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Introduction

Dear reader, congratulations on choosing to learn the C programming language, and 

thank you for picking up this book. My name is Slobodan Dmitrović, and I will try to 

introduce you to the wonderful world of C programming to the best of my abilities.

This book is divided into five parts. In Part 1, we cover the C language basics. Part 2 

explains the C standard library, and Part 3 introduces us to modern C standards. Part 4 

explains the dos and don’ts in modern C. The final part consists of the Appendices. Let 

us get started!



PART I

The C Programming 
Language
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CHAPTER 1

Introduction

1.1 � What Is C?
C is a programming language – a general-purpose, procedural, compiled programming 

language. C language was created by Dennis Ritchie in the late 1960s and early 1970s. 

The C program is a collection of C source code spread across one or more source and 

header files. Source files, by convention, have the .c extension, and header files have the 

.h extension. Source and header files are plain text files that contain some C code.

1.2 � What Is C Used For?
C is often used for the so-called systems programming, which is operating systems 

programming, application programming, and embedded systems programming, to 

name a few. A large portion of Linux and Windows operating systems was programmed 

using C. C is often used as a replacement for an assembly language. C language 

constructs efficiently translate to the hardware itself.

1.3 � C Compilers
To compile and run a C program, we need a C compiler. A compiler compiles a C 

program and turns the source code into an object file. The linker then links the object 

files together and produces an executable or library. For the most part, we say we 

compile the program and assume the compilation process results in an executable file we 

can run. At the time of writing, some of the more popular C compilers are

•	 gcc – As part of the GCC toolchain

•	 Clang – As part of the LLVM toolchain

© Slobodan Dmitrović 2024 
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•	 Visual C/C++ compiler – As part of the Visual Studio IDE

•	 MinGW – A Windows port of the GCC

1.3.1 � Installing Compilers
Here, we describe how to install C compilers on Linux and Windows and how to compile 

and run our programs.

1.3.1.1 � On Linux

To install a GCC compiler on Linux, open a terminal window and type:

sudo apt install build-essential

This command installs a GCC toolchain, which we can use to compile, debug, 

and run our C programs. Using a text editor of our choice, let us create a file with the 

following code:

#include <stdio.h>

int main(void)

{

      printf("Hello World!\n");

}

Let us save this file as a source.c. To compile this program using the GCC compiler, 

we type:

gcc source.c

This will produce an executable file with a default name of a.out. To run this file, type 

the following in a console window:

./a.out

Running this program should output the Hello World! text to our console window.

Chapter 1  Introduction
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Note T he preceding example code is for demonstration purposes. For now, let us 
take the source code inside the source.c file for granted. We will get into detailed 
code explanation and analysis in later sections.

To install a clang compiler on our Linux system, type:

sudo apt install clang

This command installs another compiler called Clang, which we can also use 

to compile our programs. To compile our previous program using a clang compiler, 

we type:

clang source.c

As before, the compiler compiles the source file and produces an executable file with 

the default name of a.out. To run this executable file, we type:

./a.out

The compiler choice is a matter of preference. Just substitute gcc with clang and vice 

versa. To compile with warnings enabled, type:

gcc -Wall source.c

Warnings are not errors. They are messages indicating that something in our 

program might lead to errors. We want to eliminate or minimize the warnings as well.

To produce a custom executable name, add the -o flag, followed by the custom 

executable name so that our compilation string now looks like:

gcc -Wall source.c -o myexe

To run the executable file, we now type:

./myexe

The ISO C standard governs the C programming language. There are different 

versions of the C standard. We can target a specific C standard by adding the -std= 

flag, followed by a standard name such as c99, c11, c17, and c2x (for the upcoming c23 

standard). To compile for a C99 standard, for example, we would write:

gcc -std=c99 -Wall source.c

Chapter 1  Introduction
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To compile for a C11 standard, we use:

gcc -std=c11 -Wall source.c

To compile for an upcoming C23 standard, we type:

gcc -std=c2x -Wall source.c

If we want to adhere to strict C standard rules, we add the -pedantic compilation 

flag. This flag issues warnings if our code does not comply with the strict C standard 

rules. Some of the use cases are:

gcc -std=c99 -Wall -pedantic source.c

gcc -std=c11 -Wall -pedantic source.c

gcc -std=c17 -Wall -pedantic source.c

gcc -std=c2x -Wall -pedantic source.c #currently used for the C23 standard

To compile and run the program using a single statement, we type:

gcc source.c && ./a.out

This statement compiles the program and, if the compilation succeeds, executes the 

a.out file.

Let us combine it and use the following compilation strings in our future projects. If 

using gcc, we write:

gcc -Wall -std=c11 -pedantic source.c && ./a.out

If using Clang, we write:

clang -Wall -std=c11 -pedantic source.c && ./a.out

1.3.1.2 � On Windows

On Windows, we can install Visual Studio. Choose the Create a new project option, make 

sure the C++ option is selected, choose Empty Project, and click Next. Enter the project 

and solution names or leave the default values and click Create. We have now created 

an empty Visual Studio project. In the Solution Explorer window, right-click on a project 

name and choose Add – New Item…. Ensure the Visual C++ tab is selected, click the C++ 

File (.cpp) option, modify the file name to source.c, and click Add. We can use a different 

file name, but the extension should be .c. Double-click the source.c file and paste our 

Chapter 1  Introduction
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previous Hello World source code into it. Press F5 to run the program. To compile for the 

C11 standard, use the /std:c11 compiler switch. To compile for the C17 standard, use 

the /std:c17 compiler switch. Currently, Visual Studio supports C standards up to C17.

Alternatively, install the MinGW (Minimalist GNU for Windows) and use the 

compiler in a console window, as we would on Linux.

So far, we have learned how to set up the programming environments on Linux and 

Windows and compile and run our C programs. We are now ready to start with the C 

theory and examples.

1.4 � C Standards
The C programming language is a standardized language. There were different C 

standards throughout history. The first notable standard was the ANSI C, and now it 

is the ISO standard known as the ISO/IEC:9989 standard. Some of the C standards 

throughout the years are as follows:

•	 ANSI C standard (referred to as ANSI C and C89)

•	 C90 (official name: ISO/IEC 9899:1990, it is the ANSI C standard 

adopted by ISO; the C89 and C90 are the same things)

•	 C99 (ISO/IEC 9899:1999)

•	 C11 (ISO/IEC 9899:2011)

•	 C17 (ISO/IEC 9899:2018)

•	 The upcoming standard, informally named C23 (the formal name 

will probably become ISO/IEC 9899:2024)

Chapter 1  Introduction
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CHAPTER 2

Our First Program
This chapter describes the main program entry point, how to work with comments, and 

how to write a simple “Hello World” program.

2.1 � Function main( )
Every C program that produces an executable file must have a starting point. This 

starting point is the function main(). The function main is the function that gets called 

when we start our executable file. It is the program’s main entry point. The signature of 

the function main is:

int main(void) {}

The function main is of type int, which stands for integer, followed by the reserved 

name main, followed by an empty list of parameters inside the parentheses (void). The 

name void inside the parentheses means the function accepts no parameters. Following 

is the function body marked with braces {}. The opening brace { marks the beginning 

of a code block, and the closing brace } marks the end of the code block. We write our 

C code inside the code block marked by these braces. The code we write there executes 

when we start our executable file.

For readability reasons, we can put braces on new lines:

int main(void)

{

}

We can keep the opening brace on the same line with the main function definition 

and have the ending brace on a new line:

int main(void) {

}

© Slobodan Dmitrović 2024 
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Note  Braces placement position is a matter of conventions, preferences, and 
coding styles.

In early C standards, the function main was required to have a return 0; statement. 

This statement ends the program and returns the control to the operating system. 

The return value of 0 means the program finished the execution as expected. It ended 

normally. If the main function returns any value other than 0, it means the program 

ended unexpectedly. So, in previous standards, our blank program would look like:

int main(void)

{

      return 0;

}

Statements in C end with a semicolon ;. The return 0; statement within the main 

function is no longer required in modern C. We can omit that statement. When the 

program execution reaches the closing brace, the effect is the same as if we explicitly 

wrote the statement. In modern standards, we can simply write:

int main(void)

{

}

We often see the use of the following, also valid main signature:

int main()

{

      return 0;

}

While this signature indicates there are no parameters, in ANSI C, it could potentially 

allow us to call the function with any number of parameters. Since we want to avoid that, 

we will be using the int main(void) signature, which explicitly states the function does 

not accept parameters.

With that in mind, we will be using the following main skeleton to write our code 

throughout the book:

Chapter 2  Our First Program
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int main(void)

{

}

Note T here is another main signature accepting two parameters: int 
main(int argc, char* argv[]). We will describe it later in the book when 
we learn about arrays, pointers, and command-line arguments.

2.2 � Comments
We can have comments in our C program. A comment is a text that is useful to us but 

is ignored by the compiler. Comments are used to document the source code, serve as 

notes, or comment out the part of the source code.

A C-style comment starts with /* characters and ends with */ characters. The 

comment text is placed between these characters. Example:

int main(void)

{

      /* This is a comment in C */

}

The comment can also be a multi-line comment:

int main(void)

{

      /* This is a

      multi-line comment in C */

}

Starting with C99, we can write a single-line comment that starts with a double slash 

// followed by a comment text:

int main(void)

{

      // This is a comment

}

Chapter 2  Our First Program
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We can have multiple single-line comments on separate lines:

int main(void)

{

      // This is a comment

      // This is another comment

}

Comments starting with the double slash // are also referred to as C++-style 

comments.

2.3 � Hello World
Let us write a simple program that outputs a “Hello World” message in the console 

window and explain what each line of code does. The full listing is:

#include <stdio.h>

int main(void)

{

      printf("Hello World!");

}

The first line #include <stdio.h> uses the #include preprocessor macro to include 

the content of the <stdio.h> header file into our source.c file. The standard-library 

header file name stdio.h is surrounded with matching <> parentheses. This standard- 

library header is needed to use the printf() function. We call this function inside the 

main function body using the following blueprint:

printf("Message we want to output");

The printf function accepts an argument inside the parentheses (). In our case, 

this argument is a string constant or a character string "Hello World!". The string text 

is surrounded by double quotes"". The entire printf("Hello World!") function call 

then ends with the semicolon ; and then we call it a statement. Statements end with a 

semicolon in C. Macros such as the #include <stdio.h> do not end with a semicolon.
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We can output text on multiple lines. To do that, we need to output a new-line 

character, which is \n. Example:

#include <stdio.h>

int main(void)

{

      printf("Hello World!\nThis is a new line!");

}

Output:

Hello World!

We can split the text into two printf function calls for readability reasons. 

Remember, each time we want the text to start on a new line, we need to output the new- 

line character \n:

#include <stdio.h>

int main(void)

{

      printf("Hello World!\n");

      printf("This is a new line!");

}

Output:

Hello World!

This is a new line!

This has the same effect as if we placed a new-line character at the beginning of the 

second printf function call:

#include <stdio.h>

int main(void)

{

      printf("Hello World!");
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      printf("\nThis is a new line!");

}

Output:

Hello World!

This is a new line!
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CHAPTER 3

Types and Declarations
In this chapter, we will learn about the built-in types in C and variable declarations.

3.1 � Declarations
A declaration declares a (variable) name. When we declare a variable, we specify its type 

and variable name, and the compiler reserves memory for our variable. This occupied 

space is called an object or data object in memory. These data objects are accessed by 

names we call variables. We need to declare a variable before we can use it. To declare a 

variable, we put the type_name before the variable_name and end the entire statement 

with a semicolon ;. The declaration pseudo-code looks like this:

type_name variable_name;

We can declare multiple variables of the same type by separating them with 

a comma:

type_name variable_name1, variable_name2, variable_name3;

Variable names can contain both letters and numbers but must not start with 

a number. C is a case-sensitive language, so myvar and MyVar are two different, 

independent names. Variable names should not start with underscore characters as in 

_myvar or __myvar.

3.2 � Introduction
What is a type? A type is a property that describes a range of values and allowed 

operations on those values. An instance of a type is called an object or a data object. 

When we declare a variable, we are creating an instance.

© Slobodan Dmitrović 2024 
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There are different built-in types in C. For example, one type can hold (store) 

characters, another type can hold whole numbers, and some other type can be used to 

store floating-point values. Some of the built-in types are

•	 char – Holds character values

•	 int – Holds whole numbers

•	 float – Holds floating-point values of single precision

•	 double – Holds floating-point values of double precision

Our program data is stored in computer memory. Computer memory is an array of 

memory cells called bits. A bit can have two states we symbolically refer to as 1 and 0. A 

group of 8 bits is often called a byte. A byte of memory has its own label/number, which 

we call an address.

We can visualize a byte as a rectangular area, an occupied space in memory with its 

address. This address is a number, often represented by a hexadecimal number:

Types have different sizes. Data represented by variables of different types occupy 

a different amount of bytes in memory. For example, type char is one byte in size. We 

say that it is one byte long and can be used to store a single character. Other types have 

different sizes. For example, type int can be 4 bytes in size.

There are lower and upper limits to values each type can hold, a minimum or 

maximum value a type can store.

There are special qualifiers we can apply to the preceding types, such as long and 

unsigned. We discuss each type in more detail in the following sections.

3.3 � Character Type
Type char allows us to store a single character. To declare a single variable of type char 

inside the main function body, we write:

Figure 3-1.  A single byte with an address 
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int main(void)

{

      char mychar;

}

The statement char mychar; is a variable declaration. In simple words: from now on, 

there will be a char variable called mychar. We also say that mychar is of char type.

The variable declared inside the function main is also called a local variable. It is 

local to the main function. Local variables are not initialized by default and contain 

random values. Once declared, we can access the variable. For example, we can assign a 

value to it using an assignment operator:

int main(void)

{

      char mychar;

      mychar = 'a';

}

The first line inside the main function body declares a variable, and the second 

line assigns it a value of 'a'. We used a character constant 'a' to assign a value to our 

variable using the = assignment operator. Character constants are enclosed in single 

quotes ''. Examples of character constants are 'a', 'A', and 'z'. Some character constants 

must be escaped using the backslash character \. Some of the escape-sequence 

characters are

•	 The new-line character '\n'

•	 A single quote character '\''

•	 A double quote character '\"'

•	 A tab character '\t'

The character type char is also an integral type. We can say it is a small integer. 

In type char, every character constant is represented by a matching number inside 

the encoding table. This encoding table is called a character set, and it might be ASCII 

or some other table, depending on the implementation. For example, the preceding 

character constant 'a' is represented by a number 97 in the ASCII table. So, we can 

assign a value of 97 to our mychar variable, and the underlying byte value would be 

the same:

Chapter 3  Types and Declarations
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int main(void)

{

      char mychar;

      mychar = 97;

}

It represents the same byte value using different constants, either by using a 

character constant 'a' or an integer constant 97. For the most part, we will use character 

constants to assign values to char variables.

We can also think of type char as being a small integer type.

Instead of declaring a variable and then assigning a value to it, we could initialize the 

variable:

int main(void)

{

      char mychar = 97;

}

To print out our variable’s value, we will use the printf function. To print out a single 

variable value, we call the printf function using the following syntax:

printf("%format_specifier", variable_name);

If we want to print out multiple variables, we will use the multiple format specifiers/

placeholders in the double quotes, followed by a comma-separated list of variables:

printf("%format_specifier1 %format_specifier2", variable_name1, 

variable_name2);

The %format_specifier1 part is a placeholder and a format specifier for the value of 

variable_name1. The format specifier specifies how our variable should be formatted/

interpreted when we send it to the output/console window. The %format_specifier2 

is a placeholder for the value of variable_name2, and so on. The format specifier is also 

called a conversion specifier.

To print out the character variable as an actual character, we can use the c format 

specifier:
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#include <stdio.h>

int main(void)

{

      char mychar;

      mychar = 'a';

      printf("%c", mychar);

}

Output:

a

Explanation: The printf() function writes data to the standard output, which is 

our console window. The printf function can accept multiple arguments. The first 

argument is the double-quoted text. Inside the double-quoted text, there is a placeholder 

for our variable. This placeholder consists of a starting percentage sign % followed by the 

format specifier, which in our case is c. There are different format specifiers for different 

types. These determine how the value of our variable is to be presented/printed within 

the quoted text.

To print out the character variable value as an integral number, we use the %d or the 

%i format specifier:

#include <stdio.h>

int main(void)

{

      char mychar;

      mychar = 'a';

      printf("%d", mychar);

}

Output:

97
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The size of the type char is one byte. This means that mychar occupies exactly 

one byte of memory storage. We can check the size of the object by using the sizeof 

operator. The sizeof operator returns the object’s or type’s size in bytes:

#include <stdio.h>

int main(void)

{

      char mychar;

      mychar = 'a';

      �printf("The size of a character object is %zu byte(s).", 

sizeof(mychar));

}

Output:

The size of a character object is 1 byte(s).

The %zu format specifier is used for the return type of the sizeof operator. The 

char type range varies depending on the implementation but is usually between -128 

and +127.

A special unsigned qualifier can be applied to integral types, including type char. 

This qualifier means the type can hold only positive values and a zero. The size in 

memory remains one byte, but now the type can hold twice as many positive values. The 

maximum value of an unsigned char is usually 255. Example:

#include <stdio.h>

int main(void)

{

      unsigned char mychar = 255;

      printf("The value of mychar is: %d", mychar);

}

Output:

The value of mychar is: 255
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A fair amount of theory surrounds even a simple thing such as the char type, but we 

need not worry. Each section is accompanied by plenty of source code examples and 

exercises.

3.4 � Integer Type
The integer type, int, is used to store whole (integral) numbers/values and perform 

certain operations on them. To declare an integer variable, we write int variable_

name;. Let us write a program that declares an integer variable and assigns a value to it:

int main(void)

{

      int x;

      x = 123;

}

There are different integer constants we can assign to int variables.

The first kind is the decimal integer constant represented by negative and positive 

numbers, for example, -256, 0, 128, etc. The second kind is the octal constant. Octal 

constants begin with a zero sign of 0, followed by numbers from 0 to 7. An example of 

an octal constant is 012, equal to a decimal value of 10. The third kind is a hexadecimal 

constant. This constant begins with 0x or 0X, followed by symbols from 0 to 9 and letters 

from A to F. The hexadecimal value of 0xA represents a decimal number of 10. Let us 

write a program that assigns a value of 10 to three different integer variables using 

decimal, octal, and hexadecimal notation:

int main(void)

{

      int x;

      x = 10;  // decimal constant

      int y;

      y = 012; // octal constant

      int z;

      z = 0xA; // hexadecimal constant

}
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In this example, both x, y, and z have the same value of 10 (ten), represented by three 

different constants. All these constants are of type int.

We can print the integer value using different format specifiers, %d for decimal, %o for 

octal, and %x or %X for hexadecimal representation:

#include <stdio.h>

int main(void)

{

      int x;

      x = 10;

      printf("Decimal: %d Octal: %o Hexadecimal: %X", x, x, x);

}

Output:

Decimal: 10 Octal: 12 Hexadecimal: A

Here, we print out the same value but with three different representations.

Depending on the hardware and the implementation, the type int is usually 4 bytes 

wide in memory. It can hold values from at least −32768 to +32767, but on our computer, 

this range is generally from -2147483648 to +2147483647.

Some modifiers or qualifiers can be applied to type int. They are signed, unsigned, 

short, and long. Integers are signed by default, so instead of saying signed int, we 

simply write int. The unsigned qualifier says the type int can only hold positive values 

and a zero. The size of the type is the same. Unsigned integers can now hold twice as 

many positive numbers as the regular (signed) int.

An example of unsigned int is:

#include <stdio.h>

int main(void)

{

      unsigned int x = 123456789u;

      printf("The value of an unsigned integer is: %u", x);

}
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Output:

The value of an unsigned integer is: 123456789

We can rewrite the preceding example so that the int part is omitted:

#include <stdio.h>

int main(void)

{

      unsigned x = 123456789u;

      printf("The value of an unsigned integer is: %u", x);

}

Output:

The value of an unsigned integer is: 123456789

Note  When using any of these specifiers on type int, we can omit the int part 
and write only the specifier(s) name(s).

The unsigned integer constants have u or U suffix, such as our 123456789u value. We 

used the %u specifier to print out the value of an unsigned integer.

Other specifiers that can be applied are short and long. These specifiers change the 

length of the integer type. Type short is often 2 bytes in length and long is at least 4 bytes 

in length. Here is a source code example demonstrating the use of short and long types:

#include <stdio.h>

int main(void)

{

      short x;

      x = 1234;

      printf("The value of a short integer is: %d\n", x);
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      long y;

      y = 123456789l;

      printf("The value of a long integer is: %ld\n", y);

}

Output:

The value of a short integer is: 1234

The value of a long integer is: 123456789

The first part declares a short integer x and prints its value using the %d format. The 

\n after the %d placeholder is just a new-line character, and it is not part of the specifier. 

The second part declares a long integer y. Long integer constants have the l or L suffix, 

such as our 123456789l value. We used the %ld format to print out the value of a long 

integer.

These type specifiers can be chained together so that we can have an 

unsigned short:

#include <stdio.h>

int main(void)

{

      unsigned short x;

      x = 1234u;

      printf("The value of an unsigned short integer is: %hu\n", x);

}

Output:

The value of an unsigned short integer is: 1234

Here, we used the %hu format specifier to format and print out the value of an 

unsigned short. Our 1234u constant also has the u suffix as it is of unsigned type. There 

is no specific suffix for a short type.
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To declare and print out the unsigned long value, we write:

#include <stdio.h>

int main(void)

{

      unsigned long y;

      y = 123456789ul;

      printf("The value of an unsigned long variable is: %lu\n", y);

}

Output:

The value of an unsigned long variable is: 123456789

We used the %lu format to print out the value of an unsigned long. Notice that our 

123456789ul constant now carries both u and l suffixes since it is of unsigned long type.

Starting with the C99 standard, there is also a long long integer type that is at least 

8 bytes long. Its constants have the ll or LL suffixes. To print out the value of the long 

long type, we use the %lld or %lli format specifier:

#include <stdio.h>

int main(void)

{

      long long x;

      x = 123456789ll;

      printf("The value of a long long integer is: %lld", x);

}

Remember to compile for at least the C99, C11, C17, or the C23 standard, using the 

following command-line compilation strings:

gcc -Wall -std=c99 -pedantic source.c && ./a.out

or:

gcc -Wall -std=c11 -pedantic source.c && ./a.out
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From C99 onward, there can also be an unsigned long long type. Its constants carry 

the ull, ULL, llu, or LLU suffixes. We use the %llu format specifier to print out the value:

#include <stdio.h>

int main(void)

{

      unsigned long long x;

      x = 123456789llu;

      printf("The value of an unsigned long long integer is: %llu", x);

}

3.5 � Floating-Point Types
There are three types for representing floating-point numbers. The first is called float, 

the second type is called double, and the third type is called long double.

3.5.1 � float
Type float is a type used for storing single-precision floating-point numbers. The type 

is 4 bytes wide. Floating-point numbers are also called real numbers. In a floating-type 

number such as 123.456, there is the whole number part (123), the decimal separator (.), 

and the fractional/decimal part 456. To declare a variable of type float, we write:

int main(void)

{

      float myfloat;

      myfloat = 123.456f;

}

We will describe two floating-point constants used to represent floating-point values. 

The floating-point constant, such as the 123.456f, carries a suffix f or F, which makes 

it of type float. The same value represented by an exponent constant has the form 

123456e-3f. It means 123456 times 10 to the power of -3. To represent a number 100 

using an exponent constant, we would write 1e2f. To represent a value of 0.123 using a 

decimal constant, we can also write .123 without the leading 0.
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To print out a value of type float, we use the %f format specifier:

#include <stdio.h>

int main(void)

{

      float myfloat;

      myfloat = 123.456f;

      printf("The value of a floating-point variable is: %f", myfloat);

}

Output:

The value of a floating-point variable is: 123.456001

This example prints out the value of 123.456001 because the default precision of a %f 

format specifier is 6, so it also adds the (imprecise) 001 part. To print out only the three 

decimal places, we use the %.3f format:

#include <stdio.h>

int main(void)

{

      float myfloat;

      myfloat = 123.456f;

      printf("The value of a floating-point variable is: %.3f", myfloat);

}

The output is now 123.456 because the %.3f specifier uses three positions 

(characters/places) to display the floating-point value’s fractional part. We can also 

explicitly specify the whole and fractional parts’ lengths using the %3.3f format specifier.

3.5.2 � double
Another type for storing floating-point values is type double. It is 8 bytes wide and offers 

increased precision and range as compared to type float. To declare a variable of type 

double, we write:
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int main(void)

{

      double d;

      d = 123.456;

}

Floating-point constants without suffixes, such as our 123.456, are of type double by 

default. So, for a simple decimal constant of type double, we write 123.456, and for an 

exponent constant, we write 123456e-3.

To print out the value of type double, we use the %f or the %lf format specifier inside 

the printf function:

#include <stdio.h>

int main(void)

{

      double mydouble;

      mydouble = 123.456;

      printf("The value of a double variable is: %.3f", mydouble);

}

Output:

The value of a double variable is: 123.456

When to use float and when to use double? It depends on the context, the 

hardware, and our needs. Float occupies less memory than double, might be faster than 

double, but is less precise. When increased precision is required, we can opt for double.

In general, we should prefer double to float.

3.5.3 � long double
The third floating type is called a long double. The type has increased precision and 

range. To declare a variable of this type, we write:
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int main(void)

{

      long double mylongdouble;

      mylongdouble = 123456.789l;

}

Long double constants have l or L suffixes. To print out the value of a long double, 

we use the %Lf format specifier:

#include <stdio.h>

int main(void)

{

      long double mylongdouble;

      mylongdouble = 123456.789l;

      �printf("The value of a long double variable is: %.3Lf", 

mylongdouble);

}

Output:

The value of a long double variable is: 123456.789
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CHAPTER 4

Exercises

4.1 � Hello World with Comments
Let us write a program that has comments in it and outputs a “Hello World!” message on 

one line and “C rocks!” on a new line:

#include <stdio.h>

int main(void)

{

      // this is a comment

      /* This is an

      multi-line comment */

      printf("Hello World.\n");

      printf("C rocks!.\n");

}

Output:

Hello World.

C rocks!.
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4.1.1 � Declaration
Write a program that declares four variables of type char, int, float, and double, 

respectively:

int main(void)

{

      char c;

      int x;

      float f;

      double d;

}

4.1.2 � Definition
Write a program that declares and initializes four variables of type char, int, float, and 

double, respectively:

int main(void)

{

      char c = 'a';

      int x = 123;

      float f = 123.456f;

      double d = 789.101112;

}

4.1.3 � Outputting Values
Write a program that initializes and prints four variables of type char, int, float, and 

double, respectively:

#include <stdio.h>

int main(void)

{

      char c = 'a';

      int x = 123;

      float f = 123.456f;
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      double d = 789.101112;

      printf("%c\n", c);

      printf("%d\n", x);

      printf("%f\n", f);

      printf("%f\n", d);

}

Output:

a

123

123.456001

789.101112
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CHAPTER 5

Operators
Operators are an essential part of the language. This chapter explains what they are 

and how they are used. It might seem that there is plenty of theory surrounding this 

subject but do not worry. We need to adopt the theoretical part to use it in practical code 

examples later in the book.

5.1 � Introduction
What is the operator? An operator is a language entity that performs/applies an 

operation to its arguments and returns a result. One or more different symbols are used 

to represent operators. To better understand the terminology, let us look at a simple 

mathematical expression: x + y. Here, + is an operator. It applies an addition operation 

using x and y. Here, x and y are called operands, where x is a left operand and y is the 

right operand. The entire x + y part is called an expression.

Depending on the type of operation, we can have different categories of operators. 

Some of them are arithmetic, relational, assignment, logical, bitwise, and other operators.

5.2 � Arithmetic Operators
Arithmetic operators perform arithmetic operations on their arguments. Arithmetic 

operators are

•	 + – Addition

•	 - – Subtraction

•	 * – Multiplication

•	 / – Division

•	 % – Modulo
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The addition operator + allows us to add the operands together. The subtraction 

allows us to subtract y from x. The multiplication operator multiplies the x and y, and the 

division operator divides x with y.

The division can be an integer division or a floating-point division. The integral 

division occurs when both operands are of some integral type, such as int. The result 

of such division is the whole number only, and the remainder (the decimal part) is 

discarded. For example, the result of the 9 / 2 expression is 4, and the fractional part of 

.5 is discarded. Since both 9 and 2 are of type int, the result of the entire expression is 

also of type int. If only one operand is of the floating-point type, the entire expression is 

of the floating-point type. For example, the result of 9.0 / 2 is 4.5 as at least one of the 

operands is of a floating-point type.

Let us look at what the % modulo operator does. It returns the remainder of the 

integral division. The result of the x % y expression is the remainder of the x / y 

integral division. For example, the result of the 9 % 2 is equal to 1. The result of an 

integral division 9 / 2 is equal to 4, as the fractional part gets discarded. And 4 * 2 is equal 

to 8. When we subtract 8 from 9, we get the modulo result equal to 1 in our case.

The precedence of *, /, and % operators is higher than the + and – operators. In an 

expression like x + y * z, the subexpression y * z is evaluated first. The x + (the result 

of the y * z subexpression) is evaluated next.

5.3 � Assignment Operator
The assignment operator = assigns a value to the variable/expression. A source code 

example of a simple assignment operator would be:

#include <stdio.h>

int main(void)

{

      int x;

      x = 123;

      printf("%d", x);

}
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In an x = 123 expression, the value of 123 gets assigned to variable x. In this 

expression, everything occurring on the left side of the assignment operator = is called 

a left-hand side expression or lhs for short. In our case, it is a simple variable x. And 

everything occurring on the right of the assignment operator is called a right-hand side 

expression or rhs for short, which in this example is an integer constant 123. We say that 

the assignment operator assigns a value of rhs to lhs. In our case, it assigns a value of 123 

to our variable x. We can also assign the value of one variable to another:

#include <stdio.h>

int main(void)

{

      int x;

      int y;

      x = 123;

      y = x;

      printf("%d", y);

}

In a y = x; statement, we assigned the value of x to y. In a y = x expression, we only 

assign the copy of the value of x to y, not the memory address. The two data objects x 

and y are two different data objects in memory. Changing the value of either one does 

not affect the value of the other one.

Let us use the assignment operator to assign values to variables of different types 

such as char, int, and float:

#include <stdio.h>

int main(void)

{

      char c;

      c = 'A';

      int x;

      x = 123;

      float f;
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      f = 123.456f;

      printf("Char: %c int: %d float: %.3f", c, x, f);

}

Here, we declare the variables, assign the values of constants to our variables, and 

then print them. We used three different types, constants, and format specifiers.

5.4 � Compound Assignment Operators
Compound assignment performs binary operation on both operands and then assigns 

the value to its left-hand side operand. Some of the compound assignments are +=, -=, 

*=, /=, and %=.

The compound assignment operator += in the x += 123 expression is equivalent to x 

= x + 123. Example:

#include <stdio.h>

int main(void)

{

      int x = 0;

      x += 123;

      printf("%d", x);

}

To use a *= compound assignment operator, we would need to initialize x to 1 as we 

use the multiplication inside the compound statement operator:

#include <stdio.h>

int main(void)

{

      int x = 1;

      x *= 123;

      printf("%d", x);

}

As before, the x *= 123; statement is a shorter way of writing the x = x * 123; 

statement.
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5.5 � Relational Operators
Relational operators compare the values of two operands/expressions. They are

•	 > – Greater than

•	 < – Less than

•	 >= – Greater than or equal to

•	 <= – Less than or equal to

In an expression x < y, we check if x is less than y. If that is true, the entire x < y 

expression gets the value 1, which stands for true. If x is not less than y, the entire 

expression is evaluated to 0, which is false. Example:

#include <stdio.h>

int main(void)

{

      int x = 123;

      int y = 456;

      int islessthan = x < y;

      int isgreaterthan = x > y;

      �printf("The value of \"is less than\" expression is: %d\n", 

islessthan);

      �printf("The value of \"is greater than\" expression is: %d\n", 

isgreaterthan);

}

Output:

The value of "is less than" expression is: 1

The value of "is greater than" expression is: 0
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5.6 � Equality Operators
There are two kinds of equality operators:

•	 == – Equal to

•	 != – Not equal to

In an x == y expression, we check if (the value of) x equals y. If that is the case, the 

entire x == y expression gets the value of 1, which stands for true. If not, the expression 

gets the value of 0, which means false. In an x != y expression, we check if x is not 

equal to y. If true, the expression is evaluated to 1; else, it gets the value of 0. Example:

#include <stdio.h>

int main(void)

{

      int x = 123;

      int y = 456;

      int isequalto = x == y;

      int isnotequalto = x != y;

      �printf("The value of the \"is equal to\" expression is: %d\n", 

isequalto);

      �printf("The value of the \"is not equal\" to expression is: %d\n", 

isnotequalto);

}

Output:

The value of the "is equal to" expression is: 0

The value of the "is not equal" to expression is: 1

Let us explain what the “entire x == y expression gets the value of 1 or 0” means. It 

means expressions themselves are of a certain type, and they hold values.

These expressions are often used as conditions in the so-called conditional 

statement. Their value is inspected. If the expression evaluates to 1, the condition is true; 

if it evaluates to 0, the condition is false. We cover these topics in more detail later in the 

book when we discuss the if-statement.
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5.7 � Logical Operators
The logical operators perform logical (bool/Boolean) operations on their operands and 

return the result of such operations. The logical operators are

•	 && – Logical AND operator

•	 || – Logical OR operator

•	 ! – Unary negation operator

The logical operator && performs the logical AND operation on its operands and 

returns the value of 1 when both operands are 1. In all other cases, it returns a value of 0.

