Numerical C

Applied Computational Programming with
Case Studies

Philip Joyce

Apress:

Numerical C

Applied Computational Programming
with Case Studies

Philip Joyce

Apress’

Numerical C: Applied Computational Programming with Case Studies

Philip Joyce
Goostrey, UK

ISBN-13 (pbk): 978-1-4842-5063-1 ISBN-13 (electronic): 978-1-4842-5064-8
https://doi.org/10.1007/978-1-4842-5064-8

Copyright © 2019 by Philip Joyce

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484250631. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5064-8

Table of Contents

About the AUROFcccccemmisemmmnsnnmssss s n s ann s annn s nnnnnnns vii
About the Technical REVIEWETccuvesssessssnsssassssassssnsssasssssssssnsssasssssssssnsssassssasnsansas ix
AcknOowIedgmENtScuuermmisssssmsnnnmmmmsssssssssssnssssssssssssssssnnssessssssssssnnnnnssssssssssnnnnnnnnness Xi
INtroduction........cccimnimmmmnmsnnne s ————————————— xiii
Chapter 1: Introduction to Cccccccemrrinsmmnmmnsssssnnmsssssssssssssssssessssssssssssssssssssssnnsssss 1
161 O (010 OSSPSR 1
Get and Print @ Character..........coocovveernenerese s e se e s sessessnssaens 2
Add TWO NUMDEIS ... s n e p e e e 4
Add Two Decimal NUMDEISccoucviiereseresesesesesese s se e s ssssssssessssessssssenns 5
Multiply TWO NUMDETScoveeriiiseseserese s ss e ss s sn s s s snsss e ssssesenssssnssnens 6
Divide TWO NUMDEIS ..o 7
0] (010 0SSO 8
L 01 T2 9
0B 00 13 S 13
SWILCH INSTFUCHION ...t 14
LT = 16
LT (= - 18
DT AT T 19
11T 0 LSS 24
B3] (] 1TSS SRR 29
Mathematical FUNCLIONS.........c.cccviiniisrse e 31
SHUCTUIES ...t 36
Size Of VAri@bIEs........covuiriiiiiri s 39
LC LT 0T84 11 T 40
Common Mathematical and Logical SYMDOIS........cceeevvrrieriernnenseneresessessesesesessessessessssessessenes 40

TABLE OF CONTENTS

Chapter 2: Solving EQUAtIONSccccnmmmssmnnmmsssssnnnmsssssssssssssssssssssssnssssssssssesssssnnnsnnss 45
QuAadratic EQUALIONS.........cccererrerirescrin e e s e s et ne e 45

o 102 (0] 41 1 o OSSR 45
Completing the SQUATE. ... e st 46
QuAdratic FOrMUIA..........cceeeererrrreesese e sr e s 47
Equations 0f HIGREI POWETS........cccviivirirene st se e s s sssssssesseseessssesaesaes 50
Trial and IMPrOVEMENT........cocvivvererererrerere s s s sae e s e sae s s e e s s aesa e e s e saesaese s e naesaes 50
Which Solution Are We FINAING?........ccecvrerevnrmierienssessesessssssesessessssessessesssssssessesssssssessesaes 52
THIEE SOIULIONS......coerecereer e e s r e e e e nan e 56
User-Entered FUNCHION ... 59
Chapter 3: Numerical Integrationc.ccccimninsemnmmnsssssnmmssssssnmmsssssnmmsssssessssssnes 65
Trapezium INTEGrationccvveeeiiesnesrre e e 66
Simplification of FOrMUIAccovvrerrnrrrre s nnes 69
INVEISE POWE ...ttt e s s 74
COMDINEU POWETS......coviviriueeireresiseesesess s e se e e s s e s ssssssssessssssnaes 77
Problem with Negative Areas ... s se s s 83
Simpson’s Rule INEGrationcccvecereernerresere e 86
Chapter 4: Monte Carlo Integrationcccccussemmmnnssemmmnnssesnmmssssnmssssmmsssssmms 91
Finding an 0dd-Shaped Ar€accouererrenernsesrnesssesesssse s ss s ss s sssse e ssssesens 91
Monte Carlo Area 0f GIaphccvcvcerievrrriere s s se e s sr e e s aesr e se e aennes 92
Area 0F @ CIFCIBcuccererrrcccre e 98
Higher Dimension GraphS........co s st sen s 105

Even Higher DIMeNSIONS........c.ccueiinninenienn e s ss s s sasssssessesnas 112
Chapter 5: MatriCesccuuesmmssmsmmssnnmssssnsssssnsmsssnsmsssnsssssnsssssnsssssnsssssnsssssnnsnssnnnnnsns 115
MatriX AFTNMETICcveveerecr e 115
Matrix Addition and SUDIFACHIONccovevrrerrese s 116
D 1L 0] o L o 119

iv

TABLE OF CONTENTS

MALFIX INVEISE ...t e 124
Coding @ MatriX INVEISE.......cccverererinierire et st 129
Testing the COUE.......cc.coicicrr e e e 133

Chapter 6: Correlation and PMCCcccceummmsnnmmmmsssssnnmsssssssssssssssssssssssnnssssssnnnnss 135
Scatter Graphs and Correlation.............ccucvrinninnn e 135
Product Moment Correlation COEffiCient.........ccuvcervirniennesnsse s s 142

Chapter 7: Monte Carlo Methodsccuucemmmnnssnmmnmnssssnnnmmssssssnmnsssssnmssssssessssnnn 147

Radioactive Decay SimUIALioN..........coevvvvininnirrne e ene s 147

BUFfON'S NBEAIE........ceieeericcrrcree e 150

RANAOM WAIK ...t ne e 153

Chapter 8: Augmented MatriX.....cccuseurrmsssnnnmmssssnnnmmsssssssssssssnnsessssssnsesssssnnsessssnnnnss 157

Manual Solution to Simultaneous EQUALIONS ... 157

Augmented MatriX Program.........ccouoevenmrenmsnsmsssessssse s sessssssssssssssssssssssssssssssssssenes 162

Twelve Simultaneous EQUALIONS ... 190

Chapter 9: File ACCESScuuruusummmmmssssnnmmsssssssnmsssssnnnssssssnnsssssssnnnssssssnnnsssssnnnsessssnnnnss 205

First Program t0 WHEE @ Filecccvcevivirirere st s st se s e s saessesassessesnens 205

Writing a Large Data File.......c.ccovvrvriennrr s sae s s 209

Medical RECOIAS Fil@..........cccoereeeeereee e e 214

Company RECOIAS Filecoeeoereerrerereseree e 229

Chapter 10: Differential EQUations........cccccvrrrnssssssssssmmsmmmsssssssssssssssssssssssssssssssnnnnns 235

Taylor and MaCIAUFIN SEHES.......cccuurerererrrsesrsesesese s sesesss s s s ses s ssssessssesesssssssenens 236

EULEr MEBENOM.e e n e e e s nnen 236

Runge-Kutta Method..........ccuviriiiiniie i 242

Second Order Differential EQUAtiONS......ccccvcvvvererverieriesessersese s s s s sessesessessssessessessessssessesses 246

TABLE OF CONTENTS

Appendix A: Development Environment Reference.........ccccuseennmnssssnnnsssssssnnsssssnns 251
LT L] (1T 0O 251
COMMAN LINE ..ottt s b e e e s e nnn 256

Appendix B: Syntax Reference........ccccuuumssnmmmmnmmmmmmsssssssssssnssssssssssssssssssssssssssssssnnnns 259
Mathematical FUNCLIONS..........ccciiriiinn e s s 259
POINEEIS .t 259
Standard Library FUNCHIONS........ccoccviviririenerie e sene s sss s sessessesessessesaessssessesaesssssssessesnes 262
Comparing Double, Float, and INTEQETc.ccvvrerverrerererserere s ssese s ssesessessssessessessesessessesaes 263

Appendix C: Answers t0 Problemsccccuuseemmmnssssssmmsssssssssssssssnsssssssssssssssssssssssnns 265

INA@X.uetiiissnnnnnnsssnnnnnnsssnnnnnssssnnnnesssnnnnssssnnnnnsssssnnnnssssnnnnnsssssnnnnssssnnnnnssssnnnnnssssnnnnnsssn 309

About the Author

Philip Joyce has 28 years of experience as a software
engineer - working on control of steel production, control of
oil refineries, communications software (pre-Internet), office
products (server software), and computer control of airports.
Programming in Assembler, COBOL, Coral66, C and C++.
Mentor to new graduates in the company. He received his
MSc in Computational Physics (including augmented matrix
techniques and Monte Carlo techniques using Fortran) from
Salford University in 1996. He is also a chartered physicist,

a member of the Institute of Physics (member of the Higher
Education Group), and has been a teacher of mathematics
to 11-18-year-old students for 14 years.

vii

About the Technical Reviewer

Michael Thomas has worked in software development

for over 20 years as an individual contributor, team lead,
program manager, and vice president of engineering.
Michael has over 10 years of experience working with mobile
devices. His current focus is in the medical sector using
mobile devices to accelerate information transfer between
patients and health-care providers.

ix

Acknowledgments

Thanks to my wife, Anne, for her support, my son Michael, and my daughter Katharine.
Michael uses regression techniques in his work and has shared some ideas with me.
Katharine was the catalyst for me writing the book. While she was at university, I taught
her Fortran programming with applications in the mathematics she had done in her
first year. The work we did was based on my MSc course in Computational Physics but
tailored toward mathematics applications. This work then became the basis for this
book.

Thanks to everyone on the Apress team who helped me with the publication of this,
my first book. Special thanks to Mark Powers, the coordinating editor, for his advice;
Steve Anglin, the acquisitions editor; Matthew Moodie, the development editor; and
Michael Thomas, the technical reviewer.

xi

Introduction

This book is about learning to write computer programs in C to solve problems in
mathematics and to show how C can be used to get data information in other areas like
economics and biochemistry.

Computers are used in most areas of life, and it can be vital to your area of work to
realize how helpful computer software can be. This book aims to show you how you can
write software in C to help you in your particular field.

The book uses your existing knowledge of basic mathematics to demonstrate to
yourself how useful software can be. Many mathematical problems are solved using
logical algebraic techniques which are taught at school. These are done with pen and
paper and form the foundation of mathematics. However, there are a lot of problems
which would take a group of people working together hours to solve in this way but
could be solved in seconds using computer software. In fact, some problems can only be
solved using computer software.

The book starts by introducing the C language and showing you how to write a
simple program very quickly. The chapters take you through mathematics you probably
already know from school. You will have solved problems in algebra using pen and
paper. One topic is “Trial and Improvement” whereby you take an equation that cannot
be solved using normal analytical methods, but you can try any value out in the equation
and see if you get the value at the right of the equation. As an example, we can substitute
any value of x into the following equation and see if we get 13.

5x*+17x*-3x=13

If your answer is higher than 13, you try a lower value of x to plug into the equation.
If this gives a value lower than 13, then you know that the correct value of x must be
somewhere in between your first value of x and your second value. So using this method,
you can just keep narrowing down closer and closer to the correct right-hand value. This
is a perfect problem to be solved by writing a C program. Whereas the problem could
take you half an hour to solve using pen, paper, and a calculator (depending on the
complexity of the equation), a C program will do it in seconds.

xiii

INTRODUCTION

Another problem you may have done at school is using the quadratic formula to
solve quadratic equations. (Remember that a quadratic equation is one where the
highest power of x is x?, e.g., 2x* + 3x - 5 = 0.) These are solved using a formula which, at
first sight, might look a bit daunting.

_ —bxb*-4ac

X =
2a

But this is just the solution to the quadratic equation

ax’+bx+c=0

where in our equation earlier, a is 2, b is 3, and c is -5.

We can just substitute these values into the formula in our C program and get the
solution to the equation.

We can also write software to solve simultaneous equations. In calculus we can write
a quick and efficient way of using the Trapezium Method of integration. Another method
of integration has the exotic name “Monte Carlo Integration” in which the C program
makes use of the way it can generate random numbers. Other mathematical methods
include Simpson’s Rule, matrix arithmetic, regression, the Product Moment Correlation
Coefficient (sounds impressive), another Monte Carlo method (this time to find pi),
the augmented matrix method for solving simultaneous equations, and the solution of
differential equations.

Finally, we look at methods of using C to access and retrieve information from data
files. These methods can have applications in many fields, but in this book we will look at
simple examples in medicine and economics.

The book can be used in educational organizations and commercial organizations or
can be used by individuals who wish to further their knowledge.

If you don’t have the C program development tools, you can download them free of
charge from Microsoft and from other organizations.

You can also download software packages to draw graphs. One of these is Graph
which is free to download. In Graph you can just enter an equation and it draws the
curve. You can also insert a set of data points, from a file that your program creates, into
the Graph package and it will display your points. You can then see from the pattern of
the points if it follows the shape of a known function.

Xiv

CHAPTER 1

Introduction to C

The C programming language was created in the 1970s, yet it is still in extensive use
today and is the basis of many other languages. For this reason I have used C as the
language for the solution of the numerical problems demonstrated in this book.

The level of C used will be sufficient to solve the numerical problems here, but an
appendix is included at the end of the book to show extensions that you may want to use
in your solutions here or in your work with C in the future.

If you don’t already have a C development environment on your computer, you
can download it, free of charge, from Microsoft. You can load their Microsoft Software
Development Kit (SDK). Another way you can access C is by using Visual Studio. Again, a
version of this can be downloaded.

Note Appendix A contains a guide to two development environments.

First Program

What is generally regarded as a good introduction to a programming language is writing
code that just prints a simple message to the screen.
The following is an example.

/* This is my first program in C */

int main()

{
printf("My first program\n");
return(0);

© Philip Joyce 2019
P. Joyce, Numerical C, https://doi.org/10.1007/978-1-4842-5064-8_1

CHAPTER 1 INTRODUCTIONTO C

The “\n” at the end returns the cursor to a new line. Try this for yourself. Open
notepad. Type in the code and then save the file to the directory where you want to
save your programs. When you save it, put “c” after the name (i.e., if you want to call it
myfirstprog, then call it myfirstprog.c).

Now you have to compile it. Do this by typing “c1 myfirstprog.c” Compiling
converts your written code into “machine code” which the hardware in the computer
understands. It also links in any other software that your program might need.

int main() delimits your code between the { and the } (although we will see later
that you can write a separate piece of code outside of the main() part and call it from the
main() part.

“printf” in your code tells the computer to print whatever is between each of the
double quotes. return(0) ; indicates that you detected no errors while calling printf.
Make sure you put the semicolon ; after the statement. This tells the compiler that it is
the end of the instruction. If you don’t do this, the compiler will take anything following
this (in this case, the return(0)) and assume it is part of the same instruction. This will
cause the program to fail.

Itis good practice to give your program a name that describes what it does so that
when you list all of your programs in your directory, you will know which one to look at.
It is also important to put a comment at the start of each program to say what it does.
Thisis /* This is my first program in C*/inthe code. Comments are usually
also written within your program to describe what a slice of code does or even what
a single line of code does. The compiler ignores everything inside /* and */. BUT BE
CAREFUL. If you forget to put the */ at the end of your comment, the compiler will
think everything following is a comment. Try this for yourself. Change your code for
myfirstprog to take out the end of comment marker (*/). Then compile it and run it. You
should get a “fatal error”

Get and Print a Character

Now that we can display a message to the person running our program, we can ask
them to type in a character, then read the character, and print it to the screen. One way
we do this is by using the instructions getchar and putchar. Here is an example of code
to do this.

CHAPTER 1 INTRODUCTIONTO C

#include <stdio.h>
/* read and display a number */
int main () {

char c;

printf("Enter character: ");
c = getchar(); /* read the character in */

printf("Character entered: ");
putchar(c); /* write the character */

return(0);

int main(), printf, and return are similar to those in your first program. char c;
means that you are reserving a place in your program where you will store the character
which is read in. c can then be referred to as a variable in your program. getchar () reads
the character that the person running your program has typed in, then putchar () prints
the character back to the screen. In the code c=getchar() the = sign means “assign to.”
So the instruction is saying get the character and assign it to the variable c.

Note A variable is just an area of the computer’s memory that we want to use.
We give these areas names so that we can access them easily.

Later we will see code where we want to know if one variable (say x) equals another
(say y). In this case we have “==" to mean equals, for example, “if x == y” Try typing in
the preceding program. Call the program anything you like but, again, something that
helps you remember what the program does is good practice. Compile your program
using c1 progname.c then run it by typing in progname. Try typing in a character. Your
program should reply with the character you typed in. Try typing in your first name.
What happens? getchar () only reads one character and it will only store the first
character you typed into the char c data store in your program. #include<stdio.h> is
a command to tell the compiler to attach to your executable program the code which
executes the getchar () and putchar(). stdio refers to the standard input and output
library. Note the comments in the program telling you what is going on. This is only for
your benefit when reading through your program in the future. It can be omitted and the
program will run exactly the same.

CHAPTER 1 INTRODUCTIONTO C

Add Two Numbers

Now that we know how to prompt the user to enter a number, we can extend our
program to let them enter two numbers, then, in our program, we add them and display
the answer.

Here is some code to do this.

/* Read in two integers , add them and display the answer */

#define _CRT_SECURE_NO_WARNINGS
#include¢stdio.hy

int main()

{

int this_is_a_numberi, this_is_a_number2, total;

printf("Please enter an integer number:\n ");
scanf("%d", &this_is_a_numberi); /* read number in */
printf("You entered %d\n", this_is_a_number1);

printf("Please enter another number: \n");
scanf("%d", &this_is_a_number2); /* read number in */
printf("You entered %d\n", this_is_a_number2);

total = this_is_a_numberi + this_is_a_number2;/* add two numbers */
printf("total is %d\n", total);

return 0;

In this program we are reading in integer numbers that can be up to 10 digits.
We define the storage for each of our numbers using int as shown at the start of the
program. We have also specified storage for where we want to store the total when we
have added our numbers. This is total. Notice that we can list all our storage names next
to each other after the int command, as long as they are all int types.

CHAPTER 1 INTRODUCTIONTO C

Note Types are the way we differentiate between our data, for example, whole
numbers are integer or int and characters such as “A”, “$”, and “?” are char
types. More information about types of data can be found in Appendix B.

In this program we use scanf to read the characters from the screen rather than
getchar(). This is because our numbers to be added can be more than one character.
The %d in scanf and printf specifies an integer to be read or written. In printf here the
answer to be printed is stored in “total”.

Type in the code and, again, give your program a meaningful name. Try entering
numbers. Check your answers.

Enter positive and negative numbers. Check your answer.

Note that your numbers must be integers (whole numbers).

(BUT WHAT IF WE WANT TO ADD DECIMAL NUMBERS?)

Add Two Decimal Numbers

This code is similar to the code that added two integer numbers. In this case we can add
decimal numbers. We define the storage for these as float, meaning floating point.

/* Add two floating point numbers */

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h»

int main()

{

float this_is_a_numberi, this_is_a_number2, total;

printf("Please enter a number:\n ");
scanf("%f", &this_is_a_number1i); /* read decimal number in */
printf("You entered %f\n", this_is_a_numberi);

printf("Please enter another number: \n");
scanf("%f", &this_is_a_number2); /* read decimal number in */
printf("You entered %f\n", this_is_a_number2);

CHAPTER 1 INTRODUCTIONTO C

total = this_is_a_numberi + this_is_a_number2;/* add the numbers */
printf("total is %f\n", total);

return 0;

Type in and compile this program. Test the program using decimal numbers
(positive and negative). Note that in our scanf and printf, we use %f rather than %d that
we used in our previous program. %d means we want to print or read an integer and %t
says that we want to read or print a floating point number.

So now we can add two numbers. What about multiplying?

Multiply Two Numbers

#idefine _CRT_SECURE_NO_WARNINGS
#tinclude <stdio.h»

/* multiply two floating point numbers */

int main()

{

float this_is_a_numberi, this_is_a_number2, total;

printf("Please enter a number:\n ");
scanf("%f", &this_is_a_numberi); /* read number in */
printf("You entered %f\n", this_is_a_number1);

printf("Please enter another number: \n");
scanf("%f", &this_is_a_number2); /* read number in */
printf("You entered %f\n", this_is_a_number2);

total = this_is_a_numberi * this_is_a_number2;/* multiply the numbers */
printf("product is %f\n", total);

return 0;

}

Type in this code. It is almost identical to the last one except for the multiply sign. Test it
with appropriate numbers.

CHAPTER 1 INTRODUCTIONTO C

So we can add and multiply. You can probably guess what is coming next. Maybe you

could try writing a “divide two numbers” program without looking at the next piece of text.

Divide Two Numbers

Here is the code you will have written.

/*

divide two floating point numbers */

#define _CRT_SECURE_NO_WARNINGS
#iinclude <stdio.h»

/* divide two floating point numbers */

int main()

{

float this_is_a_numberi, this_is_a_number2, total;

printf("Please enter a number: \n");
scanf("%f", &this_is_a_number1); /* read number in */
printf("You entered %f\n", this_is_a_numberi);

printf("Please enter another number:\n ");
scanf("%f", &this_is_a_number2); /* read number in */
printf("You entered %f\n", this_is_a_number2);

total = this_is_a_numberi / this_is_a_number2;/* divide the numbers */
printf("quotient is %f\n", total);

return 0;

If you have not already done it... type in the code, compile it, and test it. As thisis a

division, you could try as one of your tests dividing by zero.

CHAPTER 1 INTRODUCTIONTO C

Forloops

When we were doing our two numbers program, it would have been a bit of a chore to do
a similar thing with, say, ten numbers. We could have done it by repeating similar code
ten times. We can make this a bit simpler by writing one piece of code but then looping
round the same piece of code ten times. This is called a “forloop.”

Here is an example of how a forloop can help us.

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.hy

/* demonstrate a forloop */
main()

{

float this_is_a_number, total;
int i;

total = o;

/* forloop goes round 10 times */
for (i = 031 < 10;i++)

{
printf("Please enter a number:\n ");
scanf("%f", &this_is_a_number); /* read number in */
total = total + this_is_a_number;

}

printf("Total Sum is = %f\n", total);

The format of the for statement is

for(initial value; final value; increment)

The code to go round the loop is contained with the { after the for statement and the
} after the statements.

Within the for statement, the variable i is used as the variable to be incremented
and tested while going through the loop. Its initial value of i is 0 as shown in the first part
of the for statement; then each time the code is completed within the loop, 1 gets added
to i (this is what i++ does). After each loop a test is made to see if the i value has reached

8

CHAPTER 1 INTRODUCTIONTO C

10 (this is the i<10 part). When it does, the loop stops. So in this case the code in the
loop is executed ten times. Within the code the user is asked to enter a number. This gets
added into total in each loop, then the final value is printed out.

We could have achieved the same output if we had written out each of the three lines
within the forloop ten times but, as you can see, this saves time and space and is easy to
follow in the code. Also, just imagine if you wanted to round the loop 1000 times. All that you
would need to change in the code to do that would be 1<10 in the for command to 1<1000.

Flowcharts

When you are first designing your program, you may find yourself jotting down notes
to remind you what to do and when. There are diagrams that can be helpful here.
These are called flowcharts. Flowcharts are a useful tool to use here to help with your
understanding of the logical sequences of the programs.

There are sets of shapes that are generally used in flowcharts. Some organizations
have specific meanings to specific shapes. This is useful if somebody from a different
organization looks at the flowchart. Knowing what its shapes mean is therefore useful.
Generally the shapes and their usual meanings are shown in Figure 1-1.

This usually indicates the start or end of the
program and sometimes

Initial or final processing

This means general processing

This is a test.

Figure 1-1. Flowchart symbol general meaning

CHAPTER 1 INTRODUCTIONTO C

Figure 1-2 shows an example.

EnterData

Set up variables.
Initialise forloop

Process

forloop

l

Reached maximum

value?

Store and
Print answer

Figure 1-2. Example of flowchart logic
This forloop could have been used for your previous program. Start at the top and

follow the lines down. The logic of the forloop should be the same as the logic of your
program.

10

CHAPTER 1 INTRODUCTIONTO C

You can go even further with loops and have one loop contained inside another. This
is called a “nested forloop.”
Have a look at this program.

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>

/* demonstrate a nested forloop */
main()

{

float this_is_a_number, total;
int i, j;
total = o;

/* outer forloop goes round 10 times */
for (i = 031 < 10;i++)

{
/* inner forloop goes round twice */
for (j = 035 < 2;3j++)
{
printf("Please enter a number:\n ");
scanf("%f", &this_is_a_number); /* read number in */
total = total + this_is_a_number;
}
}

printf("Total Sum is = %f\n", total);
}

This is similar to your previous forloop program except that inside your original forloop,
we have another one. So that each time the program enters the outside loop, it does the
three lines of code of the inside loop. It goes round the outside loop ten times and the
inside loop twice, so in total it does the three lines of code 2*10 = 20 times.

11

CHAPTER 1 INTRODUCTIONTO C

Figure 1-3 shows the flowchart for this program.

start
program

Initialise
variables.Set up
forloops

Process
data

v

Got to max of
forloop 2 ?

Got to max of No

forloop 17?

Store and
print answer

Figure 1-3. A nested forloop

12

CHAPTER 1 INTRODUCTIONTO C

Create the program and test it. You may have spotted that you could have achieved
the same thing here by just having one forloop with a limit of 20. Quite correct, but in
reality we would do other things within the outside loop as well as having our inner loop.

Do Loops

There is another method of doing a similar thing to a forloop, but it is formatted slightly
differently. The loop says “do” - then within {}, again, contains a series of commands,
ending with “while .. where the “.” is just a condition to be true. When the condition
is not true, it drops out of the loop. So we are using a “do” loop to do the same thing as
our first forloop program. The i++ instruction in the do loop just adds 1 to whatever i

currently contains. To subtract 1 it’s just i--.

#define _CRT_SECURE_NO_WARNINGS

#include¢stdio.h>
/* demonstrate a do loop */
main()
{
float this_is_a_number, total;
int i;
total = o;
i=o;
/* do loop goes round until the value of i reaches 10 */
do {

printf("Please enter a number:\n ");
scanf("%f", &this_is_a_number);
total = total + this_is_a_number;
it+;

Jwhile(i < 10);

printf("Total Sum is = %f\n", total);

You should find that you get the same result as your forloop program.

13

CHAPTER 1 INTRODUCTIONTO C

Switch Instruction

Another instruction that is useful in C is switch. This takes a value and jumps to an
appropriate position in the code depending on the value. In the following program, the
user can enter any integer value between 1 and 5.

The switch instruction takes the value, and if it is 1 it jumps to case 1:,ifitis 2 it
jumps to case 2:, and so on. If the number entered is not an integer from 1 to 5, it drops
to the default: case where it outputs an error message.

#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>

/* Example of a switch operation */
int main()

{

int this_is_a_number;

printf("Please enter an integer between 1 and 5:\n ");
scanf("%d", &this_is_a_number);

switch (this_is_a_number)

{

case 1:
printf("Case1: Value is: %d", this_is_a_number);
break;

case 2:
printf("Case2: Value is: %d", this_is_a_number);
break;

case 3:
printf("Case3: Value is: %d", this_is_a_number);
break;

case 4:
printf("Case4: Value is: %d", this_is_a_number);
break;

14

CHAPTER 1 INTRODUCTIONTO C

case 5:
printf("Case5: Value is: %d", this_is_a_number);
break;
default:
printf("Exror Value is: %d", this_is_a_number); /* The number
entered was not between 1 and 5 */

}

return 0;

You can do a similar thing but using specific characters rather than numbers. You

then jump to the appropriate place using the character as the case name, for example, if

you type in a, then you jump to case a:

Type in and test the following program. This code expects the user to type in a

lowercase character a, b, c, d, or e. Anything else goes to the default option.

#define _CRT_SECURE_NO_WARNINGS

#include <stdio.h>

/* Example of using a switch on characters */
int main()

{

char this_is_a_character;

printf("Please enter character a,b,c,d or e:\n ");
scanf("%c", &this_is_a_character);

switch (this_is_a_character)

{

case 'a':
printf("a entered");
break;

case 'b’':
printf("b entered");
break;

15

CHAPTER 1 INTRODUCTIONTO C

case 'c':
printf("c entered");
break;
case 'd':
printf("d entered");
break;
case 'e':
printf("e entered");
break;
default:
printf("Default ");
}
return 0;

If Then Else

When a decision has to be made in your program to either do one operation or the other,
we use if statements.
These are fairly straightforward. Basically we say

if (something is true)
Perform a task

This is the basic form of if.
We can extend this to say

if (something is true)
Perform a task
else
Perform a different task

16

CHAPTER 1 INTRODUCTIONTO C
Here is some C code to demonstrate this.

#include <stdio.h>
/* Example of an if operation */
int main()

{
int this_is_a_number;
printf("Please enter an integer between 1 and 10:\n ");
scanf("%d", &this_is_a_number);
if (this_is_a_number <6)
printf("This number is less than 6;\n ");
printf("Please enter an integer between 10 and 20:\n ");
scanf("%d", &this_is_a_number);
if (this_is_a_number <16)
printf("This number is less than 16\n ");
else
printf("This number is greater than 15\n ");
return o0;
}

Create and test your program. When you are testing, it is good practice to test to each
limit and to even enter incorrect data. Here there is no check to see if you really do enter
within the ranges specified. You could add a test yourself.

There is an extension of the “if then else” type of command. This is the “if then else
if” where you add an extra level of ifs. Following is an extension of your last program to
add this.

17

CHAPTER 1 INTRODUCTIONTO C

If Then Else If

#define _CRT_SECURE_NO_WARNINGS

#include <stdio.h>

/* Example of an if then else if operation */
int main()

{

int this_is_a_number;

printf("Please enter an integer between 1 and 10:\n ");
scanf("%d", &this_is_a_number);

if (this_is_a_number < 6)
printf("This number is less than 6;\n ");

printf("Please enter an integer between 10 and 20:\n ");
scanf("%d", &this_is_a_number);

if (this_is_a_number < 16)

{

printf("This number is less than 16\n ");

}

else if (this_is_a_number == 20)

{

printf("This number is 20\n ");

printf("This number is greater than 15\n ");

}

return 0;

}

The program does the same if as the previous one, but instead of just an else following
it, it does else if to test another option. So here it tests if the number entered was
less than 16. If it was, it prints “This number is less than 16”; otherwise, it then tests if
the number equals 20. If it is, it prints out “This number is 20” Otherwise, it prints out
“This number is greater than 15 but not 20"

18

CHAPTER 1 INTRODUCTIONTO C

Data Arrays

There is another way of storing data in our programs rather than in just individual
locations. These are called “arrays.” They can be defined as “int arr” where all the
elements of the array are integers. They can be “char arr” where all the elements are
characters. There are also other types which we will see later. We define an integer array
with the length of the array which we insert in square brackets, for example, int arr[8]
for an array of 8 elements.

The following program shows us how to read in 8 integers and store them in an array.

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h»
/* program to show array use */

int main()

{
int arri[8];/* define an array of 8 integers */
int i;
printf("enter 8 integer numbers\n");
for (i = 031 < 8;i++)
{
scanf("%d", &arri[i]);/* read into arri[i] */
}
printf("Your 8 numbers are \n");
for (i = 03i < 8;i++)
{
printf("%d ", arri[i]);
}
printf("\n");
}

Create this program and test it. It will read the eight characters you enter and store
them in the array “arr1” It then reads arr1 and prints out its contents.

19

CHAPTER 1 INTRODUCTIONTO C

To read and write characters into our array, we define it as “char arr” and notice
that we use %c in our scanf and printf because %c expects characters and %d expects
integers.

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
/* program to show character array use */

int main()

{
char arr2[10];/* define array of 10 characters */
int i;
printf("enter 10 characters \n");
for (i = 031 < 10;i++)
{
scanf("%c", &arr2[i]);
}
printf("Your 10 characters are \n");
for (i = 031 < 10;i++)
{
printf("%c ", arr2[i]);
}
printf("\n");
}

Arrays are really useful when we are writing software to solve mathematics problems.
We can extend our ideas we have just learned. If we say that our int array we have just
used is in one dimension (i.e., numbers in a line), we can have a two-dimensional array
(like numbers in a matrix.)

Following is a program that allows you to enter data into a two-dimensional array.
It can have a maximum of 8 integers in one part and 7 in the other part. This is defined
here as int arr1[7][8]. You can picture it like this.

20

1 2 3 4 s
4 3 4 5 6
0 4 5 6 7
9 5 6 7 8
3 7 8 9 10
8 8 9 10 11
6 9 10 11 12

6
7
8
9
11

12
13

10
12
13
14

10
11
13
14
15

CHAPTER 1 INTRODUCTIONTO C

This can be referred to as a 7x8 array (like a 7x8 matrix in mathematics). The

following code reads data into the array.

#idefine _CRT_SECURE_NO_WARNINGS

#include¢stdio.hy

/* example of a 2D array test*/

int main()

{

int arri[7][8];/* 2D array */

int i, j, k, 1;

printf("enter number of rows and columns (max 7 rows max 8

columns) \n");

scanf("%d %d", &k, &1);
if (k>7] 1>8)

{

printf("error — max of 8 for rows or 7 for columns \n");

else

printf("enter array\n");

for (i = 0;i < kji++)

{

21

CHAPTER 1 INTRODUCTIONTO C

for (j = 035 < 1;j++)
{
scanf("%d", &arri[i][j]);

}

printf("Your array is \n");
for (i = 0;i < kji++)
{
for (j = 035 < 1;j++)
{
printf("%d ", arri[i][j]);

}
printf("\n");

There are a few new ideas in this program. As well as having our two-dimensional
array, we also have examples of a nested forloop as seen earlier. We also see something
which is a really useful thing to use in your programs. This is called “data vetting.” If
you look at the definition of our array, its first part has 7 integers and its second has
8 integers. If the user tried to enter more than 8, it would cause the program to fail
with an error. We can prevent this by checking that the user does not enter more than
the maximum expected number of integers for each part. This is what the first “if”
statement does. The first part of the program stores the number of “rows” into k and
the number of columns into 1. The if statement says that if the number of rows is greater
than 7 or the number of columns is greater than 8, then it outputs an error message and
means “or”

Hl |II

terminates the program. The symbol
The 2-D array stores row by row. So if you enter the data shown earlier and print out the
first row, then you should get 1234 5 6 7 8. You can write a quick test program to do this.

#define _CRT_SECURE_NO_WARNINGS
#include¢stdio.hy

/* example of a 2D array test*/
int main()

22

CHAPTER 1 INTRODUCTIONTO C

int arri[7][8];

int i, j, k, 1;

printf("enter number of rows and columns (max 7 rows max 8
columns) \n");

scanf("%d %d", &k, &1);

if (k>7 || 1>8)

{

else

}

printf("error — max of 8 for rows or 7 for columns \n");

printf("enter array\n");
for (i = 031 < k;i++)

{
for (j = 035 < 1;j++)
{
scanf("%d", &arri[i][j]);
}
}

printf("Your array is \n");
for (i = 031 < kji++)

{
for (j = 035 < 1;j++)
{
printf("%d ", arri[i][j]);
}
printf("\n");
}

printf("first row of array\n");

23

CHAPTER 1 INTRODUCTIONTO C

for (j = 035 < 1;j++)
{
printf("%d ", arri[o][j]);

}
printf("\n");

This is the same as your 2-D array program except that at the end it does an extra bit.

for(j=0;j<k;j++)
{

printf("%d ",arr1[o][j]);
}

This just prints out arr[0][0], arr[o][1], arr[o][2], arr[o][3], arr[o][4],
arr[0][5], arr[o0][6], arr[0][7]. Thisis how the data is stored in a 2-D array. If you
wanted the second row, you just need to change the printf("%d ",arr1[0][j]); in the
last forloop to printf("%d ",arr1[1][j]);

Two-dimensional arrays are vital when you write programs to perform operations on
matrices later in this book.

Functions

Sometimes when you are writing your programs, you will find that you may end up writing
similar lines of code in different places in the program. You can make this easier to do and
easier for other people to follow what your code does if you put these similar lines of code in
a separate place and just call them when you need them. This separate set of code is called a
function. If the function has to do slightly different things each time it gets called, this is fine
as you can call the function with a different parameter each time you call it. The following
code will demonstrate this. It is a fairly trivial piece of code but it illustrates the point.

#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h»

/* This code demonstrates what a function does */
/* The function here compares two numbers and says which is bigger */
/* The user enters three numbers and gets told which is bigger than which !*/

24

CHAPTER 1 INTRODUCTIONTO C

void myfunction(int a,int b); /* decaration of your function and its
parameters */

int first , second, third;
main()
{
printf("Please enter first integer number: ");
scanf("%d", &first);
printf("Please enter second integer number: ");
scanf("%d", &second);
printf("Please enter third integer number: ");
scanf("%d", &third);

myfunction(first , second);
myfunction(first , third);
myfunction(second , third);
}
void myfunction(int a,int b)
/* the function is outside the main{} part of the program */
/* The function just compares the two parameters, a and b, and says which
is greater*/

{
if(asb)
printf("%d is greater than %d\n", a,b);
else if (a<b)
printf("%d is greater than %d\n", b,a);
else
printf("%d and %d are equal\n", a,b);
}

The function here is called myfunction. Notice that it is defined outside of main{}.
Itis declared at the start of the program. The function is given two numbers, a and b. It
compares the two numbers and says which is bigger. In the main part of the program,
the user is prompted to enter three numbers. These are then entered into the calls to
myfunction in the main part of the code.

This is a fairly simple piece of code but it shows how a function can be used.

25

CHAPTER 1 INTRODUCTIONTO C

The following piece of code also shows how functions are used. This code is based
on the program you wrote in the 2-D arrays section of this chapter. It prints out specific
rows of your 2-D array. One call to the function asks the function to print out the second
row of the array, and the other call asks it to print out the first row.

#idefine _CRT_SECURE_NO_WARNINGS
#tinclude¢stdio.hy

/* example of a function*/
void printarow(int row, int cols, int arr[8][8]);
int main()

{
int arri[8][8];

int i, j, rows, cols;
printf("enter number of rows and columns (max 8 rows max 8 columns)
\n");

scanf("%d %d", &rows, &cols);
if (xrows » 8 || cols » 8)

{

printf("error - max of 8 for rows or columns\n");

else

printf("enter array\n");
for (i = 0;i < rows;i++)

{
for (j = 03j < cols;j++)
{
scanf("%d", &arri[i][j]);
}
}

printf("Your array is \n");
for (i = 031 < rows;i++)

{

26

CHAPTER 1 INTRODUCTIONTO C

for (j = 03j < cols;j++)
{
printf("%d ", arri[i][j]);

}
printf("\n");

}

printarow(2, cols, arri);/* This calls to print out row 2
only(assumes that you have at least 2 rows) */
printf("\n");
printarow(1, cols, arri);/* This calls to print out row 1 only */
printf("\n");

}

void printarow(int row, int cols, int arr[8][8])

/* this is a function which can be called from anywhere in the program */
/* and can be called as often as you want to */

/* If you need to do the same type of thing many times it saves you */

/* having to write out the same code repeatedly. All you need to */

/* is call the function */

{

int j;

printf("row %d is ", row);
for (j = 0;j < cols;j++)
{

printf("%d ", arr[row - 1][j]);

Notice that the array name used in the function does not have to be the same as that
used in main{}. In the instruction if(rows>7 || cols>8), the | | means OR. So here we
are saying if the user has specified more than seven rows or more than eight columns,
then we print an error and stop the program. At the end of the chapter, the common
arithmetic and logical symbols used in C are listed.

27

CHAPTER 1 INTRODUCTIONTO C

Create and test this program. The code assumes you have at least two rows. You

could amend the code to call printarow as many times as you want to.

A function can return a value to the caller. The following code demonstrates this.

/* Function which returns an answer */
/* finds the pupil in one year of the school with the highest marks */

#include <stdio.h»
double getmarks(double pupils[]);

int main()

{

}

double pupil;

/* Array with marks for class is preset in the main part of the
program */

double marks[] = { 10.6, 23.7, 67.9, 93.0, 64.2, 33.8 ,57.5 ,82.2
»50.7 ,45.7 };

/* Call function getmarks. The function returns the max marks which
is then stored in pupil */

pupil = getmarks(marks);

printf("Max mark is = %f", pupil);

return 0;

double getmarks(double pupils[])

{

28

int i;
double highest;
highest = o0;
/* Go through all the pupils in turn and store the highest mark */
for (i = 0; i < 6; ++i)
{

if (highest < pupils[i])

highest = pupils[i];

}

return highest; /* returns the value in highest to where the function
was called */

CHAPTER 1 INTRODUCTIONTO C

The function is called getmarks. It returns a value to the point where it was called.
In real-life programs, the function will be called many times from different points in the
program. This technique is efficient and makes the program easier to follow.

Strings

Strings in C are just like character arrays we have already looked at. The main difference
is that the string has a NULL character at the end. This is just to show where the string
ends as we have to do things like compare two strings or find the length of the string. To
find the length, we have a function written for us in the string.h library, and this needs
to have a NULL character at the end. As a result of this, if we are defining a preset string
as a character array of a certain length, we need to account for the NULL at the end. So if
our string had “Borrow” in it, the word has six characters so our string array would have
to have seven characters in its definition to account for the NULL character at the end.
When we print a string using printf, we use %s to show it is a string (where we used %d to
print an integer or %f to print a floating point number).

Here is a program to check the length of strings (strlen), copy onto another
(strcpy), concatenate two strings (strcat), and compare the contents of two strings
(strcmp).

Concatenation of two strings is just tagging one string onto the end of the other.

#define _CRT_SECURE_NO_WARNINGS

#include <stdio.h>

#include <string.h»

/* Program to demonstrate string operations strlen, strcpy, strcat, strcmp */

int main() {
char borrow[7] = { 'b‘', '0', 'r', 'r', 'o', 'w',"'\0"' };
char stringi[32] = "This is string1"
char string2[16]
char string3[16];
int len;
/* Print out the lengths of the strings */

5
"This is string2";

29

CHAPTER 1 INTRODUCTIONTO C

len = strlen(string1);
printf("strlen(string1) : Z%d\n", len);
len = strlen(string2);
printf("strlen(string2) : %d\n", len);
len = strlen(string3);
printf("strlen(string3) : Z%d\n", len);

/* copy stringl into string3 */

strcpy(string3, stringl);
printf("strcpy(string3, stringi) : ¥%s\n", string3);
len = strlen(string3);
printf("strlen(string3) after copy of stringl into string3 : %d\n", len);
/* Compare stringl and string3 (these should be the same)*/
if (strcmp(stringi, string3) == 0)
printf("strings are the same\n");

/* concatenates stringl and string2 */

strcat(stringl, string2);

printf("strcat(stringi, string2): %s\n", stringl);

/* total length of stringl after concatenation */

len = strlen(stringl);

printf("strlen(stringl) after cat of string2 onto stringil : %d\n", len);
printf("String as predefined quoted chars: %s\n", borrow);

return 0;
}
In strlen the function returns the length of the string.
In strcpy the function copies the second string in the command to the first.
In strcmp the function compares the contents of the two strings and returns 0 if they
are equal.

In strcat the function tags the second string onto the end of the first string.

30

CHAPTER 1 INTRODUCTIONTO C

Mathematical Functions

There are many mathematical functions that you can access in C. The ones featured
here are only a sample. A more comprehensive list can be found in the appendix. The
functions featured here are available in most scientific calculators. However, I have
selected these to illustrate how you can access these functions as part of much more
complicated calculations that you will have in your programs.

The following set are the common trigonometric functions cosine, sine, tangent, and
their inverses. We include the math.h library which contains these functions.

