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Preface

1. Why C?

C is a small but extensible language, with software libraries (standard and
third party) extending the core language. Among high-level languages, C
still sets the mark for performance; hence, C is well suited for applications,
especially ones such as database systems and web servers that must
perform at a high level. The syntax for C is straightforward, but with an
oddity here and there. Anyone who programs in a contemporary high-
level language already knows much of C syntax, as other languages have
borrowed widely from C.

C is also the dominant systems language: modern operating systems
are written mostly in C, with assembly language accounting for the rest.
Other programming languages routinely and transparently use standard
library routines written in C. For example, when an application written
in any other high-level language prints the Hello, world! greeting, itis a
C library function that ultimately writes the message to the screen. The
standard system libraries for input/output, networking, string processing,
mathematics, security, cryptography, data encoding, and so on are
likewise written mainly in C. To write a program in C is to write in the
system’s native language.

xvii



PREFACE

WHO’S THE INTENDED AUDIENCE?

This book is for programmers and assumes experience in a general-purpose
language—nbut none in C. You should be able to work from the command
line. Linux and macOS come with a C compiler, typically GNU C (https://
gcc.gnu.org) and Clang (https://clang.1lvm.org), respectively. At the
command-line prompt (% is used here), the command

% gcc -v

should provide details. For Windows, Cygwin (https://cygwin.com/
install.html) is recommended.

C has been a modern language from the start. The familiar function,
which can take arguments and return a value, is the primary code module
in C. C exhibits a separation of concerns by distinguishing between
interfaces, which describe how functions are called, and implementations,
which provide the operational details. As noted, C is naturally and easily
extended through software libraries, whether standard or third party. As
these libraries become better and richer, so does C. C programmers can
create arbitrarily rich data types and data structures and package their
own code modules as reusable libraries. C supports higher-order functions
(functions that can take functions as arguments) without any special, fussy
syntax. This book covers C’s modern features, but always with an eye on
C’s close-to-the-metal features.

To understand C is to understand the underlying architecture of
a modern computing machine, from an embedded device through a
handheld up to anode in a server cluster. C sits atop assembly language,
which is symbolic (human-understandable) machine language. Every
assembly language is specific to a computer architecture. The assembly
language for an Intel device differs from that of an ARM device. Even
within an architectural family such as Intel, changes in the architecture are

xviii
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PREFACE

reflected in assembly language. As symbolic machine language, assembly
language is approachable, although reading and writing assembly code can
be daunting. Assembly language is of interest even to programmers in other
languages because it reveals so much about the underlying system. C does
not reveal quite as much, but far more than any other high-level language;
C also reveals what is common across architectures. One sign of just how
close C is to assembly language shows up in compilation: a C compiler can
handle any mix of C and assembly source code, and C source is translated
first into assembly code. From time to time, it will be useful to compare C
source with the assembly source into which the C source translates.

C source code ports well: a C program that compiles on one platform
should compile on another, unless platform-specific libraries and data
structure sizes come into play. Perfect portability remains an ideal, even
for C. C plays still another role—as the lingua franca among programming
languages: any language that can talk to C can talk to any other language
that does so. Most other languages support C calls in one form or another;
a later code example shows how straightforwardly Python can consume
library functions written in C.

2. From the Basics Through
Advanced Features

This book is code centric, with full program examples and shorter code
segments in the forefront throughout. The book begins, of course, with
C basics: program structure, built-in data types and control structures,
operators, pointers, aggregates such as arrays and structures, input and
output, and so on. Here is an overview of some advanced topics:

o Memory safety and efficiency: Best practices for
using the stack, the heap, and static area of memory;
techniques and tools for avoiding memory leakage

Xix
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Higher-order functions: Simplifying code by passing
functions as arguments to other functions

Generic functions: How to use the pointer-to-void
(void*) data type in creating and calling generic
functions

Functions with a variable number of arguments: How

to write your own

Defining new data types: A convenient way to name
programmer-defined, arbitrarily rich data types

Clarifying C code through assembly-language code:
Getting closer to the metal

Embedding assembly code: Checking for overflow with
embedded assembly

Floating-point issues: Code examples and the IEEE 754
specification in detail

Low-level and high-level input/output: Flexibility and
performance trade-offs in input/output operations

Networking and wire-level security: Full code
examples, including digital certificates and
secure sockets

Nonblocking input/output: Local machine and
networking examples of this acceleration technique

Concurrency and parallelism: Multiprocessing,
interprocess communication, multithreading,
deadlock, and instruction-level SIMD parallelism
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o Interprocess communication: Pipes (named and
unnamed), message queues, sockets, file sharing and
locking, shared memory with a semaphore, and signals

o Datavalidation: Regular expressions in detail

o Internationalization: Standard libraries for locale
management

o Assertions: Expressing and enforcing pre-, post-, and
invariant conditions in programs

e WebAssembly: Compiling C code into WebAssembly
for high-performance web modules

o Software libraries: How to build and deploy both static
and dynamic software libraries for C and non-C clients

The code examples in the book are available at https://github.com/
mkalin/cbook.git, and comments are welcome at mkalin@depaul.edu.
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CHAPTER 1

Program Structure

1.1. Overview

This chapter focuses on how C programs are built out of functions, which
are a construct in just about all modern program languages. The chapter
uses short code segments and full programs to explain topics such

as these:

e Functions as program modules

o Control flow within a program

e The special function named main
e Passing arguments to a function

e Returning a value from a function

e Writing functions that take a variable number of
arguments

C distinguishes between function declarations, which show how
a function is to be called, and function definitions, which provide the
implementation detail. This chapter introduces the all-important
distinction, and later chapters put the distinction to use in a variety of
examples. The chapter also compares C functions with assembly-language
blocks, which is helpful in clarifying how C source code compiles into
machine-executable code.

© Martin Kalin 2022 1
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CHAPTER 1  PROGRAM STRUCTURE

Every general-purpose programming language has control structures
such as tests and loops. Once again, short code examples introduce the
basics of C’s principal control structures; later code examples expand and
refine this first look at control structures.

1.2. The Function

A C program consists of one or more functions, with a function as a
program module that takes zero or more arguments and can return a
value. To declare a function is to describe how the function should be
invoked, whereas to define a function is to implement it by providing

the statements that make up the function’s body. A function’s body
provides the operational details for whatever task the function performs.
A declaration is a function’s interface, whereas a definition is a function’s
implementation. The following is an example of the declaration and

the definition for a very simple function that takes two integer values as

arguments and returns their sum.

Listing 1-1. Declaring and defining a function
int add2(int, int); /* declaration ends with semicolon, no body */

int add2(int n1, int n2) { /* definition: the body is enclosed
in braces */

int sum = n1 + n2; /* could avoid this step, here for
clarity */
return sum; /* could just return ni + n2 */
} /* end of block that implements the

function */
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The add2 example (see Listing 1-1) contrasts a function’s declaration
with its definition. The declaration has no body of statements enclosed in
braces, but the definition must have such a body. In a contrived example,
the body could be empty, but the braces still would be required in the
definition and absent from the declaration.

If some other function main calls add2, then the declaration of add2
must be visible to main. If the two functions are in the same file, this
requirement can be met by declaring add2 above main. There is, however, a
shortcut. If add2 is defined above main in the same file, then this definition
doubles as a declaration (see Listing 1-2).

Listing 1-2. More on declaring and defining a function

int add2(int n1, int n2) { /* definition: the body is enclosed
in braces */

int sum = n1 + n2; /* could avoid this step, here for
clarity */
return sum; /* could just return ni + n2 */
} /* end of block that implements the

function */

int main() {
return add2(123, 987); /* ok: add2 is visible to main */

Program structure may require that a function be declared and defined
separately. For instance, if a program’s functions are divided among
various source files, then a function defined in a given file would have to be
declared in another file to be visible there. Examples are forthcoming.

As noted, a function’s body is enclosed in braces, and each statement
within the body ends with a semicolon. Indentation makes source code
easier to read but is otherwise insignificant—as is the placement of the
braces. My habit is to put the opening brace after the argument list and the
closing brace on its own line.
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In a program, each function must be defined exactly once and with its
own name, which rules out the name overloading (popular in languages
such as Java) in which different functions share a name but differ in
how they are invoked. A function can be declared as often as needed. As
promised, an easy way of handling declared functions is forthcoming.

In the current example, the declaration shows that function add2 takes
two integer (int) arguments and returns an integer value (likewise an
int). The definition of function add2 provides the familiar details, and this
definition could be shortened to a single statement:

return n1 + n2;

If a C function does not return a value, then void is used in place of
areturn data type. The term void, which is shorthand for no value, is
technically not a data type in C; for instance, there are no variables of type
void. By contrast, int is a data type. An int variable holds a signed integer
value and so is able to represent negative and nonnegative values alike; the
underlying implementation is almost certainly 32 bits in size and almost
certainly uses the 2’s complement representation, which is clarified later.

There are various C standards, which relax some rules of what might
be called orthodox C. Furthermore, some C compilers are more forgiving
than others. In orthodox C, for example, there are no nested function
definitions: one function cannot be defined inside another. Also, later
standardizations of C extend the comment syntax from the slash-star
opening and star-slash closing illustrated in Listing 1-1, and an until-
end-of-line comment may be introduced with a double slash. To make
compilation as simple as possible, my examples stick with orthodox C,
avoiding constructs such as nested functions and double slashes for

comments.
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1.3. The Function main

In style, C is a procedural or imperative language, not an object-oriented
or functional one. The program modules in a C program are functions,
which have global scope or visibility by default. There is a way to restrict
a function’s scope to the file in which the function is defined, as a later
chapter explains. The functions in a C program can be distributed among
arbitrarily many different source files, and a given source file can contain
as many functions as desired.

A C program’s entry point is the function main in that program
execution begins with the first statement in main. In a given program,
regardless of how many source files there are, the function main (like any
function) should be defined exactly once. If a collection of C functions
does not include the appropriate main function, then these functions
compile into an object module, which can be part of an executable
program, but do not, without main, constitute an executable program.

Listing 1-3. An executable program with main and another function
#include <stdio.h>

/* This definition of add2, occurring as it does _above_ main,
doubles as the function's declaration: main calls add2
and so the declaration of add2 must be visible above the
call. If function add2 were defined below main, then the
function should be declared here above main to avoid
compiler warnings. */

int add2(int n1, int n2) { /* definition: the body is enclosed

in the braces */

int sum = n1 + n2; /* could avoid this step, kept here
for verbosity */
return sum; /* we could just return ni + n2 */
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int main() {
int k = -26, m = 44;
int sum = add2(k, m); /* call the add2 function, save the
returned value */
/* %i means: format as an integer */
printf("%i + %i = %i\n", k, m, sum); /* output: -26 +
44 = 18 */
return 0; /* 0 signals normal termination, < 0 signals some
error */

The revised add2 example (see Listing 1-3) can be compiled and then
run at the command line as shown in the following, assuming that the file
with the two functions is named add?2.c. These commands are issued in
the very directory that holds the source file add2.c. My comments begin
with two ## symbols:

% gcc -0 add2 add2.c ## alternative: % gcc add2.c -o add2
% ./add2 ## On Windows, drop the ./

The flag - o stands for output. Were this flag omitted, the executable
would be named a.out (A.exe on Windows) by default. On some systems,
the C compiler may be invoked as cc instead of gcc. If both commands are
available, then cc likely invokes a native compiler—a compiler designed
specifically for that system. On Unix-like systems, this command typically
is a shortcut:

% make add2 ## expands to: gcc -o add2 add2.c
The add2 program begins with an include directive. Here is the line:

#include <stdio.h>
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This directive is used during the compilation process, with details to
follow. The file stdio.h, with h for header, is an interface file that declares
input/output functions such as printf, with the f for formatted. The angle
brackets signal that stdio.h is located somewhere along the compiler’s
search path (on Unix-like systems, in a directory such as /usr/include or
/usr/local/include). The implementation of a standard function such as
printf resides in a binary library (on Unix-like systems, in a directory such
as /usr/lib or /usr/local/lib), which is linked to the program during the full
compilation process.

HEADER FILES FOR FUNCTION DECLARATIONS

Header files are the natural way to handle function declarations—but not
function definitions. A header file such as stdio.h can be included wherever
needed, and even multiple includes of the same header file, although
inefficient, will work. However, if a header file contains function definitions,
there is a danger. If such a file were included more than once in a program’s
source files, this would break the rule that every function must be defined
exactly once in a program. The sound practice is to use header files for
function declarations, but never for function definitions.

What is the point of having the main function return an int value?
Which function gets the integer value that main returns? When the
user enters

% ./add2

at the command-line prompt and then hits the Return key, a system
function in the exec family (e.g., execv) executes. This exec function then
calls the main function in the add2 program, and main returns 0 to the exec
function to signal normal termination (EXIT_SUCCESS). Were the add2
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program to terminate abnormally, the main function might return the
negative value -1 (EXIT_FAILURE). The symbolic constants EXIT SUCCESS
and EXIT_FAILURE are clarified later.

IS THERE EASY-TO-FIND DOCUMENTATION ON LIBRARY FUNCTIONS?

On Unix-like systems, or Windows with Cygwin installed (https://cygwin.
com), there is a command-line utility man (short for manual) that contains
documentation for the standard library functions and for utilities that often
have the same name as a function: googling for man pages is a good start.

1.4. C Functions and Assembly
Callable Blocks

The function construct is familiar to any programmer working in a modern
language. In object-oriented languages, functions come in special forms
such as the constructor and the method. Many languages, including object-
oriented ones, now include anonymous or unnamed functions such as
the lambdas added in object-oriented languages such as Java and C#, but
available in Lisp since the 1950s. C functions are named.

Most languages follow the basic C syntax for functions, with some
innovations along the way. The Go language, for example, allows a
function to return multiple values explicitly. Functions are straightforward
with respect to flow of control: one function calls another, and the called
function normally returns to its caller. Information can be sent from the
caller to the callee through arguments passed to the callee; information
can be sent from the callee back to the caller through a return value. Even
in C, which allows only a single return value at the syntax level, multiple
values can be returned by returning an array or other aggregate structure.
Additional tactics for returning multiple values are available, as shown later.
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Assembly languages do not have functions in the C sense, although it
is now common to talk about assembly language functions. The assembly
counterpart to the function is the callable block, a routine with a label as its
identifier; this label is the counterpart of a function’s name. Information
is passed to a called routine in various ways, but with CPU registers and
the stack as the usual way. This section uses the traditional Hello, world!
program in a first look at (Intel) assembly code.

Listing 1-4. The traditional greeting program in C
#include <stdio.h>

int main() {
/* msg is a pointer to a char, the H in Hello, world! */
char* msg = "Hello, world!"; /* the string is implemented
as an array of characters */

printf("%s\n", msg); /* %s formats the argument as
a string */

return 0; /* main must return an int
value */

The hi program (see Listing 1-4) has three points of interest for
comparing C and assembly code. First, the program initializes a variable
msg whose data type is char*, which is a pointer to a character. The star
could be flush against the data type, in between char and msg, or flush
againstmsg:

char* msg = ...; /* my preferred style, some limitations */
char * msg = ...; /* ok, but unusual */

char *msg ...; /* perhaps the most common style */
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A string in C is implemented as array of char values, with the 1-byte,
nonprinting character 0 terminating the array:

s L T e e s bt BEEt
msg--->| H| e | 1|1 ]|o]...] 1| d]| \o|l ##\ois a char
s T T S S e e

The slash before the 0 in \0 identifies an 8-bit (1-byte) representation
of zero. A zero without the backslash (0) would be an int constant, which
is typically 32 bits in size. In C, character literals such as \0 are enclosed in
single quotes:

char big A = 'A"; /* 65 in ASCII (and Unicode) */
char nt = '\0';  /* non-printing 0, null terminator for
strings */

In the array to which msg points, the last character \0 is called the
null terminator because its role is to mark where the string ends. As a
nonprinting character, the null terminator is perfect for the job. Of interest
now is how the assembly code represents a string literal.

The second point of interest is the call to the printf function. In this
version of printf, two arguments are passed to the function: the first
argument is a format string, which specifies string (%s) as the formatting
type; the second argument is the pointer variable msg, which points to the
greeting by pointing to the first character H. The third and final point of
interest is the value 0 (EXIT_SUCCESS) that main returns to its caller, some
function in the exec family.

The C code for the hi program can be translated into assembly. In this
example, the following command was used:

% gcc -01 -S hi.c  ## -01 = Optimize level 1, -S = save
assembly code

The flag -01 consists of capital letter O for optimize followed by 1,
which is the lowest optimization level. This command produces the output

10
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file hi.s, which contains the corresponding assembly code. The file hi.s

could be compiled in the usual way:

% gcc -o hi hi.s

## produces same output as compiling hi.c

Listing 1-5. The hi program in assembly code

.file  "hi.c"
.LCo:
.string "Hello, world!"
.text
.globl main
.type main, @function
main:

.cfi_startproc

Subq $8, %rsp
.cfi_def cfa offset 16
Movl $.LCo, %edi
Call puts

Movl $0, %eax

Addq $8, %rsp
.cfi_def cfa offset 8
ret

## C source file

## .LCo is the string's label
(address)

## string literal

## text (program) area: code,
not data

## main is globally visible
## main is a function, not a
variable (data)

## label for main, the

entry point

## Call Frame Information:
metadata

## grow the stack by 8 bytes
## more metadata

## copy (pointer to) the
string into register %edi

## call puts, which expects
its argument in %edi

## copy 0 into register %eax,
which holds return value

## shrink the stack by 8 bytes
## more metadata

## return to caller

11
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.cfi_endproc ## all done (metadata)

The hi program in assembly code (see Listing 1-5) uses AT&T
syntax. There are alternatives, including so-called Intel assembly. The
AT&T version has advantages, which are explained in the forthcoming
discussions. In the example, the ## symbols introduce my comments.

To begin, some points about syntax should be helpful:

o Identifiers that begin with a period (e.g., . file) are
directives that guide the assembler in translating the
assembly code into machine-executable code.

o Identifiers that end with a colon (with or without a
starting period) are labels, which serve as pointers
(addresses) to relevant parts of the code. For example, the
label main: points to the start of the callable code block
that, in assembly, corresponds to the main function in C.

o CPU registers begin with a percentage sign %. In a register
name such as %eax, the e is for extended, which means 32 bits
in Intel. On a 64-bit machine, the register %eax comprises
the lower 32 bits of the 64-bit register %rax. In general,
register names that start with the e are the lower 32 bits of
the corresponding registers whose names start with r: %eax
and %rax are one example, and %edi and %rdi are another
example. A 32-bit machine would have only e registers.

e Ininstructions such as movl, the [ is for longword,
which is 32 bits in Intel. In instruction addq, the q is for
quadword, which is 64 bits. By the way, the various mov
instructions are actually copy instructions: the contents
of the source are copied to the destination, but the

source remains unchanged.

The essentials of this assembly code example begin with two labels.
The first, . LCO:, locates the string greeting “Hello, world!” This label thus

12
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serves the same purpose as the pointer variable msg in the C program. The
label main: locates the program’s entry point and, in this way, the callable
code block that makes up the body of the main: routine.

Two other parts of the main: routine deserve a look. The first is the call
to the library routine puts, where the s indicates a string. In C code, the call
would look like this:

puts("This is a string."); /* C code (puts adds a newline) */

In C, puts would be called with a single argument. In assembly code,
however, the puts is called without an explicit argument. Instead, the
expected argument—the address of the string to print—is copied to the
register %edi, which comprises the lower 32 bits of the 64-bit register %rdi.
For review, here is the code segment:

Movl  $.LCO, %edi ## copy (pointer to) the string into %edi
Call puts ## call puts, which expects argument in %edi

A second interesting point about the main: routine is the integer
value returned to its invoker, again some routine in the exec family. The
32-bit register %eax (the lower 32 bits of the 64-bit %rax) is sometimes
used for general-purpose scratchpad, but in this case is used for a special
purpose—to hold the value returned from the main: routine. The assembly
code thus puts 0 in the register immediately before cleaning up the stack
and returning:

mov1 $0, %eax ## copy 0 into %eax, which holds return value

Although assembly-language programs are made up of callable
routines rather than functions in the C sense, it is common and, indeed,
convenient to talk about assembly functions. For the most part,
the machine-language library routines originate as C functions that have

13
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been translated first into assembly language and then into machine code
(see the sidebar).

HOW ARE C PROGRAMS COMPILED?

The compilation of a C program is a staged process, with four stages:

Hmmmmmmmmm- + Hmmmmme- + 4o + oot

 EREEEE R + B + oo + +o---t

There are flags for the gcc utility, as well as separately named utilities (e.qg.,
cpp for preprocess only), for carrying out the process only to a particular stage.
The preprocess stage handles directives such as #include, which start with
a sharp sign. The compile stage generates assembly language code, which the
assemble stage then translates into machine code. The /ink stage connects the
machine code to the appropriate libraries. The command

% gcc --save-temps net.c

would compile the code but also save the temporary files: net.i (text, from
preprocess stage), net.s (text, from compile stage), and net.o (binary, from
assemble stage).

1.4.1. A Simpler Program in Assembly Code

A simpler program in assembly language shows that many assembler
directives can be omitted; the remaining directives make the code easier
to read. Also, no explicit stack manipulation is needed in the forthcoming
example, which is written from scratch rather than generated from C
source code.

14



CHAPTER 1  PROGRAM STRUCTURE

Listing 1-6. A bare-bones program in assembly language

## hello program

.data # data versus code section
.globl hello # global scope for label hello
hello: # label == symbolic address
.string "Hello, world!" # a character string
.text # text == code section
.global main # global scope for main subroutine
main: # start of main
movq  $hello, %rdi # copy address of the greeting to %rdi
call puts # call library routine puts
movq  $0, %rax # copy 0 to %rax (return value)
ret # return control to routine's caller

The hiAssem program (see Listing 1-6) prints the traditional greeting,
but using assembly code rather than C. The program can be compiled and
executed in the usual way except for the added flag -static:

% gcc -o hiAssem -static hiAssem.s
% ./hiAssem ## on Windows, drop the ./

The program structure is straightforward:

1. Identify a string greeting with a label, in this
case hello:.

2. Identify the entry point with a label, in this
casemain:.

3. Copy the greeting’s address hello: into register
%rdi, where the library routine puts expects this
address.

15



CHAPTER 1  PROGRAM STRUCTURE

4. Call puts.

5. Copy zero into register %rax, which holds a called

routine’s return value.

6. Return to the caller.

Even the short examples in this section illustrate the basics of C
programs: functions in C correspond to callable blocks (routines) in
assembly language, and in the normal flow of control, a called function
returns to its caller. With respect to called functions, the system provides
scratchpad storage, for local variables and parameters, with CPU registers
and the stack as backup.

1.5. Passing Command-Line
Arguments to main

The main function seen so far returns an int value and takes no arguments.
The declaration is

int main(); /* one version */
The main function need not return a value, however:
void main(); /* another version, returns nothing */
The function main also can take arguments from the command line:

int main(int argc, char* argv[ ]); /* with two arguments, also
could return void */

16
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The two arguments in the last declaration of main are named, by

tradition, argc (c for count) and argv (v for values). Here is a summary of

the information in each argument:

The first argument to the main function is argc, a count of
the command-line arguments. This count is one or more
because the name of the executable program is, again

by tradition, the first command-line argument. If the
program hi is invoked from the command line as follows:

% ./hi

then argc would have a value of one. If the same
program were invoked as follows:

% ./hi one two three

then argc would have a value of four. A program is not
obligated to use the command-line arguments passed to it.

The second argument (argv) passed to main is trickier to
explain. All of the command-line arguments, including the
program’s name, are strings. Recall that a string in C is an
array of characters with a null terminator. Because there
may be multiple command-line arguments, these are
stored in a list (a C array), each of whose elements holds
the address of the first character in a command-line string.
For example, in the invocation of program hi, the first
element in the argv array points to the h in hi; the second
element in this array points to the o in one; and so forth.

The empty square brackets in argv[ ] indicate an array of
unspecified length, as the array’s length is given in argc; the
char* (pointer to character) data type indicates that each array
element is a pointer to the first character in each command-
line string. The argv argument is thus a pointer to an array of

17
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pointers to char; hence, the argv argument is sometimes written
as char** argv, which means literally that argyv is a pointer to

pointer(s) to characters.

The details about arrays are covered thoroughly in Chapter 3, but
the preceding sketch should be enough to clarify how command-line

arguments work in C.

Listing 1-7. Command-line arguments for main
#include <stdio.h>

int main(int argc, char* argv[ ]) {
if (argc < 2) {
puts("Usage: cline <one or more cmd-line args>");
return -1; /** -1 is EXIT_FAILURE **/

}

puts(argv[0]); /* executable program's name */

int i;
for (i = 1; i < argc; i++)

puts(argv[i]); /* additional command-line arguments */
return 0; /** 0 is EXIT_SUCCESS **/

}

The cline program (see Listing 1-7) first checks whether there are
at least two command-line arguments—at least one in addition to the
program’s name. If not, the usage section introduced by the if clause
explains how the program should be run. Otherwise, the program uses the
library function puts (put string) to print the program’s name (argv[0])
and the other command-line argument(s). (The for loop used in the
program is clarified in the next section.) Here is a sample run:

% ./cline A 1 B2

18
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./cline

B2

Later examples put the command-line arguments to use. The point for
now is that even main can have arguments passed to it. Both of the control
structures used in this program, the if test and the for loop, now need
clarification.

1.6. Control Structures

A block is a group of expressions (e.g., integer values to initialize an array)
or statements (e.g., the body of a loop). In either case, a block starts with
the left curly brace { and ends with a matching right curly brace }. Blocks
can be nested to any level, and the body of a function—its definition—is a
block. Within a block of statements, the default flow of control is straight-
line execution.

Listing 1-8. Default flow of control
#include <stdio.h>

int main() {

int n = 27; A
int k = 43; /¥ 2 *
printf("%i * %i = %i\n", n, k, n * k); /** 3 *¥/
return 0; [¥*% 4 **/

}

The straight-line program (see Listing 1-8) consists of the single
function main, whose body has four statements, labeled in the comments
for reference. There are no tests, loops, or function calls that interfere
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with the straight-line execution: first statement 1, then statement 2, then
statement 3, and then statement 4. The last statement exits main and
thereby effectively ends the program’s execution. Straight-line execution is
fast, but program logic typically requires a more nuanced flow of control.

C has various flavors of the expected control structures, which can be
grouped for convenience into three categories: fests, loops, and (function)
calls. This section covers the first two, tests and loops; the following section
expands on flow of control in function calls.

Listing 1-9. Various ways to testin C
#include <stdio.h>

int main() {
int n = 111, k = 98;

intr=(n>k) 2k+1:n-1; /*conditional operator */
printf("r's value is %i\n", 1); /* 99 */

if (n < k) puts("if");
else if (r > k) puts("else if");  /** prints **/
else puts("else");

r = 0; /* reset r to zero */
switch (r) {
case 0:
puts("case 0"); /*¥* prints **/
case 1:
puts("case 1"); /** prints **/
break; /** break out of switch construct **/
case 2:
puts("case 2");
break;
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case 3:

puts(“"case 3");

break;
default:

puts("none of the above");
} /* end of switch */

}

The tests program (see Listing 1-9) shows three ways in which to test in
a C program. The first way uses the conditional operator in an assignment
statement. The conditional expression has three parts:

(test) ? if-test-is-true : if-test-is-false ## true is non-
zero, false is zero

In this example, the conditional expression is used as source in an
assignment:

intr=(n>k)?2k+12:n-1; /*nis 111, k is 98 */

A conditional expression consists of a test, which yields one of two
values: one value if the test is frue and another if the test is false. The test
evaluates to frue (nonzero in C, with a default of 1) because nis 111 and
k is 98, making the expression (n > k) true; hence, variable 1 is assigned
the value of the expression immediately to the right of the question
mark, k + 1 or 99. Otherwise, variable r would be assigned the value of
the expression immediately to the right of colon, in this case 110. The
expressions after the question mark and the colon could themselves be
conditional expressions, but readability quickly suffers.

The conditional operator is convenient and is used commonly to
assign a value to a variable or to return a value from a function. This

operator also highlights a general rule in C syntax: tests are enclosed in
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parentheses, in this example, (n > k). The same syntax applies to if-tests
and to loop-tests. Parentheses always can be used to enhance readability,
as later examples emphasize, but parentheses are required for test
expressions.

The middle part of the fests program introduces the syntax for if-else
constructs, which can be nested to any level. For instance, the body of an
else clause could itself contain an if else construct. In an if and an else
if clause, the test is enclosed in parentheses. There can be an if without
either an else if oranelse, butanyelse clause must be tied to a prior if
orelse if, and everyelse if mustbe tied to an if.In this example, the
conditions and results (in this case, puts calls) are on the same line. Here

is a more readable version:

if (n < k)

puts("if");
else if (r > k)

puts("else if");  /** prints **/
else

puts("else");

In this example, the body of the if, the else if, and theelseisa
single statement; hence, braces are not needed. The bodies are indented
for readability, but indentation has no impact on flow of control. If a body
has more than one statement, the body must be enclosed in braces:

if (n < k) { /* braces needed here */
puts("if");
puts("just demoing");

}

Using braces to enclose even a single body statement is admirable
but rare.

The last section of the tests program introduces the switch construct,
which should be used with caution. The switch expression, in this case
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the value of variable 7, is enclosed as usual in parentheses. The value of r
now determines the flow of control. Four case clauses are listed, together
with an optional default at the end. The value of r is zero, which means
control moves to case 0 and the puts statement is executed. However,
there is no break statement after this puts statement—and so control
continues through the next case, in this example case 1; hence, the second
puts statement executes. If the value of r happened to be 2, only one puts
statement would execute because the case 2 body consists of the puts
statement followed by a break statement.

The body of a case statement can consist of arbitrarily many
statements. The critical point is this: once control enters a case construct,
the flow is sequential until either a break is encountered or the switch
construct itself is exited. In effect, the case expressions are targets for a
high-level goto, and control continues straight line until there is a break or
the end of the switch.

The break statement can be used to break out of a switch construct, or
out of a loop. The discussion now turns to loops.

C has three looping constructs: while, do while, and for. Any one
of the three looping constructs is sufficient to implement program logic,
but each type of loop has its natural uses. For instance, a counted loop
that needs to iterate a specified number of times could be implemented
aswhile loop, but a for loop readily fits this bill. A conditional loop that
iterates until a specified condition fails to hold is implemented naturally as
awhile orado whileloop.

The general form of awhile loop is

while (<condition>) {
/* body */

If the condition is true (nonzero), the body executes, after which the
condition is tested again. If the condition is false (zero), control jumps to
the first statement beyond the loop’s body. (If the loop’s body consists of
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a single statement, the body need not be enclosed in parentheses.) The do
while construct is similar, except that the loop condition occurs at the end
rather than at the beginning of a loop; hence, the body of a do while loop
executes at least once. The general form is

do {
/* body */
} while (<condition>);

The break statement in C breaks out of a single loop. Consider this
code segment:

while (someCondition) { /* loop 1 */
while (anotherCondition) { /* loop 2 */
/* o0 */
if (thisHappens) break; /* breaks out of loop2, but
not loop1l */
}
/* oo %/

The break statement in loop2 breaks out of this loop only, and control
resumes within loop1. C does have goto statement whose target is a label,
but this control construct should be mentioned just once and avoided
thereafter.

Listing 1-10. Thewhile and do while loops
#include <stdio.h>

int main() {
int n = -1;
while (1) { /* 1 == true */
printf("A non-negative integer, please: ");
scanf("%i", 8&n);

24



CHAPTER 1  PROGRAM STRUCTURE

if (n > 0) break; /* break out of the loop */
}

printf("n is %i\n", n);

n=-1;

do {
printf("A non-negative integer, please: ");
scanf("%1i", &n);

} while (n < 0);

printf("n is %i\n", n);

return 0;

The whiling program (see Listing 1-10) prompts the user for a
nonnegative integer and then prints its value. The program does not
otherwise validate the input but rather assumes that only decimal
numerals and, perhaps, the minus sign are entered. The focus is on
contrasting awhile and a do while for the same task.

The condition for the while loop is 1, the default value for true:

while (1) { /* 1 == true */

This loop might be an infinite one except that there is a break
statement, which exits the loop: if the user enters a nonnegative integer,
the break executes.

The do while loop is better suited for the task at hand: first, the user
enters a value, and only then does the loop condition test whether the
value is greater than zero; if so, the loop exits. In both loops, the scanf
function is used to read user input. The details about scanf and its close
relatives can wait until later.
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Among the looping constructs, the for loop has the most complicated
syntax. Its general form is

for (<init>;<condition>;<post-body>) {
/* body */

A common example is

for (i =0; i< limit; i =1 + 1) { /* int i, limit = 100; from
above */

/* body */
}

The init section executes exactly once, before anything else. Then
the condition is evaluated: if true, the loop’s body is executed; otherwise,
control goes to the first statement beyond the loop’s body. The post-body
expression is evaluated per iteration after the body executes; then the
condition is evaluated again; and so on. Any part of the for loop can be
empty. The construct

for (;;) { /* huh? */ }

is an obfuscated version of a potentially infinite loop. As shown earlier,
a more readable way to write such a loop is

while (1) { /** clearer **/ }

1.7. Normal Flow of Control in Function Calls

A called function usually returns to its caller. If a called function returns a
value, the function has a return statement that both returns the value and
marks the end of the function’s execution: control returns to the caller at
the point immediately beyond the call. A function with void instead of a
return type might contain a return statement, but without a value; if not,
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the function returns after executing the last statement in the block that
makes up the function’s body:.

The normal return-to-caller behavior takes advantage of how modern
systems provide scratchpad for called functions. This scratchpad is a
mix of general-purpose CPU registers and stack storage. As functions are
called, the call frames on the stack are allocated automatically; as functions
return, these call frames can be freed up for future use. The underlying
system bookkeeping is simple, and the mechanism itself is efficient in that
registers and stack call frames are reused across consecutive function calls.

Example 1-1. Normal calls and returns for functions

#include <stdio.h>
#include <stdlib.h> /* rand() */

int g() {
return rand() % 100; /* % is modulus; hence, a number O

through 99 */

}
int f(int multiplier) {
int t = g();
return t * multiplier;
}
int main() {
int n = 72;
int r = f(n);

printf("Calling f with %i resulted in %i.\n", n, 1);
/* 5976 on sample run */

return r; /* not usual, but all that's required is a
returned int */
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The calling program (see Example 1-1) illustrates the basics of normal
return-to-caller behavior. When the calling program is launched from the
command line, recall that a system function in the exec family invokes the
calling program’s main function. In this example, main then calls function
T with an int argument, which function f uses a multiplier. The number
to be multiplied comes from function g, which f calls. Function g, in
turn, invokes the library function rand, which returns a pseudorandomly
generated integer value. Here is a summary of the calls and returns, which
seem so natural in modern programming languages:

calls calls calls calls
exec-function------- smain()------- >f(int)------- >g()------- >rand()
exec-function<------- main()<------- f(int)<------- g()<------- rand()

returns returns returns returns

Further examples flesh out the details in the return-to-caller pattern.
One such example analyzes the assembly code in the pattern. A later
example looks at abnormal flow of control through signals, which can
interrupt an executing program and thereby disrupt the normal pattern.

1.8. Functions with a Variable Number
of Arguments

The by-now-familiar printf function takes a variable number of
arguments. Here is its declaration:

int printf(const char* format, ...); /* returns number of
characters printed */
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The first argument is the format string, and the optional remaining
arguments—represented by the ellipsis—are the values to be formatted.
The printf function requires the first argument, but the number of
additional arguments depends on the number of values to be formatted.
There are many other library functions that take a variable number of
arguments, and programmer-defined functions can do the same. Two
examples illustrate.

Example 1-2. The library function syscall

#include <stdio.h>
#include <unistd.h>
#include <sys/syscall.h>

int main() {
/* 0755: owner has read/write/execute permissions, others
read/execute permissions */
int perms = 0755; /* 0 indicates base-8, octal */
int status = syscall(SYS_chmod, "/usr/local/website", perms);
if (-1 == status) perror(NULL);
return 0;

The sysCall program (see Example 1-2) invokes the library function
syscall, which takes a variable number of arguments; the first argument,
in this case the symbolic constant SYS_chmod, is required. SYS_chmod is
clarified shortly.

The syscall function is an indirect way to make system calls, that is, to
invoke functions that execute in kernel space, the address space reserved
for those privileged operating system routines that manage shared
system resources: processors, memory, and input/output devices. This
indirect approach allows for fine-tuning that the direct approach might
not provide. This example is contrived in that the function chmod (change
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mode) could be called directly with the same effect. The mode refers to
various permissions (e.g., read and write permissions) on the target, in this
case a directory on the local file system.

As noted, the first argument to syscall is required. The argument is
an integer value that identifies the system function to call. In this case, the
argument is SYS_chmod, which is defined as 90 in the header file syscall.h
and identifies the system function chmod. The variable arguments to
function syscall are as follows:

e The path to the file whose mode is to be changed, in
this case /usr/local/website. The path is given as a
string. (The directory /usr/local/website must exist
for the program to work, and this directory must be
accessible to whoever runs the program.)

o The file permissions, in this case 0777 (base-8):
everyone can read/write/execute.

The header file stdarg.h has a data type va_list (list of variable
arguments) together with utilities to help programmers write functions
with a variable number of arguments. These utilities allocate and
deallocate storage for the variable arguments, support iteration over
these arguments, and convert each argument to whatever data type is
appropriate. The utilities are well designed and worth using. As a popular
illustration of a function with a variable number of arguments, the next
code example sums up and then averages the arguments. In the example,
the required argument and the others happen to be of the same data
type, in the current case int, but this is not a requirement. Recall again
the printf function, whose first argument is a string but whose optional,
variable arguments all could be of different types.

Example 1-3. A function with a variable number of arguments

#include <stdio.h>
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#include <stdarg.h> /* va_list type, va_start va_arg va_end
utilities */

double avg(int count, ...) { /* count is how many, ellipses are
the other args */
double sum = 0.0;
va_list args;
va_start(args, count); /* allocate storage for the
additional args */

int i;
for (i = 0; i < count; i++) sum += va_arg(args, int);
/* compute the running sum */

va_end(args); /* deallocate the storage for
the list */
if (count > 0) return sum / count; /* compiler promotes

count to double */

else return 0;

}

void main() {
printf("%f\n", avg(4, 1, 2, 3, 4));
printf("%f\n", avg(9, 9, 8, 7, 6, 5, 4, 3, 2, 1));
printf("%f\n", avg(0));

}

The varArgs program (see Example 1-3) defines a function avg with
one named argument count and then an ellipsis that represents the
variable number of other arguments. In this example, the int parameter
count is a placeholder for the required argument, which specifies how
many other arguments there are. In the first call from main to the function
avg, the first 4 in the list become count, and the remaining four values
make up the variable arguments.
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In the function avg, local variable nums is declared to be of type
va_list. The utility va_start is called with args as its first argument
and count as its second. The effect is to provide storage for the variable
arguments. The later call to va_end signals that this storage no longer is
needed. Between the two calls, the va_arg utility is used to extract from
the list one int value at a time. The programmer needs to specify, in the
second argument to va_arg, the data type of the variable arguments. In
this example, the type is the same throughout: int. In a richer example,
however, the type could vary from one argument to the next. Finally,
function main makes three calls to function avg, including a call that has no
arguments other than the required one, which is 0.

1.9. What’s Next?

C has basic or primitive data types such as char (8 bits), int (typically 32
bits), float (typically 32 bits), and double (typically 64 bits) together with
mechanisms to create arbitrarily rich, programmer-defined types such

as Employee and digital certificate. Names for the primitive types
are in lowercase. Data type names, like identifiers in general, start with a
letter or an underscore, and the names can contain any mix of uppercase
and lowercase characters together with decimal numerals. Most modern
languages have naming conventions similar to those in C. The basic types
in C deliberately match the ones on the underlying system, which is one
way that C serves as a portable assembly language. The next chapter
focuses on data types, built-in and programmer-defined.
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Basic Data Types

2.1. Overview

Crequires explicit data typing for variables, arguments passed to a
function, and a value returned from a function. The names for C data types
occur in many other languages as well: int for signed integers, float for
floating-point numbers, char for numeric values that serve as character
codes, and so on. C programmers can define arbitrarily rich data types
of their own such as Employee and Movie, which reduce ultimately to
primitive types such as int and float. C’s built-in data types deliberately
mirror machine-level types such as integers and floating-point numbers of
various sizes.

At a technical level, a data type such as int, float, char, or Employee
determines

e The amount of memory required to store values of
the type (e.g., the int value -3232, a pointer to the
string “ABC”)

e The operations allowed on values of type (e.g., an int
value can be shifted left or right, whereas a float value
should not be shifted at all)
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The sizeof operator gives the size in bytes for any data type or value of
that type. Here is a code segment to illustrate:

printf("%lu\n", sizeof(char)); /* 1 (%lu... for long
unsigned) */
printf("%lu %lu\n", sizeof(float), sizeof(99)); /* 4, 4 */

The sizeof(char) is required to be 1, which accommodates 7-bit
and 8-bit character encodings such as ASCII and Latin-1, respectively. C
also has awchar_t type (w for wide), which is 4 bytes in size and designed
for multibyte character codes such as Unicode. Types other than char,
such as int and float, must be at least sizeof(char) but typically are
greater. On a modern handheld device or desktop computer, for example,
sizeof(int) and sizeof(float) are 4 bytes apiece.

Listing 2-1. The sizeof various basic data types

#include <stdio.h>
#include <wchar.h> /* wchar_t type */

void main() {

printf("char size: %lu\n", sizeof(char));
/* 1 (long unsigned) */
printf("wchar t size: %lu\n", sizeof(wchar t)); /* 4 */

/* Signed and unsigned variants of each type are of same
size. */

printf("short size: %lu\n", sizeof(short)); /* 2 */
printf("int size: %lu\n", sizeof(int)); /* 4 */
printf("long size: %lu\n", sizeof(long)); /* 8 */
printf("long long size: %lu\n", sizeof(long long)); /* 8,
maybe
more */
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/* floating point types are all signed */

printf("float size: %lu\n", sizeof(float)); /* 4 */
printf("double size: %lu\n", sizeof(double)); /* 8 */
printf("long double size: %lu\n", sizeof(long double)); /* 16 */

The dataTypes (see Listing 2-1) program prints the byte sizes for the
basic C data types. These sizes are the usual ones on modern devices.
The following sections focus on C’s built-in data types and built-in
operations on these types. Technical matters such as the 2’s complement
representation of integers and the IEEE 754 standard for floating-point
formats is covered in detail.

2.2. Integer Types

All of C’s integer types come in signed and unsigned flavors. The unsigned
types have a one-field implementation: all of the bits are magnitude bits.
By contrast, signed types have a two-field implementation:

o The most significant (by convention, the leftmost) bit is
the sign bit, with 0 for nonnegative and 1 for negative.

o Theremaining bits are magnitude bits.

The signed and unsigned integer types come in various sizes.
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Table 2-1. Basic integer data types

Type Byte size Range

unsigned char 1 01to 255

signed char 1 -128t0 127

unsigned short 2 0 to0 65,535

signed short 2 -32,768 to 32,767

unsigned int 4 010 4,294,967,295

signed int 4 -2,147,483,648 10 2,147,483,647
unsigned long 8 0to 18,446,744,073,709,551,615
signed long 8 —-9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

Table 2-1 lists the basic integer types in C, which have the very bit sizes
as their machine-level counterparts. C also has a long long type, which
must be at least 8 bytes in size and typically is the same size as long: 8.

C does not have a distinct boolean type but instead uses integer values
to represent true and false: 0 represents false, and any nonzero value (e.g.,
-999 and 403) represents true. The default value for trueis 1. For example, a
potentially infinite loop might start out like this:

while (1) { /** 1 is true in boolean context **/

In C source code, an integer constant such as 22 defaults to type int,
where int is shorthand for signed int. The constant 22L or 221 is of type
long. Here are some quick examples of data type shorthands:

int n; /* short for: signed int n; */
signed m; /* short for: signed int m; */
unsigned k; /* short for: unsigned int k; */
short s; /* short for: signed short s; */

signed short t; /* the full type written out */
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As the examples indicate, unsigned must be used explicitly if unsigned

is the desired variant.

The type of a variable does not restrict the bits that can be stored in it,

which means that even everyday C can be obfuscating. An example may be

useful here.

Listing 2-2. Data types and bits

#include <stdio.h>
#include <limits.h> /* includes convenient min/max values for
integer types */

void main() { /* void instead of int for some variety */

unsigned int n = -1, m = UINT_MAX; /* In 2's complement, -1

is all 1s */

signed int k = oxffffffff; /* 0x or 0X for hex: f =

4 1s in hex */
if (n == m) printf("m and n have the same value\n");
/* prints */
if (k == m) printf("m and k have the same value\n");
/* prints */
printf("small as signed == %i, small as unsigned == %u\n",

n, n); /* -1, 4294967295 */

signed int small

-1; /* signed converts to unsigned in
mixed comparisons */

98765; /* comparing big and small is a
mixed comparison */

if (small > big) printf("yep, something's up...\n");

/** small value is UINT_MAX **/

unsigned int big
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The obfusc program (see Listing 2-2) is a cautionary tale on the
distinction between internal (machine-level) and external (human-level)
representation. The example’s important points can be summed up as
follows:

o The data type of a variable does not restrict the bits
that can be assigned to it. For example, the compiler
does not warn against assigning the negative value -1 to
the unsigned variable n. For the compiler, the decimal
value -1 is, in the 2’s complement representation now
common across computing devices, all 1s in binary.
Accordingly, the variable n holds 32 1s when -1 is
assigned to this variable. (Further details of the 2’s
complement representation are covered shortly.)

e The equality operator ==, when applied to integer
values, checks for identical bit patterns. If the left
and the right side expressions (in this example, the
values of two variables) have identical bit patterns, the
comparison is true; otherwise, false. The variables n, m,
and k all store 32 1s in binary; hence, they are all equal
in value by the equality operator ==.

o In print statements, the internal representation of a
value (the bit string) can be formatted to yield different
external representations. For example, the 32 1s stored
in variable n can be printed as a negative decimal value
using the formatter %1 (integer) or %d (decimal). Recall
that in 2’s complement, a value is negative if its high-
order (leftmost) bit is a 1; hence, the %i formatter for
signed values treats the 32 1s as the negative value -1:
the high-order bit is the sign bit 1 (negative), and the

38



CHAPTER 2  BASIC DATATYPES

remaining bits are the magnitude bits. By contrast,
the %u formatter for unsigned treats all of the bits as
magnitude bits, which yields the value of the symbolic
constant UINT_MAX (4,294,967,295) in decimal.

o Comparing expressions of mixed data types is risky
because the compiler coerces one of the types to the
other, following rules that may not be obvious. In this
example, the value -1 stored in the signed variable
small is converted to unsigned so that the comparison
is apple to apple rather than apple to orange. As
noted earlier, -1 is all 1s in binary; hence, as unsigned,
this value is UNIT_MAX, far greater than the 98,765
stored in big.

In mixed integer comparisons, the compiler follows two general rules:
e Signed values are converted to unsigned ones.

o Smaller value types are converted to larger ones. For
example, if a 2-byte short is compared to a 4-byte int,
then the short value is converted to an int value for

the comparison.

When floating-point values occur in expressions with integer values,
the compiler converts the integer values into floating-point ones.

In assembly code, an instruction such as cmpl would be used to
compare two integer values. The 1 in cmpl determines the number of
bits compared: in this case, 32 because 1 is for longword, a 32-bit word in
the Intel architecture. Were two 64-bit values being compared, then the
instruction would be cmpq instead, as the q stands for quadword, a 64-bit
word in this same architecture. At the assembly level, as at the machine
level, the size of a data type is built into the instruction’s opcode, in this
example cmpl.
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An earlier example showed that C’s signed char and unsigned char
are likewise integer types. As the name char indicates, the char type is
designed to store single-byte character codes (e.g., ASCII and Latin-1);
the more recentwchar_t type also is an integer type, but one designed for
multibyte character codes (e.g., Unicode). For historical reasons, the char
type is shorthand for either signed char orunsigned char, but which
is platform dependent. For the remaining types, this is not the case. For
example, short is definitely an abbreviation for signed short.