The logical operator || performs the logical OR operation and returns 0 when both 

operands are 0. In all other cases, it evaluates the expression to 1. The unary negation 

operator ! performs the negation operation on its only right-hand side operand. So 0 

becomes 1, and 1 or any other nonzero value becomes 0.

Example:

#include <stdio.h>

int main(void)

{

      int x = 1;

      int y = 0;

      int myand = x && y;

      int myor = x || y;

      int mynegation = !x;

      printf("The value of an AND expression is: %d\n", myand);

      printf("The value of an OR expression is: %d\n", myor);

      printf("The value of a NEGATION expression is: %d\n", mynegation);

}

Output:

The value of an AND expression is: 0

The value of an OR expression is: 1

The value of a NEGATION expression is: 0
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5.8 � Increment and Decrement Operators
Increment operator ++ is used to add 1 to a variable, and decrement operator -- is used 

to subtract 1 from a variable.

Both these operators can be used in their so-called prefix or postfix forms. When 

used before the variable name, as in ++my_var or --my_var, they are called prefix 

operators. When they are used after the variable name, as in my_var++ or my_var--, they 

are called postfix operators. We now have four possible combinations:

•	 ++var_name – prefix ++ operator

•	 var_name++ – postfix ++ operator

•	 --var_name – prefix -- operator

•	 var_name-- – postfix -- operator

The prefix operator increments/decrements the value of a variable before the 

variable is used in an expression. When used as a postfix operator, the program evaluates 

a variable in an expression and then increments its value.

A simple example:

#include <stdio.h>

int main(void)

{

      int x = 10;

      int y = 10;

      int myprefix = ++x;

      int mypostfix = y++;

      �printf("The prefix result: %d, the postfix result: %d\n", myprefix, 

mypostfix);

}

Output:

The prefix result: 11, the postfix result: 10
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Explanation: We have two int variables, x and y, both having a value of 10. We use 

the prefix ++ operator on x. The x is incremented by 1 before the result of an expression 

is assigned to myprefix variable. Then, we use a postfix operator on y. The result of an 

expression is assigned to mypostfix var, and then the value is incremented by one.

Increment and decrement operators increment/decrement a variable value by 1 and 

save us from typing the: my_var = myvar + 1 or my_var = myvar - 1.

Note  Whether we use a prefix or a postfix form is relevant only in the context 
of the current expression/statement where these operators are used. By the 
time the program flow reaches the printf point, both x and y will have the 
value of 11.

There are also other kinds of operators, which we explain later in the book, as we 

learn further and adopt new things.

5.9 � Operator Precedence
Some operators have higher precedence than others. For example, operators / and * 

have higher precedence over operators + and -. This is also true in the science of math. 

For example, in an expression x + y * z, the y * z part/subexpression gets evaluated 

first. Then, this subexpression result gets added to x, as the * operator has higher 

precedence over the + operator.

If we need the x + y subexpression to be evaluated first, we surround the 

subexpression with parentheses ():

(x + y) * z

This forces the x + y subexpression to be evaluated first. Then, the result of 

this subexpression gets multiplied by z. This is because the () operator has higher 

precedence over the + and * operators. The () operator groups the items together.

Here is the list of some of the operators sorted by precedence, from higher to lower:

++ -- – Postfix increment and decrement

() – Function call operator

[] – Array subscript

Chapter 5  Operators



44

. – Structure member access

-> – Structure member access through a pointer

++ -- – Prefix increment and decrement

+ - – Unary plus and minus

! – Logical NOT

(type_name) – Cast operator

* – Dereference operator

& – Address-of

* / % – Multiplication, division, and modulo

+ - – Addition and subtraction

<< >> – Bitwise left shift and right shift

< <= – Relational operators

> >= – Relational operators

== != – Equality operators

&& – Logical AND

|| – Logical OR

?: – Ternary conditional operator

= – Assignment operator

+= -= – Compound assignments
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CHAPTER 6

Expressions
What is an expression? An expression is operators and operands grouped together to 

perform some calculations and yield a result. There are different kinds of expressions. 

There are arithmetic expressions, as in x + y; comparison expressions, as in x > y; 

assignment expressions, as in x = y; and logical expressions, such as x && y.

An expression can consist of multiple subexpressions, as in z = x + y. Here, the x + 

y can be treated as an arithmetic subexpression inside the assignment expression.

The entire expression is of a particular type. What that type is depends on the nature 

of the result of the entire expression. For example, if we had a simple expression x + y, 

and x and y were of type int, then the entire expression would be of type int too. But 

what if one operand was of type double and the other was of type int? What would the 

expression result/type be? The result would be double as the int operand is promoted 

to type double. In general, smaller/narrower types are converted to wider types in 

arithmetic expressions. For example, char becomes int, float, or a double, depending 

on the second operand type.

6.1 � Initialization
We can declare a variable and assign a value to it on the same line. This approach is 

called initialization. We say we initialize the variable to a certain value. The blueprint for 

the initialization is:

type_name variable_name = some_value;

Initialization example:

#include <stdio.h>

int main(void)

{
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      char c = 'a';

      int x = 123;

      float f = 123.456f;

      double d = 789.123;

      printf("The values are: %c, %d, %.3f, %.3f\n", c, x, f, d);

}

Output:

The values are: a, 123, 123.456, 789.123

This example initializes and prints out several different variables using appropriate 

format specifiers. If we only declare and do not initialize those variables, they would hold 

random garbage values.

Having some_type myvar; is called declaration, and having some_type myvar = 

some_value; is called initialization or definition. Initialization (definition) is also a 

declaration.

Tip  It is a good practice to always initialize your variables before using them.

6.2 � Type Conversion
Expressions of one type can be converted to expressions of another type. Some 

conversions are implicit and occur automatically. We can also explicitly convert an 

expression to a certain type using the (convert_to_type)expression syntax. A simple 

example where we explicitly convert the type char to type int:

#include <stdio.h>

int main(void)

{

      char c = 'A';

      int x;

      x = (int)c;

      printf("The result is: %d\n", x);

}
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The following example relies on implicit conversion from int to double:

#include <stdio.h>

int main(void)

{

      int x = 10;

      int y = 30;

      double d = x / y;

      printf("The result is: %f\n", d);

}

Output:

The result is: 0.000000

The result of an integer division is implicitly converted to type double, and we get the 

value of 0.000000. Suppose we explicitly cast the first operand x to double. In that case, 

we get the expected result of a floating-point division, which is 0.333333. Example:

#include <stdio.h>

int main(void)

{

      int x = 10;

      int y = 30;

      double d = (double)x / y;

      printf("The result is: %f\n", d);

}

Output:

The result is: 0.333333

Alternatively, we can make at least one of the operands of type double, and the whole 

expression will be of type double, as the other operand of type int gets automatically 

promoted into a type double when the x / y expression is evaluated. This is also called 

an integer promotion. Example:
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#include <stdio.h>

int main(void)

{

      double x = 10.0;

      int y = 30;

      �double d = x / y; // y here gets promoted to type double, because x 

is of type double

      printf("The result is: %f\n", d);

}

Output:

The result is: 0.333333
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CHAPTER 7

Statements
This chapter explains statements in general – expressions ending with a semicolon (;) 

and statements built into the language itself.

7.1 � Introduction
What is a statement? A statement is an expression ending with a semicolon symbol (;). 

For example, x + y is an expression, but x + y; is a statement. Let us list a few simple 

statements we have used so far:

•	 int x; – A statement containing a declaration

•	 int x = 123; – A statement containing an initialization

•	 x = 123; – A simple assignment statement

•	 z = x + y; – A statement with multiple expressions

•	 x++; – A statement having a postfix increment expression

•	 printf("Hello World!"); – A function call statement

Every statement except the last one is called an expression statement because they 

consist solely of expressions. The last statement is a function call statement. We often say 

that statements are executed and expressions are evaluated.

Let us write a simple source code example to explain the terminology:

#include <stdio.h>

int main(void)

{

      int x = 123;

      int y = 456;
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      int z = x + y;

      printf("The result is: %d\n", z);

}

Output:

The result is: 579

In this example, statements inside the function main() are executed in a sequence, 

one after the other. Statements inside the function body marked with { } are also called 

compound statements. The entire block is often referred to as a block of statements or 

code block.

Note  There is no semicolon sign after the right brace } marking the end of a 
code block.

Now, with the terminology out of the way, let us learn about the built-in statements. 

These statements are part of the C programming language itself. They have reserved 

names and special syntax and can be divided into several categories:

Selection statements (conditional statements):

•	 if statement

•	 if-else statement

•	 switch statement

Iteration statements or loops:

•	 for statement

•	 while statement

•	 do-while statement
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7.2 � Selection Statements
Selection statements execute other statements based on some expression (condition). 

If that expression evaluates to anything other than 0, they proceed to execute other 

statements. Here, we will explain the following selection statements:

•	 if statement

•	 if-else statement

•	 switch statement

7.2.1 � if
The if statement is of the following syntax:

if (some_condition)

    some_statement;

The if statement checks an expression (a condition) first. The condition is 

surrounded by parentheses (). If that condition (expression) evaluates to true (anything 

other than 0), the specified statement is executed. If the condition is false (the condition 

evaluates to 0), the statement will not be executed.

The following example uses an if statement to execute a single printf statement:

#include <stdio.h>

int main(void)

{

      int x = 123;

      if (x < 150)

            printf("The x is less than 150.\n");

}

The if statement checks the condition first. In our case, it checks if x is less than 

some arbitrary number 150. If so, the condition is true, and the printf statement is 

executed. If the condition is false, the printf call will not be executed.

The if statement can also execute a block of statements/multiple statements marked 

with braces {}. The syntax is:
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if (some_condition)

{

      some_statement_1;

      some_statement_2;

      some_statement_3;

      // ...

}

An example that uses the if statement to execute a block of statements:

#include <stdio.h>

int main(void)

{

      int x = 123;

      if (x < 150)

      {

            printf("The x is less than 150.\n");

            printf("This is a second statement.\n");

      }

}

Output:

The x is less than 150.

This is a second statement.

The if statement is a perfect use case for logical operators && and || where these 

operators can appear as part of the condition expression. An example that uses the 

logical AND operator &&:

#include <stdio.h>

int main(void)

{

      int x = 123;

      int y = 456;

      if (x < 150 && y > 150)

Chapter 7  Statements



53

      {

            printf("The condition is true.\n");

      }

}

Output:

The condition is true.

The condition in this if statement says: If both x is less than 150 and y is greater than 

150, the entire condition is true, and the printf statement gets executed. Let us now 

write a similar example that uses a logical OR operator || instead:

#include <stdio.h>

int main(void)

{

      int x = 123;

      int y = 456;

      if (x < 150 || y > 150)

      {

            printf("The condition is true.\n");

      }

}

Output:

The condition is true.

This condition checks if either x is less than 150 or y is greater than 150. If either of 

these is true, the entire expression is true, and the printf function gets called/executed 

inside the code block.

To use a negation operator ! inside the if statement condition, we write:

#include <stdio.h>

int main(void)

{
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      int x = 0;

      if (!x)

      {

            printf("The condition is true.\n");

      }

}

Output:

The condition is true.

In this example, the negation operator ! negates the value of x. Since x was 0, 

the negation operator turns it into 1, which stands for true, rendering the entire !x 

expression true. Since now the condition is true, the if statement executes the code 

block with our printf function in it.

Note  It is a good practice always to use the code block marked with {} inside the 
if and other conditional statements, even when the code block contains only one 
statement. This is for readability reasons.

7.2.2 � if-else
In addition to an if statement, there is also an if-else variation. The if-else statement 

is of the following syntax:

if (some_condition)

      some_statement_1;

else

      some_statement_2;

The if-else statement checks the condition value, and if the condition is true, 

it executes some_statement1. If the condition is false, it executes some_statement_2 

coming after the else keyword. Example:
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#include <stdio.h>

int main(void)

{

      int x = 123;

      if (x < 150)

            printf("The condition is true. X is less than 150.\n");

      else

            printf("The condition is false. X is not less than 150.\n");

}

Output:

The condition is true. X is less than 150.

This example uses a simple condition to check if x is less than some arbitrary 

number 150. If the condition is true, the first printf function executes. Otherwise, 

when x is not less than 150 (when the condition is false), the second printf statement 

executes.

To execute more than one statement in either if or else sections, we surround the 

statements with code blocks {}:

#include <stdio.h>

int main(void)

{

      int x = 123;

      if (x < 150)

      {

            printf("The condition is true. X is less than 150.\n");

            printf("This is the second statement in the if-block.\n");

      }

      else

      {

            printf("The condition is false. X is not less than 150.\n");

            printf("This is the second statement in the else-block.\n");

      }

}
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Output:

The condition is true. X is less than 150.

This is the second statement in the if-block.

As before, when executing statement(s) from conditional statements, it is a good 

practice to use the code blocks {}, even if there is only one statement to be executed:

#include <stdio.h>

int main(void)

{

      int x = 123;

      if (x < 150)

      {

            printf("The condition is true. X is less than 150.\n");

      }

      else

      {

            printf("The condition is false. X is not less than 150.\n");

      }

}

Output:

The condition is true. X is less than 150.

7.2.3 � switch
The switch statement executes a code based on the integral expression value. It is of the 

following syntax:

switch (expression)

{

      case value_1:

            statements;

            break;
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      case value_2:

            statements;

            break;

      case value_3:

            statements;

            break;

      default:

            statement;

            break;

}

The preceding code is a switch statement blueprint. Let us break the preceding 

wordy syntax into pseudo-code segments and analyze the switch statement structure, 

one segment at a time.

The switch statement evaluates the value of an expression inside parentheses 

followed by a switch statement body marked with {}. The expression inside parentheses 

must be of type char, int, signed, unsigned, or enum (we cover enums later in the book). 

So far, it looks like the following:

switch (expression)

{

}

The switch statement body can have one or more case: labels. Each case label has 

a constant expression that is of char, int, signed, unsigned, or enum type followed by a 

colon sign (:). Now the switch statement looks like this:

switch (expression)

{

      case value_1:

      case value_2:

      case value_3:

}
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If the constant-expression value inside the case: label matches the value of the 

expression, the statement inside that case label is executed. The statement needs to be 

followed by a break; statement. A break or return statement exits the switch statement. 

If we leave out the break; statement, the code would fall through, meaning the code in 

the next case label would also execute. Now, our switch statement looks like:

switch (expression)

{

      case value_1:

            some_statement;

            break;

      case value_2:

            some_statement;

            break;

      case value_3:

            some_statement;

            break;

}

And finally, there is a default: label. If none of the case label values match the 

expression value, the statement inside the default: label gets executed. It is good 

practice to put a break statement inside the default label as well. Our full pseudo-code 

switch statement now looks like:

switch (expression)

{

      case value_1:

            statements;

            break;

      case value_2:

            statements;

            break;

      default:

            statement;

            break;

}
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Now, we are ready to write a complete source code example that uses the switch 

statement:

#include <stdio.h>

int main(void)

{

      int x = 123;

      switch (x)

      {

      case 100:

            printf("The value of x is 100.\n");

            break;

      case 123:

            printf("The value of x is 123.\n");

            break;

      case 456:

            printf("The value of x is 456.\n");

            break;

      default:

            printf("None of the above values matches the value of x.\n");

            break;

      }

}

Output:

The value of x is 123.

This example initializes an integer variable x to the value of 123. Then, it uses the 

switch statement to check if the value of x is equal to either 100, 123, or 456. Since the 

second case label indeed checks for the value of 123, the printf statement in that label is 

executed.
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Let us now write an example that uses the type char:

#include <stdio.h>

int main(void)

{

      char c = 'a';

      switch (c)

      {

      case 'a':

            printf("The value of c is 'a'.\n");

            break;

      case 'b':

            printf("The value of c is 'b'.\n");

            break;

      case 'c':

            printf("The value of c is 'c'.\n");

            break;

      default:

            printf("None of the above values matches the value of c.\n");

            break;

      }

}

Output:

The value of c is 'a'.

We initialize a char variable to the value of 'a'. The switch statement checks for 

matching value and executes the code in the appropriate case label. We are now using 

the type char. This means the constant expressions inside the case labels can now use 

character constants marked with single quotes ''. Here, the value inside the first case 

label matches the value of the variable c, and the statement inside this label is executed.

We use the switch statement when we want to check for multiple values and then act 

accordingly. The switch statement is equivalent to having multiple if branches.
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7.3 � Iteration Statements
Iteration statements allow us to execute other statements multiple times/repeatedly. 

These statements are also called loops. There are three different loops in C:

•	 while loop

•	 do-while loop

•	 for loop

7.3.1 � while
The while statement is of the following syntax:

while(some_expression)

{

      some_statements;

}

The while statement executes one or more statements, while the expression inside 

the parentheses is true/not equal to 0. A simple example that prints out a message 

five times:

#include <stdio.h>

int main(void)

{

      int mycounter = 0;

      while (mycounter < 5)

      {

            printf("Hello World from a while loop.\n");

            mycounter++;

      }

}

Explanation: We initialize a variable that represents a counter to a value of 0. The 

while statement evaluates the expression mycounter < 5 inside the parentheses. 

If the expression is true/other than 0, the while loop executes the code inside the 

while loop body. This process repeats until the mycounter < 5 becomes false/0.  
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In this example, there are two statements inside the while loop body. The first statement 

prints out a simple message, and the second statement mycounter++; increases the 

counter by one. At some point, the mycounter will get the value of 5, causing the 

condition mycounter < 5 to become 0 and the while statement to end. In general, the 

while loop may execute 0 or more times as its condition is at the beginning.

7.3.2 � do-while
The do-while statement is of the following syntax:

do

{

      some_statements;

} while (some_expression);

The do-while loop continues to execute statements until the condition/expression 

while the condition is true/ other than 0. In different words, it repeatedly executes a 

code block until the condition becomes equal to 0/false. The do-while statement is 

guaranteed to execute the statements inside its body at least once. This is because the 

condition is placed at the end, after the do-while code block. Let us write an example 

that uses a do-while loop to display a message five times:

#include <stdio.h>

int main(void)

{

      int mycounter = 0;

      do

      {

            printf("Hello World from a do-while loop.\n");

            mycounter++;

      } while (mycounter < 5);

}

Explanation: The example initializes the integer variable to 0. Then the do-while 

code block executes the printf and the mycounter++ statements. Then it checks the 

condition mycounter < 5. If the condition evaluates to anything other than 0, the code 

inside the code block is executed again. Once the mycounter reaches the value of 5, the 

condition mycounter < 5 evaluates to 0 and the do-while loop exits.
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7.3.3 � for
The for loop has the following blueprint:

for (initialization; condition; iteration;)

{

      // loop body

}

The for loop repeatedly executes the statements in its loop body as long as the 

condition is true. In addition to a condition, the for loop also has its initialization and 

iteration parts.

The for loop initializes a counter variable in the initialization part, checks the 

condition, executes the loop body, and then increments or decrements the counter in 

the iteration part. The loop continues to execute the statements in the loop body as long 

as the condition is true.

In plain words, the for loop is like a while loop but with its own counter, a condition, 

and an iteration part. Let us write an example that prints out a message five times:

#include <stdio.h>

int main(void)

{

      for (int i = 0; i < 5; i++)

      {

            printf("Hello World from a for loop.\n");

      }

}

Explanation: In the for loop section, we declare an integer variable called I and 

initialize it to 0. This variable will serve as our counter, and this expression is evaluated 

only once. Next, the condition i < 5 is evaluated. If it evaluates to true/other than 0, the 

statement in the for loop body is executed. Then, the i variable is incremented by one in 

the i++; part. Now, the entire process (except the initialization part) repeats itself. When 

i reaches 5, the condition i < 5 evaluates to 0, and the for loop exits.
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To execute a loop body ten times, we would rewrite the condition to i < 10, and so 

on. The counter can also use the prefix variation in the iteration segment:

#include <stdio.h>

int main(void)

{

      for (int i = 0; i < 5; ++i)

      {

            printf("Hello World from a for loop.\n");

      }

}

To print out the value of a counter, we write:

#include <stdio.h>

int main(void)

{

      for (int i = 0; i < 5; i++)

      {

            printf("Counter value: %d\n", i);

      }

}

The type of the counter variable i can also be size_t (which stands for unsigned 

integer type), unsigned and similar.

The counter itself does not have to start from 0, it can start from any number. It 

is zero by convention. for loops are often used to print out array elements which 

themselves are indexed from 0. We will cover this in more detail when we learn about 

arrays and array indexes.

In a nutshell, the for loop is a convenient way to repeatedly execute statements a 

given (fixed) number of times while having access to an index/counter. One example is 

iterating over array elements. We discuss this topic in the following chapters.
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CHAPTER 8

Exercises

8.1 � Arithmetic Operations
Write a program that initializes two int numbers. Declare a third int variable that 

represents the sum of the previous two integers. Print out the result:

#include <stdio.h>

int main(void)

{

      int x = 123;

      int y = 456;

      int z = x + y;

      printf("The result is: %d\n", z);

}

Output:

The result is: 579

8.2 � Integral Division
Write a program that performs an integer division:

#include <stdio.h>

int main(void)

{

      int x = 9;

      int y = 2;
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      int z = x / y;

      printf("The result is: %d\n", z);

}

Output:

The result is: 4

8.3 � Floating-Point Division and Casting
Write a program that performs a floating-point division using integral operands. Cast 

one of the operands to type double to obtain a floating-point result:

#include <stdio.h>

int main(void)

{

      int x = 9;

      int y = 2;

      double z = (double)x / y;

      printf("The result is: %.3f\n", z);

}

Output:

The result is: 4.500

8.4 � Equality Operator
Write a program that checks if two integer variables are of the same value.

#include <stdio.h>

int main(void)

{

      int x = 10;

      int y = 20;
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      if (x == y)

      {

            printf("The values are equal.\n");

      }

      else

      {

            printf("The values are not equal.\n");

      }

}

Output:

The values are not equal.

8.5 � Relational and Logical Operators
Write a program that checks if an integer variable is greater than 50 and less than 100.

#include <stdio.h>

int main(void)

{

      int x = 75;

      if (x > 50 && x < 100)

      {

            printf("The value is greater than 50 and less than 100.\n");

      }

      else

      {

            printf("The value is not within the (50..100) range.\n");

      }

}

Output:

The value is greater than 50 and less than 100.
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8.6 � The switch Statement
Write a program that defines a simple integer variable with a value of 2. Use the switch 

statement to check if the value is inside the [1..3] range:

#include <stdio.h>

int main(void)

{

      int x = 2;

      switch (x)

      {

      case 1:

            printf("The value is equal to 1.\n");

            break;

      case 2:

            printf("The value is equal to 2.\n");

            break;

      case 3:

            printf("The value is equal to 3.\n");

            break;

      default:

            printf("The value is not inside the [1..3] range.\n");

            break;

      }

}

Output:

The value is equal to 2.

8.7 � Iteration Statements
Write a program that increments and prints out an integer variable ten times using a for 

loop and a while loop:
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#include <stdio.h>

int main(void)

{

      printf("Using a for-loop:\n");

      for (int i = 0; i < 10; i++)

      {

            printf("%d ", i);

      }

      printf("\nUsing a while-loop:\n");

      int counter = 0;

      while (counter < 10)

      {

            printf("%d ", counter);

            counter++;

      }

}

Output:

Using a for loop:

0 1 2 3 4 5 6 7 8 9

Using a while loop:

0 1 2 3 4 5 6 7 8 9
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CHAPTER 9

Arrays
What is an array? An array is one or more data objects of the same type positioned 

next to each other in memory. Once declared, the array size is fixed we cannot add nor 

remove elements to and from the array. The array itself is also a type.

9.1 � Declaration
An array is a sequence of (one or more) elements of a certain type. To declare an array, 

we use the following syntax:

type_name array_name[array_size];

To declare an array of five integers, we write:

int main(void)

{

      int myarr[5];

}

The number 5 in the square brackets [] says how many array elements there are. We 

declared an array of five elements in our example, so the compiler reserves the space in 

memory for five integers.

To declare an array of, for example, five floats, we would write:

int main(void)

{

      float myarr[5];

}

Array elements are indexed. The first array element has an index of 0, and the last 

array element has an index of number_of_elements - 1.
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9.2 � Subscript Operator
Individual array elements are accessed using a subscript operator [] and an index. To 

access the first array element, we write myarr[0]. To access the second array element, 

we write myarr[1]. Using this operator, we can assign values to each array element. 

Example:

int main(void)

{

      int myarr[5];

      myarr[0] = 10;

      myarr[1] = 20;

      myarr[2] = 30;

      myarr[3] = 40;

      myarr[4] = 50;

}

To print out the entire array, we can use a for loop and a subscript operator []:

#include <stdio.h>

int main(void)

{

      int myarr[5];

      myarr[0] = 10;

      myarr[1] = 20;

      myarr[2] = 30;

      myarr[3] = 40;

      myarr[4] = 50;

      for (int i = 0; i < 5; i++)

      {

            printf("%d ", myarr[i]);

      }

}

Output:

10 20 30 40 50
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In this example, we used a for loop to go through the entire array and print out the 

individual array elements. The loop has a counter i that goes from 0 to 4. We use this 

variable as an index inside the subscript operator [i] to access and print out individual 

array elements with myarr[i].

Let us now print out both the array indexes and array values:

#include <stdio.h>

int main(void)

{

      int myarr[5];

      myarr[0] = 10;

      myarr[1] = 20;

      myarr[2] = 30;

      myarr[3] = 40;

      myarr[4] = 50;

      for (int i = 0; i < 5; i++)

      {

            printf("myarr[%d] = %d\n", i, myarr[i]);

      }

}

Output:

myarr[0] = 10

myarr[1] = 20

myarr[2] = 30

myarr[3] = 40

myarr[4] = 50

In this example, the counter i represents an array element’s index and the expression 

myarr[i] represents the array element’s value.
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9.3 � Array Initialization
Instead of assigning array values one by one, we can also initialize the entire array using 

the brace-enclosed list {value1, value2, value3, ...}. Example:

#include <stdio.h>

int main(void)

{

      int myarr[5] = {10, 20, 30, 40, 50};

      for (int i = 0; i < 5; i++)

      {

            printf("%d ", myarr[i]);

      }

}

Output:

10 20 30 40 50

This line – int myarr[5] = {10, 20, 30, 40, 50}; – declares and initializes an 

array of five elements using the values inside the initializer list { }.

The comma-separated values (numbers in our case) inside the brace-init list { } 

are called initializers. The first array element is initialized with the first value inside the 

initializer list, which is 10. The second array element is initialized with the second value 

inside the list, which is 20, and so on.

Let us write an example that initializes the array and then uses the subscript operator 

to change the initial values of individual elements:

#include <stdio.h>

int main(void)

Figure 9-1.  An array of five integer numbers
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{

      int myarr[5] = {10, 20, 30, 40, 50}; /* initialize the array */

      for (int i = 0; i < 5; i++)

      {

            printf("%d ", myarr[i]);

      }

      printf("\n");

      myarr[0] = 100; /* change the value of the first element */

      myarr[2] = 300; /* change the value of the third element */

      for (int i = 0; i < 5; i++)

      {

            printf("%d ", myarr[i]);

      }

}

Output:

10 20 30 40 50

100 20 300 40 50

This example declares and initializes an array of five integers and prints out the 

entire array. Then, we assign new values to the first and the third array element using 

the subscript [] and the assignment operator = . As before, we print out the entire array 

using the for loop.

When using an initializer to define arrays, we do not have to specify the array length 

explicitly; the compiler will do this for us. Example:

#include <stdio.h>

int main(void)

{

      int myarray[] = {10, 20, 30, 40, 50};

      for (int i = 0; i < 5; i++)

      {

            printf("%d ", myarray[i]);

      }

}
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Output:

10 20 30 40 50

The compiler deduces the size of the array based on the number of initializers in the 

brace-enclosed list, which is 5. The array declaration would be identical to having int 

myarray[5] = {10, 20, 30, 40, 50};.

9.4 � Character Arrays
To initialize an array of characters, we use the string constant as an initializer. Example:

#include <stdio.h>

int main(void)

{

      char myarray[] = "Hello";

      printf("%s", myarray);

}

Output:

Hello

The "Hello" is a string constant, also called a character string literal. It is an array 

of characters enclosed in double quotes (""). This string constant also has a hidden \0 

character at the end, marking the end of a string:

Instead of using the for loop to print out the characters in an array, we used the 

printf function with the %s format specifier instead. The %s format specifier is used to 

print out the string characters.

Figure 9-2.  A character array ending with a null terminating character  
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The length of the "Hello" string constant is 6, five for the characters, plus one for 

the invisible null terminator \0 character. We did not specify the array size explicitly. But 

since we have the initializer, the compiler will deduce the size of the array to be 6 for us. 

It is the same as if we explicitly wrote char myarray[6] = "Hello";.

We use arrays when we want to group data objects of the same type. So instead of 

having to declare five individual variables of type int like int myvar1, myvar2, myvar3, 

myvar4, and myvar5;, we declare a single array variable having five elements: int 

myarr[5];.

9.5 � Multidimensional Arrays
There are also arrays of arrays or the so-called multidimensional arrays. To declare a 

two-dimensional array, we use the following blueprint:

some_type myarr[number_of_rows][number_of_columns]

Let us write an example that declares and initializes an array of integers with two 

rows and three columns:

int main(void)

{

      int myarr[2][3] = {{1, 2, 3},

                         {4, 5, 6}};

}

This example defines a two-dimensional array with two rows (rows are horizontal) 

and three columns (columns are vertical). We used as many inner initialization lists 

as there are rows with as many elements as there are columns to initialize our entire 

array. The inner initialization lists {1, 2, 3} and {4, 5, 6} are comma-separated and 

surrounded by an outer initialization list.

To print out this two-dimensional array, we use two for loops. Example:

#include <stdio.h>

int main(void)

{

      int myarr[2][3] = {{1, 2, 3},

                         {4, 5, 6}};
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      for (int i = 0; i < 2; i++)

      {

            for (int j = 0; j < 3; j++)

            {

                  printf("%d ", myarr[i][j]);

            }

            printf("\n");

      }

}

Output:

1 2 3

4 5 6

The example initializes a two-dimensional array. We use two for loops to print out 

the values. There is one outer loop going from zero to 1, and there is one inner loop (the 

loop inside a loop) going from zero to 2. To access an element in a two-dimensional array, 

we use two subscript operators, one next to the other like myarr[row_index][column_

index];. For example, to access the second element in a first row, we write myarr[0][1]; 

to access the third element in the first column, we write myarr[2][0]; and so on. The 

outer loop is used for indexing rows, and the inner loop is used for indexing columns. 

That way, we can loop through all the rows and all the columns and print out the array.

9.6 � Array Size and Count
To determine the array size in bytes, we can use the sizeof operator. Example:

#include <stdio.h>

int main(void)

{

      int arr[3] = {1, 2, 3};

      size_t arrsize = sizeof(arr);

      printf("Total array size in bytes: %ld\n", arrsize);

}
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Output:

Total array size in bytes: 12

This example uses the sizeof(arr) expression to determine the entire array’s size 

in bytes. The size is equal to the size of int (which is probably 4 bytes on our machines) 

times the number of array elements, which is 3. So, depending on the machine and the 

compiler, the result will likely be equal to 12 bytes.

To obtain the number of elements in the array, we divide the total array size 

sizeof(arr) by the size of the type (sizeof(int) in our case). Example:

#include <stdio.h>

int main(void)

{

      int arr[3] = {1, 2, 3};

      size_t arrcount = sizeof(arr) / sizeof(int);

      printf("The number of array elements is: %ld\n", arrcount);

}

Output:

The number of array elements is: 3

The number of elements can also be obtained by dividing the total array size by the 

size of the first array element sizeof(arr[0]):

#include <stdio.h>

int main(void)

{

      int arr[3] = {1, 2, 3};

      size_t arrcount = sizeof(arr) / sizeof(arr[0]);

      printf("The number of array elements is: %ld\n", arrcount);

}

Output:

The number of array elements is: 3
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CHAPTER 10

Pointers
Data is stored in computer memory. The CPU reads from and writes to this memory. 

In simple terms, computer memory is an array of cells called bits. Usually, a group of 

eight bits makes a byte. Every byte in memory has its number, which we call a (memory) 

address. Our data objects reside in these memory cells, and each of these data objects 

has its address. If we know the address of an object, we can use pointers to access data 

objects in memory.

10.1 � Introduction
So far, we have used regular variables to access these data objects in memory. Another 

way to manipulate data in these data objects is through pointers. A pointer is just like 

any other variable. It is of a certain type and has certain values. The type of the pointer is 

called a pointer type. The value of a pointer is the address of another variable/data object 

in memory. Since pointers hold addresses of other variables or array elements, we say 

they point to other objects.

10.2 � Declaration and Initialization
To declare a pointer, we use the following syntax:

some_type* pointer_name;

The star symbol * after the type name signals this is a pointer type. To declare a 

pointer to int (a pointer to another variable of type int), we write int *p;, a pointer to 

type float is float *p;, a pointer to type char is char *p;, and so on.

Let us declare and initialize the pointer to int. To initialize the pointer with the 

address of another object, we use the address-of operator &. This operator returns the 

address (in memory) of its operand. Example:
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int main(void)

{

      int x = 123;

      int *p = &x;

}

Here, we declare a variable of type int and initialize it to a value of 123. Then, we 

declare a pointer of type int* and initialize it with the address of x. We say that p now 

points to x, and its value is the address of x in memory.