#idefine _CRT_SECURE_NO_WARNINGS

#include <stdio.h>

#include <math.h>

/* Illustration of the common trigonometric functions */

int main()
{
##define PI 3.14159265
double angle, radianno, answer;

/* The cosine function */

printf("cosine function:\n ");

printf("Please enter angle in degrees:\n ");
scanf("%1f", &angle);

printf("You entered %1f\n", angle);

radianno = angle * (2 * PI / 360);

answer = cos(radianno);

printf("cos of %1f is %1f\n", angle, answer);

/* The sine function */

printf("sine function:\n ");

printf("Please enter angle in degrees:\n ");
scanf("%1f", &angle);

printf("You entered %1f\n", angle);

radianno = angle * (2 * PI / 360);

answer = sin(radianno);

printf("sin of %1f is %1f\n", angle, answer);

31

CHAPTER 1 INTRODUCTIONTO C

/* The tangent function */

printf("tangent function:\n ");
printf("Please enter angle in degrees:\n ");
scanf("%1f", &angle);

printf("You entered %1f\n", angle);

radianno = angle * (2 * PI / 360);

answer = tan(radianno);

printf("tan of %1f is %1f\n", angle, answer);

return 0;

The next program finds the arccos, arcsin, and arctan. So here the user has to enter
the cosine of an angle and the program works out the angle, and similarly for arcsin and
arctan. The functions the program uses are arccos, arcsin, and arctan. Again, the
angles that the function returns will be radians. You can display this value to the user
if you wish, but make sure that you print “radians” in your printf function. Here we
convert the angle into degrees and tell the user this.

#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h»
#tinclude <math.h»

int main()
{
#define PI 3.14159265
double radianno, answer, arccos, arcsin, arctan;

/* The arccos function */

printf("arccos function:\n ");

printf("Please enter arccos:\n ");

scanf("%1f", &arccos);

printf("You entered %1f\n", arccos);

radianno = acos(arccos);

answer = radianno * (360 / (2 * PI));

printf("arccos of %1f in degrees is %1f\n", arccos, answer);

32

CHAPTER 1 INTRODUCTIONTO C

/* The arcsin function */
printf("arcsin function:\n ");
printf("Please enter arcsin:\n ");
scanf("%1f", &arcsin);

printf("You entered %1f\n", arcsin);
radianno = asin(arcsin);

answer = radianno * (360 / (2 * PI));
printf("arcsin of %1f in degrees is %1f\n", arcsin, answer);

/* The arctan function */

printf("arctan function:\n ");

printf("Please enter arctan:\n ");

scanf("%1f", &arctan);

printf("You entered %1f\n", arctan);

radianno = atan(arctan);

answer = radianno * (360 / (2 * PI));

printf("arctan of %1f in degrees is %1f\n", arctan, answer);

return 0;

We use #define PI 3.14159265. This is similar to a variable definition except that
we preset its value, and this value is used as a constant in the program.

The code here asks the user to enter an angle in degrees. The functions to find the
cosine, sine, and tangent of an angle are called cos, sin, and tan. The functions expect
the angles to be in radians. Here the user can enter the angle in degrees and the program
converts this value to radians.

The next set of functions is to find the exponent of a number (exp to the power of
whatever the number is), to find the natural logarithm of a number (In of number), and
to find the log to base 10 of a number (log of the number).

In C the natural logarithm function is log and the log to base 10 is 1og10.

#idefine _CRT_SECURE_NO_WARNINGS

#include <stdio.h>

#include <math.h>

/* showing use of exp, log and logi0 functions */

33

CHAPTER 1 INTRODUCTIONTO C

int main()

{

double answer, expno, natlog, 1lb1o0;

/* find exponent of entered number */
printf("exponental function:\n ");
printf("Please enter number:\n ");
scanf("%1f", &expno);

printf("You entered %1f\n", expno);

answer = exp(expno);
printf("exponent of %1f is %1f\n", expno, answer);

/* find natural logarithm of entered number */
printf("natural logarithm function:\n ");

printf("Please enter number:\n ");

scanf("%1f", &natlog);

printf("You entered %1f\n", natlog);

answer = log(natlog);

printf("natural logarithm of %1f is %1f\n", natlog, answer);

/* find log to base 10 of entered number */
printf("log to base 10 function:\n ");
printf("Please enter number:\n ");
scanf("%1f", &lb10);

printf("You entered %1f\n", 1b10);

answer = log10(1b10);

printf("log to base 10 of %1f is %1f\n", 1b10, answer);

The final program here containing mathematical functions finds the power of a
number (you enter the number and the power you want it raising to), the square root of
a number, and the absolute value of a number. When using the power function, pow, you
can specify inverse powers. So x? would be pow(x,2) and x® would be pow(x,5). Similarly
1/x% (which can also be written as x2) would be pow(x, -2). When your function includes
coefficients (the number before the x term), sometimes it is necessary to simplify. For
example, if you had 3/4x3, it is best to rewrite this as 0.75/x* so you won't have to worry
about specifying separate numbers (here the 3 and the 4).

34

CHAPTER 1 INTRODUCTIONTO C

#define _CRT_SECURE_NO_WARNINGS

#include <stdio.h»

#include <math.h>

/* showing use of pow, sqrt and fabs functions */
int main()

{

double answer, pownum, power, sqroot, fabsno;

/* find x raised to power y number */

printf("power:\n ");

printf("Please enter number:\n ");

scanf("%1f", &pownum);

printf("You entered %1f\n", pownum);

printf("Please enter power:\n ");

scanf("%1f", &power);

printf("You entered %1f\n", power);

answer = pow(pownum, power);

printf("%1f raised to power %1f is %1f\n", pownum, power, answer);

/* find square root of number */

printf("square root:\n ");

printf("Please enter number:\n ");

scanf("%1f", &sqroot);

printf("You entered %1f\n", sqroot);

answer = sqrt(sqroot);

printf("The square root of %1f is %1f\n", sqroot, answer);

/* find absolute value of number */

printf("absolute value:\n ");

printf("Please enter number:\n ");

scanf("%1f", &fabsno);

printf("You entered %1f\n", fabsno);

answer = fabs(fabsno);

printf("The absolute value of %1f is %1f\n", fabsno, answer);
}

35

CHAPTER 1 INTRODUCTIONTO C

This program is fairly straightforward. In each of the four programs, when you are
testing them, enter data that you know the correct answers to. Again, when testing it
is vital (when you are writing code for real) to test the software to the limit, that is, find
values that may be out of the range you intended and enter those. You have to act as a
“devil’s advocate” and, basically, try to cause the program to fail. When your software
is used in a real-life situation for any long period of time, this kind of thing happens
anyway so you have to either anticipate it happening and put in code to avoid it from
happening (data vetting) or warn the user.

Structures

The variables used up to now have just been singly named variables of a certain type.
Another type of variable is a structure. This is a variable that contains separate variables
within it. If you imagine a file containing details of a student at a college, the details of
each student might be their name, their student ID, and possibly their last examination
mark. So, in a paper file, these may be held like this:

id

Name

Percent

So there would be an entry like this in the file for each student.

Here is a program which declares such a structure. It then assigns variable names
s1 and s2 to have that type of definition. Then it gives each structure values, then prints
them out.

/* Structure example program */
#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h»
#include¢string.h>

/* define the structure */
struct Student {
int id;
char name[16];
double percent;

36

CHAPTER 1 INTRODUCTIONTO C

int main() {
/* define two data locations of type "student" */
struct Student si, s2;

/* Assign values to the si structure */

si.id = 56;

strcpy(si.name, "Rob Smith");
sl.percent = 67.400000;

/* Print out structure si */

printf("\nid : %d", s1.id);
printf("\nName : %s", si.name);
printf("\nPercent : %1f", si.percent);

/* Assign values to the s2 structure */

sz.id - 73;
strcpy(s2.name, "Mary Gallagher");
s2.percent = 93.800000;

/* Print out structure si */

printf("\nid : %d", s2.id);
printf("\nName : %s", s2.name);
printf("\nPexcent : %1f", s2.percent);

return (0);

This can be extended so instead of defining individual entries (s1 and s2), we can
define a larger number in one definition. In the following example, we define five items
in the array year9. Then we refer to the first student entry as year9[0], the second
student entry as year9[1], and so on. Look at the following code.

/* Structure example program (extended structure)*/
#define _CRT_SECURE_NO_WARNINGS

#include¢stdio.h>

/* define the structure */

struct Student {

37

CHAPTER 1 INTRODUCTIONTO C

int id;
char name[16];
double percent;

}s
int main() {
int i;
/* define 5 data locations of type "student" */
struct Student year9[5];
for(i=0; i<5; i++)
{
/* Assign values to the structure */
printf("enter student ID\n");
scanf("%d",&year9[i].id);
printf("enter student name\n");
scanf("%s",year9[i] .name);
printf("enter student percent\n");
scanf("%1f",&year9[i] .percent);
}
for(i=0; i<5; i++)
{
/* Print out structure si1 */
printf("\nid : %d", year9[i].id);
printf("\nName : %s", year9[i].name);
printf("\nPexcent : %1f", year9[i].percent);
}
return (0);
}

This type of structure definition is vital when you set up files and write them or read
them. You will see more of structures in the chapter dealing with file usage.

38

CHAPTER 1 INTRODUCTIONTO C

Size of Variables

There is a useful function in C which tells you the size in bytes of variables on your
machine. Sometimes, different compilers or software development tools have different
sizes for different structures. The function is called sizeof. You supply it with the variable
type you want to know the size of, and it returns the answer as the number of bytes.

You can also supply a structure as the parameter if you don’t know its size.

A program to do the basics is shown as follows.

/* Program to illustrate the use of the sizeof command */

#include <stdio.h »
#include < limits.h >
#include ¢ math.h »

int main() {

int sizeofint;

unsigned int sizeofunsint;
float sizeoffloat;

double sizeofdouble;

printf("storage size for int : %d \n", sizeof(sizeofint));
printf("storage size for uns int : %d \n", sizeof(sizeofunsint));
printf("storage size for float : %d \n", sizeof(sizeoffloat));
printf("storage size for double float: %d \n", sizeof(sizeofdouble));

return(0);
This prints out the sizes of an int, an unsigned int, a floating point, and a double
floating point.

39

CHAPTER 1 INTRODUCTIONTO C

Goto Command

Under some circumstances, you may want to jump out of your normal sequence of code,
for instance, if you discover an error in a sequence of code. In this case, you can define a
label and jump to the label from within your sequence of code.

goto is not used frequently in programming (it’s actively discouraged in fact). It can
quite quickly lead to tangled and unmaintainable code. However, it can be used if you
want a quick exit from your program.

This is shown in the following code.

#include <stdio.h» /* Demonstrate a goto statement */
int main()

{

int i, testvalue;

testvalue = 2;

for (i = 05 i < 10; i++)

{

if (testvalue == 2)
goto error;

}

printf("Normal Exit from forloop\n");
error:

printf("testvalue is %d\n", testvalue);
}

So here the code would jump to error and output testvalue is 2.

Common Mathematical and Logical Symbols

Here is a quick reference:
= assign
==equals

!=not equal to

40

CHAPTER 1 INTRODUCTIONTO C

<less than

> greater than

<=less than or equal to

>= greater than or equal to
&&logical AND

|| logical OR

!logical NOT

EXERCISES

1. Amend your add two numbers program to read in and add five numbers. Test
with the following sets of numbers:
() 2,15,213,51,8
(ii) 1234, 2345,1517, 2, 5205
(iii) —1234,-2345,-1517,-2,-5205
(iv) 11994, -10000, 900,90, -4

2. Amend your add two decimal numbers program to subtract two decimal
numbers. Test with the following sets of numbers:

() 12.6,11.3
(ii) 11994, 11993.

3. Amend your multiply two numbers program to multiply three numbers. Test with
the following sets of numbers:

(i) 8.0,3.2,7.6.
(i) 8.0,2.5,-0.6

(iii) 66975, 285, —0.0087
(iv) 395434, 454, 0.00003
(v) 395454, -871,0

41

CHAPTER 1

42

4.

10.

11.

INTRODUCTION TO C

In your divide two numbers program, change it to read in two numbers. Add
them. Then read in another number and divide your added total by your third
number. Test with these sets of data:

() (10+35)/.15
(ii) (300030 + 4600) / 1486
(iii) (1610 + 2004) / 2365

Now change your program in question 4 to read four numbers. Add the first
two together, then add the second two together. Divide your first sum by your
second sum. Test with this data:

(1610 + 2004) / (2005 + 360)

For your forloop example, in your forloop program read in an integer number
and use it in your for instruction as the limit for the loop. Test your amendment
by giving it the same number as your original forloop program.

In your nested forloop program, add another nested forloop within the two you
already have. Go round your new loop three times. Test your amendment.

For your do loop program, change the while statement to limit your do loop for
i>10. (Make sure you get your initial value of i correct. What do you think will
happen if your initial value is 10?

Write a program to extend the data array program so that you enter and store
two separate arrays. Then print out the first line of the first array and the first
line of the second array.

Write a program similar to the one where you return a value from a function. In
this case, the function is called to find the average of a set of marks. Set up an
array in the main part of the program and initialize it with nine values. Call your
function to calculate the average of these numbers. Your function should return
the average, and this value is stored in the main part of the program and then
printed out.

Using the mathematical functions in this chapter, write a program to find the
length of AC in the diagram:

CHAPTER 1 INTRODUCTIONTO C

Angle at B is 60 degrees

Length of BCis 7m

A L1 B
12. Similarly to the last question, find the length of YZ in the following diagram.

VA
Length of XY is 5.7 miles

Length of XZ is 11.4 miles

s

X Y
13. As in the last question, find the length of MN in the following diagram.

N

Angle at L is 37 degrees
Length of LM is 7.8 miles

L Length of LN is 6.2 miles

M

14. In the “extended structure” program in the “Structures” section of this chapter,
amend the program so that instead of entering data for the two individual
cases, you set up a forloop with five iterations. For the first iteration, enter data
for student 1. For the second iteration, enter data for student 2 and so on. Then
set up another forloop to print all of the data for the five students.

43

CHAPTER 2

Solving Equations

The first mathematical application which we will write a C program for is solving quadratic
equations. We will then write some programs to solve equations of higher powers.

Quadratic Equations

Quadratic equations are equations which have a squared variable as their highest power.
Sox?+2x+1=0,2x*>-6x+7=0,and x> + 2x -15 = 0 are all quadratic equations, but
x3+2x%-3x+ 7 =0, 2x° -3x = 0, and 3x - 2 = 0 are not quadratic equations.
The normal analytical methods for solving quadratics are

o Factorizing
o Completing the square

e Using the quadratic formula

Factorizing

Factors of any ordinary whole numbers are just those numbers that will divide into that
whole number. So the factors of 15 are 1, 3, 5, and 15. If we are asked to find the factors
of a quadratic equation like x* + 5x + 6, we want to find two algebraic terms that multiply
together to give x*> + 5x + 6. In this case the two terms are (x + 2) and (x + 3). You can test
this out by multiplying the two terms together.

Now if we were asked to solve the equation x> + 5x + 6 = 0, we can rewrite the equation
as (x + 2)(x + 3) = 0. Now if two numbers multiply to give 0, then either one or both of
the numbers must be 0. So we can say that either (x + 2) = 0 or (x + 3) = 0. So rearranging
each of these gives x = -2 or x = -3. These are the factorized solutions of x* + 5x + 6 = 0.

The quadratic formula can look a bit daunting when you first see it, but it is just
derived from the “completing the square” method. This is shown next.

45
© Philip Joyce 2019

P. Joyce, Numerical C, https://doi.org/10.1007/978-1-4842-5064-8_2

CHAPTER 2 SOLVING EQUATIONS

Completing the Square

If we have a quadratic equation x* + 8x + 7 = 0, we can solve it by taking the x? term and
the 8x term and making a square from it. We do this by starting with (x + ?)%. We want
to know that we can put where the question mark is so that we can end up with the first
part of our equation, x> + 8x. If we halve the 8 and insert that, we then get (x + 4)? as our
square. Now if we expand this, we get x* + 8x + 16. But this is 16 more than we want. So
we just subtract it. So now we can say x* + 8x is the same as (x + 4) - 16.

You might think why would you want to do that.

1. Well we can now rewrite our original equation as (x +4)*- 16 +7 =0
by just replacing x* + 8x in our original equation by (x + 4)* - 16.

2. Sonowwehave (x+4)?-16+7=0.

3. Rearranging we get (x +4)*=16-7.

4. Or(x+4)*=9.

5. So now we square root both sides to get x = -4 +3 or -3.
6. Andfinallyx=-4+3orx=-4-3.

7. Orx=-1lor-7.

The advantage in the “completing the square” method is that it is useful when
the original equation is difficult to factorize (although in this case we could have
factorized it).

All you need to remember is halve your number before the x term and put it in
the square.

1. Soforx®+94x-53=0.

2. We can just write (x + 47)? -47%> -53 = 0.

3. So(x+47)*=53+47%

4. So taking square roots (x + 47) = +-(53 + 47%)'/2.
5. Sox=-47 + (53 +47?)"2,

6. Or-47 - (53 +47%)"2

46

CHAPTER 2 SOLVING EQUATIONS

It’s easier if we have the coefficient of x* to be 1. So if we had to factorize 2x* + 4x - 23 =0,
it's best to divide both sides by the coefficient of x. Here this is 2, so doing this we get

X +2x-23/2=0

then we can proceed as before.

Quadratic Formula

In the general case when we can have any numbers for the coefficients of x> and x and as
our constant, we can write

ax’+bx+c=0

where a, b, and c are any numbers (although a cannot be 0 as in that case it would not be
a quadratic equation).
If we do our normal method for completing the square on this equation

1. First we divide by the number before the x* to get
x?+ (b/a)x + (c/a) = 0.

2. Now we make our square by halving the number before the
x (x + (b/2a))? - (b/2a)? (not forgetting to take off the square
of the number).

3. Then we can write (x + (b/2a))? - (b/2a)? = -(c/a).
4. So (x+(b/2a))?>=(b/2a)?- (c/a).

5. Take the square root of both sides (x + (b/2a)) = +-((b/2a)? - (c/a))"2.

6. Sox=-(b/2a)+-((b/2a)?- (c/a))">.

7. We can add the fractional terms inside the square root as b*/4a* - c/a =
(b? - 4ac)/4a>

8. So we get for the square root term ((b? - 4ac)/4a%)'.
9. We can take the square root of the denominator to be 2a.

10. Sonow we have x = -b/2a +- (b? - 4ac)"/? /2a.

11. So collecting the two terms we get x = (-b +- (b? - 4ac)/?)/2a

which is the quadratic formula.

47

CHAPTER 2 SOLVING EQUATIONS

In our program we only need to ask the user to type in their values of a, b, and c, then
we can use the quadratic formula to find our values of x which will be the solution to the
quadratic equation.

The following code does this.

/*quad3 - first attempt at quadratic solver*/
#define _CRT_SECURE_NO_WARNINGS

#include <stdio.h>

#include <math.h>

main()

{

double a, b, c, xa, xb;

/* prompt and read in coefficients of x"2,x and constant */
printf("enter a value");

scanf("%1f", &a);

printf("enter b value");

scanf("%1f", &b);

printf("enter c value");

scanf("%1f", &c);

if (pow(b, 2) < 4 * a*c) /* test for real root */

{
/* not real root */
printf("Not a real root");

}

else

{
/* real root */
xa = (-b + sqrt(pow(b, 2) - (4 * a*c))) /7 (2 * a);
xb = (-b - sqrt(pow(b, 2) - (4 * a*c))) / (2 * a);
printf("Roots are %1f and %1f", xa, xb);

}

48

CHAPTER 2 SOLVING EQUATIONS

Try this code to solve our earlier equation x*+8x+7=0. So enter a=1, b=8, and c=7.
Here, pow(b,2) is the mathematical function that raises b to the power of 2.
Notice the test for b* < 4ac.

If this is true, then when we do b? - 4ac in the formula, we would get a negative
number. So when we try to take the square root of this negative number, the program
would fail.

If you are aware of the existence of complex numbers, then you can accommodate
the square root of a negative number. The following code shows this.

/*quad1l - quadratic solver with complex numbers*/
#define _CRT_SECURE_NO_WARNINGS

#include <stdio.h>

#include <math.h>

main()

double a, b, ¢, xra, xia, xrb, xib, xa, xb;

/* prompt and read in coefficients of x"2,x and constant */
printf("enter A value");
scanf("%1f", &a);
printf("enter B value");
scanf("%1f", &b);
printf("enter C value");
scanf("%1f", &c);
if (pow(b, 2) < 4 * a*c) /* test for complex root */
{
/* complex root */
/* suitch b*2 and 4ac to find the positive root then add i to
the answer*/
printf("complex root\n");
xra = -b / (2 * a);
xia = sqrt((4 * a*c) - (pow(b, 2))) /7 (2 * a);
xxb = -b / (2 * a);
xib = -sqrt((4 * a*c) - (pow(b, 2))) / (2 * a);
printf("Roots are %1f +%1fi and %1f - %1fi", xra, xia, xra, xia);

49

CHAPTER 2 SOLVING EQUATIONS

else

{
/* real root */
xa = (-b + sqrt(pow(b, 2) - (4 * a*c))) /7 (2 * a);
xb = (-b - sqrt(pow(b, 2) - (4 * a*c))) / (2 * a);
printf("Roots are %1f and %1f", xa, xb);

Try entering a=5, b=2, c=1.
You should get the answer x=-0.2+0.4i and x=-0.2-0.4i.

Equations of Higher Powers

Let’s look at some equations of higher powers.

Trial and Improvement

In the last section, we looked at ways of solving quadratic equations. This is relatively
simple. Things get more complicated with higher powers of x. There is a technique
which looks a bit non-analytical at first sight. In some ways it is non-analytical, but this
is where the power of computers takes over. You can use the Trial and Improvement
technique with pen and paper.

What you do is guess a value of x and put it into the equation. If the answer we get is
higher than the one we want, we try a lower value of x. If this gives a lower answer than
the first, then we know that the actual correct value of x must be in between the two
values we tried. If you try this method, the best way is to use a table to clarify what you
are doing.

If we want to solve the equation x* + x -12 = 0, firstly we need to know what the graph
looks like. Figure 2-1 is a screenshot of the curve from the Graph package.

The curve is for y = x® + x - 12, so if our equation is x* + x - 12 = 0, then we are finding
xwheny = 0. So look at where the curve crosses the x-axis.

50

CHAPTER 2 SOLVING EQUATIONS

B Graph - N— Lo
File Edt Fumction Zoom Calkc Hep
DEFE +#L wmAl S adm 2L LM
wt s = ‘5‘.- | =S
Wi :-":3::: 12 |
6 3
II
4 f
:
{
2 | y=x'+x-12
|
: / X
4 3 2 1 1 2l 3 4 5 6 7 8 9 100 110=
/
21 i
P
.I
—6-- In’
.fll
81 /
2 =191

Figure 2-1. Screenshotofy=x*+x-12

This shows that our solution must be between x=2 and x = 3.

We try substituting x = 2 into x* + x -12.
We get the answer -2 which looks about right from the graph. Then we try x =3 and

we get +18. So we can now try values in between x = 2 and x = 3 to see if these are above

or below 0.
We can draw a table to clarify this (Figure 2-2).

Value of x X+x-12 Comment
2 -2 Too low

3 18 Too high
2.5 6.125 Too high
2.2 0.848 Too high
2.1 —-0.639 Too low

Figure 2-2. Table of Trial and Improvement steps

51

CHAPTER 2 SOLVING EQUATIONS

You can see the value of x must be between 2.1 and 2.2. If we carry on by entering a
value of x between our too high and too low limits, we will be getting closer to our target
of 0. If the answer turns out to be 25 places of decimals, then this could take some time. A
C program can do it in seconds.

It may have crossed your mind that this technique of going round and round
inserting different values and testing them sounds a bit like what we have done using
our forloops earlier. This is exactly what we use here. We can specify how many times
we want to go round our forloop testing our “too high” and “too low conditions.” What
we need to know in advance is roughly where our solution is. We have this already for

x3+x-12 =0, but in the next example, we want to solve x* -8x + 12 = 0.

Which Solution Are We Finding?

In our first program, we will code the equation into the program, but on later examples,
we will be able to enter a different equation each time. In this program, the equation to
be solved is x* -8x -13 = 0.

Figure 2-3 is a screenshot of this curve.

We can see that there are two solutions. We will look at the one to the left of the
curve. The solution is between x = -1 and x = -2. By looking at the curve, a value of
x=-1 will give us a fairly low position on the curve, whereas x=-2 is high above the
x-axis. So our starting low value will be x=-1 and our starting high value will be x=-2.
Note that the “low” value is not necessarily the smaller of your two values of x. Here,
for the solution to the left of the curve, x=-2 is the high value and x=-1 is the low value
because x=-2 is the value of x where the curve is above the x-axis and x=-1 is where the
curve is below the x-axis.

52

 Corn -
File Edt Function Zoom Calc Help

D@ d + 4L

| Bt Aune

B M 2-Be-13

wMA | Sadm LLLN
| A ynr2-Be-13

—— T~ ——

CHAPTER 2 SOLVING EQUATIONS

f
124
4 |
. 10¢ f
\ f
l". 84 /
I'\ 61 y=x2-8x-13 I,'l
| 4f /
- | |
: i / X
10 -9 8 7 6 5 4 -3 2 123 456 7 8 91011 12 13 14 15 16 17 18
\ 2T /
\ 4y

Figure 2-3. Screenshot of y = x* -8x -13

Figure 2-4 is a flowchart showing the basic logic of this procedure.

53

CHAPTER 2 SOLVING EQUATIONS

Enter data

Set this as Set this as
new high Test number new low
number Too high Too low number

Equals|answer

Print
answer

Figure 2-4. Flowchart of Trial and Improvement logic

The code is shown as follows.

r* trialimp */

/* program uses x"2 -8x - 13 =0*/

r* equation is solved by trial & improvement */
#define _CRT_SECURE_NO_WARNINGS

#include <stdio.h»

#include <math.h>

main()

54

CHAPTER 2 SOLVING EQUATIONS

float p2, p1, lower, upper;

double testhigh, testlow, testvalue, middle;
float constval;
int i, iterations;

/* Your curve should cross the x-axis */

/* Here, your lower value is a value of x where your curve is below
the x-axis */

/* Your upper value is a value of x where your curve is above the
x-axis */

/* Both values should be close to where your curve crosses the x-axis */

printf("enter initial lower value");
scanf("%f", &lower);

printf("enter initial upper value");
scanf("%f", &upper);

printf("enter number of iterations");
scanf("%d", &iterations);

/* Preset constant values */

p2 = 1;/* coefficient of power of x squared */
p1 = -8;/* coefficient of x */

constval = -13; /* numeric constant*/

testlow = lower;
testhigh = upper;
printf("Equation is:-%f x**2 %f x %f=0\n", p2, p1, constval);
I*printf("%f x**2 %f x= %f\n", p2,p1,constval);*/
for (i = 0;i < iterations;i++)
{
middle = (testhigh + testlow) / 2;
testvalue = pow(middle, 2) - 8 * middle - 13;

55

CHAPTER 2 SOLVING EQUATIONS

if (testvalue == 0)

{
printf("x is %f", middle);
return(0);
}
if (testvalue > 0)
{
testhigh = middle; /* replace upper value with this one */
}
else
{
testlow = middle; /* replace lower value with this one */
}

}
printf("x is %f", middle);

The second solution is between 9 and 10. Looking at the graph, 9 would give us a
value below 0 and 10 would give us a value above 0. So here 9 is our lower value and 10 is
our upper value.

Three Solutions

Our next example is a cubic. Its equation is y=x* + 2x* - x. The screenshot for this curve is
shown in Figure 2-5.

56

CHAPTER 2 SOLVING EQUATIONS

B Graph - — PN — |
File Edt Fumction Zoom Cak Help

D@ d + 4L wMA | Sadm LLLN

I - |

P e e 2 84 Y |

Wl yaxde2d-x |

y=x3+2x1.x

Figure 2-5. Screenshot of y=x*+2x* -x

The curve crosses the x-axis at three places. The one to the left is between x = -2
and x= -3. The other two are both between x = 0 and x = 1. We have to zoom in a little
closer to find our upper and lower bounds here. We find that they are -0.1 and 0.1 for the
left solution and 0.3 and 0.5 for the right solution. This highlights a potential problem
with the Trial and Improvement method. You cannot always take any upper and lower
value. You need to have an idea of the shape of the graph and where it crosses the x-axis;
otherwise, you will get incorrect answers.

The code for this function is shown as follows.

r* trialimp */

/* program uses x"3 +2x"2 - x =0*/

r* equation is solved by trial & improvement */
#idefine _CRT_SECURE_NO_WARNINGS

#include <stdio.h>

#include <math.h>

main()

{

57

CHAPTER 2 SOLVING EQUATIONS
float p3, p2, p1, lower, upper;

double testhigh, testlow, testvalue, middle;
float constval;
int i, iterations;

/* Your curve should cross the x-axis */

/* Here, your lower value is a value of x where your curve is below
the x-axis */

/* Your upper value is a value of x where your curve is above the
x-axis */

/* Both values should be close to where your curve crosses the x-axis */

printf("enter initial lower value");
scanf("%f", &lower);

printf("enter initial upper value");
scanf("%f", &upper);

printf("enter number of iterations");
scanf("%d", &iterations);

/* Preset constant values */

p3 = 1;/* coefficient of power of x power 3 */
p2 = 2;/* coefficient of power of x squared */
p1 = -1;/* coefficient of x */

constval = 0; /* numeric constant*/

testlow = lower;
testhigh = upper;
/*printf("Equation is:-%f x**2 %f x %f=0\n", p3,p2,constval);*/

printf("Equation is:%f x**3 %f x**2 %f x= o\n", p3, p2, p1);
for (i = 0;i < iterations;i++)

{

middle = (testhigh + testlow) / 2;
testvalue = pow(middle, 3) + 2 * pow(middle, 2) - middle;

58

CHAPTER 2 SOLVING EQUATIONS

if (testvalue == 0)

{
printf("x is %f", middle);
[*exit(1);*/
return(0);/* test */
}
if (testvalue » 0)
{
testhigh = middle;/* replace upper value with this one */
}
else
{
testlow = middle;/* replace lower value with this one */
}

}
printf("x is %f", middle);

As you can see, the code is almost identical to the previous one. It just has a different
function specified.

User-Entered Function

As before we can let the user enter their own equation. Here we set the highest power to
6. You can choose your own highest power in your program. The code for highest power
of 6 is the following.

r* trialimp */

r* user enters an equation.*/

r* equation is solved by trial & improvement */
#define _CRT_SECURE_NO_WARNINGS

#include <stdio.h>

#include <math.h>

main()

59

CHAPTER 2 SOLVING EQUATIONS

{
float p6, p5, p4, p3, p2, p1l, lower, upper;

double testhigh, testlow, testvalue, middle;
float constval;
int i, iterations, highpower;

/* Preset constant values to zero */

p6 = 0.0;
p5 = 0.0;
p4 = 0.0;
p3 = 0.0;
p2 = 0.0;
pl = 0.0;

constval = 0.0;

/* Enter the highest power of x in your equation */
/* (so that you don't have to enter values if you don't have higher
powers) */

printf("enter highest power of x (max 6)");
scanf("%d", &highpower);

/* Enter the coefficient for each of your powers */

switch (highpower) {

case 6:
printf("enter coefficient of x power 6(-9 to 9)");
scanf("%f", &p6);

case 5:
printf("enter coefficient of x power 5(-9 to 9)");
scanf("%f", &p5);

case 4:
printf("enter coefficient of x power 4(-90 to 9)");
scanf("%f", &p4);

case 3:
printf("enter coefficient of x power 3(-9 to 9)");
scanf("%f", &p3);

60

CHAPTER 2 SOLVING EQUATIONS

case 2:
printf("enter coefficient of x power 2(-9 to +9)");
scanf("%f", &p2);

case 1:
printf("enter coefficient of x (-9 to +9)");
scanf("%f", &p1);

case 0:
printf("enter numeric constant (-999 to +999)");
scanf("%f", &constval);

default:
printf("default");

}

/* Display the equation you have entered */

printf("Equation is:- ");
printf("%f x**6+%f x**5+%f x**q+%f x**3 +%f x**2 %f x= %f\n", p6, p5,
P4, p3, p2, p1, constval);

/* Your curve should cross the x-axis */

/* Here, your lower value is a value of x where your curve is below
the x-axis */

/* Your upper value is a value of x where your curve is above the
x-axis */

/* Both values should be close to where your curve crosses the x-axis */

printf("enter initial lower value");
scanf("%f", &lower);

printf("enter initial upper value");
scanf("%f", &upper);

printf("enter number of iterations");
scanf("%d", &iterations);

testlow = lower;
testhigh = upper;

61

CHAPTER 2

SOLVING EQUATIONS

for (i = 0;i < iterations;i++)

62

{

}

middle = (testhigh + testlow) / 2;

testvalue = p6 * pow(middle, 6) + p5 * pow(middle, 5) + pg *

pow(middle, 4) + p3 * pow(middle, 3) + p2 * pow(middle,
p1 * middle + constval;
if (testvalue == 0)

{
printf("x is %f", middle);
return(0);
}
if (testvalue » 0)
{
testhigh = middle;
}
else
{
testlow = middle;
}

printf("x is %f", middle);

2) +

CHAPTER 2 SOLVING EQUATIONS

EXERCISES

Solve the following equations by Trial and Improvement either by typing the formula into the
code and compiling your new program as in your earlier examples or by entering it in the latter
program. You will need to find the graph of the function first, so that you can find initial upper
and lower points. You can do this by any graphing software you have. Graph and Autograph are
possibilities. If you don’t have graphing software, you can find the upper and lower values in
the appendix.

1.

© N oo o A~ w Db

y=Xx>-6X+38
y=x2-8x+12
y=2.6x2-17.3x - 6.5
y = 5x8 —13x* +2x
y=x3+5

y =x*+ 2x° - 6x2
Yy=2+X+3

Amend your program which contains the actual function to be used in the Trial
and Improvement to contain a function containing inverses. The function you
need to include is y = 2x% — 2/x2.

Do a similar thing as question 8 but using the function y = 0.75x? — 0.8x°.
Do a similar thing as question 8 but this time using the function

y = 1(/(10x%) - 7x¢/10.

63

CHAPTER 3

Numerical Integration

In calculus if we want to find the area under a curve, there is often a simple technique of
calculus for us to use. Consider the curve in Figure 3-1. This is the curve of y = 2x - x*.

y
y y =2x —x?

g p

a c \ X
0 04 1\6 2

Figure 3-1. Finding the area between a curve and x-axis

The technique involves adding one to the power and bringing the power down
to divide.

This is specified by

1.6
I 2x —x"dx

0.4

65
© Philip Joyce 2019

P. Joyce, Numerical C, https://doi.org/10.1007/978-1-4842-5064-8_3

CHAPTER 3 NUMERICAL INTEGRATION

In this case we have chosen to find the area between 0.4 and 1.6 on the x-axis.
So when we do the integration and substitute the values of x, we get the area below
the curve.

1. Integrating the function y = 2x - x*> (adding one to the power and
dividing by that number), we get 2x?>/2 - x3/3 + c where cis a
constant.

2. Putting in our two limits of x as 1.6 and 0.4, we get
(1.62-1.6/3+¢) - (0.42-0.43/3 +¢)
3. Evaluating this we get the area as 1.056.

This method works perfectly if you are using a function that can be integrated, but in
many cases, especially those in real life, this is not so and you need a different method.

Trapezium Integration

One method used is called the “Trapezium Method,” as shown in Figure 3-2.

A y =2x — x?
y
d
g p
a b C X
AN
0 04 1.0 ﬁ6 2

Figure 3-2. Splitting the area into trapezia
66

CHAPTER 3 NUMERICAL INTEGRATION

You may have noticed on our graph that the region of interest for our area has

some extra lines drawn on it. The lines ag, gd, db, and ab mark out a trapezium, and

similarly for bd, dp, pc, and bc. If we find the areas of these two trapezia, it should be

fairly close to the area we have just found using calculus. It certainly looks fairly close

on the diagram.

The area of a trapezium is given by the formula

Area = 0.5 x (sum of parallel sides) x perpendicular height.

In our two trapezia, the perpendicular heights are ab and bc. From the diagram you

can see that the length of each of these is 0.6.

1.

We can find each of the parallel sides because the formula for the
curve is y = 2x - x%. We can find the point g because it has the same
x value as point a (0.4).

So if we put this value into the formula, we get 2(0.4) - (0.4)>. This
works out to be 0.64. So this is the length of ag.

We can do similar things for point d and point p. In this way we
can find bd and cp.

When we put the x values for b and c into the equation of the
curve, we get 1.0 and 0.64.

So using these values for our two trapezia, agdb and bdpc, we get
For agdb area = 0.5 x (0.64 + 1.0) x 0.6 = 0.492

For bdpc area = 0.5 x (1.0 + 0.64) x 0.6 = 0.492

We get the same value which shows that the graph is symmetrical
about the line x = 1.

Adding these together, we get 0.984 for the combined area of the
two trapezia. This is less than our calculus answer which was
1.056, but we would expect it to be less because, as you can see
from the graph, there is a gap between the top side of each of our
trapezia and the curve. However, all is not lost. We can narrow this
gap by splitting our area into four trapezia instead of two.

This is shown on the graph in Figure 3-3.

67

CHAPTER 3 NUMERICAL INTEGRATION

Y/

0 0.4 07 1.3 %.6

Figure 3-3. Splitting of our area into more trapezia

In this case our four trapezia are agme, emhb, bhqf, and fqpc.
The perpendicular height for each trapezium in this case is 0.3.

1. Again using the equation of the graph y = 2x - x?, we can find the 'y
value of g, m, h, q, and p by substituting their x values 0.4, 0.7, 1.0,
1.3, and 1.6.

2. So the corresponding y values for each of the points are 0.64, 0.91,
1.0, 0.91, 0.64.

3. Sothe areas of our four trapezia are
For agme area = 0.5 x (0.64 + 0.91) x 0.3 = 0.2325
For emhb area = 0.5x (0.91 + 1.0) x 0.3 = 0.2865
For bhgfarea=0.5x (1.0 + 0.91) x 0.3 = 0.2865
For fqpc area = 0.5 x (0.91 + 0.64) x 0.3 = 0.2325

4. So the total area of the four trapezia is 1.038.

68

CHAPTER 3 NUMERICAL INTEGRATION

This is closer to our calculus value of 1.056. Again you can see from the graphs why
this is. The space we are missing in the areas of the trapezia is that below the curve but
above each trapezium. In the second graph, this missing space is less. We could carry on
splitting each trapezium into two and we will get closer to the calculus answer, but this
is where our numerical C comes in. This example could be solved with calculus. We only
used it in our Trapezium Method here so we could see how close we were getting to the
correct answer.

Simplification of Formula

We can simplify our trapezium calculations by using a formula. Look at the graph in
Figure 3-4.

Q)

Figure 3-4. General case for Trial and Improvement formula

The lengths ab, bc, cd, and de are equal. We always make this the case. If we look at
the calculations for the areas of our four trapezia here, this is what we should get.

69

CHAPTER 3 NUMERICAL INTEGRATION

1. Area = 0.5xheightx(af+bg)+0.5xheightx(bg+ch)+0.5xheightx
(ch+dk)+0.5xheightx(dk+em)

2. We can tidy this up a bit as each term has 0.5xheight (where the
height is the same for each trapezium).

3. We get 0.5xheightx((af+bg)+(bg+ch)+(ch+dk)+(dk+em))
4. We can even collect the terms within the outside brackets and get
Area=0.5 x height x (af+2bg+2ch+2dk+em)

You can see that for, say, the first two trapezia, bg is used for the
right side of the first trapezium and the left side of the second,
and so on for each pair of trapezia that are next to each other. The
only sides that are not multiplied by 2 are the left side of the first
trapezium and the right side of the last. We can generalize this to
the case where we have any number of trapezium. The formula is

Area = 0.5 x height (first side+last side+2xall other sides)

The calculations for our examples earlier were not too bad if we have only a small
number of trapezia, and if our function is a fairly simple one, but in real life the functions
are a lot more complicated, and to get a high degree of accuracy which is needed in real-
world cases, we, again, turn to computers.

The following code shows the calculation of the area below a graph using the
Trapezium Method. It accepts a formula with powers of x up to x to power 6. Again,
as in our earlier programs, it prompts the user for entry of the formula. At first, type in
a function that you already know the correct answer to (possibly the function in our
previous example y = 2x - x* between x=0.4 and x=1.6).

In this case it asks for the number of strips (trapezia) you want, up to a maximum of 1000.

You could try a small number at first and then a high number to see how close you
get to the correct value.

This is the code.

/*trapezium - first attempt at trapezium method*/
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <math.h>
main()

70

CHAPTER 3 NUMERICAL INTEGRATION

double p6, p5, p4, p3, p2, pl, p0, lower, upper;

double stripwidth, xposn;

double middlevalues, zero, width, area;

double yarr[10002]; /* Array to store lengths of sides of each
trapezium */

int i, strips, highpower;

/* Preset constant values to zzero */

p6é = 0.0;
p5 = 0.0;
p4 = 0.0;
p3 = 0.0;
p2 = 0.0;
pl = 0.0;
po = 0.0;

/* Enter the highest power of x in your equation */
/* (so that you don't have to enter values if you don't have
higher powers) */

printf("enter highest power of x (max 6)");
scanf("%d", &highpower);

/* Enter the coefficient for each of your powers */
switch (highpower) {
case 6:
printf("enter coefficient of x power 6(-9 to 9)");
scanf("%1f", &p6);
case 5:
printf("enter coefficient of x power 5(-9 to 9)");
scanf("%1f", &p5);
case 4:
printf("enter coefficient of x power 4(-90 to 9)");
scanf("%1f", &p4);

71

CHAPTER 3 NUMERICAL INTEGRATION

case 3:
printf("enter coefficient of x power 3(-9 to 9)");
scanf("%1f", &p3);

case 2:
printf("enter coefficient of x power 2(-9 to +9)");
scanf("%1f", &p2);

case 1:
printf("enter coefficient of x (-9 to +9)");
scanf("%1f", &p1);

case 0:
printf("enter numeric constant (-999 to +999)");
scanf("%1f", &po);

default:
printf("default");

}

/* Display the equation you have entered */

printf("Equation is:- ");
printf("%1f x**6+%1f x**5+%1f x**4+%1f x**3 +%1f x**2 %1f x= %1f\n",
P65 p5, P4, p3, p2, pl, po);

printf("enter lower limit");/* the lower x value for your

integration */

scanf("%1f", &lower);

printf("enter upper limit");/* the upper x value for your integration */
scanf("%1f", &upper);

printf("enter number of strips (max 1000)");/* how many trapezia are
you splitting your area into */

scanf("%d", &strips);

if (strips » 10000)

{
printf("Numbexr of strips exceeds 10000");
return(0);

}

zero = 0;

72

CHAPTER 3 NUMERICAL INTEGRATION

width = upper - lower;/* overall x-distance between limits of our
integration */

stripwidth = width / strips; /* stripwidth is perpendicular height of
each trapezium */

/* yarr[1] contains the First side from our trapezium area formula */
yarr[1] = p6 * pow(lower, 6) + p5 * pow(lower, 5) + p4 * pow(lower, 4)
+ p3 * pow(lower, 3) + p2 * pow(lower, 2) + (p1*lower) + poO;

/* yarr[strips+1] contains the Last side from our trapezium area
formula */

yarr[strips + 1] = p6 * pow(upper, 6) + p5 * pow(upper, 5) + p4 * pow
(upper, 4) + (p3*pow(upper, 3)) + (p2*pow(upper, 2)) + (p1*upper) + po;
middlevalues = zero;

/* forloop loops round yarr to add all the values of the sides of the
trapezia in the formula */
for (i = 131 < strips;i++)

{
xposn = lower + (i*stripwidth);
yarr[i + 1] = (p6*pow(xposn, 6) + p5 * pow(xposn, 5) + pg *
pow(xposn, 4) + p3 * pow(xposn, 3)) + (p2*pow(xposn, 2)) +
(p1*xposn) + po;
middlevalues = middlevalues + yarr[i + 1];

}

/* Now collect the first side, the last side and 2x the middle sides and
multiply by 0.5x the stripwidth (as in the formula) */

area = 0.5*stripwidth*(yarr[1] + 2 * middlevalues + yarr[strips + 1]);
/* Now we have the area */

printf("Area is %1f\n", area);

The user enters the equation of their graph. Here, 6 is taken as the highest power
that can be entered, but you can change this to be any power you wish. The array yarr
contains the main data for the formula. yarr[1] contains the length of the left side of the
first trapezium, and yarr[shapes+1] contains the right side of the last trapezium. All the

73

CHAPTER 3 NUMERICAL INTEGRATION

other sides are multiplied by two. These are called the middlevalues. The forloop works
out the length of each of these sides by taking the x coordinate of where the line meets
the x-axis and inserting it into the formula of the curve. The number of iterations is
specified by the user. The higher this number means, the higher the number of trapezia
you use in the forloop. As we saw earlier, more trapezia mean that we get closer to the
actual curve, therefore closer to the actual value of the area.