2.2.1. A Caution on the 2’s Complement
Representation

The 2’s complement representation of signed integers has a surprising but
well-publicized peculiarity. The header file limits.h provides the constant
INT_MIN, the minimum value for a 4-byte signed int value. The binary
representation, with the most significant bits on the left, is

10000000 00000000 00000000 00000000 /* INT _MIN in binary */

For readability, the binary representation has been broken into
four 8-bit chunks. The rightmost (least significant) bit is a 0, which
makes the value (-2,147,483,648) even rather than odd. The leftmost
(most significant) bit is the sign bit: 1 for negative as in this case and 0
for nonnegative. There are similar constants for other integer types (for
instance, SHRT_MIN and LONG_MIN).

There is a straightforward algorithm for computing the absolute value
of a negative 2’s complement value. For example, recall that the -1 in
binary, under the 2’s complement representation, is all 1s: 1111...1. Here is
the recipe for computing the absolute value in binary:

1. Invert the 1sin -1, which yields all 0s: 00000...000.

2. Add 1, which yields 00000...001 or 1 in binary and
decimal, the absolute value of -1 in decimal.
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The same recipe yields -1 from 1: invert the bits in 1 (yielding 11111...0)
and then add 1 (yielding 11111...1), which again is all 1s in binary and -1 in
decimal.

In the case of INT_MIN, the peculiarity becomes obvious:

1. Invert the bits, which transforms INT_MIN to
01111111 111111171 11111111 11111111,

2. Add 1 toyield 10000000 00000000 00000000
00000000, which is INT_MIN again.

In C, the unary minus operator is shorthand for (a) inverting the bits
and (b) adding 1. This code segment illustrates

int n = 7;
int k = -n; /* unary-minus operator */

int m = ~n + 1; /* complement operator and addition by 1 */

The value of k and of mis the same: -7. In the case of INT_MIN, however,
the peculiarity is that

INT_MIN == -INT_MIN

A modern C compiler does issue a warning when encountering the
expression -INT_MIN, cautioning that the expression causes an overflow
because of the addition operation. By the way, no other int value is equal
to its negation under the 2’s complement representation.

2.2.2. Integer Overflow

A programmer who uses any of the primitive C types needs to stay alert
when it comes to sizeof and the potential for overflow. The next code
example illustrates with the int type.
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Listing 2-3. Integer overflow

#include <stdio.h>
#include <limits.h> /* INT _MAX */

int main() {
printf("Max int in %lu bytes %i.\n", sizeof(int), INT MAX);
/* 4 bytes 2,147,483,647 */
int n = 81;

while (n > 0) {
printf("%12i %12x\n", n, n);
n*=n; /*n=n*n*/
}
printf("%12i %12x\n", n, n); /* -501334399 e2le3e81 */
return 0;

}
/* 81 51
6561 19a1
43046721 290d741
-501334399 e2le3e81 ## e is 1101 in binary */

The overflow program (see Listing 2-3) initializes int variable n to 81
and then loops. In each loop iteration, n is multiplied by itself as long as the
resulting value is greater than zero. The trace shows that loop iterates three
times, and on the third iteration, the new value of n becomes negative. As
the hex output shows, the leftmost (most significant) four bits are hex digit
e, which is 1110 in binary: the leftmost 1 is now the sign bit for negative. In
this example, the overflow could be delayed, but not prevented, by using a

long instead of an int.
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There is no compiler warning in the overflow program that overflow
may result. It is up to the programmer to safeguard against this possibility.
There are libraries that support arbitrary-precision arithmetic in C,
including the GMP library (GNU Multiple Precision Arithmetic Library
athttps://gmplib.org). A later code example uses embedded assembly
code to check for overflow.

2.3. Floating-Point Types

C has the floating-point types appropriate in a modern, general-purpose
language. Computers as a rule implement the IEEE 754 specification
(https://standards.ieee.org/ieee/754/6210/) in their floating-point
hardware, so C implementations follow this specification as well.

Table 2-2 lists C’s basic floating-point types. Floating-point types are
signed only, and their values have a three-field representation under IEEE
754: sign bits, exponent bits, and significand (magnitude) bits. A floating-
point constant such as 3.1 is of type double in C, whereas 3.1F and 3.1f
are of type float. Recall that a double is 8 bytes in size, but a float is only
4 bytes in size.

Table 2-2. Basic floating-point data types

Type Byte size Range Precision
float 4 1.2E-38 to 3.4E+38 6 places

double 8 2.3E-308 to 1.7E+308 15 places
long double 16 3.4E-4932 to 1.1E+4932 19 places
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2.3.1. Floating-Point Challenges

Floating-point types pose challenges that make these types unsuitable for
certain applications. For instance, there are decimal values such as 0.1 that
have no exact binary representation, as this short code segment shows:

float n = 0.1f;
printf("%.24f\n", n); /* 0.100000001490116119384766 */

In the printf statement, the formatter %. 24f specifies a precision of
24 decimal places. As a later example illustrates, unexpected rounding up
can occur when a particular decimal value does not have an exact binary
representation. Even this short code segment underscores that floating-
point types should not be used in financial, engineering, and other
applications that require exactness and precision. In such applications,
there are libraries such as GMP (http://gmplib.org), mentioned earlier,
to support arbitrary-precision arithmetic.

WHAT’S A MACRO?

A macrois a code fragment with a name and is created with a #define
directive. The macro expands into its definition during the preprocessing stage
of compilation. Here is a macro for pi from the math.h header file:

#define M_PI  3.14159265358979323846 /* the # need not be flush
against the define */

Although macros are often named in uppercase, this is convention only. Here
are two parameterized macros for computing the max and min of two integer
arguments:

#tdefine min(x, y) (y) ~ ((x ~y) & -(x < y)) /* details of
bitwise operators
later */
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#tdefine max(x, y) (x) * ((x ~y) & -(x < y)) /* ~ bitwise xor,

& bitwise and */
These macros look like functions, but the compiler does no type-checking on
the arguments. Here are two sample uses:

int n = min(-127, 44); /* -127 */
n = max(373, 1404); /* 1404 */

Another example underscores the problem of comparing floating-
point values, in particular for equality. Imagine a company in which sales
people earn a bonus if they sell 83% of their quota by the end of the third
quarter. The company assumes that the remaining 17% of the quota, and
probably more, will be met in the last quarter. In this company, 83% is
defined in the official spreadsheet as the value 5.0 / 6.0. (On my handheld
calculator, 5.0 / 6.0 evaluates to 0.833333333.) However, a legacy program
computes 83% as (1.0 / 3.0) x 2.5. At issue, then, is whether (1.0 / 3.0) x 2.5
=5.0/6.0. Here is a segment of C code that makes the comparison, using
double values:

if (((2.0 / 3.0) * 2.5) == (5.0 / 6.0)) /* equal? */
printf("Equal\n");

else
printf("Not equal\n"); /** prints **/

A look at the hex values for the two expressions confirms that they are
not equal:

3f ea aa aa aa aa aa aa /* (1.0 / 3.0) x 2.5 */
3f ea aa aa aa aa aa ab /* 5.0 / 6.0 */

The two differ in the least significant digit: hex a is 1010 in binary,
whereas hex b is 1011 in binary. The two values differ ever so slightly, in the
least significant (rightmost) bit of their binary representations. In close-to-
the-metal C, the equality operator compares bits; at the bit level, the two
expressions differ.

45



CHAPTER 2  BASIC DATATYPES

High-level languages provide a way to make approximate comparisons
where appropriate. In particular, the header file math.h defines the macro
FLT_EPSILON, which represents the difference between 1.0f and the
smallest, 32-bit floating-point value greater than 1.0f. The value of FLT _
EPSILON should be no greater than 1.0e-5f. On my desktop computer:

FLT_EPSILON == 1.192092895508e-07 /** e or E for scientific
notation **/

C has similar constants for other floating-point types (e.g., DBL _
EPSILON).

Listing 2-4. Approximate equality

float f1 = 5.0f / 6.0f;
float f2 = (1.0f / 3.0f) * 2.5f;
if (fabs(f1 - f2) < FLT_EPSILON) /* fabs for floating-point
absolute value */
printf("fabs(f1 - f2) < FLT_EPSILON\n"); /* prints */

The comp code segment (see Listing 2-4) shows how a comparison
can be made using FLT_EPSILON. The library function fabs returns the
absolute value of the difference between 1 and 2. This value is less than
FLT_EPSILON; hence, the two values might be considered equal because
their difference is less than FLT_EPSILON.

The next two examples reinforce the risks that come with floating-
point types. The goal is to show various familiar programming contexts
in which floating-point issues arise. Following each example is a short
discussion.
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Listing 2-5. Issues with floating-point data types

/* 1.010000
2.020000

7.070001  ;; rounding up now evident

10.100001

*/

float incr = 1.01f;

float num = incr;

int 1 = 0;

while (i++ < 10) { /* i++ is the post-increment operator */
printf("%12f\n", num); /* %12f is field width, not

precision */

num += incr;

}

The rounding program (see Listing 2-5) initializes a variable to 1.01
and then increments this variable by that amount in a loop that iterates ten
times. The rounding up becomes evident in the seventh loop iteration: the
expected value is 7.070000, but the printed value is 7.07001. Note that the
formatter is %12 rather than %. 12f. In the latter case, the printouts would
show 12 decimal places but here show the default places, which happens
to be six. Instead, the 12 in %127 sets the field width, which right-justifies
the output to make it more readable.
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WHAT’S THE DIFFERENCE BETWEEN THE PRE-INCREMENT
AND POST-INCREMENT OPERATORS?

The rounding program uses the post-increment operator on loop counter

i to check, in the while condition, whether the loop counter is less than

ten. C also has a pre-increment operator and both pre- and post-decrement
operators. Each operator involves an evaluation and an upadate. Here is a code
segment to illustrate the difference:

int i = 1;

printf("%i\n", i++); /* 1 (evaluate, then increment) */
printf("%i\n", i); /* 2 (i has been incremented above) */
printf("%i\n", ++i); /* 3 (increment, then evaluate) */

Listing 2-6. More examples of decimal-to-binary conversion

#i
#1i

VO

48

nclude <stdio.h>
nclude <math.h> /* pi and e as macros, M _PI and M _E,
respectively */

id main() {
printf("%0.50f\n", 10.12);
/* 10.11999999999999921840299066388979554176330566406250 */

/* On my handheld calculator: 2.2 * 1234.5678 = 2716.04916 */
double d1 = 2.2, d2 = 1234.5678;

double d3 = d1 * d2;

if (2716.04916 == d3) printf("As expected.\n");

/* does not print */

else printf("Not as expected: %.16f\n", d3);

/* 2716.0491600000004837 */

printf("\n");
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/* Expected price: $84.83 */

float price = 4.99f;

int quantity = 17;

float total = price * quantity; /* compiler converts quantity

to a float value */

printf("The total price is $%f.\n", total); /* The total
price is
$84.829994. */

/* e and pi */

double ans = pow(M E, M PI) - M PI; /* e and pi, respectively */
printf("%1f\n", ans); /* 19.999100 prints: expected is
19.99909997 */

The d2bconvert program (see Listing 2-6) shows yet again how
information may be lost in converting from decimal to binary. In these
isolated examples, of course, no harm is done; but these cases underscore
that floating-point types such as float and double are not suited for
applications involving, for instance, currency.

2.3.2. IEEE 754 Floating-Point Types

This section digs into the details of the IEEE 754 binary floating-point
specification (https://standards.ieee.org/standard/754-2019.
html), using 32-bit floating-point values as the working example. The
specification also covers 16-bit and 64-bit binary representations and
decimal representations as well. Here is the layout of a 32-bit (single-
precision) binary floating-point value under IEEE 754:

TR o m e +
|s|exponent | magnitude | 32 bits
ot m - o m e +

1 8 23
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For reference, the written exponent comprises the 8 bits depicted
previously. In the discussion that follows, the written exponent is
contrasted with the actual exponent. Also, the written magnitude
comprises the 23 bits shown previously and is contrasted with the actual
magnitude.

The IEEE 754 specification categorizes floating-point values as either
normalized or denormalized or special. The category depends on the value
of the 8-bit exponent:

o Ifthe written exponent field contains a mix of 0s and 1s,
the value is normalized.

o Ifthe written exponent field contains only 0Os, the value
is denormalized.

o Ifthe written exponent field contains only 1s, the value
is special.

As the name suggests, normalized values are typical or expected ones
such as -118.625, which is -1110110.101 in binary. A normalized value has
an implicit leading 1, which means the written magnitude is the fractional
part of the actual magnitude:

1.222222...222 ## the question marks ? are the written magnitude

For the sample value -1110110.101 (-118.625 in decimal), the implicit
leading 1 is obtained by moving the binary point six places to the left,
which yields -1.110110101 x 2°. The written magnitude is then the
fractional part 110110101.

In the example, the actual exponent is 6, as shown in the
expression -1.110110101 x 2°. However, the written exponent of 133
(10000101 in binary) is biased, with a bias of 127 for the 32-bit case. The
bias is subtracted from the written exponent to get the actual exponent:

actual exponent = written exponent - 127 ## 133 - 127 = 6
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In summary, the decimal value -118.625 has a written exponent of
133 in IEEE 754, but an actual exponent of 6.

Finally, the sample value is negative, which means the most
significant (leftmost) bit is a 1. The 32-bit representation for the decimal
value -188.625 is

1 10000101 11011010100000000000000 ## 14 zeros pad to
make 23 bits

The middle field alone, the 8-bit exponent, indicates that this value is
indeed normalized: the written exponent contains a mix of 0s and 1s.

Denormalized values cover fwo representations of zero and evenly
spaced values in the vicinity of zero. Zero can represented as either a
negative or a nonnegative value under the IEEE specification, which the C
compiler honors:

if (-0.0F == 0.0F) puts("yes!"); /* prints */

The IEEE representation of zero is intuitive in that every bit—except,
perhaps, the sign bit—is a 0. A denormalized value does not have an
implicitleading 1, and the actual exponent has a fixed value of -126 in the
32-bit case. The written exponent is always all Os.

What motivates the denormalized category beyond the two
representations of zero? Consider the three values in Table 2-3, in
particular the binary column. In the first row, the value has a single 1—
the least significant bit of the written exponent. Yet this exponent still
contains a mix of 0s and 1s and so is normalized: it is the smallest positive
normalized value in 32 bits.
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Table 2-3. Positive denormalized and normalized values

Binary Decimal

0 00000001 00000000000000000000000 1.175494350822¢-38
000000000 11111111111111111111111 1.175494210692e-38
0 00000000 00000000000000000000001 1.401298464325e-45

The value in the middle row has all 0s in the exponent, which makes
the value denormalized. This value is the largest denormalized value in
32 bits, but this value is still smaller than the very small normalized value
above it. The smallest denormalized value, the bottom row in the table,
has a single 1 as the least significant bit: all the rest are 0s. Between the
smallest and the largest denormalized values are many more, all differing
in the bit pattern of the written magnitude. Although the denormalized
values shown so far are positive, there are negative ones as well: the sign
bit is 1 for such values.

In summary, denormalized values cover the two representations
of zero, as well as evenly spaced values that are close to zero. The
preceding examples show that the gap between the smallest positive
normalized value and positive zero is considerable and filled with
denormalized values.

The third IEEE category covers special values, three in particular:
NaN (Not a Number), positive infinity, and negative infinity. A written
exponent of all 1s signals a special value. If the written magnitude contains
all 0s, then the value is either negative or positive infinity, with the sign bit
determining the difference. If the written magnitude contains at least one
1, the value is NaN. A short code segment clarifies.
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Listing 2-7. Special values under the IEEE 754 specification

#include <stdio.h>
#include <math.h>

/** gcc -o specVal specVal.c -1m **/
void main() {
printf("Sqrt of -1: %f\n", sqrt(-1.0F));
/* 1 11111111 10000000000000000000000 */
printf("Neg. infinity: %f\n", 1.0F / -0.0F);
/* 1 11111111 00000000000000000000000 */
printf("Pos. infinity: %f\n", 1.0F / 0.0F);
/* 0 11111111 00000000000000000000000 */

The specVal program (see Listing 2-7) has the following output, with
comments introduced by ##:

Sqrt of -1: -nan  ## minus sign because -1.0F is negative
Neg. infinity: -inf ## negative zero as divisor
Pos. infinity: inf  ## non-negative zero as divisor

The floating-point units (FPUs) of modern computers commonly
follow the IEEE specification; modern languages, including C, do so in
any case. There are heated discussions within the computing community
on the merits of the IEEE specification, but there is little doubt that this
specification is now a de facto standard across programming languages
and systems.
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HOW DOES LINKING WORK IN THE COMPILATION PROCESS?

Compiling the specVal program into an executable requires an explicit link flag:
% gcc -o specVal specVal.c -1Im

In the flag -1m (lowercase L followed by m), the -1 stands for /ink, and the m
identifies the standard mathematics library /ibm, which resides in a file such
as libm.so on the compiler/linker search path (e.g., in a directory such as /usr/
lib or /usr/local/lib). Note that the prefix 1ib and the file extension so fall away
in a link specification, leaving only the m for the mathematics library.

The linking is needed because the speclal program calls the sqrt function
from the mathematics library. A compilation command may contain several
explicit link flags in same style shown previously: -1 followed by the name of
the library without the prefix 1ib and without the library extension such as so.

During compilation, libraries such as the standard C library and the input/
output library are linked in automatically. Other libraries, such as the
mathematics and cryptography libraries, must be linked in explicitly. In
Chapter 8, the section on building libraries goes into more detail on linking.

2.4. Arithmetic, Bitwise, and Boolean
Operators

C has the usual arithmetic, bitwise, and boolean (relational) operators.
Recall that even the character types char and wchar_t, and the makeshift-
boolean type (zero for false, nonzero for true), are fundamentally
arithmetic types. However, some operators are ill-suited for some types.
For example, floating-point values should not be bit-shifted, left or right.
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Recall the layout for a 32-bit floating-point value under IEEE 754:

S EREEEEE R +
|'s|exponent | magnitude |

O EREEEET T +
1 8 23

Bit-shifting a floating-point type, either left or right, would cause one or
more bits to change fields. On a 2-bit left shift, for instance, magnitude bits
would become exponent bits, and an exponent bit would become the sign
bit. The following code segment illustrates the peril of shifting floating-
point values:

float f = 123.4567;
f = (int) f << 2;  /* ERROR without the cast operation (int) */
printf("%f\n", f); /* 492.000000 */

The second line uses a cast operation, which is an explicit type-
conversion operation; in this case, the floating-point value of variable f is
converted to an int value so that the compiler does not complain. (The
syntax of casts is covered in the following sidebar.) In the shift operation,
<< represents a left shift, and >> represents a right shift. To the left of the
shift operator is the value (in this case, variable f) to be shifted, and to
the right is the number of bit places to shift. On left shifts, the vacated
positions are filled with 0s.

If the preceding example were to omit the cast operation, the compiler
would complain, with an error rather than just a warning, that the left
operand to << should be an int, not a float. To get by the compiler, the
code segment thus includes the cast operation.

It should be emphasized that a cast operation is not an assignment
operation. In this example, the casted value 123.456 is still stored in
variable f. The salient point is that floating-point values, in general, should
not be shifted at all. The shift operation is intended for integer values only,
and even then caution is in order—as later examples illustrate.
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HOW DO CAST OPERATIONS WORK?

A cast operation consists of a data type enclosed in parentheses immediately
to the left of a value:

int n = (int) 1234.5678f; /* cast float value to int value,
which is assigned to n */

float f = (float) n; /* compiler would do the conversion
in any case */

n = (int) 1234.5678F << 2; /* cast required: float values
should not be shifted */

A cast is not an assignment: in the second example shown previously, the cast
(float) does not change what is stored in n but rather creates a new value
then assigned to variable f. A cast is thus an explicit conversion of one type to
another. The compiler regularly does such conversions automatically:

int n = 1234.567f; /* compiler assigns 1234 to n: automatic
conversion */

For convenience, the following subsections divide the operators into
the traditional categories of arithmetic, bitwise, and boolean (relational).
Miscellaneous operators such as sizeof and the cast will continue to be
clarified as needed.

2.4.1. Arithmetic Operators

C has the usual unary and binary arithmetic operators, and C uses the
standard symbols to represent these operators. For operations such as
exponentiation and square roots, C relies upon library routines, in this
case the pow and sqrt functions, respectively. Table 2-4 clarifies the binary
arithmetic operators with sample expressions.
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Table 2-4. Binary arithmetic operators

Operation C Example
Addition + 12+3
Subtraction - 12-3
Multiplication * 12*3
Division / 12/3
Modulus % 12%3

The plus and minus signs also designate the unary plus and unary
minus operators, respectively:

int k = 5;
printf("%i %i\n", +k, -k); /* 5 -5 */

The binary arithmetic operators associate left to right, with
multiplication, division, and modulus having a higher precedence than
addition and subtraction. For example, the expression

8 +2*3

evaluates to 14 rather than 30. Of course, parentheses can be used
to ensure the desired association and precedence—and to make the
arithmetic expressions easier to read.

Listing 2-8. Operator association and precedence
#include <stdio.h>

void main() {
int n1 = 4, n2 =11, n3 = 7;
printf("%i\n", n1 + n2 * n3); /* 81 */
printf("%i\n", (n1 + n2) * n3); /* 105 */
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printf("%i\n", n3 * n2 % n1); /¥ 1 ¥/
printf("%i\n", n3 * (n2 % n1)); /* 21 */
}

The assoc program (see Listing 2-8) shows how expressions can
be parenthesized in order to get the desired association when mixed
operations are in play. The use of parentheses seems easier than trying to
recall precedence details, and parenthesized expressions are, in any case,
easier to read.

C has variants of the assignment operator (=) that mix in arithmetic
and bitwise operators. A few examples should clarify the syntax:

int n = 3;

n += 4; /¥n=n+ 4%
n /= 2; /¥*n=n/2%*
n<=1; /*n=n<x1%*/

2.4.2. Boolean Operators

The boolean or relational operators are so named because the expressions
in which they occur evaluate to the boolean values true or false. Although
any integer value other than zero is true in C, true boolean expressions in C
evaluate to the default value for true, 1. Here are some sample expressions
to illustrate the boolean operators:

/** equals and not-equals **/
2 == (16 - 14) /* true: == is 'equals' */
2 1= (16 / 8) /* false: != is 'not equals' */

/** greater, lesser **/

(2 < 3) /* false: ! 1is 'negation' */
3> 2 /* true: > 1is 'greater than' */
3>=3 /* true: »>= is 'greater than or equal to' */
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3<2 /* false: < 1is 'less than' */
3<¢=3 /* true: <= is 'less than or equal to */

/** logical-and, logical-or **/
(2 < 3) & (4 < 5) /* true: & is logical-and */
(2 <3) || (5<4) /* true: || is logical-or */

A few cautionary notes are in order. Note that the operators for equality
(==) and inequality (!=) both have two symbols in them. The equality
operator can be tricky because it is so close to the assignment operator (=).
Consider this code segment, the stuff of legend among C programmers
whose code has gone awry because of some variation of the problem:

int n = 2;
if (n = 1)
printf("yep\n"); /** prints: presumably meant n == 1 **/

An assignment in C is an expression and so has a value—the value
of the expression on the right-hand side of the = operator. Accordingly,
the if test both assigns 1 to n and evaluates to 1, true; hence, the printf
statement executes. Whenever a constant is to be compared against a
variable, it is best to put the constant on the left. If the assignment operator
= is then typed by mistake instead of the equality operator ==, the compiler
catches the problem:

if (1 = n) /** won't compile **/

The logical and and logical or operators are efficient because they
short-circuit. For example, in the expression

(3 <2)8 (4>2) /*only (3 < 2), the 1st conjunct, is
evaluated */
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the second conjunct (4 > 2) is not evaluated: a conjunction is frue
only if each of its conjuncts is true, and the first conjunct (3 < 2) is false,
thereby making the entire expression false.

The boolean operators occur regularly in loop and other tests. Simple
examples have been seen already:

int i = 0;
while (i < 10) { /* loop while i is less than 10 */
VA
i+=1; /* increment loop counter: i++ or ++i would
work, too */

Richer examples are yet to come.

2.4.3. Bitwise Operators

As the name suggests, the bitwise operators work on the underlying
bit-string representation of data. These operators thus deserve caution,
as it may be hard to visualize the outcome of bit manipulation. Bitwise
operations are fast, usually requiring but a single clock tick to execute.
For example, an optimizing compiler might transform a source-code

expression such as

n=n*2; /*nis an unsigned int variable: double n
arithmetically */

to a left shift, shown here at the source level:

n =n << 1; /* double n by left-shifting one place */
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Here are some more examples of the bitwise operators in expressions,
using 4-bit values for readability:

~(0101) == 1010 /* invert bits: complement */

(0101 & 1110) == 0100 /* bitwise-and */
(0101 | 1110) == 1110 /* bitwise-inclusive-or */
(0101 ~ 1110) == 1011 /* bitwise-exclusive-or */

(0111 << 2) == 1100 /* left shift */
(0111 »> 2) == 0001 /* right shift */

The complement or bit inversion operator is tied to the unary minus
operator considered earlier. Given an underlying 2’s complement
representation of signed integers, recall that the unary minus operator
can be viewed as a combination of two operations: complement and
increment by 1. Another example illustrates:

int n = 5;
if (-n == ("n + 1))
printf("yep\n"); /* prints */

The shift operators require caution because overshifting in either
direction is a misstep. As noted earlier, the compiler intervenes in case
floating-point values are shifted left or right. At issue now are shifts of
integer values. With signed integer values, left shifts can be risky because
they may change the sign. Consider this example:

int n = 0x70000000; /* 7 in binary is 0111 */
printf("%i %i\n", n, n << 1); /* 1879048192 -536870912 */

The bit-level representation of n starts out 01110. . ., with the leftmost
bit as the sign bit 0 for nonnegative. The 1-bit left shift moves a 1 into the
sign position, which accounts for change in sign from 1,879,048,192
to -536,870,912. Recall that, in left shifts, the vacated bit positions are filled
with 0s.
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Right shifts can be even trickier. Consider the signed integer value
Ox(ffffffff in hex, which is all 1s in binary; in decimal, this is -1. Even in a
1-bit right shift, the sign could change to 0—if the shift is logical, that is,
if the vacated bit is filled with a 0. If the shift is sign preserving, it is an
arithmetic shift: the sign bit becomes the filler for the vacated positions.
Whether a right is logical or arithmetic is platform dependent. In general,
itis best to shift only unsigned integer values. Even in this case, of course,
overshifting is possible; but at least the issue of sign preservation does
not arise.

Listing 2-9. Reversing the endian-ness of a multibyte data item

unsigned int endian_reverse32(unsigned int n) { /* designed for
32 bits, or 4 bytes */
return (n >> 24) | /* leftmost byte becomes
rightmost */
((n << 8) & 0x00FF0000) | /* swap the two inner bytes */
((n >> 8) & 0Ox0000FFO0) | /* ditto */
(n << 24); /* rightmost byte becomes
leftmost */

The endian code segment (see Listing 2-9) uses bitwise operators in a
utility function that reverses the endian-ness of a 4-byte integer. Modern
machines are still byte addressable in that an address is that of a single
byte. For multibyte entities such as a 4-byte integer, an address thus points
to a byte at one end or the other in the sequence of 4 bytes. Given this 4-
byte integer
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it ST S
| BL | B2 | B3 | B4 | ## Bl is high-order byte, B4 is low-order byte
s O ST S

the integer’s address would be either that of B1 (high-order byte) or
that of B4 (low-order byte). Standard network protocols are big endian,
with the integer’s address that of the big (high-order) byte B1; Intel
machines are little endian, with the integer’s address that of the little
(low-order) byte B4. (ARM machines are little endian by default but can be
configured, as needed, to be big endian.) Given the preceding depiction,
the endian program would reverse the byte order to yield:

s Dot SEEE TR
| B4 | B3 | B2 | B1 | ## B4 is high-order byte, Bl is low-order byte
s Ot SEEE SR

A short code example illustrates, with integer n initialized to a hex
value for clarity:

unsigned n = 0x1234abcd;
printf("%x %x\n", n, endian reverse(n)); /*
1234abcd cdab3412 */

Recall that each hex digit is 4 bits. Accordingly, the leftmost byte in
variable n is 12, and the rightmost is cd.

C has a header file endian.h that declares various functions for
transforming little-endian formats to big-endian formats, and vice versa.
These functions specify the bit sizes on which they work: 16 (2 bytes), 32 (4
bytes), and 64 (8 bytes).
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WHAT IS AN LVALUE AND AN RVALUE?

An rvalue is one that does not persist. For example, in the statement

printf("%i\n", 444); /* 444 does not persist, and is thus an
rvalue */

the rvalue 444 does not persist beyond the printf statement. By contrast, an

Ivalue does persist as the target of an assignment:

int n = 444; /* 444 persists in n beyond the
assignment */

The variable n is the symbolic name of a memory location or CPU register, and
a value assigned to n is thus an /value.

2.5. What’s Next?

The examples so far have focused mostly on scalar variables: there is
an identifier for a single variable, not a collection of variables. A typical
example is

int n = -1234; /* n identifies a single variable */

C also supports aggregates, a collection of variables under a single
name. Here is one example:

char* str = "abcd"; /* string literal abcd is a null-
terminated array of chars */

printf("%c\n", str[0]); /* string[o] = 1st of 5 variables, %c
for character */
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The pointer variable str identifies a collection (in this case, an array)
of five characters: the ones shown and the null terminator. The expression
str[0] refers to the first of the variables that hold a character, lowercase a
in this example. Pointer str thus identifies an aggregate rather than just a
single variable.

Arrays and structures are the primary aggregates in C. Pointers also
deserve a closer look because they dominate in efficient, production-grade
programming. The next chapter focuses on aggregates and pointers.

WHAT’S THE RELATIONSHIP BETWEEN C AND C++?

C is a small, strictly procedural or imperative language. C++ is a large
language that can be used in procedural style but also includes object-
oriented features (e.g., classes, inheritance, and polymorphism) not found in
C. C++, unlike C, has generic collection types. A C++ program can include
orthodox C code, but much depends on the compiler; further, header files and
the corresponding libraries may differ in name and location between the two
languages. The two languages share history and features but are distinct.
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Aggregates and
Pointers

3.1. Overview

This chapter focuses on arrays and structures, which are C’s primary
aggregate types. Arrays aggregate variables of the same type, whereas
structures can do the same for variables of different types. Structures can
be array elements, and a structure may embed arrays. Together these
aggregate types make it possible for programmers to define arbitrarily rich
data types (e.g., Employee, Game, Species) that meet application needs.

Pointers—address constants and variables—come into play naturally
with both arrays and structures, and the code examples throughout the
chapter get into the details. Among modern general-purpose languages, C
(together with C++) stands out by giving the programmer so much control
over—and, therefore, responsibility for—memory addresses and the items
stored at these addresses. All of the chapters after this one have examples
that, in one way or another, illustrate the power of pointers.
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3.2. Arrays

An array in C is a fixed-size collection of variables—of the same type—
accessible under a single name, the array’s identifier. A code example
illustrates.

Listing 3-1. A simple array
#define Size 8

void main() {

int arr[Size]; /* storage from the stack --
uninitialized */
int i;
for (i = 0; i < Size; i++) /* iterate over the array */
arr[i] = i + 1; /* assign a value to each
element */

The array program (see Listing 3-1) shows the basic syntax for declaring
an array and then uses a for loop to populate the array with values. An array
has a fixed size, in this case specified by the macro Size. The array’s name,
in this case arr, is a pointer constant that holds the address of the array’s first
element, in this case the element that the for loop initializes to 1:

S R S
arr--->| 1| 23| 4|56 ]| 7| 8| ##array elements
s ST TT TS S S
[o] [2] [2] [3] [4] [s5] [6] [7] ## indexes

Arrays can be indexed to access elements by using the square brackets:
legitimate indexes are 0 through the array’s size - 1. The indexes are
offsets from the start of the array: the first array element is at offset 0, the
second at offset 1, and so on. For the preceding array, here are some of the
addresses computed as offsets from the base address arr:
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arr + 0 ---> 1st element ## arr[0] is value of 1st element: 1
arr + 1 ---> 2nd element ## arr[1] is value of 2nd element: 2
arr + 7 ---> 8th element ## arr[7] is value of 8th element: 8

A second example builds on the first by introducing pointer variables
and showing how C supports pointer arithmetic by having data types for

pointers.

DOES C PROVIDE BOUNDS CHECKING ON ARRAYS?

No. The programmer is responsible for ensuring that array indexes are in
bounds at runtime. The following code segment compiles without warning and
likely blows up when executed because of the out-of-bounds index -9876.

int arr[4]; /* four elements */

int ind = -9876; /* not a good index: 0, 1, 2, and 3 are good
indexes */

arr[ind] = 27;  /* out-of-bounds, likely to blow up at
run-time */

3.3. Arrays and Pointer Arithmetic

C supports typed pointers so that the compiler can perform the required
arithmetic when pointers are used to access memory locations. The
compiler thereby takes on a task that would be error-prone if left to the
programmer. Consider again the array program with its array of eight

int elements and a sample index such as 2. The index expression arr[2]
references the third element in the array, which is two elements over from
where the array starts: arr is the base address, and 2 is the displacement
or offset from this base address. However, machine-level addresses are of
bytes, and an int is a 4-byte element. To reach the array’s third element,
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it is therefore necessary to move 2 x sizeof(int) bytes from where array

arr starts, which is a move of 8 bytes in all. Yet the programmer refers
to the third element as arr[2] (int level), not as arr[ 8] (byte level). It
would be tedious and error-prone for programmers to work at the byte

level in accessing array elements of multibyte types. Accordingly, C’s typed

pointers allow the programmer to work at the data-type level (e.g., int or

Employee), while the compiler then works at the byte level.

Listing 3-2. Pointer variables and pointer arithmetic

#define Size (8) /*

void main() {

int arr[Size]; /*
int k = 1;
int* ptr = arr; /*

int* end = arr + Size; /*

while (ptr < end) { /*
*ptr = k++; /*

ptr++; /*

}
}
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The arrayPtr program (see Listing 3-2), which revises the original array
program, has three pointers at work:

e The array’s name arz, a pointer constant, holds the
address of the first element in the array.

o The pointer variable ptz, assigned to hold the address
of the first element in the array.

e The pointer variable end points just beyond the last
element in the array.

The following is a depiction of where ptr and end point before the
looping begins:

e e e R
ptr--->| 2 | 2| 2| 2| ?2]?2]?2]?2]?]|<--end
S e T e S S e

(0] [2] [2] [3] [4] [s5] [6] [7] ## indexes

A pointer is allowed to point one element beyond the end of the array,
although nothing should be stored at that location. In this example, the
array’s initialization now uses a while rather than a for loop, and the loop’s
condition compares the two pointers, ptr and end: looping continues so
long as ptr < end. At the bottom of the loop, ptr is incremented by 1—by
one int, which is 4 bytes. The pointer ptr is a variable, unlike the pointer
constant arr, and so can have its value changed. Eventually ptr points to
the same location as does end, which makes the loop condition false.

The initialization of each array element uses the dereference operator,
the star:

*ptr = k++; /* k is 1,2,3,...,8 */
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In the declaration of ptr, the star comes after the data type int. In the
dereferencing of ptr, the star comes before the variable’s name. It would be
an error to change the code to

ptr = k; /** ERROR **/

because ptr then would take on values such as 1,2,3,...,8, which almost
surely are not addresses within the program’s address space. The aim is to
initialize the array element to which ptr points, not ptr itself.

3.4. More on the Address
and Dereference Operators

In the addPtr example, the pointer variable ptr is initialized to the array’s
name arr so that both arr and ptr point to the array’s first element. An
equivalent but less concise initialization uses the address operator &:

int* ptr = &arr[o]; /* alternative to: int* ptr = arr; */

The address operator computes an in-memory address, in this case the
address of array element arr[0].

The dereference operator uses an address to access the contents stored
at that address. If ptr points to any cell in the int array arr, then *ptr is
the value stored at the address. The dereference operator can be used in
the usual ways, for example, to read or to change a value:

int* ptr = &arr[3]; /* address of 4th element, which contains 4 */
*ptr = *ptr + 9;  /* equivalent to: arr[3] = arr[3] + 9 */

The examples so far have shown pointers that hold the addresses of
char and int cells, but not pointers to other pointers. In principle, there
can be pointer to pointer to..., although in practice, it is unusual to see
more than two levels of indirection. The next example illustrates the case
of a pointer to a pointer, and later examples motivate such a construct.
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Listing 3-3. The address and dereference operators
#include <stdio.h>

void main() {
int n = 1234;
int* ptri = &n; /* ptri--->n */

int** ptr2 = 8ptri; /* ptr2--->ptr1 */
printf("%i %p %p\n", n, ptri, ptr2); /* 1234 ox7ffee80dfbsc
0x7ffee80dfb60 */

**ptr2 = *ptri + 100; /* increment n by 100 */
printf("%i %i %i\n", n, *ptri, **ptr2); /* 1334 1334 1334 */

The ptr2ptr program (see Listing 3-3) has an int variable n that stores
1234, a pointer ptr1 that points to n, and a second pointer ptr2 that points
to ptr1. Here is a depiction, with fictional addresses written in hex above
the storage cells and variable names below these cells:

OxAB OXEF ## addresses
Hommmm + Hommmm + Hommmm +
| OXAB |--->| OXEF |--->| 1234 | ## contents
Hmmmmm + Hmmmmm + Hmmmmm +
ptr2 ptri n ## variable names

Given this storage layout, any of the variables n, ptr1, and ptr2 can
be used to access (including to update) the value stored in variable n. For
example, each of these statements updates n by one:

n += 1; /* from 1234 to 1235 */
*ptr1l += 1;  /* from 1235 to 1236 */
**ptr2 += 1; /* from 1236 to 1237 */
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The index syntax used with arrays can be seen as syntactic sugar, as a
short example shows:

int arr[] = {9, 8, 7, 6, 5}; /* compiler figures out the size */
int n = arr[2]; /* n = arr[2] = 7 */

The syntax arr[2] is straightforward and now is common across
programming languages. In C, however, this syntax can be viewed as
shorthand for

int n = *(arr + 2); /*n =7 */

The pointer expression arr + 2 points to two int elements beyond
the first in the array, which holds 7. Dereferencing the pointer expression
*(arr + 2)yields the int contents, in this case 7.

The same point can be reinforced with some obfuscated C. Consider
this code segment:

int arr[] = {9, 8, 7, 6, 5};
int i;
for (i = 0; i< 5; i++)
printf("%i ", i[arr]); /** peculiar syntax **/
In the printf statement, the usual syntax for array access would be

arr[i], noti[arr]. Yet either works, and the compiler does not wince at
the second form. The reason can summarized as follows:

arr[i] == *(arr + i) /* syntactic sugar */

*(arr + 1) == *(i + arr) /* addition commutes */

*(i + arr) == i[arr] /* more syntactic (but peculiar)
sugar */
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3.5. Multidimensional Arrays

An array declared with a single pair of square brackets is one-dimensional
and sometimes called a vector. An array declared with more than one pair
of square brackets is multidimensional:

int nums[128]; /* one dimensional array */
int nums_table[4][32]; /* multidimensional array
(2-dimensional matrix) */

Arrays of any dimension are possible, but more than three dimensions
is unusual. The array nums_table is two-dimensional. The arrays nums
and nums_table hold the same number of integer values (128), but they
do not have the same number of elements: array nums has 128 elements,
each an int value; by contrast, array nums_table has four elements, each a
subarray of 32 int values. The sizeof operator, when applied to an array’s
name, does the sensible thing: it gives the number of bytes required for all
of the array elements, not the size in bytes of the array’s name as pointer.
In this case, for example, the sizeof array nums is the same as the sizeof
array nums_table: 512 because there are 128 int values in each array and
each int is 4 bytes.

Multidimensional arrays are yet another example of syntactic sugar
in C. All arrays are implemented as one-dimensional, as the next code
example illustrates.

Listing 3-4. Treating a multidimensional array as a one-
dimensional array

#include <stdio.h>

void main() {
int table[3][4] = {{1, 2, 3, 4}, /* row 1 */
{9, 8, 7, 6}, /* Tow 2 */
{3, 5, 7, 9}}; /* row 3 */
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int i, j;
for (i = 0; i< 3; i++) /** outer loop: 3 rows **/
for (j = 0; j < 4; j++) /** inner loop: 4 cols per row **/

printf("%i ", table[i][j]);
printf("\n");

int* ptr = (int*) table; /** ptr points to an int **/

for (i = 0; 1 < 12; i++) /** 12 ints (3 rows, 4 cols each) **/
printf("%i ", ptr[i]);

printf("\n");

The table program (see Listing 3-4) highlights critical features about
how pointers work in C. The array name table is, as usual, a pointer
constant, and this name points to the first byte of the first int in the first
element in the array, where the first array element is a subarray of four int
values, in this case 1, 2, 3, and 4:

1st row 2nd row 3rd row ## rows
s T T e B e e e P Eal O SRR
table--->| 1 [ 234|987 |6]3]5]7]9]| ##contents
s T T e B e e e P Eal O SRR

[0] [2] [2] [3] [o] [1] [2] [3] [o] [2] [2] [3] ## column indexes

The data type of table is pointer to an array of subarrays, each with
four integer elements. In memory, the array is laid out contiguously, with
the int values in sequence, one table row (subarray) after the other.

The table program traverses the multidimensional array twice. The
first traversal uses nested for loops: the outer for loop iterates over the
rows, and the inner for loop iterates over the columns in each row. The C
compiler lays out the table in row-major order: the first row with all of its
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columns, then the second row with all of its columns, and so on. A Fortran
compiler, by contrast, would lay out a multidimensional array in column-
major order.

The second traversal of array table uses only a single for loop. The
variable ptr is assigned the value of table, but with a cast: the cast (int*)
is required because ptr is of type int*, whereas table is not. A revision to
the table example goes into the details.

Listing 3-5. A function to print the two-dimensional table of three
rows and three columns

void print(int (*arr)[4], int n) {
int i, j;
for (i = 0; i < n; i++)
for (j =05 j < 4; j++)
printf("%i ", arr[il[j]);
printf("\n");
}

To get a better sense of the table data type, imagine breaking out a
print function for printing the two-dimensional table (see Listing 3-5).
The first parameter in the print function could be written in different
ways, including the one shown. Another way is this:

void print(int arr[ ][4], int n)

Both versions underscore that the first argument passed to print, in
this case the two-dimensional array table, must be an array of subarrays,
with each subarray of size 4. The second argument n to the print function
specifies the number of rows in the array. From the main function in the
table program, the call would be

print(table, 3); /* 3 rows */
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The parameter arr in function print then points to the first row, and
second parameter n gives the number of rows. The cast of table to int* in
the assignment

int* ptr = (int*) table;

acknowledges to the compiler that pointer constant table and pointer
variable ptr may point to the very same byte, but that the two differ in
type. As an int* pointer, ptr can be used to iterate over the individual int
values in the array, rather than over the four-element subarrays that make
up each table row.

Consider the pointer expressions table[0], table[1], and table[2].
Each of these points to an array of three integers. Here is the output from a
sample run that prints out the three addresses:

printf("%p (%lu) %p (%lu) %p (%lu)\n",
table[0], (long) table[0], /* ox7ffececccf3o
(140730827343600) */
table[1], (long) table[1] , /* ox7ffececccfso
(140730827343616) */
table[2], (long) table[2]); /* ox7ffececccfs0
(140730827343632) */

The first and second addresses differ by 16 bytes, as do the third and
fourth. The variable table[0] points to the first of the three rows in the
table, and each row has four int values of 4 bytes apiece; hence, table[1]
points 16 bytes beyond where table[0] points.

The syntax of multidimensional arrays gives a hint about how various
pointer expressions are to be used. The table array, which holds int
values, is declared with fwo sets of square brackets:

int table[3][4] = {...};
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If index syntax is used to read or write an int value, then fwo square
brackets must be used:

table[1][2] = -999; /* second row, third column set to -999 */

The first index picks out the row, and the second index picks out the
column in the row. Any expressions involving table, but with fewer than
two pairs of brackets, are pointers rather than int values. In particular,
table points to the first subarray, as does table[0]; pointer table[1]
points to the second subarray; and pointer table[ 2] points to the third
subarray. A quick review exercise is to explain, in plain terms or through a
code segment, the difference between the data type of table and the data
type of table[0]. Both pointer expressions point to the same byte, but the
two differ in type.

C arrays promote efficient modular programming. Consider again a
function to print one-dimensional integer arrays of arbitrary sizes. As the
table program shows, it is straightforward to treat an n-dimensional array
as if it were one-dimensional. The print_array function might be declared
as follows:

void print array(int* arr, unsigned n); /* void print_array(int
arr[], unsigned n); */

The obvious way to call print_array is to pass it, as the first argument,
the array’s name—a pointer:

int arr[100000];

/* fill the array */

print_array(arr, 100000); /* passing a pointer as the
1st arg */

To pass the array’s name as an argument is thus to pass a pointer to the
array, not a copy of it. Passing a copy of 100,000 4-byte integers would be
expensive, maybe prohibitively so. It is possible to pass a copy of an array
to a function, another issue for later analysis.
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HOW ARE ARGUMENTS PASSED TO C FUNCTIONS?

C uses call by value exclusively in passing arguments to functions: the
arguments are copied and then accessible in the called function through the
parameter names. The compiler can optimize such calls in various ways,
including placing arguments in CPU registers rather than on the stack.
Addresses (pointers) as well are passed by value. For example, when an
array’s name is passed as an argument, a copy of this address is passed. Of
course, both the copy and the original address can be used to access the very
same array elements.

3.6. Using Pointers for Return Values

A function in C can take arbitrarily many arguments, but it can return one
value at most. The restriction to just one returned value is not troubling,
however. To begin, the single returned value could be a list of values,
although this approach requires caution. Later code examples explore the
option and go into best practices for returning collections. This section
takes on a different approach: using a pointer argument to store a value
that otherwise might be returned explicitly by a function:

int f() { return 100; } /* explicitly returned */
void g(int* arg) { *arg = 100; } /* stored at a provided
address */

The technique is common in C. A function’s caller provides the address
of some variable, and the callee then stores a value at this address. The
effect is to return a value via the pointer. The next code example motivates
this approach and also introduces in-line assembly code to check for
integer overflow.

80



CHAPTER 3  AGGREGATES AND POINTERS

Listing 3-6. In-line assembly code to check for integer overflow

#include <stdio.h>
#include <limits.h>

int safe mult(int n1, int n2, int* product) {
int flag = 0; /* assume no overflow */
*product = n1 * n2; /* potential overflow */

asm("setae %%bl; movzbl %%bl,%0"
: "=r" (flag) /* set flag on overflow */
: /* no other inputs */
: "%rbx"); /* scratchpad */
return flag; /* zero is no overflow, non-zero is overflow */

}

The safeMult function (see Listing 3-6) introduces in-line assembly
with a call to the library function asm. The architecture-specific assembly
code is in AT&T style and targets an Intel machine; the code detects
overflow in integer multiplication, returning a flag to indicate whether
overflow occurred.

The syntax of the in-line assembly code needs a quick analysis. The
percentage sign % used to identify a CPU register sometimes occurs twice,
in this case to identify the 1-byte, special-purpose register %%b1l. The
double percentage signs are there to prevent the assembler from confusing
this register identifier with something else. One percentage sign might do,
but two are safer.

The argument to the asm function can be divided into two parts:

e The string

"setae %%bl; movzbl %%bl,%0"
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contains two instructions, with a semicolon
separating them. The setae instruction puts the
result of the overflow test in the 1-byte register %b1.
This register now flags whether overflow occurs.
The movzbl instruction then copies the contents of
register %bl into a 32-bit register of the assembler’s
own choosing, designated as %0.

o The parts that begin with a colon (e.g., : "=1" (flag))
are metadata. For example, the C source code returns
the overflow status with the return statement:

return flag; /* zero is no overflow, non-zero is
overflow */

Recall that assembly routines return a value in the
register %rax or its lower half %eax. The "=r" (flag)
clause signals that flag in C is %rax in assembly
code. If the assembler is in an optimizing mood,

it should make %rax the register designated by %0
shown previously:%rax serves as the overflow flag
returned to the caller. The middle-colon section

is empty here but in general could contain other
inputs to the assembly code. The third-colon section
recommends that the 64-bit register %rbx be used as
scratchpad.

When the program executes (see the main function in the following),
the output is

No overflow on 16 * 48: returned product == 768
Overflow on INT MAX * INT MAX: returned product ==

The in-line assembly code does its job.
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The focus now shifts to the C code, in particular to the safe_mult

function. Here is the challenge:

The safe_mult function needs to signal its caller
whether overflow has occurred. The returned value is
used for this purpose: zero (false) means no overflow,
and nonzero (frue) means overflow.

