
Modern C Up
and Running

A Programmer’s Guide to Finding
Fluency and Bypassing the Quirks
—
Martin Kalin

Modern C Up and
Running

A Programmer’s Guide
to Finding Fluency

and Bypassing the Quirks

Martin Kalin

Modern C Up and Running: A Programmer’s Guide to Finding Fluency and

Bypassing the Quirks

ISBN-13 (pbk): 978-1-4842-8675-3		 ISBN-13 (electronic): 978-1-4842-8676-0
https://doi.org/10.1007/978-1-4842-8676-0

Copyright © 2022 by Martin Kalin

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: James Markham
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York
Plaza, Suite 4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub.

Printed on acid-free paper

Martin Kalin
Chicago, IL, USA

https://doi.org/10.1007/978-1-4842-8676-0

To Janet, yet again.

v

Table of Contents

About the Author��xi

About the Technical Reviewer��xiii

Acknowledgments���xv

Preface��xvii

Chapter 1: �Program Structure���   1

1.1. �Overview���   1

1.2. �The Function���   2

1.3. �The Function main��   5

1.4. �C Functions and Assembly Callable Blocks���   8

1.4.1. �A Simpler Program in Assembly Code��  14

1.5. �Passing Command-Line Arguments to main���  16

1.6. �Control Structures���  19

1.7. �Normal Flow of Control in Function Calls��  26

1.8. �Functions with a Variable Number of Arguments��  28

1.9. �What’s Next?���  32

Chapter 2: �Basic Data Types��  33

2.1. �Overview���  33

2.2. �Integer Types���  35

2.2.1. �A Caution on the 2’s Complement Representation�����������������������������  40

2.2.2. �Integer Overflow���  41

vi

2.3. �Floating-Point Types��  43

2.3.1. �Floating-Point Challenges��  44

2.3.2. �IEEE 754 Floating-Point Types��  49

2.4. �Arithmetic, Bitwise, and Boolean Operators��  54

2.4.1. �Arithmetic Operators��  56

2.4.2. �Boolean Operators��  58

2.4.3. �Bitwise Operators���  60

2.5. �What’s Next?���  64

Chapter 3: �Aggregates and Pointers��  67

3.1. �Overview���  67

3.2. �Arrays��  68

3.3. �Arrays and Pointer Arithmetic���  69

3.4. �More on the Address and Dereference Operators���������������������������������������  72

3.5. �Multidimensional Arrays���  75

3.6. �Using Pointers for Return Values��  80

3.7. �The void* Data Type and NULL��  84

3.7.1. �The void* Data Type and Higher-Order Callback Functions����������������  87

3.8. �Structures���  96

3.8.1. �Sorting Pointers to Structures��  99

3.8.2. �Unions���103

3.9. �String Conversions with Pointers to Pointers��104

3.10. �Heap Storage and Pointers���109

3.11. �The Challenge of Freeing Heap Storage��120

3.12. �Nested Heap Storage��125

3.12.1. �Memory Leakage and Heap Fragmentation�������������������������������������131

3.12.2. �Tools to Diagnose Memory Leakage���132

3.13. �What’s Next?���134

Table of Contents

vii

Chapter 4: �Storage Classes��135

4.1. �Overview���135

4.2. �Storage Class Basics��135

4.3. �The auto and register Storage Classes���138

4.4. �The static Storage Class���140

4.5. �The extern Storage Class��142

4.6. �The volatile Type Qualifier���147

4.7. �What’s Next?���150

Chapter 5: �Input and Output��151

5.1. �Overview���151

5.2. �System-Level I/O���152

5.2.1. �Low-Level Opening and Closing���157

5.3. �Redirecting the Standard Input, Standard Output, and Standard Error�������164

5.4. �Nonsequential I/O��166

5.5. �High-Level I/O���169

5.6. �Unbuffered and Buffered I/O���175

5.7. �Nonblocking I/O���178

5.7.1. �A Named Pipe for Nonblocking I/O���180

5.8. �What’s Next?���188

Chapter 6: �Networking���189

6.1. �Overview���189

6.2. �A Web Client��190

6.2.1. �Utility Functions for the Web Client��196

6.3. �An Event-Driven Web Server���199

6.3.1. �The webserver Program���203

6.3.2. �Utility Functions for the Web Server���204

6.3.3. �Testing the Web Server with curl��212

Table of Contents

viii

6.4. �Secure Sockets with OpenSSL��214

6.5. �What’s Next?���229

Chapter 7: �Concurrency and Parallelism���231

7.1. �Overview���231

7.2. �Multiprocessing Through Process Forking��233

7.2.1. �Safeguarding Against Zombie Processes���240

7.3. �The exec Family of Functions��241

7.3.1. �Process Id and Exit Status��244

7.4. �Interprocess Communication Through Shared Memory������������������������������247

