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Introduction

Ever since the introduction of the C programming language in 1978, it has been regarded as a powerful language
and has gained popularity among programmers worldwide. Despite starting as a language for the UNIX operating
system, it has been used extensively in implementing wonderful and very complex software on multiple platforms.
C has always been the default choice of language for writing any low level layers, device drivers, embedded system
programming, programming mobile devices and so on.

One of most important features of C is pointers, which is an interesting topic and many times difficult to grasp.

C being a relatively low level language, requires that programmers are well versed with many fundamental notions of
computers while using it. And also, C is not a strongly-typed language.

The concept of pointer is known for its cryptic nature and that makes the understanding of it in some cases very
difficult. This book is meant to provide an understanding of the concept of pointers for a novice or an intermediate
or an expert programmer. To make the reader understand any concept of pointers we have provided back ground
information which is not related to the language but which is part of the computer science literature. This background
information will help the reader to understand the concepts very easily.

The book is organized as follows.

Chapter 1 is the basis for other chapters. It describes the concept of memory and runtime memory which
provides the reader with an understanding of the basic concept of how memory is accessed and how data/
instructions are stored in memory. This chapter helps in understanding the compilation steps. This includes
explanation of how intermediate results such as preprocessing, assembly and object code are generated. It also
gives detailed background of how memory segments/sections are created by the compiler. Memory segments
are explained in detail with pros and cons which will help readers to understand the usage of various kinds of
variables. This chapter is also augmented with the understanding of the concept of virtual memory.

Chapter 2 introduces the concept of a pointer variable and the most important operations on it (referencing and
dereferencing). This chapter explains the concept of initialization, comparison and memory allocation to pointer
variables. It also explains the notion of a NULL pointer, dangling pointer, VOID pointer and CONST qualifiers. This
chapter also explains the notion of how a pointer variable is used with different types of primitive data types such as
integer, char and so on. This chapter also provides an explanation of how multilevel pointers can be used to access
memory addresses and the values stored at those locations.

Chapter 3 contains a detailed explanation of pointer arithmetic and single dimensional arrays. Pointer arithmetic
is explained in detailed. Explanation is given on how pointers can be used to access various contiguous memory
locations using addition and subtraction operations on pointers. A section in this chapter explains the usage of
pointers to access array data types. This chapter gives illustrious insight on how various kinds of expressions can be
used to access a particular index of an array.

Chapter 4 contains an explanation of how pointers can be used to initialize static strings and manipulate
them. Many examples have been included in the form of basic string manipulation functions such as strcpy,
substring and so on. String manipulation is one of the most important requirements while solving and
implementing algorithms.

Chapter 5 describes the usage of pointers to access multidimensional memory access, specifically 2-d and
3-d arrays.
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INTRODUCTION

Chapter 6 is about the detailed description of how structures and its member fields can be accessed with
pointers. Usage of structures and pointers helps in implementing complex and dynamic data structures. Illustrious
examples have been included in the chapter to explain the implementation of data structures such as linked lists
and binary trees with the help of pointers. A section is also dedicated to explain how a function of a program can be
accessed dynamically with the help of function pointers.

Chapter 7 is an explanation of usage of the function pointers concept.

Chapter 8 contains details about file handling. How file pointers are used to manipulate files using write and read
system calls have been explained in depth.

xviii



CHAPTER 1

Memory, Runtime Memory
Organization, and Virtual Memory )

I have always wondered why the concept of a pointer is so dauntingly difficult to grasp. The concept of a pointer
can be intuitively understood only if you are able to visualize it in your mind. By “visualizing” I mean being able to
represent mentally its storage, lifespan, value, and so forth. Before getting into the nitty-gritty of pointers, however,
you need to be equipped with the concepts of memory, runtime memory organization of the program, virtual
memory, the execution model, and something of the assembly language.

This chapter introduces these prerequisite concepts by way of a generic case of how the modeling of runtime
organization is done and some simple examples of how a CPU accesses the different sections of a process during
runtime. Finally, it introduces the concept of virtual memory.

Subsequent chapters will go through the basics of pointers, their usage, advanced topics of pointer manipulation,
and algorithms for manipulating memory addresses and values. The final chapters focus on practical applications.
The chapters are designed to be discrete and sequential, so you may skip any sections you are already

familiar with.

Memory and Classification

Memory by definition is used to store sequences of instructions and data. Memory is classified to be permanent or
temporary depending on its type. Throughout this work, references to memory are to be implicitly understood

as meaning temporary/non-persistent storage (such as RAM, cache, registers, etc.), unless explicitly identified as
permanent storage. Memory is formed as a group of units in which information is stored in binary form. The size of
the group depends on the underlying hardware or architecture and its number varies (1, 2, 4, 8, 16, 32, 64, or 128 bit).

Classification

Memory classification is the best way to gauge and assess the various kinds of memory available (Figure 1-1).



CHAPTER 1 © MEMORY, RUNTIME MEMORY ORGANIZATION, AND VIRTUAL MEMORY

Speed
Type Capacity (approx) Volatile/Nonvolatile Cost
16/32/64 bits, depending on
Registers the type of CPU < 10ns Volatile
Cache in K bytes 10-50ns Volatile Increa];ing
RAM (Main Memory) in Mbytes; some GBs 50-100ns Volatile
Secondary Storage in GBs and TBs 10 millisec Nonvolatile

Figure 1-1. Memory hierarchy

Let’s take a look at each of these different kinds of memory with respect to their usage and connectivity. Some of
the memory could be present inside the chip (on-chip) along with processors, and some are attached to the ports on
the motherboard. Communication or transfer of data takes place with the help of the address bus.

e Registers: These registers are mainly on the chip along with the processor. Depending on the
architecture they vary in numbers. The descriptions below about registers are based on the
Intel IA32 architecture.

e  Segment Registers: CS, DS, ES, etc. These registers help in implementing support for
segmentation and eventually to support multiprogrammed environments.

e  System Registers: CRO, CR1, EFLAGS etc. These registers help in initializing and controlling
system operations. Similarly, there are many other registers along with the ones mentioned
above. I will not go into detail about each of the other registers.

e Caches: Typically, cache is high-speed memory that is used to store small portions of data
temporarily. And probably this is the data that will be accessed frequently in the near future.
In modern systems, caches also have some hierarchical structure.

e Ll cache is faster and closer to the CPU but smaller in size.
e 12 cacheisless fast and less close to the CPU but comparatively bigger in size.

e SRAM is used for cache memories as they are faster than DRAM. Also, there exist
dedicated instruction cache and data cache in some architectures, such that instruction
code will reside in the instruction cache while the data portion on which these
instructions work will reside in the data cache.

e  Main Memory: In some literature the main memory is also called the physical memory. This
is the place where all the data and instruction to be executed is loaded. When a program is
executed, the operating system creates a process on its behalf in the main memory. I do not
explain this process and its creation in this chapter, but I will do so in detail in subsequent
chapters. The capacity of the main memory dictates the size of the software a system can
handle. The size of the main memory runs in GBs. Also, the operating system shares part of
the main memory along with other processes.

Now that you have a sense of the different kinds of memory in the system and what they do and contain, let’s see
how they look when laid out and interconnected. Figure 1-2 schematically depicts a typical computer architecture and
associated connectivity.
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CPU
Functional Unit
Registers
> Controls < >» Input/Output
A
L1 L2 Cache Y
Cache SRAM
Secondary Memory
—
Y
Main Memory DRAM

Figure 1-2. Memory hierarchy layout

Memory Layout

Memory is a linear array of locations, where each location has an address that is used to store the data at those
locations. Figure 1-3 illustrates typical connectivity between the CPU and main memory.

Main Memory

Addr Line DRAM

CPU <:::> Memory
Controller

Data Line

i e

Figure 1-3. Memory layout

To reiterate, a memory address is a number that is used to access the basic units of information. By information
I'mean data. Figure 1-4 illustrates a memory dump; in it you can see how data is stored at consecutive locations in
memory.
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Memory Address

Figure 1-4. Memory Dump

Data and Instruction

Data and instruction are inherent parts of any program. Instructions or program logic manipulate the data associated
with the program (Figure 1-5). To execute any program, first the program is loaded with the help of a loader into
memory, and the loaded program called a process (an instance of a running program) is loaded by the operating

system.

Memeory address  Instructions Catz
00413784 Pop edi
004137388 Pop esi
0041378C Pop ebx
00413780 add esp,CFCh
00413793 cmp ebp,esp
004137585 call @ILT+295(_RTC_CheckEsp)

(41112Ch)
00413794 mov esp,ebp
0041379C pep ebp
0041379D ret

Figure 1-5. Data and instruction

How the Processor Accesses Main Memory

If we assume that a program is loaded into memory for execution, it is very important to understand how the CPU/
processor brings in all the instructions and data from these different memory hierarchies for execution. The data and
instructions are brought into the CPU via the address and data bus. To make this happen, many units (the control
unit, the memory controller, etc.) take part.
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Let’s get into the details of how data is transferred into memory. Assume that the CPU is going to execute an
instruction: mov eax, A.This assembly instruction moves the value stored at variable A to register eax. After the CPU
decodes this instruction, it puts the address of variable A into the address bus and then this data is checked for whether
it is present in the L1 cache. There can only be two cases: if the data is present, it is a hit; if it is not, it is amiss.

In case of a miss, the data is looked for in next level of hierarchy (i.e., L2 cache) and so on. If the data is a hit, the
required data is copied to the register (the final destination), and it is also copied to the previous layer of hierarchy.

I will explain the copying of data, but first let’s look into the structure of cache memory and specifically into
memory lines.

Cache Memory

In generic form, a cache has N lines of addressable (0 - 2N -1) units. Each line is capable of holding a certain amount
of data in bytes (K words). In the cache world, each line is called a block. Cache views memory as an array of M blocks,
whereM = 2N/K, as shown in Figure 1-6. And the total cache size C = M* K.

[w=zn] o

<——| Bytes/K —>|
words

Figure 1-6. Cache memory model

Examples of realistic caches follow:
L1 cache =32 KB and 64 B/line
L2 cache =256 KB and 64 B/line
L3 cache =4 MB and 64 B/line

Now you know a little about the structure of the cache, let’s analyze the hit and miss cache in two level of caches
(L1 and L2). As noted in the discussion of the CPU executing the MOVL command, the CPU looks for the data in the L1
cache and if it is a miss, it looks for it in the L2 cache.

Assuming that the L2 cache has this data and variable A is of 4 bytes, let’s see how the copy to the register
happens.

Figure 1-7 shows a hit at the L2 cache; the data (4 bytes) is copied into the final destination (i.e., the register eax);
and 64 bytes from the same location are copied into the L1 cache. So, now L1 cache also has the value of variable A,
plus extra 60 bytes of information. The amount of bytes to be copied from L2 cache to L1 cache is dictated by the size
of the cache line in L1 cache. In this example, L1 cache has 64 bytes, so that much data is copied into L1 cache.
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e ; L2 Cache

, L1 Cache

CPU 4

Register A

A 4

Miss

A

N
>

64 byte

A
Y

64 byte

Figure 1-7. Data fetching scenario

If variable A happens to be the i index of some array, that code may try to access the (i+1)" index. This happens
when we write a for loop inside which we are trying to iterate over all the indexes of an array.

The next time the CPU accesses the (i+1)" index, it will find the value in the L1 cache, because during loading of
the i index we copied more data. This is how spatial locality takes advantage of caching.

You have seen a case of miss and hit in two levels of cache. This scenario can be extended up to the main memory
and beyond to the secondary memory, such as hard disks and other external memory, every time we copy the data
back to the earlier level in the hierarchy and also to the destination. But the amount of data copied into an earlier level
in the hierarchy varies. In the above case, data got copied as per the size of the cache line; if there is a miss in the main
memory, what will copied into the main memory will be of size 1 page (4KB).

Compilation Process Chain

Compilation is a step-by-step process, whereby the output of one stage is fed as the input to another stage. The output
of compilation is an executable compiled to run on a specific platform (32-/64-bit machines). These executables
have different formats recognized by operating systems. Linux recognizes ELF (Executable and Linker Format);
similarly, Windows recognizes PE/COFF (Portable Executable/Common Object File Format). These formats have
specific header formats and associated offsets, and there are specific rules to read and understand the headers and
corresponding sections.

The compilation process chain is as follows:

Source-code» Preprocessing® Compilation» Assembler» Object file» Linker» Executable

To a compiler, the input is a list of files called source code (.c files and .h files) and the final output is an
executable.

The source code below illustrates the compilation process. This is a simple program that will print “hello world”
on the console when we execute it after compilation.



Source code Helloworld.c

#include<stdio.h>
int main()

CHAPTER 1

printf(“Hello World example\n”);

return 0;

Preprocessing

MEMORY, RUNTIME MEMORY ORGANIZATION, AND VIRTUAL MEMORY

Preprocessing is the process of expanding the macros specified in source files. It also facilitates the conditional
compilation and inclusion of header files.
In the code snippet in Figure 1-8 for the file Macros. c, the following are the candidates for preprocessing:

¢ Inclusion of header files: util.h, stdafx.h
When util.his included, it includes the declaration of the function int multiply

(int x, int y).

¢ Expansion of macros: KB, ADD
These macros are replaced with the actual defined values after preprocessing once the
inclusion of the header file is done and the macros are expanded. The output of this phase
is passed to the next stage (i.e., compilation).

QOriginal Filg ------— Macros.c

util.h

#include “stdafx.h"
#inchude "util.h" el
Jkdefine KB 1824

int-;tmajq{dnt argc, _TCHAR* argv[])
int arr[k8];
int i = 3@;
int j = 285 ----- -,
int z = ADD{38,28); "

‘wdefine ADD(v1, v2) (vl + w2 ) .-

#ifndef UTIL_

#tdefine _UTIL_

int multiply{int x, int y);
#endif

int k = multiply(38,28);
printf(“z = %d\n", z);
return @;

Al

Preprocessed File ----—- Macros.i

“int multiply(int x, int y);..-

int ‘wmain(int arge, _TCHAR* argv[])
{ T
int arrfleza];

int i = 38;

int j =28, ~T=-,
int z = (-3@—+-20-y;
int k = multiply(38,28);
printf("z = %d\n", z);
return @;

#line 12 "c:\\projects\\pointers\\ptrmemorytest\\stdafx.h"
#line 5 "c:\\projects\\pointers\\ptrmemorytest\\ptrmemorytest.cpp"
#line 1 “Tr\\projectsiipointers\\ptrmemorytestiiutil.h"

#line 7 “cr\\projects\\pointers\\ptrmemorytest\iutil.h"
#line &-c:\\projects\\pointers\\ptrmemorytest\\ptrmemorytest.cpp”

Figure 1-8. Preprocessing step
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Compilation

The next process is to compile the preprocessed file into assembly code. I will not go into the details of the
compilation process, which itself has several phases such as lexical analysis, syntax analysis, code generation, etc.
The output of the compilation process is add.asm/add.s. Below is the listing for the add. c program, which is
compiled, and its output can be seen in the listing of file add.asm.

File add.c
int add(int vi, int v2)
{
return vi+v2;
}
int _tmain(int argc, _TCHAR* argv[])
{
int a = 10;
int b = 20;
int z = add(10,20);
return 0;
}

File add.asm

; COMDAT ?add@@YAHHH@Z
_TEXT SEGMENT
_vi$ =8 ; size = 4
v2$ = 12 ; size = 4
?add@@YAHHH@Z PROC ; add, COMDAT
; Line 7
Push ebp
Mov ebp, esp
Sub esp, 192 ; 000000cOH
Push ebx
Push esi
Push edi
Lea edi, DWORD PTR [ebp-192]
Mov ecx, 48 ; 00000030H
Mov eax, -858993460 ; cccccecccH
rep stosd
; Line 8

Mov eax, DWORD PTR _vi$[ebp]
Add eax, DWORD PTR _v2$[ebp]

; Line 9

Pop edi

pop esi

pop ebx

mov esp, ebp

pop ebp

ret 0
?add@@YAHHH@Z ENDP ; add
_TEXT  ENDS



CHAPTER 1
PUBLIC _wmain
EXTRN ~_ RTC_CheckEsp:PROC
; Function compile flags: /Odtp /RTCsu /ZI
5 COMDAT _wmain
_TEXT  SEGMENT
_z$ = -32 ;
_b%$ = -20 H
_a$ = -8 H
_argc$ = 8 H
_argv$ = 12 H
_wmain PROC 5
; Line 11
Push ebp
mov ebp, esp
sub esp, 228 ;
push ebx
push esi
push edi
lea edi, DWORD PTR [ebp-228]
mov ecx, 57 H
mov eax, -858993460 ;
rep stosd
; Line 12
Mov DWORD PTR _a$[ebp], 10 ;
; Line 13
Mov DWORD PTR _b$[ebp], 20 ;
; Line 14
Push 20 ;
push 10 H
call ?add@@YAHHH@Z 5
add esp, 8
mov DWORD PTR _z$[ebp], eax
; Line 15
Xor eax, eax
; Line 16
Pop edi
pop esi
pop ebx
add esp, 228 ;
cmp ebp, esp
call __RTC_CheckEsp
mov esp, ebp
pop ebp
ret 0
_wmain ENDP
_TEXT ENDS
END

MEMORY, RUNTIME MEMORY ORGANIZATION, AND VIRTUAL MEMORY

size =
size =
size =
size =
size =
COMDAT

B R

000000e4H

00000039H
ccccccccH
0000000aH
00000014H
00000014H

0000000aH
add

000000e4H
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Assembler

After the compilation process, the assembler is invoked to generate the object code. The assembler is the tool that
converts assembly language source code into object code. The assembly code has instruction mnemonics, and the
assembler generates the equivalent opcode for these respective mnemonics. Source code may have used external
library functions (such as printf(), pow()). The addresses of these external functions are not resolved by the
assembler and the address resolution job is left for the next step, linking.

Linking
Linking is the process whereby the linker resolves all the external functions’ addresses and outputs an executable
in ELF/COFF or any other format that is understood by the OS. The linker basically takes one or more object files,
such as the object code of the source file generated by compiler and also the object code of any library function used
in the program (such as printf, math functions from a math library, and string functions from a string library) and
generates a single executable file.

Importantly, it links the startup routine/STUB that actually calls the program’s main routine. The startup routine
in the case of Windows is provided by the CRT dll, and in the case of Linux it is provided by glibc (1ibc-start.c).
Figure 1-9 shows what the startup stub looks like.

il
Il

Tk, A R EE 20803 834836

(Unknown Scope) - |

*crtexe.c - Initialization for console EXE using CRT DLL
Copyright (c) Microsoft Corporation. All rights reserved.

*Purpose:
This is the actual startup routine for apps linking to the CRT DLL.
It calls the user's main routine [w]main() or [w]WinMain after
ime Library initialization.

performing C Run-

With ifdefs, this source file alsc provides the source code for
wertexe.c  the startup routine for console apps with wide chars
crtexew.c the startup routine for Windows apps

wcrtexew.c the startup routine for Windows apps with wide chars

R R R R AR AR R R IR R AR RTER R ]

#ifdef CRTDLL

* SPECIAL BUILD MACROS! Note that crtexe.c (and crtexew.c) is linked in with
* the client's code. It does not go into crtdll.dll! Therefore, it must be

* built under the DLL switch (like user cede) and CRTDLL must be undefined.
* The symbol SPECIAL_CRTEXE is turned on to suppress the normal CRT DLL

* definition of fmode and commode usine declspec(dllexport). Otherwise

Figure 1-9. Startup stub

Figure 1-10 shows a situation where with the help of the debugger the program’s main function is being called by
another function, _tmainCRTStartup(). This startup routine is the one that is responsible for calling the application’s
main routine.

10
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I (Unknown Scope)

lpszCommandLine,

StartupInfo.dwFlags & STARTF_USESHOWWINDOW
? StartupInfo.wShowWindow
: SW_SHOWDEFAULT

);

“#telse /* _WINMAIN_ */

“1#ifdef WPRFLAG
__winitenv = envp;
> | mainret = wmain(argc, argv, envp);
-|#else /* WPRFLAG */
__initenv = envp;
| mainret = main(argc, argv, envp);
#endif /* WPRFLAG */

gendif /* _WINMAIN_ */

= I*
* Note that if the exe is managed app, we don't really need to
00% ~ ¢ ) ! ' -
Call Stack
MName

@ helloworld.exe!add(int v1, int v2) Line8
| helloworld.exelwmain(int arge, wehar_t * * argv) Line14 + 0x9 bytes

9 helloworld.exe! _tmainCRTStartup() Line 552 + 019 bytes
'helloworld.exe!wmainCRTStadupO Line 371
| kernel32.d11175253392()
| [Frames below may be incorrect and/or missing, no symbols loaded for kernel32.dl1I]
| ntdil.dIN77289ef2
| ntdIl.dIIl77289ec50)

YN B Immediate Window

Figure 1-10. Startup stub

Loader

Strictly speaking, the loader is not part of compilation process. Rather, it is part of the operating system that is
responsible for loading executables into the memory. Typically, the major responsibilities of a UNIX loader are the
following:

e  Validation

¢  Copying the executable from the disk into main memory
e  Setting up the stack

e  Setting up registers

e  Jumping to the program'’s entry point (_start)

Figure 1-11 depicts a situation in which the loader is executing in memory and loading a program, helloworld.
exe. The following are the steps taken by the OS when a loader tries to load an executable:

1. Theloader requests that the operating system create a new process.

2. The operating system then constructs a page table for this new process.

11
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It marks the page table with invalid entries.
It starts executing the program which generates immediate page fault exception

ﬂemory \ SECONDARY DISC
Helloworld.exe, loader.exe,

preprocessor.exe
->

3.
4,

PAGE 3
L - N
'
1
|

Some other process
.
.
Vi 4
’ , ’
7/

4 |

' ’ \_/:/
’

1
[
'
\ j ! '
’ 1 !

\ ’ 1 !

’ 1 !

! [

[

]

1

PAGE 2
7z T
-, 1
- I !
! -
/Execution

Loader .
=1 o
Control F———=,' Unit

T
Logic ' Control
1
I’ I’
K ALU
! ’
\ J i ,
/I /I
/ /I
PAGE 1,Process 5 )/ ’
(helloworld.exe) ,/ )/
s
CODE SEGMENT /
. rd , 4
.7 o P V
4 < - ‘
p SS
7
e
7
DS
|

4
4
P
/! cs
PAGE 0, Process 5 L
(helloworld.exe) ; 0x0004 S
1

DATA SEGMENT ! o

SP

0x0000

Adder
DH DL

Address Bus
AH

Figure 1-11. Loading process
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The steps mentioned above are taken care of by the operating system for each program running in the memory.
I'will not go into the details of the technicalities in these steps; an interested reader can look into operating system-
related books for this information.

Let’s see how different programs look when they simultaneously share the physical memory. Let’s assume the
operating system has assigned a process id - 5 for the program helloworld.exe. It has allocated FRAME 0 & 1 and
loaded the PAGE 0 & 1 where some portion of code segment and data segment are residing currently. We will look
at the details of the different segments depicted in Figure 1-11 later in subsequent sections. Page is a unit of virtual
memory and Frame is the unit used in the context of physical memory.

Memory Models

A process accesses the memory using the underlying memory models employed by the hardware architecture.
Memory models construct the physical memory’s appearance to a process and the way the CPU can access the
memory. Intel’s architecture is has facilitated the process with three models to access the physical memory, discussed
in turn in the following sections:

¢ Real address mode memory model
¢  Flat memory model

e Segmented memory model

Real Address Mode Memory Model

The real address mode memory model was used in the Intel 8086 architecture. Intel 8086 was 16 processors, with
16-bit wide data and address buses and an external 20-bit-wide address bus. Owing to the 20-bit-wide address bus,
this processor was capable of accessing0 - (220 - 1) = 1MB of memory; but due owing to the 16-bit-wide address
bus, this processor was capable of accessing only [0 - (216 -1)] = 64KB of memory. To cross the 64KB barrier and
access the higher address range of 1MB, segmentation was used. The 8086 had four 16-bit segmentation registers.
Segmentation is achieved in real mode by shifting 4 bits of a segment register and adding a 16-bit offset to it, which
eventually forms a 20-bit physical address. This segmentation scheme was used until the 80386, which had 32-bit-
wide registers. This model is still supported to provide compatibility with existing programs written to run on the Intel
8086 processor.

Address Translation in Real Mode

Figure 1-12 depicts how an address translation is done in real mode using segmentation.

16-bit Segment
169 Segmentation

Unit

20-bit Physical
Address

16-bit Offset

Figure 1-12. Segmentation in real mode

13
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Flat Memory Model

In the 386 processor and later, apart from the general-purpose 32-bit registers, the designers have provided the
following memory management registers to facilitate more sophisticated and complex management:

e global descriptor table register (GDTR)
e load descriptor table register (LDTR)
e taskregister

In the flat memory model, the memory space appears continuous to the program. This linear address space
(i.e., address space accessible to the processor) contains the code segment, data segment, etc. The logical address
generated by the program is used to select an entry in the global descriptor table and adds the offset part of the logical
address to the segments base, which eventually is equivalent to the actual physical address. The flat memory model
provides for the fastest code execution and simplest system configuration. Its performance is better than the 16-bit
real-mode or segmented protected mode.

Segmented Memory Model

Unlike segmentation in real mode, segmentation in the segmented memory model is a mechanism whereby the linear
address spaces are divided into small parts called segments. Code, data, and stacks are placed in different segments.
A process relies on a logical address to access data from any segment. The processor translates the logical address into
the linear address and uses the linear address to access the memory. Use of segmented memory helps prevent stack
corruption and overwriting of data and instructions by various processes. Well-defined segmentation increases the
reliability of the system.

Figure 1-13 gives a pictorial overview of how memory translation takes places and how the addresses are visible
to a process.

Flat Model
Linear Address
Linear
Address
Space*
Segmented Model
Segments
i Linear
DOffset (effective address) Add S
ical pac
ess egment Selector -
| -
Real-Address Mode Model
Offset Spoce Divded
e - —
Into Equal
ical 1 | Sized Segments | _ _ |
Ah%gress Segment Selector -
— >t - -
* The linear address space ==
can be paged when using the
fiat or segmented model.

Figure 1-13. Memory models
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Memory Layout Using Segments

A multiprogramming environment requires clear segregation of object files into different sections to maintain the
multiple processes and physical memory. Physical memory is a limited resource, and with user programs it is also
shared with the operating system. To manage the programs executing in memory, they are distributed in different
sections and loaded and removed according to the policies implemented in the OS.

To reiterate, when a C program is loaded and executed in memory, it consists of several segments. These
segments are created when the program is compiled and an executable is formed. Typically, a programmer or
compiler can assign programs/data to different segments. The executable’s header contains information about these
segments along with their size, length, offset, etc.

Segmentation

Segmentation is a technique used to achieve the following goals:
e  Multiprogramming
e  Memory protection
¢  Dynamic relocation

Source code after compilation is segregated into five main sections/segments—CODE, DATA, BSS, STACK, and
HEAP—discussed in turn in the following sections.

Code Segment

This segment consists of instruction codes. The code segment is shared among several processes running the same

binary. This section usually has read and execute permissions. Statically linked libraries increase the footprints of the

executable and eventually the code segment size. They execute faster than dynamically-linked libraries.
Dynamically-linked libraries reduce the footprint of the executable and eventually the code segments’ size.

They execute more slowly because they spend time in loading the desired library during runtime.

Main.c foo.c

void main() void foo()

{ {
foo(); return;
return;

} }

All the generated machine instructions of the above code from Main.c and foo.c will be part of a code segment.

Data Segment

A data segment contains variables that are global and initialized with nonzero values, as well as variables that are
statically allocated and initialized with nonzero values. A private copy of the data segment is maintained by each
process running the same program.

A static variable can be initialized with a desired values before a program starts, but it occupies memory
throughout the execution of the program. The following program illustrates an example where the candidates for data
segments are used in the source code.
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Source code Main.c

static int staticglobal = 1;
int initglobal = 10;

int uninitglobal;

void main()

{
}

return;
The variables staticglobal and initglobal are part of the data segment.

