\

Practical
Numerical C
Programming

Finance, Engineering, and Physics
Applications

Philip Joyce

Apress:

Practical Numerical
C Programming

Finance, Engineering, and
Physics Applications

Philip Joyce

Apress’

Practical Numerical C Programming: Finance, Engineering, and Physics
Applications

Philip Joyce
Goostrey, UK

ISBN-13 (pbk): 978-1-4842-6127-9 ISBN-13 (electronic): 978-1-4842-6128-6
https://doi.org/10.1007/978-1-4842-6128-6

Copyright © 2020 by Philip Joyce

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Erik Eastman on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-6127-9. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6128-6

Table of Contents

ADOUL the AUTNOKceeeeeeeeieeeieeeseesssssssssssssss s s sssss s s s s s s s s s s s snsnsnnnnnnnnnnnnsnnnnnnnnnnnnnnns vii
About the TeChNICal REVIEWETeeeeeeeeesssnnnnns ix
AcknNoWIedgmentsccccuuseenmmmsssnnnmmsssssnnsesssssnssesssssnnssssssnsnssssssnnnesssssnnnsssssnnnnssssnnnnnss xi
0T LT (] | Xiii
Chapter 1: Review Of Ccccccuriimnnssssmmsmmmmmmmmssssssssssssssssssssssssssnnssessssssssssssnssssssssnns 1
B RSV 110 1= R 1
B IS 1 1< R 4
B 3 2SSO 6
T 1T 9
1.5 MathematiCal FUNCTIONS.......cocovieiiieen s nsresssesssessssssssessssessssessssessssesseessnsessnsessnnenss 11
1.6 USEIr-WILLEN FUNCTIONS ...ecveeiceereeerssesssssessseesse e ssssessssessssssssessssessssesssessaseesaseessnsenssesssnesss 16
B I 1T 0% =T 0 19
I8 1T 2 T [22
IS S eI =T YR 24
B N 5T 1= o 27
1.11 Common Mathematical and Logical SYMDOIS..........cccerrerrrmrerierenensereresessessesessesessessenees 31
Part I: Finance Applications........ccusssssssssssssssnnnsnnnmssnsssnnssnmmnnssnsnsnssssnns 33
Chapter 2: RegreSSiONccuieemmmmsssssnmmssssssnmessssnsnsssssssnnsessssnssssssssnnnssssssnnnsssssnnnnsssss 35
2.1 Capital Asset Pricing MOGEIccouceeieririneresesnessse s ss s se s ssssessssenens 43
2.2 CAPM HUSEFALION...ciuviiriiiriisreseessressessesssessessessesasesssesssesasesasesasesasesasesasessnesanessnessnessnessnens 43

iii

TABLE OF CONTENTS

Chapter 3: PMCC........ccccccmimmmmmmmmmssssnnsmmsssssssessssssssesssssssssssssnssssssssnnsssssssnnnsssssnnnnssnss 49
BT TRROIY e e E R e 49
3.2 Manual Calculation 0f PMCC.........c..ccoreirirereserercsere s se s seseesssnens 51
3.3 PMCC PrOgram......cccceoerreserenesessenessssesessesessssessssesessesessssesssssssssssssssnsssssssesssssssensssenssssssssnssnens 53
3.4 Comparison of the Two Regression LINESccuverresernsesnsesssssssssssssssssssssssssssssssessssenens 57
3.5 Manual Calculation of the Two Regression LiNES.........ccvvvrvnrenennsnnsensesissessessessessssessessenns 58
3.6 Program for the TWo RegresSion LINESccccvevevrrrienenesensesesessssessessesssssssessessessssessessenes 60

Chapter 4: Stock Price Predictionccccvunnssemnmmnssssnnnsssssssssssssssssssssssssnssssssnsnsnnss 73
4.1 Two Parts to SToCK Price Changesccovevrrrrerenire e ses e s ssssesessenens 73
4.2 Drift Part Of FOrMUIA ..o 75
4.3 Simple Example With 5 DAY’s PriCES......ccccvvririiniinire st ses e 76
4.4 Random Change Part of FOrmMUIA...........ccccuevrnsnncnnese s s 77
4.5 Combining the TWO EIBMENTS........ccccvvrinniirrinn e s sne s 85

Part II: Commercial Applications.......ccccmmmrmnmssssssessnnnmssssssssssssssssesssssss 93

Chapter 5: Supermarket STOCKcccvssmrmssnmmssnsssssssmsssnsssssssesssnsssssssssssnnssssnnssssanss 95
5.1 What We Are SIMUIating........cccoievrininininrsn s s ses s s 95
5.2Updating the File........ccoeeerieeserecsresere e 99

Chapter 6: Flight Informationcccceemmmmmnnnmmmsssssssnmmmmmmssssssssssssssssssssss 109
6.1 Airport Display BOArdsccucererernnieriennsinsene s ssssesse s s ssssessesessessssessessessessssesaesnes 109
6.2 Create FIIGhTS Filec.coivirirererirsere s se e se e s se s s s se s s sa e s saeenes 109
6.3 Update Display BOArdS..........cccvierreririniinne s sses e s sesses e s ssessssssesaessesssssasssesneas 114

6.3.1 Not-Rollup MEChaniSmccveririinneririr e s s s s se s s s s s 115
6.3.2 ROIIUP MECRANISMceruevreirereriereesere s e e s sse s sse e s e ssesae e s e s saesaese e e saesaessnsensesnens 116

Chapter 7: Power Plant Controlcccccuseemmmmssnsnnmmsssssnnmmssssssssssssssssssssssssssssssnnns 129
0 11111 U0 o TP 129
7.2 Monitoring SAELY LEVEIScccoeeeereereer et 133

iv

TABLE OF CONTENTS

Part lIl: Physics Applicationscoounmmmmmmmmmmnmmsssssssssssmssnnnnenes 143

Chapter 8: Energy TransSferccccumeemmmmssssnnnmsssssnnssssssssssssssssnsnssssssnnsssssssnnsssssssnnnss 145
8.1 Potential and Kinetic Energy Simulation........c.ccoovvvvvirevnnniennenssesseresessssessesessssessesseses 145
8.2 Convert TREOory 10 COUE........ccveririrrirrere e e 147

Chapter 9: Pendulum Simulation........ccccccsvirnnissssssssmmmnnnmmsssssssssssmeesssssssssns 151
9.1 Pendulum TRHEOIYc..cceeeeeereeree s ne e 151
9.2 EUIEr METNOd........cocee et 153
9.3 Euler-Cromer Method..........coocireincircs e s 158

Chapter 10: Center of Masscuuuummsmmssmmmmmmmmmssssssssmesssssssss s 163
10.1 Center 0f MASS TREOIYccvcevrerererrerere s e s e e sesessesseses e ssesaess s e s e ssesaesessesaesaesssnsnsesnens 163
10.2 CIrCUIAr PIALE.......c.eceireerirerire st et st e 164
10.3 Other SNAPESccecirerireir e s e e e b e e e e nne 170

Chapter 11: Brownian Motion..........ccccemmmmimmmmsssssssssnmmmmmmmsssssssssssssmesssssssssssssnnes 179
11.1 Brownian Motion TREOIYccvecerreerrereree s 179

Chapter 12: Diffusion Lattice Modelcccvnnnmmmmmmmmmnnnmmnsssssssssmnmmssssssssssnns 185
12.1 Vacancy Lattice DiffUSION.........coueerinsernenesens s ssssssessssesessesenns 185

Chapter 13: Chain Reactionccucccmmmsssnnmmmmsssssnnmsssssssnmssssssnsssssssnsssssssssnsssssssnnnss 197
13.1 Chain Reaction TREOIYccvcviririrrrere e s ss s saens 197
13.2 Chain Reaction Programccccvevverenensensesserssessesessessssessessessssessessesssssssessessesssssssessens 200

Appendix: Answers to Problems..........cccuuuememmmmnnmmmmmmsmnmmmssmssssssssssssssssssssssssssssssnnnns 207

INA@X..eeiiissnnnnnssssnnnnsssssnnnnnssssnnnnsssssnnnnsssssnnnsssssnnnnsssssnnnnsssssnnnnsssssnnnnsssssnnnnsssssnnnnssss 275

About the Author

Philip Joyce has 28 years of experience as a software engineer - working on control of
steel production, control of oil refineries, communications software (pre-Internet), office
products (server software), and computer control of airports. This involved programming
in Assembler, COBOL, Coral66, C, and C++. Philip was a mentor to new graduates

in the company. He also has MSc in computational physics (including augmented

matrix techniques and Monte Carlo techniques using Fortran) from Salford University,
1996. Philip is a chartered physicist and member of the Institute of Physics (member

of the higher education group). His first book, Numerical C, was published by Apress in
September 2019.

vii

About the Technical Reviewer

Juturi Narsimha Rao has 9 years of experience as a software developer, lead engineer,
project engineer, and individual contributor. His current focus is on advanced supply
chain planning between the manufacturing industries and vendors.

ix

Acknowledgments

Thanks to my wife, Anne, for her support, my son Michael, and my daughter Katharine.
Michael uses regression techniques in his work and has shared some ideas with me.
Katharine is a software engineer working for a UK bank. All three have mathematics

degrees.

Thanks to everyone on the Apress team who helped me with the publication of this,
my second book. Special thanks to Mark Powers, the coordinating editor, for his advice;
Steve Anglin, the acquisitions editor; Matthew Moodie, the development editor; and
Juturi Narsimha Rao, the technical reviewer.

xi

Introduction

The C programming language is an important language in many computer applications.
It is the basis of C++ and C#. This book will demonstrate how to use the C language to
solve problems in finance, commercial/industrial systems, and physics.

A basic familiarity with mathematics is assumed along with some experience of the
basics of computer programs.

The first chapter reviews the basic areas that C can be used in. A more detailed
introduction to C is contained in my Numerical C book.

The chapters following this C review are grouped into finance (including
regression, CAPM, and asset pricing), commercial applications (supermarket stock
control, airport flight information, and power plant control), and various physics
applications. The Graph package has been used to display the results of programs.

There are exercises in each chapter with answers and suggested code at the end of
the book. The book’s source code can be accessed via the Download Source Code link
located at www.apress.com/9781484261279.

xiii

http://www.apress.com/9781484261279

CHAPTER 1

Review of C

This chapter reviews the properties of the C programming language. Example programs
are given to illustrate the different areas that C covers, for example, for, while, do-while
loops, user-defined functions, switches, mathematical functions, file access, and so on.

The programs tend to bring together similar properties, for example, mathematical
functions, and incorporate them as single programs. The reader can just use the part of
these programs that they need for their program.

1.1 Arithmetic

This program starts with the basic process of asking the user to enter some data. Here,
we will use the term “in the location c” to mean “in the address of the variable c in the
local stack space.”

Firstly, it uses the printf command to write to the user’s command line to say “Enter
character” When the user types in a character, the getchar function reads it and places
itinto the location c. It then tells the user the character they have entered, firstly using
printf to say “Character entered” and then putchar with c as the parameter to write
the contents of ¢ to the command line. In this case the location c is a character location
denoted by char.

If we want to read integers rather than characters, we define the location where it
is to be stored as int. In this case we call the int this is a numberi. Here, we use the
more widely used command scanf to read in the integer. We specify this_is a numberi
as a parameter to the call, and as a first parameter, we specify %d to say that it is an
integer.

We can repeat this with another variable this_is a number2. We can now add these
two variables using the coding total= this_is_a numberi+ this_is_a number2 where
total has to be defined as an integer. Again, we can use the printf function to display
our answer from total.

© Philip Joyce 2020
P. Joyce, Practical Numerical C Programming, https://doi.org/10.1007/978-1-4842-6128-6_1

https://doi.org/10.1007/978-1-4842-6128-6_1#DOI

CHAPTER 1 REVIEW OF C

We can do similar things with floating point numbers. We define them as float
rather than int. We can subtract numbers using - rather than +. Similarly, we can
multiply using * and divide using /.

The following is the code for our arithmetic calculations:

/* chiarith.c */

/* Read, display, and arithmetic */

/* Read input data from the command line */
/* and read it into the program. */

/* Also write the data back to the */

/* command line. Basic arithmetic */

/* done on input data. */

#define CRT_SECURE_NO WARNINGS

#include <stdio.h>

int main ()
{
char c; /* Declared character variable */
int this_is_a numberi, this_is a number2, total; /* Declared integer
variables */
float float numberi, float number2,float total; /* Declared float
variables*/

/* Read and display a character */

printf("Enter character: "); /* Tell the user to enter a character */
c = getchar(); /* Read the character in and store in c */

printf("Character entered: "); /* Tell the user what was entered */
putchar(c); /* Write the char into variable c */

/* Read in two integers, add them, and display the answer */

printf("\nPlease enter an integer number:\n ");
scanf("%d", &this is a numberl); /* Read number into this_is_a_ number1i */
printf("You entered %d\n", this is a number1);

CHAPTER 1 REVIEW OF C

printf("Please enter another integer number: \n");
scanf("%d", &this is a number2); /* Read number into this_is_a_number2 */
printf("You entered %d\n", this_is a number2);

total = this_is a numberi + this is a number2; /* Add two numbers
store in total */

printf("sum of your two integer numbers is %d\n", total);

/* Write result to command line */

/* Add two floating point numbers */

printf("Please enter a decimal number:\n ");

scanf("%f", &float numberi); /* Read decimal number into float_
number1 */

printf("You entered %f\n", float number1);

printf("Please enter another decimal number: \n");

scanf("%f", & float number2); /*Read decimal number into float_
number2 */

printf("You entered %f\n", float number2);

float total = float numberi+float number2; /* Add the numbers */
printf("sum of your two decimal numbers is %f\n", float total);
/* Write result to command line */

/* Multiply two floating point numbers */

float_total = float numberi * float number2; /* Multiply the numbers */
printf("product of your two decimal numbers is %f\n", float total);
/* Write result to command line */

/* Divide two floating point numbers */

/* Divide the numbers */
/* Place answer into float_total */

float_total = float numberi / float number2);

CHAPTER 1 REVIEW OF C

/* Write result to command line */

printf("quotient of your two decimal numbers is %f\n", float total);
return O;

1.2 Switches

A switch statement is a multiway branch statement. A program can perform separate
different functions. In order to select which one is required, the program asks the user
to select a value, for example, 1 to use the cosine function, 2 to use the sine function,
and so on. The program then uses this number in the switch command to jump to the
relevant code.

This sequence of code is shown as follows:

printf("\nPlease enter a character a,b,c,d or e:\n ");
scanf("%c", &this_is a character);/* read into this_is a character */

switch (this _is a character)
{
case 'a':
printf("Case1l: Value is: %c\n", this is a character);
break;

We can switch on numbers or characters. So, for example, we could ask the user to
enter a number from 1 to 5 or a letter from a to e. For characters we read their value using
scanf with %c as a parameter. In the program, if you select a, then the switch jumps to
case ain the code. In the code here, we print out the fact that we have jumped to case
a, but this is only to demonstrate how it works. After the relevant code in case a, the
program issues a break which jumps to the end of the switch options.

If the user is asked to type a to e but they type in {, then the switch goes to the default
case. Here, we can just output an error message to the user.

The following code demonstrates switches:

/* chisw.c */

/* Demonstrate switch case functionality by using switch case */
/* parameter choice as either characters or numbers */

#define CRT_SECURE_NO_WARNINGS

#include <stdio.h>

/* Example of a switch operation */

int main()

{

CHAPTER 1 REVIEW OF C

int this_is a number; /* Store area to hold number entered */

char this_is_a character; /* Store area to hold character entered */

printf("\nPlease enter a character a,b,c,d or e:\n ");

scanf("%c", &this is a character); /* Read into this_is_a_character */

/* Switch to the specific "case" for the character entered */
/* then print which switch case was entered */

switch (this is a character)

{

case a :

printf("Casel:

break;
case 'b"':

printf("Case2:

break;

case C :

printf("Case3:

break;
case 'd':

printf("Case4:

break;

case e ¢

printf("Case5:

break;
default:

/* The character entered was not between a, b, c, d, or e */

Value

Value

Value

Value

Value

is:

is:

is:

is:

is:

%c\n", this is a character);

%c\n", this is a character);

%c\n", this is a character);

%c\n", this_is a character);

%c", this is a character);

printf("Error Value is: %c\n", this is a character);

CHAPTER 1 REVIEW OF C

printf("Please enter an integer between 1 and 5:\n ");
scanf("%d", &this is a number);

/* Switch to the specific "case" for the number entered */
/* then print which switch case was entered */
switch (this_is_a number)

{

case 1:
printf("Case1l: Value is: %d\n", this is a number);
break;

case 2:
printf("Case2: Value is: %d\n", this is a number);
break;

case 3:
printf("Case3: Value is: %d\n", this is a number);
break;

case 4:
printf("Case4: Value is: %d\n", this is a number);
break;

case 5:
printf("Case5: Value is: %d\n", this_is a number);
break;

default:
/* The number entered was not between 1 and 5 */
printf("Error Value is: %d", this is a number);

}

return O;

1.3 Arrays

As well as defining storage locations as single int, char, or float, we can have a number
of separate values contained in the same named location. The locations are called arrays.
The following program shows an array of 8 integers defined as int arr1[8] where arr1
is the name we use in our program for this location.

6

CHAPTER 1 REVIEW OF C

We could now store 8 integers, for example, 53614673 in the array. So here, arr1[0]
contains 5, arr1[1] contains 3, arri[2] contains 6, and so on. Note that we count from 0.
We can, as before, ask the user to enter data, but rather than have 8 sets of printf
and scanf commands, we can use a forloop, where we tell the program to perform
the same instructions 8 times. We use the storage location i to move from arr1[0] to
arri[1] and so on, and we also use the i location to keep count of how many times to go
round the loop. In the for instruction for (i=0;i<8;i++), the i=0 part sets the count i to
0, the i++ adds 1 each time we loop, and 1<8 limits the number of times to 8 (note again
that we count from 0).

We can also have 2D arrays which are a bit like 2D matrices. We can define an array
as arr2[3][5] so we could store the matrix. The matrix has 3 rows and 5 columns.

4 N

2 3 6 510
4 12 7 8 11
9 0 1213 14

- /

in our array as arr2[o0][0] = 2 arr2[o0][1]
arr2[0][4]=10

arr2[1][o] = 4 arr2[1][1]
arr2[2][0] = 9 arr2[2][1]

3 arr2[0][2]

6 arr2[0][3] = 5

8 arr2[1][4]=11
13 arr2[2][4]=14

12 arr2[1][2] = 7 arr2[1][3]
0 arr2[2][2] = 12 arr2[2][3]

Note, again, that we count from 0.

The program asks you to enter the 2D matrix. If you enter a 3x5 matrix, you can enter
the data here. The program prints your array at the end.

The code is shown as follows:

/* chiarr.c */
/* Array use and nested forloops */

#define CRT_SECURE_NO_WARNINGS

CHAPTER 1 REVIEW OF C

#include <stdio.h>

/* Program to show array use */

int main()

{

int arri[8]; /* Define an array of 8 integers */
int arr2[3][5]; /* 2D array of integers 3 rows and 5 columns*/
int i, j, k, 1;

/* arri 1D array */
/* Ask the user to enter the data */
printf("enter 8 integer numbers\n");

for (i = 0;i < 8;i++)

{
/* Read the data into array arri */
scanf("%d", 8arri[i]); /* Read into arri[i] */

}

printf("Your 8 numbers are \n");

for (i = 0;i < 8;i++)
{

printf("%d ", arri[i]); /* Write contents of arri to command line */

}
printf("\n");

/* arr2 2D array */

/* Ask the user to enter the data */
printf("enter number of rows and columns (max 3 rows max 5 columns) \n");
scanf("%d %d", 8k, &l);
if (k>3] 1>5)
{
/* User tried to enter more than 3 rows or 5 columns */
printf("error - max of 8 for rows or columns\n");

CHAPTER 1 REVIEW OF C
else
printf("enter array\n");

/* Read i rows and j columns using nested forloop */
for (i = 0;i < k;i++)

{
for (j = 0;3 < 1;j++)
{
/* Read the data into array arr2 */
scanf("%d", &arr2[i][j]);
}
}

printf("Your array is \n");
/* Print entered 2D array using nested forloop */
for (i = 0;i < k;i++)

{ for (j = 0; < 1;j++)
{ printf("%d ", arr2[i][j]);
;rintf("\n");
}

}

1.4 Strings

The next program shows the use of string manipulation. Strings are char arrays in the
program. Our array “select” is preset with values ‘s’ ‘e’ ‘I’ ‘e’ ‘c’ ‘t’ '\0'. This is preset this
way to show how the characters are stored. We would normally define it as char select[7] =
“select”;. The second and third arrays are stringl and string2 and preset as shown.

Our first function is strlen which just returns the length of the string you have
entered. Here, it returns the length of int data point called len. We can then print this to
the user using printf.

CHAPTER 1 REVIEW OF C

The second string function copies one string into the other. So here, we say
strcpy(string3,string1) copies the contents of string] into string3. Again, we can print this
out using printf.

Our next function, strcmp, compares two strings. If they are the same, it replies 0.

Our final function concatenates one string onto the end of the other. So here, it
concatenates string2 onto stringl giving “This is stringl. This is string2”.

The code is as follows:

/* chistrings.c */
/* Demonstrate strings */

#define CRT_SECURE_NO_WARNINGS

#include <stdio.h>

#include <string.h>

/* Program to demonstrate string operations strlen, strcpy, strcat, strcmp */

int main() {
char select[7] = { 's', 'e', '1', 'e', 'c', "t',"\0"' };
char string1[32] = "This is stringl";
char string2[16] = "This is string2";
char string3[16];

int 1len;

/* Print out the lengths of the strings */
/* strlen returns length of string */

len = strlen(stringl);
printf("strlen(string1l) : %d\n", len);
len = strlen(string2);
printf("strlen(string2) : %d\n", len);
len = strlen(string3);
printf("strlen(string3) : %d\n", len);

/* copy stringl into string3 */
/* strcpy copies stringl into string3 */

strcpy(string3, stringl);
printf("strcpy(string3, string1) : %s\n", string3);

10

CHAPTER 1 REVIEW OF C

len = strlen(string3);
printf("strlen(string3) after copy of stringl into string3 :
%d\n", len);

/* strcmp compares strings & returns 0 if they are equal */
/* strcmp returns negative value if they are not equal */
/* Compare stringl and string3 (these should be the same)*/

if (strcmp(stringl, string3) == 0)
printf("strings are the same\n");

/* Concatenates stringl and string2 */

strcat(string1, string2);
printf("strcat(stringi, string2): %s\n", stringl);

/* Total length of stringi after concatenation */

len = strlen(string1);

printf("strlen(stringl) after cat of string2 onto stringl :
%d\n", len);

printf("String as predefined quoted chars: %s\n", select);

return O;

1.5 Mathematical Functions

The commonly used mathematical functions are available for you to call from your
program. You need to include the library file <math.h> in your program to access these.
The first three functions are cos, sin, and tan. Here, you are expected to enter the angle
in degrees, but you can change the code if you want so that you can enter the angle

in radians. The next three are arccos, arcsin, and arctan. Again, these functions will
return the angle in degrees, but again you can change this to radians.

The next three functions are pow, sqrt, and fabs. The pow function finds the power
of a number. Its first parameter is the number you want to find the power of and the
second parameter is the power you want to use. The functions return to answer to the
store location answer which is defined as a double float. The function sqrt finds the
square root of the number you enter as its parameter. Again, it returns the answer into
answer. The final function is fabs. You supply a number as the parameter and it returns
the absolute value of the number.

11

CHAPTER 1 REVIEW OF C

The code is as follows:

/* chimath.c */

/* Demonstrate mathematics functions */
#define CRT_SECURE_NO_WARNINGS
#include <stdio.h>

#include <math.h>

#define PI 3.14159265

/* Illustration of the common trigonometric functions */
/* also exponent, natural log, log to base 10 */

/* power, square root, and find absolute value */

int main()

{

double angle, radianno, answer;

double arccos, arcsin, arctan;
double expno, natlog, lb1o0;
double pownum, power, sqroot, fabsno;

/* The cosine function */

printf("cosine function:\n ");

printf("Please enter angle in degrees:\n ");

scanf("%1f", &angle);

printf("You entered %1f\n", angle);

radianno = angle * (2 * PI / 360);

answer = cos(radianno); /* returns cos value to answer */
printf("cos of %1Lf is %1f\n", angle, answer);

/* The sine function */

printf("sine function:\n ");

printf("Please enter angle in degrees:\n ");

scanf("%1f", &angle);

printf("You entered %1f\n", angle);

radianno = angle * (2 * PI / 360);

answer = sin(radianno); /* Returns sin value to answer */
printf("sin of %1f is %1f\n", angle, answer);

12

CHAPTER 1
/* The tangent function */

printf("tangent function:\n ");

printf("Please enter angle in degrees:\n ");

scanf("%1f", &angle);

printf("You entered %1f\n", angle);

radianno = angle * (2 * PI / 360);

answer = tan(radianno); /* Returns tan value to answer */
printf("tan of %1f is %1f\n", angle, answer);

/* The arccos function */

printf("arccos function:\n ");
printf("Please enter arccos:\n ");
scanf("%1f", 8arccos);

printf("You entered %1f\n", arccos);

REVIEW OF C

radianno = acos(arccos); /* Returns arccos value to radianno

(in radians) */
answer = radianno * (360 / (2 * PI));

printf("arccos of %1f in degrees is %1f\n", arccos, answer);

/* The arcsin function */

printf("arcsin function:\n ");
printf("Please enter arcsin:\n ");
scanf("%1lf", 8arcsin);

printf("You entered %1f\n", arcsin);

radianno = asin(arcsin); /* Returns arcsin value to radianno

(in radians) */

answer = radianno * (360 / (2 * PI));

printf("arcsin of %1f in degrees is %1f\n", arcsin, answer);

/* The arctan function */

printf("arctan function:\n ");
printf("Please enter arctan:\n ");
scanf("%1Lf", 8arctan);

printf("You entered %1f\n", arctan);

13

CHAPTER 1 REVIEW OF C

radianno = atan(arctan); /* Returns arctan value to radianno
(in radians) */

answer = radianno * (360 / (2 * PI));

printf("arctan of %1f in degrees is %1f\n", arctan, answer);

/* Showing use of exp, log, and log10 functions */
/* Find exponent of entered number */

printf("exponential function:\n ");
printf("Please enter number:\n ");
scanf("%1f", &expno);

printf("You entered %1f\n", expno);

answer = exp(expno);/* returns exponent value to answer */
printf("exponent of %1f is %1f\n", expno, answer);

/* Find natural logarithm of entered number */

printf("natural logarithm function:\n ");

printf("Please enter number:\n ");

scanf("%1f", &natlog);

printf("You entered %1f\n", natlog);

answer = log(natlog); /* Returns natural log value to answer */
printf("natural logarithm of %1f is %1f\n", natlog, answer);

/* find log to base 10 of entered number */

printf("log to base 10 function:\n ");

printf("Please enter number:\n ");

scanf("%Lf", &1lb10);

printf("You entered %1f\n", 1b10);

answer = log10(1b10); /* Returns log to base 10 value to answer */

printf("log to base 10 of %1f is %1f\n", 1b10, answer);

/* Showing use of pow, sqrt, and fabs functions */
/* Find x raised to power y number */

14

CHAPTER 1 REVIEW OF C

printf("power:\n ");

printf("Please enter number:\n ");
scanf("%1f", &pownum);

printf("You entered %1f\n", pownum);
printf("Please enter power:\n ");
scanf("%1f", &power);

printf("You entered %1f\n", power);

answer = pow(pownum, power); /* Returns power of pownum value to
answer */
printf("%1f raised to power %1f is %1f\n", pownum, power, answer);

/* Find square root of number */

printf("square root:\n ");
printf("Please enter number:\n ");
scanf("%1f", &sqroot);

printf("You entered %1f\n", sqroot);

answer = sqrt(sqroot); /* returns square root of sqroot value to
answer */
printf("The square root of %1f is %1f\n", sqroot, answer);

/* Find absolute value of number */

printf("absolute value:\n ");
printf("Please enter number:\n ");
scanf("%1f", &fabsno);

printf("You entered %1f\n", fabsno);

answer = fabs(fabsno); /* Retuxns absolute value of fabsno to answer */
printf("The absolute value of %1f is %1f\n", fabsno, answer);

return O;

15

CHAPTER 1 REVIEW OF C

1.6 User-Written Functions

If the same process is to be used several times in a program, then rather than write it out
several times, we can define a function. This is a separate piece of code which we can
call each time we want to use it. We demonstrate this in our function program. Here, as

a simple example, what we want to do several times is to find which of two numbers is
greater. We do the comparison in myfunction and call this from the main program. We
supply the function with two parameters which are the numbers we want to compare. In
the program we have defined three numbers, first, second, and third. The following is the
call to the function to compare first with second

myfunction(first , second);

We then call myfunction with different combinations of these numbers. myfunction
compares these and prints out the answer.

/* chifunc.c */
/* Demonstrate function */
#tdefine _CRT_SECURE_NO_WARNINGS

#include <stdio.h>

/* This code demonstrates what a function does */
/* The function here compares two numbers and says which is bigger */
/* The user enters three numbers and gets told which is bigger than which !*/

void myfunction(int a,int b); /* Declaration of your function and
its parameters */

int first , second, third; /* Data fields to hold entered data */
main()

/* Ask the user to enter the numbers to be compared */
printf("Please enter first integer number: ");
scanf("%d", &first);

printf("Please enter second integer number: ");
scanf("%d", &second);

printf("Please enter third integer number: ");
scanf("%d", &third);

16

CHAPTER 1 REVIEW OF C

/* Call "myfunction" with different parameters for each call */
myfunction(first , second);
myfunction(first , third);
myfunction(second , third);
}
void myfunction(int a,int b)
/* The function is outside the main{} part of the program */
/* The function just compares the two parameters, a and b, and says which
is greater*/

{
if(a>b)
printf("%d is greater than %d\n", a,b);
else if (a<b)
printf("%d is greater than %d\n", b,a);
else
printf("%d and %d are equal\n", a,b);
}

We can extend the function process so that it returns an answer to the place in the
main program where it was called. So here, we call getmarks and it returns its answer to
the variable pupil. The function is supplied with an array containing marks attained in
an exam by pupils. The function checks through the array to see which was the highest
mark and returns this value. In this case the return value is of variable type double. So
in the declaration of the function at the start of the program, it has double as its prefix.
Within the function code in the program, the return variable is called highest. This is the
value which is returned. The name of the variable in the function does not have to be the
same as the variable where the result is placed in the main body of the program (here in
the main body the result is placed in the variable pupil).

The following is the code for a function which returns an answer:

/* chifuncans.c */
/* Demonstrate function returning an answer */
#define CRT_SECURE_NO WARNINGS

17

CHAPTER 1 REVIEW OF C
#include <stdio.h>

/* Function which returns an answer */
/* Finds the pupil in one year of the school with the highest marks */

#include <stdio.h>

/* Declaration of your function and its parameters */
double getmarks(double pupils[]);

int main()
{
double pupil; /* Declaration of the variable which will contain the
answer */

/* Array with marks for class is preset in the main part of the
program */

double marks[] = { 10.6, 23.7, 67.9, 93.0, 64.2, 33.8 ,57.5 ,82.2 ,
50.7 ,45.7 };

/* Call function getmarks. The function returns the max marks which
is then stored in pupil */
pupil = getmarks(marks);

/* print the maximum mark */
printf("Max mark is = %f", pupil);

return 0;
}
double getmarks(double pupils[])
{

/* User-defined function which returns an answer to the call */
int i;
double highest;
highest = 0.0;
/* Go through all the pupils in turn and store the highest mark */
for (i =0; i< 6; ++i)
{

if (highest < pupils[i])

highest = pupils[i];

18

CHAPTER 1 REVIEW OF C

}

return highest; /* Returns the value in highest to where the
function was called */

1.7 File Creation

In computing, most data are held in files which are read, acted upon, and then closed.
Most files are created in a program and then read by other programs. So here, we will
create and write to a file using the program filecreate.

The data we want to write to the file is held in a preset structure. The layout of the
structure is shown in record. Here, the layout is simple. We will go on to use less simple
but more realistic structures later. Here the structure contains a 2D array called matrix.
We have preset the actual data into the 2D array called inmat. Then we will copy the data
from inmat to matrix.

The initial 2D matrix, inmat, is shown in the following with its preset values:

double inmat[3][5] = {
{2.6,3.1,7.4,0.6,9.3},
{4.9,9.3,0.6,7.4,3.1},
{8.3,8.8,5.2,2.7,0.8}

};

The following defines the structure called record. In this simple case, record only
contains a 2D array called matrix.

struct record

{
double matrix[3][5];

};

We now define a storage variable called data_record. This variable has the format of
struct record. When we access this, we use data_record.matrix[i][j].

struct record data_record;

19

CHAPTER 1 REVIEW OF C
First, we open the file testaug.bin using fopen.
ptr = fopen("testaug.bin", "w");

The function creates the file “testaug.bin” The second parameter of the call defines
what we can do with the file. The main options here are as follows:

r - Open the file to read (create the file if it does not exist).

w - Open the file to write. If it already exists, the contents are
deleted first.

a - Open the file to append. It will add to the end of the file (create
the file if it does not exist).

r+ - Open the file to read and write.
w+ - Create a file to read and write.
a+ - Open the file to read and append.

Then we write the data to the file using fwrite.
11 = fwrite(data _record.matrix, sizeof(data record.matrix), 1, ptr);

The first parameter of fwrite is the data, the second parameter is the size of the data,
the third parameter is how many records we want to write, and the last parameter is the
pointer to the file which we have set up in the fopen command. The fwrite command
returns a value to the variable r1. The variable r1 contains the number of records written.
This can then be printed out to the user.

At the end, we print out what we have written and then close the file using fclose.

fclose(ptr);

Again, we have the pointer to the file as the parameter. This is important if we have
two files open in the program and we only want to close one of them.
The program code is shown as follows:

/* chifilecreate.c */

/* filecreate */

/* Creates a file from data preset */
/* into the 2D array of the program */
/* then prints the data to the user */

20

CHAPTER 1

#define _CRT_SECURE_NO WARNINGS
#include<stdio.h>

#include <stdlib.h>

int main()

{

struct record

{

double matrix[3][5];
};
int /*counter,*/ i, j;
FILE *ptr;
struct record data_record;
size t r1;

double inmat[3][5] = {
{2.6,3.1,7.4,0.6,9.3},
{4.9,9.3,0.6,7.4,3.1},
{8.3,8.8,5.2,2.7,0.8}

};
/* Copy preset array to output array */
for (i = 0;i < 3;i++)

{
for (j = 0;j < 5;j++)
{
data_record.matrix[i][j] = inmat[i][]];
}
}

/* Open output file (write/binary) */

ptr = fopen("testaug.bin", "w");

if (!ptr)

{
/* Error when trying to open file */
printf("Can not open file");
return 1; /* quit the program */

REVIEW OF C

21

CHAPTER 1 REVIEW OF C

/* Write output matrix to output file */

r1 = fwrite(data _record.matrix, sizeof(data record.matrix), 1, ptr);
printf("wrote %d elements \n", r1);

printf("size of data record.matrix is %d \n", sizeof(data record.matrix));
/* Print matrix written to file */

for (i = 0;i < 3;i++)

{
for (j = 0;] < 5;j++)
{
data_record.matrix[i][j] = inmat[i][]];
printf("data_record.matrix[%d][%d] = %1f \n", i, j,
data_record.matrix[i][j]);
}
}
fclose(ptr); /* Close the file */
return O;

1.8 File Read

We have now created our file testaug.bin, so now we write a program to read the data
from the file. First, we open the file, as in filecreate. Then we read the data from the file
using fread which has the same parameters as filecreate.

11 = fread(data_record.matrix, sizeof(data record.matrix), 1, ptr);

In this case we read the record from the file and place it into data_record.matrix.
The variable r1 will contain the number of records read which, again, we can print out
to the user.

Then we print out the data we have read and close the file.

