microsoft Visual C++ - [DebugDome.cpp]
[File Edit View Insert Project Build Tools Window Hel
) P
glzda o @ [=]
[Globals) _v|[(an glabal member | @ main RAE ST [EN
| x| #includedstdio. h>
EWorkspace 'DebugDome’: ! |{nt main(void)

= EDebugDome files

DebugDome. cpp int ik tmp:

char str[8]:
printf("input a string:"):
1=0;

while ((strli]=getchar 0)!=" \n')

str[il=" \0Q" ;

k=i—-1:

for (i=0:i<k:i++)

{ tmp=strlil:
strlil=strlk]:
str[k]l=tmp:
ktt:

]

for (i=0;str[i]!=" \0Q" ;i+t)
putchar (str[il):

return 0;

< >
"™ ClassView | =] FileView q

= D: \MyWin32App\Win32App\DebugDome. cpp (18) : error G2018: unknown character 'Oxaf’
D:\MyWin32App\Win32App\DebugDome. cpp (20) : error G2018: unknown character 'Oxa3’
D:\MyWin32App\Win32App\DebugDome. cpp (20) : error C2018: unknown character 'Oxbb’
D:\MyWin32App\Win32App\DebugDome. cpp (21) : error C2143: syntax error : missing ':' before '}’
Error executing cl. exe.

DebugDome. obj — 19 error (s}, Q warning(s)

Figure 7.71: 19 errors in compilation result.

Double-clicking on the first error again, he found that the error indication arrow
was on the line of while statement as shown in Figure 7.72. Having seen the full-
width quotation mark error above, Mr. Brown immediately figured out that the single
quotation marks were the error. There were multiple occurrences of this error in the
program so he fixed them all at once. As shown in Figure 7.73, the number of errors
decreased to three after compilation again, which was reduced a lot.

After double-clicking on the first error, the error indication arrow was on the
line of the return statement as shown in Figure 7.74. Mr. Brown quickly noticed that
it was the full-width semicolon that led to the error. Compilation succeeded after
this error was fixed as shown in Figure 7.75.

We can conclude from the above compilation process that the number of errors
is often reduced a lot if we recompile after fixing one error. This demonstrates that
an error can cause subsequent errors. Hence, we only examine the first error and fix
errors one by one when inspecting the compilation result.

7.6.2.3 Linking

Mr. Brown clicked the second button in Build MiniBar to link files after compila-
tion succeeded. DebugDemo.exe was generated after linking succeeded as shown
in Figure 7.76.

314 — 7 Execution of programs

@ DebugDome - Microsoft Visual C++ - [DebugDome.cpp]
[File Edit View Insert Project Build Tools Window Help
ER=R=]-] Eel oRE | W[=]/
[(Globals)][A global member v || @ main yR-||e@mx 1RO
| | #includedstdio. h>
B Workspace 'DebugDome’: * '{nt main(void)

=& DebugDome files

[#] DebugDome. cpp int i k. tmp:

char str[8]:
printf("input a string:"):

Compilation

error 3

i=l

-] whiig((str[i]=ge‘cchar(})!=' \n'

k=i-1:

for (i=0;i<k; i++)

{ tmp=strlil:
strli]=strlk]:
str[k]=tmp;

++;

]
for (i=0;str[i]!=" \0" ;i+H)
putchar (str[il):
| return 0;
< >

"= ClassView | Z] FileView Kl

ﬂ ******************** Configuration: DebugDome — Win32 Debug———————
Compiling. ..
DebugDome. cpp

D:\M

:\ in32App\Win32App\DebusDoms. cpp (8) : error $2018: unknown character
D:\MyWin32App\Win32App\DebugDome. cpp (8) : error C2018: unknown character 'Oxaf’
D:\MyWin32App\Win32App\DebugDome. cpp (8) : error $2017: illegal escape sequence

Figure 7.72: Compilation error 3.
@ DebugDome - Microsoft Visual C++ - [DebugDome.cpp]

H@ File Edit View Insert Project Build Tools Window Help

8 zad | na oo [mEE @ 1|
J[Gluhals] _v|[@ain global member_~ || & main R - ,J@ s
alx| #include<stdio. h>

& Workspace 'DebugDome’: * i[”t main (void)
=¥ DebugDome files
[#1 DebugDome. cpp

1 E e

int i.k.tmp:

char str[8]:

printf("input a string:"):

i=0;
while((strlil=getchar) !="\n")

k=i-1:

for (i=0:i<k:i+t)

{ tmp=strlil:
strlil=strlk]:
strlk]=tmp:
k++;

1
for (i=0:str[il!="\0":i++)
putchar (str[il):

return 0;
1
< >
"2 ClassView | =] FileView P
ﬂJ ———————————————————— Gonfiguration: DebugDome - Win32 Debug———————————"""—"""—
</ |Compiling...

DebugDome. cpp

D:\MyWin32App\Win32App\DebugDome. cpp (20) : error C2018: unknown character 'Oxa3’
D:\MyWin32App\Win32App\DebugDome. cpp (20) : error G2018: unknown character 'Oxbb’
D:\MyWin32App\Win32App\DebugDome. cpp (21) : error (2143: syntax error : missing ':' before ']’
Error executing cl.exe.

DebugDome. obj — 3 error(s), 0 warning(s)

Figure 7.73: 3 errors in compilation result.

7.6 Examples of debugging =— 315

@@ DebugDome - Microsoft Visual C++ - [DebugDome.cpp]
[File Edit View Insert Project Build Tools Window Help
SR = D~ o A MM
[G1obals) _~|[(an global member ~ || @ main ~R-|[E@s 1RO
alx #inc\ur}e(stqio. h>
EWorkspace 'DebugDome’: * '{nt main (void)

- EdDebugDome files

[£ DebugDome. cpp int ik, tmp:

char str[8]:
printf("input a string:"):

whl Ie((str[\] =getchar 0} !1="\n")

for(l 0 i<k:itt)
tmp=strlil:
strlil=strlk]:
str[k]=tmp:
ktt:

]

for (i=0:strlil!="\0":i++)
putchar (str[il):

- return 0;
] Compilation
< > error 4

"% ClassView | Z] FileView 4

ﬂ ———————————————————— Gonfiguration: DebugDome — Win32 Debug———————————
Compiling
\DebugDome. cpp (20} error 62018: unknown character 'Oxa3d’
D: \Mlen32App\W|n32App\DebugDome cpp (20) : error C2018: unknown character 'Oxbb’
D:\MyWin32App\Win32App\DebugDome. cpp (21) : error C2143: syntax error : missing ':' before '}’

Error executing cl.exe.

DebugDome. obj — 3 error(s). 0 warning(s)

Figure 7.74: Compilation error 4.

@ DebugDome - Microsoft Visual C++ - [DebugDome.cpp]
J@ File Edit View Insert Project Build Tools Window Help

|8 @@ meor - DR A [

“[GInbaIs] J|[AII global member v || & main ~R - H SWx Y E @‘
2lx| #include<stdio. h>
@ Workspace 'DebugDome’: ° |{nt main(void)

= E DebugDome files

[#1 DebugDome. cpp int ik, tmp;

char strl8]:
printf("input a string:");

i=0;

while ((strlil=getchar O} !="\n")
i++;

strlil="\0":

k=i-1:

str[l] str[k]
str[k]=tmp;
kt+:

]
for (i=0;strLil!="\0";i++)
putchar (str[il):

return 0:
i
< >
=% ClassView | [Z] FileView ‘<
ﬁ‘*f*f*f*f*f*f*fﬁ*f*fconfiguration: DebugDome — Win32 Debug—————————
— |Compiling. ..

DebugDome. cpp

DebugDome. obj — 0 error(s), 0 warning(s)

Figure 7.75: Compilation succeeded.

316 —— 7 Execution of programs

@ DebugDome - Microsoft Visual C++ - [DebugDome.cpp]
[File Edit View Insert Project Build Tools Window Help

A EHG Eel =il ~||%a

[(Globals) _v|[(an global member || ¢ main B SEs RN

alx #include<stdio. h>
int main(void)

E Workspace 'DebugDome': °
=-EDebugDome files int ik tmp:

8 k. :

[&1DebugDome. cpp char stri8];
printf("input a string:"):
i=0

i=0;
while ((str[il=getchar)} !="\n")
i+t
strlil="\0":
k=i-1:
for (i=0:i<k:i++)
[tmp=strlil:
strlil=strlk]:
strlk]l=tmp:
k+t:

1
for (i=0;str[ill="\0";i++)
putchar (str[il):

return 0;
£ > :
ﬂfffff *************** Configuration: DebugDome — Win32 Debug—————"———
Linking. ..