Uninitialized/BSS Segment

BSS stands for “Block Started by Symbol.” It includes all uninitialized global variables as well as uninitialized static
local variables declared with the static keyword. All the variables in this section are initialized to zero by default.
Each process running the same program has its own data segment. The size that BSS will require at runtime is
recorded in an object file. BSS does not take up any actual space in an object file. Initialization of this section is done
during startup of the process. Any variable that requires initialization during startup of a program can be kept here
when that is advantageous. The following source code illustrates an example where the variables declared are part of a
BSS segment.

Source code Main.c

static int uninitstaticglbl;
int uninitglobal;
void main()

{
return;
}
The variables uninitstaticglbl and uninitglobal are part of BSS segment.
Stack Segment

The stack segment is used to store local variables, function parameters, and the return address. (A return address is
the memory address where a CPU will continue its execution after the return from a function call).
Local variables are declared inside the opening left curly brace of a function body, including the main() or other
left curly braces that are not defined as static. Thus, the scopes of those variables are limited to the function’s body.
The life of a local variable is defined until the execution control is within the respective function body.

main.c foo.c
void main() void foo()
{ {
int vari; int var3;
int var2 = 10; int var4;
foo();

}

The variables int variand int var2 will be part of the stack when function main() is called. Similarly, int var3
and int var4 will be part of the stack when function foo() is called.
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Heap Segment

The heap area is allocated to each process by the OS when the process is created. Dynamic memory is obtained from
the heap. They are obtained with the help of the malloc(), calloc(), and realloc() function calls. Memory from the
heap can only be accessed via pointers. Process address space grows and shrinks at runtime as memory gets allocated
and deallocated. Memory is given back to the heap using free(). Data structures such as linked lists and trees can be
easily implemented using heap memory. Keeping track of heap memory is an overhead. If not utilized properly, it may
lead to memory leaks.

Runtime Memory Organization

The runtime memory organization can be viewed In its entirety in the Figure 1-14. You can see that some portions of
memory are used by the operating system and rest are used by different processes. The different segments of a single
process and different segments belonging to other processes are both present during runtime.

High address

Available for heap growth

Math. lib*.
Library functions if I ath.o ( s0) Heap segment

dynamically linked Malloc.o (lib*.s0)

Heap( malloc(), calloc(), new )

Uninitialized variables
Static int I; BSS segment

Int glbl;

Initialized global/static variable

Read Write area int x = 10; Data segment
| ‘RO data ( Const String literals)

Read only area Const char” string = “hello”;

Library functions if Math.o ( lib*.a)

statically linked Malloc.o (lib*.a) Code/text segment

............................... Compiled code( A.exe)
Main.o , file.o

Auto variables for main()

- Stack

Available for stack growth

Reserved for OS

Figure 1-14. Runtime memory organization

Intricacies of a Function Call

When a function call is made, it involves lots of steps that are hidden to the user by the OS. The first thing done by
the OS is the allocation of a stack frame/activation record for the respective function call at runtime. When a control
returns to the caller after execution of the function, the allocated stack frame is destroyed. In result, we cannot access
the local variables of the functions, because the life of the function ends with the destruction of the respective stack
frame. Thus the stack frame is used to control the scope of the local variables defined inside a function.
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The allocated stack frame is used to store the automatic variables, parameters, and return address. Recursive or
nested calls to the same function will create separate stack frames. The size of the stack frame is a limited resource
which needs to be considered while programming.

Maintenance of the stack frame and the entities included inside it (local variables, return address, etc.) is
achieved with the help of following registers:

¢ base pointer/frame pointer (EBP): Used to reference local variables and function
parameters in the current stack frame.

e stack pointer (ESP): Always points to the last element used on the stack.

¢ instruction pointer (EIP): Holds the address of the next CPU instruction to be executed, and
itis saved onto the stack as part of the CALL instruction.

Steps to Make a Function Call

Let’s examine how a function call is made and the various steps involved during the process.

1. Push parameters onto the stack, from right to left.
0x200000000 main()
0Xx200000004 { a2 20)
0x200000084 %nt X = 10; param #1 (10)
0x200000089 int y = 20;
0x200000100 int z; Layout of stack at this point
0x200000104 z = add( 10, 20); < mmmme- CALL INSTR [ param #2 (20) ]
0x200000108 Z++; < mmmme- EIP [ param #1 (120) ]
0x200000110 }

2. Call the function.
The processor pushes the EIP onto the stack. At this point, the EIP would be pointing to the first byte after the
CALL instruction.

Layout of stack at this point

param #2 ( 20)

param #1 (10)

OLD EIP 0x200000108

3. Save and update the EBP.

e At this point we are in the new function.

e  Save the current EBP (which belongs to the callee function).
e  Push the EBP.

e Make the EBP point to the top of the stack:
mov ebp, esp
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EBP can now access the function parameters as follows:
8(%ebp) - To access the 1% parameter.
12(%ebp) - To access the 2°¢ parameter.
And soon...

The above assembly code is generated by the compiler for each function call in the source code.

Layout of stack at this point

A

----- current EBP
param #1 (10)

OLD EBP

e  Save the CPU registers used for temporaries.

e  Allocate the local variables.

int add( int x, int y)

int z;
Z=X+Y;
return z;

The local variable is accessed as follows:
-4( %ebp ), -8( %ebp ) etc..
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Layout of stack at this point

param #1 (10)

< mmmmm return address

OLD EBP < current EBP

Saved %reg

_ < ----- current ESP

4. Returning from the function call.

e  Release local storage.
e Byusing a series of POP instructions
e Restore the saved registers
e Restore the old base pointer
¢ Return from the function by using the RET instruction

Considering the temporal and spatial locality behavior exhibited by programs while executing, the stack segment
is the optimum place to store data, because many programming constructs—such as for loop and do while—tend to
reuse the same memory locations. Making a function call is an expensive operation as it involves a time-consuming
setup of the stack frame. Inline functions are preferred instead when the function body is small.

Memory Segments

In the previous sections, you saw various segments involved during the runtime of an application. The following
source code helps in visualizing and analyzing the formation of these segments during runtime. The program is
self-explanatory. It prints the addresses of all the segments and the address of variables residing in their respective
segments.

Source code Test.c

#include<stdio.h>

#include<malloc.h>

int glb uninit; /* Part of BSS Segment -- global uninitialized variable, at runtime it is
initialized to zero */
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int glb_init = 10; /* Part of DATA Segment -- global initialized variable */
void foo(void)
{
static int num = 0; /* stack frame count */
int autovar; /* automatic variable/Local variable */
int *ptr foo = (int*)malloc(sizeof(int));
if (++num == 4) /* Creating four stack frames */
return;

printf("Stack frame number %d: address of autovar: %p\n", num, & autovar);
printf("Address of heap allocated inside foo() %p\n",ptr foo);
foo(); /* function call */

int main()

{

char *p, *b, *nb;

int *ptr main = (int*)malloc(sizeof(int));
printf("Text Segment:\n");

printf("Address of main: %p\n", main);
printf("Address of afunc: %p\n",foo);

printf("Stack Locations:\n");

foo();

printf("Data Segment:\n");

printf("Address of glb init: %p\n", & glb_init);
printf("BSS Segment:\n");

printf("Address of glb uninit: %p\n", & glb uninit);
printf("Heap Segment:\n");

printf("Address of heap allocated inside main() %p\n",ptr main);
return O;

}

Output:

Text Segment:

Address of main: 00411131

Address of afunc: 004111CC

Stack Locations:

Stack frame number 1: address of autovar: 0012FE5C
Address of heap allocated inside foo() 003A2E78
Stack frame number 2: address of autovar: 0012FD70
Address of heap allocated inside foo() 003A2EB8
Stack frame number 3: address of autovar: 0012FC84
Address of heap allocated inside foo() 003A2EF8
Data Segment:

Address of glb init: 00417014

BSS Segment:

Address of glb_uninit: 00417160

Heap Segment:

Address of heap allocated inside main() 003A2E38
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Virtual Memory Organization

Multiprogramming enables many processes to execute concurrently at any given time. It is not necessary that these
processes be interrelated. The support is enabled by hardware (the memory management unit) and the operating
system. Virtual memory allows the operating system to use system resources optimally. The most important feature of
virtual memory organization is the protection of various processes from one another by the operating system.

The features of virtual memory include the following:

e  Physical organization
e Logical organization
e  Protection

e  Relocation

e  Sharing

In a multiprogramming environment, many processes share the main memory. A process as a whole sees the
main memory as a complete resource dedicated to itself (the process). But the operating system loads/keeps only that
portion of a program in memory that is currently required to be executed.

A Glimpse into a Virtual Memory System

Figure 1-15 illustrates how a virtual address space is mapped to a physical address. The main entities that take part in
this translation are MMU, TLB, and page tables, described in the next section.

MMU
S
o \ e

A

Physical Address

Physical
Memory

Y
Page Tables

Figure 1-15. Virtual memory system

Address Spaces

Memory space has to be shared between two entities:
e  Thekernel/OS

e  The user program
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By definition any program, whether an OS or a user program, is termed a kernel process orauser process
when loaded in memory.

Virtual Address Space

Virtual memory is a logical entity whereby a user process assumes that it is loaded. The address pertaining to this
virtual memory is called the virtual address space.

Figure 1-16 shows a typical scenario whereby a process assumes it is loaded. The virtual address space from
0 - 7FFFFFFE is being used to load the user process. The virtual address 0x7FFFFFFF - higher is used by the kernel.
When a program is loaded into memory, the respective process assumes that the whole user space is allocated for the
process.

Oxfififff
Kernel
Stack
Kernel Space
OxTFHF
Stack

Process add ress space
Data
0x00000000 Text

Figure 1-16. Process’s view of virtual address space

Figure 1-17 shows a typical scenario of how a kernel views virtual memory.

Kernel Memory

A v ~

Oxffffftf oxffffffff oxffffffff
Kernel Stack Kernel Stack Kernel Stack
OX7ftfffff OX7ffffff OX7fffffff
Stack Stack Stack
0x00000000 Text 0x00000000 Text 0x00000000 Text

Figure 1-17. Kernel's view of virtual address space
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A virtual address consists of

A virtual page number

A page offset field
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Virtual Page Number

Page Offset

31

Physical Address Space

The physical address space is the actual address in the main memory where the pages are loaded. Figure 1-18
illustrates a typical scenario of how a virtual address is translated into a physical address.

11

Virtual Page Number Page Offset
3 1
Y
[ Address Translation ]
Y Y
Physical Page Number Page Offset
3 1

Figure 1-18. Address translation process

Paging

Paging is one of the most important parts of virtual memory. This scheme allows the operating system to load
and unload the parts of pages of a process to any non-contiguous location of physical memory. The notion of
paging assumes that the main/physical memory is divided into equal and fixed size frames/page frames which can
accommodate pages of any process. Pages are basically parts of processes that are divided into equal and fixed size,

typically 1kb/4kb.

Figure 1-19 illustrates a paging scenario where pages of process A and process B are residing in various frames of

physical memory.
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Frame 0

PAGE 0 ] PAGE 0
Frame 1 «---""

PAGE 1 ] PAGE 1
Frame2 |[€--~~7~

PAGE 2 PAGE 2
Frame 3

PAGE 3 ] PAGE 3
Frame 4 <---"""

PAGE 4 PAGE 4
Frame 5

PAGE 5 PAGE 5

Process A’'s VM | | Physical memory | | Process B’s VM

Figure 1-19. Paging

The paging system typically addresses the following tasks:

1. Address Space Management: Responsible for allocating and managing the address space
of processes

2. Address Translation: Done by dedicated hardware in the MMU. It also takes care of
exception handling (such as page faults)

3. Memory Sharing: This is shown in Figure 1-19.

Page Table

The operating system maintains one separate page table for each process executing in memory. Referring to this
page table, it deduces whether a valid page is being accessed or some invalid page, in which case it generates a fault
exception. Figure 1-20 illustrates a typical page table that is referenced during address translation to get to an actual
physical address in memory.
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Page Table

Physical Memory

Virtual Page |
VALID

0

1

1

A 4
iy

Figure 1-20. Page table

Summary

SWAP DISK

This chapter has discussed relevant aspects of memory—in particular, memory classification and cache memory.
Aspects of cache memory that I have not discussed, such as performance optimization and the CPU generating
exceptions due to alignment issues, are not required in the current context. The most important section of this chapter
is the one on memory layout, which serves to strengthen the knowledge of the reader from a programming as well as

from a systems point of view.

The next chapter develops the basics of pointer variable concepts and other details such as memory allocation

and its usage.
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Pointer Basics

Like any other variable, you need to first understand the basics of pointer variables. The basics include declaration,
definition, and usage. This chapter explains the concept of pointer variables. The emphasis is on the usage of pointers
with the help of diagrams to visualize the concepts. This chapter also explains the inner details of memory allocation
and deallocation, and how pointer variables manipulate them.

Pointers by definition are variables used to store memory addresses of data or functions, unlike other data type
variables that are used to store only the value. As with any usual variable, a pointer takes space in memory. In the next
section, we will concentrate first on the concept of referencing/dereferencing of variables, as it will help visualize how
a pointer works.

What is an address of a variable?

Consider the following:

int x = 40;

0x00394768 ---> x=40

The drawing above shows how a variable x of type integer is used to store the value of 40. For a program, the
variable x is nothing but a storage location of some memory address. In the above case, we are storing the value of
40 at location 0x00394768, and this location is referred to by the variable x. This also means that any variable we
have used in our program refers to some address. If you remember from Chapter 1, there are code segments for
each program. The functions also share that part of the memory, and they are loaded at some other part of the code
segment itself.

In the above case, we are trying to store an integer value, but notice that a memory address is also a number or
value. What if we want to store that number in some other variable? If we want to store or access a memory address
(such as 0x00394768) in a variable, we need special variables called pointers.

Address of Operator

You may wonder about the method used to get the address of any variable used in a program. The “address of”
operator (&) returns the memory address of the operand. The address of operator is a unary operator, which is applied
to variables. The example below shows how the operator gets the address of the variable that is used to store a value.
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Source code. Ptrl.c

int main()

{

int var_int ;
printf("Insert data\n");
scanf("%d", &var_int);
return 0;

}

In the example above, the function scanf uses the “address of” operator (&) to get the address of the variable
var_int to store the value entered by the user, because the scanf function should know the address where the value
needs to be kept.

Retrieving the Address of a Variable

As mentioned earlier, data is stored in a memory location. The following program illustrates how to obtain the address
of the memory location or the address of the variable where data is stored.

Source code. Ptr2.c

int main()

{
int var_int = 40;
printf ("Address of variable \"var int\": %p\n", &var int);

}
Output:
Address of variable "var_int": 00394768
In the example above, we used the & operator to get the address of the variable.
If we extend the concept of address to a structure variable, where the structure variable itself contains many other

variables, we can retrieve their addresses with the help of the “address of” operator.

Source code Ptr3.c

struct node{

int a;

int b;

};

int main()

{
struct node p;
printf("Address of node = %p\n",8p);
printf("Address of member variable a = %p\n", &(p.a));
printf("Address of member variable b = %p\n", &(p.b));
return 0;

}
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Output:

Address of node = 003AFB0O
Address of member variable a = 003AFB0OO
Address of member variable b = 003AFB04

Notice in the output above that the address of the first member and the second member in the data structures
are very nearby. This means that for any number of member fields inside a structure, the addresses are allocated
sequentially or nearby as per their sizes.

Pointer Declaration

Now you know how an address can be retrieved via the “address of” operator. Next, let’s get a variable to store this
address. This particular variable, which is capable of storing and operating on addresses of variables, is called a
pointer variable. We will start with the declaration of the pointer variables. Below is the generic form through which
we declare the pointer variables:

Datatype* variable name;
Example 1: A pointer variable capable of pointing and storing addresses of primitive data types.
int* intptr, char* charptr
The declaration of pointer variables involves a special operator called a dereference operator (*) which helps the
compiler identify that it is a pointer variable. An associated data type informs the compiler about the kind of variable’s
data type address it holds. Both dereference and “address of” operators are unary in nature.

Example 2: Declaring pointers to aggregate data types (structures)

struct inner_node {

int in_a;
int in_b;
};
struct node{
int *a;
int *b;

struct inner_node* in_node;

};

In the example above, struct inner_node* in_node is a pointer variable, where struct inner node is a data type
and the pointer variable’s name is in_node. As seen above, we can have pointer variables as data members of structures.

Pointer Assignment

Like any other variable, pointer variables point to nothing when they are declared. It is the responsibility of the
programmer to make it point to a valid memory address before dereferencing it. We will look into the meaning of
dereferencing shortly.
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Making a pointer variable point to a particular memory address can be done in two ways.
1. By assigning the variable’s address with the help of an address of pointers (&).
int x = 40;

int *ptr;
ptr = &; // address of operator used to collect the address of variable x

0X00394768 > | | x =40 |

0X0012FF60 -—--> | pir = 0x00394768 |

2. By making the pointer variable point to a dynamically allocated memory from the heap.

int * ptr;
ptr = ( int *) malloc(sizeof(int) * count );

0x00394768 ---> | Memory from heap |

A

0X0012FF60 ---> | ptr = 0x00394768 |

In Case 1, the memory to store a value of 40 in variable x will be allocated during runtime, depending on the
scope of the variable. Recall the memory layout sections in Chapter 1.

In Case 2, the memory to store a value is created explicitly using the malloc call, which returns memory from the
heap area.

The programmer should keep in mind that any operation on a pointer variable should be done only if it is
pointing to a valid memory address; otherwise this will result in a segmentation fault. If the segmentation fault occurs,
it will lead the program to crash and eventually it will be stopped.

Size of Pointer Variables

The size of a variable is another important and critical aspect for a programmer. He should know how much a variable
consumes when it is used. The size of any pointer variable can be 32-bit or 64-bit, depending on the platform. If a
platform is 32-bit, the size of pointer variables (int *, char *, float * andvoid *)will be 4 bytes. In fact, pointer
variables that store the “address of” aggregate data types, such as arrays and structures, are also of size 4 bytes. Clearly,
the memory address size of a pointer variable is 32 bits long.

The source code listed below shows the memory size occupied by pointer variables of different kinds
(char *, int * etc.).
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Source code. Ptrd.c

#include <stdio.h>
#include <conio.h>

int main()

{
char c_var;
int i_var;

double d_var;

char *char_ptr;

int *int_ptr;

double *double ptr;

char_ptr = &c_var;

int_ptr = &i_var;

double_ptr = &d_var;

printf("Size of char pointer = %d value = %u\n", sizeof(char ptr), char ptr);
printf("Size of integer pointer = %d value = %u\n", sizeof(int ptr), int ptr);
printf("Size of double pointer = %d value = %u\n", sizeof(double ptr),double ptr);
getch();

}
Output:

Size of char pointer = 4 value = 4061659
Size of integer pointer = 4 value = 4061644
Size of double pointer = 4 value = 4061628

It is interesting to verify the size consumed by a pointer variable that is pointing to structure variables. The
following code illustrates this.

Source code. Ptr5.c

#include <stdio.h>
#include <conio.h>
struct inner_node

{
int in_a;
int in_b;
};
struct node{
int *a;
int *b;
struct inner node* in_node;
};
int main()

struct node *p;
int *arrptr;
int arr[10];
arrptr = arr;
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printf("Size of pointer variable (struct node*) = %d\n",sizeof(struct node*));
printf("Size of pointer variable pointing to int array = %d\n", sizeof(arrptr));
return 0;

}
Output:

Size of pointer variable (struct node*) = 4
Size of pointer variable pointing to int array = 4

In the example above, the size of the data type struct node* is 4 bytes and conforms to the fact that the size of a
memory address is always 4 bytes.

Pointer Dereferencing

Now that you can store and retrieve the address of a variable and store it to a pointer variable successfully, let’s think
about what you can do with this achievement. The pointer variable stores the address; to access the value stored at
that address you use the “value at” operator (* to be precise). This particular technique is called pointer dereferencing.
This is also called indirection in some texts. You will see the advantages of using pointer variables in the coming
sections.

Every variable is used to store a value, and this rule is also applicable for pointer variables. The value of a pointer
variable is the address of some memory location. Once we store a memory address in a pointer variable, we should be
able to find the value stored at this location. Let’s see how this is done with pointer dereferencing.

We need to use the dereferencing operator (*) to get the value stored at some memory location. This operator is
also called “value at” operator. Consider the following code:

int x = 10; /* value 10 stored at some memory location */

int *ptr = &x; /* now pointer variable "ptr" is pointing to the memory location x = 10 */
printf("Address of variable \"x\" = %p\n", 8x); /* prints the address of memory location x */
printf("Address of variable \"x\" = %p\n", ptr); /*prints the address of memory location x with the
help of "ptr" variable, whose value is memory location "x" */

printf("Value of variable \"x\" = %d\n", x); /* prints the value of variable x */

printf("Value stored at address ptr = %p is %d\n", ptr, *ptr); /* prints the value at memory
location of x with the help of value at operator (*ptr) */

Essentially the value of variable ptr and the value of the expression (&x) evaluates to one thing: a memory
location of variable X, since ptr is pointing to x right now.

To get the value stored at some memory location, we use the dereferencing operator (*). Therefore, the
expressions *ptr, *(8x), and x will evaluate to one and the same thing: 10.

Tip Before dereferencing any pointer variable make sure that it points to a valid memory address, as in Example A in
Figure 2-1; otherwise segmentation fault will occur. The cause of this error is due to an invalid memory access, as in
Example B of Figure 2-1.
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Example A
intx=10; ( h
X=10 0x12345678
. J/
A
(" N\
int *ptr = 8; Ptr = 0x123456 78 0x87654321
J
,m—m— = N\
int y = *ptr; : y=10 0x21436587
| :\ Y J
) ptr dereferenced appropriately as it
points to a valid address
Example B
p
int *ptr = 10; ptr = junk value ]
\\§

inty = *ptr; // At this point the program will crash, as we are trying to access a memory location which is not valid

Figure 2-1. Pointer variables pointing to a valid memory address and an invalid one

In the first line of Example B, we are trying to keep the value 10 at a location that is not valid since the variable ptr
is not pointing to a valid memory location.

To make this program work correctly we need to make the ptr variable point to a valid memory location. The
Jollowing code illustrates the appropriate method to do this:

int count = 1; //"count" variable will be used to allocate one memory location of size integer type
int *ptr = (int *) malloc ( sizeof(int) * count );

Now the ptr variable points to a valid memory location.

*ptr = 10; //At this point we are assigning a value to the memory location where "ptr" is pointing to
free(ptr) ; // At this point we freed the memory pointed to by the variable "ptr"

*ptr = 20; // Again at this point the program will throw a segmentation error, because we are trying
to access a memory which has already been freed.

Basic Usage of Pointer

You have seen how pointers are declared and initialized. We will now look into the most basic usage of pointers, or
rather the advantage of using pointers. Functions and parameters go hand in hand. With pointer variables we have a
lot of luxury to manipulate any memory value with the help of indirection. To understand this section, it would be a
good idea to refresh the lifecycle, scope of the variable, and stack segment from Chapter 1.

Pass by Value

Functions are capable of receiving information from the caller and returning results back to the caller. This technique
is the most basic form of information passing among functions.
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Function Signature
int function name( int parami, int param2, int param3..... );

In the declaration of the function above, the parameters int parami, int param2, and int param3 are called
input parameters. The return type of this function declaration is int, which tells that this function will return a value
of type integer to the caller function.

In this particular technique, only the values are being passed to the called function. After the values are passed,
these values are copied onto the respective stack of the called function. Similarly, the exact process is repeated for the
returned value of the called function.

void calling_function (void) Local copy of the calling_function

{

int t1, t2, t3;

t1 = 10; t=10
t2 = 20;

t3 = called_function(t1, t2); t2=20
) 3=30

int called function(int x, int y)

{ | Local copy of the called_function
int t1, t2, t3;

tl=x t=10

2 =y;

t3 = t1 + t2; 2=20

return t3;

} t3=30

Pass by Reference

This is another technique of passing information among functions. Pass by reference is used to pass the memory
address of variables rather than the value itself.

Function Signature
int* function_name( int* param);
In the function declaration above, the input parameter param is of int*, which is expecting to receive the address

of an integer variable from the calling function. And this function will also be returning the address of an integer
variable to the calling function.

34



CHAPTER 2 * POINTER BASICS

void calling_function (void) Local copy of calling_function

{

int t1;

int *t2; t=10 --0X12345678
t1 = 10;

t2 = called function(&t1); 12 = 0X87654321

}

int* called function(int* x)

{

i:JtE zii’ Local copy of called_function
int *t3;

t1 = x; 1 t1 = 0X12345678

t2 = 10;

t3 = (int*)malloc(sizeof(int)); ©2=20

t3 = *t1 + t2;

return &t3;

}

In the case above, only the address of a variable is passed to the called function, which then is copied to the stack.
This technique has two advantages as compared to the former technique.

1. Amount of data being copied: Although the copying of the parameter is carried out in this
case as well (i.e., the copying of the memory address), the amount of information that is
copied will always be 4 bytes. In the example above, the amount (size) of information that
is passed is the same.

Case 1: Pass by value

struct data

{

int x;

int y;

};

void func(struct data vi1)
{

struct data v2 = vi;

}

int main()

struct data var;
var.x = 10;
var.y = 20;
func( var );
return 0;

}

In the example above, the size of the variable struct data is 8 bytes. Since pass by value is used, 8 bytes are copied
onto the stack of the called function func.
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Case 2: Pass by reference

struct data

{
int x;
int y;
5
void func(struct data* vi)
{
struct data *v2 = vi;
}
int main()
{

struct data var;
var->x = 10;
var->y = 20;
func(& var );
return 0;

}

In the example above, the size of the parameter is 4 bytes since we passed the pointer to the structure variable.

2. Accessibility of variables: The pass by reference technique makes it possible to
manipulate the local variables of a function from a different function.

Pointers and Constants

You may have heard of the keyword const and used it in programming. A normal variable use of const has one
meaning. The value assigned during initialization will never change throughout the lifetime of the variable in its
scope. However, the use of the pointers and constants together can have a varied affect.

Constant Pointer Variable

A constant pointer is a pointer variable that is meant to point to only one memory address. Therefore, the value of the
pointer variable cannot be changed.

Declaration of constant pointer: <pointer type*> const <variable name>

Example: int* const ptri, char* const ptr2;

Here are the rules for using constant pointers.

1. Constant pointer variables must be initialized during declaration.

Source code. Ptr6.c

int main()

{

int num = 10;

int* const ptri = &num; //Initialization of const ptr
printf("Value stored at pointer = %d\n",*ptr1);

}
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2. Once initialized, the const pointer should not point to any other memory address.

Source code. Ptr7.c

#1.
#2.
#3.
#4.
#5.

#6.
#7.
#8.

int main()

{

int numi = 10;
int num2 = 20;

int* const ptri = &numi; //Initialization of const ptr

ptri = &num2; // can’t do this
printf("Value stored at pointer = %d\n",*ptri);

}

In the program above, the constant pointer variable ptr1 is initialized at line #5 and is pointing to the memory

Mem addr values
0x123456 numi =10
0x654321 num2 = 20
Ox111122 Const Ptr1 = 0x123456
Mem addr values
_ v 0x123456 numi =10
0x654321 num2 = 20
= 0x111122 Const Ptr1 = 0x654321

address of the variable int numi. Atline #6, the program is trying to make the constant pointer variable ptr1 point to
the memory address of the variable int num2. When this particular piece of code is compiled, the compiler will throw
a compilation error.

Pointer to Constant Variable

A pointer to a constant variable is a concept where the value of a pointer variable (i.e., a memory address of a
non-constant variable) should not modify the value at that particular memory address. Different pointers could point
to that specific variable.
Declaration of constant pointer: const<pointer type*> <variable name>

Example: const int* ptr1, const char* ptr2;
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Source code. Ptr8.c

#1. int main()

#2. {

#3. int numi = 10;
#4. const int* ptri;

Mem addr values

#5. int* ptr2;
#6. ptr1 = &numi;

0x123456 numi =10

#7. *ptr1 = 20; //can’t do this

#8. numl = 20; //can be done ox111122 ptr1 = 0x123456
#9. printf("Value stored at pointer = %d\n",*ptr1); L 1 |
#10. }

Mem addr values

0x123456 | numt'= 20

0x111122 ptr1 = 0x123456

When we try to compile the code above, the compiler will throw a compilation error because of line #7.