How, then, is the product of the first two arguments to
be returned? The approach taken here is to have safe
mult called with three arguments:

int safe mult(int n1, int n2, int* product); /*
declaration */

The parameters n1 and n2 are the numbers to be
multiplied, and the parameter product points to
where the result of the multiplication should be
stored. The pointer argument product is the address
of a variable declared in the caller main.

Listing 3-7. Using a pointer argument to hold a return value

void main() {

int n;

char* msg;

/* no overflow */
int flag = safe mult(16, 48, 8&n);

msg =

(!flag) ? "Overflow on 16 * 48" : "No overflow on

16 * 48";
printf("%s: returned product == %i\n", msg, n);

83



CHAPTER 3  AGGREGATES AND POINTERS

/* overflow */

flag = safe mult(INT_MAX, INT MAX, &n);

msg = (!flag) ? "Overflow on INT MAX * INT MAX" : "No
overflow on INT_MAX * INT MAX";

printf("%s: returned product == %i\n", msg, n);

The main function for the safeMult program (see Listing 3-7) makes
two calls against the function. The first, with 16 and 48 as the values to
be multiplied, does not cause overflow. The second call, however, passes
INT_MAX as both arguments, with overflow as the expected and, because of
safe_mult, the now detected overflow.

3.7. The void* Data Type and NULL

The term void is not the name of a data type, although C syntax implies
as much:

void main() { /* body */ } /* void seems to be the
return type */
int some function(void); /* same as: int some function(); */

This definition of main suggests that the function returns a void in the
same way that another version of main returns an int; but the suggestion
is misleading. The void is really shorthand for returns no value and so is
not a data type in the technical sense. For instance, a variable cannot be
declared with void as the type:

void n; /** ERROR: void is not a type **/

In the second example shown previously, the void in the declaration
of some_function signals only that this function expects no arguments;
the void once again is not a type, but another way of writing an empty
argument list.
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There is a very important data type in C that has void in its name:
void*, or pointer to void. This type is a generic pointer type: any other
pointer type can be converted to and from void* without explicit casting.
Why is this useful? A short example provides one answer, and the next
section provides another.

Consider this array of strings:

char* strings[ ] = {"eins", "zwei", "drei", "vier", "fuenf",
"sechs"};

The array happens to hold six strings, each of which is a char* in C. For
example, the first array element is a pointer to the “e” in “eins”. To write
aloop that traverses this array without going beyond the end requires a
count of how many elements are in the array; in this case, there are six.

There is a better, more robust, and more programmer-friendly way to

build an array of strings:

char* strings[ ] = {"eins", "zwei", "drei", "vier", "fuenf",
"sechs", 0};

At first sight, this code looks wrong. An array aggregates elements of
the same data type, and the last element here appears to be an integer
value rather than a char* pointer. But the 0 here is NULL, a macro defined
in the header file stdlib.h as follows:

#tdefine NULL ((void*) 0) /* 0 cast as a pointer to void */

Because NULL is of type void*, it can occur in an array of any pointer
type, including the char* element type in the strings array. By the way,
the 0 as shorthand for NULL is the only numeric value that would work in
this case. Were 987 used instead of 0, for instance, the code segment would
not compile. C programmers, in order to save on typing, are fond of using 0
for NULL.
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Traversing the revised array is now straightforward and illustrates
idiomatic C programming:

int i = 0;
while (strings[i]) /* short for: while
(strings[i] != NULL) */
printf("%s\n", strings[i++]); /* print current string, then
increment i */

The loop condition is frue until strings[i] is NULL, which is 0: the
value 0 in C is overloaded, and one of the overloads means false in a test
context. The use of NULL to mark the end of pointer arrays is common in C.

A final note is in order. The NULL used in this most recent example is
not the null terminator used to mark the end of an individual string. Recall
that the string “eins” is represented in C as an array with 8-bit zero at the
end as the terminator:

s bt EEEE T S
| e | i n| s |\o|] ## \0ois 8-bit zero
it RETE T S

By contrast, the NULL that terminates the strings array is either a 32-bit
zero or a 64-bit zero, depending on whether the machine uses 32-bit or 64-
bit addresses. To be sure, the comparison

NULL == '\0' /* evaluates to true */

evaluates to true, but only because the compiler converts the 8-bit null
terminator (zero) to the 32-bit or 64-bit zero.
In summary, zero has three specific uses in C beyond 0 as a

numeric value:

e Inaboolean context (e.g., an if or while condition),
zero means false, and nonzero means true.
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o In astring context, the 8-bit zero (\0) is the code for the
nonprinting character that marks the end of a string:
the null terminator.

o Inapointer context, zero is NULL, the address-size null
pointer that points nowhere.

C programmers are fond of idioms that conflate these overloads of
zero. The

while (strings[i])

test from the preceding example is one such idiom.

3.7.1. The void* Data Type and Higher-Order
Callback Functions

The void* type plays an important role in library functions designed to
work on arrays of any type. Consider, for example, library functions to
initialize, sort, search, and otherwise process arrays. These functions
should be generic in that they work on arrays of any data type. It would be
impractical to fashion multiple sort functions, each targeted at a specific
type. The task presumably would never be completed.

Among the generic library functions is gsort, which can sort an array of
Employee instances, or int instances, or double instances, and so on. The
first argument to gqsort is a pointer that specifies where, in the array, the sort
should begin, which is typically but not necessarily the first element: gsort
can sort arbitrary subarrays, or the whole array, with only small changes to
the arguments passed to this function. For now, the other arguments can be
ignored, as the emphasis is on the type of first argument to gsort. This type
is void* because it satisfies the requirement that qsort should work on any
array of any type. Here is how the declaration of gsort begins:

void gsort(void* start,... /* 4 arguments in all */
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A full sorting example fleshes out the details of the remaining three
arguments.

Listing 3-8. Sorting an array with gsort

#include <stdio.h>
#include <stdlib.h> /* rand, gsort */
#define Size 12

void print_array(int* array, unsigned n) {
unsigned 1i;
for (i = 0; i < n; i++) printf("%i
printf("\n");

}

int comp(const void* p1, const void* p2) {
int n1 = *((int*) p1); /* cast p1 to int*, then
dereference */
int n2 = *((int*) p2); /* same for p2 */
return n2 - ni; /* descending order */

}

void main() {

, array[i]);

int arr[Size], i;
for (i = 0; i < Size; i++) arr[i] = rand() % 100; /* values
< 100 */
print_array(arr, Size); /* 83 86 77 15 93 35 84 92 49 21
62 27 */

gsort(arr, Size, sizeof(int), comp); /* comp is a pointer to
a function */
print_array(arr, Size); /* 93 92 86 84 83 77 62 49 35 27
21 15 */
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The sort program (see Listing 3-8) does the following:

1.

4.

Populates an int array with pseudorandomly
generated values

Prints the array

Sorts the array in descending order using the library
function gsort

Prints the sorted array

The gsort function has a comparison semantics used throughout

modern programming languages. Here is the full declaration for gqsort:

void gsort(void* start,

size_t nmemb,
size t size,
int (*comp) (const void*, const void*));

The arguments can be clarified as follows:

The first argument, of type void*, points to where in
the array the sorting should begin. This is typically,

but not necessarily, the start of the array. The gqsort
function can sort only part of array, if required. Because
the argument is of type void*, any type of array can be
sorted using qsort.

The second argument, of unsigned integer type size t,
specifies the number of elements to be sorted.

The third argument (also of type size t)isthe sizeof

each element.
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e The fourth argument is a pointer to a function that
matches this prototype:

¢ Returns an int value.

o Takes two arguments of type const void*, which
are pointers to two elements that qsort needs to
compare and, perhaps, move. The const indicates
that the pointers are not used to change the values
to which they point.

The critical fourth argument makes qsort a higher-order function, one
that takes a (pointer to a) function as an argument.

A function’s name, like an array’s name, is a pointer constant. A
function’s name points to the first statement in a function’s body; in
assembly language, the function’s name is thus a label.

The comparison function used in gsort can have any name so long as
the function matches the prototype. In the sort program, the comparison
function is named comp. The comparison function is a callback, a function
that a programmer writes for some other function to call, in this case,
gsort itself. In the course of doing the sort, gsort must do pairwise
element comparisons in order to determine how to rearrange the array.
The sort is destructive in that the sort occurs in place: the array being
sorted is rearranged unless it is already sorted.

Here are the details for the comparison. Each argument passed to the
comparison function points at an array element. Assume that the first
argument points to array element EI and the second argument points to
array element E2. The value returned from the comparison function then
has the following semantics:

o IfEI and E2 are considered equal, 0 is returned.

o IfElis considered to precede E2, a negative value is
returned (e.g., -1).
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o If E2is considered to precede E1, a positive value is
returned (e.g., +1).

These semantics are remarkably simple and flexible. The author of
the comparison function determines the details. Here, for review, is the
comparison function for the sort program:

int comp(const void* p1, const void* p2) {

int n1 = *((int*) p1); /* cast p1 to int*, then
dereference */

int n2 = *((int*) p2); /* same for p2 */

return n2 - ni; /* descending order */

The function’s body could be reduced to a single return statement,
but at the cost of clarity. Since the array being sorted has int elements, the
void* arguments are cast to pointers of type int*. Each int* pointer then
is dereferenced to get the int value pointed to. Variables n1 and n2 hold
these values. Suppose that n1 is 20 and that n2 is 99. The returned value of

n2 - ni

is then 79, a positive value signaling that 99 should precede 20 in the
sorted order. The sort is thus in descending order. If the returned value
were changed to

ni - n2

then the resulting sort would be in ascending order. If the int array
had the same values throughout, then 0 would be returned for every
comparison, leaving the array unchanged by the sort.

The usefulness of void* is undoubtedly evident to programmers from
object-oriented languages such as Java and C#. In these languages, a
reference (pointer) to Object can point to anything. Here is a segment of
Java to illustrate:
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Object ptr = new String("Hello, world!"); /* string */

ptr = 99; /* integer: boxed as
new Integer(99) */
ptr = new int[ ] {1, 2, 3, 4}; /* array of

integers */

Generic types such as void* in C, and Object in Java, make languages
flexible.

The second code example uses a typedef to describe the type of
function suitable as an argument to another function. A typedef creates an
alias for an existing type:

typedef unsigned boolean; /* unsigned is existing type,
boolean is the alias */

boolean flag; /* use the type in a variable's
declaration */

Pointers to functions, like other C pointers, have data types, and the
typedef is useful in defining the appropriate type, a type that will satisfy
the compiler. It is easy to get a pointer to a function; the function’s name is
just such a pointer. It can be challenging to pass an appropriate function
pointer as an argument in another function.

WHAT’S AN ENUM?

An enum (enumerated type) gives names to integer values. The enumerated
type itself can but need not be named:

enum { false, true }; /* false is 0, true is
1, and so on */

enum TruthValue { true = 1, false = 0 }; /* tagged and explicit
assignments */
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The enumerated values start at 0 and continue in series unless explicit values
are given, as in the second example shown previously. In the second example,
false would default to 2 if not explicitly assigned 0 as its value.
Constructs such as typedef and enum promote readable code:

typedef unsigned boolean;
boolean continue to loop = true;

The next example uses a typedef to specify the prototype of a function
passed as an argument to the higher-order reduce function. The reduce
function takes two additional arguments: an array of integer values and the
array’s length.

Listing 3-9. Another example of pointers to functions

/* pointer to function with two arguments (int array and
length), returns an int */
typedef unsigned (*reducer)(unsigned list[], unsigned len);

/* type name is reducer */

unsigned sum(unsigned 1list[], unsigned len) {
unsigned sum = 0, i;
for (i = 0; i < len; i++) sum += list[i];
return sum;

}

unsigned product(unsigned list[], unsigned len) {
unsigned prod = 1, i;
for (i = 0; i < len; i++) prod *= list[i];
return prod;
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unsigned reduce(reducer func, unsigned list[], unsigned len) {
/* 1st arg: ptr to func */
return func(list, len); /** invoking a function in the
usual way **/

The reducer program (see Listing 3-9) has two functions, sum and
product, that reduce a list of integers to a single value, in this case a sum
and product, respectively. The third function is higher order and named
reduce. This function takes a (pointer to a) function as its first argument,
an array of values as its second, and the array’s length as its third.

The typedef in the reducer program is the tricky part:

typedef unsigned (*reducer)(unsigned list[], unsigned len);

The data type alias is reducer, and it can point to any function that
meets these conditions:

e The function takes two arguments: an array of
unsigned integers and a single unsigned integer
(the length) in that order.

o The function returns an unsigned integer.

The declaration of the reduce function uses the typedef data type in
the first argument position:

unsigned reduce(reducer func, unsigned list[], unsigned len);

Applying a particular reducer function, in this case sum or product,
through the function pointer func requires no special syntax:

unsigned n = func(list, len); /* invoking a function through a
pointer argument func */
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Normally, a function is invoked using its name, a pointer constant; in
this case, a function is invoked using a pointer variable instead, func of
type reducer. Invoking reduce also is straightforward:

reduce(sum, nums, Size); /* sum is a function */
reduce(product, nums, Size); /* product is a function */

Listing 3-10. The main function in the reducer program

#include <stdio.h>
#define Size 30

int main() {
unsigned nums[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30};

printf("Sum of list: %i\n", reduce(sum, nums, Size));

/* 465 */

printf("Product of list: %i\n", reduce(product, nums, Size));
/* 1,409,286,144 */

return 0;

The main function in the reducer program (see Listing 3-10) shows two
calls to the reduce function: the first using sum as its first argument and the
second using product as this argument.

The reducer program illustrates that higher-order functions are
routine in C. Such functions, used judiciously, make programs easier
to understand. The reduce function maps a list of integers to a single
value, and the first argument—the function pointer—specifies the kind
of mapping involved, in this case reducing the list to either a sum or a
product.
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3.8. Structures

Arrays aggregate variables of the same data type, whereas structures can
aggregate variables of different types. The variables in a structure are
known as its fields. There can be arrays of structures, and structures that
embed arrays and even other structures. As a result, programmer-defined
data structures can be arbitrarily rich.

The syntax of structures can be introduced in short code examples.
Here’s a start:

struct {
int n;
double k;
} s1;

si.n = -999;
s1.k = 44.4;

The data type is struct {...}, and variable s1 is of this structure
type; hence, s1 has two fields: an int named n and a double named k. The
member operator, the period, is used to access the structure’s fields, in this
case the int field n and the double field k. The compiler is not bound to lay
out storage for the fields in a way that matches the structure’s declaration.
Although field n occurs before field k in the structure declaration shown
previously, this may not be the case after compilation. The member
operator should be used to access the fields by name.

A second code segment adds a tag to the structure so that the structure
type has a name:

struct TwoNums { /* TwoNums is the tag */
int n;
double k;

};
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struct TwoNums s2; /* the data type is struct TwoNums: struct
plus the tag */

A third example shows the popular approach, which uses a typedef to
name a structure type:

typedef struct { /* tag is optional, could be same as typedef
name TwoNums */

int n;
double k;
} TwoNums; /* TwoNums is now an alias for this
struct type */
TwoNums s3; /* Note: the word 'struct' is not needed

anymore */

The name of a structure, unlike the name of an array, is not a pointer.
Caution is thus required when structures are passed as arguments to
functions.

Listing 3-11. Passing a structure as an argument

#include <stdio.h>
#define Size 100000

typedef struct { /* Declare the structure using a typedef for
convenience. */
double nums1[Size]; /* 8 bytes per double */
double nums2[Size]; /* 8 bytes per double */
int nums3[Size]; /* 4 bytes per int */
float nums4[Size]; /* 4 bytes per float */
float nums5[Size]; /* 4 bytes per float */
int n; /* for demo purposes */
} BigNumsStruct;
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void good(BigNumsStruct* ptr) {
printf("%lu\n", sizeof(ptr)); /* 8 on my machine */
printf("%i %i\n", (*ptr).n, ptr->n); /* -9876 -9876 */

}

void bad(BigNumsStruct arg) {
printf("Argument size is: %lu\n", sizeof(arg)); /* 2,800,008
bytes */
}

void main() {
BigNumsStruct bns;
bns.n = -9876;
bad(bns);  /** CAUTION **/
good(8&bns); /* right approach: pass an address */

}

The bigStruct program (see Listing 3-11) declares a structure, five of
whose fields are large arrays. The function main then creates a local variable
bns of this structure type and passes the variable to function bad. Recall that
C uses call by value in function calls; hence, a byte-per-byte copy of bns is
passed to function bad, a copy that is about 2.8MB (megabytes) in size.

By contrast, main then calls function good by passing the address of bns
rather than a copy of this BigNumsStruct instance. The address is 4 or 8
bytes, depending on whether the underlying machine uses 32-bit or 64-bit
addresses.

The second printf in function good shows how C syntax supports two
ways of accessing structure fields:

o The first way uses the member operator (the period)
but is clumsy because the expression contains the
pointer ptr:

(*ptr).n
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The parentheses are necessary because the period has higher
precedence than the star. Without the parentheses, the deference operator
would apply to ptr.n, but n is a nonpointer field.

o The second way uses the arrow operator (a minus
symbol followed by a greater-than symbol):

ptr->n

This syntax is cleaner and is idiomatic in C.

In the bigStruct program, the sizeof of the BigNumsStruct is reported
to be 2,800,008 bytes. The arrays account for 2,800,000 of these bytes, and
int field n requires only 4 bytes. What accounts for the extra 4 bytes? A
simpler example explains.

Consider this structure:

struct {
int n; /* sizeof(int) == 4 */
char c¢; /* sizeof(char) == 1 */
double d; /* sizeof(double) == 8 */
} test;

The minimum storage required for a variable such as test is 13 bytes,
but most implementations would report sizeof(test) to be 16 rather
than 13. Modern C compilers typically align storage for scalar variables
on multibyte boundaries, for example, on 4-byte (32-bit) boundaries.
The char field named c thus is implemented with four bytes rather than
just one.

3.8.1. Sorting Pointers to Structures

An earlier discussion noted that pointers to pointers are common in C. The
current discussion, on structures, is an opportunity to show how such
pointers can be put to use.
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Imagine an array of structure elements, perhaps of Employee instances,
each of which is roughly 8KB (kilobytes) in size and all of which differ
in whatever field (for instance, an ID field) might be used as a sort key.
Suppose, then, that the Employee array is to be sorted by employee ID.

Sorting the Employee array with gsort would require moving 8KB
chunks around in the array in order to get the desired sorted order.
Such moves are inefficient, given the chunk size. A first principle of
programming is not to move large data chunks unless the reasons are
compelling.

There is another way, one that brings pointers to pointers into
the picture. Given an array of relatively large structure elements, it is
straightforward to create an index array for the Employee array, where the
index array is a second array whose elements are pointers to elements in
the first array:

0x0004 ox1f44 0x3e84 ## addresses, 8KB
bytes or sizeof(Employee) apart
Hmmmmmmmmme tmmmmmmm e Hmmmmmmm e +
| Employeel | Employee2 | Employee3 |... ## 8KB Employee elements

| 0x0004 | Ox1f44 | 0x3e84 |...## index array for Employee array
Hmmmmma- tommmmna- tmmmmmee +

In this depiction, the elements in the top or data array are Employee
instances, whereas the elements in the bottom or index array are
Employee* pointers. In short, each index element points to an Employee
element. The addresses in the index array are 8KB (kilobytes) apart
because sizeof(Employee) is 8,000 bytes, and addresses are of bytes.
Given the significant difference in size between elements in the Employee

100



CHAPTER 3  AGGREGATES AND POINTERS

array and the index array, it would be more efficient to sort the index than

the Employee array. Indeed, several index arrays might be created and then

sorted to obtain various orders: employees sorted by ID, by salary, by years

in service, and so on. To print or otherwise process the Employee elements

in the desired order, a program would traverse one of the indexes. The

Employee elements would remain in their initial positions.

This approach does bring a challenge to the programmer, however.

Consider the arguments passed to the qsort comparison function when

an index is sorted on some Employee feature such as ID or years in service.

Each such argument is of type const void*, which in this case is really of

type Employee**: a pointer to a pointer to an Employee. The arguments
to the comparison function thus must be dereferenced fwice in order to

access the Employee feature to be used in the comparison. A full code
example goes into the details.

Listing 3-12. Sorting pointers rather than data

#include <stdio.h>
#include <stdlib.h> /* rand */
#define SizeS 1000
#define SizeA 100

typedef struct {

double nums[SizeS]; /* 8 bytes per */

int n; /* for demo purposes */
} BigNumsStruct;

int comp(const void* p1, const void* p2) {
BigNumsStruct* ptri = *((BigNumsStruct**) p1);

/* p1 points to a pointer */

BigNumsStruct* ptr2 = *((BigNumsStruct**) p2);

/* p2 points to a pointer */
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return ptri->n - ptr2->n; /* ascending
order */

}

void main() {
BigNumsStruct big nums[SizeA];
BigNumsStruct* pointers[SizeA];

int i;
for (i = 0; i < SizeA; i++) {
big nums[i].n = rand();
big nums + i;  /* base address (big nums)
plus offset (index i) */

pointers[i]

}

gsort(pointers, SizeA, sizeof(BigNumsStruct*), comp);
/** sort the pointers **/
for (i = 0; i < SizeA; i++)
printf("%i\n", pointers[i]-»>n);

The sortPtrs program (see Listing 3-12) revises the earlier example of
the BigNumsStruct. The size of this structure is reduced to a more realistic
number, and a local array of such structures is declared, which means that
storage for the array comes from the stack. The int field named n remains
and now is initialized to a random value.

Although a BigNumsStruct is slimmer than before, its sizeof remains
an impressive 8,008 bytes on my machine. By contrast, a pointer to such a
structure instance requires only 8 bytes on the same machine. In the sortPtrs
program, sorting the big nums array would require moving 8KB (kilobytes)
chunks, whereas sorting pointers to the elements in this array would require
moving only 8-byte chunks. The resulting gain in efficiency is compelling.
The printf loop at the end confirms that the pointers array has been
sorted as desired, in ascending order by the BigNumsStruct field named n.
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The cost for this efficiency is a complicated comparison function,
again named comp. Recall that each argument in the comparison callback
is of type const void*. Because an array of pointers is being sorted, the
two arguments to comp, named p1 and p2, are indeed pointers to pointers.
Each of these pointers is therefore cast to its actual type, BigNumsStrut**:
a pointer to a pointer to a BigNumsStruct. A dereference of each point
provides what is needed: a pointer to a BigNumsStruct, which then can be
used with the arrow operator to access the field n. Here, for review, is the
body of the comparison function:

BigNumsStruct* ptri

*((BigNumsStruct**) p1); /* p1 points to
a pointer */

*((BigNumsStruct**) p2); /* p2 points to
a pointer */

BigNumsStruct* ptr2

return ptri->n - ptr2->n; /* access the field n, sort in
ascending order */

3.8.2. Unions

There is a specialized type of structure called a union, which is designed
for memory efficiency. A short example highlights the difference between
astruct and aunion.

The following structure has two fields: a double and a long. The
sizeof(v1)

struct {
double d;
long 1;
}ovi;

is 16: both the double and the long are 8 bytes in size.
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By contrast, a union with exactly the same fields would require only
half the bytes. The sizeof(v2)

union {
double d;
long 1;
}ove;

is 8 bytes. A union provides enough storage for the largest of its fields,

and all of the fields then share this storage. For example, the struct
variable v1 can store both a double and a long at the same time:

vi.d
vi.l

44.44;
1234L;

By contrast, the union variable v2 stores either the one or the other:

v2.d
v2.1

44.44; /* the double is stored */
1234L; /* initializing the long overwrites the double */

3.9. String Conversions with Pointers
to Pointers

Earlier examples illustrated very simple conversions involving basic data
types. For example, even the statement

char ¢ = 65; /* 65 is ASCII/Unicode for uppercase A */

involves a conversion: from the 32-bit int constant 65 to the 8-bit char
value stored in variable c. Converting from one single value to another
is routine in C: an explicit cast can be used for clarity, but in general, the
compiler can be counted on to do the converting without complaint. For

example, the compiler does not even warn against this conversion:
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short n = 3.1415; /* 64-bit floating-point value stored in 16-
bit integer variable */

The conversion goes from a three-field, 64-bit floating-point source
to a two-field, 16-bit signed-integer destination. In examples such as
these, explicit casts can be used to enhance clarity, but this remains a
recommendation rather than a requirement:

char c = (char) 65;
short n = (short) 3.1415;

The challenge arises in converting between strings, an aggregate rather
than a scalar type, and other basic types. Because a string in C is an array,
converting an array to a single integer or floating-point value is nontrivial.
C provides library functions to do the heavy lifting.

The stdlib.h header file declares functions for converting strings to
integers and floating-point values:

int atoi(const char* nptr); /* string to 32-bit int */

long atol(const char* nptr); /* string to 64-bit long */

long long atoll(const char* nptr); /* string to long long,
probably 64-bits */

float atof(const char* nptr); /* string to 32-bit float */

The const qualifier signals that the pointer argument is not used to
change the string itself, only to convert the string to a numeric value. The a
in atoi and the others is for ASCII, the default character encoding in C.

None of the ato functions are especially helpful in determining why
an attempted conversion failed. To that end, the stdlib.h header file also
includes functions with names that start out with strto, for example, strtol
(string to long integer) and strtod (string to double). The strto functions
check the string for inappropriate characters and have a mechanism for
separating out the converted part of the source string, if any, from the rest.
A code example clarifies.
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Listing 3-13. Converting strings to numeric values

#include <stdio.h>
#include <stdlib.h> /* atoi, etc. */

void main() {
const char* s1 = "27";
const char* s2 = "27.99";
const char* s3 = " 123"; /* whitespace to begin */
const char* e1 = "1z2q"; /* bad characters */
const char* e2 = "4m3.abc!#"; /* ditto */

printf("%s + 3 is %i.\n", s1, atoi(s1) + 3);
/* 27 + 3 is 30. */
printf("%s + 3 is %f.\n", s2, atof(s2) + 3.0);

/* 27.99 + 3 is 30.990000. */

printf("%s to int is %i.\n", s3, atoi(s3));
/* 123 to int is 123. */

printf("%s to int is %i.\n", e1, atoi(el));
/* 1z2q to int is 1. */

printf("%s to float is %f.\n", e2, atof(e2));
/* 4m3.abc to float is 4.000000. */

char* bad chars = NULL;

const char* e3 = "9876 !!foo bar";

long num = strtol(e3, &bad chars, 10);

/* 10 is the base, for decimal */

printf("Number: %1i\tJunk: %s\n", num, bad chars);
/* Number: 9876 Junk: !!foo bar */

The str2num program (see Listing 3-13) has three examples of strings
that convert straightforwardly. The pointers to these are s1, s2, and s3. The
string to which s3 points is the most interesting in that it begins with blanks;
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but the atoi functions ignore the leading whitespace. The challenging

cases are the strings to which el and e2 point, as these strings contain
nonnumeric characters other than whitespace. (Numeric characters include
the numerals, the plus and minus signs, and the decimal point.)

For strings with nonnumeric characters such as the sharp sign, the ato
functions convert until the first such character is encountered and then
stop. This is why function atoi converts the string “1z2q” to 1: the function
converts as long as it can and then halts abruptly on the first inappropriate
character. If a string starts with a nonnumeric character, then the ato

functions return 0:
int n = atoi("foo123"); /* n == 0 after the conversion */

The strto functions are more powerful than their afo counterparts,
and they use a pointer-to-pointer type to gain this power. Here is the
declaration for strtol:

long int strtol(const char* nptr, char** endptr, int base);

The first argument is again a pointer to the source string, and the return
value is a long. The last argument specifies the base to be used in the
conversion: 2 for binary, 10 for decimal, and so on. The middle argument
is the tricky one, as its type is pointer-to-pointer-to-char. Here, for review,
is the code segment in the str2num program that sets up and then calls the
strtol function:

char* bad_chars = NULL;
const char* e3 = "9876!!foo bar";
long num = strtol(e3, &bad chars, 10);

The strtol function determines where to break the source string to
which e3 points: at the first | character. The library function then sets
pointer bad_chars to this character. In an idiom analyzed earlier, the
strtol function thus uses an argument, in this case the pointer-to-pointer
variable bad_chars, in order to return a value—the first character (the !)
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that cannot be used in the string-to-number conversion. The return value
for strtol is, of course, the converted number. A pointer-to-pointer type
allows the strtol function to return two pieces of information.

The ato and strto functions are convenient for converting strings to
integer and floating-point types. There is also a more general approach.
The printf function, for type-sensitive printing, has been used in many
examples. This function prints to the standard output, the screen by
default. The inverse function is scanf, which scans the standard input (the
keyboard by default) for strings that then are converted into the specified
type. Two variants of these functions are useful for converting from and
to strings: sprintf, which prints to a buffer (char array) rather than to the
standard output, and sscanf, which reads from a buffer instead of from the
standard input. A code example clarifies.

Listing 3-14. A general approach to converting to and from strings
#include <stdio.h>

void main() {
char* s1 = "123456";
char* s2 = "123.45";

int n1;
float n2;

/** string to other types: sscanf **/

sscanf(s1, "%i", &n1); /* address of ni1, not n1 */

sscanf(s2, "%f", &n2); /* address of n2, not n2 */

printf("%i %f\n", n1 + 3, n2 + 8.7f); /* 123459 132.149994 */

/** other types to string: sprintf **/

char buffer[64]; /* stack storage, buffer its address */
sprintf(buffer, "%i", n1 + 3);

printf("%s\n", buffer); /* 123459 */
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The scanPrint program (see Listing 3-14) illustrates the basics of
converting to and from strings using the printing and scanning functions.
The print and scan functions differ markedly in their arguments. The
print functions (printf, sprintf, and fprintf for printing to a file) take
nonpointer values as the arguments after the format string. By contrast,
the scan functions (scanf, sscanf, and fscanf for scanning data from a
file) take pointers as the arguments after the format string. The scanning
functions require a pointer to indicate where a scanned (and perhaps
converted) value should be stored. For functions in both families, the
format string specifies the desired type for either printing or scanning.

As even this short code example shows, sprintf and sscanf provide a
general-purpose solution to the problem of converting to and from strings.

Finally, the header file ctype.h has various functions for determining
properties of individual characters. For instance, the library function
isdigit(c) checks whether character c is a decimal digit, function
isprint(c) checks whether character c is printable, and so on.

3.10. Heap Storage and Pointers

A program in execution (process) has access to three areas of memory:

e A static area that stores string literals, global variables,
and executable code. The traditional name for the
area that holds the executable code is text, as earlier
assembly-code examples illustrate; the term text is
meant to suggest read-only, but this static area can
store read/write variables as well.

e The stack, which provides scratchpad storage for
parameters and local variables. The stack acts as a
backup for CPU registers, which are quite limited in
number (e.g., roughly 16 on standard handheld, laptop,
and desktop machines).
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e The heap, which provides storage that the program
explicitly allocates and, in the case of C, deallocates.
Pointers come into play with heap storage.

The examples so far have not covered the third category, the heap. The
compiler figures out how much storage is required for the read-only area
and the stack; hence, the details about such storage are determined at
compile time—no extra programmer intervention is required. By contrast,
the programmer uses designated operators (e.g., new in many modern
languages) or functions (e.g., malloc and its relatives in C) to allocate
storage from the heap, an allocation traditionally described as dynamic
because it is done explicitly at runtime.

The programmer plays a more active role with heap as opposed to
stack storage. The compiler determines the mix of stack and CPU registers
required for program execution, thereby off-loading this responsibility
from the programmer. By contrast, the programmer manages heap storage
through system calls to allocate and, in the case of C, to deallocate this
storage. A review of stack storage through a code example sets the scene
for a code-based analysis of heap storage.

Listing 3-15. Summing an array in C

#include <stdio.h>
#define Size 9

int sum_array(int arr[], unsigned n) {
int sum = 0;
unsigned 1i;
for (i = 0; i < n; i++) sum += arr[i];
return sum;

}
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void main() {
int nums[ ] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
int n = sum_array(nums, Size);
printf("The sum is: %i\n", n); /* The sum is: 45 */

}

The sumArray program (see Listing 3-15) has two functions, main and
sum_array, each of which needs stack storage for scratchpad. The main
function has a local array of nine elements, each an int; these elements
are stored on the stack. This function also has a local variable n to store the
value returned from a call to the sum_array function. Depending on how
optimizing the compiler happens to be, variable n could be implemented
as a CPU register instead of as a stack location.

The sum_array function works with a pointer to the array declared and
populated in main, but sum_array does need some local storage of its own:
the integers sum and i, the loop counter. Both sum and i are scalars rather
than aggregates, and so CPU registers would be ideal; but the stack is the
fallback for the compiler.

The assembly code for the sumArray program is generated in the
usual way:

% gcc -S -01 sumArray.c ## capital letter O for optimization
level, 1 in this case

Here is a quick overview of how the assembly code handles summing
the array. The assembly code

o Stores the array nums on the stack. The assembly code
grows the stack by 56 bytes for this purpose, although
only 36 bytes are needed for the nine int values.

o Stores the array’s size in a CPU register for efficiency.
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For readability, the resulting assembly code has been pared down; for
instance, most of the directives are omitted. The first code display is the
assembly code for main, and the following display is the assembly code for
sum_array. To begin, however, a look at the syntax for pointers in assembly
code will be useful.

Recall the assembly opcode movg, which copies 64 bits (a quadword)

from a source to a destination:

movq $0, %rax ## copy zero into %rax
A comparable C statement is

unsigned long n = 0; /* a long is 64 bits */
Consider a more complicated example:

movq $1, (%rax)

The parentheses are the dereference operator in assembly code.
Accordingly, this statement implies that %rax holds an address, and 1 is to
be copied to wherever %rax points, not into %rax itself. In C, a counterpart
would be

*ptr = 1; /* copy 1 to where ptr points, not into ptr itself */
A common variant of pointer syntax in assembly language is
movq $1, 16(%rax)

The parentheses with an integer value to the left indicate base-
displacement addressing: inside the parentheses is the base address,
in this case the contents of %rax. To the left of the left parenthesis is
the displacement, the number of bytes added to the base address. (The
displacement can be positive or negative.) In C, a counterpart would be

*(ptr + 16) = 1; /* assuming ptr is of type char* because a
char is a byte */
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With this background, the assembly code for the function main in the

sumArray program should make sense.

Listing 3-16. The assembly code for main in the sumArray program

.LCO:

.string "The sum is:

main:
subq $56, %rsp

movl $1, (%rsp)

movl $2, 4(%rsp)
movl $3, 8(%rsp)

movl $9, 32(%rsp)
movl $9, %esi
movq %rsp, %rdi
call sum_array
movl %eax, %edx
movl $.LCO, %esi

movl $1, %edi

movl $0, %eax
call _ printf chk

addq $56, %rsp

ret

#t

#H
#Ht

#H

## address of format string
%i\n" ## format string

grow the stack by 56 bytes (stack grows
high to low)

store 1 to where the stack pointer
points (the TOP)

store 2 four bytes up_

and so on

9 is stored 32 bytes up from the

stack pointer

this 9 is Size: put in a CPU 32-bit
register %esi

copy stack pointer in %rdi, which now
points to 9 in the array

call the subroutine

save the value returned from sum_array
copy address of format string into %esi
copy 1 into %edi: number of values to
format, 1 in this case

clear %eax for the print routine

call print routine (special arg-
checking version of printf)

restore the stack pointer by reclaiming
the 56 bytes

return to caller in exec family
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The high points of the assembly code for the main block (see
Listing 3-16), the assembly-language counterpart of the main function in C,

can be summarized as follows:

o The block begins by growing the scratchpad storage on
the stack: 56 is subtracted from the 64-bit stack pointer
%rsp, which has the effect of growing the stack scratchpad
by 56 bytes because the Intel stack grows from high to
low addresses. Moving the stack pointer %rsp down by 56
bytes means, in other words, that there are now 56 newly
available bytes above where the stack pointer currently
points. Shrinking the scratchpad storage on the stack
is done by adding to the stack pointer, as occurs in the
second-to-last statement in the main block:

addq $56, %rsp ## cleanup from the earlier subq
%56, %rsp

e The nine-integer array elements 1,2,...,9 in the array
nums from the C code are stored on the stack. Most of
the values are stored up from the stack pointer. For
example, 1 is stored at where the stack pointer currently
points, 2 is stored 4 bytes up from this position at
4(%xsp), and so on. In general, the compiler stores
arrays on the stack, even very small arrays. There
are simply too few general-purpose registers to store
arrays, and addressing array elements is simplified by
having these elements be stored contiguously. Registers
are used for scalar values, not for aggregates.

o The array’s size, 9, is not stored on the stack, but rather
in the 32-bit CPU register %esi. Recall that on a 64-bit
machine, the name %esi refers to the lower-order 32
bits of the 64-bit register %rsi. The sum_array routine
accesses the array’s size from register %esi.
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The value returned from sum_array in 32-bit register
%eax is copied to register %edx, the address of the
format string is copied to register %esi, and the number
of values to be formatted (in this case, one) is copied
into register %edi. At this pointer, the main module is
ready to call the print routine printf_chk, which does
an integrity check on the arguments, where chk stands
for “check” As the example shows, the underscore can
be used even to start an identifier.

After shrinking the stack back to its size before the call
to main, the main routine returns to its caller. Recall that
main in the C source does not return a value; hence,

the assembly routine does not place a value in %eax
immediately before returning.

Listing 3-17. The assembly code for sum_array

sum_array:
testl %esi, %esi ## is the array size 0?
je .L4 ## if so, return to caller
movl $0, %edx ## otherwise, set loop counter to 0
movl $0, %eax ## initialize sum to 0

.L3:

addl (%rdi,%rdx,4), %eax ## increment the running sum by

the next value (sum += arr[i])

addq $1, %rdx ## increment loop counter by 1
(integer)

cmpl %edx, %esi ## compare loop counter with
array size

ja .L3 ## keep looping if size is bigger

(ja = jump if above)
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rep ret ## otherwise, AMD-specific version of ret
for return
.L4: ## return 0 as the sum because array
is empty
movl $0, %eax ## copy 0 into returned-value register
ret ## return to caller

The sum_array routine in assembly code (see Listing 3-17) is
complicated because of the control structure. The code basically handles
two cases:

o Ifthe array’s size is zero (the array is empty), then
return 0.

e Otherwise, initialize a loop counter (32-bit register
%edx) to 0, and loop until the array’s size is no longer
greater than the loop counter. The running sum is
stored in 32-bit register %eax, and %eax also serves as
the returned-value register.

Several points about the code deserve mention. For one thing, the code
sometimes references the 64-bit register %rdx but sometimes references
only the lower 32 bits of this register under the name %edx. This can be
confusing but works just fine because the upper-order bits in register %rdx
have been zeroed out.

Another point of interest is the most complicated instruction in the
sum_array routine:

addl (%rdi,%rdx,4), %eax ## in C: sum += arr[i]
First, consider the instruction that follows the add] instruction:

addq $1, %rdx ## in C: i =1+1
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This instruction updates the loop counter %rdx by one integer, not by
4 bytes. Accordingly, the addl instruction’s first operand is the expression
(%rdi,%rdx,4). Register %rdi points to the start of the array; in the C code,
this is the parameter arr in the function sum_array. The offset from this
base address is %rdx x 4, where %rdx is the loop counter (in C, the index 1)
and 4 is sizeof(int).

The assembly code confirms that the stack requirements for the
sumArray program are determined at compile time. The stack management
is thus automatic from the programmer’s perspective: the programmer
declares local variables and parameters, makes a function call, executes
a print statement, and so on. The compiler manages the details when it
comes to providing scratchpad storage on the stack and, in this example, in
CPU registers as well.

This analysis of the sumArray program sets up a contrast between
stack and heap storage. C has functions for allocating heap storage,
with the malloc and the calloc functions as the primary ones. There is
also a realloc function for growing or shrinking previously allocated
heap memory. The free function deallocates the memory allocated by
any of these functions. The general rule for avoiding memory leaks is
this: for every malloc or calloc, there should be a matching free. The
programmer is fully responsible for the calls to these functions. A first code
example covers the basics.

Listing 3-18. Basic heap allocation and deallocation

#include <stdio.h>

#include <stdlib.h> /* malloc, calloc, realloc */
#include <string.h> /* memset */

#define Size 20

void dump(int* ptr, unsigned size) {
if (!ptr) return; /* do nothing if ptr is NULL */
int i;
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for (i = 0; i < size; i++) printf("%i ", ptr[i]);
/* *(ptr + 1) */
printf("\n");

}

void main() {

/* allocate */

int* mptr = malloc(Size * sizeof(int)); /* 20 ints, 80
bytes */

if (mptr) /* malloc returns NULL (0) if it cannot allocate

the storage */
memset(mptr, -1, Size * sizeof(int)); /* set each byte

to -1 */

dump(mptr, Size);

/* realloc */

mptr = realloc(mptr, (Size + 8) * sizeof(int)); /* request
8 more */

if (mptr) dump(mptr, Size + 8);

/* deallocate */

free(mptr);

/* calloc */
mptr = calloc(Size, sizeof(int)); /* calloc initializes the
storage to zero */
if (mptr) {
dump(mptr, Size);
free(mptr);
}
}
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The program memalloc (see Listing 3-18) shows the basic API for
allocating and deallocating memory from the heap. The simplest and most
basic function is malloc, which tries to allocate the number of bytes given
as its single argument. The return type from malloc is the same for calloc
and realloc:

o Ifthe memory can be allocated, a pointer to the first
byte is returned.

o Ifthe memory cannot be allocated, NULL is returned.

The malloc function could be used to allocate as little as 1 byte but
typically is used to allocate aggregates. In the case of malloc, the allocated
storage is not initialized. The memalloc program therefore initializes the
allocated memory to -1 by using the memset library function:

memset(mptr, -1, Size * sizeof(int)); /* mptr returned from
malloc */

This function takes three arguments: a pointer to the storage to be
initialized, the value to be stored in each byfe, and the number of bytes to
be initialized. The memset function is yet another library routine that works
at the byte level.

The calloc function takes two arguments: the first is the number of
elements to allocate (e.g., 10), and the second is the sizeof each element
(e.g., 4 for an int). The calloc function thus can be used to allocate
storage for multibyte types such as int and double. This function, unlike
malloc, initializes the allocated storage to all 0s. In general, malloc is faster
than calloc because malloc does no memory initialization.

The realloc function can be used to grow or shrink previously
allocated storage. In this example, the function is used to grow the
allocated storage by 8 x sizeof(int) bytes. If realloc succeeds, it leaves
the previously allocated storage unchanged and adds or removes the
requested number of bytes. In the memalloc program, realloc is called

119



CHAPTER 3  AGGREGATES AND POINTERS

to request an additional 32 bytes (8 int values) to a collection of 20 int
values already initialized to -1; hence, the original bytes still have -1 as
their value after the reallocation, but the added bytes have arbitrary values.

As the name suggests, the free function deallocates storage allocated
with the malloc and calloc functions. The realloc function presupposes
a previous call to one of these other functions. To avoid memory leaks, it is
critical for a program to free explicitly allocated storage.

DOES C HAVE GARBAGE COLLECTION?

No. Library functions such as malloc and calloc allocate specified amounts
of storage from the heap, but the programmer then is responsible for explicitly
deallocating (freeing) this heap storage. Allocation without deallocation causes
memory leaks, which can dramatically degrade system performance. Freeing
no longer needed heap storage is, indeed, one of the major challenges in
writing sound C programs.

3.11. The Challenge of Freeing
Heap Storage

Recall the rule of thumb for freeing heap storage: for everymalloc or calloc,
there should be a free. Putting the rule into practice can be challenging, in
particular when dealing with functions that return a pointer to a structure
that, in turn, has, among its fields, pointers to heap storage. In short, the
heap storage allocation may be nested. If the allocation is nested, then the
freeing should be so as well. The documentation on library functions is
worth reading carefully, in particular for functions that return a pointer

to heap storage. There are different ways for memory-allocating library
functions to guard against memory leakage, for example, by providing a
utility function that does the freeing to whatever level is appropriate.
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Two code examples get into the details of the challenge. The first
example focuses on how to return an aggregate to a caller, and the second
focuses on nested freeing.

Listing 3-19. Three ways of returning a string to a caller

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define BuffSize 128

void get nameil(char buffer[ ], size t len) { /* safest: buffer

passed in
as arg */
strncpy(buffer, "Gandalf", len); /* user-supplied
buffer */
}
void* get name2() { /* ok, but invoker

must free */
void* ptr = malloc(BuffSize + 1);
if (!ptr) return o;
strcpy(ptr, "Sam");
return ptr;

}

char* get name3() { /* VERY BAD
(compiler
warning) */
char buffer[BuffSize + 1];
strcpy(buffer, "Frodo");
return buffer;

}
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The getname program (see Listing 3-19) contrasts three ways to return
a string—an aggregate—from a function. The compiler generates an
apt warning about one of the ways. Three functions represent the three
different approaches. For each approach, imagine that a user is prompted
for, and then enters, a name. To keep the code short, the example hard-
wires the names. Here is a summary of the three approaches, with

recommendations:

o Theget_namel function represents the safest approach.
The function takes two arguments: an array to hold the
name and the array’s length. The function then uses the
library function strncpy to copy a name into this array.
The n in strncpy specifies the maximum number of
characters to be copied, thereby protecting against the
notorious buffer overflow problem. A buffer overflow
occurs if the array is not big enough to hold all of the
elements placed in it. In the case of get_name1, the invoker
of the function is responsible for providing a buffer at least
as big as the 1len argument specifies. The first three lines of
main illustrate a proper call to get_name1l.

A cautionary note is in order. Suppose that the first two
lines of main change from

char buffer[BuffSize + 1];
/* + 1 for null terminator */
get _namei(buffer, BuffSize);

to

char* buffer; /* storage for a pointer, but not
for any characters pointed to */
get_name1(buffer, BuffSize);
/* false promise: the buffer's
length is zero */
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The getname program still compiles because the compiler treats these

two data types as being equivalent:

char* buffer ## the argument's type in main

char buffer[ ]

## the first parameter's type in get namel

Nonetheless, the program is likely to crash at runtime because there is

no storage provided for the characters in the string; there is storage only for

a single pointer to a char. Increasing the length of the string increases the
likelihood of a crash.

The get_name2 function takes no arguments and instead

allocates heap storage to store a string of BuffSize
characters, where BuffSize is a macro defined as 64;
a pointer to this storage is returned. The call tomalloc
requests an additional byte for the null terminator, so
BuffSize + 1bytesin all. The get_name2 function
returns ptr, which holds the value returned from

malloc. (Ifmalloc returns NULL, so does get _name2.) This

approach makes the caller, in this case main, responsible
for freeing the allocated storage. There is a division of
labor: one function allocates the required heap storage,
but a different function (its invoker) must free these
allocated bytes when they are no longer needed.

The get_name3 function is done badly, and the
compiler points out the shortcoming. The function
declares a local variable buffer of BuffSize + 1 bytes.
This, in itself, is fine. The function then returns the
array’s name—a pointer to the first char in the array.
This is risky because the storage for the array comes
from the stack, and that very area of the stack is open
for reuse once get_name3 returns. Some other function
might place other data in this very area. The general

principle is clear: never return a pointer to local storage.
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Listing 3-20. Calling the three functions in the getname program

/** headers and macro above **/
void main() {
char buffer[BuffSize + 1]; /*

get _namei(buffer, BuffSize);
printf("%s\n", buffer);

void* retval2 = get name2();
printf("%s\n", (char*) retval2); /*
free(retval2); /*

const char* retvall = get name3(); /*
printf("%s\n", retvalil); /*

}

+ 1 for null
terminator */

cast for the %s */
safeguard against
memory leak */

not a good idea */
unpredictable output */

The main function for the getname program (see Listing 3-20) declares

a char buffer, which is used in the call to function get_namel. The

responsibility falls squarely on the caller to provide enough storage for the

string to be stored. The second argument, BuffSize, guards against buffer

overflow because the char array is of size BuffSize + 1, with the added

byte for the null terminator.

The call to get_name2 returns a pointer to the heap storage provided

for the name. In this case, the main function does call free, but the logic is

complicated: one function allocates, another function frees. The approach

works, but it is error-prone.