The code is as follows:

/* chifileread.c */
/* fileread */
/* Read the data from a file and write it to command line */

22

CHAPTER 1 REVIEW OF C

#define CRT SECURE_NO_WARNINGS
#include<stdio.h>
#include <stdlib.h>
struct record
{
double matrix[3][5];
b
int main()
{
int counter, i;
FILE *ptr;
struct record data_record;
size t r1;
/* Open input file (read/binary) */
ptr = fopen("testaug.bin", "r");
if (!ptr)
{
/* Exrror trying to open the file */
printf("Can not open file");
return 1;
}
/* Read input matrix from input file */
r1 = fread(data_record.matrix, sizeof(data record.matrix), 1, ptr);
printf("read %d elements \n", r1);
printf("size of struct record is %d \n", sizeof(struct record));
/* Print matrix read from file */
/* using nested forloop */
for (counter = 0; counter < 3; counter++)

{
for (i = 0; i < 5; i++)
{
printf("matrix[%d][%d] = %1f \n", counter, i,
data_record.matrix[counter][i]);
}
}

23

CHAPTER 1 REVIEW OF C

fclose(ptr); /* Close the file */
return O;

1.9 File Create2

This program creates a file which is more typical of those used in the workplace.
This is a file of data for patients under the care of a doctor or hospital. We have a
structure of data that we keep for each patient. This consists of their numerical ID, their

name, and their blood pressure.

struct Patient {
int PatientID;
char name[13];
int BloodPressure;

};

We create a separate structure for each patient.
These are defined in the program as s10, s11, s12, and so onup to s29. Data is
preset into each structure. The first one is shown as follows:

struct Patient s10 = { 10,"Brown ",50 };

The output file is opened and we use fwrite to write each structure to the file. We
can then close the file and open it again and use the fread command to read each
patient’s structure and print it out. If the read command does not return the expected
number of records, we can call the function feof(fp)). This function returns 1 if an
unexpected end of file was read. Otherwise, we call ferror (fp) which returns 1 if there
is another error.

Finally, we close the file.

The code is as follows:

/* chifilecreate2.c */

/* filecreate2 */

/* Reads from file */

/* Prints out the records sequentially */

/* Finds specific records and prints them */

*

24

#define CRT_SECURE_NO WARNINGS
#include<stdio.h>

/* Structure containing information */

/* for each record in the file. */

/* Each record contains data for one patient. */
/* The data is the patient’s ID, name, and blood pressure */

struct Patient {
int PatientID;
char name[13];
int BloodPressure;

};

int main()

{

int i, numread;

FILE *fp;
struct Patient si;
struct Patient s2;

/* Preset the data for

struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct

Patient
Patient
Patient
Patient
Patient
Patient
Patient
Patient
Patient
Patient
Patient
Patient
Patient
Patient
Patient
Patient
Patient

s10 =
s11 =
s12 =
s13 =
s14 =
s15 =
s16 =
s17 =
s18 =
s19 =
s20 =
s21 =
S22 =
Ss23 =
$24 =
528 =
S29 =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

each patient */

10, "Brown
11, "Jones
12, "White
13, "Green
14,"Smith
15, "Black
16,"Allen
17,"Stone
18, "Evans
19, "Royle
20, "Stone
21, "Weeks
22,"0Owens
23, "Power
24,"Bloom
28, "Haver
29, "James

",50
",51
",52
",53
", 54
",55
",56
",57
",58
",59
" 60
",61
62
",63
",63
" 68
",69

b
b
s
b
b
s
b
s
b
b
b
s
s
b
b
b
b

CHAPTER 1

REVIEW OF C

25

CHAPTER 1

26

/* Open the Patients file */

REVIEW OF C

fp = fopen("patients.bin", "w");

/* UWrite details of each patient to file*/
/* From the structures defined earlier */

fwrite(&s10,
furite(8s11,
fwrite(&s12,
fwrite(&s13,
furite(8s14,
fwrite(8&s15,
fwrite(&s16,
fwrite(8&s17,
furite(&s18,
fwrite(&s19,
fwrite(8&s20,
fwrite(8&s21,
fwrite(8&s22,
fwrite(8&s23,
furite(8s24,
fwrite(&s28,
fwrite(&s29,

sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),

/* Close the file */

fclose(fp);

/* Reopen the file */
fopen("patients.bin", "r");

/* Read and print out all of the records on the file */

for (i = 0;i < 17;i++)

{

numread = fread(&s2, sizeof(s2), 1, fp);/* read into numread */

if (numread == 1)

{

1,
1,
1,

)

-

-

-

-

-

-

-

-

-

-

-

-

1
1
1
1
1
1
1
1
1
1
1
1
1
1

)

p);
p);
p);
p);
p);
p);
p);
p);
p);
p);
p);
p);
p);
p);
p);
p);
p);

/* print data for one patient */

printf("\nPatientID :

%d", s2.PatientID);

CHAPTER 1 REVIEW OF C

printf("\nName : %s", s2.name);
printf("\nBloodPressure : %d", s2.BloodPressure);

}
else {
/* If an error occurred on read, then print out message */
if (feof(fp))
printf("Error reading patients.bin : unexpected end
of file fp is %p\n", fp);
else if (ferror(fp))
{
perror ("Error reading patients.bin");
}
}
}
/* Close the file */
fclose(fp);

1.10 File Read2

Our final file program shows how we can move about the file when we are reading it.

We start by opening the file, reading the patient’s data, and printing it. We then close

the file and reopen it and read the patient’s data again but this time only printing out
data for the patient with ID=23.

fp = fopen("patients.bin", "r");

for (i = 0;1 < 17;i++)
{
/* Search the file for patient with ID of 23 */
fread(8s2, sizeof(s2), 1, fp);
if (s2.PatientID == 23)
{

27

CHAPTER 1 REVIEW OF C

/* Found the patient. Print their name */
printf("\nName : %s", s2.name);
break;

}

We can then go back to the beginning of the file by using fseek where we have the
parameter SEEK_END which moves to the end of the file; then, we can call rewind to go
back to the start of the file.

fseek(fp, sizeof(s2), SEEK END);
rewind(fp);

We can then go through the file again. This time, we are finding all of the patients
with blood pressure above 63 and printing these out.

Finally, we close the file.

The code is as follows:

/* chifileread2.c */
/* fileread2 */
/* Reads from file */
/* Reads and prints sequentially */
/* Reads and prints specific records */
#define CRT_SECURE_NO_WARNINGS
#include<stdio.h>
struct Patient {

int PatientID;

char name[13];

int BloodPressure;

};
int main()
{
FILE *fp;

struct Patient s2;
int numread, i;

/* Open patients file */
fp = fopen("patients.bin", "r");

28

CHAPTER 1 REVIEW OF C

for (i = 0;1 < 17;i++)

{
/* Read each patient data from file sequentially */
fread(&s2, sizeof(s2), 1, fp);
/* Print patient ID, name, and blood pressure for each patient */
printf("\nPatientID : %d", s2.PatientID);
printf("\n Name : %s", s2.name);
printf("\nBloodPressure : %d", s2.BloodPressure);

}

fclose(fp);

/* Reopen the patients file */

fp = fopen("patients.bin", "r");
for (i = 0;i < 17;i++)
{
/* Search the file for patient with ID of 23 */
fread(8s2, sizeof(s2), 1, fp);
if (s2.PatientID == 23)
{
/* Found the patient. Print their name */
printf("\nName : %s", s2.name);
break;

}
/* Go back to the beginning of the file */

fseek(fp, sizeof(s2), SEEK END);
rewind(fp);
/* Find all patients with blood pressure reading above 63 */

for (i = 0;i < 17;i++)

{
fread(8s2, sizeof(s2), 1, fp);
if (s2.BloodPressure > 63)

{

29

CHAPTER 1 REVIEW OF C

30

/* Print out name of each patient with blood pressure

above 63 */

printf("\nName : %s", s2.name);
}
/* Go back to the beginning of the file */

rewind(fp);
/* Read and print out the first 3 patients in the file */

numread = fread(&s2, sizeof(s2), 1, fp);
if (numread == 1)

{
printf("\nPatientID : %d", s2.PatientID);
printf("\nName : %s", s2.name);
printf("\nBloodPressure : %d", s2.BloodPressure);
}

numread = fread(&s2, sizeof(s2), 1, fp);
if (numread == 1)

{
printf("\nPatientID : %d", s2.PatientID);
printf("\nName : %s", s2.name);
printf("\nBloodPressure : %d", s2.BloodPressure);
}

numread = fread(&s2, sizeof(s2), 1, fp);

if (numread == 1)

{
printf("\nPatientID : %d", s2.PatientID);
printf("\nName : %s", s2.name);
printf("\nBloodPressure : %d", s2.BloodPressure) ;

}

/* Close the file */

fclose(fp);

CHAPTER 1 REVIEW OF C

1.11 Common Mathematical and Logical Symbols

1. =assign

2. ==-equals

3. !=notequal to
4. <less than

5. > greater than

6. <=lessthan or equal to

7. >=greater than or equal to
8. &&logical AND

9. Illogical OR

10. !logical NOT

EXERCISES

1. Write a program of 3 nested forloops. Each forloop should loop 1000 times.
Within the innermost forloop, add 1 to a number. Set the number to zero before
you enter the forloops. Print out the number at the end of the program.

2. \Write a program to work out the average of 3.1, 0.6, 4.9, 8.7, 0.2, 3.6, 4.9, 7.4,
3.1,and 0.3.

3. Now change your program in question 2 but call a function which returns the
answer. Then print it out.

4. Write a program containing the structure for companies.

struct company {
char name[13];/* company name */
int employees;/* number of employees */
float yearprofit;/* yearly profit */
1

31

CHAPTER 1

REVIEW OF C

Open the file and then ask the user to enter the data for each company. Then
write this data to the file. Close the file, then reopen it, and read all of the data.
Print out the name, employees, and yearprofit for each company.

Write a program which reads the data from question 4. Ask the use to enter a
value for the profit. Then read the data and print out any company which have a
greater profit than the value entered.

Write a similar program to question 5 but this time finding the companies with
number of employees greater than the entered value.

Rewrite the ch1arith.c program from this chapter but give the user numbers
to enter, one for each function. Then use a switch to jump to that function.

32

PART |

Finance Applications

Regression
Product Moment Correlation Coefficient
Stock Price Prediction

CHAPTER 2

Regression

Regression is concerned with the relationship between two quantities. For instance,

a person’s height in relation to their weight or a car’s values compared to its age. If we
record values of these, we can plot the points on a graph. This type of graph is called a
“scatter” graph because the points seem scattered about the graph.

height
H —
|
[3
|
P >
s weight
value
age.
35
© Philip Joyce 2020

P. Joyce, Practical Numerical C Programming, https://doi.org/10.1007/978-1-4842-6128-6_2

https://doi.org/10.1007/978-1-4842-6128-6_2#DOI

CHAPTER2 REGRESSION

The preceding two graphs are scatter graphs. The top graph shows height plotted
against weight for different people. The bottom graph shows the value of one particular
make and model of a car plotted against the age of the car. Notice that the top graph
slopes up from the left showing that the trend is that taller people are heavier than
shorter people. The bottom graph slopes down from the left showing that the car’s value
decreases with age. If there was no relationship between the height of a person and their
weight, then the points would be all over the graph and not in the patterns shown. If this is
the case, we say that there is no “correlation” between the two quantities. For our case of
a slope up from the left where one quantity increases with the other, we call this “positive
correlation.” For the case of the slope down from the left, we call it “negative correlation.”

For the two graphs shown earlier, the points seem to be following a straight line
pattern, so we have drawn a straight line “by eye” with approximately the same number
of points above the line as below.

We can make this more accurate by using mathematical gauging of what the line
should be. This is done by making the distances between the points and our line as small
as possible.

There are two possible ways we can do this.

36

CHAPTER 2 REGRESSION

The preceding two graphs show two possible ways of doing this. The top one
measures the y distance from each point to the line. This called “regression of y on x.”
The lower one measures the x distance of each point to the line. This called “regression
of x ony” Both cases are trying to minimize the average distance of the points to the line.
In both cases we use mathematical formulas to find the correct line.

For the x values, we use the sum of how far each of the x values is from the mean. The
expression for this is

Su=2(x-X)?

For the y values, the sum is

SWZZ(Y'J_’)Z

Also used is the sum of the x values multiplied by the y values:

Sy=2(y-y)x-X))

There are alternative forms of these which are easier to use:

Su= 2 x%-(2x)*/n
Sy=2y*-(Zy)/n
Sy = 2xy ~(XxXy) /n
In these formulas, n is the number of points on the scatter graph. The formula for the
line of best fit for the regression of y on x case is

y =a+bx

whereb =S,/ Sa=y -bx
For the case of regression of x on y, the formula for the line is

x=c+dy

whered=S,,/Syc=X -dy

The following program examines the decrease in value ($1000s) of a car over a
number of (x) years. In our program we just read all of the (x,y) values that the user types
in for their scatter graph that they want to find the line of best fit for. The code puts these
values into the preceding formula and then works out the equation of the line and prints
it out.

37

CHAPTER2 REGRESSION

Our program uses the “y on x” case. The variables used to hold the data are named
so that they describe the variables in our formulas earlier. The Greek letter ' is called
“sigma.” The term in the formula) xy reads as “sigmaxy” in the program, the term for the
average of x values is “xbar’; and so on.

So in our program, we read x (years) and y (£1000s) and substitute these into our
formulas.

We start by setting all of our storage locations to zero, and then we ask the user to
enter the points. We do this using printf and scanf as explained in Chapter 1.

Eventually we get the final equation y = a + bx, which is the general equation for “y
on x” regression.

We can plot the points and our regression line using the Graph package.

In the code we use the following functions:

a) printf, which prints a message of information to the user.

b) scanf, which allows the user to type information into a storage
variable in the program (here scanf(“%d’, &points); specifies %d,
meaning that the data types in must be an integer and points is
the variable in the program where this integer will be placed).

c) pow, which raises a variable in the program to the specified power.
Here we use pow(xpoints[i],2) which takes the value in the array
xpoints[i] and raises it to the power 2.

The code is shown as follows:

/* regyonx2.c */

/* Regression */
/* User enters points.*/
/* Regression of y on x calculated */

#define CRT_SECURE_NO WARNINGS
#include <stdio.h>

#include <math.h>

main()

{
FILE *fp;

38

CHAPTER 2 REGRESSION

/* Store areas for points in the formulas */

float xpoints[12],ypoints[12];

float sigmax,sigmay,sigmaxy,sigmaxsquared,xbar,ybar;
float fltcnt,sxy,sxx,b,a;

int i,points;

fp=fopen("regyonx.dat","w"); /* Create and open the file in "write" mode*/

printf("enter number of points (max 12) \n");
scanf("%d", &points);

if(points»12)
{
printf("error - max of 12 points\n"); /* User entered more
than 12 */
}
else
{

/* Preset store areas to zero */
sigmax=0.0;

sigmay=0.0;

sigmaxy=0.0;

sigmaxsquared=0.0;

/* User enters points */

for(i=0;i<points;i++)

{
printf("enter point (x and y separated by space) \n");
scanf("%f %f", &xpoints[i], &ypoints[i]);
sigmax=sigmax+xpoints[i];
sigmay=sigmay+ypoints[i];
sigmaxy=sigmaxy+xpoints[i]*ypoints[i];
sigmaxsquared=sigmaxsquared+(float)pow(xpoints[i],2);

39

CHAPTER2 REGRESSION

/* Print out the points entered */
printf("points are \n");
for(i=0;i<points;i++)

{
printf(" \n");
printf("%f %f", xpoints[i], ypoints[i]);
fprintf(fp, "%1f\t%1f\n",xpoints[i], ypoints[i]);
}

printf(" \n");
fltcnt=(float)points; /* Copy to fltcnt as a float type */

/* Calculation of (xbar,ybar) - the mean points*/
/* and sxy and sxx from the formulas*/
xbar=sigmax/fltent;

ybar=sigmay/fltcnt;
sxy=(1/fltcnt)*sigmaxy-xbar*ybar;
sxx=(1/fltcnt)*sigmaxsquared-xbar*xbar;

/* Calculation of b and a from the formulas */
b=sxy/sxx;
a=ybar-b*xbar;

/* Print the equation of the regression line */

printf("Equation of regression line y on x is\n ");
printf(" y=%f + %fx", a,b);
printf(" \n");

}
fclose(fp);

The following data for x values and y values was entered to the program and
produced the following graph.

40

CHAPTER 2 REGRESSION

Data for car depreciation (8 points)

Age Value ($1000)
2.5 11.5

3.0 10.6

3.5 9.2

4.0 7.8

45 6.1

5.0 47

5.5 3.9

6.0 1.8

The line of regression calculated by the program was
y =18.7488 - 2.776x
This is plotted as the black line passing through the points.

& ¢ - X
Fde Edt Functen Zoom Calc Help

NSl + 4L WA JAdT PLPD

W taen |
¥ @ Senes 1

%"\ e 1B 78882776

4 Ve (51000)

¥ {1 age fean)

5% Equaton of regresmon ine y = 18,7488 - 2776

Value (S1000)

G B '\\ Equation of regression line
y=18.7488 - 2.776x

.

age (years)

x=585 ye-182

We have seen an example of negative correlation where the slope of the graph goes
down from the left. The next example shows positive correlation. This shows the number
of items produced by a company and it relates then to the company’s costs.

41

CHAPTER2 REGRESSION

No. of items (n) Production costs (p) in $100
21 52

39 754
48 87.1
24 58.5
72 115.7
75 124.8
15 48.1
35 68.9
62 107.9
81 132.6
12 455
56 97.5

Using the regyonx program again, we get the following:

Fde dit Function Zoem Cale Help

DEd + 4L =AMA SAadm PLAN
L) ¥
¥ @ Sewes 1

WA le27 2841 1

production costs (S100) //o

T

o £ £ £ [i] ») a n [£ 0 w0 1] 1] 1

number of items

1e221 yos3d

The regression line for this data was

y=27.281 + 1.2715x

42

CHAPTER 2 REGRESSION

2.1 Capital Asset Pricing Model

This uses regression to model the relationship between expected returns and market
risk. We can then use it to predict an expected return from the market risk.

Return %

Risk-free rate

Market risk %

2.2 CAPM lllustration
The formula used for Capital Asset Pricing Model (CAPM) is

Expected return = Risk-free rate + (Beta * Market risk premium)

The risk-free rate is, for example, government securities which are generally thought
to have zero risk.

43

CHAPTER2 REGRESSION

Market risk premium (Rm - Rf) is the return you expect to get in the future.

Beta is a measure of the volatility of the investment compared to the market. If the
beta of a stock is 1.5, then it would give a 150% change.

So CAPM takes into account the market risk rather than just the specific risk of your
investment. It measures past performance to measure beta.

We can use our y on x regression formula

y=a+bx

which corresponds to our CAPM formula earlier where b in this formula corresponds to
the beta in our CAPM formula.

So we can use our regyonx program for our CAPM calculation with just slight
modification in the user requests.

The code for this program is shown as follows:

/* capm.c */

/* CAPM */

r* User enters points.*/

r* Regression of y on x calculated */
#define CRT_SECURE_NO WARNINGS

#include <stdio.h>

#include <math.h>

main()

{
FILE *fp;

float xpoints[12],ypoints[12];

float sigmax,sigmay,sigmaxy,sigmaxsquared,xbar,ybar;
float fltcnt,sxy,sxx,b,a;

int i,points;

fp=fopen("capm.dat","w");

printf("enter number of points (max 12) \n");
scanf("%d", &points);

if(points»12)

{

printf("error - max of 12 points\n");

44

else

CHAPTER 2 REGRESSION

sigmax=0.0;
sigmay=0.0;
sigmaxy=0.0;
sigmaxsquared=0.0;

/* User enters points from scatter graph */

for(i=0;i<points;i++)

{
printf("enter point (market percent change and share percent
change separated by space) \n");
scanf("%f %f", &xpoints[i], &ypoints[i]);
sigmax=sigmax+xpoints[i];
sigmay=sigmay+ypoints[i];
sigmaxy=sigmaxy+xpoints[i]*ypoints[i];
sigmaxsquared=sigmaxsquared+(float)pow(xpoints[i],2);

}

printf("points are \n");
for(i=0;i<points;i++)

{
printf(" \n");
printf("%f %f", xpoints[i], ypoints[i]);
fprintf(fp, "%1f\t%1lf\n",xpoints[i], ypoints[i]);
}

printf(" \n");
fltent=(float)points;

/* Calculation of (xbar,ybar) - the mean points*/
/* and sxy and sxx from the formulas*/
xbar=sigmax/fltcnt;

ybar=sigmay/fltcnt;
sxy=(1/fltcnt)*sigmaxy-xbar*ybar;
sxx=(1/fltcnt)*sigmaxsquared-xbar*xbar;

45

CHAPTER2 REGRESSION

/* Calculation of b and a from the formulas */
b=sxy/sxx;
a=ybar-b*xbar;

/* Print the equation of the regression line */

printf("Equation of regression line y on x is\n ");
printf(" y=%f + %fx", a,b);
printf(" \n");

printf(" beta is %f", b);

}
fclose(fp);

}

If we input the following historical data,

Market risk Risk-free rate
1.500000 4.500000
2.000000 3.900000
2.100000 5.100000
1.900000 3.600000
-0.600000 -1.000000
-1.200000 -1.300000
-2.000000 -2.400000

46

we get the following graph:

C\Users\Philip\Documents) cpfhook\Apres\ Chapters\ChZ\ capm. grf

Fde Edt Functen Zoom Calc Help

Deld | +41L |V

b Anen

AN el 8231 7985

& 2 A

JASD | PPEH

share % change

CHAPTER 2 REGRESSION

CAPM

market % change

xu-285 yuSdl

Here, the program calculates the regression line to be

y=0.822918 + 1.794479x

and the gradient of the line, which is beta, to be 1.794479.

EXERCISES

1. Use the data from the car value problem to calculate x on y. You can modify
the program of y on x for this. Rename the output file “regxony”. Print the
regression line and the x and y points.

2. A company collates the number of units it produces with the cost of producing
the units. The data is given in the following.

47

CHAPTER 2

REGRESSION
Units Cost ($1000)
15 59.5
30 85
55 1241
75 158.1
10 52.7
25 71.4
45 110.5
70 146.2
20 64.6
35 91.8
60 137.7
80 163.2

Use the regyonx program to produce a graph of the points and the regression
line. Use your regression line to find the estimated cost of 50 units.

A chemical company varies the amount of a chemical agent injected into the
blood and measures the resulting cholesterol level. Use the regyonx program
with the x values as the agent level and the y values as the cholesterol level

to produce a graph of points and the regression line. What conclusion can be

drawn from this?

48

CHAPTER 3

PMCC

3.1 Theory

In Chapter 2 we saw positive and negative correlation and we saw the correlation to

varying degrees. We could say that the correlation was strong if our points for our graph

were close to the regression line.

height
4 L)
é
L4 .
M L
weight
value
[]
L]
L L)
L
age
o]
L] @ '
L
v ¢ ¢
. ¢
.
* @ ¢

Number of house

Figure 3-1. Levels of correlation

© Philip Joyce 2020

P. Joyce, Practical Numerical C Programming, https://doi.org/10.1007/978-1-4842-6128-6_3

49

https://doi.org/10.1007/978-1-4842-6128-6_3#DOI

CHAPTER3 PMCC

In the preceding diagrams in Figure 3-1, you can see the two positive and negative
correlation examples we used, but the third diagram is a bit strange. We are trying to
relate a person’s IQ to their house or apartment number. As you would think, there is
no relationship between these and this is shown by the fact that all of the points are
scattered all over the graph.

Rather than just saying that the correlation is strong or weak, we can assign a number
to it. If, say, the points for our positive correlation are actually on the line of regression,
then this is perfect correlation. We define a number for this. It is called the product
moment correlation coefficient (PMCC), and for our case of perfect positive correlation,
the PMCC s +1. If we had perfect negative correlation, then the PMCC would be -1. For
the case earlier, with no correlation, the PMCC is 0.

The formula for the PMCC, r, is

r=S,/(S*S,)

where S, = /S and S, = /S,,
The values of S, and S, are just the same as we used in our regression programs
from the previous chapter.

Su=2(x-x)?
SWZZ(Y' y)
and

Sy = 2xy -(2x2y) /n

The more usable formats for these three formulas are
S = 2.x2 - (D)x)*/n
Sy=2y* - (Xy)’/n

Sy = 2xy -(Xx2y) /n
The PMCC is important as we can use it to determine the accuracy of our estimates

of values from our regression lines. If r, the PMCC, is close to 1 or -1, then the values we

read from the graphs will be accurate.

50

CHAPTER3 PMCC

3.2 Manual Calculation of PMCC

We are going to use the six formulas from our theory of PMCC to find the value for the
Car Depreciation problem. The six formulas are labeled as follows:

r=S,/(S:*S,) (1)
where S, = /Sy (2)
and S, = \/ Syy 3)
Sw= 2% - (2x)*/n (4)
Syy=2y* - (Xy)*/n (5)
Sy = 2xy-(XxXy) /n (6)

We can now use the preceding formulas 1, 2, 3, 4, 5, and 6 to calculate the product
moment correlation coefficient (r) for the Car Depreciation graph from Chapter 2. The x
and y points from that graph are as follows:

Data for car depreciation (8 points)

X y
2.5 115
3.0 10.6
35 9.2
4.0 7.8
45 6.1
5.0 47
5.5 3.9
6.0 1.8

Using these values in our six formulas, we get

Yx=25+3.0+3.5+4.0+4.5+5.0+55+6.0=34
Yy=115+10.6+9.2+7.8+6.1+4.7+3.9+1.8=55.6
Yxy =2.5*11.5 + 3.0*10.6 + 3.5*9.2 + 4.0*7.8 + 4.5%6.1 + 5.0*4.7 + 5.5*3.9 + 6.0*1.8
=28,75+31.8+32.2+31.2+27.45+23.5+21.45+10.8

51

CHAPTER3 PMCC

=207.15
Y x?=2.52+3.0%+ 3.5 + 4.0 + 4.5 + 5.0> + 5.52 + 6.0?
=6.25+9+12.25 + 16 + 20.25 + 25 + 30.25 + 36
=155
Yy?*=11.5%+10.6% + 9.22 + 7.82 + 6.12 + 4.7* + 3.9 + 1.8?
=132.25+112.36 + 84.64 + 60.84 + 37.21 + 22.09 + 15.21 + 3.24
=467.84

From our values of) x and)y, we get
X :ZX/8:34/8:4.25
y =Yy/8=556/8=6.95
From our values of }'x?)'y? and) xy, we get
S =2x2- (D2 x)*/n
=155-342/8=10.5
Sy=2y*-(Xy)/n
=467.84 - 55.6% / 8§ =81.42
Sw=2xy-(2x2y) /n
=207.15 - 34*55.6 / 8 =-29.15
So we can now write
S, = V/S = 3.24037
Sy=1/Syy =9.0233
Using these values for PMCC,
r=S4/(S:*S,)
=-29.15/(3.24037%9.0233)
=-0.996961

So our value for the product moment correlation coefficient for the Car Depreciation
problem is -0.996961. This is very close to -1 which would be perfect negative
correlation.

52

CHAPTER3 PMCC

In some textbooks a slightly different notation for our six equations is used. The two
notations are called the “small S format” and the “big S format.” The equations earlier are
in the “big S” format. In the “small S” format, equations 4, 5, and 6 become

sxx=()x*)/n-(x) (4)
syy=(2Zy) /m-(¥) 6y
sxy=(Xxy)/n-x*y (6)

The relationship between the “big S” and “small S” is

S = n* sxx
Syy =n* syy
S,y =n*sxy
The rest of the equations are the same. As we are using these equations to find
the PMCQC, 1, and the regression equation variables b and d, then the n term that

differentiates between the two formats cancels by the division used in the formulas.
So the definitions for the “small S” formulas are as the “big S” formulas

sx = /sxx
sy = syy
I = sxy/(sx*sy)
b = sxy/sxx
d = sxy/syy

3.3 PMCC Program

We can just amend our regression programs to calculate the value of the PMCC using the
preceding formulas.

We can then run the program using the data for our car depreciation example in our
regression chapter. The data for this is as follows:

Data for car depreciation (8 points)

53

CHAPTER3 PMCC

2.5 11.5
3.0 10.6
3.5 9.2
4.0 7.8
4.5 6.1
5.0 4.7
5.5 3.9
6.0 1.8

And an example of the code we can use for PMCC is shown in the following:

/*Product moment correlation coefficient */
#define CRT_SECURE_NO_WARNINGS

#include <stdio.h>

#include <math.h>

main()

{

double xpoints[10], ypoints[10];

/* Variables are named as in the formulas used in the text of the chapter
*/
/* e.g., 2x is called “sigmax” */

double sigmax, sigmay, sigmaxsquared, sigmaysquared, xbar, ybar,
sigmaxy;

double sxy, sxx, syy, sx, sy, T;

int i, points; /* User-entered number of scatter graph points */
double fltcnt; /* Number of points as a double variable */

FILE *fp;

fp=fopen("pmccf.dat","w");

/* User enters number of points in scatter graph */
printf("enter number of points (max 10) \n");

scanf("%d", &points);

if (points > 10)

{

54

CHAPTER3 PMCC

printf("error - max of 10 points\n");

}

else

{

/* Variables used for summing data values cleared to zero */

sigmax = 0.0;

sigmay = 0.0;
sigmaxy = 0.0;
sigmaxsquared = 0.0;

sigmaysquared = 0.0;

/* User enters points in scatter graph */

for (i

{

}

= 0;1 < points;i++)

printf("enter point (x and y separated by space) \n");
scanf("%1f %1f", 8xpoints[i], 8ypoints[i]);

/* Totals incremented by x and y points */

sigmax = sigmax + xpoints[i];

sigmay = sigmay + ypoints[i];

sigmaxy = sigmaxy + xpoints[i] * ypoints[i];
sigmaxsquared = sigmaxsquared + pow(xpoints[i], 2);
sigmaysquared = sigmaysquared + pow(ypoints[i], 2);

printf("points are \n");

for (i

{

}

= 0;1 < points;i++)

printf(" \n");
printf("%1f %1f", xpoints[i], ypoints[i]);
fprintf(fp, "%1F\t%1f\n",xpoints[i], ypoints[i]);

printf(" \n");

/* Convert number of points as a double variable */
/* for use in the formulas. Store this in variable fltcnt */

fltcnt = (double)points;

55

CHAPTER3 PMCC

/* variables in PMCC formula calculated */
xbar = sigmax / fltent;

ybar = sigmay / fltent;

syy = (1 / fltcnt)*sigmaysquared - ybar * ybar;

sxx = (1 / fltcnt)*sigmaxsquared - xbar * xbar;
sx = sqrt(sxx);

sy = sqrt(syy);
sxy = (1 / fltent)*sigmaxy - xbar * ybar;

/* PMCC value calculated */
T = sxy / (sx*sy);
printf("r is %1f", 1);

}

fclose(fp);

The resulting graph of points and the calculated PMCC are shown in Figure 3-2 as
follows. The points given earlier are entered into the Graph package manually using
“Function” » “Insert point series” within the Graph package command line. The value
for PMCC calculated by the program is the same as our manual calculation in this
chapter.

56

CHAPTER3 PMCC

ilip\ Documents) cpfbookiApress\ Chapte:

File Edt Functben Zoom

D&l + L —mA Jadm PPPD

i P
v @ S 1

¥ A 1 -0.956961

V) vave 51000 ut

¥ {1 age fean)

vl PMCE for car ceprociation

value (51000) . . PMCCifcn‘oc:;ﬁ t;:plredation
ris-u.

age (years)

xnB24 y= 1041

Figure 3-2. PMCC of Car Depreciation

We see that the PMCC is -0.996961 which is very close to -1 so showing very strong
negative correlation.

3.4 Comparison of the Two Regression Lines
From our two equations of regression of y on x used in the previous chapter,

y =a+bx

whereb=S,/Syanda=y -bXx
and ofxony

x=c+dy
whered =S,;/Syyandc=Xx -dy
we can see from the preceding definitions of b and d that
b*d = (Sy/ Sx)*(Sxy/Syy)
= (Sxy/ S« S)*(S/ Sy Sy)
(as Six=SsSxand Sy, =S, S, from the preceding formulas)
so b*d =(Sy, * S,y)/(SxSc* Sy Sy)
so b*d = (S,/(S¢Sy))?
57

CHAPTER3 PMCC

but r? =(Sxy/(Sx Sy))?
sor=1/(bd)

The regression line of y on xy = a + bx has gradient b.

The regression line of x on y x = ¢ + dy has gradient 1/d.

Ifrr=1

asr*=bd
thenbd=1sob=1/d.

So both regression lines have the same gradient, and as they both pass through
X and y, then the two lines must be identical.

3.5 Manual CGalculation of the Two Regression Lines

From our two equations of regression of y on x used in the previous chapter,

y =a+bx
whereb =sxy/ sxxanda=y -bXx
and ofxony
x=c+dy
whered =sxy/syyandc=Xx -d y
and
sxx = (¥x?)/n - (x)? (4)
syy=(2y*) /n-(y) (5
sxy = (Zxy) /n- X *y (6
for the points
X y

0.000000 1.000000
1.000000 3.000000
3.000000 7.000000
4.000000 9.000000
6.000000 13.000000

58

CHAPTER 3
we get

Yx=0+1+3+4+6 =14
Yy=1+3+7+9+13 =33
Y xy =0*1 + 1*3 + 3*7 + 4*9 + 6*13 = 138
Y'x% = 0+1+9+16+36 = 62
Y y? = 1+9+49+81+169 = 309

From our values of) x and)y, we can write
¥ =Yx/5=14/5=28
Yy =Yy/5=33/5=6.6

From our values of)%,)y, and) xy, we can write

sxx = (Yx3)/n-(X)2=0.2%62 -2.82 = 4.56 (4)
syy = (Xy?) /n-(¥)>=0.2*309 - 6.6 = 18.24 (5)
sxy=(Yxy)/n- X *y =0.2¥138 - 2.86.6 = 9.12 (6)’

So we can now write

sX = \/sxx = /4.56 = 2.13541565
sy = ysyy = y18.24 = 4.270831301
sxy=9.12

So r = sxy/(sx*sy)

=9.12/(2.13541565*4.270831301)
-1 (So PMCC=1)

Also from the two regression equations

y=a+bx and x=c+dy
b = sxy/sxx =9.12/4.56 = 2
a=Y -bX =6.6-2*2.8=1
d = sxy/syy =9.12/18.24 = 0.5
c=X -dy =2.8-0.5*6.6=-0.5

PMCC

59

CHAPTER3 PMCC
So the two regression equations

y=a+bxandx=c+dy

in this case arey =1 + 2x and x=-0.5 + 0.5y.
If we rearrange x = -0.5 + 0.5y, we get 0.5y =x + 0.5 0ry =2x + 1.
So the y on x and x on y regression equations are identical.

3.6 Program for the Two Regression Lines

The following code creates both regression lines, y on x and x on y. Run the following
program and input the following points into it.

X y

0.000000 1.000000
1.000000 3.000000
3.000000 7.000000
4.000000 9.000000
6.000000 13.000000

The points produce the line y = 2x + 1.

/* regbothip.c */

/* regression */
/* User enters points.*/
/* Regression of y on x and x on y calculated */

#define CRT_SECURE_NO_WARNINGS
#include <stdio.h>

#include <math.h>

main()

{

FILE *fp;

double xpoints[16];
double ypoints[16];
/* Variables are named as in the formulas used in the text of the chapter */

60

CHAPTER 3 PMCC
/* e.g., Zx is called "sigmax" */

double sigmax,sigmay,sigmaxy,sigmaxsquared,sigmaysquared,xbar,ybar;
double fltcnt,sxy,sxx,syy,b,a,c,d, sx, sy, r;

int i,points;

fp=fopen("regbothip.dat","w");

/* User enters points in scatter graph */

printf("enter number of points (max 16) \n");
scanf("%d", &points);

if(points>16)
{
printf("error - max of 16 points\n");
}
else
{

sigmax=0.0;
sigmay=0.0;
sigmaxy=0.0;
sigmaxsquared=0.0;
sigmaysquared=0.0;

/* User enters points from scatter graph */

for(i=0;i<points;i++)

{
printf("enter point (x and y separated by space) \n");
scanf("%1f %1f", &xpoints[i], &ypoints[i]);
sigmax=sigmax+xpoints[i];
sigmay=sigmay+ypoints[i];
/* Totals incremented by x and y points */
sigmaxy=sigmaxy+xpoints[i]*ypoints[i];
sigmaxsquared=sigmaxsquared+pow(xpoints[i],2);
sigmaysquared=sigmaysquared+pow(ypoints[i],2);

}

printf("points are \n");

for(i=0;i<points;i++)

61

CHAPTER3 PMCC

{
printf(" \n");
printf("%1f %1f", xpoints[i], ypoints[i]);
fprintf(fp, "%1F\t%1f\n",xpoints[i], ypoints[i]);
}

printf(" \n");

/* Convert number of points as a double variable */
/* for use in the formulas. Store this in variable fltent */

fltcnt=(double)points;

/* Calculation of (xbar,ybar) - the mean points*/
/* and sxy and sxx from the formulas*/
xbar=sigmax/fltcnt;

ybar=sigmay/fltcnt;
sxy=(1/fltcnt)*sigmaxy-xbar*ybar;
sxx=(1/fltcnt)*sigmaxsquared-xbar*xbar;
syy=(1/fltcnt)*sigmaysquared-ybar*ybar;

sqrt(sxx);
sqrt(syy);

SX

Sy

/* calculation of b and a from the formulas */
/* described earlier in this chapter */
b=sxy/sxx;

a=ybar-b*xbar;

/* Print the equation of the regression line */

printf("Equation of regression line y on x is\n ");
printf(" y=%1f + %1fx", a,b);
printf(" \n");

/* Calculation of d and ¢ from the formulas */
d=sxy/syy;
c=xbar-d*ybar;

/* Regression line */
printf("Equation of regression line x on y is\n ");

62

CHAPTER3 PMCC

printf(" x=%1f + %1fy", c,d);
}
/* PMCC value calculated */
T = sxy / (sx*sy);
printf("\nr is %1f", r);
fclose(fp);

C\Users\Philip\Documents| cpfbookiApress\ Chapters\Chilregbothip2 g

Fde Edt Functen Zoom Calc Help

NEd + AL w A Jadm PRLLD
2=y e T
v fmlade

35 PMCC,r=1
both regression lines coincide »

(on the liney = 2x + 1)

xa187 yoMEE

Figure 3-3. PMCC of +1

The preceding graph in Figure 3-3 shows the output of the program. This shows
perfect positive correlation (r = 1). Also it shows the two regression lines overlap.