If you try this program using the function y= 2x - x> between x=0.4 and x=1.6 as in our
earlier calculus example, you can see how close you get to the correct answer.

Inverse Power

It is fairly easy to add into your program the option of entering inverse powers of x for
the function, for instance, if you wanted to integrate 2/x*. This is achieved by calling the
power function (pow) with a negative number. Thus 2/x* would be the same as 2x* so
your code would be 2*pow(x, -4) for each value of x. The following code demonstrates
this. If you try entering the function y = 2/x* between x limits 1 and 2, you should get an
answer of 0.583.

/*trapezium - trapezium method using inverse functions */
#define _CRT_SECURE_NO_WARNINGS

#include <stdio.h>

#include <math.h>

main()

{
double p6, p5, p4, p3, p2, p1, po, lower, upper;

double stripwidth, xposn;

double middlevalues, zero, width, area;

double yarr[10002]; /* Array to store lengths of sides of each
trapezium */

int i, strips, highpower;

/* Preset constant values to zzexro */

p6
p5

0.0;

03

74

CHAPTER 3 NUMERICAL INTEGRATION

p4 = 0.0;
p3 = 0.0;
p2 = 0.0;
p1l = 0.0;
po = 0.0;

/* Enter the highest inverse power of x in your equation */
/* (so that you don't have to enter values if you don't have higher
powers) */

printf("enter highest inverse power of x (max 6)");
scanf("%d", &highpower);

/* Enter the coefficient for each of your powers */
switch (highpower) {

case 6:
printf("enter coefficient of inverse x power 6(-9 to 9)");
scanf("%1f", &p6);

case 5:
printf("enter coefficient of inverse x power 5(-9 to 9)");
scanf("%1f", &p5);

case 4:
printf("enter coefficient of inverse x power 4(-90 to 9)");
scanf("%1f", &p4);

case 3:
printf("enter coefficient of inverse x power 3(-9 to 9)");
scanf("%1f", &p3);

case 2:
printf("enter coefficient of inverse x power 2(-9 to +9)");
scanf("%1f", &p2);

case 1:
printf("enter coefficient of inverse x (-9 to +9)");
scanf("%1f", &p1);

case 0:
printf("enter numeric constant (-999 to +999)");
scanf("%1f", &po);

75

CHAPTER 3 NUMERICAL INTEGRATION

76

default:
printf("default");

}

/* Display the equation you have entered */

printf("Equation is:- ");
printf("%Lf x**-64%1f x**-54%1f x**-44%1f x**-3 +%1f x**-2 %1f
x**-1= %1f\n", pé, p5, pa, p3, p2, p1, po);

printf("enter lower limit");/* the lower x value for your integration */
scanf("%1f", &lower);

printf("enter upper limit");/* the upper x value for your integration */
scanf("%1f", &upper);

printf("enter number of strips (max 1000)");/* how many trapezia are
you splitting your area into */

scanf("%d", &strips);

if (strips » 10000)

{
printf("Number of strips exceeds 10000");
return(0);

}

zero = 0;

width = upper - lower;/* overall x-distance between limits of our
integration */

stripwidth = width / strips; /* stripwidth is perpendicular height of
each trapezium */

/* yarr[1] contains the First side from our trapezium area formula */
yarr[1] = p6 * pow(lower, -6) + p5 * pow(lower, -5) + pg *

pow(lower, -4) + p3 * pow(lower, -3) + p2 * pow(lower, -2) +

p1 * pow(lower, -1) + po;

/* yarr[strips+1] contains the Last side from our trapezium area
formula */

yarx[strips + 1] = p6 * pow(upper, -6) + p5 * pow(upper, -5) + pg *
pow(upper, -4) + (p3*pow(upper, -3)) + (p2*pow(upper, -2)) + p1 *
pow(upper, -1) + po;

middlevalues = zero;

CHAPTER 3 NUMERICAL INTEGRATION

/* forloop loops round yarr to add all the values of the sides of the
trapezia in the formula */
for (i = 131 < strips;i++)

{
xposn = lower + (i*stripwidth);
yarr[i + 1] = p6 * pow(xposn, -6) + p5 * pow(xposn, -5) +
p4 * pow(xposn, -4) + (p3*pow(xposn, -3)) +
(p2*pow(xposn, -2)) + p1 * pow(xposn, -1) + po;
middlevalues = middlevalues + yarr[i + 1];

}

area = 0.5*stripwidth*(yarr[1] + 2 * middlevalues + yarr[strips + 1]);

printf("Area is %1f\n", area);

This is almost identical to the previous code except that it asks for and uses inverse

powers of x.

Combined Powers

Of course you can combine the two, for instance, if you wanted to find the area under the
curvey =3x*-1/x%

The code is just a mixture of the previous two programs. Here, in the interest of
clarity, we restrict the maximum powers to 4 for both direct powers of x and inverse
powers.

The code for this is as follows. If you try the preceding function between x-1 and x=2,
you should get an answer of approximately 6.375.

/*trapezium - trapezium method using a mix of direct and inverse functions */
#define _CRT_SECURE_NO_WARNINGS

#include <stdio.h>

#include <math.h>

main()

77

CHAPTER 3 NUMERICAL INTEGRATION

{
double p6, p5, p4, p3, p2, p1, pO, lower, upper;
double ip6, ip5, ip4, ip3, ip2, ip1, ipo;
double stripwidth, xposn;
double middlevalues, zero, width, area;
double yarr[10002]; /* Array to store lengths of sides of each
trapezium */
int i, strips, highpower;

/* Preset constant values to zzero */

p6é = 0.0;
p5 = 0.0;
p4 = 0.0;
p3 = 0.0;
p2 = 0.0;
pl = 0.0;
po = 0.0;
ip6 = 0.0;
ip5 = 0.0;
ipg = 0.0;
ip3 = 0.0;
ip2 = 0.0;
ip1 = 0.0;
ipo = 0.0;

/* Enter the highest inverse power of x in your equation */
/* (so that you don't have to enter values if you don't have higher
powers) */

printf("enter highest inverse power of x (max 4)");
scanf("%d", &highpower);

/* Enter the coefficient for each of your powers */

switch (highpower) {

78

CHAPTER 3 NUMERICAL INTEGRATION

case 4:
printf("enter coefficient of inverse x power 4(-90 to 9)");
scanf("%1f", &ip4);

case 3:
printf("enter coefficient of inverse x power 3(-9 to 9)");
scanf("%1f", &ip3);

case 2:
printf("enter coefficient of inverse x power 2(-9 to +9)");
scanf("%1f", &ip2);

case 1:
printf("enter coefficient of inverse x (-9 to +9)");
scanf("%1f", &ip1);

case 0:
printf("enter numeric constant (-999 to +999)");
scanf("%1f", &ipo);

default:
printf("default");

}

/* Enter the highest power of x in your equation */

/* (so that you don't have to enter values if you don't have higher

powers) */

printf("enter highest power of x (max 4)");
scanf("%d", &highpower);

/* Enter the coefficient for each of your powers */
switch (highpower) {

case 4:
printf("enter coefficient of x power 4(-90 to 9)");
scanf("%1f", &p4);

case 3:
printf("enter coefficient of x power 3(-9 to 9)");
scanf("%1f", &p3);

79

CHAPTER 3 NUMERICAL INTEGRATION

80

case 2:
printf("enter coefficient of x power 2(-9 to +9)");
scanf("%1f", &p2);

case 1:
printf("enter coefficient of x (-9 to +9)");
scanf("%1f", &p1);

case 0:
printf("enter numeric constant (-999 to +999)");
scanf("%1f", &po);

default:
printf("default");

}

/* Display the equation you have entered */

printf("Equation is:- ");

printf("%Lf x**-4+%1f x**-3 +%1f x**-2 %1f x**-1= %1f\n", p4, p3, p2,
P1, pO);

printf("%1f x**-4+%1f x**-3 +%1f x**-2 Z1f x**-1= %1f\n", ip4, ip3,
ip2, ip1, ipo);

printf("enter lower limit");/* the lower x value for your integration */
scanf("%1f", &lower);

printf("enter upper limit");/* the upper x value for your

integration */

scanf("%1f", &upper);

printf("enter number of strips (max 1000)");/* how many trapezia are
you splitting your area into */

scanf("%d", &strips);

if (strips » 10000)

{
printf("Numbexr of strips exceeds 10000");
return(0);

}

zero = 0;

width = upper - lower;/* overall x-distance between limits of our
integration */

CHAPTER 3 NUMERICAL INTEGRATION

stripwidth = width / strips; /* stripwidth is perpendicular height of
each trapezium */

/* yarr[1] contains the First side from our trapezium area formula */
yarx[1] = p4 * pow(lower, 4) + p3 * pow(lower, 3) + p2 * pow(lower,
2) + p1 * pow(lower, 1) + po + ip4 * pow(lower, -4) + ip3 *
pow(lower, -3) + ip2 * pow(lower, -2) + ip1 * pow(lower, -1);

/* yarr[strips+1] contains the Last side from our trapezium area
formula */

yarr[strips + 1] = p4 * pow(upper, 4) + (p3*pow(upper, 3)) +
(p2*pow(upper, 2)) + p1 * pow(upper, 1) + po + p4 * pow(upper, -4) +
(p3*pow(upper, -3)) + (p2*pow(upper, -2)) + p1 * pow(upper, -1);
middlevalues = zero;

/* forloop loops round yarr to add all the values of the sides of the
trapezia in the formula */
for (i = 131 < strips;i++)
{
xposn = lower + (i*stripwidth);
yarr[i + 1] = p4 * pow(xposn, 4) + (p3*pow(xposn, 3))
+ (p2*pow(xposn, 2)) + p1 * pow(xposn, 1) + po + ipg *
pow(xposn, -4) + (ip3*pow(xposn, -3)) + (ip2*pow(xposn, -2)) +
ip1 * pow(xposn, -1);
middlevalues = middlevalues + yarr[i + 1];

}

area = 0.5*stripwidth*(yarr[1] + 2 * middlevalues + yarr[strips + 1]);
printf("Area is %1f\n", area);

The flowchart in Figure 3-5 shows the overall logic of the program that can read all of
the data types discussed - powers of x, inverse powers of X, and exponentials.

81

CHAPTER 3 NUMERICAL INTEGRATION

Prompt &
read

start
program

|2

Initialise variables.

function has an

exponent y exponent? ??
data
Prompt &
read x Y function has
oowers powers of x?
data
> N
Prompt & / Y function has
read inverses of x?
inverses
data
- N

Calculate area

Store and
print
answer

Figure 3-5. Flowchart of logic for general method

82

CHAPTER 3 NUMERICAL INTEGRATION

Problem with Negative Areas

When finding an area with integration, either using calculus or our numerical methods,
we can hit a problem with negative areas. Take a look at the graph in Figure 3-6.

y = sin(x)

180 360,

Figure 3-6. Sine curve

This is the sine function from 0 to 360 degrees. We can find the area between the
curve and the x-axis using our Trapezium Method as before. You should be able to write
this code for yourself, but it is included in the following code.

/*trapezium - trapezium method showing problem with negative areas */
#define _CRT_SECURE_NO_WARNINGS

#include <stdio.h>

#include <math.h>

main()

{

double lowerx, upperx;
double PI;

83

CHAPTER 3 NUMERICAL INTEGRATION

double stripwidth, xposn;

double middlevalues, zero, width, area;
double yarr[10002];

int i, strips;

double lowangle, uppangle, lowradianno, uppradianno;
/* Preset constant values */

PI = 3.141592654;

zexro = 0;

printf("Please enter lower angle in degrees:\n ");
scanf("%1f", &lowangle);

printf("You entered %f\n", lowangle);

lowradianno = lowangle * (2 * PI / 360);

printf("Please enter upper angle in degrees:\n ");
scanf("%1f", &uppangle);

printf("You entered %1f\n", uppangle);
uppradianno = uppangle * (2 * PI / 360);

printf("enter number of strips");
scanf("%d", &strips);

if (strips » 10000)

{
printf("Number of strips exceeds 10000");
return(0);

}

width = uppradianno - lowradianno;

stripwidth = width / strips;

lowerx = sin(lowradianno);
yarr[1] = lowerx;

upperx = sin(uppradianno);
yarr[strips + 1] = upperx;

middlevalues = zero;

84

CHAPTER 3 NUMERICAL INTEGRATION

for (i = 1;i < strips;i++)

{
xposn = sin(lowradianno + (i*stripwidth));
yarr[i + 1] = xposn;
middlevalues = middlevalues + yarr[i + 1];
}

area = 0.5*stripwidth*(yarr[1] + 2 * middlevalues + yarr[strips + 1]);

printf("Area is %1f\n", area);

If you run this code and enter x values between 0 and 180 degrees, you should get
approximately +2.0 as your area. If you rerun the program but use x values between 180
and 360 degrees, your answer will be approximately -2.0. So if you combine these and
integrate between 0 and 360, you will get zero as your answer. You need to be aware of
this. If it was actual physical areas you wanted, you would have to integrate the two areas
separately, as we did about, but then take +2.0 rather than -2.0 for the second area. But
be careful. Look at the graph in Figure 3-7.

Profits

Company Accounts

0 Years

Figure 3-7. Sine curve application
85

CHAPTER 3 NUMERICAL INTEGRATION

This is basically the same graph that we have just integrated. In this case we have a
real-life situation of a company’s accounts over 2 years. As you can see, in the first year
the company made a profit, but in the second year it made a loss. From the areas you can
see that the loss in the second year was the same as the profit in the first. So, over the 2
years, the profit was zero. Thus, in this case, leaving the negative area as negative was the
correct thing to do.

Simpson’s Rule Integration

A method closely related to the Trapezium Method of integration is the Simpson’s Rule
method. Here, instead of splitting the area below the curve into trapezia, we split them
into blocks where the tops are close to a parabola shape. The base and sides of each
block are the same as in the Trapezium Method. Figure 3-8 illustrates this.

Y/
y y y2 y3 y4 y¥5 y
! X
N
0 0.1 o4 07 10 1.3 16 1.9

Figure 3-8. Simpson’s Rule for integration

86

CHAPTER 3 NUMERICAL INTEGRATION

So really the only difference between this method and the Trapezium Method is
the top of each segment. One restriction is that you must divide your area into an even
number of segments. Here we have divided the area into six segments. Each segment has
the same base length. Here each base will be (1.9-0.1)/6 units or 0.3 units of length. The
sides of each segment (or “ordinate”) are labeled y0,y1,y2,y3,y4,y5,y6.

The formula we use to find the area is

Area = (base width/3) * (1% ordinate + last ordinate + 4*odd numbered
ordinates + 2*even numbered ordinates)

Again, as with the Trapezium Method, Simpson’s Rule has a great advantage over
calculus when the functions cannot be integrated. In our programs we just have to apply
the preceding formula.

Note again that you have to split your area into an even number of sections (6 in our
case earlier).

To make our programs a little simpler, we will just code the function we want to
integrate, rather than asking the user to enter each element of the function. We can put a
limit on how many strips we let the user split their area into. This is limited by the size of
array we define to hold the formula data in the program. We can also ensure that the user
enters an even number of strips. You can check this in your code. Try to work out how to
do this and reject the data if it is not an even number.

Be careful that you identify the odd and even numbered ordinates. In our diagram
y0 is the first, y6 is the last, the odd ones are obviously y1, y3, and y5, and the evens y2
and y4. You need to do this because, if you notice in the formula, the odd ordinates are
multiplied by 4 and the even ones by 2. Work out a way you can do this in your program.
The way this is done in the following program is one way. You may be able to think of a
better method.

The first program using Simpson’s Rule is shown here. It finds the area below the
curvey = sqrt(4 + x*) between x values 0 and 2. The function y = sqrt(4 + x) is coded into
the program.

/*simpsons - to integrate sqrt(4+x"2)*/
#tdefine _CRT_SECURE_NO_WARNINGS
#include <stdio.h»

#include <math.h>

main()

{

double lower, upper;

87

CHAPTER 3 NUMERICAL INTEGRATION

88

double stripwidth, xposn;

double mideven, midodd, width, area;
double yarr[10002];

int i, strips;

/* prompt and read in limits and number of strips */

printf("enter lower limit");
scanf("%1f", &lower);
printf("enter upper limit");
scanf("%1f", &upper);
printf("enter number of strips");
scanf("%d", &strips);

if (strips > 10000)

{
printf("Number of strips exceeds 10000");
return(0);

}

width = upper - lower;

stripwidth = width / strips;

yarr[o0] = sqrt(4 + pow(lower, 2)); /* First ordinate */
yarr[strips] = sqrt(4 + pow(upper, 2)); /* Last ordinate */

mideven = 0;

midodd = 0;

/* Process odd-numbered strips */
for (i = 131 < strips;i++)

{
xposn = lower + (i*stripwidth);
yarr[i] = sqrt(4 + pow(xposn, 2));
midodd = midodd + yarr[i];
it+;

}

/* Process even-numbered strips */
for (i = 2;i < strips;i++)

CHAPTER 3 NUMERICAL INTEGRATION

xposn = lower + (i*stripwidth);

yarr[i]
mideven =

it+;

sqrt(4 + pow(xposn, 2));
mideven + yarr[i];

/* Process Simpson's formula */
area = (0.3333)*stripwidth*((yarr[o] + yarr[strips]) + 4 * midodd + 2
* mideven);

printf("Area is %1f\n", area);

If you copy, compile, and run this with a lower x value of 0 and an upper x value of 2

with 6 strips, you should get an answer of 4.590706.

EXERCISES

Using your Trapezium Method programs (or a program combining the different accepted
functions of x), find the area under these curves between the limits shown.

1.

© © N oo o A~ w DN

y=2x8-x’
y=¢'
y=2+2x—¢
y = 2/x*
y=2-1/x?
y=3x2-1/x3

y =es

y = exp(x® + 2x%)

y=¢e/(1+¢)

(x=1to x=2)
(x=1to x=2)
(x=0to x=1)
(x=1to x=2)
(x=2 to x=3)
(x=110x=2)
(x=0 to x=PI/4)
(x=0.2 to x=0.6)
(x=110x=2)

89

CHAPTER 3 NUMERICAL INTEGRATION

10. y=1In(1 +x3) (x=1 1o x=2)
11. y = sin(e¥) (x=0to x=1)
12. y = sinh(x) (x=0 to x=1)
13. y = cosh(x) (x=0to x=1)
14. y = tanh(x) (x=0to x=1)

Using your Simpson’s Rule program amended with the relevant function, find the area under
these curves between the limits shown.

15. y=1In(x) (x=1 to x=4)
16. y = exp (-x? (x=0to x=2)
17. y=1/(1+x% (x=1 10 x=2)
18. y =exp (x* + 2x?) (x=—1 to x=0)
19. y=In(1+x3 (x=110 x=2)
20. y = sin (exp(x)) (x=—1to x=1)

90

CHAPTER 4

Monte Carlo Integration

This chapter will show you another way to find the area under a curve that you cannot
find by normal calculus integration. We can then extend the method to find volumes and
even extend to higher dimensions. Although this may sound daunting, the method is

similar to something you may have already seen.

Finding an Odd-Shaped Area

You may have seen examples in school mathematics, or in puzzles in magazines, where
you are asked to find the area of an odd-looking shape by counting dots (as seen in

Figure 4-1).

Figure 4-1. Monte Carlo method

91
© Philip Joyce 2019
P. Joyce, Numerical C, https://doi.org/10.1007/978-1-4842-5064-8_4

CHAPTER 4 MONTE CARLO INTEGRATION

In Figure 4-1 we want to find the area of the shape inside the rectangle. If we know
that the length and width of the rectangle are 7 and 6 units of length, then we can work
out that the rectangle’s area is 7 X 6 = 43 square units. We can then count the number of
dots contained inside the rectangle.

If the number of dots is 956, then we can say that 956 dots take up 42 square units.
The dots are regularly spaced throughout the rectangle. What we can do to estimate the
area of our shape inside the rectangle is to count the number of dots inside the shape.

We can then say that the fraction made when you divide the number of dots in the
shape by the total number of dots inside the rectangle must be the same as the fraction
made when you divide the area of the shape by the area of the rectangle. If we count 379
as the number of dots inside the shape, this becomes

379/ 956 = (area of shape) / 42

Or
Area of shape = (42x379) / 956

Or
Area of shape = 16.65 sq units

If we had more dots covering the sheet, then our estimation of the area using this
method would be more accurate.

Monte Carlo Area of Graph

We can use this idea to estimate the area under a graph. As with the Trapezium Method
of integration, this method becomes useful when we need to find the area under a graph
where the function can’t be integrated using calculus.

In Figure 4-2 we are looking at the area below the curve y = x%. This function can be
integrated using calculus, but it is an easy example to show this technique in action.

92

CHAPTER 4 MONTE CARLO INTEGRATION

1 3 X

Figure 4-2. Area between y=x° and the x-axis

We want to find the area under the curve between x = 1 and x = 3 and the x-axis.

We create a situation similar to our previous example where we had a shape inside a
dotted rectangle.

Figure 4-3 shows that we have created a rectangle abcd round the area we want
to find.

The line bc rises perpendicularly from point x = 1 on the x-axis to the graph, and
similarly for the line ad rising from pointx = 3.

) | d —>
1 3 X

Figure 4-3. Monte Carlo illustration

We can now find the area of this rectangle. We know its width mustbe 3-1=2
units. We can find the length of ad because ad touches the graph when x = 3. So if we
substitute x = 3 into the formula y = x?, we get y = 32 = 9 so the length of ad must be 9.

As abcd is a rectangle, then we now know that its area must be length x width=9x2=18
square units.

93

CHAPTER 4 MONTE CARLO INTEGRATION

We now have the shape we want to find the area of, inside a rectangle. This is close to
our example of our dotted rectangle. But what about the dots? Also, it’s going to be a bit
annoying (and error-prone) to have to count dots.

This is where Monte Carlo comes in. Monte Carlo techniques are used in many
areas of mathematics, science, and technology. Basically, they all rely on the random
number generating power of computers. If you have a scientific calculator, you can get
random numbers between 0 and 1 using its random number key (usually RAN or RAN#
or similar).

In our rectangle earlier, we are going to use our random number generator to
randomly select coordinates within the rectangle. We want to generate a random
x coordinate between x = 1 and x = 3. As our C random number generator usually
generates numbers between 0 and 1, we have to use a formula to convert this to numbers
between 1 and 3. The formula is

xvalue = xlower + xrange*(rand)

where

xvalue is the x coordinate we want to generate

xlower is the lower value in the range we want (here 1)

xrange is the range of values of x (here 3-1=2)

and rand is the random number generated by the C command rand() and is between 0 and 1.
We use a similar formula to generate our random y coordinate between 0 and 9.

yvalue = ylower + yrange*(rand)

where

yvalue is the y coordinate we want to generate

ylower is the lower value in the range we want (here 0)

yrange is the range of values of x (here 9-0=9)

and rand is the random number generated by the C command rand() and is between 0 and 1.

So using these formulas, we generate random x coordinates between 1 and 3 and
random y coordinates between 0 and 9.

When we generate the two coordinates, we add 1 to a count of points we have
generated. We then test the values to see if they are below the curve. If we put the
generated x value into the formula y = x? we can test if the corresponding y value is
greater than our generated y value. If it is, then we know that this point is below the curve
so we can add 1 to the count of points below the curve. If it is not, then we just carry on
with the next generated point.

94

CHAPTER 4 MONTE CARLO INTEGRATION

So all the points we generate are effectively the same as the dots in our original
example. And, whereas we counted the dots inside our shape before, now we are
counting the coordinates that we have generated which are below the curve.

Enter
limits

2

Initialise forloop.

L

Add 1 to count < 2
«—
A
y-value below
No
curve?

l Yes

Add 1 to number

below curve
) 4
No
Reached last >

of coordinates

l Yes

Calculate
and print
answer

Figure 4-4. Flowchart of logic for general method

95

CHAPTER 4 MONTE CARLO INTEGRATION

In Figure 4-4 the flowchart shows the logic of this method. When the program has
completed its generation of points, you will have two counts. One is the total count of points
generated (the same as the total number of dots on the rectangle of our original example),
and the other count is the number of points below the curve (the same as the count of dots in
our original shape). We can use a similar formula to our original calculation:

Area we want / Area of rectangle = points below curve / total points in rectangle

Or Area = 18 * (points below curve / total points in rectangle).

The following is C code for this process to calculate the area between the curve y=x*
and the x-axis between points x=1 and x=3.

/* Montecarlo */

/* integration using monte carlo */

/* by counting relative areas */

/* integrates y=x"2 to your specified limits */
#define _CRT_SECURE_NO_WARNINGS

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

main()

{

double x, y;

double yupper, ylower, xupper, xlower;
double montearea, area;

double totalexparea, totalarea;

int j;

int iterations;

printf("enter lower limit\n");

scanf("%1f", &xlower);

printf("enter upper limit\n");

scanf("%1f", &xupper);

printf("xlower %1f xupper %1f\n", xlower, xupper);
yupper = pow(xupper, 2);

ylower = pow(xlower, 2);

printf("ylower %1f yupper %1f\n", ylower, yupper);
area = yupper * (xupper - xlower);

96

CHAPTER 4 MONTE CARLO INTEGRATION

printf("outer area is %1f\n", area);
printf("enter iterations \n");
scanf("%d", &iterations);

totalarea = 0;
totalexparea = 0;

for (j = 13j < iterations;j++)

{
x = rand() % 1000;/* generate random number for x up to 1000 */
y = rand() % 1000;/* generate random number for y up to 1000 */
y =y / 1000;/* Divide by 1000 so our number is between 0 and 1 */
X = X / 1000;/* Divide by 1000 so our number is between 0 and 1 */
x = xlower + (xupper - xlower)*x;/* Adjust x value to be
between required limits */
y = yupper * y;/* Adjust y value to be between required limits */
if (x »= xlower)
{
totalarea = totalarea + 1;/* add 1 to count of points
within whole area */
/* test if this y value is below the curve */
if (y <= pou(x, 2))
{
totalexparea = totalexparea + 1;/* add 1 to count
of points below the curve */
}
}
}
if (totalarea != 0)
{
montearea = area * (totalexparea / totalarea);/* calculate the
area below the curve */
}

printf("monte area is %1f\n", montearea);

97

CHAPTER 4 MONTE CARLO INTEGRATION

If you copy this code and compile it then run it between x lower limit of 1 and
upper limit of 3, you should get a value between 8.6 and 8.7. The value if you use
calculus is 8.6667.

In the program we use a technique where we call the random function rand%1000
which generates numbers up to 1000. Then we divide the number by 1000 to get values
up to 1. This just gives us more accuracy in our numbers.

The following is the value you get using calculus.

3
sz dx
1

el
=9-1/3=8.667

When you run the preceding program, you should get a value close to this
(maybe 8.682).

Area of a Circle

Our next program is to find the area of a quarter of a circle. The center of the circle is the
origin and it has a radius of 2 units. We will find the area in the first quadrant which is the
top right quarter of the circle in Figure 4-5.

98

CHAPTER 4 MONTE CARLO INTEGRATION

¥ fxpmrtdx’2)
f(x)=-agrt(4-x"2)
Sq_
6,_
14
xZ + yZ =4
A
/ \
: : : : ‘ : : * >
8 4 4 1 ’;é 4 6 [

Figure 4-5. Graph of x*+y*=4

The code for this is similar to that which we have already seen for finding the area
beneath y=x* Here we want all of our x points and y points to be between 0 and 2, but the
value of x* + y* must be less than the radius of the circle. The code for this is as follows.

/* Montecarlo2 */

/* integration using monte carlo */

/* by counting relative areas */

/* integrates x*2 + y*2 = 4 in the first quadrant */
#define _CRT_SECURE_NO_WARNINGS

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

main()

99

CHAPTER 4 MONTE CARLO INTEGRATION

{
double x, y;

double yupper, ylower, xupper, xlower;

double montearea, area;

double totalexparea, totalarea;

int j;

int iterations;

printf("enter lower limit\n");

scanf("%1f", &xlower);

printf("enter upper limit\n");

scanf("%1f", &xupper);

printf("xlower %1f xupper %1f\n", xlower, xupper);
yupper = 2;3/* fixed at 2 -see graph of function */
ylower = pow(xlower, 2);

printf("ylower %1f yupper %1f\n", ylower, yupper);
area = yupper * (xupper - xlower);

printf("area is %1f\n", area);

printf("enter iterations up to 1000000\n");
scanf("%d", &iterations);

totalarea = 0;
totalexparea = 0;

for (j = 1;j < iterations;j++)

{

rand() % 1000;/* generate random number for x up to 1000 */
rand() % 1000;/* generate random number for y up to 1000 */
y / 1000;/* Divide by 1000 so our number is between 0 and 1 */
x / 10003/* Divide by 1000 so our number is between 0 and 1 */
= xlower + (xupper - xlower)*x;/* Adjust x value to be
between required limits */

y = yupper * y;/* Adjust y value to be between required limits */

X X <€ <« X
]

100

CHAPTER 4 MONTE CARLO INTEGRATION

if (x »= xlower)

{
totalarea = totalarea + 1;/* add 1 to count of points
within whole area */
/* test if these coordinates are within the curve */
if (pow(x, 2) + pou(y, 2) < 4)
{
totalexparea = totalexparea + 1;/* add 1 to count
of points below the curve */
}
}
}
if (totalarea != 0)
{
montearea = area * (totalexparea / totalarea);/* calculate the
area below the curve */
}

printf("monte area is %1f\n", montearea);

If you create this program and run it with x and y values between 0 and 2, you should
get a value around 3.1645. This should be the area of our quarter circle with radius 2 units.
If you use the formula for the area of a circle with radius 2 then take a quarter of this,
you will get 3.1416.

We can find the area of a whole circle contained in the first quadrant (the top right
quarter of the graph).

Figure 4-6 is the graph illustrating a circle of radius 2 units whose center is at
coordinates (2,2).

101

CHAPTER 4 MONTE CARLO INTEGRATION

Hx)m2maget(4-(x-2)"2)
Hx)=2-0qrt(4-(x-2)"2)

(x-2+ (-2 =4

i
I\
-

Figure 4-6. Graph of (x-2)* + (y-2)*=4

The equation for a circle whose center is at (2,2) and whose radius is 2 units is
(x-2)? + (y-2)? = 4. We can draw a square round the circle with sides 4 units. This is our
rectangle surrounding the shape whose area we need to find. We generate x values
between 0 and 4 and y values between 0 and 4. We keep a count of all the coordinates
we generate and a separate count of those coordinates which are enclosed by the
circle. We add to the second count if the value of (x-2)? + (y-2)? for our coordinates
(x,y) is less than 4.

The code for this is as follows.

/* Montecarlo circle (whole circle in 1st quadrant)*/

/* Calculation of volume using monte carlo */

/* by counting relative volumes */

/* integrates (x-2)"2 + (y-2)*2 = 2*2 to your specified limits (radius
fixed at 2 - centre at (2,2)) */

102

CHAPTER 4 MONTE CARLO INTEGRATION

#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h»

#include <stdlib.hy

#include <math.hy

main()

{

double x, y;

double yupper, ylower, xupper, xlower;
double montearea, area;

double totalexparea, totalarea;

int j;

int iterations;

printf("enter lower x limit\n");

scanf("%1f", &xlower);

printf("enter upper x limit\n");

scanf("%1f", &xupper);

printf("xlower %1f xupper %1f\n", xlower, xupper);

printf("enter lower y limit\n");

scanf("%1f", &ylower);

printf("enter upper y limit\n");

scanf("%1f", &yupper);

printf("ylower %1f yupper %1f\n", ylower, yupper);

area = (xupper - xlower)*(yupper - ylower);
printf("overall area is %1f\n", area);

printf("enter iterations \n");
scanf("%d", &iterations);

totalarea = 0;

totalexparea = 0;
for (j = 13j < iterations;j++)
{

/* find random numbers for x and y */
x = rand() % 1000;
y = rand() % 1000;

103

CHAPTER 4 MONTE CARLO INTEGRATION

y / 1000;
x / 1000;

y
X

/* x,y will have numbers between 0 and 1 */
/* so multiply by the user's entered ranges for x,y */

x = xlower + (xupper - xlower)*x;
y = ylower + (yupper - ylower)*y;
if (x »= xlower &% y »>= ylower)
{
totalarea = totalarea + 1; /* This contains the total
number of entries */
if ((pow((y - 2), 2) + pow((x - 2), 2)) < 4)
{
totalexparea = totalexparea + 1;/* This contains
number of entries within desired area */
}
}
}
if (totalarea != 0)
{
montearea = area * (totalexparea / totalarea);/* Monte Carlo
area os the fraction of the outer area */
}

printf("monte carlo area is %1f\n", montearea);

If you run this program, you should get an area of about 12.6178. You can calculate
this using a calculator and see how accurate the program is.

If you think that the Monte Carlo method is not very accurate compared to a normal
mathematical approach, you would be right. BUT... the big advantage with Monte Carlo
is using it when we go into higher dimensions. We will extend our calculation of the area
of a circle in the first quadrant to the calculation of the volume of a sphere. As we are
now in three dimensions, it won’t be the first quarter we find. We can divide a 2-D graph
into four sections (or quadrants), but for 3-D we divide into eight sections.

104

CHAPTER 4 MONTE CARLO INTEGRATION

Higher Dimension Graphs

It’s fairly straightforward to extend from a 2-D program to a 3-D program. We just do this
same thing with z coordinates as we did with x and y coordinates in 2-D.

When we generate our 3 points (x,y,z), we then check if they are within the sphere.
In this case our sphere has the same radius as our circle centered on the origin. This is 2
units. So we check if x* + y* + z* < 4 in our program.

The code for this is as follows.

/* Montecarlo sphere*/

/* Calculation of volume using monte carlo */

/* by counting relative volumes */

/* integrates x*2 + y*2 + z*2 = 2*2 to your specified limits (radius fixed
at 2) ¥/

#define _CRT_SECURE_NO_WARNINGS

#include <stdio.h»

#include <stdlib.h>

#include <math.h>

main()

{

double x, y, z;

double zupper, zlower, yupper, ylower, xupper, xlower;
double montevol,volume;

double totalexpvol, totalvol;

int j;

int iterations;

printf("enter lower x limit\n");

scanf("%1f", &xlower);

printf("enter upper x limit\n");

scanf("%1f", &xupper);

printf("xlower %1f xupper %1f\n", xlower, xupper);

printf("enter lower y limit\n");
scanf("%1f", &ylower);
printf("enter upper y limit\n");

105

CHAPTER 4 MONTE CARLO INTEGRATION

106

scanf("%1f", &yupper);
printf("ylower %1f yupper %1f\n", ylower, yupper);

printf("enter lower z limit\n");

scanf("%1f", &zlower);

printf("enter upper z limit\n");

scanf("%1f", &zupper);

printf("zlower %1f zupper %1f\n", zlower, zupper);

volume = (xupper - xlower)*(yupper - ylower)*(zupper - zlower);
printf("volume is %1f\n", volume);

printf("enter iterations up to 1000000\n");

scanf("%d", &iterations);

totalvol = o;
totalexpvol = 0;

for (j = 1;j < iterations;j++)

{

/* find random numbers for x,y and z */

rand() % 1000;

rand() % 1000;

rand() % 1000;

y / 1000;

x / 1000;

z / 1000;

/* x,y and z will have numbers between 0 and 1 */

/* so multiply by the user's entered ranges for x,y and z */

N X « N <« X
n

x = xlower + (xupper - xlower)*x;
y = ylower + (yupper - ylower)*y;
z = zlower + (zupper - zlower)*z;

if (x »>= xlower && z >= zlower && y »= ylower)

{

totalvol = totalvol + 1; /* This contains the total
number of entries */

CHAPTER 4 MONTE CARLO INTEGRATION

if ((pow(y, 2) + pow(x, 2) + pow(z, 2)) < 4)

{
totalexpvol = totalexpvol + 1;/* This contains
number of entries within desired vol */
}
}
}
if (totalvol != 0)
{
montevol = volume * (totalexpvol / totalvol);/* Monte Carlo
volume os the fraction of the cube volume */
}

printf("monte carlo volume is %1f\n", montevol);

For our circle of radius 2 units, using the formula for volume, V

V= é7rr3
3

We get a value of 33.5103 for the whole sphere, but we only want one-eighth of this
which is 4.1888. If you run the preceding program, your value should be fairly close to
this. If you think it is not very close, then you may be right, but we have begun to move
up in our dimensions where Monte Carlo can become the only method of integration.

Another 3-D example we can have a look at is a cylinder.

Here our cylinder’s base is at the origin and its length moves up the y-axis.

A diagram for this is shown in Figure 4-7.

107

CHAPTER 4 MONTE CARLO INTEGRATION

_ x

Figure 4-7. Cylinder

So here if the radius of the base of the cylinder is 2 units (so the diameter is 4
units) and the height is 5 units, then we can imagine our surrounding box as having
dimensions 4x4x5 units

We want to generate x and z coordinates between 0 and 4 and y coordinates between
0 and5.

The code for this is as follows.

/* Montecarlo cylinder*/

/* Calculation of volume using monte carlo */

/* by counting relative volumes */

/* integrates x"2 + y*2 * z to your specified limits */
#define _CRT_SECURE_NO_WARNINGS

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

main()

{

double x, y, z;

double zupper, zlower, yupper, ylower, xupper, xlower;
double montevol, volume;

double totalexpvol, totalvol;

int j;

int iterations;

108

CHAPTER 4 MONTE CARLO INTEGRATION

printf("enter lower x limit\n");

scanf("%1f", &xlower);

printf("enter upper x limit\n");

scanf("%1f", &xupper);

printf("xlower %1f xupper %1f\n", xlower, xupper);

printf("enter lower y limit\n");

scanf("%1f", &ylower);

printf("enter upper y limit\n");

scanf("%1f", &yupper);

printf("ylower %1f yupper %1f\n", ylower, yupper);

printf("enter lower z limit\n");

scanf("%1f", &zlower);

printf("enter upper z limit\n");

scanf("%1f", &zupper);

printf("zlower %1f zupper %1f\n", zlower, zupper);

volume = (xupper - xlower)*(yupper - ylower)*(zupper - zlower);
printf("volume is %1f\n", volume);

printf("enter iterations \n");

scanf("%d", &iterations);

totalvol = 0;
totalexpvol = 0;

for (j = 1;j < iterations;j++)
{

/* find random numbers for x,y and z */
rand() % 1000;

rand() % 1000;

rand() % 1000;

y / 1000;

x / 1000;

z / 1000;

N X & N <« X
[}

109

CHAPTER 4 MONTE CARLO INTEGRATION

/* x,y and z will have numbers between 0 and 1 */
/* so multiply by the user's entered ranges for x,y and z */
x = xlower + (xupper - xlower)*x;

y
z

ylower + (yupper - ylower)*y;

zlower + (zupper - zlower)*z;

if (x »= xlower && z »= zlower &% y »>= ylower)

{
totalvol = totalvol + 1; /* This contains the total
number of entries */
if ((pow(y, 2) + pow(x, 2)) < 4)
{
totalexpvol = totalexpvol + 1;/* This contains
numbexr of entries within desired vol */
}
}
}
if (totalvol != 0)
{
montevol = volume * (totalexpvol / totalvol);/* Monte Carlo
volume os the fraction of the cube volume */
}

printf("monte carlo volume is %1f\n", montevol);

The formula for the volume of a cylinder of base radius r and height L is
V=nr’L
Again, you can check this against the value you get when you run the preceding

program. Don’t forget to divide your answer from the formula by 8 as we are only finding
the volume of the cylinder in the positive one-eighth section.

110

CHAPTER 4 MONTE CARLO INTEGRATION

Following are some examples for you to work through. One example asks you to find
the volume of a cone. Again, to simplify this, we will only find the positive one-eighth.
The base is a circle of radius 2 units and our height is 6 units. So we enclose the cone by a
box of dimensions 4x4x6. Figure 4-8 shows a cone graph.

-

Our generated x and z coordinates will be between 0 and 2, and our generated y

Figure 4-8. Cone

coordinate will be between 0 and 6. In this case, for a given x and z value, we want the y
value to be below the slanted edge of the cone. For a given pair of x and z coordinates, we
can draw a perpendicular line from the point up toward the slanted edge, and the z value
must be somewhere along this line for you to add it to your inside volume count. The
following diagram shows one method you can use to find this.

111

CHAPTER 4 MONTE CARLO INTEGRATION

AD

—

b ¢ X

Figure 4-9. Cone logic

In Figure 4-9, the radius shown on the base contains our (x,z) point at b. Our
perpendicular line meets the slanted edge at c. Our generated y coordinate must be
along this line for it to be counted. The angle that ac makes with the base radius is
always the same. The triangle shown illustrates this. If we consider a point on the
circumference of the base circle, then the radius for this point makes an angle (theta)
given by Tan(theta) = height/radius. We know that the height of the cone is 6 units
and the base is 2 units, so tan(theta) = 6/2 = 3. This angle is the same for our triangle
abc earlier.

So once we have the coordinates of point b, we can find the height ab and so we
can check on this with our generated y value to see if the generated three points can be
counted.

Even Higher Dimensions

We can extend our 3-D sphere program to a 4-D program. This is not entering into the
field of science fiction. Even though we may not be able to envisage four dimensions
of space, there is nothing odd about a 4-D graph. If we wanted to plot a graph of the
variation of the pressure of a gas with volume, we can do this with a 2-D graph. If we
want to add another variant to this (say temperature of the gas), we can show this on a
3-D graph. If we needed to add the magnetic field in the gas as a variant, this would be

112

CHAPTER 4 MONTE CARLO INTEGRATION

reasonable but we would not be able to show it on a graph. This type of thing occurs

in all areas of life that use graphs to illustrate how one thing can vary with a number of
others. For instance, in economics, we may have data from 1000 companies. For each
company we have number of employees, sales value, percentage of employees who are
women, and percentage of employees who are from overseas. This is four variables and
we can just add one coordinate to our 3-D graph to derive information from the 4-D
“graphs.

This idea of just extending our 3-D mathematics to 4-D by just adding another
variable and doing the same thing with this variable as we did for the other three can
also be used in computer software.

You can demonstrate this in one of the following exercises.

EXERCISES

1. Extend the example of the circle in the first quadrant to a 3-D sphere in the
positive (x,y,z) sector. Check your answer with the volume formula for a sphere.

2. CGomplete the program to find the volume of the cone specified in the text.

3. Extend the example of the 3-D sphere in the positive (x,y,z) sector to a 4-D
“sphere” in the positive (x,y,z,w) sector.