DebugDome. exe — 0 error(s). Q0 warning(s)

Figure 7.76: Generate exe file by linking.

7.6.2.4 Execution

Mr. Brown clicked the exclamation mark button in the Build MiniBar, and the result
of the program was shown in the console. As shown in Figure 7.77, given the input
“hello,” only character “0” was output, which was incorrect.

—

[= "DAMyWin32App\Win32App\Debug\DebugDome.exe” — &

input a string:hello)
oPress any key to continue

Figure 7.77: Wrong execution result.
7.6.2.5 Debugging
7.6.2.5.1 Insert breakpoint

Mr. Brown noticed that the input was read into array str character by character using
a while loop, thus he decided to verify whether the input was correctly read first.

7.6 Examples of debugging =— 317

He inserted a breakpoint by left-clicking on the line after while loop and clicking
the hand shape button in Build MiniBar as shown in Figure 7.78.

@ Win32App - Microsoft Visual C++ [break] - [DebugDom
A EHP | R D DR G =]

[Eile Edit View Insert Project Debug Iools Window Help

[(Globals) [N global member ~|[main ~R-|S & 1tE®
#include<stdio. h>
int main(void) Watch Memory n
f int i.k tmp: Name Address: [0x18ffzc
char strl16]: ! 018FF1C CCGC GCGC ~

018FF20 CGGG GGGG
018FF24 CCCC CCCC

K printf (“input a string:™): B str
Next statement mar i=0;
while((str[i]=getchar 0)!="\n")
it

e 018FF28 COCC COCC
i+ - o 018FF2G CCCC COCG

® strlil=\0%: Eom 018FF30 CCCC GOCC
k=i-1: = [2] 018FF34 GGG GGG

For (1=0; i <k; i++) S 018FF38 CGCG GGG

" tmo=striil; S 018FF3C CCCC CCCC
strlil=strik]: L s 018FF40 CCCC COCC
strlkl=tmp: Lt 018FF44 0000 0000

ks T 018FF48 FF88 0018

] E 1 018FFAC 1949 0040

For (i=0:str[i11="\0"; i+4) 018FF50 0001 0000
putchar (strLil) : (9] 018FF54 CQE90 0212

T
=

018FF58 OQDAQ 0212
018FF5C 1860 0040

return 0:

Figure 7.78: Insert a breakpoint.

After entering stepwise tracing by pressing F10, the debugger will add a yellow
arrow on the left of program lines, indicating the next statement to be executed.
Upon one F10 click, one line of code will be executed (if there are multiple state-
ments in a line, all of them will be executed).

Before while loop was executed, there was no input. The value of i was 0. The
address of array str was 0x18ff2c and the elements in it were all -52, which corre-
sponded to the Chinese character “3%” and hexadecimal number CC. To be able to
type in more characters, Mr. Brown changed the size of the array to 16.

Good programming habit
Write one statement in a line for easier debugging.

7.6.2.5.2 Inspect input
After clicking the Go button (next to the exclamation mark button) in Build
MiniBar, the console window popped up with the message “input a string:” Mr.
Brown typed in “hello,” the debugger returned to the main screen of IDE, where
the program was paused at the breakpoint as shown in Figure 7.79. Meanwhile,
in the Watch and Memory window, the value of i was changed to 5 and str[5] was
ASCII value 10, which corresponded to a newline. In conclusion, the input was
read correctly.

As the input was correct, he proceeded to check whether data processing was
correct.

318 —— 7 Execution of programs

@@ Win32App - Microsoft Visual C++ [break] - [DebugDome.c
2@ me o= DEY @ =
File Edit View Insert Project Debug Tools Window Hel
B Eile Edit Vi j bug Tools Wind Ip
:|[Glubals] || global member v |[# main Rk v‘ Sl v EL
#include<stdio. h>
int main(void) Watch = | Memory B
g 6] o . 0187720 |u£B:;c¢c 80 hell
char str[16]: = el ~
printf("input a string:"): H str g)h(ﬂll}1|8ff20 0018FF30 R
i=0; 4 Ozﬁﬁﬁ 0018FF34
while((str[il=getchar))!="\n") [adal ool i gg}giggg
i+t il e
O strlil=\0': - [0l 104 thT 0018FF40
k=i—1;: — 1101 e 0018FF44
for (i=0;i<k; i++) - 2] 108 1 0018FF48
{ tmp=strlil; — [3] 108 "1 0018FF4C
strlil=strikl: —o[41 111 et 0018FF50
strlk]=tmp: - [51 10 ' 0018FF54
+ ' 0018FF58
} CUtelZs2 e 0018FF5C
for (i=0:strlil!="\0":i++) L 52 "2 0018FF60
putchar (str[il): Y Z52 s 0018FF64
return 0: 5 0018FF68
1) S T ot 0018FF4G e
(W D:AMYWIN32APP\Win32App\Debug\Win32App.exe - b
input a string:hello A

Figure 7.79: Input data.

7.6.2.5.3 Trace

There were two for loops in the processing part. The first one was used to reverse
the string, whereas the second one was used for output. Mr. Brown started with the
first loop. In each iteration, values of str[i] and str[k] were swapped; therefore, vari-
ables he needed to watch were i, k, str[i] and str[k], which were listed in the Watch
window. As shown in Figure 7.80, i =0 and k =4 before the swap, which were the
Oth and last index in the input string. Values of str[i] and str[k] were str[i] = ‘h’ and
str[k] = ‘0’, which would be swapped in the loop body.

#include<stdio. h>
int main(void) Watch n
{ L Name [value

int i,k tmp; : 0

char str[16]: q
printf("input a string:"): 8 str c/_ Input string “hello”
i=0;

i il= I="\pn' k 4
"hll?ffftr['] gotohar O)1=n) |l Certil 104 '
® strlil="\0"; strlk] 111 ‘o’
k=i-1; i
for (i=0:i<k: i+t)
{ tmp=str[il:
o strli]=str[k]:
str[k]=tmp:
k++:
]

Figure 7.80: Process tracing 1.

7.6 Examples of debugging =— 319

In Figure 7.81, the swap in the loop body had been executed and the result indi-
cated that the swap was successful.

#include<stdio. h>
int main(void) Watch ﬂ
{ . . Name |Value
int i.k.tmp; i 0 ‘h” and ‘o’ are
Chartwit(:'[m]j: g - H str 0x0018ff2c/ swapped successfully
?;6” mnpu a string: .
- S V=i ot k 4
whwl?iﬁtr[l] getchar) 1="\n") strlil 111 of
® strlil=\0: _ostrlk] 104 'h’
k=i-1:
for (i=0;idk; i+t
{ tmp=strlil:
strlil=strlk]:
strk]l=tmp:
= ket
]

Figure 7.81: Process tracing 2.

In Figure 7.82, i=1 and the program had entered the next iteration. The characters
to be swapped this time were ‘e’ and ‘1.” Although str[i] = ‘e’ in the Watch window,
the value of str[k] was 0. Professor found the problem after careful inspection: logi-
cally, the value of k should decrease but not increase, so k++ was the root cause.

#includedstdio. h>
int main(void) Watch n
{ . . Name ‘Value
int |.|ﬂ.‘|c:mp::| i]
char str[16]:
printf ("input a string:"}; str QXO?]EffZC
i=0: « 5
hil tr[il=getch 1="\n' I alue o ould de
whi ?gs rlil=getchar 0)!="\n") cerlil @ﬁ e or ids
[] strlil="\0": [k] Lo '
k=i-1 :
for (i=0:i<k: i++)
= { tmp=strlil:
strlil=strlk]:
strlk]l=tmp:
kt+;

!

Figure 7.82: Process tracing 3.

7.6.2.5.4 Fix the error

Mr. Brown did not exit debugging to modify the code after finding the error. Instead,
he changed the value of k in the Watch window to 3 and continued tracing as shown
in Figure 7.83.

He then repeated this process by modifying the value of k in each iteration
until the array str was completely reversed as shown in Figure 7.84. The second for
loop should be correct as all it did was outputting the contents of array str.
Professor inserted another breakpoint at the return statement.

After clicking the Go button, the correct output “olleh” was displayed in the con-
sole as shown in Figure 7.85.

320 — 7 Execution of programs

#include<stdio. h>
int main(void) Watch H
{ . . Name |Vmue

int i,k tmp; i 1

char str[16];

printf("input a string:"): str QO]Ef'FZc Directly change
i=0; K value of k to 3
while((str[il=getchar }}!="\n"}

P4t strlil 101 ‘e’
® strlil="\0"; 108 "1
k=i—-1:
for (i=0:i<k:i++)
= { tmp=strlil:
strlil=strlk]:
strk]=tmp;
k++:

]

Figure 7.83: Process tracing 4.