We can demonstrate a high PMCC and a low PMCC along with the corresponding y
on x and x on y regression lines.

Here is the code. The data is preset so that you don’t have to enter the points.

/* regboth.c */

r* Regression */
r* Points are preset into xpoints and ypoints */
r* Regression of y on x and x on y calculated */

63

CHAPTER3 PMCC

#define _CRT_SECURE_NO WARNINGS
#include <stdio.h>
#include <math.h>
main()
{
FILE *fp;
/* Preset points */

double xpoin
ts[16]={1.0,3.0,4.0,5.0,7.0,17.0,9.0,10.0,12.0,14.0,16.0,17.0,19.0,7.0,
12.0,14.0};

double ypoin
ts[16]={8.0,11.0,14.0,7.0,2.0,19.0,13.0,3.0,10.0,5.0,12.0,19.0,15.0,16.0,
16.0,8.0};

/* Variables are named as in the formulas used in the text of the chapter */
/* e.g., 2x is called "sigmax" */

double sigmax,sigmay,sigmaxy,sigmaxsquared,sigmaysquared,xbar,ybar;
double fltcnt,sxy,sxx,syy,b,a,c,d, sx, sy, r;
int i,points;

fp=fopen("regboth2a.dat","w");

points = 16; /* Number of points is 16 */

sigmax=0.0;
sigmay=0.0;
sigmaxy=0.0;
sigmaxsquared=0.0;
sigmaysquared=0.0;

/* Points are preset in xpoints and ypoints */

for(i=0;i<points;i++)

{
sigmax=sigmax+xpoints[i];
sigmay=sigmay+ypoints[i];
sigmaxy=sigmaxy+xpoints[i]*ypoints[i];

64

CHAPTER 3

sigmaxsquared=sigmaxsquared+pow(xpoints[i],2);
sigmaysquared=sigmaysquared+pow(ypoints[i],2);
}
printf("points are \n");
for(i=0;i<points;i++)

{
printf(" \n");
printf("%1f %1f", xpoints[i], ypoints[i]);
fprintf(fp, "%1f\t%1lf\n",xpoints[i], ypoints[i]);
}

printf(" \n");
fltcnt=(double)points;

/* Calculation of (xbar,ybar) - the mean points*/
/* and sxy and sxx from the formulas*/
xbar=sigmax/fltent;

ybar=sigmay/fltcnt;
sxy=(1/fltcnt)*sigmaxy-xbar*ybar;
sxx=(1/fltcnt)*sigmaxsquared-xbar*xbar;
syy=(1/fltcnt)*sigmaysquared-ybar*ybar;

SX
sy

/* Calculation of b and a from the formulas */
b=sxy/sxx;

sqrt(sxx);
sqrt(syy);

a=ybar-b*xbar;
/* Print the equation of the regression line */

printf("Equation of regression line y on x is\n ");
printf(" y=%1f + %1fx", a,b);
printf(" \n");

/* Calculation of d and c from the formulas */
d=sxy/syy;
c=xbar-d*ybar;

PMCC

65

CHAPTER3 PMCC

/* Regression line */

printf("Equation of regression line x ony

is\n ");

printf(" x=%1f + %1fy", c,d);

/* PMCC value calculated */

Y =

sxy / (sx*sy);

printf("\nr is %1f", r);

fclose(fp);

The points, two regression lines and PMCC value, are shown in Figure 3-4.

\Documnents\cpfbookiApress Chapters\Chitregboth.gr

File Edit Function Zoom Calc Help

D& @ + 4L

A Amea

@ Sees 1

™ e T 4170 155

", we6 21340 My 156 and <18
'y y on x lack)

.4 xony igreen)

o4 =071

1t

A | JAadl PRPLO

¥

X ony (green)

- .
154 .
. —
. R an vy on x (Mack)
.-r"'_'-'_-.-'_]
°
wt °
L -
.
1 . r=0371
.
e
x
F] 3 3 i s k! i 2 11]) n 23 4 % *

s WS ye2T

Figure 3-4. y on x and x on y comparison

We can demonstrate points with a stronger correlation by using different points. We
can use the same program as earlier but replace xpoints and ypoints with the following

values:

xpoints[16] = {2.0,4.0,4.0,4.0,6.0,6.0,7.0,8.0,9.0,10.0,10.0,10.0,12.0,

13.0,14.0,15.0};

ypoints[16] = {4.0,2.0,5.0,8.0,4.0,10.0,6.0,12.0,14.0,8.0,11.0,17.0,19.0,

13.0,14.0,17.0};

66

CHAPTER3 PMCC

The results for this data are shown in Figure 3-5.

sers!\ PhilipiDocuments) cpfbook\fpress Chapters\Chi\regboth. gt

Fde Edt Functon Zoom Calc Help

De @ |+ 41 =0A Jadm LLPO

- fwen By P
"] .

¥ @ Sees 1 g

W fie] 118610901 . Bl 11841 S0

v ¥ on u black) 2=] 05 7=0.621 5y, x>2 and %514

W7 we2 D70 6215y 12 and w14

¥ 4 won y igreen]

Al ra 0317

sl X ony (green)

y on x (black)

r=0817

./ .

-

x=308 ye2052

Figure 3-5. y on x and x on y higher correlation

You can see that the points are closer together, the two regression lines are closer
together, and the PMCC value is 0.817 compared with 0.371 in the previous diagram.

Looking at the other extreme, we can demonstrate a PMCC value of zero.

In the following program, the x and y points are preset to

xpoints[16]={2.0,2.0,2.0,2.0,2.0,18.0,18.0,18.0,18.0,18.0,6.0,10.0,14.0,
6.0,10.0,14.0};

ypoints[16]={2.0,6.0,10.0,14.0,18.0,2.0,6.0,10.0,14.0,18.0,2.0,2.0,2.0,
18.0,18.0,18.0};

These points form a square.
Look at the following graph in Figure 3-6.

67

CHAPTER3 PMCC

Serig 1
* L
Hx)=10.000000 + 0.000000x

==10.000000 - 0.000000y; y>0 and v<20

regbotht2.c program

o o ¢ ® o
| pmcc of zero for shown points
1 e ° both regression lines shown in black
regressionofyonxisy=10
o o regression of xon yis x =10
54
L) L L 3 L] L]
X
3 3 b] 0 3 o 5] 4

S+

Figure 3-6. PMCC=0

Here, the points form a square. The two regression lines are at right angles to each
other and to the sides of the rectangle. The PMCC for this is zero. Looking at the points,
you could say that there was correlation between them, but the PMCC value only looks
for linear correlation of the whole set of points.

The program for this is as follows:

/* regbotht2.c */

r* Regression */
r* Preset points.*/
r* Regression of y on x and x on y calculated */

/* Test for PMCC of zero */

/* Show appropriate regression lines */
#define CRT_SECURE_NO WARNINGS
#include <stdio.h>

#include <math.h>

main()

{
FILE *fp;

68

CHAPTER3 PMCC

/* Preset points for x and y values */

float xpoints[16]={2.0,2.0,2.0,2.0,2.0,18.0,18.0,18.0,18.0,18.0,6.0,
10.0,14.0,6.0,10.0,14.0};

float ypoints[16]={2.0,6.0,10.0,14.0,18.0,2.0,6.0,10.0,14.0,18.0,
2.0,2.0,2.0,18.0,18.0,18.0};

float sigmax,sigmay,sigmaxy,sigmaxsquared,sigmaysquared,xbar,ybar;
float fltcnt,sxy,sxx,syy,b,a,c,d, sx, sy, r;
int i,points;

/* Open the output file */
fp=fopen("regbotht2.dat","w");

points = 16; /* Numbexr of points fixed at 16 */

/* Preset storage variables to zero */
sigmax=0.0;

sigmay=0.0;

sigmaxy=0.0;

sigmaxsquared=0.0;

sigmaysquared=0.0;

/* Points from preset arrays */
/* Calculate sigmax,sigmay,sigmaxy,sigmaxsquared,sigmaysquared */
for(i=0;i<points;i++)

{
sigmax=sigmax+xpoints[i];
sigmay=sigmay+ypoints[i];
sigmaxy=sigmaxy+xpoints[i]*ypoints[i];
sigmaxsquared=sigmaxsquared+(float)pow(xpoints[i],2);
sigmaysquared=sigmaysquared+pow(ypoints[i],2);

}

/* Print out the points and write them to the output file */
printf("points are \n");

69

CHAPTER3 PMCC

for(i=0;i<points;i++)

{
printf(" \n");
printf("%f %f", xpoints[i], ypoints[i]);
fprintf(fp,"% f\t%f\n",xpoints[i], ypoints[i]);
}

printf(" \n");
fltcnt=(float)points; /* Set float variable to count of points */

/* Calculation of (xbar,ybar) - the mean points*/
/* and sxy and sxx from the formulas*/
xbar=sigmax/fltcnt;

ybar=sigmay/fltcnt;
sxy=(1/fltcnt)*sigmaxy-xbar*ybar;
sxx=(1/fltcnt)*sigmaxsquared-xbar*xbar;
syy=(1/fltcnt)*sigmaysquared-ybar*ybar;

/* Calculate sx and sy from the formulas*/
sx = sqrt(sxx);
sy = sqrt(syy);

/* Calculation of b and a from the formulas */
b=sxy/sxx;
a=ybar-b*xbar;

/* Print the equations of the regression lines */

/* Regression line y on x */

printf("Equation of regression line y on x is\n ");
printf(" y=%f + %fx", a,b);

printf(" \n");

/* Calculation of d and ¢ from the formulas */
d=sxy/syy;
c=xbar-d*ybar;

/* Regression line x on y */
printf("Equation of regression line x on y is\n ");
printf(" x=%f + %fy", c,d);

70

CHAPTER3 PMCC

/* PMCC value calculated */
T = sxy / (sx*sy);
printf("\nr is %f", r);
fclose(fp);

EXERCISES

1. Use one of the PMCC programs to find PMCC data for the following points. You
might want to change the name of the output file that the program uses so that
you can keep it separate from previous files.

X y
-4 16
-3 9
0 0
3 9
4 16

Find the value of PMCC for this. What do you notice about the shape of the pattern that the
points make?

71

CHAPTER 4

Stock Price Prediction

4.1 Two Parts to Stock Price Changes

Stock price prediction combines the Brownian motion theory of physics with the Monte
Carlo theory of statistical mathematics. Put simply, Brownian motion just models the
random motion of particles in gases and liquids. If we assumed that there was a general
drift upward and to the right and we plotted the particles’ position in 2D over a period of
seconds, the shape of the graph would be similar to that of the following graph in

Figure 4-1 which shows stock price variation over a number of days.

Stock

Price

Days

Figure 4-1. Brownian Motion Illustration

73
© Philip Joyce 2020

P. Joyce, Practical Numerical C Programming, https://doi.org/10.1007/978-1-4842-6128-6_4

https://doi.org/10.1007/978-1-4842-6128-6_4#DOI

CHAPTER 4 STOCK PRICE PREDICTION

This relates the general direction of movement (drift) and the random movement of
particles/stock price.

In the stock prices case, we can say that the “drift” is the general change in the stock
price over a period of time. Just glancing at the graph, we can see that this goes up.
Although the graph goes up and down over a few days, the general trend of the graph is
to go up. The short-term rise and fall just reflects the random daily volatility of the stock
price.

So we can say that

Change in stock price = Drift + Random Change

The “Monte Carlo” part of the stock price prediction has applications in physics and
mathematics. This is utilized in the Random Change part of the formula. It uses random
numbers which can be generated by a computer program. This is the same kind of thing
that you can get with a school calculator. Depending on the make of calculator you have,
you would have a key, say RAN, which, when you press it, displays a random number
between 0 and 1, say 0.883. The next time you press the key, you would get a different
random number, say 0.393. If you switch your calculator off and on again and tried
pressing RAN twice again, you would get two different numbers. The random number
generator in a computer program works in a similar way, except that your decimal
numbers will be to more decimal places.

The fact that the numbers generated are between 0 and 1 is not a problem. For
instance, if you wanted your decimal numbers to be between 0 and 10, you just have to
multiply the number your program generates by 10. So your number will be between 0
and 10. So in the preceding two cases, you would get 8.83 and 3.93. If you want numbers
between 5 and 15, you can just add 5 to your 0 to 10 case, so for the two cases here, you
would get 8.93 + 5=13.83 and 3.93 + 5 = 8.93. So you can generate random numbers
within any range you want.

So we can write our previous equation

Change in stock price = Drift + Random Change

And we can rewrite this equation as

New Stock Price = Old Stock price *(A Factor involving Drift + Random Change)

74

CHAPTER 4 STOCK PRICE PREDICTION

So if we want to find today’s predicted stock price in relation to yesterday’s, then we
can write

Today’s Stock Price = Yesterday’s Stock price * exp(Drift + Random Change)

where here the “Factor involving Drift + Random Change” involves the exponential
function “exp” and becomes exp(Drift + Random Change).

4.2 Drift Part of Formula

We can find the drift using the formula

Drift = Average Daily Return - (Variance/2)

Variance is a measure of how much each value varies from the mean. The formula
for this is shown in the following.

So if we have figures for the stock price for, say, the last 19 days, we can find the
return for each day by relating yesterday’s price to today’s price and so on, giving us 18
daily return values. The formula for calculating this is

Periodic Daily Return = In (Day’s Price / Previous Day’s Price)

The general formula for the variance

Variance = (})(x- X)?) /n

where x is the value of each day’s return and x istheir average, and pdrx and pdr x are
the PDR cases. The Greek letter Y is used to signify finding the sum of a set of values. In
this case we take the mean value x from each x value in turn and square it and n is the
number of daily return values. Then we sum all of these values.

In the PDR (Periodic Daily Return) case, we modify the formula to be

PDRvariance = () (pdrx - pdrx)?) /n

where x is the value of each day’s return and x is their average, and PDRx and PDR X
are the PDR cases. The Greek letter)’ is used to signify finding the sum of a set of values.
In this case we subtract the mean value x from each x value in turn and square it. The
value of n is the number of daily return values which, as described earlier, will be 18.
Then we sum all of these values.

75

CHAPTER 4 STOCK PRICE PREDICTION

4.3 Simple Example with 5 Day’s Prices

To clarify this, let us take an example of stock price changes over 5 days.
Today’s stock price ($) =22.8

Yesterday’s price ($) =225
Previous day ($) =221
Day before ($) =229
First day ($) =21.7

Periodic Daily Return = In (Day’s Price / Previous Day’s Price)

As we need the previous day’s price for each periodic day return, we can only get four
values here as we don’t have the stock price for the day before the First day.
So applying the preceding formula for each day and its previous day, we get

PDRI = In (22.8/22.5) = 0.0129
PDR2 =1n (22.5/22.1) = 0.0178
PDR3 =1n (22.1/22.9) = -0.0356
PDR4 = In (22.9/21.7) = 0.0535
The sum of these values is 0.0486.
So the average daily return is 0.0486 / 4 = 0.0121.
Now we need the formula to find the variance
PDRvariance = () (pdrx - pdrx)?) / 4 (we have 4 PDR values in our case)
Applying this formula to our four values, we get

(0.0129 - 0.0121)% + (0.0178 - 0.0121)? + (-0.0356 - 0.0121)? +
(0.0535 - 0.0121)?

This is (3} (pdrx - pdrx)?) which is 0.00402238.
So (3} (pdrx - pdrx)?) / 4 is 0.00402238 / 4 = 0.00105595 which is the PDR variance.

76

CHAPTER 4 STOCK PRICE PREDICTION
So from the formula

Drift = Average Daily Return - (Variance/2)

we get in our case

Drift = 0.0121 - 0.00105595/2 = 0.011572025

4.4 Random Change Part of Formula

Having found the drift, our next job is to find the Random Change component. For this
we need the random number generated by the computer, but as explained earlier, we
need to modify the value the computer gives us.

As in many cases, the variation about a mean value could be large or small but
generally it will be somewhere in between. It is a bit like measuring the heights of men
you pass in the street. Most men will be the average height with some variation, but
occasionally you will get a very short man or a very tall man. We call this a “normal
distribution” and the graph of this is a bell shape as shown in the following diagram. It is
known that stock prices tend to follow a normal distribution.

The two straight lines mark the “standard deviation” points. Statistics say that 68% of
the values lie between these two lines. The standard deviation, usually denoted by the
Greek letter o, is related to the variance as

o= \/ (variance)

For our stock market bell-shaped curve, our average value would be the most-likely
value over a period of time.

The bell-shaped Normal Distribution curve is shown in Figure 4-2 with the two
standard deviation lines denoted by “sd” at +1 and -1. The vertical axis line denoted the
mean position, so 68% of the values lies between these two lines. This corresponds with
our instinct that most adult people have a height close to the mean.

77

CHAPTER 4 STOCK PRICE PREDICTION

Number of peoplel N

-1sd +1sd Height
Average

Normal Distribution Function

Figure 4-2. Normal Distribution Function

A more useful variation of the preceding Normal Distribution Function is the
Cumulative Normal Distribution Function.

In the case of measuring the heights of people, we find the specific frequency of
certain ranges and then add these up to find the total frequency within the two or more
ranges. This mechanism is shown in the following diagram (Figure 4-3).

78

CHAPTER 4 STOCK PRICE PREDICTION

Height (feet — inches) Frequency Cumulative frequency
4ftein<h<= 4ft9in 1 1
4ft9in<h<= 5ft0in 2 3(2+1)
5ft0in<h<= 5ft3in 4 7 (4+2+1)
5ft3in<h<= 5ft6in 9 16 (9+4+2+1)
5ft6in<h<= 5ft9in 25 41 (25+9+4+2+1)
5ft9in< h<= 6ft0in 26 67 (26+5+9+4+2+1)
6ft0in<h<= 6ft3in 17 84 (17+25+9+4+2+1)
6ft3in<h<= 6ft6in 10 94 (10+17+25+9+4+2+1)
6ftein<h<= 6ft9in 6 100
(6+10+17+25+9+4+2+1)

Figure 4-3. Cumulative distribution mechanism

In the table we have the number of people in each of the ranges. If we want to know,
for example, the number of people whose height is between 4 feet 6 inches and 5 feet,
then this is just the sum of the first two ranges (1+2) which is 3. The total number in the
range 4 feet 6 inches to 5 feet 3 inches is 1+2+4 which is 7.

When we plot the heights against the cumulative frequency, we get the following
graph (Figure 4-4).

79

CHAPTER 4 STOCK PRICE PREDICTION

Number (up to 100)

4ft6in Average 6ft9in height

Figure 4-4. Cumulative frequency vs. height graph

For the purposes of finding an appropriate random value for our stock price formula,
we use the Cumulative Normal Distribution Function diagram shown in Figure 4-5.

In this case we see that the number from our diagram earlier can be converted to a
probability where the probability of the height being below 6 ft. 10 inches (for our survey)
is 1 and the probability of heights being below 4 ft. 6 inches is zero.

We will use this cumulative normal distribution curve along with our random
number generator to find the x values.

For the random part of the formula, we need to use the Normal Distribution. If we
made a note of the actual random daily fluctuations of the stock prices, we would find
that the values, when plotted on a graph, would have a Normal Distribution. So that if we
just used our random number generator, we would get an even chance that 0.0001 and
0.5000 would come up. This does not follow the Normal Distribution. So what we do is
use our random number generator to give us our random numbers from 0 to 1 and use
these as the Probability part of the Cumulative Normal Distribution graph (also 0 to 1)

80

CHAPTER 4 STOCK PRICE PREDICTION

and then find, from the graph, the corresponding x value for this value of probability.
We then know that our x values must follow a Normal Distribution and so it is consistent
with the actual x values (in this case stock prices) would be.

1.0

Probability

0.5

negative x values 0 positive x values

Cumulative Normal Distribution Function

Figure 4-5. Cumulative Normal Distribution Function

Each point on the x axis is a point of cumulative frequency. Notice that the graph above
0.5 is symmetrical with that below 0.5. So when we calculate the x values above 0.5, we just
take the equivalent value below 0.5 and multiply it by -1, that is, if we find a probability of
0.25 and, say, x = -1.7, then we take the probability as 1-0.25 (=0.75), so x is +1.7.

We want to use the graph to find these random x points as we know they form the
normal distribution we want. If we can tell the 0-1 random number generated by our
computer program as the probability value from the graph (also 0-1), then we can
take the corresponding x value from the graph as our random value in our formula.
Unfortunately, there is no mathematical formula to get the x value from a given

81

CHAPTER 4 STOCK PRICE PREDICTION

probability value, but there is an algorithm to find it and we can code this algorithm into
our program.
From the algorithm, the x value is given by

x=t-(cy+ it + cst?) / (1 + byt + b,t? + b,t?)

where t = \/ In(1 / g?) where q is our computer-generated random number

Co=2.515517 ¢,.=0.802853 ¢, = 0.010328

= 1.432788 b, = 0.189269 b; = 0.001308

We can generate a random number between 0 and 1, and this represents the
probability axis of the Cumulative Normal Distribution curve. Having the probability
value of the curve, we can use the preceding algorithm to find the x value on the x axis.

From our graph, we know that a probability of 0.5 should give an x value of 0, so we
can calculate the value of x from the preceding formula manually.

We can split the formula to make it easier to follow.

Ifwelet (¢y + ¢t + cot?) = c and (1 + b,t + b,t? + bst?) = b, then the formula becomes

x=t-c/b(1)

As our probability value is 0.5, then we assign this to q in the formula.
We get t=+/In(1/ ¢?) = v/In(1 / 0.5) = 1.177410.

So 2= (1.177410)? = 1.386294.

And € = (1.177410)% = 1.632237.

Substituting these values into the preceding formula (1) for x, we get

c = (2.51557) + (0.802853)*(1.177410) + (0.010328)*(1.386294)
b = 1+(1.432788)*(1.177410)+(0.189269)*(1.386294)+(0.001308)*(1.632237)

So ¢/b =1.177410.

So our formula (1) becomes x = 1.177410 - 1.177410, or x = 0, which is what we want.
From our Cumulative Normal Distribution graph earlier, when the probability is 0.5, x = 0.

We can write a short program to do the preceding calculation, and we can allow the
user to enter the probability factor themselves. So if they entered 0.5, they would get x=0
as in our calculation.

The program prints the corresponding x value for the probability entered.

82

CHAPTER 4 STOCK PRICE PREDICTION
The code for this is shown as follows:

/* assetalgorithm.c */

/* Stock price predictor simulation */
/* tests inverse cumulative */

/* normal distribution function */

/* User enters a probability value */

#define CRT SECURE_NO WARNINGS
#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

double c,co0,c1,c2,d1,d2,d3;
double q,d,x,y,t;

int i;

time_t tim;

int n;
double probvalue;

int main()

{

/* Set values for cumulative normal distribution formula */
€0=2.515517;
€1=0.802853;
€2=0.010328;
d1=1.432788;
d2=0.189269;
d3=0.001308;

/* User enters the probability used to find the x value */
printf("Please enter Probability value between 0.0 and 1.0 :\n ");
scanf("%1f", &probvalue);

printf("You entered %1f\n", probvalue);

83

CHAPTER 4 STOCK PRICE PREDICTION

if(probvalue < 0.0 || probvalue > 1.0)
return; /* Entered value is out of range */

y=probvalue; /* Store the entered value */

/* Use the symmetry of the Cumulative Normal Distribution graph */
if(y»=0.5)
q=1-y;
else
q=y;
/* Calculate the values in the formula */
t=sqrt(log(1/pow(q,2)));
c=co+c1*t+c2*pon(t,2);
d=1+d1*t+d2*pow(t,2)+d3*pow(t,3);

x=t-(c/d);

/* Use the symmetry of the Cumulative Normal Distribution graph */
if(y < 0.5)
{
y=-1.0%x;
}
else if(y == 0.5)
y=0;
else
y=X;

/* Print the x result for the entered Probability value */
printf("probvaluevalue = %1f\n",probvalue);
printf("x = %1f\n",y);

return;

84

CHAPTER 4 STOCK PRICE PREDICTION

By entering different values for the probability, you can build up a picture of what
x values you get for the probability values. You should get the distribution shown in
Figure 4-5. There is an exercise you can do at the end of this chapter to demonstrate this.

4.5 Combining the Two Elements

So if we have a list of data for, say the last 19 days stock prices, then we have all of the
data required by our formula:

Today’s Stock Price = Yesterday’s Stock price * exp(Drift + Random Change)

The Random Change part of this is our random number, as generated earlier,
multiplied by the standard deviation as described earlier:

Random Change = PDRstd_deviation*calcrand

where PDRstd_deviation is found from the PDRvariance which we saw earlier was

PDRvariance = (}(pdrx - pdrx)?) /n
And from our definition earlier of standard deviation (denoted by o)
o= \/ (variance)

And calcrand is our calculated random number using the preceding algorithm.

We can read the previous 19 days stock prices or we can preset them in the program.
In our following program, we have preset the values where the first value in the array is
yesterday’s price, the second value is the day before yesterday’s price, and so on.

We have a function, avstdvar, which calculates the average values, standard
deviation and variance. The function calcrand contains the algorithm mentioned earlier
for calculating an appropriate random number.

We preset the historical stock prices into the array dayvals. The second part of this
array will contain out predicted future prices when we have calculated them.

We work out the Periodic Daily Return from our historical stock prices using the
formula

Periodic Daily Return = In (Day’s Price / Previous Day’s Price)

85

CHAPTER 4 STOCK PRICE PREDICTION

where In is the natural logarithm.

Note that if we have 19 historical day’s prices, then we can only find 18 Periodic Day
Returns because when we get to the 19th one, we don’t have the previous day’s return. In
our following program, we have 19 historical day’s prices, so we will have 18 Periodic Day
Returns.

/* asseta2.c */
/* Stock price predictor simulation */
/* from Day values */

#define CRT_SECURE_NO_ WARNINGS
#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

double calcrand(); /* Function to calculate our random value for x using
the formula */

void avstdvar(double dayvals[]); /* Function to calculate variance and
standaxd dev */

double c,c0,c1,c2,d1,d2,d3;

double q,d,F,y,t;

int 1i,j;

time t tim;

int n;

double average, variance, std deviation, sum = 0.0, suml = 0.0;

/* The PDR prefix to variables denotes Periodic Day Return */
double PDRaverage,PDRvariance,PDRstd deviation,pdrsum,nextval,
lastval,drift,epsilon,exptest,nitest;

double pdr[50];

void main()

{
FILE *fp;

86

CHAPTER 4 STOCK PRICE PREDICTION

/* Array containing day stock prices starting with yesterday and
moving backward through previous days*/

/* The part of the array following these preset values will

contain our /*

/* calculated stock price values. So the whole array can be

printed out */

/* on our graph */

double dayvals[50]={22.82,22.51,22.47,22.05,22.96,21.43,20.97,20.46,
20.25,20.46,20.45,20.7,20.31,20.94,20.85,20.59,20.65,21.12,20.78};

double value,testval;
int j;
fp=fopen("asseta2.dat","w");

srand((unsigned) time(&tim)); /* Set up random number function */

for(i=0;i<50;i++)

{
/* Clear predicted rate array */
pdr[i]=0.0;
}
for(i=19;i<50;i++)
{
/* Clear the end part of our values array for our predicted vales */
dayvals[i]=0.0;
}

n=19; /* Number of historical day’s prices */

j=0;

/* Write historical stock prices to output file */
/* Work backward through dayvals as */

/* the array is preset with today’s in the first */
/* position, yesterday’s in second position, */

/* and so on */

87

CHAPTER 4 STOCK PRICE PREDICTION

for(i=18; i »-1; i--)

{
fprintf(fp, "%d\t%1f\n",j,dayvals[i]);
Jt+s

}
/* Calc PDRs - if you enter 19 days there will be 18 PDRs */

for(j=0;j<n-1;j++)
{
pdr[j]=log(dayvals[j]/dayvals[j+1]);

}
/* Compute the sum of all PDR elements */

/* Find PDR average */

pdrsum=0.0;
for (i = 0; i < n-1; i++)
{

pdrsum = pdrsum + pdr[i];

}
PDRaverage = pdrsum / (double)(n-1);

/* Call function to calculate statistical values */
avstdvar(dayvals);

/* Calculate drift */
drift=PDRaverage-(PDRvariance/2);

lastval=dayvals[0];

/* Calculate values using formula */
/*Today's Stock Price = Yesterday's Stock price * exp(Drift + Random Change)*/
/* we use the variable nextval for Today's Stock Price */
/* and the variable lastval for = Yesterday's Stock price */
/* and PDRstd_deviation*calcrand() for Random Change */

88

CHAPTER 4 STOCK PRICE PREDICTION

/* nextval=lastval*exp(drift+PDRstd_deviation*calcrand()) */
for (i = 19; 1 < 38; i++)

{

nitest=calcrand();
exptest=exp(drift+PDRstd deviation*nitest);
nextval=lastval*exptest;

fprintf(fp, "%d\t%1f\n",i,nextval);

lastval=nextval; /* Set last value for the next iteration */

fclose(fp);

}
double calcrand()

{
/* Function to calculate our random value for x using the formula */
/* x = (t-co+ cit + cat?) / (1 + d1 + d2t® + d3t3) */

/* Set values for cumulative normal distribution formula */

€0=2.515517;
€1=0.802853;
€2=0.010328;
d1=1.432788;
d2=0.189269;
d3=0.001308;

y=rand()%1000; /* Generate random number between 0 and 1 */
y=y/1000;

/* Use the symmetry of the Cumulative Normal Distribution graph */
if(y»=0.5)

q=1-y;
else

a=y;

89

CHAPTER 4 STOCK PRICE PREDICTION

}

/* Apply the Cumulative Normal Distribution Algorithm */

t=sqrt(log(1/pow(q,2)));
c=cO+c1*t+c2*pow(t,2);
d=1+d1*t+d2*pow(t,2)+d3*pow(t,3);

F=t-(c/d);

/* Use the symmetry of the Cumulative Normal Distribution graph */
if(y < 0.5)
{
y=-1.0*F;
}
else if(y == 0.5)
y=0;
else
y=F;

return y;

void avstdvar(double dayvals[])

{

/* Function to calculate variance and standard deviation and average */

90

/* Average, standard deviation, variance processing */
sum = 0.0;
suml = 0.0;

/* Compute the sum of all dayvals elements */
for (i = 0; i< n; i++)
{

sum = sum + dayvals[i];

}

average = sum / (double)n;

/* Compute variance and standard deviation */
for (i = 0; i< n; i++)

CHAPTER 4 STOCK PRICE PREDICTION

suml = suml + pow((dayvals[i] - average), 2);

}

variance = sumi / (double)n;

/* Compute PDRvariance and PDRstandard deviation */

sum1=0.0;
for (i = 0; i< n-1; i++)
{

suml = suml + pow((pdr[i] - PDRaverage), 2);

}

PDRvariance = suml / (double)(n-1);

std deviation = sqrt(variance);
PDRstd_deviation = sqrt(PDRvariance);

}

The data produced by the program is shown in Figure 4-6. The points to the left of
the black vertical line (x=19) are those from the historical data we preset in the program.
The points to the right of the line are those generated by the program as predicted daily
stock prices.

C:\Users\Philip\Documents\ cpfbook\Apress\Chapters\Ch assetadb grf

Fde Edt Functen Zoom Calc Help

D& @ + 41 =wA Jadm PLLOH

— 5

¥ @ Setes

¥ w8yl and yedl

¥ 4 hstoscal data 20 asseta2 program

4 dars
Vi) sock vae (5100)

*
"
z;cil‘:]la]\'alue o .'.......‘....‘Ooo

& 5 » 2] F) $) &
historical data predicted data
days

xa 2478 yalD5

Figure 4-6. Stock price prediction from historical data
91

CHAPTER 4 STOCK PRICE PREDICTION

EXERCISES

1.

Amend the asseta2.c program to read in user-entered historical values rather
than using preset data.

Read in the following data: 15.82,15.51,15.47,16.05,15.96,16.43,15.97,16.46,
17.25,17.46,17.45,17.7,17.31,17.94,17.85,17.59,18.65,19.12,18.78

Print the graph. What do you notice about this graph compared to the one in the
chapter?

Extend your assetalgorithm.c program from Section 4.3 of this chapter so
that instead of entering probabilities yourself between 0 and 1, you generate
random numbers between 0 and 1. If you have all of the calculations for one
value of the probability to produce one x value, you can form this inside a
forloop and write each value of x and the probability to a file. You can then
display the file using graph and check the distribution.

92

PART I

Commercial Applications

Supermarket Stock Reordering Simulation
Flight Information Boards at Airports
Power Plant Control

CHAPTER 5

Supermarket Stock

5.1 What We Are Simulating

This chapter simulates how a supermarket keeps a check on its stock and when to order
replacement stock from suppliers.

We create a file for the stock of different types of cheese that the supermarket
sells. Each time a block of cheese goes through the checkout, a message is sent to the
monitoring program which checks if a reorder is needed. If so, it outputs a message to
say the type of cheese needed and the address where you need to send the order to. If a
new supply is received by the supermarket, then the monitoring program is told this and
the file is updated appropriately. This is a very simplified mechanism to illustrate the
sequence of operations that are needed.

The file is made up by the items shown in the following.

The first number is the ID of the item. The second is its description (the type of
cheese, which is Brie for ID 4). The third item is the limit point where, if the stock level
gets down to this number, we will make a reorder. The fourth item is the current level of
stock. The final item is the address where we need to send the order.