To access the value the p points to, we prepend the pointer name with the * symbol 

as in *p. This * symbol is called the dereference operator. We say we dereference the 

pointer. This allows us to access and change the value pointed to by p:

#include <stdio.h>

int main(void)

{

      int x = 123;

      printf("The value before the change: %d\n", x);

      int* p = &x;

      *p = 456;

      printf("The value after the change: %d\n", x);

}

Output:

The value before the change: 123

The value after the change: 456

Figure 10-1.  A pointer pointing at an array 
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We initialize a simple integer variable called x to the value of 123. Then, we declare 

a pointer and make it point to this variable (data object in memory) using the address 

of & operator. Then, we dereference the pointer with *p and assign a new value to the 

pointed-to object.

In a nutshell, *p is the value of x, and we use it to manipulate the value of x.

Let us now write an example where we have multiple pointers to multiple types:

#include <stdio.h>

int main(void)

{

      char c = 'a';

      int x = 123;

      float f = 456.789f;

      char *mycharp = &c;

      int *myintp = &x;

      float *myfloatp = &f;

      printf("The value of a pointed-to char: %c\n", *mycharp);

      printf("The value of a pointed-to int: %d\n", *myintp);

      printf("The value of a pointed-to float: %.3f\n", *myfloatp);

}

Output:

The value of a pointed-to char: a

The value of a pointed-to int: 123

The value of a pointed-to float: 456.789

Here, we define variables of type char, int, and float, respectively. Then, we declare 

pointers to each of these types and initialize them with the addresses of the variables. We 

print out the values of pointed-to objects by dereferencing the pointers.

There are a few points we should remember:

•	 We can declare a pointer type by placing a star next to the type name 

as in some_type* p; or placing a star symbol next to the variable 

name as in some_type *p;. It makes no difference. It is a matter of 

coding style and preference.
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•	 When used in different contexts, the star symbol * means different 

things. When used in a declaration such as some_type *p;, it denotes 

a pointer type. When used in front of the variable name, as in the 

expressions *p; or *p = some_value;, the star symbol denotes a 

dereferencing operator.

We can reassign a pointer and make it point at another object in memory. Example:

#include <stdio.h>

int main(void)

{

      int x = 10;

      int y = 20;

      printf("The value of x and y before the change: %d, %d\n", x, y);

      int *p;   /* declare a pointer to int called p */

      p = &x;   /* p points at x */

      *p = 100; /* change the value of x by dereferencing a pointer */

      p = &y;   /* p now points at y */

      *p = 200; /* change the value of y */

      printf("The value of x and y after the change: %d, %d\n", x, y);

}

Output:

The value of x and y before the change: 10, 20

The value of x and y after the change: 100, 200

Here, we define two integer variables. We then declare a pointer p and assign it the 

address of x with p = &x;. We then use the dereferenced pointer to access and change 

the value of x with *p = 100;. After that, we reassign a pointer to point at the y with p = 

&y. We then change the value of a pointed-to object (y) to 200 with *p = 200;. We print 

out the x and y values before and after the changes. Here, we used one pointer to change 

the values of several variables of the same type.
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10.3 � Pointers and Arrays
There are many similarities between arrays and pointers. We can use a pointer to point 

to an array and use it to access array elements. We simply assign the pointer to the array 

name. Example:

#include <stdio.h>

int main(void)

{

      int arr[5] = {10, 20, 30, 40, 50};

      int *p = arr; /* p now points at the first array element */

      printf("The first array element is: %d\n", *p);

}

Output:

The first array element is: 10

The pointer now points at the first array element:

We can dereference a pointer using a subscript [] operator and use this technique to 

print out the entire array. Example:

#include <stdio.h>

int main(void)

{

      int arr[5] = {10, 20, 30, 40, 50};

      int *p = arr; /* p now points at the first array element */

      for (int i = 0; i < 5; i++)

Figure 10-2.  A pointer pointing at the array’s first element  
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      {

            printf("%d ", p[i]);

      }

}

Output:

10 20 30 40 50

The p[i] expression is equivalent to a *(p + i) expression. Each time, we increment 

the pointer value by i to point at the next array element. Then, we dereference the 

pointer and print the pointed-to value.

We can access individual array elements using a pointer. We simply use the address 

of an appropriate array element. If we want to access the first and the last array elements 

through a pointer, we write:

#include <stdio.h>

int main(void)

{

      int arr[5] = {10, 20, 30, 40, 50};

      for (int i = 0; i < 5; i++)

      {

            printf("%d ", arr[i]);

      }

      int *p;

      p = &arr[0]; /* get the address of the first array element */

      *p = 11;     /* change its value */

      p = &arr[4]; /* get the address of the last array element */

      *p = 55;     /* change its value */

      printf("\nAfter the changes:\n");

      for (int i = 0; i < 5; i++)

      {

            printf("%d ", arr[i]);

      }

}
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Output:

10 20 30 40 50

After the changes:

11 20 30 40 55

This example defines an array of five integers and a pointer to int. We assign the 

address of the first array element to our pointer using the p = &arr[0]; statement. We 

change the element’s value by dereferencing a pointer with *p = 11;. We repeat this 

process for the last array element arr[4]. Remember, array elements are indexed from 0, 

not 1. In an array declared as int arr[5];, the last array element is arr[4], not arr[5]. 

We assign the address of the last array element to our pointer with p = &arr[4];. By 

dereferencing a pointer, we change the pointed-to object’s value with *p = 55;.

Note  When used as function arguments, arrays get converted to a pointer to the 
array’s first element. We say the array decays to a pointer. If a function accepts a 
pointer type parameter, we can pass in either a pointer variable or an array name 
variable as an argument.

10.4 � Pointer Arithmetics
The expressions &arr[0] and arr are equivalent, as the name of the array arr is also 

an address of the first element in an array. The previous example will serve as an 

introduction to pointer arithmetic. We can apply arithmetic operators to pointers and 

add or subtract numbers to and from a pointer. For example, let us have a pointer that 

points at the first array element, similar to what we had in the previous example:

#include <stdio.h>

int main(void)

{

      int arr[5] = {10, 20, 30, 40, 50};

      int* p = arr; /* the same as int *p = &arr[0]; */

      printf("The pointed-to value is: %d.\n", *p);
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      p++;

      printf("The pointed-to value is: %d.\n", *p);

}

Output:

The pointed-to value is: 10.

The pointed-to value is: 20.

This example defines an array of five integers and initializes the pointer to point 

to the first array element with int *p = arr;. We print out the value by dereferencing 

a pointer with *p. We then increment the pointer by one by applying the ++ operator. 

What does it mean to increment the pointer by one? It means that it now points at the 

next data object in memory. And since array elements are positioned sequentially in 

memory, the pointer now points to the next array element, which has a value of 20. The 

pointer is incremented by one times the size of the type of the element it points to. The 

number we add to the pointer scales to the size of the pointed-to object; it scales to the 

number of bytes of that object.

If we wanted to print out the third array element, we would add 2 to the pointer:

#include <stdio.h>

int main(void)

{

      int arr[5] = {10, 20, 30, 40, 50};

      int* p = arr; /* the same as int* p = &arr[0]; */

      p += 2;

      printf("The pointed-to value is: %d.\n", *p);

}

Output:

The pointed-to value is: 30.

Here, we define an array of five elements and make our pointer point to the first 

element in an array.
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Then we increment the pointer by 2 so that it now moves by two integer places 

in memory and points at the third array element. When adding 2 to our pointer, the 

actual value of the pointer is incremented by 2 times the size of an int. But for us, it just 

increments by two (integers).

Note A dding/subtracting/multiplying pointers of different types is not allowed.

10.5 � Void Pointers
Pointers point only to specific types. A pointer of type int* can only point to an int 

value in memory. It cannot point to, for example, a float. But the pointer of type void* 

can point to any type. All pointer types are implicitly convertible to type void*. The 

void* type is also called a pointer to void or a generic pointer type. Let us write a simple 

example that uses a void* pointer to access the value of an int* pointer:

#include <stdio.h>

int main(void)

{

      int x = 123;

      int *ip = &x; // get an address of an integer object

      void *vp;

      vp = ip; // void pointer gets the value of an integer pointer

      printf("The pointed-to value is: %d\n", *((int *)vp));

}

Output:

The pointed-to value is: 123

This example defines a pointer of type int* and then assigns that value to a void 

pointer. Void pointers must be cast to the appropriate pointer type before they are 

dereferenced. So, we are not allowed to type the *vp;. First, we must cast the void pointer 

to the appropriate pointer type. In our case, it is the int* type, and we use the (int*)vp 

expression. Only then can we dereference the entire expression with *(int*(vp));.
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One use of the void* type is when printing out the value of a pointer (the memory 

address it points to). To print out the value of a pointer, we need to cast/convert the 

pointer to type void* using the (void*)some_pointer_name syntax and then utilize the 

%p format specifier. Example:

#include <stdio.h>

int main(void)

{

      char c = 'a';

      int x = 123;

      float f = 456.789f;

      char *mycharp = &c;

      int *myintp = &x;

      float *myfloatp = &f;

      printf("The value of a char pointer: %p\n", (void *)mycharp);

      printf("The value of an int pointer: %p\n", (void *)myintp);

      printf("The value of a float pointer: %p\n", (void *)myfloatp);

}

Output:

The value of a char pointer: 0x7ffd3dbcde17

The value of an int pointer: 0x7ffd3dbcde18

The value of a float pointer: 0x7ffd3dbcde1c

The value printed out using the %p specifier is the value of the pointer itself. That 

value is the memory address of another object. Depending on the C implementation, 

this address value might be printed out as a hexadecimal number similar to 

0x7ffd3dbcde1c.

Note T his example prints the value of the pointer itself, not the value of the 
pointed-to object. The value of a pointed-to object is obtained by dereferencing a 
pointer.
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All pointers can also have a special value of NULL. When a pointer has a value of NULL, 

it does not point to any other object. We say it points to nothing or it is a NULL pointer. 

The value of NULL can be used to initialize pointers to point to nothing. Example:

#include <stdio.h>

int main(void)

{

      char* mycharp = NULL;

      int* myintp = NULL;

      float* myfloatp = NULL;

      printf("The value of a char pointer: %p\n", (void *)mycharp);

      printf("The value of an int pointer: %p\n", (void *)myintp);

      printf("The value of a float pointer: %p\n", (void *)myfloatp);

}

Output:

The value of a char pointer: (nil)

The value of an int pointer: (nil)

The value of a float pointer: (nil)

Note P ointer arithmetics on a void pointer is not allowed.

10.6 � Pointer to Character Arrays
We can initialize a pointer with a string constant such as "Hello World!".

#include <stdio.h>

int main(void)

{

      char* p = "Hello World!";

      printf("%s", p);

}
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Output:

Hello World!

The string constant "Hello World!" is an array of characters enclosed in double 

quotes. Our char* pointer p points at the beginning of that array – at the first element. 

We use the %s format specifier to print out the entire string pointed by p. The %s specifier 

prints out the entire string pointed to by p. The %c format specifier prints out only one 

(the first) character in a string when using a dereferenced string pointer *p. Example:

#include <stdio.h>

int main(void)

{

      char* p = "Hello World!";

      printf("%c", *p);

}

Output:

H

10.7 � Arrays of Pointers
Since a pointer type is just another type, we can have arrays of pointers. To declare an 

array of pointers, we use the following syntax:

some_type* pointer_name[number_of_elements];

One use case is an array of char* type. To declare an array of pointers to char, we write:

#include <stdio.h>

int main(void)

{

      char *p[] = {"First sentence.",

                   "Second sentence.",

                   "Third sentence."};

Chapter 10  Pointers



93

      for (int i = 0; i < 3; i++)

      {

            printf("%s\n", p[i]);

      }

}

Output:

First sentence.

Second sentence.

Third sentence.

This statement:

char *p[] = {"First sentence", "Second sentence.", "Third sentence."};

declares an array of three pointers of type char* and initializes them with string 

constants. The compiler inserts the number 3 as a length of our array, and the statement 

now becomes char *p[3];. These three pointers point at three different character 

strings. We can look at these strings as having three separate sentences.

We then use the for loop to print out all three sentences by accessing an appropriate 

pointer through a subscript operator as in p[i]. So p[0] points at the "First 

sentence.", p[1] points at the "Second sentence.", and p[2] points at the "Third 

sentence.".

The subscript operator [] acts as a dereference operator as the p[i] expression is 

equivalent to *(p+i). Using a subscript operator with an index on a pointer as in p[i] 

means incrementing a pointer by i places and dereferencing it.

Note S o far, we have used pointers with automatic variables. In later chapters, 
we will explore how pointers are used in dynamic memory allocations.
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CHAPTER 11

Command-Line 
Arguments
There is another main function signature that allows us to work with the command-line 

arguments. These are arguments we can pass to our executable file in the command line. 

Example:

myexe param1 param2

Here, the myexe is the name of our executable file, and param1 and param2 are 

some arbitrary arguments we pass in. The function main that allows us to parse these 

arguments has the following signature:

int main(int argc, char *argv[])

The argc is the number of command-line arguments we pass to our executable. 

The argv is the pointer to an array of strings that represent the arguments. If we pass no 

arguments to our executable file, the argc is 1. The first element in an array of strings, 

argv[0], is the name of our executable file. Suppose we pass two parameters to our 

executable file, as in the preceding example. In that case, the argc is equal to 3 as there 

are three arguments in total, one that represents the name of our executable and the 

additional two arguments, param1 and param2, we explicitly pass in. In that case, argv[1] 

is equal to param1, and argv[2] is equal to param2. Example:

#include <stdio.h>

int main(int argc, char *argv[])

{

      printf("The command-line arguments are:\n");

      for (int i = 0; i < argc; i++)
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      {

            printf("%s\n", argv[i]);

      }

}

If we invoke our executable with ./a.out param1 param2, the output would be:

The command-line arguments are:

./a.out

param1

param2
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CHAPTER 12

Exercises

12.1 � Character Array
Write a program that defines and initializes a character array. Print the array using the %s 

format specifier:

#include <stdio.h>

int main(void)

{

      char arr[] = "Hello World!";

      printf("The value is: %s\n", arr);

}

Output:

The value is: Hello World!

12.2 � Array Elements
Write a program that defines and initializes an array of five integers. Change the values of 

the first and last array elements. Print out the array:

#include <stdio.h>

int main(void)

{

      int arr[] = {10, 20, 30, 40, 50};

      arr[0] = 11; // change the first element
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      arr[4] = 55; // change the last element

      for (int i = 0; i < 5; i++)

      {

            printf("%d ", arr[i]);

      }

}

Output:

11 20 30 40 55

12.3 � Pointer to an Existing Object
Write a program that defines a simple double variable and a pointer that points to that 

variable. Print the variable’s value by dereferencing a pointer. Then, change the variable’s 

value by dereferencing a pointer:

#include <stdio.h>

int main(void)

{

      double d = 123.456;

      double *p = &d;

      printf("The value before the change is: %f\n", *p);

      *p = 789.101;

      printf("The value after the change is: %f\n", *p);

}

Output:

The value before the change is: 123.456000

The value after the change is: 789.101000

12.4 � Pointers and Arrays
Write a program that defines an array of five integers. Use a pointer to print out the 

entire array:
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#include <stdio.h>

int main(void)

{

      int arr[] = {10, 20, 30, 40, 50};

      int *p = arr;

      for (int i = 0; i < 5; i++)

      {

            printf("%d\n", p[i]);

      }

}

Output:

10 20 30 40 50

12.5 � Pointer to a Character Array
Write a program that defines a pointer to a character array. Print the character array 

using a pointer:

#include <stdio.h>

int main(void)

{

      char *p = "This is a character array.";

      printf("The result is: %s", p);

}

Output:

The result is: This is a character array.
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12.6 � Pointer Arithmetics
Write a program that defines an array of five integers. Use pointer arithmetics to print out 

the third and fourth array elements:

#include <stdio.h>

int main(void)

{

      int arr[] = {10, 20, 30, 40, 50};

      int *p = arr;

      p += 2; // p now points at the third array element

      printf("The third array element is: %d\n", *p);

      p += 1; // p now points at the fourth array element

      printf("The fourth array element is: %d\n", *p);

}

Output:

The third array element is: 30

The fourth array element is: 40

12.7 � Array of Pointers
Write a program that defines an array of four pointers to sentences. Sentences 

themselves are arrays of characters:

#include <stdio.h>

int main(void)

{

      char *p[] = {"This is the first sentence.",

                   "This is the second sentence.",

                   "This is the third sentence.",

                   "This is the last sentence."};

      for (int i = 0; i < 4; i++)

      {
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            printf("%s\n", p[i]);

      }

}

Output:

This is the first sentence.

This is the second sentence.

This is the third sentence.

This is the last sentence.
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CHAPTER 13

Functions
In short, functions are named reusable pieces of code. A function is made up of a 

function body associated with a function name. A function can accept zero or more 

parameters and optionally return a result.

13.1 � Introduction
A function has a type, a name, a list of optional parameters, and a function body. The 

function blueprint is of the following syntax:

some_type function_name(optional_parameters_declarations)

{

      // function body with declarations and statements

      return some_value; // optional return statement

}

So far, we have used only a main() function, which is the main program entry point. 

Let us now learn how to create our user-defined functions. The following program defines 

a simple user-defined function that outputs a "Hello World from a function." 

message and calls(invokes) this function from our main program. Example:

#include <stdio.h>

void printMessage(void)

{

      printf("Hello World from a function.\n");

}

int main(void)

{

      printMessage();

}
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Output:

Hello World from a function.

Here, we define a function called printMessage() before our main() function. The 

printMessage(void) function outputs a simple message to the console window. The 

function is of type void, followed by a function name printMessage followed by an 

empty list of parameters inside parentheses indicated by (void) followed by a function 

body marked with braces {}. Inside a function body, we execute statements. In our case, 

it is a simple printf statement that outputs a message.

We call the printmessage function from our main program by specifying a function 

name followed by parentheses printMessage();. We also say we invoke the function.

Let us now write a function called mySum() that sums the two integer numbers and 

returns a result:

#include <stdio.h>

int mySum(int x, int y)

{

      return x + y;

}

int main(void)

{

      int myresult = mySum(10, 20);

      printf("The result is: %d\n", myresult);

}

Output:

The result is: 30

This example defines a function called mySum. The function is of type int and accepts 

two parameters we named x and y. Both parameters are of type int. We declare these 

two parameters by specifying their types and names. We separate the declarations with a 

comma sign as with int x, int y function parameters signature.
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The return statement terminates the function and returns the result of the x + y 

expression to the function call expression, which in our case is the mySum(10, 20) 

expression. We sometimes simplify and say the return statement assigns the value of the 

x + y expression to our mySum function.

We then call/invoke the mySum function in our main program by writing the function 

name followed by the actual arguments for our parameters inside parentheses as in 

mySum(10, 20);. The first parameter, x, now becomes (receives a value of) 10, and the 

second parameter, y, now becomes 20. The function performs the calculation, and the 

return statement assigns the value of an x + y expression to a function call expression 

mySum(10, 20) and returns the control to our caller. A caller is another function that 

calls/invokes our function. In this case, our main() function is the caller as it calls the 

mySum() function. The main program assigns the value of the mySum() function to a local 

variable mySum and prints out the result.

13.2 � Function Declaration
We can split (organize, divide) the function into a function declaration and a function 

definition. A function declaration introduces the function type, name, and parameter 

declarations list into the current scope. A function declaration does not have a function 

body and ends with a semicolon. The blueprint for the function declaration is:

some_type function_name(optional_parameters_declarations);

Let us write an example that declares a simple function called myFunction that 

accepts no parameters and does not return a value:

#include <stdio.h>

void myFunction(void);

int main(void)

{

      printf("Function declared.");

}

Output:

Function declared.
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The function’s return type void indicates the function does not return a value. The 

void inside parentheses (void) indicates the function accepts no parameters.

To declare a function that accepts two integer parameters and returns an integer 

type, we write:

#include <stdio.h>

int myFunction(int x, int y);

int main(void)

{

      printf("Function declared.\n");

}

Output:

Function declared.

When declaring a function that has parameters, we can omit the names of the 

parameters and supply only the parameter types:

#include <stdio.h>

int myFunction(int, int);

int main(void)

{

      printf("Function declared.\n");

}

Output:

Function declared.

If you are asking yourself “What is the point of these function declarations?” you are 

asking a valid question. The answer is as follows:

The function can indeed be split into a function declaration and a function 

definition. If we declare a function, we assume it is defined somewhere else. By 

declaring a function, we are saying to our compiler/linker: “There is this function 
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called myFunction, and I know for sure it is fully defined somewhere else, whether in 

an external source file or a library. So here is the function declaration, and I want to be 

able to call this function from my program.” The compiler and linker then search for the 

function definition by following a set of predetermined rules. We discuss these in more 

detail later in the book.

In general, we keep the function declarations in header files (.h files), and we keep 

the function definitions in source files (.c files). This way, we separate the declarations 

from the implementations (definitions). Indeed, if we open a header file that is part of 

the standard library, we will see a lot of function declarations there. In our examples 

earlier, we put the function declarations in .c files for illustrative purposes.

For example, the printf function is declared inside the <stdio.h> header file. And 

when we want to use the printf function in our main program, we must include this 

header file.

13.3 � Function Definition
A function definition is a whole function with a function signature plus the function 

body. To define a function, we use the following blueprint:

some_type function_name(optional_parameters_declarations)

{

      // function body with declarations and statements

      return some_value; // optional return statement

}

To define a simple function that outputs a simple message and accepts no 

parameters, we write:

#include <stdio.h>

void myFunction(void)

{

      printf("Function defined.\n");

}
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int main(void)

{

      myFunction();

}

Output:

Function defined.

To define a function of type int that returns the sum of two integer parameters, 

we write:

#include <stdio.h>

int myFunction(int x, int y)

{

      return x + y;

}

int main(void)

{

      int myresult = myFunction(10, 20);

      printf("The result is: %d\n", myresult);

}

Output:

The result is: 30

While the function declaration can be placed inside another function’s body, a 

function definition must be placed outside any other function’s body, including the 

function main. We say we place the function definition in a file scope.

Notice how we placed the myFunction definition before the main’s definition. If we 

place the user-defined function definition after the main’s definition, there will be a 

compiler error. The compiler encounters a function call myFunction(10, 20); inside 

a main’s body but does not know what function this is. To overcome this, we can put a 

function declaration before the main’s body and the function definition after the main’s 

body. The program now compiles successfully:
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#include <stdio.h>

//function declaration

int myFunction(int x, int y);

int main(void)

{

      int myresult = myFunction(10, 20);

      printf("The result is: %d\n", myresult);

}

// function definition

int myFunction(int x, int y)

{

      return x + y;

}

Output:

The result is: 30

13.4 � Parameters and Arguments
Parameters are variable declarations inside parentheses in a function declaration or a 

function definition. A function can have zero, one, or a fixed number of parameters. If a 

function accepts no parameters, we write my_function_name(void). If it has one parameter, 

we use the following blueprint: my_function_name(some_type parameter_name). If a 

function has a fixed number of parameters, we use the comma-separated declarations like 

my_function_name(some_type param_name1, some_type param_name2).

Let us write an example that demonstrates the use of no parameters function:

#include <stdio.h>

void myFunction(void)

{

      printf("No parameters function.\n");

}
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int main(void)

{

      myFunction();

}

Output:

No parameters function.

When we define a function that accepts no parameters, we use the (void) function 

signature. When calling a function, we simply use the function call operator () as in 

myFunction();.

An example that uses a function accepting one parameter:

#include <stdio.h>

int myFunction(int x)

{

      return x;

}

int main(void)

{

      int myresult;

      myresult = myFunction(5);

      printf("One parameter function result: %d\n", myresult);

}

Output:

One parameter function result: 5

We defined a function that accepts one parameter. The x parameter in the function 

definition is also called a formal parameter. We then call the function in our main 

program and pass it a value of 5. This value is called an argument. So, argument 5 

replaces the formal parameter x. Wherever there was a formal parameter x in our 

function, we now use the actual value of 5 to do whatever calculation is needed.
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We can also use local variables as arguments. Example:

#include <stdio.h>

int myFunction(int x)

{

      return x;

}

int main(void)

{

      int myint = 5;

      int myresult;

      myresult = myFunction(myint);

      printf("One parameter function result: %d\n", myresult);

}

Output:

One parameter function result: 5

Here we used the local variable myint as a function argument. So now x gets the 

value of myint, which is 5. More precisely, it gets a copy of the value of myint, as 

arguments are passed by value. The function makes a copy of myint and works on that 

copy. Any changes done to a parameter inside a function do not affect the original myint 

variable.

To use a function with multiple parameters, we can write:

#include <stdio.h>

int myFunction(int x, int y)

{

      return x + y;

}

int main(void)

{
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      int myresult;

      myresult = myFunction(10, 20);

      printf("Two parameters function result: %d\n", myresult);

}

Output:

Two parameters function result: 30

In this example, we defined a function accepting two parameters. We separate the 

parameter declarations with a comma, as in (int x, int y). We then call a function 

and supply two comma-separated arguments, 10 and 20, as in myfunction(10, 20). 

Parameter x now takes the value of 10, and parameter y receives the value of 20.

As before, we can use the local variables as arguments:

#include <stdio.h>

int myFunction(int x, int y)

{

      return x + y;

}

int main(void)

{

      int a = 10;

      int b = 20;

      int myresult;

      myresult = myFunction(a, b);

      printf("Two parameters function result: %d\n", myresult);

}

Output:

Two parameters function result: 30
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13.4.1 � Passing Arguments
Arguments, in general, can be passed by value or by reference/pointer/address. By 

default, all arguments are passed by value in C. Here, we discuss both scenarios.

�Passing by Value

When we pass an argument to a function, a function makes an internal copy of that 

argument’s value and works on that copy. The original argument value is unaffected. For 

example, let us have a function that has one parameter and assigns a new value to that 

parameter inside the function body:

#include <stdio.h>

void myFunction(int x)

{

      x = 456;

}

int main(void)

{

      int a = 123;

      printf("The value before the function call: %d\n", a);

      myFunction(a);

      printf("The value after the function call: %d\n", a);

}

Output:

The value before the function call: 123

The value after the function call: 123

The function has a parameter x that takes the value of the argument a. The function 

makes a copy of a and does not affect the original a variable. The value of a remains the 

same before and after the function call. The function makes temporary copies of a and 

works on those copies, not the argument a itself.
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�Passing by Pointer/Address

To change the actual values of arguments a using a function, we use the pointer type 

parameter in the function signature. And when we call the function, we supply the 

address of the argument using an address-of operator &. Let us rewrite the preceding 

example so that the function changes the value of argument a:

#include <stdio.h>

void myFunction(int *x)

{

      *x = 456;

}

int main(void)

{

      int a = 123;

      printf("The value before the function call: %d\n", a);

      myFunction(&a);

      printf("The value after the function call: %d\n", a);

}

Output:

The value before the function call: 123

The value after the function call: 456

The function accepts a pointer to int. It then dereferences the pointer and assigns a 

new value to a pointed-to object. We then call the function, and instead of supplying a as 

an argument name, we supply the addresses of a by using &a. The function is now able 

to modify the argument itself. This trick allows us to mimic the behavior of passing by 

reference present in other languages.

Note  By default, all arguments are passed by copy/value, and the function 
cannot modify the arguments’ values. Using pointer parameters and addresses 
of arguments, we can pass arguments by address/reference and change the 
arguments’ values.
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13.5 � Return Statement
The return statement inside our function body is of the following syntax:

return;

return some_expression_or_value;

The return statements return a control (of the program flow) and a value to the 

caller/calling function. But in everyday life, we simply say it returns a value to our 

function. However, the correct way to put it is to say it returns a value to our function call, 

the place where our function is called using the myFunction(); statement. An example 

with a simple function that returns a hard-coded integer value of 10:

#include <stdio.h>

int myFunction()

{

      return 10;

}

int main(void)

{

      int x;

      x = myFunction();

      printf("The function returned a value of: %d\n", x);

}

Output:

The function returned a value of: 10

The return statement causes our function to exit. Statements following the return 

statement will not be executed. Example:

#include <stdio.h>

int myFunction()

{

      return 10;

      printf("This statement will not be executed.\n");

}
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int main(void)

{

      int x;

      x = myFunction();

      printf("The function returned a value of: %d\n", x);

}

Output:

The function returned a value of: 10

A function can have multiple return statements. Example:

#include <stdio.h>

int myFunction(int a)

{

      if (a > 0)

      {

            return 1;

      }

      if (a < 0)

      {

            return -1;

      }

      return 0;

}

int main(void)

{

      int x;

      x = myFunction(10);

      printf("The function returned a value of: %d\n", x);

}
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Output:

The function returned a value of: 1

This function has three return statements, but only one of them will be executed. 

When any of these is encountered, the function will return the value and the control to 

the caller. The remaining statements in the function body will not be executed. Return 

values of 1, 0, and -1 are here for illustrative purposes.
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CHAPTER 14

Exercises

14.1 � A Simple Function
Write a program that defines a function of type void called printMessage(). The 

function outputs a simple message on the standard output. Call the user-defined 

function from the main function:

#include <stdio.h>

void printMessage()

{

      printf("Hello World! from a function.\n");

}

int main(void)

{

      printMessage();

}

Output:

Hello World! from a function.

14.2 � Function Declaration and Definition
Write a program that declares and defines a function of type void called 

printMessage(). The function outputs a simple message on the standard output. Call 

the user-defined function from the main function:
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#include <stdio.h>

void printMessage(); // function declaration

int main(void)

{

      printMessage(); // function call

}

void printMessage() // function definition

{

      printf("Hello World! from a function.\n");

}

Output:

Hello World! from a function.

14.3 � Passing Arguments by Value
Write a program that defines a function that accepts a single argument by value. In its 

body, the function increments an argument by one. Invoke the function in the main 

program:

#include <stdio.h>

void byValue(int arg)

{

      arg++;

}

int main(void)

{

      int x = 123;

      printf("The value before the function call: %d\n", x);

      byValue(x);

      printf("The value after the function call: %d\n", x);

}
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Output:

The value before the function call: 123

The value after the function call: 123

14.4 � Passing Arguments by Pointer/Address
Write a program that defines a function that accepts a single argument by a pointer (an 

address). In its body, the function increments an argument by one. Invoke the function 

in the main program by passing in the address of a local variable:

#include <stdio.h>

void byAddress(int *arg)

{

      (*arg)++;

}

int main(void)

{

      int x = 123;

      printf("The value before the function call: %d\n", x);

      byAddress(&x);

      printf("The value after the function call: %d\n", x);

}

Output:

The value before the function call: 123

The value after the function call: 124
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14.5 � Function – Multiple Parameters
Write a program that defines a function called multiply. The function accepts two 

arguments of type int, multiplies them, and returns a result. Invoke the function inside 

the function main. Assign the result of a function call to a local variable and print 

the result:

#include <stdio.h>

int multiply(int a, int b)

{

      return a * b;

}

int main(void)

{

      int x = 123;

      int y = 456;

      int z = multiply(x, y);

      printf("The result is: %d\n", z);

}

Output:

The result is: 56088
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CHAPTER 15

Structures
A structure is a type that has members. These members can be variables of other types.

15.1 � Introduction
The structure declaration is of the following syntax:

struct some_name

{

      type_name member_name_1;

      type_name member_name_2;

      // ...

};

A structure is also a type. The name of this type is the name of the structure.  

A structure is a collection of variables, an excellent way to group the variables and 

organize data.

Let us write a simple example that declares a structure with three members:

#include <stdio.h>

struct MyStruct

{

      char c;

      int x;

      double d;

};
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int main(void)

{

      printf("Declared a structure of type: struct MyStruct.\n");

}

Output:

Declared a structure of type: struct MyStruct.

This example declares a structure called MyStruct. The structure name MyStruct 

is also called a tag. This structure has three different members. The first member is of 

type char and is called c. The remaining two members are of other types, and we gave 

them different names, x and d. The structure declaration ends with a semicolon after the 

closing brace as in };.

We can now declare a variable s of this struct MyStruct type either by placing the 

variable name after the structure’s closing brace:

#include <stdio.h>

struct MyStruct

{

      char c;

      int x;

      double d;

} s;

int main(void)

{

      printf("Structure type struct MyStruct declared.\n");

      printf("Variable s of type struct MyStruct declared.\n");

}

Output:

Structure type struct MyStruct declared.

Variable s of type struct MyStruct declared.
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or by writing struct MyStruct s; inside the main function:

#include <stdio.h>

struct MyStruct

{

      char c;

      int x;

      double d;

};

int main(void)

{

      printf("Structure type struct MyStruct declared.\n");

      struct MyStruct s;

      printf("Variable s of type struct MyStruct declared.\n");

}

Both examples declare a structure called MyStruct and a variable s of that struct 

MyStruct type. We say that s is a structure of type struct MyStruct type. We can 

eliminate the lengthy struct MyStruct wording when defining a structure type by 

utilizing the typedef declaration:

#include <stdio.h>

typedef struct MyStruct MyStruct;

struct MyStruct

{

      char c;

      int x;

      double d;

};

int main(void)

{

      MyStruct s;

      printf("Variable s of type MyStruct declared.\n");

}
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The typedef struct MyStruct MyStruct; statement creates an alias for a struct 

MyStruct type. This alias is now simply called MyStruct, so we can now omit the struct 

part when declaring a variable of this type.