#includedstdio. h>

int main(void) Watch n

{ . . Name |Vahe
int i,k, tmp; i 0
char str[16]: o M str 0x0018Ff2c
printf("input a string:"): "ol leh”
i=0: K 2° &
hil trlil=getch I="\n'
whi EI!JEJES rlil=getchar Q) !="\n") strlil 111 o

® strlil="\0": 108 "I

k=i-1:

for (i=0;i<k; i++)

{ tmp=strlil:
strlil=strlkl:
strlk]=tmp:
kt+:

]
for (i=0:strlill="\0";i+t+)
2 putchar (str[il):

return 0;
H

Figure 7.84: Process tracing 5.

As debugging was done, Mr. Brown added captions to the screenshots of the de-
bugging process and sent them back to the student. When reviewing them later, he
noticed that there was a typo in the file name and multiple screenshots were affected.
He really hoped the compiler could do a spell check, but that would be another story.

7.6.3 Example of using the call stack

We mentioned in Section 7.4.4 that the execution path of a program is automatically
recorded in a stack. Doing so enables us to quickly locate the function in which errors
occur by inspecting the top of the stack upon a program crash. In particular, this
stack refers to the Call Stack in IDE, which we can see in Debug windows as shown
in Figure 7.86.

7.6 Examples of debugging =— 321

#include<stdio. h>

int main(void) Watch

{) . Name |Va|ue
int i, k, tmp; i 5
char str[16]; o str 0x0018FF2c
printf("input a string:"): "ol leh™
whiI?iiftr[i]=getchar())!='\n’) "”:£E[i] "g'Tf"”""”"'”

L strlil="\0";: .strlk] 108 'I'
k=i—-1:

for (i=0:i<k; i++)

[tmp=strlil;
strlil=strlk];:
strlk]=tmp;
kt++:

1
for (i=0:str[il!="\0":i++)
putchar (str[il):
) return 0:

m DAMYWIN32APP\Win32App\Debug\Win32App.exe

input a string:hello
olleh

Figure 7.85: Process tracing 6.

Win32App - Microsoft Visual C++ [run]
d sEHE mE D DEE A7 =l n
File Edit View Insert Project Debug Tools Window Help
(Globals) e main ~[R- SN
R StackDemo.cpp
#incl
int
int m & Full Screen
i Workspace Alt+0
~ s Qutput Alt+2
] Debug Windows > JRRTIRW Alt+3
P Call Stack Alt+7
] X Memo Alt+6
I Properties Alt+Enter ol Y *
. Variables Alt+4
int max(int x. int y)
{ Registers Alt+5
int z: i
Disassembly Alt+8
if y) z=x:
else z=y:
return (2):
}
el |

Figure 7.86: Call stack.

322 — 7 Execution of programs

We shall use an actual program as shown in Figure 7.87, to demonstrate how this
stack works. Upon execution, we enter the main function first and the stepwise trac-
ing arrow points to the function to be called, namely max(). In the Call Stack win-
dow shown in Figure 7.88, we can see that the current function arrow points main,
line 8. We count line numbers starting from the line of include (empty lines also
count). The function call happens exactly on line 8.

B StackDemo.cpp = B

#include <stdio.h> =
int max(int x. int y):
int main(void)

int a.b.c:

scanf ("%d, %d". 8a. &b) ; Call Stack . [= |
S c=max (a, b): main() line 8

printf ("max=%d".¢): WIN32APP! 004012f9() line 206 + 25 bytes

return 0: KERNEL32! 772a919f ()

] APPO1! 7761ad2f ()
APPO1! 7761acfa()

int max(int x. inty)
int z:

if (x0y) z=x:
else z=y:
return (2):

Figure 7.87: Call stack inspection 1.

B StackDemo.cpp = | G [

#include <stdio. h> -
int max(int x. int y):
int main(void)

int a.b.c:
scanf ("%d, %d". 8a. 8b) ; Call Stack a
c=max (a. b) : <omax(int 2, int 5) line 14
printf ("max=%d".c) : main() line 8 + 13 bytes
return 0; WIN32APP! 004012f9() line 206 + 25 bytes

] KERNEL32! 772a919f ()

APPO1! 7761ad2f ()

" int max(int x. inty) APPO1! 7761acfa()
{

int z:

if (x>y) z=x;
else z=y:
return (z):

Figure 7.88: Call stack inspection 2.

Observing the Call Stack window after the program jumps to child function max, we
notice that max becomes the current function and the program is currently at line
14. Arguments of the function are also displayed, which are consistent with the ar-
guments shown in the Watch window as shown in Figure 7.89.

As shown in Figures 7.90 and 7.91, the value of line in Call Stack increases as
stepwise tracing continues. Hence, we do not have to trace a program step by step

7.6 Examples of debugging =— 323

StackDemo.cpp =] = [
#include <{stdio.h> =
int max(int x. int y):
int main(void)

int a.b.c:
scanf ("%d, %", 8a,8b); | Watch B call stack a
c=max (a. b) : Name [value > max(int 2. int 5) line 14
printf ("max=%d".c) : X main() line 8 + 13 bytes
return 0: y 5 WIN32APP! 004012f9() line 206 + 25 bytes
] 1 KERNEL32! 772a919f ()
APPO1! 7761ad2f ()
L, int max(int x, inty) APPO1! 7761acfa()
int z:
if Goy) z=x:
else z=y:
I return (z):

el | '\ Watchl { Watch2 3 Watcl|| < >

Figure 7.89: Call stack inspection 3.

StackDemo.cpp = | = [
#include <stdio. h> -
int max(int x, int y):
int main(void)

int a.b.c:
scanf ("4, %", 8a.8b): | WWatch Bl | Call stack a
c=max (a, b) ; Name [value o max(int 2, int 5) line 17
printf ("max=%d", c) : x 2 main() line 8 + 13 bytes
return 0: y 5 W|N32APPE 004012f98 line 206 + 25 bytes
} - KERNEL32! 772a919f
2 858993450 APPOT! 77612d2f ()
int max(int x. inty) APPO1! 7761acfa()
[
int z:
> if (x>y) z=x:
else z=y:
return (2):
el | "I\ Watchl £ Watch2) Watck|| < >

Figure 7.90: Call stack inspection 4.

B StackDemo.cpp EEREON "X
int a.b.c: z]
scanf ("%d, %d", &a, &b) ; [
c=|pax1£e(1.b : %d=.c)
printf ("max=%d".c):
return 0: Watch | Call Stack [~]

} Name [value Pmax(int 2. int 5) line 19
X 2 main() line 8 + 13 bytes
int max(int x. inty) y 5 WIN32APP! 004012f9() line 206 + 25 bytes
{ z 5 KERNEL32! 772a919f ()
int z: APPO1! 7761ad2f ()
APPO1! 7761acfa()
if (x>y) z=x:
else z=y:
> return (z):
}
|
el | ']\ Watchl { Watch2 |I < >

Figure 7.91: Call stack inspection 5.

324 — 7 Execution of programs

when some statement causes system failure. As long as the failure is reproducible,
we can find the error statement by inspecting the top of the call stack.

7.6.4 Example of using data breakpoint

We have seen examples of location breakpoints and now we are going to cover how
to set and use data breakpoints.

7.6.4.1 Source code and execution result
The source code and execution result are shown in Figure 7.92.

#include "stdio.h"
#include"string.h"

int main(void)

{
char stri[12]="hello world";

char str2[4]; strl : hello world

inti=0; putchar str2: 12345678
12345678

printf(“strl : %s\n", strl); strl : 5678

printf(“putchar str2: 12345678\n"); world

do str2 : 12345678

world
str2[i]=getchar();

while (str2[i++]!1="\n");
// str2[i]="\0";

printf(“strl : %s\n", strl);
printf("str2 : %s\n", str2);
return 0;

Figure 7.92: Example program of debugging using data breakpoints.

The program is straightforward. There are two character arrays, strl and str2. The
value of strl is determined during initialization, whereas that of str2 comes from
keyboard input. At the end of the program, characters in these arrays are output.

The execution result is problematic, in any case. The output of strl was correct
before str2 was input. However, it was changed after str2 was input.

7.6.4.2 Debugging plan
According to the erroneous result being displayed, the first half of str is changed
while the second half is not. Values of str1[0] and str1[1] are 5 and 6, respectively.