Constant Pointer to a Constant Variable

A constant pointer to a constant variable is a concept where a pointer variable is constant; in other words, the pointer
variable will only point to a memory address where it is initialized, and later the pointer should not point to any other
memory location. Additionally, the value stored at that particular address should not be modified by that particular
pointer. In summary, we cannot change the value of a pointer variable and we cannot modify the value stored at that
address.

Declaration of constant pointer: const<pointer type*> const <variable name>

Example: const int*const ptri, const char* const ptr2;

Source code. Ptr9.c

#1. int main()

#2. {

#3. int numi = 10;

#4. int num2 = 20;

#5. const int* ptri = &numi;

#6. int* ptr2;

#7. *ptr1 = 20; //cannot change the value that the const pointer is pointing to
#8. numl = 20; //can be done

#9. ptri = &num2; //cannot change the constant pointer’s value (i.e. - constant pointer should //not
point to any other memory address once initialized

#10.printf("Value stored at pointer = %d\n",*ptr1);

#11. }

When we try to compile the code above, the compiler will throw a compilation error because of line #7 and line #9.
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Multilevel Pointers

Until now, you have seen and worked with one level of indirection. You may have thought about the possibility of
multilevel indirection. As you saw earlier, pointer variables are able to store the memory address of other variables,
and it is possible to extend this notion further. The address of a pointer variable itself can be stored in any other
pointer variable.

The variable used for storing an address of a pointer variable is called a pointer to pointer variable. We can extend
this more, such as pointer to pointer to pointer variable and so forth.

Pointer to a Pointer Variable

We will now discuss the second level of pointer indirection. Consider the following piece of code:

int a = 10;
int *ptr = &a;

In this code, we have declared an integer variable a and an integer pointer variable ptr, which is pointing to that
integer variable. Now we will see how to store the address of this integer pointer variable into another pointer variable.
To be able to store the address of a pointer variable into another variable, we need a different kind of variable.

Declaration: <data type >** <variable_name>

The number of asterisks depends on the level of indirection. We keep on increasing the number of asterisks as
the level of indirection increases.

int a = 10;
. Mem addr values
int *ptr = 8&a;
int **ptr1 = &ptr;
0x123456 a=10
Source code. Ptr10.c X
int main()
{ 0x111122 ptr = 0x123456

int num = 10;
int *ptr = &num;
int **mptr = &ptr; 0x111133 | ptr1 =0x111122
printf("Value of var num = %d\n", num);
printf("Value of var num = %d\n", *ptr);
printf("Value of var num = %d\n", **mptr);

printf("Address of var num = %p\n", &num);
printf("Address of var num = %p\n", ptr);
printf("Address of var num = %p\n", *mptr);

printf("Address of pointer var ptr = %p\n",8&ptr);
printf("Address of pointer var ptr = %p\n",mptr);
printf("Address of pointer var mptr = %p\n",&mptr);

return 0;
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Understanding a Cryptic Pointer Expression

Understanding pointer expressions becomes cryptic due to the many ways a pointer address can be dereferenced. In
this section, we will focus on segregating the equivalent expressions and thus understanding these expressions more
easily. You may find this section iterative, but it is a good idea to collate all of the information together.

We will begin by considering the case of one level of indirection. In all further discussions, we will consider an
integer variable with its value initialized to 10 and its storage at memory location 0x0001. We will see equivalence of
these expressions with two scenarios (referencing and dereferencing).

Referencing
int val = 10;

Varname/Addr Value
val/0x0001 10

int *ptrvar = &val;

Varname/Addr Value Varname/Addr Value
val/0x0001 10
ptrvar/0x0005  0x0001

Since the pointer variable ptrvar is storing the address of the variable val, and the expression 8val yields the
same value, both of these expressions are equivalent. Therefore, we can say ptrvar == &val.

Dereferencing

As you know, to dereference we use the “value at” (*) operator. If we try to use this operator on a pointer variable, it
will yield the value stored at the memory address that is stored in that location.

Value at (*)

me/Addr

lue
10

Value Varname/Addr
val/0x0001

Vari
ptrvar/0x0005  0x0001
*ptrvar == 10

Also, in the section referenced above, we saw that ptrvar == 8val. We can use the “address of” operator
expression to yield the same value.

*(8val) == 10

Therefore, the following expressions are equivalent: *ptrvar == *(&val) == 10.
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Now, let’s do the same exercise with two levels of indirection. We will use the same two variables that we used
above, and a new variable to store the address of an integer pointer variable.

a. int val = 10;
b. int *ptrvar = &val;
c. int **ptrptrvar = 8ptrvar;

Let’s start with referencing.

Referencing

For the first two variables, the schematic memory diagram will be the same as what we drew earlier in the one level
indirection case. For the third variable that is a pointer to a pointer variable of type integer, refer to the following
schematic diagram.

int **ptrptrvar = 8ptrvar;

Varname/Addr ~ Value Varname/Addr Value Varname/Addr Value
val/0x0001 10
ptrvar/0x0005  0x0001
ptrptrvar/0x0009  0x0005

The variable ptrptrvar is a pointer to pointer variable that is storing the address of a pointer variable. Therefore,
we verify the expression ptrptrvar == &ptrvar.

Dereferencing

In this section, we will apply the value at operator to the top most level and then we will see how the meanings of the
expressions change.

*ptrptrvar == ptrvar == 0x0001
Since ptrptrvar == &ptrvar, we can obtain the same value by another equivalent expression.
*(&ptrvar) == 0x0001

Therefore, *ptrptrvar == ptrvar == *(&ptrvar) == 0x0001.

Now, we will apply the second level of indirection: **ptrptrvar, this expression will yield the value 10. We can
write ¥*¥ptrptrvar == 10.

In the expression above, if we try to replace the *ptrptrvar part, we can substitute its equivalent expression
mentioned above to get the same result. Therefore, **ptrptrvar == *(ptrvar) == *(*(&ptrvar) ) == 10.

The same concept that we discussed above is explained with the help of Figure 2-1.

Figure 2-2 gives a visual representation (with reference to the example above) of how a pointer to a variable and
pointers to pointer variables are used. To gain the indirect access to an actual variable, we can use multiples of a
“value at” operator (&) or combination of a “value at” operator (&) and the “address of” operator (*).
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Mem addr Value

0x123456 a=10

*(&a)

| 0x111122 ptr = 0x123456

&ptr

*ptr

*(&ptr)

**(&ptr)

| 0x111123 mptr = 0x111122

&mptr

*(&mptr)

*mptr

**mptr

**(&mptr)

**x(&mptr)

Figure 2-2. Pointer expressions

Summary

In this chapter we covered the basics of pointers and their usage. The goal of this chapter is that you understand the
concept of referencing and dereferencing. You should concentrate more on this concept with multilevel indirections.
Pointers with structure variables are covered in very minimalist form in this chapter; an upcoming chapter is
dedicated solely to understanding pointers when they are used for structure type variables.

In the next chapter, we will look into more advanced concepts of pointer arithmetic. We will also cover the use of
pointers with arrays.
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Pointer Arithmetic and Single
Dimension Arrays

Arithmetic operations can be performed on most, but not all variables. Fortunately, these operations can also be
performed on pointer variables. This is one of the most important uses of pointers, in addition to referencing and
dereferencing the memory addresses.

This navigation is achieved with the help of some limited arithmetic operations provided by C language.

When visualizing memory as laid out in consecutive blocks, the natural thought process points us to the array
data type because an array’s indices are laid out consecutively, too. The usage of pointer arithmetic comes along
with the arrays of different data types. In this chapter, you will learn the details of pointer arithmetic and its usage
with arrays.

Array Memory Layout

The array is one of most basic programming constructs. I am sure that many readers have used it in their programs
already. An array by definition is a collection of similar data types, and when it is laid out in memory, they take
consecutive memory locations that can be accessed with the help of their indices.

Below is the memory dump of an integer type array, which specifies the array name a along with an index,
its memory location, and the value at that location.

Array Name - Memory Address - Value:

a[o] 4455240 o0 a[1] 4455244 1 a[2] 4455248 2 a[3] 4455252 3 a[4] 4455256 4
a[5] 4455260 5 a[6] 4455264 6 a[7] 4455268 7 a[8] 4455272 8

a[9] 4455276 9 a[10] 4455280 10 a[11] 4455284 11 a[12] 4455288 12

a[13] 4455292 13 a[14] 4455296 14 a[15] 4455300 15 a[16] 4455304 16

a[17] 4455308 17 a[18] 4455312 18 a[19] 4455316 19 a[20] 4455320 20

a[21] 4455324 21 a[22] 4455328 22 a[23] 4455332 23 a[24] 4455336 24

a[25] 4455340 25 a[26] 4455344 26 a[27] 4455348 27 a[28] 4455352 28

a[29] 4455356 29 a[30] 4455360 30 a[31] 4455364 31
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The code below represents the memory dump shown above.

Source code Ptrl.c

#include <stdio.h>

int main()
{
int iArray[32];
int i;
for(i = 0; i<32; i++)
{
iArray[i] = i;
}
for(i = 0; i<32; i++)
{
printf("a[%d] %u %d ",i, &iArray[i], iArray[i]);
if((i% == 0) & (i != 0))
printf("\n");
}
getch();

If the memory dump shown above is analyzed closely, you can see that each neighboring array index shares
consecutive memory locations. For example, the 0" array index, a[0], has memory location of 4455240, and the first
array index, a[1], shares the next neighboring memory location of 4455244, and so on.

If we subtract a previous consecutive memory location from the latter (&a[1] - &a[0] = 4), we get 4 as a result.
We get the value of 4 because an integer takes the size of 1 word (32 bits/4 bytes) in the memory. Therefore, the
variable a[0] is placed in the memory from the address 4455240 to 4455243.

Similarly, the next index, a[1], is laid out from next available memory location of 4455244 to 4455247.

The equivalent memory dump with hexadecimal representations is shown below:

0x0043FB74 0Ob 00 00 00 Oc 00 00 00 0d 00 00 00 Oe 00 00 00 Of 00 00 00 10 00 00 00 11 00 00
0012 000000130000001400000015000000 ....ceovvvmrummnuiiiiiiiiiciieinienes

0x0043FBAO 16 00 00 00 17 00 00 00 18 00 00 00 19 00 00 00 1a 00 00 00 1b 00 00 00 1c 00 00
00 1d 00 00 00 1e 00 00 00 1f 00 00 00

The highlighted circle above points to the a[1]" index of the array at location 0x0043FB4C, which starts after the
fourth byte from the start of array index and the value at that address is 1. If you examine it carefully, you can find how
the value of 1 (0x0001) is stored at that location. The format used here is called 1ittle endian.

Endianness

Endianness describes the format/layout in which data will be stored in memory. Load/Store instructions read data
from memory and write data back into memory from registers after some instructions are executed on the data.

While storing and loading, the CPU must take care of the endianness of the underlying format that the
hardware follows.
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Endianness is of two kinds: big and 1ittle. The size of a word is 4 bytes/32 bits. Let’s assume that we intend
to store a value of 0x1234 into a variable. You will see below how this particular value gets stored in either of the
situations.

As shown below, we have 4 bytes in place (1, 2, 3, 4) for 0x1234. In case of the big endian, the most significant
byte gets stored in the first available location, and then the next most significant byte gets stored in next available
location, and so on.

0x0014FE40 1
0x0014FE42 2
0x0014FE43 3
0x0014FE44 4

Big endian
In the case of 1ittle endian, the least significant byte gets stored in the first available location, and then the next
least significant byte gets stored in the next available location, and so on.

0x0014FE40
0x0014FE42
0x0014FE43
0x0014FE44

—_Nw s

Little endian
Analyze the output of the following program to get a better understanding of the concept of endianness.

Source code Ptr2.c

#include <stdio.h>
#define BIG_ENDIAN O
#define LITTLE_ENDIAN 1
int endian()

{
short int word = 0x0001;
char *byte = (char *) &word;
return (byte[0] ? LITTLE_ENDIAN : BIG_ENDIAN);
}
int main(int argc, char* argv[])
{
int value;
value = endian();
if (value == 1)
printf("The machine is Little Endian\n");
else
printf("The machine is Big Endian\n");
return 0;
}

Pointer Arithmetic

This section introduces the concept of pointer arithmetic, and this will form one of the very important building blocks
in understanding the functionality of pointers.
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The operators that can be used to perform pointer arithmetic are as follows:

Note that the division ( / ) and multiplication ( * ) operators are not allowed here.

As explained in the first section, arrays are laid out consecutively in memory. Each array element resides
consecutively in memory blocks that can be accessed with an array index. Consider the picture below to visualize the
notion of pointer arithmetic.

Value 1 2 3 4 5 6 8
Addr 0x8000 0x8004 0x8008 0x8012 0x8016 0x8020 0x8024
A A A A A A A
int *ptr

Since every index location is a memory address that holds the value of some data type, we can make a pointer
variable of similar data type to point to a particular index.
For example, int arr[10]; // array of type integer which can hold 10 integers.

int* ptr; // an integer to pointer
ptr = arr; // This will point to first index of the array element.

Pointer Addition

The + operator is used to perform addition. Consider the figure above where the pointer variable ptr is pointing to
the 0™ index of the array at location 0x8000. We can perform pointer addition in the following way:

ptr = ptr + 1;

This line makes the variable ptr point to the next integer location of 0x8004. This arithmetic operation on
pointers is of a special kind. Generally, one would expect that the value of ptr variable after the addition would be
0x8001 as per the normal additive rule. But, in the case of pointer arithmetic, any addition to a pointer variable makes
the pointer variable point to the address of the numeric value in the expression which is evaluated by multiplying the
numeric value and the size of data type. In the example above, we are dealing with arrays and an integer pointer. Each
integer variable takes four bytes in memory.
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Oth Index 1st Index
Bytel | Byte2 | Byted | Byte4 | Byte! | Byte2 : Byte3 | Byted
0x8000 | 0xB001 | 0xB002 | 0x8003 | 0x8004 | 0xB005 | 0x8006 |  0x8007
y w— ' ' y w— ' '

ptr

Whenever pointer variable points to a data type, it will always point to the location of first byte of the data type’s

address in

the memory location.

And whenever a pointer variable is incremented by one, it will point to the next integer’s location (i.e., it will jump
to the start of the next integer’s location, four bytes ahead in this case, and not to the next byte’s location).

Source code Ptr3.c

#include <stdio.h>

int main(int argc, char* argv[])

{
int i = 0;
int data = 9;
int *iptr;
char *cptr;
iptr = &data;
cptr = (char*)8data;
printf("value of data = %d hex value = %x\n", data, data);
printf("Address of data = %p\n", 8data);
printf("Integer pointer pointing at %p\n", iptr);
printf("Character pointer pointing at %p\n", cptr);
printf("Printing address of all the four bytes of variable int data\n");
for(i = 0;i<4;i++)
printf("address = %p value = %x\n",cptr, *cptr);
cptr++;
}
return 0;
}

Output:

value of data = 9 hex value = 9

Address of data = 0039FADS

Integer pointer pointing at 0039FAD8

Character pointer pointing at 0039FAD8

Printing address of all the four bytes of variable int data

address = 0039FAD8 value = 9

address = 0039FAD9 value = 0

address = 0039FADA value = 0

address = 0039FADB

value = 0
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From the output above, you can easily see that int variable data with value 9 is spanning through four bytes,
starting from address 0x0039FAD8 to 0X0039FADB. The char pointer is used here to illustrate this fact.

So, what makes pointer variable to jump to next fourth byte from its current location, rather than jumping to next
immediate byte’s location?

Let’s examine the assembler’s output from following statements:

a)Ptr=Ptr+1;

Assembler output:

mov eax, DWORD PTR _Ptr$[ebp]
add eax, 4
mov DWORD PTR _Ptr$[ebp], eax

Since the statement is trying to increment the pointer variable’s value and point it only to the adjacent integer
variable, the second line in the assembler’s output add eax, 4 reveals that pointer is added a value of 4 and that’s
why it points to the next fourth byte.

b) Ptr = Ptr + 2;

Assembler output:

mov eax, DWORD PTR _Ptr$[ebp]
add eax, 8
mov DWORD PTR _Ptr$[ebp], eax

Again, add eax, 8 reveals that the pointer is being added a value of 8 and not 2. The compiler performs the
following conversion during the pointer arithmetic:

<Pointer-variable> = <Pointer-variable> + <increment value >

TO

<Pointer-variable> = <Pointer-variable> + <size of data type of Pointer variable > * <increment

value>

Note Adding an offset to pointer variable is very much legal operation, but adding a pointer variable to another
pointer variable is not allowed.

Ptri = Ptr1l + Ptr2; // illegal

Pointer Subtraction

The - operator is used to perform subtraction. Consider figure below, where pointer variable ptr is pointing to the first
index of the array at location 0x8004; we can perform pointer subtraction as shown.
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0Oth Index 1st Index
Bytel | Byte2 | Byted | Byted | Byte! | Byte2 : Byte3 | Byted
0x8000 | 0xB001 | 0xB002 | 0x8003 | O0x8004 | 0xB005 | 0xB006 |  0x8007
y w— ' ' y w— ' '

ptr=ptr-1; otr

Theline ptr = ptr -1makes the variable ptr point to the previous integer location, 0x8000.
Assembler output:

mov eax, DWORD PTR _iptr$[ebp]
sub eax, 4
mov DWORD PTR _iptr$[ebp], eax

Since the statement is trying to decrement it only to adjacent integer variable, the second line in assembler’s
output of sub eax, 4 reveals that the pointer is subtracted by the value of 4 and that is why it points to the previous
4th byte, 0x8000.

The compiler performs the following conversion during the pointer arithmetic.

<Pointer-variable> = <Pointer-variable> - <decrement value >

TO

<Pointer-variable>
value>

<Pointer-variable> - <size of data type of Pointer variable > * <decrement

Subtracting Two Pointer Variables

Consider the following code snippet:

Source code Ptra.c

int main(int argc, char* argv[])

{
int data[4] = {1,2,3,4};
int *iptra;
int *iptr2;
int val;
iptr1 = &data[o];
iptr2 = 8data[1];
val = iptr2 - iptri;
printf("Distance between the two addresses = %d\n", val);
return O;

}
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Output:

Distance between the two addresses = 1

When two pointer variables are pointing to separate locations within consecutive memory addresses of an array
and then they are subtracted from each other, the difference represents the number of elements present between the
two pointer variables.

In code snippet above , int* ptri is pointing to the 0" index and int*ptr2 is pointing to the first index. When
both the variables are subtracted from each other, it evaluates to 1 because only one element is present between these
two consecutive locations.

Comparing Two Pointer Variables

Consider the following code snippet:

Source code Ptr5.c

#include <stdio.h>
int main(int argc, char* argv[])
{
int data[4] = {1,2,3,4};
int *iptri;
int *iptr2;
iptr1 = 8data[o0];
iptr2 = 8data[1];
if(iptr1 == iptr2)
printf("Address of iptrl is equal to address of iptr2\n);
if(iptr1 > iptr2)
printf("Address of iptrl is greater than address of iptr2\n”);
else
printf("Address of iptri is smaller than address of iptr2\n");
return 0;

The pointer variables can be tested for equality and inequality, as shown above.

Arrays Explored

To understand the usage and correlation between pointers and arrays, we need to explore the meaning of some
typical syntaxes that go along with array variables.

To reiterate, an array is a set of consecutive memory locations that stores the values of the data type that is
augmented in its definition.
int arr var[100];

To access the individual data elements within the array, we use subscripts notation, as follows:

Array name [subscript] / arr var [ i ].

The variable name of an array is equivalent to the address of the 0 location of that particular array. So we may
say that the expression below is equivalent and yields the same result: the address of the 0™ index of the array.
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arr_var ~ 8arr_var [ 0 ]

If we increment it with an offset, we can iterate through the consecutive addresses of data elements within that
array, as follows:

arr_var + 1 // address of 1st index
arr_var + 2 //address of 2nd index location.

To generalize this, we could say
arr_var + offset ~ &arr var [ offset ] » expression refers to address
AND

*( arr_var + offset ) ~ arr var[ offset ] » expression refers to value

Source code Ptr6.c

#include <stdio.h>
int main(int argc, char* argv[])

{
int arr[4] = {1)2)3)4};
printf("Address of oth index = %p\n", arr);
printf("Address of oth index = %p\n", 8arr[0]);
return 0;
}
Output:

Address of 0th index = 003AFAAC
Address of 0th index = 003AFAAC

As you can see, the name of an array variable acts like a pointer to the 0® index of the array. If we add offset, then
it behaves like a pointer variable.
Source code Ptr7.c

#include <stdio.h>
int main(int argc, char* argv[])

{
int arr[4] = {1,2,3,4};
int *iptr;
iptr = 8arr[o0] + 2; //pointing to the 2nd element
printf("Address of 2nd index = %p\n", iptr);
iptr = 8arr[2]; //pointing to the 2nd element
printf("Address of 2nd index = %p\n", iptr);
return 0;

}
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Output:
Address of second index = 003CF83C
Address of second index = 003CF83C

Note thatarr var[ i ] isan element at the i location of the array variable. Therefore *( arr var + i ) will
yield us the same element as the previous expression, an element at i index.
Source code Ptr8.c

#include <stdio.h>
int main(int argc, char* argv[])

{
int arr[4] = {1,2,3,4};
printf("Address of oth index = %p\n", arr);
printf("Address of oth index = %p\n", 8arr[0]);
return 0;

}

Output:
Address of 0th index = 003AFAAC
Address of 0th index = 003AFAAC

Value at oth index =
Value at oth index

[

Note Although the name of an array variable represents the address of 0" index for that array, it is forbidden to
change its value (in other words, make it point it to some other location).

int arr var[ 5];

arr_var = arr_var + 1; // this is not allowed since this expression is trying to shift the pointer
location via array name to the next integer variable’s address.

arr_var ++; //illegal statement, as it is trying to change the starting address of an array variable

Dynamic Array

There are situations in which we don’t know the number of elements that needs to be stored in an array at the time of
definition. During runtime, these elements can increase or decrease in number. So, if a programmer intends to store
these elements in an array, the array needs to be dynamic so its size can be changed during runtime.

You have learned how an array is declared:

int arr stat[10];

This declaration makes sure that the size of array is known at the compile time, which eventually can be called
static in nature. The size of this kind of array cannot be changed during runtime.

Pointers can help us manipulate memory regions and achieve the intended behavior such that memory could
be increased or decreased as needed. To achieve this, we use pointers and heap. The malloc() function call helps
us allocate memory in heap. Let’s take a small code snippet to visualize the scenario of an on-demand memory
requirement.
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Requirement: When a user inserts data, the memory gets adjusted in size and the data element should get stored
appropriately. When user deletes data, the memory should get freed.
Initial assumptions: There is no data to store.

Source code Ptr9.c

#include <stdio.h>
#include <malloc.h>

int *ptr = NULL;

static int count = 0;
void insert(int data)

{
#1 if(ptr == NULL)
#2
#3 ptr = (int*)malloc(sizeof(int)); //allocating space from heap for 1st data
#4 ptr[o] = data; //accessing memory address with array notation to store data
#5 }
#6 else
#7 {
#8 ptr = (int*)realloc(ptr, sizeof(int)*(count+1)); //Increasing the size of memory to
#9 //accomodate new integer
#10 ptr[count] = data; //accessing memory address with array notation to store data
#11 }
#12 count++;
}
void show()
{

int i = 0;

for(i = 0; i< count; i++)

{

printf("%d\n", ptr[i]);

}

}

int main(int argc, char* argv[])

{

int c = 0;
int data;
while( c != 3 )

{

printf("Insert choice\n");
printf("1 to insert data\n");
printf("2 to Show data\n");
printf("3 to quit data\n");
scanf("%d",8&c);

if( ¢ == 3)
break;
switch(c)
{
case 1:

printf("Data = \n");
scanf("%d",8&data);
insert(data);

break;
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case 2:
printf("Data in array\n");
show();
break;
}
}

return 0;

In the code snippet above, the insert(int data) function (line #1 through #5) inserts the first element. The
memory is allocated using malloc() function call and the pointer variable ptr is made to point to the memory
location returned from the heap. In this code, only one data element is added at a time, so only one memory space is
required for the specific data.

Line numbers #6 through #12 increases the space allocated to incorporate the new data element. At line #8, the
realloc() function call is used that actually creates the new space for the data, which will be pointed by variable ptr.
The realloc() function call has additional parameter, which it takes to increase the size.

Variable count is used to keep track of the number of elements currently inserted. Note that the size to be
allocated should be one extra than the currently inserted element.

Array of Pointers

Array of pointers by definition is meant to store pointer variables in its consecutive location. Every location in this
array will contain memory address of some data in memory.

Declaration of array of pointer -- <data type*> <variable name> [ no. of elements ]

Ex.int * arr ptr[10] // pointer to 10 integer variable

Source code Ptrl10.c

#include <stdio.h>
int main(int argc, char* argv[])

{
int arr[4] = {112)314};
int* arr ptr[4];
int i;
for(i = 0; i<4; i++)
{
arr ptr[i] = arr + i
}
printf("Address of (arr) array element\n");
for(i = 0; i<4; i++)
{
printf("Address of %d index = %p\n",i, arr + i);
}
printf("Value of (arr ptr) array of pointer element \n");
for(i = 0; i<4; i++)
{
printf("Value of %d index = %p\n",i, arr ptr[i]);
}
return 0O;
}
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Address of (arr) array element

Address of 0 index
Address of 1 index
Address of 2 index
Address of 3 index
Value of (arr_ptr)
Value of 0 index =
Value of 1 index =
Value of 2 index =
Value of 3 index =

If we analyze the output above, the array of pointers arr_ptr contains the address of each element of the array

= 003CFD64

= 003CFD68

= 003CFD6C

= 003CFD70

array of pointer element
003CFD64

003CFD68

003CFD6C

003CFD70

arr.
Array pointers arr_ptr Array of integers arr
Address of Address of
each element Values each element Values

004CFD68 || 003CFD68

004CFDGC || 003CFD6C

0043CFD6 || 003CFD64 » 003CFD64 1
»| 003CFD68 2
»| 003CFD6C 3
»| 003CFD70 4

004CFD70 |[ 003CFD70

Pointer to Array

By definition, it is a pointer variable that points to an array.
Declaration of pointer to array -- <data type> ( * <variable name> ) [ no. of elements ]
int ( * ptr2arr ) [ 4]; // it is a pointer to an array of 4 integers
Like any other pointer variable, it can point to only one location at a time.

Source code Ptrll.c

#include <stdio.h>
int main(int argc,
{

int arr[4]

char* argv([])

= {1)2)3)4};

int (* ptr2arr)[4];

int i;

int *ptr =
ptr2arr =
for(i = 0;

{

arr;

darr;

i<4; i++)

printf("address of array = %p\n", arr + i);

}
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printf("Value at = %d\n",*(ptr2arr[o] + 1));
for(i = 0; i<4; i++)

{
printf("Value at %p = %d\n",(ptr2arr[o] + i),*(ptr2arr[0] + 1i));
}
return O;
}
Output:

address of array = 001BFB90
address of array = 001BFB94
address of array = 001BFB98
address of array = 001BFB9C
Value at 001BFB90 = 1

Value at 001BFB94
Value at 001BFB98
Value at 001BFB9C =

2
3
4

In the code snippet above, ptr2arr is a pointer to array, where the array that it is pointing to is capable of storing
four data elements of integer type.

Summary

This chapter explored the details of pointer arithmetic. You learned how pointer arithmetic helps in iterating over
the array index. Subsequent chapters show different kinds of iterations you can perform with the help of pointers,
enabling you to iterate and traverse through dynamic data structures such as linked lists.