7.5. �Interprocess Communication Through File Locking������������������������������������256

7.6. �Interprocess Communication Through Message Queues����������������������������264

7.7. �Multithreading���269

7.7.1. �A Thread-Based Race Condition���273

7.7.2. �The Miser/Spendthrift Race Condition��274

7.8. �Deadlock in Multithreading���281

7.9. �SIMD Parallelism���285

7.10. �What’s Next?���289

Chapter 8: �Miscellaneous Topics���291

8.1. �Overview���291

8.2. �Regular Expressions���292

8.3. �Assertions���300

8.4. �Locales and i18n���304

8.5. �C and WebAssembly��313

8.5.1. �A C into WebAssembly Example���315

8.5.2. �The Emscripten Toolchain���316

8.5.3. �WebAssembly and Code Reuse��322

Table of Contents

ix

8.6. �Signals��323

8.7. �Software Libraries���328

8.7.1. �The Library Functions���330

8.7.2. �Library Source Code and Header File���331

8.7.3. �Steps for Building the Libraries��334

8.7.4. �A Sample C Client���336

8.7.5. �A Sample Python Client��341

8.8. �What’s Next?���342

Index��345

Table of Contents

xi

About the Author

Martin Kalin has a Ph.D. from Northwestern University and is a professor

in the College of Computing and Digital Media at DePaul University. He

has cowritten a series of books on C and C++ and written a book on Java

web services. He enjoys commercial programming and has codeveloped,

in C, large distributed systems in process scheduling and product

configuration. He can be reached at http://condor.depaul.edu/mkalin.

http://condor.depaul.edu/mkalin

xiii

About the Technical Reviewer

Germán González-Morris is a polyglot Software Architect/Engineer with

20+ years in the field, with knowledge in Java, Spring, C, Julia, Python,

Haskell, and JavaScript, among others. He works for cloud, web distributed

applications. Germán loves math puzzles (including reading Knuth),

swimming, and table tennis. Also, he has reviewed several books including

an application container book (Weblogic) and some books on languages

(Haskell, TypeScript, WebAssembly, Math for coders, regexp, Julia,

Algorithms). For more details, visit his blog (https://devwebcl.blogspot.

com/) or Twitter account: @devwebcl.

https://devwebcl.blogspot.com/
https://devwebcl.blogspot.com/

xv

Acknowledgments

My hearty thanks go to the Apress people who made this book possible.

I would like to thank, in particular, the following: Steve Anglin, Associate

Editorial Director of Acquisitions; Jill Balzano, Coordinating Editor; and

James Markham, Development Editor. Thanks as well to the technical

reviewers who made the book better than it otherwise would have been.

xvii

Preface

�1.  Why C?
C is a small but extensible language, with software libraries (standard and

third party) extending the core language. Among high-level languages, C

still sets the mark for performance; hence, C is well suited for applications,

especially ones such as database systems and web servers that must

perform at a high level. The syntax for C is straightforward, but with an

oddity here and there. Anyone who programs in a contemporary high-

level language already knows much of C syntax, as other languages have

borrowed widely from C.

C is also the dominant systems language: modern operating systems

are written mostly in C, with assembly language accounting for the rest.

Other programming languages routinely and transparently use standard

library routines written in C. For example, when an application written

in any other high-level language prints the Hello, world! greeting, it is a

C library function that ultimately writes the message to the screen. The

standard system libraries for input/output, networking, string processing,

mathematics, security, cryptography, data encoding, and so on are

likewise written mainly in C. To write a program in C is to write in the

system’s native language.

xviii

WHO’S THE INTENDED AUDIENCE?

This book is for programmers and assumes experience in a general-purpose

language—but none in C. You should be able to work from the command

line. Linux and macOS come with a C compiler, typically GNU C (https://

gcc.gnu.org) and Clang (https://clang.llvm.org), respectively. At the

command-line prompt (% is used here), the command

% gcc -v

should provide details. For Windows, Cygwin (https://cygwin.com/

install.html) is recommended.

C has been a modern language from the start. The familiar function,

which can take arguments and return a value, is the primary code module

in C. C exhibits a separation of concerns by distinguishing between

interfaces, which describe how functions are called, and implementations,

which provide the operational details. As noted, C is naturally and easily

extended through software libraries, whether standard or third party. As

these libraries become better and richer, so does C. C programmers can

create arbitrarily rich data types and data structures and package their

own code modules as reusable libraries. C supports higher-order functions

(functions that can take functions as arguments) without any special, fussy

syntax. This book covers C’s modern features, but always with an eye on

C’s close-to-the-metal features.