The last call, to get_name3, provokes a compiler warning because a

pointer to local storage is being returned to main. In this case, the storage

for the name is local to the call frame for get_name3. Once the function

get_name3 returns to main, the call frame for get_name3 should not be

accessed. It is unpredictable whether this third approach works.
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3.12. Nested Heap Storage

It is relatively straightforward to handle nonnested cases of allocating and
freeing, as in the previous examples of heap storage. Here is a review of the
pattern:

int* some _nums = malloc(5000 * sizeof(int));
/* ... application logic ... */
free(some_nums);

This code segment allocates heap storage for 5,000 int values, does
whatever logic is appropriate, and then frees the storage. The challenge
increases when, for example, structure instances are allocated from the
heap—and such instances contain fields that are themselves pointers to heap
storage. If the heap allocation is nested, the freeing must be nested as well.

As a common example of the challenge, C has various library functions
that return a pointer to heap storage. Here is a typical scenario:

1. The C program invokes a library function that
returns a pointer to heap-based storage, typically an
aggregate such as an array or a structure:

SomeStructure* ptr = lib_function(); /* returns pointer
to heap storage */

2. The program then uses the allocated storage.

3. For cleanup, the issue is whether a single call to
free will clean up all of the heap-allocated storage
that the library function allocates. For example, the
SomeStructure instance may have fields that, in
turn, point to heap-allocated storage. A particularly
troublesome case would be a dynamically allocated
array of structures, each of which has a field
pointing to more dynamically allocated storage.
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The next code example (see Listing 3-21) illustrates the problem and
focuses on how to design a library that safely provides heap-allocated
storage to clients.

Listing 3-21. Nested heap storage

#include <stdio.h>
#include <stdlib.h>

typedef struct {
unsigned 1id;
unsigned len;
float* heap_nums;

} HeapStruct;

unsigned structld = 1;

HeapStruct* get heap struct(unsigned n) {
/* Try to allocate a HeapStruct. */
HeapStruct* heap struct = malloc(sizeof(HeapStruct));
if (NULL == heap_struct) /* failure? */
return NULL; /* if so, return NULL */

/* Try to allocate floating-point aggregate within
HeapStruct. */

heap_struct->heap_nums = malloc(sizeof(float) * n);
if (NULL == heap_struct->heap_nums) { /* failure? */

free(heap_struct); /* if so, first free
the HeapStruct */
return NULL; /* then return NULL */

}

/* Success: set fields */
heap_struct->id = structId++;
heap_struct->len = n;
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return heap_struct; /* return pointer to allocated
HeapStruct */

}

void free all(HeapStruct* heap struct) {
if (NULL == heap struct) /* NULL pointer? */
return; /* if so, do nothing */

free(heap_struct->heap nums); /* first free encapsulated
aggregate */

free(heap struct); /* then free containing
structure */

}

int main() {
const unsigned n = 100;
HeapStruct* hs = get heap struct(n); /* get structure with N
floats */

/* Do some (meaningless) work for demo. */

unsigned 1i;

for (i = 0; i < n; i++) hs->heap nums[i] = 3.14 + (float) i;
for (i = 0; i < n; i += 10) printf("%12f\n", hs->heap nums[i]);

free all(hs); /* free dynamically allocated storage */

return 0;

The nestedHeap example (see Listing 3-21) centers on a structure
HeapStruct with a pointer field named heap_nums:
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typedef struct {

unsigned 1id;

unsigned len;

float* heap nums; /** pointer **/
} HeapStruct;

The function get_heap_struct tries to allocate heap storage for a
HeapStruct instance, which entails allocating heap storage for a specified
number of float variables to which the field heap nums points. The result
of a successful call to get_heap_struct can be depicted as follows, with hs
as the pointer to the heap-allocated structure:

hs-->HeapStruct instance
id
len
heap_nums-->N contiguous float elements

In the get_heap_struct function, the first heap allocation is
straightforward:

HeapStruct* heap struct = malloc(sizeof(HeapStruct));
if (NULL == heap_struct) /* failure? */
return NULL; /* if so, return NULL */

The sizeof(HeapStruct) includes the bytes (four on a 32-bit machine,
eight on a 64-bit machine) for the heap_nums field, which is a pointer to the
float elements in a dynamically allocated array. At issue, then, is whether
the malloc delivers the bytes for this structure or NULL to signal failure; if
NULL, the get_heap_struct function returns NULL to notify the caller that
the heap allocation failed.

The second attempted heap allocation is more complicated because, at
this step, heap storage for the HeapStruct has been allocated:
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heap_struct->heap nums = malloc(sizeof(float) * n);
if (NULL == heap_struct->heap nums) { /* failure? */

free(heap_struct); /* if so, first free the
HeapStruct */
return NULL; /* and then

return NULL */

The argument n sent to the get_heap_struct function indicates how
many float elements should be in the dynamically allocated heap nums
array. If the required float elements can be allocated, then the function
sets the structure’s id and len fields before returning the heap address of
the HeapStruct. If the attempted allocation fails, however, two steps are
necessary to meet best practice:

1. The storage for the HeapStruct must be freed to
avoid memory leakage. Without the dynamic heap
nums array, the HeapStruct is presumably of no use
to the client function that calls get_heap_struct;
hence, the bytes for the HeapStruct instance should
be explicitly deallocated so that the system can
reclaim these bytes for future heap allocations.

2. NULL is returned to signal failure.

If the call to the get_heap_struct function succeeds, then freeing
the heap storage is also tricky because it involves two free operations in
the proper order. Accordingly, the program includes a free_all function
instead of requiring the programmer to figure out the proper two-step
deallocation. For review, here’s the free_all function:
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void free all(HeapStruct* heap struct) {
if (NULL == heap_struct) /* NULL pointer? */
return; /* if so, do nothing */

free(heap _struct->heap nums); /* first free encapsulated
aggregate */

free(heap_struct); /* then free containing
structure */

After checking that the argument heap_struct is not NULL, the function
first frees the heap _nums array, which requires that the heap struct
pointer is still valid. It would be an error to free the heap_struct first.
Once the heap_nums have been deallocated, the heap struct can be
freed as well. If heap _struct were freed but heap_nums were not, then the
float elements in the array would be leakage: still allocated bytes but
with no possibility of access—hence, of deallocation. The leakage would
persist until the nestedHeap program exited and the system reclaimed the
leaked bytes.

A few cautionary notes on the free library function are in order. Recall
the earlier sample calls:

free(heap_struct->heap nums); /* first free encapsulated
aggregate */

free(heap_struct); /* then free containing
structure */

These calls free the allocated storage—but they do noft set their
arguments to NULL. (The free function gets a copy of an address as an
argument; hence, changing the copy to NULL would leave the original
unchanged.) For example, after a successful call to free, the pointer
heap_struct still holds a heap address of some heap-allocated bytes, but
using this address now would be an error because the call to free gives the
system the right to reclaim and then reuse the allocated bytes.
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Calling free with a NULL argument is pointless but harmless. Calling
free repeatedly on a non-NULL address is an error with indeterminate
results:

free(heap struct); /* 1st call: ok */
free(heap _struct); /* 2nd call: ERROR */

3.12.1. Memory Leakage
and Heap Fragmentation

As the previous code examples illustrate, the phrase memory leakage”
refers to dynamically allocated heap storage that is no longer accessible.
Here is a refresher code segment:

float* nums = malloc(sizeof(float) * 10); /* 10 floats */
nums[0] = 3.14f; /* and so on */
nums = malloc(sizeof(float) * 25); /* 25 new floats */

Assume that the first malloc succeeds. The second malloc resets the
nums pointer, either to NULL (allocation failure) or to the address of the
first float among newly allocated 25. Heap storage for the initial ten
float elements remains allocated but is now inaccessible because the
nums pointer either points elsewhere or is NULL. The result is 40 bytes
(sizeof(float) * 10) of leakage.

Before the second call to malloc, the initially allocated storage should
be freed:

float* nums = malloc(sizeof(float) * 10); /* 10 floats */

nums[0] = 3.14f; /* and so on */
free(nums); /** good **/
nums = malloc(sizeof(float) * 25); /* no leakage */
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Even without leakage, the heap can fragment over time, which then
requires system defragmentation. For example, suppose that the two
biggest heap chunks are currently of sizes 200MB and 100MB. However,
the two chunks are not contiguous, and process P needs to allocate
250MB of contiguous heap storage. Before the allocation can be made, the
system must defragment the heap to provide 250MB contiguous bytes for
P. Defragmentation is complicated and, therefore, time-consuming.

Memory leakage promotes fragmentation by creating allocated but
inaccessible heap chunks. Freeing no-longer-needed heap storage is,
therefore, one way that a programmer can help to reduce the need for
defragmentation.

3.12.2. Tools to Diagnose Memory Leakage

Various tools are available for profiling memory efficiency and safety.
My favorite is valgrind (www.valgrind.org/). The leaky program (see
Listing 3-22) illustrates the problem and the valgrind solution.

Listing 3-22. The leaky program

#include <stdio.h>
#include <stdlib.h>

int* get ints(unsigned n) {
int* ptr = malloc(n * sizeof(int));
if (ptr != NULL) {
unsigned 1i;
for (i = 0; i < n; i++) ptr[i] = 1 + 1;
}

return ptr;
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void print_ints(int* ptr, unsigned n) {

unsigned 1i;

for (i = 0; i < n; i++) printf("%3i\n", ptr[i]);
}

int main() {
const unsigned n = 32;
int* arr = get_ints(n);
if (arr != NULL) print ints(arr, n);

/** heap storage not yet freed... **/
return O;

The function main calls get_ints, which tries to malloc 32 four-byte
integers from the heap and then initializes the dynamic array if the malloc
succeeds. On success, the main function then calls print_ints. There is no
call to free to match the call to malloc; hence, memory leaks.

With the valgrind toolbox installed, the following command checks the
leaky program for memory leaks:

% valgrind --leak-check=full ./leaky

In the following code segment, most of the output is shown. The number
of the left, 207683, is the process identifier of the executing leaky program.
The report provides details of where the leak occurs, in this case, from the
call tomalloc within the get_ints function thatmain calls.

==207683== HEAP SUMMARY:

==207683== in use at exit: 128 bytes in 1 blocks

==207683== total heap usage: 2 allocs, 1 frees, 1,152 bytes
allocated

==207683==
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==207683== 128 bytes in 1 blocks are definitely lost in loss
record 1 of 1

==207683== at 0x483B7F3: malloc (in /usr/1ib/x86 64-linux-
gnu/...-linux.so)

==207683== by 0x109186: get ints (in /home/marty/gc/leaky)
==207683== by 0x109236: main (in /home/marty/gc/leaky)
==207683==

==207683== LEAK SUMMARY:

==207683== definitely lost: 128 bytes in 1 blocks
==207683== indirectly lost: 0 bytes in 0 blocks

==207683== possibly lost: 0 bytes in 0 blocks

==207683== still reachable: 0 bytes in 0 blocks

==207683== suppressed: 0 bytes in 0 blocks

If function main is revised to include a call to free right after the one to
print_ints, then valgrind gives the leaky program a clean bill of health:

==218462== All heap blocks were freed -- no leaks are possible

3.13. What’s Next?

C variables can be defined inside and outside of blocks, where a block is
the by-now-familiar construct that begins with a left brace { and ends with
a matching right brace }. Where a variable is defined determines, within
options, where its value is stored, how long the variable persists, and where
the variable is visible. Every variable has a storage class (with auto and
extern as examples) that determines the variable’s persistence and scope.
Functions too have a storage class: either extern (the default) or static.
The next chapter gets into the details of storage classes.
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Storage Classes

4.1. Overview

In C, a storage class determines where functions and variables are stored,
how long variables persist, and where functions and variables can be made
visible. For functions, the key issue is visibility (scope) because the lifetime
of a function is the lifetime of the program that contains the function. For
variables, both lifetime and scope are of interest to the programmer.

Storage classes also shed further light on the distinction between
declarations and definitions in C. In large programs, with the constituent
functions typically residing in different files, the distinction is especially
important. Once again, code examples illustrate the basics and advanced
features. The chapter ends with a discussion of type qualifier volatile, yet
another aspect of C’s close-to-the-metal personality.

4.2. Storage Class Basics

Here are two examples of where a storage class shows up in C code:

static int counter; /* static is a storage-class
specifier */

extern void main() { /* body */ } /* extern is a storage-class
specifier */
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C has four storage class specifiers: extern, static, auto, and register.
It is rare for the last two to be used explicitly in modern C because the
compiler, on its own, does what the specifiers call for. The first two
specifiers, extern and static, remain relevant. A function can be either
extern or static only; a variable can be any one of the four. A storage class
also impacts the following:

e The scope or visibility of the storage. For example, C
functions are extern by default, which means that they
can be made visible to any other function in the same
program. To be extern in C is to be potentially global
in scope.

o The lifetime of the storage, which depends directly
on where the storage is provided. The name storage
class derives from the fact that different parts of the
memory hierarchy are in play. For example, a local
variable—that is, a variable defined inside a block—is
auto by default. Storage for such a variable comes from
the stack or a CPU register, and the variable’s lifetime
is the time span during which the containing block is
active because some instruction within the block is still

executing.

HOW DOES A VARIABLE DEFINITION DIFFER FROM A DECLARATION?

A definition implements, whereas a declaration describes. A declared function
describes how the function is called and excludes the function’s body; a
defined function includes the body as well. For variables, the distinction
matters only in the case of extern variables, where there is one definition but
there can be more than one declaration. For variables of every other storage
class, the definition and the declaration are effectively the same.
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Here is a summary of the default storage classes for functions and
variables:

o Functions are either extern or static, with extern as
the default.

e Variables defined outside of all blocks are either extern
or static, with extern as the default.

o Variables defined inside a block are either auto, or
register, or static, with auto as the default.

In summary, neither static (functions or variables) nor register
(variables only) is a default storage class. For a function or variable defined
outside all blocks, extern is the default; for a variable defined inside a
block, auto is the default.

On modern computers, C functions are stored in the fext area of
memory, and a function’s lifetime is accordingly the lifetime of the
program to which the function belongs. However, a static function or
variable is not visible outside of its containing source file, whereas an
extern function or variable can be made visible throughout a program—
no matter the file that contains its definition.

In the case of variables, in particular large arrays, the storage classes
extern and static raise issues of efficiency. If an array is extern or
static, then the array’s lifetime is the program’s lifetime. In effect, the size
of the array becomes part of the program’s runtime memory footprint. It
is best to keep arrays on the stack or the heap so that storage for the arrays
persists only as needed.
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4.3. The auto and register
Storage Classes

The details of the auto and register specifiers can be clarified through a
code example.

Listing 4-1. The auto and register specifiers

#include <stdio.h>
#include <stdlib.h> /* rand() */

int main() {
/* i and n are visible from their declaration to the end
of main */
auto int i; /* auto is the default in any case */

int n = 10; /* auto as well */

for (i = 0; i < n; i++) {
register int r = rand() % 100; /* if no register
available, auto */
printf("%i ", 1);
} /* 1 goes out of scope here */
putchar('\n'); /* instead of the usual printf("\n") */
return O;

}

The autoreg program (see Listing 4-1) shows how the auto and
register specifiers could be used. Recall that these specifiers are used
for variables only, and only for variables declared inside a block. In this
example, there are two blocks:
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e The body of function main is the outer block, and int
variables 1 and n are declared in this block. Each is
visible from the point of its declaration until the end
of the block, in this case the end of function main. In
particular, local variables i and n are visible inside the
for loop, a nested code block.

e The for loop’s body is another block. Declared therein
is the register variable r, which is visible only within
the body of the for loop.

The declarations for variables i and n are equivalent, although only
the one for variable i explicitly uses the auto specifier. Because auto is
the default specifier for a variable declared inside a block, this specifier is
almost never used—except for demonstration purposes, as in the autoreg
program.

The register specifier, shown here in the declaration for variable r,
also is rarely used in modern C, as clarified shortly. If the compiler cannot
implement variable r with a CPU register, then the storage class reverts to
the default, auto. The scope for auto and register variables is the same in
any case: the containing block.

The register specifier has become outdated because an optimizing
compiler tries to use a CPU register to store scalar values such as the ones
stored in r during the for loop. It is more productive to flag the compiler
for optimization (e.g., gcc -01...) than to use the register specifier. The
auto specifier also has become outdated because an optimizing compiler
opts for CPU registers whenever possible and uses the stack as the fallback
for scratchpad. From now on, the code examples dispense with explicit
uses of auto and register.
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4.4. The static Storage Class

The static specifier applies to both functions and variables. A variable
can be declared as static either inside a block (with resulting block scope)
or outside all blocks (with a scope from that point until the end of the file).
The first code example deals with static variables.

DOES THE C COMPILER SUPPORT PROFILING?

Yes. The flag -pg enables profiling:

% gcc -pg profile.c  ## produces executable a.out (on
Windows: A.exe)

Running the program produces the file gmon.out, and the utility gprof then
can be executed from the command line:

% gprof

A detailed profiling analysis is printed to the screen.

Although the C compiler includes support for profiling (see the
sidebar), this code example shows how the static specifier can be used to
keep track of how many times a particular function is invoked.

Listing 4-2. Using static variables to profile function calls
#include <stdio.h>

#define SizeF 109
#define SizeB 87

void foo() {
static unsigned n = 0; /* initialized only once */
if (SizeF == ++n) printf("foo: %i\n", n);

}
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void bar() {
static unsigned n; /* initialized automatically to zero */
if (SizeB == ++n) printf("bar: %i\n", n);

}

void main() {
unsigned i = 0, limit_foo = SizeF, limit bar = SizeB;
while (i++ < limit foo) foo(); /* call foo() a bunch of
times */

i=0;
while (i++ < limit bar) bar(); /* call bar() a bunch of
times */

The profile program (see Listing 4-2) tracks the number of times that
main calls two other functions, foo and bar. Each of the called functions
has alocal static variable named n. The compiler initializes a static
variable to zero unless the program provides an initial value. Two points
about these static variables are important in this example:

e Because each variable is declared inside a function,
each variable has function scope only. Accordingly,
the two distinct variables can have the same name, in
this case n.

e Unlike an auto variable (stack based), a static variable
(not stack based) maintains its state across function
calls. For example, each time that the foo function is
called, its variable n is incremented and retains this
new value even when foo exits. An initialized auto
variable would be reinitialized on every call to the
function that encapsulates the variable.
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A static variable has the lifetime of the program regardless of where
the variable is declared, but its scope does differ depending on where the
variable is declared. If declared inside a block, a static variable has block
scope. If declared outside all blocks, a static variable has file scope: it is
visible from the point of declaration until the end of the containing file.

To define a function as static is to restrict the function’s scope to the
file in which it resides. Functions are extern by default, which means that
they are potentially visible throughout the compiled program, regardless of
the source file that happens to contain them. Making a function staticis
as close as it comes to private in C: static functions might be described as
private to the file. Scope is the only difference that matters between extern
and static functions: the former can have program scope, whereas the
latter can have file scope only.

4.5. The extern Storage Class

The source code for a large program is likely distributed among many
files. A function housed in one file may need to call a function housed in
another file. For example, a program that invokes a library function such
as printf is thereby calling a function housed in another file—the library’s
delivery file. Furthermore, a program may require that the same variable—
not just different variables with the same name—Dbe accessible across files.
But neither a static function nor a static variable can be made visible
outside of its containing file. Such functions and variables have program
lifetime due to their static character, but they have only file scope at most.

The extern storage class supports truly global scope, although the
programmer needs to do some work to make this happen. The basic two
steps for global scope go as follows:
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o Avariable or function is defined, implicitly or explicitly,
as externin onefile. (A variable defined outside all
blocks defaults to extern, and functions in general
default to extern.) The term extern can but need not
be used in the definition.

o This variable or function is then declared as extern in
any other file that requires access.

The rule of thumb for making life easy on the programmer is to avoid
the explicit extern in a definition (in particular for variables) and to use
the explicit extern only in a declaration.

A code example should help to clarify the details. The example consists
of two files, prog2filesi.c and prog2files2.c. These will be considered
in order.

Listing 4-3. One source file in the prog2files program
#include <stdio.h>

/* definition of the extern variable: keyword extern is absent,
but could be present if the variable were initialized in its
definition. */
int global num = -999; /* would be initialized to 0

otherwise */

extern void doubleup(); /* declaration of a function defined in
another file */

extern void print() { /* extern could be dropped from this
definition */
printf(“global num: %i\n", global num);
}
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/* set2zero can be invoked only by functions within
this file */
static void set2zero() {

global num = 0;

}

void main() { /* extern could be added, but not necessary */
doubleup(); /* function in another file */
doubleup(); /* call doubleup() again */
print(); /* -3996 */

set2zero(); /* function in this file */
print(); /* o */

The prog2files1.c file (see Listing 4-3) does the following:

o Defines the int variable global _num outside all
blocks. This makes the variable extern, although the
specifier extern does not occur in the definition. The
variable also is initialized to -999. Were the variable
not initialized explicitly, the compiler would set its
value to 0. There is subtle syntax at play here. If the
specifier extern were used, then the variable would
have to be initialized explicitly in order to distinguish
its single definition from one of its many possible
declarations. The safe approach is to omit the specifier
extern from the definition and to use this specifier
only in declarations. The second file in the prog2files
program shows a declaration for global numwith the
specifier extern.
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o Declares the function doubleup as extern, thereby
signaling that this function is defined elsewhere—in
this case, in the other source file, prog2files2.c.

o Defines the function print using the specifier extern.
The extern is not necessary because any defined
function is extern by default unless explicitly specified
to be static

o Defines the function main as extern, but without using
the specifier.

The main function, housed in the source file prog2files1.c, invokes
the doubleup function twice—a function housed in the program’s other
source file, prog2files2.c. If the doubleup function were not declared in
prog2filesl.c, the compiler would complain. The main function also invokes
the static function set2zero. Because set2zerois static, it must be
invoked by a function such as main in the same source file, prog2filesl.c.

Listing 4-4. The other source file in the prog2files program

/* declaration: keyword extern is required, and the variable

must not be initialized here because it then would be a

definition. */

extern int global num;

void doubleup() { /* definition: doubleup is declared
elsewhere, defined here */

global num *= 2; /* the global num defined elsewhere, but
accessed here */
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The second source file prog2files2.c (see Listing 4-4) is deliberately

simple. There are two points of interest:

o The variable global numis declared with the specifier

extern and not initialized. If the variable global nums

were initialized here, this would count as a definition,

thereby breaking the rule that an extern variable (or

function) must be defined exactly once in a program.

The declaration for global_num occurs outside all

blocks but could occur within the function doubleup.

In any case, the declaration of global num with the

required specifier extern signals that this variable

is defined elsewhere, which happens to be the other

source file prog2filesi.c.

o The function doubleup is defined here and is extern

by default. This function is declared in the other source

file with the specifier extern.

The source files in the progZ2files program are compiled in the

usual way:

% gcc -o prog2files prog2filesi.c prog2files2.c
could be in any order

## file names

For review, here again is the rule of thumb that sidesteps the legalese

surrounding the specifier extern. This rule can be spelled out as two

related recommendations:

o Never use the specifier extern in function or variable

definitions, which must occur outside all blocks. The

variables then can be initialized or not according

to need.
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o Use the specifier extern only in declarations of
functions and variables. A variable cannot be
initialized in a declaration, as this would transform the
declaration into a definition.

WHAT DOES CONST MEAN IN C?

The qualifier const for constant originated in C++ and was brought into C. A
few code segments clarify.

const int n = 17; /** n is constant or read-only **/
n = -999; /** ERROR: won't compile -- n is read-only **/
There are workarounds through pointers, however.

int* ptr = &n; /* n is const */
*ptr = -999;  /** WARNING: bad idea, but works **/

The const-ness can be cast away from the pointer:

int* ptr = (int*) 8&n; /* (int*) cast is critical here, as 8n is
(const int*) */

*ptr = -999; /* no error, no warning */

Recall that the parameters to the qsort comparison function are const

void*, in effect a promise that such pointers will not be used to modify the
values pointed to.

4.6. The volatile Type Qualifier

Avariable of any type, including pointers and struct types, can be
qualified as volatile:

volatile int n; /* int could be left of volatile */
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The volatile qualifier cautions the compiler against doing any
optimization on a variable so qualified, in this case n. For example, there
are situations in which an optimizing compiler should not implement a
variable as a CPU register. Two sample situations are introduced in the
following.

The first example deals with an interrupt service routine (ISR). As the
name indicates, an ISR handles interrupts, which originate from outside
the executing program. For example, imagine an ISR written in C to handle
input from one of the machine’s data ports, for example, the port for the
keyboard. The programmer might define and initialize a variable nextc to
store the next character read from the keyboard. An optimizing compiler,
unaware that the data source for the variable is outside the executing
program, may reason that nextc acts within the program like a constant
best implemented in read-only storage; in other words, the compiler sees
the initialization but does not see any updates to nextc. As a result, the
compiler might deliver only this initial value to functions that read nextc.
This optimization would undermine the ISR’s task of reading arbitrary
characters from the keyboard.

WHAT’S A MULTICORE MACHINE?

A core is a fabrication component that contains a processing unit. one or
more CPUs (processors), registers, cache memory, and other architectural
components. A multicore machine is therefore a multiprocessor machine,
with one or more CPUs per core; hence, a multicore machine can support true
parallelism.

The second example concerns multithreading, which Chapter 7
covers in detail. In a multithreaded program, multiple threads of execution
(sequences of instructions) can communicate with one another through
shared memory, for example, through a global variable N that is visible
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across the threads because N is implemented as storage in main memory.
On a multicore machine, however, the registers on a particular core would
be visible only to a thread executing on the core’s processor(s). The point
deserves emphasis: if thread T'1 executes on core CI, then T1 sees only the
registers on CI. If the compiler were to implement global variable N as a
register on core C1, then threads executing on some other core would not
see N. In short, it is important that N be implemented in main memory if N
is to be visible across the multiple threads in the process. The programmer
could make this point to the compiler by qualifying global variable N
as volatile, thereby recommending that the compiler not optimize by
implementing N as a CPU register.

A program with no volatile qualifications may compile to the
same executable as a version of the same program with many such
qualifications. The volatile qualifier does not guarantee anything;
instead, the qualifier is only a cautionary note that the programmer sends
to an optimizing compiler.

Although the syntax for volatile is close to that for storage classes,
volatile is not a storage class. The volatile qualifier has no connection
whatsoever with how a variable, thus qualified, is stored.

DOES C COME WITH A DEBUGGER?

The standard compilers have a debugger with the usual support: breakpoints,
stepping, viewing and resetting variables, and so on. Here is an example with
the fpoint.c as the source file:

1. Compile with the -g flag:

% gcc -g -o fpoint point.c
2. Invoke the debugger on the compiled file:
% gdb fpoint

Inside the debugger, there is a help menu.
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4.7. What’s Next?

Every program in execution requires at least one processor (CPU) to
execute its instructions and memory to store these instructions and
the data that together make up the program. Except for special cases,

a program uses I/O devices as well, which are accessible to a program
as files of one sort or another. A file in this generic, abstract sense is just
a collection of words, and a word is just a formatted collection of bits.
For example, a camera in a smartphone and the lowly keyboard on a
desktop machine are both files in this sense. The role of input and output
operations is, of course, to allow a program to interact with the outside
world. The next chapter gets into the details by highlighting C’s flexible
approach to input/output operations.

150



CHAPTER 5

Input and Output

5.1. Overview

Programs of all sorts regularly perform input/output (I/0) operations, and
programmers soon learn the pitfalls of these operations: trying to open a
nonexistent file, having too many files open at the same time, accidentally
overwriting a file and thereby losing its data, and so on. Nonetheless, I/O
operations remain at the core of programming.

C has two APIs for I/O operations: a low-level or system-level API,
which is byte-oriented, and a high-level API, which deals with multibyte
data types such as integers, floating-point types, and strings. The system-
level functions are ideal for fine-grained control, and the high-level
functions are there to hide the byte-level details. Although the two APIs
can be mixed, as various code examples show, this must be done with
caution. This chapter covers both APIs and examines options such as
nonblocking and nonsequential for I/O operations.

Files and I/O operations are one way to support interprocess
communication (IPC). Recall that separate processes have separate
address spaces by default, which means that shared memory, although
possible, requires setup for processes to communicate with one another.
Local files, by contrast, can be used readily for IPC: one process can
produce data that is streamed to a file, while another process can
consume the data streamed from this file. A later section examines how to
synchronize process access to shared files.
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The API for I/O operations extends to networking, in particular to
socket connections between processes running on different machines. This
chapter thus provides background for the next.

5.2. System-Level 1/0

A short review of some basic concepts should be helpful in clarifying
system-level I/O in C. A process, as a program in execution, requires shared
system resources from at least two but typically from three categories:

e Processors to execute the program’s instructions (at
least one required)

e Memory to store the program’s instructions and data
(required)

o Input/output devices to connect to the outside world
(optional but usual)

Some special-purpose utility processes (background processes) may
require access to few, if any, I/O devices. For convenience, a normal
process is one that uses resources from all three categories. When a normal
process starts, the operating system automatically gives the process access
to three files, where a file is a collection of words and a word is a formatted
collection of bits (e.g., bits that represent printable characters such as A
and Z in a character-encoding scheme such as ASCII). These three files
have traditional names, and they are associated by default with particular
1/0 devices:

o The standard input defaults to the keyboard but can
be redirected to some other device (e.g., a network
connection).

o The standard output defaults to the screen but can be
redirected to some other device (e.g., a printer).
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o The standard error defaults to the screen but can be
redirected to some other device (e.g., a log file on the
local disk).

At the command line on modern systems, the less-than sign < redirects
the standard input; the greater-than sign > redirects the standard output;
and the combined symbols 2> redirect the standard error. Examples are
forthcoming, together with a clarification of why the numeral in 2> is 2.

In system-level I/O, nonnegative integer values called file descriptors
are used to identify, within a process, the files that the process has opened.
Recall that files can be used for interprocess communication (IPC). If
two processes were to open a file to share data using system-level I/0,
then each process would have a file descriptor identifying the file; the file
descriptor values would not have to be the same because the operating
system maintains a global file table that tracks which processes have
opened which files.

Table 5-1. File descriptor and FILE* overview

Name File descriptor Macro FILE*
standard input 0 STDIN FILENO stdin
standard output 1 STDOUT_FILENO stdout
standard error 2 STDERR_FILENO stderr

Table 5-1 summarizes the basics about the three files to which
a normal process automatically gets access. For other files, access is
achieved through a successful call to an open function: in low-level I/0,
the basic function is named open, and in high-level I/0O, the basic function
is named fopen. The table now can be clarified further:
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e Insystem-level I/0, a program can use the three
reserved file descriptors (0, 1, and 2) for I/O operations.
A short example follows. The integer values themselves
can be used, or the macros (defined in unistd.h) shown
in the third column.

o Inhigh-level I/0, the header file stdio.h includes three
pointers to a FILE structure, which contains pertinent
information about an opened file. The pointer stdin is
the high-level counterpart of file descriptor 0, stdout
is the high-level counterpart of file descriptor 1, and
stderr is the high-level counterpart of file descriptor 2.

A first code example draws these introductory points together.

Listing 5-1. Some basic I/O operations using the system-level API

#include <stdio.h>
#include <unistd.h>
#include <string.h>

#define BuffSize 4

void main() {

const char* prompt = "Four characters, please: ";
char buffer[BuffSize]; /* 4-byte buffer */

/* write returns -1 on error, count of bytes written on
success */

write(STDOUT FILENO, prompt, strlen(prompt));

ssize t flag = read(0, buffer, sizeof(buffer)); /* 0 ==
stdin */

if (flag < 0)
perror("Ooops...");  /* this string + a system msg
explaining errno */
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write(1, buffer, sizeof(buffer));
/* 1 == stdout */
putchar('\n");

}

The ioLL program (see Listing 5-1) is a first look at low-level or byte-

oriented I/0. The program uses two of the three automatically supplied

file descriptors: 0 for the standard input (keyboard) and 1 for the standard

output (screen). The key features of the program can be summarized as

follows:

The program writes a prompt, implemented as a string

literal, to the standard output. The write function takes

three arguments:

The first argument specifies the destination for the
write, in this case the standard output. The file
descriptor value 1 could be used here instead of the
macro STDOUT_FILENO.

The second argument is the source of the bytes, in
this case the address of the first character F in the
prompt string.

The third argument is the number of bytes to be
written, in this case the value of strlen(prompt).
The characters are, by default, encoded in ASCIJ;
hence, strlen effectively returns the number of
bytes to be written.

The read function likewise expects three arguments:

The first argument specifies the source from which the

bytes are read, in this case the standard input (0), the
keyboard by default.
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o The second argument specifies where the bytes
should be stored, in this case the char (byte) array
named buffer.

o The third argument specifies the number of bytes to be
read into the buffer, in this case four.

Like many of the low-level I/O functions, read returns an int value:
the number of bytes read, on success, and -1, on error. If an error occurs,
an error code is available in the global variable errno, which is declared
in the header file errno.h. The perror function prints a human-readable
description of this error. This function takes a single string argument
so that the user can add a customized error message to which perror
appends a system error message. If only the system error message is of
interest, perror can be called with NULL as its argument.

The program concludes with another call to write, this time using 1
to designate the standard output. The bytes to be written come from the
array buffer, and the number of bytes is computed as sizeof(buffer),
which returns the number of bytes in the array, not the size of the pointer
constant buffer.

The buffer does not include extra space for a null terminator: the
program does not treat the input from keyboard as a string, but rather as
four independent bytes. The write function takes the same approach: no
string terminator is needed because the last argument to write specifies
exactly how many bytes should be written, in this case four.

A short experiment underscores the level at which the functions read
and write work. The experiment is to replace

char buffer[BuffSize];
with

int buffer; /* sizeof(int) is 4 */
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or, indeed, with a variable of any data type whose size is at least 4 bytes.
The read call now changes to

ssize t flag = read(0, &buffer, sizeof(buffer));
/* &buffer == address of buffer */

The 4 bytes are to be put into a single int variable, which now acts
like a 4-byte buffer. The write statement requires only a minor but
critical change:

write(1, &buffer, sizeof(buffer)); /* need buffer's address */

The address operator must be applied to buffer, which is now just a
scalar int variable.

This experiment underscores that system-level I/O does not honor
multibyte types. For example, the bytes read into the int variable buffer
could be any characters whatsoever. Here is a screen capture of a sample
run of the revised rwLL program:

% ./iolLL
Four characters, please: !$ef
I$ef

These characters are not numerals, of course. The low-level read and
write functions treat these simply as 8-bit bytes stored together in a 4-byte
variable named buffer.

5.2.1. Low-Level Opening and Closing

The next two code examples introduce the byte-oriented open and close
functions. The sysWrite program writes an array of int values, 4 bytes
apiece, to a disk file, and the sysRead program reads the bytes from the
same file in two different ways. The file descriptors 0 (standard input), 1
(standard output), and 2 (standard error) identify files that are opened
automatically when a process begins execution; hence, there is no need for
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the program to call open on these three. For other files, however, a call to
open is required, and a matching call to close is sound practice. (When a
program terminates, the system closes any files that the program may have
opened.) The open function, like so many in the standard libraries, takes a
variable number of arguments.

Listing 5-2. Writing to a local file with system-level I/O

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>

#define FILE _NAME "nums.dat"

void main() {
/* Open a file for reading and writing. */

int fd = open(FILE_NAME, /* name */
O _CREAT | O_RDWR, /* create, read/
write */
S IRUSR | S_IWUSR | S_IXUSR | /* owner's
rights */
S _IROTH | S_IWOTH | S _IXOTH); /* others'
rights */
if (fd < 0) { /* -1 on error, positive value on success */
perror (NULL);
return;

}

/* Write some data. */

int nums[ ] = {9, 7, 5, 3, 1}; /* int[ ] type */

ssize t flag = write(fd, nums, sizeof(nums));

if (flag < 0) { /* -1 on error, count of written bytes on
success */
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perror (NULL);
return;

}

/* Close the file. */

flag =

close(fd);

if (flag < 0) perror(NULL);

The sysWrite program (see Listing 5-2) tries to open a file on the local

disk, creating this file if necessary. The program sets the access rights for

the file’s owner and for others. The program then writes five integers to

the file and closes the file. There is error-checking on all three of these I/O

operations.

In this example, the call to the open function has three arguments, but

the open function also can be called with only the first two arguments. The

arguments in this case are as follows:

The first argument is the name of the file to open. In
this case, the full path is not used; hence, the file will
be created in the directory from which the sysWrite
program is launched.

The second argument consists of flags, perhaps bitwise
or-ed together as in this case. The pair

0 CREAT | O RDWR

signals that the file should be created, if necessary,
and opened for both read and write operations.

The third argument consists of bitwise or-ed values that
specify access permissions on the file. In this example,
the file’s owner has read/write/execute permissions,

as do others. In a production environment, the access
permissions of owner and others might differ.
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If the call to open succeeds, a file descriptor is returned. Its value is
the smallest positive value not currently in use by the process as a file
descriptor. Since the file descriptor for the standard error (2) is in use, the
smallest available value in this case would be 3. A print statement could be
added to confirm that the value of fd is, indeed, 3.

If the call to open fails, -1 is returned to signal some error or other. (The
next code example shows a sample perror message.) The call towrite
again has the three required arguments: the destination for the written
bytes, the source of these bytes, and the number of bytes to write. Here is
the relevant code segment:

int nums[ ] = {9, 7, 5, 3, 1}; /* int[ ] type */
ssize t flag = write(fd, nums, sizeof(nums));
/* ssize t is a signed integer type */

No looping is needed to write the array’s contents because the third
argument, sizeof(nums), is the number of bytes in the array as a whole.
In this example, the bytes are written as integer values because the array’s
elements are stored in memory as int instances. In short, the target file
nums.dat contains binary data, not text. Checking the size of the file nums.
dat confirms that it holds 20 bytes, 4 bytes apiece for the 5 integers written
to this file.

The sysWrite program opens a file by specifying access rights for the
file’s owner and for others. In general, these rights are divided into three
categories: owner, group, and other. The macros such as S_TRUSR and
S_IWUSR are assigned values such that their bitwise or-ing yields unique
values. For example:

S IRUSR | S_IWUSR == 384 ## decimal
whereas

S_IRUSR | S_IRWXU == 448 ## decimal
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The bitwise or-ings can be as complicated as needed. It is common in
Unix-like systems to set file permissions from the command line with octal
values that reflect the bitwise or-ing of the values shown. For example:

S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH == 0664 ## octal

Table 5-2. Access permissions

Octal code Symbolic code Meaning

0001 S_IXOTH Others can execute.
0002 S_IWOTH Others can write.

0004 S_IROTH Others can read.

0007 S_IRWXO0 Others can do anything.
0010 S_IXGRP Group can execute.
0020 S_IWGRP Group can write.

0040 S_IRGRP Group can read.

0070 S_IRWXG Group can do anything.
0100 S_IXUSR Owner can execute.
0200 S_IWUSR Owner can write.

0400 S_IRUSR Owner can read.

0700 S_IRWXU Owner can do anything.

Table 5-2 summarizes the access permissions on files. In the left
column, the values are octal. In C programs, an integer constant that starts
with a 0 is interpreted as being in base-8, just as one starting with 0x or 0X
is interpreted as being in base-16. It is common to use the octal values in
command-line utilities such as chmod, but the symbolic constants are the
way to go in programs. Note, by the way, that the permission values are such
that any bitwise or-ing still yields a unique value. Also, mistakes such as
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S _IWUSR | S_IXGRP | S _IWUSR /* S IWUSR occurs twice */
are harmless.

Listing 5-3. Reading from a local file with system-level I/O

#include <unistd.h>
#include <fcntl.h>
#include <stdio.h>

#define FILE _NAME "nums.dat"

void main() {
int fd = open(FILE_NAME, O RDONLY); /* open for
reading only */
if (fd < 0) { /* -1 on error, > 2 on success */
perror(NULL); /* "No such file or directory" if nums.dat
doesn't exist */
return;

}

int read in[5]; /* buffer to hold the bytes */
ssize t how many = read(fd, read in, sizeof(read in));
if (how_many < 0) {

perror(NULL);
return;
}
close(fd); /* no error check this time */
int i;
int n = how many / sizeof(int); /* from byte count to number

of ints */
for (i = 0; i < n; i++) printf("%i\n", read in[i] * 10);
/* 90 70 50 30 10 */
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The sysRead program (see Listing 5-3) reads five 4-byte int values from
the same file that the sysWrite program populates with these integers. In
the sysRead program, the file is opened for read-only. The available macro
flags for a call to open, together with their values, are

#define O _RDONLY 0x0000 /* open for reading only */
#define O_WRONLY 0x0001 /* open for writing only */
#define O _RDWR 0x0002 /* open for reading and writing */

The source code documentation shows the perror message if the file
nums.dat does not exist.

Once the file is opened, the read function requires a buffer in which
to place the bytes, in this case the read_in array that can hold five int
elements, or 20 bytes in all. The read function, like the others seen so far,
returns -1 in case of error; 0 on end of file; and otherwise the number of
bytes read.

A read operation is the inverse of a write operation, and the arguments
passed to read and write reflect this relationship. The first argument to
read is a file descriptor for the source of bytes, whereas this argument
specifies the destination in the case of write. The second argument to
read is the destination buffer, whereas this argument specifies the source
in awrite. The last argument is the same in both: the number of bytes
involved.

The sysRead program uses the high-level printf function to print the
int values. Each value is multiplied by 10 to confirm that int instances
have been read into memory from the source file. Recall that a successful
read returns the number of bytes, in this case stored in the local variable
how_many; hence, how_many is divided by sizeof(int) to get the number of
4-byte integers, in this case five.

Together the sysWrite and sysRead programs illustrate how local disk
files can support basic interprocess communication. The programs would
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need to be amended so that, for example, the sysRead program would
wait for the nums.dat file to be created and populated with integer values
before trying to read from that file. A later code example covers file locking
for synchronizing access to shared files.

5.3. Redirecting the Standard Input,
Standard Output, and Standard Error

Redirecting the standard input, the standard output, and the standard
error with programs launched from the command line is straightforward.
A simplified version of an earlier program illustrates. This approach

brings the advantage of using one and the same program for reading and
writing arbitrarily many files, but without editing and then recompiling the
source code.

Listing 5-4. Redirecting1/0

#include <stdio.h>
#include <unistd.h>
#include <string.h>

#define BuffSize 8

void main() {
char buffer[BuffSize]; /* 8-byte buffer */
ssize t flag = read(0, buffer, sizeof(buffer)); /* 0 ==

stdin */
if (flag < 0) {
perror("Ooops...");
return;

}

char ws = "\t';
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write(1, buffer, sizeof(buffer)); /* 1 == stdout */
write(1, &ws, 1); /* ditto */
write(2, buffer, sizeof(buffer)); /* 2 == stderr */
putchar('\n");

The ioRedirect program (see Listing 5-4) expects to read 8 bytes from
the standard input and then echoes these bytes to the standard output and
the standard error. If the bytes are ASCII character codes, the program is
easy to follow. Here is a screen capture of a sample run; my comments start
with ##:

% ./ioRedirect ## on Windows, drop the ./
12345678 ## typed in from the keyboard, echoed on
the screen

12345678 12345678  ## 1st 8 to standard output, 2nd 8 to
standard error

The file infile contains a single line:
abcdefgh
To redirect the standard input to this file, the command is
% ./ioRedirect < infile ## < redirects the standard input
The output now is
abcdefgh abcdefgh
To redirect the standard output to the file outfile, the command is

% ./ioRedirect > outfile
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The eight characters entered on the keyboard now appear once on the
screen (default for the standard error) and once in the local disk file outfile.
By the way, if outfile already exists, then the redirection purges this file and
then repopulates it; hence, caution is in order.

Redirection to the standard error differs only slightly. Recall that 2 is
the file descriptor for the standard error:

% ./ioRedirect 2> logfile
Redirections can be combined as needed, for example:
% ./ioRedirect < infile 2> logfile
Assuming that infile is the same as before, the contents of logfile are

abcdefgh abcdefgh

5.4. Nonsequential 1/0

The examples so far have dealt with sequential 1/O: bytes are read in
sequence and written in sequence. It is convenient at times, however, to
have random or nonsequential access to a file’s contents. A short code
example illustrates the basic API.

Listing 5-5. Random or nonsequential file access

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>

#define FILE _NAME "test.dat"
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void main() {
const char* bytes = "abcdefghijklmnopqrstuvwxyz";
int len = strlen(bytes);
char buffer[len / 2];
char big N = 'N';

/* Open the file and populate it with some bytes. */
int fd = open(FILE_NAME,

0 RDWR | O CREAT, /* flags */
S _IRUSR | S_IWUSR | S IXUSR); /* owner's
rights */

write(fd, bytes, len);

off_t offset = len / 2; /* twelve bytes in is
character n */

1seek(fd, offset, SEEK SET); /* SEEK_SET is the start of
the file */

write(fd, &big N, sizeof(char)); /* overwrite 'n' with 'N' */

close(fd);

fd = open(FILE_NAME, O RDONLY);

lseek(fd, offset, SEEK SET);

read(fd, buffer, len / 2);

close(fd);

write(1, buffer, len / 2); /* Nopqrstuvwxyz */
putchar('\n");

The nonseq program (see Listing 5-5) skips the error checking to
minimize the clutter, thereby keeping the focus on the nonsequential file
access. The program first writes 26 bytes (the lowercase characters in the
English alphabet) to a file. After closing the file, the program reopens the
file to do an lseek operation that sets up another write operation, this
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time a write of just one byte. As the name indicates, the function 1seek
performs a seeking operation, which can change the current file-position
marker. A closer look at 1seek clarifies.

The library function 1seek takes three arguments. They are, in order:

o Afile descriptor
e A byte offset from a designated position in the file

o The start position for the offset, with three convenient
macros to define the usual positions:

o SEEK_SET is the start position in the file.
o SEEK CURis the current position in the file.

e SEEK ENDis the end position in the file.

The 1seek function returns -1 in case of an error, or the offset to
indicate success. The returned offset could be saved for later use. The
offsets for 1seek are like indexes in a char array: an offset of 0 is the
position of the first byte in the file from the seek position, and an offset of
1 is the position of the second byte in the file from the seek position, and
so on. In this example, the offset is 13, the position of the ASCII character
code for lowercase n. An 1seek operation beyond the current end of a file
does not expand the file’s size; a subsequent write operation would be
required to do so.

Once the current position has been reset with 1seek, the program
overwrites the lowercase n with an uppercase N. The file then is closed
again only to be reopened one more time. There is another 1seek to the
position of the now uppercase N and a read operation to get the bytes for
N through z into the char array named buffer. For confirmation, buffer is
printed to the standard output.
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5.5. High-Level I/0

System-level I/0 is low level because it works with bytes, the char type in
C; by contrast, high-level I/O can work with multibyte data types such as
integers, floating-point numbers, and strings. To take but one convenient
example, the API for the high-level I/O makes it straightforward to convert
between, for example, integers and strings. High-level I/O can work at

the byte (char) level, but this kind of I/0 is especially useful above the
byte level.

The names are similar for some functions in the high-level and the
low-level API. For example, there is a low-level open function and the
high-level fopen function, as well as the low-level close and the high-
level fclose functions. There is an fread function in the high-level API
that matches up with the read function in the low-level API. The functions
differ in syntax, of course, but also in how they work at the byte level. The
low-level functions work only at the byte level, whereas the high-level API
can work directly with multibyte types such as int and double.

There is crossover. For example, the high-level fdopen function takes
a low-level file descriptor as an argument but returns the high-level type
FILE*, the return type for various high-level library functions. Consider
this contrast for opening and closing a file on the local disk:

int fd = open("input.dat", O_RDONLY); /* low-level: -1 on
failure */

FILE* fptr = fopen("input.dat”, "r"); /* high-level: NULL on
failure */

The corresponding function calls to close the opened file would be

close(fd); /* fd is an int value */
fclose(fptr); /* fptr is a FILE* value */
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In general, a file opened with the low-level open function is closed with
the low-level close function. In a similar fashion, a file opened with fopen
is closed with the fclose function. By the way, there is a limit on how
many files a process can have open at a time; hence, it is critical to close
files when keeping them open is no longer important.

In the low-level AP], the integer values 0, 1, and 2 identify the standard
input, the standard output, and the standard error, respectively. In the
high-level API, the FILE* pointers stdin, stdout, and stderr do the same.
The data type of interest in high-level I/0 is FILE*, not FILE. It would be
highly unusual for a program to declare a variable of type FILE, but typical
for a program to assign the value returned from a high-level I/O function to
a variable of type FILE*.