The next chapter covers the use of pointers on strings. You will see how the pointers can be used to manipulate
the string values.
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Pointers and Strings

As software developers, we could be writing code for a user-application or complex device drivers, and we use
strings very frequently. A string by definition is a sequence of characters. It is stored as an array of bytes. A special
string terminating character is used to mark the end of a string. The terminating character is denoted by the escape
sequence, ‘\0’

This chapter explains how a character array or string is represented in memory and how memaory is allocated to
store character strings. This chapter focuses on the use of pointers as a tool to manipulate the strings. Later sections
discuss the common operations performed on these strings in detail.

The following are the basic operations that can be performed on strings:

1. Comparing two strings.
2. String copying.
3. Finding lengths of strings.
4. Finding a substring within a string
Let’s start the chapter by defining a string variable with an initializer in different ways. We will discuss the

meaning of these definitions later.

char *strptr = "Hello";

char strarrayi[] = "Hello";

char strarray2[6] = "Hello";

char strarray3[4] = { 'a', 'b', 'c', 'd" };

String Layout in Memory

Typically, a character array or string will be stored in contiguous memory locations, as depicted in Figure 4-1.

Data S T R | N G \0’

Y VY

Index 0 1 2 3 4 5 6

Figure 4-1. String’s memory layout
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Note that there are six data elements in the array, but it takes one extra space to store the terminating character.

char arri[7] = "STRING";

Data

A
(7]
—
=~
=
D

“\0’

A

o
-
N
w
-
3]
o

Index

In the array definition above, arr1 is holding seven characters. The total length of the string is six, the last index
(sixth) is used for storing the terminating character.

char arr2[9] = "STRING";

Data —>» S T R | N G \0’

Index —>» 0 1 2 3 4 5 6 7 8

In the array definition above, arr2 is capable of holding nine elements, but it is initialized to a string of six
characters. The sixth index is occupied by a terminating character and the rest of the indices (seventh and eighth) are
unused.

Accessing String Elements

String elements are accessed in a fashion similar to any other array. Array index and pointer arithmetic can be used to
access the array elements.

Source code. Stringl.c

#include <string.h>
int main(int argc, char* argv[])

{
char* str = "Hello Pointer";
int i = 0;
for( i = 0; i< strlen(str); i++)
{
printf("%c",str[i]);
return 0;
}

In the code above, array indices are used to access the characters in a string. The function strlen(char*) is used to
return the length of the string. This returned length does not account for the last null character that is always part of
any string.

The code below uses a temporary character pointer variable char* ptr to traverse through the entire string. This
example shows how a pointer can be used to access every character from the string.
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Source code. String2.c

#include <stdio.h>
int main(int argc, char* argv[])

{
char* str = "Hello Pointer";
char* ptr = str;
while(*ptr != '\0")
{
printf("%c",*ptr); //access characters
ptr++; // traversing to next character position
}
return 0O;
}

Dynamic Memory Allocation

The method of allocating dynamic memory to strings from the heap area is similar to that of any other array.
Programmers should be careful while allocating the memory for a sequence of characters to be stored within an array
for a string because an extra null character is required to terminate it at the end.

Source code. String3.c

#include <string.h>
#include <malloc.h>
int main(int argc, char* argv[])

{
char* src = "Hello Pointer";
char* dst= NULL;
dst = (char*)malloc(sizeof(char) * (strlen(src) + 1));
memcpy(dst,src, strlen(src));
return 0;
}

String Literals and Constants

When strings are defined, the compiler automatically concatenates an escape sequence of '\0’ at the end of the string.
String constants are also termed as string literals in some literature. A most interesting fact about string constants is
that the memory is allocated to them from the RO section. The RO section is a read-only data area where string literals
and constants are stored. The lifetime of the data stored in this section is throughout the lifecycle of the program
execution and so is the life span of this variable too.

Source code. String4.c

#include <stdio.h>
int* foo(void);
int main(int argc, char* argv[])

{
int *m = foo();
printf("Printing local value of function foo= %d\n", *m);
return O;

}
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int* foo(void)

{
int i = 10;
return 8i;
}
Output:

Printing local value of function foo = -858993460

In the code snippet above, the address of function foo() is stored in the variable m of the calling function main().
The calling function tries to print the value by dereferencing the pointer.

The output of the print statement is a garbage value because the pointer of the called function is pointing to
amemory location that is not valid anymore. The memory area for variable i ceases to exist once the stack for the
corresponding function goes out of life after the function call.

Note In the program String1.c, it may happen that the printf() statement might print the value of 10 even though
the memory region is not valid. Readers should try to reason this behavior.

Hint: Look at the stack life cycle during program execution when a function call is made.

Until now, you saw that once a function call is made and the control returns back to the callee function, the local
variable of the called function cannot be accessed from the calling function. In the below code snippet, you will see an
exception in this rule where it is possible to access the local variable from the calling function even after the function
call is made.

Source code. String5.c

#include <stdio.h>
char* foo(void);
int main(int argc, char* argv[])

{
char *m = foo();
printf("Printing local value of function foo = %s\n", m);
return 0;
}
char* foo(void)
{
char* str = "STRING";
return str;
}

Output:
Printing local value of function foo = STRING

Unlike the program String4.c, this program will always print the "STRING". Although the variable char* str is
local to the function foo(), it is accessible within all scopes. As explained earlier, the variable char* str is a string
literal or constant, and the memory is allocated from the RO section, which is persistent throughout the life cycle of
program execution.

Another important characteristic of string literals is their nature of being constant. Once a string literal is
initialized, its value cannot be changed at a later stage.
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A string literal is equivalent to the const char* variable name, where a pointer can be modified but not the value
that it is pointing to.

Source code. String6.c

#include <stdio.h>
int main()
{
char *strliteral = "ADD";
strliteral[o] = 'B'; //Modifying value of Oth index, NOT ALLOWED,
//program will generate segmentation fault
strliteral++ ; //Allowed
return 0;

String Operations

As strings are capable of holding characters, there are a variety of operations that are performed on them. The
common ones are as follows: string copy, string concatenation, string comparison, finding string length, etc. To get
comfortable with these string operations, the next subsection elaborates on some basic implementations of these
operations.

Handling String Inputs

As mentioned earlier, care should be taken to allocate enough memory area to store the characters in the string.
Note that “%s” is the format used in the scanf () function to store the input string to a variable.

Source code. String7.c

#include <stdio.h>

#include <malloc.h>

int main()

{
char arrstr[6];
char* strptr;
printf("Input hello\n");
scanf(":%s", arrstr);
strptr = (char*)malloc(sizeof(char)*10);
printf("Input hello\n");
scanf("%s", strptr);

String Iteration

Iterating over each and every index of any string variable is the most basic process that is performed to read or
manipulate the data. The below code snippets explain how to read a string by reading each index one by one.
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Source code. String8.c

#include <stdio.h>
#include <malloc.h>
int main()
{
char arrstr[6];
char* strptr;
printf("Input hello\n");
scanf("%s", arrstr);
printf("String received = %s\n",arrstr);

}

Source code. String9.c

#include <stdio.h>
#include <malloc.h>
int main()
{
char arrstr[6];
char* strptr;
printf("Input hello\n");
scanf("%s", arrstr);
strptr = arrstr;
while(*strptr != '\0")
{
printf("%c",*strptr);
strptr++;

The code above shows how a variable char* strptr is initialized and points to the first location of the character
array. The code loops until the value pointed to by the variable is not equal to the terminal character ‘\0’. Also, during
each iteration, the variable is incremented to the next location with the help of pointer arithmetic strptr++.

String Length

String length by definition is the number of characters a string variable has stored. Since you know that string
variables contain an extra terminating character, the net length of the string should only contain the sum of all the
data in the strings and it should not add the count for the terminating character.

int str length(char* str)

{
int string_length = 0;
char* ptr = null;
ptr = str;
while(*ptr != '\0")

string length++;
}

return string length;
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The code above iterates through the string until it reaches the terminating character ‘\0’. While iterating, it
increments an integer variable to calculate the number of characters stored in that particular string.

String Copy

A string copy is an operation where data from one memory location pointed to by a string variable is copied to
another memory location which is pointed to by another memory location.

Assuming that the dest_str variable has sufficient memory allocated for the new data that needs to be copied,
the below code explains how a string can be copied to another memory location.

void str_copy(char* dest_str, const char* src_str)
char* stemp = src_str;
char* dtemp = dest_str;
while(*stemp != '\0")

*dtemp = *stemp;

stemp++;
dtemp++;
}
*dtemp = '\0';

The code above iterates through the source string until it reaches the terminating character ‘\0’. While iterating,
it copies every character to the destination string and it also increments the pointers for both the strings (source and
destination). In the end, it copies the terminating character ‘\0’ to the destination string.

String Concatenation

Concatenation of a string is an operation where a given string needs to be concatenated with another input string.
Concatenation by default is implemented as concatenation at end. The code below explains how the concatenation
can be implemented.

Source code. void str_cat(char* deststr, const char* srcstr)

{

char* dtemp = deststr;
char* stemp = srcstr;
//reach till end of the deststr
while(*dtemp != "\0")

dtemp++;

}

while(*srcstr != '\0")

{
*dtemp = *srcstr;
dtemp ++;
srcstr ++;

*dtemp = '\o';
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The code above iterates through the destination string until it reaches the terminating character ‘\0". Then, while
iterating through the source string, it copies every character to the destination string and also increments the pointers
for both the strings (source and destination). In the end, it copies the terminating character ‘\0’ to the destination string.

Array of Strings

An array of strings contains pointers to arrays of characters or strings. Every string stored inside the array can be of
different length. Figure 4-2 illustrates how an array of strings can be visualized. Each index contains a pointer to a
string of variable length.

Oth » S T R | N G \0’
0 1 2 3 4 5 6
1st » T H A R 0’
0 1 2 3 4
2nd > J E E P S 0
0 1 2 3 4 5
3rd » B 0 X \0’
0 1 2 3

Figure 4-2. Memory layout of array of strings

Declaration of Array of Strings

A declaration of array of strings can be done in three ways. The declaration is governed by two important factors: first
is the size of the array and second is the capacity of each index to hold the data. There are three ways to declare arrays
of strings. The first two are using array notation and the last one is uses complete dynamic memory allocation. You
will see all three of them with the help of examples. This section explains the array notation usage when size of the
array and capacity of each index to hold the characters are known at compile time. To understand the memory layout
and the declaration, an example of an array of strings declaration is used below. Let’s assume that we have following
declaration in the program:

char str arr[6][7];
In the above declaration of an array of strings, each row is capable of storing a string of up to six characters in
length. The last index is used for storing the terminating character. Figure 4-3 explains the memory layout of the array

of strings. You can see that all the indices are storing data of variable length. In this case, the length of string cannot be
more than six since the last character will be the terminating character.
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0 1 2 3 4 5 6
0 E G R E T \0’
1 | B | S 0’
2 M Y N A 0
3 | 0 R A \0’
4 M U N | A \0’
5 B U L B U L 0

Figure 4-3. Memory layout of array of strings

Source code. Stringl0.c#include <stdio.h>

int main(int argc, char* argv[])

{
char arr[6][10] = {
"EGRET",
"IBIS",
"MYNA"
"TORA",
"MUNIA",
"BULBUL"
};
int i,
for(i = 0; i< 6; i++)
{
printf(" %d - %s\n", i, arr[i]);
return 0;
}
0 - EGRET
1 - IBIS
2 - MYNA
3 - IORA
4 - MUNIA
5 - BULBUL

The code above declares an array of strings that is capable of storing six strings whose maximum capacity to store
characters is nine. The variable in the code snippets is initialized with the values. The for loop iterates over each index
and prints the index and its corresponding string.

Now let’s see how the array notation is used when size of array is not known and the capacity of each index to
hold the characters is known at compile time. Let’s assume that we have the following declaration in the program. In
the method shown below, with the help of an array we have defined the number of pointers it can accommodate. But
during runtime, each pointer is pointing to variable length strings. During iteration, each array index is made to point
to dynamically allocated memory of variable length where the actual string will be stored.

char* str _arr2[10]; //An array of ten strings, where each character pointer at any particular
index is capable of storing strings of varying lengths.
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Source code. Stringll.c

#include <stdio.h>
#include <string.h>
#include <malloc.h>
int main(int argc, char* argv[])

{
char* arr[6];
char tempstring[30];
int i;
for(i = 0 ; i< 6;i++)
{
printf("Insert data\n");
scanf("%s",tempstring);
arr[i] = (char*)malloc(sizeof(char)*(strlen(tempstring) + 1));
strcpy(arr[i], tempstring);
}
printf("Data in array");
for(i = 0; i< 6; i++)
{
printf(" %d - %s\n", i, arr[i]);
}
freestring(arr, 5);
return 0;
}
freestring(char arr[], int length)
int i;
for( i = 0; i <= length; i++)
{
free(arr[i]);
}
}
Insert data
EGRET
Insert data
IBIS
Insert data
MYNA
Insert data
IORA
Insert data
MUNIA
Insert data
BULBUL
Data in array
0 - EGRET
1 - IBIS
2 - MYNA
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3 - IORA
4 - MUNIA
5 - BULBUL

The freestring(char arr[], int length) method takes the address of a character array and its length. The
code shown above has only assigned (dynamic allocation) space for the character strings during each iteration and it
is pointed to by character pointers that are stored at each index of the array. So, in the freestring() method, every
dynamically assigned memory is freed/deallocated during each iteration.

Now let’s see the third way of declaring arrays of strings when size of array and capacity of each array index
to hold the data is not known at compile time. This method of declaration is also known as a pointer-to-pointer
declaration. Let’s assume that we have the following declaration in the program:

char** dynamic_str;

Figure 4-4 illustrates the memory layout of the array of strings when pointer-to-pointer declaration is used. The
reader can see that the data stored in the memory with respect to each index is of variable length.

Oth » S T R | N G \0’
0 1 2 3 4 5 6
1st » T H A R \0’
0 1 2 3 4
2nd » J E E P S 0
0 1 2 3 4 5
3rd » B 0 X \0’
0 1 2 3

Figure 4-4. Memory layout of a pointer-to-pointer declaration

In the code below, we have used a different technique to store the array of strings. With the help of pointer to
pointer to character, we have first created space to store the pointer, then for that pointer we have allocated space from
the heap to store the string. From the second iteration onward, we have reallocated the memory to store the pointer
and then allocated space from the heap to store the new string.

This method gives us an advantage over the two previous methods in such a way that not only can it store
variable length strings, but also the number of pointers can be increased dynamically.

Source code. Stringl2.c

#include <stdio.h>
#include <string.h>
#include <malloc.h>
int main(int argc, char* argv[])
{
char** arr = NULL;
char tempstring[30];
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int i,

for(i = 0 ; i< 6;i++)

{
printf("Insert data\n");
scanf("%s",tempstring);
if(arr == NULL)

{
arr = (char**)malloc(sizeof(char*));
}
else
{
arr = (char**)realloc(arr, sizeof(char*)*(i+1));
}
arr[i] = (char*)malloc(sizeof(char)*(strlen(tempstring) + 1));
strcpy(arr[i], tempstring);
}
for(i = 0; i< 6; i++)
{
printf(" %d - %s\n", i, arr[i]);
}
freestrmemory(arr, 5);
return 0;
}
void freestrmemory(char** arr, int length)
{
int i;
for( i = 0; i<=length; i++)
{
free(arr[i]);
}
free(arr);
}
Insert data
EGRET
Insert data
IBIS
Insert data
MYNA
Insert data
IORA
Insert data
MUNIA
Insert data
BULBUL
0 - EGRET
1 - IBIS
2 - MYNA
3 - IORA
4 - MUNIA
5 - BULBUL
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Freeing memory in the above situation is a little tricky. Below are some basics steps that need to be followed to
free the memory.
1. TIterate on each row of the array.
a. While visiting each row, free the respective memory that is holding the string.

2. Once iterating through the array finishes, free the allocated memory that is holding all the
pointers to the strings.

Figure 4-5 illustrates how the freeing steps take places. As explained above, first the iteration over the index takes
place while iterating over each index we need to free the respective array. In the figure, this step is shown using a
dashed line. After the completion of this step, the memory area of all the indices needs to be freed. And in the figure,
this step is shown using the bold oval shape.

Oth =~ s | T | R | NG| o T,
\ 7
e | 0| 2 | 3 | 4|5 |6 [
1t > T | H | A | R | WO
o | 1| 2| 3| 4
2nd » J | E| E| P | s |
o | 1t | 2] 3| 4]s
3rd » B | 0 | x |
o | 1t | 2| 3

Figure 4-5. Freeing steps in case pointer to pointer usage for array of strings

Summary

In this chapter, we covered one of the most important aspects of pointers. There are many other string functions such
as finding substrings, string reversal, trim at beginning, trim at end, etc. that were not covered in this chapter. Readers
may try their hands on other library functions to gain command of manipulating strings.

Chapters 3 and 4 were focused on single-dimensional arrays and strings. In the next chapter, you will look into
multi-dimensional arrays and learn how pointers help in manipulating them.
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Pointers and Multidimensional Arraw

Multidimensional arrays are one of the most important programming constructs in any programming language.
From 2D, 3D, and onward, arrays are considered to be multidimensional. There are various syntaxes in C that are
used to access multidimensional arrays. These syntaxes can sometimes take a very cryptic form and become difficult
to understand. This chapter gives insight into the memory layout of multidimensional arrays and the ways the array
indices are accessed with the help of pointers.

Before you start reading this chapter, you should keep in mind that some of the source code listed in this chapter
outputs memory addresses. When you execute these programs on your device, the output with respect to the memory
address may differ. The difference in output for memory address can be due to the use of different compilers and the
underlying hardware. But you should not worry much about this difference because only the range of the addresses
will change.

Array Layout

A 2D array can be visualized as a stack of 1D arrays, as shown in Figure 5-1. Each 1D row is laid out linearly in
memory.

COLUMNS |

|
]
0,0 0,1 0,2 0,3

L]
0 III 10 | 11 12 13
W III 20 21 22 23
S

IEI 30 | 31 32 33

Figure5-1. A 2D array

As depicted above, the 0" row is laid out first, then the 1% row, and so on.
The source code below illustrates how a two-dimensional array is accessed. In the code, the expression
<variable_name>[row|[column] ( data[i][j] ) is used.
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Source code. MultiDiml.c

int main(int argc, char* argv[])

{
int data[5][5];
int i, j;
for(i = 0; i<5;i++)
{
for(j = 0; j<5; j++)
datali][3] - -1;
}
}
return 0;
}
Pointer to 2D Array

To understand the relation of pointers with multidimensional arrays, you need to get a clear understanding of array
syntax and its meaning. Let’s examine the meaning of following syntaxes.

Meaning of Syntax in a 1D Context

The following sections cover the syntax for a 1D array.

Specifying the Name of the Array Variable

Let’s assume that we have a 1D array called int arr[10]; If we just specify the name of the array variable, it is
equivalent to the address of 0" element.

arr = starting of the oth element

Array Arithmetic
<Array variable name> + offset

This expression results in the address of the element that is at a distance of offset from the 0® element.

Accessing the Value at Location

To access the value at different locations or indexes, we use subscript notation. The use of subscripts, the meaning of
syntax, and the value the expression yields slightly changes when it comes to multidimensional arrays. In this section,
you will see methods of accessing the value at any particular location in a multidimensional array in detail.

To refresh the usage of subscript notation with a single dimension array, let’s reiterate its concept. If arr[i] ==
if[arr] == *(arr+i), then we could access the i element from the beginning of the array. All these expressions will
yield the value at the i® index location of the array.

Meaning of Syntax in a 2D Context

The following sections cover the syntax for a 2D array.
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Specifying the Name of the Array Variable

When the name of a variable is specified, it yields an address in the case of a 2D array. So, assuming int arr[5][5], the
variable named arr is just the name of an array variable. In case of a 2D array, specifying the name of an array will
yield the address of the Oth row (which is a 1D array). And, adding an offset to the variable name will yield the starting
address of the i row. We can see the same result with the help of the following code snippet.

Source code. MultiDim2.c

#include <stdio.h>
int main(int argc, char* argv[])

{
int data[5][5];
int i, j;
int count = 0;
for(i = 0; i<5;i++)
{
for(j = 0; j<5; j++)
data[i][j] = count++;
}
}
printf(“Starting address of the array %p\n”, data);
for(i = 0; 1 <5 ; i++)
printf(" %dth row location = %p\n", i, data[i]);
printf(“Loc %d,1 = %p\n”, &data[i][0]);
}
return 0;
}
Output:

Starting address of the array 0046F904

oth row location = 0046F904
Loc 0,1 = 0046F904
1th row location = 0046F918
Loc 1,1 = 0046F918
2th row location = 0046F92C
Loc 2,1 = 0046F92C
3th row location = 0046F940
Loc 3,1 = 0046F940
4th row location = 0046F954
Loc 4,1 = 0046F954

In the code above, each row (which is itself a 1D array) is accessed with the help of a variable name and the 1%
index (i.e., datal[i]).

Therefore, the expression <variable_name> + index == < variable_name >[index] will yield the starting address of
the i row.

Example: arr +i==arrli]
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Arithmetic on an Address of an Array

For the expression <variable name>[i] + offset, we are adding the offset of the type that this object can hold. Since this
is an integer array, four bytes are added to the base address of the array. Eventually, this will lead to the location of
the second column in the same row. The code below illustrates how the above expression can be used to access each
column of individual rows.

Source code. MultiDim3.c

#include <stdio.h>
int main(int argc, char* argv[])

{
int data[5][5];
int i, j;
int count = 0;
for(i = 0; i<5;i++)
{
for(j = 0; j<5; j++)
{
data[i][j] = count++;
}
}
for(i = 0; i<5;i++)
{
printf(" %d row = %p\n",i, data[i]);
printf("Columns\n");
for(j = 0; j<5; j++)
printf("%d = %p, ",j, data[i] + j);
}
printf("\n");
}
return 0O;
}
Output :

0 row = 002AFD08

Columns

0 = 002AFD08, 1 = 002AFDOC,
1 row = 002AFD1C

Columns

0 = 002AFD1C, 1 = 002AFD20, 2
2 row = 002AFD30

Columns

0 = 002AFD30, 1 = 002AFD34, 2
3 row = 002AFD44

Columns

0 = 002AFD44, 1 = 002AFD48, 2
4 row = 002AFD58

Columns

0 = 002AFD58, 1 = 002AFD5C, 2 = 002AFD60, 3 = 002AFD64, 4 = 002AFD68,

N
n

002AFD10,

w
n

002AFD14,

S
I

002AFD18,

002AFD24, 3

002AFD28, 4

002AFD2C,

002AFD38, 3 = 002AFD3C, 4 = 002AFD40,

002AFD4C,

w
"

002AFD50,

S
1

002AFD54,
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Value at the Location

In a 2D array, to access the value at the i row and j column, we specify it as follows:
<array var name>[row][column]
where row and column are indices.

For example: arr[i][j];

We can also specify it with pointer notation. Since we know that arr[i] == Address of ith row, if we add index j to
this location, it will result in the j* column of this particular row (arr[i] +j). So, the address of the arr/[i][j] element can
be obtained using &arr/[i][j] or (arr[i] +j).

To obtain the value of the i row and j* column, we can use the “value of” operator on both expressions above, as
in *(&arr[i][j] ) or *( arr[i] +j). Therefore we get arr[i][j] == *( &arr[i][j] ) or *( arr[i] +j ) -- Expression 1.

Also, in the context of a 1D array, the address of arr[i] = &arr[i] or (arr + i) value at the i" location can be obtained
as follows:

arr[i] == *( &arr[i] ) == * (arr + 1 ) -- Expression 2
So, from the Expression 2, we can substitute the value in Expression 1 and thus obtain
*(Carr[ i] +J ) ==*( *(arr +1 ) + j )

There is a minor difference you need to understand about how the compiler interprets the expression while
dealing with multidimensional arrays. In the case of a 1D array, *( arr + i ) will yield the value at the i index while the
same expression will yield the address of i row in the case of 2D arrays.

As stated earlier, a 2D array is a stack of one-dimensional array of pointers; we can visualize it as follows:

0 1 2 3
Address of 0" Row
4 5 6 7

Address of 15t ROW
8 9 10 11

Address of 2" ROW
12 13 14 15

Address of 3 ROW

We can use an array of pointers to access the array elements. Given int arr[5][5]; we can write int (*arrptr)[5] = arr;
The code below illustrates how to reach the base of the address of each single dimensional array.

Source code. MultiDim4.c

#include <stdio.h>
int main(int argc, char* argv[])
{

int data[5][5];

int i, j;
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int count = 0;
int (*aptr)[5];
for(i = 0; i<5;i++)

{
for(j = 0; j<5; j++)
{
data[i][]j] = count++;
}
}
aptr = data;
for(i = 0; i <5 ; i++)
{
printf("%dth row = %p\n",i, *aptr++);
return 0;
}
Output:

0th row = 0036F74C
1th row = 0036F760
2th row = 0036F774
3th row = 0036F788
4th row = 0036F79C

*Note: Under OS X (Xcode) on a Mac, the following results are returned:

oth row = ox7fff5fbff8e0
1th row = ox7fff5fbff8fg
2th row = ox7¥ff5fbff908
3th row = ox7fff5fbff9ic
4th row = ox7fff5fbff930

In the code above, an array of pointers is used to point to the base address of each row (i.e., *aptr).
The code below illustrates how the values of 2D array can be accessed with the array of pointer variables.

Source code. MultiDim5.c

#include <stdio.h>
int main(int argc, char* argv[])
{

int data[5][5];

int i, j;

int count = 0;

int (*aptr)[5];

for(i = 0; i<5;i++)
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{
for(j = 0; j<5; j++)
data[i][]j] = count++;
}
}
aptr = data;
for(i = 0; 1 <5 ; i++)
{
for(j = 0; j<5; j++)
printf("%d,%d = %p val = %d \n",i, j, (*aptr + j), *(*aptr + j));
printf("\n");
aptr++;
}
return 0;
}
Output:

0,0 = 0048FA94 val =
0,1 = 0048FA98 val =
0,2 = 0048FA9C val =
0,3 = 0048FAAO val =
0,4 = 0048FAA4 val =
1,0 = 0048FAA8 val =
1,1 = 0048FAAC val =

oauvlT b~ W N KB O

In the code above, the array of pointers points to the base address of each row (i.e., *aptr). Once the base address
of a 1D array is reached, the second index can be used as an offset to access the individual elements of the array.
So (*aptr + j) yields the address of the i row and j column. And *(*aptr + j) yields a value at the address of the
i row and j" column.

Accessing the Indices with a Pointer Variable in the Case of 2D Array

The idea here is to access the 2D indices with the help of a pointer variable. This can be done in similarly to how the
single dimension array is accessed with a pointer variable. To do so, we need to assign the address of the individual
row to the pointer variable.

Source code. MultiDi6.c

#include <stdio.h>
int main(int argc, char* argv[])
{

int data[5][5];

int i, j;
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int count = 0;

int (*aptr)[5];
int *dataptr;
for(i = 0; i<5;i++)

{
for(j = 0; j<5; j++)
data[i][]j] = count++;
}
}
aptr = data;
for(i = 0; 1 <5 ; i++)
{
printf("Address of %d row = %p\n", 1i,(*aptr + i));
dataptr = (*aptr + i*5);
for(j = 0; j<5; j++)
printf("%d,%d = %p val = %d \n",i, j, dataptr, *(dataptr));
dataptr++;
}
printf("\n");
}
return 0;

In the code above, the address of each row is assigned to the integer pointer int * dataptr.
dataptr = (*aptr + i*5);

Then, the integer pointer is dereferenced to obtain the value at each index until the end of each row using
*(dataptr) and incrementing to reach the index of that row using dataptr++.
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3D Array Layout

Similar to 2D array, a 3D array can be thought of or visualized as a stack of arrays, but with an exception that here each
stack element is a 2D array.