Another way to create an alias for a structure type is to use the following code:

#include <stdio.h>

typedef struct

{

      char c;

      int x;

      double d;

} MyStruct;

int main(void)

{

      MyStruct s;

      printf("Variable s of type MyStruct declared.\n");

}

15.2 � Initialization
A structure can be initialized by providing an initializer list with comma-separated 

values, as in {value_1, value_2, value_n}:

#include <stdio.h>

typedef struct

{

      char c;

      int x;

      double d;

} MyStruct;

int main(void)

{

      MyStruct s = {'a', 123, 456.789};

      printf("Variable s of type MyStruct initialized.\n");
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      printf("Member c has a value of %c\n", s.c);

      printf("Member x has a value of %d\n", s.x);

      printf("Member d has a value of %f\n", s.d);

}

Output:

Variable s of type MyStruct initialized.

Member c has a value of a

Member x has a value of 123

Member d has a value of 456.789000

Member c is initialized with a value of 'a', member x is initialized with a value of 

123, and member d receives a value of 456.789. Members are initialized in the order in 

which they are declared.

We can also initialize a structure using the so-called designated initializers. These 

allow us to initialize the structure not just in the order in which the members are 

declared but in any order. We specify the member name and the value for that particular 

member using the {.member_name_1 = value_1, .member_name_2 = value_2, 

.member_name_n = value_n} syntax. Example:

#include <stdio.h>

typedef struct

{

      char c;

      int x;

      double d;

} MyStruct;

int main(void)

{

      MyStruct s = {.x = 123, .c = 'a', .d = 456.789};

      printf("Variable s of type MyStruct initialized.\n");

      printf("Member c has a value of %c\n", s.c);

      printf("Member x has a value of %d\n", s.x);

      printf("Member d has a value of %f\n", s.d);

}
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Here, we initialized member x first, then c, and then d. We print out the values of 

individual members using the member access operator (.).

The following variant, where we declare a structure and initialize a variable in the 

same statement, is also valid:

#include <stdio.h>

struct MyStruct

{

      char c;

      int x;

      double d;

} s = {'c', 123, 456.789};

int main(void)

{

      printf("Structure initialized.\n");

      printf("Member c has a value of %c\n", s.c);

      printf("Member x has a value of %d\n", s.x);

      printf("Member d has a value of %f\n", s.d);

}

15.3 � Member Access Operator
To access individual structure members, we use the variable s name, followed by a 

member access operator ., followed by the name of the appropriate member:

#include <stdio.h>

typedef struct

{

      char c;

      int x;

      double d;

} MyStruct;

int main(void)

{
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      MyStruct s = {'a', 123, 456.789};

      printf("Variable s of type MyStruct initialized.\n");

      printf("Member c has a value of %c\n", s.c);

      printf("Member x has a value of %d\n", s.x);

      printf("Member d has a value of %f\n", s.d);

}

Output:

Variable s of type MyStruct initialized.

Member c has a value of a

Member x has a value of 123

Member d has a value of 456.789000

Here, we access and print out the individual members by using the variable_name.

member_name syntax as in s.c, s.x, and s.d. This member access operator . is also referred 

to as a dot operator.

To access and change the values of individual members, we write:

#include <stdio.h>

typedef struct

{

      char c;

      int x;

      double d;

} MyStruct;

int main(void)

{

      MyStruct s = {'a', 123, 456.789};

      printf("Variable s of type MyStruct initialized.\n");

      printf("Changing member values...\n");

      s.c = 'b';

      s.x = 456;

      s.d = 789.101;

      printf("Member c has a value of %c\n", s.c);
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      printf("Member x has a value of %d\n", s.x);

      printf("Member d has a value of %f\n", s.d);

}

Output:

Variable s of type MyStruct initialized.

Changing member values...

Member c has a value of b

Member x has a value of 456

Member d has a value of 789.101000

In this example, we used the member access operator to access, change, and print 

out the values of individual members.

15.4 � Copying Structures
We can assign (copy) one variable of type struct to another variable of the same type. 

When assigning, we are copying member values, the assignment operator = copies 

member values:

#include <stdio.h>

typedef struct

{

      char c;

      int x;

      double d;

} MyStruct;

int main(void)

{

      MyStruct s1 = {'a', 123, 456.789};

      MyStruct s2;

      s2 = s1; /* copies member values */

      printf("Values from s1 copied to s2.\n");

      printf("Member s2.c has a value of %c\n", s2.c);
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      printf("Member s2.x has a value of %d\n", s2.x);

       printf("Member s2.d has a value of %f\n", s2.d);

}

Output:

Values from s1 copied to s2.

Member s2.c has a value of a

Member s2.x has a value of 123

Member s2.d has a value of 456.789000

In this example, we have two variables of the MyStruct type, named s1 and s2. We 

initialized s1 with some arbitrary values. Then we copied values from s1 to s2 using the 

s2 = s1; statement. We can also say we assigned s1 to s2. The copy of the s1’s member 

values is made and then assigned to appropriate s2 members. Now, both struct variables 

have identical values. Remember, at this point, changing the value of one structure does 

not affect the value of another and vice versa.

15.5 � Pointers to Structures
We can also use pointers to structures. Let us see how to create a pointer to a structure 

and assign it an address of an existing structure variable:

#include <stdio.h>

struct MyStruct

{

      char c;

      int x;

      double d;

};

int main(void)

{

      struct MyStruct s = {'a', 123, 456.789};

      struct MyStruct *ps = &s;

      printf("Member c has a value of %c\n", (*ps).c);
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      printf("Member x has a value of %d\n", (*ps).x);

      printf("Member d has a value of %f\n", (*ps).d);

}

Output:

Member c has a value of a

Member x has a value of 123

Member d has a value of 456.789000

Here, we declared a simple structure. Then, in the main program, we initialized 

a variable s of that struct MyStruct type. Then, we declared a variable ps, which is 

a pointer to that structure type. We initialize this variable with the address of a data 

object s. To access a structure member via a pointer, we dereference the pointer using a 

* symbol. We then use the member access operator, followed by a member name as in 

(*ps).c, to access and print the member value. The . operator has higher precedence 

than the * operator, so we must use parentheses to ensure the dereferencing happens 

before the member access.

Another way to access the structure member through a pointer is by using the arrow 

operator ->. This operator both dereferences the pointer to a structure and accesses a 

member. Example:

#include <stdio.h>

typedef struct

{

      char c;

      int x;

      double d;

} MyStruct;

int main(void)

{

      MyStruct s = {'a', 123, 456.789};

      MyStruct *ps = &s;

      printf("Member c has a value of %c\n", ps->c);
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      printf("Member x has a value of %d\n", ps->x);

      printf("Member d has a value of %f\n", ps->d);

}

Output:

Member c has a value of a

Member x has a value of 123

Member d has a value of 456.789000

The use of an -> operator replaces the need for both the dereference (*) and 

member access operator (.), as it does both operations. To access a single member, 

instead of having to write the (*ps).c expression, we simply write ps->c.

15.6 � Self-Referencing Structures
A structure can have a field that is a pointer to the structure type itself. This field is not an 

instance of a structure but a pointer to a structure type. Example:

struct MyStruct

{

      int x;

      struct MyStruct* next;

};

This declaration allows us to create multiple objects of type struct MyStruct 

representing a singly linked list.

To declare a structure that can represent a doubly linked list, we need two pointer 

fields, one that will point to the previous element in the list and another that will point to 

the next element in the list. Example:

struct MyStruct

{

      int x;

      struct MyStruct* previous;

      struct MyStruct* next;

};
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Similarly, to declare a structure that will represent a node in the binary tree, we 

can write:

struct MyNode

{

      int x;

      struct MyNode* left;

      struct MyNode* right;

};

15.7 � Structures as Function Arguments
We can use a structure as a function argument. The function argument is passed by 

value, meaning the function makes a copy of the arguments and continues to work with 

that copy. The original argument is unaffected by function. To pass the structure by 

value, we write:

#include <stdio.h>

struct MyStruct

{

      char c;

      int x;

      double d;

};

void myfunction(struct MyStruct myparameter)

{

      printf("Member c has a value of %c\n", myparameter.c);

      printf("Member x has a value of %d\n", myparameter.x);

      printf("Member d has a value of %f\n", myparameter.d);

}

int main(void)

{

      struct MyStruct s = {'a', 123, 456.789};

      myfunction(s);

}
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Output:

Member c has a value of a

Member x has a value of 123

Member d has a value of 456.789000

This example uses a function that accepts the structure as a parameter. We have one 

function parameter called myparameter of type struct MyStruct. In the main program, 

we initialize a variable of type struct MyStruct called s. Then we pass this variable as 

an argument to our myfunction function, which prints out its member values.

To avoid typing a lengthy struct MyStruct type name, we can use a typedef to 

create an alias and shorten the declaration:

#include <stdio.h>

typedef struct

{

      char c;

      int x;

      double d;

} MyStruct;

void myfunction(MyStruct myparameter)

{

      printf("Member c has a value of %c\n", myparameter.c);

      printf("Member x has a value of %d\n", myparameter.x);

      printf("Member d has a value of %f\n", myparameter.d);

}

int main(void)

{

      MyStruct s = {'a', 123, 456.789};

      myfunction(s);

}

Chapter 15  Structures



136

Output:

Member c has a value of a

Member x has a value of 123

Member d has a value of 456.789000

Instead of having to type the entire struct MyStruct type name in the declarations, 

we can now simply use the MyStruct name.

Let us now create a function that is of some structure type and returns a structure 

value. Function parameters represent the values for the structure members. Example:

#include <stdio.h>

struct MyStruct

{

      char c;

      int x;

      double d;

};

struct MyStruct createStruct(char cparam, int xparam, double dparam)

{

      struct MyStruct temps;

      temps.c = cparam;

      temps.x = xparam;

      temps.d = dparam;

      return temps;

}

int main(void)

{

      struct MyStruct s;

      s = createStruct('c', 123, 456.789);

      printf("Member c has a value of %c\n", s.c);

      printf("Member x has a value of %d\n", s.x);

      printf("Member d has a value of %f\n", s.d);

}
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Output:

Member c has a value of c

Member x has a value of 123

Member d has a value of 456.789000

Since a structure is a type, we can have a function of that (structure) type. Here, we 

created a function called createStruct of type struct MyStruct. The function accepts 

three parameters, which will be used to assign values to three structure members. The 

function body declares a temporary variable called temps of type struct MyStruct. We 

then assign the parameter values to this temporary structure variable and return the 

variable temps to our caller using the return temps; statement. In our main program, 

we declare a variable s of type struct MyStruct and assign it a value returned by a 

function call. We used arbitrary values of 'c', 123, 456.789 as function arguments.

When a structure gets large, it is better/more efficient to pass the pointer to a 

structure rather than a structure itself. Example:

#include <stdio.h>

struct MyStruct

{

      char c;

      int x;

      double d;

};

void printStruct(struct MyStruct *myparameter)

{

      printf("Member c has a value of %c\n", myparameter->c);

      printf("Member x has a value of %d\n", myparameter->x);

      printf("Member d has a value of %f\n", myparameter->d);

}

int main(void)

{

      struct MyStruct s = {'a', 123, 456.789};

      printStruct(&s);

}
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Output:

Member c has a value of a

Member x has a value of 123

Member d has a value of 456.789000

Here, we defined a function called printStruct that accepts a pointer to a structure 

as a parameter. Since this function accepts a pointer type, we use an address of an 

existing variable &s as an argument, not the s itself.
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CHAPTER 16

Unions
A union is a user-defined type whose members overlap in memory. Unlike a structure 

whose members occupy separate regions of memory, the union’s members all occupy 

the same memory region. The size of the union is equal to the size of its largest field. 

When declaring a union, we use the following syntax:

union some_name

{

      type_name member_name_1;

      type_name member_name_2;

      // ...

};

To define and use a simple union having three fields, we write:

#include <stdio.h>

union MyUnion

{

      char c;

      int x;

      double d;

};

int main(void)

{

      union MyUnion u;

      u.c = 'A';

      printf("The union's char member value: %c\n", u.c);

      u.x = 123;

      printf("The union's int member value: %d\n", u.x);
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      u.d = 456.789;

      printf("The union's double member value: %f\n", u.d);

}

Output:

The union's char member value: A

The union's int member value: 123

The union's double member value: 456.789000

With unions, we can access only the last modified field. In this example, we set the 

c field to the value of 'A' and then print/access it using the printf function. We did 

the same for x and d. Trying to access the field that was not the last one to be modified 

results in undefined behavior. Since all three members share the same memory, 

we cannot do u.x = 123; and then try to access u.c or u.d. We can only access the 

u.x since it was the last modified field. Unions can store the value of only one of the 

members at any given time.
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CHAPTER 17

Conditional Expression
The following example uses the if-else statement to assign the value to our result 

variable based on some (x > 10) condition:

#include <stdio.h>

int main(void)

{

      int x = 123;

      int result;

      if (x > 10)

      {

            result = 456;

      }

      else

      {

            result = 789;

      }

      printf("The result is: %d\n", result);

}

Output:

The result is: 456

The similar behavior can be achieved using the conditional expression, which has the 

following syntax:

(condition) ? expression1 : expression2
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The conditional expression inspects the value of a condition. If the condition is true /  

anything else than 0, the conditional expression returns the expression1. Otherwise, it 

returns the expression2. The ?: is a ternary operator used in the syntax. The preceding 

code example can be rewritten as:

#include <stdio.h>

int main(void)

{

      int x = 123;

      int result;

      result = (x > 10) ? 456 : 789;

      printf("The result is: %d\n", result);

}

Output:

The result is: 456

The following example shows how we can use the conditional expression inside the 

printf function:

#include <stdio.h>

int main(void)

{

      int x = 123;

      printf("Conditional expression result: %d\n", (x > 10) ? 456 : 789);

}

Output:

Conditional expression result: 456
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CHAPTER 18

Typedef
The typedef declaration creates a synonym for the existing type. We use the typedef to 

create an alias name for the existing type name. The usage is of the following syntax:

typedef some_type our_new_name;

To create a new synonym for the type int and, for example, call it MyInteger, 

we type:

typedef int MyInteger;

Now, we can use the new MyInteger alias in the same way we would use int. 

Example:

#include <stdio.h>

typedef int MyInteger;

int main(void)

{

      MyInteger x = 123;

      printf("The value is: %d\n", x);

}

Output:

The value is: 123
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We can also create an alias for a pointer type:

#include <stdio.h>

typedef char* MyString;

int main(void)

{

      MyString s = "Hello World!";

      printf("The value is: %s\n", s);

}

Output:

The value is: Hello World!

To create an alias for a structure type, we write:

#include <stdio.h>

typedef struct MyStruct MyStruct;

struct MyStruct

{

      char c;

      int x;

      double d;

};

int main(void)

{

       MyStruct s;

       printf("Variable s of type MyStruct declared.\n");

}

Output:

Variable s of type MyStruct declared.
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Or we can opt for the equivalent, more widely used typedef struct {} MyStruct; 

approach:

#include <stdio.h>

typedef struct

{

      char c;

      int x;

      double d;

} MyStruct;

int main(void)

{

      MyStruct s;

      printf("Variable s of type MyStruct declared.\n");

}

Output:

Variable s of type MyStruct declared.

The alias MyStruct, in this case, has the same name as the structure tag, which 

is allowed. Now, instead of having to type the lengthy structure type called struct 

MyStruct, we simply type MyStruct.

Note  With structs, the entire struct MyStruct wording represents the type 
name. To avoid having to type the lengthy struct MyStruct name, we create a 
type alias using the typedef struct {} MyStruct; approach. Now our type 
is simply called MyStruct.
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CHAPTER 19

Const Qualifier
To make the object a read-only object, we apply the const qualifier to its declaration. 

Once initialized, these objects become read-only, and we call them constants. 

Attempting to change their values results in a compile-time error. Let us write an example 

that defines a few simple constants:

#include <stdio.h>

int main(void)

{

      const char c = 'a';

      const int x = 123;

      const double d = 456.789;

      printf("We have defined three constants.\n");

      printf("Their values are: %c, %d, %.3f.\n", c, x, d);

}

Output:

We have defined three constants.

Their values are: a, 123, 456.789.

This example defines three constants of three different types: const char, const 

int, and const double. These three names are now constants, and they are read-only. 

From now on, any attempt to change their values will result in a compile-time error. 

Example:
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#include <stdio.h>

int main(void)

{

      const char c = 'a';

      const int x = 123;

      const double d = 456.789;

      c = 'b';     // compile-time error

      x = 124;     // compile-time error

      d = 457.789; // compile-time error

      printf("Defined three constants.\n");

      printf("Their values are: %c, %d, %.3f.\n", c, x, d);

}

In this example, we tried to change the values of the constant. This results in three 

compile-time errors similar to:

error: assignment of read-only variable 'c'

error: assignment of read-only variable 'x'

error: assignment of read-only variable 'd'

We can also apply a const qualifier to pointer types. But with pointers, we have 

two things: a pointer variable itself and a pointed-to object. To make a pointer variable 

read-only, we put the const qualifier after the type name using the some_type* const 

p syntax:

#include <stdio.h>

int main(void)

{

      int x = 123;

      int *const p = &x; // constant pointer

      printf("Defined a constant pointer.\n");

      printf("Pointer value is: %p\n", (void *)p);

      printf("Pointed-to object value is: %d\n", *p);

}
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Output:

Defined a constant pointer.

Pointer value is: 0x7fff8cb8dc7c

Pointed-to object value is: 123

If we now try to change the value of a pointer, for example, using a p = NULL;, we get 

a compile-time error as p is a constant.

To make a pointed-to object a read-only object, we place the const qualifier before 

the pointer type name using the const some_type* syntax. Example:

#include <stdio.h>

int main(void)

{

      int x = 123;

      const int *p = &x; // constant pointed-to object

      printf("Defined a constant, pointed-to object.\n");

      printf("Pointer value is: %p\n", (void *)p);

      printf("Pointed-to object value is: %d\n", *p);

}

Output:

Defined a constant, pointed-to object.

Pointer value is: 0x7ffdce8d2cac

Pointed-to object value is: 123

If we now attempt to change a pointed-to object’s value using a *p = 456;, we get a 

compile-time error as *p is a constant. This only makes the pointed-to object a read-only 

object when trying to modify its value via the dereferenced pointer. However, we are still 

able to change the value of that object using the variable x.

To make the pointer and the pointed-to object read-only, we place the const qualifier 

before and after the pointer type name using the const some_type* const syntax. 

Example:
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#include <stdio.h>

int main(void)

{

      int x = 123;

      �const int *const p = &x; // constant pointer and constant pointed- 

to object

      �printf("Defined a constant pointer and a constant pointed-to 

object.\n");

      printf("Pointer value is: %p\n", (void *)p);

      printf("Pointed-to object value is: %d\n", *p);

}

Output:

Defined a constant pointer and a constant pointed-to object.

Pointer value is: 0x7ffd3c1cc12c

Pointed-to object value is: 123

If we now try to change the pointer value or the pointed-to object value, we get a 

compile-time error.

Similar to making variables constant, we can also have constant function 

parameters. Declaring a constant function parameter ensures the function cannot alter 

the parameter’s value. An example of a function having a constant parameter:

#include <stdio.h>

void myfunction(const int *myparam)

{

      printf("Using a constant function parameter.\n");

      printf("Pointer value is: %p\n", (void *)myparam);

      printf("Pointed-to object value is: %d\n", *myparam);

}
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int main(void)

{

      int x = 123;

      int *p = &x;

      myfunction(p);

}

Output:

Using a constant function parameter.

Pointer value is: 0x7fff605a268c

Pointed-to object value is: 123

This example defines a function that declares a constant parameter called myparam. 

Having a constant parameter ensures the function does not alter the parameter value.

Please note that the const qualifier is a type qualifier, so int and const int should 

be treated as two different types.
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CHAPTER 20

Enumerations
Enumerations are types whose values are symbolic names. These names have 

underlying integral values. To declare an enumeration type, we use the following syntax:

enum MyEnumName { Some_Enum_Name1, Some_Enum_Name2 };

We give the enum a name and then provide a list of enumerator names inside the 

curly braces. These names are also called enumerators or enumeration constants. The 

first enumerator has an underlying value of 0. The subsequent enumerators have the 

value of 2, 3, ... To declare an enum type and a variable of that type, we write:

#include <stdio.h>

int main(void)

{

      enum MyEnum

      {

            FIRST,

            SECOND,

            THIRD

      };

      enum MyEnum myEnumVar;

      myEnumVar = SECOND;

      printf("Declared an enum. Setting the value to: %d\n", myEnumVar);

}

Output:

Declared an enum. Setting the value to: 1

https://doi.org/10.1007/979-8-8688-0224-9_20


154

This example declares an enum type called MyEnum. The type has three symbolic 

constants we named FIRST, SECOND, and THIRD. These enumerators have underlying 

values of 0, 1, and 2, respectively. We then declare a variable of this type and assign it a 

SECOND value. When declaring a variable of enum type, we must also use the enum word 

as in enum MyEnum myEnumVar;.

We can also explicitly specify the underlying enum values. An example where we 

declare an enum whose first enumerator starts from 3:

#include <stdio.h>

int main(void)

{

      enum Days

      {

            WEDNESDAY = 3,

            THURSDAY,

            FRIDAY

      };

      enum Days myDays;

      myDays = FRIDAY;

      printf("Declared an enum. Setting the value to: %d\n", myDays);

}

Output:

Declared an enum. Setting the value to: 5

In this example, we explicitly specify that the first enum has a value of 3 and 

subsequent enums have a value of 4 and 5, respectively.

Another way to declare a variable of enum type is to put the variable name after the 

enum declaration. Example:

#include <stdio.h>

int main(void)

{

      enum Days
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      {

            WEDNESDAY = 3,

            THURSDAY,

            FRIDAY

      } myDays;

      myDays = FRIDAY;

      printf("Declared an enum. Setting the value to: %d\n", myDays);

}

Output:

Declared an enum. Setting the value to: 5

Enums can also be declared in a global scope and can be converted to integers. 

Example:

#include <stdio.h>

enum Lights

{

      RED,

      YELLOW,

      GREEN

};

int main(void)

{

      enum Lights myLights;

      myLights = GREEN;

      int x = myLights;

      printf("Converting an enum to integer. The value is: %d\n", x);

}

Output:

Converting an enum to integer. The value is: 2
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In this example, we declared an enum type inside a global/file scope outside the 

function main. We then used a variable of enum type to initialize another variable of an 

int type.

In short, enums are a convenient way of representing a state using symbolic names.
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CHAPTER 21

Function Pointers
Functions are not variables, but we can still have pointers to functions or function 

pointers. For example, if we have a simple function:

void myfunction()

{

      printf("Hello World from a function.\n");

}

If we want to declare a function pointer to this function, we write:

void (*fp)();

We need to enclose the function pointer name in parentheses due to * operator 

precedence.

The return type of a function pointer matches the function’s return type, which, in 

our case, is void. To assign a function to our function pointer, we write:

fp = myfunction;

Now, we can invoke a function using a function pointer:

#include <stdio.h>

void myfunction()

{

      printf("Hello World from a function.\n");

}

https://doi.org/10.1007/979-8-8688-0224-9_21


158

int main(void)

{

      void (*fp)();

      fp = myfunction;

      fp();

}

Output:

Hello World from a function.

Suppose our function has one parameter of type char*, for example. In that case, we 

modify the function pointer declaration to include that argument’s type:

#include <stdio.h>

void myfunction(char *arg)

{

      printf("%s\n", arg);

}

int main(void)

{

      void (*fp)(char *);

      fp = myfunction;

      fp("This is a function argument.");

}

Output:

This is a function argument.

Similarly, if a function has multiple parameters, we match those parameters’ types in 

the function pointer declaration as well:

#include <stdio.h>

void myfunction(char *arg1, int arg2)

{
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      printf("%s %d\n", arg1, arg2);

}

int main(void)

{

      void (*fp)(char *, int);

      fp = myfunction;

      fp("The value of an int argument is:", 123);

}

Output:

The value of an int argument is: 123

Please note that we do not need to free the function pointer explicitly.
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CHAPTER 22

Exercises

22.1 � Structure Definition
Write a program that defines a simple structure called Person. The structure has the 

char*, int, and double fields. Declare a variable of this structure type inside the main 

and assign values to each member field. Print out the values:

#include <stdio.h>

struct Person

{

      char *name;

      int age;

      double salary;

};

int main(void)

{

      struct Person o;

      o.name = "John Doe";

      o.age = 35;

      o.salary = 2500.00;

      printf("Name: %s\n", o.name);

      printf("Age: %d\n", o.age);

      printf("Salary: %.2f\n", o.salary);

}
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Output:

Name: John Doe

Age: 35

Salary: 2500.00

22.2 � Structure Typedef Alias
Write a program that defines a typedef alias for the structure type called TPerson. The 

structure has the char*, int, and double fields. Declare a variable of this structure type 

inside the main and assign values to each member field. Print out the values:

#include <stdio.h>

typedef struct

{

      char *name;

      int age;

      double salary;

} TPerson;

int main(void)

{

      TPerson o;

      o.name = "Sample Name";

      o.age = 35;

      o.salary = 2500.00;

      printf("Name: %s\n", o.name);

      printf("Age: %d\n", o.age);

      printf("Salary: %.2f\n", o.salary);

}

Output:

Name: Sample Name

Age: 35

Salary: 2500.00
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22.3 � Structure Initialization
Write a program that defines a structure. The structure has the char[], int, and double 

fields. Declare and initialize a variable of this structure type. Print out the values:

#include <stdio.h>

typedef struct

{

      char name[50];

      int age;

      double salary;

} TPerson;

int main(void)

{

      TPerson o = {"John Doe", 25, 2500.00};

      printf("Name: %s\n", o.name);

      printf("Age: %d\n", o.age);

      printf("Salary: %.2f\n", o.salary);

}

Output:

Name: John Doe

Age: 25

Salary: 2500.00

22.4 � Pointers to Structures
Write a program that defines an arbitrary structure. Create an instance of this structure 

in the main program. Define a pointer variable that points at this structure instance. Print 

the object fields using a pointer:

#include <stdio.h>

typedef struct

{
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      char arr[50];

      int x;

      double d;

} TMyStruct;

int main(void)

{

      TMyStruct o = {"Hello World from a struct!", 123, 456.789};

      TMyStruct *p = &o;

      printf("Array field: %s\n", p->arr);

      printf("Integer field: %d\n", p->x);

      printf("Double field: %f\n", p->d);

}

Output:

Array field: Hello World from a struct!

Integer field: 123

Double field: 456.789000

22.5 � Unions
Write a program that defines a union type using a typedef alias. The union has the fields 

of type char*, int, and double. Create an instance of this union in the main program. 

Modify and print each of the fields. Ensure that only the last modified field is accessed:

#include <stdio.h>

typedef union

{

      char *arr;

      int x;

      double d;

} TMyUnion;
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int main(void)

{

      TMyUnion u;

      u.arr = "Hello World from a union!";

      printf("Union's array field: %s\n", u.arr);

      u.x = 123;

      printf("Union's integer field: %d\n", u.x);

      u.d = 456.789;

      printf("Union's double field: %f\n", u.d);

}

Output:

Union's array field: Hello World from a union!

Union's integer field: 123

Union's double field: 456.789000

22.6 � Constants and Pointers
Write a program that defines a constant name, a constant pointer, and a constant 

pointee. The values are arbitrary:

#include <stdio.h>

int main(void)

{

      // const name

      const int x = 123;

      // const pointer, can not use: p = "Something else";

      char *const p = "Hello World";

      int y = 456;

      // const pointee, can not use: *p2 = 789;

      const int *p2 = &y;

      printf("Constant name: %d\n", x);

      printf("Constant pointer: %p\n", (void *)p);

      printf("Constant pointee: %d\n", *p2);

}
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Output:

Constant name: 123

Constant pointer: 0x5570c62d0004

Constant pointee: 456

22.7 � Constant Function Parameters
Write a program that defines a function having constant parameters. Invoke the function 

in the main program. Function parameter types and argument values are arbitrary:

#include <stdio.h>

double myfunction(const int a, const double b)

{

      return a / b;

}

int main(void)

{

      int x = 123;

      double y = 456.789;

      double result = myfunction(x, y);

      printf("The function call result is: %f\n", result);

}

Output:

The function call result is: 0.269271

22.8 � Enums
Write a program that defines an enum type called MyEnum. The enum has three 

enumerators representing arbitrary colors. Create an object of that enum and use it in a 

switch statement. Use the switch statement to print the value of an enum object:
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#include <stdio.h>

enum MyEnum

{

      RED,

      YELLOW,

      GREEN

};

int main(void)

{

      enum MyEnum myenum;

      myenum = GREEN;

      switch (myenum)

      {

      case RED:

            printf("The color is red.\n");

            break;

      case YELLOW:

            printf("The color is yellow.\n");

            break;

      case GREEN:

            printf("The color is green.\n");

            break;

      default:

            printf("None of the above.\n");

            break;

      }

}

Output:

The color is green.
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22.9 � Pointers to Functions
Write a program that defines two functions. The types of functions and the types of 

parameters are arbitrary. Define function pointers to these two functions. Invoke the 

functions using function pointers:

#include <stdio.h>

void printmessage(const char *arg)

{

      printf("%s\n", arg);

}

double division(int a, double b)

{

      return a / b;

}

int main(void)

{

      void (*fp1)(const char *);

      double (*fp2)(int, double);

      fp1 = printmessage;

      fp2 = division;

      fp1("This is the function call through a function pointer.");

      double result = fp2(123, 456.789);

      �printf("The result obtained through a function pointer is: %f\n", 

result);

}

Output:

This is the function call through a function pointer.

The result obtained through a function pointer is: 0.269271
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CHAPTER 23

Preprocessor
When we compile our program, many things are happening in sequence, and here, we 

will take a look at the three major steps:

•	 Preprocessing

•	 Compilation

•	 Linking

The preprocessing is a process in which the preprocessor modifies the content of our 

source file(s) in various ways. The compiler then compiles the source code and turns it 

into object files. The linker then links the object files together and produces an executable 

file or a library.

When we start the compilation process, a preprocessor tool modifies our file’s source 

code before the compilation process begins. It does so by using various preprocessor 

directives. Directives start with a # sign and do not end with a semicolon. Directives are 

not statements. Although they appear as statements to us humans when we read the 

code, they are instructions to a preprocessor on how to modify our source code’s content 

before the compilation phase begins. Remember the use of #include <stdio.h>? That is 

also a preprocessor directive. Let us start with the #include directive.

23.1 � #include
The #include directive includes/inserts the content of a specified file into our source file. 

The files to be included are usually header files with the extension of (.h). The directive is 

of the following syntax:

#include <filename.ext>

and:

#include "filename.ext"
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When we need to include the file that is part of the standard library, we enclose 

the file name in angle brackets < >. This tells the compiler to search for the file in a 

predetermined standard-library location.

We can create our own header files and refer to them as user-defined header files. 

To include the user-defined header, we enclose the file name with double quotes (" "). 

Now, the compiler searches for the file in the same directory where our source code file 

is. If it cannot find it there, it also searches in the standard library location.

Let us create an example that includes several standard-library files:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main(void)

{

      printf("Included several standard-library headers.\n");

}

Output:

Included several standard-library headers.

This example includes multiple standard-library header files. This enables us to use 

the facilities declared in those header files in our main program. We discuss the standard 

library in greater detail in Part 2.

Let us now create a header file of our own, name it myheaderfile.h, and place it in the 

same folder where our source.c file is. The header file can be empty for now, as we are 

only using it to demonstrate how to include the user-defined header file into our source 

file. The content of our source.c file is:

#include <stdio.h>        // standard library header file

#include "myheaderfile.h" // user-defined header file

int main(void)

{

      �printf("Included one standard-library header and one user-defined 

header file.\n");

}
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Output:

Included one standard-library header and one user-defined header file.

The first #include directive includes the standard-library header file called 

stdio.h, and the second #include directive includes our user-defined header file called 

myheaderfile.h into our source.c file.

So, instead of copying the header file content by hand and then pasting it into our 

source file, we simply use the #include directive, which does this job for us.

23.2 � #define
The #define directive creates a macro name. It is of the following syntax:

#define some_identifier replacement_text

The #define directive replaces an identifier with the replacement_text in our source 

code. The preprocessor replaces all occurrences of some_identifier_name with the  

some_replacement_text in our source code when the compilation begins. Example:

#include <stdio.h>

#define MAX 100

int main(void)

{

      printf("Symbolic identifier MAX is: %d\n", MAX);

}

Output:

Symbolic identifier MAX is: 100

This example defines a symbolic name MAX that we can use in our program. Every 

occurrence of this identifier gets replaced by the text 100. The macro identifier name is 

all uppercase by convention. We can use this macro as an initializer for our variables:
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#include <stdio.h>

#define MAX 100

int main(void)

{

      int x = MAX;

      printf("The value of x is: %d\n", x);

}

Output:

The value of x is: 100

Or in array declarations and loops:

#include <stdio.h>

#define ARRAY_ELEMENTS 3

int main(void)

{

      int arr[ARRAY_ELEMENTS];

      arr[0] = 10;

      arr[1] = 20;

      arr[2] = 30;

      for (int i = 0; i < ARRAY_ELEMENTS; i++)

      {

            printf("%d\n", arr[i]);

      }

}

Output:

10

20

30
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Remember, the identifier ARRAY_ELEMENTS here is just a text macro that gets 

expanded to some other text when the compilation begins. The name itself is not a 

variable/object that occupies a memory. The preprocessor simply replaces every 

occurrence of ARRAY_ELEMENTS with 100 when the compilation begins. It is more 

meaningful to us to use some symbolic name ARRAY_ELEMENTS instead of a magic 

number 100.