113

CHAPTER 5

Matrices

Matrices are mathematical structures that have become increasingly important recently.
They are starting to be used in areas like data science and problems in machine learning.
Matrices can be understood using some simple examples.

Matrix Arithmetic

In Figure 5-1 we have details of three people working in a technology store selling
laptops and printers. The table on the left shows details of how many of each product
have been sold by each of the sales team in store and the table on the right shows how
many have been sold online.

In Store On Line
Salesperson Laptops Printers Salesperson Laptops Printers
Anne 3 4 Anne 10 11
Bernard 5 6 Bernard 12 13
Chris 7 8 Chris 14 15

Figure 5-1. Matrix examples

Each of these tables is a matrix. They both have three rows of people and two
columns of items sold. So we say that each of these matrices is a 3x2 matrix (3 rows and
2 columns).

115
© Philip Joyce 2019

P. Joyce, Numerical C, https://doi.org/10.1007/978-1-4842-5064-8_5

CHAPTER5 MATRICES

Matrix Addition and Subtraction

If you were asked to find the totals sold for each person, it would be easy to do. You just
add the laptops sold in store to the laptops sold online, similarly for printers. This is
called matrix addition.

Figure 5-2 shows the matrix sum. We can do a matrix subtraction in a similar way.
For instance, if we know their in-store sales and their sum, we could subtract to find their
online sales.

Salesperson Laptops Printers
Anne 13 15
Bernard 17 19
Chris 21 23

Figure 5-2. Matrix sum

These examples seem very trivial but they are valuable tools. If you had a thousand
staff working for the store across the country, you could detail their sales easily.

From your work with C programs up to now, you might have guessed that arrays
would be useful for storing matrices.

The following is the program to add two matrices.

/* Matrix program */

/% Add two matrices */

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.hy

main()

{
#tdefine MAXROW 8

#define MAXCOL 8
int matarri[MAXROW][MAXCOL];/* First matrix store (rowxcolumn)*/
int matarr2[MAXROW][MAXCOL];/* Second matrix store (rowxcolumn)*/

116

CHAPTERS5 MATRICES

int matsum[MAXROW][MAXCOL];/* Sum of matrices store (rowxcolumn)*/
int i,j,numrows,numcols;

printf("enter order of the two matrices (max 8 rows max 8 columns) \n");
scanf("%d %d", &numrows, &numcols);

/* Check if user is trying to enter too many rows or columns */

if (numrows>MAXROW || numcols>MAXCOL)

{

printf("error - max of 8 for rows or columns\n");

else

/* Read in first matrix */

printf("enter first matrix\n");
for(i=0;i<numrows;i++)

{
for(j=0;j<numcols;j++)
{
scanf("%d" ,&matarri[i][j]);
}
}

printf("Your first matrix is \n");
for(i=0;i<numrows;i++)

{
for(j=0;j<numcols;j++)
{
printf("%d ",matarri[i][j]);/* first matrix in
matarrli */
}
printf("\n");
}

117

CHAPTER5 MATRICES
/* Read in second matrix */

printf("enter second matrix\n");
for(i=0;i<numrows;i++)

{
for(j=0;j<numcols;j++)
{
scanf("%d" ,&matarr2[i][j]);
}
}

printf("Your second matrix is \n");
for(i=0;i<numrows;i++)

{
for(j=0; j<numcols;j++)
{
printf("%d ",matarr2[i][j]);/* second matrix in
matarr2 */
}
printf("\n");
}

/* add corresponding elements of the matrices into matsum */

for(i=0;i<numrows;i++)

{
for(j=0;j<numcols;j++)
{
matsum[i][j] = matarri[i][j] + matarr2[i][j];
}
}

/* Wrxite the solution */

printf("Your matrix sum is \n");
for(i=0;i<numrows;i++)

{

118

CHAPTERS5 MATRICES

for(j=0;j<numcols;j++)

{
printf("%d ",matsum[i][j]);/* sum of matrices in
matsum */

}
printf("\n");

You can use this program to do the matrix addition for our three workers earlier. You
will have two matrices, each of three rows and two columns (3x2 matrices).
We can subtract two matrices using very similar code.

Matrix Multiplication

We can also multiply a matrix by a constant. You just need to prompt the user to enter
the matrix and the constant they want to multiply by, and the code will just multiply each
element of the array by the multiplier.

We can have a look at our three salespeople and we can work out the value of their
sales. For this we need to know the cost of the items they sell. These details can also be
held in a matrix (Figure 5-3).

Salesperson Laptops Printers Cost

Anne 13 15 Laptop 200
Bernard 17 19 Printer 25
Chris 21 23

Figure 5-3. Matrix multiply

119

CHAPTER5 MATRICES

Here we are looking at their combined sales in store and online. We also have
another matrix containing the price of laptops and printers. For Anne we do 13x200 and
15x25. For Bernard we do 17x200 and 19x25, and for Chris 21x200 and 23x25.

The code for this is as follows.

/* Matrix program */

/* multiply two matrices */
#define _CRT_SECURE_NO_WARNINGS
#include¢stdio.h>

int main()

{
#tdefine MAXROW 8

#define MAXCOL 8

int matarri[MAXROW][MAXCOL];/* First matrix store (rowxcolumn)*/
int matarr2[MAXROW][MAXCOL];/* Second matrix store (rowxcolumn)x/
int matmult[MAXROW][MAXCOL];/* matrix answer (rowxcolumn)x/

int i,j,k;
int ri,c1,r2,c2;/*% row and col for 1st and 2nd matrices */
int error;

error=0;

printf("enter order of the first matrix (max 8 rows max 8 columns) \n");
scanf("%d %d", &r1, &c1);

/* Check if user is trying to enter too many rows or columns */
/* oxr the number of columns in their 1st matrix is not the same as */
/* the number of rows in their 2nd matrix */

if(r1>MAXROW || c1>MAXCOL)
{

printf("error - max for rows or columns exceeded\n");
error=1;

120

CHAPTERS5 MATRICES

if(error == 0)

{

}

printf("enter order of the second matrix (max %d rows max %d
columns) \n",MAXROW,MAXCOL);

scanf("%d %d", &r2, &c2);

if(r2>MAXROW || c2>MAXCOL)

{
printf("exror - max for rows or columns exceeded\n");
error=1;

}

else

if(ci 1= IZ)

{
printf("exror - number of columns in 1st matrix must
equal number of rows in 2nd\n");
error=1;

}

if(error == 0)

{

for(i=0;i<r1;i++)

{
for(j=0;j<c2;j++)
{
matmult[i][j]=0;/* clear the matrix */
}
}

/* Read in first matrix */

printf("enter first matrix\n");
for(i=0;i<riji++)

{

121

CHAPTER5 MATRICES

for(j=0;j<c1;j++)

{
scanf("%d" ,&matarr1[i][j]);

}

printf("Your first matrix is \n");
for(i=0;i<r1;i++)

{
for(j=0;j<c1;j++)
{
printf("%d ",matarri[i][j]);/* first matrix in
matarri */
}
printf("\n");
}

/* Read in second matrix #*/

printf("enter second matrix\n");
for(i=0;i<r2;i++)

{
for(j=0;j<c2;j++)
{
scanf("%d" ,&matarr2[i][j]);
}
}

printf("Your second matrix is \n");
for(i=0;i<r2;i++)

{
for(j=0;j<c2;j++)
{
printf("%d ",matarr2[i][j]);/* second matrix in
matarr2 */
}
printf("\n");
}

122

CHAPTERS5 MATRICES

/* multiply corresponding elements of the matrices into matmult */

for(i=0;i<riji++)

{
for(j=0;j<c2;j++)
{
for(k=0;k<r2;k++)
{
matmult[i][j] = matmult[i][j] + matarra[i][k]
* matarr2[k][j];
}
}
}

/* Write the solution */

printf("Your matrix multiplication is \n");
for(i=0;i<r1;i++)

{
for(j=0;j<c2;j++)
{
printf("%d ",matmult[i][j]);
}
printf("\n");
}

After the multiplication, we have another matrix (Figure 5-4).

Salesperson Sales

Anne 2975
Bernard 3875
Chris 4775

Figure 5-4. Resulting matrix of multiplication
123

CHAPTER5 MATRICES

Try the code and see if you get this matrix.
So what we have done is multiplied a matrix of three rows and two columns by a
matrix of two rows and one column and ended up with a matrix of three rows and one

column. Or
(3X2)x(2X1)=(3X1)

For any matrix multiplication, the number of columns in the first matrix must equal
the number of rows in the second.

It's easier to see how this works by looking at a diagram.

In Figure 5-5 we are multiplying the first two matrices to make the third. This is just
another way of illustrating our computer store sales figures.

13 15 200 13x200 + 15x25
17 19 (75) = [17x200 + 19x25
21 23 21x200 + 23x25

Figure 5-5. Matrix multiply

Matrix Inverse

Now that we have added, subtracted, and multiplied matrices, you may think that you
should be able to divide them. There is a technique used which is a bit similar to dividing.
Consider the following equation.

Afx} = {h}

Here A, {x}, and {h} are all matrices. So we have multiplied {x} by A and we get {h} as
our answer.
What if we have A and {h} and we want to find what {x} is? This is similar to the

algebraic equation
Ax=h

If we had A and h here and we wanted to find x, we would just divide both sides by A.
In the matrix case, what we have to do is multiply both sides by the inverse of A. This
is denoted as A™.

124

CHAPTERS5 MATRICES
When you multiply both sides by this matrix, we get
A'A{x} = A Y{h}

But in matrix calculations, A'A is effectively 1.
So we get

{x}=A"{h}

As we know A and {h}, we can just multiply these together using our matrix
multiplication technique earlier to find {x}.

The only outstanding problem we now have is finding A™'.

This method can only be used with “square matrices.” A square matrix is one which
has the same number of rows as columns. The easiest method is with a 2x2 matrix. The
formula for finding the inverse of a 2x2 matrix is shown here.

a b
=A
c o
I d -b
ad—bc\—-c a

For our matrix A, we see the formula for finding its inverse A

We can see an example of implementing this formula.

1 2
Here A is
3 4

1(4 -2
T 203 1
(-2 1
(3/2 -1/2

125

CHAPTER5 MATRICES

We can test the inverse by multiplying it by the original matrix.

[s_/zz —11/2]@ i]:[; (1))

This is the answer we wanted. ((1) (1)] is the “unit” 2x2 matrix. It is the equivalent of
1 in algebra.

Things get a little more complicated when we want to find the inverse of a 3x3 matrix.
There are five stages:

1. Find the matrix of minors.

2. Find the matrix of cofactors.

3. Find the determinant.

4. Find the adjugate matrix.

5. Multiply the inverse of the determinant by the adjugate matrix.

1) Matrix of minors.

>

Il
W
[\ \CR \G)
— - W

Draw a line through the first row and first column. Take what you
see outside of the lines and multiply the top left number by the
bottom right number, then multiply the top right by the bottom
left. Then subtract your second number from your first. Here we
get 2x1 - 1x2 =0. So we put this answer in the first row and column
position of our target matrix.

2—3\V 0
= 2 1 2x1-1x2=0
2 1

126

2)

CHAPTER 5

Move your lines across to the next position.

L | l ke]

1 3 0 2
(3 1) 3x1-1x1=2
1 1

And so on.

P
—= W -
[WIS b

J“ 02 4
D 3x2-2x1=4 ()

0 2 4
1) 2x1-3x2=-4 (—4)

S ——
()

N

-/

A~
— =

[NSI

[y

0 2 4
Matrixof minors=| -4 -2 0
-4 -8 -4

Matrix of cofactors

Multiply the corresponding terms in the matrix of minors by the
following array.

Giving our matrix of cofactors

0 -2 4
4 -2 0
-4 8 -4

MATRICES

127

CHAPTER 5

3)

4)

5)

MATRICES

Determinant

Here we can multiply any row or column of the original matrix by
the corresponding row or column of the matrix of cofactors. So
here if we take the first row

1x0 +2x(-2) + 3x4 =8
So 8 is our determinant.
Adjugate

Here we transpose our cofactor matrix about its diagonal.

0 4 4
-2 -2 8
4 0 -4

Multiply the determinant by the adjugate.

0 4 —4
A'=1/8 -2 -2 8
4 0 —4

SoAlis

0 05 0.5
-025 -025 1
0.5 0 -0.5

We can test this by multiplying it by the original matrix.

0 05 -05)1 2 3 1
-0.25 -0.25 1 3 2 1|=|0
0.5 0 -05/\1 2 1 0

o = O
- o O

1 0 0

Here |0 1 0 | isthe identity matrix for a 3x3 matrix.

128

0 01

CHAPTERS5 MATRICES

This is a fairly complicated procedure, but it becomes easier the more you get used

to it. All you have to do is work through the five stages. You will either have to remember

these or keep a note of them.

Coding a Matrix Inverse

The following is the code to invert a 3x3 matrix.

/* Matrix program */

/% invert a 3x3 matrix */
#define _CRT_SECURE_NO_WARNINGS
#include<stdio.hy

int main()

{

double matarri[3][3];/* matrix store (rowxcolumn)s*/
double mattrans[3][3];/* adjugate matrix store (rowxcolumn)s*/

double matinv[3][3];/* matrix answer (rowxcolumn)*/

/* array to hold the positions of the minors for each of the 9 points

in the matrix */

int posarr[78]={1,1,2,2,1,2,2,1, /% xow 0 col 0 */
1,0,2,2,1,2,2,0, /% xow 0 col 1 */
1,0,2,1,1,1,2,0, /% xow 0 col 2 */
0,1,2,2,0,2,2,1, /% row 1 col 0 */
0,0,2,2,0,2,2,0, /% row 1 col 1 %/
0,0,2,1,0,1,2,0, /% row 1 col 2 %/
0,1,1,2,0,2,1,1, /% row 2 col 0 */
0,0,1,2,0,2,1,0, /% row 2 col 1 %/
0,0,1,1,0,1,1,0}; /* row 2 col 2 */

double det[9];/* array to contain matrix of minors rowicoli,rowicol2,

rowicol3,row2coll etc */

double detant; /* The determinant (any row or col of the

original matrix X corresponding one in cofactors) */

129

CHAPTER 5 MATRICES
int i,j,x;
int ri,c1;

rl=3;
cl=3;

printf("enter matrix\n");
for(i=0;i<riji++)

{
for(j=0;j<c1;j++)
{
scanf("%1f" ,&matarri[i][j]);
}
}

printf("Your matrix is \n");
for(i=0;i<riji++)

{
for(j=0;j<c1;j++)
{
printf("%1f ",matarri[i][j]);/* first matrix in matarri */
}
printf("\n");
}

/* invert */
/* Stage 1- Matrix of minors */

for(j=0;3j<9;5j++)

{
X = j*8;
for(i=0;i<8;i++)
{
det[j]=matarri[posarx[x]][posarx[x+1]]*matarxri[posarx
[x+2]][posarr[x+3]]-matarri[posarr[x+4]][posarr[x+5]]*
matarri[posarx[x+6]][posarx[x+7]];
}
}

130

CHAPTERS5 MATRICES

printf("Your matrix of minors is \n");
for(j=0;j<3;j++)

{
for(i=0;i<3;i++)
{
printf("%1f ",det[i+3%j]);
}
printf("\n");
}

/* Stage 2 - Matrix of cofactors */
printf("Your matrix of cofactors is \n");

det[1]=det[1]*-1;
det[3]=det[3]*-1;
det[5]=det[5]*-1;
det[7]=det[7]*-1;

for(j=0;j<3;j++)

{
for(i=0;i¢3;i++)
{
printf("%1f ",det[i+3%j]);
}
printf("\n");
}

/* Stage 3 - Determinant */

/* We can multiply any row or column of the original matrix by */
/* the corresponding row or column of the matrix of cofactors. */
/* Here we just take the first row */

detant=matarri[0][0]*det[0]+mataxri[0][1]*det[1]+mataxxi[0][2]*det[2];
printf("determinant is %1f ",detant);

131

CHAPTER5 MATRICES

/* Stage 4- Adjugate (or transpose) */

/* Transpose the cofactor matrix about its diagonal */

printf("Your matrix transpose is \n");
for(j=0;3j<3;j++)

{
for(i=0;i¢3;i++)
{
mattrans[i][j]=det[i+3%]j];
}
printf("\n");
}
for(j=0;3j<3;j++)
{
for(i=0;i¢3;i++)
{
printf("%1f ",mattrans[j][i]);
}
printf("\n");
}

/* Stage 5- Multiply inverse of determinant by adjugate */

132

/* Multiply the result of Stage 4 by the result of Stage 3 */

for(j=0;3j<3;5j++)

{
for(i=0;i<3;i++)
{
matinv[j][i]=mattrans[j][i]*(1/detant);
}
printf("\n");
}

CHAPTER 5 MATRICES
/* Print solution */

for(j=0;j<3;j++)
{
for(i=0;i<3;i++)

{
printf("%1f ",matinv[j][i]);

}
printf("\n");

The five stages are labeled to make the code easier to follow. The array posarr
contains the positions (row and column) for all of the nine minors. If you look back at
the diagram of the input matrix, the first minor to be calculated is found by covering up
the row and column of that position in the input matrix and then using the four numbers
that are not covered up. We need to multiply the top left of these numbers by the bottom
right, then multiply to top right by the bottom left and then subtract the second number
from the first. In the case of the first number, its position in the matrix is row 1 column
1 (counting from 0). So our first two numbers are 1,1. The number we multiply this is at
row 2 column 2 (counting from 0) so its numbers are 2,2. There are other ways of doing
this, but this one is fairly easy to follow.

Testing the Code

You can test if your program has worked by multiplying it by your original matrix. When
you do this, you should get

oS O -
(= =]
- o o

If you get all zeros for your answer, it will be because the multiply array program
shown at the beginning of this chapter used int arrays. You will need to change these to
float arrays. Don’t forget to change your printf statement when you are printing your

matrix to do %f rather than %d.
133

CHAPTER 5

MATRICES

EXERCISES

Rewrite your add two matrices program to add decimal numbers. Don’t forget
to change your scanf and printf instructions for floating point numbers.

Test question 1 with the following matrices.

15 03 1.7) (02 07 04
a |26 01 0 |+05 03 O
31 40 1 0 22 13

15 03 -17
26 01 0
31 40 -1

) ~02 07 04

+/-05 03 -08

0 22 13

Rewrite your multiply two matrices program to multiply two floating point
matrices. Make the changes as outlined in the chapter.

Test your program from question 3 using the following matrices.

1.5 03 1.7)\(02 0.7 04
26 01 0|05 03 O
31 40 1 0 22 13

Test your answer to the 2x2 inverted matrix problem in the chapter by
multiplying the inverse with the original matrix. Make sure you are using the
floating point program.

134

CHAPTER 6

Correlation and PMCC

The topics of Correlation and Product Moment Correlation Coefficient (PMCC) are
related. They both concern scatter graphs. You will have seen simple scatter graphs
of, say, people’s height plotted against their weight or the value of a car plotted
against its age.

Scatter Graphs and Correlation

In Figure 6-1 we see that, in general, as people get taller they get heavier and that as a car
gets older its value decreases.

height *
*
']
L4 -
. . Positive Correlation
weight
value
.
[]
Negative Correlation
& v
L |
age
Q
. - ¢
L
. ' P No Correlation
. ¢
[. o L
Number of house

Figure 6-1. Correlation scatter graphs

135
© Philip Joyce 2019

P. Joyce, Numerical C, https://doi.org/10.1007/978-1-4842-5064-8_6

CHAPTER6 CORRELATION AND PMCC

The first of the two graphs shows that as the x value rises, the y value rises so the
graph has a positive slope. The second shows that as the x value rises, the y value falls,
showing a negative slope. The first graph shows a positive correlation, and the second
shows a negative correlation.

The third of the preceding graphs shows a person’s IQ plotted against the number
of their house or apartment. As you would expect, there is no relationship between
these two so all of the points are scattered all over the graph. We say that here there is no
correlation.

For the two correlation cases, we can draw a straight line showing the slopes more
clearly. These are shown in Figure 6-2.

we}g ht

age

Figure 6-2. Lines of best fit

At school you learn to draw these “by eye,” that is, you guess where the line should
be. This is called a “line of best fit.” We can then use the line to make an estimation. In
the first graph earlier, we want to know, on average, what a person might weigh. If we
know that their height is h, we can draw a dotted line across the graph to our line of
best fit and then another dotted line down to the x-axis. This shows that their weight
should be w.

We can do a similar thing with our negative correlation graph (Figure 6-3).

136

CHAPTER 6 CORRELATION AND PMCC

P
L'
']
[4
[]
*
]
¢
¢
®
& @

Figure 6-3. Levels of positive correlation

In the preceding two graphs, the first graph shows positive correlation, and it is just
about reasonable to say that the second graph shows positive correlation. We say that
the first graph shows “strong positive correlation” and the second shows “weak positive
correlation.”

So, two things are happening here. One is drawing a straight line from a scatter
graph, and the other is saying how strong or weak the correlation is. Regression concerns
the drawing of the line, and Product Moment Correlation Coefficient shows us how to
find a fixed number to assign to the correlation rather than just using the vague terms
“strong” and “weak.

The regression techniques use “least squares” techniques from statistics. The
PMCC techniques give us a number from 0 to 1. In the case where all the points lie on
the straight line with positive correlation, the PMCC will be +1. If all the points are on
a line with a negative slope, then the PMCC is -1. In our two strong and weak positive
correlation graphs, the PMCC for the strong one might be about +0.8724 and that for the
weak one could be about +0.3672

If you are drawing your line of best fit by hand, a good starting point would be to find
the mean of the x values and the mean of the y values and have your line going through
the point of the two means. Figure 6-4 shows two possible lines of best fit. The lines cross
at the means ofxand y.

137

CHAPTER6 CORRELATION AND PMCC

Figure 6-4. Two possible lines of best fit

The mean values of x and y are denoted as (X, y).

So for our lines of best fit in the preceding example, we should try to get as many
points above our line as below it. Both of the lines we have drawn in the example do this.
But there is more mathematically rigorous way of doing this. We want to try to minimize
the distance of each point to our line of best fit. The two graphs in Figure 6-5 show two
possible ways of doing this.

Figure 6-5. Distances of points to the line of best fit

The top one measures the y distance from each point to the line. This is called
“regression of y on x” The lower one measures the x distance of each point to the line. This
is called “regression of x on y.” Both cases are trying to minimize the average distance of the
points to the line. In both cases we use mathematical formulas to find the correct line.

138

CHAPTER 6 CORRELATION AND PMCC

For the x values, we use the sum of how far each of the x values is from the mean. The
expression for this is

S, =X(x-x)
For the y values, the sum is
S, =2(y-¥)
Also used is the sum of the x values multiplied by the y values.
Sy =Z((y=¥)(x—%))
There are alternative forms of these which are easier to use.

S, =>x*~(Xx)"/n
S, =Xy’ —(Xy)’ /n
S, =2xy—(ZxXy)/n

In these formulas n is the number of points on the scatter graph. The formula for the
line of best fit for the regression of y on x case is

y =a+bx

where

b=S /S, a=y-bx

For the case of regression of x on y, the formula for the line is
x=c+dy

where

d=S,/S, c=x-dy

In our program we just read all of the (x,y) values that the user types in for their
scatter graph that they want to find the line of best fit for. The code puts these values into
the preceding formula and then works out the equation of the line and prints it out.

139

CHAPTER6 CORRELATION AND PMCC
The following is the code for finding the line for the regression of y on x case.

/* regression */

/* user enters points.*/

/* regression of y on x calculated */
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>

#include <math.h>

main()

{

float xpoints[10],ypoints[10];

float sigmax,sigmay,sigmaxy,sigmaxsquared,xbar,ybar;
float fltcnt,sxy,sxx,b,a;

int i,points;

printf("enter number of points (max 10) \n");
scanf("%d", &points);

if(points»10)
{
printf("error - max of 10 points\n");
}
else
{

sigmax=0;
sigmay=0;
sigmaxy=0;
sigmaxsquared=0;

/* user enters points from scatter graph */
for(i=0;i<points;i++)
{
printf("enter point (x and y separated by space) \n");
scanf("%f %f", &xpoints[i], &ypoints[i]);
sigmax=sigmax+xpoints[i];
sigmay=sigmay+ypoints[i];

140

CHAPTER 6 CORRELATION AND PMCC

sigmaxy=sigmaxy+xpoints[i]*ypoints[i];
sigmaxsquared=sigmaxsquared+(float)pow(xpoints[i],2);

}

printf("points are \n");
for(i=0;i<points;i++)
{
printf(" \n");
printf("%f %f", xpoints[i], ypoints[i]);

}
printf(" \n");
fltcnt=(float)points;

/* Calculation of (xbar,ybar)- the mean points*/
/* and sxy and sxx from the formulas*/
xbar=sigmax/fltcnt;

ybar=sigmay/fltcnt;
sxy=(1/fltcnt)*sigmaxy-xbar*ybar;
sxx=(1/fltcnt)*sigmaxsquared-xbar*xbar;

/* calculation of b and a fxrom the formulas */
b=sxy/sxx;
a=ybar-b*xbar;

/* Print the equation of the regression line */

printf("Equation of regression line y on x is\n ");
printf(" y=%f + %fx", a,b);
printf(" \n");

}
}
Figure 6-6 is the graph of the regression line created by the preceding code for the
points
1 2.2 1.4 2.8 3.2 3.4 3.8 4 5 5
y 1.4 1.6 3.2 3.8 2.8 5 4.2 6.4 5 6.4

141

CHAPTER6 CORRELATION AND PMCC

y a3 1
f(x)=0.564672+1.074x

y = 0.564672 + 1.074x) Py

6 7 8 9 10 11 12

-t
.
[
=t
=t
o1
ot
Ly
&
i B
L

V4

Figure 6-6. Regression line of y on x

The scatter points in the preceding table are shown on the graph.
The code for the regression line of x on y is given as an exercise at the end of this
chapter.

Product Moment Correlation Coefficient

As we said earlier in this chapter, rather than just say that correlation is “good” or “fair”
or any other term you may think of, we can assign it a number based on the statistical
variables you have just used in your regression program. This number is the Product
Moment Correlation Coefficient. It sounds complicated but it is just a number between

142

CHAPTER 6 CORRELATION AND PMCC

0 and 1. In this case 0 means no correlation and 1 is perfect correlation, that is, where all
of the points in the scatter graph are in a straight line. We also give the number a sign,
depending on whether the correlation is positive, where the regression line has a positive
slope, or negative where it has a negative slope.

The formula for the PMCC is

r=8,/(s,*S,)

where

and

So we can just use the values of S, and S, from our regression calculations. Using the
same ten scatter points as with our regression example, we can find the PMCC for that
set of data.

This is a fairly minor change to the regression code. It is shown as follows.

/*product moment correlation coefficient - first attempt at pmcc*/
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h»
#include <math.hy
main()
{
double xpoints[10], ypoints[10];
double sigmax, sigmay, sigmaxsquared, sigmaysquared, xbar, ybar, sigmaxy;
double sxy, sxx, syy, sx, sy, r;
int i, points;
double fltcnt;

/* User enters number of points in scatter graph */
printf("enter number of points (max 10) \n");
scanf("%d", &points);

if (points > 10)

143

CHAPTER6 CORRELATION AND PMCC

144

{

else

printf("error - max of 10 points\n");

sigmax = 0;
0;

sigmay =

sigmaxy = 0;
sigmaxsquared = 0;
sigmaysquared = 0;

/* User enters points in scatter graph */
for (i = 0;i < points;i++)
{
printf("enter point (x and y separated by space) \n");
scanf("%1f %1f", &xpoints[i], &ypoints[i]);
/* totals incremented by x and y points */
sigmax = sigmax + xpoints[i];
sigmay = sigmay + ypoints[i];
sigmaxy = sigmaxy + xpoints[i] * ypoints[i];
sigmaxsquared = sigmaxsquared + pow(xpoints[i], 2);
sigmaysquared = sigmaysquared + pow(ypoints[i], 2);
}
printf("points are \n");
for (i = 0;i < points;i++)
{
printf(" \n");
printf("%1f %1f", xpoints[i], ypoints[i]);

}

printf(" \n");

fltcnt = points;

/* variables in PMCC formula calculated */
xbar = sigmax / fltcnt;

ybar = sigmay / fltcnt;

syy = (1 / fltcnt)*sigmaysquared - ybar * ybar;

CHAPTER 6 CORRELATION AND PMCC

sxx = (1 / fltcnt)*sigmaxsquared - xbar * xbar;
sx = sqrt(sxx);

sy = sqrt(syy);

sxy = (1 / fltcnt)*sigmaxy - xbar * ybar;

/* PMCC value calculated */
xr = sxy / (sx*sy);
printf("r is %1f", r);

If you create this program and run it with the same data as your regression program,
you should get a PMCC of 0.827936.

EXERCISES

1. Starting with your program for regression of y on x, write a program to find the
regression of x on y. Test it with the same data as in the y on x case.

2. If you have graph plotting software, plot the graph for the equation created by
question 1.

3. Using your Product Moment Correlation Coefficient program, find the PMCC for
the following 10 points on a scatter graph.

x:12345678910
y:10987654321

145

CHAPTER 7

Monte Carlo Methods

This chapter shows some of the uses of the Monte Carlo technique in mathematics, physics,
and medicine. The radioactive decay simulation produces an output which matches the
results from physics experiments on radioactive elements. The “Buffon’s Needle” section
recreates an eighteenth-century experiment to find pi. The random walk technique has
applications in many walks of life particularly in physics, chemistry, and medicine.

Radioactive Decay Simulation

Some elements exhibit radioactive decay. This is where the nucleus of the element
breaks up. There is a probability associated with this break up. This varies from
element to element, but it is constant for a particular element. We normally denote this
probability by A. Typical values of A are very small, and it is related to the half-life of the
element. The units are time™ so this means per second, per year, and so on. For Cobalt
60 the value is 0.13149 per year. This might seem very small but in a sample of, say, 1 kg
of cobalt, there will be millions of nuclei so that the probability of having one decay in a
short space of time would be large.

When a nucleus decays, it changes into a different nucleus so you might start
with N nuclei of Cobalt 60 but after, say, 1 hour you would have less. The formula
describing this is

N=N,e*

where N, is the number of nuclei at the beginning and N is the number after the unit
of time t.
So if we start with a sample of Cobalt 60 of 3000 nuclei, then after 3 units of time we

would have
N = 3000 e -*13x
which is approximately 2031.

147
© Philip Joyce 2019

P. Joyce, Numerical C, https://doi.org/10.1007/978-1-4842-5064-8_7

CHAPTER 7 MONTE CARLO METHODS

We can simulate this in a C program using Monte Carlo simulation. As the probability
of decay is related to At from the formula, we can generate a random number and check
if it is less than At. If it is, then the radioactive decay will take place and you will have one
less Cobalt 60 nucleus in your sample. You can repeat this in a loop in your program to
count how many Cobalt 60 nuclei are in the sample after each time period. Then you can
use the data you produce to draw a graph. The following code shows this simulation.

/* radioactive decay simulation */
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h»

#include <math.h>

#include <stdlib.h»

#include <time.h»

main()

{
int j,timelimit,nuc;

double randnumber,timeinc,lambda,timecount,probunittime;

FILE *fptr;

time_t t;

srand((unsigned) time(&t)); /* random number generator seed */
fptr=fopen("radioact.dat","w");

/* Ask user to input specific data */
/* initial number of nuclei, the value of lambda, time for experiment */

printf("Enter initial number of nuclei : ");
scanf("%d",&nuc);

printf("Enter lambda : ");
scanf("%1f" ,&lambda);

printf("Enter time : ");
scanf("%d" ,&timelimit);

/* time increment of loop */

148

CHAPTER7 MONTE CARLO METHODS
timeinc=0.001/1ambda;
printf("Time increment :%1f",timeinc);
/* (delta t * lambda) */

probunittime=0.001*1ambda;
timecount=0;

/* Monte Carlo loop */
while(timecount<=timelimit)

{
fprintf(fptr,"%1f %d\n",timecount,nuc);

timecount=timecount+timeinc;

for(j=0;j<=nuc;j++)

{

randnumber=rand()%1000;
randnumber=randnumbex/1000;

/* Monte Carlo method checks random number less than (delta t *
lambda) */

if(randnumber<=probunittime)
nuc=nuc-1;/* If less, then prob. that nucleus has
decayed */
if(nuc<=0)
goto nuclimitreached;

}

nuclimitreached: fclose(fptr); /* nuclei limit or time limit reached */

}

If you run this program, you are prompted for the three values. For number of nuclei,
enter 100; for lambda, enter 0.13149; and for time, enter 30.

149

CHAPTER 7 MONTE CARLO METHODS

Figure 7-1 shows the number of nuclei on the y-axis and the time on the x-axis so
you can see the trend of the radioactive decay. We want to write the number of nuclei
existing at a particular time to a file so that we can import it into a graph using the Graph
package. The file is called “radioact.dat” We open and close this file using fopen and
fclose, and we write the points to the file using fprintf. We will see more about file
access in a later chapter.

Nucdlei wod

x

+ + } + + : d + t 4 t t 4 t —
3 4 50 60 0 S S0 100 10 10 150 40 150 160 10 180

Figure 7-1. Screenshot of radioactive decay graph

The vertical dotted lines show the first, second, and third half-life positions, showing
that the graph has a reasonable accuracy of the actual half-life values of 5.27, 10.54, and
15.81 years.

Buffon’s Needle

The French aristocrat Comte de Buffon performed an interesting experiment in the
eighteenth century. He took a needle of length 1 and dropped it. Below were two lines of
space t apart. Assuming that the needle’s length was smaller than the separation of the
lines, there would be a probability that when you dropped the needle, it would cross one
of the lines. Buffon found that this probability was

150

CHAPTER7 MONTE CARLO METHODS
P =21/ (at)
So if you rearrange this, you get
=21/ (pt)

In 1901 Lazzarini did an experiment of this by dropping the needle onto the lines
3408 times. He found that the needle crossed one of the lines 1808 times. When he put
these figures into the preceding formula, he found

7 =3.1415929

which is a really accurate value for .
Rather than repeating what Lazzarini did, we can perform a similar experiment using
our Monte Carlo simulation.

0.5 sin 0

Figure 7-2. Buffon’s needle experiment

Figure 7-2 is a diagram of the experiment. The two red lines are the parallel lines that
we want to drop the needle on. The black line is the needle. For ease of calculation, we
set the distance between the parallel lines to be 1 unit of length. Our diagram shows the
needle after a random drop. It makes an angle of 8 with the horizontal (parallel to the
parallel lines). The distance of the side of our triangle opposite the angle is 0.5 sin 6.

If the angle was a bit bigger than that in our diagram, the black needle will touch the
line. We can, therefore, use this as the measure of the probability that the needle will
cross one of the lines. We set the length of the needle to be 1 unit of length.

If the distance from the center of the needle to the nearest line is d, then the
condition for the needle crossing the line is d <= 0.5 sin 6.

We can rearrange this to 2d <= sin 6.

So we can set our two random numbers to be 2d between 0 and 0.5 and between 0
and #r/2.

151

CHAPTER 7 MONTE CARLO METHODS

For our first range of numbers, this is just the same as saying d between 0 and 1.
The code for our Buffon’s needle simulation is as follows.

/* Buffon's Needle Simulation (Monte Carlo)*/
#define _CRT_SECURE_NO_WARNINGS

#include <stdlib.hy

#include <stdio.h»

#include <math.h»

#include <time.h>

#idefine PI 3.141592654

main()

{
time_t t;

int i, throws, count;
double randno, anglerand;

srand((unsigned)time(&t));/* set the random number seed */
printf("Enter number of throws ");
scanf("%d", &throws);

count = 03

for (i = 1; i <= throws; i++)
{

randno = rand() % 1000;

randno = randno / 1000;/* randno is the random number */
anglerand = rand() % 1000;

anglerand = anglerand / 1000;

anglerand
numbexr*/

0.5*PI*anglerand; /* anglerand is the angle random

if (randno <= sin(anglerand))
count = count + 1; /* Add to count */

152

CHAPTER 7 MONTE CARLO METHODS

printf("PI is %1f \n", 2 * (double)i / (double)count);

The program prints out the value of PI from the simulation.

Random Walk

The random walk is a famous method for working out many things in different areas of
science. You can model the diffusion of a gas in air. It is called “a random walk” because
we image a person walking along a field, say, but making turns right and left and moving
forward and backward at random. The question is where would this person end up. It

is sometimes described as a drunkard coming out of a bar (having indulged beyond

their limits) and walking in their drunken haze in a haphazard manner. The mechanism
mimics the way gas particles can move through the air. By colliding with other particles,
they are bumped to the left and right or bounced backward and forward. So it is the same
type of random motion as the drunkard.

So we need to know how to analyze this. If we say that the person starts off, they can
make one stride forward or back or to the left or to the right. Then, after this first stride,
they make another stride, again in any of the four directions and so on for many strides.
If we use our random number generator, we get a number between 0 and 1. If we say that
anything between 0 and 0.25 is a move to the left, between 0.25 and 0.5 is a move to the
right, between 0.5 and 0.75 a move backward, and 0.75 to 1 a move forward.

Now we can just set up a loop in our program to do that sequence maybe 1000 times.
We make a note of the start position (x,y), then we note whether the person walks right,
left, forward, or back and add that to their position. We can then plot their position on a
graph. We can just use Pythagoras’ theorem to work out the position.

The following code shows this.

/* simple random walk simulation */
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>

#include <stdlib.h»

#tinclude <math.h»
#tinclude <time.h»

153

CHAPTER 7 MONTE CARLO METHODS

FILE *output;

time_t t;
main()
{

int i;

double xrand,yrand;
double x, y, randwalkarr[10001];
output= fopen ("randwalkg4.dat", "w"); /* external file name */

for (i=0; i<=10000; i++)
randwalkarr [i]=0.0; /* clear array */

srand((unsigned) time(&t)); /* set the number generator */
X=0.0; y=0.0;

for (i=1;i<=10000; i++)
{
/* generate x random number */
xrand=rand()%1000;
xrand=xrand/1000;
if(xrand<o.5)
X=X+1.0;
else
X=x-1.0;

/* generate y random number */
yrand=rand()%1000;
yrand=yrand/1000;
if(yrand<o.5)

y=y+1.0;
else

y=y-1.0;

randwalkarr[i] = sqrt(x*x+y*y);/* store randwalkarr to total */

154

CHAPTER 7 MONTE CARLO METHODS

}

/* Write values to file */
for (i=0; i<=100; i++)

{

fprintf(output,”%d %1f\n", i, randwalkarr[i*100]);
}

fclose (output);

The file read and write parts of this program will be covered in a later chapter. We
can see what our random walk looks like by plotting the graph from the points collected
in our loop.

This graph is shown in Figure 7-3.

204

RMS distance
100

number of steps

Figure 7-3. Random walk graph
This is the classic random walk shape. Although we have introduced this as a

drunkard’s walk, the mathematical nature of this process is used in many areas of

science and engineering.

155

CHAPTER 7 MONTE CARLO METHODS

EXERCISES

1. Amend your random walk program to only consider a 1-D walk. So you only
have to take random steps in the + or — x direction.

156

CHAPTER 8

Augmented Matrix

This chapter introduces a technique used in mathematics and science to solve
simultaneous equations where you have many unknowns. You may be familiar with
solving two simultaneous equations with two unknowns, but by the end of this chapter,
you will be able to write a program to solve 12 equations with 12 unknowns.

Manual Solution to Simultaneous Equations

Solving algebraic equations is a key part of most areas of mathematics, science,
technology, and many other areas. Solution of simple equations is fairly easy to do
manually, but in real life the equations are usually more complicated and computer
methods are of great help.

Generally, if we have one unknown quantity, then we only need one equation to
solve it.

1. Sofor 2x+3=11
2. Wewrite 2x=11-3
3. Or 2x=8
4. So x=4

If we have two unknown quantities, we need two independent equations to solve
them (here x+y=2 and 2(x+y)=4 are not independent equations - they are effectively the
same equation).

1. Soifwehad
3x+y=5
4x-y=2
These are two independent equations with two unknowns.

157
© Philip Joyce 2019

P. Joyce, Numerical C, https://doi.org/10.1007/978-1-4842-5064-8_8

CHAPTER 8 AUGMENTED MATRIX

2. Ifwe add them, we get
xX+0=7
3. Orx=1

4. So now that we know what x is, we can substitute it back into
either of the original equations.

5. Weget 3x1+y=5

6. So 3+y=5

7. So y=2

8. Sowe have solved the equations to getx=1and y = 2.

If we now have three equations with three unknowns

2x+y-z=1
2x-3y+z=-1
4x -y +4z=14

This gets a little more complicated, but we can manipulate these to find x, y, and z.
When we get more equations with more unknowns, the solution becomes more and
more complicated and requires skill and intuition. For many equations (say 12 equations
with 12 unknowns), it can become extremely difficult. The mechanism to solve these
that is taught in universities is the augmented matrix method. Sometimes it has the
name Row Reduction method (for reasons that will become obvious as we go on) or the
Gaussian Elimination method.

If we look at the three equations earlier, we have

2x+y-z=1
2x -3y +z=-1
4x-y+4z=14

We take the coefficients of each of these equations and the numbers after the equals
sign and arrange them as before.

2 1 -1 1
2 -3 1 -1
4 -1 4 14

158

CHAPTER 8 AUGMENTED MATRIX

Usually these are shown inside a matrix like this.

2 1 -1 1
2 3 1 -1
4 -1 4 14

This is called the augmented matrix.

When we solve simultaneous equations manually, we normally do things like
multiply both sides of the equation by the same number or we subtract one equation
from the other. We use both of these techniques in the augmented matrix technique.

We use a fixed mechanism to do this rather than relying on mathematical intuition.
This technique lends itself to computational methods of solution.

We work in stages. For the solution of our three equations, we will have nine stages.

Stage 1 - We divide the first row by its first number.

Here the first number in the first row is 2 so we divide the whole row by 2, giving

1 05 -05 05
2 -3 1 -1
4 -1 4 14

Stage 2 - We divide the second row by the first number in the second row, giving

1 05 -05 05
1 -15 05 -05
4 -1 4 14

Stage 3 - We divide the third row by the first number in the third row, giving

1 05 -05 05
1 -15 0.5 -0.5
1 -025 1 3.5

We now want to get zeroes in the first column except for the first row which we leave
alone. We do this by subtracting the first row from the second row then subtracting the
first row from the third row.

159

CHAPTER 8 AUGMENTED MATRIX
Stage 4 - We subtract the first row from the second row, giving

1 05 -05 05
0 -2 1 -1
1 -025 1 3.5

Stage 5 - We subtract the first row from the third row, giving

1 05 -05 05
0 -2 1 -1
0 -075 15 3

Our aim is to get a diagonal of 1’s (top left to bottom right) with zeroes below the 1’s.
To get our next 1 in the diagonal, we divide the second row by its second number.
Stage 6 - We divide the second row by the second number in the second row, giving

1 05 -05 05
0 1 -05 05
0 -07% 15 3

Then the same thing is done with the third row.
Stage 7 - We divide the third row by second number in the third row, giving

1 05 -05 05
0 1 -05 0.5
0 1 -2 -4

We can then subtract to get the zero below the diagonal.
Stage 8 - We subtract the second row from the third row, giving

1 05 -05 05
0 1 -05 0.5
0 0 -15 -45

Finally we can divide the third row by its third element.

160

CHAPTER 8 AUGMENTED MATRIX
Stage 9 - We divide the third row by its third element.
1 05 -05 05

0 1 -05 05
0 0 1 3

If we now remember, our augmented matrix just represents our original three
equations we have transformed.