COLUMNS
] 0 Stack of 2D array
R 0,0 Stack of 1D array
0
w 000 00,1 0,02 0,03
S
L 1,0
0,1,0 0,1,1 01,2 01,3
2,0
0,2,0 0,2,1 0,2,2 0,2,3
1
0,0
1,0,0 1,0,1 1,0,2 1,0,3
1,0
1,1,0 1,11 1,12 1,1,3
2,0
1,2,0 1,21 1,2,2 1,2,3

In a linear view, 3D array is laid out as follows:

00 [ 0O | OO | OO [OT (O[O |01 |o02]02]02]02]|10]10]|10 | 10
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3D Array Basics

A 3D array is specified as follows with the help of three indices. Assuming that elements of the 3D array are integers
and the dimensions are 5, 5, 5, we can define a variable as

int data[5][5][5];
The source code below illustrates how accessing of array elements in a 3D array is done.

Source code. MultiDim7.c

#include <stdio.h>
int main(int argc, char* argv[])

{
int data[3][3][3];
int i, j, k;
int count = 0;
for(i = 0; i<3;i++)
{
for(j = 0; j<3; j++)
for(k = 0; k <3; k++)
{
data[i][j][k] = count++;
}
}
}
for(i = 0; 1 <3 ; i++)
{
for(j = 0; j<3; j++)
{
for(k = 0; k <3; k++)
{
printf("%d%d%d= %d ",i,7,k,data[i][j]1[k]);
printf("\n");
}
printf("\n");
return 0;
}
Output:

000= 0 001= 1 002= 2
010= 3 011= 4 012= 5
020= 6 021= 7 022= 8

100= 9 101= 10 102= 11

110= 12 111= 13 112= 14
120= 15 121= 16 122= 17
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200= 18 201= 19 202= 20
210= 21 211= 22 212= 23
220= 24 221= 25 222= 26

Understanding 3D Array Expressions and their Meaning

The following sections cover 3D array expressions.

Specifying the Name of the Array Variable

Let’s assume that we have a 3D array declared as int data[5][5]/5]. The variable name of this array will yield the
address of the 0" row. Since in the context of a 3D array every row contains a 2D array, this is also an address of the 0"
row of a 1D array and an address of the 0% element of a 1D array (0, 0, 0).

Source code. MultiDim8.c

#include <stdio.h>
int main(int argc, char* argv[])

{
int data[3][3][3];
int i, j, k;
int count = 0;
for(i = 0; i<3;i++)
{
for(j = 0; j<3; j++)
for(k = 0; k <3; k++)
{
data[i][j][k] = count++;
}
}
}
printf("oth row of 3d array = %p\n", data);
printf("oth row of 2d array = %p\n", data[o0][0]);
printf("oth row of 1d array = %p\n", 8data[o0][0][0]);
return 0;
}
Output:

oth row of 3d array = 0043F798
oth row of 2d array = 0043F798
oth row of 1d array = 0043F798

<variable name> == address of the 0% row of 3D array
<variable name>[0][0] == address of the o*" row of 2D array

&<variable name>[0][0][0] = address of the o*" element of 1D array
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Array Arithmetic

The expression below yields results of the address of the element whose location is at a distance of the offset from the
0™ element.

<Array variable name> + offset
Keep in mind that there are three levels of indirection while working with a 3D array. At the first level, we see a
3D array as an array of 2D arrays So, if we add an offset at this level, it will add as many offsets as the size of the

2D arrays.

Source code. MultiDim9.c

int main(int argc, char* argv[])

{
int data[3][3][3];
int i, j, k;
int count = 0;
for(i = 0; i<3;i++)
{
for(j = 0; j<3; j++)
for(k = 0; k <3; k++)
{
data[i][j][k] = count++;
}
}
}
for(i = 0; i<3;i++)
{
for(j = 05 j<3; j++)
for(k = 0; k <3; k++)
{
printf("%d%d%d=%d addr %p ", i,j,k, data[i][j][k],&data[i][j][k]);
printf("\n");
}
printf("\n");
printf("Index value address\n");
for(i = 0; i<3; i++)
{
printf("row %d addr = %p\n",i, data+i);
}
return 0;
}
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Output:
Index value address

000=0 addr 003AF8BC 001=1 addr 003AF8CO 002=2 addr 003AF8C4
010=3 addr 003AF8C8 011=4 addr 003AF8CC 012=5 addr 003AF8DO
020=6 addr 003AF8D4 021=7 addr 003AF8D8 022=8 addr 003AF8DC

100=9 addr 003AF8E0 101=10 addr 003AF8E4 102=11 addr O003AF8E8
110=12 addr 003AF8EC 111=13 addr 003AF8F0 112=14 addr 003AF8F4
120=15 addr 003AF8F8 121=16 addr 003AF8FC 122=17 addr 003AF900

200=18 addr 003AF904 201=19 addr 003AF908 202=20 addr 003AF90C
210=21 addr 003AF910 211=22 addr 003AF914 212=23 addr 003AF918
220=24 addr 003AF91C 221=25 addr 003AF920 222=26 addr 003AF924

row 0 addr = 003AF8BC
row 1 addr = 003AF8EO
row 2 addr = 003AF904

POINTERS AND MULTIDIMENSIONAL ARRAYS

Asyou can see in the output, the value of indices 0,0,0 - row 0 addr, 100 - row 1 addr, 200 - row 2 addr are the same.

The expression data[i] == data + i is equivalent and will lead us to an index of the i row of the 2D array.

At the second level, we see a 2D array. Each 2D array is a stack of 1D arrays. We reach the second level by
dereferencing the expression at level 1. Therefore, *(datafi] + i) == datal[i][j] is equivalent and will point to a 2D array.
And also, *data[i] will yield base address of the i 2D array address of each element in the 3D array.

Source code. MultiDim10.c

#include <stdio.h>
int main(int argc, char* argv[])
{

int data[3][3][3];

int i, j, k;

int count = 0;

for(i = 0; i<3;i++)

{
for(j = 0; j<3; j++)
for(k = 0; k <3; k++)
{
data[i][j][k] = count++;
}
}
}
for(i = 0; i<3;i++)
{

for(j = 0; j<3; j++)

for(k = 0; k <3; k++)
{

printf("%d%d%d=%d addr %p ", i,j,k, data[i][j][k],&data[i][j][k]);

}
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printf("\n");

printf("\n");

}
for(i = 0; i<3; i++)
{
printf("row %d addr = %p\n",i, data[0][i]);
}

printf("2D row address\n");
for(i = 0; i<3; i++)

{
printf("3D %d ROW\n", i);
for(j = 0; j<3; j++)
{

printf("2D row %d addr = %p %p \n",j, data[i][]j], *(data[i] + j));

}

}

return 0;

}
Output :

000=0 addr 003BFCDO 001=1 addr 003BFCD4 002=2 addr 003BFCD8
010=3 addr 003BFCDC 011=4 addr 003BFCEO 012=5 addr 003BFCE4
020=6 addr 003BFCE8 021=7 addr 003BFCEC 022=8 addr 003BFCFO

100=9 addr 003BFCF4 101=10 addr 003BFCF8 102=11 addr 003BFCFC

110=12
120=15

200=18
210=21
220=24

row 0 addr
row 1 addr

addr 003BFD0O0 111=13 addr 003BFD04 112=14 addr 003BFD08
addr 003BFDOC 121=16 addr 003BFD10 122=17 addr 003BFD14

addr 003BFD18 201=19 addr 003BFD1C 202=20 addr 003BFD20
addr 003BFD24 211=22 addr 003BFD28 212=23 addr 003BFD2C
addr 003BFD30 221=25 addr 003BFD34 222=26 addr 003BFD38

003BFCDO
003BFCDC

row 2 addr = 003BFCE8

2D row address

3D 0 ROW

2D row 0 addr = 003BFCDO 003BFCDO
2D row 1 addr = 003BFCDC 003BFCDC
2D row 2 addr = 003BFCE8 003BFCE8
3D 1 ROW

2D row O addr = 003BFCF4 003BFCF4
2D row 1 addr = 003BFD0OO 003BFDOO
2D row 2 addr = 003BFDOC 003BFDOC
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3D 2 ROW

2D row 0 addr = 003BFD18 003BFD18
2D row 1 addr = 003BFD24 003BFD24
2D row 2 addr = 003BFD30 003BFD30

At the third level, we see 1D array and their values when we dereference it. We reach the first level by
dereferencing the expression at level 2. Therefore, (*(datafi] + i) + k) == datal[i][j]+k is equivalent and will point to the
elements of a 1D array. And to get the element at these addresses, we need to use the “value of” operator.

*((*(data[i] + i) + k)) == *(data[i][j]+k) = d[i][j][k]
The code below illustrates the use of the expression above.

Source code. MultiDim11.c

#include <stdio.h>
int main(int argc, char* argv[])
{
int data[3][3][3];
int i, j, k;
int count = 0;
for(i = 0; i<3;i++)
{
for(j = 0; j<3; j++)

for(k = 0; k <3; k++)
{

}

data[i][j][k] = count++;

}

printf("Index=val addr <>\n");
for(i = 0; i<3;i++)

{ for(j = 0; j<3; j++)
for(k = 0; k <3; k++)
{ printf("%d%d%d=%d addr %p ", i,j,k, data[i][j][k],&data[i][F][k]);
;rintf("\n");
printf("\n");
'iFor(i = 0; i<3; i++)

printf("row %d addr = %p\n",i, data[0][i]);

printf("2D row address\n");
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for(i = 0; i<3; i++)

{
printf("3D %d ROW\n", 1i);
for(j = 0; j<3; j++)

printf("2D row %d addr = %p %p \n",j, data[i][]j], *(data[i] + j));

printf("1D element address\n");
for(i = 0; i<3; i++)

{
printf("3D %d ROW\n", i);
for(j = 0; j<3; j++)
{
printf("2D %d row\n", j);
for(k = 0; k<3; k++)
{
printf("%d%d¥%d = %p val = %d ",i,j,k, *(data[i] + j) + k, *(*(data[i] + j) + k));
}
printf("\n");
}
}
return 0;
}
Output:

Index=val addr <>

000=0 addr 0031FD24 001=1 addr 0031FD28 002=2 addr 0031FD2C
010=3 addr 0031FD30 011=4 addr 0031FD34 012=5 addr 0031FD38
020=6 addr 0031FD3C 021=7 addr 0031FD40 022=8 addr 0031FD44

100=9 addr 0031FD48 101=10 addr 0031FD4C 102=11 addr 0031FD50
110=12 addr 0031FD54 111=13 addr 0031FD58 112=14 addr 0031FD5C
120=15 addr 0031FD60 121=16 addr 0031FD64 122=17 addr 0031FD68

200=18 addr 0031FD6C 201=19 addr 0031FD70 202=20 addr 0031FD74
210=21 addr 0031FD78 211=22 addr 0031FD7C 212=23 addr 0031FD80
220=24 addr 0031FD84 221=25 addr 0031FD88 222=26 addr 0031FD8C

row 0 addr = 0031FD24
row 1 addr = 0031FD30
row 2 addr = 0031FD3C

2D row address

3D 0 ROW
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2D row 0 addr = 0031FD24 0031FD24
2D row 1 addr = 0031FD30 0031FD30
2D row 2 addr = 0031FD3C 0031FD3C

3D 1 ROW

2D row O addr = 0031FD48 0031FD48
2D row 1 addr = 0031FD54 0031FD54
2D row 2 addr = 0031FD60 0031FD60

3D 2 ROW

2D row 0 addr = 0031FD6C 0031FD6C
2D row 1 addr = 0031FD78 0031FD78
2D row 2 addr = 0031FD84 0031FD84

1D element address
3D 0 ROW

2D 0 row
000 = 0031FD24 val = 0 001 = 0031FD28 val = 1 002 = 0031FD2C val = 2
2D 1 row
010 = 0031FD30 val
2D 2 row
020 = 0031FD3C val

3 011

0031FD34 val

4 012 = 0031FD38 val = 5

6 021 = 0031FD40 val = 7 022 = 0031FD44 val = 8

3D 1 ROW

2D 0 row
100 = 0031FD48 val
2D 1 row
110 = 0031FD54 val = 12 111 = 0031FD58 val = 13 112 = 0031FD5C val = 14
2D 2 row
120 = 0031FD60 val

0031FD4C val = 10 102 = 0031FD50 val = 11

9 101

15 121

0031FD64 val

16 122 = 0031FD68 val

17
3D 2 ROW

2D 0 row

200 = 0031FD6C val = 18 201 = 0031FD70 val = 19 202 = 0031FD74 val = 20
2D 1 row

210 = 0031FD78 val
2D 2 row

220 = 0031FD84 val = 24 221 = 0031FD88 val = 25 222 = 0031FD8C val = 26

21 211 = 0031FD7C val = 22 212 = 0031FD80 val

23

Using a Pointer Variable to Access Each Element in a 3D Array

To access an individual array element, the same technique can be used as in the case of 2D array element access. The
pointer variable must be pointing to the base address of the single dimension array that is part of every 2D array. In
turn, this 2D array acts as an individual element of the 3D array as a whole. The code below illustrates how this can be
realized.
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Source code. MultiDim12.c

#include <stdio.h>
int main(int argc, char* argv[])

{
int data[3][3][3];
int i, J, k;
int count = 0;
int *dataptr = NULL;
for(i = 0; i<3;i++)
{
for(j = 0; j<3; j++)
for(k = 0; k <3; k++)
{
data[i][j][k] = count++;
}
}
}
for(i = 0; i<3; i++)
{
printf("3D %d ROW\n", i);
for(j = 0; j<3; j++)
{
printf("2D %d row\n", j);
dataptr = *(data[i]+]);
for(k = 0; k<3; k++)
{
printf("%d%d%d = %p val = %d ",i,3,k, dataptr, *dataptr++);
}
printf("\n");
}
}
return 0;
}

In the code above, the expression *(data[i] +j) yields the i 2D row, and in that 2D row it points to the base
address of the j 1D row. In the expression dataptr = *(data[i]+j) the pointer variable dataptr will be pointing to the
1D array, and we can access the value by dereferencing the same *dataptr, and we can also iterate through the whole
array by using the increment operation on the pointer variable (i.e., *dataptr++).

Summary

Understanding and visualizing a 2D array as a stack of 1D arrays and a 3D array as stack of 2D arrays was the main
highlight of this chapter. Also, emphasis was given on using pointers for referencing and dereferencing. This chapter
also highlighted the meaning of cryptic syntaxes with respect to the pointers and 2D/3D arrays.

In the next chapter, you will see the details about the use of pointers with structures. Structures are the most
fundamental part in creating specialized data structures, and pointers play important role in manipulating them.
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Pointers to Structures

A structure is a collection of variables within one variable. Structures can be termed as a variable that aggregates
variables of different or similar types. The correlation of structures and pointers is very strong. A structure provides a
very intuitive way to model user-defined entities (records, packet formats, image headers, etc.). This chapter explains
the basics of structures and their use with pointers; it also explains how structures can be used to implement data
structures like trees, linked lists, etc. in depth.

Defining Structures

The keyword in C that is used to define a structure is struct. Structures can contain variables of any kind that are
permissible by the C language. They can also contain another structure variable within themselves. The following is
an example of a typical way in which structures are defined:

struct variable name

{
variable typel variable nameil;
variable type2 variable name2;
variable type3 variable name3;
//1ist could grow

}

Example:

struct header

{
int header_version;
char tagid;
char signature[4];
int data_offset;

}
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Declaring Structure Variables

Structure variables are declared similarly to other variables in C, but it is usually a two-step process.
1. Define the structure.

2. Declare the variables of the respective structure type.
//Defining a structure below

struct date

{
int day;
int month;
int year;
b

struct date currentdate; // Declaring the variable "currentdate" which is of type struct date

Accessing Structure Members

Member fields of a structure variable are accessed using a dot (.) operator. The syntax for accessing them is as follows:
<variable name> . <memberfieldname>

The source code below illustrates an example of how structure member fields are accessed using a dot operator.

Source code. Structl.c

int main(int argc, char* argv[])
{
struct date
{
int day;
int month;
int year;
};
struct date current;
current.day = 1;
current.month = 11;
current.year = 2012;
return 0;

Initializing Structure Variables

There are two methods to initialize structure variables.
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Method 1

After declaring a structure variable, each member is initialized individually. The dot operator is used to access the
member variables. Refer to the code above in structl.c to see how the variable struct data current is initialized after
its declaration.

Method 2

Structure variables can be initialized with the use of set notation. In set notation, the values are written in ordered
form with a comma separating the opening and closed curly braces. The member fields get initialized with the values
found in the specified order. The code below illustrates this method of initializing the structure member fields.

Source code. Struct2.c

int main(int argc, char* argv[])

{

struct date

{
int day;
int month;
int year;
b
struct date current = { 1, 11, 2012 };
return 0;

Structure Nesting

The code above shows how a structure aggregates other data types. It is also possible to embed structure variables
within a structure. This nesting can go up to many levels, as shown in the definition below.

struct header

{
int version;
int signature;
struct tagname
{
int id;
int offset;
}tagid;
};

The nested structure variable is accessed similarly to other variables in the structure (i.e., using a variable name).

Source code. Struct3.c

int main(int argc, char * argv[])

{

struct header

{

int version;
int signature;
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//below is structure variable definition and declaration

struct tagname
{
int id;
int offset;
} tagid;
};
struct header hdrinfo;

hdrinfo.version = 0;
hdrinfo.signature = 5;

hdrinfo.tagid.id = 1; //accessing embedded variables through variable name
hdrinfo.tagid.offset = 10; //accessing embedded variables through variable name
return 0;

Structure in Memory

A structure data type variable is very similar to an array when loaded in memory. All the member fields take
consecutive memory locations.

struct  data
{
int i
char ¢;
int

[ c i
<>

struct  data
{
char ¢
char m;
int j;

c m j

D S—

The size of a structure variable is equivalent to the total size of all the variables it contains. Assuming a char takes
one byte and an integer takes four bytes, let’s analyze the size of structure variables.
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Source code. Structd.c

int main(int argc, char * argv[])

{ struct data
{
int i;
int j;
int k;
};
struct data vi;
printf("Size of structure data = %d\n", sizeof(struct data));
return 0;
}
Output:

Size of structure data = 12

You can see in the code snippet above that the output size of the struct data is 12 bytes because it contains three
integer variables (i, j, k).

Structure Padding

Structure padding is the step taken by the compiler to align the data at a memory offset. First, we will take a look at
alignment and then we will see how this is accomplished through structure padding.

Data Alignment

When a CPU reads or writes into memory, it does the job in small chunks (called word size or 4 bytes). This
arrangement increases the performance of the system. Effectively, it puts the data at the offset/address that is a
multiple of a word size. Imagine a processor that reads/writes in word size units.

In Figure 6-1, let’s assume that the job of the processor is to read four words from the memory and place them
in registers. This is the ideal condition since the offsets are at multiples of a word size (0, 1, 2). The processor will take
one cycle for fetching a word.

Memory (RAM/Cache) Processor Registers

0

4

g

8
12

16

20

Figure 6-1. Reading data from RAM/cache
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Imagine a case where the data is not stored at the offsets that are multiples of word size. In Figure 6-2, we can see
a situation where data of size word is stored from location 2 - 3 - 4% _ 5! Here, we are assuming that the 0® and 1*
locations are either empty or some data is already stored there.

Loads 2 higher
bytes and shifts 2
bytes on left

i

—_

77

/Hl

Loads 2 lower
bytes and shifts 2
bytes on right

ol | B [N

Figure 6-2. Alignment process

First, the processor will load one word from the 0" location and shifts two bytes to the left to get the most
significant two bytes. Then it fetches another word from the 1 location and shifts two bytes to the right to get the least
significant two bytes. After doing so, it will merge both the results to get the final word.

Eventually, the processor takes two cycles to fetch one word when the desired data is misaligned. The extra
cycle has a drastic impact on the performance of the code. There are situations where some processors generate an
alignment exception and it tends to slow down the fetching process even more.

Effectively, different data types need to be naturally aligned as per their sizes. One byte is aligned for a char (also
char in assembly language), two bytes aligned for a short int (word in assembly language), four bytes aligned for an int
(dword in assembly language), eight bytes aligned for a double (qword in assembly language), and so on.

Structure Padding

As explained above, for performance, the compiler tries to address the data alignment in the structure with a method
called structure padding.

Suppose we have linear memory and each slot is capable of holding data of word size. Let’s review the memory
mapping of different structures when loaded in this linear memory.
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Case 1

struct  data
{
int i
int c;
intj;

i c j
<«

In the situation above, you can see that each of the member variables (int i, int c, intj) fits perfectly in each slot of
the memory because the size of the data type is the same (a word). This situation is perfectly fine with respect to data
alignment as all the data members are placed at the offset multiples of a word size.

Case 2

struct  data
{
int i
char c;
int j;

i C j |
] ]

<———
o] ||

The structure above, struct data has three members (int i, char ¢, and int j). When the structure gets loaded in
memory, int i starts at an offset of the 0" byte, char c starts at an offset of the 5" byte, and int j starts at an offset of the
6" byte. With the arrangement above, you can see that when the process tries to access the variable j, it will take two
cycles to do so because intjis not aligned to the offset which is a multiple of the word size.

To rectify this issue, the compiler adds the required number of bytes to align the members of the data structure
when required. As mentioned before, this action of adding bytes to align the member fields is termed structure
padding.

Structure padding can be verified with the help of a sizeof{) function. In the structure above, struct data, we
would expect that the size of this structure variable will be a sum of all the data members it contains.

SIZEOF int j + SIZEOF char c + SIZEOF int j = 4 bytes + 1 byte + 4 bytes = 9 bytes

However, the program below reveals that the size of the variable is 12 bytes. Also, the address of each data
member reveals that extra bytes have been padded after the data member char c.
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Source code. Struct5.c

#include <stdio.h>
int main(int argc, char* argv[])
{
struct data
{
int i,
char c;
int j;
};
struct data vi;
struct data *dsptr;
printf("Size of structure data = %d\n", sizeof(struct data));
dsptr = (struct data*)malloc(sizeof(struct data));
printf("Address of member int i = %u\n", &(dsptr-»i));
printf("Address of member char c = %u\n", &(dsptr->c));
printf("Address of member int j = %u\n", &(dsptr->j));
return 0;

Output:

Size of structure data = 12

Address of member int i = 1263240
Address of member char c = 1263244
Address of member int j = 1263248

You can clearly see that the member intj is starting from an offset that is four bytes after the offset of the member
char c.

struct  data

{
int I
char ¢;
int j;

Jx
|
{

»d Bd N
1Y L) 7
Y Y
1 occupied byte 3 free bytes
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#include <malloc.h>
int main(int argc, char* argv[])

{

struct data

{

int i;

char c1;

int j;

char c2;

int k;
b

struct data vi;

CHAPTER 6

struct data *dsptr;

printf("Size of
dsptr = (struct
printf("Address
printf("Address
printf("Address
printf("Address
printf("Address
return 0;

Output:

Size of
Address
Address
Address
Address
Address

structure data = %d\n", sizeof(struct data));
data*)malloc(sizeof(struct data));

of member int i = %u\n", &(dsptr-»>i));

of member char c1 = %u\n", &(dsptr->c1));

of member int j = %u\n", &(dsptr->j));

of member char c2 = %u\n", &(dsptr->c2));

of member int k = %u\n", &(dsptr->k));

structure data = 20

of member int i

= 2377352

of member char c1 = 2377356

of member int j

= 2377360

of member char c2 = 2377364

of member int k

= 2377368

POINTERS TO STRUCTURES

In the program above, there are two holes (one after variable char cI and another after variable char c2). You can
clearly see that the compiler has done the structure padding for those two variables.
Xcode returns the following addresses for a Mac computer:

Size of
Addxess
Addxess
Addxess
Addxess
Addxess

structure data
of member int i

20
= 1063424

of member char ci1 = 1063428

of member int j

= 1063432

of member char c2 = 1063436
of member int k = 1063440

When Structure Padding is not Helpful

Data structures are very commonly used with images, packets, etc. Basically, a file or a packet is read into a buffer, and
to access the header information or the fields, they are type casted to a proper structure.
Let’s write a structure based on the hypothetical GIF image based on the information in Table 6-1.
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Table 6-1. GIF Header Format

Offset  Size Description

0 3 bytes Signature
3 3 bytes Version
6 4 bytes Width
10 4 bytes Height
14 1 byte Colormap
15 1 byte Bgcolor
16 1 byte Ratio

struct gif hdr

{
char signature[3];
char version[3];
int width;
int height;
char colormap;
char bgcolor;
char ratio;

};

01 2 3 45 6 10 14 15 16

|3 |3| 4 4 |1|1|1|Imagedata|

| Image data |

Assume that we have a jpeg file with a jpeg header at the beginning of the file followed by the image data. Usually,
we read the file into a buffer and type cast it with the appropriate structure to decode the header.
Notice that the size of the jpeg header is 3+3+4+4+1+1+1 = 17 bytes

1% member is located at the 0" location
2" member is located at the 3™ location
3 member is located at the 6" location
4" member is at the 10" location
5% member is at the 14% location
6" member is at the 15" location
7" member is at the 16" location

The source code below illustrates the concept of data alignment. With the help of offsets, you can understand
how the data is placed in the memory.
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Source code. Struct7.c

int main(int argc, char* argv[])

{

struct gif hdr
{

char signature[3];

char version[3];

int width;

int height;

char colormap;

char bgcolor;

char ratio;
};
struct gif _hdr vi;
struct gif _hdr *dsptr;
printf("Size of structure data = %d\n", sizeof(struct gif hdr));
dsptr = (struct gif hdr*)malloc(sizeof(struct gif hdr));
printf("0Offset of signature = %d\n", &(dsptr->signature[0]) - &(dsptr->signature[o0]) );
printf("Offset of version = %d\n", &(dsptr->version[0]) - &(dsptr->signature[o0]) );
printf("Offset of width = %d\n", (char*)&(dsptr->width) - &(dsptr->signature[0]));
printf("Offset of height = %d\n", (char*)&(dsptr->height) - &(dsptr->signature[0]));
printf("0ffset of colormap = %d\n", &(dsptr->colormap) - &(dsptr->signature[0]));
printf("Offset of bgcolor = %d\n",&(dsptr->bgcolor) - &(dsptr->signature[0]));
printf("Offset of ratio = %d\n", &(dsptr->ratio) - &(dsptr->signature[0]));
return O;

Output:

Size of structure data = 20

Offset
Offset
Offset
Offset
Offset
Offset
Offset

of signature = 0
of version = 3
of width = 8

of height = 12
of colormap = 16
of bgcolor = 17
of ratio = 18

After considering the header format earlier, we calculated the size of the gif header as 17 bytes. But, the program
states the size of the structure as 20 bytes. This implicitly means that the compiler has performed structure padding at
the required places.

As per the analysis, the required offset of header fields will be at the following offsets:

03 6 10 14 15 16

However, according to the output of the program, the offsets of the structure members are at the following places:

0381216 17 18
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If we open a GIF file in a program for decoding and typecast our structure struct gif_hdr and then we try to access
the member fields, we will be accessing the values at the wrong offsets because they are already misaligned due to
padded bytes/bits.

So, when you are working with image headers, binary headers, and network packets, and are trying to access the
TCP/ IP header, structure padding has to be avoided.

Structure Packing

To avoid structure padding, you can use #pragma directives or you can use a “packed” directive in the case of the GNU
C compiler.
The PRAGMA directive can be used as follows:

#pragma pack ( 1) // 1 - byte alignment
struct data

{
int I ;
char c;
int j;
};

A packed directive can be used in two ways.

1. Directly against the members of structure.

struct data

{
int i _ attribute ((__packed ));
char ¢ attribute ((__packed ));
int k _ attribute ((__packed ));
};

2. Against the complete structure.

struct data
{
int i ;
char c ;
int k;
} _attribute ((__packed ));

Using the earlier example of the gif header, let’s modify the structure and see how a packed structure can help in
accessing the correct offsets.