{4,"Brie ",23,50,"95,West Park St"};
{7,"Gouda ",34,51,"2,North Park St"};
{9, "Edam ",44,52,"17,New Gate St"};

{11,"camembert ",25,53,"12,Toll Av"};
{14,"Cheshire ",34,54,"5,State Rd"};
{16,"Cheddar ",51,55,"63,Madison St"};
{17,"Pecorino ",23,56,"12,East Park St"};
{19, "Manchego ",44,57,"14,May St"};
{23,"Provolone ",35,58,"20,0regon Way"};
{24,"Parmigiano",40,59, "10,Park St"};

95
© Philip Joyce 2020

P. Joyce, Practical Numerical C Programming, https://doi.org/10.1007/978-1-4842-6128-6_5

https://doi.org/10.1007/978-1-4842-6128-6_5#DOI

CHAPTER 5 SUPERMARKET STOCK

{27, "Mascarpone”,40,60,"31,Queen St"};
{31,"Mozzarella",42,61,"19,Hope Av"};
{32,"Feta ",45,62,"13,Charles Av"};
{35,"Gruyere ",47,63,"54,Tower St"};
{38,"Monterey ",41,63,"11,Cardew Av"};
{44, "Gorgonzola",54,68,"26,Jones St"};
{a47,"stilton ",58,69,"57,Lower St"};

The structure in the program for each item as described earlier is as follows:

struct super {
int ID;
char desc[11];
int limit;
int numstock;
char address[30];

The following program creates the file as described earlier.
The file is created, then closed, and reread so that it can be printed out.
The code to set up this file is shown in the following:

/* createmarket.c */
/* Creates supermarket stock file */
/* Prints out the records sequentially */
#define CRT SECURE_NO WARNINGS
#include<stdio.h>
/* Structure for each item in stock.*/
/* The "desc" part is the name of a type of cheese */
/* "limit" is the minimum level of stock */
/* after which a reorder is required */
/* "numstock is the current level of the item */
/* "address" is where to get the order */
struct super {

int ID;

char desc[11];

int limit;

96

int numstock;
char address[30];

b

void main()

{

CHAPTER5 SUPERMARKET STOCK

int i,numread;
FILE *fp;
struct super si;

struct super s2;

/* Preset structures for 17 types of cheese in our file */

struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct

struct
struct

super
super
super
super
super
super
super
super
super
super
super
super
super
super
super

super
super

s10 = {4,"Brie ",23,50,"95,West Park St"};
s11 = {7,"Gouda ",34,51,"2,North Park St"};
s12 = {9, "Edam ",44,52,"17,New Gate St"};

s13 = {11, "Camembert ",25,53,"12,Toll Av"};
s14 = {14,"Cheshire ",34,54,"5,State Rd"};
s15 = {16,"Cheddar ",51,55,"63,Madison St"};
s16 = {17,"Pecorino ",23,56,"12,East Park St"};
s17 = {19, "Manchego ",44,57,"14,May St"};

s18 = {23,"Provolone ",35,58,"20,0regon Way"};
s19 = {24,"Parmigiano”,40,59,"10,Park St"};
s20 = {27, "Mascarpone",40,60,"31,Queen St"};
s21 = {31,"Mozzarella",42,61,"19,Hope Av"};
s22 = {32,"Feta ",45,62,"13,Charles Av"};
s23 = {35,"Gruyere ",47,63,"54,Tower St"};
s24 = {38,"Monterey ",41,63,"11,Cardew Av"};

s28 = {44,"Gorgonzola",54,68,"26,Jones St"};
s29 = {47,"Stilton ",58,69,"57,Lower St"};

/* Open the supermarket file */

fp = fopen("superm.dat”, "w");

/* Write details of each structure to file*/
/* From the structures defined earlier */

97

CHAPTER 5 SUPERMARKET STOCK

98

fwrite(&s10, sizeof(s1), 1, fp);
fwrite(&8s11, sizeof(s1), 1, fp);
fwrite(8s12, sizeof(s1), 1, fp);
furite(&s13, sizeof(s1), 1, fp);
fwrite(8s14, sizeof(s1), 1, fp);
fwrite(&8s15, sizeof(s1), 1, fp);
fwrite(&s16, sizeof(s1), 1, fp);
fwrite(&8s17, sizeof(s1), 1, fp);
fwrite(8s18, sizeof(s1i), 1, fp);
furite(&s19, sizeof(s1), 1, fp);
fwrite(&s20, sizeof(s1), 1, fp);
fwrite(&8s21, sizeof(s1), 1, fp);
furite(&s22, sizeof(s1), 1, fp);
fwrite(&s23, sizeof(s1), 1, fp);
fwrite(8s24, sizeof(s1), 1, fp);
furite(&s28, sizeof(s1), 1, fp);
fwrite(&s29, sizeof(s1), 1, fp);

/* Close the file */

fclose(fp);

/* Reopen the file */

fp=fopen("superm.dat”, "r");

/* Read and print out all of the records on the file */
printf("\nID DESCRIPTION LIMIT NUMBER IN STOCK ADDRESS");
for(i=0;i<17;i++)

{
numread=fread(&s2, sizeof(s2), 1, fp);
if(numread == 1)
{

printf("\n%2d : %s : %d : %d : %s", s2.ID,s2.desc,s2.
limit,s2.numstock,s2.address); /* Note the 2d as we want
2 digits */

CHAPTER5 SUPERMARKET STOCK

else {
/* If an error occurred on read, then print out message */
if (feof(fp))
printf("Error reading superm.dat : unexpected end
of file fp is %p\n",fp);
else if (ferror(fp))

{
perror("Error reading superm.dat");
}
}
}
/* Close the file */
fclose(fp);

5.2 Updating the File

Once we have the file created, we can write our updating program. In order to simulate
what happens in a real supermarket (which will use barcodes when the item goes
through the checkout), here we will type in the ID and how many items are being put
through the checkout.

We first read the file and write it to the screen. This is not required at the actual
checkout but, again, it makes our simulation easier to follow.

The two main operations of the program are a stock update, where the supermarket
has received new stock from its suppliers, and an item being sold through the checkout.
So the program asks the user which of these two processes is being done.

If it is a new supply of stock, then the user is asked to enter the stock’s ID and the
amount of stock to be added. A function is then called to do the update. This is done
using the instruction updatefunc(stockitemID,updateamount);. This passes to the
function the ID and the amount to be updated. The function itself is defined at the end
of the program. It reads through the file until it finds the correct ID. At this stage the file
pointer is pointing to the next record in the file, so we have to back up to the previous
record using the instruction fseek (fp,minusone*sizeof(s2),SEEK _CUR);.

To explain this mechanism of backup, look at the following situation.

99

CHAPTER 5 SUPERMARKET STOCK

We are reading through the file and we have just read the second entry in the file, so
the file pointer is now pointing to the third entry as shown in the following:

Brie 23 50

Gouda 34 51

Edam 44 52 « file pointer
11 Camembert 25 53

14 Cheshire 34 54

The fread function fread(8s2, sizeof(s2), 1, fp); will have placed the details
for the second structure (Gouda) into the structure variable s2. If we now want to update
the number of items in stock of Gouda from 51 to 49 in s2 and we want to write this back
to the file, we need to move the pointer back to pointing at the Gouda structure of the
file. We do this using fseek(fp,minusone*sizeof(s2),SEEK _CUR);.

The minusone*sizeof(s2) part of the instruction tells the file pointer to move back
by the length of the s2 structure. After the instruction, the pointer will be pointing at the
Gouda file entry as shown in the following:

4 Brie 23 50
Gouda 34 51 « file pointer
Edam 44 52

11 Camembert 25 53

14 Cheshire 34 54

Now we can write the new data to the file using fwurite(8s2, sizeof(s2), 1, fp);.
The fwrite instruction writes the new contents of s2 to the position in the file pointed to.
The new data is then printed to the user. This completes the updating mechanism of the
program, and the number for the stock of Gouda is updated to 49 as shown. After the
fwrite, the pointer will be pointing to the next item.

Brie 23 50

Gouda 34 49
9 Edam 44 52 « file pointer
10 Camembert 25 53

14 Cheshire 34 54

100

CHAPTER5 SUPERMARKET STOCK

The other mechanism that the program performs is when an item is sold. The
operation for this is similar to the new stock mechanism. In this case the decreasefun
c(stockitemID,updateamount); function is called. In this function the ID is entered
and the number of items for this ID that have been sold. The ID is found in the file and
the number of items entered is subtracted from the current level on the file. A test is then
made to see if this new level is equal to or below the minimum level when a reorder is
needed. If this level has been reached, the reorder() function is called which outputs a
message to the user. The new level is then written to the file using the fseek (fp,minusone*
sizeof(s2),SEEK_CUR); mechanism as described earlier.

The file is then closed.

The code for updating the file is shown in the following. The user is asked to enter
the ID for the stock item being updated. Then they are asked if they want to increase
or decrease the stock. If they say they want to increase the stock, then a function called
updatefunc(); is called. If they say they want to decrease the stock, then a function
called decreasefunc(); is called.

The code is shown as follows:

/* markettest4.c */

/* Supermarket reordering simulation */
#define _CRT_SECURE_NO WARNINGS
#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

/* Functions defined at the end of the program */
void reorder(); /* Call a reorder function */

void updatefunc(); /* Increase stock function */
void decreasefunc(); /* Decrease stock function */

/* structure for each item in stock.*/

/* "ID" is the ID for the item */

/* The "desc" part is the name of a type of cheese */
/* "limit" is the minimum level of stock */

/* after which a reorder is required */

/* "numstock" is the current level of the item */

/* "address" is where to get the order */

101

CHAPTER 5 SUPERMARKET STOCK

struct super {
int ID;
char desc[11];
int limit;
int numstock;
char address[30];

};

struct super si;

struct super s2;

struct super st[17];
FILE *fp;

long int minusone = -1;
int i;

int main()

{

int numread;
int stockitemID,updateamount;
char update;

/* Open the supermarket file */
fp=fopen("superm.dat”, "r");

/* Read and print out all of the records on the file */
printf("\nID DESCRIPTION LIMIT NUMBER IN STOCK ADDRESS");
for(i=0;i<17;i++)

{

numread=fread(&s2, sizeof(s2), 1, fp);

if(numread == 1)

{
printf("\n%2d : %s : %d : %d : %s", s2.ID,s2.desc,s2.
limit,s2.numstock,s2.address); /* note the 2d as we want
2 digits */

}

102

}

CHAPTER5 SUPERMARKET STOCK

else {
/* If an error occurred on read, then print out message */

if (feof(fp))

printf("Error reading superm.dat : unexpected end
of file fp is %p\n",fp);

else if (ferror(fp))

perror("Error reading superm.dat");

/* Close the file */

fclose(fp);

/* Ask the user what they want to do with the file */
/* Increase or decrease the stock? */

printf("\nIs this a Stock update(increase) ? (y or n) \n");
scanf("%c", &update);

printf("\n answer is %c\n",update);

if(update == "y")

{

/* User wants to update(increase) stock level */
printf("\nenter ID \n");
scanf("%d", &stockitemID);

printf("\n ID is %d",stockitemID);

printf("\nenter update amount \n");
scanf("%d", &updateamount);

/* Call function to update the stock */
updatefunc(stockitemID,updateamount);

return;

103

CHAPTER 5 SUPERMARKET STOCK

else if(update == 'n")

{
/* User wants to decrease stock level */
printf("\nenter ID \n");
scanf("%d", &stockitemID);

printf("\n ID is %d",stockitemID);

printf("\nenter number sold \n");
scanf("%d", &updateamount);

printf("\n number sold entered is %d",updateamount);

/* Call function to decrease the stock */
decreasefunc(stockitemID,updateamount);
fclose(fp);

return;

}

void reorder()

{
/* Function to say that you have reordered and the address */
printf("\nreorder called");
printf("\n address is %s",s2.address);

}

void updatefunc(int stockitemID,int updateamount)

{

/* Increase stock function */

/* Function to update current level of stock */

/* After you to a read, the file pointer will be */
/* pointing to the next record in the file */

/* So we move the file pointer backward to */

/* point to the record we have just read */

/* using the fseek command */

104

CHAPTER5 SUPERMARKET STOCK

printf("\nupdate called");

printf("\nstockitemID is %d updateamount is %d\n",stockitemID,
updateamount);

fp = fopen("superm.dat”, "r+");

for (i = 0;i < 17;i++)

{

/* Read each pressure data from file sequentially */
fread(8s2, sizeof(s2), 1, fp);

if(s2.ID == stockitemID)
{

/* We have found the one we want to update */
s2.numstock = s2.numstock + updateamount;

fseek(fp,minusone*sizeof(s2),SEEK CUR);
fwrite(&s2, sizeof(s2), 1, fp);
printf("\n ID is %d",s2.ID);

printf("\n limit is %d",s2.limit);

printf("\n numstock is %d",s2.numstock);
printf("\n address is %s",s2.address);

fclose(fp);
break;

}
}

void decreasefunc(int stockitemID,int updateamount)

{

/* Decrease stock function */

/* After you to a read, the file pointer will be */
/* pointing to the next record in the file */

/* So we move the file pointer backward to */

/* point to the record we have just read */

/* using the fseek command */

/* Open supermarket file */

105

CHAPTER 5 SUPERMARKET STOCK

fp = fopen("superm.dat”, "r+");
for (i = 0;i < 17;i++)
{

fread(&s2, sizeof(s2), 1, fp);

if(s2.ID == stockitemID)
{

st[i].ID = s2.ID;
st[i].limit = s2.limit;
st[i].numstock = s2.numstock;

if(st[i].numstock == 0)

{
printf("\n Out of stock");
printf("\n numstock is %d",st[i].numstock);
printf("\n limit is %d",s2.limit);
printf("\n number sold is %d",updateamount);
break;

}

if(st[i].numstock - updateamount <= 0)

{
/*Aftexr decrease, stock level is zero or
below*/
printf("\nStock update");
st[i].numstock = 0; /* set to zero (negative
is impossible) */
s2.numstock = st[i].numstock;
reorder();

}

106

CHAPTER5 SUPERMARKET STOCK

else if(st[i].numstock - updateamount <= s2.limit)
{
/*Aftexr decrease, stock level is below
Llimit*/
printf("\nStock update");
s2.numstock = st[i].numstock-updateamount;

reorder();

}

else

{
/*Aftexr decrease, stock level is above
Llimit*/
printf("\nStock update");
st[i].numstock = st[i].numstock -
updateamount;
s2.numstock = st[i].numstock;

}

printf("\n limit is %d",s2.limit);
printf("\n number sold is %d",updateamount);
printf("\n numstock is %d",s2.numstock);

/* Move the file pointer back by one record */
fseek(fp,minusone*sizeof(s2),SEEK CUR);

furite(&s2, sizeof(s2), 1, fp);

break;

107

CHAPTER 5 SUPERMARKET STOCK

The updated values are printed at the end of the program. Another short program
could be written to print out the current values of the file just in case the user has lost
track of what has happened previously. This program is given as an exercise.

EXERCISES

1. Write a program to read the file and output to the user. This is useful if the user
needs to check the current stock.

108

CHAPTER 6

Flight Information

6.1 Airport Display Boards

This chapter shows the mechanism for displaying flight information on airport display
boards. Here, we have only looked at flight arrivals but a similar mechanism can be used
for flight departures. As with the previous chapter, the mechanisms used here have been
modified so that the user can control what is happening.

6.2 Create Flights File

What we will do is have a file containing 17 flights. We will assume that each display
board will only display 12 flights. These will be the “current” flights, those which are
relevant to the current time of day. So at the start of the day, these 12 flights will be the
first 12 flights in the file (as the flights are in chronological order). In reality, depending
on the airport, there could be maybe 200 flights in the file, but the boards would still just
show the current 12.

The data for the 17 flights we will be using is shown in the following.

The data for each flight is kept as a separate record on the arrivals.dat file.

The first item for each record in the file is the position on the file of the flight. So
here, they are numbered 1 to 17. The second item is the flight code. Here, for the first
flight, it is AA1232. The next two fields are the scheduled arrival time of the flight and the
expected arrival time. For the first two flights, these are the same. The next field is the city
of origin of the flight.

{II1II, IIAA1232II, Ilo7=ooll’ "07 :ooll, IICHICAGoII, n II};
{Ilzll’ IIBA123II’ "01205“, “07:05"’ “I_ONDON"’ llll};
{"3"’ llAA4517ll’ llo7=osll, II°7:15II, lIBosToNll’ llll};

109
© Philip Joyce 2020

P. Joyce, Practical Numerical C Programming, https://doi.org/10.1007/978-1-4842-6128-6_6

https://doi.org/10.1007/978-1-4842-6128-6_6#DOI

CHAPTER6 FLIGHT INFORMATION

{"4","AF123","07:10","07:10","PARIS",""};
{"s","NHaa4","07:20","07:20","TOKYO",""};
{"6","DJ144","07:22","07:22","MUMBAI",""};
{"7","AZ2348","07:23","07:25" , "WASHINGTON",""} ;
{"8","vVs9745","07:25","07:26", "TORONTO",""} ;
{"9","DL5816","07:30","07:30", "CHICAGO",""};
{"10","KL5393","07:33","07:33", "MANCHESTER",""} ;
{"11","AZ4627","07:35","07:40","ROME" ,""} ;
{"12","Vs4677","07:40","07:40","NEW ORLEANS",""};
{"13","s0125","07:45","07:45", "FRANKFURT",""} ;
{"14","EI5666","07:48","07:48","LONDON",""};
{"15","Ws2321","07:50","07:50" , "DULLES",""};
{"16","AA197","07:55","08:00","SAN FRANCISCO",""};
{"17","B57321","07:58","07:48", "SARASOTA",""};

This flight data is preset in structures in the program and these are written to the file.
Each structure described earlier is held in the following structure:

struct arrivals {
char posn[3];
char flight_no[8];
char sch_arrival_time[6];
char exp_arrival_time[6];
char origin[15];
char remarks[14];

In addition to the fields described earlier, there is a remarks field. This is used,
for example, when the aircraft is approaching the airport so the user can enter
“Approaching” When the aircraft has landed, you would see “Landed” on the boards.

When the aircraft has landed and all of the passengers have collected their luggage,
the flight can be rolled off the board. It can be deleted from the file. In order to keep a
running total of how many flights are on the file, we have a file called flightcnt.dat.

This file is created at the start of the program. The structure associated with the file is
shown as follows:

110

CHAPTER6 FLIGHT INFORMATION

struct flightcount {
int count;

b

The structure is preset to its initial value of 17 (for our start of day 17 flights) as shown
as follows:

struct flightcount fc={17};

So after creation of the file, we write this structure to the file and close it.

This file is used by the monitoring program and can also be inspected by the user by
calling the program fltcnt (given as an exercise at the end of the chapter).

The code to create the arrivals.dat file is shown as follows:

/* createflightsb.c */
/* Creates file */
/* Prints out the records sequentially */

#define CRT SECURE_NO WARNINGS
#include<stdio.h>
#include <string.h>
/* Arrivals flights structure */
struct arrivals {
char posn[3];
char flight no[8];
char sch_arrival time[6];
char exp arrival time[6];
char origin[15];
char remarks[14];

};

struct flightcount {
int count;

};

void main()

{

int i,numread;
FILE *fparr;
FILE *fltcnt;
111

CHAPTER 6

112

FLIGHT INFORMATION

struct arrivals si;
struct flightcount fc={17};
struct flightcount fcr;

/* Preset individual structures with data for each flight */

struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct

arrivals
arrivals
arrivals
arrivals
arrivals
arrivals
arrivals
arrivals
arrivals
arrivals
arrivals
arrivals
arrivals
arrivals
arrivals
arrivals
arrivals

s10 = {"1","AA1232","07:00","07:00","CHICAGO",""};
s11 = {"2","BA123","07:05","07:05","LONDON",""};

s12 = {"3","AA4517","07:08","07:15","BOSTON",""};

s13 = {"4","AF123","07:10","07:10", "PARIS",""};

s14 = {"s5","NH444","07:20","07:20","TOKYO",""};

s15 = {"6","DJ144","07:22","07:22", "MUMBAI",""};

s16 = {"7","AZ2348","07:23","07:25", "WASHINGTON",""};
s17 = {"8","VS9745","07:25","07:26", "TORONTO","" };

s18 = {"9","DL5816","07:30","07:30", "CHICAGO", ""};

s19 = {"10","KL5393","07:33","07:33" , "MANCHESTER", ""};
s20 = {"11","Az4627","07:35","07:40", "ROME", ""};

s21 = {"12","VS4677","07:40","07:40","NEW ORLEANS",""};
s22 = {"13","S0125","07:45","07:45" , "FRANKFURT",""};

523 = {"14","EI5666","07:48","07:48", "LONDON",""};

s24 = {"15","WS2321","07:50","07:50","DULLES",""};

s25 = {"16","AA197","07:55","08:00","SAN FRANCISCO",""};
s26 = {"17","B57321","07:58","07:48", "SARASOTA","" };

/* Create the file flightcnt.dat which will contain */
/* the current number of flights in arrivals.dat. */

/* This file can then be updated when flights are */

/* removed from arrivals.dat to keep a running total */
fltent = fopen("flightcnt.dat"”,"w");

fwrite(&fc, sizeof(fc), 1, fltent);

fclose(fltent);

fltcnt = fopen("flightent.dat","r");
fread(&fcr, sizeof(fcr), 1, fltcnt);
printf(" Number of flights : %d", fcr.count);

fclose(fltent);

/*

Open the arrivals file */

fparr = fopen("arrivals.dat", "w");

/* Write details of each flight to file*/
/* from the structures defined earlier */

fwrite(&s10,
fwrite(&s11,
fwrite(&s12,
fwrite(8s13,
fwrite(&s14,
fwrite(&s15,
fwrite(8&s16,
fwrite(&s17,
fwrite(&s18,
fwrite(8&s19,
fwrite(8&s20,
fwrite(8&s21,
fwrite(8s22,
fwrite(8&s23,
fwrite(8&s24,

fwrite(8&s25,
fwrite(8&s26,

sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),

sizeof(s1),
sizeof(s1),

/* Close the file */

fclose(fparr);
/* Reopen the file */

fopen("arrivals.dat", "r

- - - - - -

-

- - - - - -

P PP R R P P PP PP PP PR
e

-

[N
- e

)s

fparr);
fparr);
fparr);
fparr);
fparr);
fparr);
fparr);
fparr);
fparr);
fparr);
fparr);
fparr);
fparr);
fparr);
fparr);

fparr);
fparr);

CHAPTER 6

FLIGHT INFORMATION

/* Read and print out all of the records on the file */
printf("\n Flight :Sched: Exp: Origin Remarks");
for(i=0;i<17;i++)

{

numread=fread(&s1, sizeof(s1), 1, fparr);
if(numread == 1)

{

113

CHAPTER6 FLIGHT INFORMATION

printf("\n :%s\t%s\t%s\t%s\t%s\t%s", si.posn,si.flight
no,sl.sch _arrival time,sl.exp_arrival time,si.origin,si.

remarks);
}
else {
/* If an error occurred on read, then print out message */
if (feof(fparr))
printf("Error reading arrivals.dat : unexpected
end of file fparr is %p\n",fparr);
else if (ferror(fparr))
{
perror("Error reading arrivals.dat");
}
}
}
/* Close the file */
fclose(fparr);

Each flight is set up in its own structure and then each structure is written to the file
using fwrite.

The file is then closed and reopened and then each record is read and displayed to
the user.

6.3 Update Display Boards

The program to update the boards is split into two sections. One updates data on the
boards, for example, if the flight is delayed, the user can change the expected arrival time
and possibly put a remark “Delayed” on the board. The other section of the program
deals with “rollup” when a flight has landed and been on the ground for a certain length
of time so that it can be removed (or rolled up) from the board.

To make this clear in the program, the two sections are called:

/* "ROLL UP" SECTION OF THE PROGRAM */

114

CHAPTER6 FLIGHT INFORMATION

and
/* "NOT ROLL UP" SECTION OF THE PROGRAM */

The program has the same structure for each flight as the createflights program.

It starts by opening and reading the flightcnt.dat file and printing the number
of flights to the user. The program then reads the file, arrivals.dat, created by the
createflights program and prints out to the user the 12 flights currently on display on
the boards.

The number 12 is chosen as the number of flights that the display board can hold. In
the program there is code as follows:

if(opt2 < 12)

lim = opt2;
else

lim = 12;

where the field opt2 is updated with the number of flights in the file from the flightcnt.dat
file. Initially, there are 17 flights on the file, but when the number being rolled up means
that there are fewer than 12 flights in the file, then we use this number rather than 12. So
toward the end of the day, the number on the board will drop to 11, 10, 9, and so on.

The program then asks the user if they want to do a rollup. If they say “no,” then they
are asked which flight they want to amend and the item of data for the flight they want to
amend.

6.3.1 Not-Rollup Mechanism

The user enters the flight number as displayed on the boards and is given the option
of a number to type in. Here “1” means that they want to amend the scheduled arrival
time, “2” means they want to change the expected arrival time, “3” means they want to
change the airport of origin, and “4” means they want to add a remark. The program
uses a switch based on the number entered to go to the appropriate code to perform the
required update.

There is a structure called st[17] in the program. This holds the data as specified in
the arrivals structure for each flight.

115

CHAPTER6 FLIGHT INFORMATION

When the user enters which field they wish to update, it is this st structure which is
updated. When this process is completed, the arrivals.dat file is closed and then opened
again using fparr = fopen("arrivals.dat", "w");.This creates a new arrivals.dat file

as we are using the “w” parameter in the fopen function call.
After this, the st structures for each flight are written back to the arrivals.dat file.

6.3.2 Rollup Mechanism

For the rollup mechanism, the program reads in from the user which flight is to be
removed from arrivals.dat. It then reads through the file and writes all of the flight details
to the file arrivals2.dat except for the flight which is to be removed. When it gets to this
flight, the program updates the flightcnt.dat file with the changed count and does not
write the flight details to arrivals2.dat.

At the end of this process, arrivals2.dat contains the updated flight details, so the
arrivals.dat file is deleted and arrivals2.dat is renamed arrivals.dat and becomes the new
arrivals file. The code for this mechanism is shown in the following. The arrivals2 file is
opened and its address is stored in source. The arrivals file is opened and its address is
stored in target. The while loop goes through the arrivals2 file and reads each character
at a time using fgetc(source) and then writes the character to the arrivals file using
fputc(ch, target);. The two files are then closed.

/* Copy arrivals2.dat to new arrivals.dat */
remove("arrivals.dat");

source = fopen("arrivals2.dat", "r");
target = fopen("arrivals.dat", "w");

while ((ch = fgetc(source)) != EOF)
fputc(ch, target);

fclose(source);
fclose(target);

This is then printed out to the user.
The code for this is shown as follows:

/* flightsg.c */
/* Airport display boards updates*/

116

CHAPTER 6

/* arrivals only */
#define CRT SECURE_NO WARNINGS

#include
#include
#include
#include
#include

<stdio.h>
<math.h>
<stdlib.h>
<time.h>
<string.h>

/* Functions defined at the end of the program */

void notrollupfunc(); /* Not rollup function */
void rollupfunc(); /* Rollup function */

/* Definitions of variables used */
char fltno[8];
char str[20];
char ch;

int ret;
int opt2;
int eofcheck;

I*
/*
I*

/* from where the flight left, and remarks, which */

Structure definition for arrivals file */
This contains the flight number, scheduled */
arrival time, expected arrival time, airport */

FLIGHT INFORMATION

/* contains current information, e.g., "landed" etc. */

struct arrivals {

char posn[3];

char flight no[8];

char sch _arrival time[6];
char exp arrival time[6];
char origin[15];

char remarks[14];

Structure for flightcnt.dat file */
which contains the current number */
of flights in the arrivals file */

117

CHAPTER6 FLIGHT INFORMATION

struct flightcount {
int count;

};

FILE *source, *target;
FILE *fparr;

FILE *fparr2;

FILE *fltcnt;

struct arrivals si;
struct arrivals st[17];
struct flightcount fc;

/* User-entered storage variables */
char new_sch_arrival time[6];

char new exp arrival time[6];

char new origin[15];

char new_remarks[14];

int i,opt;

int lim;

long int minusone = -1;
char rollup;

char oldname[] = "arrivals2.dat";

char newname[]

"arrivals.dat";

int remans;
main()

/* Open flightcnt.dat file to find the current */
/* number of flights in the file. */

/* Store this number in opt2 */

/* so that near to the end of the day */

/* the boards will display fewer than 12 flights */
fltent = fopen("flightent.dat","r");

fread(&fc, sizeof(fc), 1, fltent);

118

CHAPTER6 FLIGHT INFORMATION

printf(" Number of flights : %d", fc.count);
opt2 = fc.count;
fclose(fltent);

/* Open arrivals file */
fparr = fopen("arrivals.dat", "r");
printf("\n Flight\t:Sched:\tExp:\tOrigin:\t Remarks");

for (i = 0;1 < 17;i++)

{
/* Read each flight data from file sequentially */
/* and display them */
if(fread(&s1, sizeof(s1), 1, fparr) == 1)
{
/* Print flight no, sched, and expected time and flight
origin for each flight */
strcpy(st[i].posn,si.posn);
strcpy(st[i].flight no,s1.flight no);
strcpy(st[i].sch _arrival time,si.sch arrival time);
strcpy(st[i].exp_arrival time,sl.exp arrival time);
strcpy(st[i].origin,s1.origin);
strcpy(st[i].remarks,s1.remarks);
/* Only print the first 12 flights on the "display board" */
if(opt2 < 12)
lim = opt2;
else
lim = 12;
if(i<lim)
printf("\n : %s\t%s\t%s\t%s\t%-12s\t%s",
sl.posn,s1.flight no,s1.sch arrival time,
sl.exp _arrival time,s1.origin,si.remarks);
}
}
fclose(fparr);

/* The flights can be rolled up (when a flight had landed) */

119

CHAPTER 6 FLIGHT INFORMATION
/* or amendments made to the display */

printf("\nroll up ? y or n \n");
scanf("%c", &rollup);

r* */
/* "NOT ROLL UP" SECTION OF THE PROGRAM */
r* */
if(rollup == 'n")
{
notrollupfunc();
} /* End of not rollup */
r* */
/* "ROLL UP" SECTION OF THE PROGRAM */
r* */
if(rollup == "y")
{
rollupfunc();
} /* End of rollup */
}
void notrollupfunc()
{

/* Amendments can be made to the scheduled arrival time, */
/* the expected arrival time, the airport of origin, */
/* or remarks for the flight */

/* The flight number is asked for */
printf("\nenter flight number (max 10) \n");
scanf("%s", fltno);

printf("\n Flight number is %s",fltno);

printf("\nenter the field you want to change \n");
printf("\nsched = 1,Exp = 2 Origin = 3 Remarks = 4\n");
scanf("%d", &opt);

/* A switch command uses the number entered */

120

CHAPTER6 FLIGHT INFORMATION

switch(opt)
{
case 1:
/* Change scheduled arrival time */
printf("\nenter the new sched \n");
scanf("%s", new_sch arrival time);
printf("\nnew sched is %s",new_sch arrival time);

for (i = 0;i < 17;i++)

{
ret=strcmp(fltno,st[i].flight no);
if(ret == 0)
{
strcpy(st[i].sch _arrival time,new sch_
arrival _time);
printf("\nstored sched is %s",st[i].sch_
arrival time);
printf("\n Flight number is %s",8fltno);
printf("\n struct Flight number is %s",
st[i].flight no);
}
}
break;
case 2:

/* Change expected arrival time */

printf("\nenter the new exp \n");

scanf("%s", new_exp arrival time);
printf("\nnew exp is %s",new_exp_arrival time);
for (i = 0;i < 17;i++)

{
ret=strcmp(fltno,st[i].flight no);
if(ret == 0)
{

strcpy(st[i].exp_arrival time,new exp
arrival time);

121

CHAPTER6 FLIGHT INFORMATION

printf("\nstored exp is %s",st[i].exp_
arrival time);

printf("\n Flight number is %s",&fltno);
printf("\n struct Flight number is %s",
st[i].flight no);

}

break;

case 3:
/* Change airport of origin */
printf("\nenter the new origin \n");
scanf("%s", new origin);
printf("\nnew origin is %s",new_origin);
for (i = 0;1 < 17;i++)

{
ret=strcmp(fltno,st[i].flight no);
if(ret == 0)
{
strcpy(st[i].origin,new origin);
printf("\nstored origin is %s",st[i].origin);
printf("\n Flight number is %s",&fltno);
printf("\n struct Flight number is %s",
st[i].flight no);
}
}
break;
case 4:

/* Add remarks */

printf("\nenter the number of the remark \n");

printf("1 = On Approach\n");
printf("2 = Delayed\n");
printf("3 = Landed\n");

scanf("%d", &remans);
switch (remans)

{

122

CHAPTER6 FLIGHT INFORMATION

case 1:

strcpy(new_remarks,"On Approach");
break;

case 2:

strcpy(new_remarks, "Delayed");
break;

case 3:

strcpy(new_remarks,"Landed");
break;

default:

}

break;

printf("\n Flight number is %s",8fltno);

printf("\nnew remarks is %s",new_remarks);
for (i = 0;1 < 17;i++)

{
ret=strcmp(fltno,st[i].flight no);
if(ret == 0)
{
strcpy(st[i].remarks,new _remarks);
printf("\nstored remarks is %s",st[i].
remarks);
printf("\n Flight number is %s",&fltno);
printf("\n struct Flight number is %s",
st[i].flight no);
}
}
break;
default:

printf("\nerror \n");

} /* End of switch */

/* Output updated arrivals data */

123

CHAPTER6 FLIGHT INFORMATION

}

fparr = fopen("arrivals.dat", "w");
if(opt2 < 12)
lim = opt2;
else
lim = 12;
printf("\n Flight\t:Sched:\tExp:\tOrigin:\t Remarks");

for (i = 0;i < 17;i++)
{
strcpy(si.posn,st[i].posn);
strcpy(si.flight no,st[i].flight no);
strcpy(si.sch _arrival time,st[i].sch arrival time);
strcpy(sl.exp_arrival time,st[i].exp_arrival time);
strcpy(si.origin,st[i].origin);
strcpy(si.remarks,st[i].remarks);
fwrite(8s1 ,sizeof(s1),1 , fparr);
if(i<lim)
printf("\n : %s\t%s\t¥%s\t%s\t%-12s\t%s",st[i].posn,
st[i].flight no,st[i].sch_arrival time,st[i].exp_arrival_
time,st[i].origin,st[i].remarks);
}
fclose(fparr);

void rollupfunc()

{

124

/* Flight to be rolled off the display, */
/* e.g., if it has landed */
printf("\nenter flight number \n");
scanf("%s", fltno);

/* Write to a temporary file arrivals2.dat */
/* which will then overwrite arrivals.dat */

fparr = fopen("arrivals.dat", "r");
fparr2 = fopen("arrivals2.dat", "w");

CHAPTER 6

if(opt2 < 12)
lim = opt2;

else

lim = 12;

for (i = 0;1 < 17;i++)

{

eofcheck = fread(8s1, sizeof(s1), 1, fparr);

if(eofcheck == 0)

{

}

goto exit;

if(strcmp(s1.flight no,fltno) != 0)

{

else

fwrite(8s1 ,sizeof(s1),1 , fparr2);

/* update the flight count file */

fltent = fopen("flightent.dat”,"r");
fread(&fc, sizeof(fc), 1, fltecnt);
fclose(fltent);

fc.count = fc.count-1;

opt2 = fc.count;

fltent = fopen("flightcnt.dat”,"w");
fwrite(&fc, sizeof(fc), 1, fltent);
fclose(fltent);

fltent = fopen("flightent.dat","r");
fread(&fc, sizeof(fc), 1, fltent);
fclose(fltent);

FLIGHT INFORMATION

125

CHAPTER6 FLIGHT INFORMATION

exit:

126

fclose(fparr);
fclose(fparr2);

/* Copy arrivals2.dat to new arrivals.dat */
remove("arrivals.dat");

source = fopen("arrivals2.dat", "r");
target = fopen("arrivals.dat", "w");

while ((ch = fgetc(source)) != EOF)
fputc(ch, target);

fclose(source);
fclose(target);

/* Display updated data */

fparr = fopen("arrivals.dat", "r");
if(opt2 < 12)
lim = opt2;
else
lim = 12;
printf("\n Flight\t:Sched:\tExp:\tOrigin:\t Remarks");
for (i = 0;i < lim;i++)
{

fread(8s1, sizeof(s1), 1, fparr);

strcpy(st[i].posn,si.posn);

strcpy(st[i].flight no,s1.flight no);
strcpy(st[i].sch_arrival time,si.sch arrival time);
strcpy(st[i].exp _arrival time,si.exp arrival time);
strcpy(st[i].origin,s1.origin);
strcpy(st[i].remarks,s1.remarks);

CHAPTER 6

FLIGHT INFORMATION

printf("\n : %s\t¥hs\ths\t¥hs\t%-12s\t%s",st[i].posn,
st[i].flight no,st[i].sch_arrival time,st[i].exp_arrival time,
st[i].origin,st[i].remarks);

The following diagram shows what the arrivals display board would look like

}
fclose(fparr);
}
(Figure 6-1).

Flight
:1 AA1232
:2 BA123
:3 AA4517
:4 AF123
:5 NH444
:6 DJ144
17 AZ2348
:8 VsS9745
:9 DL5816
:10 KL5393
111 AZ4627
112 Vs4677

FLIGHT ARRIVALS

Sched Exp Origin Remarks
07:00 07:00 CHICAGO Approaching
07:05 07:05 LONDON

07:08 07:15 BOSTON Delayed

07:10 07:10 PARIS

07:20 07:20 TOKYO

07:22 07:22 MUMBAI
07:23 07:25 WASHINGTON
07:25 07:26 TORONTO
07:30 07:30 CHICAGO
07:33 07:33 MANCHESTER
07:35 07:40 ROME

07:40 07:40 NEW ORLEANS

Figure 6-1. Arrivals board example

127

CHAPTER 6

FLIGHT INFORMATION

EXERCISES

1.

Write the program, as described at the start of this chapter, to read the contents
of the flightcnt.dat file and print to the user.

Using the following structure, write a program to create a file for airport

departures.