2 1 -1 1
2 -3 1 -1
4 -1 4 14
To
05 -0.5 0.5
0 1 -0.5 0.5
0 0 1 3

So we can rewrite our original equations as
Xx+0.5y-05z2=0.5
y-0.52=0.5
z=3

We already have one solution, z = 3. We can get y by substituting z = 3 into the second
equation to get

y-3(0.5)=0.5
ory=2
then substitute z = 3 and y = 2 into the first equation to get
x - 2(0.5) - 3(0.5) = 0.5
orx=05-1+15=1

So our solutions to the original three equations are

x=1,y=2,2z=3

161

CHAPTER 8 AUGMENTED MATRIX

Augmented Matrix Program

The nine-stage mechanism is used in our first program. We will use the original three
equations from the previous section.
So the augmented matrix is our original 3x4 augmented matrix which is

We will preset this matrix in a 3x4 array called matrix[3][4].
Then we proceed to perform the nine stages as described.
The code for this is as follows.

/* augmat2 */

/* augmented matrix 3x4 */

/* uses nine row operations for a 3 equation problem */
#idefine _CRT_SECURE_NO_WARNINGS

#include <stdio.h>

#include <math.h>

main()

{

float value, x, y, z;
float matrix[3][4];
float divisor;
int i, j;
/* Augmented matrix to be input is preset */

float matrix[3][4] = {
{2,1,-1,1},
{z’ -3’1’ -1}’
{4,-1,4,14}
b

162

CHAPTER 8 AUGMENTED MATRIX
/* Print out the preset augmented matrix */

printf("augmented matrix is\n");
for (j = 035 < 3;j++)

{
for (i = 031 < 4;i++)
{
printf("matrix[%d][%d] = %f\n", j, i, matrix[j][i]);
}
}

We work in stages. For the solution of our three equations, we will have nine stages.
Stage 1 - We divide the first row by its first number.

Here the first number in the first row is 2 so we divide the whole row by 2, so starting
with

We get

1 05 -05 05

The code continues as follows.

/* Nine stages on the rows of the augmented matrix for our 3 equation
problem */

/* stage 1 divide first row by (row 0 col 0) */

divisor = matrix[o][o0];
for (i = 0;i < 4;i++)
{

matrix[o][i] = (matrix[o][i]) / divisor;

163

CHAPTER 8 AUGMENTED MATRIX

printf("augmented matrix after division of first row is\n");
for (j = 035 < 3;j++)

{
printf("%f %f %f %f\n", matrix[j][o], matrix[j][1],
matrix[j][2], matrix[j][3]);
}
Stage 2 - We divide the second row by the first number in the second row, so
starting with
1 0.5 -0.5 0.5
2 -3 1 -1
4 -1 4 14
We get
1 0.5 -0.5 0.5
1 -15 0.5 -0.5
4 -1 4 14

Continuing the code as follows.
/* stage 2 divide second row by (row 1 col 0)*/

divisor = matrix[1][o];

for (i = 031 < 4;i++)

{
matrix[1][i] = (matrix[1][i]) / divisor;

}

printf("augmented matrix after division of second row is\n");

for (j = 033 < 335++)

{
printf("%f %f %f %f\n", matrix[j][o], matrix[j][1], matrix[j]
[2], matrix[j1[3]);

164

CHAPTER 8 AUGMENTED MATRIX
Stage 3 - We divide the third row by the first number in the third row, so starting with

1 05 -05 05
1 -15 05 -05
4 -1 4 14

We get

1 05 -05 05
1 -15 0.5 -0.5
1 -025 1 3.5

Continuing the code as follows.

/* stage 3 divide third row by (row 2 col 0)*/
divisor = matrix[2][o];
for (i = 031 < 4;i++)
{
matrix[2][i] = (matrix[2][i]) / divisor;
}
printf("augmented matrix after division of third row is\n");
for (j = 053 < 3;5j++)
{
printf("%f %f %f %f\n", matrix[j][o], matrix[j][1],
matrix[j][2], matrix[j][3]);
}

We now want to get zeroes in the first column except for the first row which we leave
alone. We do this by subtracting the first row from the second row then subtracting the
first row from the third row.

Stage 4 - We subtract the first row from the second row, so starting with

1 05 -05 05
1 -1.5 0.5 -0.5
1 -025 1 3.5

165

CHAPTER 8 AUGMENTED MATRIX
We get

1 05 -05 05
0 -2 1 -1
1 -025 1 3.5

Continuing the code as follows.

/* stage 4 subtract first row from second row */
divisor = matrix[1][o];
for (i = 031 < 4;i++)

{

matrix[1][i] = (matrix[1][i]) - matrix[o][i];
}
printf("augmented matrix after subtraction of first row from second
row is\n");
for (j = 035 < 3;3j++)
{
printf("%f %f %f %f\n", matrix[j][o], matrix[j][1], m
atrix[jl[2], matrix[j][3]);
}

Stage 5 - We subtract the first row from the third row, so starting with

1 05 -05 05
0 -2 1 -1
1 025 1 3.5

We get

05 -05 05
-2 1 -1
-0.75 15 3

166

CHAPTER 8 AUGMENTED MATRIX
Continuing the code as follows.

/* stage 5 subtract first row from third row*/

divisor = matrix[2][o];

for (i = 031 < 4;i++)

{
matrix[2][i] = (matrix[2][i]) - matrix[o][i];

}

printf("augmented matrix after subtraction of first row from third

row is\n");

for (j = 035 < 3;j++)

{
printf("%f %f %f %f\n", matrix[j][o], matrix[j][1], matrix[j]
[2], matrix[j1[3]);

}

Our aim is to get a diagonal of 1’s (top left to bottom right) with zeroes below the 1’s.
To get our next 1 in the diagonal, we divide the second row by its second number.
Stage 6 - We divide the second row by the second number in the second row, so

starting with
1 05 -05 05
0 -2 1 -1
0 -075 15 3
We get

05 -05 05
0 1 -05 0.5
0 -07% 15 3

Continuing the code as follows.

/* stage 6 divide second row by (row 1 col 1)*/
divisor = matrix[1][1];
for (i = 031 < 4;i++)

{

167

CHAPTER 8 AUGMENTED MATRIX

matrix[1][i] = (matrix[1][i]) / divisor;

}

printf("augmented matrix after division of second row is\n");

for (j = 035 < 3;3j++)

{
printf("%f %f %f %f\n", matrix[j][o], matrix[j][1], matrix[j][2],
matrix[j]1[3]);

}

Then the same thing is done with the third row.
Stage 7 - We divide the third row by the second number in the third row, so

starting with
1 05 -05 05
0 1 -0.5 0.5
0 -07% 15 3
We get

1 05 -05 05
0 1 -05 0.5
0 1 -2 -4

Continuing the code as follows.
/* stage 7 divide third row by (row 2 col 1) */

divisor = matrix[2][1];
for (i = 031 < 4;i++)
{
matrix[2][i] = (matrix[2][i]) / divisor;
}
printf("augmented matrix after division of third row is\n");
for (j = 035 < 3;j++)
{
printf("%f %f %f %f\n", matrix[j][o], matrix[j][1],
matrix[j][2], matrix[j][3]);

168

CHAPTER 8 AUGMENTED MATRIX

We can then subtract to get the zero below the diagonal.
Stage 8 - We subtract the second row from the third row, so starting with

1 05 -05 05
0 1 -0.5 0.5
0 1 -2 -4

We get
1 05 -05 05
0 -05 05
0 0 -15 -45

Continuing the code as follows.

/* stage 8 subtract second row from third row*/

divisor = matrix[2][o];

for (i = 031 < 4;3i++)

{
matrix[2][i] = (matrix[2][i]) - matrix[1][i];

}

printf("augmented matrix after subtraction of second row from third

row is\n");

for (j = 035 < 3;j++)

{
printf("%f %f %f %f\n", matrix[j][o], matrix[j][1],
matrix[j][2], matrix[j][3]);

}

Finally we can divide the third row by its third element.
Stage 9 - We divide the third row by its third element, so starting with

1 05 -05 05
0 1 -05 05
0 0 -15 -45

169

CHAPTER 8 AUGMENTED MATRIX

We get

1 05 -05 05
0 1 -05 05
0 0 1 3

Continuing the code as follows.
/* stage 9 divide third row by (row 2 col 2)*/

divisor = matrix[2][2];
for (i = 031 < 4;i++)
{
matrix[2][i] = (matrix[2][i]) / divisor;
}
printf("augmented matrix after division of third row is\n");
for (j = 035 < 3;j++)
{
printf("%f %f %f %f\n", matrix[j][o], matrix[j][1],
matrix[j][2], matrix[j][3]);
}

If we now remember, our augmented matrix just represents our original three
equations we have transformed.

4 -1 4 14

To

1 05 -05 05
0 1 -05 05
0 0 1 3

170

CHAPTER 8 AUGMENTED MATRIX
So we can rewrite our original equations as
Xx+0.5y-05z2=05
y-0.52=0.5
z=3
Continuing the code as follows.

/* Print out x,y and z solutions */

= matrix[2][3];
y = matrix[1][3] - z * matrix[1][2];
x = matrix[o][3] - y * matrix[o][1] - z * matrix[o][2];

printf("x = %f y= %f z = %", x, y, 2z);

If you create this program and run it, you should get the same solutions as we did
manually. The program prints out the augmented matrix after each of the nine stages so
that you can check that it is doing the correct manipulation.

As our divide and subtract stages are similar, we can write a separate function for
each of these and call them as required instead of writing separate code for each stage.

The next program shows these procedures (funcdivide and funcsubtract). The
program also allows you to enter the augmented matrix yourself rather than it being
preset. The program prints out the augmented matrix at various points in its operation.
This can be commented out if you wish.

/* augmati7A */

/* augmented matrix 3x4 */

/* complete program */

* */

#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>

#include <math.h>

void funcdivide(int first, int second, int count);
void funcsubtract(int first, int second, int count);

171

CHAPTER 8 AUGMENTED MATRIX

double matrix[12][13];
double divisor;
int i;

main()

{

double element, x, y, z;
int i, j, n;

n = 3; /* Only 3x3 square matrix for this program */
printf("square matrix is %d", n);

/* Enter your own 3x4 augmented matrix */
printf("Enter data for augmented matrix \n");

for (j = 035 < n;j++)

{
printf("row %d ", j);
for (i = 031 < n + 13i++)
{
printf("enter x\n");
scanf("%1f", &element);
matrix[j][i] = element;
}
}

printf("augmented matrix is\n");
for (j = 035 < n;j++)

{
for (i = 031 < n + 15i++)
{
printf("matrix[%d][%d] = %1f\n", j, i, matrix[j][i]);
}
}

172

CHAPTER 8 AUGMENTED MATRIX

1% Pexform 9 stages to find row-reduced form of augmented
matrix.*/

/% divide stages are done in funcdivide %/

/% subtract stages are done in funcsubtract */

Our divide and subtract functions are called in the following code. For the divide
function (funcdivide), there are three parameters in the call to the function. The first
specifies the row number where the division is done. The first and second parameters
together specify the row and column numbers which tell you where the divisor is. The
last parameter is the stage number of our nine stages, and this can be used to identify the
stage if you print out the results of each stage during testing. So for a call to funcdivide
of funcdivide(0,1,2) - this would mean that we are doing the division on row 0 (first
parameter) using the divisor in row 0 column 1 (first and second parameters), and the
stage is stage 2 (third parameter).

For the subtract function (funcsubtract), the first parameter is the row we are
subtracting from, the second is the row we are subtracting, and the third is the stage
number of our nine stages. So for a call of funcsubtract(0,1,2), we would be subtracting
row 1 from row 0 and it would be stage 2.

The code for this program continues as follows.

/* For the funcsubtract function */
/* the first and second parameters refer to the rows which are used */

/* For the funcdivide function %/
/* the first and second parameters refer to row and column for the divisor
*/

/* The thixd parameter is the Stage in our Stage 1-9 method %/
/* The Stage number can be printed at the end of the function */
/* so that you can monitor the progress */

funcdivide(o, 0, 1); /* stage 1 - divide row 0 by divisor row 0
col 0 */

funcdivide(1, 0, 2); /* stage 2 - divide row 1 by divisor row 1
col 0 */

funcdivide(2, 0, 3); /* stage 3 - divide row 2 by divisor row 2
col 0 */

funcsubtract(1, 0, 4); /* stage 4 - subtract row 0 from row 1 */

173

CHAPTER 8 AUGMENTED MATRIX

}

funcsubtract(2, 0, 5); /* stage 5 - subtract row 0 from row 2 */

funcdivide(1, 1, 6); /* stage 6 - divide row 1 by divisor row 1
col 1 %/

funcdivide(2, 1, 7); /* stage 7 - divide row 2 by divisor row 2
col 1 %/

funcsubtract(2, 1, 8); /* stage 8 - subtract row 1 from row 2 */

funcdivide(2, 2, 9); /* stage 9 - divide row 2 by divisor row 2
col 2 %/

/* Calculate and print out the answers */

matrix[2][3];
matrix[1][3] - z * matrix[1][2];
matrix[0][3] - y * matrix[o][1] - z * matrix[o][2];

X

printf("x = %f y= %f z = %", x, y, z);

void funcdivide(int first, int second, int count)

{

174

/* divide each element in row "first" by element [first][second] */
int i, j;

divisor = matrix[first][second];

for (i = 031 < 4;i++)

{

matrix[first][i] = matrix[first][i] / divisor;
}
printf("augmented matrix after %d operation is\n", count);
for (j = 053 < 3354+
{
printf("%1f %1f %1f %1f\n", matrix[j][o], matrix[j][1],
matrix[j][2], matrix[j][3]);

CHAPTER 8 AUGMENTED MATRIX

void funcsubtract(int first, int second, int count)

{
/* subtract row "second" from row "first" */
int i, j;
for (i = 0;i < 4;i++)
{
matrix[first][i] = (matrix[first][i]) - matrix[second][i];
}
printf("augmented matrix after %d operation is\n", count);
for (j = 035 < 3;j++)
{
printf("%1f %1f %1f %1f\n", matrix[j][o], matrix[j][1],
matrix[§][2], matrix[3][3]);
}
}

The last two programs worked with a 3x4 augmented matrix. In the following
program, you can enter a 3x4, 4x5, or 5x6 augmented matrix. You are prompted for which
of these you are going to enter.

The program also sets up forloops to call the funcdivide and funcsubtract
functions. In the case of 4x5 and 5x6 matrices, there are more than nine stages of division
and subtraction. Here, we use forloops with limits based on the row and column values
of the augmented matrix.

/* augmati8 */
/* augmented matrix for 3,4 or 5 equations */
/* calls functions for row division and row subtraction */

#define _CRT_SECURE_NO_WARNINGS
#tinclude <stdio.h»
#tinclude <math.h»

void funcdivide(int first, int second, int count);
void funcsubtract(int first, int second, int count);

double matrix[12][13];

175

CHAPTER 8 AUGMENTED MATRIX

double divisor;
int i,j, row, col;

main()

{
double value, x, y, z, a, b, c, d, e;
int i, k, n, count;
/* Enter data for augmented matrix - one element at a timex/

printf("enter row/column number (square matrix 3x3 4x4 5x5 only)");
scanf("%d", &n);

printf("square matrix is %d", n);

ToW = n;
col = n + 13

for (j = 035 < n3j++)

{
printf("xrow %d ", j);
for (i = 031 < n + 15i++)
{
printf("enter x\n");
scanf("%1f", &value);
matrix[j][i] = value;
}
}

/% Print out the entered matrix */

printf("augmented matrix is\n");
for (j = 035 < n;j++)

{

176

CHAPTER 8 AUGMENTED MATRIX

for (i = 031 < n + 15i++)
{
printf("matrix[%d][%d] = %1f\n", j, i, matrix[j][i]);

}

For our 3x4 augmented matrix, we have nine stages for division and subtraction
on our matrix. For a 4x5 augmented matrix, we would have 16 stages, and for a 5x6
augmented matrix, we would have 25 stages. Rather than have a list of all of these
calls like in our previous program, we can call them from two nested forloops. This is
shown in the following code. You can check that the correct number is being called by
substituting the appropriate values for row and col. The code can be tested for any order
of matrix, for example, 6x7, 7x8, and so on, up to a maximum size of the variable “matrix”
that you have defined in the program. The maximum we use here is 12x13, although
if you want to solve more than 12 simultaneous equations, you can just amend your
definition of “matrix” to allow this.

The code continues as follows.

/* Pexrform stages to find row-reduced form of augmented matrix.*/
/% divide stages are done in funcdivide */
/* subtract stages are done in funcsubtract */

count = 03
for (i = 0;i < colji++)
{
for (k = ijk < rowsk++)
{
count = count + 1;
funcdivide(k, i, count);
}
for (j = i + 13 < row;j++)
{
count = count + 1;
funcsubtract(j, i, count);

177

CHAPTER 8 AUGMENTED MATRIX

/* Print out answers depending on number of equations */

if (n == 3)
{

/* 3x3 matrix */

z = matrix[2][3];

y = matrix[1][3] - z * matrix[1][2];

x = matrix[0][3] - y * matrix[o][1] - z * matrix[o][2];
printf("x = %f y= %f z = %", x, y, z);

}
if (n == g)
{
/* 4x4 matrix */
d = matrix[3][4];
c = matrix[2][4] - d * matrix[2][3];
b = matrix[1][4] - ¢ * matrix[1][2] - d * matrix[1][3];
a = matrix[o][4] - b * matrix[o][1] - c * matrix[o][2] - d *
matrix[o][3];
printf("a = %1f b= %1f c = %1f d = %1f", a, b, c, d);
}
if (n == 5)
{
/* 5x5 matrix */
e = matrix[4][5];
d = matrix[3][5] - e * matrix[3][4];
c = matrix[2][5] - d * matrix[2][3] - e * matrix[2][4];
b = matrix[1][5] - ¢ * matrix[1][2] - d * matrix[1][3] - e *
matrix[1][4];
a = matrix[o][5] - b * matrix[o][1] - c * matrix[o][2] - d *
matrix[0][3] - e * matrix[o][4];
printf("a = %1f b= %1f ¢ = %1f d = %1f e = %1f", a, b, c, d, e);
}

178

CHAPTER 8 AUGMENTED MATRIX

/* Function to perform division on a row */

void funcdivide(int first, int second, int count)

{

}

int i, j;
divisor = matrix[first][second];
for (i = 031 < col;i++)
{
matrix[first][i] = matrix[first][i] / divisor;

}

/* The next few lines are commented out. You can use them to display
your matrix at each stage for testing */

/* The number of texms in printf will vary with the size of the
matrix */

V£
printf("augmented matrix after %d operation is\n",count);
for(j=0;j<row;j++)
{
printf("%1f %1f %1f %1f\n",matrix[j][0],matrix[j]
[1],matrix[j][2],matrix[j]1[3]);
}
*/

/* Function to perform subtraction of one row from another */

void funcsubtract(int first, int second, int count)

{

int i, j;

for (i = 031 < col;i++)

{

matrix[first][i] = (matrix[first][i]) - matrix[second][i];

}

/* The next few lines are commented out. You can use them to display
your matrix at each stage for testing */

179

CHAPTER 8 AUGMENTED MATRIX

/* The number of terms in printf will vary with the size of the
matrix */
V£
printf("augmented matrix after %d operation is\n",count);
for(j=0;j<row;j++)
{
printf("%1f %1f %1f %1f\n",matrix[j][o],matrix[j]

[1],matrix[j][2],matrix[j][3]);

*/

Test the preceding program with the following augmented matrices. There is a 3x4, a
4x5, and a 5x6 matrix.

2 3 -4 -4

3 -2 5 14
4 5 -6 -4

Your answers should be a=1, b=2, and c=3.

4 3 2 1 20
5 4 3 -2 -4
6 5 -5 -3 -11
7 7 -7 -5 =20

5 3 -2 1 -7 -26
2 -5 3 2 13
3 -2 5 -7 2 -4
4 1 3 -4 -3 -16
2 4 4 -5 -5 -23

Answers are a=1, b=2, c=3, d=4, and e=5.

180

CHAPTER 8 AUGMENTED MATRIX

And then try this one.
2 3 -6 5 10
4 6 -5 -3 -11
4 5 -6 2 4
3 2 5 -7 -6

This augmented matrix should have produced an error. This is a problem with this
technique. What happens is that while doing the operations on the rows and columns,
you may get a situation where you get a zero as one of the elements. For instance, if
on one of your subtraction procedures you subtract 2 from 2, you will get zero as that
element. If you then go on to your divide function and try to divide by that zero, you will
get an error. This is usually an INF error (as any division of a nonzero number by zero
gives infinity).

We have to put in some extra code to check for this. One method to deal with it is to
swop the whole row with the one below. You then get the same problem when you do
the division again so you swop again. Eventually the row with the zero ends up as the last
row. You can check for this as zero and not divide.

The following diagrams illustrate the procedure.

Here our equations are

2a+2b+c=9
3a+3b-c=6
5a-5b+c=-2

So our 3x4 augmented matrix is

181

CHAPTER 8 AUGMENTED MATRIX

Going through our nine stages, we first divide each row by the first element in that

row, giving

1 1 1/2 9/2 1 1 05 45
1 1 -1/3 6/3|=/1 1 -03 2
1

. % iy -1 02 -04

Then we subtract the first row from the second and the third, giving

1 1 1/2 9/2
/ / 1 1 05 4.5

o o (_l_lj (ﬁ_g) =l0 0 -083 -25
3 2) (3 2
0-2 -03 -49

o G

This is where we hit the snag. The next stage says divide by the second element of
each row, but in the second row, this is zero - so this would crash the program. So we

swop rows 2 and 3, giving

1 1 0.5 4.5

0 -2 (l—lj (—E—QJ =|0 -2 -03 -4.9
5 2 5 2
0 0 -083 -25

11 1/2 9/2
11 s 9 1 1 05 4.5
01 ———|/-2 ———\|/-2|=l0 1 0.15 245
5 2 5 2
0 0 -0.83 -25

182

CHAPTER 8 AUGMENTED MATRIX

Finally we can divide the third row by its third element, giving

1 1 05 45
0 1 015 245
00 1 3

So we have completed the mechanism. We can rewrite our original equations using
the preceding augmented matrix, giving

la+1b+0.5c=4.5
1b +0.15c =2.45
lc=3
So as the third equation tells us c = 3, we can substitute this into the second equation,
giving
b +0.15%3 =2.45
orb=2.45-0.45
orb=2
Now we can substitute our values of b and c into the first equation, giving
a+2+0.5%3=45
ora=45-2-15
ora=1

Soouranswersarea=1,b=2,and c=3.
The next piece of code has this check for dividing by zero. It is in the funcdivide

function. It uses the array “swopmatrix” in the swopping mechanism.

/* augmati8 */

/* augmented matrix for 3,4 or 5 equations */

/* calls functions for row division and row subtraction */

/* catches incidences of zeros which would cause program to crash (3x3 ,4x4
and 5x5) */

183

CHAPTER 8 AUGMENTED MATRIX

#idefine _CRT_SECURE_NO_WARNINGS
#tinclude <stdio.h»
#include <math.h»

void funcdivide(int first, int second, int count);
void funcsubtract(int first, int second, int count);

double matrix[12][13];
double divisor;

int i, row, col;

main()

{
double value, x, y, z, a, b, c, d, e;

int i, j, k, n, count;
/* Enter data for augmented matrix - one element at a timex/

printf("enter row/column number (square matrix 3x3 4x4 5x5 only)");
scanf("%d", &n);

printf("square matrix is %d", n);

roWw = n;
col = n + 1;

for (j = 035 < n;j++)

{
printf("xrow %d ", j);
for (i = 0;i < n + 1;i++)
{
printf("enter x\n");
scanf("%1f", &value);
matrix[j][i] = value;
}
}

/% Print entered matrix */

184

CHAPTER 8 AUGMENTED MATRIX

printf("augmented matrix is\n");
for (j = 035 < n;j++)

{
for (i = 031 < n + 13i++)
{
printf("matrix[%d][%d] = %1f\n", j, i, matrix[j][i]);
}
}

/* Calculate row-reduced form of matrix */
/* Set leading number in each row to 1 */
/* Subtract rows */

count = 0;
for (i = 031 < col;i++)
{
for (k = ijk < rowsk++)
{
count = count + 1;
funcdivide(k, i, count);
}
for (j = i + 135 < row;j++)
{
count = count + 1;
funcsubtract(j, i, count);
}
}
/* Print out answers depending on number of equations */
if (n == 3)
{
z = matrix[2][3];
y = matrix[1][3] - z * matrix[1][2];

185

CHAPTER 8 AUGMENTED MATRIX

x = matrix[0][3] - y * matrix[o][1] - z * matrix[o][2];
printf("x = %f y= %f z = %", x, y, z);

*

}
if (n == 4)
{
d = matrix[3][4];
c = matrix[2][4] - d * matrix[2][3];
b = matrix[1][4] - ¢ * matrix[1][2] - d * matrix[1][3];
a = matrix[o][4] - b * matrix[o][1] - ¢ * matrix[o][2] - d *
matrix[0][3];
printf("a = %1f b= %1f c = %1f d = %1f", a, b, c, d);
}
if (n == 5)
{
e = matrix[4][5];
d = matrix[3][5] - e * matrix[3][4];
c = matrix[2][5] - d * matrix[2][3] - e * matrix[2][4];
b = matrix[1][5] - ¢ * matrix[1][2] - d * matrix[1][3] - e *
matrix[1][4];
a = matrix[o][5] - b * matrix[o][1] - ¢ * matrix[o][2] - d *
matrix[0][3] - e * matrix[o][4];
printf("a = %1f b= %1f c = %1f d = %1f e = %1f", a, b, c, d, e);
}

}

/* Function to perform division on a row */
void funcdivide(int first, int second, int count)

{
int i, j;
double swopmatrix[12][13];
al:divisor = matrix[first][second];
printf("divisor is %1f \n", divisor);
if (divisor == 0.0 && first != row - 1) /* check for divisor of
zero (don't try to swop if
last row) */
186

CHAPTER 8 AUGMENTED MATRIX

/* zero divisor so swop this row with the one below */
for (i = 0;i < col;i++)

{
swopmatrix[0][i] = matrix[first][i];
}
for (i = 03i < colji++)
{
matrix[first][i] = matrix[first + 1][i];
}
for (i = 0;i < col;i++)
{
matrix[first + 1][i] = swopmatrix[o][i];
}

/* The next few lines are commented out. You can use them to
display your matrix at each stage for testing */
/* The number of terms in printf will vary with the size of the

matrix */
/%
printf("augmented matrix after swop operation
is\n");
for(j=0;j<row;j++)
{
if(row == 3)

printf("%1f %1f %1f %1f\n",matrix[j]
[o],matrix[j][1],matrix[j][2],matrix[]]
[31);

else if(row == 4)

printf("%1f %1f %1f %1f %1f\n",
matrix[j][o],matrix[j][1],matrix[j][2],
matrix[j][3],matrix[j]1[4]);

187

CHAPTER 8 AUGMENTED MATRIX

188

else
printf("%1f %1f %1f %1f %1f %1f\
n",matrix[j][0],matrix[§][1],
matrix[j][2],matrix[§][3],
matrix[j][4],matrix[j]1[5]);

*/

divisor = matrix[first][second];
goto a1; /* check if the next element is a zero divisor */

}
if (divisor == 0.0 && first == row - 1)
{
/* Check if last row with zero divisor */
printf("ignore zero divisor\n");
}
else
for (i = second;i < colji++)
{

matrix[first][i] = matrix[first][i] / divisor;
}

printf("augmented matrix after %d operation is\n", count);
for (j = 035 < row;j++)
{
if (row == 3)
printf("%1f %1f %1f %1f\n", matrix[j][o], matrix[j][1],
matrix[§]1[2], matrix[j][3]);
else if (row == 4)
printf("%1f %1f %1f %1f %1f\n", matrix[j][o], matrix[j]
[1], matrix[j][2], matrix[3][3], matrix[j][4]);

CHAPTER 8 AUGMENTED MATRIX

else
printf("%1f %1f %1f %1f %1f %1f\n", matrix[j][o],
matrix[j][1], matrix[j][2], matrix[j][3], matrix[j][4],
matrix[j][5]1);

}

/* Function to perform subtraction of one row from another */
void funcsubtract(int first, int second, int count)

{

int i, j;

if (matrix[first][second] != 0.000000) /* check for swopped row */
for (i = second;i < colji++)
{
matrix[first][i] = (matrix[first][i]) - matrix[second][i];

}

/% The next few lines are commented out. You can use them to display
your matrix at each stage for testing */
/* The number of texms in printf will vary with the size of the
matrix */
V£
printf("augmented matrix after %d operation is\n",count);
foxr(j=0;j<row;j++)
{
if(row == 3)
printf("%1f %1f %1f %1f\n",matrix[j][o],matrix[j]
[1],matrix[j][2],matrix[j]1[3]);
else if(row == §)
printf("%1f %1f %1f %1f %X1f\n",matrix[j][o],
matrix[j][1],matrix[j][2],matrix[j][3],matrix[j][4]);

189

CHAPTER 8 AUGMENTED MATRIX

else
printf("%1f %1f %1f %1f %1f %1f\n",matrix[j]
[0],matrix[§][1] matrix[]1[2] matrix[3][3],
matrix[§][a],matrix[31[5]);

*/

Test this out with the augmented matrix that failed on the previous program. You
should get the answers a=1, b=2, c=3, and d=4.

Twelve Simultaneous Equations

The programs up to now have been to illustrate how the process of row reduction on
the augmented matrix works. The point of this technique is to solve large numbers of
simultaneous equations.

The limitations are really only set by the size of the variables that are allowed on
the computer. We have sef our limit in the programs here to solving 12 simultaneous
equations. This is set by the matrix[12][13] definition in the program which limits us to
12 rows and 13 columns in our augmented matrix.

The following is the augmented matrix for the 12 simultaneous equations we want to
solve.

26 3.1 74 06 93 49 34 87 02 3.6 7.7 3.9 394125
49 93 06 74 31 26 03 63 51 49 9.1 0.6 360.703
8.3 88 52 27 08 13 85 7.6 6.2 4.1 0.4 1.2 324618
1.3 04 23 58 81 63 63 51 92 6.6 1.3 2.3 414.999
9.7 6.8 39 04 67 41 7.1 63 55 41 1.7 3.1 366.599
7.3 58 61 2.7 92 1.8 42 52 7.1 3.7 2.9 2.6 364.771
9.2 73 9.3 24 36 1.2 26 3.7 6.2 2.7 31 0.2 273.245
8.6 84 87 68 39 43 38 46 53 65 2.6 0.5 359.206
9.4 93 71 73 24 3.1 92 83 7.1 67 41 1.3 463.157

7.2 68 7.6 35 3.1 25 39 7.6 B3 85 52 2.1 445.064

6.9 9.9 84 7.7 41 3.8 82 9.7 65 7.7 1.3 1.8 465479

59 81 68 46 16 2.2 79 6.4 B5 59 06 1.6 377.258

190

CHAPTER 8 AUGMENTED MATRIX

The following is the program we can use to do this. We preset the matrix and copy it
into the array “matrix”.

/* augmat19Cx/

/* augmented matrix for 12 equations */

/* presets the 12x13 augmented matrix */

/* calls functions for row division and row subtraction */

/* catches incidences of zeros which would cause program to crash =*/

#include <stdio.h»

#include <math.h>

#include <stdlib.h»
void funcdivide(int first,int second,int count);
void funcsubtract(int first,int second,int count);
double matrix[12][13];
double divisor;
int i,row,col,rw,cl;

main()

{

double solution[12];
int i,j,k,n,count;

double inmat[12][13]=(

{2.6,3.1,7.4,0.6,9.3,4.9,3.4,8.7,0.2,3.6,7.7,3.9,394.125},
{4.9,9.3,0.6,7.4,3.1,2.6,0.3,6.3,5.1,4.9,9.1,0.6,360.703},
{8.3,8.8,5.2,2.7,0.8,1.3,8.5,7.6,6.2,4.1,0.4,1.2,324.618},
{1.3,0.4,2.3,5.8,8.1,6.3,6.3,5.1,9.2,6.6,1.3,2.3,414.999},
{9.7,6.8,3.9,0.4,6.7,4.1,7.1,6.3,5.5,4.1,1.7,3.1,366.599},
{7.3,5.8,6.1,2.7,9.2,1.8,4.2,5.2,7.1,3.7,2.9,2.6,364.771},
{9.2,7.3,9.3,2.4,3.6,1.2,2.6,3.7,6.2,2.7,3.1,0.2,273.245},
{8.6,8.4,8.7,6.8,3.9,4.3,3.8,4.6,5.3,6.5,2.6,0.5,359.206},
{9.4,9.3,7.1,7.3,2.4,3.1,9.2,8.3,7.1,6.7,4.1,1.3,463.157},
{7.2,6.8,7.6,3.5,3.1,2.5,3.9,7.6,8.3,8.5,5.2,2.1,445.064},
{6.9,9.9,8.4,7.7,4.1,3.8,8.2,9.7,6.5,7.7,1.3,1.8,465.479},
{5.9,8.1,6.8,4.6,1.6,2.2,7.9,6.4,8.5,5.9,0.6,1.6,377.258}
}s

191

CHAPTER 8 AUGMENTED MATRIX
/* Use preset array */
n=12;/% set matrix to 12x12 %/
/* Copy preset array to output array */

for(i=0;i<12;i++)

{
for(j=0;j<13;j++)
{
matrix[i][j]=inmat[i][]];
}
}

/% Print preset matrix */

printf("augmented matrix is\n");
for(j=0;j<n;j++)

{
for(i=0;i<n+1;i++)
{
printf("matrix[%d][%d] = %1f\n",j,i,matrix[j][i]);
}
}

row=n; /* row count */
col=n+1; /* column count */

/* Call functions. One to divide a row by an element of that row */
/* Tne other to subtract one row from another */

count=0;
for(i=0;i<col;i++)
{
for(k=i;k<row;k++)
{
count=count+1;
funcdivide(k,i,count);

192

CHAPTER 8 AUGMENTED MATRIX

for(j=i+1;j<row;j++)

{
count=count+1;
funcsubtract(j,i,count);
}
}
/* Calculate solutions from reduced augmented matrix */
YW=n-1;
cl=n;

solution[rw]=matrix[rw][cl];

for(i=13i¢=cl;i++)

{
solution[xw-i]=matrix[rw-i][cl];
j=rw;
for(k=0;k¢=1;k++)
{
solution[xw-i]=solution[rw-i]-matrix[rw-i][xw-i+1+k]*
solution[xw-i+1+k];
J=3-1;
}
}

printf("solution\n");
for(i=0;i¢=rw;i++)

{
printf("\n x%d = %1f",i+1, solution[i]);

}

/* Function to perform division on a row */
void funcdivide(int first,int second,int count)

{
int i,j;
double swopmatrix[12][13];
al:divisor=matrix[first][second];
193

CHAPTER 8 AUGMENTED MATRIX

if(divisor == 0.0 && first != row-1) /* check for divisor of zero
(don't try to swop if last row) */
{
/* zero divisor so swop this row with the one below */
for(i=03i<col;i++)

{
swopmatrix[0][i]=matrix[first][i];
}
for(i=03i<col;i++)
{
matrix[first][i]=matrix[first+1][i];
}
for(i=0;i<col;i++)
{
matrix[first+1][i]=swopmatrix[o][i];
}

printf("augmented matrix after swop operation is\n");
for(j=0;j<row;j++)
{
if(row == 3)
printf("%1f %1f %1f %1f\n",matrix[j][0],matrix[j]
[1],matrix[j][2],matrix[j][3]);
else if(row == 4)

printf("%1f %1f %1f %1f %1f\n",matrix[j][o],
matrix[j][1],matrix[j][2],matrix[j][3],matrix[j][4]);
else
printf("%1f %1f %1f %1f %1f %1f\n",matrix[j]
[0o],matrix[j][1],matrix[j][2],matrix[j][3],
matrix[j][4],matrix[j][5]);
}

divisor=matrix[first][second];
goto a1; /* check if the next element is a zero divisor */

}

194

CHAPTER 8 AUGMENTED MATRIX

if(divisor == 0.0 && first == row-1)

{
/* Check if last row with zero divisor */
printf("ignore zero divisor\n");
}else
for(i=second;i<col;i++)
{
matrix[first][i]=matrix[first][i]/divisor;
}

/* The next few lines are commented out. You can use them to display your

matrix at each stage for testing */

/* The number of terms in printf will vary with the size of the matrix */

/* printf("augmented matrix after %d operation is\n",count);
for(j=0;j<row;j++)

{
printf("%1f %1f %1f %1f %1f %1f %1f\n",matrix[j][o],matrix[j]
[1],matrix[j][2],matrix[j]1[3],matrix[j][4],matrix[]]
[5],matrix[j][6]);
}
*/
}

/* Function to perform subtraction of one row from another */
void funcsubtract(int first,int second,int count)

{
int i;

for(i=0;i<col;i++)
{
matrix[first][i]=(matrix[first][i])-matrix[second][i];

}
/* The next few lines are commented out. You can use them to display your
matrix at each stage for testing */
/* The number of terms in printf will vary with the size of the matrix */
/%

195

CHAPTER 8 AUGMENTED MATRIX

printf("augmented matrix after %d operation is\n",count);
for(j=0;j<row;j++)

{
printf("%1f %1f %1f %1f %1f %1f %1f\n",matrix[j][o],matrix[j]
[1],matrix[j][2],matrix[j]1[3],matrix[j][4],matrix[]][5],
matrix[j][6]);
}
*/
}

If you run this program, you should get the result

X1=1.1

X2=22

X3=33

X4=4.4

X5=5.5

X6=6.6

X7=17.7

X8=8.8

X9=99

X10=10.10

X11=11.11

X12=12.12

In various applications, you can read data, like the data for the preceding augmented
matrix, from a file. The next chapter is concerned with file operations and gives an
example of how you could read this data in. You can also have the data in a preset array
in your program.

In the last program of this chapter, the program gives you the option of entering the
data manually or using the preset array.

Preset arrays like the one used in the following program are commonplace in
software.

/* augmat25 */

/* augmented matrix for up to 12 equations */

/* calls functions for row division and row subtraction */

/* catches incidences of zeros which would cause program to crash =*/

196

CHAPTER 8 AUGMENTED MATRIX

/* preset array for augmented matrix */
/* Can use prest array or enter data manually */

#tdefine _CRT_SECURE_NO_WARNINGS
#include <stdio.h»

#include <math.hy

#include <stdlib.hy

struct record

{

double matrix[12][13];

}s

void funcdivide(int first, int second, int count);
void funcsubtract(int first, int second, int count);

double matrix[12][13];
double divisor;
int i, row, col, rw, cl;

main()

{

double value;

double solution[12];

int j, k, /*my*/ n, count;
int pr;

double inmat[12][13] = {
{2.6,3.1,7.4,0.6,9.3,4.9,3.4,8.7,0.2,3.6,7.7,3.9,394.125},
{4.9,9.3,0.6,7.4,3.1,2.6,0.3,6.3,5.1,4.9,9.1,0.6,360.703},
{8.3,8.8,5.2,2.7,0.8,1.3,8.5,7.6,6.2,4.1,0.4,1.2,324.618},
{1.3,0.4,2.3,5.8,8.1,6.3,6.3,5.1,9.2,6.6,1.3,2.3,414.999},
{9.7,6.8,3.9,0.4,6.7,4.1,7.1,6.3,5.5,4.1,1.7,3.1,366.599},
{7.3,5.8,6.1,2.7,9.2,1.8,4.2,5.2,7.1,3.7,2.9,2.6,364.771},

{9.2,103,9.3’2.4,306,102’2.6,307,6.2’2.7,301,0.2’273.245},
{8.6’804,8-7,608’309,4-3,3.8’406,5-3,605’206,0-5,3590206},
{9.4,9.3,7.1,7.3,2.4,3.1,9.2,8.3,7.1,6.7,4.1,1.3,463.157},

197

CHAPTER 8 AUGMENTED MATRIX

{7.2,6.8,7.6,3.5,3.1,2.5,3.9,7.6,8.3,8.5,5.2,2.1,445.064},

{609,909’804,707,401’308,802,907’605,707,103’108,4650479},

{5.9,8.1,6.8,4.6,1.6,2.2,7.9,6.4,8.5,5.9,0.6,1.6,377.258}
}s

printf("enter 1 or 2 (1=use preset matrix, 2=enter matrix
manually))");

scanf("%d", &pr);

if (pr == 2)

{

/* Enter data manually */

printf("enter row/column number (square matrix only up to 12
rous)");
scanf("%d", &n);

printf("square matrix is %d", n);

YOW = n;
col = n + 13
for (j = 03j < n3j++)

{
printf("row %d ", j);
for (i = 031 < n + 13i++)
{
printf("enter x\n");
scanf("%1f", &value);
matrix[j][i] = value;
}
}
}
else
{

/* Use preset array */
n = 12;/% set matrix to 12x12 %/

/* Copy preset array to output array */

198

CHAPTER 8 AUGMENTED MATRIX

for (i = 031 < 12;i++)

{
for (j = 035 < 13;j++)
{
matrix[i][j] = inmat[i][j];
}
}

}

/% Print matrix =/

for (i = 031 < 12;i++)

{
for (j = 053 < 13;j++)
{
printf("matrix[%d][%d] = %1f \n", i, j, matrix[i][j]);
}
}

row = n; /* row count */
col = n + 1; /* column count */

/* Call functions. One to divide a row by an element of that row */
/* Tne other to subtract one row from another */

count = 03
for (i = 031 < colji++)
{
for (k = ijk < rowsk++)
{
count = count + 1;
funcdivide(k, i, count);

199

CHAPTER 8 AUGMENTED MATRIX

for (j = 1 + 137 < row;j++)

{
count = count + 1;
funcsubtract(j, i, count);
}
}
/* Calculate solutions from reduced augmented matrix */
IWw=n-1;
cl = n;

solution[rw] = matrix[rw][cl];

for (i = 131 <= clji++)

{
solution[xw - i] = matrix[rw - i][cl];
j = rw;
for (k = 03k <= ijk++)
{
solution[xw - i] = solution[rw - i] - matrix[rw - i]
[rw - 1 + 1 + k] * solution[rw - i + 1 + k];
i=3-1;
}
}

printf("solution\n");
for (i = 0;i <= rwji++)

{
printf("\n x%d = %1f", i + 1, solution[i]);

}

/* Function to perform division on a row */

void funcdivide(int first, int second, int count)

{
int i, j;
double swopmatrix[12][13];

200

CHAPTER 8 AUGMENTED MATRIX

al:divisor = matrix[first][second];

if (divisor == 0.0 && first != row - 1) /* check for divisor of
zero (don't try to swop if last row) */

{

/* zero divisor so swop this row with the one below */
for (i = 031 < colji++)

{
swopmatrix[0][i] = matrix[first][i];
}
for (i = 03i < colji++)
{
matrix[first][i] = matrix[first + 1][i];
}
for (i = 03i < col;i++)
{
matrix[first + 1][i] = swopmatrix[o][i];
}

printf("augmented matrix after swop operation is\n");
for (j = 035 < row;j++)
{
if (row == 3)
printf("%1f %1f %1f %1f\n", matrix[j][o],
matrix[j][1], matrix[j][2], matrix[j][3]);
else if (row == 4)
printf("%1f %1f %1f %1f %1f\n", matrix[j][o],
matrix[j][1], matrix[j][2], matrix[j][3],
matrix[j][4]);
else
printf("%1f %1f %1f %1f %1f %1f\n", matrix[j]
[0], matrix[j][1], matrix[j][2], matrix[j][3],
matrix[j][4], matrix[j][5]);

201

CHAPTER 8 AUGMENTED MATRIX

divisor = matrix[first][second];
goto a1; /* check if the next element is a zero divisor */

}

if (divisor == 0.0 && first == row - 1)
{
/* Check if last row with zero divisor */
printf("ignore zero divisor\n");
}
else
for (i = second;i < colji++)
{
matrix[first][i] = matrix[first][i] / divisor;
}
/* The next few lines are commented out. You can use them to display
your matrix at each stage for testing */
/* The number of texms in printf will vary with the size of the
matrix */
VES
printf("augmented matrix after %d operation is\n",count);
for(j=0;j<row;j++)

{
printf("%1f %1f %1f %1f %1f %1f %1f %1f %1f %1f %1f %1f
%1f\n" ymatrix[j][o],matrix[j][1],matrix[j][2],matrix[]]
[3],matrix[j][4],matrix[j][5],matrix[j][6],matrix[]]
[7],matrix[j][8],matrix[j][9],matrix[j][10],matrix[]]
[11],matrix[j][12]);

}

*/
}

/* Function to perform subtraction of one row from another */

202

CHAPTER 8 AUGMENTED MATRIX

void funcsubtract(int first, int second, int count)

{
int i;

for (i = 0;i < col;i++)
{
matrix[first][i] = (matrix[first][i]) - matrix[second][i];

}

/% The next few lines are commented out. You can use them to display
your matrix at each stage for testing */
/* The number of terxms in printf will vary with the size of the
matrix */
/%
printf("augmented matrix after %d operation is\n",count);
foxr(j=0;j<row; j++)

{

printf("%1f %1f %1f %1f %1f %1f %1f %1f %1f %1f %1f %1f
%#1f\n" ,matrix[j][o],matrix[j][1],matrix[j][2],matrix[]]
[3],matrix[j][4],matrix[j][5],matrix[j][6],matrix[j]
[7],matrix[j][8],matrix[j][9],matrix[j][10],matrix[]]
[11],matrix[][12]);

*/

203

CHAPTER 8 AUGMENTED MATRIX

EXERCISES

Use one of your augmented matrix programs to solve the following simultaneous equations.
1.