The following code segment summarizes the contrast between low-
level and high-level I/0, with variable fd as a file descriptor and variable
fptr as a pointer to FILE:

int buffer[5]; /* 5 ints == 20 bytes */

read(fd, buffer, sizeof(int) * 5); /* byte level read: read
20 bytes */

fread(buffer, sizeof(int), 5, fptr); /* int level read: read
5 ints */

The low-level read function reads a specified number of bytes and
stores them somewhere—in this case, in a 20-byte buffer that happens
to be an int array of size five. By contrast, the high-level fread function
can read multibyte chunks, in this case five int values, which are 4
bytes apiece.

Some in the C community believe that FILE should have been named
STREAM, and it is common to describe high-level I/O as stream-based
I/0. In a technical sense, C has two ways for a program to connect to any
file, including the standard input, a local disk file, and so on:
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o Through a file descriptor, an integer value that identifies
the opened file.

e Through a stream, a channel that connects a source and
a destination: the file could be either the source (read
operation) or destination (write operation).

To study the API for the high-level I/0 is, in effect, to study various
ways of managing I/0 streams. The forthcoming examples do so.

Listing 5-6. Basics of high-level I/O

#include <stdio.h>
#define FILE NAME "data.in"

void main() {
float num;
printf("A floating-point value, please: ");
int how many floats = fscanf(stdin, "%f", &num);
/* last arg must be an address */

if (how_many floats < 1)

fprintf(stderr, "Bad scan -- probably bad characters\n");
else

fprintf(stdout, "%f times 2.1 is %f\n", num, num * 2.1);

FILE* fptr = fopen(FILE_NAME, "w"); /* write only */
if (!fptr) perror("Error on fopen"); /* fptr is NULL (0) if
fopen fails */
int i;
for (i = 0; i < 5; i++)
fprintf(fptr, "%i\n", i + 1);
fclose(fptr);

fptr = fopen(FILE_NAME, "r");
int n;
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puts("\nScanning from the input file:");
while (fscanf(fptr, "%i", &n) != EOF) /* EOF == -1 == all 1s
in binary */
printf("%i\n", n);
fclose(fptr);
}

The scanPrint program (see Listing 5-6) covers some basics of high-
level I/0O, beginning with scanning a file for input. The statement

int how_many floats = fscanf(stdin, "%f", &num);

highlights some distinctive features of the high-level API. The function
fscanf, with f for file, is structured as follows:

o The first argument specifies the source from which to
scan for input, in this case stdin. The shortcut function
scanf is hard-wired to read from the standard input,
but fscanf explicitly names the source as its first
argument. The first argument to scanf is the second
argument to fscanf, the format string:

int how_many floats = scanf("%f", &num); /* scanf
instead of fscanf */

e The second argument to fscanf is the format string,
which specifies how scanned bytes are to be converted
into an instance of some type, including a multibyte
type such as the 4-byte float. The format string can
contain arbitrarily many formatters.

e The third argument is the destination address, that
is, the address of where the formatted bytes are to be
stored. In this example, the third argument is &num. The
scanning functions in general, including fscanf, return
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the number of properly formatted instances of the
specified data type, in this case float. The format string
requests that only a single float be formatted; hence,
the returned value is either 0 (failure) or 1 (success).

WHY IS THE ADDRESS OPERATOR & SO CRITICAL IN THE SCANNING
FUNCTIONS?

A typical call to scanf is

int num; /* num is a local variable, and so contains
random bits */
scanf("%i", &num); /* read an int, store it at the address of n */

If the address operator & were missing from &num in the scanf call, the
contents of num would be interpreted as an address, and it is highly unlikely
that these random bits make up an address within the executing program’s
address space. If num is a local variable, for example, its contents are random
bits from the stack or a register.

The scanPrint program prompts the user to enter a floating-point
value. If inappropriate characters such as abc.de are entered instead, the
program prints an error message to that effect. The fprintf function is
used to print to the standard error:

if (how_many floats < 1)
fprintf(stderr, "Bad scan -- probably bad characters\n");

Otherwise, the scanned float value is multiplied to confirm that the
conversion from bytes to a float instance indeed succeeded. The printf
function is hard-wired for printing to the standard output, just as the scanf
function is hard-wired for scanning from the standard input. In general,
error messages should have the standard error as their destination; hence,
the scanPrint function uses fprintf with stderr as the first argument.
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The last loop in the program is a while loop, and the loop’s condition is
a common one in programs that use high-level I/O to read from files:

while (fscanf(fptr, "%i", &n) != EOF) /* EOF == -1 == all 1s in
binary */

The value returned from fscanf in particular, and the related scanning
functions in general, is tricky:

o Iffscanfissuccessful in reading and converting, it
returns the number of such successes. This number
could be zero, which does not represent an input error,
but rather a data conversion failure.

o Ifan end-of-stream condition occurs before a successful
scan-and-convert, the function returns -1 (the value of
the macro EOF). The high-level API also includes the
function feof(), which returns frue (nonzero) to signal
end of file and false (zero) otherwise.

o Ifan input error occurs (e.g., the data source is absent),
fscant also returns -1.

Atissue, then, is how to distinguish between EOF, a normal eventuality
when reading from a stream, and an outright error. The library function
ferror returns nonzero (frue) to indicate an error condition in the
stream, and the global variable errno contains an error code under
the same condition; as usual, the perror function can be used to print
a corresponding error message. For the programmer, however, the
difference may not matter: fscanf returns a negative value to signal, in
effect, that a scan-and-convert operation on a stream has failed. The
ferror function and the errno variable then can be used, if needed, to get
more information on why the failure occurred.
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A final point about EOF is in order. The EOF value (32 1s in binary)
marks the end of a stream, and streams can differ in their sources. If the
source is a file on a local disk, then the EOF is generated when a read
operation tries to read beyond the last byte stored in the file. If the source
is a pipe, a one-way channel between two processes, then the EOF is
generated when the pipe is closed on the sending side. An EOF thus should
be treated as a condition, rather than as just another data item. To be sure,
a program recognizes the EOF condition by reading the 32 bits that make
up the EOF value; but these 32 bits differ in meaning from whatever else
happens to be read from the stream.

High-level I/0 is appropriately named, for this level focuses on
the multibyte data types that are dominant in high-level programming
languages. There may be times at which any program must drop down to
the byte level, but the usual level is awash with integers, strings, floating-
point values, and other instances of multibyte types. C works well at either
I/0 level. Other technical aspects of high-level I/O will be explored in
forthcoming examples, which provide context for exploring this API.

5.6. Unbuffered and Buffered I/0

There is yet another way to contrast low-level and high-level I/O: low-level
I/0 operations are said to be unbuffered, whereas the high-level ones are
said to be buffered. It is important, however, to consider carefully what
it means for low-level I/O to be unbuffered. A buffer in this context is a
system-supplied, in-memory storage area between the executing program,
on the one side, and the data source, on the other side.

Consider a code segment that reads a single byte:

char byte;
read(fd, 8byte, 1); /* fd identifies a local disk file */
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For reasons of efficiency, no modern operating system would fetch a
single byte from disk into memory. Instead, the system would fetch a block
of bytes into a memory buffer and then deliver the single byte from this
buffer to the program:

local disk---------------- >| memory buffer |---------------- >read(fd, &byte, 1)

To call low-level 1/O unbuyffered is not to deny system buffering
under the hood. Instead, the point is that the low-level API supports the
reading of just one byte, regardless of exactly how that byte might have
been delivered to the program that invokes the read function with a third
argument of 1.

The high-level fread function is essentially a wrapper around the
low-level read function. Each can read a single byte:

char byte;
read(0, &byte, 1); /* one byte from standard input */
fread(&byte, 1, 1, stdin); /* ditto */

There are also high-level functions such as fgetc that seem to read a
single byte, as the c for char in the function’s name suggests. But the return
type for fgetc and related high-level functions is int, not char. The fgetc
function, like its high-level cousins, returns EOF to signal the end-of-stream
condition, and EOF is a 4-byte int value. In situations other than EOF, the
fgetc function returns a byte packaged in an int whose high-order 24 bits
are zeroed out; the byte of interest occupies the low-order 8 bits.
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Listing 5-7. A program contrasting read and fgetc

#include <unistd.h>
#include <stdio.h>

void main() {
int i =0, n=38;
char byte;

/* unbuffered */

while (i++ < n) {
read(0, 8byte, 1); /* read a single byte */
write(1, &byte, 1); /* write it */

}
/* buffered */
i=0;

while (i++ < n) {
int next = fgetc(stdin); /* char read in a 4-byte int */
fputc(next, stdout); /* char written as a 4-byte int */
}
putchar('\n");

}
/* stdin is: 12345678abcdefgh */

The buffer program (see Listing 5-7) contrasts byte-fetching in the
low-level and the high-level APIs. The low-level read stores the byte in a
char variable, and sizeof(char) is guaranteed to be 1 byte. By contrast,
the high-level fgetc function returns a 4-byte int. From the command
line, the program can be tested against the in.dat file, whose contents are
shown in the comment at the bottom:

% buffer < in.dat
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Otherwise, all 16 characters should be entered at once from the
keyboard, and only then should the Return key be hit.

The traditional contrast between buffered and unbuffered 1/0O can be
misleading, as emphasized in the previous discussion. It is more useful to
focus on program requirements. If a program needs to work directly with
bytes, then the low-level API is designed to do precisely this. If a program
deals mostly with multibyte types but occasionally drops down to the byte
level, then the high-level API, which includes wrappers such as fread for
low-level functions, is the sensible alternative.

5.7. Nonblocking 1/0

Nonblocking I/0 has become a popular technique for boosting
performance. For example, a production-grade web server is likely to
include nonblocking I/0O in the mix of acceleration techniques. The
potential boost in performance is likewise a challenge to the programmer:
nonblocking I/0 is simply trickier to manage than its blocking counterpart.

As the name indicates, nonblocking I/O operations do not block—that
is, wait—until a read, write, or other I/0O operation completes. Consider
this code segment in system-level I/0:

int n; /* 4 bytes */
read(fd, &n, sizeof(int)); /* blocking read operation */
printf("%i\n", n); /* next statement after

blocking read */

The file descriptor fd might identify a local file on the disk but also
a less reliable source of bytes such as a network connection. If the read
operation in the second statement blocks, then the printf statement
immediately thereafter does not execute until the read call returns,
perhaps because of an error.
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If the read call were nonblocking, the code segment would need a
more complicated approach. A nonblocking call returns immediately, and
there are now various possibilities to consider, including the following:

e The read call got all of the expected bytes, in this
case four.

e The read call got only some of the expected bytes and
perhaps none at all.

¢ The read call encountered an error or end-of-stream
condition.

The program now needs logic to handle such cases. Consider the
second case. If one call to a nonblocking read gets only some of the
expected bytes, then these bytes need to be saved, and another read
attempted to get the rest. Perhaps a loop becomes part of the read logic:
loop until all of the expected bytes arrive or an error occurs. At the very
least, it seems that the printf statement would need to occur inside
an if test that checks whether enough bytes were received to go on with
the printf.

IS NONBLOCKING 1/0 THE SAME AS ASYNCHRONOUS 1/0?

The use of the terms blocking/nonblocking and Synchronous/asynchronous
varies enough to rule out a simple yes or no answer. My preference is for
the blocking/nonblocking pair because they seem more intuitive. That said,
code examples are the best way to clarify exactly what these terms mean in
practice.
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5.7.1. A Named Pipe for Nonblocking 1/0

The next code example uses the nonblocking read operation as
representative of nonblocking I/O operations in general. For the example
to be realistic, it should have two features:

e The data consumed in a nonblocking read operation
should arrive randomly; otherwise, the nonblocking
reads might behave exactly as blocking reads
would have.

o After an attempted nonblocking read operation, the
program should have meaningful work to do before the
next read operation: the appeal of nonblocking I/0 is
that it frees up a program to do something else besides
just waiting for an I/0O operation to complete.

Accordingly, the code example consists of two programs: one writes
in a pseudorandom fashion to a named pipe, and the other reads from
this pipe. A pipe is a connection between processes, and one way in that
one end of the pipe is for writing, and the other is for reading. There are
both unnamed (or anonymous) and named pipes, both of which are used
widely across modern systems for interprocess communication. A later
example covers unnamed pipes.

Unix-like systems, and Cygwin for Windows, have command-line
utilities that make it easy to demonstrate named pipes. The steps are as
follows:

1. Open two terminal windows so that two command-
line prompts are available. The working directory
should be the same for both command-line
prompts.
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In one of the terminal windows, enter these two
commands (my comments start with ##):

% mkfifo tester ## creates special file named tester,
which implements the pipe

% cat tester ## type the pipe's contents to the
standard output

To begin, nothing should appear in the window
because nothing has been written yet to the
named pipe.

In the second terminal window, enter the following
command:

% cat > tester ## redirect keyboard input to the pipe
hello, world! ## then hit Return key

bye, bye ## ditto

<Control-C> ## terminate session with a Control-C

Whatever is typed into this terminal window is echoed
in the other. Once Control-C is entered, the regular
command-line prompt returns in both windows: the
pipe has been closed.

For cleanup, remove the file that implements the
named pipe:

% rm tester

As the name mikfifo suggests, a named pipe also is called a fifo for first

in, first out (FIFO). A named pipe implements the FIFO discipline so that

the pipe acts like a normal queue: the first byte into the pipe is the first byte

out, and so on. There is also a library function named mkfifo, which is

used in the next code example.
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Listing 5-8. A named pipe writer

#include <fcntl.h>
#include <unistd.h>
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/types.h>

#define MaxLoops 12000 /* outer loop */

#define ChunkSize 16 /* how many written at a time */
#define IntsPerChunk 4 /* four 4-byte ints per chunk */
#define MaxZs 250 /* max microseconds to sleep */

void main() {

const char* pipeName = "./fifoChannel";
mkfifo(pipeName, 0666); /* read/write for user/group/
others */

int fd = open(pipeName, O CREAT | O _WRONLY); /* open as
write-only */

sleep(2); /* give user a chance to start the fifoReader */
int i;
for (i = 0; i < MaxLoops; i++) { /* write MaxWrites
times */
int j;
for (j = 0; j < ChunkSize; j++) { /* each time, write
ChunkSize bytes */
int k;
int chunk[IntsPerChunk];
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for (k = 0; k < IntsPerChunk; k++)
chunk[k] = rand();
write(fd, chunk, sizeof(chunk));
}

usleep((rand() % MaxZs) + 1); /* pause a bit for realism */

}

close(fd); /* close pipe: generates an
end-of-file */

unlink(pipeName); /* unlink from the

implementing file */

printf("%i ints sent to the pipe.\n", MaxLoops * ChunkSize *
IntsPerChunk);

}

The fifoWriter program (see Listing 5-8) creates and then writes
sporadically to the named pipe called fifoChannel. Two statements at the
start do the setup:

mkfifo(pipeName, 0666); /* read/write for user/group/others */
int fd = open(pipeName, O CREAT | O _WRONLY); /* open as
write-only */

The first statement calls the library function mkfifo with two
arguments: the name of the implementing file and the access permissions
in octal. The second statement invokes the by-now-familiar open function,
specifying that the file underlying the named pipe be created if necessary;
the fifoWriter is restricted to write operations because of the 0_WRONLY flag.

The fifoWriter then pauses for two seconds to give the user a chance
to start the other program, the fifoReader. The fifoWriter needs to start
first because it creates and opens the named pipe; but the two-second
pause is there only for convenience. The fifoWriter program then loops
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MaxLoops times (currently 12,000), writing multibyte chunks rather than
single bytes to the pipe. A chunk is an array of four 4-byte int values.
After writing the bytes to the pipe, the program pauses a pseudorandom
number of microseconds, thereby making the write operations somewhat
unpredictable. In all, the fifoWriter writes 768,000 int values to the pipe.
The program does cleanup at the end. The file descriptor fd is used to
close the pipe, which generates an end-of-file signal for the reader side.
The call to the unlink function unlinks the fifoWriter program from the
implementation file fifoChannel. When all of the processes connected
to the pipe unlink, the system is free to remove the file. In the current
example, there is only a single writer process to the pipe and a single
reader process from the pipe; hence, only two unlink operations are
required.

Listing 5-9. A named pipe reader

#include <fcntl.h>
#include <unistd.h>
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/types.h>

unsigned is_prime(unsigned n) { /* not pretty, but efficient */
if (n <= 3) return n > 1;
if (0==(n%2) || 0==1(n%3)) return o;

unsigned 1i;
for (i =5; (1 *1i) <=n; i +=6)
if (0==(n%1i) || 0==(n% (i + 2))) return 0;

return 1;

}
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void main() {
const char* file = "./fifoChannel";
int fd = open(file, O RDONLY | O NONBLOCK); /* non-
blocking */
if (fd < 0) return; /* no point in continuing */
unsigned primes count = 0, success = 0, failure = 0;

while (1) {
int next;
int i;
ssize t count = read(fd, &next, sizeof(int));
if (0 == count)

break; /* end of stream */
else if (count == sizeof(int)) { /* read a 4-byte int
value */
success++;
if (is_prime(next)) primes count++;
}
else /* includes errors, and <
4 bytes read */
failure++;
}
close(fd); /* close pipe from read end */

unlink(file); /* unlink from the underlying file */
printf("Success: %u\tPrimes: %u\tFailure: %u\n",
success, primes count, failure);
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The fifoReader program (see Listing 5-9) reads from the named pipe
that the fifoWriter creates and then populates with chunks of int values.
The program configures the pipe for nonblocking read operations with the
0_NONBLOCK flag passed as an argument to the open function:

int fd = open(file, O RDONLY | O_NONBLOCK); /* non-blocking */

The utility function fcntl also could be used to set the nonblocking
status, as illustrated shortly. The program tries to read int values from
the pipe:

ssize t count = read(fd, &next, sizeof(int)); /* 4-byte int
values */

Recall that the fifoWriter writes an array of four int values at a time
and does so sporadically. Because the read operation in the fifoReader is
nonblocking, three cases are singled out for application logic:

o Ifthe read function returns 0, this signals an end-of-
stream condition in the named pipe: no further bytes
are coming from the one and only writer, and so the
fifoReader breaks out of its infinite loop.

o Ifthe read function yields exactly 4 bytes, then the
program checks whether the integer value is a prime;
this check represents the do something step before
attempting the next read operation.

o Ifthe read function fails to read exactly 4 bytes, or
detects an error condition of any kind, then the
program records the failure. The fifoReader program
does not distinguish between partial reads (e.g., 2
bytes instead of the expected 4) and miscellaneous but
nonfatal errors.
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The fifoReader, like the fifoWriter, cleans up by closing the named
file and unlinking from the implementation file. The fifoReader generates
a short report at the end. On a sample run, the output (formatted for
readability) was

Success: 768,000 Primes: 37,682 Failure: 31,642,062

Recall that the thirty-one million or so failures cover partial reads
(read returns less than sizeof(int)) and nonfatal errors. In the end, the
fifoReader does manage to read all of the 768,000 4-byte integer values
that the fifoWriter writes to the pipe; but the fifoReader has plenty of
unsuccessful reads as well: the fifoWriter sleeps between write operations,
which gives the fifoReader ample opportunity to attempt nonblocking read
operations doomed to fail because no unread bytes remain in the channel.
In short, the output from the fifoReader is not surprising.

The fifoReader program has a dismal record of successful reads: about
2% of its read operations succeed in getting desired 4-byte int values,
and the remaining read operations fail. The next chapter introduces an
event-driven approach to read operations. This new approach first checks a
channel for available bytes before even attempting a read operation.

The fifoReader program uses a flag passed to the open function to set
the nonblocking status. The standard libraries include an fcntl utility,
declared in the header file fcntl.h, that can do the same. The fcntl
function has many uses and a correspondingly long documentation.

Listing 5-10. A function to set the nonblocking feature

unsigned set nonblock(int fd) {
int flags = fcntl(fd, F_GETFL); /* get the current
flag values */
if (-1 == flags) return 0; /* on error, return
false */
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flags |= O_NONBLOCK; /* add non-
blocking */

return -1 != fentl(fd, F_SETFL, flags); /* 1 == success, 0 ==
failure */

The setNonBlock example (see Listing 5-10) shows how a file descriptor
can be used to change the status from blocking to nonblocking. The set_
nonblock function takes a file descriptor as its only argument and returns
either true (1) or false (0) to signal whether the attempt succeeded. The
function first gets the flags currently set (e.g., 0 CREAT and O_RDONLY); if
an error occurs here, false is returned. Otherwise, the function adds the 0 _
NONBLOCK flag and then uses the fcntl function for updating. If the update
succeeds, set_nonblock returns true, and false otherwise.

5.8. What’s Next?

Network programming centers on the socket API, where a socket is an
endpoint in a point-to-point connection between two processes. If the
processes are running on physically distinct hosts (machines), a network
socket is in play. If the processes are running on the same host, a domain
socket could be used instead. (Domain sockets are a popular way for large
systems, such as database systems, to interact with clients.) The very same
I/0 API used to interact with disk files works with sockets as well. Sockets,
unlike pipes, are bidirectional.

This chapter has focused on I/0 operations on a single machine.
The next chapter broadens the study to include I/0 operations across
machines, and the chapter also explores an event-driven alternative to the
nonblocking I/0 introduced in this chapter.
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Networking

6.1. Overview

Network programming brings challenges beyond the details of yet
another API. Networks can be brittle, as connections go down for reasons
that may be hard to determine. Performance can vary widely because

of network load. Programs must be sufficiently robust to deal with such
issues and to anticipate the many others that come with the territory.
Debugging network applications is harder, in general, than debugging
ones that involve only a single machine. Given the challenges of network
programming, it is no surprise that library functions in its support can
seem subtle, complicated, and even overwhelming. This chapter uses
relatively short but realistic examples to illustrate the challenges and
sound ways to address them. After a few more introductory points, the
discussion moves to a series of code examples.

Table 6-1. The basic protocol stack

Acronym  Meaning Comments

HTTP Hyper Text Transport Protocol Web servers and their clients

TCP Transmission Control Protocol ~ Connection-oriented, reliable

ubpP User Datagram Protocol Connectionless, best-try

IP Internet Protocol Addressing: symbolic and numeric
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Table 6-1 lists the protocols of interest in the forthcoming examples.
The protocol stack shown in the table has IP at the bottom and HTTP at
the top: IP handles network addressing, and HTTP manages conversations
between web servers and their clients. The HTTP protocol sits atop TCP,
which is connection-oriented: the protocol sets up a connection between
the endpoints before any data are transmitted. This connection-oriented
feature contrasts with the best-try character of UDP. Under UDP, a sender
sends a datagram to a receiver, but the receiver does not acknowledge
automatically the receipt of the transmitted packet. Further, there is no
error sent to the sender if the datagram gets lost. TCP adds error reporting,
acknowledgment, and other services to the underlying UDP layer. HTTP, in
turn, specializes the features inherited from TCP. The web socket protocol
so popular in interactive web-based applications is built on top of TCP as
well and has less overhead than HTTP.

The socket APT has settings that reflect the different protocol layers
shown in Table 6-1. Each of the protocols supports some level of
configuration, which is done through a mix of utility functions and flags.
The socket API must be complicated, in short, because the underlying
protocol stack is so.

The library functions exposed in the socket API have been fine-tuned,
reworked, and even obsoleted over time. Again, this is to be expected: the
protocols themselves have changed. For example, the IP protocol comes
in versions such as IPv4 and IPv6. The move from IPv4 to IPv6 is a major
one in that Internet addresses go from 32 to 128 bits. The code examples
address this versioning issue.

6.2. A Web Client

The first code example, a web client, is divided into two source files for
convenience. The file web_client.c contains the high-level application
logic: connect to a web server, send a request, and print the response.

190



CHAPTER6 NETWORKING

The file get_connection.c contains the low-level networking details such

as determining the type of connection (UDP or TCP) to the server, the

amount of time a read operation should wait on a response before timing

out, and so on. (The next sidebar describes a Makefile for compiling the

files into an executable.)

Listing 6-1. A basic web client

#include
#include
#include
#include
#include

<unistd.h> /* low-level I/0 */
<string.h>

<stdio.h>

<stdlib.h> /* exit */
<errno.h>

#define BuffSize 2048 /* bytes */

extern int get connection(const char*, const char*);

void main() {

const char* host

const char* port

"www.google.com";

"80";

/* declaration */

/* symbolic IP
address */

/* standard port for
HTTP connections */

const char* request = "GET / HTTP/1.1\nHost: www.google.
com\r\n\r\n";

ssize t count;
char buffer[BuffSize];

/* connect */
int sock fd = get connection(host, port);
if (sock fd < 0) {
fprintf(stderr, "Can't connect\n");
exit(-1);

}
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/* send request */

if (write(sock fd, request, strlen(request)) < 0) {
fprintf(stderr, "Can't write request\n");
exit(-1);

}

/* get and write response */
unsigned read count = 0, total bytes = 0;
memset(buffer, 0, BuffSize); /* clear the buffer for reading */

while (1) {
count = read(sock fd, buffer, sizeof(buffer));

if (EWOULDBLOCK == errno || 0 == count) break;

/* EWOULDBLOCK on timeout */

if (-1 == count) continue; /* continue on non-fatal
error */

write(1, buffer, count);
read count++; total bytes += count;
}
close(sock fd);
fprintf(stderr, "\n\n%u bytes read in %u separate reads.\n",
total bytes, read count);

The file web_client.c (see Listing 6-1), one of the two source files in
the webclient program, uses the familiar read and write functions to
communicate with a web server, in this case a Google HTTP server. A
socket, just like a file on the local disk, has a file descriptor as its identifier.
In addition to the read and write functions, the socket API also has send
and recv functions, which take four arguments instead of the three in read
and write. The fourth argument, in both cases, allows for configuration

through various flags.

192



CHAPTER6 NETWORKING

The webclient program initializes two strings, host and port, which
specify the symbolic IP address for the Google server and the port number:
www.google.com and 80, respectively. The port number 80 is the default for
HTTP connections, just as 443 is the default port for HTTPS connections.
Instead of the symbolic IP address, the program could have used the IPv4
dotted-decimal address 216.58.192.132, each of whose four parts is 8 bits
in size. The IP address and port number are sent as arguments to the get
connection function, which returns either the file descriptor for a socket
(success) or -1 (failure). In case of failure, the webclient program exits after
an error message.

WHAT’S A MAKEFILE?

The webclient program consists of two source files. It can be tedious to
compile multiple files into an executable. The make utility, available on most
Unix-like systems and through Cygwin, automates the process. Here is a bare-
bones Makefile (with Makefile as its name), which the make utility reads by
default:

webclient: web_client.c get connection.c
gcc -o webclient web client.c get connection.c

The first line lists the target (webclienf) and its dependencies, with a colon as
the separator. The dependencies consist of the two source files in any order.
The second line begins with a single tab character, not blanks. This line is
the command to be executed, in this case a familiar gcc command. At the
command line, invoke the make utility:

% make #t reads Makefile, follows the instructions

Far more extravagant examples of Makefile are available on the Web.
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The webclient program has a third string literal, which holds the
request. In more readable form, the request is

GET / HTTP/1.1 ## start line: verb (GET), noun (URI /),
HTTP version (1.1)
Host: www.google.com ## required header element in HTTP 1.1

The first line is the HTTP start line, consisting of the HTTP method
(verb) named GET: a GET request is a read request, whereas a POST
request is a create request (e.g., a POSTed order form is a request to create
an order). After the start line come arbitrarily many header elements, or
headers for short. These are key/value pairs, with a colon as the separator.
Under HTTP 1.1, the host header, which specifies the device address
to which the request is being sent, is required; but a half-dozen or so
headers is typical. The headers section ends with two carriage-return/
newline combinations. (Two newlines are likely to work.) A GET request
has no HTTP body, and so is complete as shown. In the start line, the
URI (Uniform Resource Identifier) is the single slash, which web servers
typically interpret as the identifier for their home page. In effect, then,
the start line and the host header make up a read request for Google’s
home page.

The write function, with the socket’s descriptor as its first argument, is
used to send the request to the server. As usual in network programming,
there is a check for an error condition: the write could fail for any number
of reasons; if it does so, there is no point in continuing. Next comes a loop
to read the server’s response. There are some subtle issues to consider, as a
closer analysis of client’s connection to the web server will indicate.

Web servers typically keep client connections alive so that repeated
request/response pairs can use the original connection. The motive, of
course, is efficiency. Also, a web server is likely to chunk its response, that
is, break the requested document (in this case, Google’s HTML home
page) into parts, transmitting each of these separately. The webclient
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program has a read buffer of about 2KB (kilobytes). On a sample run, the
program printed out this report:

48431 bytes read in 34 separate reads.

The Google home page is a hefty 48K bytes, and these were fetched
in 34 separate read operations. The chunks of data from the various read
operations vary in size.

How much time should be allowed between responses from the
server? This is a question without an obvious answer. Whatever the answer,
the socket API supports a timeout on a blocking read operation, which is in
use here. For review, here are the three critical lines in the while loop that
reads the Google response:

count = read(sock fd, buffer, sizeof(buffer));
if (EWOULDBLOCK == errno || 0 == count) break; /* EWOULDBLOCK
without a
timeout */
if (-1 == count) continue; /* continue on non-fatal
error */

If the blocking read operation times out, there is a signal with an aptly
named error code EWOULDBLOCK, which says that the read operation would
have continued to block except for the interrupting signal. If the blocking
times out, the program assumes that no further response bytes are coming.

Recall that read returns 0 on an end-of-byte-stream condition. In this
case too, there is a break out of the while loop. If any other nonfatal error
should occur (the -1 test), then execution of the while loop continues: the
continue statement moves control directly to the loop condition, in this
case bypassing the write operation to the standard output.
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6.2.1. Utility Functions for the Web Client

The utility functions for the webclient program are broken out into their
own file. These functions handle the networking details such as the
protocol to be used, the address information of the web server, and the
amount of time the client should wait for bytes from the server.

Listing 6-2. Utility code for the web client

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>

int get connection(const char* host, const char* port) {
struct addrinfo hints, *result, *next;
int sock_fd, flag;
memset(&hints, 0, sizeof(struct addrinfo)); /* zero out the
structure */
hints.ai_family = AF_UNSPEC; /* IPv4 or IPv6 */
hints.ai_socktype = SOCK_STREAM;  /* connection-

based, TCP */

hints.ai_flags = 0; /* various possibilities here */
hints.ai_protocol = 0; /* any protocol */

if ((flag = getaddrinfo(host, port, &hints, &result)) < 0)
{ /* error? */
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fprintf(stderr, "getaddrinfo: %s\n", gai strerror(flag));
/* messages */
exit(-1); /* failure */

}

/* Iterate over the list of addresses until one works. */

for (next = result; next; next = next->ai next) {
sock_fd = socket(next-»>ai family, next->ai socktype,
next->ai protocol);
if (-1 == sock fd) continue; /* failure */
if (connect(sock fd, next-»ai addr, next-»ai addrlen) !=
-1) break; /* success */

close(sock fd); /* close and try again */
}
if ('next) {

fprintf(stderr, "can't find an address\n");

exit(-1);
}

freeaddrinfo(result); /* clean up storage no longer needed */

/* Set a timeout on read operations. */
struct timeval timeout;
timeout.tv_sec = 2; /* seconds */
timeout.tv usec = 0;
if (setsockopt(sock fd, SOL SOCKET, SO RCVTIMEO,
(char*) &timeout, sizeof(timeout)) < 0) {
fprintf(stderr, "setsockopt failed\n");
exit(-1);
}

return sock fd;

}
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The code in the file get_connection.c (see Listing 6-2) handles the
networking details. This code also illustrates various points made
throughout earlier chapters. At the center is the data type struct
addrinfo, which encapsulates information about an IP address. The
program declares a variable hints of this type and then initializes the
structure’s fields with information that provides hints to the library
function getaddrinfo. One hint is that the program could deal with either
an IPv4 or an IPv6 address (AF_UNSPEC for address family unspecified),
and a second hint is that the program wants a reliable connection (SOCK _
STREAM vs. SOCK_DGRAM), which is typically TCP based. Two other fields
are initialized to zero, indicating that the webclient program defers to the
library function to make the default choices.

A pointer to the hints structure is one of the arguments to library
function getaddrinfo. Here is a summary of the four arguments passed to
this function:

o The host argument is www. google. com, the symbolic IP
address.

o The port argument is 80 as a string, the standard
server-side port number for accepting HTTP
connections.

e The third argument is 8hints: a pointer to the hints
structure, rather than a copy of it.

o The last argument is the pointer results of type struct
addrinfo*: the library function sets this pointer to the
address of a structure that contains the information
about available addresses for the Google server.

A successful call to getaddrinfo may contain several addresses for the
Google server; hence, a for loop is used to iterate over the options, picking
the first one that supports a connection. Two key library functions are in
play in the loop:
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¢ The socket function returns a file descriptor on

success.

e The connect function uses the file descriptor and
address information to attempt a connection to a host.

The socket and connect functions both return -1 on failure. Once the
program confirms that a usable network address is in hand, the program
frees the dynamically allocated storage to which result points. The library
function freeaddrinfo does whatever nested freeing may be needed, and
so this function rather than the regular free function should be used.

The last configuration in this utility code involves setting a timer on
the socket. The relevant type is struct timeval, and the library function
is setsockopt. In this example, the timer applies only to read operations
because of the SO_RCVTIMEO (receive timeout) flag. The timeout can be
set in a mix of seconds and microseconds; in this example, the socket is
configured to time out after two seconds of waiting.

After fetching Google’s home page from www. google. com, the webclient
program prints the HTML document to the standard output. If the
program is run, there likely will be a pause of two seconds or so after the
printing but before the program exits. There is no magic in the two-second
timeout, of course; the example invites experimentation.

6.3. An Event-Driven Web Server

In an earlier example, the fifoReader (recall Listing 5-9) did nonblocking
read operations on a named pipe. The fifoWriter sporadically populated
this pipe with 16-byte chunks, each chunk consisting of four 4-byte int
values. The fifoReader, in turn, tried to read 4 bytes, or one int value, at

a time. Most of the read operations by the fifoReader failed to deliver the
integer values, although all of the int values eventually were read. Indeed,
only about 2% of the read operations yielded the expected int value—a
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failure rate of 98%! The approach taken in the code example was crude
and inefficient and designed only to introduce the nonblocking API. The
fifoReader tried, on every loop iteration, to read whatever happened to be
available in the named pipe. But the fifoWriter paused a random amount
of time between write operations so that there was a discontinuous byte
stream from the writer to the reader. The odds were overwhelmingly
against successful nonblocking read operations by the fifoReader.

A different approach can improve the efficiency of read operations
and also make application logic easier to follow. The approach involves a
division of labor:

e Alibrary function monitors a channel to detect whether
there are bytes to read.

o The application can query the monitor function before
even attempting a read operation: if the monitor
detects nothing to read, the application does not bother
to attempt a read operation.

Under this approach, the odds of successful read operations should
improve dramatically. Moreover, there is no need to use nonblocking
reads, as the monitor itself blocks until it detects bytes to be read.

Various C libraries have emerged, over time, for performing the
monitoring task, with epoll and kqueue as some recent examples.

A good place for an overview and analysis is the C10K project
atwww.kegel.com/c10k.html. The forthcoming webserver program code
introduces the select library function, which has a long history in C.

Before moving on to the web server program, however, it may be
helpful to look at a simpler example of how select works. The next code
example uses the select function to check whether there are bytes to read
from the standard input. If so, a single byte is read and then written to the
standard output; if not, an appropriate message is printed.
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Listing 6-3. Introducing the select function

#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include <unistd.h>

void main() {

fd_set fds; /* set of file descriptors */
struct timeval tv;

int flag;

char byte;

FD_ZERO(&fds); /* clear the set of fds */

FD_SET(0, &fds); /* 0 == standard input */
tv.tv_sec = 5;
tv.tv_usec = 0;

flag = select(FD_SETSIZE, /* how many file descriptors */

&fds, /* file descriptors for readers */
NULL, /* no writers */
NULL, /* no exceptions */
&tv); /* timeout info */
if (-1 == flag)
perror("select error");
else if (flag) { /¥ flag == 1 == true */
read(0, &byte, 1); /* read the byte */
puts("data read");
}
if (flag)

printf("The byte value is: %c\n", byte);
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The selectStdin program (see Listing 6-3) declares a variable of type
fd_set, which represents a set of file descriptors. The macro FD_ZERO
clears the set by zeroing out the variable, and the macro FD_SET adds a
file descriptor to the set—in this case, the file descriptor 0 for the standard
input is added. A timeout of five seconds is then configured using the
struct timeval variable tv.

The library function select holds center stage in the example. The
function, which blocks until the specified timeout occurs, is called with
five arguments:

o The first argument, FD_SETSIZE, is the count of the file
descriptors in the set, in this case 1. Normally, there
would be multiple file descriptors in the set.

e The second argument &fds is the address of readers set.

e The third and fourth arguments, both NULL, are
the addresses of the writers and exceptions sets,
respectively. In this example, only the readers set has a
member, and then only one.

o The fifth and final argument is the timeout
configuration, a pointer to the struct timeval
structure. If the timeout argument is NULL, the select
function waits (blocks) indefinitely.

The select function returns -1 on error. If there is a byte to read within
the timeout period of five seconds, select returns true to confirm the fact,
and the program then tries to read the byte. If the timeout occurs first,
there is no attempt to read because this would be wasted effort.
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6.3.1. The webserver Program

The forthcoming webserver example puts the select function to practical
use. The program has three source files and a Makefile for convenience.
Two of the source files contain utility functions, whereas the code in the
third file implements the application logic. This logic can be summarized
now and analyzed in detail after the code displays. The summary ignores
technical details taken up later.

o For convenience, the server awaits connections on port
3000 rather than on the default port of 80. Port numbers
greater than 1023 do not require special administrative
privileges. There is a backlog of 100, which means that
up to 100 clients can be connected at the same time.
The server can be built and started from the command
line in the usual way:

% make
% ./web_server ## on Windows: % web_server

The server runs indefinitely, and so the program should
be shut down with Control-C or the equivalent.

o The server uses a set of file descriptors (fd_set).
To start, the only file descriptor in the set identifies
the original socket, an accepting socket that awaits
connecting clients. The file descriptor for this socket
remains in the fd_set from start to finish, but other file
descriptors—ones that represent read/write channels
to clients—are added to and removed from the set of
file descriptors.
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o C(lients attempt to connect to the web server and then
to send requests. From the web server’s perspective,
the clients are in one of two states:

e A connecting client is trying to connect and has not
yet sent a request for the server to read.

o A requesting client has connected and is thus able
to send a request.

o Ifaconnecting client succeeds in connecting, the file
descriptor for the socket is placed in the fd_set that the
select function monitors. The client’s request now can
be read when it arrives.

o Ifarequesting client is selected, its request is read,
and a response is written: the response echoes back
the request. After responding to a client, the server
removes the client from the fd_set.

6.3.2. Utility Functions for the Web Server

The webserver program breaks out the utility functions into two separate
files. These functions handle the many low-level details from getting

the original file descriptor for the socket to logging information about a
connecting client and through sending a response back to a client.

Listing 6-4. Utility functions for the web server

#include <netinet/in.h>
#include <string.h>
#include <stdio.h>
#include <arpa/inet.h>

#define BuffSize 256
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void log client(struct in_addr* addr) {
char buffer[BuffSize + 1];
if (inet ntop(AF_INET, addr, buffer, sizeof(buffer)))
/* NULL? */
fprintf(stderr, "Client connected from %s...\n", buffer);

}

void get response(char request[ ], char response[ ]) {
strcpy(response, "HTTP/1.1 200 OK\n");
/* start line */
strcat(response, "Content-Type: text/*\n");
/* headers... */
strcat(response, "Accept-Ranges: bytes\n");
strcat(response, "Connection: close\n\n");
strcat(response, "Echoing request:\n");
/* body of response */
strcat(response, request);

The servutils2.c file (see Listing 6-4) contains two utility functions. The
log_client function has one argument, a pointer to a struct in_addr
(Internet address). This structure contains information about the client,
including the client’s IP address. The log_client function calls the
library function inet_ntop (Internet name to protocol) with the structure
pointer as an argument; the library function generates a human-readable
string and puts the string in the caller-supplied buffer. If the web server
is running on localhost (127.0.0.1), and a request comes from this same
machine, then the message would be

Client connected from 127.0.0.1...
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The get_response function creates an HTTP-compliant response
consisting of an HTTP start line, four HTTP headers, and the HTTP body,
if any, that came with the request. (Recall that a POST request has a
body, whereas a GET request does not.) This response is sufficient for
development and initial testing.

Listing 6-5. Core utilities for the webserver

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define Backlog 100

void report and exit(const char* msg) {
fprintf(stderr, "%s\n", msg);
exit(-1); /* EXIT FAILURE */

}

int get_servsocket(int port) {
struct sockaddr_in server addr;

/** create, bind, listen **/
/* create the socket, make it non-blocking */
int sock fd = socket(PF_INET, SOCK STREAM, 0); /* internet
family, connection-oriented */
if (sock fd < 0)
report_and exit("socket(...)");

/* bind to a local address: implementation details */
memset(&server addr, 0, sizeof(server addr));

server addr.sin family = AF_INET;
server_addr.sin_addr.s_addr = INADDR_ANY;
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server addr.sin port = htons(port); /* host to network
endian */
if (bind(sock fd, (struct sockaddr*) &server addr,
sizeof(server addr)) < 0)

report _and exit("bind(...)");

/* listen for connections */

if (listen(sock fd, Backlog) < 0) report and
exit("listen(...)");

return sock fd;

The principal function in the servrutils.c file (see Listing 6-5) is
get_servsocket, which takes a port number as its single argument. The

function performs the classic three steps for setting up a web server: create,

bind, and listen. Here are some details:

1. Create a socket with the library function socket. In
this example, the socket is in the IP protocol family
(PF_INET) and is connection based (SOCK_STREAM).

2. Bind the socket to a local port number, in this case
port 3000. A server addr structure is used to store
the required information. The port number is
passed as an argument to the htons library function,
which converts local endian-ness to network endian-
ness. Recall that Intel machines are little endian,
whereas network protocols are big endian. The
library function of interest here is bind.

3. Listen for up to Backlog clients at a time, where
Backlog is 100. If 100 clients are connected already
to the server, then any would-be client gets a
Connection refused message. The library function
is listen.
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If there are no errors in the three steps, the get_servsocket function

returns the identifying file descriptor. Otherwise, the web server exits.

WHAT’S CURL?

The curl command-line tool (https://curl.haxx.se) can fetch data
through URLs. The tool is cross-platform and works with an impressive
number of protocols. The curltool is used later to test the web server.

Listing 6-6. A web server with select

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#include <string.h>
#include <netinet/in.h>
#include "servutils.h" /* function declarations */

#define BuffSize 250

int

main() {

const int port = 3000;
char request[BuffSize + 1];

memset(request, 0, sizeof(request));
struct sockaddr_in client addr;
socklen t len = sizeof(struct sockaddr in);

fd_set active set, temp set; /* temp_set becomes

a copy of
active_set */

FD_ZERO(8active_set); /* clear the
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int sock fd = get servsocket(port); /* get the original
socket fd */

FD_SET(sock fd, &active set); /* add it to the set */

fprintf(stderr, "Server awaiting connections on port

%i.\n", port);

while (1) {
temp set = active set; /* make a working copy, as active_
set changes */
if (select(FD_SETSIZE, &temp set, NULL, NULL, NULL) < 0)
/* activity? */
report _and exit("select(...)");

int i,
for (i = 0; i < FD_SETSIZE; i++) { /* handle the
current fds */
if (!FD_ISSET(i, &temp set)) continue; /* member of
the set? */

if (i == sock_fd) { /** original accepting socket **/
int client fd = accept(sock fd,
(struct sockaddr*) &client addr,
&len);
if (-1 == client fd) continue; /* try again */
log client(&client addr.sin addr);
FD_SET(client fd, &active set); /* add this fd to
select list */
}
else { /** read/write socket **/
int bytes read = read(i, request, BuffSize);
if (bytes_read < 0) continue;
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/* Send a response. */

char response[BuffSize * 2]; /* twice as big to

be safe */

memset (response, 0, sizeof(response));

get _response(request, response);

int bytes written = write(i, response,
strlen(response));

if (bytes written < 0) report and exit("write(...)");
close(i);

FD _CLR(i, &active set); /* remove from active set */

}

return 0;

}

The webserver program (see Listing 6-6) uses the select function and
its supporting macros such as FD_SET and FD_CLR to read client requests
and to write back responses. The salient points can be summarized as
follows:

o The primary setup is a call to the utility function
get servsocket, which returns the file descriptor for
the socket, if successful; otherwise, the webserver exits
as there is no point in going on. For reference, this
first socket is the accepting socket because its job is to
accept client connections. The accepting socket is not
used as a channel to read requests and write responses.
Among the sockets used in the application, there is a
strong separation of concerns: one socket accepts client
connections, whereas all of the others act as read/write
channels between the web server and its clients.
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The accepting socket’s file descriptor is added, using
the FD_SET macro, to the fd_set variable named
active_set. This file descriptor is the one permanent
member of the active set.

After a client connects, this socket’s file descriptor is
added to the active_set; after a client receives its
response, the same file descriptor is removed from the
active_ set.

The program has two loops: an outer while loop that
iterates indefinitely and an inner for loop that iterates
over a copy of the active set named the temp set. The
copy is important because of what happens in a loop
iteration. During a for loop iteration, file descriptors
may be added to and removed from the active_set:
added if a new client connects and removed if a client
receives a response. At the top of the outer while loop,
the active_set is thus copied into the temp_set, and
the iteration is over this temporary copy, which does
not change during for loop execution.

The second statement in the while loop is a blocking
call to select, which monitors only the read set named
temp_set. There is no monitoring of writers and
exceptions (the third and fourth arguments), and the
select does not have a timeout: the select should

not return unless there is client activity of some kind—
connecting or requesting.
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e Once the select function returns, the inner for loop
iterates over the file descriptors in the temp_set. For
each member of this set, there are two possibilities:

o The file descriptor is of the single accepting socket;
hence, a client connection is pending. The program
uses the library function accept to finalize the
connection and to get the connecting socket’s
descriptor. This file descriptor is added to the
active_set to enable read/write operations later.
For reference, this socket is the client socket.

e The file descriptor is of a client socket used for
read/write operations. In this case, the client’s
request is read and then echoed back as a response.
Examples follow shortly. Once the response has
been sent, the socket’s descriptor is passed as an
argument to close, which effectively breaks the
connection. This descriptor also is removed from
the active_set. The conversation with the client is
short and sweet: the client sends one request and
gets one response in return.

6.3.3. Testing the Web Server with cur/

There are various ways to test the webserver program. For example,

the earlier webclient program might be used, but this program is not
sufficiently flexible to go beyond preliminary testing. The curl utility, by
contrast, is well suited for the task. As an example, the curl command

% curl localhost:3000?msg=Hello,world!
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generates the following response, with comments following ##:

Echoing request:
GET /?msg=Hello,world! HTTP/1.1  ## GET request with a
query string

User-Agent: curl/7.35.0 ## user program is curl
Host: localhost:3000 ## localhost on port 3000
Accept: */* ## accept any MIME type/

subtype combination
By contrast, the curl command

curl --data "name=Fred Flintstone&occupation=handyman"
localhost:3000

generates this response:

Echoing request:
POST / HTTP/1.1 ## POST, not GET
User-Agent: curl/7.35.0
Host: localhost:3000
Accept: */*
Content-Length: 40 ## in bytes for

HTTP body
Content-Type: application/x-www-form-urlencoded
## POSTed form

## two newlines end the headers
name=Fred Flintstone&occupation=handyman ## body of
POST request

The webserver is an iterative rather than a concurrent server: the server
handles one request at a time, completing the response to a given request
before turning to the next request. In more technical terms, the webserver
program executes as a single process with a single thread of execution
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and thus uses neither of the standard concurrency mechanisms—
multiprocessing and multithreading. For development and testing, an
iterative server is acceptable and even preferable because it is relatively
easy to debug the connect/request/response trio. Modern languages
typically have libraries for development web servers (e.g., the Ruby
WEBrick library), and these web servers are typically iterative. However,
any production-grade web server is going to be concurrent. The next
chapter focuses on concurrency. The next section in this chapter moves
from HTTP to HTTPS to analyze wire-level security in web connections.

6.4. Secure Sockets with OpenSSL

The Sin HTTPS is for secure. Various security layers are suitable for sitting
atop HTTP, including SSL (Secure Sockets Layer, from Netscape) and TLS
(Transport Layer Security, derived from SSL). SSL and TLS are distinct but
sometimes lumped together as SSL/TLS.