Create the file depcnt.dat to keep the count of departure flights.

struct departures {

char
char
char
char
char
char
char

};

posn[3];

flight no[8];
sch_departure time[6];
exp_departure time[6];
destination[15];
checkingate[5];
remarks[14];

128

CHAPTER 7

Power Plant Control

7.1 Simulation

This is a simulation of an industrial process. The chapter has the title “Power Plant
Control,” but it is just a demonstration of how any industrial process uses computers to
assist in its operation.

We assume that the plant has many devices throughout its operation which
monitor temperatures and flow rates at different points. In the past these would just be
gauges which would have to be monitored manually at all times. So this would involve
hundreds of people who would be checking these. If one of the people monitoring these
was distracted and missed a high reading, it could be catastrophic. With computers,
these devices can be connected to the computer and send messages to them containing
values of temperatures and flow rates. These can be sent to one point where a number
of people can monitor the devices on screens. The computers can be programmed to
hold values for these flow rates that would be considered to be high so that when the
flow rate gets close to this value an alarm can be raised for the person monitoring. When
computers were first used to do this type of thing, the person monitoring would get in
touch with an engineer who would investigate. Even though the computer may be able
to fix the problem itself, the engineers did not feel that they could trust them. These
days, people have more confidence in the reliability of computers and the software has
much more control.

As with the previous two chapters, we modify how we use the program so that we
can simulate what is happening. So we manually send a message to the program from
the command line and we receive messages back from the program to the user. We
will monitor temperatures and flow rates. The device (in this case the user) can send a
message containing the current flow rate and temperature and also a high flow rate value
and a high temperature value which, if reached, will cause an alarm to be raised.

129
© Philip Joyce 2020

P. Joyce, Practical Numerical C Programming, https://doi.org/10.1007/978-1-4842-6128-6_7

https://doi.org/10.1007/978-1-4842-6128-6_7#DOI

CHAPTER 7 POWER PLANT CONTROL

We will create a file which contains these values. Each device will have its own ID so
the structure for each device will be as follows:

struct fplant {
int ID; /* ID of device */
float temp; /* Current temperature of device */
float flowrate; /* Current flow rate of device */
float hightemp; /* Maximum temperature of device */
float highflow; /* Maximum flow rate of device */

We will define data for 17 devices in our file. The same mechanism is used as in the
past two chapters. The 17 structures are preset at the start of the program and then these
are written to the file using a series of fwrite commands. An example of the preset array
structure is shown in the following:

struct fplant s10 = {4,10.0,23.0,50.0,50.0};

In this case the ID is 4, temperature is 10.0, flow rate is 23.0, high temp is 50.0, and
high flow is 50.0.

Each of these structures is written to the file using an fwrite command as shown in
the following for the s10 structure:

fwrite(&s10, sizeof(s1), 1, fp);

We then close the file, then reopen it, and we read the data from the file and write it
to the screen for the user to check. The file is called tempflow.bin. The code for this is
shown as follows:

/* createplantb.c */

/* Industrial plant simulation */
/* Creates file */

/* Reads from file */

/* Prints out the records sequentially */
/* Power plant temperature and flow rate */

#define CRT_SECURE_NO_WARNINGS
#include<stdio.h>

130

CHAPTER 7 POWER PLANT CONTROL

/* Structure definition for each device on file */
struct fplant {
int ID; /* ID of device */
float temp; /* Currxent temperature of device */
float flowrate; /* Current flow rate of device */
float hightemp; /* Maximum temperature of device */
float highflow; /* Maximum flow rate of device */

};

int main()

{
int i,numread;
FILE *fp;
struct fplant si;
struct fplant s2;

/* 17 structures. One for each device */
/* Each has preset values for each */
/* element of the structure */

struct fplant si0 = {4,10.0,23.0,50.0,50.0};
struct fplant s11 = {7,11.0,34.0,51.0,50.0};
struct fplant s12 = {9,12.0,44.0,52.0,50.0};
struct fplant s13 = {11,13.0,25.0,53.0,50.0};
struct fplant s14 = {14,14.0,34.0,54.0,50.0};
struct fplant si5 = {16,15.0,51.0,55.0,50.0};
struct fplant si16 = {17,16.0,23.0,56.0,50.0};
struct fplant s17 = {19,17.0,44.0,57.0,50.0};
struct fplant s18 = {23,18.0,35.0,58.0,50.0};
struct fplant s19 = {24,19.0,40.0,59.0,50.0};
struct fplant s20 = {27,20.0,40.0,60.0,50.0};
struct fplant s21 = {31,21.0,42.0,61.0,50.0};
struct fplant s22 = {32,22.0,45.0,62.0,50.0};
struct fplant s23 = {35,23.0,47.0,63.0,50.0};
struct fplant s24 = {38,24.0,41.0,63.0,50.0};

struct fplant s28 = {44,28.0,54.0,68.0,50.0};
struct fplant s29 = {47,29.0,58.0,69.0,50.0};

131

CHAPTER 7 POWER PLANT CONTROL
/* Open the file */
fp = fopen("tempflow.bin", "w");

/* Write details of each ID to file*/
/* from the structures defined earlier */

fwrite(&8s10, sizeof(s1), 1, fp);

fwrite(8s11, sizeof(s1), 1, fp);
fwrite(8s12, sizeof(s1), 1, fp);
furite(&s13, sizeof(s1), 1, fp);
fwrite(&8s14, sizeof(s1), 1, fp);
fwrite(&8s15, sizeof(s1), 1, fp);
fwrite(&s16, sizeof(s1), 1, fp);
furite(&8s17, sizeof(s1), 1, fp);
fwrite(8s18, sizeof(s1), 1, fp);
fwrite(&s19, sizeof(s1), 1, fp);
fwrite(&8s20, sizeof(s1), 1, fp);
fwrite(&s21, sizeof(s1), 1, fp);
fwrite(&s22, sizeof(s1), 1, fp);
fwrite(&s23, sizeof(s1), 1, fp);
furite(8s24, sizeof(s1), 1, fp);
fwrite(8s28, sizeof(s1i), 1, fp);
fwrite(&s29, sizeof(s1), 1, fp);

/* Close the file */

fclose(fp);

/* Reopen the file */

fp=fopen("tempflow.bin", "r");

/* Read and print out all of the records on the file */

for(i=0;i<17;i++)

{

numread=fread(&s2, sizeof(s2), 1, fp);

132

CHAPTER 7 POWER PLANT CONTROL

if(numread == 1)

{
printf("\nID : %d temp : %f flow rate : %f high temp :
%f high flow : %f", s2.ID,s2.temp,s2.flowrate,s2.
hightemp,s2.highflow);
}
else {
/* If an error occurred on read, then print out message */
if (feof(fp))
printf("Error reading tempflow.bin : unexpected end
of file fp is %p\n",fp);
else if (ferror(fp))
{
perror("Error reading tempflow.bin");
}
}

}
/* Close the file */

fclose(fp);

7.2 Monitoring Safety Levels

We now want to write a program to enter values for a specific device and test that the

value entered is not outside the allowed limit. If it is outside, then we need to print an

alert message.

We first read the file and print out data held for each device ID. Then we need to

ask the user to enter the ID of the device and the current temperature. In the program,

there is a “do” loop where the ID is entered. If the user enters an ID which is not on the

file, then an error message is sent. When the user has entered a valid ID, the code exits

the “do” loop. We test the current temperature against the limit held in the record. If it is

133

CHAPTER 7 POWER PLANT CONTROL

outside this limit, we output an alert. We then ask the user to enter the flow rate for the
same device ID and we test this against the flow rate limit.
The code for this is shown as follows:

/* plantb.c */

/* Industrial plant simulation */

/* Finds specific records and prints them */

/* Checking power plant temperature and flow rate */
/* against acceptable levels */

#idefine CRT_SECURE_NO_WARNINGS

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

/* Structure definition for each device on file */
struct fplant {
int ID; /* ID of device */
float temp; /* Current temperature of device */
float flowrate; /* Current flow rate of device */
float hightemp; /* Maximum temperature of device */
float highflow; /* Maximum flow rate of device */

b

void main()

{
FILE *fp;

struct fplant s2;

struct fplant st[17];

int i;

int currentID;

int IDfound;

float currenttemp,currentflow;
/* Open tempflow.bin file */

134

CHAPTER 7 POWER PLANT CONTROL

fp = fopen("tempflow.bin", "r");
for (i = 0;1 < 17;i++)
{
/* Read each pressure data from file sequentially */
fread(8s2, sizeof(s2), 1, fp);
/* Print pressure data each component */
t[i].ID = s2.1ID;
t[i].temp = s2.temp;
st[i]. flowrate = s2.flowrate;
t[i].hightemp = s2.hightemp;
t[i].highflow = s2.highflow;
printf("\nID : %2d temp : %f flow rate : %f high temp : %f high
flow : %f", s2.ID,s2.temp,s2.flowrate,s2.hightemp,s2.highflow);
}
fclose(fp);

/* User asked to enter the ID being monitored */
/* Go round "do loop" until a valid ID is entered */
IDfound=0;

do {

/* Ask user to enter ID */
printf("\nenter ID \n");
scanf("%d", ¤tID);

printf("\n ID is %d",currentID);
for (i = 0;1 < 17;i++)

{
if(currentID == st[i].ID)
{
/* Valid ID found */
IDfound=1;
break;
}
}

135

CHAPTER 7 POWER PLANT CONTROL

136

if(IDfound==0)
printf("\nID not found");

} while(IDfound==0);

/* User asked to enter the current temperature being monitored */
printf("\nenter current temperature \n");

scanf("%f", ¤ttemp);

printf("\n current temperature is %f",currenttemp);

/* Current temperature checked against range of temperature */
/* An Alert is displayed if the temperature is outside the range */

for (i = 0;i < 17;i++)

{
if(currentID == st[i].ID)
{
printf("\n high temp is %f",st[i].hightemp);
if(currenttemp > st[i].hightemp)
printf("\n ALERT! Temperature is above upper
Llimit");
}
}

/* User asked to enter the flow rate being monitored */

printf("\nenter current flow rate \n");
scanf("%f", ¤tflow);

printf("\n current flow rate is %f",currentflow);

/* Flow rate checked against limits */
/* An alert is displayed if the flow rate is outside the range */

CHAPTER 7 POWER PLANT CONTROL

for (i = 0;i < 17;i++)

{
if(currentID == st[i].ID)
{
printf("\n high flow rate is %f",st[i].highflow);
if(currentflow > st[i].highflow)
printf("\n ALERT! Flow rate is above upper
limit");
}
}

Our final program will update our tempflow.bin file.

We open the file and print out all of the records in the file. We then ask the user to
enter the ID of the device being amended. We then find the ID from the file. Then we ask
the user to enter the new temperature. At this point, the file pointer is pointing to the next
record in the file, so we need to back it up to point to the current record which is the one
we want to amend. We do this using the fseek (fp,minusone*sizeof(s2),SEEK _CUR);
command. Then we can write the new temperature for this record and close the file.

To explain this mechanism of backup, look at the following situation.

We are reading through the file and we have just read the second entry in the file, so
the file pointer is now pointing to the third entry as shown in the following:

4 10.0 23.0 50.0
7 11.0 34.0 51.0
12.0 44.0 52.0 « file pointer

11 13.0 25.0 53.0
14 14.0 34.0 54.0

The fread function fread(8s2, sizeof(s2), 1, fp); will have placed the details
for the second structure (ID = 7) into the structure variable s2. If we now want to update
the current flow rate of ID = 7 from 34.0 to 47.0 in s2 and we want to write this back to the
file, we need to move the pointer back to pointing at the ID = 7 structure of the file. We do
this using fseek (fp,minusone*sizeof(s2),SEEK CUR);.

137

CHAPTER 7 POWER PLANT CONTROL

The minusone*sizeof(s2) part of the instruction tells the file pointer to move back

by the length of the s2 structure. After the instruction, the pointer will be pointing at the

ID=7 file entry as shown in the following:

4 10.0 23.0 50.0

7 11.0 34.0 51.0 « file pointer
12.0 44.0 52.0

11 13.0 25.0 53.0

14 14.0 34.0 54.0

Now we can write the new data to the file using fwurite(8s2, sizeof(s2), 1, fp);.
The fwrite instruction writes the new contents of s2 to the position in the file pointed to.
The new data is then printed to the user. This completes the updating mechanism of the
program and the flow rate of ID = 7 is updated to 47.0 as shown. After the fwrite, the
pointer will be pointing to the next item.

4 10.0 23.0 50.0
7 11.0 47.0 51.0
9 12.0 44.0 52.0 « file pointer
10 13.0 25.0 53.0

14 14.0 34.0 54.0
The code for this is shown as follows:

/* plantbam.c */

/* Industrial plant simulation */

/* Power plant temperature and flow rate */
/* Allows amendments to tempflow.bin file */
/* Tests if the amendment is above the hightemp */
/* value and outputs an alert if it is */
#define CRT_SECURE_NO WARNINGS

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

138

CHAPTER 7

/* Structure definition for each device on file */
struct fplant {

};

int ID; /* ID of device */

float temp; /* Currxent temperature of device */
float flowrate; /* Current flow rate of device */
float hightemp; /* Maximum temperature of device */
float highflow; /* Maximum flow rate of device */

int main()

{

FILE *fp;

struct fplant s2;

int i;

int IDtoamend; /* User-entered ID variable */
float fnewtemp;

long int minusone = -1;

int IDfound;
/* Open tempflow.bin file */

fp = fopen("tempflow.bin", "r");
for (i = 0;1 < 17;i++)

POWER PLANT CONTROL

{
/* Read each pressure data from file sequentially */
fread(8s2, sizeof(s2), 1, fp);
/* Print pressure data each component */
printf("\nID : %2d temp : %f flow rate : %f high temp : %f high
flow : %f", s2.ID,s2.temp,s2.flowrate,s2.hightemp,s2.highflow);
}
fclose(fp);

/* User asked to enter the ID being monitored */

/* Go round "do loop" until a valid ID is entered */

IDfound=0;

139

CHAPTER 7 POWER PLANT CONTROL

do {
fp = fopen("tempflow.bin", "r+");
/* Ask user to enter ID */
printf("\nenter ID \n");
scanf("%d", &IDtoamend);

printf("\n ID is %d",IDtoamend);
for (i = 0;i < 17;i++)

{
fread(&s2, sizeof(s2), 1, fp);
if(IDtoamend == s2.ID)
{
/* Valid ID found */
IDfound=1;
break;
}
}

if(IDfound==0)
printf("\nID not found");

fclose(fp);
} while(IDfound==0);

fp = fopen("tempflow.bin", "r+");
/* Loop of 17 items in tempflow.bin file */
/* Need to find the user-entered ID */
for (i = 0;1 < 17;i++)
{
fread(&s2, sizeof(s2), 1, fp);
if(IDtoamend == s2.ID)

{

/* Correct ID found in file */
/* User asked to enter the new temperature being
monitored */

140

}

fclose(fp);

CHAPTER 7 POWER PLANT CONTROL

printf("\nenter new temperature \n");
scanf("%f", &fnewtemp);

/* Print out confirmation of temperature to user */
printf("\n new temperature is %f",fnewtemp);

/* Store new temperature in file */
s2.temp = fnewtemp;

/* File updated with new temperature */

/* As file pointer is currently pointing */
/* to the next record in the file, we must */
/* go back by 1 (minusone) to update the */
/* correct record */
fseek(fp,minusone*sizeof(s2),SEEK CUR);
furite(&s2, sizeof(s2), 1, fp);

/* Print out the new values for the device */
printf("\nID : %d temp : %f flow rate : %f high temp :
%t high flow : %f", s2.ID,s2.temp,s2.flowrate,s2.
hightemp,s2.highflow);

break;

You may have realized that after making the amendment to the tempflow.bin file in
the preceding program, the next thing we should do is check that the new temperature is
within the limits. So at this point, we would call the previous program to do this. A more
realistic alternative would be to have the two programs combined so that you checked
the new level immediately after updating. This is given as an exercise.

141

CHAPTER 7 POWER PLANT CONTROL

EXERCISES

1. Create a file to show the pressures in devices. Your program will be similar to
the createplantb.c program in this chapter. Your structure defining each
record in the file should look like this:

struct fpress {

int ID; /* ID for the device */

float 1limit; /* Lower limit for pressure */
float press; /* Current pressure */

float ulimit; /* Upper limit for pressure */

}
Then you need to preset your structures similar to the following:
struct fpress si0 = {4, 10.0, 23.0, 50.0};

Write these structures to the file. Then close the file, reopen it, and then read and print
out all of the records in the file.

2. Write a program similar to plantb. c to read your file from question 1 and then
ask the user to enter the device ID and its current pressure. Test this entered
pressure and compare it to the allowed upper and lower limits. Output an error
message if the pressure is outside either of these limits.

3. Write a program to amend the temperature, as in the program in the chapter,
but then test the temperature against the hightemp value and output an alert if
it is above this value.

142

PART Il

Physics Applications

Potential and Kinetic Energy Simulation
Pendulum Simulation
Center of Mass Simulation
Brownian Motion
Diffusion Lattice Model
Chain Reaction Simulation

CHAPTER 8

Energy Transfer

8.1 Potential and Kinetic Energy Simulation

This is a piece of simple physics. We will look at the energy of a heavy ball which is
dropped from a 10 meter tower. The ball is relatively heavy (10kg), and it is suspended
from a cable at the top of the tower. When the cable is cut, the ball will accelerate
under the force of gravity to the ground. We can make some calculations of the energy
the ball has.

We will use some of the basic equations of motion.

s = u*t + 0.5%f*t?
v=u+ f*t

where

s is the distance traveled

u is the initial velocity

tis the time

fis the acceleration

v is the final velocity

So in our first equation if we know the initial velocity, the time, and the acceleration,
we can calculate the distance traveled.

In the second equation if we know the initial velocity, the acceleration, and the time,
we can calculate the final velocity.

We also use two energy equations:

Potential energy = m*g*h

Kinetic Energy = 0.5*m*v*

145
© Philip Joyce 2020

P. Joyce, Practical Numerical C Programming, https://doi.org/10.1007/978-1-4842-6128-6_8

https://doi.org/10.1007/978-1-4842-6128-6_8#DOI

CHAPTER 8 ENERGY TRANSFER

where
g is the acceleration of gravity
h is the height above ground
m is the mass of the object

Figure 8-1. Ball falling from tower

Figure 8-1 is a diagram of the ball at the top of the tower. The acceleration in this case
is the acceleration due to gravity and is normally represented by g.

We know that the initial velocity of the ball (just as the cable is cut) is zero. We
assume that we can ignore air resistance. There will be some air resistance but it will be
small compared with the other factors. We can make our calculations every 0.1 seconds.
So from our formula

v=u+ ¥t

we have u=0, fis the acceleration of gravity, g, which is 9.8 m/s? and t which is 0.1.
If we substitute these values into the equation, we get v, the velocity after 0.1 seconds,

sov=0.98m/s
Now we can use our other formula
s = u*t + 0.5%f*t*

where s is the height traveled in 0.1 seconds, so foru=0, f=9.8 m/s? and t=0.1,
we get s =0.049m.

The ball will have traveled 0.049m in the first 0.1 seconds.

So its new height above the ground will be the original height -0.049.

146

CHAPTER 8 ENERGY TRANSFER

8.2 Convert Theory to Code

In our program we can set up a loop for which we increment the time by 0.1 seconds and
we find the new velocity for each iteration of the loop. We also find the height fallen so
that we can calculate the new height above the ground after each iteration. We can use

these two values in our energy formulas
PE =m*g*h
KE = 0.5*m*v?

so that after each iteration of the loop, we can store the PE and KE in a file.
The code for this is shown as follows:

/* peke.c */

/* Potential energy vs. kinetic energy */
/* */

/* */

#define CRT_SECURE_NO WARNINGS

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

void main()

{
int i;
double m,g,t,h,hn,KE,PE;
double u,v;
FILE *fptr;
fptr=fopen("peke.dat","w");

/* Initialize the variables from the formulas */

m=10.0; /* Preset mass (kg) value */

g=9.8; /* Preset acceleration of gravity (m/s?) value */
h=10.0; /* Preset height (m) value */

t=0.1; /* Preset time division (s) value */

u=0.03 /* Preset initial velocity (m/s) value */

147

CHAPTER 8 ENERGY TRANSFER

for(i=0;i<100;i++)

{
v=u+g*t; /* Find velocity v from initial velocity, accel. of
gravity, and time */
KE=0.5*m*pow(v,2); /* Find kinetic energy from mass and
velocity */
hn=u*t+0.5*g*pow(t,2); /* Find new height after time t */
h=h-hn; /* New height after falling hn meters */
PE=m*g*h; /* Find potential energy */
u=vsy /* Set the initial velocity for the next increment of the
loop to the current velocity */
/* If h = 0.0, then we have reached the ground */
if(h<=0.0)
break;
fprintf(fptr, "%1f\t%1f\n",KE,PE);
}
fclose(fptr);

The potential energy and kinetic energy values for each iteration of the loop are
stored in the file peke.dat.
The output from this is shown as follows in Figure 8-2.

148

CHAPTER 8 ENERGY TRANSFER

Potential energy -

‘V“

t + + + + t + + t + + t + + + +
-300 -200 -100 100 200 300 400 500 600 700 500 500 1000 1100 1200 1300

Kinetic energy

Figure 8-2. Potential and kinetic energy

We can see that the potential energy decreases at the same rate as the kinetic energy
increases. At the start the potential energy is high and the kinetic energy is zero. At the
end the potential energy is zero and the kinetic energy is large. So we can say that energy
is conserved. Strictly speaking, some of the energy is transferred to the air, but this is
small so we will ignore it in this case. Neil Armstrong and Buzz Aldrin could have done
this experiment on the Moon where air resistance would be zero.

We can make a small modification to the program so that we add the kinetic energy
to the potential energy after each iteration of the loop. We can write these values to a
separate file and print these on the same graph as earlier. This is given as an exercise.

EXERCISES

1. Amend your energy program to keep a total of kinetic energy + potential energy
after each iteration. Write these to a different file. Print the output from the two
files on the same graph.

149

CHAPTER 9

Pendulum Simulation

9.1 Pendulum Theory

A

mg

mgsin@

Figure 9-1. Pendulum

The preceding diagram shows a pendulum of length 1 suspended from a point A. The
pendulum has a mass m attached to it and it is held at an angle 0 to the vertical.

We want to find out how this angle and the angular velocity of the pendulum vary
with time. If you imagine a pendulum as in Figure 9-1, then when it is released the
mass moves toward the left as shown. The angle, 6, gets smaller as the mass moves to
its lowest point. When it reaches its lowest point, the angle is zero. The mass continues
until it reaches a point to the left of the diagram - a mirror image of the diagram. At this
point, the angle is 6, but on the other side, so we say that it is - €. It then moves back to
its original position. The following graph, Figure 9-2, represents this movement. It shows
the variation of theta with time.

The point, a, is the start point. Here, we say theta is 1.

Point b is where the mass is at the bottom of its trajectory when theta is 0.

At c, theta is -1. This is where the pendulum is to the left of the diagram.

151
© Philip Joyce 2020

P. Joyce, Practical Numerical C Programming, https://doi.org/10.1007/978-1-4842-6128-6_9

https://doi.org/10.1007/978-1-4842-6128-6_9#DOI

CHAPTER9 PENDULUM SIMULATION

At d, theta is 0 again. The mass is at the bottom of its trajectory.
At e, the mass is back to its starting position.

-
¥ |Rx)-em<x)

theta .|

time

Figure 9-2. Pendulum angle (theta) variation with time

So the variation of @ with time can be represented as a cosine curve as shown.

When the pendulum is released, it moves in the direction shown with a force of
mgsin 6.

As force can be defined as mass multiplied by acceleration and as acceleration is the
second derivative of distance with respect to time, we can write

Force = m*(d?s / dt?)

But as, in this case, as force is mgsiné, then we can combine these equations and
write

m*(d?s / dt?) = mgsin@
or (d?s / dt?*) = gsin@
or for small @ (d%s/dt*) =g (1)

152

CHAPTER9 PENDULUM SIMULATION

But in the case of our pendulum diagram earlier, the distance the mass moves in the
direction shown is given by

s=10
Differentiating this twice with respect to t, we get
(d%s/dt?) =1*(d?6 / dt?)
Combining this with our equation (1) earlier, we get
1*(d*6 / dt*) = g6
or (d*6/dt*) =(g/D)* 6 (2)
but (d 6 / dt) = w (angular velocity)
So (d?6 / dt*) =(d w / dt)
So we can write equation (2) as
dw/dt)=(g/1)*6
Now, we have two differential equations
(dé/dt)=w (3)
and (dw/dt)=(g/1)*6 (4)

The first equation relates the change in the angle, 8, with time. The second equation
relates the change of the angular velocity, w, with time. These are the two relationships
we want to investigate. We can solve these by the Euler method.

9.2 Euler Method

The Euler method relates a function to its derivatives. The relationship between a
function and its first derivative is shown in Figure 9-3.

Here, the curved line is our function and the slanted line (ab), which just touches
it, is the curves gradient at the point where it touches the curve. This gradient is the first
derivative evaluated at that point.

153

CHAPTER9 PENDULUM SIMULATION

b
y
a Y2
1
YO '
X0 X1 x2| x

aisat (x0,y0) bisat (x1,y1) cisat(x2,y2)

Figure 9-3. Euler method

b _ ' y2-yl

x2-x1
yl-y0

x1-x0

Figure 9-4. Euler method analysis

The preceding diagram, Figure 9-4, shows the lines ab and bc. We have projected
horizontal lines from a and b and vertical lines from b and c to produce two triangles. For
the left-hand triangle, we can see from the graph on the last page that the length of the base
must be x1-x0 and the length of the perpendicular line from the base is y1-y0. Doing a similar
thing on the right-hand triangle gives us a base of x2-x1 and a perpendicular of y2-y1.

As the gradient of each of these triangles is just the length of the perpendicular side
divided by the length of the base, we can say that

Gradient of left triangle = (y1-y0)/(x1-x0)
Gradient of right triangle = (y2-y1)/(x2-x1)

The gradient of the triangles at each point is just the derivative evaluated at that
point, which we can write as

(f(x) - f(a)) / (x-a) =1'(a)

154

CHAPTER9 PENDULUM SIMULATION

where f(x) is the y value of the function at x

f(a) is the y value of the function at a

(x-a) is the length of the base of the triangle

f'(a) is the derivative or gradient function

If we have the same length of the base for each triangle, we can call it h. So we can
rewrite (f(x) - f(a)) / (x-a) =1f'(a)

as
(f(x)- f(a))/h =f'(a)
or
f(x)-f(a) = hf'(a)
or

f(x) = f(a) + hf'(a)

What we can do with this formula is set initial values of f(x) and a and set up a loop in
which we increase the a value by h for each pass of the loop.

So as we increment our x value, we calculate a new f(x) or y value. So we could write
the preceding equation as

Yn+l= Yn + hf/ (X)

This is the Euler method of finding f(x), if we already know f’(x) and initial values of
f(x) and a.

We can solve our two pendulum differential equations, (3) and (4), using the Euler
method.

We just replace y,,,= y, + hf'(x) by

Wy, = Wyt ('g / 1)* e*dt (5)
and
0,.,=0, + w, *dt (6)

So we can set initial values for 8, and w, and use the preceding formulas, (5) and (6),
in a loop in our program with increments of time dt in the loop.

/* pendme.c */
/*
Simple Euler method
*/
155

CHAPTER9 PENDULUM SIMULATION

#define CRT_SECURE_NO WARNINGS
#include <math.h>
#include <stdio.h>

void main()

{
FILE *fptr;
FILE *fptr2;
int i,npoints;

double length,g,dt,omega[250],theta[250],time[250];
/* Two output files - one measuring omega, one measuring theta */

fptr=fopen("pendout.dat”,"w");

fptr2=fopen("pendoutb.dat","w");
/* Preset the parameters from the formula */

length=1.0; /* Preset length of pendulum (1) */
g=9.8; /* Preset acceleration of gravity (m/s*2) */
npoints=250; /* Preset number of points in loop */
dt=0.04; /* Preset time interval (s) */

/* Clear storage arrays to zero */
for(i=0;i<npoints;i++)

{
omega[i]=0.0;
theta[i]=0.0;
time[1]=0.0;
}

/* Preset initial theta and omega values */
theta[0]=0.2;
omega[0]=0.0;

/* Euler method */

I* w,, = w,+ (-g/1)* 6xdt */
/* and */

/* 00, = 0, + w,¥dt */

for(i=0;i<npoints;i++)

156

CHAPTER9 PENDULUM SIMULATION

{
omega[i+1]=omega[i]-(g/length)*theta[i]*dt;
theta[i+1]=theta[i]+omega[i]*dt;
time[i+1]=time[i]+dt;
fprintf(fptr, "%1f\t%1f\n",time[i+1],theta[i+1]);
fprintf(fptr2, "%1f\t%1f\n",time[i+1],omega[i+1]);

}

fclose(fptr);

fclose(fptr2);

The output from the two files is shown in Figure 9-5. From our program, the pendout.
dat file monitors the theta values and pendoutb.dat monitors the omega values.

pendme.c

st
theta/omega [
&4

omega(blue)

time

Figure 9-5. Euler method output

These two graphs look a bit strange. They both show the correct cyclic movement of
the pendulum, but the amplitude of each is increasing. This would mean that the swings
of the pendulum would increase on every cycle - an increase in energy with no external
energy input. If this was correct, it could solve all of the world’s energy problems.
However, if you do a simple experiment of your own with a pendulum, you will see that
the amplitude gradually sets smaller and eventually the pendulum will stop.

157

CHAPTER9 PENDULUM SIMULATION

9.3 Euler-Cromer Method

So the conclusion is that the Euler method of simulation is not correct as far as the
amplitude is concerned. A small change to the Euler method, called the Euler-Cromer
method, corrects this problem.

W, = W, + (-g /1)* *dt (7)
0n+1 = 9 nt wn+l*dt (8)

If you compare equations (7) and (8) with equations (5) and (6), you will see that
equation (7) is exactly the same as equation (5), and the only difference between
equation (8) and equation (6) is that we have replaced the w, in equation (6) with w,,, in
equation (8).

So we modify our program as shown in the following:

/* pendme2.c */
/*
Euler-Cromer method
*/
#define CRT SECURE_NO WARNINGS
#include <math.h>
#include <stdio.h>

void main()

{
FILE *fptr;
FILE *fptr2;
int i,npoints;

double length,g,dt,omega[250],theta[250],time[250];
/* Two output files - one measuring omega, one measuring theta */

fptr=fopen("pendout2.dat","w");
fptr2=fopen("pendout2b.dat”,"w");

/* Preset the parameters from the formula */

length=1.0; /* Preset length of pendulum (1) */
g=9.8; /* Preset acceleration of gravity (m/s2) */

158

CHAPTER 9

npoints=250; /* Preset number of points in loop */
dt=0.04; /* Preset time interval (s) */

/* Clear storage arrays to zero */
for(i=0;icnpoints;i++)

{
omega[i]=0.0;
theta[i]=0.0;
time[i]=0.0;
}

/* Preset initial theta and omega values */
theta[0]=0.2;

omega[0]=0.0;

/* Euler-Cromexr method */

I* w,, = w, + (-g / 1)* 6*dt */

/* and */

/* 6., = 6, + w, Fdt*/

for(i=0;i<npoints;i++)

PENDULUM SIMULATION

{
omega[i+1]=omega[i]-(g/length)*theta[i]*dt;
theta[i+1]=theta[i]+omega[i+1]*dt;
time[i+1]=time[i]+dt;
fprintf(fptr, "%1F\t%1f\n",time[i+1],theta[i+1]);
fprintf(fptr2, "%1f\t%1f\n",time[i+1],0mega[i+1]);

}

fclose(fptr);

fclose(fptr2);

at point A in our diagram, then this is correct.

The output from this program is shown in the following, Figure 9-6 and Figure 9-7.
We still have the correct sine and cosine curves for the angular velocity and angular
displacement as we had before, but now we get a constant amplitude. If we are ignoring
air resistance to the pendulum and friction at the point of contact of the pendulum cord

159

CHAPTER9 PENDULUM SIMULATION

pendme2
theta

time

Figure 9-6. Euler-Cromer output for theta

pendme2.c

omega

[

time

Figure 9-7. Euler-Cromer output for omega

160

CHAPTER9 PENDULUM SIMULATION

EXERCISES 9

1.

Amend your Euler-Cromer program to change the length of the cord to be
2m instead of 1m. Change the names of the two output files from the original
program. Run your program and then print the output file for omega values.
One the same graph, print out the omega value graph from the original Euler-
Cromer program.

Compare the two graphs. What has been the effect of doubling the length
of the cord?

161

CHAPTER 10

Center of Mass

10.1 Center of Mass Theory

The Center of Mass of a body is the place where it can be said that all of the mass of the
body seems to act. We can do a simple experiment to demonstrate this with a normal
dinner plate. The following, Figure 10-1, is a diagram of our dinner plate. The two lines
on the plate meet at its center. If we pick up the plate and carefully place our forefinger
at the center point and then slowly move the plate with our free hand until the plate is
horizontal, then we should be able to balance the plate on our finger and let go of the
plate with our free hand.

The center of the plate is the center of mass.

Figure 10-1. Circular plate

The following diagram is an oval-shaped dinner plate. It also has a horizontal line
and a vertical line meeting at the center. We should be able to repeat our experiment
with the oval plate and it should balance on one finger.

163
© Philip Joyce 2020
P. Joyce, Practical Numerical C Programming, https://doi.org/10.1007/978-1-4842-6128-6_10

https://doi.org/10.1007/978-1-4842-6128-6_10#DOI

CHAPTER 10 CENTER OF MASS

Figure 10-2. Oval plate

We could do the same experiment with a meter rule, shown in Figure 10-3, as long
as we can find its center of mass. This shouldn’t be too difficult, but in physics and
engineering sometimes we need to find the center of mass of nonsymmetrical objects.

Figure 10-3. Meter rule

10.2 Circular Plate

In our first example, we want to find the center of mass of a circular plate as earlier.
We will just assume that the plate is a circle, and for ease of demonstration, we will do
this in 2D.

We will have the circle centered on the origin and with a radius of 2 units. We will
write our output to file cofmc.dat.

164

CHAPTER 10 CENTER OF MASS

2 c of m of plate

M 5 4 3 *\ B’ 1 3 H 5 6
1 3

Figure 10-4. Method of Center of Mass calculation

We use the random number generator to give us x coordinates between -2 and +2
and y coordinates between -2 and +2. All of our points will be inside the red box as
shown earlier. We then use the standard formula for a circle centered on the origin of
radius 2 units.

x*+y* =22

We can use this formula to demonstrate manually how the Monte Carlo technique
works. Looking at the diagram earlier, we see that our circle is contained within a square.
As our random numbers are between -2 and +2 for both x and y, then they all lie within
the square. When we generate the numbers, we can test whether they lie inside the
circle. We do this by substituting the x and y generated numbers into the preceding
formula. If their sum is less than 2%, then that point lies inside the circle. We can
demonstrate this in the following table.

165

CHAPTER 10 CENTER OF MASS

X y x2 + y? Isx2+y? <4
0 0 0+0=0 yes
1 1 1+1=2 yes
1.9 19 3.61+3.61=7.22 no
1.8 1.8 3.24+3.24 = 6.48 no
1.7 1.7 2.89+2.89=5.78 no
1.6 1.6 2.56+2.56 = 5.12 no
1.5 1.5 2.25+2.25=4.5 no
1.4 14 1.96+1.96 = 3.92 yes
1 1.7 1+2.89 = 3.89 yes

Each (x, y) pair represents our generated values and also represents a point on the
graph in Figure 10-4. In the third column, we calculate x> + y?, and in the fourth column,
we say whether the calculated value is less than 22 If it is, then it lies within the circle.

In our program, we use the formula x* + y* = 4, but we rearrange it to make y the
subject of the formula.

So we get

y= i\/(4—x2)

When we generate our random numbers for x and y between -2 and +2, we accept
the values where

y>-v/(4-x2) and y<++/(4-x2)

So these points will lie inside our circle. We add these x and y values into the fields
xcofm and ycofm which accumulate positive and negative values. We divide this by the
total number of points to give our coordinates of center of mass.

We can also accumulate the x and y values into xout and yout and write them to
our file to be printed using the Graph package. We can also add our printed value of the
center of mass to this graph using “Insert Point Series”.