Source code. Struct 8.c

int main(int argc, char* argv[])

{

struct gif hdr
{

char signature[3];
char version[3];
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int width;

int height;

char colormap;

char bgcolor;

char ratio;
};
struct gif_hdr vi;
struct gif hdr *dsptr;
printf("Size of structure data = %d\n", sizeof(struct gif hdr));
dsptr = (struct gif hdr*)malloc(sizeof(struct gif hdr));
printf("Offset of signature = %d\n", &(dsptr->signature[0]) - &(dsptr->signature[o0]) );
printf("Offset of version = %d\n", &(dsptr->version[0]) - &(dsptr->signature[o0]) );
printf("Offset of width = %d\n", (char*)&(dsptr->width) - &(dsptr->signature[0]));
printf("Offset of height = %d\n", (char*)&(dsptr->height) - &(dsptr->signature[0]));
printf("Offset of colormap = %d\n", &(dsptr->colormap) - &(dsptr->signature[0]));
printf("0Offset of bgcolor = %d\n",&(dsptr->bgcolor) - &(dsptr->signature[0]));
printf("Offset of ratio = %d\n", &(dsptr->ratio) - &(dsptr->signature[0]));
return 0;

Output:

Size of structure data = 20
Offset of signature = 0
Offset of version = 3
Offset of width = 6

Offset of height = 10
Offset of colormap = 14
Offset of bgcolor = 15
Offset of ratio = 16

Looking at the output above, we can see that we have the desired offsets for the member field as the gif header
has prescribed.

Structure Assignment and Copying

Assigning a structure variable to another works like normal assignments. The respective values for member variables
are copied from one structure to another.
Source code. Struct9.c

#include <malloc.h>
int main(int argc, char* argv[])

{
struct data
{
int i;
char c;
int j;
int arr[2];
};
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struct datawptr
{

int i;

char *c;
};
struct datawptr dptri;
struct datawptr dptr2;
struct data svar1l; // a normal variable of type struct data
struct data svar2; // a normal variable of type struct data
svarl.c = 'a’;
svarl.i = 1;
svarl.j = 2;
svarl.arr[0]
svarl.arr[1]
svar2 = svari;
printf("Value of second variable \n");
printf("Member c = %c\n", svar2.c);
printf("Member i = %d\n", svar2.i);
printf("Member j = %d\n", svar2.j);
printf("Member arroth = %d\n", svar2.arr[0]);
printf("Member arrist = %d\n", svar2.arr[1]);
dptri.i = 10;
dptri.c = (char*)malloc(sizeof(char));
*(dptri.c) = 'c';
dptr2.c = (char*)malloc(sizeof(char));
dptr2 = dptri;
printf("int member = %d\n", dptr2.i);
printf("char ptr member = %c\n", *(dptr2.c));
return 0;

10;
20;

Output:

Value of second variable
Member ¢ = a

Member i = 1

Member j = 2

Member arroth = 10

Member arrist = 20

int member of dptr2 = 10
char ptr member of dptr2 = ¢

All the member fields get copied to the respective member’s of the assigned structure variable.

The memcpy() function from the library will also have the same effect as an assignment operator. But, with
the above approach, one needs to be careful when a data structure contains a member of pointer type because the
assignment operator simply copies the value; it will also copy the pointer variable’s value, which is nothing but the
address of some variable it is pointing to. Later, when the assigned variable tries to change the value at that address, it
eventually changes the value in the source variable’s address.
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Source code. Struct 10.c

int main(int argc, char* argv[])

{ struct datawptr
{
int i;
char *c;
};

struct datawptr dptri;
struct datawptr dptr2;
dptri.i = 10;
dptri.c = (char*)malloc(sizeof(char));
*(dptri.c) = 'c';
dptr2.c = (char*)malloc(sizeof(char));
memcpy (&dptr2, &dptri, sizeof(struct datawptr));
printf("Int member value of 2nd variable = %d\n", dptr2.i);
printf("Char ptr member value of 2nd variable = %c\n", *(dptr2.c));
printf("value of char ptr in 1st variable = %p\n", dptri.c);
printf("value of char ptr in 2nd variable = %p\n", dptr2.c);
printf("Changing value of 2nd member in 2nd variable (dptr2)\n");
*(dptr2.c) = 'a';
printf("value of char ptr of 2nd variable = %c and 1st variable = %c\n", *(dptr2.c),
*(dptri.c));
return 0O;
}

Output:

Int member value of 2nd variable = 10

Char ptr member value of 2nd variable = ¢

value of char ptr in 1st variable = 000C6A18

value of char ptr in 2nd variable = 000C6A18

Changing value of 2nd member in 2nd variable (dptr2)

value of char ptr of 2nd variable = a and 1st variable = a

Also, in the situation above, if we try to free the memory separately for the two variables, it will generate segfault

(segmentation fault) because the first call for free via the 1% variable will free the memory once, and the second call for
free via the 2" variable will lead to a segfault as it is trying to free the same memory location for the second time.

Structure Pointers

A structure pointer variable is declared similarly to any other pointer variable.

struct <struct name > *<variable name>;
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Example:

struct data

{
int i;
char c;
int k;
};

«

struct data *var; // declaring a pointer variable “ var” of type struct data

Accessing Member Variables

There are two operators that are used to access the member of structure data type with the help of structure pointer.
We are assuming here that variable_name is a pointer variable of some struct data type

Dot Operator (.) Method

In this method, the dot operator is used to access the individual member fields of structure variables.

( * variable name ) .member field name ;
(* var ) . ¢;

Since we are accessing the member field through a pointer variable, first we need to dereference the variable and
then we need to access the member field with the help of the dot operator.

Be careful while using the method mentioned above to access the member variables. The dot operator [.] has a
higher precedence over the “value at” operator [*]. If we analyze the precedence for instruction without brackets, it
will be interpreted in the following way:

*var . ¢

In the C statement below, the compiler will interpret the code with the dot operator because of higher
precedence, and eventually the instruction will be trying to access a pointer variable as a value, which is wrong.

* (var .c );

Arrow Operator (->) Method

In this method, the arrow operator is used to access the individual member fields of structure variables.

variable_name -> member field name
var -> c;

The source code below illustrates the usage of both the above explained methods.

Source code. Struct1l.c

#include <stdio.h>
int main(int argc, char* argv[])

{

struct data
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{
int i;
char c;
int j;
};

struct data *sptr; //pointer variable of type struct data

struct data svar; // a normal variable of type struct data

sptr = (struct data*) malloc (sizeof(struct data)); //the code below is accessing the member
fields with help of arrow operator ->

sptr->c = 'c';

sptr->i = 10;

sptr->j = 20; //or the same variable could be access in the following way

(*sptr).c = 'd';

(*sptr).i = 30;

(*sptr).j = 40; //below code is accessing the member fields with help of dot operator
svar.c = 'a’';

var.i = 1;

svar.j = 2; //or the same variable could be access in the following way, using address

// of operator and arrow operator

(&svar)->c = 'c';

(&svar)->i = 3;

(8svar)->j = 4;

return 0;

Passing Structure Pointer Variable

A structure pointer variable is passed to a function like any other normal parameter. Passing a structure pointer has
an advantage over passing the value. As stated earlier, when a pointer variable is passed, and if the value is modified,
the update is effective in the scope of the caller. Let’s assume that we have a very big structure variable with more than
15 data members. If we pass by value to send this variable to a function, it will take more time as compared to pass by
address (in this case we will use a pointer variable).

Source code. Struct12.c

struct node

{
int data;
char c;
b
int main()
{
struct node vi;
struct node* p1 = &vi;
foo_passbyvalue( vi);
foo_passbyaddr( p1 );
}
void foo passbyvalue(struct node v)
{
//do something
}
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void foo_passbyaddr(struct node* p)
{

}

//do something

The code above illustrates two functions:
a. foo_passbyvalue(struct node)

This function is used to pass the structure variable with the help of the “pass by value” technique.
b. foo_passbyaddr(struct node *)

This function is used to pass the structure variable with the help of the “pass by address” technique.

Common Mistakes

Many programmers try to assign the pointer as shown in the below program, thinking that by passing the pointer
variable to a function and modifying it, it will be effective in the caller function. But, in the above scenario, we are
passing the value of pointer variable. So, effectively after the function call addnode(), variable n1 is still pointing
to NULL.

Source code. Struct 13.c

struct node{

int data;
};
void addnode(struct node* n1)
{
nl = (struct node*)malloc(sizeof(struct node));
ni->data = 9;
}
int main(int argc, char* argv[])
{
struct node* n1 = NULL;
addnode(n1);
return 0O;
}

To rectify this, we need to pass the address of the pointer variable as shown in the program below.

Source code. Struct 14.c

struct node

{
int data;

};

void addnode(struct node** n1)

{
*n1 = (struct node*)malloc(sizeof(struct node));
(*n1)->data = 9;

}

106



CHAPTER 6 ~ POINTERS TO STRUCTURES

int main(int argc, char* argv[])

{
struct node* n1 = NULL;
addnode(&n1);
return 0;

}

Type Casting Structure Pointers

Type casting is another aspect of programming used commonly with structure pointers. Type casting is a way of
converting a variable of one data type to a variable of another data type. The source code below illustrates an example
where typecasting is done on different structure variables.

Source code. Struct 15.c

int main()
{
struct signature
{
char sign;
char version;
};
struct id
{
char id;
char platform;
b
struct data
{
struct signature sig;
struct id idv;
char data[100];
b
struct data* img;
receivedata(img);

struct signature* sign = extractsignature( &img);
struct id* idval = extractid( &img);

}
struct signature* extractsignature(struct data* d)
{
struct signature* sig = (struct signature*)d;
return sig;
}
struct id* extracted( struct data* d)
{
struct id* idv = (struct id*)d;
return idv;
}
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Self-Referential Structures

Structures can have pointer variables as their member fields. Specifically, we can declare a member field that is a
pointer variable of type that is the same as the structure that is containing it.
Example:

struct node

{

int data;
struct node* self;

Self-referential structures form the building blocks of many complex data structures (linked lists, trees, graphs, etc.)

Data Structures and Algorithms

Structure data types are the building blocks of various data types that are very fundamental to computer science. This
section gives an overview of such data structures (linked lists, trees, etc.).

Linked Lists

You can imagine a linked list as a chain of objects where each object is pointing to the next with a special rule for the
first and last object. The first object is always pointed to by the root object and the last object will always point to some
special value (NULL) to mark the end of the list/chain. A list of this kind is always accessed via the special object root.

Root
Pointer
to first
node »| First node Second node Third node
data data data NULL
Link > Link > Link > j z

Linked list creation can be performed as follows:
1. Add anode at the beginning.
2. Addanode at the end.
3. Sorted insertion.
Other operations performed on linked list are as follows:
1. Searching the linked list.
2. Deleting a node from the linked list.
3. Counting nodes in a linked list.

The code below illustrates how a linked list is formed with the function addatend(struct node** root, struct node* n).
A helper function createnode(int data) is used. It takes the data and returns a new node with the data part copied and
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the next link set to NULL. This new node is passed to the addatend() function. In the adddatend() function, the first
node (i.e. root) is checked if it is NULL. If it is NULL, then the new node is attached to the root, or else the code iterates
to the last node by searching for the NULL node and there it adds the new node.

Source code. Struct 16.c

#include <malloc.h>
#include <stdio.h>

struct node

{
int data;
struct node* next;
};
struct node* createnode(int data)
{
struct node* n1 = (struct node*)malloc(sizeof(struct node));
ni->data = data;
ni->next = NULL;
return ni;
}
void addatend(struct node** root, struct node* n)
{
struct node* temp = *root;
if(temp == NULL)
*root = n;
}
else
{
while(temp->next != NULL)
temp = temp->next;
temp->next = n;
}
}
int main(int argc, char* argv[])
{
struct node* root = NULL;
for(int i = 0; i< 10;i++)
{
addatend(8root, createnode(i));
}
return 0O;
}

Binary Search Tree

A binary search tree, illustrated in Figure 6-3, is constructed in such a way that at any level, the value stored by the
immediate left node of any node is always lesser or equal to the value stored by itself. Thus, the left subtree of a node
always contains the nodes storing the values less than or equal to the value stored in it. Similarly, the right subtree of a
node always contains the nodes storing the values greater than or equal to the values stored in it.
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Root Node
Data 10
Left | Right / \
Data Data 1 19
o T | [ X / \
Data Data
0 4

XX | [X X

Figure 6-3. Binary search tree

Data structure for binary search tree (BST):

struct node

{
int data;
struct node* left;
struct node* right;
};

Usually, we have data fields where any information on each node can be kept. The other two most important
fields are left and right child pointers. These two variables help in forming the actual tree.

Creation of a BST

The code below illustrates how a BST can be created.

Source code. Struct17.c

#include <string.h>
#include <malloc.h>
#include <stdio.h>

struct node

{
int data;
struct node* left;
struct node* right;
};
struct node* createnode(int data)
{

struct node* n1 = (struct node*)malloc(sizeof(struct node));
ni->data = data;
ni->left = NULL;
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n1->right = NULL;

return ni;
}
void insertnode(struct node** root, struct node* n)
{
struct node* temp = *root;
if(temp == NULL)
*root = n;
}
else
{
if(n->data < temp->data)
{
insertnode(&(temp->left), n);
}
else if( n->data > temp->data)
{
insertnode(&(temp->right), n);
}
}
}
int main(int argc, char* argv[])
{
struct node* root = NULL;
for(int i = 0; i< 10;i++)
{
insertnode(&root, createnode(i));
}
return 0;
}

The code above starts at the root node and compares the data part of the current node it has visited with the new
node that is going to be inserted. If the value of the new node’s data is less than the current node’s data, it recursively
calls the same function by passing a pointer of the left child; otherwise, it recursively calls the same function by
passing the pointer of the right child.

Iterating Over the Nodes
The following are the algorithms used to iterate over the nodes in BST:
1. Inorder search
2. Preorder search
3. Postorder search
Other helper functions that can be written for BST are as follows:
e  Finding the height of the tree.
e  Comparing the two BSTs.

e Finding the number of leaf nodes, and so on.
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Summary

This chapter focused on the memory layout of structure variables and many other details like alignment issues,
padding concepts, etc. With that background, the chapter introduced the concept of pointers to structure. It also
illustrated basic data structures like linked lists, BSTs, and the algorithms to work on them. There are many other data
structures and algorithms that were not mentioned in the text. We recommend that the reader experiment with these
concepts to get a clear understanding of pointers to structure.

In the next chapter, we will look into the concept of function pointers that help in making dynamic function calls.
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Function Pointers

Many times we come across situations where we have multiple functions that do specific jobs. Then, based on a
particular situation, we need to call the proper function from that group. In this chapter, we will see how function
pointers help us tackle those situations. Function pointers are variables that are used for pointing to the address of
a function. With the help of a function pointer, we can invoke a function call. Interestingly, we can use the function
pointers to implement late binding, where we don’t know which particular function call to make beforehand.

Defining Function Pointers

As discussed in Chapter 1, the compiler compiles code/text into the actual program code that is stored in memory.
This code contains functions and their logic. The function pointer variable will point to some location where the
program has been stored in memory.

The function pointer variable definition is dependent on the function definition that needs to be pointed to by
this variable. In its most generic form, it is defined as follows:

return type (* < variable_name) (parameters list);

Examples:

-

Function to be pointed: int add( int x, int y);

2. Function pointer to point to the above function: int (*addfuncptr)( int x, int y);
3. Function to be pointed to: int* plus( int x, int y);
4

Function pointer to point to the above function: int* (*plusfuncptr)(int x, int y);

Initializing Function Pointers

Initializing a function pointer variable can be done in two ways.
1.  With the “address of” operator.
2. Viaan implicit assignment.

The following source code illustrates two methods of initializing function pointers, which are mentioned above.

Source code. Fptrl.c

#include <malloc.h>
#include <stdio.h>
void mesg(int num )

printf("Mesg no. %d\n", num);

113




CHAPTER 7 © FUNCTION POINTERS

int* add(int x, int y)

{
int *z = (int*)malloc(sizeof(int));
*z = 10;
return z;
}
int main(int argc, char* argv[])
{
int *t;
void (*fpmsg)(int); //function pointer variable to point to the function "mesg"
int* (*addfptr)(int, int); //function pointer variable to point to the function "add"
addfptr = &add; //assignment using "address of" operator
fpmsg = mesg; //assignment using implicit method
return 0;
}

Using Function Pointers

Function pointers are used to make function calls. Specifically, they help in choosing which function to call
dynamically. Let’s see how this is done using function pointers. Function pointers can invoke a function in the
following ways.

Source code. Fptr2.c

#include <malloc.h>
#include <stdio.h>
void mesg(int num )

printf("Mesg no. %d\n", num);

int main(int argc, char* argv[])

{
int *t;
void (*fpmsgl)(int); //function pointer variable to point to the function "mesg"
void (*fpmsg2)(int); //function pointer variable to point to the function "mesg"
fpmsgl = mesg;
fpmsg2 = mesg;
fpmsg1( 10 ); // implicit method of invoking a function
(*)fpmsg2( 20 ); // explicit way of invoking a function
return 0;
}
fpmsg1( 10 ); // implicit method of invoking a function
(*)fpmsg2( 20 ); // explicit way of invoking a function

The two ways in which functions can be invoked are shown above.
Let’s assume a situation where we want to switch between different search algorithm functions based upon a
user’s input. Also, we have the following algorithms implemented:

bool arraysearch(int n);

bool binarysearchtree(int n);
bool Linkedlistsearch(int n);
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We can invoke these function calls dynamically with the help of a function pointer, as follows:

bool search( bool ((*funcptr)(int), int data)
{

}

return (*funcptr)(data);

Above, we have created a function in which the first parameter or argument is a function pointer variable, and the
second parameter or argument is the actual value that needs to be searched. Based upon the choice made by the user,
we can pass the appropriate address of the functions listed above.

The following is the complete code illustration.

Source code. Fptr3.c

bool arraysearch(int data)

{

//some code
return true;

}

bool linkedlistsearch(int data)
{

//some code
return true;

}

bool binarysearch(int data)

{

//some code
return true;

}

bool search( bool (*funcptr)( int ), int data )
{

}

return (*funcptr)(data);

int main(int argc, char* argv[])
{
printf("Input Options\n");
printf("1 arrsrch\n");
printf("2 linkedlistsrch\n");
printf("3 binarysrch\n");
printf("4 exit\n");
int choice = 0;
int data;
while(choice != 4)
{
printf("Input\n");
scanf("%d", &choice);
printf("Data to search\n");
scanf("%d", 8&data);
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if(choice == 1)
{

search(arraysearch,data); //invoking 1st function

else if(choice == 2)
{
search(linkedlistsearch, data); //invoking 2nd function
}else if(choice == 3)
{

search(binarysearch, data); //invoking 3rd function

else if(choice == 4)
break;
}

return 0;

}

Assembly Details of Function Pointer Calls

In this section, we will look at a detailed view of the assembly code to show how the function call is made and
compare it with the function call made with the help of the function pointer.

Invocation of Function Call Directly

Here is the assembler code that calls the function directly:

int add( int a, int b)

{
int z = a + b;
return z;
}
int main(int argc, char* argv[])
{
int z = add(10,20);
return 0;
}

Here is the assembler output where the function call is made directly:
push 20 ; 00000014H
push 10 ; 0000000aH
call ?add@@YAHHH@Z ; add
add esp, 8

mov DWORD PTR _z$[ebp], eax

The assembly instruction call is executed to make a function call after pushing all the parameters to the stack.
The highlighted assembly instruction above is an example of how the function is invoked.
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Invocation of Function Call Indirectly with a Function Pointer

Function calls can be made via function pointers. This gives the ability to add amazing flexibility to your code, as you
can change program behavior simply by changing pointer values. The following example illustrates the concept:

int add( int a, int b)

{
int z = a + b;
return z;
}
int main(int argc, char* argv[])
{
int (*funcptr)(int x, int y) = add;
funcptr(10,20);
return 0;
}

Here is the assembler output showing how the function call is made through the function pointer:

mov DWORD PTR _funcptr$[ebp], OFFSET ?add@@YAHHH@Z ; add

mov esi, esp push
20 ; 00000014H

push 10 ; 0000000aH

call  DWORD PTR _funcptr$[ebp]

add esp, 8

cmp esi, esp call

__RTC_CheckEsp

In the assembly code above, the first highlighted assembly line “mov DWORD PTR _funcptr$[ebp],
OFFSET ?add@@YAHHH@Z ; add” assigns the address of the function to the function pointer. The second highlighted
assembly line “ call DWORD PTR _funcptr$[ebp]” calls the function with the help of the function pointer.

Array of Function Pointers

An array of function pointers gives a way to switch between functions with the help of an array index.

Defining an Array of a Function Pointers

Defining an array of function pointers is a little bit cryptic in nature. It takes a generic form, which is explained below.
We can use an array of function pointers for functions that have the same return types and the number of input
parameters is equal and of the same type.

<return type of function being pointed> (*functionpointervariable [])(input parameters pointed by function being
pointed to)

Example:

Assume we have four functions.

int add(int x, int y);
int sub(int x, int y);
int mul(int x, int y)
int div(int x, int y);
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Now, we will define an array of function pointers to hold the addresses of the functions listed above and
initialize them.

int (* opfunctptr [ 1) ( int x, int y) = { add, sub, mul, div };
We can now invoke a function based on the array index as follows:
opfunctptr[ 0 ] ( 10 , 20 ); // This invokes the function add

Programmers need to be careful when using function pointer arrays because there is no bound check while
accessing an array index. If the array is accessed out of an index, the control may land anywhere.

Returning Function Pointers from Function

Defining a function that returns a function pointer of a function is a tedious task and requires quite an effort. It can be
done in two ways, easy and difficult.

Difficult Way

Let’s make some assumptions to make the example easier to understand.

int add(int , int ); //function to be pointed to by the function pointer
//function returning the result after adding the values of two parameters

int (*addfuncptr)(int, int);

//function pointer, capable of pointing to the above function "int add(int,int)"

Now comes the hard part; we intend to define a function that doesn’t take any input but is capable of returning a
function pointer as stated above, [int (*addfuncpt)(int, int)].
Preparing the skeleton of the function:

e  Write the name: funcptrret

¢  Specify input parameters for the function: funcptrret(void)

¢ Inthis case it does not take any input parameter.

e Add parenthesis and the value of operator: (* funcptrret(void))

e  Add the details about the input parameter of the function pointer that needs to be
returned: In this case the [int (*addfuncptr)( int, int )] function pointer takes two
input parameters (int, int).

(* funcptrret(void))( int, int )

e  Add the details about the return parameter of the function pointer that needs to be
returned: In this case the [int (*addfuncptr)(int, int)] function pointer returns an int.

int (* funcptrret(void))(int, int)

So, the desired function that returns the function pointer is declared as int (* funcptrret(void))(int, int).
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Easy Way

Let’s make similar assumptions to make the example easier to understand.

int add(int , int ); //function to be pointed to by the function pointer
//function returning the result after adding the values of two parameters

int (*addfuncptr)(int, int);

//function pointer, capable of pointing to the above function int add(int,int)

Preparing the skeleton of the function:

The typedef of the function pointer that needs to be returned:
typedef int (* addfuncptr)(int p1, int p2);

Write the name of the function and input parameter: funcptrret(void)
In this case, the function does not take any input.

Add the return parameter to the function: addfuncptr funcptrret(void)

We can use typedefabove as the returning parameter.

FUNCTION POINTERS

So, the desired function that returns the function pointer is declared as addfuncptr funcptrret(void).
The below source code illustrates how a function pointer can be returned from a function.

Source code. Fptrd.c

int myadd( int a, int b)

{

int z = a + b;
return z;

}

int mysub(int a, int b)

{

int z = a - b;
return z;

}

int mymul(int a, int b)

{

int z = a*b;
return z;

}

int mydiv(int a, int b)

{

int z = a/b;
return z;

}

//array of function pointers,

int (* opfunctptr [ 1) ( int x, int y) = { myadd, mysub, mymul, mydiv };
typedef int (*calc)(int x, int y );

//function returning the function pointer of type int (*calc)(int x, int y )
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calc retmathfunc(int index)
return opfunctptr[index];
int main(int argc, char* argv[])

int choice, p1, p2, res;
int (*calculator)(int x, int y);
printf("Type -1 to quit\n");
printf("Type 0 - add, 1 - sub, 2 - mul, 3 - div\n");
scanf("%d", &choice);
while( choice != -1)
{
calculator = retmathfunc(choice); //returns function pointer
printf("Parami\n");
scanf("%d", &p1);
printf("Param2\n");
scanf("%d", &p2);
res = calculator(pi, p2); //calling function pointer
printf("res = %d\n", res);
printf("Type 0 - add, 1 - sub, 2 - mul, 3 - div\n");
scanf("%d", &choice);

}

return 0;

Function Pointer Usage in the Linux Kernel

The most common use of function pointers in Linux can be found during device driver implementation. Linux
maintains standard data structures for different types of hardware. There are standard functions (open, close,

read, write, etc.) that need to be called for the specific hardware types. These function pointers are part of the data
structure. Every device driver programmer implements these functions when writing drivers for specific devices. The
programmer then populates the function pointer fields of the standard data structure and passes this standard data
structure to the initialization routine. These steps are like registering function calls. When an instance of the data
structure is loaded into memory and the function needs to be called for a specific device, the function pointers in the
data structure can be used to invoke those functions for that device.

Below is an example of the netdevice.h header file taken from Linux kernel source code. It can be found at
Linux/include/linux/netdevice.h. It contains all the important data structures and functions that are used by TCP/
IP layer code.

Example of netdevice.h:

struct net_device ops {

int (*ndo_init)(struct net_device *dev);

void (*ndo_uninit)(struct net device *dev);

int (*ndo_open) (struct net_device *dev);

int (*ndo_stop) (struct net_device *dev);

netdev_tx_t (*ndo_start xmit) (struct sk buff *skb, struct net device *dev);
u16 (*ndo_select queue)(struct net_device *dev, struct sk _buff *skb);

void (*ndo_change_rx_flags)(struct net device *dev, int flags);

void (*ndo_set_rx_mode) (struct net device *dev);

int (*ndo_set_mac_address)(struct net device *dev, void *addr);
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int (*ndo_validate_addr)(struct net_device *dev);

int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);

int (*ndo_change mtu)(struct net_device *dev, int new mtu);

int (*ndo_neigh setup)(struct net device *dev, struct neigh parms *);
void (*ndo_tx_timeout) (struct net device *dev);

The data structure above is defined to handle network devices. The member fields are function pointers that
need to be implemented by the programmer writing the device driver for a specific device.

The following example shows how the structure above is filled with function pointers. This example is from the
Linux source code for the driver r8169:

static const struct net_device ops rtl netdev ops = {

.ndo_open = rtl _open,
.ndo_stop = rt18169 close,
.ndo_get stats64 = rt18169 get statsé4,
.ndo_start_xmit = rt18169 start_xmit,
.ndo_tx_timeout = rt18169 tx_timeout,
.ndo_validate addr = eth_validate addr,
.ndo_change_mtu = rtl18169 change mtu,
.ndo_fix features = rt18169 fix features,
.ndo_set_features = rt18169 set features,
.ndo_set_mac_address = rtl_set _mac_address,
.ndo_do_ioctl = rtl8169 ioctl,
.ndo_set_rx_mode = rtl _set_rx_mode,
#ifdef CONFIG NET POLL CONTROLLER
.ndo_poll controller = rt18169 netpoll,
#endif
};

In the below function, devinitrtl init one() is a part of device driver code which is an initialization routine.
In this function, registration of the structure net_device_ops is done.

static int _ devinitrtl init one(struct pci_dev *pdev, const struct pci_device_id *ent)
{

const struct rtl _cfg info *cfg = rtl cfg infos + ent->driver data;
const unsigned int region = cfg->region;

struct rtl8169 private *tp;

struct mii_if info *mii;

struct net_device *dev;

void __iomem *ioaddr;

int chipset, i;

int rc;

if (netif msg drv(8debug)) {

printk(KERN_INFO "%s Gigabit Ethernet driver %s loaded\n",
MODULENAME, RTL8169_VERSION);

}

dev = alloc_etherdev(sizeof (*tp));
if (!dev) {

rc = -ENOMEM;

goto out;

}
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SET_NETDEV_DEV(dev, &pdev->dev);

dev->netdev_ops = &rtl_netdev_ops;

tp = netdev_priv(dev);

tp->dev = dev;

tp->pci_dev = pdev;

tp->msg_enable = netif msg_init(debug.msg enable, R8169 MSG DEFAULT);

The italicized text above shows the portion of code where the data structure and eventually the function pointers
are getting registered and can be used later as callback functions.