7.6 Examples of debugging =— 325

Because 5 is entered before 6, the error must have happened when str1[0] was
changed. By pausing the program at this point, we can investigate the root cause of
the error. Our debugging steps are as follows:

— Execute the program step by step, observe strl and str2 before str2 is input.

— Insert a data breakpoint to watch str1[0].

— Type in all input data at once in the console in tracing mode.

— Execute Go command and wait for the moment data breakpoint is encountered,

which is also the moment error occurs.

7.6.4.3 Tracing and debugging

7.6.4.3.1 Inspect contents of array strl and str2 before str2 is assigned a value

As shown in Figure 7.93, the content of strl is its initial value. However, the content
of str2 is weird. This is because the IDE stops the display of character array upon
seeing the terminating character. The length of str2 is 4, which corresponds to two
Chinese characters, “%# %" (recall that a Chinese character takes up 2 bytes).

#include "stdio.h" Watch =
#include”string.h" Name [value
{H str1 Bx0019FF24 "hello
int main(void) world"
{ str2 Bx0019fF20 "D

char str1[12]="hello world™;
char str2[4];
int i=8;

hello world™

\ Watchl { Watch2 3 Watch3 % W

printf{"str1, %s\n", str1);|

> printf("putchar str2: 12345678\n"); Memory a
do Address: [0x019ff20
str2[i]-getchar(); 8019FF28 CC CC CC CC 740
3 0019FF24 68 65 6C 6C hell
while (str2[i++]?='\n'); B019FF28 6F 20 77 6F o0 wo
Iy Stl‘2[i]='\ﬂ'; 8619FF2C 72 6C 64 90 rld.
0019FF30 70 FF 19 60 p...
printf(str1, %s\n", stri); 0019FF34 39 12 40 60 9.Q.
printf(“str2, %s\n", str2): 0019FF38 ©1 00 00 00
return 0; 0019FF3C 90 OE 7C 60 ..|.
@) 0019FF40 AO 6D 7C 60 ..|.
AA10QFE MM CA 141 WA QA [T]

Figure 7.93: Debugging using data breakpoint step 1.

7.6.4.3.2 Insert data breakpoint

As shown in Figure 7.94, we select the breakpoints sub-menu in the menu “Edit” and
choose the “Data” tab. After that, we enter the expression to be watched, str1[0], in
the text area, “Enter the expression to be evaluated.” The IDE then automatically
completes other configurations and adds a breakpoint at the end of the program.

326 =—— 7 Execution of programs

#include “stdio.h" Breakpoints [-®

#include"string.h"
Location Data | Messages 0K
int main{void)
¢ Enter the expression to be evaluated: Cancel
char stri[12]="hello world"; [strrpo) j
char str2[4];

int i=0; Break when expression changes.
printf{"str1; %s\n", stri); Enter the number of elements to watch in an array
printf("putchar str2: 12345678\n"); or structure:
do ’—
1

str2[i]=getchar();

while (str2[i++]*="\n");

/7 str2[i]="\8"; Breakpoints:

v at '{,demo.cpp.} .23'

Remove
printf("str1, %s\n", stri);
printf{“str2; %s\n", str2); Remove All

return 0;
[} L _. Inserted by the
IDE automatically

Figure 7.94: Debugging using data breakpoint step 2.

Returning to stepwise tracing, we enter “12345678” in one go when encounter-
ing getchar() in the do-while loop as shown in Figure 7.95. Then we continue the
execution by pressing the “Go” button in Build MiniBar. A window pops up, indi-
cating that a break has happened and the value of str1[0] has been modified as
shown in Figure 7.96.

printf("str1; %s\n", stri); i
printf("putchar str2: 12345678\n"); | *' DAMYWINS2APP\Win32App\

do strl: hello world
{) putchar str2: 12345678
str2[i]=getchar(); 12345678
} |
o while (str2[i++]t="\n"');

/7 str2[i]='\8';

printf("str1, %s\n", stri);
printf{"str2, %s\n", str2);
return 8;

Figure 7.95: Debugging using data breakpoint step 3.

In the Watch window shown in Figure 7.97, we see that str1[0] has been changed to
5. The value of i is 4, so the change happened when assigning values to elements of
str2 in the do-while loop. The root cause of this error is that strl is right after str2 in
memory. The size of array str2 is 4 bytes, thus a string longer than 4 bytes will over-
ride elements of strl. It is not hard to find the error in this case. One could figure
out the error if he noticed the addresses of two arrays. However, the lesson we can
learn from this example is that with proper use of breakpoints, we can capture the
moment an error occurs without tracing the program step by step.

printf("str1; %s\n", str1);
printf("putchar str2: 12345678\n");
do

{

str2[i]=getchar{};
H
o wvhile (str2[i++]?="\n");
/4 str2[i]='\@0";

printf(“str1; %s\n", stri);
printf("str2; %s\n", str2);
return 9;

>

Figure 7.96: Debugging using data breakpoint step 4.

7.7 Summary =— 327

Microsoft Visual C++ X

0 Break when 'str1[0]' (length:1) changes

[ok

#include "stdio.h"
#tinclude’string._h"

int main{void)

{

char str1[12]="hello world";
char str2[4];
int i=9;
printf("str1; %s\n", stri1);
printf("putchar str2: 12345678\n");
do
{

str2[i]=getchar();
H
= vhile (str2[i++]t="\n");

/7 str2[i]='\0";

printf("str1; %s\n", str1);|
printf("str2; %s\n", str2);
return 8;

L

Watch
Name lVaIue | A
str1 Bx0019FF24 “S5ello

world"

str2 0x0019fFF206
“12345ello world™
N

v
\ Watchl { Watch2) Watch3 } ¥4

Memory B

Address: [[lx[]l 9ff20

0019FF20 31 32 33 34 1234 A
0019FF24 35 65 6C 6C 5ell
0019FF2B 6F 28 77 6F o wo
0019FF2C 72 6C 64 00 rld.
0019FF30 70 FF 19 80 p...
0019FF3L4 39 12 40 00 9.@.
0019FF38 ©1 00 00 00
0819FF3C 98 OE 6B 82
0019FF40 A0 OD OB 02

D A

ORA0EE WL CA 414 hwR A0

Figure 7.97: Debugging using data breakpoint step 5.

7.7 Summary

The main concepts in this chapter and their relations are shown in Figure 7.98.
We need to design test cases carefully before debugging.
Input and expected output should be determined.
Normal, exceptional, and edge cases should be considered.

We must be detail-oriented to be perfect

Do not panic when errors occur in the compilation.
Read the error message carefully to find what is wrong.

Errors may be caused by other errors.

328 —— 7 Execution of programs

So we should fix them one at a time.

We should compare execution result with the expected result,

And review the program logic if they are inconsistent.

Setting breakpoints, tracing step by step, watching variables, inspecting mem-
ory are all debugging techniques.

We find bugs by thinking and analyzing carefully, and eventually, we get the
result right.

Create a project: set up resource environment for the program to be
executed

Create a source file: create a file for the program
Edit a source file: edit the program, the file extension is .cpp

Compile: check for syntax errors in the program and generate object
program with extension .obj

Link: link and construct executable program using object program,
the file extension is .exe

Execute: execute the .exe file
Result: see result in the console window

Vc development
environment

Testing: a process of comparing actual output with expected output
Test case: a combination of input data, execution conditions and
expected results used to test whether the program is written as
required

Principle of designing test cases: use a small amount of test cases
that help us find errors efficiently, consider both valid and invalid
input, be as comprehensive as possible

Testing method: white-box testing, black-box testing

Program .

Testing order: bottom-up, top-down

Bug: defects or problems in computer systems

o or programs
Definition . .
Debug: the process of solving problems in

software using debugging tools
Process tracing: trace by statements, trace by

Debugging segments, display the order of function call
strategy Result inspection: display of a single variable,

array variables and variable addresses

Debugging

Execution pace controlling: stepwise execution,

Debugger jumping execution
function Execution status inspection: variable values,

memory values, register values, stack
Execution controlling commands: step-over,
Debugging step-into, breakpoints, step-out
command Execution status inspection windows: Watch,

Variables, Memory, Registers, Call Stack

Figure 7.98: Concepts related to program execution and their relations.

7.8 Exercises =—— 329

7.8 Exercises

7.8.1 Multiple-choice questions

(1) [Program errors]

@

G

Which of the following errors is not detectable by computers during de-
bugging? ()

A) Compilation error

B) Runtime error

C) Logic error

D) All errors are detectable

[Debugging and testing]

Which of the following statements is wrong? ()

A) The purpose of testing is finding and correcting errors.