166

CHAPTER 10
The code for this is shown in the following:

/* cofmc.c
Center of Mass Calculation.
Calculates c of m for
circle center = (0,0) radius = 2
*/
#define CRT_SECURE_NO WARNINGS
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <time.h>
double randfunc(); /* Function to return random numbexr */
void main()

{

int I,outcount;

float area,total,count;

FILE *fptr;

time t t;

/* Local arrays */

double x, y,xout[3500],yout[3500],xcofm,ycofm;

fptr=fopen("cofmc.dat","w");

/* Intializes random number generator */
srand((unsigned) time(&t));

/* clears arrays to zero */
for(I = 0; I<3500;I++)

{
xout[I] = 0.0;
yout[I] = 0.0;
}
/* Set x and y cofm accumulators to zero */
xcofm=0.0;
ycofm=0.0;

CENTER OF MASS

167

CHAPTER 10 CENTER OF MASS

total = 0.0;
count = 0.0;
outcount = 0;
for(I = 1;I<= 3500;I++)
{

/* Call random number function */

/* Get x values between -2 and +2 */
/* Get y values between -2 and +2 */
randfunc()*4.0-2.0;
randfunc()*4.0-2.0;

X
y

/* If the generated x and y values show y is greater than */
/* - J(4-x*2) and less than + V(4-x"2), then add 1 to count */
/* and update the x and y cofm values */

if(y>-sqrt(4-pow(x,2)) 8& y<sqrt(4-pow(x,2)))
{

xcofm=xcofm+x;
ycofm=ycofm+y;

total = total+1;
outcount = outcount +1;

xout[outcount] = x;
yout[outcount] = y;
}
count = count+1;
}

area=(total/count)*16; /* Area is part of the square which is 4x4 or
16 sq units */
printf("total is %f count is %f\n",total,count);

xcofm=xcofm/total;
ycofm=ycofm/total;

printf("area is %1f\n",area);
printf("cofm is %1f,%1f",xcofm,ycofm);

168

CHAPTER 10 CENTER OF MASS
/* Plot the data */

if(outcount >= 2700)
outcount = 2700;

for(I = 1; I<=outcount-1;I++)
fprintf(fptr, "%1f %1f\n",xout[I],yout[I]);

fclose(fptr);
}
double randfunc()
{
/* Get a random number 0 to 1 */
double ans;
ans=rand()%1000;
ans=ans/1000;
return ans;
}

The graph completed is shown in Figure 10-5. The yellow dot shows the center of
mass at the center of the plate as we expected. The red dots are all of our points from our
random number test.

s«*':
sy ?

cofme
center of mass is yellow dot

Figure 10-5. Center of Mass of the plate
169

CHAPTER 10 CENTER OF MASS

10.3 Other Shapes

In our next example, we want to find the center of mass of a 2D shape. The shape is the
curve with the formula y=x* up to the point where y = 4. This is shown in Figure 10-6.

Figure 10-6. Method for Center of Mass

The code for this is similar to that for the circle. The main difference is the formula
we need to test to decide if we want to accept the randomly generated point. In this case

the test is y > pow(x,2). We generate our random points for x between -2 and +2 and for
y between 0 and 4.

/* cofmsa.c
Center of Mass Calculation.
Calculates c of m for 2D shape y = x2
below the line y=4

*/

#define CRT_SECURE_NO WARNINGS

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

170

CHAPTER 10

#include <time.h>
double randfunc(); /* Function to return random number */

void main()

{

int I,outcount;

float area,total,count;

FILE *fptr;

time t t;

/* Local arrays */

double x, y,xout[3500],yout[3500],xcofm,ycofm;

fptr=fopen("cofmsa.dat","w");

/* Intializes random number generator */
srand((unsigned) time(&t));

/* clears arrays to zero */
for(I = 1; I<=3500;I++)

xout[I]
yout[I]

0.0;
0.0;

}

/* Set x and y cofm accumulators to zero */
xcofm=0.0;
ycofm=0.0;

total
count

0.0;
0.0;
outcount = 0;

for(I = 0;I< 3500;I++)
{

/* Call random number function */

CENTER OF MASS

171

CHAPTER 10 CENTER OF MASS

/* Get x values between -2 and +2 */
/* Get y values between 0 and +4 */
x = randfunc()*4.0-2.0;

y = randfunc()*4.0;

/* If the generated x and y values are above */
/* the curve y=x2, then add 1 to count */
/* and update the x and y cofm values */

if(y>pow(x,2))
{

xcofm=xcofm+x;
ycofm=ycofm+y;

total = total+1;
outcount = outcount +1;
xout[outcount] = x;
yout[outcount] = y;

}

count = count+1;

}

area=(total/count)*16; /* Area is part of the square which is 4x4 or
16 sq units */
printf("total is %f count is %f\n",total,count);

xcofm=xcofm/total;
ycofm=ycofm/total;

printf("area is %1f\n",area);
printf("cofm is %1f,%1f",xcofm,ycofm);

/* Plot the data */

if(outcount >= 2700)
outcount = 2700;

172

CHAPTER 10 CENTER OF MASS

for(I = 1; I<=outcount-1;I++)
fprintf(fptr, "%1f %1f\n",xout[I],yout[I]);

fclose(fptr);
}
double randfunc()
{
/* Get a random number 0 to 1 */
double ans;
ans=rand()%1000;
ans=ans/1000;
return ans;
}

The results are shown in Figure 10-7. The yellow dot shows the center of mass. Both
of our programs also output the area of the object being investigated. This is done by
counting the number of red dots and taking this as a fraction of the area of the rectangle

surrounding it.

Snnsil
S«G:

yellow dot is center of mass cofinSa

-H

Figure 10-7. Center of Mass of shape

173

CHAPTER 10 CENTER OF MASS

Our final example gives an interesting answer. We want to find the center of mass
between the curves y=x*> and y=x* + 1 and the line y=4. The following diagram,
in Figure 10-8, shows this in a graph.

Figure 10-8. Center of Mass method

Our main code for the inspection of accepting the generated points is
y>pou(x,2) && y<(pow(x,2)+1)

so our y values will be above the curve y=x*> and below the curve y=x* + 1.
The code is shown as follows:

/* cofmsb.c */
/*
Center of Mass Calculation.
Calculates c of m for 2D shape between y = x2, y = x2 + 1, and y = 4
*/
#define CRT_SECURE_NO_WARNINGS
#include <stdlib.h>
#include <stdio.h>
#include <math.h>

174

CHAPTER 10

#include <time.h>
double randfunc();/* Function to return random number */

void main()

{

int I, outcount;

float area,total,count;

FILE *fptr;

time t t;

/* Local arrays */

double x, y,xout[3500],yout[3500],xcofm,ycofm;

fptr=fopen("cofmsb.dat","w");

/* Intializes random number generator */
srand((unsigned) time(&t));

/* clears arrays to zero */
for(I = 1; I<=3500;I++)

xout[I]
yout[I]

0.0;
0.0;

}

/* Set x and y cofm accumulators to zero */
xcofm=0.0;
ycofm=0.0;

total
count

0.0;
0.0;
outcount = 0;

for(I = 0;I< 3500;I++)
{

/* Call random numbexr function */

/* Get x values between -2 and +2 */
/* Get y values between 0 and +4 */
x = randfunc()*4.0-2.0;

y = randfunc()*4.0;

CENTER OF MASS

175

CHAPTER 10 CENTER OF MASS

/* If the generated x and y values are above */
/* the curve y=x2 and below y=x2+ 1, then add 1 to count */
/* and update the x and y cofm values */

if(y>pow(x,2) 8& y<(pow(x,2)+1))
{

xcofm=xcofm+x;
ycofm=ycofm+y;

total = total+i;
outcount = outcount +1;

xout[outcount] = x;
yout[outcount] = y;
}
count = count+1;
}

area=(total/count)*16; /* Area is part of the square which is 4x4 or
16 sq units */
printf("total is %f count is %f\n",total,count);

xcofm=xcofm/total;
ycofm=ycofm/total;

printf("area is %1f\n",area);
printf("cofm is %1f,%1f",xcofm,ycofm);

/* Plot the data */
if(outcount >= 2700)
outcount = 2700;

for(I = 1; I<=outcount-1;I++)
fprintf(fptr, "%1f %1f\n",xout[I],yout[I]);
fclose(fptr);

176

CHAPTER 10 CENTER OF MASS

double randfunc()
{

/* Get a random numbexr 0 to 1 */
double ans;

ans=rand()%1000;
ans=ans/1000;

return ans;

The following, Figure 10-9, is the graph showing all of the accepted random points
and the position of the center of mass. The blue dot is the position of the center of mass.
For this boomerang-shaped curve, the center of mass is outside the object!

Seri 2
cofinSb.c L

i blue dotis cofin

Figure 10-9. Center of Mass of boomerang

177

CHAPTER 10 CENTER OF MASS

EXERCISES

1. Amend any of the earlier programs to find the center of mass of the oval-
shaped plate shown at the start of this chapter.

The general equation of an ellipse centered on the origin is
(x*/a*)+(y*/b*)=1

If you take the oval plate to be an ellipse and to be centered on the origin with a=2
and b=1, then its equation is

(x%/22) +y*/12=1
We can solve this for y to get
y= i\/(l -x%/4)

2. Amend any of the preceding programs to find the center of mass of the two
concentric circles which are centered on the origin. Their formulas are

x*+y*=4 and x*+y*=1
The solutions of these equations for y are
y==(4-x%)"2
and

y= + (1 _x2)1/2

178

CHAPTER 11

Brownian Motion

11.1 Brownian Motion Theory

If you could look at one molecule of a gas in the middle of a container of the gas, then the
one molecule will move in random directions if the temperature, pressure, and volume
are constant throughout the gas.

One way to picture this from a real-life situation is if you imagine the smoke coming
from a cigarette. Once the smoke gets about 6 inches above the cigarette (before this
the smoke will be warm and therefore rising), then the smoke seems to dart about in
random directions.

In 1827 scientist Robert Brown used a microscope to observe pollen moving in
water. Albert Einstein later showed that the pollen was being moved by individual water
molecules. This was one of the first pieces of scientific evidence for the existence of
molecules.

In our program we will assume that an individual molecule is in constant collision
with molecules of a gas. As a result, our test molecule can move in any direction. We will
restrict this to 2D so that we can plot the resulting graphs. We can use our Monte Carlo
methods again for this modeling.

We can use our random number generator to produce a random angle. As the
molecule can move in any direction, then the angle can be 0 to 360 degrees or 0 to 2
radians. In order to plot our graph of the movements of the molecule, we will use the
angle to produce cosine and sine of the angle. If we simplify the motion of the molecule
by saying that after each collision the molecule moves 1 unit of length, we can simplify
our calculations.

179
© Philip Joyce 2020

P. Joyce, Practical Numerical C Programming, https://doi.org/10.1007/978-1-4842-6128-6_11

https://doi.org/10.1007/978-1-4842-6128-6_11#DOI

CHAPTER 11 BROWNIAN MOTION

The following diagram, Figure 11-1, shows what we will do.

opposite Length of 1

L [—o

adjacent
cos @ = adjacent / hypotenuse
sin @ = opposite / hypotenuse
If the hypotenuse has a length of 1 unit then
cos @ = adjacent
sin @ = opposite

Figure 11-1. Mechanism for finding x and y moves

We see the definitions of cos and sin. If, as we said, the distance after each collision
is 1 unit of length, then the hypotenuse will be 1, so the cos of the angle will be the
“adjacent” of our triangle and the sin of the angle will be the “opposite”. So, from the
diagram, the adjacent is in the x direction and the opposite is in the y direction.

As our angle generated can be between 0 and 360 degrees, then our cos and sin
values can be negative. See the following diagrams, Figure 11-2, for cos and sin.

180

CHAPTER 11 BROWNIAN MOTION

y=sin(x)

1
><\ / x
T T T T T L))
] 3n x5 'l 3 1 'l 5 I T 32

£S5 1710 9=5 191)eIx Na10 1lmS

Figure 11-2. Sin and cos properties from 0 to 2

So a negative cos would be a movement in the negative x direction and a negative sin
would be a movement in the negative y direction.

In our program we write the (x, y) position of the molecule to the file after each
iteration of our Monte Carlo forloop.

As the random number generated by the program will be between 0 and 1, we
multiply this by 2mr to give us a random number between 0 and 2m.

The code is shown as follows:

/* Brownian motion (2D) simulation (Monte Carlo)*/
/* */

#define CRT SECURE_NO WARNINGS

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <time.h>

#define PI 3.141592654

void main()

181

CHAPTER 11 BROWNIAN MOTION

{
FILE *fptr;
time t t;
int i;
int collisions;
double anglerand;
double xvals[5950],yvals[5950];
double cosval,sinval;

/* Create and open our output file */
fptr=fopen("browntest3.dat","w");
srand((unsigned) time(&t)); /* Set the random number seed */

/* Preset the variables used in the calculation */
collisions=1000;

xvals[0]= 0.0;

yvals[0]= 0.0;

for(i=0;1i<1000;i++)

{

anglerand=rand()%1000;
anglerand=anglerand/1000;

/* Get a random angle between 0 and PI radians */
anglerand=2*PI*anglerand;

/* Length of jump is 1 */

/* So the cos and sin of the angle */
/* will be the distance moved in */
/* that direction (+ or -) */

xvals[i+1]=xvals[i]+cos(anglerand);
cosval = cos(anglerand);

182

CHAPTER 11 BROWNIAN MOTION

yvals[i+1]=yvals[i]+sin(anglerand);
sinval = sin(anglerand);

/* Print the current x and y values to the file */
fprintf(fptr, "%1f %1f\n", xvals[i], yvals[i]);

/* This can be used in the program to print */
/* the current cos and sin values if required */
/*printf("cosval = %1f sinval = %1f\n",cosval,sinval);*/

The results are shown in Figure 11-3. The three different colors represent three
different runs of the program. You can see the three different general directions that our
test molecule took for each run. If you run the program three times yourself, your three
graphs will be different to these but will show the same general form.

browntest3
204 green. blue and red show three
different runs of the program

404+

Figure 11-3. Three examples of Brownian motion

183

CHAPTER 11 BROWNIAN MOTION

EXERCISES

1. Write a program to do the same as the program in this chapter except that
instead of choosing a random angle, you choose random values between 0 and
1 for x and y movements. You will also need to choose random + or — moves.

184

CHAPTER 12

Diffusion Lattice Model

12.1 Vacancy Lattice Diffusion

This is a simplified model of the structure of atoms in solids which allows us to
demonstrate their movement. There are different types of diffusion. The type we will be
looking at is vacancy diffusion.

Different solids have different molecular structure, and some of the more common
structures have a name, for example, “primitive cubic,” “face-centered cubic,” and
“body-centered cubic.

Primitive Cubic

2D version

Figure 12-1. Primitive cube and 2D equivalent

185
© Philip Joyce 2020

P. Joyce, Practical Numerical C Programming, https://doi.org/10.1007/978-1-4842-6128-6_12

https://doi.org/10.1007/978-1-4842-6128-6_12#DOI

CHAPTER 12 DIFFUSION LATTICE MODEL

The Primitive cubic is shown as the upper diagram in Figure 12-1. This is a cube
with an atom at each corner of the cube. The face-centered cubic structure is like the
Primitive cubic but with an additional atom in the center of each face of the cube. The
body-centered cubic structure is like the Primitive cubic but with one extra atom in the
center of the cube.

We will be concentrating on the Primitive cubic structure. The 2D case of the
Primitive cube is just a square with an atom at each corner. For a solid with a Primitive
cubic structure, the atoms at the corners are shared with neighboring Primitive
structures. This can also translate to the 2D case as shown in Figure 12-2.

‘V“

Figure 12-2. 2D lattice

The four atoms making up the Primitive “square” structure in the bottom-left corner
of the diagram correspond to the 2D Primitive diagram previously. The top two atoms in
this case are the bottom two atoms of the preceding structure. Similarly, the two atoms
on the right of the structure are shared as the left-hand two atoms of this structure.

186

CHAPTER 12 DIFFUSION LATTICE MODEL

There are different types of diffusion in atoms. In our example, we will assume that
other atoms can move within the structure shown earlier. These atoms can move in
the spaces between the atoms of the structure. This means that they can only move up,
down, right, or left.

The following diagram, Figure 12-3, shows the lattice as the X characters and the
possible positions as the red dots. The atom which will move is the gray dot.

In order to manage what happens when the atom gets to the edge of the lattice, we
will assume that it “bounces” back into the lattice.

axe

‘VM

Figure 12-3. 2D lattice with possible moves

In the following program, we assume that the lattice is a 20X20 structure.

We have two random number generator functions. One, int IRND();, is used to
select a random integer between 0 and 19 if we want the start position of the atom to
be in a random place. The other random generator function, int IFOURRND() ;, returns
integers 1, 2, 3, or 4. Here, 1 indicates that we want the atom to move to the right, 2
indicates a move up, 3 indicates a move to the left, and 4 is a move down, so that the
direction the atom moves is random each time.

In this program we have commented out the calls to the random function which
sets the initial position of the atom as we want to set this position ourselves. This can be
changed later. We have set the number of Monte Carlo Cycles, MCCMAX, to 50.

187

CHAPTER 12 DIFFUSION LATTICE MODEL

/* PROGRAM vaca.c
VACANCY DIFFUSION MODEL. (2D VERSION)
*/
#idefine CRT_SECURE_NO_WARNINGS
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <time.h>

int IRND();/*Function to return random number from 0 to 19 */
int IFOURRND();/*Function to return random number 1, 2, 3, or 4 */

void main()

{

int N1,N2;

int NaN,N2N,MCC;

int LATTICE2[20][20];
int MCCMAX;

int Q,P,INC;

FILE *fptr;

time t t;

/* Intializes random number generator */
srand((unsigned) time(&t));

fptr=fopen("vacxa.dat","w");
MCCMAX = 50; /* Set number of Monte Carlo Cycles */

for(P=0;P<20;P++)

{

for(0=0;0<20;0++)

{
/* FILL THE ARRAY */

LATTICE2[P][0] = o;

188

CHAPTER 12 DIFFUSION LATTICE MODEL

}

/* SELECT ANY SITE AS THE INITIAL VACANCY SITE*/
/* Can be set randomly using the IRND function */
/* or can be set to specific values */

/*NIN = IRND(); Start x and y values if you want

N2N = IRND(); random positions (commented out in this case)*/
NiN=1; /* Start x value */

N2N=10; /* Start y value */

LATTICE2[NIN][N2N] = 1; /* Set vacancy site in lattice */

/* Monte Carlo Cycle loop */
/* Loops round MCCMAX number of times */

for(MCC=1;MCC<=MCCMAX; MCC++)
{

N1=N1iN; /* Set N1 (current lattice x value) */
N2=N2N; /* Set N2 (current lattice y value) */

if(LATTICE2[N1][N2] == 1)

{
/* VACANCY SITE (= 1)*/

/* Call function to randomly select 1, 2, 3, or 4 */

INC = IFOURRND();

/* 1 indicates a move to the right */
/* 2 indicates a move up */

/* 3 indicates a move to the left */
/* 4 indicates a move down */

/* Instead of going from 19 to 1, etc., you bounce off
the boundary. Go from 19 to 18, etc. */

189

CHAPTER 12 DIFFUSION LATTICE MODEL

if(INC == 1) /* right */
{
if(N1 == 19)
NIN = 18;
else
NIN = N1+1;

}else if(INC == 2) /* Up */
{
if(N2 == 19)
N2N = 18;
else
N2N = N2+1;

}else if(INC == 3) /* Left */

{
if(N1 == 1)
NIN = 2;
else
NIN = N1-1;
}else if(INC == 4) /* Down */
{
if(N2 == 1)
N2N = 2;
else
N2N = N2-1;
}
if(LATTICE2[NIN][N2N] == 0)
{
LATTICE2[NIN][N2N] = 1; /* Set as a used site */
}
else
printf("not found\n");
}

190

}

CHAPTER 12

/* Write any used lattice positions to file */
for(P=0;P<20;P++)

{

for(Q=0;0<20;0++)
{

if(LATTICE2[P][0] == 1)
fprintf(fptr,” %d\t%d\n",P,Q);

}
fclose(fptr);

int IRND()

{

/* Generate a random whole numbex from 0 to 19 */
double TOT,DIV,X;
int ANS,I;

TOT=rand()%1000;
TOT=TOT/1000;

/* Returns 0,1,2 ... or 19 */
/* chosen at random */

DIV = 20.0;
X =1.0;
for(I=0;1<20;I++)
if(TOT < X/DIV)
ANS = I;

else
X = X+1.0;

return ANS;

DIFFUSION LATTICE MODEL

191

CHAPTER 12 DIFFUSION LATTICE MODEL

int IFOURRND()

{
/* Generate a random whole number 1, 2, 3, or 4 */
double TOT;
int ANS;

TOT=rand()%1000;
TOT=TOT/1000;

/* Returns 1, 2, 3 or 4 */
/* chosen at random */

if(TOT < 0.25)
ANS = 1;

else if(TOT < 0.5)
ANS = 2;

else if(TOT < 0.75)
ANS = 3;

else
ANS = 4;

return ANS;

After each iteration of the loop, we store the current position of the atom and we save
these into the file vacxa.dat.

The output from the file is shown in Figure 12-4. This is for 50 Monte Carlo Cycles
starting at lattice position (1,10).

192

CHAPTER 12 DIFFUSION LATTICE MODEL

yacxa

Figure 12-4. 2D lattice MCC=50 start point (1,10)

The next graph, Figure 12-5, shows the lattice after 250 Monte Carlo Cycles starting at

lattice position (1,10).

4
o g
14
04 vacxb
e o e o
¢ & & @
e o o o o
e s s o o
154 ® e o o o o 0 o @
- L] L] L] L] - L] L] * @
® e o o e o .
e s o
v o o * o o
’ wt o o o o
e o o o o
*® & & @
e o o o o
e o o o
s+ ° e
x
1 - 1 H H 10 L 1 16 18 0 P 4 2] "
X

54

Figure 12-5. 2D lattice MCC=250 start point (1,10)

193

CHAPTER 12 DIFFUSION LATTICE MODEL

The next graph, Figure 12-6, shows the lattice after 100 Monte Carlo Cycles starting at
lattice position (19,1).

vacxc

(X X N]

L NN

seeee @

[E X NN N NKE]

*e 0 L X]
L NN LN]

‘A A E XN N NN EN]

i
e
-
e
o]
=S
=1
&
=
=
&

Figure 12-6. 2D lattice MCC=100 start point (19,1)

The next graph, Figure 12-7, shows the lattice after 50 Monte Carlo Cycles starting at
lattice position (10,10).

o1 &

vacxd

see e
L
L] L] LR]
see we

s ae

Figure 12-7. 2D lattice MCC=50 start point (10,10)

194

DIFFUSION LATTICE MODEL

CHAPTER 12

The next graph, Figure 12-8, shows the lattice after 500 Monte Carlo Cycles starting at

lattice position (10,10).

[=s']

vacxe

LR X]

LA LR

(LR E XN R]

(EEEEE N RN}

LA R LR LA RN}

LE R R R K N

sessssses

*ee o0

LR LE LN]

L] (LN]

*e L]
.o LA

LE R R R} LR R}

LE R E LN I NN]

(A E RN R ELN]

S0 e o4 o

oy

Figure 12-8. 2D lattice MCC=500 start point (10,10)

The next graph, Figure 12-9, shows the lattice after 10000 Monte Carlo Cycles starting

at lattice position (10,10).

vacxg

88 SSBGOBSBEBBOIBRES

(X TR R NN N RS NN R RN L

(XX E R EE RS NS RN RN

LA AR R R R L E R ERE SRR ERE:

(EETEE R R R NEES RN L NN

(X E R EE NN N RS NN R RN E:

(A AR E R EEE R NS RN LR N

LA AL E R R L E R ERE SR NERERE:

(X EE N R R NEES RN LN N

(A AR E R EE NN ERE RN NER RN E:

(AR A ERE L E RN R LR LN R

(X E R EE R YRR RS NN R NN E:

(A A E R EE RS N RS RN RN

(A AR E R EE NN ERE NN R RN E:

(AR A ERELE R R LR R LN R

(XX E R EE R YRR RS NN R NN .

(A A E R NE R R N RS RN RN

1]

16

(A SRR EZE R E R R AR LR R Rl

(EETEEEE R R NEES RN LR N

1wt

a =

a4

Figure 12-9. 2D lattice MCC=10000 start point (10,10)

195

CHAPTER 12 DIFFUSION LATTICE MODEL

EXERCISES

1.

Amend the vaca.c program so that the lattice is divided into two sections at the
line x=9. The division is an obstruction blocking movement of the atoms from
right to left or left to right. In the middle of the obstruction is a hole, say at x=9,
y=9. Atoms can pass through this hole.

Run the program and print the graph of the lattice that the program produces. Set
MCCMAX to 1000.

196

CHAPTER 13

Chain Reaction

13.1 Chain Reaction Theory

If you are familiar with the periodic table of elements, you will know that the elements
in the table are listed in the order of the number of protons in their nucleus. So the
first element is hydrogen whose nucleus contains 1 proton and the last element of the
naturally occurring elements is uranium which contains 92 protons.

As well as containing protons, the nucleus also contains neutrons. However, in the
case of neutrons, the nucleus can contain a varying number. This is what gives rise to the
existence of “isotopes.” The heavier elements contain more neutrons than protons. In
the case of uranium, one of the isotopes is uranium-235. The notation of this is ?°U. The
number 235 just refers to the sum of the number of protons and the number of neutrons
in the nucleus. As the number of protons for uranium has to be 92, then the number of
neutrons in uranium-235 must be 235 - 92 = 143. The notation for this is ¢,23°U.

These “heavy” nuclei tend to break up into nuclei with fewer protons and neutrons,
and so these “broken” nuclei must be other elements from the periodic table.

92235U N 90231']:‘h + 24I_Ie

The preceding diagram shows the decay of uranium-235 into thorium-231 and
helium. The way of representing the nuclei in this type of diagram is to put the atomic
weight to the top left of the symbol of the element and its atomic number (number of
protons) to the bottom left. We can see from the diagram that the atomic weights of
thorium and helium, when added, make 235, the atomic weight of the original uranium
nucleus. A similar process is used for the atomic numbers.

197
© Philip Joyce 2020

P. Joyce, Practical Numerical C Programming, https://doi.org/10.1007/978-1-4842-6128-6_13

https://doi.org/10.1007/978-1-4842-6128-6_13#DOI

CHAPTER 13 CHAIN REACTION

When these elements break up, as well as forming new elements, they can also
eject neutrons which fly off at high speed. If one of these neutrons hits a nucleus of
uranium-235, it could produce the reaction shown as follows:

92235U + 011,1 N 92236U N 54140)(6 + 389381- + 301n

where ('n just represents a neutron
02280 is uranium-236 as it has absorbed the incoming neutron into its nucleus
5414%Xe is xenon-140
3g0ST is strontium-93
3,'n is 3 neutrons
This is pictured in Figure 13-1.

54“0)(6
oln

Ly . 86U , 3s93Sr

Figure 13-1. Schematic diagram of decay of uranium-236

So in this case, the uranium-236 decays into two different nuclei but also emits three
neutrons. If these three neutrons go on to collide with three more uranium-236 nuclei,
then each of these will give off three neutrons making nine neutrons in all. If these then
go on to collide with nine more uranium-236 nuclei, we will get 3 x 9 = 27 neutrons
emitted. So you can see how this would create a “cascade” of neutrons. This is the basis
of a “chain reaction.” The breakup of nuclei is called “fission.”

When neutrons are emitted from these collisions, they move away at high speed. If the
solid containing the uranium is small, then the neutrons will escape from it before they can
meet another uranium nucleus, so the chain reaction will not take place. So the size of the
solid is crucial. This size is called the “critical mass.” What is also important is the shape of
the solid. The size and shape of our solid that we need for a chain reaction to take place is
what we will investigate in this chapter.

The following diagram, Figure 13-2, shows our block of material. It will have a square
cross-section of length a and a side of length b.

198

CHAPTER 13 CHAIN REACTION

We will start with a nucleus shown by the blue dot at position (xq, Yo, Z)-

We will assume that two neutrons are emitted as shown. One moves to position
(x4, Y1, z;) and the other moves to position (X,, Vs, Z,).

We can use the Monte Carlo method of generating random numbers for the initial
and final positions of the neutrons. If the final positions are outside of the block, then
there will be no chain reaction from these neutrons. We now generate another initial
position and see where the resulting neutrons move to. We keep a count of the number
of neutrons which stay within the block. The number of these as a fraction of the number
of original nuclei is called the “survival fraction.”

First Emitted Neutron (xs, y1, Z1)

Nucleus (blue dot) at (xo, Yo, Zo)

Second Emitted Neutron(xa, ya, Z2)

Figure 13-2. Block to test movement of decay neutrons

We can use the formula f = N, / N, where fis the survival fraction, N, is the number
of neutrons that stay within the block, and N is the number of fissions we test.

199

CHAPTER 13 CHAIN REACTION

13.2 Chain Reaction Program

In our first program, we will use blocks with varying values of a and b, and we will test the
significance of the shape of the block. We can then use b/a as an indicator of the shape of
the block and plot this against the survival fraction f. A survival fraction above 1 is what we
are looking for.

The user can enter the number of fissions. This is usually between 100 and 1000.

The program uses spherical coordinates to find the positions of the emitted
neutrons.

The following diagram shows this (Figure 13-3).

z

o

r y
_/

=
&

Figure 13-3. Spherical polar coordinates

We want to convert our spherical polar coordinates into normal Cartesian
coordinates. The following diagram, Figure 13-4, shows how we do this.

The nucleus is at 0 and an emitted neutron ends up at (x;, y,, z).

We can project this point onto the x axis, y axis, and z axis as shown. We have just
created three right-angled triangles. So the distance moved by the neutron in the x
direction is ox;, the distance moved in the y direction is oy,, and the distance moved in
the z direction is o0z;.

200

CHAPTER 13 CHAIN REACTION
21 Z

(%1.¥1,21)

X1 p

X

Figure 13-4. Transformation method to Cartesian

We can see that cos@ =z, / 1, so z; =1 cosé.

Also sin@ = op / 1, s0 op =1 sin#.

And sing =y, / r sinf, so y, =1 sinf sing.

And cose =x; / rsin@, so x; =1 sin@ cose.

So (X}, V1, z,) = (r sin@ cosg, r sin sing, r cosh).

So our new positions for the two neutrons are given by

X; =Xo + I'sind cosg y, =y, + I sinf sing z, = 7, + r cosO

X, =Xp + I'Sind cos@ y, =y, + I sinb sing z, = 7, + r cosO
with different values of 0, ¢, and r for the two emitted neutrons. In our program, we use
d1 and d2 in the program for the distances traveled by each neutron.

So we generate our Monte Carlo random values of the distance r and the angles
and ¢. We generate random values of cos@ and then use the arccos function to get the
corresponding value of 6.

We adjust the values of b and a after each loop so that we can monitor how the shape
of the block affects the survival fraction.

We can plot our graph for the b/a and frelationship after we run the program.

The code for this is as follows:

/* chainl.c
Chain Reaction Simulation. Cubic Shape
Predefined values of a & b (varied values of a & b) */

201

CHAPTER 13 CHAIN REACTION

#define CRT SECURE_NO_WARNINGS

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <time.h>

double randfunc();/* Function to return random number (0 to 1) */

int checkin(double x, double y, double z, double a, double b); /* Function
to check if the particle dimensions are within the box */

int main()

{

202

FILE *fptr;
FILE *fptr2;

/* Local variables */
int K, P, Numfissions, Ninbox, Q;

/* x0, yo, z0 is the position of the fission nucleus */

/* x1, yi1, zi, phii, di, costhetal are positions of first neutron */
/* x2, y2, z2, phi2, d2, costheta2 are positions of second neutron */
double f, x0, yo, z0, phii, phi2, di, d2, costhetal, costheta2;

double a, b, x1, y1, z1, x2, y2, z2;
double pi;
time t t;

pi = 3.142;

P =0;

/* Select output file for error messages */
fptr = fopen("chaini.err", "w");

/* Initialize random number generator */
srand((unsigned)time(&t));

/* Ask the user for the number of fissions */
printf("Enter number of fissions \n");
scanf("%d", & Numfissions);

/* Create results file */

CHAPTER 13 CHAIN REACTION

fptr2 = fopen("chaini.dat", "w");
if (fptr2 == NULL)

{
fprintf(stderr, "Error writing to %s\n", "chaini.dat");
fclose(stderr);
return(1);
}
/* Start values for dimensions of box */
a=2.0;
b =0.1;
for (Q = 1;0 <= 20;0++)
{
Ninbox = 0;
for (K = 1;K <= Numfissions;K++)

{

/* Find a random position within the box */
/* for the nucleus */

X0 = a * (randfunc(P) - 0.5);

yo = a * (randfunc(P) - 0.5);

z0 = b * (randfunc(P) - 0.5);

/* Find a random angles and distances for the 2 neutrons */
phii = 2 * pi*randfunc(P);

costhetal = 2 * (randfunc(P) - 0.5);

phi2 = 2 * pi*randfunc(P);

costheta2 = 2 * (randfunc(P) - 0.5);

d1 = randfunc(P);

d2 = randfunc(P);

/* Calculate the position of first neutron */
x1 = x0 + d1 * sin(acos(costhetal))*cos(phi1);
yl = y0 + d1 * sin(acos(costheta1l))*sin(phi1);
z1 = z0 + d1 * costhetai;

/* Calculate the position of second neutron */
X2 = X0 + d2 * sin(acos(costheta2))*cos(phi2);

203

CHAPTER 13 CHAIN REACTION

y2 = y0 + d2 * sin(acos(costheta2))*sin(phi2);
z2 = z0 + d2 * costheta2;

/* Find out if first neutron is inside the box */
if (checkin(x1, y1, z1, a, b) == 1)
Ninbox = Ninbox + 1;

/* Find out if second neutron is inside the box */
if (checkin(x2, y2, z2, a, b) == 1)
Ninbox = Ninbox + 1;

}

f = (double) Ninbox / (double) Numfissions;
fprintf(fptr2, "%1f %1f\n", b / a, f);

/* Make a smaller and b larger */

/* We will show that a cube (a=b) */

/* produces the best survival fraction */
a=a- 0.1

b=>b+0.1;

}
fclose(fptr2);

fclose(stderr);

}
double randfunc()

{

/* Find a random number between 0 and 1 */
double TOT;

TOT
TOT

rand() % 1000;
TOT / 1000;

return TOT;

}

int checkin(double x, double y, double z, double a, double b)

204

CHAPTER 13 CHAIN REACTION

{
/* If the coordinates are within the box, return 1 */
/* Othexwise return 0 */
int I
if (x>-a/288 x<a/2
& y»>-a/ 28 y<al/2
8& z>-b / 2 8& z < b / 2)
I=1;
else
I =o0;
return I,;
}

The graph of b/a against f is shown in Figure 13-5. This shows a peak forb/a=1orb=a.
This would mean that the shape that gets closest to f=1 is a cube.

T
¢ chainl
N 1000 fissions
r"'. o o
i — -—— P

N T &t

b/a

Figure 13-5. Dependence of survival fraction on shape

Now we know that the cube is the best shape for our block, we can start with a block
of small size and keep increasing the size. When we get to f = 1, then this is our point

where our block reaches “critical mass.”

205

CHAPTER 13 CHAIN REACTION

This only requires a small change to the preceding program. At the start of the
program, we can preset a and b both to 0.1 and increase their value by 0.1 at the end of
our loop.

We can then plot a against f in our graph. The output from this is shown in Figure 13-6.

Increasing the volume of the block increases our f value, as you would expect.

We have concentrated on rectangular blocks, but perhaps a spherical block would be the
most efficient for creating a critical mass. This is given as an exercise at the end of the chapter.

f chain2
154 750 fissions
for =1 a=1.1 (volume = 1.331)

(X S

03t

354

Figure 13-6. Dependence of survival fraction on size

EXERCISES

1. Amend the program in the chapter to find the survival fraction for a sphere. You
can set an initial and final volume for the sphere and use the formulaV = (4/3)
m 12 to get the corresponding values of r for the sphere.

Try initial and final values for the volume to be

Vinit = 0.0001;
Vfin = 1.0;

206

APPENDIX

Answers to Problems

CHAPTER 1

1. /* chiqil.c */
/* Nested forloops */
#define CRT SECURE_NO WARNINGS
#include <stdio.h>
#include <math.h>
#include <limits.h>
void main()
{
int i,j,k,total; /* Store locations */
total = 0;
/* Loop i goes round 1000 times */
/* Loop j goes round 1000 times */
/* Loop k goes round 1000 times */
for(i=0;i<1000;i++)
{
for(j=0;3<1000;j++)
{
for(k=0;k<1000;k++)

{
total = total+1;

}

/* Total count for 3 nested loops is 1000,000,000 */
printf(" \n");
printf("total is %d ", total);

© Philip Joyce 2020
P. Joyce, Practical Numerical C Programming, https://doi.org/10.1007/978-1-4842-6128-6

207

https://doi.org/10.1007/978-1-4842-6128-6#DOI

APPENDIX ANSWERS TO PROBLEMS

printf("The maximum value of INT = %d\n", INT MAX);
}
2.