5.2a+2.7b—3.4c =-2.48

7.3a-09b-21c=-2.18

6.72a—-8.1b+1.9c=-1.7

2.
23a-3.1b-4.2c =-18.15
3.2a—1.4b+3.2c =11
4.9a +2.6b—-0.2c =10.45
3.

2.6a + 3.1b +7.4c +0.6d +9.3e + 4.9f = 120.23

49a+9.3b+0.6c+7.4d +3.1e + 2.6 f=94.6
8.3a+8.8b+5.2c + 2.7d + 0.8e + 1.3 f = 70.51
1.3a+0.4b+23c+58d+81e+6.3f=121.55
9.7a+ 6.8 b+ 3.9c + 0.4d + 6.7e + 4.1f =104.17
7.3a+5.80+6.1c+2.7d + 9.2e + 1.8f = 115.28

204

CHAPTER 9

File Access

This chapter is about moving data to and from files. The basic commands of file access
are fopen (which opens a file), fclose (which closes it), fread (which reads data from
a file which has been opened), and fwrite (which writes data to a file which has been
opened). There are one or two other file commands which we shall meet later.

We have already come across some of our file access commands in earlier chapters.
In Chapter 7 when we were looking at our radioactivity simulation program, we wrote
output data to a file which could then be used to input into the Graph package as data
points for a graph. In Chapter 8 we needed to input a large 12x13 array of data into the
program. We did this by presetting the array in the program. What we could have done
was to have written a separate program which wrote the same array to a file - then our
first program could have just read in the data from that file. This idea is useful if different
programs need to read the same data. So we just create the file once and then any
program could read it.

We will have a look at these techniques here.

First Program to Write a File

In Chapter 7 in our radioact program, we wrote the coordinates of our graph to a file
called "radioact.dat". In the program we have a pointer which points to the file we
are accessing. We declare the pointer at the start of the program using the instruction
FILE =fptr. The asterisk, *, signifies that the variable is a pointer. Its name is fptr and
whenever we access the file in our program, we use fptr. We set up the value of the
pointer using the fopen command. In the program we had

fptr = fopen("radioact.dat","w");

205
© Philip Joyce 2019

P. Joyce, Numerical C, https://doi.org/10.1007/978-1-4842-5064-8_9

CHAPTER9 FILE ACCESS

This says that we want to create a file called “radioact.dat” The "w" means we want
write access to the file. The fopen command returns a pointer and this is stored in fptr.
The code is shown as follows.

/*radioactqA */

/* radioactive decay simulation */
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>

#include <math.h>

#include <stdlib.h»

#include <time.h>

main()

{
int j,timelimit,nuc;

double randnumber,timeinc,lambda,timecount,probunittime;

FILE #fptr; /* pointer to file */

time_t t;

srand((unsigned) time(&t)); /# random number generator seed */
fptr=fopen("radioact.dat","w");

/* Ask user to input specific data */
/* initial number of nuclei, the value of lambda, time for experiment */

printf("Enter initial number of nuclei : ");
scanf("%d",&nuc);

printf("Enter lambda : ");
scanf("%1f",&lambda);

printf("Enter time : ");
scanf("%d",&timelimit);

/% time increment of loop */
timeinc=0.001/1ambda;
printf("Time increment :%1f",timeinc);

/* (delta t * lambda) */

206

CHAPTER9 FILE ACCESS

probunittime=0.001*lambda;
timecount=0;

/% Monte Carlo loop */
while(timecount<=timelimit)

{
fprintf(fptr,"%1f %d\n",timecount,nuc);/* write two items to
file */
timecount=timecount+timeinc;
for(j=0;j<=nuc;j++)
{
randnumber=rand()%1000;
randnumber=randnumbex/1000;
/* Monte Carlo method checks random number less than (delta t
* lambda) */
if(randnumber<=probunittime)
nuc=nuc-1;/* If less, then prob. that nucleus has
decayed */
if(nuc<=0)
goto nuclimitreached;
}
}
nuclimitreached: fclose(fptr); /* nuclei limit or time limit reached */

}

In this program we are using the command fprintf to write to the file. This is almost
the same in form as printf except that instead of writing the data to the screen, it writes
it to a file. So here we had

fprintf(fptr, "%f %d\n",timecount,nuc);

207

CHAPTER9 FILE ACCESS

In appearance this is similar to printf except that we write the data to the file
pointed to by fptr. We are writing the variables timecount and nuc to the file. When we
have written all of our data to the file, we call

fclose(fptr);

This closes the file pointed to by fptr.

We did a similar thing in our randwalk program. Here we open a file called
“randwalk.dat” and we supply the parameter “w” to the fopen call to say that we want to
write to the file. Here our pointer to the file is called “output.” We then use this name in
our calls to fprintf to write the data and in the fclose to close the file.

The random walk program is shown as follows.

/* randwalké */

/* simple random walk simulation in 1 dimension */
#define _CRT_SECURE_NO_WARNINGS

#include <stdio.h»

#include <math.h>

#include <stdlib.h»

#include <time.h»

FILE *output;

time_t t;
main()
{

int i;

double xrand;
double x,randwalkarr[20001];
output= fopen ("randwalké.dat", "w"); /* external file name */

for (i=0; i<=20000; i++)

randwalkarr [i]=0.0; /* clear array */
srand((unsigned) time(&t)); /* set the number generator */
)(=0.0;

208

CHAPTER9 FILE ACCESS

for (i=1;i<=20000; i++)

{
/* generate x random number %/
xrand=rand()%1000;
xrand=xrand/1000;
if(xrand<o0.5)

X=X+1.0;
else

X=x-1.0;

randwalkarr[i] = sqrt(x*x);/* store randwalkarr to total */

}

/* Write values to file */
for (i=0; i<=200; i++)

{

fprintf(output,"%d %1f\n", i, randwalkarr[ix100]);
}

fclose (output);

In this case our fprintf writes the values contained in the variables i and
randwalkarr[i*100].

You can run your radioact program and randwalk program, and then after each has
run, you can inspect the files that each program has produced. In each case you can
look at the data collected. In the relevant chapter, you can see the graph that this data
produced by importing it into the Graph package.

Writing a Large Data File

Our next program writes the 12x13 array, we used in our matrix chapter, to a file. The
array is defined in the program in the same way as it is in our program in Chapter 8.
We copy this to our output array. In this program we use a structure definition. The use
of this type of definition will be made clearer later in this chapter. It is basically used if
we want to write the same type of data to a file many times, for instance, if we had a file

209

CHAPTER9 FILE ACCESS

containing names, ages, and examination results of people in a college. We would have a
structure for each person, and the structure would contain the person’s age, their name,
and their examination results. The age and examination results could use an int in the
structure, and their name could use a char array as shown here.

struct Examdata {
int age;

char name[15];
int examscore;

};

We would set up one of these for each student to be written to our file.

In the case of our 12x13 array, we just have the array in the structure. We reference
this by data_record.matrix. In this program our output file is called "testaug.bin" and
we want the file to hold binary type data so we have "wb" for write binary in the fopen
command. The code is shown as follows.

/% filewriteE */

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.hy

#include <stdlib.hy

int main()

{
struct record
{
double matrix[12][13];
}s

int /*counter,*/ i, j;

FILE *ptr;

struct record data_record;

size t ri;

double inmat[12][13] = {
{2.6,3.1,7.4,0.6,9.3,4.9,3.4,8.7,0.2,3.6,7.7,3.9,394.125},
{4.9,9.3,0.6,7.4,3.1,2.6,0.3,6.3,5.1,4.9,9.1,0.6,360.703},
{8.3,8.8,5.2,2.7,0.8,1.3,8.5,7.6,6.2,4.1,0.4,1.2,324.618},
{1.3,0.4,2.3,5.8,8.1,6.3,6.3,5.1,9.2,6.6,1.3,2.3,414.999},

210

CHAPTER 9

{9.7,6.8,3.9,0.4,6.7,4.1,7.1,6.3,5.5,4.1,1.7,3.1,366.599},
{7.3,5.8,6.1,2.7,9.2,1.8,4.2,5.2,7.1,3.7,2.9,2.6,364.771},
{9.2,7.3,9.3,2.4,3.6,1.2,2.6,3.7,6.2,2.7,3.1,0.2,273.245},
{8.6,8.4,8.7,6.8,3.9,4.3,3.8,4.6,5.3,6.5,2.6,0.5,359.206},
{9.4,9.3,7.1,7.3,2.4,3.1,9.2,8.3,7.1,6.7,4.1,1.3,463.157},
{7.2,6.8,7.6,3.5,3.1,2.5,3.9,7.6,8.3,8.5,5.2,2.1,445.064},
{6.9,9.9,8.4,7.7,4.1,3.8,8.2,9.7,6.5,7.7,1.3,1.8,465.479},
{5.9,8.1,6.8,4.6,1.6,2.2,7.9,6.4,8.5,5.9,0.6,1.6,377.258}
}s

/* Copy preset array to output array */

for (i = 031 < 12;i++)

{
for (j = 033 < 13;j++)
{
data_record.matrix[i][j] = inmat[i][j];
}
}

/* Open output file (write/binary) */

ptr = fopen("testaug.bin", "wb");
if (!ptr)
{
printf("Can not open file");
return 1;

}

/% Write output matrix to output file */

FILE ACCESS

r1 = furite(data_record.matrix, sizeof(data_record.matrix), 1, ptr);

printf("wrote %d elements \n", ri);

printf("size of data_record.matrix is %d \n", sizeof(data_record.

matrix));
/* Print matrix written to file */

211

CHAPTER9 FILE ACCESS

for (i = 031 < 12;i++)
{
for (j = 035 < 13;j++)
{
data_record.matrix[i][j] = inmat[i][j];
printf("data_record.matrix[%d][%d] = %1f \n", i, j,
data_record.matrix[i][j]);

fclose(ptr);
return 0;

Here the file pointer is called ptr. If there are any problems calling the fopen command,
it will return an error code to fptr. The command if(!ptr) checks for this, and if it gets it,
it outputs an appropriate error message and closes the program. Data is written to the file in
this case using the fwrite command. The fwrite command has four parameters.

fwrite(data_record.matrix, sizeof(data record.matrix),1,ptr);

Here the first is data_record.matrix which is the structure containing the data to
be written. The second parameter is the size of this structure. The third parameter is 1,
meaning that we want to write one structure. The fourth parameter is the file pointer to
the file we want to write to.

After the data is written, we call fclose to close the file.

We can write a program which just reads the file and writes all of the data in it to the
screen as a test. This program is similar to the write program except that when we open
it we use “rb” in our fopen command which says that the file is to be read and in binary.
To read the data, we use fread which has the same parameters as our fwrite in our write
program, but it reads the structure from the file into the input array. We reference this by
data_record.matrix. The code is as follows.

/* filereadE */
#define _CRT_SECURE_NO_WARNINGS
#tinclude¢stdio.hy

212

CHAPTER 9

#iinclude <stdlib.h»

struct record

{
}

double matrix[12][13];

int main()

{

int counter, i;

FILE *ptr;

struct record data_record;
size_t ri1;

/* Open input file (read/binary) */

ptr = fopen("testaug.bin", "rb");
if (!ptr)

{

printf("Can not open file");
return 1;

}

/* Read input matrix from input file %/

FILE ACCESS

r1 = fread(data_record.matrix, sizeof(data_record.matrix), 1, ptr);

printf("read %d elements \n", ri);

printf("size of struct record is %d \n", sizeof(struct record));

/% Print matrix read from file */

for (counter = 0; counter < 12; counter++)

{ for (i = 05 i < 13; i++)
{
printf("matrix[%d][%d] = %1f \n", counter, i, data_
record.matrix|counter][i]);
}
}

213

CHAPTER9 FILE ACCESS

fclose(ptr);
return 0;

We print out what we have read to check that both the write program and the read
program are working.
At the end we close the file.

Medical Records File

Our next program in this chapter shows how we can write a structure containing
different types of data to a file. In this case the data is medical data about different
people possibly registered with the same family doctor. The data contains their patient
identifier, their name, and their blood pressure. The structure is shown as follows.

struct Patient {
int PatientID;
char name[13];
int BloodPressure;

s

There is one of these structures for each patient. The first program creates a file
containing this data. The structure data for each patient is set at the beginning of the
program.

The code is shown as follows.

/* filewrite */

/* reads from file */

/* prints out the records sequentially */

/* Finds specific records and prints them */

#define _CRT_SECURE_NO_WARNINGS
#iinclude<stdio.h»

struct Patient {
int PatientID;
char name[13];
int BloodPressure;
};

214

int main()
{
int i, numread;
FILE *fp;
struct Patient si;
struct Patient s2;
/* Preset the data for each patient */

struct Patient s10 = { 10,"Brown
struct Patient s11 = { 11,"Jones
struct Patient s12 = { 12,"White
struct Patient s13 = { 13,"Green
struct Patient s14 = { 14,"Smith
struct Patient s15 = { 15,"Black
struct Patient s16 = { 16,"Allen
struct Patient s17 = { 17,"Stone
struct Patient s18 = { 18,"Evans
struct Patient s19 = { 19,"Royle
struct Patient s20 = { 20,"Stone
struct Patient s21 = { 21,"Weeks
struct Patient s22 = { 22,"Owens
struct Patient s23 = { 23,"Power
struct Patient s24 = { 24,"Bloom

struct Patient s28 = { 28,"Haver
struct Patient s29 = { 29,"James

/* Open the Patients file %/
fp = fopen("patients.bin”, "w");

"550 };
"»51 };
"552 };
"»53 };
"»54 };
"555 };
"556 };
"s57 };
"558 };
"»59 };
"560 };
"y61 };
"562 };
"»63 };
"»63 };

",68 };
",69 };

/% Write details of each patient to file*/

/* From the structures defined above */

fwrite(&s10, sizeof(s1), 1, fp);
furite(&s11, sizeof(s1), 1, fp);
furite(&s12, sizeof(s1), 1, fp);
fwrite(&s13, sizeof(s1), 1, fp);
furite(&s14, sizeof(s1), 1, fp);

CHAPTER 9

FILE ACCESS

215

CHAPTER 9

fwrite(&s1s,
furite(&s16,
furite(&s17,
furite(&s18,
fwrite(&s19,
furite(&s20,
furite(&s21,
furite(&s22,
furite(&s23,
furite(&s24,

furite(&s28,
fwrite(&s29,

/% Close the

fclose(fp);

FILE ACCESS

sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),

sizeof(s1),
sizeof(s1),

file */

/* Reopen the file */

fopen("patients.bin", "r");

/* Read and print out all of the records on the file */

for (i = 031

{

numread = fread(&s2, sizeof(s2), 1, fp);/* read into

< 17;i++)

structure s2 */

if (numread == 1)

{

p);
p);
p);

p);
p);
p);
p);
p);
p);

p);
p);

/*printf("Number of items read = %d ", numread);*/

/* reference elements of structure by s2.PatientID etc */

216

printf("\nPatientID : %d", s2.PatientID);
printf("\nName : %s", s2.name);

printf("\nBloodPressure : %d", s2.BloodPressure);

CHAPTER9 FILE ACCESS

else {
/* If an error occurred on read then print out message */

if (feof(fp))

printf("Exror reading patients.bin : unexpected
end of file fp is %p\n", fp);

else if (ferror(fp))
{

perror("Exrror reading patients.bin");

}
/% Close the file #*/

fclose(fp);

We start by opening the file. The instruction is
fp = fopen("patients.bin", "w");

where patients.bin is the file name and fp is the file pointer.
We wrrite to the file using several fwrite calls.
We close the file and then reopen it in order to check what we have written. In our

read we have
numread=fread(&s2, sizeof(s2), 1, fp);

where numread is the number of structures read. We are expecting one structure to have
been read as shown by the third parameter in our fread. If it is 1, then we print the
record. If it is not 1, we check the error. By calling the command feof (fp), we can check
if we have had an unexpected end of file. If so then we print out an appropriate message.
Finally we close the file.
Our next program reads and displays the data from the file. Again, we open the file,
this time as read only ("r" in the open call).

217

CHAPTER9 FILE ACCESS
The following code shows this.

/* filereadCh */

/* reads from file */

/* reads and prints sequentially */

/* reads and prints specific records */

#idefine _CRT_SECURE_NO_WARNINGS
#tinclude<stdio.hy

struct Patient {
int PatientID;
char name[13];
int BloodPressure;

}5
int main()

{
FILE *fp;

struct Patient s2;

int numread, i;
/* Open patients file */

fp = fopen("patients.bin", "r");

for (i = 031 < 17;i++)

{

/* Read each patient data from file sequentially */
fread(&s2, sizeof(s2), 1, fp);
/* Print patient ID, name and Blood Pressure for each patient */

printf("\nPatientID : %d", s2.PatientID);
printf("\n Name : %s", s2.name);
printf("\nBloodPressure : %d", s2.BloodPressure);

}
fclose(fp);

218

CHAPTER9 FILE ACCESS

/* Re-open the patients file */
fp = fopen("patients.bin", "r");
for (i = 031 < 17;i++)
{
/* Search the file for patient with ID of 23 */

fread(&s2, sizeof(s2), 1, fp);

if (s2.PatientID == 23)

{
/* Found the patient. Print their name %/
printf("\nName : %s", s2.name);
break;

}
/* Go back to the beginning of the file */

fseek(fp, sizeof(s2), SEEK_END);
rewind(fp);
/% Find all patients with Blood Pressure reading above 63 */

for (i = 0;i < 17;i++)
{
fread(&s2, sizeof(s2), 1, fp);
if (s2.BloodPressure > 63)

{
/* Print out name of each patient with Blood pressure
above 63 */
printf("\nName : %s", s2.name);

}

}
/* Go back to the beginning of the file */

rewind(fp);

/* Read and print out the first 3 patients in the file */

219

CHAPTER9 FILE ACCESS

numread = fread(&s2, sizeof(s2), 1, fp);

if (numread == 1)

{
printf("\nPatientID : %d", s2.PatientID);
printf("\nName : %s", s2.name);
printf("\nBloodPressure : %d", s2.BloodPressure);

numread = fread(&s2, sizeof(s2), 1, fp);
if (numread == 1)

{

printf("\nPatientID : %d", s2.PatientID);
printf("\nName : %s", s2.name);
printf("\nBloodPressure : %d", s2.BloodPressure);

}

numread = fread(&s2, sizeof(s2), 1, fp);

if (numread == 1)

{
printf("\nPatientID : %d", s2.PatientID);
printf("\nName : %s", s2.name);
printf("\nBloodPressure : %d", s2.BloodPressure) ;

}
/% Close the file #*/

fclose(fp);

We specify in the fread that we want to read the data into the structure in our
program. Here the structure is s2, and at the top of the program, we have our structure
definition as for the filewrite program. In our definition of s2, we identify it as type
"structure Patient". This defines the type in the same way as int defines the type for
our numread as in definitions at the top of the program.

We close the file and then reopen it to illustrate what we can do with file access
operations.

Rather than closing our file and reopening it, we can call rewind which sets the file
back to the beginning.

220

CHAPTER9 FILE ACCESS

Firstly, we want to find the patient who has the PatientID of 23. We set up a forloop
to read each structure in turn and check if its PatientID is 23. If it is, the program prints
out the patient’s name and then uses "break" to come out of the loop. We rewind the file
back to the start again. This time we want to find all of the patients whose blood pressure
is above 63. We, again, set up a forloop to look through each structure on the file. If the
blood pressure is over 63, we print out the patient’s name. This time we don’t break from
the forloop because there may be more than one patient with blood pressure over 63.

Lastly we rewind again and just print out the first three patients in the file and show
the use of the variable numread.

Our last program shows the use of the command fseek. This command enables
you to access different points within the file directly. The code is similar to the previous
program, but it illustrates the usefulness of fseek.

The code is as follows.

/* fileseekéra */

/* reads from file */

/* reads and prints sequentially */

/* reads and prints specific records */

/* Only does seek when finding a record (not going back to start) */
#define _CRT_SECURE_NO_WARNINGS

#include¢stdio.h>

struct Patient {
int PatientID;
char name[13];
int BloodPressure;

}s

int main()

{
FILE *fp;

/*FILE *fpout;*/
struct Patient s2;
struct Patient s1 = { 68,"Warne "y95 };

221

CHAPTER9 FILE ACCESS

int numread, i;

int posn;

long int minusone = -1;
/% Open patients file */

fp = fopen("patients.bin", "r+");
for (i = 031 < 17;i++)

{
/* Read each patient data from file sequentially */
fread(&s2, sizeof(s2), 1, fp);
/* Print patient ID, name and Blood Pressure for each patient */
printf("\nPatientID : %d", s2.PatientID);
printf("\n Name : %s", s2.name);
printf("\nBloodPressure : %d", s2.BloodPressure);
posn = ftell(fp);/* Find current file position */
printf("\n file posn is : %d", posn);/* Print current file
position */

}

fclose(fp);

/* Re-open the patients file */

fp = fopen("patients.bin", "r+");
for (i = 031 < 17;i++)
{
/* Search the file for patient with ID of 23 */

fread(&s2, sizeof(s2), 1, fp);

if (s2.PatientID == 23)

{
/* Found the patient. Print their name */
printf("\nName : %s", s2.name);
break;

}
/* Go back to the beginning of the file */

222

CHAPTER9 FILE ACCESS

rewind(fp);
/% Find all patients with Blood Pressure reading above 63 */
for (i = 031 < 17;i++)

{
fread(&s2, sizeof(s2), 1, fp);
if (s2.BloodPressure » 63)
{
/* Print out name of each patient with Blood pressure
above 63 */
printf("\nName : %s", s2.name);
}
}

/* Go back to the beginning of the file */
rewind(fp);
/* Read and print out the first 3 patients in the file */

numread = fread(&s2, sizeof(s2), 1, fp);

if (numread == 1)

{

printf("\nPatientID : %d", s2.PatientID);
printf("\nName : %s", s2.name);
printf("\nBloodPressure : %d", s2.BloodPressure);

}

numread = fread(&s2, sizeof(s2), 1, fp);
if (numread == 1)

{
printf("\nPatientID : %d", s2.PatientID);
printf("\nName : %s", s2.name);
printf("\nBloodPressure : %d", s2.BloodPressure);
}

223

CHAPTER9 FILE ACCESS

224

numread = fread(&s2, sizeof(s2), 1, fp);
if (numread == 1)

{
printf("\nPatientID : %d", s2.PatientID);
printf("\nName : %s", s2.name);
printf("\nBloodPressure : %d", s2.BloodPressure);
}

/* Demonstrate use of fseek to move current position in the file */
/* Then overwrite the current structure with a new one */

posn = ftell(fp);/* Find current file position */
printf("\n file posn is : %d", posn);/* Print current file position */

/* File pointer is now pointing to the 4th (the next) record in the
file */

fseek(fp, minusonexsizeof(s2), SEEK_CUR);/* set it back to point at
the thixd */

posn = ftell(fp);/* Find current file position */
printf("\n file posn is : %d", posn);/* Print current file position */

fwrite(&s1, sizeof(s1), 1, fp);/* overwrites what was in that
position (3rd) */
fclose(fp);
fp = fopen("patients.bin", "r");
for (i = 031 < 18;i++)
{
/* Read each patient data from file sequentially #*/
fread(&s2, sizeof(s2), 1, fp);
/* Print patient ID, name and Blood Pressure for each patient */

printf("\nPatientID : %d", s2.PatientID);
printf("\n Name : %s", s2.name);
printf("\nBloodPressure : %d", s2.BloodPressure);

CHAPTER9 FILE ACCESS
/*# Close the file */

fclose(fp);

In this program we start by reading and writing to the screen the whole file. We will
need this to test what we are going to do next has worked. We now move part way down
the last program where we read the first three structures from the file.

The position of the file is now at the start of the fourth structure. We use the
command ftell to confirm this. ftell just returns the file’s current position. We then
print this out. We then call the fseek command as follows.

fseek(fp, -sizeof(s2), SEEK CUR);

What this does is it takes the current file position (SEEK_CUR) and goes backward by
one structure. This is done by the -sizeof(s2) parameters in fseek. The minus sign
before sizeof means go backward. We could go backward by two structures by calling
fseek with -2*sizeof(s2). Or we could go forward by three structures by calling fseek
with 3*xsizeof(s2). Notice that we have not got the minus sign before this parameter. In
this case it will move the file position three structures forward. Notice that in the code
for the fseek, rather than specify -sizeof, we use the predefined long int minusone
which we preset to -1. We then say minusone*sizeof(s2).

In our program we have gone one structure back. Now we can write a new structure
to the file which overwrites the existing structure at that position. Finally we can print
out the file to show the effect of our overwrite. We can compare the file now to what it
was when we started the program before we did the overwrite.

We can extend our file to contain more information about the patients so that we
can look for trends in illnesses or the possible link between two illnesses. Our extended
structure is shown as follows.

struct Patient {
int PatientID;
char name[13];
int BloodPressure;
char allergies;
char leukaemia;
char anaemia;

225

CHAPTER9 FILE ACCESS

char asthma;
char epilepsy;
char famepil;

};

The information for the extra elements of our structure is simply y or n to say
whether the patient has ever suffered from any of the illnesses. The last element
"famepil" says that if you have never suffered from epilepsy but somebody in your
family has.

The program for this is as follows.

/* filewritepatients */
/* reads from file */
/* prints out the records sequentially */

#idefine _CRT_SECURE_NO_WARNINGS
#include¢stdio.hy

struct Patient {
int PatientID;
char name[13];
int BloodPressure;
char allergies;
char leukaemia;
char anaemia;
char asthma;
char epilepsy;
char famepil;

};

int main()

{
int i, numread;
FILE *fp;
struct Patient si1;
struct Patient s2;

/* Preset data for each patient */

226

struct Patient s10 = { 10,"Brown
struct Patient s11 = { 11,"Jones
struct Patient s12 = { 12,"White
struct Patient s13 = { 13,"Green
struct Patient s14 = { 14,"Smith
struct Patient s15 = { 15,"Black
struct Patient s16 = { 16,"Allen
struct Patient s17 = { 17,"Stone
struct Patient s18 = { 18,"Evans
struct Patient s19 = { 19,"Royle
struct Patient s20 = { 20,"Stone
struct Patient s21 = { 21,"Weeks
struct Patient s22 = { 22,"Owens
struct Patient s23 = { 23,"Power
struct Patient s24 = { 24,"Bloom
struct Patient s28 = { 28,"Haver
struct Patient s29 = { 29,"James

/* Open the Patients file */

fp = fopen("patientex.bin", "w");

CHAPTER 9

"y50,'y"','n",'n", 'y, 'nt, ly!
"y51,'y", "'y, 'n", y' ly', 't
"y52,'y"','n","y", 'y', '’y '’
"553,'y'5'n", "y’ 'y', 'ny '’
"554,'y'5'y", 0"y 'y, 'y, '’
"y55,'y's'n",'n", 'y, 'n"y !
"556,'y','n", " 'n"y 'y, 'n', Y’
"s57,'y's'n", '’y 'y, 'y, '’
"s58,'y', "'y, 'n"y 'y, 'n"y "0’
"559,'y','n","y'y 'y, '’y '’
"560,'y',"'y"','n',"'y",'n'y "0’
"561,'y"','n", '’y Y,y
"562,'y','n", "'’y 'y, Y,y
"563,'y','n","'n',"'y",'n"y "0’
"563,'y','n","y's'y'y'n"y "0’
"568,'y',"'y"','n",'y'y'n", "0’
"569,'y',"'y','n"y'y' '’y "0’

/* Write details of each patient to filex/
/* From the structures defined above */

furite(&s10,
furite(&s11,
furite(&s12,
fwrite(&s13,
furite(&s14,
furite(&s15,
furite(&s16,
furite(&s17,
furite(&s18,
fwrite(&s19,
furite(&s20,
furite(&s21,

sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),

p);
p);
p);
p);
p);
p);
p) ;
p);
p);
p);
p);
p);

FILE ACCESS

}s
}s
}s
}s
}s
}s
}s
}s
}s
}s
}s
}s
}s
}s
}s
}s
}s

227

CHAPTER9 FILE ACCESS

furite(&s22, sizeof(s1), 1, fp);
fwrite(&s23, sizeof(s1), 1, fp);
fwrite(&s24, sizeof(s1), 1, fp);

fwrite(&s28, sizeof(s1), 1, fp);
fwrite(&s29, sizeof(s1), 1, fp);

/% Close the file %/

fclose(fp);

/* Reopen the file */

fopen("patientex.bin", "r");

/* Read and print out all of the records on the file */

for (i = 031 < 17;i++)

{

numread = fread(&s2, sizeof(s2), 1, fp);

if (numread == 1)

{

/*printf("Number of items read = %d ", numread);*/

printf("\nPatientID : %d", s2.PatientID) ;
printf("\nName : %s", s2.name);
printf("\nBloodPressure : %d", s2.BloodPressure);
printf("\nAllergies %c leukaemia %c anaemia %c",
s2.allergies, s2.leukaemia, s2.anaemia);
printf("\nAsthma %c epilepsy %c famely epilepsy %c",
s2.asthma, s2.epilepsy, s2.famepil);

}

else {
/* If an error occurred on read then print out message */

if (feof(fp))

printf("Exrror reading patients.bin : unexpected
end of file fp is %p\n", fp);

228

CHAPTER9 FILE ACCESS

else if (ferror(fp))
{

perror("Exrror reading patients.bin");

}
/* Close the file %/

fclose(fp);

We shall look at interrogating this file in our Exercises section of this chapter.

Company Records File

Our next example of file use looks at a file containing data about a number of companies.
The data here is just an example of the type of information that you can store about
companies and then how you can use the information to predict trends in business
practice. The program shown here creates the file of data. The file is called Companyex.
bin. The structure used for each company’s entry in the file is shown as follows.

struct Company {
int CompanyID;
char companyname[13];
float salesprofitpct;/* profit as a % of sales */
float totalctrypop;/* total populations countries for sales (in
millions) */
float advertpct;/* Advertising as a % of sales */
float salprofpct;/* Total salaries as a % of profit */
float mwpct;/* Women as a % of total workers =/
float alienwpct;/* Foreign workers as a % of total */

};

229

CHAPTER9 FILE ACCESS

The first element of the structure is just an ID that we can use to identify the
company. We then have the company name. The other elements are the details of
interest. We store data for each company about the percentage that you get if you divide
your profit by the value of your sales, the total populations of all of the countries that
you sell to, the percentage you get if you divide your cost in advertising by your sales, the
percentage you get if you divide your total salaries bill by your sales, the percentage you
get if you divide the number of women you employ by the total workforce, and finally the
percentage you get if you divide the number of foreign workers by nonforeign.

Structures are set up for a number of companies and then written to the file. The
program is shown as follows.

/* filewriteex3 */
/* Creates Company file */
/* prints out the records sequentially */

#define _CRT_SECURE_NO_WARNINGS
#include¢stdio.hy

struct Company {
int CompanyID;
char companyname[13];
double salesprofitpct;/+ profit as a % of sales */
double totalctrypop;/* total populations countries for sales
(in millions) */
double advertpct;/* Advertising as a % of sales */
double salprofpct;/+ Total salaries as a % of profit */
double mwpct;/+ Women as a % of total workers */
double alienwpct;/* Foreign workers as a % of total */

}s

int main()

{

int i, numread;
FILE *fp;

struct Company si;
struct Company s2;

/* Preset a structure for each company to be written to the output file */

230

CHAPTER9 FILE ACCESS

{ 10,"Brown Co "y20.2,402,0.3,45.5,43.2,2.7 };
{ 11,"CompuFix "y1.3,354,2.6,60.3,27.5,1.6 };
{ 12,"Wall's "y12.6,766,5.8,14.7,54.6,3.8 };
struct Company s13 = { 13,"Goldman Inc ",29.5,876,12.6,21.6,43.9,9.3 };
struct Company s14 = { 14,"Stocks LLC ",0.7,1252,8.2,18.4,38.4,3.8 };
struct Company s15 = { 15,"Black & Blue",1.4,984,5.8,12.7,27.9,10.6 };
struct Company s16 = { 16,"Allenby "y52.8,1325,32.9,14.3,47.2,3.9 };
struct Company s17 = { 17,"StonelWorks ",16.3,1548,4.6,28.9,51.3,4.1 };
struct Company s18 = { 18,"Evans LLC "“,51.0,1006,19.6,51.7,43.7,11.7 };
struct Company s19 = { 19,"Royle & Co ",19.6,983,14.3,26.2,48.1,12.3 };
struct Company s20 = { 20,"Stone Inc ",24.8,1030,8.5,13.5,34.6,5.6 };
struct Company s21 = { 21,"WeeksAway ",16.9,547,0.9,12.9,43.9,2.9 };
struct Company s22 = { 22,"Owens Co ",45.7,792,2.7,31.6,33.6,1.7 };
struct Company s23 = { 23,"PowerTools ",32.6,1563,17.5,29.3,51.8,13.3 };
struct Company s24 = { 24,"Bloom "y27.2,1869,23.9,18.7,40.4,9.6 };

struct Company s10

struct Company sii
struct Company si2

struct Company s28 = { 28,"HaverGoodOne",33.8,489,3.6,12.7,43.8,3.7 };
struct Company s29 = { 29,"James & Co ",15.5,639,17.4,15.9,36.5,4.5 };
/* Open the Companys file */

fp = fopen("Companyex.bin", "w");

/% Write details of each Company to filex/
/* From the structures defined above */

furite(&s10,
furite(&s11,
furite(&s12,
fwrite(&s13,
furite(&s14,
furite(&s15,
furite(&s16,
furite(&s17,
furite(&s18,
fwrite(&s19,
furite(&s20,
furite(&s21,
furite(&s22,

sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),

p) ;
p);
p);
p);
p);
p);
p);
p);
p);
p);
p);
p);
p);

231

CHAPTER9 FILE ACCESS

232

fwrite(&s23,
furite(&s24,

furite(&s28,
furite(&s29,

/% Close the

fclose(fp);

sizeof(s1), 1, fp);
sizeof(s1), 1, fp);

sizeof(s1), 1, fp);
sizeof(s1), 1, fp);

file */

/* Reopen the file */

fopen("Companyex.bin", "r");

/* Read and print out all of the records on the file */

for (i = 031

{

< 17;i++)

numread = fread(&s2, sizeof(s2), 1, fp);

if (numread == 1)

{

printf("\nCompanyID : %d", s2.CompanyID) ;
printf("\ncompanyname : %s", s2.companyname);
printf("\nprofit as a percentage of sales : %1f",
s2.salesprofitpct);

printf("\ntotal populations countries for sales (in
millions) %1f ", s2.totalctrypop);
printf("\nAdvertising as a percentage of sales %1f ",
s2.advertpct);

printf("\nTotal salaries as a percentage of profit %1f "
s2.salprofpct);

printf("\nliomen as a percentage of total workers %1f ",
s2.mwpct);

printf("\nForeign workers as a percentage of total %1f "
s2.alienwpct);

CHAPTER9 FILE ACCESS

else {
/* If an error occurred on read then print out message */

if (feof(fp))

printf("Exrror reading Companys.bin : unexpected
end of file fp is %p\n", fp);

else if (ferror(fp))
{

perror("Exror reading Companys.bin");

}
/*# Close the file */

fclose(fp);

After all of the structures have been written to the file, the program closes the file,
then reopens it and reads and prints all of the data from the file.
We shall look at interrogating this file in our Exercises section of this chapter.

233

CHAPTER 9

FILE ACCESS

EXERCISES

For our extended Patients File, we want to write a program to collect important
information. So we can extend our program which reads the original smaller
file. Our new file should start by reading all of the structures in the file and
printing out each element or each patient. We then close the file and reopen

it. We now want to read each patient’s data and print out any which have

both asthma and epilepsy. We can print out their name. We also want to keep

a count of how many people are in this set of the link between asthma and
epilepsy and work out what this number is as a percentage of the total number
of patients in the file.

We now want to do a similar thing as question 1 but for our Company file.

We firstly extend our program for reading the file in this chapter so that we
can read the extended file. We, again, start by reading all of the data in the file
and printing it out. We then close the file and reopen it. Now we go through
each company on the file and test for the companies which have a women to
men percentage of over 40 and a sales profit percentage over 40. When we
find these, we print them out. We also want to find what this number is as a
percentage of the total number of companies and then print out this number.

234

CHAPTER 10

Differential Equations

The solution of differential equations is one of the most important and challenging
areas of mathematics. Differential equations arise naturally in many areas of medicine,
economics, physics, and engineering. They are normally introduced in schools and
solved by integral calculus. This is an excellent introduction to the subject but, as we
have seen in other areas of this book, in real life the analytical methods cannot be used
and computational techniques are called upon.

A differential equation is formed when a normal algebraic function is differentiated.
This is a technique which is used to find the rate of change of one variable with another.
In schools we use x and y as the variables, but in real life they could be the rate of change
of cancer growth with blood iron level or the rate of growth of a company’s profits with its
size. We can look at a simple algebraic function.

y =2x3-5x*
If we differentiate this, we get

dy/dx = 6x* - 10x

We can write dy/dx as f'(x).

So f’(x) = 6x2 - 10x is our differential equation.

This can be solved easily using calculus. However, differential equations are
normally much more complicated. If we differentiate our differential equation earlier
again, we would get

f"(x)=12x-10

Again, this is a simple equation to solve. We could differentiate this again to give us
f”(x). Look at the next differential equation.

f'(x) = (4x - 6x%) / exp(3x)

235
© Philip Joyce 2019

P. Joyce, Numerical C, https://doi.org/10.1007/978-1-4842-5064-8_10

CHAPTER 10 DIFFERENTIAL EQUATIONS

This is much more difficult to solve using calculus, but we will solve this differential
equation a little later using a simple program.

Taylor and Maclaurin Series

The two techniques we will use to solve differential equations are both based on the
Taylor and Maclaurin Series of pure mathematics. These two series relate any function to
its derivatives (f’(x), f”(x), f”(x), etc.). The Taylor series is

f(x) =f(a) + ((x-a)/1Nf’(a) + ((x-a)?)/2D)f"(a) + ... + ((x-a)™!/(n+1))f"(a)+E(x)

Without going into details, we just need to see that the series relates the original
function f(x) to its derivatives f’(x), f”(x), and so on (where f’(x) = dy/dx and
£7(x) = d?y/dx?).

The Maclaurin series is a special case of the Taylor series where a=0 and E(x) = 0. So
the Maclaurin series is

f(x) = £(0) + xf’(0) + (x*/2D)f"(0)+.......

Again this just gives the original function in terms of its derivatives and powers of x.
The two methods we will use to solve differential equations use similar relations.
One method is called the Euler method and the other is the Runge-Kutta method.

Euler Method

The Euler method, as with the series we have just looked at, relates a function to its
derivatives. The relationship between a function and its first derivative is shown in
Figure 10-1.

236

CHAPTER 10 DIFFERENTIAL EQUATIONS

b /
y /
Y2
Y1
YO
X0 X1 X2 X
ais at (x0,y0) bisat (x1,yl) cisat (x2,y2)

Figure 10-1. Euler method

Here, the curved line is our function and the slanted line (ab) which just touches
it is the curve gradient at the point where it touches the curve. This gradient is the first
derivative evaluated at that point.

Figure 10-2 shows the lines ab and bc. We have projected horizontal lines from a and
b and vertical lines from b and c to produce two triangles. For the left-hand triangle, we
can see from the graph on the last page that the length of the base must be x1-x0 and
the length of the perpendicular line from the base is y1-y0. Doing a similar thing on the
right-hand triangle gives us a base of x2-x1 and a perpendicular of y2-y1.

b y2-y1

x2-x1

y1l-y0

x1-x0

Figure 10-2. Euler method analysis

237

CHAPTER 10 DIFFERENTIAL EQUATIONS

As the gradient of each of these triangles is just the length of the perpendicular side
divided by the length of the base, we can say that

Gradient of left triangle = (y1-y0)/(x1-x0)

Gradient of right triangle = (y2-y1)/(x2-x1)

We can relate this to the first two terms of the Taylor series

f(x) = f(a) + (x-a)f’(a)
which we can rewrite as
(f(x) - f(a))/ (x-a) =1'(a)

So the left-hand side is the same as our triangle gradients.
If we have the same length of base for each triangle, we can call it h. So we now have

(f(x)- f(a))/h =f'(a)
or
f(x)-f(a) = hf'(a)
or
f(x) = f(a)+ hf’(a)

What we can do with this formula is set initial values of f(x) and a and set up a
forloop in which we increase the a value by h for each pass of the loop.
So as we increment our x value, we calculate a new f(x) or y value. So we could write

the preceding equation as
Yn+1: Yn + hf’(X)

This is the Euler method of finding f(x), if we already know f’(x) and initial values of
f(x) and a.

Following is the code for using the Euler formula in a loop. We have the differentiated
function f’(x) and our initial values, and we calculate the value of f(x) after a set number
of loops.

238

CHAPTER 10 DIFFERENTIAL EQUATIONS

/*eulexrmeCh */
#define _CRT_SECURE_NO_WARNINGS
#include<stdio.hy
#include<math.hy
float func(float x, float y);
int main()
{

float Fi;

float xo0, yo, x, y, h, xn;

printf("Enter initial x, initial y, final x, increment ");
scanf("%f %f %f %f", &xo0, &yo, &xn, &h);

X = X03 /* set initial value for loop */
y = yo; /* set initial value for loop */

/* forloop contains Euler function */
for (x = x0;x < xn;x = x)

{
F1 = h * func(x, y); /* h f'(x) from our Euler Formula */
y=y+F1; /* y(n¥1) = yn + h f'(x) from our Euler Formula */
x = x + hy /* increment the x value for the next pass of loop */
I*printf("X = %f Y = %f\n",x,y);*/
}
printf("X = %f Y = %f\n", x, y);
}
float func(float x, float y)
{
float funcval;
funcval = 2 * x; /* Function is dy/dx = 2x */
return funcval;
}

In this program we know that dy/dx = 2x (as you can see in the function func which
sets its reply in funcval to the answer 2#x). So the differential equation we are trying to
solve here is dy/dx = 2x. This is an easy equation to solve by ordinary calculus, and we

239

CHAPTER 10 DIFFERENTIAL EQUATIONS

should get the answer y = x* If we run this program, we are prompted for initial values of
x and y. Set these both at zero. Then we are asked for the final value of x from our loop.
Set this to 2. Finally we are asked for the increment of x for each pass of the loop. Set this
to 0.1. If we do all this, then the program should print out the final values of x and y. It
should give x=2.0 and y=3.800001.