Among the production-grade and most popular implementations of
SSL and TLS is OpenSSL (www.openssl.org/). OpenSSL also includes
a full library for cryptography: functions for message digests, digital
signatures, digital certificates, encryption/decryption, and more. OpenSSL
can be installed as a development environment—header files and
implementation libraries. Once OpenSSL is installed, the header files and
libraries are typically in openssl subdirectories such as in /usr/include/
openssl and /usr/lib/openssl, respectively.

HTTPS provides wire-level or transport-level security, as opposed to
users/roles security in which a user provides an identity (e.g., a login name)
and a credential (e.g., a password) to confirm the identity. The wire-level
security comprises three major services: peer authentication (mutual
challenge), confidentiality (data encryption/decryption), and reliability
(message sent equals message received). These are clarified in order.
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Consider a scenario in which Alice and Bob exchange messages over a
channel:

messages
Alice<------------ >Bob

How does Alice know that it is Bob, and not an impostor, at the other
end? The same goes for Bob. The eavesdropper Eve might be in the
middle (man-in-the-middle attack), pretending to be both Alice and Bob,
thereby intercepting all of the messages sent in one direction or the other.
Alice and Bob need a procedure (peer authentication) so that each can
authenticate the other’s identity before any significant messages are sent
between them.

Peer authentication, as used in HTTPS, requires a key pair apiece for
Alice and Bob: a digital public key (distributable to anyone) and a digital
private key (secret to its owner). The public key is an identity. For example,
Amazon’s public key identifies Amazon, and Alice’s public key identifies
her. A public key can be embedded in a digital certificate, with a certificate
authority (CA) vouching for this key through the CA’s own digital signature
on the same certificate. For example, a CA such as VeriSign or RSA
vouches with its own digital signature that the public key on Alice’s digital
certificate indeed identifies Alice. The vouching may come with a fee,
of course.

Here is a scenario for peer authentication between Alice and Bob:

1. Alice sends a signed certificate request containing
her name, her public key, and some additional
information to a CA such as VeriSign or
RSA. Assume that the public key is unique.

2. The CA creates a message M from Alice’s request,
signing the message M with the CA’s own private
key, thereby creating a separate signature
message DSIG.
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3. The CA returns to Alice the message M with its
signature DSIG. Together M and DSIG form the core
of Alice’s certificate. The certificate has a from and a
to date together with some other information.

4. Alice sends her newly minted certificate to Bob, and
the certificate contains Alice’s public key.

5. Bob verifies the signature DSIG using the CA’s public
key. If the signature is verified, Bob accepts the
public key in the certificate as Alice’s public key, that
is, as her identity.

6. Bob repeats Alice’s steps.

There is, of course, a fly in this ointment. If Eve manages to get a copy
of Alice’s digital certificate and also manages to intercept an authentication
request from Bob to Alice, then Eve becomes indistinguishable from Alice.
To guard against this possibility, Bob might request from Alice several
digital certificates, each with a different signer and with different validity
dates. There also are certificates with more than one CA as a signer.

When it comes to peer authentication, there are precautions rather than
guarantees.

WHAT’S A MESSAGE DIGEST?

A message digest, also called a hash, is a fixed-length digest of input bits:
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For example, SHA-1 (Secure Hash Algorithm 1) generates a 160-bit digest of
any input bits. Duplicate digests from different inputs are possible, but unlikely.
A digest is one-way secure: it is relatively easy to compute the digest, but it

is computationally intractable to go from the digest back to the original input
bits—even if the digest algorithm is known.

One more fly in the ointment deserves mention. As noted earlier, a
digital certificate contains a CA’s digital signature to vouch for the public
key on the certificate. What is a digital signature, and how is one to be
verified?

A digital signature is a message digest (see the sidebar) encrypted with
the private key from a key pair. To create her own digital signature, Alice
would create a message digest of information about her (e.g., name, city
of residence, employer’s name, and so on) and then encrypt this digest
with her private key. This signature then can be verified with the public
key from the same pair. If Bob has Alice’s public key, Bob can verify Alice’s
digital signature:

Alice's public key---------- >| verification |--->yes or no
Alice's digital signature--->| engine |

Validating a CA’s digital signature requires the CA’s public key: a CA’s
public key is available on the CA’s own digital certificate, which in turn
has a digital signature as a voucher. Thus begins the verification regress.
At some point, of course, the regress stops because a digital signature is
accepted as valid.
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Listing 6-7. A sample X.509 digital certificate

Certificate:
Data:
Signature Algorithm: md5WithRSAEncryption
Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte
Consulting cc,

CN=Thawte Server CA/emailAddress=server-certs@thawte.com
Validity

Not Before: Aug 1 00:00:00 1996 GMT

Not After : Dec 31 23:59:59 2028 GMT
Subject Public Key Info:

Public Key Algorithm: rsaEncryption

RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:d3:24:50:6e:c8:ff:56:6b:e6:cf:5d:b6:ea:0c:

3a:c2:b5:66:22:12:d6:87:0d
Exponent: 65537 (0x10001)

Signature Algorithm: md5WithRSAEncryption
07:fa:4c:69:5c:fb:95:cc:46:ee:85:83:4d:21:30:8¢e:ca:d9:

b2:75:1b:f6:42:f2:ef:c7:2:18:19:89:bc:a3:ff:8a:2
3:2e:70:47
The dcert display (see Listing 6-7) shows parts from a sample digital
certificate, with Thawte as the CA. The public key algorithm is RSA, the

industry standard. The certificate also gives details about the digital
signature.
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With web sites as opposed to web services, peer authentication
typically becomes one-way authentication: the browser, as the client
application, challenges the web server to establish its identity through one
or more digital certificates, but the web server usually does not challenge
the browser. For web services, by contrast, the challenge may be mutual.

The second HTTPS service is confidentiality, achieved through the
encryption of sent messages and the corresponding decryption of received
messages:

Alice----- >| encrypt |--------------- >| decrypt |----- >Bob

plainbits------- >| encryption |---------------- >| decryption |--->plainbits

encryption key-->| engine | Hmm e >| engine |

decryption key--+

There are two general approaches to encryption/decryption,
depending on whether the same key is used for both operations:

o In the symmetric approach, the same key is used to
encrypt and decrypt. The upside is that this approach
is very efficient, about a thousand times faster than the
alternative explained in the following. The downside
is the key distribution problem: How is the key to be
distributed to both Alice and Bob?
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In the asymmetric approach, one key is used to encrypt,
but a different key is used to decrypt. The upside is that
this approach solves the key-distribution problem.

For example, Alice can encrypt a message using Bob’s
public key, but only Bob can decrypt this message
because he has the one and only copy of his private key.
The downside is that this approach is about a thousand
times slower than the symmetric approach.

HTTPS uses a clever combination of the two approaches:

1.

After the client and the server have agreed upon a
cryptographic suite of algorithms, and the client has
received at least one acceptable digital certificate
from the server during the authentication phase, the
client generates a premaster secret, bits that will be
used on both sides to generate a session key.

The client encrypts the premaster secret with the server’s
public key and sends the encrypted bits over the wire.

The server (and presumably the server alone) can decrypt
these encrypted bits using the server’s private key.

During the rest of the conversation between client
and server, the session key is used both to encrypt
and decrypt bits; hence, the symmetric approach is
now used for efficiency.

The third major HTTPS service, message reliability, checks whether

the sent message is the same as the received message:

sent message received message
Alice-------------- Deeemmmmmmmmmmmeeooes >Bob
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Recall that the client and the server have settled on a cryptographic
suite, which includes a message digest (hash) algorithm. The sender
computes a hash of the message to be sent and sends the hash as well.
The receiver recomputes the hash locally, using the same algorithm, and
then checks whether the received hash matches the locally computed one.
Assume that the locally computed hash is correct. If the two hashes do not
match, then something in the sent message (the original message and/or
the sender’s hash) has been corrupted in transit; the message and a hash
need to be sent again.

The wcSSL program is an HTTPS client that exhibits the security
features discussed previously. The OpenSSL libraries do a nice job of
wrapping the usual HTTP client functions—create a socket, open a
connection, engage in a conversation, close the connection—within
security-enabled counterparts. The resulting flow of control is easy to
follow. For readability, the source code for wcSSL program is divided
among three files. A Makefile is included.

The three source files in the wcSSL program are as follows:

e The header file wcSSL.h has the required include
directives for the standard libraries and for
OpenSSL. This file also declares five utility functions
defined in the file wcSSLutils.c.

o The source file wcSSLutils.c defines five utility
functions, which are clarified shortly.

e The source file wcSSL.c contains the high-level logic.
The code tries to open an HTTPS connection to Google;
calls a stub function to verify the Google certificate;
sends a request over the now encrypted channel;
and prints the response, which again is the Google
home page.
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Listing 6-8. The header file wcSSL.h

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <openssl/bio.h>
#include <openssl/ssl.h>
#include <openssl/x509.h>
#include <openssl/x509 vfy.h>

extern void report exit(const char* msg);

extern void load SSL();

extern int verify dc(int ver, X509 STORE CTX* x509 ctx);
extern void view cert(SSL* ssl, BIO* out);

extern void cleanup(BIO* out, BIO* web, SSL CTX* ctx);

The five functions declared in the header file wcSSL.h (see Listing 6-8)
can be clarified as follows:

o Thereport_exit function prints an error message
before exiting. The error (e.g., a socket connection
cannot be opened) makes it impossible to continue.

o Theload_ssl function calls various OpenSSL
functions, which in turn load the required OpenSSL
modules.

e Inproduction mode, the verify dc function would
check the certificate(s) sent from Google during the
HTTPS handshake. The details of verification can
differ widely depending on how a system stores trusted
digital certificates. One straightforward approach is
to have a persistent store of trusted certificates on the
client machine or local network. For instance, there
might be a local file with a copy of a trusted Google
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certificate in either a text format such as PEM (Privacy-
Enhanced Mail) or a binary format such as DER
(Distinguished Encoding Rules). OpenSSL has utilities
to convert from one standard format to another. In

any case, a Google certificate downloaded during the
peer authentication phase would be compared against
a stored copy, using OpenSSL functions designed

for the purpose. If there is no such local copy, then

the certificate’s digital signature from a CA could be
verified instead. The current example omits these
details by having the verify dc function simply return
true (1). The verify dc function is thus a stub that
needs to be fleshed out for production.

Unix-like systems typically include a directory such as /etc/ssl/certs,

which contains accepted digital certificates. This directory thus acts as the

local truststore for such certificates.

The view cert function prints the subject line from the
certificate to confirm its arrival.

The cleanup function calls OpenSSL utility functions to
free heap storage.

These five functions are defined and wcSSLutils.c and called in the

main program file wcSSL.c.

Listing 6-9. The utilities file cwSSLutils.c

#include "wcSSL.h"

void report exit(const char* msg) {

puts(msg);
exit(-1);

}
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void load SSL() { /* load various OpenSSL libraries */
OpenSSL_add_all algorithms();
ERR_load BIO strings();
ERR load SSL strings();
SSL_load error strings();
if (SSL_library init() < 0) report exit("SSL library init()");
}

int verify dc(int ver, X509 STORE_CTX* x509 ctx) { /* stub
function */
/* In production, a full verification would be needed. */
return 1;

}

/* Extract the subject line for the certificate, then free
storage. */
void view cert(SSL* ssl, BIO* out) {
X509* cert = SSL get peer certificate(ssl);
if (NULL == cert) report exit("SSL get peer
certificate(...)");

X509 NAME* cert name = X509 NAME new();
cert_name = X509 get subject name(cert);
BIO printf(out, "Certificate subject:\n");
X509 NAME print ex(out, cert name, 0, 0);
BIO printf(out, "\n");
X509 free(cert);

}

void cleanup(BIO* out, BIO* web, SSL CTX* ctx) {
if (out) BIO free(out);
if (web) BIO free all(web); /* handles nested frees */
if (ctx) SSL _CTX free(ctx); /* ditto */

}
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The load SSL function in the wcSSLutils.c file (see Listing 6-9) calls
four functions from the OpenSSL API in order to load various SSL modules.
The load_SSL then calls a fifth OpenSSL function SSL_library init to
do whatever SSL initialization is required. Any error in the initialization
would make it impossible to continue; hence, the wcSSL client exits if an
error occurs.

The view_cert function gets the X509-formatted certificate from
Google, extracts some information, and then prints this information. X509
is versioned and remains the dominant format for digital certificates;
hence, OpenSSL includes many functions with X509 in the name. Once
information about the certificate is printed, in this case only the subject
line, the heap storage for the certificate is freed. The X509 _free utility
function does whatever nested freeing is required; hence, this function and
not the library function free should be called.

Throughout the wcSSL program, there are calls to various OpenSSL
functions with BIO (Basic Input/Output) in the name. The BIO library is
roughly a wrapper around the standard FILE type, and the BIO API mimics
the FILE API. However, the BIO functions have access to the all-important
SSL context, which is discussed shortly.

In working with the OpenSSL libraries, it is best practice to use the
BIO functions for any input/output operations that involve web content.
Accordingly, the wcSSL program uses the standard puts function in
report_exit but otherwise sticks with the BIO input/output functions.

For instance, the BIO_puts function is used to send the request, over an
encrypted channel, to the Google web server.

Listing 6-10. The main source file wcSSL.c

#include "wcSSL.h"
#define BuffSize 2048

int main() {
const char* host port = "www.google.com:443";
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const char* request = "GET / \r\nHost: www.google.com\r\

nConnection: close\r\n\r\n";

BIO* out = BIO new fp(stdout, BIO NOCLOSE); /* standard
output */

SSL* ssl = NULL;
/* primary data structure for SSL connect */

load SSL();

const SSL_METHOD* method = SSLv23 method(); /* protocol
version */

if (NULL == method) report exit("SSLv23 method()");
SSL_CTX* ctx = SSL_CTX_new(method);

/* global context for client/server */

if (NULL == ctx) report exit("SSL _CTX new(...)");

BIO* web = BIO new ssl connect(ctx); /* BIO is roughly FILE,
but with SSL baked in */

if (NULL == web) report exit("BIO new ssl connect(...)");

if (1 !'= BIO set conn_hostname(web, host port)) report
exit("BIO set conn host(...)");

BIO get ssl(web, &ssl); /* the security layer atop HTTP */
if (NULL == ssl) report exit("BIO get ssl(...)");

if (BIO_do_connect(web) <= 0) report_exit("BIO do_
connect(...)"); /* connect */

if (BIO_do_handshake(web) <= 0) report exit("BIO do_
handshake(...)"); /* handshake */

SSL_CTX set verify(ctx, SSL VERIFY PEER, verify dc);

if (!SSL_get verify result(ssl)) report exit("SSL get
verify(...)"); /* verify cert */

view cert(ssl, out); /* look at cert */

BIO puts(web, request); /* the GET request */
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int len = 0;

do {

/* read chunks from Google server */
char buff[BuffSize] = { };
len = BIO read(web, buff, sizeof(buff));
if (len > 0) BIO write(out, buff, len);

} while (len > 0 || BIO_ should retry(web));

cleanup(out, web, ctx); /* free heap storage */

return 0;

}

The main file for the wcSSL program is wcSSL.c (see Listing 6-10).
Rather than analyze each OpenSSL function call separately, it may be
more useful to group the calls, focusing on what each group is meant to

accomplish. The following describes three groups in turn:

The init group specifies the SSL version to be used, in
this case with the OpenSSL call SSLv23_method. This
function constructs an SSL_CTX instance, which is the
global context for all of the remaining OpenSSL calls.
The SSL_CTX tracks the state of the SSL session, from
setup through cleanup; this context is the last item to
be freed in the program.

The socket group then uses the SSL_CTX instance (ctx
is the variable) to create an SSL layer atop HTTP. The
secure channel is named web in this program and is
the secure counterpart of a file descriptor. Writing the
request to and reading the response from Google uses
the web variable. The standard socket call now occurs
under the hood, in the OpenSSL libraries.
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o The connect group establishes a connection,
performing the handshake operations that include
authentication. In this case, the authentication is
one way rather than peer because the Google server
does not challenge the wcSSL program (the client)
for a certificate; but the call to the OpenSSL BIO do
handshake function does result in a challenge to the
Google server. The SSL_CTX is used again, this time to
declare a callback function (in this case, verify dc)
that is to verify the Google certificate. Fine-tuning
is possible here and would be appropriate in a
production environment. In this example, the interest
is in verifying that a certificate arrived, rather than in its
validity. Google sends three certificates in response to
the challenge.

o The request/response group uses the OpenSSL function
BIO puts to send the GET request to Google and the
BIO read function to read the response. The BIO write
function writes the response to the standard output.
The BIO read and BIO write functions are the
counterparts of the standard read and write functions,
but the BIO functions have access to the SSL_CTX.

o The cleanup group uses OpenSSL functions to free
heap storage allocated in the course of setting up and
using the HTTPS connection.

To confirm that a certificate arrived from Google, the wcSSL program
prints the subject line:

Certificate subject:
C=US, ST=California, L=Mountain View, O=Google Inc, CN=www.
google.com
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As noted earlier, there is a Makefile to build the wcSSL program.
The program also can be built with this command, which is part of the
Makefile:

% gcc -o weSSL weSSL.c  weSSLutils.c -1ssl -lcrypto -I.

The two link libraries (the two -1 flags) are the OpenSSL library and
the standard cryptography library, respectively. In the flag at the end -I.,
the I is for include files, and the period represents the current working
directory, which means that only this directory should be searched for any
include files. In general, any search path could be specified for include files.

6.5. What’s Next?

Concurrency and parallelism are distinct but related concepts. A
concurrent program handles multiple tasks within the same time span.
For example, a concurrent web server might handle, say, 20 client
requests within a second or so. Concurrency is possible even on an old-
fashioned, single-CPU machine through time-sharing: one task gets the
CPU for a certain amount of time, and then its processing is preempted
so that another task can have a turn, and so on. A concurrent program
becomes a truly parallel one if the tasks are delegated to separate
processors so that all of tasks can be processed literally at the same time.
There is also instruction-level parallelism on modern machines; this
parallelism involves the execution of instructions that perform machine-
level operations in parallel. The next chapter fleshes out the details of

concurrency and parallelism with code examples.

229



CHAPTER 7

Concurrency and
Parallelism

7.1. Overview

A concurrent program handles more than one task at a time. A familiar
example is a web server that handles multiple client requests at the same
time. Although concurrent programs can run even on a single-processor
machine of bygone days, these programs should show a marked gain in
performance by running on a multiprocessor machine: different tasks can
be delegated to different processors. A parallel program in this sense is a
concurrent program whose tasks can be handled literally at the same time
because multiple processors are at hand.

The two traditional and still relevant approaches to concurrency are
multiprocessing and multithreading. Applications such as web servers
and database systems may mix the approaches and throw in acceleration
techniques such as nonblocking I/0. Multiprocessing has a relatively long
history and is still widespread. For example, early web servers supported
concurrency through multiprocessing; but even state-of-the-art web
servers such as Nginx are multiprocessing systems.

Recall that a process is a program in execution and that each process
has its own address space. Two processes could share a memory location,
but this requires setup: shared memory is not the default. Separate address
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spaces are appealing to the programmer, who does need to worry about
memory-based race conditions when writing a multiprocessing program.
A typical race condition arises when two or more operations, at least one of
which is a write, could access the same memory location at the same time.
Of interest now is that separate processes, by default, do not share access
to a memory location, which is requisite for such a race condition.

What is the downside of multiprocessing? When the operating system
preempts a not-yet-finished process, a process-level context switch
occurs: the operating system gives the processor to another process for its
execution. The preempted process must be scheduled again to complete
its execution. A process-level context switch is expensive because the
operating system may have to swap data structures such as page tables
(virtual-to-physical address translators) between memory and disk; in
any case, there is nontrivial bookkeeping to track the state of both the
preempted and the newly executing process. It is hard to come up with an
exact figure, but a process-level context switch takes about 5ms to 15ms
(milliseconds), time that is not available for other tasks.

Recall too that a thread (short for thread of execution) is a sequence of
executable instructions. Every process has at least one thread; a process
with only one thread is single threaded, and a process with more than one
thread is multithreaded. Operating systems schedule threads to processors;
to schedule a process is, in effect, to schedule one of its threads. On a
multiprocessor machine, multiple threads from the same process can
execute at the very same time. A thread-level context switch—preempting
one thread in a process for another in the same process—is not free, but
the cost is very low: nanoseconds rather than milliseconds. Multithreading
is efficient.

In a simplifying move, Linux systems turn process scheduling into
thread scheduling by treating even a multithreaded process as if it were
single threaded. A multithreaded process with N threads then requires N
scheduling actions to cover the threads. Threads within a multithreaded
process remain related in that they share resources such as memory
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address space. Accordingly, Linux threads are sometimes described as
lightweight processes, with the lightweight underscoring the sharing of
resources among the threads within a process.

What is the downside of multithreading? Threads within a process
have the same address space; hence, multithreaded programs are
susceptible to memory-based race conditions. On a multiprocessor
machine, for instance, one thread might try to read memory location N
at the very instant that another thread is trying to write N. The outcome
is indeterminate. The burden of preventing race conditions falls on
the programmer, not the operating system. Multithreaded programs,
especially ones with variables shared among the threads, are a challenge
even for the experienced programmer.

7.2. Multiprocessing Through
Process Forking

The standard library functions provide options for multiprocessing, but
the fork function is the most explicit. The first code example covers the
basics of a fork call using unnamed pipes; an earlier example (recall
Listings 5-8 and 5-9) covered named pipes. A look at unnamed pipes from
the command line serves as preparation.

At the command line, the vertical bar | represents an unnamed pipe:
to the left is the pipe writer and to the right is the pipe reader. Each is a
process. Here is a contrived example using the sleep and echo utilities
available on Unix-like systems and through Cygwin:

% sleep 5 | echo "Hello, world!"

The greeting Hello, world! appears on the screen; then, after about five
seconds, the command-line prompt returns, signaling that both the sleep
and echo processes have exited. The pipe is closed automatically when the
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reader and writer terminate. There is multiprocessing here, but it does no
useful work; instead, the example shows how the unnamed pipe works.

In normal usage, the writer process on the left writes bytes to the pipe,
and the reader process on the right blocks until there are bytes to read. By
closing the write end of a pipe before exiting, the writer process thereby
generates an end-of-stream condition. The reader process closes the read
end before exiting as well. Once the reader and the writer process exit, the
pipe shuts down.

The preceding example is contrived because the sleep process does
not write any bytes to the pipe and the echo process does not read any
bytes from the pipe. Nonetheless, there is multiprocessing. The sleep
process on the left does just that, and for five seconds. In the meanwhile,
the echo process immediately writes its greeting to the screen because this
process need not wait for bytes from the pipe. The echo process exits after
printing its message. The sleep process then exits, the pipe goes away, and
the command-line prompt reappears.

The first code example focuses on the basics of fork. The second
example then uses the pipe library function in a multiprocessing example

with an unnamed pipe.

Listing 7-1. Introducing the fork function

#include <sys/types.h> /* just in case... */
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>

void main() {
signal(SIGCHLD, SIG ICN); /* prevents zombie */
int n = 777; /* both parent and child have
a copy */
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pid t pid = fork();

if (-1 == pid) { /* -1 signals an error */
perror(NULL);
exit(-1);

}

if (0 == pid) { /** child **/
n=n+ 10;
printf("%i\n", n); [** 787 X/

}

else { /** parent **/
n=n*10;
printf("%i\n", n); /** 7770 */

}

}

The basicFork program (see Listing 7-1) opens with a call to the signal
function. This is a precaution to prevent zombie processes, as clarified in
an upcoming section. The int variable n is declared and initialized to 777.
If the subsequent call to the library function fork succeeds, both the child
and the parent process get their own separate copy of variable n; hence,
each process manages different variables with the same name.

The library function fork tries to create a new process. If the attempt
succeeds, the newly created process becomes the child of the original
process, which is now a parent. The fork function returns an integer
value; for portability, the recommended type is pid_t, where pid stands
for process identifier. The tricky part of the fork call is that, if successful, it
returns one value to the parent—but a different value to the child. A short
digression into the process id explains.
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Every process has a nonnegative integer value as its identifier (pid).
There is a library function getpid to retrieve the pid, and a related function
getppid to retrieve the parent process identifier (ppid). Every process except
the first has a ppid, which is guaranteed to be the same as the parent’s pid.

If the fork call fails to spawn a child process, it returns -1 to signal the
error. If fork succeeds, it returns

e 0tothe child
o The child’s pid to the parent

Once forked, the child process executes a copy of the very same code
as the parent—the code that comes after the call to fork. Accordingly, a
test is typically used (in this case, the if test) to distinguish between code
intended for the child and code intended for the parent. In this example,
the child executes the if block, printing 787; the parent executes the else
block, printing 7770. The order in which the prints occur is indeterminate.
If the program runs on a multiprocessor machine, this concurrent program
can execute in a truly parallel fashion.

The second code example uses an unnamed pipe for interprocess
communication. The parent again calls fork to spawn a child process,
and the two processes then communicate through the pipe: the parent as
the writer process and the child as the reader process. The discussion also
explains zombie processes and how to reap them.

Listing 7-2. The basics of the fork function

#include <sys/wait.h> /* wait */

#include <stdio.h>

#include <stdlib.h>  /* exit functions */
#include <unistd.h> /* read, write, pipe */
#include <string.h>

#define ReadEnd 0
#define WriteEnd 1
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void report and die() {
perror (NULL);
exit(-1); /** failure **/

}

void main() {
int pipeFDs[2]; /* two file descriptors */
char buf; /* 1-byte buffer */
const char* msg = "This is the winter of our discontent\n";
/* bytes to write */

if (pipe(pipeFDs) < 0) report and die();
pid t cpid = fork(); /* fork a child process */
if (cpid < 0) report and die(); /* check for failure */

if (0 == cpid) { /¥¥* child ***/ /* child process */
close(pipeFDs[WriteEnd]); /* child reads,
doesn't write */

while (read(pipeFDs[ReadEnd], &buf, 1) > 0) /* read until
end of byte
stream */
write(STDOUT FILENO, &buf, sizeof(buf)); /* echo to
the standard

output */
close(pipeFDs[ReadEnd]);  /* close the ReadEnd:
all done */
_exit(0); /* exit fast */
}
else { /*** parent ***/

close(pipeFDs[ReadEnd]); /* parent writes, doesn't read */

write(pipeFDs[WriteEnd], msg, strlen(msg)); /* write the
bytes to
the pipe */
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close(pipeFDs[WriteEnd]); /* done writing:

generate eof */
wait(NULL); /* wait for child to exit */
exit(0); /* exit normally */

}
}

The pipeUN program (see Listing 7-2) uses the fork function for
multiprocessing and the pipe function for creating an unnamed pipe so
that the processes can communicate. To begin, here is an overview of the
library function pipe:

o The pipe function takes an int array of two elements as
its single argument: the first element (index 0) is the file
descriptor for read operations, and the second element
(index 1) is the file descriptor for write operations.

o The function returns -1 to signal failure and 0 to signal

Success.

o Note that the pipe function creates an unnamed pipe,
whereas the mkfifo function creates a named pipe.

The fork function is used to create the reader process, although this
spawned process could have been the writer. The process that does the
forking is the parent, and the forked process is the child. The child process,
an almost exact duplicate of the parent, is said to inherit from the parent.
For example, a forked child process inherits open file descriptors from the
parent. Recall that once forked, the child process executes the very same
code as the parent process, unless an iftest or the equivalent is used to
divide the code that each process executes. A closer look at the example
clarifies.
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Here, for quick review and with added detail, are the values that the
fork function can return:

e Areturned value of -1 indicates an error: the fork failed
to spawn a child process. This could occur for various
reasons, including a full process table. The process table
is a data structure that the operating system maintains
in tracking processes.

o Ifthe fork call succeeds, it returns different values to
the child and the parent processes:

e (Oisreturned to the child.

e The child’s process identifier (pid) is returned to
the parent.

The pipeUN program uses an if else construct to distinguish
between the parent and the child. Keep in mind that both processes
execute this test:

if (0 == cpid) { /*¥*% child ***/

The else clause is thus for the parent to execute. Because the child
process is the reader, it immediately closes the WriteEnd of the pipe; in a
similar fashion, the parent process as the writer immediately closes the
ReadEnd of the pipe. Both file descriptors are open because of the call to
pipe. By closing one end of the pipe, each process exhibits the separation-
of-concerns pattern.

The writer process then writes bytes to the pipe, and the reader process
reads these bytes one at a time. When the writer process closes the pipe’s
write end, an end-of-stream marker is sent to the reader, which responds
by closing the pipe’s read end. At this point, the pipe closes down.
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7.2.1. Safeguarding Against Zombie Processes

In the pipeUN program, the parent process writes a full string to the pipe
and then waits for the child process to terminate with the call to library
function wait; the child reads the string byte by byte. The wait callis a
precaution against creating a permanent zombie process: a zombie is a
process that has terminated but which still has an entry in the process
table. If zombies are not reaped from the process table, this table can fill—
and thus prevent the forking of any other process. Although a forked child
is largely independent of its parent process, the operating system does
notify the parent when the child terminates. If a child terminates after its
parent, and there is no safeguard against zombies, the child can remain

a zombie.

In the pipeUN example, it is unpredictable whether the parent or the
child will terminate first, and so the parent—the process being notified—
makes the precautionary call to wait: if the child has already exited, the
call has no effect; otherwise, the parent’s execution is suspended until the
child terminates. The wait function expects one argument, the address
of an int variable that stores the exit code of the process being waited on.
In this example, the argument of NULL is used to keep things simple, but
a parent process in general might implement different logic depending
on the status code of a terminated child. There is also a waitpid function
of three arguments, which allows for more granular control. The waitpid
function is used in a forthcoming example.

The pipeUN program adopts another safeguard. The child calls library
function exit rather than exit: the former fast-tracks parent notification
and so speeds up the reaping of a zombie entry. The parent process, by
contrast, calls the regular exit function.
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There are different ways to safeguard against zombies. The pipeUN
program uses the wait approach to illustrate how independently
executing processes still can be coordinated. A simpler approach, used
in the basicFork program, is to make this call to signal at the start of the
program:

signal(SIGCHLD, SIG_IGN); /* ignore signal about a child's
termination */

The effect of this call is to automate the reaping of a zombie. Were this
approach taken in the current example, the parent’s call to wait would not
be needed to safeguard against a zombie.

7.3. The exec Family of Functions

In the forking of a child process, the multiprocessing is obvious in that the
parent process, which calls fork, continues to execute as well; indeed, the
parent and the child execute the same code unless program logic explicitly
controls which process executes which code. The typical approach,
illustrated in the code examples so far, is to use an if-test to separate the
code intended for the parent from the code intended for the child.

The functions in the exec family, mentioned several times already but
not yet analyzed, work differently. All of the functions in the family do
essentially the same thing, but their argument formats differ. For example,
the execv function has an argument vector, implemented as a NULL-
terminated array of strings. Other members of the family such as execle
use an environment variable to pass information to the executing program.
The next code example goes into the details.
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WHAT’S A PROCESS IMAGE?

Recall that a process is a program in execution, something dynamic. The
executable program is stored somewhere, typically as a file on a local disk.
To execute the program, the operating system first must load the file into
memory. This in-memory representation of the process, read-only during
process execution, is the process image.

Listing 7-3. The exec family of functions

#include <sys/types.h> /* for safety: maybe there's no
unistd.h */

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

int main() {

pid t pid = fork(); /* try to create a child process */

if (-1 == pid) { /* did the fork() work? */
perror("fork()"); /* if not, error message and exit */
exit(-1);

}

if (!pid) { /* fork() returns 0 to the child */

char* const args[ ] =
{"./cline", "foo", "bar", "123", NULL}; /* some cmd-line
args: NULL to
terminate */
int ret = execv("./cline", args); /* "v" for "vector" */
if (-1 == ret) { /* check for failure */

perror("execv(...)");
exit(-1);
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}
else
printf("This should not print!\n"); /* never
executes */
}
return 0;

}

The execing program (see Listing 7-3) forks a child process, which then
calls execv to execute the cline program (recall Listing 1-7). Each function
in the exec family does the following:

o Replaces the image of the process that calls an exec
function with a new process image. This is described as
overlaying one process image with another.

e The new process, in this case cline, runs with the same
pid as the original process, in this case execing.

The cline program expects command-line arguments, which are
supplied in a NULL-terminated array of strings; the cline program simply
prints the arguments to the standard output and then exits.

In the execing program, the call to fork follows the usual pattern except
that parent process has nothing left to do if the fork succeeds; the parent
terminates by returning from main. By contrast, the child process invokes
execv with two arguments:

o The first argument is the path to the executable as a
string, in this case ".\cline".

e The second argument is an array of strings, including
(by tradition) the name of the executable as the first
element in this array. A NULL marks the end of the

string array.
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The execv function returns -1 to signal an error—and otherwise does
not return. Instead, the overlayed process image is used to execute the
overlay program, in this case cline. Accordingly, the last printf statement
in the execing program

printf("This should not print!\n");

does not execute. Only the newly executed cline program runs to
completion: the process image for the forked child indeed has been
overlaid.

There is a short experiment that can confirm the overlay in the execing
program:

o Immediately after the successful fork of the child
process, print the child’s pid value, which can be
obtained with a call within the if block to the getpid
function.

e Amend the cline program to print its own pid, again
using the library function getpid.

The two printed pid values should be the same, thereby confirming
that the execed program cline is executing under the forked child’s pid. The
code available on GitHub includes this experiment.

7.3.1. Process Id and Exit Status

The next program reviews the forking API, in particular the pid and ppid
values for a child process, but also focuses on the information available
about how a child process terminates. The exit status of a forked process
is available, with convenient macros for extracting this status information.
These macros belong to C’s waiting API, whose principal functions are
wait (one argument for ease of use) and waitpid (three or four arguments
for fine-grained control). The example introduces the waitpid function.
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In production-grade multiprocessing programs, logic likely depends
on the state of the constituent processes, including information about how
a given process terminates. For example, a multiprocessing web server
such as Nginx needs to track whether the master process and the worker
processes (request handlers) are still alive and, if not, the exit status of a
terminated process. The multiprocessing examples so far have ignored the
exit status of a child process. The forthcoming exiting example focuses on
the child’s exit status and how the parent can get this status.

Listing 7-4. Exit status

#include <unistd.h> /* symbolic constants */

#include <stdio.h> /* printf, etc. */

#include <sys/wait.h> /* waiting on process termination */
#include <stdlib.h> /* utilities */

void main() {
int status; /* parent captures child's status here */
int cret = Oxaalibb22; /* child returns this value */

pid_t cpid = fork(); /* spawn the child process */

if (0 == cpid) { /* fork() returns 0 to the child */

printf("Child's pid and ppid: %i %i\n", getpid(),
getppid()); /* 2614 2613 */

printf("Child returns %x explicitly.\n", cret);
_exit(cret); /* return an arbitrary value */

}

else { /* fork() returns new pid to the parent process */
printf("Parent's pid: %i\n", getpid()); /* 2613 */
printf("Waiting for child to exit\n");
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if (-1 != waitpid(cpid, &status, 0)) { /* wait for child
to exit, store its
status */
if (WIFEXITED(status))
printf("Normal exit with %x\n", WEXITSTATUS(status));
else if (WIFSIGNALED(status))
printf("Signaled with %x\n", WTERMSIG(status));
else if (WIFSTOPPED(status))
printf("Stopped with %x\n", WSTOPSIG(status));
/* stop pauses the process */
else
puts("peculiar...");
}
exit(0); /* parent exits with normal termination */
}
}

In the exiting program (see Listing 7-4), one process forks another
in the by-now-familiar way. The parent waits for the child with a call to
waitpid, which expects three arguments:

e The first argument is the pid of the process on which to
wait, in this case the child.

o The second argument points to an int variable where
the child’s exit or comparable status is stored.

o The last argument consists of additional options,
for instance, WNOHANG for return at once if no child
has exited.

The wait(NULL) call used earlier is shorthand for

waitpid(-1, NULL, NULL);
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The first argument to waitpid (-1) means, in effect, any child of mine;
the second argument is NULL instead of a pointer to an int variable to store
the child’s exit status; and the third argument is NULL for no flags.

For the child process, there are various possibilities that a waiter such
as the parent needs to consider. Three of these possibilities are considered
in the exiting program:

o The child exits normally, with a nonnegative

return value.

o The child receives a signal such as SIGKILL (terminate
immediately), which cannot be ignored, or SIGTERM
(please terminate immediately), which can be ignored.

e The child receives a SIGSTOP (stop executing: pause)
signal, which cannot be ignored.

In this example, the child exits normally with a call to _exit. The
WEXITSTATUS macro returns the low-order 8 bits of the child’s 32-bit
explicitly returned value, 0xaa11bb22 in hex. The macro thus extracts 22.

The exiting program also confirms that a child’s ppid is the same as
its parent’s pid. In a sample run, this value was 2613, and the child’s pid
was 2614. These values are not guaranteed to be consecutive, but itis a
common pattern: the child’s pid is one greater than the parent’s.

7.4. Interprocess Communication Through
Shared Memory

Although every process has its own address space, which ensures that
processes do not share memory locations by default, processes can share
memory. A standard library provides the appropriate functions. Shared
memory is, like pipes, a mechanism for interprocess communication. A

code example with two processes explores the details.
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There are two separate libraries and APIs for shared memory: the
legacy System V library and API, and the more recent POSIX pair. These
APIs should never be mixed in a single application, however. The POSIX
pair is still in development and dependent upon the version of the
operating system kernel, which impacts code portability. By default,
the POSIX API implements shared memory as a memory-mapped file:
for a shared memory segment, the system maintains a backing file with
corresponding contents. Shared memory under POSIX can be configured
without a backing file, but this may impact portability. My example uses
the POSIX API with a backing file, which combines the benefits of memory
access (speed) and file storage (persistence).

The shared memory example has two programs, named memuwriter and
memreader, and uses a semaphore to coordinate their access to the shared
memory. Whenever shared memory comes into the picture with a writer, so
does the risk of a memory-based race condition with indeterminate results;
hence, the semaphore is used to coordinate (synchronize) access to the
shared memory so that the writer and the reader operations do not overlap.

The memuwriter program, which creates the shared memory segment,
should be started first in its own terminal. The memreader program then
can be started (within a dozen seconds) in its own terminal. The output
from the memreader is

This is the way the world ends...

Here is a review of how semaphores work as a synchronization
mechanism. A general semaphore also is called a counting semaphore,
as it has a value (typically initialized to zero) that can be incremented.
Consider a shop that rents bicycles, with a hundred of them in stock, with
a program that clerks use to do the rentals. Every time a bike is rented, the
semaphore is incremented by one; when a bike is returned, the semaphore
is decremented by one. Rentals can continue until the value hits 100 but
then must halt until at least one bike is returned, thereby decrementing the
semaphore to 99.
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A binary semaphore is a special case requiring only two values,
which are traditionally 0 and 1. In this situation, a semaphore acts as
a mutex: a mutual exclusion construct. The shared memory example
uses a semaphore as a mutex. When the semaphore’s value is 0, the
memuwriter alone can access the shared memory. After writing, this process
increments the semaphore’s value, thereby allowing the memreader to
read the shared memory.

Listing 7-5. The memwriter program

/** Compilation: gcc -o memwriter memwriter.c -lrt
-lpthread **/

#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <semaphore.h>
#include <string.h>
#include "shmem.h"

void report and exit(const char* msg) {

perror(msg);
exit(-1);
}
int main() {
int fd = shm_open(BackingFile, /* name from smem.h */
O RDWR | O_CREAT, /* read/write, create if
needed */
AccessPerms); /* access permissions
(0644) */
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if (fd < 0) report and exit("Can't open shared mem segment...");
ftruncate(fd, ByteSize); /* get the bytes */

caddr t memptr = mmap(NULL, /* let system pick where to
put segment */
ByteSize, /* how many bytes */
PROT_READ | PROT WRITE, /* access
protections */
MAP_SHARED, /* mapping visible to other
processes */

fd, /* file descriptor */
0); /* offset: start at
1st byte */

if ((caddr_t) -1 == memptr) report and exit("Can't get
segment...");

fprintf(stderr, "shared mem address: %p [0..%d]\n", memptr,
ByteSize - 1);

fprintf(stderr, "backing file: /dev/shm%s\n",
BackingFile );

/* semaphore code to lock the shared mem */
sem_t* semptr = sem_open(SemaphoreName, /* name */
0_CREAT, /* create the
semaphore */
AccessPerms, /* protection
perms */
0); /* initial value */
if (semptr == (void*) -1) report and exit("sem open");

strcpy(memptr, MemContents); /* copy some ASCII bytes to the
segment */
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/* increment the semaphore so that memreader can read */
if (sem_post(semptr) < 0) report and exit("sem post");

sleep(12); /* give reader a chance */

/* clean up */

munmap (memptr, ByteSize); /* unmap the storage */
close(fd);

sem_close(semptr);

shm_unlink(BackingFile); /* unlink from the backing file */
return O;

The memuwriter and memreader programs communicate through
shared memory as follows. The memuwriter program (see Listing 7-5) calls
the shm_open library function to get a file descriptor for the backing file that
the system coordinates with the shared memory. At this point, no memory
has been allocated. The subsequent call to the misleadingly named
function ftruncate

ftruncate(fd, ByteSize); /* get the bytes */

allocates ByteSize bytes, in this case, a modest 512 bytes. The memuwriter
and memreader programs access the shared memory only, not the backing
file. The system is responsible for synchronizing the shared memory and
the backing file.

The memuwriter then calls the mmap library function

caddr_t memptr = mmap(NULL, /* let system pick where to
put segment */
ByteSize, /* how many bytes */
PROT READ | PROT WRITE, /* access
protections */
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MAP_SHARED, /* mapping visible to other
processes */

fd, /* file descriptor */
0); /* offset: start at
1st byte */

to get a pointer to the shared memory. (The memreader makes a similar
call.) The pointer type caddr_t starts with a c for calloc, which initializes
dynamically allocated storage to zeros. The memuwriter uses the memptr for
the later write operation, which uses the library strcpy function. At this
point, the memuwriter is ready for writing, but it first creates a semaphore to
ensure exclusive access to the shared memory.

If the call to sem_open for the semaphore’s creation succeeds

sem_t* semptr = sem_open(SemaphoreName, /* name */
0_CREAT, /* create the
semaphore */
AccessPerms, /* protection perms */
0); /* initial value */

then the writing can proceed. The SemaphoreName (any unique nonempty
name will do) identifies the semaphore in both the memuwriter and the
memreader. The initial value of zero gives the semaphore’s creator (in
this case, the memuwriter) the right to proceed (in this case, to the write
operation).

After writing, the memwriter increments the semaphore value to 1:

if (sem_post(semptr) < 0)

with a call to the sem_post library function. Incrementing the semaphore
releases the mutex lock and enables the memreader to perform its read
operation. For good measure, the memuwriter also unmaps the shared
memory from the memuwriter address space:

munmap (memptr, ByteSize); /* unmap the storage *
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This bars the memuwriter from further access to the shared memory.

Listing 7-6. The memreader program

/** Compilation: gcc -o memreader memreader.c -lrt
-lpthread **/

#include
#include
#include
#include
#include
#include
#include
#include
#include

<stdio.h>
<stdlib.h>
<sys/mman.h>
<sys/stat.h>
<fentl.h>
<unistd.h>
<semaphore.h>
<string.h>
"shmem.h"

void report and exit(const char* msg) {
perror(msg);
exit(-1);

}

int main() {

int fd

= shm_open(BackingFile, O RDWR, AccessPerms);

/* empty to begin */

if (fd

< 0) report_and exit("Can't get file descriptor...");

/* get a pointer to memory */
caddr_t memptr = mmap(NULL, /* let system pick where to

put segment */
ByteSize, /* how many bytes */
PROT_READ | PROT_WRITE, /* access
protections */
MAP_SHARED, /* mapping visible to other
processes */
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fd, /* file descriptor */
0); /* offset: start at
1st byte */

if ((caddr t) -1 == memptr) report and exit("Can't access
segment...");

/* create a semaphore for mutual exclusion */
sem_t* semptr = sem_open(SemaphoreName, /* name */
O_CREAT, /* create the
semaphore */
AccessPerms, /* protection
perms */
0); /* initial value */
if (semptr == (void*) -1) report_and_exit("sem open");

/* use semaphore as a mutex (lock) by waiting for writer to
increment it */
if (!sem wait(semptr)) { /* wait until semaphore != 0 */

int i;

for (i = 0; i < strlen(MemContents); i++)

write(STDOUT FILENO, memptr + i, 1); /* one byte at
a time */
sem_post(semptr);

}

/* cleanup */

munmap (memptr, ByteSize);
close(fd);
sem_close(semptr);
unlink(BackingFile);
return 0;
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In both the memuwriter and memreader (see Listing 7-6) programs, the
shared memory functions of primary interest are shm_open and mmap: on
success, the first call returns a file descriptor for the backing file, which
the second call then uses to get a pointer to the shared memory segment.
The calls to shm_open are similar in the two programs except that the
memuwriter program creates the shared memory, whereas the memreader
only accesses this already allocated memory:

int fd = shm_open(BackingFile, O RDWR | O _CREAT, AccessPerms);
/* memwriter */

int fd = shm_open(BackingFile, O RDWR,

AccessPerms); /* memreader */

With a file descriptor in hand, the calls to mmap are the same:

caddr_t memptr = mmap(NULL, size, PROT READ | PROT WRITE, MAP_
SHARED, fd, 0);

The first argument to mmap is NULL, which means that the system
determines where to allocate the memory in virtual address space. It is
possible (but tricky) to specify an address instead. The MAP_SHARED flag
indicates that the allocated memory is shareable among processes, and
the last argument (in this case, zero) means that the offset for the shared
memory should be the first byte. The size argument specifies the number
of bytes to be allocated (in this case, 512), and the protection argument
indicates that the shared memory can be written and read.

When the memuwriter program executes successfully, the system
creates and maintains the backing file; on my system, the file is /dev/shm/
shMemEx, with shMemEx as my name (given in the header file shmem.h)
for the shared storage. In the current version of the memwriter and
memreader programs, the statement

shm_unlink(BackingFile); /* removes backing file */
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removes the backing file. If the unlink statement is omitted, then the
backing file persists after the program terminates.

The memreader, like the memuwriter, accesses the semaphore through
itsname in a call to sem_open. But the memreader then goes into a wait
state until the memuwriter increments the semaphore, whose initial
value is 0:

if (!sem wait(semptr)) { /* wait until semaphore != 0 */

Once the wait is over, the memreader reads the ASCII bytes from the
shared memory, cleans up, and terminates.

The shared memory API includes operations explicitly to synchronize
the shared memory segment and the backing file. These operations have
been omitted from the example to reduce clutter and keep the focus on the
memory-sharing and semaphore code.

The memuwriter and memreader programs are likely to execute without
inducing a race condition even if the semaphore code is removed: the
memuwriter creates the shared memory segment and writes immediately
to it; the memreader cannot even access the shared memory until this
has been created. However, best practice requires that shared memory
access is synchronized whenever a write operation is in the mix, and the
semaphore API is important enough to be highlighted in a code example.

7.5. Interprocess Communication Through
File Locking

Programmers are all too familiar with file access, including the many
pitfalls (nonexistent files, bad file permissions, and so on) that beset the
use of files in programs. Nonetheless, shared files may be the most basic

mechanism for interprocess communication. Consider the relatively
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simple case in which one process (producer) creates and writes to a file
and another process (consumer) reads from this same file:

producer-------- >| disk file |<------- consumer

The obvious challenge in using a shared file is that a race condition
might arise: the producer and the consumer might access the file at exactly
the same time, thereby making the outcome indeterminate. To avoid a
race condition, the file must be locked in a way that prevents a conflict
between a write operation and any another operation, whether a read or a
write. The locking API in the standard system library can be summarized
as follows:

e Aproducer should gain an exclusive lock on the file
before writing to the file. An exclusive lock can be
held by one process at most, which rules out a race
condition because no other process can access the file
until the lock is released. (It is possible to lock only part
of afile.)

e A consumer should gain at least a shared lock on the
file before reading from the file. Multiple readers can
hold a shared lock at the same time, but no writer can
access a file when even a single reader holds a shared
lock. A shared lock promotes efficiency. If one process
is just reading a file and not changing its contents, there
is no reason to prevent other processes from doing the
same. Writing, however, clearly demands exclusive
access to a file, as a whole or just in part.
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The standard I/0 library includes a utility function named fcntl that
can be used to inspect and manipulate both exclusive and shared locks
on a file. The function works through the by-now-familiar file descriptor,
a nonnegative integer value that, within a process, identifies a file. (Recall
that different file descriptors in different processes may identify the same
physical file.) For file locking, Linux provides the library function flock,
which is a thin wrapper around fcntl. The code examples use the fcntl
function to expose API details.