B) Locating the error is a necessary step in debugging.

C) We call the process of finding bugs “debug.”

D) We should follow the testing plan in testing to eradicate randomness.

[Software testing]

When using the white-box testing method, we should design test cases based on
()

A) The internal logic of the program

B) Complex structure of the program

C) The functionality of the program

D) Manual

7.8.2 Debugging exercises

Note: In each problem, we show the lines with bugs. Please correct them without
adding or deleting any line.

)

Functionality

Given an integer n, the program outputs the sum of its digits (e.g., if n=1308,
the program outputs 12. If n = —3204, the program outputs 9.)

There is an error on line 6 and one on line 9.

01 #include <stdio.h>
02 int main(void)

03 {

04 int n,s=0;

330 —— 7 Execution of programs

(2) Functionality
Given a string input, the program stores its characters into a string t, reverses
the string and appends it to t*. For example, given input “ABCD”, the string t
should be “ABCDDCBA.”
There is an error on line 10 and one on line 11.

7.8 Exercises = 331

(3) Functionality
Given input a =3 and n = 6, the program outputs the value of the following ex-
pression: 3 + 33 + 333 + 3333 + 33333 + 333333
There are two errors on lines 10 and 11.

01 #include <stdio.h>

02 int main(void)

03 {

04 inti,a,n;

05 long t=0,s=0;

06 scanf ("%d%d",&a,&n);

07 t=a;

08 for (i=1; i<=n; i++)
09 {

10 t=t*10+i;

11 s=s+t;

12 }

13 printf("%ld\n",s);
14 return 0;

15 %

(4) Functionality
Given input n, the program outputs all prime factors of it (e.g., if n = 13860, the
program outputs 2, 2, 3, 3, 5, 7, 11)
There is an error on line 7 and one on line 15.

01 #include <stdio.h>
02 int main(void)

03 {

04 intn,i;

05 scanf("%d",&n);

06

07 i=1;

08 while (n>1)

09 if (n%i==0)

10 {

11 printf("%d\t",i);

12 n/=1i;

332 = 7 Execution of programs

Appendix A Precedence and associativity

of operators

In the C language, we call the number of operands of an operator its “arity.” A unary
operator has only one operand. For example, +i, -j and x+\+ are unary operations.
A binary operator has two operands. x+y and p%oq are both binary operations.

When we use the same operator multiple times in a statement, some operators
are evaluated from left to right, whereas some are evaluated from right to left. This
attribute is called the associativity of operators in C (see Table A.1).

Table A.1: Operators in C.

Precedence Operator Meaning Type Associativity
1 0 Parentheses Unary Left-to-right
[1 Index operator
-> Structure pointer member operator
, Structure member operator
2 ! Negation operator Unary Right-to-left
~ Bitwise not operator
4 —— Increment and decrement operators
(type) Forced-type conversion
+ - Positive and negative operators
* Dereference operator
& Address-of operator
sizeof Size operator
3 * [% Multiplication, division, Binary Left-to-right
and remainder operators
4 + - Addition and subtraction operator Binary Left-to-right
5 <« Left-shift operator Binary Left-to-right
>> Right-shift operator
6 <<=>>= Less than, less than or equal to, Relational Left-to-right
greater than, greater than or equal to
7 === Equal to, not equal to Relational Left-to-right
8 & Bitwise and operator Bitwise Left-to-right
9 n Bitwise xor operator Bitwise Left-to-right
10 Bitwise or operator Bitwise Left-to-right

https://doi.org/10.1515/9783110692327-008

https://doi.org/10.1515/9783110692327-008

334 —— Appendix A Precedence and associativity of operators

Table A.1 (continued)

Precedence Operator Meaning Type Associativity

11 && Conjunction operator Bitwise Left-to-right

12 It Disjunction operator Bitwise Left-to-right

13 ?: Conditional operator Ternary Right-to-left

14 =+=-=*= [=%= Assignment operator Binary Right-to-left
«=>=8="N=|=

15 Comma operator

Sequential Left-to-right

Appendix B ASCII table

ASCll value Character ASCllvalue Character ASCllvalue Character ASCllvalue Character
0 NUT 32 (Space) 64 @ 96 °
1 SOH 33 ! 65 A 97 a
2 STX 34 " 66 B 98 b
3 ETX 35 # 67 C 99 ¢
4 EOT 36 $ 68 D 100 d
5 ENQ 37 % 69 E 101 e
6 ACK 38 & 70 F 102 f
7 BEL 39 ' 71 G 103 g
8 BS 40 (72 H 104 h
9 HT 41) 73 1 105 i

10 LF 42 * 74) 106 |
11 VT 43 + 75 K 107 k
12 FF 44 76 L 108 |
13 CR 45 - 77 M 109 m
14 SO 46 78 N 110 n
15 SI 47 |/ 79 0 111 o
16 DLE 48 0 80 P 112 p
17 DCI 49 1 81 Q 113 ¢
18 DC2 50 2 82 114 r
19 DC3 51 3 83 S 115 s
20 DC4 52 4 84 T 116 t
21 NAK 53 5 85 U 117 u
22 SYN 54 6 86 V 118 v
23 TB 55 7 87 W 119 w
24 CAN 56 8 88 X 120 x
25 EM 57 9 89 Y 121 y
26 SUB 58 90 Z 122 z

https://doi.org/10.1515/9783110692327-009

https://doi.org/10.1515/9783110692327-009

336 —

(continued)

Appendix B ASClI table

ASCll value Character ASCllvalue Character ASCllvalue Character ASCIlvalue Character
27 ESC 59 91 [123 {
28 FS 60 < 92 \ 124 |
29 GS 61 = 93] 125 }
30 RS 62 > 94 A 126 ~
31 US 63 ? 95 127 DEL

Appendix C Common library functions of C

Library functions are not part of the C language. They are programs provided by
compilers based on users’ needs. Each C compiler has a collection of library func-
tions. Each collection has a different number of functions. Functions in each com-
piler have different names and functionality. The American National Standards
Institute (ANSI) C standard proposes a set of standard library functions for com-
pilers to provide. This set includes library functions in most C compilers. However,
these are still some functions in the set that have never been implemented in some
compilers. Concerning generality, this appendix lists standard library functions pro-
posed by ANSI C.

There are many types of library functions (e.g., screen and graphical functions,
date/time functions, and system functions). Each of these types contains a series of
functions that have different functionality. We cannot introduce all of them due to
space limitations. Hence, we only list those needed in classes. When writing C pro-
grams, readers may refer to function manuals of the compiler they use.

1 Mathematical functions

To use mathematical functions (see Table C.1), we should use the following prepro-
cessing command in our source file.

#include <math.h> or #include "math.h"

Table C.1: Mathematical functions.

Name Prototype Functionality Return value

acos double acos Compute the value of arccos x, where —1sxs1. Computation result
(double x);

asin double asin Compute the value of arcsin x, where —1sx<1. Computation result
(double x);

atan double atan Compute the value of arctan x. Computation result
(double x);

atan2 double Compute the value of arctan x/y. Computation result
atan2(double x,
double y);

cos double cos Compute the value of cos x, where x is measured ~ Computation result
(double x); in radians.

https://doi.org/10.1515/9783110692327-010

https://doi.org/10.1515/9783110692327-010

338 — Appendix C

Table C.1 (continued)

Common library functions of C

Name Prototype

Functionality

Return value

cosh double cosh

Compute the value of cosh x (hyperbolic cosine).

Computation result

(double x);

exp double exp Compute the value of e*. Computation result
(double x);

fabs double fabs Compute the absolute value of x. Computation result
(double x);

floor double floor Compute the greatest integer less than or Double
(double x); equal to x. representation of

the integer
fmod double fmod Compute the floating point remainder of x/y. Double

(double x, representation of
double y); the remainder
frexp Double frexp Break double number val into its binary significand ~ Significand x,
(double val, and an exponent of 2, namely val=x*2". n is stored ~ where
int *eptn); in a variable pointed to by eptr. 0.5=x<1
log double log Compute the value of Inx. Computation result
(double x);
log10 double Compute the value of logyox. Computation result

log10(double x);

modf double modf
(double val,
int *iptr);

Break double number val into its integer part and
fraction part. The integer part is stored in a
variable pointed to by iptr.

Fraction part of val

pow double pow
(double x,
double y);

Compute the value of x".

Computation result

sin double sin
(double x);

Compute the value of sin x, where x is measured
in radians.

Computation result

sinh double sinh
(double x);

Compute the value of sinh x (hyperbolic sine).