Summary of Cryptic Function Pointer Declarations

Many cryptic function pointer declarations are illustrated below. A function can return different data types and it can
also return pointers of a different data type. For functions of different types, there will be function pointers that can be
used to point them. For each point below, it first takes an example of a function and also declares its corresponding
function pointer. In some points the declarations are made more complex.

e Function: int add(int x, int y);

e  Function ptr: int (*addfptr)(int x, int y);

e Function: int* add(int x, int y);

e Function ptr: int* (*addfptr)(int x, int y);
e Function: int add(int x, int y);

e Function ptr: int (*addfptr)(int x, int y);

¢ Function whose input parameter is a function pointer as above and return type is void:
void callfunc(int (*addfptr)(int x, int y));

e Function: int add(int x, int y);

e Function ptr: int (*addfptr)(int x, int y);

e  Pointer to a function pointer to a function returning int: int (*(*addfptr))(int x, int y);
e Function: int add(int x, int y);

e  Function ptr: int (*addfptr)(int x, int y);

e  Function whose input parameter is void and return type is function pointer:

e int (*retfuncptr(void)(int x, int y );

e Function: int* add(int x, int y);

e function ptr: int* (*addfptr)(int x, int y);

e function whose input parameter is void and return type is function pointer:

e int* (*retfuncptr(void)(int x, int y);

Summary

In this chapter we covered one of the most interesting aspects of programming. Dynamic invocation of function calls
helps in situations when we need to decide which function needs to be called during runtime. In other words, think of
function pointers as the hooks that will help in making the required function calls.
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Pointers to File I/O

We all use computer file systems and interact directly or indirectly with them as programmers or ordinary system
users. All our persistent data and files are kept in secondary memory. The file system manages data and provides
interfaces to retrieve and store data in secondary memory. By secondary memory is meant all the external memory
drives such as HDD and USB drive which do not include RAM. The file system also provides an interface for the
operating system to manage the space in secondary memory.

This chapter explores the I/0 aspects of file pointers. It discusses in detail how the C library APIs are used to
manipulate data with the help of file pointers. It also supplies information about secondary memory and file systems.

The Physical Layout of Secondary Memory

Let’s take a look at the structural details of secondary memory. Typically, secondary memory is a stack of magnetic
discs that are capable of storing information on both of the faces. These discs are called platters and each face is called
a surface. These platters are stacked on a spindle that is rotated by a motor.

Each surface of a platter is further divided into concentric rings called tracks. The cylinder value is the number of
tracks on each side of a platter. In turn, these tracks are further grouped into sectors. A sector is the smallest portion of
the architecture that actually stores data.

Reading the data from these media is accomplished with the help of a disk head that is provided for each surface.
This disk head is attached with the help of an arm that moves while reading different sectors.

Surface View

Figure 8-1 shows the top view of a surface on which data is stored in each sector. Each sector is typically able to store
512 bytes.

\ Sector

D)

L—
Track

Platter Top view

Figure 8-1. Platter top view
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For the operating system, the basic unit of data transfers for I/O is the block, which is a group of sectors.
The grouping can comprise of 2, 4, 8, or more sectors per block. Figure 8-2 illustrates the head, which is used to read
the desired tracks from a particular sector.

,\< Sector

Head )

—
Track

Figure 8-2. The head of a disc

Interfacing HDD with CPU

How does a CPU interact with a disk drive? The disk controller is the entity that takes care of the communication of
data and command between a CPU and a disk drive.

You have heard the names of many controllers, such as SATA controller for SATA disks, SCSI, IDE, and so on.
Disk controllers perform the following tasks:

e  Receiving commands from the CPU (read, write, etc.)
¢ Implementing drive interface logic to control the arm motion

e  Usingread/write logic to serialize parallel data

Disk Addressing Schemes

A disk addressing scheme is a method to identify the sectors on a disk by their positions in a track. There are two
schemes by which the addressing of sectors takes place: CHS addressing and LBA addressing.

CHS Addressing

In earlier days, the parameters used for addressing were C, H, and S (which represent the total number of cylinders,
heads, and sectors within the track). The ranges of these parameters were as follows:

e  C:The cylinder numbers range between 0 to C-1.
e H:0toH-1.
e S:1-S.

LBA Addressing

LBA addressing uses only one parameter. These parameters are sector numbers 0, 1, 2, 3, etc. This method is used
with SCSI and IDE disk drives for location purposes for the cylinders, heads, and sectors.
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Introduction to File System Architecture

This section provides an overview of file system architecture. It does not discuss any specific file system, but the
examples and explanations touch on the details from existing file systems that will help in elaborating the concept.
A high-level schematization of file system architecture is shown in Figure 8-3.

User Application

Logical File system
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Basic File system i
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_________

Device Controller
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Device

Figure 8-3. File system architecture

Logical File System

A logical file system provides a way or abstraction for viewing the files. It generally has two main logical entities—file
and directory—and a hierarchical structure.

Alogical file system manages an inode structure. Inode is an on-disk structure that is used to manage all the files
on the disk. Inode consists of all the following information for managing a file:

Type (Directory/File)

Protection levels

Block information pertaining to that file

Time stamp for creation/modification of file, etc.
Directory structure (per file system) organizes the files.

Volume control block (per volume) contains superblock (UFS) and the master file
table (NTFS).

Boot control block (per volume), called boot block (UFS)

I/0 control: The programs which do the actual data transfer are part of I/O control.
Device drivers and special interrupt service routines which communicate with devices
are those programs.
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The Basic File System

The basic file system interacts with device drivers and issues generic low-level commands to it. This layer also deals
with the management of blocks on the disk.

What Is Required to Make a File System?

The most important thing that is required to keep account of data and the places where it resides is the data
structures. Data structures play a very important role in creating and maintaining a file system. In the context of the
file system, data structures are categorized in two ways.

e  On-disk data structures

e In-memory data structures

On-Disk Data Structures

A preceding section defined the data structure, inode. We need to make this data structure persistent since it contains
all the information about the data stored in the file system. The inode is stored in a block that is called an inode table.
A block is a logical representation of sectors and cylinders.

The other data structures that are stored on the disk are as follows:

¢ Boot control block: The information kept here is used to boot the OS from a partition.

e Partition control block: This is also called a superblock. This block contains information
about the free blocks, details of the partition where blocks are mapped, and so forth.

In-Memory Data Structures

Some readers might be aware of the details surrounding this process and the information attached to in-memory data
structures. For each process in memory, the operating system has a file table data structure associated with it. This
helps in keeping track of the number of files opened by the process. The following are data structures that are loaded
in memory while interacting with the file system:

e Thefile table associated with each process
e  The directory structure

e  Anpartition table

Accessing Files

C provides various functions for manipulating files residing on the secondary disc. A buffer is involved when
interacting with a file, and the operating system uses this buffer to improve the efficiency of I/0. C provides a data
structure FILE to use as an object to interact with an actual file in order to manipulate it and its data in memory.

For most of the function calls such as open, close, delete, etc., a pointer of type FILE is used. The FILE data
structure is defined in the C header file called stdio.h.
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FILE Data Structure

As mentioned above, the FILE data structure is defined in the stdio.h header file. It contains file stream information.
It also contains information about the file position and buffer. In the stdio.h file, special kinds of file streams are
defined that are used to denote some specialized devices.

e  STDIN: This value is used to denote an input stream.
e  STDOUT: This value is used to denote an output stream.
e STDERROR: This stream is used to denote any stand error.

This operation is very similar to strings, where the null character ‘\0’ is used to denote the end of string. Here,
however, we have an EOF value associated with a file to denote that there is an end of data. This value is a negative
integer constant.

First Task

To manipulate the file or the data within it, we must open it. We cannot do anything without opening a file. Let’s take a
look at the first call of opening a file.

FILE* fopen(char* filename, char* mode);

This function takes the path of the file name to be worked upon as a first input parameter; the second parameter
is the mode (such as 1, w, or a) in which the file needs to be opened. The following explains the three mode options:

¢ Read mode (r): Opens the file in read mode. If the file does not exist, the function call returns
null.

e  Write mode (w): Opens the file in write mode. If the file does not exist, the function call
creates a new file. If the file exists, then the old content of the file is overwritten.

e Append mode (a): Opens the file in append mode. If the file exists, the new content is written
after the end of the file. If the file does not exist, then a new file is created.

(Other modes—such as r+, w+, a+—are not discussed here.)
This function returns a pointer of type FILE structure when the opening of the file is successful. The following
code illustrates the usage of fopen() function call.

Source code. FileProgl.c

#include <stdio.h>
int main(int argc, char* argv[])
{
FILE* fp = NULL;
fp = fopen("c:\\test.txt","w");
if(fp == NULL)
{

printf("File opening error\n");

}
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else

{
}

return 0;

printf("File opening success\n");

The program above illustrates how a file is opened in write mode using the fopen call and then the FILE pointer
needs to be checked against NULL to make sure that the file opening operation was successful before doing anything
with the file and its data.

Second Task

For a process, a file is a resource. If a process opens a file, it needs to be released after the operation/manipulation is
over. For releasing this resource, we use another function call that is the counterpart of the fopen() function call. The
function call that is used to close an opened file is fclose().

int fclose ( FILE * fptr )

This function takes a file pointer as an input parameter and returns 0 on success or EOF on failure. The following
source code illustrates the usage of the fclose() function call.

Source code. FileProg2.c

#include <stdio.h>
int main(int argc, char* argv[])
{
FILE* fp = NULL;
int res;
fp = fopen("c:\\test.txt","w");
if(fp == NULL)
{

printf("File opening error\n");

}

else

{

}
res = fclose(fp);
if(res == 0)

{

printf("File opening success\n");

printf("File closed\n");
else
{
printf("Unable to close file\n");

return 0;
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After the function is called, the result is compared to check the success and failure in the consecutive if and else
statements. Before closing the file, the function call makes sure that it flushes all the data that is in memory and is
written to the disk. Otherwise, some data may get lost.

Reading from a File

For reading the content/data from a file, C has provided many functions that can be used according to the
programmer’s needs. The following are a few of the methods, which the next sections look at in detail:

¢ Reading a single character at a time from a file
¢ Reading strings from a file
e Reading block of data from a file

e  Formatted reading from a file

Let’s see these functions in detail.

Reading a Single Character

To read a character from a file, C has provided the following function:
int fgetc(FILE *fptr);

When this function is called, the file pointer returns the character that it is pointing to and then it advances the
file pointer to the next character. This function call returns an integer value of the character that was read from the
file buffer.

Assuming that we have a test file (test.txt) to read, and the contents of the file are

abcde
fghij
klmno
pqrst
UvWXyz

Let’s see how this function call helps in reading a file.

Source code. FileProg3.c

#include <stdio.h>
int main(int argc, char* argv[])
{
FILE* fp = NULL;
int res;
int data;
fp = fopen("c:\\test.txt","w");
if(fp == NULL)

printf("File opening error\n");

}
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else

{

printf("File opening success\n");

}
while((data = fgetc(fp)) != EOF)
{

if ( data != 10) //checking for new line
printf("%d %c ,", data, (char)data);
else

printf{”\n”);

}
res = fclose(fp);

if(res == 0)

{
printf("File closed\n");

else

{
}

return 0;

printf("Unable to close file\n");

}
Output:

File opening success
1, 2, 3,4, 5,
61 7, 8) 9, 10,
11, 12, 13, 14, 15,
16, 17, 18, 19, 20,
21, 22, 23, 24, 25,

This program illustrates the use of the fgetc() function call. Every time the function is called, the returned value is
checked against the EOF to know whether we have reached the end of file. Thus, in the whileloop we can iterate and
read each character one at a time.

Reading Strings from a File

We can use the fgets() function to read a set of bytes. The details of using the function call for reading the strings
are as follows:

char * fgets ( char * str, int length, FILE * fptr )

This function takes a character pointer as an input that is filled by the characters read from the buffer; a second
input parameter is the length of the characters that needs to be read. The number of characters that needs to be read
is always length - 1 and the last parameter is the file pointer variable obtained after calling the fopen() function.

Upon opening success, this function returns a pointer to the first input parameter and returns NULL on failure.
Upon reading the characters from the input string, this function also appends a null terminating character ‘\0’ at the
end of the string.
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Source code. FileProg4.c

#include <malloc.h>
#define BUFFER 4
int main(int argc, char * argv[])
{
FILE* fp;
int res;
char*str = NULL;
unsigned char chr;
int fpos;
fp = fopen("c:\\test.txt","r");
if(fp == NULL)

printf("File opening error\n");

else

{

}

str = (char*)malloc(sizeof(char)*BUFFER);

fpos = ftell(fp);

printf("File pointer pos before reading = %d\n", fpos);
if(fgets(str, BUFFER, fp))

printf("File opening success\n");

printf("%s \n",str);

else

{

printf("Line reading failure\n");

}

fpos = ftell(fp);

printf("File pointer pos after reading = %d\n", fpos);
res = fclose(fp);

if(res == 0)

{
}

else

{
}

return 0;

printf("File closed\n");

printf("Unable to close file\n");

}
Output:

File opening success

File pointer pos before reading = 0
abc

File pointer pos after reading = 3
File closed
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In this program, the function call ftell() is used to find the current position of the file pointer before and after
calling the fgets() function. We can see from the output that after reading three characters from the buffer, the file
position indicator is pointing to a fourth character.

Reading Blocks from File

The fread() function can be used for reading the data in blocks from a file. The details of the function call are
as follows:

size t fread(void *ptr, size t size, size t n, FILE * fptr);

The first parameter, void* ptr, is the input parameter of type void pointer to which the data read from buffer will
be copied. The second parameter, size_t size, is the input parameter that specifies the size of each data block. The third
parameter, size_t n, specifies the number of bytes to be read. The fourth parameter is FILE* fptr. The return parameter
of the function returns the number of data read when successful. There is a difference in the value of the return
parameter and the third input parameter when there is an error while reading or the file pointer indicator has reached
the EOE

The following source code illustrates the usage of fread() function call, which enables the program to read the
data in blocks from a file.

Source code. FileProg5.c

#include <stdio.h>
#include <malloc.h>
#define BUFFER 5
int main(int argc, char* argv[])
{
FILE* fp;
int res;
char*str = NULL;
fp = fopen("c:\\test.txt","r");
if(fp == NULL)

printf("File opening error\n");

else
{
printf("File opening success\n");
}
str = (char*)malloc(sizeof(char)*BUFFER);

res = fread(str, sizeof(char), BUFFER-1, fp);
str[4] = "\0';
if(res)

printf("%s \n",str);

else
{

printf("Line reading failure\n");
}
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res = fclose(fp);

if(res == 0)
{
printf("File closed\n");
}
else
{
printf("Unable to close file\n");
}
return O;

In this code, we are trying to read characters. This function call reads the block of characters and stores them in
the assigned memory area. Note that this function call does not append terminating null characters at the end; it is the
responsibility of the programmer to do so if this function call is used to read the characters.

Formatted Reading from File

There are situations when data in the file is written in a particular format. For example, in some columns, when each
column is separated with a space and each column contains data in some context, such as:

Index First name Country
To read this kind of formatted data in some variable, we can use the following function call:
int fscanf ( FILE * stream, const char * format, .. )

The first parameter is the file pointer. The second parameter specifies the format. The return parameter is an
integer that returns the number of data that is matched to the pattern or it can return 0 if there is no match and this
condition is true in case of success. In case of failure, it returns EOF.

The following source code illustrates the usage of the fscanf{) function call.

Source code. FileProg6.c

#include<stdio.h>
#include<malloc.h>
int main(int argc, char* argv[])
{

FILE* fp;

int res;

int index;

char* name = NULL;

char* country = NULL;

fp = fopen("c:\\test.txt","r");

if(fp == NULL)

printf("File opening error\n");

else

{
}

printf("File opening success\n");
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name = (char*)malloc(sizeof(char)*BUFFER);
country = (char*)malloc(sizeof(char)*BUFFER);
while (!feof(fp))

fscanf(fp, "%d %s %s", &index, name, country);
printf("%d %s %s\n", index, name, country);

res = fclose(fp);

if(res == 0)
{
printf("File closed\n");
}
else
{
printf("Unable to close file\n");
}
return 0;

Writing to a File

In the previous section, we saw many function calls that enable us to read the input stream. C has also provided their
counterparts to write the content/data into a file. The following are a few of the methods, which the next sections look
atin detail:

e  Writing a single character at a time to the file
e Writing strings to the file
e  Writing a block of data to the file

Let’s look at these functions in detail.

Writing a Single Character to a File

To write any data byte by byte to a file, we can use the following function call:
int fputc ( int data, FILE * fptr );

The first parameter is the input data that needs to be written to the file. The second parameter is the file pointer
that is the file handle. The third parameter is the returning parameter that outputs the character that is returned on
success. In case of failure, it returns EOF.

The following source code illustrates the usage of fputc() function call, which helps in writing a single character
to a file.

Source code. FileProg7.c

#include<stdio.h>
#include<malloc.h>
int main(int argc, char* argv[])
{

FILE* fp;

int res;
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int index;

char* namefmt = "First Middle Last";
fp = fopen("c:\\test.txt","w");
if(fp == NULL)

printf("File opening error\n");
return 0;

}
else
{
printf("File opening success\n");
}

for( index = 0; index <= strlen(namefmt);

{
fputc(namefmt[index], fp);

res = fclose(fp);

if(res == 0)
{
printf("File closed\n");
else
{

printf("Unable to close file\n");

return 0;

index++)
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Here, we iterate over each index of the array and fpufc is called. In addition, the file has been opened in w mode,

Writing a String onto the File

int fputs ( const char * str, FILE * fptr )

which will erase the previous content of the file if there was any.

Let’s see the function call that will help in writing a set of bytes into the file at a time.

The first input parameter is the character string that we want to write to the file. The second input parameter is

the file pointer. The third parameter is the output that returns a non-negative value in case of success and an end of
file in case of EOF.

The following source code illustrates the usage of fputs() function call. It explains how a string can be written

to a file.

Source code. FileProg8.c

#include<stdio.h>
#include<malloc.h>
int main(int argc, char* argv[])

FILE* fp;
int res;
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int index;

char* namefmt = "First Middle Last";
fp = fopen("c:\\test.txt","w");
if(fp == NULL)

printf("File opening error\n");
return 0;

}
else
{
printf("File opening success\n");
}

fputs(namefmt, fp);
res = fclose(fp);

if(res == 0)
{
printf("File closed\n");
else
{
printf("Unable to close file\n");
}
return 0;

Again, in the code above, the file is being opened in write mode and the fputs() function is called.

Writing a Block of Data to a File

The fwrite() function is the counterpart of the fread() function. This function can be used to write a block of data to

the file.

size t fwrite(const void *ptr, size t size, size t n, FILE *fptr);

The first parameter is the pointer to the data memory that needs to be written to the file. The second parameter
is the size of each datum. The third parameter is the number of data to be written. The fourth parameter is the file
pointer. The fifth output parameter is the number of data which is written successfully. In case of success, the value of
fifth parameter is equal to the value of third parameter. In case of failure, the value of fifth parameter is less than the

value of third parameter.

The following source code illustrates the usage of writing a block of data to a file with the help of fuwrite()

function call.

Source code. FileProg9.c

#include<stdio.h>
int main(int argc, char* argv[])

{

FILE* fp;

int res;

int index;

int numofdatatowrite;
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char* namefmt = "First Middle Last";
fp = fopen("c:\\test.txt","w");
if(fp == NULL)

printf("File opening error\n");

return 0;
}
else
{
printf("File opening success\n");
}

numofdatatowrite = 5;
if(numofdatatowrite == fwrite(namefmt, sizeof(char), numofdatatowrite, fp))

{
}

else
printf("Unsuccess in writing data\n");
res = fclose(fp);

printf("Success in writing data\n");

if(res == 0)
{
printf("File closed\n");
}
else
{
printf("Unable to close file\n");
}
return 0;

The program above illustrates how the data from a character pointer is written to the file using the fwrite
function call.

Accessing Disk at Random Locations

There are situations when a programmer wants to read data from random locations (beginning of file, end of file,
somewhere in between). There are a couple of functions provided by C that can be used to access the file’s locations
randomly.

Seeking the File Indicator

The fseek() function call is used for maneuvering the file pointer to different locations.

int fseek(FILE *fptr, long off, int whence);
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The first parameter is the file pointer of the file on which we are operating. The second parameter is the offset
where we need to position the file indicator next, and this position is relative to the third parameter. The third
parameter dictates the second parameter’s meaning based upon its value:

e  SEEK_SET: Beginning of the file; the offset is relative to the beginning of the file.

e  SEEK_CUR: Current position indicator; the offset is relative to the current position of the file
indicator.

e SEEK_END: End of file; offset is relative to the end of file.

The fourth output return parameter returns zero when fseek() is successful or a non-zero value when it’s not.
The following source code illustrates the usage of fseek() function call.

Source code. FileProgl0.c

#include<stdio.h>
#include<malloc.h>
int main(int argc, char* argv[])
{
FILE* fp;
int res;
int index;
char* datafromfile = (char*)malloc(sizeof(char)*6);
fp = fopen("c:\\test.txt","w");
if(fp == NULL)
{

printf("File opening error\n");
return O;

}

else

{

}
fputs("HELLO NAV", fp);

fclose(fp);

fp = fopen("c:\\test.txt","r");

//Read the current content

fgets(datafromfile, 10, fp);

printf("Current content of file %s\n", datafromfile);

rewind(fp); //resetting the file pointer

fseek(fp, 6, SEEK_SET);//seeks file pointer to offset value 6 from beginning of file
memset(datafromfile, 0, sizeof(char));

fgets(datafromfile, 6, fp);

printf("Content of data %s\n", datafromfile);

fseek(fp, OL, SEEK_SET); //seeks file pointer to offset value 0 from beginning of file
memset (datafromfile, 0, sizeof(char));

fgets(datafromfile, 6, fp);

printf("Content of data %s\n", datafromfile);

fclose(fp);

return 0;

printf("File opening success\n");
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Output:

File opening success

Current content of file HELLO NAV
Content of data NAV

Content of data HELLO

The fseek() function has set the file pointer to offset 6 and reads the data from that position. Then fseek() sets the
file pointer to the offset 0 and reads the data from that position.

Miscellaneous Functions

So far you have seen how to use functions to read and write to a file. You also saw how these functions manipulate the
file pointer. You will now see some miscellaneous functions that also help in manipulating a function pointer.

Knowing the Size of File

First, let’s look at a function called ftell():
long int ftell ( FILE * fptr );

This function takes the file pointer as an input parameter and returns the current position of the file pointer’s
location upon success and returns -1 on failure. The following source code illustrates the usage of the ftell() function
call. The first ftell() function calls returns the position of the file pointer. Next, the fseek() function call is made, which
moves the file pointer ahead. Then the ftell() function call is made again. This second ftell() function call returns the
current position of the file pointer.

Source code. FileProgll.c

int main(int argc, char* argv[])
{
FILE* fp;
int fileoffset = 0;
fp = fopen("c:\\test.txt","w");
if(fp == NULL)

printf("File opening error\n");

return 0O;
}
else
{
printf("File opening success\n");
}
fputs("HELLO NAV", fp);
fclose(fp);

fp = fopen("c:\\test.txt","r");

fileoffset = ftell(fp);

printf("File offset at default position %d\n", fileoffset);
fseek(fp, 6, SEEK SET);

fileoffset = ftell(fp);

printf("File offset after seeking %d\n", fileoffset);
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fclose(fp);
return 0;

}
Output:

File opening success
File offset at default position 0
File offset after seeking 6

This code illustrates the use of the ftell() function to get the current position of the file offset.
To determine the size of a file, we will use the fseek() and ftell() functions in the following source code.

Source code. FileProgl2.c

int main(int argc, char* argv[])
{
FILE* fp;
int fileoffset=0; fp = fopen("c:\\test.txt","w");
if(fp == NULL)

printf("File opening error\n");
return 0;

}

else

{

}
fputs("HELLO NAV", fp);

fclose(fp);

fp = fopen("c:\\test.txt","r");

fseek(fp, 0, SEEK_END);

fileoffset = ftell(fp);

printf("Size of file in bytes %d\n", fileoffset);
fclose(fp);

return O;

printf("File opening success\n");

}
Output:

File opening success
Size of file in bytes 9

In this code, the fseek() call is made using the SEEK_END parameter that places the file offset to the end of the file

buffer. Since, in this case the total count for the characters is 9, so the file offset is pointing to the last character. Then,
with the help of the ftell() function we get the location of the file offset.
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Another Way of Resetting the Position of File

The fseek() function call can be used to bring the position of the file offset back to the beginning of the file buffer, but
there is another function call that does the same.

void rewind ( FILE * fptr );

This function call takes a file pointer as an input parameter that upon success sets the position of the file offset to
the beginning of file buffer. The following source code illustrates the usage of the rewind function call. In it, after the
Jgets() function call is made, the file pointer gets incremented. At this point, the rewind() call resets the file handle and
enables the program to read the file data from the beginning of the file buffer.

Source code. FileProgl3.c

int main(int argc, char* argv[])

{
FILE* fp;
int fileoffset = 0;
char* data = (char*)malloc(sizeof(char)*11);
int val;
fp = fopen("c:\\test.txt","r");
if(fp == NULL)
printf("File opening error\n");
return 0;
}
else
{
printf("File opening success\n");
}
if(fgets(data, 10, fp))
printf("%s \n",data);
}
else
{
printf("Line reading failure\n");
rewind(fp); //resetting the file offset to the beginning of file
while((val = fgetc(fp)) != EOF)
{
if(val != 10) //checking for new line
printf("%c", (char)val);
}
else
{
printf("\n");
}
}
fclose(fp);
return 0;
}
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Summary

This chapter covered secondary memory structure and file system architecture. It also covered various calls for
reading and writing data to a file. One of the most important things to remember while updating the data in a file

is to use the fclose() function call. The first reason to do so is to release the resource (file) via this call. The second
reason is that, because the file is buffered into memory, the OS won’t write the data until that memory buffer is full
or the fclose() function is called. This chapter did not cover various other file management-related function calls,
such as freopen(), tmpfile(), fflush(), and ungetc(), which are not strictly relevant to the scope of this work but which I
encourage the reader to explore independently.