Listing 7-7. The producer program

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>

#define FileName "data.dat"
#define DataString "Now is the winter of our discontent\nMade
glorious summer by this sun of York\n"

void report and exit(const char* msg) {
perror(msg);
exit(-1); /* EXIT FAILURE */

}

int main() {

struct flock lock;

lock.1 type = F_WRLCK; /* read/write (exclusive versus
shared) lock */

lock.1 whence = SEEK_SET; /* base for seek offsets */

lock.1l start = 0; /* 1st byte in file */

lock.1l len = 0; /* 0 here means ‘'until EOF' */

lock.1 pid = getpid(); /* process id */
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int fd; /* file descriptor to identify a file within a
process */
if ((fd = open(FileName, O RDWR | O CREAT, 0666)) < 0) /* -1
signals an error */
report_and exit("open failed...");

if (fcntl(fd, F_SETLK, &lock) < 0) /** F _SETLK doesn't block,
F_SETLKW does **/

report and exit("fcntl failed to get lock...");

else {
write(fd, DataString, strlen(DataString)); /* populate

data file */

fprintf(stderr, "Process %d has written to data file...\n",
lock.1 pid);

}

/* Now release the lock explicitly. */
lock.1 type = F_UNLCK;
if (fentl(fd, F_SETLK, &lock) < 0)
report and exit("explicit unlocking failed...");

close(fd); /* close the file: would unlock if needed */
return 0; /* terminating the process would unlock as well */

The main steps in the producer program (see Listing 7-7) can be
summarized as follows. The program declares a variable of type struct
flock, which represents a lock, and initializes the structure’s five fields.

The first initialization

lock.1l type = F_WRLCK; /* exclusive lock */
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makes the lock an exclusive (read-write) rather than a shared (read-only)
lock. If the producer gains the lock, then no other process will be able to
write or read the file until the producer releases the lock, either explicitly
with the appropriate call to fcntl or implicitly by closing the file. (When
the process terminates, any opened files would be closed automatically,
thereby releasing the lock.) The program then initializes the remaining
fields. The chief effect is that the entire file is to be locked. However, the
locking API allows only designated bytes to be locked. For example, if the
file contains multiple text records, then a single record (or even part of a
record) could be locked and the rest left unlocked.

The first call to fcntl

if (fcntl(fd, F_SETLK, &lock) < 0)

tries to lock the file exclusively, checking whether the call succeeded. In
general, the fcntl function returns -1 (hence, less than zero) to indicate
failure. The second argument F_SETLK means that the call to fcntl does
not block: the function returns immediately, either granting the lock or
indicating failure. If the flag F_SETLKW (the W at the end is for wait) were
used instead, the call to fcntl would block until gaining the lock was
possible. In the calls to fcntl, the first argument fd is the file descriptor,
the second argument specifies the action to be taken (in this case, F_SETLK
for setting the lock), and the third argument is the address of the lock
structure (in this case, &lock).

If the producer gains the lock, the program writes two text records to
the file. After writing to the file, the producer changes the lock structure’s
1 type field to the unlock value:

lock.1 type = F_UNLCK;

and calls fcntl to perform the unlocking operation. The program finishes
up by closing the file and exiting.
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Listing 7-8. The consumer program

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>

#define FileName "data.dat"

void report and exit(const char* msg) {
perror(msg);
exit(-1); /* EXIT FAILURE */

}

int main() {
struct flock lock;
lock.1 type = F_WRLCK; /* read/write (exclusive) lock */
lock.1l whence = SEEK_SET; /* base for seek offsets */
lock.1 start = o; /* 1st byte in file */
lock.1 len /* 0 here means 'until EOF' */
lock.l pid = getpid(); /* process id */

1
o
-

int fd; /* file descriptor to identify a file within a
process */
if ((fd = open(FileName, O RDONLY)) < 0) /* -1 signals an
error */
report and exit("open to read failed...");

/* If the file is write-locked, we can't continue. */
fcntl(fd, F_GETLK, &lock); /* sets lock.l type to F_UNLCK if
no write lock */
if (lock.l type != F_UNLCK)
report _and exit("file is still write locked...");
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lock.1 type = F_RDLCK; /* prevents any writing during the
reading */
if (fentl(fd, F SETLK, &lock) < 0)
report and exit("can't get a read-only lock...");

/* Read the bytes (they happen to be ASCII codes) one at a
time. */
int c¢; /* buffer for read bytes */
while (read(fd, &c, 1) > 0) /* 0 signals EOF */
write(STDOUT FILENO, &c, 1); /* write one byte to the
standard output */

/* Release the lock explicitly. */
lock.1 type = F_UNLCK;
if (fcntl(fd, F_SETLK, &lock) < 0)
report_and exit("explicit unlocking failed...");

close(fd);
return 0;

}

The consumer program (see Listing 7-8) is more complicated than
necessary to highlight features of the locking API. In particular, the
consumer program first checks whether the file is exclusively locked and
only then tries to gain a shared lock. The relevant code is

lock.1 type = F_WRLCK;
fcntl(fd, F_GETLK, &lock); /* sets lock.l type to F_UNLCK if no
write lock */

if (lock.1l type != F_UNLCK)
report _and exit("file is still write locked...");
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The F_GETLK operation specified in the fcntl call checks for a lock, in
this case, an exclusive lock given as F_WRLCK in the first statement earlier. If
the specified lock does not exist, then the fcntl call automatically changes
the lock type field to F_UNLCK to indicate this fact. If the file is exclusively
locked, the consumer terminates. (A more robust version of the program
might have the consumer sleep a bit and try again several times.)

If the file is not currently locked, then the consumer tries to gain a
shared (read-only) lock (F_RDLCK). To shorten the program, the F_GETLK
call to fcntl could be dropped because the F_RDLCK call would fail if a
read-write lock already were held by some other process. Recall that a
read-only lock does prevent any other process from writing to the file but
allows other processes to read from the file. In short, a shared lock can
be held by multiple processes. After gaining a shared lock, the consumer
program reads the bytes one at a time from the file, prints the bytes to the
standard output, releases the lock, closes the file, and terminates.

Here is the output from the two programs launched from the same
terminal:

% ./producer
Process 29255 has written to data file...

% ./consumer
Now is the winter of our discontent
Made glorious summer by this sun of York

The data shared through this interprocess communication is text: two
lines from Shakespeare’s play Richard III. Yet the shared file’s contents
could be voluminous, arbitrary bytes (e.g., a digitized movie), which makes
file sharing an impressively flexible mechanism. The downside is that file
access is relatively slow, whether the access involves reading or writing. As
always, programming comes with trade-offs.
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7.6. Interprocess Communication Through
Message Queues

Earlier code examples highlighted pipes, both named and unnamed. Pipes
of either type have strict FIFO behavior: the first byte written is the first
byte read, the second byte written is the second byte read, and so forth.
Message queues can behave in the same way but are flexible enough that
byte chunks can be retrieved out of FIFO order.

As the name suggests, a message queue is a sequence of messages,
each of which has two parts:

o The payload, which is an array of bytes (char).

e Atype, given as a positive integer value; types
categorize messages for flexible retrieval.

Consider the following depiction of a message queue, with each
message labeled with an integer type:

+-+ +-+ +-+ +-+
sender--->|3|--->|2|--->|2|--->|1|--->receiver
+-+ +-+ +-+ +-+

Of the four messages shown, the one labeled 1 is at the front, that is,
closest to the receiver. Next come two messages with label 2, and finally, a
message labeled 3 at the back. If strict FIFO behavior were in play, then the
messages would be received in the order 1-2-2-3. However, the message
queue allows other retrieval orders. For example, the messages could be
retrieved by the receiver in the order 3-2-1-2.

The mqueue example consists of two programs: the sender that writes
to the message queue and the receiver that reads from this queue. Both
programs include the header file queue.h shown in Listing 7-9.
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Listing 7-9. The header file queue.h

#define ProjectId 123

#idefine PathName "queue.h" /* any existing, accessible file
would do */

#define Msglen 4

#define MsgCount 6

typedef struct {
long type; /* must be of type long */
char payload[MsgLen + 1]; /* bytes in the message */
} queuedMessage;

The header file defines a structure type named queuedMessage,
with payload (byte array) and type (integer) fields. This file also defines
symbolic constants (the #define directives), the first two of which are
used to generate a key that, in turn, is used to get a message queue ID. The
ProjectId can be any positive integer value, and the PathName must be
of an existing, accessible file—in this case, the file queue.h. The setup
statements in both the sender and the receiver programs are

key t key = ftok(PathName, ProjectId); /* generate key */
int qid = msgget(key, 0666 | IPC CREAT); /* use key to get
queue id */

The ID gid is, in effect, the counterpart of a file descriptor for
message queues.

Listing 7-10. The message sender program

#include <stdio.h>

#include <sys/ipc.h>
#include <sys/msg.h>
#include <stdlib.h>
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#include <string.h>
#include "queue.h"

void report and exit(const char* msg) {
perror(msg);
exit(-1); /* EXIT FAILURE */

}

int main() {
key t key = ftok(PathName, ProjectId);
if (key < 0) report and exit("couldn't get key...");

int qid = msgget(key, 0666 | IPC CREAT);
if (qid < 0) report and exit("couldn't get queue id...");

char* payloads[] = {"msg1", "msg2", "msg3", "msg4", "msg5",
"msg6"};
int types[] = {1, 1, 2, 2, 3, 3}; /* each must be > 0 */
int i;
for (i = 0; i < MsgCount; i++) {

/* build the message */

queuedMessage msg;

msg.type = types[i];

strcpy(msg.payload, payloads[i]);

/* send the message */
msgsnd(qid, 8msg, Msglen + 1, IPC _NOWAIT); /* don't

block */
printf("%s sent as type %i\n", msg.payload, (int)
msg.type);
}
return O;

}
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The preceding sender program sends out six messages, two each of a
specified type: the first messages are of type 1, the next two of type 2, and
the last two of type 3. The sending statement

msgsnd(qid, &msg, MsglLen + 1, IPC_NOWAIT);

is configured to be nonblocking (the flag IPC_NOWAIT) because the
messages are so small. The only danger is that a full queue, unlikely in this
example, would result in a sending failure. The following receiver program
also receives messages using the IPC_NOWAIT flag.

Listing 7-11. The message receiver program

#include <stdio.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <stdlib.h>
#include "queue.h"

void report and exit(const char* msg) {
perror(msg);
exit(-1); /* EXIT_FAILURE */

}

int main() {
key t key= ftok(PathName, ProjectId); /* key to identify the
queue */
if (key < 0) report_and_exit("key not gotten...");
int qid = msgget(key, 0666 | IPC CREAT); /* access if created
already */

if (qid < 0) report_and exit("no access to queue...");

int types[] = {3, 1, 2, 1, 3, 2}; /* different than in
sender */
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int i;
for (i = 0; i < MsgCount; i++) {
queuedMessage msg; /* defined in queue.h */
if (msgrcv(qid, &msg, Msglen + 1, types[i], MSG_NOERROR |
IPC_NOWAIT) < 0)
puts("msgrcv trouble...");
printf("%s received as type %i\n", msg.payload, (int)
msg.type);
}

/** remove the queue **/
if (msgctl(qid, IPC_RMID, NULL) < 0) /* NULL = 'no flags' */
report_and_exit("trouble removing queue...");

return O;

The receiver program does not create the message queue, although the
API suggests as much. In the receiver, the call

int qid = msgget(key, 0666 | IPC_CREAT);

is misleading because of the IPC_CREAT flag, but this flag really means
create if needed, otherwise access. The sender program calls msgsnd to
send messages, whereas the receiver calls msgrcv to retrieve them. In this
example, the sender sends the messages in the order 1-1-2-2-3-3, but the
receiver then retrieves them in the order 3-1-2-1-3-2, showing that message

queues are not bound to strict FIFO behavior:

% ./sender

msgl sent as type 1
msg2 sent as type 1
msg3 sent as type 2
msg4 sent as type 2
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msg5 sent as type 3
msg6 sent as type 3

% ./receiver

msg5 received as type 3
msgl received as type 1
msg3 received as type 2
msg2 received as type 1
msgb received as type 3
msg4 received as type 2

The preceding output shows that the sender and the receiver can be
launched from the same terminal. The output also shows that the message
queue persists even after the sender process creates the queue, writes to
it, and exits. The queue goes away only after the receiver process explicitly
removes the queue with the call tomsgctl:

if (msgctl(qid, IPC RMID, NULL) < 0) /* remove queue */

7.7. Multithreading

Recall that a multithreaded process has multiple threads (sequences) of
executable instructions, which can be executed concurrently and, on a
multiprocessor machine, in parallel. Multithreading, like multiprocessing,
is a way to multitask. Multithreading has the upside of efficiency

because thread-level context switches are quite fast but the downside of
challenging the programmer with the twin perils of race conditions and
deadlock. Code examples go into detail. To begin, an example of pthread
(the standard thread library) basics should be helpful.
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Listing 7-12. A first multithreaded example

/* compilation: gcc -o greet greet.c -lpthread */
#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#define ThreadCount 4

void* greet(void* my_id) { /* void* is 8 bytes on a 64-bit
machine */
unsigned i, n = ThreadCount;
for (i = 0; i < n; i++) {
printf("from thread %1d...\n", (unsigned long) my id);
sleep(rand() % 3);
}
return 0;
} /* implicit call to pthread exit(NULL) */

void main() {
pthread t threads[ThreadCount];
unsigned long i;
for (i = 0; i < ThreadCount; i++) {
/* four args: pointer to pthread t instance, attributes,
start function,
and argument passed to start function */
int flag = pthread create(threads + i, /* 0 on success */
NULL,
greet,
(void*) i + 1);
if (flag < 0) {
perror(NULL);
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exit(-1);

puts("main exiting...");
pthread exit(NULL); /* allows other threads to continue

execution */

The multiT program (see Listing 7-12) has five threads in all: the main

thread, which executes the body of main, and four additional threads that

main creates through calls to the library function pthread create. The

pthread_create function takes four arguments:

The first argument is a pointer to a pthread_t instance,
in this case an element in the threads array.

The second argument specifies thread attributes.
A value of NULL indicates that the default attributes
should be used.

The third argument is a pointer to the thread’s start
function, which the thread executes once the operating
system starts the thread. A created thread automatically
terminates when it returns from its start function. The
start function can call other functions and do whatever
else comes naturally to functions.

The fourth and last argument specifies what should be
passed, as an argument, to the start function. In this
case, the argument passed to the greet start function
will be one of the values 1, 2, 3, and 4, which identify
each of the created threads. The argument passed to
the start function is always of the generic type void*,
and NULL for no argument can be used.
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All four of the created threads execute the same code, the body of
the greet function, but no race condition arises. Arguments passed to a
function, and local (auto or register) variables within the function, are
thereby thread-safe because each thread gets its own copies. If a variable
is neither extern nor static, then it represents a thread-safe memory
location.

The pthread_create function returns -1 to signal an error and 0 to
signal success. A successfully created thread is ready to be scheduled for
execution on a processor.

At the end of main, the multiT program calls the library function
pthread_exit with an argument of NULL. The address of an int exit-status
variable also could be used as the argument. This call from main allows
other threads to continue executing. On a sample run, for instance, the
output began:

from thread 2...
from thread 4...
main exiting...
from thread 3...

The order of thread execution is indeterminate. Once the threads are
created, the operating system takes over the scheduling, using whatever
algorithm the host system employs. A pthread instance is a native thread
under operating system control. By contrast, a green thread is under the
control of a virtual machine. For example, early implementations of Java
(before JDK 1.4) were required to support only green threads. If the multiT
program is run several times, the output is likely to differ each time.
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WHAT’S POSIX?

The Portable Operating System Interface is a family of standards from the IEEE
Computer Society meant to encourage compatibility among operating systems.
The multithreading examples use pthreads, where the p stands for POSIX.

7.7.1. A Thread-Based Race Condition

The next code example illustrates a race condition in a multithreaded
program. The program later introduces a mechanism for coordinating
thread execution, thereby preventing this race condition. A short depiction
of a race condition follows.

Suppose that there is a static variable named n, which is initialized to
1 and updated as follows:

n += rand(); /* add a pseudo random value to n */

The assignment operator += makes it clear that fwo operations are
involved: an addition followed by an assignment. Suppose that this
same statement belongs to two separate threads of execution, T'1 and
T2, each of which accesses the same variable n. For emphasis, assume
that each thread executes literally at the same time on a multiprocessor
machine. Here is one possible scenario, where each of the numbered items
represents one tick of the system clock:

1. Thread T1 gets 123 from its call to rand() and
performs the addition. Assume that the sum of
the two numbers 123 + 1 = 124 is stored on the
stack. Call this storage location temp1, which now
holds 124.
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2. Thread T2 gets 987 from its call to rand() and
performs the addition. The sum 988 is stored in
temp2, also on the stack.

3. Thread T2 performs the assignment, using the value
from temp?2: the value of n is updated to 988.

4. Thread T1 performs the assignment, using the value
from temp1I: the value of n changes to 124.

It is clear that improper interleaving of machine-level instructions
has taken place. Thread T2 does its addition and assignment without
interruption, which is the correct way to perform the two operations. By
contrast, thread T1 does its addition, is delayed two ticks of the clock, and
then finishes up with an assignment. By coming in last, thread T1 wins the
race: the final value of variable n, 124, reflects only what thread T1 did, and
what thread 72 did is effectively lost.

The two operations, the addition and then the assignment, make up a
critical section, a sequence of operations that must be executed in a single-
threaded, uninterrupted manner: if one thread starts its addition, no other
thread should access variable n until this first thread completes its work
with an assignment. The code segment at present does not enforce single-
threaded or thread-safe execution of the

n += rand(); /* addition then assignment */

critical section. The outcome is, therefore, indeterminate and
unpredictable.

7.7.2. The Miser/Spendthrift Race Condition

The forthcoming miserSpend program encourages a race condition by
having two threads concurrently update a shared memory location, in
this case the single static variable named account, which represents a
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shared bank account: both threads access the same account. A memory-
based race condition requires contention for a shared memory location. Of
course, the account variable could be extern rather than static without
changing the program'’s behavior.

The miser (saver) and the spendthrift (spender) are implemented as
two separate threads, each with uncoordinated access to the account.
To highlight the race condition, the miser and the spendthrift update the
balance the same number of times, given as a command-line argument.
Here is a depiction of what goes on in the miserSpend program:

miser----------- >| account |<----------- spendthrift ## updates are done many times

On a multiprocessor machine, the miser and the spendthrift can
execute in a truly parallel fashion. Because access to the account is
uncoordinated, a race condition ensues, and the final value of account
is indeterminate. Indeed, if the two threads increment and decrement a
sufficient number of times (e.g., ten million apiece), it becomes highly
unlikely that the account will have zero as its value at the end, or that the
account will have a repeated value over multiple runs.

As in the earlier multithreading example, the main thread starts the
other threads, but the main thread now must wait for the miser and the
spendthrift threads to terminate. For the program to illustrate the race
condition, the main thread must be the last thread standing. The reason
is that the main thread prints the final value of the account and must
not do so prematurely, that is, before all of the updates have completed.
Otherwise, the main thread might print the value of account when this
value just happens to be zero. The pthread library has a function to enable
the required waiting.
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Listing 7-13. Creating, starting, and waiting on the miser and
spendthrift threads

void report and die(const char* msg) {
fprintf(stderr, "%s\n", msg);
exit(-1);

}

void main(int argc, char* argv[]) {
if (argc < 2) report_and die("Usage: saveSpend <number of
operations apiece>\n");
int n = atoi(argv[1]); /** command-line argument conversion
to integer **/

pthread t miser, spendt;
if (pthread create(8miser, NULL, deposit, &n) < 0)
report _and die("pthread create: miser");

if (pthread create(&spendt, NULL, withdraw, &n) < 0)
report _and die("pthread create: spendt");

pthread join(miser, NULL); /* main thread waits on miser:
NULL for exit status */

pthread join(spendt, NULL); /* main thread waits on spendt:
NULL for exit status */

printf("The final account balance is: %10i\n", account);

}

The code for the saveSpend program is divided into two parts for
readability. The first part (see Listing 7-13) has the main thread create and
then start two other threads: the miser and the spendthrift threads. Each
created thread is of type pthread_t, and the pthread create function can
be reviewed as follows:
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o The first argument is the address of a pthread_t
instance, in this case, of either the miser or the spendt
variable.

e The second argument, NULL, indicates that default
thread properties are to be used.

e The third argument is the address of the start function,
either deposit (miser) or withdraw (spendthrift). Recall
that each created thread terminates automatically
when exiting its start function.

o The fourth argument is the address of the argument
passed to the start function, in this case the address of
integer variable n, which is the number of times that
each started thread should update the account.

The saveSpend program introduces only one new function from
the pthread API, pthread_join. The caller of the function, in this case
main, thereby goes into a wait state until the thread identified in the first
argument has exited. For review, the main function calls the pthread_join
function twice:

pthread_join(miser, NULL); /* main thread waits on miser */
pthread join(spendt, NULL); /* main thread waits on spendt */

If the miser already has exited, the first call to pthread_join returns
immediately; if not, the call returns when the miser does exit. The second
argument to pthread join can be used to get the exit status of the thread
given as the second argument; in this case, the status is ignored with NULL
as the second argument. The two calls to pthread_join ensure that the
main thread prints the final balance—the balance after the other two
threads have terminated.
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Listing 7-14. The miser/spendthrift start functions

/** To compile: gcc -o saveSpend saveSpend.c -lpthread **/
#include<stdio.h>

#include<pthread.h>

#include<stdlib.h>

static int account = 0; /** shared storage across the
threads **/

void update(int n) {
account += n; /** critical section **/

}

void* deposit(void* n) { /** miser code **/
int limit = *(int*) n, i;
for (i = 0; i < limit; i++) update(+1); /* add 1 to
account */
return NULL;
} /** thread terminates when exiting deposit **/

void* withdraw(void* n) { /** spendt code **/
int limit = *(int*) n, i;
for (i = 0; i < limit; i++) update(-1); /* subtract 1 from
account */
return NULL;
} /** thread terminates when exiting withdraw **/

The second part of the saveSpend program (see Listing 7-14) has the
two start functions for the created threads: deposit (miser) and withdraw
(spendthrift). Each of these functions takes, as its single argument, the
number of times to perform an account update, implemented as the
update function: the deposit function calls update with 1 as the argument,
whereas the withdraw function calls update with -1 as the argument.
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A command-line argument determines the number of deposits
and withdrawals, and this number is the same for the miser and the
spendthrift. The command-line argument should be sufficiently large to be
interesting, that is, to confirm the race condition. If the number is too small
(e.g., 100), then the miser might do its 100 deposits before the spendthrift
does any withdrawals. The goal is to have each thread run long enough
that there is improper interleaving of the arithmetic and assignment
operations in the critical section, the body of the update function.
With a command-line argument of 10M (million), the output from two

consecutive runs was

The final account balance is: 203692
The final account balance is: -1800416

With a command-line argument of 10M, a result of zero is highly
unlikely.

In the saveSpend program, the account is changed in only one place:
the function update, which takes a single int argument and updates the
account by this amount. For the saveSpend program to behave properly,
the body of update function must execute in a single-threaded fashion.
There are different ways to enforce this policy, and using a mutex to
lock access to the account is one way. (Recall the earlier example of the
memuwriter/memreader in which a semaphore is used as a mutex.) In
the current example, the mutex from the pthread library ensures single-
threaded execution of a critical section—the body of the update function
in which the account is either incremented or decremented.

Listing 7-15. Fixing the saveSpend program

static int account = 0; /** shared storage across the
threads **/
static pthread mutex_t lock; /* named lock for clarity */
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void update(int n) {
if (0 == pthread mutex lock(&lock)) {
account += n; /** critical section **/
pthread mutex_unlock(&lock);

}
}

The saveSpend program requires only a few changes to fix (see
Listing 7-15):

o Apthread mutex lock variable named lock is added.
There should be a single lock to ensure that the miser
and the spendthrift contend for the same lock. The lock
is static but could be extern as well.

o Thelockis used in the update function. To update the
account, a thread first must grab the lock, expressed
here as the condition of the if clause. The pthread
mutex_lock function returns 0 to signal that the lock
has been grabbed.

e Once a thread completes its update, the thread releases
the lock so that another thread can try to grab it.

With these changes in place, the saveSpend program always prints 0
as the value of the account when the miser and spendthrift threads have
terminated.

One more change is recommended in fixing the saveSpend program.
After the miser and spendthrift threads terminate, the lock is no longer
needed; hence, it should be destroyed. The function main could be
changed as follows:

pthread join(spendt, NULL);
pthread mutex destroy(&lock); /** added **/
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A high-level summary of the pthread mutex seems in order:

o To execute a locked critical section, a thread first
must grab the lock. After finishing the execution of
the critical section, a thread should release the lock to
enable some other thread to grab the lock and thus to
safeguard against deadlock.

e Ifmultiple threads are contending for the lock, the
implementation ensures that exactly one thread
grabs it.

o Ingeneral, a mutex such as pthread mutex does not
guarantee fairness. For example, if two threads are
contending for the lock, the mutex implementation
does not guarantee that each thread will be successful
half the time. However, the saveSpend program has
other logic to ensure that the miser and the spendthrift
threads execute the same number of times.

If the fixed saveSpend program is run with a sufficiently large loop
count (e.g., 10,000,000) as the command-line argument, there will be
noticeable slowdown compared to the original version of the program.
There is a performance cost to mutual exclusion, which enforces single-
threaded execution of a critical section; in this code example, the cost
ensures that the saveSpend program runs correctly.

7.8. Deadlock in Multithreading

Deadlock can occur in either a multiprocessing or multithreading. In the
multithreading context, deadlock can occur with just two threads: T1 and
T2. To access a shared resource R, either T1 or T2 must hold two locks (LI
and L2) at the same time. Suppose the two threads try to access R, with T1
managing to grab lock L1 and 72 managing to grab lock L2. Each thread
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now waits indefinitely for the other to release its held lock—and deadlock
results. Deadlock is usually inadvertent, of course, but the next code
example tries to cause deadlock.

Listing 7-16. Deadlocking with threads

/** To compile: gcc -o deadlock deadlock.c -lpthread **/
#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

static pthread mutex_t lock1, lock2; /** two locks protect the
resource **/
static int resource = 0; /** the resource **/

void grab_locks(const char* tname,

const char* lock name,

const char* other lock name,

pthread mutex t* lock,

pthread mutex t* other lock) {
printf("%s trying to grab %s...\n", tname, lock name);
pthread mutex_lock(lock);
printf("%s grabbed %s\n", tname, lock name);

if (0 == strcmp(tname, "threadi")) usleep(100); /** fix

is inl **/
printf("%s trying to grab %s...\n", tname, other_lock_name);
pthread mutex lock(other lock);
printf("%s grabbed %s\n", tname, other_ lock name);
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resource = (0 == strcmp(tname, "thread1i")) ? -9999 : 1111;
pthread mutex unlock(other lock);
pthread mutex_unlock(lock);

}

void* threadi() {
grab_locks("thread1", "lock1", "lock2", &lock1, &lock2);
/* locki...lock2 */
return NULL;

}

void* thread2() {
grab locks("thread2", "lock2", "locki", &lock2, &lock1);
/* lock2...lock1 */
return NULL;

}

void main(){
pthread t t1, t2;

pthread create(&t1, NULL, thread1, NULL); /* start
thread 1 */
pthread create(&t2, NULL, thread2, NULL); /* start
thread 2 */
pthread join(t1, NULL); /* wait for thread 1 */
pthread join(t2, NULL); /* wait for thread 2 */

printf("Number: %i (Unlikely to print...)\n", resource);

The deadlock program (see Listing 7-16) is likely but not certain to
deadlock. Although deadlock is intended, the code still might execute in
such a way that deadlock does not occur. On a sample run, however, the
deadlock program produced this output:
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thread1l trying to grab locki...
thread1l grabbed lock1

thread2 trying to grab lock2...
thread2 grabbed lock2

thread2 trying to grab locki...
thread1l trying to grab lock2...

A code analysis shows what happened

The main thread creates two threads: t1 and t2. Thread t1 is created
first, and the output confirms that t1 starts executing first—although the
order of execution is indeterminate. There are two locks, lock1 and lock2,
which protect resource, an int variable: thread t1 tries to set this variable
to -9999, whereas thread t2 tries to set the variable to 1111. To set the
variable, a thread must grab both locks.

Thread t1 has thread1 as its start function, and t2 has thread2 as
its start function. In turn, these functions immediately call the grab
locks function, but with arguments in a different order. Recall that, in
multithreading, each thread has its own copies of arguments and local
variables.

Given the output shown previously, the concurrent execution of grab
locks can be summarized as follows:

1. Thread t1 succeeds in grabbing lock1 but fails in
the attempt to grab lock2. After grabbing lock1,
thread t1 sleeps for 100 microseconds—time
enough, as it turns out, for thread t2 to grab locka2.

2. After grabbing lock2, thread t2 tries to grab lock1,
which thread t1 already holds. At this point, t1
holds lock1 and t2 holds lock2.
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3. The last two statements in the grab_locks function
release the locks. However, neither thread can
proceed to the release code without first grabbing a
lock that the other thread already holds—deadlock.

Why is deadlock not certain in the deadlock program? On my desktop
machine, no deadlock results if the usleep call is removed from the
grab_locks function. No deadlock results if the argument passed to
usleep is sufficiently small. Even with the current usleep value of 100, it is
possible that thread t1 might grab both locks before thread t2 even begins
executing. It is also possible, on a multiprocessor machine, that thread
t2 is scheduled on a faster processor than is t1; as a result, t2 grabs both
locks before t1 even begins executing. A thread that holds both locks can
proceed to the release code: no deadlock occurs. The deadlock program
tries to cause deadlock, but even this requires some experimentation
by setting the amount of time that thread t1 sleeps after grabbing the
first lock.

The deadlock program tries to cause deadlock, but the real-world
challenge is a concurrent program that, although designed not to
deadlock, does so anyway. Modern database systems typically include at
least a deadlock-detection module. In general, however, software systems
neither detect, nor prevent, nor recover from deadlock. The burden thus
falls on the programmer to write code that avoids deadlock.

7.9. SIMD Parallelism

The acronym SIMD was introduced in the mid-1960s as part of Flynn’s
taxonomy for parallel computing. SIMD stands for single instruction,
multiple data stream. Flynn’s taxonomy introduces other acronyms
(e.g., MIMD for multiple instruction, multiple data stream) to describe
additional approaches to parallel computation. This section focuses on
SIMD parallelism.
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Imagine integer values collected in array and a code segment that
doubles the value of each element. A conventional approach would be
to loop over the array and, one element at a time, double each value. In
a SIMD architecture, a single instruction would execute on each element
in parallel. The serial or iterative computation gives way to a one-step
parallel computation, with a boost in performance that is both intuitive
and compelling.

The concurrent programs examined so far become truly parallel
programs without any programmer intervention. If a multiprocessing or
multithreading program happens to execute on a multiprocessor machine
(now the norm), then the operating system transforms the concurrent
program into a parallel one by scheduling processes/threads onto different
processors. SIMD parallelism differs in that parallel instructions come into
play. SIMD is thus a type of instruction-level parallelism, which requires
underlying architectural support.

The appeal of SIMD parallelism is obvious. Even everyday applications
regularly iterate over arrays, performing the same operation on each
element. For an array of size N, this iterative approach requires that N
instructions be executed in sequence. Assume, for simplicity, that each
instruction requires one tick of the system clock. In this scenario, doubling
the array elements takes N ticks. If the doubling can be done in a single
SIMD instruction, the time required drops from N ticks to roughly one tick,
although there is nontrivial overhead to set up the parallel addition.

For some time, computers have had devices tailored for SIMD. A
graphics processing unit (GPU) is a case in point; indeed, the acronym
GP_GPU describes a GPU designed for general purpose rather than just
graphics-specific processing. There are various C libraries and entire
frameworks devoted to putting such devices to use in SIMD processing.
This section goes another way, focusing instead on how the standard C
compilers are now able to use native SIMD instructions, in particular
on modern Intel and AMD machines. (ARM Neon machines likewise
support SIMD.)
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In the late 1990s, Intel released the P5 (P for Pentium) line of
microprocessors, which support the MMX instruction set, a first step
toward SIMD parallelism. The MM registers associated with this
instruction set, and the instruction set itself, soon gave way to SSE
(Streaming SIMD Extensions) in different versions (e.g., SSE2 and SSE4).
The XMM registers of SSE are 128 bits in size and small in number—only
eight to begin but later sixteen. The SIMD architecture and instruction set
have continued to evolve. For example, the XMM registers (128 bits) now
have siblings: YMM registers (256 bits) and ZMM registers (512 bits).

Listing 7-17. A SIMD program in C
#include <stdio.h>

#define Length 8
typedef double doubleV8 attribute  ((vector size (Length *
sizeof(double)))); /** critical **/

void main() {
doublev8 datavi = {1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8};
/* no square brackets on datavi */
doublev8 datav2 = {4.4, 6.6, 1.1, 3.3, 5.5, 2.2, 3.3, 5.5};
/* no square brackets on dataV2 */

doubleV8 add
doubleV8 mul
doubleV8 div

dataVi + datavz;
dataVi * dataVz;
dataVvi / datavz;

int i;

for (i = 0; i < Length; i++)
printf("%f ", add[i]); /* 5.500000 8.800000 4.400000
7.700000 11.000000 8.800000 11.000000 14.300000 */
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putchar('\n");
for (i = 0; i < Length; i++)
printf("%f ", mul[i]); /* 4.840000 14.520000 3.630000
14.520000 30.250000 14.520000
25.410000 48.400000 */

putchar('\n");
for (i = 0; i < Length; i++)
printf("%f ", div[i]); /* 0.250000 0.333333 3.000000
1.333333 1.000000 3.000000 2.333333
1.600000 */

putchar('\n");
}

The simd program (see Listing 7-17) has a typedef that triggers the C
compiler to use native SIMD instructions and the supporting architectural
components, in particular SIMD registers. The typedef makes doubleV8
an alias for a double vector by using a special attribute:

__attribute  ((vector_size (Length * sizeof(double)))

The attribute specifier has two underscores in front and in back.

The specified attribute is vector_size, whose value is Length (defined as
8) multiplied by sizeof(double), which is typically 8 bytes. A doubleV8
instance is thereby defined as a vector of eight 8-byte floating-point values,
which requires 512 bits in all.

With this typedef in place, the arithmetic operations in the remaining
code are easy to read—and highly efficient. To begin, each of the two
doubleV8 variables, dataV1 and dataV2, is initialized. Notice that the
square brackets usually associated with arrays are absent. Here, for review,
is the initialization of vector dataV1:

doubleV8 datavi = {1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8};
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The vectors dataV1 and dataV2 can be used with indexes, as the three
loops near the end of the code illustrate:

printf("%f ", div[i]); /* print ith value */

However, the arithmetic operations to add, multiply, and divide the
vectors are one statement apiece in the source code. Here, for review, is the

multiplication of the two vectors:
doubleV8 mul = dataVi * dataV2; /* no looping! */

The standard compilers now make SIMD programming
straightforward in C itself, without any additional libraries or tools. Of
course, the underlying architecture must support machine-level SIMD
instructions. It is reasonable to expect that SIMD architectures will
continue to improve and that the C compilers will continue to generate
code that takes advantage of the evolving SIMD instruction sets and
architectures.

7.10. What’s Next?

The next chapter covers miscellaneous topics to provide a better sense of
the libraries available in C, both standard and third party. There is also

a section on building software libraries from scratch. As usual, the code
examples highlight the power and flexibility of C.

The forthcoming code examples cover regular expressions for pattern
matching and data validation; assertions for enforcing conditions in code
modules; locale management for internationalization; the compilation of
C code into WebAssembly for high-performance web modules; signals for
interprocess communication; and the building, deployment, and use (by
both C and Python clients) of software libraries.
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Miscellaneous Topics

8.1. Overview

This chapter introduces libraries and topics not seen so far, but it also
extends and refines the coverage of earlier material. For example, the
flexible library function system, for quick multiprocessing, is introduced;
the input function scanf is examined more closely.

The chapter begins with regular expressions, a language designed for
pattern matching, which makes the language well suited for verifying
input. Indeed, professional data validation relies on regular expressions
as a base level. The chapter then moves to assertions, which allow the
programmer to express and enforce constraints in a program. A section
on locales and internationalization follows. Short code examples and full
programs get into the details.

WebAssembly is a language designed for high-performance web
modules, for example, ones that do serious number crunching. C is among
the earliest languages (the others are C++ and Rust) to compile into
WebAssembly. This section goes into detail with an full code example.

A signalis a low-level but still powerful way for one process to
communicate with another, and C has an API for generating and handling
signals. The section on signals is code oriented as usual.
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The chapter ends with a section on building static and dynamic
libraries in C. It is no surprise that a client written in C can consume a
library written in the same language, but almost every modern language
can interoperate with C. This section underscores the point by having a
Python client consume a C library built from scratch.

8.2. Regular Expressions

The regular expression language, or regex for short, is used to match
strings against patterns and even for editing strings. Users of command-
line utilities such as grep (short for grab regular expression) or rename
already have experience with regex. In web and other applications, regex
verification of user input is best practice; modern programming languages
typically support regex. The first code example prompts a user for an
employee ID and then checks whether the entered string matches a
pattern that validates IDs.

Listing 8-1. Aregex to check an employee ID

#include <stdio.h>
#include <regex.h>
#define MaxBuffer 64

void main() {
char input[MaxBuffer];
char error[MaxBuffer + 1]; /* null terminator */
printf("Employee Id: ");
scanf("%7s", input); /* read only 7 chars */

const char* regex = "~[A-Z]{2}[1-9]{3}[a-k]{2}$"; /* regex as
a string */
regex_t regex_comp;
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int flag;

if ((flag = regcomp(8regex_comp, regex, REG EXTENDED)) < 0) {

/* compile regex */
regerror(flag, &regex comp, error, MaxBuffer);
fprintf(stderr, "Error compiling '%s': %s\n", regex, error);
return;

}

if (REG_NOMATCH == regexec(&regex comp, input, 0, NULL, 0))
/* match? */

fprintf(stderr, "\n%s is an invalid employee ID.\n", input);
else

fprintf(stderr, "\n%s is a valid employee ID.\n", input);
regfree(&regex_comp); /* good idea to clean up */

The empld program (see Listing 8-1) prompts the user for an employee
ID and then reads the entered ID using scant:

scanf("%7s", input); /* read only 7 chars */

The 7 in the format string %7s ensures that no more than seven
characters are scanned into the buffer named input, which has room for
64 in any case.

The program then compiles a regex pattern given as a string. This
pattern is the most complicated part of the program and so deserves
careful analysis. The pattern consists of three parts, and each part consists
of a set and a count. For now, ignore the start character * and the end
character $; these are covered shortly.

The first set/count pair is

[A-2]{2}
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The square brackets represent a set, a collection of nonduplicate items
in which order does not matter. For example, the set

[1234]
is the same as the set
[2143]

In the empld program, the members of the first set are the uppercase
letters A,B,...,Z. These letters could be enumerated in the square brackets
and in any order—a tedious undertaking. The regex language thus has a
shortcut: [A-Z] means the uppercase letters A through Z.

Immediately after the set [A-Z] comes the count (quantifier) of how
many characters from the set are required. The count occurs in braces:

[A-Z]{2} /* exactly 2 letters from the set A-Z */
The count can be flexible. For example, the count in
[A-Z]{2,4} /* 2 to 4 letters from the set A-Z */

allows two to four letters from the set.
The second part of the pattern requires exactly three decimal digits
from the set [1-9]:

[1-9]{3} /* 3 digits, 1 through 9 */

The third part of the pattern requires two lowercase letters, but in the
range of a through k:

[a-k]{2} /* 2 letters, a through k */
Here is a summary of other quantifier options:

[A-Z]?  /* zero or one from the set */
[A-Z]*  /* zero or more from the set */
[A-Z]+ /* one or more from the set */
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The employee ID is supposed to begin with an uppercase letter and
end with a lowercase letter. There should not be any other characters,
including whitespace, flanking the employee ID on either side. To express
this requirement, the regex expression uses anchors: the hat character " is
the left anchor, and the dollar-sign character $ is the right anchor. Without
these anchors, an employee ID such as

foobarAB123bb9876

would pass muster because the substring AB123bb matches the pattern
without the anchors. The anchored expression requires that the ID start
with an uppercase letter and end with a lowercase one.

The employee ID pattern as a string is compiled using the library
function regcomp, which creates a regex_t instance if successful. The
compiled pattern is used in matches. The last argument to regcomp is REG_
EXTENDED, which enables various POSIX extensions to the original regex
library. There is also a C library that supports Perl syntax and features (see
www.pcre.org/), which has become the de facto standard for regex syntax.

Once the pattern is compiled, it can be used in a call to regexec, which
matches the pattern against an input string. The call takes five arguments:

if (REG_NOMATCH == regexec(&pattern comp, /* pattern */

input, /* input string */
0, /* zero capture groups */
NULL, /* no capture array */
0)) /* no special flags */

The first two arguments are the address of the compiled pattern and
the string to test against the pattern, which in this case is the user input.
The next two arguments, 0 and NULL, are for capture groups: parts of the
string to be tested can be captured for later reference. In this example, the
capture option is not needed; hence, the number of capture groups is 0,
and then there is NULL instead of an array in which to save the captures. A
later example illustrates captures. The last argument consists of optional
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integer flags, for example, a flag to ignore case when matching letters. In
this example, there are no flags, which 0 represents.

The empld program works as advertised. For example, it accepts
AQ43Iafas an employee ID but rejects AQ431mf(m is not between a and
k, inclusive) and AQ444kk7 (ends with a digit, not a letter).

A first experience with regex syntax may seem daunting, but a
rhetorical question puts the challenge into perspective: Would it be easier
to learn regex, or to write a program from scratch that does what the empld
example requires? Regular expressions are not always intuitive, but they
make up for this shortcoming with their power and flexibility.

Listing 8-2. A revised version of the empld program

#include <stdio.h>

#include <unistd.h>

#include <regex.h>

#idefine MaxBuffer 128

#define GroupCount 4 /* entire expression counts as one group
by default */

void main() {
char error[MaxBuffer + 1];
char* inputs[ ] = {"AABC123dd95", "Az4321jb81", "QQ987ii4",
"0098ii4", "YTE987ef4", "ARNQ999kk6", NULL};

const char* regex = "~([A-Z]{2,4})([1-9]{3})([a-k]{2})

[0-9]+%";

regex_t regex_comp;

int flag;

if ((flag = regcomp(8regex_comp, regex, REG_EXTENDED)) < 0) {
regerror(flag, &regex comp, error, MaxBuffer);
printf("Regex error compiling '%s': %s\n", regex, error);
return;

}
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unsigned i = 0, j;
while (inputs[i]) { /* iterate over the inputs */
regmatch t groups[GroupCount]; /* for extracting
substrings */
if (REG_NOMATCH == regexec(&regex comp, inputs[i],
GroupCount, groups, 0))
fprintf(stderr, "\t%s is not a valid employee ID.\n",
inputs[i]);
else {
fprintf(stdout, "\nValid employee ID. %i parts
follow:\n", GroupCount);
for (j = 0; j < GroupCount; j++) {
if (groups[j].rm_so < 0) break;
write(1, inputs[i] + groups[j].rm so, groups[j].rm eo -
groups[j].rm so);
write(1, "\n", 1);

}
printf("----- ");
}
i++; /* loop counter */

}

regfree(&regex _comp); /* good idea to clean up */

}

The empld2 program (see Listing 8-2) adds features to the original
empld program. The new features can be summarized as follows:

e An employee ID may start out with between two and
four letters. In the fictitious company for which the
employees work, the number of starting letters is
a security code: two letters is low-security, three is
middle-security, and four is high-security clearance.
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e Anemployee ID must end with one or more
decimal digits.

e The empld2 program introduces groups, the three
parenthesized expressions, in order to parse the
employee ID.

The revised regex expression is

AMIA-Z1{2,41) ([1-91{3}) ([a-k]1{2})[0-9]+$ ## [0-9]+ means 1 or
more decimal digits

The anchors remain, but the end requirement for one or more
decimal digits is new. The other major change is the use of parenthesized
subexpressions, each of which represents a group that is captured for later
analysis.

The major change in the rest of the code has to do with group captures.
The code declares an array:

regmatch _t groups[GroupCount]; /* for extracting substrings */

The value of GroupCount is four, one more than the number of
parenthesized subexpressions (in this case, three) in the regex. The reason
is that the entire string to be matched counts as one group, in fact the first.
The regmatch_t typeis

typedef struct {
regoff_t rm_so; /* start offset */
regoff t rm eo; /* end offset */

} regmatch_t;

The two offsets indicate where, in the string to be matched, the
different groups begin and end. The groups array, in the current
example, has four elements of this type. For the first string to be matched,
AABCI123dd95, the start index (rm_so in the structure) for the first
subexpression is 0, and the end index (rm_eo) is 4, immediately beyond the
last character Cin the first subexpression.
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Given the regmatch_t, it is straightforward to print the captured
groups in valid employee IDs. Indeed, the easy way is to use the low-level
I/0 API. Here is the relevant statement:

write(1, /* stdout */
inputs[i] + groups[j].rm_so, /* start */
groups[j].rm eo - groups[j].rm so); /* length */

The first argument to write is, of course, the standard output. The
second argument takes the base address of a test string (for instance,
inputs[0] is the string AABC123dd95) and adds the start offset (xm_so,
which is 0, 4, or 7). The third argument to write is the captured part’s
length: the end index (one beyond the end of the part) minus the start
index. The output for parsing the first two candidate IDs is

Valid employee ID. 4 parts follow:
AABC123dd95
AABC
123
dd
Az4321jb81 is not a valid employee ID.

The standard C library for regex covers the basics but does not include
newer features such as lookaheads. These features make it easier or more
efficient to do pattern matching that still can be done without them. The
previously mentioned PCRE (Perl Compatible Regular Expressions) library
is an option for such newer features.
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8.3. Assertions

An assertion checks whether a program satisfies a condition at a specified
point in its execution. There are three traditional types of assertion that
can be used to check a program module such as a C block:

e An assertion expressing a precondition, which must
hold at the start of a block

e An assertion expressing a postcondition, which must
hold at the end of a block

e An assertion expressing an invariant, which must hold
throughout a block

C implements assertions with the assert macro, which takes an
arbitrary boolean expression as its argument. If the assert evaluates to
true (nonzero), the program continues execution; otherwise, the program
aborts with an explanatory error message.

Listing 8-3. Using assertions to track login attempts

#include <stdio.h>
#include <regex.h>
#include <assert.h>

#define MaxBuffer 64
#define MaxTries 3

unsigned check id(const char* id, regex t* regex) {
return REG_NOMATCH != regexec(regex, id, 0, NULL, 0);
}

void main() {
const char* regex s = ""[A-Z]{2,4}[1-9]{3}[a-k]{2}[0-1]?%";
regex t regex c;
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if (regcomp(&regex c, regex_ s, REG_EXTENDED) < 0) {
fprintf(stderr, "Bad regex. Exiting.\n");
return;

}

char id[MaxBuffer];
unsigned tries = 0, flag = 0;

assert(0 == tries); /* precondition */
do {
assert(tries < MaxTries); /* invariant */

printf("Employee Id: ");

scanf("%10s", id);

if (check id(id, &regex c)) {
flag = 1;
break;

}

tries++;

} while (tries < MaxTries);

assert(tries <= MaxTries); /* postcondition */
regfree(8regex c); /* clean up */

if (flag) printf("%s verified.\n", id);

else printf("%s not verified.\n", id);

The verifyEmp program (see Listing 8-3) builds on the earlier empld
program, in particular by using a regex to verify an employee’s ID. The
regex itself has changed a little in order to show more aspects of the

language:

AMA-21{2,4}[1-9]{3}[a-k]{2}[0-1]?$ /* new part is: [0-1]? */
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This pattern allows the starting uppercase letters to be between
two and four in number and makes a single ending digit (either 0 or 1)
optional. The function check_id takes two arguments, the ID to verify and
the compiled regex; the function returns either true, if the candidate ID
matches the regex, or false otherwise.