Computation result

sqrt double sqrt
(double x);

Compute the square root of x, where x20.

Computation result

tan double tan
(double x);

Compute the value of tan x, where x is measured
in radians.

Computation result

tanh double tanh
(double x);

Compute the value of tanh x (hyperbolic tangent).

Computation result

2 Character functions —— 339

2 Character functions

To use character functions (see Table C.2), we should use the following preprocess-
ing command in our source file.

#include <ctype.h> or #include "ctype.h"

Table C.2: Character functions.

Name Prototype Functionality Return value
isalnum intisalnum Check if chis a letter or a number. 1if chis either a number
(int ch); or a letter, 0 otherwise
isalpha intisalpha Checkifchis a letter. 1ifchis a letter,
(int ch); 0 otherwise
iscntrl intiscntrl Check if ch is a control character (ASCII value 1if chis a control
(int ch); between 0 and 0x1F, both inclusive). character, 0 otherwise
isdigit intisdigit Check if chis a digit. 1 if ch is a digit,
(int ch); 0 otherwise
isgraph intisgraph Check if ch has a graphical representation (ASCIl 1 if ch has a graphical
(int ch); value between 0x21 and 0x7e, both inclusive). representation,
0 otherwise
islower intislower Check ifchis a lowercase letter. 1if chis a lowercase
(int ch); letter, O otherwise
isprint intisprint Check if ch is a printable character (ASCII value 1if chis a printable
(int ch); between 0x20 and 0x7e, both inclusive). character, 0 otherwise
ispunct intispunct Checkif chis a punctuation character (printable 1 if ch is a punctuation
(int ch); characters except letters, digits, and space). character, 0 otherwise
sspace intisspace Check if chis a white-space (space, tab, 1 if ch is a white-space,
(int ch); or newline). 0 otherwise
isupper intisupper Check if chis an uppercase letter. 1 if ch is an uppercase
(int ch); letter, O otherwise
isxdigit intisxdigit Check if chis a hexadecimal digit (0-9, A-F, a-f). 1 if ch is a hexadecimal
(int ch); digit, 0 otherwise
tolower int tolower Convert ch into lowercase. Lowercase letter of ch
(int ch);
toupper int toupper Convert ch into uppercase. Uppercase letter of ch

(int ch);

340 —— Appendix C Common library functions of C

3 String functions

To use string functions (see Table C.3), we should use the following preprocessing
command in our source file.

#include <string.h> or #include "string.h"

Table C.3: String functions.

Name Prototype Functionality Return value
memchr void memchr(void Locate the first occurrence of ch A pointer to the first occurrence
*buf, in the first count characters in of ch in the block of memory
char ch, unsigned memory block buf. pointed by buf.
count); If ch is not found, the function
returns NULL.
memcmp int memcmp(void Compare the first count bytes of bufi<buf2, return a negative
*bufl, void*buf2, the block of memory pointed by number
unsigned count) buf1 to the first num bytes bufi=buf2, return 0
pointed by buf2. bufl>buf2, return a positive
number
memcpy void *memcpy Copy the values of count bytes to
(void *to, from the location pointed to by
void*from, from directly to the memory
unsigned count); block pointed to by to. The
arrays should not overlap.
memove void *memove Copy the values of count bytes to
(void *to, from the location pointed to by
void*from, from directly to the memory
unsigned count); block pointed to by to. The
arrays may overlap.
memset void *memset Set the first count bytes of the buf
(void *buf, char block of memory pointed by buf
ch, unsigned to the specified character ch.
count);
strcat char *strcat(char Append a copy of string str2 to strl
*str1, char *str2); strl. The first character of str2
overwrites the terminating null
character \0” in str1.
strchr char *strchr(char Find the first occurrence of chin A pointer to the first occurrence

*str, int ch);

the string str.

of ch in str.
If ch is not found, the function
returns NULL.

Table C.3 (continued)

3 String functions = 341

Name Prototype Functionality Return value
strcmp int *strcmp(char Compare the string str1 to the stri<str2, return a negative
*str1, char *str2); string str2. number
strl=str2, return 0
stri>str2, return a positive
number
strcpy char *strcpy(char Copies the string pointed by str2 str1
*str1, char *str2); into the array pointed by str1,
including the terminating null
character.
strlen unsigned int Return the length of the string The length of string
strlen(char *str); str (without including \0").
strncat char*strncat Append the first count characters strl
(char*stri, of str2 to str1, plus a terminating
char*str2, null-character.
unsigned count);
strncmp int strncmp(char Compare up to count characters stri<str2, return a negative
*strl, *str2, of the C string strl to those of number
unsigned count); the C string str2. stri=str2, return 0
stri>str2, return a positive
number
strncpy char*strncpy Copy the first count characters of strl
(char*str1, *str2, str2 to stri.
unsigned count);
strnset void *setnset Set the first count characters of buf
(char *buf, char string buf to character ch.
ch,
unsigned count);
strset void *setset(void Set all characters of string buf to buf
*puf, char ch); character ch.
strstr char *strstr(char Find first occurrence of str2 A pointer to the first occurrence

*str1, *str2);

in str1.

in strl of the entire sequence of
characters specified in str2, or a
null pointer if the sequence is
not present in stril.

342 — Appendix C Common library functions of C

4 Input/output functions

To use input/output functions (see Table C.4), we should use the following prepro-
cessing command in our source file.

#include <stdio.h>or #include "stdio.h"

Table C.4: Input/output functions.

Name Prototype Functionality Return value
clearerr void clearer Reset both the error and the eof None
(FILE*fp); indicators of the file stream fp.
eof int eof(int fp); Check if the file pointed by fp has 1 if the file ends, 0 otherwise
reached end.
fclose int fclose(FILE *fp); Close the file associated with fp, 0 if successfully closed,
and release the buffer. nonzero value otherwise
feof int feof(FILE *fp); Check whether the eof indicator A nonzero value if set,
associated with fp is set. 0 otherwise
ferror int ferror(FILE *fp); Check if the error indicator A nonzero value if set,
associated with fp is set. 0 otherwise
fflush int fflush(FILE *fp); Save all control information and 0 if successfully saved, nonzero
data of the file pointed by fp. value otherwise
fgets char *fgets(char Read characters from fp and stores buf on success. EOF if end-of-
*buf, int n, FILE them as a C string into buf until (n- file reached or error occurs.
*fp); 1) characters have been read.
fgetc int fgetc(FILE *fp); Return the character currently The character read is returned.
pointed by the internal file If error occurs, EOF is returned.
position indicator of the specified
fp.
fopen FILE*fopen Open the file whose name is A pointer to the file on success,
(char*filename, filename in the specified mode. 0 otherwise
char *mode);
fprintf int fprintf(FILE *fp, Write the C string pointed by Total number of characters
char *format, format to fp. written
args,. . .);
fputc int fputc(char ch, Write a character ch to fp. The character written is

FILE *fp);

returned on success, EOF is
returned if an error occurs

Table C.4 (continued)

4 Input/output functions =—— 343

Name Prototype Functionality Return value
fputs int fputs(char str, Writes the C string pointed by str 0 on success, EOF on error
FILE *fp); to fp.
fread int fread(char*pt, Read an array of n elements, each The total number of elements
unsigned size, one with a size of size bytes, from successful read is returned. If
unsigned n, FILE fp and store them in the block of an error occurs or the end-of-
*fp); memory specified by pt. file is reached, O is returned.
fscanf int fscanf(FILE *fp, Read data from fp and store them Number of items successfully
char *format, according to the parameter format filled
args, . ..); into the locations pointed by args.
fseek int fseek(FILE *fp, Set the position indicator The current position is returned
long offset, int associated with fp to a new on success, —1 is returned
base); position (base + offset). otherwise
ftell long ftell(FILE *fp); Return the current value of the The current position is returned
position indicator of fp. on success, 0 otherwise
fwrite int fwrite(char *ptr, Write an array of n elements, each The total number of elements
unsigned size, one with a size of size bytes, from successfully written is returned
unsigned n, FILE the block of memory pointed by
*fp); ptr to the current position in fp.
getc int getc(FILE *fp); ~ Return the character currently The character read is returned on
pointed by the internal file success, —1 is returned if end-of-
position indicator of fp. file is reached or an error occurs.
getchar int getchar(); Return the next character from the The character read is returned on
standard input. success, —1 is returned if end-of-
file is reached or an error occurs.
gets char *gets(char Reads characters from the str on success, NULL otherwise
*str); standard input and stores them as [Note: C11 standard introduces
a C string into str. a safer function, gets_s(), to
substitute gets()].
printf int printf(char Write the C string pointed by The total number of characters
*format, format to the standard output. The written is returned on success,
args, . ..); additional arguments following a negative number is returned
format are formatted and inserted on error.
in the resulting string replacing
their respective specifiers.
putc int prtc(int ch, FILE Write a character ch to fp and The character written on
*fp); advance the position indicator. success, EOF on error
putchar int putchar Write a character ch to the The character written on
(char ch); standard output. success, EOF on error