We can also define a macro that represents a character value:

#include <stdio.h>

#define MY_NEW_LINE '\n'

#define MY_SPACE ' '

int main(void)

{

      printf("This example%cuses %cmacros.", MY_SPACE, MY_NEW_LINE);

}

Output:

This example uses

macros.

23.3 � #undef
When we no longer need a macro or we want to redefine a macro, we use the #undef 

directive to undefine a macro name. An example where we undefine a macro:

#include <stdio.h>

#define MY_MAX 123

int main(void)

{

      int x = MY_MAX;

      printf("The value is: %d\n", x);

#undef MY_MAX

      printf("Macro undefined. The name MY_MAX no longer exists.\n");

}
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Output:

The value is: 123

Macro undefined. The name MY_MAX no longer exists.

Before we can redefine a macro, we must first undefine it. Example:

#include <stdio.h>

#define MY_MAX 123

int main(void)

{

      int x = MY_MAX;

      �printf("The value is: %d\n", x);

#undef MY_MAX

      �printf("Macro undefined. The name MY_MAX no longer exists.\n");

#define MY_MAX 456

      printf("Macro MY_MAX redefined and exists again.\n");

      x = MY_MAX;

      printf("The value is: %d\n", x);

}

Output:

The value is: 123

Macro undefined. The name MY_MAX no longer exists.

Macro MY_MAX redefined and exists again.

The value is: 456

This example redefines a MY_MAX macro with a new value. The workflow was as 

follows: define a macro, use it, undefine it, and then define it again with a new value. The 

compiler would issue a warning if we left out the #undef step.
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23.4 � Conditional Compilation
We can also compile some parts (portions, sections, areas) of the source code and 

exclude others. We do so by utilizing a few conditional directives.

23.4.1 � #if
The #if directive is of the following syntax:

#if some_condition_that_is_constant_expression

      Our source code

#endif

The portion of the code surrounded by the #if and #endif directives will get 

compiled if the condition is true.

The #if directive checks the value of a condition (that is a constant expression). It 

marks the beginning of the source code that we want to compile. Every #if directive is 

matched by an #endif directive. The #endif directive marks the end of the #if block, 

which is the end of the source code chunk we want to compile. If the condition checked 

by the #if directive is true, the portion of the code gets compiled. If not, it is skipped. 

Example:

#include <stdio.h>

#define MY_FLAG 123

int main(void)

{

#if MY_FLAG < 123

      printf("This portion of the code (A)\n");

      printf("will not get compiled.\n");

#endif

      printf("This portion of the code (B)\n");

      printf("Will get compiled.\n");

}
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Output:

This portion of the code (B)

Will get compiled.

Here, we define a macro called MY_FLAG that expands to a constant expression of 

123. We then use the #if directive to check if the macro expression is less than 123. Since 

it is not, the portion of the code surrounded by the #if and #endif directives will not be 

compiled – it will be skipped.

We can also include additional #else and #elseif directives inside the #if #endif 

block to make multiple branches or check for multiple conditions. Example:

#include <stdio.h>

#define MY_FLAG 123

int main(void)

{

#if MY_FLAG < 123

      printf("This portion of the code (A)\n");

      printf("will not get compiled.\n");

#elif MY_FLAG == 123

      printf("This portion of the code (B)\n");

      printf("will get compiled.\n");

#else

      printf("This portion of the code (C)\n");

      printf("will also be skipped.\n");

#endif

}

Output:

This portion of the code (B)

Will get compiled.

In this example, only the source code portion in the #elif part/branch will be 

compiled because only the MY_FLAG == 123 condition evaluates to true.
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23.4.2 � #ifdef
The #ifdef directive checks if a macro name is defined. The directive is of the 

following syntax:

#ifdef macro_name

      Our source code

#endif

We use the #ifdef directive to conditionally compile parts of the source code by 

checking if some macro was previously defined. If true, the source code portion gets 

compiled. Example:

#include <stdio.h>

#define MY_MACRO

int main(void)

{

#ifdef MY_MACRO

      printf("This portion of the code (A)\n");

      printf("will get compiled.\n");

#endif

#ifdef NON_EXISTING_MACRO

      printf("This portion of the code (B)\n");

      printf("will not get compiled.\n");

#endif

}

Output:

This portion of the code (A)

will get compiled.

Explanation: In this example, we define a macro called MY_MACRO using the 

#define MY_MACRO statement (without specifying the replacement value, it is okay; we 

can do that with #define). Then, we check if this macro is defined with the #ifdef MY_

MACRO preprocessor command. Since it is defined, the source code chunk gets compiled.
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Then, we proceed to check if some nonexistent macro called NON_EXISTING_MACRO 

is defined using the #ifdef NON_EXISTING_MACRO command. It is not, as there is no 

previously defined macro with the name of NON_EXISTING_MACRO, and the following 

source code gets excluded from the compilation.

23.4.3 � #ifndef
The #ifndef directive checks if a macro name is not defined. The directive uses the 

following syntax:

#ifndef macro_name

      Our source code

#endif

This directive checks if a given macro name is not defined and, if that is the case, 

compiles the portion of source code ending with a #endif directive. Example:

#include <stdio.h>

#define MY_MACRO

int main(void)

{

#ifndef MY_MACRO

      printf("This portion of the code (A)\n");

      printf("will not get compiled.\n");

#endif

#ifndef NON_EXISTING_MACRO

      printf("This portion of the code (B)\n");

      printf("will get compiled.\n");

#endif

}

Output:

This portion of the code (B)

will get compiled.
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This example defines a macro called MY_MACRO and then checks if this macro is not 

defined. Since the macro is defined earlier, the portion of the source code is skipped and 

not compiled.

The example then checks if a NON_EXISTING_MACRO is not defined. This is true – the 

macro, indeed, is not defined, and the source code that follows gets compiled.

We can utilize this directive to define a macro in case it was not already defined. 

Example:

#include <stdio.h>

int main(void)

{

#ifndef MY_MACRO

#define MY_MACRO

      printf("Macro defined.\n");

#endif

}

Output:

Macro defined.

This example checks if MY_MACRO is not defined. Since it is not, we continue and 

define it in the code that follows. This code is also referred to as a code guard, often used 

in header files to avoid multiple file inclusions. We discuss code guards in more detail in 

later chapters.

23.5 � Built-In Macros
There are built-in macros we can use. For example, the __LINE__ built-in macro gives us 

the line number of the statement in which the macro is used:
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#include <stdio.h>

int main(void)

{

      printf("The current source code line is: %d\n", __LINE__);

      printf("This statement is on line: %d\n", __LINE__);

}

Output:

The current source code line is: 5

This statement is on line: 6

The __FILE__ macro gives us (expands to) the name of the source code file:

#include <stdio.h>

int main(void)

{

      printf("This source code file is called: %s\n", __FILE__);

}

Output:

This source code file is called: source2.c

There are also __TIME__ and __DATE__ macros that expand to the time and date 

the preprocessor is used. Another built-in macro is the __STDC_VERSION__ macro that 

expands to a constant integer value representing the C standard used for compilation.

The __func__ string returns the name of the calling function. Example:

#include <stdio.h>

void myfunction()

{

      printf("This function's name is: %s\n", __func__);

}
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int main(void)

{

      myfunction();

}

Output:

This function's name is: myfunction

23.6 � Function-Like Macros
There are more complex macros that can accept arguments. These are called function- 

like macros. We invoke these macros the same way we call the functions.

Let us write a simple function-like macro that accepts two arguments and expands 

into a text that represents the sum of these two arguments:

#include <stdio.h>

#define MY_SUM(x, y) ((x) + (y))

int main(void)

{

      int mysum = MY_SUM(10, 20);

      printf("The result is: %d\n", mysum);

}

Output:

The result is: 30

This example defines a function-like macro that has two parameters x and y. The 

macro then expands into a ((x) + (y)) text that uses the same arguments. We used 

extra parentheses around parameters in the macro expansion to avoid any operator 

precedence issues. In the main program, we call this macro the same way we would 

call a function, and we provide two arbitrary arguments 10 and 20. At that point, the 

preprocessor substitutes the MY_SUM(10, 20) text with the ((10) + (20)) text. We can 

also say the macro MY_SUM(10, 20) expands to ((10) + (20)) text.
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We can also use the preceding macro to sum two floating-point numbers:

#include <stdio.h>

#define MY_SUM(x, y) ((x) + (y))

int main(void)

{

      double mysum = MY_SUM(123.456, 789.101);

      printf("The result is: %.3lf\n", mysum);

}

Output:

The result is: 912.557

This example uses the same macro MY_SUM but with different types of arguments. 

Here, we used the macro to sum two arguments of type double.

While macro-like functions and macro-programming might look useful at first 

glance, they should be avoided for several reasons. Function-like macros are evaluated 

twice, do not preserve the type safety, are harder to read, and introduce unnecessary 

complexity.

Note P refer real functions to macro-like functions.
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CHAPTER 24

Exercises

24.1 � Define and Undefine a Macro
Write a program that defines, uses, and then undefines a macro. The macro names and 

their contents are arbitrary:

#include <stdio.h>

// define the macro

#define MAX 999

int main(void)

{

      printf("Macro defined. The name MAX exists.\n");

      int x = MAX;

      printf("The variable assigned to macro has a value: %d\n", x);

// undefine the macro

#undef MAX

      printf("Macro undefined. The name MAX no longer exists.\n");

}

Output:

Macro defined. The name MAX exists.

The variable assigned to macro has a value: 999

Macro undefined. The name MAX no longer exists.
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24.2 � Conditional Compilation
Write a program that defines an arbitrary macro called MY_CONDITIONAL_MACRO. Perform 

a conditional compilation based on existing and nonexisting macros. Utilize the 

#define, #ifdef, and #endif directives:

#include <stdio.h>

#define MY_CONDITIONAL_MACRO

int main(void)

{

#ifdef MY_CONDITIONAL_MACRO

      printf("This code will get compiled.\n");

#endif

#ifdef NON_EXISTING_MACRO

      printf("This code will not get compiled.\n");

#endif

}

Output:

This code will get compiled.

24.3 � Built-In Macros
Write a program that utilizes built-in macro names. The program prints out the 

statement’s line number, the file name, the date when the file was created, the name of 

the function called, and the current C standard used:

#include <stdio.h>

void myfunction()

{

      printf("The name of the function called is: %s\n", __func__);

}
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int main(void)

{

      printf("This statement is on line: %d\n", __LINE__);

      printf("The name of the source file is: %s\n", __FILE__);

      printf("The file was created on: %s\n", __DATE__);

      myfunction();

      printf("The C standard used is: %ld\n", __STDC_VERSION__);

}

Output:

This statement is on line: 10

The name of the source file is: source.c

The file was created on: Dec 18 2023

The name of the function called is: myfunction

The C standard used is: 201112

24.4 � Function Macros
Write a program that defines two function-like macros. The first macro accepts two 

parameters and returns the lesser out of two values. The second macro also accepts two 

parameters and returns the greater out of two arguments. Call the macros in the main 

program:

#include <stdio.h>

#define MY_MIN(a, b) (((a) < (b)) ? (a) : (b))

#define MY_MAX(a, b) (((a) > (b)) ? (a) : (b))

int main(void)

{

      int x = 123;

      int y = 456;

      printf("The MY_MIN macro expands to: %d.\n", MY_MIN(x, y));

      printf("The MY_MAX macro expands to: %d.\n", MY_MAX(x, y));

}
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Output:

The MY_MIN macro expands to: 123.

The MY_MAX macro expands to: 456.
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CHAPTER 25

Dynamic Memory 
Allocation
So far, we have used pointers that point to regular, statically allocated variables. We 

used an address-of operator & to assign the address of an existing object to our pointer. 

Example:

#include <stdio.h>

int main(void)

{

      int x = 123;

      int *p = &x;

      printf("The value of a pointed-to object is: %d\n", *p);

}

Output:

The value of a pointed-to object is: 123

We also showed how a pointer could point to an array:

#include <stdio.h>

int main(void)

{

      int arr[] = {10, 20, 30, 40, 50};

      int *p = arr;

      printf("The first array element is: %d\n", *p);

}
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Output:

The first array element is: 10

Or a string constant:

#include <stdio.h>

int main(void)

{

      char *p = "Hello World!";

      printf("String constant: %s\n", p);

}

Output:

String constant: Hello World!

So far, we have used pointers only as another level of indirection for existing objects 

in memory.

There is another way we can utilize a pointer. During our program’s execution, we 

can dynamically allocate the needed memory, use it, and free it. To do so, we use a few 

functions and a pointer. This chapter discusses the functions and techniques involved in 

dynamic memory allocation.

25.1 � malloc
The malloc function allocates n bytes of memory from a system and returns a pointer to 

the newly allocated memory. The function has the following signature:

void* malloc(size_t size_in_bytes);

We need to include the <stdlib.h> header when using this function. To learn how 

to work with this function, we start with small, incomplete code examples and build in 

complexity until we have covered all the concepts.
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To allocate memory for a single integer, we write:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

      int *p = malloc(sizeof(int));

      *p = 123;

      printf("The value is: %d\n", *p);

}

Output:

The value is: 123

Here, the malloc function allocates memory for a single integer. The pointer p 

now points at the beginning of the allocated memory block. We used the sizeof(int) 

expression to determine how many bytes we need for a single integer:

We have allocated space for a single integer. Assuming the size of the int is 4 bytes 

on our machine, we have allocated 4 bytes of memory:

Figure 25-1.   A pointer pointing at a single, uninitialized block of memory 
representing a single uninitialized integer data object  

Figure 25-2.  A pointer pointing at a single, uninitialized block of memory 
representing a single uninitialized integer data object. For example, a single 
uninitialized integer data object can occupy 4 bytes of memory  
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When we dereference a pointer and assign a value of 123 to a pointed-to integer 

object, the image becomes:

If we inspect the individual bytes and their hexadecimal values and assume big- 

endian, the image might look like:

If the allocation fails, the function returns NULL. It is good practice to check for the 

malloc’s return result using an if statement:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

      int *p = malloc(sizeof(int));

      if (p)

      {

            *p = 123;

            printf("The value is: %d\n", *p);

      }

}

Output:

The value is: 123

Figure 25-3.  A pointer pointing at a single, initialized block of memory 
representing a single initialized integer data object whose value is 123 

Figure 25-4.  A pointer pointing at a single, initialized block of memory 
representing a single initialized integer data object with underlying byte values 
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If we want to check if the result of memory allocation is NULL, we could write:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

      int *p = malloc(sizeof(int));

      if (p == NULL)

      {

            printf("Error allocating the memory. Exiting. ");

            return -1;

      }

      *p = 123;

}

Note T he previous examples are missing an important piece of code, and that is 
the call to a free function.

The expression sizeof(int) could have been rewritten as sizeof *p so that we do 

not repeat the type name. The type size_t represents an unsigned integer type often 

used for indexing and as a loop counter. It is also the return type of the sizeof operator.

Once allocated, we must manually release (free) the memory when we are done 

using it. We do so by using a free() function to which we pass the pointer returned by 

malloc as in free(p);. If we left out the free part, we would cause the so-called memory 

leak. This means that the dynamically allocated memory (using malloc) is never freed. 

We are leaking away available memory. It cannot be allocated again. So, the situation 

where we fail to release the dynamically allocated memory is called a memory leak. With 

that in mind, let us now write a complete example:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

      int *p = malloc(sizeof(int));
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      if (p)

      {

            *p = 123;

            printf("The value is: %d\n", *p);

      }

      free(p);

}

Output:

The value is: 123

One school of thought says setting the pointer to NULL is good practice after we 

have freed the memory. While this might not be the case in modern C, we will provide a 

simple example:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

      int *p = malloc(sizeof(int));

      if (p)

      {

            *p = 123;

            printf("The value is: %d\n", *p);

      }

      free(p);

      p = NULL;

}

Output:

The value is: 123

Instead of using the sizeof(type_name) expression, we can also use the size of the 

dereferenced pointer, sizeof *p, which is the same. Example:
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#include <stdio.h>

#include <stdlib.h>

int main(void)

{

      int *p = malloc(sizeof *p);

      if (p)

      {

            *p = 123;

            printf("The value is: %d\n", *p);

      }

      free(p);

}

Output:

The value is: 123

Let us write an example that allocates space for five integers, sets the values of all five 

members, and frees the memory once done:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

      int *p = malloc(5 * sizeof(int));

      if (p)

      {

            p[0] = 10;

            p[1] = 20;

            p[2] = 30;

            p[3] = 40;

            p[4] = 50;

            printf("Allocated an array of 5 integers.\n");
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            // print out the array

            for (int i = 0; i < 5; i++)

            {

                  printf("%d ", p[i]);

            }

      }

      free(p);

}

Output:

Allocated an array of 5 integers.

10 20 30 40 50

In this example, we allocated the space for five integers using the malloc function 

and the 5 * sizeof(int) expression. This expression evaluates to the number of bytes 

capable of holding five integers. Then, we assign the values to each (array) element and 

print out the values.

In plain words, the workflow is as follows:

Allocate (reserve/borrow) enough heap (free-store) memory from 

the system using a malloc function.

Access and manipulate this memory using a pointer.

Free the memory using a free function that will free (release/

return) the previously allocated memory to the system so that it 

can be allocated again.

We can similarly allocate memory for a char:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

      char *p = malloc(sizeof(char));

      if (p)
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      {

            *p = 'A';

            printf("The value is: %c\n", *p);

      }

      free(p);

}

Output:

The value is: A

To dynamically allocate a memory space for a structure, we write:

#include <stdio.h>

#include <stdlib.h>

typedef struct

{

      char c;

      int x;

      double d;

} MyStruct;

int main(void)

{

      MyStruct *p = malloc(sizeof(MyStruct));

      if (p)

      {

            p->c = 'A';

            p->x = 123;

            p->d = 456.789;

            printf("The value is: %c\n", p->c);

            printf("The value is: %d\n", p->x);

            printf("The value is: %f\n", p->d);

      }

      free(p);

}
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Output:

The value is: A

The value is: 123

The value is: 456.789000

We declare a structure called MyStruct. The structure has three fields: char c, int 

x, and double d. We then allocate memory space for one data object of type MyStruct 

using a malloc function. The function returns a pointer p. We use this pointer to access 

our object in memory and populate the fields using the member access through a  

pointer -> operator. We print out the values and, finally, free the memory.

This struct–malloc combination is often used when creating data structures in 

memory, such as linked lists, binary trees, and similar.

25.2 � calloc
The calloc function, defined inside the <stdlib.h> header, allocates space for an array of 

n objects of some_size size and initializes all bytes to zero. The memory block allocated 

with malloc is uninitialized. Bytes inside this block do not hold any meaningful values. If 

we need to allocate space that will be initialized with zeros, we use the calloc function 

instead. Unlike malloc, this function accepts two parameters and has the following 

signature:

void* calloc(size_t number_of_objects, size_t size_of_the_object)

To allocate space for a single integer and fill the allocated memory with zero(s), 

we write:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

      int *p = calloc(1, sizeof(int));

      if (p)
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      {

            printf("The initial value is: %d\n", *p);

      }

      free(p);

}

Output:

The initial value is: 0

The calloc function allocates the memory space needed and initializes all the 

allocated bytes with zeros:

To allocate space for a single integer, fill the memory with zeros, and then change the 

value of the pointed-to data object in memory, we write:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

      int *p = calloc(1, sizeof(int)); // or (1, sizeof *p)

      if (p)

      {

            printf("The initial value is: %d\n", *p);

            *p = 123;

            printf("The new value is: %d\n", *p);

      }

      free(p);

}

Figure 25-5.  A pointer pointing at a single, zero-initialized block of memory 
representing a single initialized integer data object with underlying byte values 
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Output:

The initial value is: 0

The new value is: 123

To allocate a space for an array of five integers, we write:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

      int *p = calloc(5, sizeof(int));

      if (p)

      {

            printf("Initial values:\n");

            for (int i = 0; i < 5; i++)

            {

                  printf("%d ", p[i]);

            }

            // set some values and print them out

            printf("\nNew values:\n");

            for (int i = 0; i < 5; i++)

            {

                  p[i] = (i + 1) * 10;

                  printf("%d ", p[i]);

            }

      }

      free(p);

}

Output:

Initial values:

0 0 0 0 0

New values:

10 20 30 40 50
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25.3 � realloc
Once we allocate space using malloc or calloc, and before we free that memory, we 

can grow or shrink that memory space using realloc. The function is defined inside the 

<stdlib.h> header file. The realloc function has the following signature:

void *realloc(void *pointer, size_t new_size_in_bytes)

The function takes two parameters. The first is the original pointer, and the second is the 

new memory size. The function returns a pointer to the newly allocated/reallocated memory 

block. For now, let us start with a simple yet incomplete example with error checking omitted:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

      int *p = malloc(sizeof(int));

      printf("Allocated %zu bytes.\n", sizeof *p);

      printf("Resizing allocated memory...\n");

      int *pnew = realloc(p, 10 * sizeof(int));

      �printf("The memory block is now %zu bytes long.\n", 10 * 

sizeof(int));

}

Output:

Allocated 4 bytes.

Resizing allocated memory...

The memory block is now 40 bytes long.

By using the malloc function, this example allocates the memory block large enough 

to hold a single integer. It then assigns the address of this newly allocated memory block 

to pointer p. We then pass this pointer to the realloc function as a first argument. The 

second argument is the new size of a memory block. We want to expand the memory 

block to hold ten integers using the 10 * sizeof(int) expression.

Let us now write a complete example with error checking and properly placed free 

functions:
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#include <stdio.h>

#include <stdlib.h>

int main(void)

{

      int *p = malloc(sizeof(int));

      if (p)

      {

            printf("Allocated %zu bytes.\n", sizeof *p);

      }

      int *pnew = realloc(p, 10 * sizeof(int));

      if (pnew)

      {

            printf("Resizing allocated memory...\n");

            �printf("The memory block is now %zu bytes long.\n",  

10 * sizeof(int));

            // reallocation successful, free the new pointer

            free(pnew);

      }

      else

      {

            // if reallocation fails, free the original pointer

            free(p);

      }

}

Output:

Allocated 4 bytes.

Resizing allocated memory...

The memory block is now 40 bytes long.

This example allocates space for a single integer and then reallocates/grows space so 

that it can hold ten integers. If reallocation succeeds, a new pointer is returned, and the 

old/original pointer is invalidated. We need to free this new/reallocated pointer using 

free(pnew). If reallocation fails, the function returns NULL and the old/original pointer is 

preserved, so we must free the original memory/pointer using free(p).
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CHAPTER 26

Storage and Scope
Variables and data objects have certain properties such as visibility, scope, storage, and 

lifetime. These terms are all closely related, and here, we explain how they affect each 

other. We describe how names are visible to other names and how much time the data 

objects spend in memory.

26.1 � Scope
When a variable (or a function) is declared, its name is only valid inside some portion/

section of a source code. That section of a source code is called a scope. There are 

different kinds of scopes – local scope and global scope.

26.1.1 � Local Scope
A function body starting with the { and ending with a } can be seen as a local scope. It is 

local to a function. Variables declared inside a function are visible and accessible only 

there. They are not accessible outside the function scope. We say those variables have a 

local scope. Example:

#include <stdio.h>

void myFunction(void)

{

      int x = 10; // x is a local variable, local to myFunction

      printf("Local scope variable x value: %d\n", x);

}
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int main(void)

{

      myFunction();

      int y = 20; // y is a local variable, local to main

      printf("Local scope variable y value: %d\n", y);

}

Output:

Local scope variable x value: 10

Local scope variable y value: 20

In this example, x is only visible and accessible within the myFunction and nowhere 

else. Similarly, y is only visible inside the function main and nowhere else.

26.1.2 � Global Scope
When we look at the source file as a whole, we look at the file scope or a global scope. 

Everything declared inside a file scope is accessible and visible to everything else in the 

file scope that follows its declaration. Example:

#include <stdio.h>

int x = 123; // x has a global scope

int main(void)

{

      printf("X has a global scope and a value of: %d\n", x);

}

Output:

X has a global scope and a value of: 123
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Variables and functions (names) inside a global scope are visible to names in a local 

scope. Example:

#include <stdio.h>

int x = 123; // x has a global scope

void printX(void)

{

      // x is visible here because it has a global scope

      printf("X has a global scope and a value of: %d\n", x);

}

int main(void)

{

      printX();

}

Output:

X has a global scope and a value of: 123

Names in a local scope are not visible to names inside a global scope. Example:

#include <stdio.h>

void myFunction(void)

{

      int x = 123; // x has a local scope

      // and is only visible in this block

}

// x is not visible here because it has a local scope

int main(void)

{

      // x is not visible here because it has a local scope

}
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26.2 � Storage
Every data object has its storage (occupied memory) and storage duration (the amount 

of time spent in memory). The storage duration determines the object’s lifetime. 

The lifetime is a period of time (while our program is executing) during which the 

object occupies a memory. There are different kinds of storage durations. Here, we 

discuss a few.

26.2.1 � Automatic Storage Duration
The default storage duration is automatic storage duration. This storage is allocated 

when the control flow enters the block in which the data object is declared. It is 

automatically deallocated when the control flow exits the block marked with }. Here, we 

can say the scope determines the lifetime of automatic storage variables. The variable 

goes out of scope when our program’s control flow reaches the function’s closing brace 

(}). It gets destroyed once it goes out of scope, and the previously occupied memory is 

automatically released. Automatic storage is often referred to as stack memory. Example:

#include <stdio.h>

int main(void)

{

      int x = 123; // x is declared here

      printf("Variable x has automatic storage and a value of: %d\n", x);

} // x goes out of scope here

Output:

Variable x has automatic storage and a value of: 123

Our variable x is declared inside a function main. This variable’s storage is 

allocated when our program starts when the control flow enters the main’s { brace and 

deallocated when the control flow hits the closing brace }. Here, the x goes out of scope, 

and the memory it occupies is automatically released. The same applies to user-defined 

functions:
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#include <stdio.h>

void myFunction(void)

{

      int x = 123; // x is declared here

      printf("Variable x has automatic storage and a value of: %d\n", x);

} // x goes out of scope here

int main(void)

{

      myFunction();

}

Output:

Variable x has automatic storage and a value of: 123

26.2.2 � Static Storage Duration
When we apply a static specifier to our variable declaration, our data object then has a 

static storage duration. It remains in memory throughout the execution of our program. 

Objects marked with static and objects declared in global/file scope have this duration. 

The static storage duration object is initialized only once and preserves its (last) value 

across multiple function calls. Example:

#include <stdio.h>

void myCounter(void)

{

      static int x = 10; // initialized only once

      x++;

      printf("Static variable value: %d\n", x);

}
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int main(void)

{

      myCounter(); // x == 11

      myCounter(); // x == 12

      myCounter(); // x == 13

}

Output:

Static variable value: 11

Static variable value: 12

Static variable value: 13

Also, applying the static specifier to a variable or a function declared inside the 

global (file) scope makes them visible only inside that file/translation unit.

26.2.3 � Allocated Storage Duration
Objects that are dynamically allocated have a so-called allocated storage duration. This 

means the storage for these objects dynamically changes throughout the execution of 

our program. We manually allocate memory for an object, use it, and then manually 

deallocate it when we no longer need it. Our responsibility is to manually and explicitly 

free the memory once we no longer need it. Objects with allocated storage duration 

do not automatically deallocate the memory once they go out of scope. We need to 

deallocate the memory manually. Example:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

      printf("Allocating an object...\n");

      int *p = malloc(sizeof(int));

      *p = 123;

      printf("Object with allocated storage has a value of: %d\n", *p);

      printf("Deallocating an object...\n");
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      free(p);

      printf("Done.\n");

}

Output:

Allocating an object...

Object with allocated storage has a value of: 123

Deallocating an object...

Done.

Objects allocated with malloc, calloc, and realloc have an allocated storage 

duration.
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CHAPTER 27

Exercises

27.1 � Dynamic Memory Allocation
Write a program that dynamically allocates space for a double and space for an int using 

a dereferenced pointer size. Free the memory blocks afterward:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

      // allocate space for a double

      double *p1 = malloc(sizeof(double));

      if (p1)

      {

            *p1 = 123.456;

            printf("The value is: %f\n", *p1);

      }

      free(p1);

      // allocate space for an int

      int *p2 = malloc(sizeof *p2);

      if (p2)

      {

            *p2 = 789;

            printf("The value is: %d\n", *p2);

      }

      free(p2);

}
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Output:

The value is: 123.456000

The value is: 789

27.2 � Dynamic Memory Allocation: Arrays
Write a program that dynamically allocates space for an array of five doubles. Using a for 

loop, set and print out all the array elements. Free the memory afterward:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

      // allocate space for 5 doubles

      double *p = malloc(5 * sizeof(double));

      if (p)

      {

            printf("The values are:\n");

            for (int i = 0; i < 5; i++)

            {

                  p[i] = i;

                  printf("%.2f ", p[i]);

            }

      }

      free(p);

}

Output:

The values are:

0.00 1.00 2.00 3.00 4.00
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27.3 � Dynamic Memory Resizing
Write a program that dynamically allocates memory for an array of five integers and then 

resizes the allocated block to hold an array of ten integers. Free the memory afterward:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

      int *p = malloc(5 * sizeof(int));

      if (p)

      {

            printf("Allocated %zu bytes.\n", 5 * sizeof(int));

      }

      int *pnew = realloc(p, 10 * sizeof(int));

      if (pnew)

      {

            printf("Resizing allocated memory...\n");

            �printf("The memory block is now %zu bytes long.\n", 10 * 

sizeof(int));

            // resizing successful, free the realloc pointer

            free(pnew);

      }

      else

      {

            // resizing fails, free the original pointer

            free(p);

      }

}

Output:

Allocated 20 bytes.

Resizing allocated memory...

The memory block is now 40 bytes long.
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27.4 � Automatic and Allocated Storage
Write a program that defines two variables. The first variable will have an automatic 

storage duration, and the second variable will have an allocated storage duration:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

      int x = 123;

      printf("The variable with an automatic storage duration: %d\n", x);

      int *p = malloc(sizeof(int));

      �printf("The variable with an allocated storage duration: %p\n", 

(void *)p);

      free(p); // p is manually freed here

} // x is automatically freed here

Output:

The variable with an automatic storage duration: 123

The variable with an allocated storage duration: 0x555fd1ec16b0
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CHAPTER 28

Standard Input 
and Output
The C standard library provides functions allowing us to accept data/characters from the 

standard input and output data/characters to the standard output. The standard input is 

usually a keyboard. The standard output is typically a monitor/console window to which 

we output the data.

28.1 � Standard Input
This chapter describes a few functions that allow us to accept data from the standard 

input/keyboard. Here, we mention the scanf and the fgets functions. Worth noticing is 

that these functions are not part of the language per se but rather a part of the standard 

library.

28.1.1 � scanf
The scanf function allows us to accept the formatted data from the standard input and 

store it into a variable(s). The function is declared inside the <stdio.h> header and has 

the following signature:

int scanf(const char* format, …)

The function accepts the following arguments: format specifiers and addresses of 

variables that will store/hold the input data. The format specifier interprets/formats the 

data from the standard input. The addresses of variables are used for storing the read 

data. The function returns the number of successfully assigned variables or EOF on error.
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To accept a single character from a keyboard and store it in our char variable, we 

would use the %c format specifier and an address of a char variable:

#include <stdio.h>

int main(void)

{

      printf("Enter a single character: ");

      char mychar;

      scanf("%c", &mychar);

      printf("You entered: %c\n", mychar);

}

Output:

Enter a single character: a

You entered: a

To accept an integer number from a keyboard and store it in our int variable, we use 

the %d format specifier and the address of an int variable. Example:

#include <stdio.h>

int main(void)

{

      printf("Enter an integer number: ");

      int x;

      scanf("%d", &x);

      printf("You entered: %d\n", x);

}

Output:

Enter an integer number: 123

You entered: 123
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To accept multiple values from the standard input, we can use multiple format 

specifiers separated by spaces and multiple addresses of variables separated by commas. 

For example, to accept an int and a double from a keyboard, we write:

#include <stdio.h>

int main(void)

{

      printf("Enter an integer and a double: ");

      int x;

      double d;

      scanf("%d %lf", &x, &d);

      printf("You entered: %d and %lf\n", x, d);

}

Output:

Enter an integer and a double: 123 456.789

You entered: 123 and 456.789000

Note T he scanf function does not perform bounds checking and can potentially 
cause a buffer overflow.

28.1.2 � sscanf
The sscanf function reads from a character array buffer instead of a standard input. 

It stores the read data into a comma-separated list of variables based on the provided 

format specifiers. The function has the following syntax:

int sscanf ( const char * buffer, const char * format, ...);
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To extract a character array buffer into separate variables, we write:

#include <stdio.h>

int main(void)

{

      char buff[50] = "A 123 456.789";

      char c;

      int x;

      double d;

      sscanf(buff, "%c %d %lf", &c, &x, &d);

      printf("The values are: %c, %d and %lf\n", c, x, d);

}

Output:

The values are: A, 123 and 456.789000

In this example, the character buffer of "A 123 456.789" is matched by a "%c %d 

%f" format descriptor inside the sscanf function. If the string in the buffer contained 

the comma-separated values of "A,123,456.789", we would match those with the 

"%c,%d,%f" specifier in the sscanf function.