If you consider our calculus answer of y=x?, then for x=2 we will get y=4. So our
answer of 3.800001 is not too far away. Maybe if we try to have a smaller x increment, we
might get closer to 4. Try an increment of 0.01 instead of 0.1. You should get y=4.019997
which is a lot closer to 4.

What we can do is write our data points to a file and then we can write the points to a
graph and compare it to the function to see how close we are.

The following code does this and writes to the file “euler1.dat”.

/*eulermeCh2 */
#define _CRT_SECURE_NO_WARNINGS
#include<stdio.hy
#include<math.hy
float func(float x, float y);
int main()
{

float Fi;

float x0, yo, x, y, h, xn;

FILE *fptr;

fptr = fopen("euleri.dat", "w");

printf("Enter initial x, initial y, final x, increment ");
scanf("%f %f %f %f", &xo0, &yo, &xn, &h);

X = X0
y=1yo

°
b
°
b

/* forloop contains Euler function */

for (x = x03x < xn3x = x)

{
F1 = h * func(x, y);
y=y+Fi
X =X + h;

240

CHAPTER 10 DIFFERENTIAL EQUATIONS

fprintf(fptr, "%f\t%f\n", x, y);
Iprintf ("X = %f Y = %f\n",x,y);*/

}
printf("X = %f Y = %f\n", x, y);
fclose(fptr);

}

float func(float x, float y)

{
float funcval;
funcval = 2 * x; /* Function is dy/dx = 2x */
return funcval;

}

If you import this file as a “point series” file to the Graph package then display it, you
can then draw the graph y=x? on the same graph and compare them.
Figure 10-3 is what you should get. The red dots are the points from our program and

the continuous blue curve is the function y=x*

\ T | / =

Figure 10-3. Euler program compared with y=x*

241

CHAPTER 10 DIFFERENTIAL EQUATIONS

You can write other functions to use with the Euler method. As you can see from the
code, it is only the function, func, in the program which contains this so you can change
this from 2*x to other functions.

Runge-Kutta Method

This is a more accurate method than the Euler method. Its formula is a little more
complicated than the one for the Euler method, but it’s fairly easy to program.
It is really just a more accurate extension to Euler. The formula is

Vi1 = Vi + (1/6)*(F1 + 2F2 + 2F3 + F4)

Where

F1 = hf(x,y)
F2 = hf(x+(h/2),y+(F1/2))
F3 = hf(x+(h/2),y+(F2/2))
F4 = hf(x+h,y+F3)

So basically we are just using our hf(x,y) term from our Euler method and extending
it. We just set up a loop for this function, as we did with Euler, and just increment our
values of x and y as we proceed through the loop.

The code for this is as follows.

/*rkch1 */

#tdefine _CRT_SECURE_NO_WARNINGS
#include<stdio.hy
#include<math.hy

double func(double x, double y);

int main()

{
double F1, F2, F3, F4;
double x0, yo, x, y, h, xn;

printf("Enter initial x, initial y, final x, increment ");
scanf("%1f %1f %1f %1f", &xo0, &yo, &xn, &h);

242

X

y

CHAPTER 10 DIFFERENTIAL EQUATIONS

/* forloop contains Runge-Kutta function */

for (x = x0;x < xn;x = x)

{

/* Set the values of F1,F2,F3 and F4 from the formula */

}

F1 = h * func(x, y);

F2 = h * func(x + h /7 2.0, y + F1 / 2.0) ;
F3 = h * func(x + h / 2.0, y + F2 / 2.0);
F4 = h * func(x + h, y + F3);

/* Increment our y value using the formula*/
y=y+(FL+2*F2+2*F3+F4)/ 6.0;

/* Increment the x-value by our chosen entered value */
X =X+ h;

/* Use the following lone of code (currently commented out) */
/* If you want to monitor the progress of the forloop */
Iprintf("X = %1f Y = %1f\n",x,y);*/

printf("X = %1f Y = %1f\n", x, y);

}

double func(double x, double y)

{

double funcval;
funcval = 3*pow(x,2); /* function is dy/dx = 3x* */

return funcval;

This program uses the function dy/dx=3*x*. Again, we only have to change that

function within func if we want to solve a different problem.

If you run this program with initial values x0=0, y0=0, xn=>5, and increment=0.1, you
should get the result x=5.099998 and y=132.650909.

243

CHAPTER 10 DIFFERENTIAL EQUATIONS

Again, in this case, we know what the solution to the differential is by using calculus.
It is y=x* so when x=5, y should be 125. Again, we could try to make the increment
smaller. If we try an increment of 0.01, we get 125.000137 which is very close to the
correct answer.

We can compare our points with the correct curve by writing our points to a file. The
code for this is as follows.

/*rkch2 */
#define _CRT_SECURE_NO_WARNINGS
#include<stdio.hy
#include<math.hy
double func(double x, double y);
int main()
{
double F1, F2, F3, F4;
double xo0, yo, x, y, h, xn;

FILE *fptr;
fptr = fopen("rungei.dat", "w");/* ! FILE NAME ! */

printf("Enter initial x, initial y, final x, increment ");
scanf("%1f %1f %1f %1f", &xo, &yo0, &xn, &h);

X = X0
y=yo

°
b
°
3

/* forloop contains Runge-Kutta function */

for (x = x0;x < xn;x = x)

{
F1 = h * func(x, y);
F2 = h * func(x + h / 2.0, y + F1 / 2.0);
F3 = h * func(x + h / 2.0, y + F2 / 2.0);
F4 = h * func(x + h, y + F3);

y=y+(FL+2*F2+2%*F3+F4)/ 6.0
X =X+ h;
fprintf(fptr, "%Z1f\t%Z1lf\n", x, y);

244

CHAPTER 10 DIFFERENTIAL EQUATIONS

I*printf("X = %1f Y = %1f\n",x,y);*/

}
printf("X = %1f Y = %1f\n", x, y);
fclose(fptr);
}
double func(double x, double y)
{
double funcval;
funcval = 3*pow(x,2); /* function is dy/dx =3 x* */
return funcval;
}

If we write the points to a file and compare it to the curve y=x*, we can see how close
our program is (Figure 10-4).

Figure 10-4. Runge-Kutta program compared with y=x3

245

CHAPTER 10 DIFFERENTIAL EQUATIONS

Second Order Differential Equations

The differential equations we have been looking at up to now are called “First Order”
differential equations. This means that the original function has only been differentiated
once. So, for the function y = 2x3, this differentiates to

dy/dx = 6x*

So this is a first order differential equation. If we differentiate this again, we get
d?y/dx?=12x

This is a second order differential equation because it contains a term which has
been differentiated twice.

To solve a second order differential equation, we do a trick whereby we rewrite
the second order differential equation as a combination of two first order differential
equations.

Look at this second order differential equation.

d?’y/dx* = dy/dx - 6x* + 12

We introduce a variable v(x) where v(x) = dy/dx.
So we can say dv(x)/dx = d%y/dx>
So we can write our original second order differential equation as two equations.

dv/dx=v-6x*>+12and dy/dx=Vv

Now, if we are given initial conditions when x=0, y=0, and dy/dx =v =0, we can
use our Runge-Kutta method, we do a trick we used earlier in this chapter for finding
solutions to first order differential equations, and just modify them to solve our two
equations together.

In our program we will use two functions, one for each of our two first order
differential equations. One is called func1 (for our dy/dx = v equation) and the other is
called func2 (for our dv/dx = v - 6x* + 12 equation).

In our loop to perform the four Runge-Kutta stages using F1, F2, F3, and F4, we will
keep the two calculations for the two equations separate and rename these four terms
D1F1, D1F2, D1F3, and D1F4 for the first set and D2F1, D2F2, D2F3, and D2F4 for the second
set. Our initial values are entered by the user (although you can preset these in your

246

CHAPTER 10 DIFFERENTIAL EQUATIONS

program if you wish). The initial values are the initial value of x, the initial value of'y, the
initial value of dy/dx (labeled here as y2), the final value of x, and the increment value.

We will use a function that we already know its form so that we can compare our
answer with the correct one. We can, again, use the Graph package to draw the correct
graph and then import the point series, from the output of our program, to the same
graph.

We will solve the second order differential equation d?y/dx* = dy/dx - 6x> + 12x. We
are using an equation to which we already know the solution. It is y = 2x°.

So we can say that dy/dx = 6x* or y2 = 6x>.

So our initial conditions are when x =0, y = 0, and when x = 0 y2 (=dy/dx) = 0.

We can try an increment of 0.1 as a starter then reduce it to, say, 0.01 for our second
attempt.

The following is the code for our second order differential equation solution.

/*runge2me5a */

/* Second Order Differential Equation */

/* Solves d2y/dx2 = dy/dx - 6x"2 + 12x */

/* Splits the second order DE into two first order DEs */
#define _CRT_SECURE_NO_WARNINGS

#include¢stdio.h>

#include<math.h>

double yia,y2;

double funci(double x,double y);
double func2(double x,double y);

int main()

{

double D1F1,D1F2,D1F3,D1F4;
double D2F1,D2F2,D2F3,D2F4;
double x0,x,h,xn;

FILE *fptra;

printf("Enter initial x, initial y1,initial y2 ,final x, increment ");
scanf("%1f %1f %1f %1f %1f",&x0,&y1a,&y2,&xn,&h) ;
X=Xx0;

247

CHAPTER 10 DIFFERENTIAL EQUATIONS

}

fptri=fopen("rk25.dat","w");

for (x=x03x<xn;x=x)

{

}

/* Derivative for ist first ordexr DE */

D1F1=h*funci(x,y1a);
D1F2=h*funci(x+h/2.0,y1a+D1F1/2.0);
D1F3=h*funci(x+h/2.0,y1a+D1F2/2.0);
D1F4=h*funci(x+h,y1a+D1F3);
yla=yla+(D1F1+2*D1F2+2*D1F3+D1F4)/6.0;

/* Derivative for 2nd first ordexr DE */

D2F1=h*func2(x,y2);
D2F2=h*func2(x+h/2.0,y2+D2F1/2.0);
D2F3=h*func2(x+h/2.0,y2+D2F2/2.0);
D2F4=h*func2(x+h,y2+D2F3);
y2=y2+(D2F1+2*D2F2+2*D2F3+D2F4)/6.0;

x=x+h;
Irprintf("X = %f Y = %F\n",x,y);*/
fprintf(fptra,"%f\t%f\n",x,y1a);

printf("X = %1f Y = %1f\n",x,y1a);
fclose(fptri);

double funci(double x,double y)

{

248

/* First order differential equation no. 1 */
double funcval;
funcval=y2;

return funcval;

CHAPTER 10 DIFFERENTIAL EQUATIONS

double func2(double x,double y)

{
/* First order differential equation no. 2 */
double funcval;
funcval=y2-6*pow(x,2)+12*x;
return funcval;
}

The forloop contains the two sets of Runge-Kutta terms, one for each of the two
equations. The first set deals with the first of our first order differential equations and
calls the function funcl, and the second set deals with the second of the first order
differential equations and calls the function func2.

Output data is written to the file rk25.dat. The comparison of this data with the
expected curve of y = 2x® is shown in Figure 10-5. The red curve is the Runge-Kutta data
produced by the program.

fixmitx3

=
ri

o=

it = 2x3

s

Figure 10-5. Runge-Kutta program compared with y=2x*

249

CHAPTER 10 DIFFERENTIAL EQUATIONS

EXERCISES

Amend your Euler program which writes to an output file to solve the
differential equation dy/dx = (=1)/x2. Use initial values X0 = 1,y0 =1, xn = 5,
inc =0.1.

Repeat Q1 for the differential equation dy/dx = 4x/(5—x?). Use initial values
xX0=0,y0=0.4,xn=2,inc =0.1.

Amend your Runge-Kutta program to solve the differential equation
dy/dx = 1/sqrt(x?> + y?). Use initial values x0 = 0,y0 =1, xn = 1, inc = 0.25.

Solve the differential equation shown at the start of this chapter. It was
dy/dx = (4x — 6x?) / exp(3x). Use initial values x0 = 0,y0 = 0,xn =1,
inc = 0.005.

Modify the Runge-Kutta second order differential equation program to solve the
following equation.

d?y/dx? = dy/dx — 12x +12
For input values x0 = 0.0,y0 =1.0,y2 = 0.0, xn = 1.0, and inc = 0.005.

The correct curve for this is y = e* + 6x2.

Modify the Runge-Kutta second order differential equation program to solve the
following equation.

d?y/dx? = dy/dx —3x>+ 6

For input values x0 = 0.0, y1a = 0.0, y2 = 0.0, xn = 2.0, and h = 0.005.
The correct curve for this is y = x® + 3x2.

Modify the Runge-Kutta second order differential equation program to solve the
following equation.

d?y/dx® = dy/dx + 5y + e

For input values x0 = 0.0, yla=1.0,y2 =-2.0, xn = 1.0, and h = 0.005.

The correct curve for thisis y = e~

250

APPENDIX A

Development Environment
Reference

Visual Studio

The following is a screenshot of Visual Studio. If you are not familiar with this, the
upper-middle box shows the source code and the lower-middle box shows runtime
messages.

) pja0 - Mecroscht Visual Studic [& | ik Launch (€10 £la B %
Fle Edt Yiew Project Buld Debug Tem Took Tet Agshze Window Help Php Joyee =
S L Y - - Debug - a5 - P Local Windows Debugger = Auto -lB i L B I

Solution Explorer Flbe & X

Q- D-% @@l o &la [l pito -] (Glebal Scope) =@ mang
A o scanf(“%4°, matarr1[1](1]):
..... orer (Ctele b w | Playfist: AN T
5] Seluticn B0 (L preject) } d 1o discaver al
4 % pilo L] printf(“Your first matrix is 'n")3 iail‘_-‘;:-‘ﬁ ”_‘-_s:::;-_[’-l
b om References :"' (8 = 9 < r1;le) u [Guikd, diacover and run all tests
(3 External Dependencies. 2 " . ot sohation
g fr for (§ = 03 < cl;je)
4 Header Files B
1 Rescurce Files Gl e Tests i WP projects can
printf("%d =, matarr1[i][i]}; "
4 [SousceFiles 1 i] Lr:ynec.»co’-\efrd by clicking "Run
b oc pille printf("\n"); a :
. printf("enter second matrixin®); -
for (4 = 831 < F2;000) .
i Ll
for (§ = 03§ ¢ €2;34e4)
{ .
scanf("%4", Bmatarr2[i](§]):
]
. printf(*vour e matrix is \n");
for (1 = 8;1 < r2;8es) -
W% -4 v
i
Cwutput - 3%
Show owtput frome Tests - Eim
[29/91/201% 10:49:31 Inforsational] -----~ Discover test started -- -
[29/01/ 1019 10:50:07 Warning] Could not locate debug sysools for ser\PRilipisource\repas o] 10Debug:
[29/81/2015 10:59:88 Informational] Test Adapter for Google Test: Test discovery startimg..
[29/01/2019 10:50:08 Inforsational] Test nis“.crr comoleted, M’nril durstion: 00:00:00. 28505)0
[29/81/201% 10:508:88 Warndng] Mo test i T pisource\reposipi 18 Oebug\pil. exe. Me
[29/81/2819 18:58:88 Inforsational] =es - test finished: B found (B:00:37.8161172) sessssss
[»
[ERPRN RN s View T Explores Code Metrics Results [[A0gatg Rerakpoints

O Ready 4 AddtaSource Cantrol =

251

© Philip Joyce 2019
P. Joyce, Numerical C, https://doi.org/10.1007/978-1-4842-5064-8

https://doi.org/10.1007/978-1-4842-5064-8

APPENDIXA DEVELOPMENT ENVIRONMENT REFERENCE

Debugging is relatively easy in Visual Studio. On the upper-middle box which is
displaying your code, you can select breakpoints. These are positions in the code where
you want to pause your program when it runs so that you can examine integers, arrays,
and so on in your program to see if they contain the values you are expecting. What you
need to do to set breakpoints is to click the line where you want to stop on (click the blue
bar to the left of the box on the line). You can see the three breakpoints for this program.
They are at the positions of the three red dots.

Then press F5 to start your program.

In the lower-middle box, the first breakpoint that your program reaches will be
displayed.

Move your cursor over the line of code, and it will display the contents of the variable
you are moving the cursor over (e.g., r1 =4 or c1 =5).

Press F5 again to continue your program (or “continue” on “debug” on the toolbar).

If you hover your cursor over the red dot or the arrow inside the dot on the blue bar
to the left of the code, it shows you the line number.

You can also enter the name of the variables you wish to look at on the lower-middle
box so that you can see them changing as you move through your breakpoints. You can
also click “locals” in this box, and it will display them automatically.

If you want to find a line number in your source code, you click “Edit” on the toolbar,
then hover over “Goto” Move to “Go to Line” then type in the line number.

When you run your program, if the output window closes before you have seen the
output, you can do one of two things:

o Right-click the Project name, then expand Configuration Properties
» Linker » system. Then subsystem » console.

e You can insert the line of code system(“pause”); as the last executable
line in your program.

252

APPENDIXA DEVELOPMENT ENVIRONMENT REFERENCE

If you use one of these, then the window will stay open until you press a key. Let’s try
the first one:

1. Right-click the Project name.

) Projecez - Mecroseft Visus Stusie I & | Quick Launch (Cui- 0 Pl B %
Fie Edt ‘iew Project Buld Debug Team Took Test Anshae Window Help
-0 B-% @F = 0 «| Debug - B8 = B Local Windows Debugger = Auto

LR

hesdestc

T Schaticn Projects” 1 project) =
4 % Project?
b o8B Referonces
P 5 Exemnsl Dependencies
4 Header Files

£OUAt = @;/° teT count of percent women to men 40 salespercent 240 */
fp = fopen(“Companyex.bin™, “r7);
= for (1 = 8;1 < 17;1+4)
{

4 Rescurce Files /* Search count of percent wosen to men 348 salespercent 348 %/
4 L. Sousce Files
addtwennes fread(8s2, sizecf(s2), 1, fp);
FLLE - if {s2.mepct > 48.8 88 s2.salesprofitpct » 48.0)
arviDtestle count = count + 1.9 /* Add 1 to overall count */

/* Pound the comgsny. Print thelr name */

pc snd salespe » 48 *);

/* talculated and print percentage of women to men over 40 and salespercent over 48 */
percent = (count / 17.8)°188.8;
printf{*\npercent women to men 348 salespercent 348 : ¥f", percent);

Chtestc felose(fp);

eulermel ¢ Output =8 X
eulermele.c Show output from: Build

wlerme2.c 1>generating Coce... -
=1 1:300m ilding project "Project2.voxproj” -- FAILED.
= Build: @ succeeded, 1 failed, € up-to-date, @ skipped

€
-
€
€
€
€
€
3
€
€
€ augmatlific
€
€
€
&
€
<
«
€
€
€

R

€
doter

Sehution Exp

2. Click Properties.

) Projects - Microsaft Visual Studic N & Guick Lsunch (Ctr
File Edit View Project Budd Debug Team Took Test Anshze Window Help
o-2 8- AP - | Debug - 26 = P Local Windows Debugger = Auto =R | I
Solution Explores L ficreaded
cCoQE-|n-5Fm| & ‘1 ST y—y | (Giobal Scope) -
Wi Buid
e - Rebild
™ Soam)
i. Sehtion Project? n;rimh S RE—
boom References Vit L c_l',:!:::].. wemen to men 340 ealespercent s =/
b External Dependencies Analyze 1% el ¥
1 Header Files Project Onky »
2 Rescurce Files Retsaget Projects. f percent women to men 348 salespercent 40 */
4 . SousceFiles
b€ addwences cepin T (s2), 1, fp);
b amiDe @ New Solution Explocer Vaw .8 88 32.salesprofitpet > 40.0)
[;
i i Buld Depandencies P 11,05 /0 acd 1o averall count +/
e s i o ke
b€ augmatlc 85 Class Wizard. CtbeShifteX [*7"F" 3
b€ sugmatlic & Manage NuGet Packages.. l between wosen to men »a8pc and salespe » 48 ")}
b€ ougmetlTAc - -
- ks £F 5ot s Startlp Project
b€ augmatldCe Debug »
b€ augmatldBc Saurce Contral . " "
boC oo 19C.c T, n;‘?;;e:?a;e of women to men over 49 and salespercent over 4@ */
b€ augmatlSic 7 e SEE =
" jer to men 348 salespercent 148 @ Kf" roent)
b€ bullendc - P . pe)z
b € Cltestc
b€ CSteste "
P Entwonosc Undosd Project
b€ diooplc o
bC eulermel.c Rescan Sohaticn
[Disphay Browsing Distabase Errors Sl | e | B
b oc Cleas Browsing Database Erors =
[2.venprof” == FAILED.
IS P Cpen Folder in File plorer failed, © up-to-dote, @ skipped sss=ssssss
ort prey

APPENDIXA DEVELOPMENT ENVIRONMENT REFERENCE

3. Click Configuration Properties.

A Projecu - Microson Visus Stugie A 0oL 00 Ll
Fle Edt View Project Budd Debug Team Took Test Anahze Window Help Philip Joyce «
colg-e S [y « P Local Windows - futo | |
% 3 ' =
Solution Explores -3 x .c
coge-o-5 o s orgie et
thos Exlore (€5 p- Project? Property Pages
= conn) -
7 Selution Project? {1 project = . | [Activeqwi | iguation]
: b :j project) Corfiguration: |MWM x| Plaform: | Active(Win32) =| | Configun Manager._.
boom References SubSystem
b ¥ Exernal Dependencies | General Mnimum Required Versson
L ;lu-ﬂr ﬁ!; Debugging Heap Feserve Size
| 8 ey Ve + Directories Fieap Commd Size
i b CiCes Stack Reserve Size
1 4 Linker Seack Comma Sue
£ ke gl Enable Large Addresses
€ anibic Tnpust 5 59!
ot
€ amltestiec Manifest File S
Pl i Suwap Fun From CD Ho
o Siwap Fun From Network Ho
€ augmanle System y
€ sugmatlic Optimization L ke
€ sugmatlTAc Embedded IDL
© sugmatic Windows Metadata
€ augmatlsCec Advanced
€ augmatld.c All Options
€ sugmatl9Ce Command Line
© sugmatiSc » Manifest Tool
€ buffendc # XML Document Generator|
€ Cltestc b Biowss Informaticn
€ CStestc b Build Everits
€ dhtwonot.c b Custom Buid Step
© dioople 5 Code Analysis
€ eulermel
€ eulermelac
e The /SUBSYSTEM opticon tells the opesating haow to fun the exe file. The choice of subsystem sffects the
= = v entry point symbol (or ertry point function) that the Gnker will choose.
(4 s L 1 s
Sehution Explone

) L)

4. Click Linker.

) Projectd - Macroseds Visusd Studie A vk Loonch -2 b L
Fle Edt View Project Budd Debug Team Took Test Anahze Window Help Philip Joyce «
-2 H-* @S « | Debug - 6 + P Local Windews Debugger = futo | |5
Solution Explores B fiereaded =t.c 5
cogt-lo-5em ,ﬂ B Project? =l - ~
tion Explones (Ct p- e S b —
—pm) >
) Sehuticn Project? (1 project) - - | [Activagwis | iguation]
g X Corfiguratiors | Astive{Debug) | Platorm: | Activeiwindz) »| [Configuation Manager._.
b *® Relerences ["a Conbgurstion Properties | SubSystern
L bmmal:'wmdmw General Mesimum Reguired Versson
: ;m.m o Dabugging Heag Feserve Size
2 Rescurce Files WC++ Directories Heap Commd Size
4 2l Source Files ,
; B CICe+ Stack Reserve Size
B € addtwonos.
. & AN o Stack Commd Size
General | resses
Enable Large Add)
b€ aniD2c Tnpust Turrinnng
b€ am2Dtestlec L =
L St "D";"““”' Sivap Fun From CD o
oo
boc augmate s’“:?"? Swap Run From Network ™
b sugmatlic Optimization L ke
P € augmatiTAc Embedded IDL
PoC asugrauic Windows Metadata
b€ sugmetliCe Achanced
b€ augmatldf.c Al Dptians.
b€ sugmstl9Ce Command Line
b sugmalc » Manifest Tool
L & XML Document Generstor|
b€ Clteste b Biowss Informaticn
b€ Coteste » Build Events
b C dhtwonosc b Custom Buid Step
b € dioople B Code Analysis
b€ eulermel.c
b€ eulermelac
¥ o The /SUBSYSTEM ogtion tell the opesating haw to rum the exe file. The choice of subsystem affects the
4 P m v entry point. (or erdry point function) that the Gnker will choose.
e | | S -
Sehution Explone

) e

254

APPENDIXA DEVELOPMENT ENVIRONMENT REFERENCE
5. Click System then SubSystem.

A Projecu - Microson Visus Stugie
File Edit View Project Budd Debug Team Took Test Anabze Window Help
Q-2 -2 @P| 9T .| Detwg - 2 = P Local Windows Debugger = Auto -l E | R

Solution Explores i - -
co@e-o-5 0@l s Projects 2l (gl senpy)
b Seution Exploner (Ctile » Pongect] Fropery Fag e — -
) Sohaticn Project? (project) & Configuration: | Active(Debog) =] Platfonme [ActiveqWin32) 7| | Configumtion Mansger.
% Project? =
b ou hetwrnces [+ Contpamtion Prapai
b ¥ Exernal Dependencies General Minimum Required Versson
4 Header Files Debugging Heap Feserve Size
4 Rescurce Files WC++ Durectonies Heap Comma Sce
4 . SousceFiles b C/Cee Stack Reserve Size
€ addtwenosg 4 Linker Stack Commi Sice
€ sl General Enable Large Addresses
€ anibic Tnpust il Sarr
€ amltestiec Manstest File Svap Fun From CD Ho
£ s Debugging | Swap Fun From Nemwork Ho
€ augmalc Systemn R FRY
€ sugmatlic Opimization
€ sugmatlTAc Embedded IDL
© sugmatide Windows Metadata
€ augmatl®Cc Advarced
€ augmatl®f.c All Ogtians.
€ sugmatl9Ce Command Line
© sugmatiSc » Manifest Tool
€ buffendc b XML Document Generator|
€ Cltestc b Biowss Informaticn
€ CStestc 5 Build Events
€ dhtwonot.c b Custom Buid Step
© dioople 5 Code Analysis
€ eulermel
€ mbemaeti The /SUBSYSTEM option tells the operating how to run the e file. The choice of subsystem affects the
€ eubermel.c |4 a + | entry point symbol (or eriry point function) that the Gnker will choose. =
< L 1
oo

6. Click the down arrow at the right of SubSystem.

B & | ok Lovnch ic0
) Projects - Microseft Visusl Stugio :
File Edit View Project Bubd Debug Team Took Test Anshze Window Help

©-2 B2 BF 7T | Debug - B8 « P Local Windows Debugger = Auto - | R

Solution Explores -3 x
co@e-o-5 0@l s
h Selution Exglorer (Cils p- _""’mzv'wp'g“)
] Sohaicn Project? (project) - Canfiguration: | Active{Debuag) v Platoms [activetindz) ¥] |:Configuntion Mansger..
4 % Project? = i
b o8 References 4 Configurstion Propertets -
b ¥ Exernal Dependencies General Msimum Regquired Versson |Met Set
8 Header Files Debugging Heap Feserve Size Console /SUBSYSTEMCONSOLE)
4 Rescurce Files WG+ s Directories Feap Comm Size Windows (SUBSYSTEMIAINDOWS)
4 . Sousce Files b CfCee Stack Reserve Size [Native [FSUBSYSTEMENATIVE)
b € addwonosc 4 Linker Stack Commit Size |EFT Apphcation (/SUBSYSTEM:EFLAPPLICATION)
boc amiDe General Srable Lirge Addresses EF Beot Service Driver (/SUBSYSTEMLEF] BOOT_SERVICE DANVER)
[Ingut L S iEFI ROM (/SUBSYSTEMAERROM)
b€ am2Dtestlec Manifest File Swap s Frodn €5 EF1 Runtime (/SUBSYSTEM:EF_RUNTIME DRIVER)
b€ an2Dresthc Debugging L] S i ocan o |9mu (FSUBSVSTENLPOSEG)
b augmalc b g
b€ sugmatlic Optimization
b€ sugmaiTac Embedded IDL
B sugmalic Windows Metadats
b€ augmaliCe Advanced
b€ augmatldf.c All Ogtians.
b€ sugmalaCe Command Line
P sugmatlsc » Manifest Toot
L XML Document Generator|
b€ Cltestc b Browsz Information
b€ Chteste ¥ Build Events
b C dhtwonosc ® Custom Build Step
b © dlooplc » Code Analysis
b€ eulermel.c oy —
K - mlimedsc The /SUBSYSTEM opticn tells the operating system how to run the .eve file.The choice of subsystem sifects the
Poc entry peint symbol (or ertry point function) that the Gnker will choose.
b c

7. Click Console then OK.

255

APPENDIXA DEVELOPMENT ENVIRONMENT REFERENCE

Command Line

The following is a screenshot of the command line environment. Here, only the dark
box to the left is the command line environment. You can display your source code on a

separate window.
All commands are entered after the prompt and messages to the user are
displayed there.
B Microsoht Windows 7 x4 Debeag Build Envronment ——— O SiE] B | w. alBh R
It:lliny EDK emvironment relative to C:\Program Files'Microsoft SDHs Mindows'w?7.1/ . s - e — — T 5 e H
Targeting Windows 7 xbd Dehug =
:':=\Prnr|ral| Files\Microsoft EDKs“Windows'w?.1>_ A 2};‘ _(dru | e
Ei l?wdll.d:aexccﬂgn w-l :' ‘&IDRESIS:-?-EILC.OKJE.EM—'\‘II.“
s (08.2) e it becmee

Fe--. Word Decument wrid g I¥

Pt st Addrent Subgect Specify the subject
——— ——— — W% (=) + tent types Add text

Ifyou look at the command line in the following figure, you can see the prompt being

shown. The computer is waiting for the user to enter data. The “c:\” just shows you the
directory you are in. If you type “dir” you get a list of what is currently contained in the
directory. If you look halfway up the screen, you will see that this has been entered and
the list is shown. Subdirectories (directories within the current directory) are shown by
“<DIR>" next to them. Anything which is not a directory will be a file, and the size of the
file is shown next to it.

If you want to create a new directory from your current directory, you type in “md
name” where “name” is the name you want to call your new directory. You can then
move to your new directory by typing “cd name” Once in your new directory, you can
move back to your previous one by typing “cd .. The prompt always shows the current
directory you are in.

256

APPENDIXA DEVELOPMENT ENVIRONMENT REFERENCE

You compile and test from the command line.

To compile, type in “cc progname.c”.

To run the program, just type the program name without the “c”.
Any output from your program will appear on the command line.

B Microsoht Window: T x6t Debug Build Ervecament
ke ivded users

sersded philip
sorssPhilipbed ny docanents
“zerssPhilipsHy D
s\lsers s PhilipsHy
s\isersPhilipsHy Bocunentssconpmathsprinerbookicd test
Phi1ipnHy

test. e

Phili; h book el AZQ
iler Uersion 16.88.48219.81 for x64

i B> EoCis Opei Canp.
Copyright (€3 Microsoft Corparation. #11 rights reserved.

ki test

d test.c

Rest.c
Microsoft (K} Ineremental Linker Uersion 10.00.408219.81
Copyright (C Hicrosoft Corporation. A1l rights reserved.

Fout test .exe

~ Microroft Word non-comemarcl cie T — =il A - |
=@

*flnﬁ'

beoccoe AABE AsBWCCI aasboel 4aBCcl ABbCCL AsBbCeDe &\ 5. Replace

odyText ¥ Chapter .. Code Code Cap.. Emphasis Exercise 8. EwercseC.. Cs":;!:_t :s“m_

Styles Editing
Locabon: ot saved % Requred feld X
a9 -

Is 5
' -

Eest.ol i
LINKE * fatal error LNKEIS61: entry point must be defined
b s \Users\Philip\y sad &, -
E iUz ers\PhilipHy Y :
k \isers i 1ipsty ded N |
e die B '_.:——--- LT
Volume in drive C is fcer i
Uolume Serial Munber iz IE42-B817 i = =
Pirsctory of cin
IeAR2M7 11340 <DIRD fdvCleaner
B-082/2018 15:42 <DIR> backuplBBz18
/2O 14:32 <DIR>» ook
AEPT0IL 14336 <DIR> ntel
1-085-2012 21:14 128 log.txt
6822017 23144 <DIR> Loyt
3882017 11:29 5,556,192 HortonSymlelp. exe
4-@7/2007 @3:28 <DIR> Parf Logs
1M /2019 23:38 <DIR> rogran Files
/B2/2019 18:58 <DIR> ranm Files (x86>
Sreontl 14:78 3.161 RiDRacup. 1oy
012019 13:25 <DIR> sinple -
AR6CZA14 11:84 <DIR>» tenp E - — e] -
“awia 1989 <oiR> Ugors : s &% & 0 =
6ARZ/2017 BR:19 <DIR> Windows
3 Filed<s) 5,559,473 D:(.O
12 Dirds)> 483,362,258, 944 bytes free
D, _— kS For the command swereen check what ather coresnsace there in the hackernund s v oet
e e e HER 3 E %% (= L)

257

APPENDIX B

Syntax Reference

Mathematical Functions

double sin(double x) input x in radians - returns sine
double cos(double x) input x in radians - returns cosine
double tan(double x) input x in radians - returns tangent
double asin(double x) input x - returns arcsin in radians
double acos(double x) input x - returns arccos in radians
double atan(double x) input - returns arctan in radians

double cosh(double x) input
double tanh(double x) input
double exp(double x) input x - returns e to power x

double log(double x) input x - returns natural log of x
double log(double x) input x - returns log to base 10 of x

- returns hyperbolic cosine

X
double sinh(double x) input x - returns hyperbolic sine

X

x - returns hyperbolic tangent

double pow(double x, double y)- returns x to power y

double sqrt(double x)- returns square root of x

double ceil(double x)- returns smallest integer >= x

double fabs(double x)- returns absolute value of x

double floor(double x)- returns largest integer <= x

double fmod(double x, double y)- returns remainder of x /vy

double modf(double x, double *int)- returns part of x after decimal point
sets int to integer part

Pointers

We have seen the use of pointers in C when writing out file access programs. Our
variables that we declare at the start of our programs reserve an area of the computer
store which we can use during our program’s operation. Each time we run our program,

259
© Philip Joyce 2019

P. Joyce, Numerical C, https://doi.org/10.1007/978-1-4842-5064-8

https://doi.org/10.1007/978-1-4842-5064-8

APPENDIXB SYNTAX REFERENCE

it will be loaded into a different area of store. As computers have enormous areas of
store, we use hexadecimal numbers as addresses of the parts of store we are using.
(Hexadecimal numbers are numbers to base 16 rather than to base 10 that we use with
decimal numbers - so 10 in decimal would be ten, but 10 in hexadecimal would be
sixteen. A typical hexadecimal number could be 4ef20a5.)

Here is a program to illustrate the basic meaning of pointers.

/* AppAptr1l x/
#include <stdio.h>

int main()

{

int ourvariable;
char achar;
char anarray[10];

printf("address of ourvariable is %p\n",8ourvariable);
printf("address of achar is %p\n",&achar);
printf("address of anarray is %p\n",&anarray);
return(0);

}

Notice that in printf we use %p to identify the output as a pointer at an address
which is a hexadecimal number.
When you run this program, you will get output something like

address of ourvariable is 000000000019f728
address of achar is 000000000019f72¢
address of anarray is 000000000019f719

If you run the program again, you may get something like
address of ourvariable is 000000000029fe98
address of achar is 000000000029fe9c
address of anarray is 000000000029fe88

So the addresses are different each time you run the program as your program will
have been loaded into a different part of the computer’s store.

260

APPENDIXB SYNTAX REFERENCE

What we want to show here is what the pointers are.

Notice that in our printf commands, we used &ourvariable etc as our parameter. This
means that you want to print the address of that variable, not its contents. So in each of
the printf commands, we do the same thing for each variable and so we get the address
of each variable.

Look at the next program to see how we can make use of this.

/+ AppAptr2 x/
#include <stdio.h>

int main()
{
int ourvariable = 38;
char achar = 'M';
char anarray[10] = "HELLO";

int xourvariablep;
char xacharp;
char xanarrayp;

ourvariablep = &ourvariable;
acharp = &achar;
anarrayp = anarray;

printf("address of ourvariable is %p\n",8ourvariable);
printf("value in ourvariable is %d\n",ourvariable);
printf("address in ourvariablep is %p\n",ourvariablep);

printf("address of achar is %p\n",8&achar);
printf("value in achar is %c\n",achar);
printf("address in acharp is %p\n",acharp);

printf("address of anarray is %p\n",&anarray);
printf("value in anarray is %s\n",anarray);
printf("address in anarrayp is %p\n", anarrayp);

return(0);

261

APPENDIXB SYNTAX REFERENCE

Here we preset an int type of variable, a char type, and a char array. We declare
pointer variables for each of our three preset variables, then we print out what is in each.
When we run this, we would get something like this:

address of ourvariable is 000000000021fb08
value in ourvariable is 38
address in ourvariablep is 000000000021fb08

address of achar is 000000000021fb18
value in achar is M
address in acharp is 000000000021fb18

address of anarray is 000000000021faf0
value in anarray is HELLO
address in anarrayp is 000000000021 faf0

Standard Library Functions

stdio.h (Input/Output)

getchar() — returns character typed in
putchar() — prints character to screen
scanf() —reads a set of characters typed in
printf() — prints a set of characters to screen
fgets() — returns a string typed in

fputs() — writes a string to the screen
math.h (Mathematical Functions)

as described earlier

262

APPENDIXB SYNTAX REFERENCE

string.h (String Functions)

strlen() — returns length of string
strcmp() — compares two strings

strcpy() — copies second string to first

strcat() — concatenates second string to first
stdlib.h()

srand() — initializes starting point for rand() calls

rand() — returns a random number between 0 and 1
malloc() — dynamically allocates store area to program

free() — frees the storage allocated by malloc()

Comparing Double, Float, and Integer

/* Program to show differences in accuracy of arithmetic values between
double float and integer */
/* AppAcomp */
#include¢stdio.h>
main()
{
float f,f1,f2;
double d,d1,d2;
int i,i1,i2;
/* We want to divide 1623875 by 57 in double format, float format and
integer format */

f1=1623875;
f2=57;

d1=1623875;
d2=57;

263

APPENDIXB SYNTAX REFERENCE

i1=1623875;
i2=57;

d=d1/d2;
f=f1/f2;
i=i1/i2;
printf("d is %1f, f is %f, i is %d\n",d,f,i);

/* Answer to this is d = 28489.035088 f = 28489.035156 i = 28489
Calculator anwer is 28489.035087719289245614 (recurring)
*/

}

264

APPENDIX C

Answers to Problems

CHAPTER 1

1. (i) 289 (i) 10303 (iii) ~10303 (iv) 1000

(i) 1.3 (ii) 1

(i) 194.56 (ii) —12 (iii) —166064.5125 (iv) -5385.81108 (v) 0
(i) 3 (ii) 205 (iii) 1.528118393

1.528118393

o o A~ w b

The code is as follows.

#define _CRT_SECURE_NO_WARNINGS

#include<stdio.h>

/% demonstrate a forloop (setting the forloop limit)*/
main()

{

float this_is_a_number , total;
int i,forlimit;

total = o;

printf("Please enter forloop limit:\n ");
scanf("%d", &forlimit);/+ entered limit stored in
forlimit */

for(i=0;i<forlimit;i++)

265
© Philip Joyce 2019

P. Joyce, Numerical C, https://doi.org/10.1007/978-1-4842-5064-8

https://doi.org/10.1007/978-1-4842-5064-8

APPENDIXC ~ ANSWERS TO PROBLEMS

{
printf("Please enter a number:\n ");
scanf("%f", &this_is_a_number);
total = total + this_is_a_number;

}

printf("Total Sum is = %f\n",total);

}
7. 60

8. Should only perform the do loop on the first pass. On the first test (after the
first pass), it is greater. If you set it to 10, it will go on forever (press CTRL+C to
abort it).

9. The program for this is as follows.

#idefine _CRT_SECURE_NO_WARNINGS
#include<¢stdio.h»

/* example of a 2D array test for 2 arrays*/
int main()
{

int arri[8][8];

int arr2[8][8];

int i,j,k,1;

printf("enter number of rows and columns of first array(max 8
rows max 8 columns) \n");

scanf("%d %d", &k, &1);

if(k>8 || 158)

{

printf("error - max of 8 for rows or columns\n");

else

printf("enter array\n");
for(i=0;i<k;i++)

266

APPENDIXC ~ ANSWERS TO PROBLEMS

{
for(j=0;3j<1;j++)
{
scanf("%d",&arr1[i][j]);
}
}

printf("Your array is \n");
for(i=0;i<k;i++)

{ for(j=03j<1;j++)

{ printf("%d ",arr1[i][j]);
printfi"\n“);
}

}

printf("first row of first array\n");
for(j=0;j<k;j++)
{
printf("%d ",arri[o][j]);
}

printf("enter number of rows and columns of second array(max 8
rows max 8 columns) \n");

scanf("%d %d", &k, &1);

if(k>8 || 1>8)

{

printf("error - max of 8 for rows or columns\n");

else

printf("enter array\n");
for(i=0;i<k;i++)
{

for(j=0;j<1;j++)

{

267

APPENDIXC ~ ANSWERS TO PROBLEMS

scanf("%d",&arr2[i][j]);

}

printf("Your array is \n");
for(i=0;ick;i++)

{ for(j=0;j<1; j++)

{ printf("%d ",arr2[i][§1);
printfi"\n");
}

}

printf("first row of second array\n");
for(j=0;j<k;j++)
{
printf("%d ",arr2[o][j]) ;
}

printf("\n");
}

10. A program to do this is as follows.

/% Function which returns an answer #*/
/% finds the pupil in one year of the school with the highest marks */

#idefine _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
double getmarks(double pupils[]);

int main()

{
double pupil;
/* Array with marks for class is preset in the main part of the
program */
double marks[] = {1.2,2.3,3.4,4.5,5.6,6.7,7.8,8.9,9.0};
/* Call function getmarks. The function returns the average
marks which is then stored in pupil */

268

APPENDIXC ~ ANSWERS TO PROBLEMS

pupil = getmarks(marks);
printf("Avarage mark is = %1f", pupil);
return 03

}

double getmarks(double pupils[])
{
int i;
double average, total;
total = o;
/* Go through all the pupils in turn and add their mark */
for (i = 05 i < 9; ++i)
{
total = total + pupils[i];

}

average = total/9;
return average; /* returns the value in average to whexre the
function was called */

}
11. 6.062177826 m
12. 12.74558747
13. 22.03597347
14. The code for this is as follows.