/* chig2 */

/* user enters points.*/

#define CRT_SECURE_NO_WARNINGS

#include <stdio.h>

#include <math.h>

main()

{

float total,average;
float points[20] ;
int i,numpoints;
/* Enter the 20 numbers to be averaged */
printf("\nEnter 20 numbers to be averaged");
for(i=0;1i<20;i++)
{
scanf("%f",&points[i]);

numpoints = 20;
total = 0.0;

/* Add up the numbers entered */
for(i=0;i<numpoints;i++)
{

total =total + points[i];
}
/* Calculate the average and print out */
printf("\ntotal is %f ", total);
average = total/(float)numpoints;
printf("\naverage is %f ", average);

}

3.

/* chig3 */

#define CRT SECURE_NO WARNINGS

/* Function which returns an answer */

208

APPENDIX ANSWERS TO PROBLEMS
/* average of a set of numbers and returns it */

#include <stdio.h>
double getmarks(double pupils[]);
int main()
{
double average;
int i;
float number;
/* Array with marks for class is preset in the main part of the program */
double marks[10]/* = { 10.6, 23.7, 67.9, 93.0, 64.2, 33.8 ,57.5 ,
82.2 ,50.7 ,45.7 }*/;
printf("\nEnter 10 numbers to be averaged");
for(i=0;i<10;i++)
{
scanf("%1f",&marks[i]);
}
/* Call function getmarks. The function returns the max marks which is then
stored in pupil */
number=0.0;
average = getmarks(marks);
printf("average is = %f", average);
return 0O;

}
double getmarks(double marks[])

{
int i;
double average,total;
total = 0.0;
/* Go through all the pupils in turn and store the highest mark */
for (1 = 0; i < 10; ++i)
{
total = total + marks[i];
}
average = total / 10;
return average; /* Returns the average value to where the
function was called */

209

APPENDIX ~ ANSWERS TO PROBLEMS

4.
/* chig4 */
/* Create a file of company details */

#define CRT SECURE_NO WARNINGS
#include<stdio.h>
struct company {
char name[13];
int employees;
float yearprofit;
b
int main()
{
int i, numread,nocomp;
FILE *fp;
struct company si;

fp = fopen("company.dat”, "w");
printf("\nEnter number of companies");
scanf("\n%d",&nocomp);

for (i = 0;i < nocomp;i++)

{
printf("\nEnter company name (up to 13 characters)");
scanf("%s",s1.name);
printf("\nEnter number of employees");
scanf("%d",&s1.employees);
printf("\nEnter yearly profit");
scanf("%f",&s1.yearprofit);
fwrite(&s1, sizeof(s1), 1, fp);

}

fclose(fp);

/* Reopen the file */
fopen("company.dat", "r");

/* Read and print out all of the records on the file */

210

APPENDIX ~ ANSWERS TO PROBLEMS

for (i = 0;i < nocomp/*0*/;i++)

{
numread = fread(&s1, sizeof(s1), 1, fp);/* read into
structure s1 */
if (numread == 1)
{
/*printf("Number of items read = %d ", numread);*/
/* Reference elements of structure by si.company etc. */
printf("\ncompany Name : %s", sil.name);
printf("\nemployees : %d", si.employees);
printf("\nyearly profit : %f", si.yearprofit);
}
else {

/* If an error occurred on read, then print out message */
if (feof(fp))

printf("Error reading company.dat : unexpected end of file fp is %p\n", fp);
else if (ferror(fp))

{
perror("Error reading company.dat");
}
}
}
/* Close the file */
fclose(fp);
return;
}
5.
/* chiqs */

/* Reads and displays records from file which exceed the specified profit */
#define CRT_SECURE_NO_WARNINGS
#include<stdio.h>

struct company {

char name[13];

int employees;

float yearprofit;

};

211

APPENDIX ~ ANSWERS TO PROBLEMS

int main()
{
int i, numread,nocomp;
float profittest;
FILE *fp;
struct company si;

printf("\nEnter number of companies on file");
scanf("\n%d",&nocomp);

printf("\nEnter profit to be exceeded");
scanf("%f",8profittest);

/* open the file */

fp = fopen("company.dat", "r");

/* Read and print out all of the relevant records on the file */
for (i = 0;i < nocomp;i++)
{
numread = fread(&s1, sizeof(s1), 1, fp);/* Read into
structure s1 */
if (numread == 1)

{
/*printf("Number of items read = %d ", numread);*/
/* Reference elements of structure by si.company etc. */
if(s1.yearprofit > profittest)
{
printf("\ncompany Name : %s", si.name);
printf("\nemployees : %d", si.employees);
printf("\nyearly profit : %f", si.yearprofit);
}
}
else {

/* If an error occurred on read, then print out message */
if (feof(fp))

printf("Error reading company.dat : unexpected end of
file fp is %p\n", fp);

212

APPENDIX ~ ANSWERS TO PROBLEMS

else if (ferror(fp))

{
perror("Error reading company.dat");
}
}
}
/* Close the file */
fclose(fp);
return;
}
6.
/* chiq6 */

/* Reads and displays records from file which exceed the specified number of
employees */
#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
struct company {
char name[13];
int employees;
float yearprofit;
};
int main()
{
int i, numread,nocomp;
int emptest;
FILE *fp;
struct company si;

printf("\nEnter number of companies on file");
scanf("\n%d" ,&nocomp);

printf("\nEnter number of employees to be exceeded");
scanf("%d",&emptest);

/* Open the file */

fp = fopen("company.dat", "r");

/* Read and print out all of the relevant records on the file */

213

APPENDIX ANSWERS TO PROBLEMS

for (i = 0;i < nocomp;i++)

{
numread = fread(&s1, sizeof(s1), 1, fp);/* read into
structure s1 */
if (numread == 1)
{
/*printf("Number of items read = %d ", numread);*/
/* Reference elements of structure by si.company etc. */
if(s1.employees > emptest)
{
printf("\ncompany Name : %s", si.name);
printf("\nemployees : %d", sil.employees);
printf("\nyearly profit : %f", si.yearprofit);
}
}
else {
/* If an error occurred on read, then print out message */
if (feof(fp))
printf("Error reading company.dat : unexpected end of
file fp is %p\n", fp);
else if (ferror(fp))
{
perror("Error reading company.dat");
}
}
}
/* Close the file */
fclose(fp);
return;
}
7.

/* chig7.c */
/* Enter a switch value for specific function */
#define _CRT_SECURE_NO_WARNINGS

214

APPENDIX ANSWERS TO PROBLEMS
#include <stdio.h>

#include <math.h>
#define PI 3.14159265

int main()
{
double angle, radianno, answer;
int func;
double arccos, arcsin, arctan;
double expno, natlog, 1b1o0;
double pownum, power, sqroot, fabsno;

/* Prompt the user to enter the number which corresponds */
/* to the function they want to find */

printf("\nEnter number of which function you want");
printf("\ncos = 1, sin = 2, tan = 3");
printf("\narccos = 4, arcsin = 5, arctan = 6");
printf("\nexp = 7, log = 8, log10 = 9");
printf("\npow = 10, sqrt = 11, fabs = 12");

printf("\n");
scanf("%d",&func); /* Read in the number the user enters */

/* Switch on that number */
switch(func)
{

case 1:

/* The cosine function */

printf("cosine function:\n ");

printf("Please enter angle in degrees:\n ");
scanf("%1f", &angle);

printf("You entered %1f\n", angle);

radianno = angle * (2 * PI / 360);

answer = cos(radianno);

printf("cos of %1f is %1f\n", angle, answer);
break;

215

APPENDIX ~ ANSWERS TO PROBLEMS

case 2:
/* The sine function */
printf("sine function:\n ");
printf("Please enter angle in degrees:\n ");
scanf("%1f", &angle);
printf("You entered %1f\n", angle);
radianno = angle * (2 * PI / 360);
answer = sin(radianno);
printf("sin of %1f is %1f\n", angle, answer);
break;

case 3:
/* The tangent function */
printf("tangent function:\n ");
printf("Please enter angle in degrees:\n ");
scanf("%1f", &angle);
printf("You entered %1f\n", angle);
radianno = angle * (2 * PI / 360);
answer = tan(radianno);
printf("tan of %1f is %1f\n", angle, answer);
break;

case 4:
/* The arccos function */
printf("arccos function:\n ");
printf("Please enter arccos:\n ");
scanf("%1f", &arccos);
printf("You entered %1f\n", arccos);
radianno = acos(arccos);
answer = radianno * (360 / (2 * PI));
printf("arccos of %1f in degrees is %1f\n", arccos, answer);
break;

case 5:
/* The arcsin function */
printf("arcsin function:\n ");
printf("Please enter arcsin:\n ");
scanf("%1f", &arcsin);

printf("You entered %1f\n", arcsin);

216

APPENDIX ~ ANSWERS TO PROBLEMS

radianno = asin(arcsin);
answer = radianno * (360 / (2 * PI));
printf("arcsin of %1f in degrees is %1f\n", arcsin, answer);
break;
case 6:
/* The arctan function */
printf("arctan function:\n ");
printf("Please enter arctan:\n ");
scanf("%1f", &arctan);
printf("You entered %1f\n", arctan);
radianno = atan(arctan);
answer = radianno * (360 / (2 * PI));
printf("arctan of %1f in degrees is %1f\n", arctan, answer);
break;

/* Showing use of exp, log, and logl0 functions */

case 7:
/* find exponent of entered number */
printf("exponential function:\n ");
printf("Please enter number:\n ");
scanf("%1f", &expno);
printf("You entered %1f\n", expno);

answer = exp(expno);
printf("exponent of %1f is %1f\n", expno, answer);
break;

case 8:
/* Find natural logarithm of entered number */
printf("natural logarithm function:\n ");
printf("Please enter number:\n ");
scanf("%1f", &natlog);
printf("You entered %1f\n", natlog);
answer = log(natlog);
printf("natural logarithm of %1f is %1f\n", natlog, answer);
break;

217

APPENDIX ~ ANSWERS TO PROBLEMS

case 9:
/* Find log to base 10 of entered number */
printf("log to base 10 function:\n ");
printf("Please enter number:\n ");
scanf("%1f", &lb10);
printf("You entered %1f\n", 1b10);
answer = log10(1b10);

printf("log to base 10 of %1f is %1f\n", 1b10, answer);
break;

case 10:
/* Showing use of pow, sqrt, and fabs functions */
/* Find x raised to power y number */
printf("power:\n ");
printf("Please enter number:\n ");
scanf("%1f", &pownum);
printf("You entered %1f\n", pownum);
printf("Please enter power:\n ");
scanf("%1f", &power);
printf("You entered %1f\n", power);

answer = pow(pownum, power);
printf("%1f raised to power %1f is %1f\n", pownum, power, answer);
break;

case 11:
/* Find square root of number */

printf("square root:\n ");
printf("Please enter number:\n ");
scanf("%1f", &sqroot);

printf("You entered %1f\n", sqroot);

answer = sqrt(sqroot);
printf("The square root of %1f is %1f\n", sqroot, answer);
break;

218

case

APPENDIX ~ ANSWERS TO PROBLEMS

12:

/* Find absolute value of number */
printf("absolute value:\n ");
printf("Please enter number:\n ");
scanf("%1f", &fabsno);

printf("You entered %1f\n", fabsno);

answer = fabs(fabsno);
printf("The absolute value of %1f is %1f\n", fabsno, answer);
break;

default:

printf("\nError incorrect option entered");

}

return O;
}

CHAPTER 2

1.
/* regression */
/* User enters points.*/
/* Regression of x on y calculated */

#define CRT SECURE_NO WARNINGS
#include <stdio.h>
#include <math.h>

void main()

{

FILE *fp;

double xpoints[12],ypoints[12];
double sigmax,sigmay,sigmaxy,sigmaysquared,xbar,ybar;
double fltcnt,sxy,syy,c,d;

int i,points,invno;

/* Clear x and y storage arrays to zero */

219

APPENDIX ANSWERS TO PROBLEMS

for(i=0;i<12;i++)
{
xpoints[i]
ypoints[i]

0.0;
0.0;

}

fp=fopen("regxony.dat","w");

/* User asked for number of points on scatter graph */
printf("enter number of points (max 12) \n");
scanf("%d", &points);

if(points>12)

{

printf("error - max of 12 points\n");

else

sigmax=0.0;
sigmay=0.0;
sigmaxy=0.0;

sigmaysquared=0.0;

/* User enters points */
for(i=0;i<points;i++)

{
printf("enter point (x and y separated by space) \n");
scanf("%1f %1f", &xpoints[i], &ypoints[i]);
sigmax=sigmax+xpoints[i];
sigmay=sigmay+ypoints[i];
sigmaxy=sigmaxy+xpoints[i]*ypoints[i];
sigmaysquared=sigmaysquared+pow(ypoints[i],2);

}

printf("points are \n");
for(i=0;i<points;i++)

{
printf(" \n");
printf("%1f %1f", xpoints[i], ypoints[i]);
fprintf(fp, "%1f\t%1lf\n",xpoints[i], ypoints[i]);
}

220

APPENDIX ~ ANSWERS TO PROBLEMS

printf(" \n");
fltcnt=(double)points; /* Set fltcnt to value of points (as double) */

/* Regression variables calculated */
xbar=sigmax/fltcnt;
ybar=sigmay/fltcnt;
sxy=(1/fltcnt)*sigmaxy-xbar*ybar;

syy=(1/fltcnt)*sigmaysquared-ybar*ybar;

d=sxy/syy;
c=xbar-d*ybar;

/* Regression line */
printf("Equation of regression line x ony is\n ");
printf(" x=%1f + %lfy", c,d);

}
fclose(fp);
return;

File Edt Funcbon Zoom Calc Help

D@ |+ 41 oA Jadm PLLH
#t Aaea Tr

¥ @ Senes 1

5 w6 THE-0. 358y, 12 and e 5
i vaiue 1$1000)

¥ {1 age fean)

< equation of regression bne x = €.738 - .53 154
44 mpressin xony

124 regression x on y
value (51000) "

equation of regression line
. x=6.738 - 0.358y

age (years)

=113 ye1542

221

APPENDIX ~ ANSWERS TO PROBLEMS

File Edt Functbon Zoom Calc P

D@ |+ 41 A Jadm PRLOO

W fen 1
v @ Sees 104
B foe DA 52741 5357
4 cost (51000
v 0 unts
W 4R ire of mgresson iy = 345217 « 1637 180+ /
1wt - /
1201
cost (S1000)
line of regression is
sl y=34.5217 + 1.6357x
(]
sl
wt
24
S0 a0 3 2 10 n] [50 0] 80 %0 e e 1 w0 M0 1% 10
2 units

x=319 ye 2037

50 units would be between 110 and 120 from the graph, or if you substitute x=50 into the
equation of the line of regression, you should get 116.3067.

File Edt Funcbon Zoom Calc Help

De @ |+ 41 A Jadm PRPOO

T ,y

¥ @ Semes 2 T

" fom210.85-2 T

-}

) cholester]level 2001
1o+

cholesterol level

x

4 N 4 S0 2 0 ° » 30 @ 0 60 o 0 0 100 1o 1o 130 My 1o 160 170 1% "

xedd yel66d

The cholesterol level drops by increasing the use of the chemical agent.

222

APPENDIX ~ ANSWERS TO PROBLEMS

CHAPTER 3

1. The data is shown in the following.

Graph - C\Lsers\Philip\Documents' cpfbook\Apress\ Chapters\Chi\pmcct grf

Fde Edt Functen Zoom Calc Help

D&l + 4L =mA JAdm 2PPLD
]
V.l yun2
v el . et .
144
124
wt
. s
i ;
y=x
- r=0

an-206 ya705

The data points for the curve y = X2

So you can see there is correlation but this is not linear correlation so we get a PMCC of zero.
The code for this is as follows:

/*Product moment correlation coefficient */
#define CRT SECURE_NO WARNINGS

#include <stdio.h»

#include <math.h>

main()

{
double xpoints[10], ypoints[10];

/* Variables are named as in the formulas used in the text of the chapter */
/* e.g., 2x is called "sigmax" */

double sigmax, sigmay, sigmaxsquared, sigmaysquared, xbar, ybar, sigmaxy;
double sxy, sxx, syy, sx, Sy, I;

223

APPENDIX ~ ANSWERS TO PROBLEMS

int i, points; /* User-entered number of scatter graph points */
double fltcnt; /* Number of points as a double variable */

FILE *fp;

fp=fopen("pmccf.dat","w");

/* Usexr enters number of points in scatter graph */
printf("enter number of points (max 10) \n");

scanf("%d", &points);

if (points > 10)

{

printf("error - max of 10 points\n");

}

else

{

/* Variables used for summing data values cleared to zero */
sigmax = 0.0;

0.0;

sigmaxy = 0.0;

sigmay

sigmaxsquared = 0.0;
sigmaysquared = 0.0;

/* User enters points in scatter graph */
for (i = 0;i < points;i++)
{
printf("enter point (x and y separated by space) \n");
scanf("%1f %1f", &xpoints[i], &ypoints[i]);
/* totals incremented by x and y points */
sigmax = sigmax + xpoints[i];
sigmay = sigmay + ypoints[i];
sigmaxy = sigmaxy + xpoints[i] * ypoints[i];
sigmaxsquared = sigmaxsquared + pow(xpoints[i], 2);
sigmaysquared = sigmaysquared + pow(ypoints[i], 2);
}
printf("points are \n");
for (i = 0;i < points;i++)
{
printf(" \n");

224

}

APPENDIX ~ ANSWERS TO PROBLEMS

printf("%1f %1f", xpoints[i], ypoints[i]);
fprintf(fp, "%Lf\t%1f\n",xpoints[i], ypoints[i]);
}
printf(" \n");

/* Convert number of points as a double variable */

/* for use in the formulas. Store this in variable fltcnt */
fltcnt = (double)points;

/* variables in PMCC formula calculated */

xbar = sigmax / fltent;

ybar = sigmay / fltcnt;

syy = (1 / fltcnt)*sigmaysquared - ybar * ybar;

sxx = (1 / fltcnt)*sigmaxsquared - xbar * xbar;
sx = sqrt(sxx);

sy = sqrt(syy);

sxy = (1 / fltcnt)*sigmaxy - xbar * ybar;

/* PMCC value calculated */
I = sxy / (sx*sy);
printf("r is %1f", r);

fclose(fp);

CHAPTER 4

1. Your code should be similar to the following code:

/* chaqi.c */
/* Stock price predictor simulation */
/* from Day values */

#define CRT_SECURE_NO_WARNINGS
#include <stdio.h>

#include <math.h>

#include <stdlib.h>

225

APPENDIX ANSWERS TO PROBLEMS
#include <time.h>

double calcrand();/* Function to calculate our random value for x using the
formula */

void avstdvar(double dayvals[]);/* Function to calculate variance &
standard dev */

FILE *fp;

double c,c0,c1,c2,d1,d2,d3;

double q,d,F,y,t;

int i,7j;

time t tim;

int n;

double average, variance, std deviation, sum = 0.0, suml = 0.0;

/* The PDR prefix to variables denotes Periodic Day Return */
double PDRaverage,PDRvariance,PDRstd deviation,pdrsum,nextval,lastval,
drift,epsilon,exptest,nitest;
double pdr[50];

void main()

{
FILE *fp;
/* Array containing day stock prices starting with yesterday and
moving backwaxd */

/* The part of the array following these preset values will contain our /*
/* calculated stock price values. So the whole array can be printed out */
/* on our graph */

double dayvals[50];

double value,testval;
int j;

fp=fopen("ch4ql.dat","w");

226

APPENDIX ANSWERS TO PROBLEMS
srand((unsigned) time(&tim)); /* Set up random number function */

for(i=0;1<50;i++)

{
/* Clear predicted rate array */
pdr[i]=0.0;
}
for(i=19;i<50;i++)
{
/* Clear the end part of our values array for our predicted vales */
dayvals[i]=0.0;
}

/* Enter number of predicted daily rates (PDR) */

printf("enter number of days up to 50\n");
scanf("%d",8n);

/* Enter data one element at a time*/

for(j=0;3j<n;j++)

{
printf("day %d ",j+1);
printf("enter price\n");
scanf("%1f",&value);
dayvals[j] = value;

}

3=0;

/* Write historical rates to output file */

for(i=18;i>-1;i--)

{
fprintf(fp, "%d\t%1f\n",j,dayvals[i]);
J++;

227

APPENDIX ~ ANSWERS TO PROBLEMS

/* Calc PDRs - if you enter n days, there will be n-1 PDRs */
for(j=0;j<n-1;j++)

{
pdr[j]=log(dayvals[j]/dayvals[j+1]);
printf("pdr[j] = %1f\n",pdr[j]);
}
/* Compute the sum of all elements */
pdrsum=0.0;
for (i = 0; 1 < n-1; i++)
{
pdrsum = pdrsum + pdr[i];
}

PDRaverage = pdrsum / (double)(n-1);
/* Call function to calculate statistical values */

avstdvar(dayvals);
/* Calculate drift */

drift=PDRaverage- (PDRvariance/2);
printf("drift is %1f\n",drift);
printf("PDRaverage is %1f\n",PDRaverage);

lastval=dayvals[0];

/* Calculate values using formula from the chapter*/
/*Today's Stock Price = Yesterday's Stock price * exp(Drift + Random Change)*/
/* We use the variable nextval for Today's Stock Price */
/* and the variable lastval for = Yesterday's Stock price */

/* and PDRstd_deviation*calcrand() for Random Change */
/* nextval=lastval*exp(drift+PDRstd_deviation*calcrand()) */
for (i = 19; i < 38; i++)

{
nitest=calcrand(); /* get random number using algorithm */
exptest=exp(drift+PDRstd deviation*nitest); /* get exp part of
formula */

228

}
double

{

APPENDIX ~ ANSWERS TO PROBLEMS

nextval=lastval*exptest; /* lastval*exp part as above */
printf("exptest is %1f\n",exptest);

printf("nitest is %1f\n",nitest);
printf("nextval is %1f\n",nextval);

fprintf(fp, "%d\t%1lf\n",i,nextval);

lastval=nextval; /* set last value for the next iteration */

}
fclose(fp);

return;
calcrand()

/* Set values for cumulative normal distribution formula */
€0=2.515517;
€1=0.802853;
€2=0.010328;
d1=1.432788;
d2=0.189269;

d3=0.001308;
y=rand()%1000;/* Generate random number between 0 and 1 */

y=y/1000;
if(y»=0.5)
q=1-y;
else
a=y;
/* Apply the Cumulative Normal Distribution Algorithm */

t=sqrt(log(1/pow(q,2)));
c=co+c1¥t+c2*pow(t,2);

d=1+d1*t+d2*pow(t,2)+d3*pow(t,3);

F=t-(c/d);
/* Use the symmetry of the Cumulative Normal Distribution graph */
if(y < 0.5)

229

APPENDIX ~ ANSWERS TO PROBLEMS

{
y=-1.0*F;

}

else if(y == 0.5)
y=0;

else
y=F;

printf("y = %1f\n",y);

return y;
}
void avstdvar(double dayvals[])
{
/* Average, standard deviation, variance processing */
sum = 0.0;
suml = 0.0;

/* Compute the sum of all elements */

for (i = 0; i< n; i++)

{

sum = sum + dayvals[i];

}

average = sum / (double)n;
/* Compute variance and standard deviation */
for (i = 0; 1 < n; i++)
{
suml = suml + pow((dayvals[i] - average), 2);

}

variance = suml / (double)n;
/* Compute PDRvariance and PDRstandard deviation */

sum1=0.0;
for (i = 0; i < n-1; i++)
{

suml = suml + pow((pdr[i] - PDRaverage), 2);

230

APPENDIX ~ ANSWERS TO PROBLEMS

PDRvariance = sumi / (double)(n-1);

std_deviation = sqrt(variance);

PDRstd deviation = sqrt(PDRvariance);

printf("Average of all elements = %1f\n", average);
printf("variance of all elements = %1f\n", variance);
printf("Standard deviation = %1f\n", std deviation);
printf("PDRvariance of all elements = %1f\n", PDRvariance);

printf("PDRStandard deviation = %1f\n", PDRstd deviation);
}

The graph generated by this code is shown in the following.

h - Cr\Users\Philip\ Documents| cpfbookApress\ Chapters\Cha chdq gt

Fde Edt Functen Zoom Calc Help

NEd + AL =mA JAdm RPLPLPD

v) days

vy stock vaue ($100)
¥ 4 hatoscal data
) peedhcted cala
4] chia ! proguam 30

oa

ch4ql program

stock value
(5100)
Tt
L S gn SN S
5 e S S SRS S
1 Sy .
e, et
wt
5 4 2 2 i [] W 12 W & 0| H 2 B X B» B N M X6 B 0 4

historical data predicted data

This graph differs from the one in the chapter as the trend goes down in the historical data
and correspondingly so in the predicted data. The predicted data part of your graph may differ
from this one as the random numbers you will have generated will have differed from the ones
when this graph was generated.

2. The program should be similar to this

/* assetq2.c */

/* Stock price predictor simulation */
/* produces cumulative normal */

/* distribution function graph */

231

APPENDIX ~ ANSWERS TO PROBLEMS

/* using inverse function technique */

#define CRT_SECURE_NO WARNINGS
#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

FILE *fp;
double c,c0,c1,c2,d1,d2,d3;

double q,d,x,y,t;
int i;

time t tim;

int

n;

double probvalue;

int main()

{

232

/* Set values for cumulative normal distribution formula */
€0=2.515517;
€1=0.802853;
€2=0.010328;
d1=1.432788;
d2=0.189269;

d3=0.001308;
fp=fopen("assetq2.dat","w");

srand((unsigned) time(&tim)); /* Set up random number function */
for(i=0;1<50;1i++)

{

y=rand()%1000; /* Generate random number between 0 and 1 */
y=y/1000;

probvalue=y; /* Storxe the current probability value */
/* Use the symmetry of the Cumulative Normal Distribution graph */

APPENDIX ~ ANSWERS TO PROBLEMS

if(y»=0.5)

q=1-y;
else

g=y;
/* Calculate the values in the formula */
t=sqrt(log(1/pow(q,2)));
c=cOo+c1¥t+c2*pow(t,2);
d=1+d1*t+d2*pow(t,2)+d3*pow(t,3);

x=t-(c/d);
/* Use the symmetry of the Cumulative Normal Distribution graph */
if(y < 0.5)

{

y=-1.0%X;

}

else if(y == 0.5)
y=0;

else

y=X;
/* Stoxre the calculated x value and the current*/

/* probability value in the file */
fprintf(fp, "%1f\t%1f\n",y,probvalue);

}

fclose(fp);
return;

}

This is an example of the graph produced by this code. It shows a good Cumulative Normal
Distribution showing the accuracy of the algorithm method for finding the x values.

233

APPENDIX ~ ANSWERS TO PROBLEMS

assettest2a.c
probability

x values

451

CHAPTER 5

1. This is an example of what your program should look like.

/* mtest.c */

/* Supermarket reordering simulation */
/* Print out the superm.dat file */
#idefine _CRT_SECURE_NO_WARNINGS
#include <stdio.h»

#include <math.h>

#include <stdlib.h>

#include <time.h»
struct super {
int ID;
char desc[11];
int limit;
int numstock;
char address[30];

}s

struct super si;

234

APPENDIX ~ ANSWERS TO PROBLEMS

struct super s2;
void main()

{
FILE *fp;
int numread, i;
/* Open supermarket file */
fp = fopen("superm.dat”, "r");
/* Read and print out all of the records on the file */
printf("\nID DESCRIPTION LIMIT NUMBER IN STOCK ADDRESS");
for(i=0;i<17;i++)
{
numread=fread(&s2, sizeof(s2), 1, fp);
if(numread == 1)
{
printf("\n%2d : %s : %d : %d : %s", s2.ID,s2.desc,s2.limit,
s2.numstock,s2.address); /* Note the 2d as we want
2 digits */
}
else {
/* If an error occurred on read, then print out message */
if (feof(fp))
printf("Error reading superm.dat : unexpected end
of file fp is %p\n",fp);
else if (ferror(fp))
{
perror("Error reading superm.dat");
}
}
}
/* Close the file */
fclose(fp);
return;
}

235

APPENDIX ~ ANSWERS TO PROBLEMS

The output to the command line should look like this:

1D DESCRIPTION LIMIT NUMBER IN STOCK ADDRESS
4 : Brie : 23 : 50 : 95,West Park St
: Gouda 1 34 : 51 ¢ 2,North Park St

9 : Edam T 44 1 52 : 17,New Gate St
11 : Camembert : 25 : 53 : 12,Toll Av

14 : Cheshire 1 34 1 66 : 5,State Rd

16 : Cheddar : 51 : 30 : 63,Madison St
17 : Pecorino : 23 : 56 : 12,East Park St
19 : Manchego 144 1 57 1 14,May St

23 : Provolone : 35 : 58 : 20,0regon Way
24 : Parmigiano 1 40 : 59 : 10,Park St

27 : Mascarpone : 40 : 60 : 31,Queen St

31 : Mozzarella T 42 161 : 19,Hope Av

32 : Feta : 45 1 62 : 13,Charles Av
35 : Gruyere L 47 1 63 : 54,Tower St

38 : Monterey 41 : 63 : 11,Cardew Av
44 : Gorgonzola 1 54 1 68 : 26,Jones St
47 : Stilton : 58 1 69 : 57,Lower St

CHAPTER 6

1. Your program should be similar to this.

/¥ fltent.c */

/* displays count of flights */
/* in the flightcnt.dat file */
#define CRT_SECURE_NO_WARNINGS
#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

#include <string.h>
void main()

{
FILE *fltcnt;

236

APPENDIX

struct flightcount {
int count;

};

struct flightcount fc;
fltent = fopen("flightcnt.dat","r");
fread(&fc, sizeof(fc), 1, fltcnt);

printf(" Number of flights : %d", fc.count);

fclose(fltent);

2. Your program will be similar to this.

/* createdep.c */
/* Creates departures file */

/* Prints out the records sequentially */
#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>

#include <string.h>
struct departures {
char posn[3];
char flight_no[8];
char sch_departure_time[6];
char exp_departure_time[6];
char destination[15];
char checkingate[5];
char remarks[14];

};

struct depcount {
int count;

b

void main()

{
int i,numread;
FILE *fpdep;
FILE *fltcnt;

ANSWERS TO PROBLEMS

237

APPENDIX ~ ANSWERS TO PROBLEMS

238

struct departures si;

struct depcount fc={17};

struct depcount fcr;

struct departures s10 =

struct departures sii =
struct departures si2 =
struct departures si3 =

struct departures si4 =
struct departures si5 =
struct departures s16 =
struct departures si7 =
struct departures si8 =

{"1","An1232","07:00","07:00", "CHICAGO","Ag",""};
{"2","BA123","07:05","07:05","LONDON" , "A1",""};
{"3","AAg517","07:08","07:15","BOSTON", "B4",""};
{"a","AF123","07:10","07:20", "PARIS","C2",""};
{"s","NHaa4","07:20","07:20", "TOKYO","A7",""};
{"6","DJ144","07:22","07:22", "MUMBAI", “D4" ""}s
{"7","AZ2348","07:23","07:25" ,"WASHINGTON" , "B1",""} ;
{"8","Vs9745","07:25","07:26" , "TORONTO", "A3",""};
{"9","DL5816","07:30","07:30", "CHICAGO","D9",""};

struct departures s19 = {"10","KL5393","07:33","07:33" , "MANCHESTER", "C3",""};

struct departures s20 =

{“11“".Az4627“’ “07.35“,"07.40", IIROMEII, llc7ll, llll};

struct departures s21 = {"12","VS4677","07:40","07:40","NEW ORLEANS","B3",""};

struct departures s22 =

struct departures s23 =
struct departures s24 =

{ll13ll, llsolzsll, "07:45", "07.45", IIFRANKFURTII, "E6", llll};
{ll14ll "EISSGG", llo7=4 n Ilo7 48“ llLoNDoNll IIE4II llll},
{"15“, llw52321ll, llo7 ° soll, Ilo7 soll, "DULLES", n E1", n ll};

struct departures s25 = {"16","AA197","07:55","08:00","SAN FRANCISCO","E3",""};

struct departures s26 = {"17","B57321","07:58","07:48","SARASOTA","E2",""};
/* Create the file depcnt.dat which will contain */

/* the current number of flights in departures.dat. */

/* This file can then be updated when flights axe */

/* removed from departures.dat to keep a running total */
fltent = fopen(“depent.dat”,"w");
furite(&fc, sizeof(fc), 1, fltent);

fclose(fltent);

fltent = fopen("depent.dat”,"r");
fread(&fcr, sizeof(fcr), 1, fltent);
printf(" Number of flights : %d", fcr.count);

fclose(fltent);

/* Open the departures file */

fpdep = fopen("departures.dat”, "w");

/* Write details of each flight to file*/

/* From the structures defined earlier */

furite(&s1o0,
furite(&s11,
furite(&s12,
furite(&s13,
furite(&s14,
furite(&s1s,
furite(&s16,
furite(&s17,
furite(&s18,
furite(&s19,
furite(&s20,
furite(&s21,
furite(&s22,
furite(&s23,

furite(&s24,
furite(&s2s,

furite(&s26,

sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),

sizeof(s1),
sizeof(s1),

sizeof(s1),

/* Close the file */

fclose(fpdep);

/* Reopen the file */

1,

fpdep);
fpdep);
fpdep);
fpdep);
fpdep);
fpdep);
fpdep);
fpdep);
fpdep);
fpdep);
fpdep);
fpdep);
fpdep);
fpdep);

fpdep);
fpdep);

fpdep);

fopen("departures.dat”, "r");

APPENDIX ~ ANSWERS TO PROBLEMS

/* Read and print out all of the records on the file */
printf("\n Flight :Sched: Exp: Gate Destination Remarks");
for(i=0;i<17;i++)

{

numread=fread(&s1, sizeof(s1i), 1, fpdep);
if(numread == 1)

{
printf("\n :%s\t%s\t%s\t%s\t%s\t%s\t%s", si.posn,si.
flight_no,s1.sch_departure_time,s1.exp_departure_time,s1.
checkingate,s1.destination,s1.remarks);

}

239

APPENDIX ~ ANSWERS TO PROBLEMS
else {
/* If an error occurred on read, then print out message */
if (feof(fpdep))

printf("Error reading departures.dat : unexpected
end of file fpdep is %p\n",fpdep);
else if (ferrox(fpdep))

perror("Error reading departures.dat”);

}
/* Close the file */

fclose(fpdep);

CHAPTER 7

1. Your program should be similar to this.

/* createplant.c */
/* Reads from file */
/* Prints out the records sequentially */

/* Finds specific records and prints them */

#define CRT SECURE_NO WARNINGS
#include<stdio.h>

struct fpress {
int ID; /* ID for the device */
float 1limit; /* Lower limit for pressure */
float press; /* Current pressure */

float ulimit; /* Upper limit for pressure */

b

240

int main()

{

int i,numread
FILE *fp;

struct fpress
struct fpress

b

si;
s2;

/* Preset structures with values for */

/* the elements in the structure fpress */

struct fpress

struct fpress
struct fpress
struct fpress
struct fpress
struct fpress
struct fpress
struct fpress
struct fpress
struct fpress
struct fpress
struct fpress
struct fpress
struct fpress

struct fpress

struct fpress

struct fpress

s10 = {4,10.0,23.0,50.0};
s11 = {7,11.0,34.0,51.0};
s12 = {9,12.0,44.0,52.0};

s13 = {11,13.
s14 = {14,14.
s15 = {16,15.
s16 = {17,16.
s17 = {19,17.
s18 = {23,18.
s19 = {24,19.
s20 = {27,20.
s21 = {31,21.
s22 = {32,22.
s23 = {35,23.
s24 = {38,24.

528 = {44,28.
s29 = {47,29.

0,25.
0,34.
0,51.
0,23.
0,44.
0,35.
0,40.
0,40.
0,42.
0,45.
0,47.
0,41.

0,54.
0,58.

/* Open the pressure file */

fp = fopen("p

/* Write details of each structure to file*/

/* From the structures defined earlier */

fwrite(&s10,
fwrite(&s11,
fwrite(&s12,
fwrite(&s13,
fwrite(&s14,

ressure.bin",

sizeof(s1), 1,

sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),

1)
1,
1)
1,

W);

p);
p);
p);
p);
p);

0,53

0,55

0,57

0,59

0,61

0,63

0,68.
0,69.