28.1.3 � fgets
When accepting a string, using a fgets function instead of scanf is better. The scanf 

can cause the so-called buffer overflow. A buffer overflow occurs when the number of 

characters read is greater than the buffer size. It occurs when trying to accept a string 

larger than the buffer size. The fgets function is safe in that regard and does not cause 

the mentioned error. The fgets function is defined inside the <stdio.h> header, accepts 

three parameters, and has the following signature:

char *fgets(char *str, int char_count, FILE *stream_name);

The fgets function reads the input/characters from the given stream and stores the read 

characters into a character array/buffer pointed to by str. The function stops reading the 

input when we press ENTER, when a new-line character is encountered in a stream. We pass 

in the stdin parameter representing our keyboard to read (accept an input) from a keyboard.
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The following example reads the input from the keyboard and stores it in our 

character array. A simple example with error checking omitted:

#include <stdio.h>

int main(void)

{

      // error checking omitted

      printf("Enter a string: ");

      char str[10];

      fgets(str, 10, stdin);

      printf("You entered: %s\n", str);

}

Output:

Enter a string: Sample string

You entered: Sample st

This example accepts an input from the keyboard and stores it into an str buffer. 

It does so by accepting at most nine characters, reserving the tenth place for the null 

character ‘\0’. Any remaining characters are discarded.

We provide the pointer to buffer str, a simple array of ten characters. We then tell 

the fgets function how many characters it should accept: 10 (actually nine as the tenth 

place is reserved for null character). This number is often the same as the array size. 

Finally, with the third argument, we tell the function where to accept the input from, 

which is a keyboard in our case (represented by stdin).

If the function succeeds, it returns the pointer to the buffer we provided, str in our 

case. If it fails, the function returns NULL. Here is a full example with the error checking:

#include <stdio.h>

int main(void)

{

      printf("Enter a string: ");

      char str[10];
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      if (fgets(str, 10, stdin) != NULL)

      {

            printf("You entered: %s\n", str);

      }

      else

      {

            printf("Failure. No characters are read.\n");

      }

}

Output:

Enter a string: Sample string

You entered: Sample st

28.2 � Standard Output
This section describes the functions that allow us to write/output data to a standard 

output stream, which is our console window in most cases.

28.2.1 � printf
The printf function sends/outputs a formatted string to standard output. It can read our 

variables, format them according to the format specifier, and place them in an output 

string. The function has the following signature:

int printf(const char *message, var1, var2...);

To output a simple string to our console window, we write:

#include <stdio.h>

int main(void)

{

      printf("This message ends with a new-line character.\n");

}
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Output:

This message ends with a new-line character.

To output the values of our variables, we write:

#include <stdio.h>

int main(void)

{

      char c = 'A';

      int x = 123;

      double d = 456.789;

      printf("The values are: %c, %d, and %3.2lf\n", c, x, d);

}

Output:

The values are: A, 123, and 456.79

We used three different format specifiers, %c, %d, and %f, to format char, int, and 

double values. The format specifier describes how the content of our variable should be 

formatted for the output. The format specifier also acts as a placeholder for the values, a 

placeholder within the output string.

The format specifier can also include the length/the number of characters needed to 

output our value. For example, to output a double value of 123.456 using three character 

spaces for an integral part and two spaces for the fractional part, we use the %3.2f format 

specifier:

#include <stdio.h>

int main(void)

{

      double d = 123.456;

      printf("%3.2lf\n", d);

}
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Output:

123.46

This example displays a rounded second decimal. The value of the variable remains 

unchanged.

The following list includes some of the most used format specifiers:

%c – Writes one character, used for type char

%s – Writes a string, used for char arrays

%d or %i – Writes (converts) an integer, used for types char, 

short, or int

%u – Used for unsigned char, unsigned short, or unsigned int

%ld – Outputs a long int

%f – Outputs a float or a double value into a decimal 

representation

%lf – Outputs a double value into a decimal representation

x – Writes a hexadecimal representation of char, short, or int

28.2.2 � puts
This function simply writes a string and a new-line character to the standard output 

(a console window). The function is defined inside the <stdio.h> header and has the 

following syntax:

int puts(const char *message);

To use this function, we type:

#include <stdio.h>

int main(void)

{

      puts("This is a puts() message.");

}
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Output:

This is a puts() message.

The function outputs a simple message to the standard output. It also adds an extra 

new-line character to the output string. This saves us from having to explicitly type the \n 

character at the end of our message.

28.2.3 � fputs
Another function for writing to the output stream is fputs. The function writes the 

null-terminated string to the chosen output stream. This function is defined inside the 

<stdio.h> header and has the following signature:

int fputs(const char *message, FILE *stream_name);

To write to the standard output, we supply the message string and the stdout 

parameter for the standard output. Example:

#include <stdio.h>

int main(void)

{

      fputs("This is a fputs() message.\n", stdout);

}

Output:

This is a fputs() message.

28.2.4 � putchar
The putchar function outputs/writes a character to the standard output. The function is 

declared inside a <stdio.h> header and has the following syntax:

int putchar (int ch);
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To write a single character to the standard output, we use:

#include <stdio.h>

int main(void)

{

      char c = 'A';

      putchar(c);

}

Output:

A

To print out a character array, one character at a time, without error checking, 

we write:

#include <stdio.h>

int main(void)

{

      char arr[] = "Hello!";

      for (size_t i = 0; i < 7; i++)

      {

            putchar(arr[i]);

      }

}

Output:

Hello!

If the function fails to print the character, it returns an int value equal to EOF.
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CHAPTER 29

File Input and Output
A file is an array of bytes, usually stored on mediums such as drives. We can write to and 

read from a file using a few C standard-library functions. The following sections explain 

the workflow and the functions used.

29.1 � File Input
To be able to read from a file, we need to utilize a couple of functions. The workflow is as 

follows:

•	 Open a file for reading using the fopen function.

•	 Read a line of text from a file using the fgets function.

•	 Close the file using the fclose function when done.

Let us first create a text file called myfile.txt and fill it with arbitrary text. We then 

place the text file in the same folder as our executable. A simple example with error 

checking omitted:

#include <stdio.h>

int main(void)

{

      char str[100];

      FILE *fp = fopen("myfile.txt", "r"); // open a file

      while (fgets(str, 100, fp) != NULL) // read line of text

      {

            printf("%s", str); // print the line of text

      }

      fclose(fp); // close the file

}
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Possible Output:

This is line no. 1

Sample text

Hello World!

The statement FILE *fp = fopen("myfile.txt", "r"); opens a file for reading 

using the fopen function. The fopen function returns a pointer to a file stream 

represented by a FILE * type. The function accepts two parameters. The first parameter 

is a file name, in our case "myfile.txt". The second parameter is a read mode, in our 

case "r", which specifies we are opening a file for reading.

Then, inside a loop, we read from a file, one line at a time, using the fgets function: 

while (fgets(str, 100, fp) != NULL).

Inside the while loop, we print out the read lines using the printf function. When 

we reach the end of the file, the fgets function returns NULL, and the while loop exits.

Finally, we close the file handle by using the fclose(fp); statement. All these 

functions are defined inside the <stdio.h> header.

To check if the file can be opened, we inspect the pointer’s value using the if (!fp) 

expression. If it is NULL, the opening of a file failed, and we exit the program:

#include <stdio.h>

int main(void)

{

      char str[100];

      FILE *fp = fopen("myfile.txt", "r"); // open a file for reading

      if (!fp)

      {

            printf("Error opening the file. Exiting...\n");

            return 1; // exit the program with an error

      }

      while (fgets(str, 100, fp) != NULL) // read line of text

      {

            printf("%s", str); // print line of text

      }

      fclose(fp); // close the file

}
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Possible Output:

This is line no. 1

Sample text

Hello World!

29.2 � File Output
To write to a file, we use several functions in a sequence. The workflow when writing to a 

file is as follows:

•	 Open a file for writing using the fopen function.

•	 Write to a file using the fprintf function.

•	 When done writing, close the file using the fclose function.

The following example creates a file named myfile.txt and writes a single line of 

text to it:

#include <stdio.h>

int main(void)

{

      FILE *fp = fopen("myfile.txt", "w"); // open a file for writing

      fprintf(fp, "%s", "my line of text"); // write a line of text

      fclose(fp); // close the file

}

This statement opens/creates a file for writing: FILE *fp = fopen("myfile.

txt", "w");. The fopen function returns a pointer to the file stream, which is our fp. 

We then use the fprintf function to write a single line of text to this stream/file. The 

fprintf function is similar to fprint but accepts one more parameter: our pointer to a 

file stream.

When done writing to a file, we need to close the file handle by passing a file pointer 

fp to our fclose function using the fclose(fp); statement.
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To write two lines of text, we use the following example:

#include <stdio.h>

int main(void)

{

      FILE *fp = fopen("myfile.txt", "w"); // open a file for writing

      fprintf(fp, "%s\n%s", "Line 1", "Line 2"); // write two lines

      fclose(fp); // close the file

}
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CHAPTER 30

Exercises

30.1 � Standard Input
Write a program that accepts two variables of type int and double from the standard 

input. Use the fgets function to store the input into a buffer. Use the sscanf function to 

extract the buffer into variables:

#include <stdio.h>

int main(void)

{

      printf("Enter an int and a double and press <enter>: \n");

      char buffer[50];

      int x;

      double d;

      // read the input and store it in a buffer string

      if (fgets(buffer, 50, stdin) != NULL)

      {

            // read from a buffer string into our variables

            sscanf(buffer, "%d %lf", &x, &d);

            printf("You entered: %d and %f\n", x, d);

      }

      else

      {

            printf("Failure. No characters are read.\n");

      }

}
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Output:

Enter an int and a double and press <enter>:

123 456.789

You entered: 123 and 456.789000

When scanning a double using the sscanf function, we need to use the %lf format 

specifier. For type float, a simple %f would suffice.

30.2 � Standard Output
Write a program that defines several variables of built-in types. Print the variables using 

the appropriate format specifiers inside the printf function:

#include <stdio.h>

int main(void)

{

      char c = 'A';

      int x = 123;

      double d = 456.789;

      size_t size = sizeof(long);

      int *p = &x;

      long l = 12345678910L;

      char str[] = "Hello World!";

      printf("Type char: %c\n", c);

      printf("Type int: %d\n", x);

      printf("Type double: %f\n", d);

      printf("Type size_t: %zu\n", size);

      printf("Pointer type: %p\n", (void *)p);

      printf("Type long: %ld\n", l);

      printf("Character array: %s\n", str);

}
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Output:

Type char: A

Type int: 123

Type double: 456.789000

Type size_t: 8

Pointer type: 0x7ffcc5acd424

Type long: 12345678910

Character array: Hello World!
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CHAPTER 31

Header and Source Files
Our C source code can be divided into multiple files called header files and source files. 

These files are plain text files containing C source code. By convention, the header files 

have the .h extension, and source files have the .c extension. Other extensions are also 

possible.

Standard-library header files are included by surrounding the header name with 

angle brackets <> as in:

#include <stdio.h>

And user-defined header files are included by surrounding the header file name with 

double quotes:

#include "someheader.h"

In general, we can place variable and function declarations/interfaces in header files 

and the implementation/definitions in source files. In simple words, we declare things in 

header files, include that header file in the source files, and define things in source files. 

This way, we can organize the code and separate the declarations from the definitions.

When the compilation begins, the content of the included header is stitched together 

with the source file. This produces one source code file, the so-called translation unit. So, 

having the #include "someheader.h" is the same as manually typing the entire header 

file’s content in our source file.

Having declarations in header files allows us to share these declarations with 

multiple source files. For example, let us create a header file titled myutils.h where we 

declare some function, for example:

#include <stdio.h>

void myFunction();
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Let us then create a source file called myutils.c where we include this header and 

define a function:

#include "myutils.h"

void myFunction()

{

      printf("Declared in a header file and defined in a source file.\n");

}

Finally, we include the myutils.h header in our main source.c file and call the 

function:

#include <stdio.h>

#include "myutils.h"

int main(void)

{

      myFunction();

}

Output:

Declared in a header file and defined in a source file.

To compile this program, we must compile all the source files:

gcc -Wall source.c myutils.c -std=c11 -pedantic && ./a.out

One final thing left to do is to have the code guards in the shared header file. Code 

guard is a macro that prevents the inclusion of the header file contents more than once. 

Now our myutils.h header looks like the following:

#ifndef MY_UTILS_H

#define MY_UTILS_H

#include <stdio.h>

void myFunction();

#endif
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We still include our header file in multiple files using the #include "myutils.h" 

directive. But now, the code guards ensure that the header file source code is included 

only once when compiling multiple files. As before, we compile with:

gcc -Wall source.c myutils.c -std=c11 -pedantic && ./a.out

Alternatively, replace the -std=c11 flag with the -std=c2x to compile for the 

upcoming C23 standard.
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CHAPTER 32

Introduction to C Standard 
Library
The C compiler is accompanied by a number of useful functions and macros called the 

C standard library. These functions are defined in standard-library header files. To use 

the C standard-library functions, we simply include the appropriate header into our 

program. Here are some of the C standard-library headers:

Available in all C standards:

<assert.h> Assertion macros

<ctype.h> Utils for individual characters

<errno.h> Macros reporting error conditions

<float.h> Floating-type limits

<limits.h> Sizes of basic types

<locale.h> Localization utils

<math.h> Math functions

<setjmp.h> Jumps

<signal.h> Signal functions

<stdarg.h> Variable arguments

<stddef.h> Common macros

<stdio.h> Input and output functions

<stdlib.h> General utilities for memory, string, and program flow

<string.h> String manipulation functions

(continued)
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<time.h> Time and date

<wchar.h> Multibyte and wide characters utilities

<wctype.h> Wide character types

<iso646.h> Macros for alternative operator spellings

Available since C99:

<complex.h> Complex number arithmetic

<fenv.h> Floating-point environment

<inttypes.h> Format conversion of integer types

<stdbool.h> Type bool

<stdint.h> Fixed-width integer types

<tgmath.h> Generic math and complex macros

Available since C11:

<threads.h> Thread library

<stdalign.h> alignas and alignof macros

<stdatomic.h> Atomic types

<stdnoreturn.h> noreturn macros

<uchar.h> UTF-16 and UTF-32 utils

Available since C23:

<stdbit.h> Bit and byte utilities

<stdckdint.h> Checked integer arithmetic

The following sections describe some of the most used functions inside the library.
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32.1 � String Manipulation
Here, we describe a couple of useful functions we use to manipulate our character arrays 

(strings).

32.1.1 � strlen
The strlen function returns the number of characters inside a null-terminated character 

array, excluding the null-terminating character. The function is of the following 

signature:

sizet_t strlen (const char* str);

To use this function, we include the <string.h> header and supply a character array 

as an argument. Example:

#include <stdio.h>

#include <string.h>

int main(void)

{

      const char str[] = "How many characters here?";

      size_t myStrLength = strlen(str);

      printf("The string contains %zu characters.\n", myStrLength);

}

Output:

The string contains 25 characters.

We could rewrite the preceding example to use a const char *p pointer to a 

character string:

#include <stdio.h>

#include <string.h>

int main(void)

{

      const char *p = "How many characters here?";
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      size_t myStrLength = strlen(p);

      printf("The string contains %zu characters.\n", myStrLength);

}

Output:

The string contains 25 characters.

32.1.2 � strcmp
The strcmp function compares two strings. If strings are equal, the function returns the value 

of 0. If strings are not equal, the function returns a value of either < 0 or > 0. The function 

compares strings one character at a time. When a character from the left-hand string does 

not match the character from the right-hand-side string, the function can either:

–– Return a value less than 0 if the unmatched left-hand side character 

comes before the right-hand side character in lexicographical order

–– Return a value greater than 0 if the unmatched left-hand side charac-

ter comes after the right-hand side character in lexicographical order

For the most part, we will be checking if two strings are equal. Example:

#include <stdio.h>

#include <string.h>

int main(void)

{

      const char *str1 = "Hello World!";

      const char *str2 = "Hello World!";

      if (strcmp(str1, str2) == 0)

      {

            printf("The strings are equal.\n");

      }

      else

      {

            printf("The strings are not equal.\n");

      }

}
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Output:

The strings are equal.

32.1.3 � strcat
The strcat function concatenates two strings. It appends the source string to the 

destination string. The function is of the following signature:

char *strcat(char *destination, const char *source);

To concatenate two strings, we write:

#include <stdio.h>

#include <string.h>

int main(void)

{

      char destination_str[30] = "Hello ";

      char source_str[30] = "World!";

      strcat(destination_str, source_str);

      printf("The concatenated string is: %s\n", destination_str);

}

Output:

The concatenated string is: Hello World!

The destination string array must be large enough to accept the concatenated string.

32.1.4 � strcpy
The strcpy function copies one string to another. It copies the characters from the 

source_str string to the destination_str string. The function signature is:

char *strcpy(char *destination, const char *source);
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To copy one string to another, we write:

#include <stdio.h>

#include <string.h>

int main(void)

{

      char destination_str[30];

      char source_str[30] = "Hello World!";

      strcpy(destination_str, source_str);

      printf("The copied string is: %s\n", destination_str);

}

Output:

The copied string is: Hello World!

The destination array must be large enough to accommodate the copied characters, 

including the (invisible) null-terminating character.

32.1.5 � strstr
The strstr function searches for a substring inside a string. It returns the first position at 

which the substring is found. The function is of the following signature:

char *strstr(const char* string, const char* substring);

To search for a substring within a string, we write:

#include <stdio.h>

#include <string.h>

int main(void)

{

      char myString[] = "Hello World!";

      char mySubstring[] = "World";

      if (strstr(myString, mySubstring))

      {

            printf("Substring found.\n");
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      }

      else

      {

            printf("Substring not found.\n");

      }

}

Output:

Substring found.

To print out the position at which the substring was found, we subtract the original 

string’s address from the strstr’s function return value as in posFound - myString. 

Remember, array names get converted to pointers when used as function arguments. 

Subtracting pointers gives us the position of a substring:

#include <stdio.h>

#include <string.h>

int main(void)

{

      char myString[] = "Hello World!";

      char mySubstring[] = "World";

      char *posFound = strstr(myString, mySubstring);

      if (posFound)

      {

            �printf("Substring found at position: %ld.\n", posFound - myString);

      }

      else

      {

            printf("Substring not found.\n");

      }

}

Output:

Substring found at position: 6.
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32.2 � Memory Manipulation Functions
The C standard library provides several functions that allow us to work with bytes inside 

memory blocks. For example, these functions allow us to set the values of the entire 

memory block, copy bytes from one memory block to another, compare memory blocks, 

and more. Note that type unsigned char can be used to represent a single byte.

32.2.1 � memset
The memory obtained through malloc is not initialized. The allocated memory blocks 

hold no meaningful values. Trying to read uninitialized memory will result in undefined 

behavior. Earlier, we used the calloc function to allocate and initialize the memory 

blocks to zero.

Another way to initialize the memory is through a memset function declared inside 

the <string.h> header file. The function has the following signature:

void *memset(void *destination, int value, size_t N);

The function accepts a pointer to allocated memory here, called destination, the 

value to fill the allocated bytes, and the memory block’s size in bytes, here named N.

To allocate space for five integers and then fill the entire memory block/all the bytes 

in the allocated memory with zeros, we write:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main(void)

{

      int *p = malloc(5 * sizeof(int));

      if (p)

      {

            memset(p, 0, 5 * sizeof(int));

            for (int i = 0; i < 5; i++)

            {

                  printf("%d ", p[i]);
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            }

      }

      free(p);

}

Output:

0 0 0 0 0

32.2.2 � memcpy
The memcpy function copies N bytes/characters from a memory location/block pointed to 

by source to a memory area pointed to by destination. The function is of the following 

signature:

void* memcpy( void *dest, const void *source, size_t N );

The function interprets memory bytes as unsigned char. The function is defined 

inside the <string.h> header. For example, to copy 5 bytes from one string array to 

another string array, we write:

#include <stdio.h>

#include <string.h>

int main(void)

{

      char source[] = "Hello World.";

      char destination[5];

      memcpy(destination, source, sizeof destination);

      printf("The source is: %s\n", source);

      printf("The destination after copying 5 characters is:\n");

      // write a character, one by one, using the putchar() function

      for (size_t i = 0; i < sizeof destination; i++)

      {

            putchar(destination[i]);

      }

}
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Output:

The source is: Hello World.

The destination after copying 5 characters is:

Hello

This example copies five characters from a source array to a destination array and 

uses the putchar() function to print out the destination characters one by one.

To copy an array of elements into a dynamically allocated memory block, we write:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main(void)

{

      int myArr[] = {10, 20, 30, 40, 50};

      // allocate space for 5 integers

      int *p = malloc(5 * sizeof(int));

      // copy bytes from an array to an allocated space

      memcpy(p, myArr, 5 * sizeof(int));

      �printf("Copied bytes from an array to an allocated space. The values 

are:\n");

      for (int i = 0; i < 5; i++)

      {

            printf("%d ", p[i]);

      }

      free(p);

}

Output:

Copied bytes from an array to an allocated space. The values are:

10 20 30 40 50

Chapter 32  Introduction to C Standard Library



247

To copy a struct data object into another struct object, we write:

#include <stdio.h>

#include <string.h>

typedef struct

{

      char c;

      int x;

      double d;

} MyStruct;

int main(void)

{

      MyStruct source, destination;

      source.c = 'a';

      source.x = 123;

      source.d = 456.789;

      memcpy(&destination, &source, sizeof(destination));

      �printf("The result after copying bytes from source to 

destination:\n");

      printf("Member destination.c has a value of: %c\n", destination.c);

      printf("Member destination.x has a value of: %d\n", destination.x);

      printf("Member destination.d has a value of: %f\n", destination.d);

}

Output:

The result after copying bytes from source to destination:

Member destination.c has a value of: a

Member destination.x has a value of: 123

Member destination.d has a value of: 456.789000

Here, we declared two variables of type MyStruct, called source and destination. 

We populate the data of the source struct and then copy individual bytes of source into 

destination using memcpy function. Since the memcpy function accepts pointers, we use 

our structs’ addresses: &destination and &source. Now, both structs have identical data.
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32.2.3 � memcmp
The memcmp function compares the first N bytes from the memory block pointed by p1 

to the first N bytes pointed to by p2. The function returns 0 if the byte values match. The 

function has the following signature:

int memcmp( const void* p1, const void* p2, size_t N );

To compare two arrays byte by byte using memcmp, we write:

#include <stdio.h>

#include <string.h>

int main(void)

{

      int arr1[] = {10, 20, 30, 40, 50};

      int arr2[] = {10, 20, 20, 40, 50};

      int myResult = memcmp(arr1, arr2, 5 * sizeof(int));

      if (myResult == 0)

      {

            printf("The arrays values match.\n");

      }

      else

      {

            printf("The arrays values do not match.\n");

      }

}

Output:

The arrays values do not match.

This example compares the individual bytes of arr1 and arr2. It compares the first 

20 bytes of both arrays. Remember, the size of int is 4, times 5 elements, equals 20 bytes 

in total, the number calculated using the 5 * sizeof(int) expression. Since the arrays 

are not equal, the function returns a value other than 0.
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If the bytes do not match, the memcmp function can return one of the following:

<0 – If the first byte that does not match has a lower value in p1 

than in p2

>0 – If the first byte that does not match has a higher value in p1 

than in p2

The memcmp function is a convenient way to compare two data objects in memory, 

byte by byte.

32.2.4 � memchr
The memchr function searches for a particular byte c in the initial N characters within a 

memory block pointed to by p. The function is declared inside the <string.h> header 

and is of the following signature:

void* memchr( const void* p, int c, size_t N );

The function searches for the first occurrence of c, and if the byte/char is found, the 

function returns a pointer to the location of c. If the byte value is not found, the function 

returns a NULL. Internally, the c byte is interpreted as unsigned char. The following 

example searches for a byte with a value of 'W' inside a "Hello World!" character array:

#include <stdio.h>

#include <string.h>

int main(void)

{

      char mystr[] = "Hello World!";

      char *pfound = memchr(mystr, 'W', strlen(mystr));

      if (pfound != NULL)

      {

            printf("Character/byte found at: %s\n", pfound);

      }

      else

      {

            printf("Character/byte not found: %s\n", pfound);

      }

}
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Output:

Character/byte found at: World!

32.3 � Mathematical Functions
The C standard library provides a set of useful mathematical functions. The functions 

are defined inside different header files. Here, we discuss some of the most widely 

used ones.

32.3.1 � abs
The abs function returns an absolute value of an integer argument. The function is 

defined inside the <stdlib.h> header. Example:

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

      int x = -123;

      int y = 456;

      printf("The absolute value of x is: %d\n", abs(x));

      printf("The absolute value of y is: %d\n", abs(y));

}

Output:

The absolute value of x is: 123

The absolute value of y is: 456

There are also labs and llabs functions that return absolute values of long and long 

long arguments, respectively.
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32.3.2 � fabs
The fabs function returns an absolute value of a double argument. The function is 

defined inside the <math.h> header. Example:

#include <math.h>

#include <stdio.h>

int main(void)

{

      double x = -123.456;

      double y = 789.101;

      printf("The absolute value of x is: %f\n", fabs(x));

      printf("The absolute value of y is: %f\n", fabs(y));

}

Output:

The absolute value of x is: 123.456000

The absolute value of y is: 789.101000

There are also fabsf and fabsl versions that return absolute values of float and 

long double arguments, respectively.

32.3.3 � pow
The pow function returns the value of base raised to the power of the exponent. The 

function has the following syntax:

double pow(double base, double exponent);
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The function is declared inside the <math.h> header file. Example:

#include <math.h>

#include <stdio.h>

int main(void)

{

      printf("The value of 2 to the power of 10 is: %f\n", pow(2, 10));

      printf("The value of 2 to the power of 20 is: %f\n", pow(2, 20));

}

Output:

The value of 2 to the power of 10 is: 1024.000000

The value of 2 to the power of 20 is: 1048576.000000

There are also powf and powl variants that accept float and long double arguments.

32.3.4 � round
The round returns the result of rounding the floating-point argument to the nearest 

integer, rounding halfway away from 0. The function is declared inside the <math.h> 

header file and has the following syntax:

double round(double argument);

Example:

#include <stdio.h>

#include <math.h>

int main(void)

{

      double d = 1.5;

      printf("The result of rounding the %f is: %f\n", d, round(d));

      d = 1.49;

      printf("The result of rounding the %f is: %f\n", d, round(d));

}
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Output:

The result of rounding the 1.500000 is: 2.000000

The result of rounding the 1.490000 is: 1.000000

To run this example on Linux, we also need to link with the math library by supplying 

the -lm flag to our compilation string.

There are also roundf and roundl versions that accept float and long double 

arguments.

To have a rounding function that will return an integral type, we use the lround 

function. Example:

#include <stdio.h>

#include <math.h>

int main(void)

{

      double d = 1.5;

      printf("The result of rounding the %f is: %ld\n", d, lround(d));

      d = 1.49;

      printf("The result of rounding the %f is: %ld\n", d, lround(d));

}

Output:

The result of rounding the 1.500000 is: 2

The result of rounding the 1.490000 is: 1

32.3.5 � sqrt
The sqrt function returns the square root of an argument. This function is declared 

inside the <math.h> header and has the following syntax:

double sqrt(double argument);
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Example:

#include <stdio.h>

#include <math.h>

int main(void)

{

      double d = 64.;

      printf("The square root of %f is: %f\n", d, sqrt(d));

      d = 256.00;

      printf("The square root of %f is: %f\n", d, sqrt(d));

}

Output:

The square root of 64.000000 is: 8.000000

The square root of 256.000000 is: 16.000000

We use the sqrtf variant for the type float and sqrtl for the type long double.

32.4 � String Conversion Functions
There are functions in the C standard library that allow us to convert a string to a number 

and vice versa. Here, we discuss the strtol for converting a string to a number and 

snprintf for converting a number to a string.

32.4.1 � strtol
The strtol function allows us to convert a string to a long int number. The function is 

defined inside the <stdlib.h> header and has the following syntax:

long strtol(const char *restrict str, char **restrict str_end, int base);
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Note  The restrict keyword was introduced in C99. It helps the compiler to 
optimize the code. It also says no other parameter in the function list will point to 
this address/object.

The strtol function takes as many characters as possible from str to form an 

integer number of base base. The base represents the base of the interpreted integer and 

can have values from 2 to 36.

The function can also set the pointer pointed to by str_end to point at the one past 

the last character interpreted. We can also ignore this pointer by passing it a null pointer. 

To convert a string to a base 10 integer, where we ignore the str_end pointer, we write:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

      const char * str = "123 to a number.";

      long result = strtol(str, NULL, 10);

      printf("The result is: %ld\n", result);

}

Output:

The result is: 123

To convert a string to an integer and get the remainder of the string that could not be 

converted, we write:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

      const char * str = "123 to a number.";

      char* str_end;

      long result = strtol(str, &str_end, 10);
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      printf("The result is: %ld\n", result);

      printf("The remainder of the string is: %s\n", str_end);

}

Output:

The result is: 123

The remainder of the string is:  to a number.

32.4.2 � snprintf
The snprintf function allows us to convert a number to a formatted string. Whereas the 

printf writes to standard output, the snprintf writes to a character array. The function 

is declared inside the <stdio.h> header and has the following syntax:

int snprintf(char *restrict str_buffer, size_t buffer_size,

             const char *restrict format, ... );

The function writes the result into a string buffer pointed to by str_buffer. The 

buffer_size is the maximum number of characters to be written. The function writes 

at most buffer-size - 1 characters, plus the automatically added null-terminating 

character. To convert a single integer x to a string buffer pointed to by strbuffer, 

without checking for the return value, we write:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

      int x = 123;

      char strbuffer [100];

      snprintf(strbuffer, sizeof strbuffer, "%d", x);

      printf("The result is: %s\n", strbuffer);

}
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Output:

The result is: 123

If successful, the snprintf function returns a number of characters written minus 

the null terminator. If the conversion is unsuccessful, the function returns a negative 

number. To convert a single integer to a string and check how many characters were 

written, we use:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

      int x = 123;

      char strbuffer [100];

      int nc = snprintf(strbuffer, sizeof strbuffer, "%d", x);

      printf("The result is: %s\n", strbuffer);

      printf("The number of characters written is: %d\n", nc);

}

Output:

The result is: 123

The number of characters written is: 3

To form a more descriptive string out of int and double values, we use the string 

constant with format specifiers. We also pass in the comma-separated list of numbers. 

Example:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

      int x = 123;

      double d = 456.789;
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      char strbuffer[100];

      �int nc = snprintf(strbuffer, sizeof strbuffer, "int: %d,  

double: %g", x, d);

      printf("%s\n", strbuffer);

      printf("The number of characters written is: %d\n", nc);

}

Output:

int: 123, double: 456.789

The number of characters written is: 25
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CHAPTER 33

Introduction to 
C11 Standard
The C11 standard, formally known as ISO/IEC 9899:2011, was a C standard adopted in 

late 2011. The C11 standard replaced the C99 standard and was superseded by C17. C11 

introduces new features to the C language and C standard library and modifies a few 

existing ones. Here, we discuss some of the notable features.

33.1 � _Static_assert
The _Static_assert performs assertion during compile time before our program starts. 

The static assertion has the following syntax:

_Static_assert(expression, message);

The static assertion evaluates the constant expression during compile time. If the 

expression is evaluated to 0(false), a message is displayed, and the compilation fails. If 

the expression does not evaluate to 0, no message is displayed, and nothing happens. For 

example, let us check if the size of type int is equal to 8 using static assertion. Chances 

are the size of our int is equal to 4 and the assertion will fail. Example:

int main(void)

{

      _Static_assert(sizeof(int) == 8, "The size of int is not 8.\n");

}
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If we used long instead of int, chances are there will be no error message and the 

compilation will continue. Example:

int main(void)

{

      _Static_assert(sizeof(long) == 8, "The size of long is not 8.\n");

}

The _Static_assert keyword can be replaced by a static_assert macro declared 

inside the <assert.h> header. Example:

#include <assert.h>

int main(void)

{

      static_assert(sizeof(int) == 8, "The size of int is not 8.\n");

}

In short, static assertions are a convenient way to enforce assertions and catch errors 

during compile time.

33.2 � The _Noreturn Function Specifier
The _Noreturn function specifier, when applied to a function declaration, specifies that the 

function does not return. More precisely, it specifies that the function does not return by

–– Executing a return statement

–– Hitting the end of the function block marked by the closing brace (})

Having the _Noreturn specifier suppresses some of the spurious warnings and 

further optimizes the code. Example:

#include <stdlib.h>

#include <stdio.h>

_Noreturn void justExit()

{

      printf("This function does not return. Exiting...\n");

      exit(0);

}
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int main(void)

{

      justExit();

}

The specifier can be replaced by the equivalent noreturn macro declared inside the 

<stdnoreturn.h> header. Example:

#include <stdlib.h>

#include <stdio.h>

#include <stdnoreturn.h>

noreturn void justExit()

{

      printf("This function does not return. Exiting...\n");

      exit(0);

}

int main(void)

{

      justExit();

}

33.3 � Type Generic Macros Using _Generic
The use of _Generic provides a way to select one of several expressions during compile 

time, based on a type of a given controlling expression. The blueprint for a generic 

expression/macro is:

_Generic ( controlling_expression, list_of_associations)

The controlling expression is an expression whose type will be compared to types 

listed in the association list. The association list is a comma-separated list of the 

following content:

type1 : expression1,

type2 : expression2,

default : default_expression
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The type of the controlling expression is compared to the types in the list. If it 

matches one of them, the generic selection becomes the expression after the colon.