/* Structure example program (extended structure)x/
#idefine _CRT_SECURE_NO_WARNINGS
#include<stdio.h>

/% define the structure */
struct Student {

int id;

char name[16];

float percent;

};

269

APPENDIXC ~ ANSWERS TO PROBLEMS

int main() {
int i;
/% define 5 data locations of type "student" */

struct Student year9[5];

for(i=0; i<5; i++)

{
/* Assign values to the structure */
printf("enter student ID\n");
scanf("%d" ,&year9[i].id);
printf("enter student name\n");
scanf("%s" ,year9[i] .name);
printf("enter student pexcent\n");
scanf("%f",&year9[i] .percent);
}
for(i=0; i<5; i++)
{
/* Print out structure si */
printf("\nid : %d", year9[i].id);
printf("\nName : %s", year9[i].name);
printf("\nPexcent : %f", year9[i].percent);
}
return (0);
}
CHAPTER 2
1. Solution 2 Upper 1.5 Lower 2.5
Solution 4 Upper 4.5 Lower 3.5
2. Solution 2 Upper 1.5 Lower 5.5
Solution 6 Upper 6.5 Lower 5.5

270

APPENDIXC ~ ANSWERS TO PROBLEMS

3. Solution —2.750075 Upper —2.2 Lower —3.4

Solution —0.384249 Upper -1 Lower 0
Solution 2.750075 Upper 2.9 Lower 2.6
4. Solution —1.640314 Upper -2 Lower —1
Solution 1.580737 Upper 2 Lower 1
5. Solution —1.709976 Upper -1 Lower -2
6. Solution —3.645751 Upper —4 Lower -3
Solution 1.645751 Upper 2 Lower 1
7. Complex Solution
8. low 0.9 high 1.1 answer 1.0

The following is a screenshot of the function.

foe o T T o

File Edit Function Zoom Calc Help

D& @ + 4L G owmAlSAadE PLOD
T T4 ¥ ;
| B 220D \ f
| i et - 20 \ 251 {
‘.‘ /
\ 2] /
\ f
\ {
\ 15 /
/
\ 1 J.-' ¥y =2x2-2/x2
\ .r
\ 0.5 /
i "l X
t g = + + + d t + + + + . + i + + t + ' u + t t y
14 -1.2 -l\ -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 rj 1.2 14 1.6 18 2 22 24 2.6 28 3 32 34 36 28 4 42
!
| -0.5 f
|
\ /
\ - f
\ ."I
}
| 1.5 {
| |
\ |
\ -2 |
l'l -2.5 |
\ I
1

271

APPENDIXC ~ ANSWERS TO PROBLEMS

Example code for this question is as follows.

#idefine _CRT_SECURE_NO_WARNINGS
#include <stdio.h»

#include <math.hy

main()

{

float lower,upper;

int i;

double testhigh,testlow,testvalue,middle;
int iterations;

printf("enter lower limit");/+ the lower x value for your
integration */

scanf("%f" ,&lower);

printf("enter upper limit");/* the upper x value for your
integration */

scanf("%f" ,&upper);

printf("enter number of iterations");
scanf("%d",&iterations);

testlow=1ower;
testhigh=upper;

for(i=0;iciterations;i++)

{
middle=(testhigh+testlow)/2;

/* sets testvalue to 2+(middle)2 -2/(middle)2 */
testvalue=2+pow(middle,2)-2+pow(middle,-2);

if(testvalue == 0)

{
printf("x is %f",middle);
return(0);

}

if(testvalue > 0)

{
testhigh=middle;

}

272

APPENDIXC ~ ANSWERS TO PROBLEMS

else

testlow=middle;

}
printf("x is %f",middle);
}

9. low 1.2 high 0.8 answer 0.987175

The following is a screenshot of the function.

B Cooph] -

File Edit lunﬂ Zoom Calc Help
a3~ I o WA Sad@E PRPDO
ZT T\ / r = P
| B 78020803 \ / |
| Wl e dac - 2AS \ ! 2.59 -\
\ /
/ = \
_.fr 1 “'.
/
— 1.5 3
L |y =3/4x% - 4xYs
I\
3 Y
0.5 \
4 i n i ‘.\\ 4 i i n i " i i I &
1412 -1 0.8 0.6 0.4 0.2 0.2 0.4 06 08 1 12 14 1.6 1.8 2 22 24 2.6 28 3 32 3.4 3.6 38 4 42
0.5 i
‘\
\\
-1
\
1.5 \
2 \
\
2.5 \
\
\
\

Example code for this question is as follows.

/+trapezium - trial and improvement using inverse functions #*/
#define _CRT_SECURE_NO_WARNINGS

#include <stdio.h>

#include <math.h>

main()

{

float lower,upper;

int ij

273

APPENDIXC ~ ANSWERS TO PROBLEMS

274

double testhigh,testlow,testvalue,middle;
int iterations;

printf("enter lower limit");/+ the lower x value for your integration */
scanf("%f" ,&lower);

printf("enter upper limit");/* the upper x value for your integration */
scanf("%f" ,&upper);

printf("enter number of iterations");

scanf("%d" ,&iterations);

testlow=lower;
testhigh=upper;

for(i=0;iciterations;i++)
{
middle=(testhigh+testlow)/2;

/* sets testvalue to 0.75/(middle)? -0.8%(middle)® */
testvalue=0.75+pow(middle,-2)-0.8+pow(middle,3);

if(testvalue == 0)

{
printf("x is %f",middle);
return(0);

}

if(testvalue > 0)

{
testhigh=middle;

testlow=middle;

}
printf("x is %f",middle);

APPENDIXC ~ ANSWERS TO PROBLEMS

10. low 0.9 high 0.7 answer 0.837863

The following is a screenshot of this function.

Coaph — —— T T — L 2
File Edit Function Zoom Calc Help

D E + #1 wmA /AT PLLDN

B | T¥ |

A 100, 14 50 56

Wi v = 018 - 0 2.5 I|

o I'_ ¥y = 0.1/x5- 0.7x8

0.5 \

A X
1412 -1 -0.8 0.6 -0.4 -0.2 0.2 04 06 0.8, 1 1.2 14 16 18 2 22 24 2.6 2.8 3 3.2 3.4 3.6 38 4 42

0,54

Example code for this question is as follows.

/xtrapezium - trial and improvement using inverse functions */
#define _CRT_SECURE_NO_WARNINGS

#include <stdio.h»

#include <math.h>

main()

{

float lower,upper;

int i;
double testhigh,testlow,testvalue,middle;

int iterations;

printf("enter lower limit");/* the lower x value for your integration %/
scanf("%f" ,&lower);
printf("enter upper limit");/* the upper x value for your integration */
scanf("%f" ,&upper);

275

APPENDIXC ~ ANSWERS TO PROBLEMS

printf("enter number of iterations");
scanf("%d",&iterations);

testlow=lower;

testhigh=upper;

for(i=0;iciterations;i++)

{

}

middle=(testhigh+testlow)/2;
/* sets testvalue to 0.1/(middle)® -0.7x(middle)® =/
testvalue=0.1+pow(middle,-5)-0.7+pow(middle,6);

if(testvalue == 0)

{
printf("x is %f",middle);
return(0);
}
if(testvalue » 0)
{
testhigh=middle;
}
else
{
testlow=middle;
}

printf("x is %f",middle);

276

APPENDIXC ~ ANSWERS TO PROBLEMS

CHAPTER 3

1. 4.410706

2. 4.670777
3. 1.281720
4. 0.583334
5. 1.833334
6. 6.625486
7. 1.164644
The following is a screenshot of this function.
o - - - - ™ o
n.rsnm:;; S WA | SAadE PLLDD
.{+::¢'\r.n
X v of
| -.,3 T fy= PRI
T
4 |
. |
2+ L~ /
ar o e 1
— — ~ — P E 4
9 8 T & 5 -4 3 -2 ‘l 1 2 3 H 5 [7) 8 9
24
-4+
a6+
-8+

277

APPENDIXC ~ ANSWERS TO PROBLEMS

8. 0.632210
9. 0.813667
10. 2.793582

The following is a screenshot of this function.

File Edit Function Zoom Calc Help

DE@|+HLE Vs wmAlJadE FLDY
o= +, e
e i : =
il y=in il exd
84
6 . i
y=In(1+x% e
4 T
2 -
//,
.//,' i
9 8 T 6 5 -4 3 2 -'.lllg', 1 2 3 4 5 6 7) B 9
f
24
4+
a6+
-8+

11. 0.874957

278

APPENDIXC ~ ANSWERS TO PROBLEMS
12. 0.543001

The following is a screenshot of this function.

5 Caaph T— = .‘ - — -
File Edit Function Zoom Calc Help —_— -
D& 4 L G wmA | SadE PLLO
[Ny - 1 1wty i
S ity / —
i ¢ =sohi / mthix]
/
g /
!
/
/
ot /
/
/
I
at /
.J’J’
f'..
24 /
¥ = sinh(x)
i f,"” ‘L
7 -6 5 -+ 3 2 g5 i 1 2 3 4 5 6 7 [9
V4 -2
ri

13. 1.175201

The following is a screenshot of this function.

o — — S — - Lo 6
File Edit Function Zoom Calc Help
D& 4 L G e mA | JSad@E PRPOO
o Aues | \ Ty {
: : 10} f
:_Z ::-mmu: l'. lllI.l B
n\ /
\ 8T
\ /
I
\ /
\ 61 !
\\ /
\ /
\
\\‘ 44 ,r"’
\
. / ¥ = cosh(x)
2 Vi
; X
7 13 5 1 3 2 1 1 2 3 4 5 6 7 8 0
24
44
61

k=228 y=115

279

APPENDIXC ~ ANSWERS TO PROBLEMS

14. 0.433701

The following is a screenshot of this function.

Ouaph —— S 2
File Edit Function Zoom Calc Help
DEFE |+ L wmA|l/adE PLDND
v A | ¥
B et 101 finmsast
Pigh g - torhix) =
84
61
44
y = tanh(x)
+ + 4 4 = i 1 I + 4 Lt
k] & 5 4 3 2 i 1 2 3 4 5 8 L
24
A4
-6

15. 2.544394
16. 0.881943
17. 0.203107

18. 1.597882
19. 1.464231
20. 1.455749

CHAPTER 4

1. Possible code is as follows.

/* Montecarlo sphere (whole sphere in 1st quadrant)#/

/% Calculation of volume using monte carlo */
/% by counting relative volumes */

280

APPENDIXC ~ ANSWERS TO PROBLEMS

/* integrates (x-2)"2 + (y-2)"2 + (z-2)"2 = 2”2 to your specified
limits */

#idefine _CRT_SECURE_NO_WARNINGS

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

main()

{

double x, y, z;

double zupper, zlower, yupper, ylower, xupper, xlower;
double montevol, volume;

double totalexpvol, totalvol;

int j;

/% unsigned int iterations;*/

long int iterations;

printf("enter lower x limit\n");

scanf("%1f", &xlower);

printf("enter upper x limit\n");

scanf("%1f", &xupper);

printf("xlower %1f xupper %1f\n", xlower, xupper) ;

printf("enter lower y limit\n");

scanf("%1f", &ylower);

printf("enter upper y limit\n");

scanf("%1f", &yupper);

printf("ylower %1f yupper %1f\n", ylower, yupper);

printf("enter lower z limit\n");

scanf("%1f", &zlower);

printf("enter upper z limit\n");

scanf("%1f", &zupper);

printf("zlower %1f zupper %1f\n", zlower, zupper);

volume = (xupper - xlower)*(yupper - ylower)x(zupper - zlower);
printf("volume is %1f\n", volume);

printf("enter iterations up to 1000000\n");

scanf("%d", &iterations);

totalvol = o0;

281

APPENDIXC ~ ANSWERS TO PROBLEMS
totalexpvol = 0;

for (j = 1;j < iterations;j++)

{
/* find random numbers for x,y and z */
= rand() % 1000;
y = rand() % 1000;
z = rand() % 1000;
y =y / 1000;
X = x / 1000;
z = z / 1000;
/% X,y and z will have numbers between 0 and 1 */
/* so multiply by the user's entered ranges for x,y and z */
x = xlower + (xupper - xlower)#x;
y = ylower + (yupper - ylower)y;
z = zlower + (zupper - zlower)xz;
if (x >= xlower && y >= ylower &% z >= zlower)
{
totalvol = totalvol + 1; /* This contains the total
numbe of entries */
if ((pow((y - 2), 2) + pow((x - 2), 2)) +
pow((z - 2), 2) < 4)
{
totalexpvol = totalexpvol + 1;/+ This contains
number of entries within desired vol */
}
}
}
if (totalvol != 0)
{
montevol = volume * (totalexpvol / totalvol);/+ Monte
Carlo volume os the fraction of the cube volume */
}

printf("monte carlo volume is %1f\n", montevol);

282

APPENDIXC ~ ANSWERS TO PROBLEMS

2. The code is as follows.

/% Montecarlo conex/

/% Calculation of volume using monte carlo */

/% by counting relative volumes */

/% integrates x"2 + y"2 * z to your specified limits */
#define _CRT_SECURE_NO_WARNINGS

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

main()

{

double x, y, z;

double zupper, zlower, yupper, ylower, xupper, xlower;
double montevol, volume;

double totalexpvol, totalvol, tantheta, radius;

int j;

int iterations;

printf("enter lower x limit\n");

scanf("%1f", &xlower);

printf("enter upper x limit\n");

scanf("%1f", &xupper);

printf("xlower %1f xupper %1f\n", xlower, xupper);

printf("enter lower y limit\n");

scanf("%1f", &ylower);

printf("enter upper y limit\n");

scanf("%1f", &yupper);

printf("ylower %1f yupper %1f\n", ylower, yupper);

printf("enter lower z limit\n");

scanf("%1f", &zlower);

printf("enter upper z limit\n");

scanf("%1f", &zupper);

printf("zlower %1f zupper %1f\n", zlower, zupper);

volume = (xupper - xlower)*(yupper - ylower)#(zupper -
zlower);/* volume of cuboid enclosing the cone */

283

APPENDIXC ~ ANSWERS TO PROBLEMS
printf("volume is %1f\n", volume);

printf("enter iterations up to 1000000\n");
scanf("%d", &iterations);

totalvol = o0;
totalexpvol = 0;

tantheta = (zupper - zlower) / (xupper - xlower);/# Tangent of
the angle the slant edge makes with the base %/

radius = sqrt(pow(xupper, 2) + pow(yupper, 2));

radius = 2;

for (j
{

1;j < iterations;j++)

/* find random numbers for x,y and z */
= rand() % 1000;

rand() % 1000;

rand() % 1000;

y / 1000;

x / 1000;

z / 1000;

X
y
z
y
X
z

/* x,y and z will have numbers between 0 and 1 */
/* so multiply by the user's entered ranges for x,y and z %/

x = xlower + (xupper - xlower)#x;
y = ylower + (yupper - ylower)+y;
z = zlower + (zupper - zlower)*z;

if (x >= xlower &% z »>= zlower && y >= ylower)

{
totalvol = totalvol + 1; /* This contains the total
number of entries */
/% x and y coordinates have to be within circular
base */
/¥ z coordinate has to be below the slanted edge
which */

/* is vertically above the (x,y) point %/

284

APPENDIXC ~ ANSWERS TO PROBLEMS

if ((pow(y, 2) + pow(x, 2) < 4) && (z <
tantheta*(radius - sqrt(pow(x, 2) + pou(y, 2)))))

{
totalexpvol = totalexpvol + 1;/* This contains
number of entries within desired vol */
}
}
}
if (totalvol != 0)
{
montevol = volume * (totalexpvol / totalvol);/+ Monte
Carlo volume os the fraction of the cube volume */
}

printf("monte carlo volume is %1f\n", montevol);

}

3. The code is as follows.

/% Montecarlo 4-D spherex/

/* Calculation of volume using monte carlo */

/% by counting relative volumes */

/* integrates x"2 + y*2 + z"2 + p"2= 2"2 to your specified limits */
/% NB 4D graphs have 16 "quadrants"(8 for 3D, 4 for 2D) */

#define _CRT_SECURE_NO_WARNINGS

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

main()

{

double x, y, z, p;

double zupper, zlower, yupper, ylower, xupper, xlower, pupper,
plower;

double montevol, volume;

double totalexpvol, totalvol;

int j;

int iterations;

285

APPENDIXC ~ ANSWERS TO PROBLEMS

printf("enter lower x limit\n");
scanf("%1f", &xlower);

printf("enter upper x limit\n");
scanf("%1f", &xupper);
printf("xlower %1f xupper %1f\n", xlower, xupper);

printf("enter lower y limit\n");

scanf("%1f", &ylower);

printf("enter upper y limit\n");

scanf("%1f", &yupper);

printf("ylower %1f yupper %1f\n", ylower, yupper);

printf("enter lower z limit\n");

scanf("%1f", &zlower);

printf("enter upper z limit\n");

scanf("%1f", &zupper);

printf("zlower %1f zupper %1f\n", zlower, zupper);

printf("enter lower p limit\n");
scanf("%1f", &plower);
printf("enter upper p limit\n");

scanf("%1f", &pupper);

printf("plower %1f pupper %1f\n", plower, pupper);
volume = (xupper - xlower)*(yupper - ylower)#(zupper -
zlower)#*(pupper - plower);

printf("volume is %1f\n", volume);

printf("enter iterations up to 1000000\n");
scanf("%d", &iterations);

totalvol = o0;
totalexpvol = 0;

for (j = 1;j < iterations;j++)

{

/¥ find random numbers for x,y ansd z */
x = rand() % 1000;
y = rand() % 1000;

286

™ N X W 8 N
n

APPENDIXC ~ ANSWERS TO PROBLEMS

rand() % 1000;
rand() % 1000;
y / 1000;
x / 1000;
z / 1000;
p / 1000;

/% X,y and z will have numbers between 0 and 1 */

/* so multiply by the user's entered ranges for x,y and z */

xlower + (xupper - xlower):*x;
ylower + (yupper - ylower)+y;
zlower + (zupper - zlower)#z;
plower + (pupper - plower)#p;

if (x »>= xlower && z >= zlower &k y >= ylower && p >= plower)

totalvol = totalvol + 1; /* This contains the total
number of entries */

if ((pow(y, 2) + pow(x, 2) + pow(z, 2) + pow(p, 2)) < 4)
{

totalexpvol = totalexpvol + 1;/+ This contains
number of entries within desired vol */

if (totalvol != 0)

montevol = volume * (totalexpvol / totalvol);/+ Monte

Carlo volume os the fraction of the cube volume */

X =
y =
Z =
p =
{
}

}

{

}

printf("monte carlo volume is %1f\n", montevol);

287

APPENDIXC ~ ANSWERS TO PROBLEMS

CHAPTER 5

288

1.

Program should be as follows.

/* Matrix program %/
/* Add two floating point matrices */
#define _CRT_SECURE_NO_WARNINGS

#include¢stdio.hy
main()

{

float matarri[8][8];/+ First matrix store (rowxcolumn)#/
float matarr2[8][8];/+ Second matrix store (rowxcolumn)s:/
float matsum[8][8];/+ Sum of matrices store (rowxcolumn)#/
int i,j,k,1;

printf("enter order of the two matrices (max 8 rows max 8
columns) \n");

scanf("%d %d", &k, &1);

if(k>8 || 1»>8)

{

printf("error - max of 8 for rows or columns\n");

else

printf("enter first matrix\n");
for(i=0;ick;i++)

{
for(j=0;3j<1;j++)
{
scanf("%f" ,&matarr1[i][j]);
}
}

APPENDIXC ~ ANSWERS TO PROBLEMS

printf("Your first matrix is \n");
for(i=0;i<k;i++)

{
for(j=0;j<1;j++)
{
printf("%f ",matarri[i][j]);/+ first matrix in
matarrli */
}
printf("\n");
}

printf("enter second matrix\n");
for(i=0;i<k;i++)

{
for(j=0;j<1;j++)
{
scanf("%f",&matarr2[i][j]);
}
}

printf("Your second matrix is \n");
for(i=0;i<k;i++)

{
for(j=0;j<1;j++)
{
printf("%f ",matarr2[i][j]);/* second matrix
in matarr2 */
}
printf("\n");
}

/% add correspoding elements of the matrices into matsum */
for(i=0;i<k;i++)

{
for(j=0;j<1;j++)
{
matsum[i][j] = matarri[i][j] + matarr2[i][j];
}
}

289

APPENDIXC ~ ANSWERS TO PROBLEMS

printf("Your matrix sum is \n");
for(i=0;i<k;i++)

{
for(j=0;j<1;j++)
{
printf("%f ",matsum[i][j]);/* sum of matrices
in matsum =/
}
printf("\n");
}
}
}
2. Q)
1.7 1.0 21
31 04 00
31 62 23
2. b
1.3 1.0 13
-31 04 08
-31 62 03

3. Code should be as follows.

/% Matrix program */

/* multiply two floating point matrices */
#idefine _CRT_SECURE_NO_WARNINGS
#include<stdio.h>

int main()

{

float matarri[8][8];/+ First matrix store (rowxcolumn)x/
float matarr2[8][8];/+ second matrix store (rowxcolumn)s:/

290

float matmult[8][8];

int i,j,k;
int ri,c1,r2,c2;
int error;

error=0;

printf("enter order
columns) \n");
scanf("%d %d", &r1,
if(r1>8 || c158)
{
printf("error
error=1;

}

printf("enter order
columns) \n");
scanf("%d %d", &r2,
if(r2>8 || c258)

{

printf("error

APPENDIXC ~ ANSWERS TO PROBLEMS

/* matrix answer (rowxcolumn)x/

of the first matrix (max 8 rows max 8

&c1);

- max of 8 for rows or columns\n");

of the second matrix (max 8 rows max 8

&c2);

- max of 8 for rows or columns\n");

for(j=0;j<c2;j++)

matmult[i][j]=0;

error=1;
}
if(error == 0)
{
for(i=0;i<ri;i++)
{
{
}
}

291

APPENDIXC ~ ANSWERS TO PROBLEMS

printf("enter first matrix\n");
for(i=0;i<ri;i++)

{
for(j=0;3j<c1;j++)
{
scanf("%f",&matarrai[i][j]);
}
}

printf("Your first matrix is \n");
for(i=0;i<ri;i++)

{
for(j=0;j<c1;j++)
{
printf("%f ",matarri[i][j]);/+ first matrix in
matarri */
}
printf("\n");
}

printf("enter second matrix\n");
for(i=0;i<r2;i++)

{
for(j=0;j<c2;j++)
{
scanf("%f",&matarr2[i][j]);
}
}

printf("Your second matrix is \n");
for(i=0;i<r2;i++)

{
for(j=0;j<c2;j++)
{
printf("%f ",matarr2[i][j]);/* second matrix
in matarr2 */
}
printf("\n");
}

292

APPENDIXC ~ ANSWERS TO PROBLEMS

/* multiply correspoding elements of the matrices into
matmult */
for(i=0;i<ri;i++)

{
for(j=0;j<c2;j++)
{
for(k=0;k<r2;k++)
{
matmult[i][j] = matmult[i][j] +
matarra[i][k] * matarr2[k][j];
}
}
}

printf("Your matrix multiplication is \n");
for(i=0;i<ri;i++)

{ for(j=0;j<c2;j++)
{ printf("%f ",matmult[i][j]);
:rintf("\n");

}

045 4.88 2.81
057 1.85 1.04
2.62 557 2.54

293

APPENDIXC ~ ANSWERS TO PROBLEMS

294

CHAPTER 6
The code for this is as follows.
A regression */
/% user enters points.x/
1% regression of x on y calculated */

#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h»

#include <math.hy

main()

{

float xpoints[10], ypoints[10];

float sigmax, sigmay, sigmaxy, sigmaysquared, xbar, ybar;
float fltcnt, sxy, syy, c, d;

int i, points;

/% Usexr asked for number of points on scatter graph */
printf("enter number of points (max 10) \n");
scanf("%d", &points);

if (points » 10)

{

printf("error - max of 10 points\n");

else

sigmax = 0;
sigmay = 0;
sigmaxy = 0;

sigmaysquared = 0;

/% User enters points */
for (i = 03i < points;i++)

APPENDIXC ~ ANSWERS TO PROBLEMS

{
printf(“"enter point (x and y separated by space) \n");
scanf("%f %f", &xpoints[i], &ypoints[i]);
sigmax = sigmax + xpoints[i];
sigmay = sigmay + ypoints[i];
sigmaxy = sigmaxy + xpoints[i] * ypoints[i];
sigmaysquared = sigmaysquared + (float)
pow(ypoints[i], 2);

}

printf("points are \n");
for (i = 0;i < points;i++)
{
printf(" \n");
printf("%f %f", xpoints[i], ypoints[i]);

}
printf(" \n");
fltent = (float)points;

/* regression variables calculated */
xbar = sigmax / fltcnt;

ybar = sigmay / fltcnt;

sxy = (1 / fltcnt)*sigmaxy - xbar * ybar;

syy = (1 / fltcnt)*sigmaysquared - ybar # ybar;

sxy / syy;
xbar - d * ybar;

/* Regression line %/
printf("Equation of regression line x on y is\n ");
printf(" x=%f + %fy", c, d);

295

APPENDIXC ~ ANSWERS TO PROBLEMS

2. The graph is as follows.

Ty fnm(x - 0.639777)0.638247

T “§ o e

— . P T -
5 % 7 & 5 1 5 2 a1 |/1 1 3 &1 5§ & 7 % 3

x = 0.639777 + 0.638247y /°T

3. PMCC should be 1.

CHAPTER 7

1. The code and associated graph are as follows.

/% simple random walk simulation in 1 dimension */
#define _CRT_SECURE_NO_WARNINGS

#include <stdio.h>

#include <math.h»

#include <stdlib.hs

#include <time.h»

FILE *output;
time_t t;

296

APPENDIXC ANSWERS TO PROBLEMS

main()
int ij
double xrand;
double x,randwalkarr[20001];
output= fopen ("randwalké.dat", "w"); /* external file name */

for (i=0; i<=20000; i++)

randwalkarr [i]=0.0; /* clear array */
srand((unsigned) time(&t)); /* set the number generator */
x=0.0;

for (i=1;i<=20000; i++)

{
/% generate x random number */
xrand=rand()%1000;
xrand=xrand/1000;
if(xrand<o0.5)

X=x+1.0;
else

X=X-1.0;

randwalkarr[i] = sqrt(x*x);/* store randwalkarr to total */

}

/% Write values to file %/
for (i=0; i<=200; i++)

{

fprintf(output,"%d %1f\n", i, randwalkarr[ix100]);
}

fclose (output);

297

APPENDIXC ~ ANSWERS TO PROBLEMS

4y
1000+
o+t
004
w004 4
RMS distance &
-'.:"‘:‘:"
b5 R
»
?
. N . N N N of A A .)) —
600 300 400 300 200 100 100 00 300 0 300 800 80 800 %00 1000 o
2004 number of steps
4004
s

1. a=16 b=28 c=54
2. a=11 b=22 ¢=33
3. a=11 b=22 ¢c=33 d=44 e=55 f=6.6

CHAPTER 9

1. The patients’ names are Jones, Smith, Stone, Weeks, and Owen. The percentage
required is 29.411764%. The code for this question is given as follows.

/% filereadexr */

/% reads from file */

/* reads and prints sequentially */

/* reads and prints specific records */
/% Does not use seek */

#define _CRT_SECURE_NO_WARNINGS

298

APPENDIX C ANSWERS TO PROBLEMS
#include<¢stdio.h»

struct Patient {

int PatientID;
char name[13];

int BloodPressure;
char allergies;
char leukaemia;
char anaemia;
char asthmaj;

char epilepsy;
char famepil;

}s

int main()

{
FILE +fp;

struct Patient s2;

int numread, i;
double casthepij;
double percent;

/% Open patients file %/

fp = fopen("patientex.bin", "r");

if(1fp)

{
printf("patientex.bin file unavailable");
return(0);

}

for (i = 0;i < 17;i++)

{
/% Read each patient data from file sequentially */
fread(&s2, sizeof(s2), 1, fp);
/% Print patient ID, name and Blood Pressure for each
patient */

printf("\nPatientID : %d", s2.PatientID);
printf("\n Name : %s", s2.name);

299

APPENDIXC ~ ANSWERS TO PROBLEMS

printf("\nBloodPressure : %d", s2.BloodPressure);
printf("\nAllergies %c leukaemia %c anaemia %c",
s2.allergies, s2.leukaemia, s2.anaemia);
printf("\nAsthma %c epilepsy %c famely epilepsy %c",
s2.asthma, s2.epilepsy, s2.famepil);

}
fclose(fp);

/% Re-open the patients file */

fp = fopen("patientex.bin", "r");
for (i = 0;i < 17;i++)
{
/* Search the file for patient with ID of 23 */

fread(&s2, sizeof(s2), 1, fp);

if (s2.PatientID == 23)

{
/% Found the patient. Print their name %/
printf("\nName : %s", s2.name);
break;

}
/* Go back to the beginning of the file */

rewind(fp);
/% Find all patients with Blood Pressure reading above 63 */

for (i = 0;i < 17;i++)

{
fread(&s2, sizeof(s2), 1, fp);
if (s2.BloodPressure » 63)
{
/% Print out name of each patient with Blood
pressure above 63 */
printf("\nName : %s", s2.name);
}
}

300

APPENDIXC ~ ANSWERS TO PROBLEMS

/% Go back to the beginning of the file */
rewind(fp);

/% Read and print out the first 3 patients in the file %/

numread = fread(&s2, sizeof(s2), 1, fp);
if (numread == 1)

{
printf("\nPatientID : %d", s2.PatientID);
printf("\nName : %s", s2.name);
printf("\nBloodPressure : %d", s2.BloodPressure);
}

numread = fread(&s2, sizeof(s2), 1, fp);
if (numread == 1)

{
printf("\nPatientID : %d", s2.PatientID);
printf("\nName : %s", s2.name);
printf("\nBloodPressure : %d", s2.BloodPressure);
}

numread = fread(&s2, sizeof(s2), 1, fp);
if (numread == 1)

{
printf("\nPatientID : %d", s2.PatientID);
printf("\nName : %s", s2.name);
printf("\nBloodPressure : %d", s2.BloodPressure);
}

/* Close the file %/

fclose(fp);

/* Re-open the patients file %/
casthepi = 0;

fp = fopen("patientex.bin", "r");
for (i = 0;i < 17;i++)

{

/% Search the file for link between asthma and epilepsy */

fread(&s2, sizeof(s2), 1, fp);
if (s2.epilepsy == 'y' && s2.asthma == 'y')

301

APPENDIXC ~ ANSWERS TO PROBLEMS

{
casthepi = casthepi + 1.0;
/% Found the patient. Print their name */
printf("\nLink between asthma and epilepsy”);
printf("\nName : %s", s2.name);

}

}

percent = (casthepi / 17.0)%*100.0;

printf("\npercent asthma & epilepsy : %f", percent) ;
fclose(fp);

}

2. The two names of the companies asked for are Allenby and Evans LLC. The
percentage is 11.764706%. The code is as follows.

/* filereadex3r */

/% reads from Company file */

/* reads and prints sequentially */

/% reads and prints specific records */
/* does not use seek */

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>

struct Company {
int CompanyID;
char companyname[13];
float salesprofitpct;/* profit as a % of sales */
float totalctrypop;/+ total populations countries for sales (in
millions) %/
float advertpct;/* Advertising as a % of sales */
float salprofpct;/* Total salaries as a % of profit */
float mwpct;/+ Women as a % of total workers */
float alienwpct;/* Foreign workers as a % of total */

};

302

APPENDIXC ~ ANSWERS TO PROBLEMS

int main()

{
FILE +fp;

struct Company s2;

int numread, ij;
double count; /+ count of women to men 40 salespercent »40 */
double percent;/+ percent of women to men »40 salespercent »40 %/

/* Open patients file */

fp = fopen("Companyex.bin", "r");

if(!fp)

{
printf("Companyex.bin file not available");
return(0);

}

for (i = 0;i < 17;i++)

{
/* Read and print each Company data from file sequentially */
fread(&s2, sizeof(s2), 1, fp);
/* Print Company ID, name etc */
printf("\nCompanyID : %d", s2.CompanyID);
printf("\ncompanyname : %s", s2.companyname);
printf("\nprofit as a percentage of sales : %f",
s2.salesprofitpct);
printf("\ntotal populations countries for sales (in
millions) %f ", s2.totalctrypop);
printf("\nAdvertising as a percentage of sales %f ",
s2.advertpct);
printf("\nTotal salaries as a percentage of profit %f ",
s2.salprofpct);
printf("\nllomen as a percentage of total workers %f ",
s2.mupct);
printf("\nForeign workers as a percentage of total %f ",
s2.alienwpct);

}

303

APPENDIXC ~ ANSWERS TO PROBLEMS

fclose(fp);

/* Re-open the Company file */
fp = fopen("Companyex.bin", "r");
for (i = 0;i < 17;i++)

{
/* Seaxch the file for Company with ID of 23 */
fread(&s2, sizeof(s2), 1, fp);
if (s2.CompanyID == 23)
{
/% Found the company. Print their name */
printf("\nCompany with ID of 23 ");
printf("\nCompany Name : %s", s2.companyname);
break;
}
}

/% Go back to the beginning of the file */

rewind(fp);
/% Find all Companys with women to men percent » 50 %/

for (i = 0;i < 17;i++)

{
fread(&s2, sizeof(s2), 1, fp);
if (s2.mwpct » 50)
{
/* Print out name of each company with women to men
percent » 50%/
printf("\nwomen to men »50pc");
printf("\nCompany Name : %s", s2.companyname);
}
}

/% Go back to the beginning of the file */
rewind(fp);
/* Read and print out the first 3 Companys in the file */

numread = fread(&s2, sizeof(s2), 1, fp);
printf("\nFixst 3 companies on file");

304

APPENDIXC ~ ANSWERS TO PROBLEMS

if (numread == 1)

{
printf("\nCompanyID : %d", s2.CompanyID);
printf("\nCompany Name : %s", s2.companyname);

}

numread = fread(&s2, sizeof(s2), 1, fp);
if (numread == 1)

{

printf("\nCompanyID : %d", s2.CompanyID);
printf("\nCompany Name : %s", s2.companyname);

}

numread = fread(&s2, sizeof(s2), 1, fp);
if (numread == 1)

{

printf("\nCompanyID : %d", s2.CompanyID);
printf("\nCompany Name : %s", s2.companyname);

}
/% Close the file */

fclose(fp);

/% Re-open the patients file */

count = 0;/% set count of percent women to men »40

salespercent »40 */

fp = fopen("Companyex.bin", "r");

for (i = 0;i < 17;i++)

{
/* Search count of percent women to men >40
salespercent 40 */

fread(&s2, sizeof(s2), 1, fp);
if (s2.mwpct » 40.0 && s2.salesprofitpct » 40.0)

{

count = count + 1.0; /* Add 1 to overall count */
/% Found the company. Print their name */

printf("\nLink between women to men >40pc and

salespc » 40 ");
305

APPENDIXC ~ ANSWERS TO PROBLEMS

}

printf("\nName : %s", s2.companyname);

/* Calculate and print percentage of women to men over 40 and
salespercent over 40 */

percent = (count / 17.0)*100.0;

printf("\npercent women to men >40 salespercent »>40 : %f", percent);

fclose(fp);
}
CHAPTER 10
1. x=5.099998, y=0.146350
2. x=2.00000, vy=1.654713
3. x=1.00000, vy=1.6966
4. x=1.004999 y=099075

The curve for the output data is shown in red and compared with the correct curve.

-
¥ fixpm(2%x" 2 axpd-3.0%%)

Series |

)r =2x2* p3x

05+

306

APPENDIXC ~ ANSWERS TO PROBLEMS

5. x=1.000000 y =1.978569

The curve for the output data is shown in red and compared with the
correct curve.

fixmanpix) - 621
S«n:n 1

_\"=Ex+ 6x2

6. x=2.005000 y =19.958468

The curve for the output data is shown in red and compared with the
correct curve.

307

APPENDIXC ~ ANSWERS TO PROBLEMS

y= x3+ 3x2

fm='3 + 3000
Sasien 1
-

7. x=1.000000 y

The curve for the output data is shown in red and compared with the correct curve.

= 0.096944

+y

-H

finmampl-2*%)
Sarres |

-H

308

Index

A, B ID, 230

structure, 230-232

Add, two numbers .
Compiling, 2, 63

code, 4 .
Completing the square method, 45, 46
%d, 5
int, 4
scanf, 5 D
total, 5

Data arrays

char arr, 19, 20

int array, 19, 20

reads data, 21, 22

2D array, 22-24
data_record.matrix, 210, 212
Data vetting, 22, 36
Debugging, 252
Decimal numbers, add, 5
Differential equations

algebraic function, 235

first order, 246

integral calculus, 235

second order, 246-249
Divide two numbers, 7
Do loop, 13, 266

Augmented matrix program
funcdivide and funcsubtract
forloops, 175, 176
functions, 173, 175
INF error, 181
matrix, 177, 179
procedures, 171
swopping mechanism, 183-189
testing, 180, 181, 190
matrix[3][4] array, 162
nine-stage mechanism, 182, 183
stage 1-3, divide, 163-165
stage 4-5, subtract, 165-166
stage 6-7, divide, 167-168
stage 8, subtract, 169
stage 9, divide, 169, 170

C
E

charc, 3

Command line environment, 256, 257 Euler method

Company records file analysis, 237
business practice, 229 continuous blue curve, 241
Companyex.bin, 229 curve gradient, 237

© Philip Joyce 2019

P. Joyce, Numerical C, https://doi.org/10.1007/978-1-4842-5064-8

Double, float, and integer, compare, 263

309

https://doi.org/10.1007/978-1-4842-5064-8

INDEX

Euler method (Cont.) G
forloop, 238

function vs. first derivative, 236
funcval, 239

set number of loop, 238

Taylor series, 238

Gaussian elimination method, 158
getchar(), 3,5
Goto command, 40

H

Higher powers equation

F cubic solutions, 56, 57, 59
Fatal error, 2 solutions, two, 52, 54-56
File access trial and improvement, 50-52
fclose, 205 flowchart, 54
fopen, 205 user-entered function, 59, 60, 62
fread, 205
fwrite, 205 ,J,K
radioact program If then else, 16, 17
FILE «fptr, 205 If then else if, 18
fopen command, 205 Inverse functions, 273-276
radioactive decay simulation, 206, 207
write access, 206 L

random walk program, 208, 209
writing large data file, 209
data_record.matrix, 210-214

Least squares techniques, 137

structure, 210 M! N

Float, 5, 263 Mathematical and logical symbols, 40-41
Flowcharts Mathematical functions

logic, 10 angle into degrees, 32, 33

nested forloop, 11, 12 arccos, 32

shapes, 9 arcsin, 32
fopen command, 210 arctan, 32
forloop, 8, 9 logarithm function, 33

limit, 265, 266 power function, pow, 34, 36
for statement, 8 trigonometric, 31, 32
Function math.h library, 31

myfunction, 25 Matrices

parameter, 24 addition, 116-118

prints row, 26, 27 examples, 115

returns value, 28, 29 inverse

310

of matrix, 126-128

of matrix coding, 129-133

square matrices, 125

technique, 125

testing program, 133, 134
multiplication, 120-123

O

Odd-Shaped area, 91, 92

P

INDEX

Pointers, 259-262

Matrix addition, 116-119
printf, 2

Matrix program, 288-293

Medical records file Product moment correlation

fseek command, 221-224
ftell command, 225
minusonesxsizeof(s2), 225
numread, 217, 220

open, file, 217

patient, epilepsy, 226-229
PatientID, 221
patients.bin, 217
reads/displays data, 218-220
-sizeof(s2) parameters, 225
structure, 214-217

Microsoft Development Kit (SDK), 1
Monte Carlo area of graph

area calculation, 96, 97
area of circle, 98, 100-104
area of rectangle, 93
flowchart, 95

4-D program, 112, 113
random number generator, 94
3-D, cone, 111, 112

3-D, cylinder, 107-110
3-D, sphere area, 105-107
trapezium method, 92
uses, 94

Monte Carlo methods, 91

Buffon’s needle, 150-153

radioactive decay simulation, 147-150

random walk, 153-155

Multiply two numbers, 6

coefficient (PMCC), 142
formula, 143
regression, 143-145
putchar(), 3, 262

Q

Quadratic equations
complete square, 46, 47
factorizing, 45
formula
complete square, 47
complex numbers, 49, 50
mathematical function, 49

R

Radioactive decay simulation
graph package, 150
Monte Carlo, 148, 149
probability, 147

Random walk

simulation, 296-298

Regression, 294-296

Row reduction method, 158

Runge-kutta method, 246
accurate extension, 242
compare points, 244, 245
loop, 242, 243

311

INDEX

S

Scatter graphs and correlation
lines of best fit, 136, 138, 139
PMCC, 137
positive correlation, 137
positive slope, 136
regression, 137, 139
regression line, 140-142

Simpson’s Rule method
area, find, 87-89
parabola shape, 86
restriction, 87
strips, limit, 87

Simultaneous equations
manual solutions

augmented matrix, 159

Gaussian elimination method, 158
independent equations, 157

nine stages, 159-161

row reduction method, 158
unknown quantity, 157

sizeof function, 39, 225

Standard library functions, 262, 263

stdio, 3

Strings
NULL character, 29
strcat, 29, 30
strcmp, 29, 30
strcpy, 29, 30
strlen, 29, 30

Structure
define, larger number, 37, 38

312

example program, 36, 37
Switch instruction, 14-16
“||” symbol, 22

T, U

Taylor and Maclaurin Series, 236
Trapezium integration
area of a trapezium, 67
combined powers, 77-82
graph, 67
inverse powers, 74-77
negative areas, 83-86
perpendicular height, 68
simplification, formula
area calculations, 69-73
trial and improvement, 69
yarr array, 73
Trial and improvement technique, 50-52
Twelve simultaneous equations, 190-204
2D array test, 266-268

VW, X, Y,Z
Visual Studio
breakpoints, 252
debugging, 252
linker, 254
properties, 253
runtime messages, 251
source code, 251
subsystem, 255
Volume calculation, Monte Carlo, 281-285

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to C
	First Program
	Get and Print a Character
	Add Two Numbers
	Add Two Decimal Numbers
	Multiply Two Numbers
	Divide Two Numbers
	Forloops
	Flowcharts
	Do Loops
	Switch Instruction
	If Then Else
	If Then Else If
	Data Arrays
	Functions
	Strings
	Mathematical Functions
	Structures
	Size of Variables
	Goto Command
	Common Mathematical and Logical Symbols

	Chapter 2: Solving Equations
	Quadratic Equations
	Factorizing
	Completing the Square
	Quadratic Formula

	Equations of Higher Powers
	Trial and Improvement
	Which Solution Are We Finding?
	Three Solutions
	User-Entered Function

	Chapter 3: Numerical Integration
	Trapezium Integration
	Simplification of Formula
	Inverse Power
	Combined Powers
	Problem with Negative Areas

	Simpson’s Rule Integration

	Chapter 4: Monte Carlo Integration
	Finding an Odd-Shaped Area
	Monte Carlo Area of Graph
	Area of a Circle
	Higher Dimension Graphs
	Even Higher Dimensions

	Chapter 5: Matrices
	Matrix Arithmetic
	Matrix Addition and Subtraction
	Matrix Multiplication

	Matrix Inverse
	Coding a Matrix Inverse
	Testing the Code

	Chapter 6: Correlation and PMCC
	Scatter Graphs and Correlation
	Product Moment Correlation Coefficient

	Chapter 7: Monte Carlo Methods
	Radioactive Decay Simulation
	Buffon’s Needle
	Random Walk

	Chapter 8: Augmented Matrix
	Manual Solution to Simultaneous Equations
	Augmented Matrix Program
	Twelve Simultaneous Equations

	Chapter 9: File Access
	First Program to Write a File
	Writing a Large Data File
	Medical Records File
	Company Records File

	Chapter 10: Differential Equations
	Taylor and Maclaurin Series
	Euler Method
	Runge-Kutta Method
	Second Order Differential Equations

	Appendix A: Development Environment Reference
	Visual Studio
	Command Line

	Appendix B: Syntax Reference
	Mathematical Functions
	Pointers
	Standard Library Functions
	Comparing Double, Float, and Integer

	Appendix C: Answers to Problems
	Index