344 — Appendix C Common library functions of C

Table C.4 (continued)

Name Prototype Functionality Return value
puts int puts(char *str); Write the C string pointed by strto A non-negative value on
the standard output and appendsa success, EOF on error
newline character (‘\n").
read int read(int fd, Read up to count bytes from file The number of bytes read on
char *buf, descriptor fd into the buffer success, —1 on error
unsigned count); starting at buf.
remove int remove(char Delete the file whose name is 0 on success, —1 on error
*fname); specified in fname.
rename int remove(char Change the name of the file or 0 on success, —1 on error
*oname, char directory specified by oname to
*nname); nname.
rewind void rewind Set the position indicator None
(FILE *fp); associated with fp to the
beginning of the file, clear the
end-of-file and error internal
indicators.
scanf int scanf Read data from stdin and stores The number of items of the
(char *format, them according to the parameter argument list successfully
args,...); format into the locations pointed filled. EOF if end-of-file is
by the additional arguments. reached.
0 on error.
sscanf nt sscanf Read data from str and stores The number of items in the
(const char *str, them according to parameter argument list successfully
const char * format into the locations given by filled. -1 on error, and the error
format, the additional arguments, as if reason is stored in errno.
.); scanf was used, but reading from s
instead of the standard input.
write int write(int fd, Write up to count bytes from the The number of bytes written on

char *buf,
unsigned count);

buffer starting at buf to the file
referred to by the file descriptor fd.

success, —1 on error.

5 Dynamic storage allocation functions

To use dynamic storage allocation functions (see Table C.5), we should use the fol-
lowing preprocessing command in our source file.

#include <stdlib.h> or #include "stdlib.h"

Table C.5: Dynamic storage allocation functions.

6 Other functions = 345

Name Prototype Functionality Return value

callloc void*calloc Allocate a block of memory for an A pointer to the beginning of the
(unsigned n, array of n elements, each of them memory block allocated by the
unsigned size bytes long, and initialize all its function on success, 0 otherwise.
size); bits to zero.

free void free(void A block of memory p previously None
*); allocated by a call to malloc, calloc

or realloc is deallocated.

malloc void*malloc Allocate a block of size bytes of A pointer to the beginning of the
(unsigned memory. memory block allocated by the
size); function on success, 0 if not

enough memory.

realloc void*realloc Change the size of the memory A pointer to the reallocated memory
(void *p, block pointed to by p to size. size block on success, NULL on failure.
unsigned can be either larger or smaller than
size); the original size.

6 Other functions

Table C.6 lists functions that are not in the above categories. We should use the fol-
lowing preprocessing command in our source file to use these functions.

#include <stdlib.h> or #include "stdlib.h"

Table C.6: Other functions.

Name Prototype Functionality Return value

abs int abs(int num); Compute the absolute value of num. Computation result

atof double atof(char ~ Parse the C string str, interpreting its content Computation result
*str); as a floating point number. in double precision

atoi int atoi(char *str); Parse the C-string str, interpreting its content Conversion result

as an integral number of type int.

atol long atol(char Parse the C-string str, interpreting its content Conversion result
*str); as an integral number of type long.

exit void exit(int Terminate the program, return status to the None

status);

caller.

346 — Appendix C Common library functions of C

Table C.6 (continued)

Name Prototype Functionality Return value
itoa char *itoa(int n, Convert an integer n to a null-terminated string A pointer to str
char *str, int using base radix and store the result in the
radix); array given by str.
labs long labs(long Compute the absolute value of long integer Computation result
num); num.
ltoa char *ltoa(long n, Convert a long integer n to a null-terminated A pointer to str
char *str, int string using base radix and store the result in
radix); the array given by str.
rand int rand(); Return a pseudo-random integral number in the A pseudo-random
range between 0 and RAND_MAX. RAND_MAX is integer
defined in the header file.
random int random(int Generate a random integer between 0 and num. A random integer

num);

Appendix D Common escape characters

Escape characters are character sequences starting with “\”. They are special char-

acter constants in C. Table D.1 lists common escape characters.

Table D.1: Common escape characters.

Character Meaning ASCII
value

¢ Null character 0

\n Newline, which moves the cursor to the beginning of the next line 10

\t Horizontal tab, which moves the cursor to the next output field (each field 9

has eight columns)

\v Vertical tab

\b Backspace, which moves the cursor back by one column 8

\r Carriage return, which moves the cursor to the beginning of the current line 13

\f Form feed, which moves the cursor to the beginning of the next page 12

\a Alarm

\\ Backslash 92

\' Single quote 39

\" Double quote 34

\? Question mark 63

\ddd Octal number with three digits

\xhh Hexadecimal number with two digits

https://doi.org/10.1515/9783110692327-011

https://doi.org/10.1515/9783110692327-011

Appendix E Bitwise operations

1 Bitwise AND (&)

Bitwise AND (&) is mainly used for two purposes:

(1) Zeroing out
For example, we have a number x =0010 1011. Then we can use y =1101 0100
or y = 0000 0000 to zero out x so that x&y = 0.

(2) Extracting the specified bit
For example, suppose we have a number a = 0010 1100 1010 1100, which takes
up two bytes. To obtain its lower byte, we can use a number y = 0000 0000 1111
1111 and do

a&y =00000000 10101100

Suppose we have a number a = 0101 0100, and we want to preserve the 34, 4%,
5t 7% "and 8" bits of it (counting from the left). We can use a number b = 0011
1011 and do

c=a&b=00010000

2 Bitwise OR (])

Suppose a = 0011 0000, b = 0000 1111, then alb = 0011 1111,

Usage: We use bitwise OR to change specified bits of a binary number to
1, without knowing what those bits were.

Mask: The specified bits of the mask are 1’s, whereas the remaining bits are 0’s.

For example, suppose we have int a = 055555 and we want to change the highest
bit to 1. Then we can use a mask b = 0x8000.

a: 0101 1011 0110 1101

b: 1000 0000 0000 0000

alb: 1101 1011 0110 1101

3 Bitwise XOR (#)

The bitwise XOR operation takes two binary operands of equal length. The result in
each position is 1 if and only if the two bits in this position are different. Bitwise
XOR is also known as bitwise addition (corresponding bits are added, and the carry
is discarded). It is used for the following purposes:

https://doi.org/10.1515/9783110692327-012

https://doi.org/10.1515/9783110692327-012

350 — Appendix E Bitwise operations

(1) Flipping specified bits (1 changed to 0, O changed to 1)
Mask: The specified bits of the mask are 1’s, while the remaining bits are 0’s.
For example, suppose we have a=0xOF 0000 0000 0000 1111. Then we
can use number b = 0x18 0000 0000 0001 1000 and

aP =0000000000010111

(2) XOR with 0 to preserve the value
(3) Swapping values of two variables without any intermediate variable
The method is as follow:

a=a’b; b=b"a; a=a’b;
Proof: Based on the second equation, we have
b=b”*a=b"(a”"b)=b"a*b=a"b"b=a”0=a
Based on the third equation, we have

a=a”"b=(a"b)(b*(a”b))=a”b” b(a”b)=a”0"a’b=a”a"b=0"b=b

4 Bitwise NOT (~)

~ is a unary operator for bitwise NOT.
For example, ~025, namely ~0000 0000 0001 0101, is 1111 1111 1110 1010.

Note:

(1) ~025is not —-025.

(2) Performing bitwise NOT on a number twice yields the original number.

(3) We often use bitwise NOT together with bitwise AND, bitwise OR or shift opera-
tions to complete specific tasks.

For example, the expression x&~077 extracts the bits in front of the lower 6 bits of x
and zeroes out the lower 6 bits.

5 Shift operations (>>, <<)

Shift operations are in the form m<<n and m>>n, in which m is the number to be
shifted and n is the number of bits of the shift. m and n are both integer expres-
sions. The type of the result depends on the type of m.

In a << operation, the higher bits of operand m, which are shifted out of the left
end, are discarded. The remaining bits are padded with O on the right.