Let us assume we had several functions that accept different types of parameters. 

We then want to choose the appropriate function based on a type of argument while 

using a single generic macro name. In that case, we utilize the _Generic selection in the 

following way:

#include <stdio.h>

#define myfn(X) _Generic((X), \

                                       int : myfn_i, \

                                       float : myfn_f, \

                                       double : myfn_d, \

                                       default : myfn_ld \

                                       )(X)

void myfn_i(int x)

{

      printf("Printing int: %d\n", x);

}

void myfn_f(float x)

{

      printf("Printing float: %f\n", x);

}

void myfn_d(double x)

{

      printf("Printing double: %f\n", x);

}

void myfn_ld(long double x)

{

      printf("Printing long double: %Lf\n", x);

}
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int main(void)

{

      int x = 123;

      float f = 456.789f;

      double d = 101.112;

      long double ld = 134.456l;

      myfn(x);

      myfn(f);

      myfn(d);

      myfn(ld);

}

Output:

Printing int: 123

Printing float: 456.789001

Printing double: 101.112000

Printing long double: 134.456000

This example expands the myfn macro to the appropriate expression based on the 

type of X. If no type can be matched in the association list, the macro expands to the 

default expression. The default expression, in our case, is the myfn_ld function. This 

approach closely matches the function overloading concept found in other languages.

33.4 � The _Alignof Operator
The _Alignof operator returns the alignment requirements of the type. Let us assume 

we have two data objects in memory of the same type, positioned in successive memory 

addresses. The alignment requirement is the property of an object that says how many 

bytes there must be between these two addresses in order to store the objects successfully. 

The _Alignof operator gets this number for us and has the following blueprint:

_Alignof(type_name)
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Example:

#include <stdio.h>

struct S1

{

      char c;

      char d;

};

struct S2

{

      char c;

      int x;

};

int main(void)

{

      printf("The alignment of char: %zu\n", _Alignof(char));

      printf("The alignment of int: %zu\n", _Alignof(int));

      printf("The alignment of struct S1: %zu\n", _Alignof(struct S1));

      printf("The alignment of struct S2: %zu\n", _Alignof(struct S2));

}

Output:

The alignment of char: 1

The alignment of int: 4

The alignment of struct S1: 1

The alignment of struct S2: 4

There is also a convenience macro called alignof inside the <stdalign.h> header 

that expands to our _Alignof operator.
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33.5 � The _Alignas Specifier
The _Alignas specifier modifies the alignment requirement when declaring an object. 

The _Alignas specifier has two syntaxes, one in which it accepts an expression that 

evaluates to the number of bytes and one in which it accepts a type name:

_Alignas (constant_int_expression)

_Alignas (type_name)

The alignment expression must be a positive power of 2. For example, if we want to 

enforce a specific alignment of our structure, we write:

#include <stdio.h>

struct MyStruct

{

  _Alignas(16) int x[4];

};

int main(void)

{

    �printf("The alignment of MyStruct is: %zu bytes\n", _Alignof(struct 

MyStruct));

}

Output:

The alignment of MyStruct is: 16 bytes

In this example, every object of type struct MyStruct will be aligned to a 16-byte 

boundary. We can also use the alignas macro defined inside the <stdalign.h> header. 

The compiler will issue an error if

•	 The value is not 0 or a positive power of 2

•	 The value exceeds the maximum allowed alignment

•	 The value is less than the physically possible minimum alignment
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33.6 � Anonymous Structures and Unions
Structures (or unions) without a name are called anonymous structures. They come 

in handy when we want to nest a structure (or a union) inside another structure (or a 

union). Example:

#include <stdio.h>

struct MyStruct

{

      int a;

      struct // anonymous structure

      {

            int b;

            int c;

      };

};

int main(void)

{

      struct MyStruct s;

      s.a = 123;

      s.b = 456;

      s.c = 789;

      printf("Field a: %d\n", s.a);

      printf("Inner field b: %d\n", s.b);

      printf("Inner field c: %d\n", s.c);

}

Output:

Field a: 123

Inner field b: 456

Inner field c: 789
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In this example, we used a structure and called it MyStruct. Inside that structure, 

there is one integer field called a and a nested, anonymous structure having two fields, b 

and c. To access these fields, we simply use the s.b and s.c syntax as anonymous struct 

members are members of the enclosing struct.

33.7 � Aligned Memory Allocation: aligned_alloc
The C11 standard introduces an aligned_alloc function, which allocates a memory 

block with a specified alignment. The syntax is:

void *aligned_alloc(size_t alignment, size_t size);

The function is defined inside the <stdlib.h> header. The memory is not initialized 

and must be freed with free or deallocated with realloc. The size in bytes must be a 

multiple of alignment. Example:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

    int *p = aligned_alloc(512, 512 * sizeof *p);

    printf("Allocated a 512-byte aligned memory block.\n");

    printf("The address is: %p\n", (void *)p);

    free(p);

}

Output:

Allocated a 512-byte aligned memory block.

The address is: 0x55ca95945200
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33.8 � Unicode Support for UTF-16 and UTF-32
The C11 standard provides types for storing UTF-16 and UTF-32 encoded strings. They 

are char16_t and char32_t. Both types and the Unicode conversion functions are 

declared in a <uchar.h> header file. Example:

#include <uchar.h>

int main(void)

{

      char16_t arr16[] = u"Our 16-bit wide characters here.\n";

      char32_t arr32[] = U"Our 32-bit wide characters here.\n";

}

We use the u prefix for the char16_t character array and the U prefix for the 

char32_t character array.

The width of the type char16_t can be larger than 16 bits, but the size of the value 

stored will be exactly 16 bits wide. Similarly, for a char32_t type, the size of the char32_t 

type itself can be larger than 32 bits, but the value stored inside this type will be exactly 

32 bits wide.

33.9 � Bounds Checking and Threads Overview
While the detailed analysis of the following features is out of scope for this book, we will 

briefly mention two additional things introduced in the C11 standard. They are bounds- 

checking (safe) functions and a thread support library.

33.9.1 � Bounds-Checking Functions
A few string and I/O functions can cause a buffer overflow. The C11 standard offers an 

optional extension containing the so-called bounds-checking functions that rectify this 

problem. These functions are also referred to as safety functions and carry the _s suffix. 

Some of them are gets_s, fopen_s, printf_s, scanf_s, strcpy_s, and wcscpy_s. The 

compiler might not provide these, and they are only available if the __STD_LIB_EXT1__ 

macro is defined.
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33.9.2 � Threads Support
The C11 standard offers an optional thread support library. The functions are defined 

inside the <threads.h> header. These functions bring the native thread support to the C 

language. They allow for creating and joining threads, creating mutexes, synchronizing 

access, working with conditional variables, and more.

The following example creates a thread that executes a code from a function which 

accepts one argument:

#include <threads.h>

#include <stdio.h>

int dowork(void *arg)

{

      thrd_t mythreadid = thrd_current();

      for (int i = 0; i < 5; i++)

      {

            �printf("Thread id: %lu, counter: %d, code: %s\n", mythreadid, 

i, (char *)arg);

      }

      return 0;

}

int main(void)

{

      thrd_t mythread;

      // create a thread that executes a function code

      �if (thrd_success != thrd_create(&mythread, dowork, "Hello from a 

thread!"))

      {

            printf("Could not create a thread.\n");

            return 1;

      }

      // join a thread to the main thread

      thrd_join(mythread, NULL);

}
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Output:

Thread id: 140647017862912, counter: 0, code: Hello from a thread!

Thread id: 140647017862912, counter: 1, code: Hello from a thread!

Thread id: 140647017862912, counter: 2, code: Hello from a thread!

Thread id: 140647017862912, counter: 3, code: Hello from a thread!

Thread id: 140647017862912, counter: 4, code: Hello from a thread!

This example defines a function that will be executed by our thread. In the main 

program, we create/spawn the thread by calling the thrd_create function, to which we 

pass the address of our local mythread variable, the name of the function to be executed, 

dowork, and a string representing the function argument. Inside the user- 

defined function dowork, we also print out the current thread ID obtained through a 

thrd_current() function call.

When compiling a multithreaded application on Linux, we need to add the -pthread 

flag to the compilation string:

gcc -Wall source.c -std=c11 -pedantic -pthread

Note that <threads.h> support is optional and might not be fully 

implemented in GCC.
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CHAPTER 34

The C17 Standard
At the time of writing, the C17 standard, officially named ISO/IEC 9899:2018, is the last 

published C standard. It replaces the C11 standard, does not introduce new features, and 

fixes defects reported for C11. The __STDC_VERSION__ macro for this standard has the 

value of 201710L. To compile for a C17 standard, we include the -stdc=17 flag. Example:

gcc -Wall source.c -std=c17 -pedantic

The C17 standard is sometimes also referred to as the C18 standard. The C17 

standard will be replaced by the upcoming standard, informally referred to as the C2X 

(C23) standard.
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CHAPTER 35

The Upcoming C23 
Standard
At the time of writing, there is a new C standard in the making, informally referred to 

as the C23 or C2X. The standard will probably be published in 2024, with a working 

draft now available. Currently, we can install gcc version 13 or higher to try out some of 

the C23 features. We need to include the -std=c2x flag in the compilation string when 

targeting the C23 standard.

35.1 � constexpr
Starting with C23, objects marked with constexpr are constants whose value is 

determined during the compilation time. The constexpr object must be fully initialized 

at the point of declaration. Although constexpr objects occupy memory and have an 

address, they are read-only. The following example uses the constexpr storage specifier 

applied to several different objects:

#include <stdio.h>

int main(void)

{

    constexpr int x = 123;

    constexpr unsigned u = 456u;

    constexpr char mystring[] = {"Hello."};

    printf("The value of x is: %d\n", x);

    printf("The value of u is: %u\n", u);

    printf("The value of mystring is: %s\n", mystring);

}
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Output:

The value of x is: 123

The value of u is: 456

The value of mystring is: Hello.

The constexpr object can also be used as an initializer in other constant expressions. 

Example:

#include <stdio.h>

int main(void)

{

    constexpr int x = 10;

    enum

    {

        FIRST = x,

        SECOND,

        THIRD

    };

    constexpr int y = x;

    static int myvar = x + 20;

    int myarray[x]; // valid, not a variable length array

    printf("The value of x is: %d\n.", x);

    printf("The value of y is: %d\n.", y);

    printf("The value of myvar is: %d\n.", myvar);

    printf("Declared an array of %d elements. Valid, not a VLA.\n", x);

}

Output:

The value of x is: 10

The value of y is: 10

The value of myvar is: 30

Declared an array of 10 elements. Valid, not a VLA.
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This example uses the constexpr object to initialize an enumerator, another 

constexpr object, a static variable, and inside an array declaration. Unlike regular 

constants whose value is determined during runtime, the constexpr object’s value is 

determined during compilation time, and they can safely be used to declare the size of 

the array without participating in the creation of the variable length array.

35.2 � Binary Integer Constants
The C23 standard introduces binary integer constants. The binary constant starts with 

the 0b or 0B sequence, followed by binary digits 1 and/or 0. This allows us to write down 

the value of an integer variable using the binary representation. Example:

#include <stdio.h>

int main(void)

{

    int x = 0b1010;

    printf("The value of the integer variable x is: %d\n", x);

}

Output:

The value of the integer variable x is 10

The 0b1010 integer constant is a binary representation of a decimal number 10. 

As with previous standards, we can also add integer suffixes to our binary constant if 

needed. Let us rewrite the preceding example to use the unsigned type instead:

#include <stdio.h>

int main(void)

{

    unsigned x = 0b1010u;

    printf("The value of the unsigned variable x is: %u\n", x);

}

Output:

The value of the unsigned variable x is: 10
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We have added the u suffix to our integer constant to avoid implicit conversion from 

int to unsigned.

Let us now write an example that uses decimal, hexadecimal, octal, and binary 

integer constants to represent the same value of 100:

#include <stdio.h>

int main(void)

{

    int x1 = 100; // decimal

    int x2 = 0x64; // hexadecimal

    int x3 = 0144; // decimal

    int x4 = 0b01100100; // binary

    printf("The value of the variable x1 is: %d\n", x1);

    printf("The value of the variable x2 is: %d\n", x2);

    printf("The value of the variable x3 is: %d\n", x3);

    printf("The value of the variable x4 is: %d\n", x4);

}

Output:

The value of the variable x1 is: 100

The value of the variable x2 is: 100

The value of the variable x3 is: 100

The value of the variable x4 is: 100

35.3 � true and false
Starting with C23, we do not have to include any particular header to define bool 

variables to which we can assign true or false values. These predefined true and false 

constants are now keywords in C23. Example:
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#include <stdio.h>

int main(void)

{

    bool condition = true;

    if (condition)

    {

        printf("The condition is true.\n");

    }

    else

    {

        printf("The condition is false.\n");

    }

}

Output:

The condition is true

Prior to C23, we had to include the <stdbool.h> header file to be able to use the 

bool type.

35.4 � nullptr
C23 introduces a new keyword, nullptr, representing a null pointer constant. This value 

is a predefined constant of the underlying nullptr_t type. The type is defined inside a 

<stddef.h> header file. Prior to C23, we had to use NULL, (void*), or 0 to set the pointer 

to null pointer constant.

Depending on the implementation, this could potentially cause problems as NULL is 

a macro. Starting with C23, we can initialize our pointers to a null pointer constant using 

the keyword nullptr. Example:

Chapter 35  The Upcoming C23 Standard



280

#include <stdio.h>

#include <stddef.h>

int main(void)

{

    int *p1 = nullptr;

    double *p2 = nullptr;

    struct MyStruct *p3 = nullptr;

printf("The value of the p1 pointer is: %p.\n", (void*)p1);

    printf("The value of the p2 pointer is: %p.\n", (void*)p2);

    printf("The value of the p3 pointer is: %p.\n", (void*)p3);

}

Output:

The value of the p1 pointer is: (nil).

The value of the p2 pointer is: (nil).

The value of the p3 pointer is: (nil).

35.5 � Empty initializer ={}
We can utilize an empty initializer in C23 for variables, arrays, and structs using the ={} 

syntax instead of a ={0} one. When we explicitly initialize an object using the empty 

initializer, the underlying values are zeroed, and we do not have to use the memset 

function. Example:

#include <stdio.h>

int main(void)

{

    int x = {};

    struct MyStruct

    {

        int a;

        double b;

    } s = {};
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    int arr[5] = {};

    printf("The value of x is: %d.\n", x);

    printf("The value of s.a is: %d.\n", s.a);

    printf("The value of s.b is: %f.\n", s.b);

    printf("The array values are: ");

    for (int i = 0; i < 5; i++)

    {

        printf("%d ", arr[i]);

    }

}

Output:

The value of x is: 0.

The value of s.a is: 0.

The value of s.b is: 0.000000.

The array values are: 0 0 0 0 0

35.6 � #embed
The #embed preprocessor directive is used to include the binary resource in our 

program/build.

To initialize a single variable with the content of some external somefile.dat file, using 

the #embed directive, we write:

int main(void)

{

    int x = {

#embed "somefile.dat"

    };

}

The preceding example is valid only if somefile.dat produces only one value.
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To initialize a structure using somefile.dat, we write:

#include <stdio.h>

int main(void)

{

    struct MyStruct

    {

        int x;

        double d;

    };

    struct MyStruct s = {

    // initializes each field with

    // comma-delimited integer constant-expressions

#embed "somefile.dat"

    };

}

In this example, we used the #embed preprocessor directive to initialize a structure 

since the directive can produce one of the following:

•	 Comma-separated list of integer constant expressions

•	 A single integer constant expression

•	 Nothing (none of the above)

To initialize a fixed-width unsigned integer array with the content of a binary 

resource, such as an external image, we write:

#include <stdint.h>

#include <stdio.h>

int main(void)

{

    const uint8_t arr[] = {

#embed "somefile.jpg"

    };

}
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To initialize a character array with the content of a textual file, we type:

#include <stdint.h>

#include <stdio.h>

int main(void)

{

    const char arr[] = {

#embed "myfile.txt"

    };

}

The #embed directive can also have parameters. The first one we will discuss is the 

if_empty parameter. If a binary resource is empty (e.g., the file is empty), the if_empty 

content replaces the directive. If the resource is not empty, the content of the if_empty 

token is ignored. Let us modify the previous example to check if the file is empty, and if 

so, put some content into our char array using the if_empty parameter. Example:

#include <stdio.h>

int main(void)

{

    const char arr[] = {

#embed "myfile.txt" if_empty('N', 'o ', ' ', 'd', 'a', 't', 'a')

        , '\0'};

}

In this example, we also added the value of '\0', which is a null-terminating 

character.

In a scenario where we want to initialize a single variable, the if_empty token can 

simply contain zero:

#include <stdio.h>

int main(void)

{

    int x = {

#embed "somefile.dat" if_empty(0)

    };

}

Chapter 35  The Upcoming C23 Standard



284

If we only want to embed a portion of the resource, we can limit the number of read 

resource elements (not bytes, but resource elements). An example where we want to 

embed only the first ten elements from an external resource:

#include <stdio.h>

int main(void)

{

    const char arr[] = {

#embed "myfile.txt" limit(10)

    };

}

Now, our array should have only ten elements.

35.7 � Attributes
There have been many implementation-defined language extensions throughout the 

years. The adoption of attributes in C23 is an attempt to present a uniform, standard 

syntax for specifying these extensions/attributes. Attributes are mainly used in 

declarations and definitions and can relate to types, variables, declarations, and code. 

The attributes syntax is:

[[attribute-list]] what_the_attribute_relates_to

One of the attributes can be [[deprecated]]. It marks the declaration as deprecated/

obsolete, causing the compiler to issue a warning. Example:

#include <stdio.h>

// deprecated definition

[[deprecated]]

void myoldfunction()

{

      printf("This is a deprecated function.\n");

}
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int main(void)

{

      myoldfunction();

      printf("Using deprecated code.\n");

}

Some of the other attributes are

•	 [[fallthrough]] – Where the fallthrough from the previous case is 

indeed expected

•	 [[maybe_unused]] – When we want to suppress compiler warnings 

on unused names

•	 [[nodiscard]] – Where we expect the compiler to issue a warning 

when the return value is discarded

35.8 � No Parameters Function Declaration
We can now declare a function that accepts no parameters without the need for the 

inclusion of a void text inside parentheses. We can now ensure the function’s behavior 

will be as intended. Example:

#include <stdio.h>

void noparamsfn()

{

      printf("This function does not accept parameters.\n");

}

int main(void)

{

      noparamsfn();

}

Output:

This function does not accept parameters.
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35.9 � The strdup Function
The strdup function returns a pointer to a copy of a string. It does so as if the place for a 

copy was allocated using malloc. The function is declared inside the <string.h> header 

and has the following syntax:

char *strdup(const char* arg);

The pointer obtained through strdup must be freed afterward. Example:

#include <string.h>

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

      const char *s1 = "This will be duplicated.";

      char *s2 = strdup(s1);

      printf("The result is: %s\n", s2);

      free(s2);

}

Output:

The result is: This will be duplicated.

There is also a strndup variant that copies N bytes from the source string and has the 

following syntax:

char *strndup(const char* arg, size_t N);

Example:

#include <string.h>

#include <stdlib.h>

#include <stdio.h>
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int main(void)

{

      const char *s1 = "This will be duplicated.";

      char *s2 = strndup(s1, 17);

      printf("The result is: %s\n", s2);

      free(s2);

}

Output:

The result is: This will be dupl

35.10 � The memccpy Function
The memccpy function copies characters from a data object pointed to by source to a 

memory/object pointed to by destination. The function stops copying after any of the 

two conditions are met:

•	 N characters were copied.

•	 The character c is found.

The function is declared inside the <string.h> header and has the following syntax:

void *memccpy(void *restrict destination, const void *restrict source,  

int c, size_t N);

Example:

#include <stdio.h>

#include <string.h>

int main(void)

{

      const char source[] = "Copy this until ~ is found.";

      char destination[sizeof source];

      const char stopchar = '~';
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      void *p = memccpy(destination, source, stopchar, sizeof destination);

      if (p)

      {

            printf("Terminating character found. The result is:\n");

            printf("%s\n", destination);

      }

      else

      {

            printf("Terminating character not found. The result is:\n");

            printf("%s\n", destination);

      }

}

Output:

Terminating character found. The result is:

Copy this until ~

If the terminating character stopchar is found, the function returns a pointer to the 

next character in the destination string after the stopchar. The function returns a null 

pointer if the terminating character is not found.
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CHAPTER 36

Do Not Use the gets 
Function
The gets function is declared inside the <stdio.h> header, reads the input into a 

character array pointed to by str, and has the following syntax:

char *gets (char* str);

This function is hazardous as it can cause a buffer overflow and allows for potential 

buffer overflow attacks. The function is deprecated in the C99 standard and removed in 

the C11 standard. Do not use this function!

The workaround is to use the fgets alternative. Unlike gets, the fgets function 

performs bounds checking and is safe from buffer overflow scenarios.

To use the fgets, we simply pass in the pointer to a buffer buff, the maximum 

number of characters that can be read, and stdio representing our standard input/

keyboard. A simple example:

#include <stdio.h>

int main(void)

{

      char buff[100];

      printf("Please enter a string:\n");

      fgets(buff, 100, stdin);

      printf("The result is: %s\n", buff);

}
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Output:

Please enter a string:

Do not use the gets function!

The result is: Do not use the gets function!

Alternatively, opt for a gets_s function, which might be available on our C 

implementation as part of the optional bounds-checking interfaces extension.
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CHAPTER 37

Initialize Variables Before 
Using Them
When we declare local variables, they are not initialized. Their values are undetermined. 

Trying to access uninitialized variables causes undefined behavior. One use case would 

be trying to print local, uninitialized variables. The following example demonstrates 

what should be avoided:

#include <stdio.h>

int main(void)

{

      char c;

      int x;

      double d;

      printf("Accessing uninitialized variables...\n");

      printf("%c, %d, %f\n", c, x, d); // undefined behavior

}

Possible Output:

Accessing uninitialized variables...

[, 32767, 0.000000

We are trying to access/print out uninitialized local variables in this example. This 

leads to undefined behavior and is best avoided.
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We should always initialize (or assign values to) our variables before using them. 

Example:

#include <stdio.h>

int main(void)

{

      char c = 'a';

      int x = 0;

      double d = 0.0;

      printf("Accessing initialized variables...\n");

      printf("%c, %d, %f\n", c, x, d); // OK

}

Output:

Accessing initialized variables...

a, 0, 0.000000
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CHAPTER 38

Do Not Read Out 
of Bounds
Trying to access an array element that is not there invokes undefined behavior. We say 

we are reading out of bounds. The following example demonstrates a common scenario 

of trying to access a nonexistent, out-of-bounds array element:

#include <stdio.h>

int main(void)

{

      int arr[5] = {10, 20, 30, 40, 50};

      printf("Trying to read out of bounds...\n");

      printf("The non-existent array element is: %d\n", arr[5]);

}

Possible Output:

Trying to read out of bounds...

The non-existent array element is: 32767

In this example, we declared an array of five integers. We then try to access a sixth 

array element using a[5]. But since there is no element a[5], we are invoking undefined 

behavior. This might cause our program to do anything, including the strange output 

result earlier. The same effect would be if we tried to access a[10], a[256], etc. We can 

only access elements a[0] through a[4]. If we want to access only the last array element, 

we can rewrite the preceding example to be:
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#include <stdio.h>

int main(void)

{

      int arr[5] = {10, 20, 30, 40, 50};

      printf("Accessing the existing array element...\n");

      printf("The existent array element is: %d\n", arr[4]);

}

Output:

Accessing the existent array element...

The existent array element is: 50
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CHAPTER 39

Do Not Free the Allocated 
Memory Twice
Trying to free the allocated memory two times causes undefined behavior. The following 

example shows the wrong usage of two free statements:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

      printf("Allocating memory...\n");

      int *p = malloc(sizeof(int));

      *p = 123;

      printf("The value is: %d\n", *p);

      printf("Freeing twice - undefined behavior.\n");

      free(p);

      free(p); // undefined behavior

}

Possible Output:

Allocating memory...

The value is: 123

Freeing twice - undefined behavior.

free(): double free detected in tcache 2

Aborted (core dumped)
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In this example, we wrongly tried to free the already freed memory by invoking a 

second free(p); statement.

The correct way is to free the allocated memory only once:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

      printf("Allocating memory...\n");

      int *p = malloc(sizeof(int));

      *p = 123;

      printf("The value is: %d\n", *p);

      printf("Freeing the memory only once.\n");

      free(p); // OK

}

Output:

Allocating memory...

The value is: 123

Freeing the memory only once.
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CHAPTER 40

Do Not Cast the Result 
of malloc
In C, we do not need to cast the result of malloc. The following example wrongly 

performs the cast:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

      printf("Casting the result of malloc. Not needed!\n");

      int *p = (int *)malloc(sizeof(int));

      *p = 123;

      printf("The result is: %d\n", *p);

      free(p);

}

Output:

Casting the result of malloc. Not needed!

The result is: 123

This example casts the result of malloc to type int*. This is unnecessary as the malloc’s 

return value type is void*. And void* is safely and implicitly convertible to the correct 

pointer type. The cast also adds unneeded code clutter. The proper example would be:

#include <stdio.h>

#include <stdlib.h>

int main(void)
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{

      printf("Allocating memory without casting.\n");

      int *p = malloc(sizeof(int));

      *p = 123;

      printf("The result is: %d\n", *p);

      free(p);

}

Output:

Allocating memory without casting.

The result is: 123

Furthermore, we could also replace the sizeof(int) expression with the sizeof *p 

expression to not depend on the type name. Example:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

      printf("Allocating memory without casting.\n");

      int *p = malloc(sizeof *p);

      *p = 123;

      printf("The result is: %d\n", *p);

      free(p);

}

Output:

Allocating memory without casting.

The result is: 123

This casting habit probably stems from the world of C++, where the cast is needed. 

The rule of thumb is as follows: in C, we do not need to cast the result of malloc, while 

in C++, we should. We should remember that C and C++ are two different programming 

languages with different sets of rules.
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CHAPTER 41

Do Not Overflow a Signed 
Integer
There are lower and upper limits to values a signed integer can hold. An INT_MAX 

macro represents the maximum signed integer value, and the minimum signed integer 

value is represented by the INT_MIN macro. These macros are declared inside the 

<limits.h> header.

Trying to store the value that is higher than the allowable maximum or lower than 

the allowable minimum causes undefined behavior. Example:

#include <stdio.h>

#include <limits.h>

int main(void)

{

      int x = INT_MAX;

      printf("The maximum integer value is: %d\n", x);

      printf("Trying to store a value higher than the maximum...\n");

      x = INT_MAX + 1; // undefined behavior

      printf("The variable value is now: %d\n", x);

}

Output:

The maximum integer value is: 2147483647

Trying to store a value higher than the maximum...

The variable value is now: -2147483648
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This example tries to store the number that is higher than the allowable maximum 

for type int. This causes undefined behavior and the so-called integer overflow, resulting 

in strange negative value output. We should make sure we do not try to store signed 

integer values outside the allowable range.

Note  Overflowing an unsigned integer is well-defined, but it should also be 
avoided.
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CHAPTER 42

Cast a Pointer to void* 
When Printing Through 
printf
When printing out a pointer’s value (the memory address it points to) using a printf 

function and a %p format specifier, we need to cast that pointer to type void* first. 

Simply trying to print out the pointer value through printf causes undefined behavior. 

Example:

#include <stdio.h>

int main(void)

{

      int x = 123;

      int *p = &x;

      printf("The pointer value is: %p\n", p); // undefined behavior

}

Possible Output:

The pointer value is: 0x7ffc57d762ec

This example causes undefined behavior because the %p format specifier expects a 

type void*, and we are passing in int*. The same applies when trying to print out any 

other pointer type.
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We need to cast the pointer to type void* when printing out the pointer’s value using 

a printf function and the %p conversion specifier. Example:

#include <stdio.h>

int main(void)

{

      int x = 123;

      int *p = &x;

      printf("The pointer value is: %p\n", (void *)p); // OK

}

Possible Output:

The pointer value is: 0x7ffe9d9262dc
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CHAPTER 43

Do Not Divide by Zero
Trying to divide by zero (0) causes undefined behavior, as shown in the following 

example:

#include <stdio.h>

int main(void)

{

      printf("Trying to divide with zero...\n");

      int x = 123;

      int y = x / 0; // undefined behavior

      printf("The result is: %d\n", y);

}

Possible Output:

Trying to divide with zero...

Floating point exception (core dumped)

Similar to math rules, we should not divide by zero in C either. The preceding 

example causes undefined behavior.
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CHAPTER 44

Where to Use Pointers?
In this chapter, we discuss several pointers use cases, including the use of pointers as 

function parameters.

44.1 � Pointers to Existing Objects
Pointers can point to existing data objects using the address-of operator &. Example:

#include <stdio.h>

int main(void)

{

      char mychar = 'A';

      char *p = &mychar;

      printf("The pointed-to value is: %c\n", *p);

}

Output:

The pointed-to value is: A

This example defines a variable of type char and makes the pointer point at that 

variable/data object using the & operator. The variable’s type char is matched by pointers 

char * type. If we want a pointer pointing to an existing int object, we will use the int * 

type for a pointer. Example:
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#include <stdio.h>

int main(void)

{

      int myvar = 123;

      int *p = &myvar;

      printf("The pointed-to value is: %d\n", *p);

}

Output:

The pointed-to value is: 123

44.2 � Pointers to Arrays
A pointer can point to an array. We can simply assign the array name to a pointer name 

without using the & operator. The pointer then points at the first element of the array. 

Example:

#include <stdio.h>

int main(void)

{

      int arr[] = {10, 20, 30, 40, 50};

      int *p = arr;

      printf("The first array element is: %d\n", *p);

}

Output:

The first array element is: 10

To print out the next array element, we can use pointer arithmetics. By adding 1 to 

our pointer, we increase the address it points to by 1 (1 times the size of the pointed-to 

element), which is the second array element with a value of 20. Example:
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#include <stdio.h>

int main(void)

{

      int arr[] = {10, 20, 30, 40, 50};

      int *p = arr;

      printf("The first array element is: %d\n", *p);

      p++;

      printf("The next array element is: %d\n", *p);

}

Output:

The first array element is: 10

The next array element is: 20

To access all array elements using a pointer, we can dereference a pointer using a 

subscript operator [] in combination with an index/counter to iterate through all array 

elements:

#include <stdio.h>

int main(void)

{

      int arr[] = {10, 20, 30, 40, 50};

      int *p = arr;

      printf("Printing array elements using a pointer:\n");

      for (int i = 0; i < 5; i++)

      {

            printf("%d ", p[i]);

      }

}

Output:

Printing array elements using a pointer:

10 20 30 40 50
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44.3 � Pointers to String Constants
A string constant is an array of characters enclosed in double quotes. The following is a 

string constant:

"Hello World!"

The string constant is a character array made up of visible characters plus one 

invisible, null-terminating \0 character at the end. The type of string constant/character 

array is char[]. We can directly assign this string constant to our pointer of type char*. 

Example:

#include <stdio.h>

int main(void)

{

      char *str = "Hello World!";

      printf("The value is: %s\n", str);

}

Output:

The value is: Hello World!

Since the string constant itself is read-only and cannot be modified, we should also 

add the const qualifier:

#include <stdio.h>

int main(void)

{

      const char *str = "This string can not be modified!";

      printf("The value is: %s\n", str);

}

Output:

The value is: This string can not be modified!
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Note  We do not free the pointers to existing variables, arrays, and string 
constants. We only free the pointers to dynamically allocated memory.

We discuss pointers to dynamically allocated memory in the following sections.

44.4 � Pointers to Dynamically Allocated Memory
Memory obtained through calls to malloc, calloc, and realloc is dynamically allocated 

memory. Pointers can point to this newly allocated memory (block). The dynamically 

allocated memory must be explicitly freed when we no longer need it. The following 

example dynamically allocates a memory block for one integer using malloc:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

      printf("Allocating memory...\n");

      int *p = malloc(sizeof(int)); // allocate the memory

      if (p)

      {

            *p = 123456; // manipulate memory

            printf("The value is: %d\n", *p);

      }

      printf("Deallocating memory...\n");

      free(p); // deallocate the memory

      printf("Done.\n");

}

Output:

Allocating memory...

The value is: 123456

Deallocating memory...

Done.
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Note  Dynamically allocated memory obtained through malloc, calloc, or 
realloc must be explicitly freed/deallocated.

44.5 � Pointers as Function Arguments
Functions can have parameters of pointer types. We pass pointers to these functions as 

arguments. The following example defines a function that expects an integer pointer as 

an argument and modifies the pointed-to value. Example:

#include <stdio.h>

#include <stdlib.h>

void myfunction(int *arg)

{

      *arg = 456;

}

int main(void)

{

      int x = 123;

      int *p = &x;

      printf("The pointed-to value before the function call: %d\n", *p);

      myfunction(p);

      printf("The pointed-to value after the function call: %d\n", *p);

}

Output:

The pointed-to value before the function call: 123

The pointed-to value after the function call: 456

This example defines a function that accepts a pointer as an argument. The function 

then modifies the pointed-to value by dereferencing an argument. In the main function, 

one pointer p points to an int variable called x. We pass that pointer to our function, and 

the function modifies the pointed-to value.
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To pass a regular variable to our function accepting a pointer, we pass in the address 

of a variable/object. Example:

#include <stdio.h>

#include <stdlib.h>

void myfunction(int *arg)

{

      *arg = 456;

}

int main(void)

{

      int x = 123;

      printf("The value before the function call: %d\n", x);

      myfunction(&x); // pass in the address of x

      printf("The value after the function call: %d\n", x);

}

Output:

The value before the function call: 123

The value after the function call: 456

This example uses the address of x (&x) expression as an argument for our function 

accepting a pointer type. We say we pass the argument by address/reference.