.0};
0,54.
.0};
0,56.
.0};
0,58.
.0};
0,60.
.0};
0,62.
.0};
0,63.

0};

0};

0};

0};

0};

0};

0};
0};

APPENDIX ~ ANSWERS TO PROBLEMS

241

APPENDIX ~ ANSWERS TO PROBLEMS

242

furite(&s15, sizeof(s1), 1, fp);
furite(&s16, sizeof(s1), 1, fp);
furite(&s17, sizeof(s1i), 1, fp);
furite(8&s18, sizeof(s1), 1, fp);
furite(&s19, sizeof(s1i), 1, fp);
furite(&s20, sizeof(s1), 1, fp);
furite(&s21, sizeof(s1i), 1, fp);
furite(&s22, sizeof(s1), 1, fp);
furite(&s23, sizeof(s1i), 1, fp);
furite(&s24, sizeof(s1), 1, fp);
furite(&s28, sizeof(s1i), 1, fp);
furite(&s29, sizeof(s1), 1, fp);

/* Close the file */

fclose(fp);

/* Reopen the file */

fp=fopen("pressure.bin", "r");

/* Read and print out all of the records on the file */

for(i=0;i<17;i++)

{

numread=fread(&s2, sizeof(s2), 1, fp);
if(numread == 1)

{

printf("\nID : %d lower limit : %f pressure : %f upper
limit : %f", s2.ID,s2.1limit,s2.press,s2.ulimit);

}

else {
/* If an error occurred on read, then print out message */
if (feof(fp))

printf("Error reading pressure.bin : unexpected
end of file fp is %p\n",fp);

APPENDIX ~ ANSWERS TO PROBLEMS

else if (ferror(fp))
{

perror("Error reading pressure.bin");

}
/* Close the file */

fclose(fp);

2. Your program should be similar to this.

/* plant.c */

/* Industrial plant simulation */
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>
struct fpress {
int ID; /* ID for the device */
float 1limit; /* Lower limit for pressure */
float press; /* Current pressure */
float ulimit; /* Upper limit for pressure */

};
int main()

{
FILE *fp;

struct fpress s2;
struct fpress st[17];
int i;

int IDtoamend;

int IDfound;

float fppress;

/* Open pressure file */
243

APPENDIX ANSWERS TO PROBLEMS

244

fp = fopen("pressure.bin", "r");

for (i = 0;i < 17;i++)

{
/* Read each pressure data from file sequentially */
fread(&s2, sizeof(s2), 1, fp);

/* Print pressure data each component */
st[i].ID = s2.ID;

st[i].1limit = s2.11limit;

st[i].press = s2.press;

st

— /oo

i].ulimit = s2.ulimit;

printf("\nID : %d lower limit : %f pressure : %f upper limit
s2.ID,s2.11imit,s2.press,s2.ulimit);

}
fclose(fp);

/* Ask user to enter the ID */
/* If the ID is not in the file, */
/* the user is prompted to enter */

/* it again. */

IDfound=0;

do {
fp = fopen("pressure.bin", "r+");
/* Ask user to enter ID */
printf("\nenter ID \n");

scanf("%d", &IDtoamend);
printf("\n ID is %d",IDtoamend);
for (i = 0;i < 17;i++)

{

fread(&s2, sizeof(s2), 1, fp);

if(IDtoamend == s2.ID)

{
/* Valid ID found */
IDfound=1;
break;

4

APPENDIX

}
if(IDfound==0)

printf("\nID not found");
fclose(fp);

} while(IDfound==0);
printf("\n ID is %d",IDtoamend);

/* Usexr is prompted to enter the current pressure */
printf("\nenter current pressure \n");

scanf("%f", &fppress);

printf("\n current pressure is %f",fppress);
for (i = 0;i < 17;i++)

{

if(IDtoamend == st[i].ID)
{

/* Test if the current pressure is */

ANSWERS TO PROBLEMS

/* below the lower limit or above the */
/* upper limit. If either is true, then */

/* an alert message is output */

printf("\n struct lower press is %f",st[i].1limit);
printf("\n struct upper press is %f",st[i].ulimit);

if(fppress < st[i].1limit)

printf("\n ALERT! Pressure is below lower limit");

if(fppress > st[i].ulimit)

printf("\n ALERT! Pressure is above upper limit");

245

APPENDIX ~ ANSWERS TO PROBLEMS

/*
/*
/*
/*
/*
/*

3. Your program should be similar to this.

plantbam.c */

Industrial plant simulation */

Power plant temperature and flow rate */
Allows amendments to tempflow.bin file */

Tests if the amendment is above the hightemp */
value and outputs an alert if it is */

#define CRT_SECURE_NO_WARNINGS
#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

/* Structure definition for each device on file */
struct fplant {

};

int ID; /* ID of device */

float temp; /* Current temperature of device */
float flowrate; /* Current flow rate of device */
float hightemp; /* Maximum temperature of device */
float highflow; /* Maximum flow rate of device */

int main()

{

246

FILE *fp;
struct fplant s2;

int i;

int IDtoamend; /* User-entered ID variable */
float fnewtemp;

long int minusone = -1;

int IDfound;

/* Open tempflow.bin file */

fp = fopen("tempflow.bin", "r");
for (i = 0;i < 17;i++)

APPENDIX ~ ANSWERS TO PROBLEMS

{
/* Read each data structure from file sequentially */
fread(&s2, sizeof(s2), 1, fp);
/* Print each data structure */
printf("\nID : %2d temp : %f flow rate : %f high temp : %f high
flow : %f", s2.ID,s2.temp,s2.flowrate,s2.hightemp,s2.highflow);
}
fclose(fp);

/* User asked to enter the ID being monitored */
/* Go round "do loop" until a valid ID is entered */
IDfound=0;

do {

fp = fopen("tempflow.bin", "r+");
/* Ask user to enter ID */
printf("\nenter ID \n");

scanf("%d", &IDtoamend);
printf("\n ID is %d",IDtoamend);
for (i = 0;i < 17;i++)

{
fread(&s2, sizeof(s2), 1, fp);
if(IDtoamend == s2.ID)
{
/* Valid ID found */
IDfound=1;
break;
}
}

if(IDfound==0)

printf("\nID not found");
fclose(fp);

} while(IDfound==0);

fp = fopen("tempflow.bin", "r+");
/* loop of 17 items in tempflow.bin file */
/* Need to find the user-entered ID */

247

APPENDIX ~ ANSWERS TO PROBLEMS

for (i = 0;

{

i< 17;i++)

fread(8s2, sizeof(s2), 1, fp);

if(IDtoamend == s2.ID)

{

}
}
fclose(fp);

/* Correct ID found in file */

/* Usexr asked to enter the new temperature being monitoxed */
printf("\nenter new temperature \n");

scanf("%f", &fnewtemp);
/* Print out confirmation of temperature to user */

printf("\n new temperature is %f",fnewtemp);
/* Store new temperature in file */

s2.temp = fnewtemp;

/* File updated with new temperature */

/* As file pointer is currently pointing */
/* to the next record in the file, we must */
/* go back by 1 (minusone) to update the */
/* correct record */
fseek(fp,minusone*sizeof(s2),SEEK CUR);

fwrite(&s2, sizeof(s2), 1, fp);
/* Print out the new values for the device */

printf("\nID : %d temp : %f flow rate : %f high temp :
%t high flow : %f", s2.ID,s2.temp,s2.flowrate,s2.hightemp,
s2.highflow);
/* Test if this new value is above the upper */
/* limit for the temperature */
if(s2.temp > s2.hightemp)
printf("\n ALERT! New temperature is above upper limit");

break;

248

APPENDIX

ANSWERS TO PROBLEMS

CHAPTER 8

1.

Your program should be similar to this.

/* peke2.c */
/* Potential enexgy vs. kinetic enexgy */
/* also monitors total energy (KE + PE) */

r* */

#define CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <math.h>

#include <stdlib.h>
void main()

{

/* Set

int i;
double m,g,t,h,hn,KE,PE;

double u,v,totenergy,ttot;
FILE *fptr;

FILE *fptr2;
fptr=fopen("peke.dat","w");
fptr2=fopen("peke2.dat","w");
initial values from the formulas */
m=10.0; /* Preset mass (kg) value */

g=9.8; /* Preset acceleration of gravity (m/s2) value */

h=10.0; /* Preset height (m) value */
t=0.1; /* Preset time division (s) value */

u=0.0; /* Preset initial velocity (m/s) value */
totenergy=0.0;

ttot=0.0; /* Set initial time value for total energy calculation */

for(i=0;1<100;1i++)

249

APPENDIX ~ ANSWERS TO PROBLEMS

{

v=u+g*t; /* Find velocity v from initial velocity, accel. of
gravity, and time */

KE=0.5*m*pow(v,2); /* Find kinetic energy from mass and
velocity */

hn=u*t+0.5*g*pow(t,2); /* Find distance traveled in time t */
h=h-hn; /* New height after falling hn meters */
PE=m*g*h; /* Find potential energy */

u=v; /* Set the initial velocity for the next increment of the
loop to the current velocity */
/* If h=0.0, then we have reached the ground */
if(h<=0.0)
break;
totenergy=KE+PE; /* Find current total energy of the system
(kinetic + potential) */
fprintf(fptr, "%1f\t%1f\n",KE,PE); /* Write current values to
KE v PE file */

fprintf(fptr2, "%1f\t%1f\n",ttot,totenergy); /* Write current
values to KE + PE
file */

ttot=ttot+75.0; /* Increment current time value */

}
fclose(fptr);

fclose(fptr2);
}

The corresponding graph for this code is shown in the following. It shows that the total energy
(kinetic energy + potential energy) is constant.

250

APPENDIX ~ ANSWERS TO PROBLEMS

- !. 518]_
Swig 2

004+

15004

blue line
PE 19011.;:::—.—-—.—-—;—;—-—-—;—;—; total energy (PE + KE)
b
.
‘\
00 .
.
Te
.
L e 3
1200 1000 500 600 100 00 00 00 800 500 1000 1200 1400 1600 500 000 00 00
KE
so0-t
—10004

1. The change to the original program was fairly small. Only the value of the
length of the pendulum is changed. The code is shown in the following:

/* pendme3.c */
/*
Eulexr-Cromer method
Changed length of cord
*/
#define _CRT_SECURE_NO_WARNINGS
#include <math.h>
#include <stdio.h>

void main()

{
FILE *fptr;
FILE *fptr2;
int i,npoints;

251

APPENDIX ~ ANSWERS TO PROBLEMS
double length,g,dt,omega[250],theta[250],time[250];

fptr=fopen("pendout3.dat","w");
fptr2=fopen("pendout3b.dat","w");

length=2.0; /* Preset length of pendulum (1) */
g=9.8; /* Preset acceleration of gravity (m/s"2) */
npoints=250; /* Preset number of points in loop */
dt=0.04; /* Preset time intexval (s) */

/* Clear storage arrays to zero */
for(i=0;i<npoints;i++)

{
omega[i]=0.0;
theta[i]=0.0;
time[i]=0.0;
}

/* preset theta and omega values */
theta[0]=0.2;

omega[0]=0.0;
/* Euler-Cromer method */

for(i=0;i<npoints;i++)

{
omega[i+1]=omega[i]-(g/length)*theta[i]*dt;
theta[i+1]=theta[i]+omega[i+1]*dt;
time[i+1]=time[i]+dt;
fprintf(fptr, "%1A\t%1f\n", time[i+1],theta[i+1]);
fprintf(fptr2, "%LA\t%1f\n", time[i+1],0omega[i+1]);

}

fclose(fptr);

fclose(fptr2);

252

APPENDIX ~ ANSWERS TO PROBLEMS

Here is the output for the two omega (angular velocity) files.

The red graph is the original program with cord length 1m and the yellow graph is the new
program with cord length 2m. You can see that there are two effects of changing the length of
the cord.

i). The amplitude of the graph from the new program is less than that of the
original. You could try an experiment with a pendulum yourself. You will notice
that in the case of the longer pendulum, speed of the mass is not as high as
with the shorter cord.

ii). The cycle of the pendulum for the longer cord is longer than for the shorter
cord. This is shown by the lower frequency on the graph.

i

it

red is cord of length 1m
yellow is cord of length 2m

omega

time

253

APPENDIX ~ ANSWERS TO PROBLEMS

CHAPTER 10

1. The following code generates the graph shown:

/* cofme.c
Center of Mass Calculation.
Calculates c of m for
ellipse center = (0,0) a=2,b=1
*/
#define CRT_SECURE_NO WARNINGS
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <time.h>

double randfunc();/* Function to return random numbexr */
void main()
{
int I,outcount;
float area,total,count;
FILE *fptr;
time t t;
/* Local arrays */
double x, y,xout[3500],yout[3500],xcofm,ycofm,a,b,root;
double roottesti,roottest2;
fptr=fopen("cofme.dat","w");

/* Initializes random numbexr generator */

srand((unsigned) time(&t));
/* clears arrays to zero */
for(I = 0; I<3500;I++)

{
xout[I] = 0.0;
yout[I] = 0.0;
}
/* Set x and y cofm accumulators to zero */
xcofm=0.0;
ycofm=0.0;

254

APPENDIX

a=2.0;
b=1.0;

total = 0.0;

count = 0.0;

outcount = 0;

for(I = 1;I<= 3500;I++)

{

/*
/*
/*

/*
I*
/*
I*
/*
I*
/*
I*

Call random number function */
Get x
Get y values between -1 and +1 */
= randfunc()*4.0-2.0;

values between -2 and +2 */

X

y = randfunc()*2.0-1.0;
For the generated x values, if the y values are */
y > - sqrt((1/b"2)*(1-x*2/a"2)) and */
y < + sqrt((1/b*2)*(1-x*2/a"2)), then */
add 1 to count */
and update the x and y cofm values */

The preceding formulas are simplified to */
(1/b*2) is roottesti and */
(1-x*2/a*2) is roottest2 */

roottest1=(1.0/pow(b,2));
roottest2=(1-(pow(x,2)/pow(a,2)));
root=sqrt(roottesti*roottest2);

if(y>-root && y<root)
{

xcofm=xcofm+x;

ycofm=ycofm+y;

total = total+1;
outcount = outcount +1;
xout[outcount] = x;
yout[outcount] = vy;

}

count = count+1;

ANSWERS TO PROBLEMS

255

APPENDIX ~ ANSWERS TO PROBLEMS

area=(total/count)*8; /* Area is part of rectangle which is 4x2
or 8 sq units */

printf("total is %f count is %f\n",total,count);

xcofm=xcofm/total;
ycofm=ycofm/total;

printf("area is %1f\n",area);
printf("cofm is %1f,%1f",xcofm,ycofm);
/* Plot the data */

if(outcount >= 2700)

outcount = 2700;
for(I = 1; I<=outcount-1;I++)
fprintf(fptr,"%1f %1f\n",xout[I],yout[I]);

fclose(fptr);
}
double randfunc()
{
/* Get a random number 0 to 1 */
double ans;
ans=rand()%1000;
ans=ans/1000;
return ans;
}

The resulting graph is shown in the following. The red dots are all of the accepted generated
(x,y) points and the blue dot is at the center.

256

APPENDIX ~ ANSWERS TO PROBLEMS

S«‘.

cofme
center of mass is blue dot

2. The following is the code which produces the graph:

/* cofmcc.c

Center of Mass Calculation.
Calculates ¢ of m for
concentric circles
circle1r center = (0,0) radius
circle2 center = (0,0) radius
*/
#define CRT_SECURE_NO_WARNINGS
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <time.h>

double randfunc(); /* Function to return random number */

257

APPENDIX ~ ANSWERS TO PROBLEMS

void main()

{

int I,outcount;

float area,total,count;
FILE *fptr;

time t t;

/* Local arrays */

double x, y,xout[3500],yout[3500],xcofm,ycofm;
fptr=fopen("cofmcc.dat","w");
/* Initializes random number generator */
srand((unsigned) time(&t));
/* clears arrays to zero */
for(I = 0; I<3500;I++)

{
xout[I] = 0.0;
yout[I] = 0.0;
}
/* Set x and y cofm accumulators to zero */
xcofm=0.0;
ycofm=0.0;
total = 0.0;

count = 0.0;

outcount = 0;

for(I = 1;I<= 3500;I++)

{
/* Call random number function */
/* Get x values between -2 and +2 */
/* Get y values between -2 and +2 */

x = randfunc()*4.0-2.0;

y = randfunc()*4.0-2.0;
/* For the generated x, the y values for the outer circle are */
/* y > -sqrt(4-pow(x,2) and */
I* y < +sqrt(4-pow(x,2)) */
/* and for the inner circle are */
/* y > -sqrt(1-pow(x,2) and */
/* y < +sqrt(1-pow(x,2)) */
/* If this is true, then add 1 to count */

258

APPENDIX ~ ANSWERS TO PROBLEMS

/* and update the x and y cofm values */
if(y>-sqrt(4-pow(x,2)) &8 y<sqrt(4-pow(x,2)))

{
if(y>-sqrt(1-pow(x,2)) &8 y<sqrt(1-pow(x,2)))

{

/* Exclude points inside inner circle */
goto out;

}

xcofm=xcofm+x;

ycofm=ycofm+y;

total = total+1;
outcount = outcount +1;
xout[outcount] = x;
yout[outcount] = y;

out: count = count+1;

}

area=(total/count)*16; /* Area is part of the square which is 4x4
or 16 sq units */

printf("total is %f count is %f\n",total,count);
xcofm=xcofm/total;

ycofm=ycofm/total;
printf("area is %1f\n",area);

printf("cofm is %1f,%1f",xcofm,ycofm);

/* Plot the data */
if(outcount >= 2700)

outcount = 2700;
for(I = 1; I<=outcount-1;I++)
fprintf(fptr, "%1f %1f\n",xout[I],yout[I]);

fclose(fptr);
}

259

APPENDIX ~ ANSWERS TO PROBLEMS

double randfunc()
{
/* get a random number 0 to 1 */
double ans;
ans=rand()%1000;
ans=ans/1000;
return ans;

}

The resulting graph is shown in the following. The red dots are all of the accepted generated
(x,y) values. The blue dot is the center of mass. So the center of mass of a doughnut is in the
middle of the hole.

cofmcce
center of mass is blue dot

The program also prints out the area of the doughnut. If you run your program a few times, you
will get slightly different values of this because of the different random numbers the program
will generate. You can work out the area manually as shown as follows:

Area = #iR? - 7r?

where R is the radius of the outer circle and r is the radius of the inner circle.

260

APPENDIX ~ ANSWERS TO PROBLEMS

So for the two radii of 2 and 1 units, we get the area to be 9.4247779.

If you run the program a few times and take the average of the area values printed by the
program, then you should get a value to within two decimal places of the previous manually
calculated value.

CHAPTER 11

1. The following is an example of the program:

/* Brownian motion (2D) Simulation (Monte Carlo)*/
/* selects x and y changes */

#define CRT SECURE_NO WARNINGS

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <time.h>

void main()

{
FILE *fptr;

time t t;
int i;
int collisions;
double xrand;
double yrand;
double xplusminusrand;
double yplusminusrand;
double xvals[5950],yvals[5950];
double cosval,sinval;

fptr=fopen("browntxy.dat","w");
/* Set the random number seed */

srand((unsigned) time(&t));
collisions=1000;
xvals[0]= 0.0;

261

APPENDIX ~ ANSWERS TO PROBLEMS

yvals[0]=0.0;

for(i=0;1<1000;i++)

{
/* Random x value 0-1 */
xrand=rand()%1000;
xrand=xrand/1000;

/* Random y value 0-1 */
yrand=1.0-xrand; /* random y value */
xplusminusrand=rand()%1000;
xplusminusrand=xplusminusrand/1000;

/* Randomly find + or - */

/* As our random number is */

/* between 0 and 1, we can take */

/* any number less than 0.5 to be */

/* minus in our calculation and */

/* numbers above 0.5 to be plus */

if(xplusminusrand < 0.5)
xplusminusrand = -1.0;

else

xplusminusrand = 1.0;
yplusminusrand=rand()%1000;
yplusminusrand=yplusminusrand/1000;

/* Randomly find + or - */
if(yplusminusrand < 0.5)

yplusminusrand = -1.0;
else

yplusminusrand = 1.0;
/* Move particle by x amount */
xvals[i+1]=xvals[i]+xrand*xplusminusrand;
cosval = xrand*xplusminusrand; /* possible equivalent cos value */

/* Move particle by y amount */
yvals[i+1]=yvals[i]+yrand*yplusminusrand;

262

APPENDIX ~ ANSWERS TO PROBLEMS

sinval = yrand*yplusminusrand;/* possible equivalent sin value */
fprintf(fptr,"%1f %1f\n", xvals[i], yvals[i]);

/*printf("cosval = %1f sinval = %1f\n",cosval,sinval);*/

}
}
And this is a possible output.
x gl
s-_(.gi

brownxy
red blue and green are 3 runs

CHAPTER 12

1. The program is shown in the following:

/* PROGRAM vacxaf.c
VACANCY DIFFUSION MODEL. (2D VERSION)
*/
#define CRT SECURE_NO WARNINGS
#include <stdlib.h>
#include <stdio.h>
#include <math.h>

263

APPENDIX ~ ANSWERS TO PROBLEMS

#include <time.h>

int IRND();/* Function to return random number 0 to 19 */
int IFOURRND();/* Function to return random numbexr 1, 2, 3, or 4 */

void main()

{
int N1,N2;
int N1IN,N2N,MCC;
int LATTICE2[20][20];
int MCCMAX;
int Q,P,INC;

FILE *fptr;
time_t t;

/* Initializes random number generator */
srand((unsigned) time(&t));

fptr=fopen("vacxaf.dat","w");

MCCMAX = 1000; /* Set number of Monte Carlo Cycles */
for(P=0;P<20;P++)

{
for (Q=0;Q¢20;Q++)
{
/* FILL THE ARRAY */
LATTICE2[P][0Q] = o;
}
}

/* SELECT ANY SITE AS THE INITIAL VACANCY SITE*/
/* Can be set randomly using the IRND function */
/* or can be set to specific values */

/*NIN = IRND();
N2N = IRND();*/
NiN=1; /* Start x value */
N2N=10; /* Start y value */

264

APPENDIX ~ ANSWERS TO PROBLEMS

LATTICE2[NIN][N2N] = 1; /* Set vacancy site in lattice */

for (MCC=1;MCC<=MCCMAX; MCC++)

{
N1=N1N;
N2=N2N;

if(LATTICE2[N2][N2] == 1)
{

/* UACANCY SITE (= 1)*/

INC = IFOURRND(); /* Call function to randomly select 1, 2,

3, or 4 */
/* 1 indicates a move to the right */
/* 2 indicates a move up */
/* 3 indicates a move to the left */
/* 4 indicates a move down */

/* Instead of going from 19 to 1, etc., you bounce off the

boundary. Go from 19 to 18, etc. */
if(INC == 1) /* right */
{
if(N1 == 9)
{
if (N2 ==9)
NIN=N1N+1;
else
N1IN=N1N-1;
}
else
if(N1 == 19)
NIN = 18;
else

NIN = N1+1;
}else if(INC == 2) /* Up */
{
if(N2 == 19)
N2N = 18;

APPENDIX ~ ANSWERS TO PROBLEMS

else
N2N = N2+1;
}else if(INC == 3) /* Left */
{
if(N1 == 10)
{
if (N2 == 9)
NIN=N1N-1;
else
NIN=N1N+1;
}
else
if(N1 == 1)
NIN = 2;
else
NIN = N1-1;
telse if(INC == 4) /* Down */
{
if(N2 == 1)
N2N = 2;
else
N2N = N2-1;
}
if(LATTICE2[NIN][N2N] == 0)
{
LATTICE2[NIN][N2N] = 1; /* Set as a used site */
}
else
NIN=N1N;
/*printf("not found\n");*/
}
}

/* Write any used lattice positions to file */

266

}

APPENDIX

for(P=0;P<20;P++)

{

for(0=0;0<20;0++)

{
if(LATTICE2[P][Q] == 1)

fprintf(fptr," %d\t%d\n",P,Q);

}
fclose(fptr);

int IRND()

{

/* Generate a random whole number from 0 to 19 */
double TOT,DIV,X;

int ANS,I;
TOT=rand()%1000;

TOT=TOT/1000;
/* Retuxns 0, 1, 2, .. or 19 */
/* chosen at random */

DIV = 20.0;

X = 1.0;

for(I=0;1<20;I++)
if(TOT < X/DIV)

ANS = I;
else

X = X+1.0;
return ANS;

ANSWERS TO PROBLEMS

267

APPENDIX ~ ANSWERS TO PROBLEMS

int IFOURRND()
{

/* Generate a random whole number 1, 2, 3, or 4 */
double TOT;

int ANS;
TOT=rand()%1000;
TOT=TOT/1000;

/* Retuxns 1, 2, 3, or 4 */
/* chosen at random */

if(TOT < 0.25)
ANS = 1;

else if(TOT < 0.5)
ANS = 2;

else if(TOT < 0.75)
ANS = 3;

else

ANS = 4;
return ANS;

}

The associated graph is shown in the following. Your graph will probably be slightly different
to this one as the random numbers generated will be different each time the program is run.
As the “wall” is at x=9 and the “hole” is at (9,9), then you can see where the “particle” has
crossed. Because the particle started at (1,10), then it looks as if it moved around the right
side for a short time, and then it crossed to the left and then was constricted to the left side —
although it may have crossed back and forth!

268

[X]
z%i.l*!
. L]
i £1

5

VIS0 EINE000
S000000088 20000

t t
Loleleletalulolleleleled
Rl ool)
LV L0SBOE
CODOODOBNS

APPENDIX ~ ANSWERS TO PROBLEMS

vacxaf
MCCMAX=1000

NIN=1;
N2N=10;

10

13

20

CHAPTER 13

1.

/* chresp.c

Chain Reaction Simulation.
Volume of sphere */

#define CRT SECURE_NO WARNINGS

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <time.h>

double randfunc(int N); /* Function to return random number (0 to 1)*/

int checkin(double x,double y,double z,double r); /* Function to check if the

void main()

{
FILE *fptr;
FILE *fptr2;

particle dimensions are
inside the sphere */

269

APPENDIX ANSWERS TO PROBLEMS

/* Local variables */
int K,P,N,Ninp;

/* x0, yo, 20 is the position of the fission nucleus */
/* x1, y1, z1, phii, di, costhetai are positions of firxst neutron */
/* x2, y2, z2, phi2, d2, costheta2 are positions of second neutron */
double f,x0,y0,z0,phil1,phi2,d1,d2,costhetal,costhetaz;
double Vinit,Vfin,W,r,x1,y1,z1,x2,y2,z2,third;
double pi;
time t t;

pi=3.142;
third=1.0/3.0;
P=0;

/* Select output file for error messages */

fptr = fopen("chresp.err”,"w");

/* Initialize random number generator */
srand((unsigned) time(&t));

/* Ask the user for the number of fissions */
printf("Enter number of fissions \n");
scanf("%d",8N);

/* Create results file */

fptr2 = fopen("chresp.dat","w");

if(fptr2 == NULL)

{

fprintf(stderr,"Error writing to %s\n","chresp.dat");
fclose(stderr);

return(1);

}

/* Initial and final values of volume of sphere */
Vinit=0.0001;
Vfin=1.0;

/* forloop for initial volume Vinit, */
/* final volume Vfin, and increments */

270

/* of 0.0005*/

APPENDIX ~ ANSWERS TO PROBLEMS

for (W=Vinit;W<VFfin;W=W+0.0005)

{

r=pow((3*W)/(4*pi),third);

Ninp = 0;

for (K=1;K<=N;K++)

{

/*
/*
X0
yo
20

Find a random position within the sphere */
for the nucleus */

= r*(randfunc(P)-0.5);

r*(randfunc(P)-0.5);

r*(randfunc(P)-0.5);

phi1l = 2*pi*randfunc(P);
costhetal = 2*(randfunc(P)-0.5);
phi2 = 2*pi*randfunc(P);
costheta2 = 2*(randfunc(P)-0.5);

d1
d2

Vs
x1
yl
z1
/*
X2
y2
z2

/*

randfunc(P);
randfunc(P);

Calculate the position of first neutron */
X0 + di1*sin(acos(costhetal))*cos(phi1);
yo + d1*sin(acos(costheta1))*sin(phi1);
= z0 + di1*costhetai;

Calculate the position of second neutron */
= X0 + d2*sin(acos(costheta2))*cos(phi2);
yo + d2*sin(acos(costheta2))*sin(phi2);

= z0 + d2*costheta2;

Find out if first neutron is inside the sphere */

if(checkin(x1,y1,z1,r) == 1)

I*

Ninp = Ninp+1;

Find out if second neutron is inside the sphere */

if(checkin(x2,y2,z2,r) == 1)

Ninp = Ninp+1;

}
f = (double)Ninp/(double)N;

271

APPENDIX ~ ANSWERS TO PROBLEMS

fprintf(fptr2,"%1f %1f\n",r,f);
}
fclose(fptr2);
fclose(stderr);

double randfunc(int N)

/* Find a random number between 0 and 1 */
double TOT;

TOT=rand()%1000;

TOT=TOT/1000;

return TOT;

int checkin(double x,double y,double z,double 1)

/* If the coordinates are within the sphere, return 1 */
/* Otherwise return 0 */
int I;
if(x<r 88 y<r8z«<r)
I=1;
else
I =o0;
return I;

272

APPENDIX ~ ANSWERS TO PROBLEMS

The resulting graph is shown in the following.

chresp Sergg 10
Vinit=0.0001; o S
Vfin=1.0; —rm
wl fissions = 750 S 14
t for f=1 r=0.2 sy
12t volume = 0.0335 1T

The value of r where f = 1 can be used to find the volume of the sphere. If we compare this
with the volume of our cube, we will see that we need a much smaller volume for the sphere
to reach critical mass than we had for the volume of the cube.

273

Index

A

Arithmetic, 1-4
Arrays, 6-9

B

Bell-shaped Normal Distribution
curve, 77
Brownian motion theory
colors, 183
cos and sin, properties, 180
examples, 183
molecule, 179
Monte Carlo forloop,
code, 181, 182
Brownian motion (2D) simulation
(Monte Carlo), 261-263

C

Capital asset pricing model, 43
Center of Mass theory
circular plate, 163-167, 169
oval plate, 163
shapes, 170-177
Center of mass calculation, 254-261
Chain reaction
program, 200
code, 201, 202, 204, 205
survival fraction, shape, 205

© Philip Joyce 2020

survival fraction, size, 206
transformation method,
Cartesian, 201
theory, 197-199
Chain reaction simulation, 269-273
Cumulative Normal Distribution
Function, 78

D

decreasefunc(stockitemID,updateamo
unt); function, 101
Departures file, creates, 237-240
Diffusion lattice model
molecular structure, 185
Monte Carlo Cycles, 187, 188,
190-192, 194, 195
primitive cubic, 186
2D lattice, 187
types, 187
Displays count of flights, 236, 237

E

Energy transfer
potential/kinetic energy,
simulation, 145, 146
theory to code, convert, 147-149
Euler-Cromer method, 158, 251-253
Euler method, 153

275

P. Joyce, Practical Numerical C Programming, https://doi.org/10.1007/978-1-4842-6128-6

https://doi.org/10.1007/978-1-4842-6128-6#DOI

INDEX

F

File creation
data_record, 19
fclose, 20
fwrite, 20
inmat, 19
matrix, 19
pointer, 20-22
read data, 22, 23, 27-30
record, 19
structure, 19
testaug.bin, 20
Flight information
display boards, update
not-rollup mechanism, 115
program, 114, 115
rollup mechanism, 116, 117,
119-122, 125, 127
file, creating, 109, 110, 112-114
fread function, 24, 100, 137

fseek(fp,minusone*sizeof(s2),SEEK_CUR);

mechanism, 101, 137
fwrite command, 20

G, H
getchar function, 1
Graph package, 38, 56

,J, K

Industrial plant simulation, 243-245
int IFOURRND(), 187

int IRND(), 187

Inverse function technique, 232, 233

L

Levels of correlation, 50
276

Mathematical functions
absolute value, 15
arccos, 13
arcsin, 13
arctan, 13
cosine, 12
fabs, 11
library file <math.h>, 11
natural logarithm, 14
pow, 11
sine, 12
sqrt, 11, 15
tangent function, 13

Monte Carlo theory, 73

N,O
Nested forloops, 207, 208, 219
Not-rollup mechanism, 115

P,Q

Pendulum simulation
Euler-Cromer
method, 158-160
Euler method, 153-157
theory, 151, 153
Potential energy vs. kinetic
energy, 249, 250
Power plant control, 240-243, 246-248
monitoring safety levels, 133,
135-137,139-141
simulation, 129, 130, 132, 133
printf function, 1
Product moment correlation coefficient
(PMCCQC), 223-225
Car Depreciation problem, 51-53

INDEX

comparison of two regression, 57, 58 Regyonx program, 48, 219, 221, 222
float variable, 70 Rollup mechanism, 116

formula, 50

linear correlation, 68 S

manual calculation, 58-60
program, 60-63, 65, 66, 71
regression programs, 50, 53-57
storage variables, 69

y on x/x ony comparison, 66, 67

Stock price prediction
data, 91
5 days’s price, 76
drift part of formula, 75
Monte Carlo theory, 73
random movement, 74

R Stock price predictor simulation, 86, 87,
Random Change component, 77 89, 90, 225-231
algorithm, 82 Strings, 9-11
calcrand, 85 Supermarket reordering
cumulative distribution mechanism, 79 simulation, 234-236
cumulative frequency vs. height graph, 80 Supermarket stock
cumulative normal distribution cheese, types, 95
function, 78 code, 96-98
normal distribution function, 83, 84 operations, 95
PDRstd_deviation, 85 structure, 96
PDRvariance, 85 updating file, 99-106, 108
probability, 81 Switch statement
standard deviation, 77 cosine function, 4
variation, 77 error message, 4
Regression functionality, 4
CAPM calculation, 43-46 specific case, 5, 6
data, 41
functions, 38 T
graph package, 38
mathematical gauging, 36, 37 tempflow.bin, 130
negative correlation, 36, 41
positive correlation, 36 U

record values, 35 updatefunc();, 101

regyonx program, 42 User-written Functions, 16-19

scatter graph, 35, 36
sigma, 38
variables, 38 Vs Wa X, Y, y4
y on x case, 37-40 Vacancy diffusion model, 263-268
277

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Review of C
	1.1 Arithmetic
	1.2 Switches
	1.3 Arrays
	1.4 Strings
	1.5 Mathematical Functions
	1.6 User-Written Functions
	1.7 File Creation
	1.8 File Read
	1.9 File Create2
	1.10 File Read2
	1.11 Common Mathematical and Logical Symbols

	Part I: Finance Applications
	Chapter 2: Regression
	2.1 Capital Asset Pricing Model
	2.2 CAPM Illustration

	Chapter 3: PMCC
	3.1 Theory
	3.2 Manual Calculation of PMCC
	3.3 PMCC Program
	3.4 Comparison of the Two Regression Lines
	3.5 Manual Calculation of the Two Regression Lines
	3.6 Program for the Two Regression Lines

	Chapter 4: Stock Price Prediction
	4.1 Two Parts to Stock Price Changes
	4.2 Drift Part of Formula
	4.3 Simple Example with 5 Day’s Prices
	4.4 Random Change Part of Formula
	4.5 Combining the Two Elements

	Part II: Commercial Applications
	Chapter 5: Supermarket Stock
	5.1 What We Are Simulating
	5.2 Updating the File

	Chapter 6: Flight Information
	6.1 Airport Display Boards
	6.2 Create Flights File
	6.3 Update Display Boards
	6.3.1 Not-Rollup Mechanism
	6.3.2 Rollup Mechanism

	Chapter 7: Power Plant Control
	7.1 Simulation
	7.2 Monitoring Safety Levels

	Part III: Physics Applications
	Chapter 8: Energy Transfer
	8.1 Potential and Kinetic Energy Simulation
	8.2 Convert Theory to Code

	Chapter 9: Pendulum Simulation
	9.1 Pendulum Theory
	9.2 Euler Method
	9.3 Euler-Cromer Method

	Chapter 10: Center of Mass
	10.1 Center of Mass Theory
	10.2 Circular Plate
	10.3 Other Shapes

	Chapter 11: Brownian Motion
	11.1 Brownian Motion Theory

	Chapter 12: Diffusion Lattice Model
	12.1 Vacancy Lattice Diffusion

	Chapter 13: Chain Reaction
	13.1 Chain Reaction Theory
	13.2 Chain Reaction Program

	Appendix:
Answers to Problems
	Index