The program uses a do while loop to prompt the user for an employee
ID. Of interest now is that the employee is to get no more than MaxTries
chances to enter the ID. Similar approaches are used for login/password
combinations, of course. The loop condition is

while (tries < MaxTries)

where tries is updated on each attempt and MaxTries is a macro defined
as 3. If this condition were changed to

while (tries < MaxTries + 1)

and the user failed to provide a valid ID, the program would abort, and the
error message from the failed assertion would be

empId3: empId3.c:24: main: Assertion 'tries < 3' failed.

The 24 represents line 24 in the source code, the assertion immediately
after the do:

assert(tries < MaxTries); /* invariant */

The verifyEmp program has three assertions, each with a different test:

e The precondition occurs immediately before the loop
starts. It checks that, at this point, the value of tries
is zero. If tries were not initialized at all, then—as
a stack-based variable—its value would be random
and possibly greater than MaxTries already. The
precondition is evaluated exactly once, as it occurs
before the loop.
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The postcondition occurs immediately after the loop
ends. It checks that, at this point, tries is less than
or equal to the value of MaxTries. There are two
possibilities:

e Suppose that the candidate ID is verified in any
one of the three allowed attempts. Even if success
comes at the third and final attempt, the value
of tries is only 2 and so still less than MaxTries,
which is 3.

e Suppose that the candidate ID fails three times.
Control then exits the loop because of the loop test
that the value of tries be strictly less than the value
of MaxTries: both tries and MaxTries now have
avalue of 3. The loop test has done its job, and so
the program should continue to run normally. The
postcondition thus must allow tries to be less than
or equal to the value of constant MaxTries.

The invariant occurs immediately inside the loop,
which is the only place that tries changes after its
initialization to zero. On each iteration, tries is
incremented by 1. If the candidate ID is verified, then
the break statement, rather than the loop test, is what
moves control beyond the loop. If tries is incremented
to 3, then the loop condition, not the break statement,
should cause control to exit the loop. Accordingly,

the invariant checks that tries is always less than
MaxTries.
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The syntax of assertions is easy in C, but the reasoning behind
assertion tests and assertion placement can be complicated. Even
a program as relatively simple as verifyEmp confirms the point. The
complication arises because assertions articulate reasoning about
program correctness—and determining what makes a program correct is
notoriously hard.

C has a convenient way to turn assertions off without commenting out
the assert statements or deleting them from the source code. In a file with
assertions, simply define the macro NDEBUG:

#define NDEBUG /* turns off assertions */

As code development moves from testing to production, it is common
to turn assertions off.

8.4. Locales and i18n

Date, currency, and other information should be formatted in a locale-
aware way as part of i18n programming, where i18n abbreviates
internationalization. (The skeptic should count the letters between the i
and the n.) Consider, for example, this large number formatted in a way
familiar to North Americans:

1,234,567,891.234
In Germany, Italy, or Norway, the expected format would be
1 234 567.891,234

Locale information is available as part of the environment of a local
system. When a C program begins execution, the program inherits
environment variables about the locale and other features, but this locale
inheritance does not extend to library functions that the program may
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call. Accordingly, a locale-aware program needs to do some initialization.
Before looking at this initialization in code, it will be useful to consider
how a C program can get environment information in general.

Listing 8-4. How to get information about the program
environment

#include <stdio.h>

#include <stdlib.h>
#include <unistd.h>
#include <string.h>

extern char** environ; /* declaration */

void main () {
int i = 0;
while (environ[i]) printf("%s\n", environ[i++]);

printf("Locale: %s\n", getenv("LANG")); /* en US.UTF-8 */

char cmd[32];

strcpy(cmd, "locale -a");

int status = system(cmd);

printf("\n%s exited with %i\n", cmd, status);

The environ program (see Listing 8-4) shows two ways to access
environment information. The first way uses the extern variable environ,
an array of strings each with a key=value format. Here, for example, are
two entries from my desktop system: the first key/value pair provides
information about the terminal and the second about the shell language.

TERM=xterm
SHELL=/bin/bash
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The library function getenv takes a single argument, a key such as
TERM or SHELL as a string. The printf call illustrates with the key LANG,
which gives a standard abbreviation (en_US for English in the United States)
together with the character encoding scheme, in this case UTF-8 (Unicode
Transformation Format-8). UTF-8 formats multibyte Unicode character
encodings as a sequence of 8-bit bytes.

The last part of the environ program introduces the versatile system
function. This function takes a single string argument, which represents
a shell command, that is, a command that can be given at the command
line. The system function starts another process and then blocks until the
started process terminates. The int value returned to the system function
is the exit status of the process in question. In this example, the command
is locale -a, a utility that (with the -a flag) lists all of the locales available
on the system. (The locale utility is available on Unix-like systems and on
Windows through Cygwin.)

A given system supports some locales, but not others. The system
administrator is responsible for installing and otherwise managing locale
information. At the command line, or through the environ program shown
previously, a listing of locales would look something like this:

C

C.UTF-8
en_AG.utf8
en_AU.utf8

The string en_AG.utf-8 represents English in Antigua, whereas
en_AU.utf8 represents English in Australia. The first two entries, C
and C.UTF-8, represent the default locale. In the setlocale function,
investigated shortly, entries such as C.UTF-8 can be used as an argument.
Here is the declaration for the setlocale function:

char* setlocale(int category, const char* locale);
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If the second argument is NULL, the function acts as a getter or query:
the function returns a string that represents the current locale. If the
second argument is not NULL, the function acts as a setter by setting the
locale represented by the second argument, a string. (The empty string as
the second argument also represents the default locale C.) Furthermore,
the string returned from setlocale is opaque and typically prints as
(null). This string is useful only as a second argument to setlocale. A
typical use of the string would be as follows:

1. Retrieve the current locale, and save it as a string.

2. Setthelocale to something new, and perform
whatever application logic is appropriate.

3. Restore the saved locale by using the string from
step 1 as the second argument to setlocale.

The next code example illustrates.

Listing 8-5. Introducing the setlocale function

#include <locale.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void main () {
setlocale(LC_ALL, ""); /* set current locale for library
functions */
char* prev locale = setlocale(LC ALL, NULL);
/* with NULL, a getter, not a setter */
char* saved locale = strdup(prev locale);
/* get a separate copy */
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if (NULL == saved locale) { /* verify the copying */
perror(NULL); /* out of memory */
return;

}

const struct lconv* loc = localeconv(); /* get ptr to current
locale struct */
printf("Currency symbol: %s\n", loc->currency symbol);
setlocale(LC ALL, "en GB.utf8"); /* english in Great
Britain */
loc = localeconv();
printf("Currency symbol: %s\n", loc->currency symbol);

setlocale(LC_ALL, saved locale); /* restored saved locale */
VA

The localeBasics program (see Listing 8-5) opens with two calls to
library function setlocale, but the calls are quite different. The first call
has the empty string, hence non-NULL, as its second argument:

setlocale(LC_ALL, ""); /* set current locale for library
functions */

The integer macro LC_ALL represents all of the locale categories,
and the empty string represents the default locale. Because the second
argument is a string, even though empty, this call to setlocale acts as a
setter rather than a getter of information.

The immediately following call to the setlocale function acts as
a getter:

char* prev locale = setlocale(LC _ALL, NULL);
/* with NULL as 2nd arg, a getter */
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The program then uses the strdup function (string duplicate) to make
an altogether separate copy of this string just in case there are further calls
to setlocale. Note that setlocale returns a pointer to a string, not a copy
of this string.

The program ends by resetting the locale to the saved locale. The
save/restore pattern is common in locale-aware programs.

In the middle, the localeBasics program calls the library function
localeconv to get a pointer to a structure that contains information in
all of the locale categories. This structure is displayed shortly. For now,
the pointer loc is used to access the currency symbol, first for the United
States and then for Great Britain. The output is

Currency symbol: $ /* default locale, en_US */
Currency symbol: £ /* en GB */

At the end, the program resets the locale to the original one:
setlocale(LC_ALL, saved locale); /* restored saved locale */

Recall that saved locale is a string copy of the original locale and so
not NULL. This call to setlocale is therefore a setter, which restores the
locale back to the original setting.

Listing 8-6. The lconv structure with locale information

typedef struct {
char *decimal point;
char *thousands_sep;
char *grouping;
char *int_curr_symbol;
char *currency_symbol;
char *mon_decimal point;
char *mon_thousands_sep;
char *mon_grouping;
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char *positive sign;
char *negative sign;
char int_frac digits;
char frac_digits;
char p_cs precedes;
char p_sep by space;
char n_cs_precedes;
char n_sep by space;
char p_sign_posn;
char n_sign posn;
} lconv;

Locale information is stored in a structure of type lconv (see Listing 8-6),
and the library function localeconv returns a pointer to a typically static
instance of this structure. The 18 fields contain locale-specific information.
In Canada, for example, the decimal point is the period symbol, whereas
in Germany, the decimal point is the comma symbol.

Table 8-1. Argument categories for setlocale

Category Meaning

LC_ALL All of the below

LC_COLLATE regex string settings

LC_CTYPE regex, character conversion, etc.
LC_MESSAGES Localizable natural-language messages
LC_MONETARY Currency formatting

LC_NUMERIC Number formatting

LC_TIME Time and date formatting
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The fields in the 1conv structure are numerous, and there are
connections among many of them. The connections may not be evident.
Accordingly, these fields are divided into seven categories, with macros to
define each category (see Table 8-1). The categories make it easier to set
related pieces of locale information.

A typical call to function setlocale uses the LC_ALL category as the

first argument:

setlocale(LC_ALL, ""); /* set all categories to default
locale */

For fine-tuning, however, a specific category could be used instead as
the first argument:

setlocale(LC_MONETARY, "en GB.utf-8"); /* monetary category for
Great Britain */

The next code example puts the LC_MONETARY category to use. The
program first sets all locale categories (LC_ALL) to local settings. The
program then resets LC_MONETARY only to get locale-specific currency
information from six English-speaking regions around the world.

Listing 8-7. Using the category LC_MONENTARY

#include <locale.h>
#include <stdio.h>
#include <stdlib.h>

void main () {
setlocale(LC_ALL, ""); /* set all categories to default
locale */
char* regions[ ] = {"en AU.utf-8", "en CA.utf-8",
"en_CB.utf-8", "en US.utf-8", "en NZ.utf-8",
"en ZM.utf-8", NULL};
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int i = 0;
while (regions[i]) {
setlocale(LC_MONETARY, regions[i]); /* change the locale */
const struct lconv* loc = localeconv();
printf("Region: %s Currency symbol: %s International

currency symbol: %s\n",

i++;

regions[i], loc->currency symbol, loc->int curr_
symbol);

The locMonetary program (see Listing 8-7) initializes the array

regions to standard codes for six English-speaking regions around the

world. For each of these regions, the LC_MONETARY category is set before

the currency symbol and the int_curr symbol (international currency

symbol) are printed in awhile loop. The localeconv library function

is called to get a pointer to the 1conv structure that stores the desired

information.

Listing 8-8. Output from the locMonetary program

Region:
symbol:
Region:
symbol:
Region:
symbol:
Region:
symbol:
Region:
symbol:
Region:
symbol:
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en_AU.
AUD
en_CA.
CAD
en_GB.
GBP
en_US.
usb
en NZ.
NZD
en_ZM.
ZMK

utf-8 Currency symbol:
utf-8 Currency symbol:
utf-8 Currency symbol:

utf-8 Currency symbol:

$

International currency
International currency
International currency

International currency

utf-8 Currency symbol: $ International currency

utf-8 Currency symbol: K International currency
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The output from the locMonetary program (see Listing 8-8) shows the
region, currency symbol, and international currency acronym for the six
regions.

8.5. C and WebAssembly

WebAssembly is a language well-suited for compute-bound tasks (e.g.,
number crunching) executed on a browser. All rumors to the contrary, the
WebAssembly language is not meant to replace JavaScript, but rather to
supplement JavaScript by providing better performance on CPU-intensive
tasks that JavaScript otherwise might perform. JavaScript remains the glue
that ties together HTML pages and WebAssembly modules:

HTML pages<--->JavaScript<--->WebAssembly modules

WebAssembly has an advantage over other web artifacts when it
comes to downloading. For example, a browser fetches HTML pages, CSS
stylesheets, and JavaScript code as text, an inefficiency that WebAssembly
addresses: a WebAssembly module has a compact binary format, which
speeds up downloading.

After a WebAssembly program is downloaded to a browser, the just-in-
time (JIT) compiler in the browser’s virtual machine translates the binary
WebAssembly code into fast, platform-specific machine code. Here is a
summary depiction:

download +------- + translate
wasm module---------- >|browser|----------- >fast machine code

JavaScript code embedded in an HTML page can call functions
delivered in WebAssembly modules.

WebAssembly has a development language known as the fext format
language, which has a Lisp-like syntax for writing programs on a virtual
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stack-based machine. However, code from higher-level programming
languages (including C) can be translated in WebAssembly. Although the
list of languages that can be translated into WebAssembly is growing, the
original ones were C, C++, and Rust—three languages suited for systems
programming and high-performance applications programming. These
three languages share two features that promote fast execution: explicit
data typing and no garbage collector.

When it comes to high-performance web code, WebAssembly is not
the only game in town. For example, asm.js is a JavaScript dialect designed,
like WebAssembly, to approach native speed. The asm.js dialect invites
optimization because the code mimics the explicit data types in the three
aforementioned languages. Here is an example with C and then asm.js.
The sample function in C is

int f(int n) { /%% C **/
return n + 1;

}

Both the parameter n and the returned value are explicitly typed as
int. The equivalent function is asm.js would be

function f(n) { /** asm.js **/
n=n/| 0;
return (n + 1) | 0;

}

JavaScript, in general, does not have explicit data types, but a bitwise-
OR operation in JavaScript yields an integer value. This explains the
otherwise pointless bitwise-OR operation:

n=n| 0; /* bitwise-OR of n and zero */
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The bitwise-OR of n and zero evaluates to n, but the purpose here is
to signal that n holds an integer value. The return statement repeats this
optimizing trick. Among the JavaScript dialects, TypeScript stands out
for adopting explicit data types, which makes this language attractive for
compilation into WebAssembly.

Almost any discussion of the WebAssembly language covers near-
native speed as one of the language’s major design goals. The native
speed is that of the compiled systems languages C, C++, and Rust; hence,
these three languages were also the originally designated candidates for
compilation into WebAssembly.

8.5.1. A C into WebAssembly Example

A production-grade example would have WebAssembly code perform a
heavy compute-bound task such as generating large cryptographic key
pairs or using such pairs for encryption and decryption. A simpler example
fits the bill as a stand-in that is easy to follow. There is number crunching,
but of the routine sort.

Consider the function hstone (for hailstone), which takes a positive
integer as an argument. The function is defined as follows:

3N + 1 if N is odd
hstone(N) =
N/2 if N is even

For example, hstone(12) returns 6, whereas hstone(11) returns 34. If N
is odd, then 3N+1 is even; but if N is even, then N/2 could be either even
(e.g.,4/2=2)orodd (e.g., 6/2 =3).

The hstone function can be used iteratively by passing the returned
value as the next argument. The result is a hailstone sequence such as this
one, which starts with 24 as the original argument, the returned value 12 as
the next argument, and so on:

24,12,6,3,10,5,16,8,4,2,1,4,2,1, ...
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It takes ten calls for the sequence to converge to 1, at which point the
sequence of 4,2,1 repeats indefinitely: (3x1)+1 is 4, which is halved to yield
2, which is halved to yield 1, and so on. The Wikipedia page (https://
en.wikipedia.org/wiki/Collatz_conjecture) goes into technical detail
on the hailstone function, including a clarification of the name hailstone.

Note that powers of two (2V) converge quickly to 1, requiring just N
divisions by two to reach 1. For example, 32 (2°) has a convergence length
of five, and 64 (2°) has a convergence length of six. A hailstone sequence
converges to 1 if and only if the sequence generates a power of two. At issue,
therefore, is whether a hailstone sequence inevitably generates a power of two.

The Collatz conjecture is that a hailstone sequence converges to 1 no
matter what the initial argument N > 0 happens to be. No one has found a
counterexample to the Collatz conjecture, nor has anyone come up with
a proof to elevate the conjecture to a theorem. The conjecture, simple as
it is to test with a program, remains a profoundly challenging problem
in mathematics. My hstone example generates hailstone sequences and
counts the number of steps required for a sequence to hit the first 1.

8.5.2. The Emscripten Toolchain

The systems languages, including C, require specialized toolchains to
translate source code into WebAssembly. Emscripten is a pioneering and
excellent option, one built upon the well-known LLVM (Low-Level Virtual
Machine) compiler infrastructure. Emscription can be installed following
the instructions at https://emscripten.org/docs/getting started/
downloads.html.

To begin, consider this version of a C hstone program (see Listing 8-9)
with two functions, the familiar entry pointmain and hstone, which main
invokes repeatedly.
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Listing 8-9. The hstoneCL program with main

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int hstone(int n) {
int len = 0;
while (1) {
if (1 == n) break; /* halt on 1 */
if (0 ==(n& 1)) n=n/2; /*if n is even */
else n = (3 *n) +1; /* if n is odd */
len++; /* increment counter */

}

return len;

}

#define HowMany 8
int main() {
srand(time(NULL)); /* seed random number generator */
int i;
puts(" Num Steps to 1");
for (i = 0; i < HowMany; i++) {
int num = rand() % 100 + 1; /* + 1 to avoid zero */
printf("%4i %7i\n", num, hstone(num));
}

return 0;

On a sample run, the hstoneCL program (with CL for command line)
had this output:

Num  Steps to 1
64 6
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40 8
86 30
16 4
30 18
47 104
12 9
60 19

The hstoneCL program can be webified—with no changes whatsoever
to the source code—by using the Emscription toolchain, which can do the
following:

e Compile the C source into a WebAssembly module.

e Generate a test HTML page with calls to ams.js code
that, in turn, invokes the hstone function through a call
tomain.

However, the WebAssembly module does not require the main function
because JavaScript could invoke the hstone function directly. The hstone
program can be simplified by dropping the main function in the hstoneCL
version.

The hstoneWA revision (see Listing 8-10) drops main and adds the
directive EMSCRIPTEN_KEEPALIVE to the hstone function. This directive
informs the compiler that the C function named hstone should be
exposed, under the same name, as a WebAssembly function.

Listing 8-10. The revised hstone code

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <emscripten/emscripten.h>

int EMSCRIPTEN KEEPALIVE hstone(int n) {
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int len = 0;
while (1) {
if (1 == n) break; /* halt on 1 */
if (0 ==(n& 1)) n=n/2; /* if n is even */
else n = (3 *n) +1; /* if n is odd */
len++; /* increment counter */

}

return len;

}

As noted earlier, the Emscripten toolchain can be used not only to
compile C code into WebAssembly but also to generate an appropriate
HTML page together with JavaScript glue that links the WebAssembly
module with the HTML page. To understand the details, however, it is
useful to generate only the WebAssembly module and to craft, by hand, the
HTML page and some JavaScript test calls.

With the Emscripten toolchain installed, the C function hstone in the
file hstoneWA.c can be compiled into WebAssembly from the command
line as follows:

% emcc hstoneWA.c --no-entry -o hstone.wasm

The flag - -no-entry indicates that the file hstoneWA.c does not
contain the function main, and the -o flag stands for output: the resulting
WebAssembly file is named hstone.wasm. On my desktop machine, this file
is a trim 662 bytes in size.

For testing, the next requirement is an HTML page that, when
downloaded to a browser, fetches the WebAssembly module. A
production-grade version of the HTML page would include embedded
JavaScript calls to appropriate WebAssembly functions. A handcrafted
version of the HTML page reveals details that otherwise remain hidden.
Here is an HTML page that downloads and prepares the WebAssembly
module stored in the hstone.wasm file:
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<!doctype html>

<html>
<head>
<meta charset="utf-8"/>
<script>
fetch("hstone.wasm").then(response => <!-- Line 1 -->
response.arrayBuffer() <!-- Line 2 -->
).then(bytes => <!-- Line 3 -->

WebAssembly.instantiate(bytes, {imports: {}})
<!-- Line 4 -->
).then(results => { <!-- Line 5 -->
window.hstone = results.instance.exports.hstone;
<!-- Line 6 -->
D;
</script>
</head>
<body/>
</html>

The script element in the preceding HTML page can be clarified
line by line. The fetch call in Line 1 uses the web Fetch module to get the
WebAssembly module from the web server that hosts this HTML page.
When the HTTP response arrives, the WebAssembly module does so as
a sequence of bytes, which are stored in the arrayBuffer of the script’s
Line 2. These bytes make up the WebAssembly module, the contents of the
file hstone.wasm. This module has no imports from other WebAssembly
modules, as indicated at the end of Line 4.

At the start of Line 4, the WebAssembly module is instantiated. A
WebAssembly module is akin to a nonstatic class with nonstatic members
in an object-oriented language such as Java. The module contains
variables, functions, and various support artifacts; but the module must be
instantiated to be called from JavaScript.
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The script’s Line 6 exports the original C function hstone under the
same name. This WebAssembly function is available now to any JavaScript
code, as a session in the browser’s JavaScript console confirms. Here is part
of my test session in Chrome’s JavaScript console:

> hstone(27) ## invoke hstone by name
< 111 ## output

> hstone(7) ## again

< 16 ## output

The outputs are the steps required to reach 1 from the input (e.g.,
hstone(27) requires 111 steps to reach 1).

WebAssembly now has a more concise API for fetching and
instantiating a module; the new API reduces the preceding script to only
the fetch and instantiate operations. The longer version shown previously
has the benefit of exhibiting details, in particular the representation of a
WebAssembly module as a byte array that gets instantiated as an object
with exported functions.

Emscripten comes with a test server, which can be invoked as follows
to host the handcrafted HTML file hstone.html and the WebAssembly file
hstone.wasm:

% emrun --no_browser --port 7777 .

The flag - -no_browser means that a user manually opens a browser
such as Firefox or Chrome. The request URL from the browser is then
localhost:7777/hstone.html. If all goes well, the browser’s JavaScript
console can be used to confirm, as shown previously, that the
WebAssembly module is available for use.

8.5.3. WebAssembly and Code Reuse

The EMSCRIPTEN_KEEPALIVE directive is the straightforward way to have the
Emscripten compiler produce a WebAssembly module that exports any

321



CHAPTER 8  MISCELLANEOUS TOPICS

C function of interest to the JavaScript glue embedded in an HTML page.
A customized HTML document, with whatever handcrafted JavaScript

is appropriate, can call the functions exported from the WebAssembly
module. Hats off to Emscripten for this clean approach.

Web programmers are unlikely to write WebAssembly in its own text
format language, as compiling from some high-level language, such as C
or Rust, is far too attractive an option. Compiler writers, by contrast, might
find it productive to work at the fine-grained level that the text format
language provides.

Much has been made of WebAssembly’s goal of achieving near-native
speed. But as the JIT compilers for JavaScript continue to improve, and as
dialects well-suited for optimization (e.g., TypeScript) emerge and evolve,
it may be that JavaScript also achieves near-native speed. Would this imply
that WebAssembly is wasted effort? I think not.

WebAssembly addresses another traditional goal in computing: code
reuse. As even the short hstone example illustrates, code in a suitable
language, such as C, translates readily into a WebAssembly module,
which plays well with JavaScript code—the glue that connects a range
of technologies used on the Web. WebAssembly is thus an inviting way
to reuse legacy code and to broaden the use of new code. For example,

a high-performance program for image processing, written originally
as a desktop application, might also be useful in a web application.
WebAssembly then becomes an attractive path to reuse. (For new web
modules that are compute bound, WebAssembly is a sound choice.)
My hunch is that WebAssembly will thrive as much for reuse as for
performance.
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8.6. Signals

A signal interrupts an executing program (process) to notify it of some
exceptional event:

interrupt +--------- +
signal from outside the program----------- >| process
/ Hommmmm oo +
e.g., Control-C from the keyboard

Signals have integer values as identifiers, with symbolic constants
such as SIGKILL for ease of reference. When interrupted through a signal,
a process may be able to ignore the interruption or else handle it in some
program-appropriate way. However, some signals cannot be ignored, in
particular SICKILL (terminate) and SIGSTOP (pause).

Operating system routines regularly use signals to notify a process of
an exceptional condition. For example, if a process runs out of memory, an
operating system routine uses a signal as notification. Programs designed
to handle signals typically do so in one of two ways:

o The program requests that the signal be ignored. Recall
the basicFork program (see Listing 7-1), which included
this call to the signal function:

signal(SIGCHLD, SIG IGN); /** prevent child
from becoming a permanent zombie **/

The call requests that the SIGCHLD signal, which

the system sends to a parent process when a child
terminates, be ignored. The motive is to prevent the
child from becoming a permanent zombie process, if
the parent should happen to terminate before the child.
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o The program provides a signal handler as a callback
function automatically invoked when a specified signal
occurs. For example, the SIGINT (interrupt) signal can
be sent to a process by hitting Control-C in the terminal
window from which the program is launched. Perhaps
a user hits Control-C by accident: the program might
handle the signal by asking the user to confirm that the
running program should be stopped.

At the core of the signal library is the legacy signal function, but
best practice now favors the newer sigaction function. The signal
function may behave differently across platforms and even operating
system versions. The forthcoming code example uses the better-behaved
sigaction function, introduced as a POSIX replacement for signal.

Listing 8-11. A signal-handling program

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>

#fdefine MaxLoops 500

void cntrlC handler(int signum) { /** callback function: int
arg, void return **/
fprintf(stderr, "\n\tHandling signal %i\n", signum);
int ans = 1;
printf("Sure you want to exit (1 = yes, 0 = no)? ");
scanf("%i", 8ans);
if (1 == ans) exit(EXIT_SUCCESS);
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void main() {
/** Set up a signal handler. **/
struct sigaction current;

sigemptyset(&current.sa mask); /* clear the
signal set */
current.sa flags = 0; /* enables setting
sa_handler, not sa_
action */

current.sa_handler = cntrlC_handler; /* specify a handler */
sigaction(SIGINT, &current, NULL);  /* control-C is a
SIGINT */

int i;
for (i = 0; i < MaxLoops; i++) {
printf("Counting sheep %i...\n", i + 1);
sleep(1);
}
}

The signals program (see Listing 8-11) introduces the basic signal
API. Here is an overview of how the program handles SIGINT and why the
program does so:

¢ Themain function has a tiresome loop that prints
integer values 1 through MaxLoops, currently set at
500. After printing each value, the program sleeps
for a second. A user will be inclined to terminate this
program from the command line with a Control-C.

e Atthe start of main, a signal handler is registered for
SIGINT, which a Control-C from the keyboard can
generate. A program’s default response to a SIGINT is

termination.
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o Thesignal handler cntrlC_handler can have any name
but should return void and take a single int argument,
which is the signal number. (The integer value for SIGINT
happens to be 2.) This signal handler prompts the user
for confirmation: if the user confirms, the program exits;
otherwise, the program continues as before.

To record a signal handler using the sigaction function, a program
first uses an instance of the struct sigaction type to set relevant
information. In this example, the signal set for the process first is emptied;
the relevant field is sa_mask, whose address is passed to the library
function sigemptyset. In general, a child process may inherit signal
behavior from a parent, and so clearing the signal set may be done to
wipe out the inheritance. In this case, the call to sigemptyset is simply to
illustrate details of the API.

Two different callback types can be registered with the sigaction
function: one takes a single argument (the signal number), and the other
takes three arguments (the signal number and pointers to two different
structures that contain pertinent information about the current process
state with respect to signals). The initialization

current.sa_flags = 0; /* current is a struct sigaction
instance */

is a setup for using the simpler of the two callbacks:

current.sa_handler = cntrlC_handler; /* cntrlC _handler is the
1-argument callback */

If the sa_action field were used instead, then the sa_flags field would
indicate which pieces of signal information were of interest.

The sigaction function, which sets the desired signal-handling action,
takes three arguments:

sigaction(SIGINT, &current, NULL);
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The first argument is the signal number, in this case SIGINT. The
second argument is a pointer to the new signal-handling action, and the
last argument is a pointer to the previous action, which can be saved with
anon-NULL pointer for later retrieval. In this example, the old action is not
saved: the third argument is NULL. Each action is specified by setting a field
in an instance of the struct sigaction type.

Listing 8-12. A sample run of the signals program

% ./signals ## on Windows, drop ./

Counting sheep 1...

Counting sheep 2...

e ## 1st Control-C
Handling signal 2

Sure you want to exit (1 = yes, 0

Counting sheep 3...

Counting sheep 4...

~C ## 2nd Control-C
Handling signal 2

no)? 0 ## resume execution

Sure you want to exit (1 = yes, 0 = no)? 1 ## terminate

%

A sample run (see Listing 8-12) of the signals program confirms
that the signal handling works as expected. As the loop starts, there is
a Control-C from the user, and then a user response of 0, which means
continue. The looping thus goes on. After a second Control-C and a user
response of 1, which means terminate, the program ends.

Signals are a powerful, widely used mechanism not only for user/
program interaction but also for interprocess communication. For
example, the kill function

int kill(pid_t pid, int signum)
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can be used by one process to terminate another process or group of
processes. If the first argument to function kill is greater than zero, this
argument is treated as the pid of the targeted process; if the argument
is zero, the argument identifies the group of processes to which the
signal sender belongs. The graceful shutdown of a multiprocessing
application such as a web server could be accomplished by killing a group
of processes. The second argument to kill is either a standard signal
number (e.g., SIGTERM terminates a process but can be blocked, whereas
SICKILL terminates a process and cannot be blocked) or 0, which makes
the call to signal a query about whether the pid in the first argument is
indeed valid.

The older signal function is still used widely and dominates in legacy
code. It is worth repeating that the sigaction replacement is the preferred
way forward.

8.7. Software Libraries

Software libraries are a long-standing, easy, and sensible way to reuse code
and to extend C by providing new functionalities. This section explains
how to build such libraries from scratch and to make them easily available
to clients. Although the two sample libraries target Linux, the steps for
creating, publishing, and using these libraries apply in essentials to other
Unix-like systems.

There are two sample clients (one in C, the other in Python) to access
the libraries. It is no surprise that a C client can access a library written in
C, but the Python client underscores that a library written in C can serve
clients from other languages.

Computer systems in general and Linux in particular have two types of
library:

e Astatic library (library archive) is baked into a statically
compiled client (e.g., one in C or Rust) during the
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link phase of the compilation process. In effect, each
client gets its own copy of the library. A significant
downside of a static library comes to the fore if the
library needs revision, for example, to fix a bug—each
library client now must be linked to the revised static
library. A dynamic library, described next, avoids this

shortcoming.

A dynamic (shared) library is flagged during the link
phase of a statically compiled client program, but the
client program and the library code remain otherwise
unconnected until runtime—the library code is not
baked into the client. At runtime, the system’s dynamic
loader connects a shared library with an executing
client, regardless of whether the client comes from a
statically compiled language such as C or a dynamically
compiled language such as Python. As aresult, a
dynamic library can be updated without thereby
inconveniencing clients. Finally, multiple clients can
share a single copy of a dynamic library.

In general, dynamic libraries are preferred over static ones, although

there is a cost in complexity and performance. Here is a first look at how a

library of either type is created and published:

1.

The source code for the library is compiled into one
or more object modules, which can be packaged as
a library and linked to executable clients.

The object modules are packaged into a single file.
For a static library, the standard extension is .a for
“archive.” For a dynamic library, the extension is
.so for “shared object.” The two sample libraries,
which have the same functionality, are published
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as the files libprimes.a (static) and libshprimes.so
(dynamic). The prefix lib is standard for both types
of library.

3. The library file is copied to a standard directory so
that client programs, without fuss, can access the
library. A typical location for the library, whether
static or dynamic, is /usr/lib or /usr/local/lib; other
locations are possible.

Detailed steps for building and publishing each type of library are
coming shortly. First, however, the C functions in the two libraries should
be introduced.

8.7.1. The Library Functions

The two sample libraries are built from the same five C functions, four of
which are extern and, therefore, accessible to client programs. The fifth
function, which is a utility for one of the other four, is static and thus
accessible only to the four extern functions defined in the same file.

The library functions are elementary and deal, in various ways, with prime
numbers. All of the functions expect unsigned (nonnegative) integer
values as arguments:

o Theis_prime function tests whether its single
argument is a prime.

o Theare_coprimes function checks whether its two
arguments have a greatest common divisor (gcd) of 1,
which defines co-primes.

e Theprime factors function lists the prime factors of

its argument.
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o The goldbach function expects an even integer value
of 4 or more, listing whichever two primes sum to
this argument; there may be multiple summing
pairs. The function is named after the 18th-century
mathematician Christian Goldbach, whose conjecture
that every even integer greater than two is the sum
of two primes remains one of the oldest unsolved
problems in number theory.

The static utility function gcd, which the are_coprimes function
invokes, resides in the deployed library files, but this function is not
accessible outside of its containing file; hence, a library client cannot
directly invoke the gcd function.

8.7.2. Library Source Code and Header File

The header file primes.h provides declarations for the four extern
functions in each library. Such a header file also serves as input for utilities
(e.g., the Rust bindgen utility) that enable clients in other languages to
access a C library. Here is the primes.h header file:

/** header file primes.h: function declarations **/
extern unsigned is_prime(unsigned);

extern void prime factors(unsigned);

extern unsigned are coprimes(unsigned, unsigned);
extern void goldbach(unsigned);

As usual, these declarations serve as an interface by specifying the
invocation syntax for each function. For client convenience, the text file
primes.h could be stored in a directory on the C compiler’s search path.
Typical locations are /usr/include and /usr/local/include.
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Listing 8-13. The library functions

#include <stdio.h>
#include <math.h>

extern unsigned is_prime(unsigned n) {
if (n <= 3) return n > 1; /* 2 and 3 are prime */
if (0==(n%2) || 0==1(n%3)) return 0; /* multiples of 2
or 3 aren't */

/* check that n is not a multiple of other values < n */
unsigned 1i;
for (i =5; (i *1i) <=n; i +=6)
if (0==(n%1i) || 0==(n% (i + 2))) return 0; /* not
prime */

return 1; /* a prime other than 2 or 3 */

}

extern void prime_ factors(unsigned n) {
/* list 2s in n's prime factorization */
while (0 == (n % 2)) {
printf("%i ", 2);
n /= 2;

}

/* 2s are done, the divisor is now odd */
unsigned 1i;
for (i = 3; i <= sqrt(n); i += 2) {
while (0 == (n % 1)) {
printf("%i ", i);
n /= 1ij;
}
}
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/* one more prime factor? */
if (n > 2) printf("%i", n);
}

/* utility function: greatest common divisor */
static unsigned gcd(unsigned n1, unsigned n2) {
while (n1 != 0) {
unsigned n3 = ni;
ni = n2 % ni;
n2 = n3;
}

return n2;

}

extern unsigned are coprimes(unsigned ni1, unsigned n2) {
return 1 == gcd(n1, n2);

}

extern void goldbach(unsigned n) {
/* input errors */
if ((n<=2) || ((n & ox01) > 0)) {
printf("Number must be > 2 and even: %i is not.\n", n);
return;

}

/* two simple cases: 4 and 6 */

if ((4 == n) || (6 == n)) {
printf("%i = %i + %i\n", n, n / 2, n / 2);
return;

}

/* for n >= 8: multiple possibilities for many */
unsigned 1i;
for (1 =3; 1< (n/2); i++) {
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if (is_prime(i) && is prime(n - i)) {
printf("%i = %i + %i\n", n, i, n - i);
/* if one pair is enough, replace this with break */
}
}
}

The five functions (see Listing 8-13) serve as grist for the library mill.
The two libraries derive from exactly the same source code, and the header
file primes.h is the C interface for both libraries.

8.7.3. Steps for Building the Libraries

The steps for building and then publishing a static and a dynamic library
differ in a few details. Only three steps are required for the static library
and just two more for the dynamic library. The additional steps in building
the dynamic library reflect the added flexibility of the dynamic approach.

The library source file primes.c is compiled into an object module.
Here is the command, with the percent sign again as the system prompt
and with double sharp signs to introduce my comments:

% gcc -c primes.c ## step 1 static

This produces the binary file primes.o, the object module. The flag -c
means compile only. The next step is to archive the object module(s) by
using the Linux ar utility:

% ar -cvq libprimes.a primes.o ## step 2 static

” u«

The three flags -cvq are short for “create,” “verbose,” and “quick
append” in case new files must be added to an archive. The prefix 1ib is
standard, but the library name is arbitrary. Of course, the file name for a
library must be unique to avoid conflicts.
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The archive is ready to be published:
% sudo cp libprimes.a /usr/local/lib ## step 3 static

The static library is now accessible to clients, examples of which are
forthcoming. (The sudo is included to ensure the correct access rights for
copying a file into /usr/local/lib.)

The dynamic library also requires one or more object modules for
packaging:

% gcc primes.c -c -fpic ## step 1 dynamic

The added flag -fpic directs the compiler to generate position-
independent code, which is a binary module that need not be loaded into
a fixed memory location. Such flexibility is critical in a system of multiple
dynamic libraries. The resulting object module is slightly larger than the
one generated for the static library.

Here is the command to create the single library file from the object
module(s):

% gcc -shared -W1,-soname,libshprimes.so -o libshprimes.so.1
primes.o ## step 2 dynamic

The flag - shared indicates that the library is shared (dynamic) rather
than static. The -W1 flag introduces a list of compiler options, the first of
which sets the dynamic library’s soname, which is required. The soname
first specifies the library’s logical name (libshprimes.so) and then, following
the -o flag, the library’s physical file name (libshprimes.so.1). The goal is
to keep the logical name constant while allowing the physical file name to
change with new versions. In this example, the 1 at the end of the physical
file name libshprimes.so. 1 represents the first version of the library. The
logical and physical file names could be the same, but best practice is to
have separate names. A client accesses the library through its logical name
(in this case, libshprimes.so), as clarified shortly.
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The next step is to make the shared library easily accessible to clients
by copying it to the appropriate directory, for example, /usr/local/lib again:

% sudo cp libshprimes.so.1 /usr/local/lib ## step 3 dynamic

A symbolic link is now set up between the shared library’s logical name
(libshprimes.so) and its full physical file name (/usr/local/lib/libshprimes.
so.1). Here is the command with /usr/local/lib as the working directory:

% sudo 1n --symbolic libshprimes.so.1 libshprimes.so ## step
4 dynamic

The logical name libshprimes.so should not change, but the target of
the symbolic link (libshprimes.so.1) can be updated as needed for new
library implementations that fix bugs, boost performance, and so on.

The final step (a precautionary one) is to invoke the ldconfig utility,
which configures the system’s dynamic loader. This configuration ensures
that the loader will find the newly published library:

% sudo ldconfig ## step 5 dynamic

The dynamic library is now ready for clients, including the two sample
ones that follow.

8.7.4. A Sample C Client

The sample C client is the program fester, whose source code begins with
two #include directives:

#include <stdio.h> /* standard input/output functions */
#include <primes.h> /* my library functions */

Both header files are to be found on the compiler’s search path (in the
case of primes.h, the directory /usr/local/include). Without this #include,
the compiler would complain as usual about missing declarations for
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functions such as is_prime and prime_factors. By the way, the source
code for the tester program need not change at all to test each of the two
libraries.

By contrast, the source file for the library (primes.c) opens with these
#include directives:

#include <stdio.h>
#include <math.h>

The header file math.h is required because the library function prime_
factors calls the mathematics function sqrt from the standard library
libm.so.

For reference, Listing 8-14 is the source code for the tester program.

Listing 8-14. A sample C client

#include <stdio.h>
#include <primes.h>

int main() {
/* is_prime */
printf("\nis_prime\n");
unsigned i, count = 0, n = 1000;
for (i =1; i <=n; i++) {
if (is_prime(i)) {
count++;
if (1 == (i % 100)) printf("Sample prime ending in 1:
%i\n", i);
}
}

printf("%i primes in range of 1 to a thousand.\n", count);

/* prime_factors */
printf("\nprime_factors\n");
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printf("prime factors of 12: ");
prime factors(12);
printf("\n");

printf("prime factors of 13: ");
prime factors(13);
printf("\n");

printf("prime factors of 876,512,779: ");
prime_factors(876512779);
printf("\n");

/* are_coprimes */
printf("\nare_coprime\n");
printf("Are %i and %i coprime? %s\n",

21, 22, are coprimes(21, 22) ? "yes" : "no");
printf("Are %i and %i coprime? %s\n",
21, 24, are coprimes(21, 24) ? "yes" : "no");

/* goldbach */

printf("\ngoldbach\n");

goldbach(11); /* error */

goldbach(4); /* small one */

goldbach(6);  /* another */

for (i = 100; i <= 150; i += 2) goldbach(i);

return O;

In compiling tester.c into an executable, the tricky part is the order of
the link flags. Recall that the two sample libraries begin with the prefix lib
and each has the usual extension: .a for the static library libprimes.a and
.so for the dynamic library libshprimes.so. In a links specification, the prefix
lib and the extension fall away. A link flag begins with -/ (lowercase L), and
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a compilation command may contain arbitrarily many link flags. Here is
the full compilation command for the tester program, using the dynamic
library as the example:

% gcc -o tester tester.c -lshprimes -1m

The first link flag identifies the library libshprimes.so, and the second
link flag identifies the standard mathematics library libm.so.

The linker is lazy, which means that the order of the link flags matters.
For example, reversing the order of the link specifications generates a

compile-time error:
% gcc -o tester tester.c -1m -lshprimes ## DANGER!

The flag that links to libm.so comes first, but no function from this
library is invoked explicitly in the fester program; hence, the linker does
not link to the math.so library. The call to the sqrt library function occurs
only in the prime_factors function from the libshprimes.so library. The
resulting error in compiling the fester program is

primes.c: undefined reference to 'sqrt'

Accordingly, the order of the link flags should notify the linker that the
sqrt function is needed:

% gcc -o tester tester.c -lshprimes -1m ## -lshprimes 1st

The linker picks up the call to the library function sqrt in the
libshprimes.so library and, therefore, does the appropriate link to the
mathematics library libm.so. There is a more complicated option for
linking that supports either link-flag order; in this case, however, it is just
as easy to arrange the link flags appropriately.

Here is some output from a run of the tester client:

is_prime
Sample prime ending in 1: 101
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Sample prime ending in 1: 401

168 primes in range of 1 to a thousand.

prime_factors

prime factors of 12: 2 2 3

prime factors of 13: 13

prime factors of 876,512,779: 211 4154089

are_coprime
Are 21 and 22 coprime? yes
Are 21 and 24 coprime? no

goldbach
Number must be > 2 and even: 11 is not.
4 =2+ 2
6=3+3
32
32

3+ 29
13 + 19

100
100

3+ 97
11 + 89

For the goldbach function, even a relatively small even value (e.g., 18)
may have multiple pairs of primes that sum to it (in this case, 5 + 13 and 7
+11). Such multiple prime pairs are among the factors that complicate an
attempted proof of Goldbach’s conjecture.
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8.7.5. A Sample Python Client

Python, unlike C, is not a statically compiled language, which means
that the sample Python client must access the dynamic rather than the
static version of the primes library. To do so, Python has various modules
(standard and third party) that support a foreign function interface (FFI),
which allows a program written in one language to invoke functions
written in another. Python ctypes is a standard and relatively simple FFI
that enables Python code to call C functions.

Any FFI has challenges because the interfacing languages are unlikely
to have exactly the same data types. For example, the primes library uses
the C type unsigned int, which Python does not have; the ctypes FFI
maps a Cunsigned int to a Python int. Of the four extern C functions
published in the primes library, two behave better in Python with explicit
ctypes configuration.

The C functions prime_factors and goldbach have void instead of a
return type, but ctypes by default replaces the C void with the Python int.
When called from Python code, the two C functions then return a random
(hence, meaningless) integer value from the stack. However, ctypes can be
configured to have the functions return None (Python’s null type) instead.
Here is the configuration for the prime_factors function:

primes.prime factors.restype = None

A similar statement handles the goldbach function.
The following interactive session (in Python3) shows that the interface
between a Python client and the primes library is straightforward:

>>> from ctypes import cdll
>>> primes = cdll.LoadlLibrary("libshprimes.so") ## logical name

>>> primes.is prime(13)
1
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>>> primes.is prime(12)
0

>>> primes.are_coprimes(8, 24)

>>> primes.are_coprimes(8, 25)

>>> primes.prime_factors.restype = None
>>> primes.goldbach.restype = None

>>> primes.prime factors(72)
22233

>>> primes.goldbach(32)
32 =3 + 29
32 13 + 19

The functions in the primes library use only a simple data type,
unsigned int.If this Clibrary used complicated types such as structures,
and if pointers to structures were passed to and returned from library
functions, then an FFI more powerful than ctypes might be better for a
smooth interface between Python and C. Nonetheless, the ctypes example
shows that a Python client can use a library written in C. Indeed, the
popular NumPy library for scientific computing is written in C and then
exposed in a high-level Python API.

8.8. What’s Next?

This is a small book about a big language—not big in size, but in its impact
throughout computing. C is a very small language with easy access to an
expanse of standard and third-party libraries. As the libraries get better, C
gets better.
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C has quirks and presents challenges. Perhaps the greatest challenge is
memory leakage: heap storage that the program either allocates explicitly
or obtains indirectly through library functions must be freed explicitly, and
itis easy to allocate—and then forget to deallocate. Better APIs and tools
such as valgrind (https://valgrind.org) address this challenge. The
OpenSSL APT illustrates best practices: the API includes a family of free
functions that do whatever nested deallocation might be required. C brings
the programmer close to the machine, an intimacy that requires particular
discipline in code that uses dynamic storage.

Despite its age, C has the look and feel of a modern language with an
emphatic separation of concerns: an interface describes, in particular the
invocation syntax of functions; an implementation defines by providing
the appropriate operational detail. Once published, an interface should
remain unchanged, as it represents a contract with programmers; by
contrast, an implementation can change to fix bugs, boost performance,
and so on.

The standard C library functions are minimalist in design and,
therefore, a guide for programmers. Recall the write function, which
requires three arguments: where to write, what to write, and how many
bytes to write. There are no formatting flags or data-type specifications. If
these are needed, there are higher-level I/O functions at hand.

C can interact with virtually every other programming language.

Is it nonetheless possible that C might lose its role as the lingua franca

in programming? What would replace C? Its position as the dominant
systems language, but one suited for applications as well, makes C the
natural language to play this role. Are the standard system libraries, let
alone the operating system kernel, to be rewritten in some other language?
C combines two features that make it an ideal systems language: C has a
high-level syntax that promotes the writing of clear, modular code; but C
remains close to the metal, which promotes efficiency.
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What, then, is next? The code examples are available from GitHub
(https://github.com/mkalin/cbook.git). They are short enough to
explore, to tweak, and to improve.
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Signal-handling program, 324-325
Signals, 323-328
SIMD parallelism
architecture and instruction
set, 287



arithmetic operations, 288
attribute specifier, 288
in C, 287, 288
concurrent programs, 286
conventional approach, 286
dataV1 and dataV2 vectors, 289
GPU, 286
instruction-level
parallelism, 286
integer values, 286
MMX instruction set, 287
multiprocessing/multithreading
program, 286
N instructions, 286
standard compilers, 286, 289
Simpler program, assembly
code, 14-16
Single instruction stream, multiple
data stream
(SIMD), 285-289
Socket group, 227
Socket API, 188, 190, 192, 195
Software libraries
building/publishing, 329,
330, 334-336
C client, 328
dynamic (shared) library, 329
header file, 331, 334
library functions, 330, 331
library source, 331, 334
Linux, 328
sample C client, 336-340
sample Python client, 341, 342

INDEX

static library, 328

Source file wcSSLutils.c, 221
Static library, 328-329, 334,

335, 338

Storage classes

auto and register, 138

in C code, 135
declaration, 135, 136
doubleup, 146
doubleup as extern, 145
doubleup function, 145
extern, 143, 145

extern and static, 137
extern storage, 142

for loop, 139
functions/variables, 135, 137
int variable, 144

ISR, 148

lifetime, 136

main function, 145
printf, 142

profile program, 141
register specifier, 139
scope/visibility, 136
specifier extern, 147
static specifier, 140
static variables, 140, 141
variable, 136, 143
volatile qualifications, 149
volatile qualifier, 148

String conversions

ato function, 105, 108
compiler, 104

355



INDEX

String conversions (cont.)

const qualifier, 105
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