Suppose a function needs to modify the pointer’s value (not the pointed-to value). 

For example, the function increments the value of a pointer by one. In that case, we use 

a double pointer for a function parameter and pass in the address of a pointer variable in 

the main program. Example:

#include <stdio.h>

#include <stdlib.h>

void myfunction(int **arg)

{

      (*arg)++;

}
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int main(void)

{

      int arr[] = {10, 20, 30};

      int *p = arr;

      printf("Pointer value before the function call: %p\n", (void *)p);

      printf("Pointed-to value before the function call: %d\n", *p);

      myfunction(&p); // pass in the pointer

      printf("Pointer value after the function call: %p\n", (void *)p);

      printf("Pointed-to value after the function call: %d\n", *p);

}

Possible Output:

Pointer value before the function call: 0x7fffe590b22c

Pointed-to value before the function call: 10

Pointer value after the function call: 0x7fffe590b230

Pointed-to value after the function call: 20

The function accepts an argument of type int ** (a pointer to a pointer type). It 

dereferences the double pointer using the *arg expression (to an actual pointer type, 

int*) and increments it using the ++ operator. The parentheses inside the (*arg)++ 

expression ensure the dereferencing occurs before incrementing. The function 

increments the value of a pointer itself. In the main program, we have a pointer pointing 

to an array’s first element. After the function call, its value is incremented, and the 

pointer p now points at the second array element.

In combination with structures, pointers can also be used to create in-memory data 

structures, such as linked lists, binary trees, and similar.
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CHAPTER 45

Prefer Functions to 
Function-Like Macros
We should prefer writing and using real functions to function-like macros. While it might 

be tempting to write and use function-like macros instead of functions, this might not be 

a good choice for the following reasons:

•	 Macros can cause side effects.

•	 No type checking is performed.

•	 Macros are preprocessed, not compiled.

•	 They do not check compiler errors and are harder to debug.

Consider the following example, which uses a macro-like function to square a given 

parameter:

#include <stdio.h>

#define SQR(a) ((a) * (a))

int main(void)

{

      int x = 1;

      int result = SQR(++x);

      printf("With the macro: %d\n", result);

}

Output:

With the macro: 9
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This example defines a function-like macro that squares a value. For illustration 

purposes, we pass in a ++x expression as an argument. We get the value of 9 and not 4 as 

otherwise expected. This is because the SQR macro expands to ((++a) * (++a)), and the 

value a gets incremented two times. Value a now becomes 3, and 3 squared is equal to 9.

When using a function, we get the expected result of 4. Example:

#include <stdio.h>

#define SQR(a) ((a) * (a))

int sqr(int a)

{

      return a * a;

}

int main(void)

{

      int x = 1;

      int result = SQR(++x);

      printf("With the macro: %d\n", result);

      int y = 1;

      result = sqr(++y);

      printf("With the function: %d\n", result);

}

Output:

With the macro: 9

With the function: 4
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CHAPTER 46

static Global Names
When we define a variable or a function inside the file/global scope, they have external 

linkage by default. They can be referred to from other .c files/translation units. The 

static keyword in front of variables and functions in a global scope marks them visible 

only to the current source file/translation unit, the unit in which they are declared/

defined. We say the static specifier makes them have internal linkage. So, globals we do 

not want to share with other .c files should be marked as static. Both globals globalx 

and globalfn() are defined inside the source.c file and can be referred to from other  

.c files as well:

#include <stdio.h>

// global scope

int globalx = 123;

void globalfn(void)

{

      printf("The value of a global var is: %d\n", globalx);

}

int main(void)

{

      // local scope

      int localx = 456;

      globalfn();

      printf("The value of a local var is: %d\n", localx);

}
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Output:

The value of a global var is: 123

The value of a local var is: 456

Instead, we can opt for static globals declarations, rendering our globalx and 

globalfn() globals visible only to our source.c file/translation unit:

#include <stdio.h>

// global scope

static int globalx = 123;

static void globalfn(void)

{

      printf("The value of a global var is: %d\n", globalx);

}

int main(void)

{

      // local scope

      int localx = 456;

      globalfn();

      printf("The value of a local var is: %d\n", localx);

}

Output:

The value of a global var is: 123

The value of a local var is: 456

The static specifier is now applied to our globals, making them invisible to other 

translation units. We say the names now have internal linkage, making them visible only 

to the current translation unit/source file.
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CHAPTER 47

What to Put in 
Header Files?
This chapter explains what to and what not to keep in header files. In general, when we 

want to share data between multiple source files, we create a common header file and 

include it in each source file. For the following examples, we will use two source files and 

one common header file:

•	 myheaderfile.h – Shared header file

•	 source.c – Main source file

•	 source2.c – Second source file

A good practice is to guard the content of the myheaderfile.h file with the include 

guards/header guards:

#ifndef MYHEADERFILE_H

#define MYHEADERFILE_H

// header source code goes here

#endif

47.1 � Shared Macros
We can include a macro definition in our header file. This will make it accessible across 

multiple source files/translation units. The myheaderfile.h file:

#ifndef MYHEADERFILE_H

#define MYHEADERFILE_H

#define MYMACRO 123

#endif
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Then, we include that header file in our source.c file:

#include "myheaderfile.h"

#include <stdio.h>

void myfunction(); // declaration of a function defined inside a source2.c

int main(void)

{

      printf("Calling macro from a main: %d\n", MYMACRO);

      myfunction();

}

And we include the same header file in our source2.c file:

#include "myheaderfile.h"

#include <stdio.h>

void myfunction(void)

{

      �printf("Calling macro from a function inside a source2.c: %d\n", 

MYMACRO);

}

We compile both source files using the following syntax:

gcc -Wall source.c source2.c -std=c11 -pedantic && ./a.out

Output:

Calling macro from a main: 123

Calling macro from a function inside a source2.c: 123

Summary: We created a common header file and put a macro definition code in that 

file. We then included the header file in both source files. The MYMACRO is now accessible 

from both the main (and any other) function inside source.c and myfunction (and any 

other) function inside source2.c.

Note how we also needed to create a myfunction declaration inside a source.c to be 

able to call it. The next section explains how to move the function declaration to our 

header file.
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47.2 � Function Declarations
When we want to share access to global functions across multiple source files, we put 

those function declarations inside a common header file. If a function is defined inside 

a file scope in any source file and we want to use it in other source files, we put that 

function’s declaration inside a shared header file. Example of a myheaderfile.h file:

#ifndef MYHEADERFILE_H

#define MYHEADERFILE_H

void myfunction(); // function declaration

// this function is defined inside the source2.c file

#endif

The source.c file content:

#include "myheaderfile.h"

#include <stdio.h>

int main(void)

{

      printf("Calling a function defined in the source2.c file:\n");

      myfunction();

}

The source2.c file:

#include "myheaderfile.h"

#include <stdio.h>

// function definition

void myfunction(void)

{

      printf("This function is defined inside the source2.c.\n");

}

We compile both source files and observe the following output:

Calling a function defined in the source2.c file:

This function is defined inside the source2.c.
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Summary: In our myheaderfile.h, we provided a myfunction declaration. Then we 

included the header file in both source files. The myfunction function itself is defined 

in a global/file scope inside a source2.c file. We can now call a myfunction function 

from any source file that includes the myheaderfile.h file. We say the function now has 

shared access.

47.3 � Shared extern Variables and Constants
With shared global variables or constants, things are more involved than just putting the 

variable definition inside a shared file. We need to put the shared variables declarations 

inside the header file and mark them as extern. Then, we need to define them only once 

in some source file.

The extern specifier says the name has external linkage and is accessible across 

multiple source files/translation units. Global names, including functions, are extern by 

default, and we do not need to explicitly use extern on global functions. The extern also 

means the object will have a static storage duration.

While the use of global variables is debatable, this approach allows us to have a 

centralized place for all our shared constants and variables. The myheaderfile.h file is:

#ifndef MYHEADERFILE_H

#define MYHEADERFILE_H

// shared constants and variables declarations

extern const int MY_MAX;

extern const char *MY_MESSAGE;

extern const double MY_PI;

// shared variables

extern int mysharedint;

extern double myshareddouble;

#endif

The source.c file is:

#include "myheaderfile.h"

#include <stdio.h>
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// myfunction declaration

void myfunction(void);

int main(void)

{

      printf("Accessing shared constants from source.c:\n");

      printf("%d, %s, %f\n", MY_MAX, MY_MESSAGE, MY_PI);

      printf("Accessing shared global variables from source.c:\n");

      printf("%d %f\n", mysharedint, myshareddouble);

      myfunction(); // defined inside the source2.c file

}

And the source2.c file is:

#include "myheaderfile.h"

#include <stdio.h>

// shared constants definitions

const int MY_MAX = 123;

const char *MY_MESSAGE = "This is a constant string.";

const double MY_PI = 3.14;

// shared variables definitions

int mysharedint = 123;

double myshareddouble = 456.789;

void myfunction(void)

{

      printf("\nAccessing shared constants from source2.c:\n");

      printf("%d, %s, %f\n", MY_MAX, MY_MESSAGE, MY_PI);

      printf("Accessing shared global variables from source2.c:\n");

      printf("%d %f\n", mysharedint, myshareddouble);

}

Output:

Accessing shared constants from source.c:

123, This is a constant string., 3.140000

Accessing shared global variables from source.c:

123 456.789000
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Accessing shared constants from source2.c:

123, This is a constant string., 3.140000

Accessing shared global variables from source2.c:

123 456.789000

With shared global variables and shared constants, things are a bit more involved. 

First, we need to declare the shared variables and constants in the myheaderfile.h file 

and marked them as extern. Then, we need to define them only once inside one of the 

source files. We can access shared globals from any source file by including the shared 

myheaderfile.h file in both source files.

The header file should not provide the definition, only the declaration. The source 

file should not contain external declarations, only definitions.

47.4 � Other Header Files
Our header file can also include other header files if needed. For example, our user- 

defined header file can include both the standard-library and user-defined header files.

The myheaderfile.h file that includes other headers can look like:

#ifndef MYHEADERFILE_H

#define MYHEADERFILE_H

#include <stdio.h> // include the standard library header

#include "userdefined.h" // include the user-defined header

#endif
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APPENDIX A

Linkage
When we compile our source code, the compiler stitches a header and the source file’s 

content to create a single source file called a translation unit. The translation unit is then 

used to produce an object file. If we compile multiple source files, we get multiple object 

files. The linker then assembles these object files to produce an executable file.

A linkage can be seen as a name’s property that determines the name’s accessibility 

across translation units. By name, we mean variables and functions. If a name is visible 

only to/inside a current translation unit, we say it has internal linkage. If a name is visible 

to all translation units, we say it has an external linkage.

Static global names have internal linkage. Example:

#include <stdio.h>

// global scope

static int x = 123; // internal linkage

static void myfunction() // internal linkage

{

      printf("The value is: %d\n", x);

}

int main(void)

{

      printf("Calling a global function with internal linkage.\n");

      myfunction();

}

Output:

Calling a global function with internal linkage.

The value is: 123

© Slobodan Dmitrović 2024 
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/979-8-8688-0224-9_48

https://doi.org/10.1007/979-8-8688-0224-9_48


328

Names declared inside a global/file scope have external linkage by default. Example:

#include <stdio.h>

// global scope

int x = 123; // external linkage

void myfunction() // external linkage

{

      printf("The value is: %d\n", x);

}

int main(void)

{

      printf("Calling a global function with external linkage.\n");

      myfunction();

}

Output:

Calling a global function with external linkage.

The value is: 123

Local names (names local to a function) have no linkage. Example:

#include <stdio.h>

// global scope

int main(void)

{

      // local scope

      int x = 123; // no linkage

      printf("The value of a variable with no linkage is: %d\n", x);

}

Output:

The value of a variable with no linkage is: 123
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APPENDIX B

Time and Date
The <time.h> header declares functions that allow us to work with date-time. This 

chapter explains how to obtain and format the current time and date.

The time function is declared inside the <time.h> header and returns the current 

date-time (date-time since epoch) as an object of type time_t. The function has the 

following signature:

timet_ time(time_t *arg);

The type time_t is a type capable of storing times. The time function can return the 

calendar time when arg is NULL:

#include <stdio.h>

#include <time.h>

int main(void)

{

      time_t mytime = time(NULL);

      printf("Obtained the current time to a mytime variable.\n");

}

Or store it inside an object pointed to by arg:

#include <stdio.h>

#include <time.h>

int main(void)

{

      time_t mytime;

      time(&mytime);

      printf("Obtained the current time to a mytime variable.\n");

}
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There are several steps involved when getting and formatting the time.

•	 Get the current date-time using a time function.

•	 Store/convert the obtained date-time into a tm struct using 

localtime or gmtime.

•	 Format the obtained time using the strftime.

The following example obtains a date-time and stores it into a tm struct using a 

localtime function:

#include <stdio.h>

#include <time.h>

int main(void)

{

      time_t mytime = time(NULL);

      struct tm *now;

      now = localtime(&mytime);

      printf("Obtained and stored the current time.\n");

}

The localtime function converts obtained local time to a tm calendar time. The 

tm structure holds the calendar date and time. The tm structure has the following 

predefined member fields of type int:

•	 tm_sec – Seconds from 0 to 60

•	 tm_min – Minutes from 0 to 59

•	 tm_hour – Hours from 0 to 23

•	 tm_mday – Days from 1 to 31

•	 tm_mon – Months from 0 to 11

•	 tm_year – Years since 1900

•	 tm_wday – Days since Sunday from 0 to 6

•	 tm_yday – Days since January the 1st from 0 to 365

•	 tm_isdst – Daytime saving value, positive if active, zero if not
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The final thing left to do is to convert the tm time to a string using a strftime 

function and appropriate format specifiers:

#include <stdio.h>

#include <time.h>

int main(void)

{

      time_t mytime = time(NULL);

      struct tm *nowtm;

      char str[70];

      nowtm = localtime(&mytime);

      strftime(str, sizeof str, "%T", nowtm);

      printf("The time is: %s\n", str);

}

Output:

The time is: 23:02:10

The strftime function converts the calendar date/time stored inside the tm structure 

to a string according to the format specifiers used. Here, we used the %T format specifier, 

which is the same as the %H:%M:%S format.

To format the obtained date/time as a date only, we can use the %D format specifier. 

Example:

#include <stdio.h>

#include <time.h>

int main(void)

{

      time_t mytime = time(NULL);

      struct tm *nowtm;

      char str[70];

      nowtm = localtime(&mytime);

      strftime(str, sizeof str, "%D", nowtm);

      printf("The date is: %s\n", str);

}

Appendix B  Time and Date



332

Output:

The date is: 11/26/23

This example uses the %D format specifier inside the strftime function to output 

only the date part of the obtained date-time. The %D format specifier is equivalent to 

%m/%d/%y format.

When we populate the tm structure, we can access its individual fields. For example, 

if we need to access and display minutes and seconds as integers, we write:

#include <stdio.h>

#include <time.h>

int main(void)

{

      time_t mytime = time(NULL);

      struct tm *nowtm;

      nowtm = localtime(&mytime);

      �printf("Minutes and seconds are: %d:%d\n", nowtm->tm_min,  

nowtm->tm_sec);

}

Output:

Minutes and seconds are: 42:12

In this example, we do not convert the obtained date-time to a string using the 

strftime function. We simply use the tm structure’s fields representing minutes and 

numbers, called tm_min and tm_sec, and print them out using the printf function.
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APPENDIX C

Bitwise Operators
So far, we have talked about data in terms of bytes. A byte is the smallest addressable 

region of memory/data storage. We access and manipulate this memory through 

variables and pointers. One byte can be used to represent the value of a single char 

variable. Four bytes can be used to represent the value of a single int.

A single byte usually consists of eight smaller parts called bits. A bit can have one of 

two values we symbolically refer to as 0 and 1. A single byte that represents the decimal 

number 1 can have the following bit representation:

A single byte representing the decimal value of 10 (usually, depending on the 

implementation and endianness) has the following bits:

Bitwise operators allow us to manipulate individual bits of a byte or bytes in several 

ways. The first bitwise operator we discuss is the bitwise NOT operator ~.

C.1 � The Bitwise NOT Operator ~
The bitwise NOT operator ~, also called a unary complement operator, returns the result of 

converting/flipping every bit inside an expression. The operator has the following signature:

~expression_of_an_integral_type

Figure C-1.  Eight bits representing the decimal number 1  

Figure C-2.  Eight bits representing the decimal number 10  
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Every bit’s value of 1 becomes 0, and the value of 0 becomes 1. The following example 

flips the bits of an integer constant 10 and stores the result into our char variable:

#include <stdio.h>

int main(void)

{

      char c = 10;

      printf("The value is: %d\n", c);

      printf("Applying the bitwise ~ operation...\n");

      c = ~10; // bitwise NOT

      printf("The value is: %d\n", c);

}

Output:

The value is: 10

Applying the bitwise ~ operation...

The value is: -11

This example first assigns the value of 10 to our char variable c. Remember, we can 

assign both numbers and character constants to our chars. The decimal value of 10 is 

equal to the binary value of 00001010. Now, our byte might look like:

Next, we perform the bitwise NOT operation on the integer constant 10 using the 

~10 expression and assign the result to our char variable. All the bits are flipped, and the 

resulting byte now looks like:

Our variable c now holds a decimal value of -11, equal to 11110101 in binary.

Figure C-3.  Eight bits representing the decimal value of 10  

Figure C-4.  Eight bits representing the decimal value of -11  
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C.2 � Bitwise Shift Operators << and >>
The bitwise shift operators << and >> return the result of shifting the bits of an integral 

expression to the left/right by N places. The bitwise operands have the following 

signatures:

integral_expressions << n_places – Shifts bits to the left by 

n_places

integral_expressions >> n_places – Shifts bits to the right by 

n_places

To shift the bits to the left by four places, we write:

#include <stdio.h>

int main(void)

{

      char c = 10;

      printf("The value before the bit shifting is: %d\n", c);

      c = c << 4;

      printf("The value after the bit shifting is: %d\n", c);

}

Output:

The value before the bit shifting is: 10

The value after the bit shifting is: -96

This example assigns the value of decimal 10 to our char variable. Then, it performs 

the left shift by four places and assigns the result to the same variable. When shifting bits 

to the left, the vacant bits are filled with zeros. Our byte having a value of 10 before the 

left shift looked like:

Figure C-5.  Eight bits representing the number 10  
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After the left shift by four places, the byte looks like:

The binary value of 10100000 is equal to the decimal value of -96.

If we want to shift the bits to the right by four places, we use the right shift operator 

>>. Example:

#include <stdio.h>

int main(void)

{

      char c = 10;

      printf("The value before the bit shifting is: %d\n", c);

      c = c >> 4;

      printf("The value after the bit shifting is: %d\n", c);

}

Output:

The value before the bit shifting is: 10

The value after the bit shifting is: 0

In this example, we performed a right shift to the right by four places. In this case, the 

vacant bits are filled with zeros.

When performing the right shift of a signed integer, the vacant bits are filled either 

with 0 or with a sign bit, depending on the implementation. An example where we shift 

the bits of a signed number by four places:

#include <stdio.h>

int main(void)

{

      char c = -10;

      printf("The value before the bit shifting is: %d\n", c);

Figure C-6.   Eight bits representing the value of -96  
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      c = c >> 4;

      printf("The value after the bit shifting is: %d\n", c);

}

Output:

The value before the bit shifting is: -10

The value after the bit shifting is: -1

Here, we perform the bit shifting to the right by four places. The vacant bits are filled 

with a sign bit value (vacant bits are filled with 1), resulting in a decimal value of -1. 

Before the shift, the byte with a decimal value of -10 looked like:

After shifting all bits to the right by four places and filling the vacant bits with 1, the 

byte looks like:

Hint T ry shifting the bits of values lesser than -16 to observe results other 
than -1.

The following example performs the right shift of the unsigned value of 256u to the 

right by four places:

#include <stdio.h>

int main(void)

{

      unsigned x = 256u;

      printf("The value before the bit shifting is: %d\n", x);

Figure C-7.  Eight bits representing the value of -10  

Figure C-8.  Eight bits representing the number -1  
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      x = x >> 4;

      printf("The value after the bit shifting is: %d\n", x);

}

Output:

The value before the bit shifting is: 256

The value after the bit shifting is: 16

In this example, we used a variable of an unsigned int type with a decimal value 

of 256u. Since unsigned can be 4 bytes long, the decimal number of 256 can have the 

following binary representation:

00000000 00000000 00000001 00000000

After shifting all the bits to the right by four places, the binary value can look like:

00000000 00000000 00000000 00010000

The preceding bits represent the decimal value of 16.

Note T he order of bytes in a multibyte type depends on endianness.

Endianness is the order of bytes (the sequence of bytes) in a multibyte data/memory. 

The big-endian stores the most significant byte at the beginning. The little-endian stores 

the most significant bytes at the end of a multibyte memory region.

C.3 � The Bitwise AND Operator &
The bitwise AND operator & returns the result of a logical AND operation using bits 

from the left-hand side expression and the corresponding bits from a right-hand side 

argument. The & operator has the following syntax:

left_integral_expression & right_integral_expression
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If both bits from the left-hand side and the right-hand side expressions are 1, the 

result will be 1, 0 otherwise. The following table shows the result of a bitwise AND 

operation:

X Y X & Y

1 1 1

0 1 0

1 0 0

0 0 0

An example where we use the logical AND bitwise operator using the 1111 and the 

1010 pattern:

#include <stdio.h>

int main(void)

{

      unsigned x = 255;

      printf("The value before the bitwise AND: %d\n", x);

      x = x & 0xffff; // 0xffff has the 1111 pattern

      printf("After the bitwise AND using the 1111 mask: %d\n", x);

      unsigned y = 255;

      printf("The value before the bitwise AND: %d\n", y);

      y = y & 0xaaaa; // 0xaaaa has the 1010 pattern

      printf("After the bitwise AND using the 1010 mask: %d\n", y);

}

Output:

The value before the bitwise AND: 255

After the bitwise AND using the 1111 mask: 255

The value before the bitwise AND: 255

After the bitwise AND using the 1010 mask: 170
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This example applies the bitwise & operator on its two operands. First, it uses the 

hexadecimal 0xffff constant as its right-hand side expression. The value of 0xffff 

corresponds to the 1111 pattern. The result of a 255 & 0xffff expression remains the 

same as the original 255 value. Next, we perform the bitwise AND operation on bits from 

y with bits from 0xaaaa hexadecimal constant. The value of 0xaaaa corresponds to the 

pattern of 1010, and the result of a 255 & 0xaaaa expression is 170 in decimal.

Please note that there are other bitwise operators as well. They are

•	 Bitwise OR |

•	 Bitwise exclusive OR ^

•	 Compound left shift assignment >>=

•	 Compound right shift assignment <<=
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APPENDIX D

Numeric Limits
The C standard library provides facilities that help us determine numeric limits for 

various integer and floating-point types.

D.1 � Integer Types Limits
The <limits.h> header provides useful macros for inspecting the limits of various 

integer types and objects. Here, we describe a few.

The CHAR_BIT macro constant represents the number of bits in a byte. Example:

#include <stdio.h>

#include <limits.h>

int main(void)

{

      printf("The number of bits in a byte: %d\n", CHAR_BIT);

}

Output:

The number of bits in a byte: 8

The CHAR_MIN and CHAR_MAX macros represent the minimum and maximum values a 

type char can store on our implementation. Example:

#include <stdio.h>

#include <limits.h>

int main(void)

{

      printf("The minimum value a char can store is: %d\n", CHAR_MIN);

© Slobodan Dmitrović 2024 
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/979-8-8688-0224-9_51

https://doi.org/10.1007/979-8-8688-0224-9_51


342

      printf("The maximum value a char can store is: %d\n", CHAR_MAX);

}

Output:

The minimum value a char can store is: -128

The maximum value a char can store is: 127

The INT_MIN and INT_MAX macros represent the minimum and maximum values a 

type int can hold. Example:

#include <stdio.h>

#include <limits.h>

int main(void)

{

      printf("The minimum value an int can store is: %d\n", INT_MIN);

      printf("The maximum value an int can store is: %d\n", INT_MAX);

}

Output:

The minimum value an int can store is: -2147483648

The maximum value an int can store is: 2147483647

Some of the other macro constants declared inside the <limits.h> header are

•	 LONG_MIN – Minimum value a type long can hold

•	 LLONG_MIN – Minimum value a type long long can hold

•	 LONG_MAX – Maximum value a type long can hold

•	 LLONG_MAX – Maximum value a type long long can hold

•	 UCHAR_MAX – Maximum value a type unsigned char can hold

•	 UINT_MAX – Maximum value a type unsigned can hold

•	 ULONG_MAX – Maximum value a type unsigned long can hold

•	 ULLONG_MAX – Maximum value a type unsigned long long can hold
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D.2 � Floating-Point Types Limits
As part of the C standard library, the <float.h> header defines several macros 

representing minimum and maximum values for floating-point types.

The FLT_MIN macro represents the minimum, positive value of type float. Example:

#include <stdio.h>

#include <float.h>

int main(void)

{

      printf("The minimum, positive value for a float is: %e\n", FLT_MIN);

}

Output:

The minimum, positive value for a float is: 1.175494e-38

In this example, we used the %e format specifier, which converts the floating-point 

value to an exponent decimal (scientific) representation.

The FLT_MAX macro represents the maximum value for type float. Example:

#include <stdio.h>

#include <float.h>

int main(void)

{

      printf("The maximum value for a float is: %f\n", FLT_MAX);

}

Output:

The maximum value for a float is: 

340282346638528859811704183484516925440.000000
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Another essential macro is the FLT_EPSILON constant, representing the difference 

between 1.0 and the next number that can be represented using type float. Example:

#include <stdio.h>

#include <float.h>

int main(void)

{

      float f = 1.0f;

      printf("The value of f is: %e\n", f);

      �printf("The next representable number is larger by: %e\n",  

FLT_EPSILON);

}

Output:

The value of f is: 1.000000e+00

The next representable number is larger by: 1.192093e-07

Other floating-point macro constants are

•	 DBL_EPSILON – The difference between 1.0 and the next number that 

can be represented using the type double

•	 LDBL_EPSILON – The difference between 1.0 and the next number that 

can be represented using the type long double

•	 DBL_MIN – Minimum, positive value for type double

•	 LDBL_MIN – Minimum, positive value for type long double

•	 DBL_MAX – Maximum value for type double

•	 LDBL_MAX – Maximum value for type long double
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APPENDIX E

Summary and Advice
Dear reader, congratulations on finishing reading this book. At this point, you should be 

sufficiently familiar with the C language and C standard library essentials.

Even after many decades, the C programming language still grows strong. Where 

is C used in the real world? Major operating systems were written in C. Our machines 

are packed with different hardware whose software was written in C. Large industrial 

facilities are controlled by machines that run on software written in C. A great deal of 

embedded development relies on C. So, being a C developer is a good career choice.

E.1 � What to Learn Next?
Once we write our program, we want to be able to step through the code and inspect all 

the values. This is called debugging. Learn about debugging using GDB if on Linux or 

using a built-in debugger in Visual Studio.

Learn about data structures and algorithms and how they can be implemented in C.

When we have a large project consisting of multiple files, we want to compile them 

by invoking an underlying build system. Learn about the build systems such as Make 

and CMake.

Software projects are managed using the so-called source control or version control 

software. This software allows us to manage and control changes to our source code. 

We commit the source code to the repository, make changes, and revert the code when 

needed. Learn about version control software such as Git, Subversion, and others.

Explore existing C projects found on GitHub as well as other open source projects 

written in C.
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E.2 � Online References
There is a user-maintained, well-written online C reference at

https://en.cppreference.com/w/c

The C language and standard library drafts can be downloaded as PDF 

documents from

https://en.cppreference.com/w/c/links

Linux manual pages are available at

https://linux.die.net/man/

And

https://man7.org/linux/man-pages/

E.3 � Other C Books
For more C books, refer to a curated list of C books on Stack Overflow:

https://stackoverflow.com/questions/562303/the-definitive-c-book-

guide-and-list

E.4 � Advice
C is a straightforward, procedural, and relatively concise language. It is a language 

that efficiently maps to hardware and gives us immense control over the machine. The 

following is some advice that might help you further advance your C knowledge.

Be sure to make the distinction between C and C++ as they are two completely 

different languages.

But above all, enjoy programming in C, as the world of C programming is a 

rewarding and exciting place to be in.
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#embed, 281–283
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true or false values, 278, 279

calloc function, 196, 244
Character array, 97
Command-line arguments, 95, 96
Comments, Hello World

declaration, 32
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Conditional expression, 141, 142
Conditional statement, 40
Constant

function parameters, 166
pointers, 165

Const qualifier
compile-time error, 147
example, 147–150
types, 147

C programming language
definition, 3
installing compilers

on Linux, 4–6
on Windows, 7

standards, 7
systems programming, 3

C standard library
functions, 237, 239
mathematical functions, 250–253
memory manipulation 

functions, 244–249
string conversion functions, 254, 255, 

257, 258
string manipulation, 239–243

D
Debugging, 345
Decrement operator--, 42
#define directive, 171
Designated initializers, 127
Divide by zero, do not, 305
Dynamic memory allocation, 209, 210

arrays, 210
calloc, 196, 197
example, 187, 188

malloc, 188–190, 192, 194, 195
realloc, 198–200
resizing, 211

E
Enumerations

constants, 153
definition, 153
enumerators, 153
example, 154, 155

Enumerators, 153, 166, 167
Expression

definition, 45
initialization, 45, 46
statement, 49
type conversion, 46–48

F
fabs function, 251
fgets function, 213, 216–218, 223, 224, 

227, 291
File input, 223, 224
File output, 225, 226
Floating-point division/casting, 66
Floating-point types

float, 26, 27
long double, 28

Formal parameter, 110
Function

arguments
passing by pointer/address, 114
passing by value, 113

declaration, 105–107
definition, 103, 107–109
exercises, 119–122
mySum(), 104, 105
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parameters, 109–112
pointers, 168
printmessage(), 104
return statement, 115, 116

Function call statement, 49
Function-like macros, 181, 315, 316
Function macros, 185
Function pointers, 157–159

G
gets function, 291, 292
globalfn(), 317

H
Header file, 231, 232

examples, 319
extern variables/constants, 322–324
function declaration, 321, 322
shared macros, 319, 320
standard-library and  

user-defined, 324
\”Hello World\” program

comments, 11, 12
Hello World message, 12, 13

\”Hello World\” program

I, J, K
#if directive, 175
Increment operator ++, 42
Integer division, 65
ISO/IEC:9989 standard, 7
Iteration statements, 68, 69

do while, 62
while, 61

L
Linkage, 327, 328
localtime function, 330
Logical operators, 41

M
Macro, 12, 173, 174, 176, 178, 183
malloc function, 188, 189, 194, 195, 199
malloc, do not cast result, 299, 300
memccpy function, 287
memchr function, 249
memcmp function, 248, 249
memcpy function, 245
Multidimensional arrays, 77–78
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myFunction, 105, 107
MyStruct, 125, 269
mySum() function, 104, 105

N
_Noreturn function specifier, 262
Numeric limits

floating-point types, 343, 344
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O
Operators
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precedence, 43, 44
relational, 39

P, Q
Pointers

arithmetics, 87, 88, 100
arrays, 84–86, 98, 99
arrays of pointers, 92, 93, 100
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declaration/initialization, 81–84
definition, 81
to existing object, 98
type, 81
use
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dynamically allocated  

memory, 311
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string constant, 310

void, 89, 91
Postfix operators, 42
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Preprocessor

built-in macros, 179, 180
conditional compilation
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#ifdef, 177
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#define, 171–173
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function-like macros, 181, 182
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#undef, 173, 174
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Reading out of bounds, 295, 296
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S
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Scope
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if, 51–53
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switch, 56–60

Signed integer, overflowing, 301, 302
snprintf function, 256, 257
Source files, 231, 232
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sscanf function, 215, 227, 228
Standard input/keyboard, 227

fgets, 216, 217
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Standard output, 228, 229
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built-in, 50
definition, 49
iteration, 61
selection, 51

Static global names, 317, 318
Storage

allocated storage duration,  
206, 207, 212

automatic storage  
duration, 204, 212

static storage duration, 205, 206
strcat function, 241
strcmp function, 240
strcpy function, 241
strdup function, 286–287
strftime function, 331, 332
strlen function, 239
strstr function, 242
strtol function, 254, 255
Structure

copying, 130, 131
declaration, 123–125
definition, 161
function arguments, 134–138
initialization, 126, 127, 163
member access operator, 128–130

pointers, 131–133, 163, 164
self-referencing, 133, 134
typedef alias, 162

Switch statement, 68
Systems programming, 3
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thrd_create function, 272
time function, 329, 330
Translation unit, 206, 231, 317–319, 327
Typedef

declaration, 143
example, 143–145

U
#undef directive, 173
Uninitialized variables, 293, 294
Union, 139, 140, 164, 165
User-defined functions, 103, 204
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