In a >> operations, the lower bits of operand m, which are shifted out of the
right end, are discarded. If m is an unsigned number, the remaining bits are padded

5 Shift operations (>, <<) === 351

with O on the left. If m is signed, a sign is added in an arithmetic shift, and 0 are
padded in a logical shift.
Associativity: << and >> are left-associated. A left shift is equivalent to multiplying
a power of 2 and a right shift is equivalent to dividing the operand with a power of 2.
Table E.1 shows examples of multiplication and division operations using shift
operations.

Table E.1: Multiplication and division with
shift operations.

Character x x after shift Value of x

x=7 00000111 7
x<<1 00001110 14
X<<3 01110000 112
X2 11000000 192
x>1 01100000 96
x>>2 00011000 24

Bitwise operators can be used with assignment operators to obtain extended assign-
ment operators such as &=, |=, >>=, <<=, and "=.

a&=Dh is equivalent to a = a&b

a<<=2is equivalent to a = a<<2

For example, the expression x>>p+1-n&~(~0<<n) does the following: it extracts
n bits of x starting from the pth position (counting from the right end, which is the
Oth position) and stores these bits in the lower bits. Suppose p =4 and n = 3. Then
the result is bits of x between the second bit and the fourth bit.

Index

Algorithm 5, 6, 12, 22, 24-27, 30, 32-35,
42-44, 47, 49, 50, 52, 55, 61, 62, 64,
72-80, 171, 173, 175, 180-182, 196-198,
203-208, 211-213, 225-227, 234, 280,
281, 283, 287, 288

Bug 247, 286, 287, 290, 308, 310, 328

Compilation 17, 23, 34, 35, 37, 46, 161, 162,
246, 248-251, 253-255, 257-260,
267-269, 275-277, 281, 282, 288, 298,
309, 310, 312, 313, 327, 329

Console window 151, 165, 280, 305, 308, 309,
317, 328

Constant 83, 84, 133, 135, 136, 185, 187, 238,
247, 257, 261

Data operation 83

—arithmetic operation 20, 25, 109, 111, 113, 114,
130, 131, 135, 139, 140, 193

—assignment VII 42, 89, 92, 93, 110-112, 116,
120, 127, 130, 131, 133-135, 237, 248, 306,
334, 351

—expression 58, 83, 110

—logical operation 19, 20, 25, 26, 28, 29, 109,
121, 122, 125, 135

—operator 25, 58, 83, 110-112, 333

—precedence 58, 109-112, 114, 123,
133-135, 252

—relational operation 109, 111, 119, 120, 122,
124, 135, 139

Data type 83, 84, 89, 93, 99-101, 133, 135,
136, 187

—character 103

—character type 93, 118, 193

—floating-point 83, 99, 104-108, 120, 121, 147,
149, 162

—integer type 89, 101, 157

Debug V, VIII, XI 27, 35, 52, 75, 161, 163, 228,
247, 259, 267-270, 286, 287, 289, 290,
298-300, 302, 304-306, 308, 309, 320,
328, 329

Debugging 297

https://doi.org/10.1515/9783110692327-013

Execute 10, 13, 14, 17, 35, 43, 49, 59, 73, 118,
119, 125, 129, 229, 268, 269, 278, 279,
282, 298, 300, 305, 309, 325, 328

File 38, 45, 46, 160, 161, 195, 253, 268, 271,
273-277, 298, 308-309, 316, 320, 328,
337, 339, 340, 342-345

Flow XI 1-12, 14, 15, 20, 22, 24, 25, 34, 35,
43, 47, 48, 53,57, 68-70,72,76,77,79,
80, 153, 171, 173, 177, 178, 180-182,
184, 186, 194, 198, 210, 211, 216, 217,
220, 224, 229, 235, 237, 245, 253, 267,
290, 291

Flowchart 4-8, 28, 29, 43, 45, 66, 67, 80, 174,
175, 177, 180, 181, 184-186, 198-200, 210,
211, 220, 231, 287

Function 22, 27, 35, 36, 39-43, 60, 127, 131,
142, 145, 146, 247, 250-254, 281, 289,
293, 295-297, 301-303, 320, 328

—child function 22, 36, 39-41, 43, 292-295,
300, 322

—input function 150-158, 160

—library function 37-39, 43, 142-144, 166,
222,268, 282, 337

—main function 22, 36, 40, 43, 254, 292-296,
306, 322

—output function 92, 114, 141, 143-146, 150,
173, 206

Input/Output 5, 21, 22, 24, 43, 86, 114,
141-144, 150, 166, 168-170, 254, 342

Linking 23, 34, 35, 46, 162, 246, 261, 267, 268,
271, 272, 275-278, 282, 288, 313, 316

Modularization 22, 24, 35, 45, 52,78, 247,
248, 252

Preprocessing 23, 37, 39, 40, 43, 83, 88,
245-248, 251, 253, 255, 257, 259-262,
264, 337, 339, 340, 342, 344, 345

—conditional compilation 23, 245-247,
254-260, 262-265

https://doi.org/10.1515/9783110692327-013

354 —

Index

—file inclusion 23, 37-39, 43, 143, 166,
245-248, 253, 254, 259, 260, 262

—header file 38, 43, 143, 144, 150, 160, 248,
253, 254, 346

—-macro 83, 84, 136, 246-250, 252, 257,
259-262, 265

—macro replacement 247-252, 260, 262

Program V, VII, VIII, XI 1, 5-10, 14-18, 20,
22-24,27,30-32, 34, 36-38, 40-42, 48,
50, 52, 59, 60, 63, 69, 73, 75, 77, 83, 84,
88, 90, 112, 113, 118, 120, 121, 130, 131,
141, 142, 144, 151, 160-162, 165, 171, 180,
185-187, 193, 195, 203, 204, 206, 207,
218, 219, 245-247, 252, 267, 268, 282,
283, 287-289, 320, 328, 329

—code IX, VII, VIII, XI, XV 5, 15-17, 22-24, 26,
29, 34-38, 41, 43,58, 73,76, 77, 86,
118, 195, 246, 247, 249, 253, 259,
267-269, 274, 275, 281, 282, 288, 289,
298, 300, 301

—comment 37, 41, 43,57

—object program 17, 246, 268, 282, 328

—source program 46, 137

Program statement 22, 24, 29, 35, 37, 43, 54,
78,171,177, 178, 206, 237, 238, 241, 242

—break statement 186-188, 224-226, 228

—compound statement 175, 176, 179

—conditional statement 28, 180, 194, 234, 235

—continue statement 224, 230, 231

—goto statement 230, 233-237

—loop statement 62, 193, 198, 224, 225, 230,
235, 236, 238

—switch statement 185-194, 224, 225,
237, 240

Program structure 29, 45, 194, 236

—branch structure 7-9, 11, 12, 174, 175,
182-185, 219, 238, 258

—loop structure 10-13, 22, 52, 195, 214

—-sequential structure 6, 7, 11, 12, 22, 171, 194

Project 245, 269-273, 298, 308-310, 328

Pseudo code 4-6, 12, 29, 43, 52, 53, 55, 56,
61-63, 66, 67, 78, 80, 174, 180-182,
195-197, 200, 203, 204, 211, 212, 214, 219,
220, 225-227, 234, 235

Reserved word 88

Statement XI 24

Test case 30, 157, 158, 164, 165, 193,
281-285, 328

Testing IX, VII, VIII, XI 23, 24, 27, 30, 35, 42,
43,72,73,75,79, 99,193, 204, 225, 247,
267, 280-285, 287, 288, 328, 329

Type conversion 126-128, 135, 138

—automatic-type conversion 130, 131, 135, 136

—forced-type conversion 128, 129,
136-138, 333

Variable 28, 39, 41, 42, 60, 62, 64-66, 83-89,
91-93, 104, 115, 117, 119-121, 123, 124,
126-131, 133-136, 138-140, 144-147,
149-152, 155-157, 161-165, 167, 168,
170-174, 177, 194, 196, 197, 200-204,
206-208, 212, 217-219, 226, 234, 235,
239, 248, 252, 264, 279, 292, 294, 297,
298, 300-303, 305, 306, 318, 328

—initialization 89, 91, 201, 203, 324

—variable definition 89, 91, 135

-variable name 87-91, 136, 154, 281, 305, 308

	Preface
	Introduction
	Structure of content
	Division of work
	Notes
	Acknowledgments
	Contents
	1 Introduction to programs
	2 Algorithms
	3 Basic data types
	4 Input/output
	5 Program statements
	6 Preprocessing: work before compilation
	7 Execution of programs
	Appendix A: Precedence and associativity of operators
	Appendix B: ASCII table
	Appendix C: Common library functions of C
	Appendix D: Common escape characters
	Appendix E: Bitwise operations
	Index