142



Index

A

Arithmetic operations, 43. See also Single
dimension arrays
addition
assembler’s output, 48
compiler performs, 48
integer variable, 46
+ operator, 46
pointer variable, 47
consecutively (memory blocks), 46
operators, 46
particular index, 46
subtraction (-)
comparing two pointer variables, 50
conversion, 49
integer location, 49
pointer variable, 48-49
subtracting two pointer variables, 49
Array(s). See Single dimension arrays
Array of pointers, 54
Array of strings
declaration
array notation, 65-67
factors, 64
freeing memory (steps), 69
freestring() method, 67
memory layout, 65
pointer-to-pointer, 67-68
storing data, 64-65
memory layout, 64

Binary search tree (BST)
creation, 110
iterate over nodes, 111
value storing nodes, 109
Boot control block, 126

C

Cache memory, 5

Consecutive memory locations, 92

Constants, 36
constant pointer variable, 36
pointer-constant variable, 37
pointer-variable, 38

Cryptic function pointer

declarations, 122

D

2D array
1D context
access the value
(location/indexes), 72
array arithmetic, 72
variable name, 72
2D context
access 2D indices, 77-78
arithmetic operation, 74
location value, 75-77
variable name, 73
3D array layout
basics, 80
expressions
arithmetic operation, 82-87
individual element, 87-88
variable name, 81
stack element, 79
Data structures and algorithms
addatend() function, 109
binary search tree
creation, 110
value storing nodes, 109
iterate over nodes, 111
linked list, 108
Dynamic array, 52

143



INDEX

E

Endianness, 44

FGH
fclose() function, 128
fgetc() function, 129
fgets() function, 130
FILE pointers, 123
buffer, 126
fclose() function, 128
FILE data structure, 127
file system architecture, 125
basic file system, 126
logical file system, 125
fopen() function, 127
fseek() function, 137
in-memory data structures, 126
miscellaneous functions, 139
fseek() function, 140
ftell() function, 139-140
rewind() function, 141
on-disk data structures, 126
reading data, 129
fgetc() function, 129
fgets() function, 130
fread() function, 132
fscanf() function, 133
secondary memory, physical layout
CHS addressing scheme, 124
CPU and disk drive, 124
LBA addressing scheme, 124
SATA controller, 124
sector, 123
surface definition, 123
surface view, 123
tracks, 123
writing from file, 134
fputc() function, 134
fputs() function, 135
fread() function, 136
Flat memory model, 14
fopen() function, 127
fputc() function, 134
fputs() function, 135
fread() function, 132, 136
fscanf() function, 133
fseek() function, 137, 140
ftell() function, 132, 139-140
Function pointers, 113
array definition, 117
assembly details
call directly, 116
function calls, 117

144

cryptic function pointer
declarations, 122

definition, 113

initialization, 113

Linux Kernel, 120

returning function
difficult way, 118
easy way, 119

use of, 114

,LJ, K

In-memory data structures, 126

L

Linux Kernel, 120

Memory
classification
address bus, 2
hierarchy, 1-2
compilation process chain
assembler, 10
compilation, 8
linking, 10
loader, 11
preprocessing, 7
step-by-step process, 6
data and instruction
cache views memory, 5
process, 4
processor accesses main
memory, 4
layout using segments
BSS segment, 16
codes, 15
heap area, 17
segmentation, 15
stack segment, 16
locations, 3
models
address translation, 13
flat, 14
real address mode, 13
sections, 13
segmentation, 14
segments, 20
Miscellaneous functions, 139
fseek() function, 140
ftell() function, 139-140
rewind() function, 141



Multidimensional arrays, 71. See also 2D array
2D array, 71
3D array layout
basics, 80
expressions, 81
individual array element, 87
stack element, 79

N

Nested structure variable, 91

(0

On-disk data structures, 126

PQ

Partition control block, 126
Pointer(s), 27. See also Constants
address of operator
retrieve, 28
unary operator, 27
assignment, 29
cryptic pointer expression, 41
dereferencing, 40-41
referencing, 40-41
declaration, 29
dereference
operator (*), 32
valid memory address, 32
multilevel indirection
address, 39
pointer-pointer, 39
pass by reference, 34
pass by value, 33
size of, 30
variable address, 27
Pointers, structure
access member variables
arrow operator (->) method, 104
dot operator (.) method, 104
passing variable, 105
pointer variable, 103

R

Real address mode memory model, 13
rewind() function, 141

Runtime memory organization. See also Memory

intricacies function call, 17
processes, 17
steps, 18

S

SEEK_END parameter, 140
Segmented memory model, 14
Self-referential structures, 108
Single dimension arrays
array memory layout
endianness, 44
memory dump, 43
arrays explored, 50
array of pointers, 54
array variable, 51-52
consecutive addresses, 51
consecutive memory locations, 50
dynamic array, 52
equivalent, 50
malloc() function, 52
pointer to array, 55
realloc() function, 54
Strings. See also Array of strings
basic operations, 57
dynamic memory allocation
literals and constants, 59
null character, 59
initializer, 57
memory layout
accessing string elements, 58
data elements, 58
memory locations, 57
operations
concatenation, 63-64
copy, 63
handling string input, 61
iteration, 61-62
length, 62
scanf() function, 61
Structures, 89. See also Pointers, structure
assignment and copying
member variables, 101
memcpy() function, 102
source variable address, 102
common mistakes, 106
consecutive memory locations, 92
data structures and algorithms
addatend() function, 109
binary search tree, 109
creation of BST, 110
iterate over nodes, 111
linked list, 108
declaration, 90
definition, 89
initialize variables
method 1 (struct data current), 90
method 2, 91

INDEX

145



IN

DEX

Structures (cont.)

Typ

146

member fields, 90

nested structure variable, 91

packing, 100

padding
data alignment, 93, 98-99
GIF header format, 98
jpeg header, 98
linear memory (case 1), 94
members of data structure (case 2), 95
offsets, 99

self-referential structures, 108

type casting, 107

T

e casting structure pointers, 107

UV
Virtual memory organization. See also Memory
features, 22
glimpse
address space, 22
physical address space, 24
virtual address space, 23
page table, 25
paging, 24

W, X,Y,Z

while loop, 130



Pointers in C

Naveen Toppo
Hrishikesh Dewan

Apress



Pointers in C: A Hands on Approach
Copyright © 2013 by Naveen Toppo, Hrishikesh Dewan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material

is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-5911-4
ISBN-13 (electronic): 978-1-4302-5912-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning

Lead Editor: Saswata Mishra

Technical Reviewer: William Murray, Chris Pappas

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan,
James DeWolf, Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Saswata Mishra, Steve Weiss

Coordinating Editor: Anamika Panchoo

Copy Editor: Mary Behr

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www. springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales-eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com/9781430257882. For detailed information about how to locate your book’s source code, go to
WWW.apress.com/source-code/.


orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
www.apress.com/9781430257882
http://www.apress.com/source-code/

To my beloved parents Clement and Xaveria and my dear wife Rashmi

—Naveen Toppo

In memory of my best friend “Neon”

—Hrishikesh Dewan



Contents

About the AUtROIS.........coiesmissmsmssnnmssnssssnssssssssssss s a s sansasssnssssan s asssnnsssannsnssnnsnssnnnnssnnnnns xiii
AcKnOWIedgmMEeNtS........cuuriiiiimsssnmmmnmmmmmmssssssssssnnnnmmessssssssssnsnnnseessssssssnnnnnnnneessssssssnnnnnnnsssssssnnn Xv
INtrodUCTioN .....cciiiieeniisnnnnsssnnnsssnnsssssnnsssannssssnnssssnnnsssnnnsssnnssssnnnsssnnnsssannsssannssssnnnnssnnnsssnnnsnsnn xvii
Chapter 1: Memory, Runtime Memory Organization, and Virtual Memory.........c.ccssuesssens 1
Memory and ClassifiCation............cccvcrirrniensssersr s sr e sn e sn e sn e nnenan 1
L0 T | T U0 O 1
MEMOTY LAYOUL ...ttt bbb b bbb bbb bbb 3

Data and INSTIUCHON ........cccoeciceee et sa e s sr s renrnnnas 4
How the Processor ACCESSES Main IMEMOIY..........cccceerurrereserrrssssessssssssessssssssesessssssesesssssssssssssssssssssssssssssssssnsssssnns 4

072 T T LT 0 O 5
Compilation ProCess ChaiN.........cccccvereerererseressesaessessessesssssessssssssssssssssassssssssssssssssssssssssssssssssssnns 6

o 0] 0 T | 4 SRS 7

0] 1 01 0 o 8
ASSBIMDIEE ... AR 10
LINKING .t a e s a e a e s e e a e s a e e e e e e e e A e e e R e R e R e R e R e A e R e R e R e R e nR e R e eR e A e nRenReneenRenrerens 10
07T N 11
MEMOTrY MOGEIS........cocererercirire s r s r s r e sn s nn e nn e nn e nrennnnnnnnans 13
Real Address Mode Memory MOUEL ..ot n s 13
Address Translation in Real MOTE ..o 13

Flat MEmMOIrY MOTEL.........oeeeeee et e e s se e e s e e R et Re e Renennennnanns 14
Segmented MemOry MOTEI ...t r s 14
Memory Layout USiNg SEGMENTS ........ccccevirieniienesniesssse s sss e s s ssssssssssssssssssssens 15
SEOMENTATION ...t e e s e e R e R e e A e Re e R e Re e e R e Re e e e e R e e e e nrnns 15

COUE SEUMENT ......veeeeerireererr e e s et e s e e e Re e R s Re e e A e R e Re e e e R e Re e e e s e Re e e ne s R e e e e nrnsnnes 15



CONTENTS

Do 1 1] | PO 15
UNinitialized/BSS SEOMENL..........cco et enp e 16
16 QT o 01T 1| TS 16
HEAP SEUMENL ...t ae e R e e e b e Re e e A e Re e e e s R e e e e nrnnn s 17
Runtime Memory Organization............c.ccoueeeesnsenessnsessnsessessssesssse e s ssssesssssssessssssssssssssssssssens 17
Intricacies of @ FUNCLION Call ... 17
Steps t0 Make @ FUNCHION Call..........cccoeiiernncscsecsecsesse s s s senssss s s nsssnns 18
LT 0T TR0 T ) S 20
Virtual Memory Organization...........cccecvcerircersnss s sn s 22
A Glimpse into a Virtual MemOry SYSIEM ... 22
o 1o T TSP 24
e 1o L= =] - TS 25
SUMMAIY ...ttt r s e ae e e e e R e e s Re e s e e Re e e RenR e e eRnnE s e eRa e nRensnnennnnnnnes 26
Chapter 2: Pointer BaSICS .......cuussmissmsasmmsssmssssmssssmssssssssmsssssssssssssnsssssssssssssnssssssnsnsnssnsnsnnas 27
What is an address of @ variable? ...........cccvceereienniensss e sne e enes 27
Address 0f OPEIALOr .........cccvceeririerr s r e e e 27
Retrieving the Address of @ VAriable...........ccoveiiiinininennrsr e se s sn et e sr e sa s e saene s 28
Pointer Declaration...........ccovnrninnn e ———————————— 29
PoINter ASSIGNMENT ........cccceeeereerrerie e r e a s re e s r e e aenrn e ns 29
Size of Pointer Variables.........c.cciinnnnn s ————— 30
Pointer DEreferNCiNg .......cccuvvrrrrrersssessir s n s sn e r s n s sn s sn e sn e nnennennennans 32
BasiC Usage Of POINEN .........coccvverieriirirserser sttt sn s s s e sn e sn s sn e sn s nnns 33
PASS DY VAIUE.......c.eeceeecerctscr s sa s s e e s s s e ae e s ae e s aene s e s an e s ae e nannenanenanes 33
PaSS DY REIEIENCE .......covreeeeceeririeciresss e e e re e p s e s e R e s e ae e e s s e e e e npn e s 34
Pointers and Constants ... —————— 36
Constant POINter VAriabIe ... sses 36
Pointer to Constant Variable ... 37
Constant Pointer to a Constant Variable ... 38
MUIEIIEVEI POINEIS......ccereicireicirinci e 39
Pointer to a Pointer Variable ... ————— 39

viii



CONTENTS

Understanding a Cryptic Pointer EXPreSSioN........covivereresessessessssssssssssssssssssssssssssssssasssssassssssnns 40
3L ] 2T o R 40
=T (=Y €T o T R 40
3T =TT 3T o R 4
D= (=Y £ oo o R 4

RS0 1 42

Chapter 3: Pointer Arithmetic and Single Dimension Arrays.......ccccussssssssssssssssssssssssssssss 43

Array Memory LAYOUL.........ccoeeecece e e e e sse e sse e ssessesaesnessesassassaesassnssn e nnesnesn e s e snssnssnsnnannnnns 43
ENGIANNESS ...t 44

Pointer ArithMETIC......cccoieer s 45
POINTET AQGILION ... 46
POINTEI SUDTFACTION ... 48

Arrays EXPIOTEA .......ooeeeereeeir st n e s sn e sn e s s n e s e ne s e ae e n e ne s 50
DYNAIMIC AITAY ...eveereerereerereressersesessesessesassessssesassesssssssesssssssssessssessesessessssessssessssessesesssssssensssessssessssessssessssansessssens 52
L 0 0T -1 54
0T (=T (01 R 55

R30S 26

Chapter 4: Pointers and Strings ........ccuseemmmmnssnnmmmssssnmmmsssssmmmsssssmesssssssmssssssssssnmmns 57

String LAYOUL iN MEMOKY ...t sn s n s nn e n s nn e 57
AccesSing STrNg EIBMENTS..........ocoiiecccr e s s b e e b e e ae e p e e 58

Dynamic Memory AlIOCATION..........ccoeeriernrresrre s s 59
String Literals and CONSTANTS ..........ccccoerireeierireeserire e nn s 59

L[0T T - L3S 61
Handling StrNG INPULS ......veeeerrererc ettt r e v rse e saesesaesa s e s ae e sae e saesasae s e e sae e saesesaenasaesassesassesassenasanasnanaens 61
L1 T (=T = 04 61
3] 11T 0 63
YT T8 = (=T 1 (0 63

L g L0 S (] T ST 64
Declaration of Array 0f SHNQS.......coiiiiccr e s e e s p e s e nn e 64

BT 1111 TSN 69

ix



CONTENTS

Chapter 5: Pointers and Multidimensional Arrays.....c..ccccussmmussssmsssssesssssssssssssssssssssnsssnns 1
AITAY LAYOUL ..ot sae s sse s se s s s s sa e s e sa e sa e ea e sa e na e sa e e e sn e nn e e e nnennenn e e e nn e e e nnnnnnnns 71
POINTEN 10 2D AITAY ...t e s st s R E R e e e e R e Re e e s e Re e e s nse e e nenrnnnaes 72
SD AITAY LAYOUL .....ceereeeecesreecses s se e s ses s se s se s s s e s s s e s s se e e e s e e e s s e Re e e e A e Re e e e nRe et s e s s e nn it e nsans 79
R 111 1P S 88
Chapter 6: Pointers to Structures.......c.ccccimnnsmmmmmmssssnmmmsssmmmssssmsss s ———————— 89
DefiNiNg STFUCTUIES .....eeeeee e s ra e e sa e e sa e sa e sa e sn e sn e sn e e n e 89
Declaring Structure Variables............coccerrennirenniers s ses e snssesnens 90
Accessing STruCtUre MEMDEIS .......c.cceeeeererere e sse s sn e e sa s sa e sn e sa e sn e n e n e sn e sn e nn e nn s 90
Initializing Structure VariablEs...........ccceeereririrnrrss s ses s s seessssssssssssssssassassasssssassssanns 90
IMIBENOU T.vvveeseeeeeesssneeeessssseseessssseseessssssesessssssssesssssessessssssesssssssesseesssesssesssssssssssssssssssssssssssssssssssssssessssssssssnsesss 91
IMIBENOU 2..vevevvveeeesssseeesssseseessssssssesssssesessssssessssssssessesssssesssssssssssssssesssessssessessssssssssssssessssssssssssssssssesssssssssnessss 91
STrUCTUIE NESTING .ot sn e ne s 91
STIUCTUIE iN MEMOKY ... r e e n e r e sn e sn e sn e sn e n e n s 92
R 00 (0 (= o T [0 ] S 93
I L B [T 04T o R 93
R (0 e (01253 o o o ] o 94
When Structure Padding is not HEIPfUl ... 97
SErUCTUIE PACKING.......cceeeeeceecieie ettt n s n s sa e s r e n e sn e sr e sn e nn e n e sn e snennennns 100
Structure Assignment and COPYING......ccocvvrrerrerrerrerrerssssssrssssssss s sssssssassassasssssasssssssssssassassassanns 101
STUCTUIE POINTETS ...ttt srs e nnn s 103
Accessing MembEr VArIADIES ..........c.ococieriiieirireesese et p s 104
Passing Structure Pointer Variable .............coeceeeiennicns s se e sns e s e s sesnssnsssssnnens 105
COMMON MISTAKES.......ccecereirrresisserress s s sn s aesn s s ae e s 106
Type Casting Structure POINTEIS.........cccvvrierierrirer ettt sn e sa e sn e sn e 107

Self-Referantial STrUCTUIES. ... eeiceeeie et rceerr e i s e s e s sse s s eeessse e s se s s e e ssnsesssnssssssesnsnsesssnsssnns 108



CONTENTS

Data Structures and AlgOrithms ... s 108
LINKEA LISTS ... se e e e e e e seeeseneseneeenenes 108
BiNArY SEArCH TIBE.....covrereeereerereererereseresseraesesaesessesa s e raesessesesaesessesassesae e saesesaesassesaesesae e sae e saerssnerasnesannenaeranaene 109
Iterating OVEr the NOUES........ccvererererereerereesere s s e res e raesersesessesassesae e ssesessesasaesassesassesae e saeansesassesassesasnesannanaens 111

RS 1T T 112

Chapter 7: Function POINTErS ....cccceeeeimmimmmmmsssssssssmssssssssssssssssssssssssssssssssssssssssssnnnnnsssnnnss 113

Defining FUNCLION POINEIS.......ccueieeeceece et sn s sn e n e sn e nn e n s 113

Initializing FUNCHION POINTEIS ........coviiccercerr e 113

USing FUNCLION POINTEIS ....couevierecere et ss s e e e saesa s sassa s sassassa e sn e sa s s snssn s 114

Assembly Details of Function Pointer Calls...........cccoeeeeecenesese s seenas 116
Invocation of FUNCEON Call DireCHY .......ccuecereeieece e nneaea 116
Invocation of Function Call Indirectly with @ Function POINer ... 117

Array of FUNCHON POINEIS.......cccceierierirrresine s 117
Defining an Array of @ FUNCHION POINTEIS ..ot 117

Returning Function Pointers from FUNCHON ... 118
1o T T O 118
EASY WY ..ot e e e e e e R e AR R e A SRS R e R e A SR e R e A e R e R e R e R e R e R e R e e e e e aes 119

Function Pointer Usage in the LinuxX Kernel ..........cocvcrercrcercescssses s ssssnsnns 120

Summary of Cryptic Function Pointer Declarations .............coccovverenncnnssnessssesssesesessessesennens 122

RS0 ] T2 TP 122

Chapter 8: Pointers 0 File 1/0 ......cccccuisuemmmmnsssssnmmmssssssmmssssssssmssssssnssssssssssssssssssssssssnsnssss 123

The Physical Layout of Secondary MEMOIY .........ccccvverrerversensensensessensessessesssssessssssssssssssasssssssns 123
SUMTACE VIBW......eeeeeecececscsesesesssesesese s e e e e e e e e e e e e e e 123
Interfacing HDD With CPU.........ccceoirererererrereeseresesesesersssersesessesessesassessssessssssassassessssesssnssssssssssssessssessssssassanaens 124
Disk AdAreSSiNGg SCHEMES ......ccceuererererertrrereesereseseressersesessesessesessesassessesessesesassassessssessenssssssssessssessssesssssssssanaens 124

Introduction to File System ArchiteCture.........coe e s 125
LOGICAI File SYSTBIM ...t b e e s b e e e AR e R e e R e e s ae e p e e e e 125
The BasiC File SYSIEBIM ... e s s e e e e s e p e e R e nnns 126

xi



CONTENTS

What Is Required to Make a File SyStem?.........cocvvrvrvnvnsnrrrr s sne s 126
ON-DiSK DALA STFUCTUES .....vveciscsriiisss s 126
IN-Memory Data StrUCIUIES ..o ——— 126

ACCESSING FIlBS ...veeeeeeeerrerrersere s se e e e ae e s re s ae s e s a e s e r e sa e saesn e snennesnesnennennennennennnnnnnnan 126
FILE Data STUCIUIE.......ccocririiiiriniii s 127

T 2T 127

R3] o 128

Reading from @ FIle ......coeoueeeeeee e sn e n e n e n e n e e nn e n s 129
Reading @ Single CRAraCLEr ..o s a e s b et s b e e e b e n e nennsnennnneas 129
Reading Strings fromM @ FilB ......ccuc i r s e s a e n e e e nae s 130
Reading BIOCKS frOM File........cccoiiiiieiicrisene e ss e s sa e a s e s a s s e s bt s a et ne e nnnnean 132
Formatted Reading from File...........courirrcic s n e p s s a e s nenn e nn s 133

LT T T O T | RS 134
Writing a Single CharaCter t0 @ File.........oocceereercrrsescrer s nne s 134
Writing @ String ONt0 the File.......cou e 135
Writing @ BIOCK 0f DAta t0 @ File ........coeeeiueeiiecerccrere ettt a e e sa e e s a e s 136

Accessing Disk at Random LOCALIONS ........ccceevererererssseses s s sessessesssssassesssssassassassssssssnns 137
Seeking the File INQICALON.........c.oriiiiin s 137

Miscellaneous FUNCLIONS ... s 139
KNOWING the Size OF File ......coueeieeeere st n e p e s a e e nn e nn s 139
Another Way of Resetting the Position 0f File..........ccovcricrernenncrrcn e sesnes 141

R 111 1= SRS 142

INA@X . etiuerinnsnmsssmsssnnsssm s rm s s s s am s n e —————— 143

xii



About the Authors

Naveen Toppo is currently working as a consultant at the CT DC TEC Division
of Siemens Technology and Services Pvt. Ltd India. With a total of over 7 years of
experience, his current focus area is in optimum utilization of hardware features
(performance engineering).

He is also involved in the research of distributed algorithms used for spatial
databases. Prior to joining Siemens, he was technical lead for embedded systems at
Wipro Technologies, where he was working on a project on SoC network processors,
dealing with L3 layer’s routing algorithms.

In his prior roles, he was associated with projects on Intel tablets based on
Android platform, development of T9 dictionary support, and parsing and lexical
analysis. He has a master’s degree in technology in computer sciences from the
Indian Institute of Technology Guwahati.

Hrishikesh Dewan has worked as lead engineer for Siemens Technology and
Services(STS), INDIA since June, 2008. He is also a PhD scholar at the Department
of Computer Science and Automation, IISC, Bangalore pursuing research in the
areas of large scale distributed storage systems. In STS, he leads the distributed
systems laboratory. Prior to joining STS, he founded a very small open source
software development organization named “Srishti” that promoted open source
tools and software for schools and colleges. He also worked as a project manager
for 2 years at Eth Ltd., a subsidiary and R&D unit of Dishnet Wireless Ltd (Aircel).
He is the author of two other books on WCF-SOAP and Visual Studio technologies.

xiii



Acknowledgments

I am greatly indebted to my beloved parents Clement and Xaveria and my lovely wife Rashmi, my brother John, and
my other brother Kartik for their continuous support and endless patience. I would like to acknowledge my colleague
Krishna M.R. for his valuable inputs on the code snippets. I would like to thank all my friends, colleagues and my
organization Siemens. Thanks also to all my birding friends. At last, I would like to thank Saswata, Jeffrey, Anamika,
and technical reviewers and also all other people from Apress who helped in turning this dream into reality.

Last but not the least, I would like to thank my avian friend “Tickell’s blue flycatcher” and all other beautiful birds
out there who kept me fresh and motivated to complete the work.

—Naveen Toppo

I am in debt to all the staff of Apress who helped us in preparing the content in a readable format. Special thanks to
Saswata and Jeff for providing the opportunity to write this book.

—Hrishikesh Dewan

XV



	Contents at a Glance
	Contents
	About the Authors
	Acknowledgments
	Introduction
	Chapter 1: Memory, Runtime Memory Organization, and Virtual Memory
	Memory and Classification
	Classification
	Memory Layout

	Data and Instruction
	How the Processor Accesses Main Memory
	Cache Memory

	Compilation Process Chain
	Preprocessing
	Compilation
	Assembler
	Linking
	Loader

	Memory Models
	Real Address Mode Memory Model
	Address Translation in Real Mode
	Flat Memory Model
	Segmented Memory Model

	Memory Layout Using Segments
	Segmentation
	Code Segment
	Data Segment
	Uninitialized/BSS Segment
	Stack Segment
	Heap Segment

	Runtime Memory Organization
	Intricacies of a Function Call
	Steps to Make a Function Call

	Memory Segments
	Virtual Memory Organization
	A Glimpse into a Virtual Memory System
	Address Spaces
	Virtual Address Space
	Physical Address Space

	Paging
	Page Table

	Summary

	Chapter 2: Pointer Basics
	What is an address of a variable ?
	Address of Operator
	Retrieving the Address of a Variable

	Pointer Declaration
	Pointer Assignment
	Size of Pointer Variables
	Pointer Dereferencing
	Basic Usage of Pointer
	Pass by Value
	Function Signature

	Pass by Reference
	Function Signature


	Pointers and Constants
	Constant Pointer Variable
	Pointer to Constant Variable
	Constant Pointer to a Constant Variable

	Multilevel Pointers
	Pointer to a Pointer Variable

	Understanding a Cryptic Pointer Expression
	Referencing
	Dereferencing
	Referencing
	Dereferencing

	Summary

	Chapter 3: Pointer Arithmetic and Single Dimension Arrays
	Array Memory Layout
	Endianness

	Pointer Arithmetic
	Pointer Addition
	Pointer Subtraction
	Subtracting Two Pointer Variables
	Comparing Two Pointer Variables


	Arrays Explored
	Dynamic Array
	Array of Pointers
	Pointer to Array

	Summary

	Chapter 4: Pointers and Strings
	String Layout in Memory
	Accessing String Elements

	Dynamic Memory Allocation
	String Literals and Constants

	String Operations
	Handling String Inputs
	String Iteration
	String Length

	String Copy
	String Concatenation

	Array of Strings
	Declaration of Array of Strings
	Summary


	Chapter 5: Pointers and Multidimensional Arrays
	Array Layout
	Pointer to 2D Array
	Meaning of Syntax in a 1D Context
	Accessing the Value at Location

	Meaning of Syntax in a 2D Context
	Specifying the Name of the Array Variable
	Arithmetic on an Address of an Array
	Value at the Location
	Accessing the Indices with a Pointer Variable in the Case of 2D Array


	3D Array Layout
	3D Array Basics
	Understanding 3D Array Expressions and their Meaning
	Specifying the Name of the Array Variable
	Array Arithmetic
	Using a Pointer Variable to Access Each Element in a 3D Array



	Summary

	Chapter 6: Pointers to Structures
	Defining Structures
	Declaring Structure Variables
	Accessing Structure Members
	Initializing Structure Variables
	Method 1
	Method 2

	Structure Nesting
	Structure in Memory
	Structure Padding
	Data Alignment
	Structure Padding
	Case 1
	Case 2


	When Structure Padding is not Helpful
	Structure Packing
	Structure Assignment and Copying
	Structure Pointers
	Accessing Member Variables
	D ot Operator (.) Method
	Arrow Operator (->) Method

	Passing Structure Pointer Variable

	Common Mistakes
	Type Casting Structure Pointers
	Self-Referential Structures
	Data Structures and Algorithms
	Linked Lists
	Binary Search Tree
	Creation of a BST

	Iterating Over the Nodes

	Summary

	Chapter 7: Function Pointers
	Defining Function Pointers
	Initializing Function Pointers
	Using Function Pointers
	Assembly Details of Function Pointer Calls
	Invocation of Function Call Directly
	Invocation of Function Call Indirectly with a Function Pointer

	Array of Function Pointers
	Defining an Array of a Function Pointers

	Returning Function Pointers from Function
	Difficult Way
	Easy Way

	Function Pointer Usage in the Linux Kernel
	Summary of Cryptic Function Pointer Declarations
	Summary

	Chapter 8: Pointers to File I/O
	The Physical Layout of Secondary Memory
	Surface View
	Interfacing HDD with CPU
	Disk Addressing Schemes
	CHS Addressing
	LBA Addressing


	Introduction to File System Architecture
	Logical File System
	The Basic File System

	What Is Required to Make a File System?
	On-Disk Data Structures
	In-Memory Data Structures

	Accessing Files
	FILE Data Structure

	First Task
	Second Task
	Reading from a File
	Reading a Single Character
	Reading Strings from a File
	Reading Blocks from File
	Formatted Reading from File

	Writing to a File
	Writing a Single Character to a File
	Writing a String onto the File
	Writing a Block of Data to a File

	Accessing Disk at Random Locations
	Seeking the File Indicator

	Miscellaneous Functions
	Knowing the Size of File
	Another Way of Resetting the Position of File

	Summary

	Index