To understand C is to understand the underlying architecture of

a modern computing machine, from an embedded device through a

handheld up to a node in a server cluster. C sits atop assembly language,

which is symbolic (human-understandable) machine language. Every

assembly language is specific to a computer architecture. The assembly

language for an Intel device differs from that of an ARM device. Even

within an architectural family such as Intel, changes in the architecture are

Preface

https://gcc.gnu.org
https://gcc.gnu.org
https://clang.llvm.org
https://cygwin.com/install.html
https://cygwin.com/install.html

xix

reflected in assembly language. As symbolic machine language, assembly

language is approachable, although reading and writing assembly code can

be daunting. Assembly language is of interest even to programmers in other

languages because it reveals so much about the underlying system. C does

not reveal quite as much, but far more than any other high-level language;

C also reveals what is common across architectures. One sign of just how

close C is to assembly language shows up in compilation: a C compiler can

handle any mix of C and assembly source code, and C source is translated

first into assembly code. From time to time, it will be useful to compare C

source with the assembly source into which the C source translates.

C source code ports well: a C program that compiles on one platform

should compile on another, unless platform-specific libraries and data

structure sizes come into play. Perfect portability remains an ideal, even

for C. C plays still another role—as the lingua franca among programming

languages: any language that can talk to C can talk to any other language

that does so. Most other languages support C calls in one form or another;

a later code example shows how straightforwardly Python can consume

library functions written in C.

�2.  From the Basics Through
Advanced Features
This book is code centric, with full program examples and shorter code

segments in the forefront throughout. The book begins, of course, with

C basics: program structure, built-in data types and control structures,

operators, pointers, aggregates such as arrays and structures, input and

output, and so on. Here is an overview of some advanced topics:

•	 Memory safety and efficiency: Best practices for

using the stack, the heap, and static area of memory;

techniques and tools for avoiding memory leakage

Preface

xx

•	 Higher-order functions: Simplifying code by passing

functions as arguments to other functions

•	 Generic functions: How to use the pointer-to-void

(void*) data type in creating and calling generic

functions

•	 Functions with a variable number of arguments: How

to write your own

•	 Defining new data types: A convenient way to name

programmer-defined, arbitrarily rich data types

•	 Clarifying C code through assembly-language code:

Getting closer to the metal

•	 Embedding assembly code: Checking for overflow with

embedded assembly

•	 Floating-point issues: Code examples and the IEEE 754

specification in detail

•	 Low-level and high-level input/output: Flexibility and

performance trade-offs in input/output operations

•	 Networking and wire-level security: Full code

examples, including digital certificates and

secure sockets

•	 Nonblocking input/output: Local machine and

networking examples of this acceleration technique

•	 Concurrency and parallelism: Multiprocessing,

interprocess communication, multithreading,

deadlock, and instruction-level SIMD parallelism

Preface

xxi

•	 Interprocess communication: Pipes (named and

unnamed), message queues, sockets, file sharing and

locking, shared memory with a semaphore, and signals

•	 Data validation: Regular expressions in detail

•	 Internationalization: Standard libraries for locale

management

•	 Assertions: Expressing and enforcing pre-, post-, and

invariant conditions in programs

•	 WebAssembly: Compiling C code into WebAssembly

for high-performance web modules

•	 Software libraries: How to build and deploy both static

and dynamic software libraries for C and non-C clients

The code examples in the book are available at https://github.com/

mkalin/cbook.git, and comments are welcome at mkalin@depaul.edu.

Preface

https://github.com/mkalin/cbook.git
https://github.com/mkalin/cbook.git

1

CHAPTER 1

Program Structure

1.1. � Overview
This chapter focuses on how C programs are built out of functions, which

are a construct in just about all modern program languages. The chapter

uses short code segments and full programs to explain topics such

as these:

•	 Functions as program modules

•	 Control flow within a program

•	 The special function named main

•	 Passing arguments to a function

•	 Returning a value from a function

•	 Writing functions that take a variable number of

arguments

C distinguishes between function declarations, which show how

a function is to be called, and function definitions, which provide the

implementation detail. This chapter introduces the all-important

distinction, and later chapters put the distinction to use in a variety of

examples. The chapter also compares C functions with assembly-language

blocks, which is helpful in clarifying how C source code compiles into

machine-executable code.

© Martin Kalin 2022
M. Kalin, Modern C Up and Running, https://doi.org/10.1007/978-1-4842-8676-0_1

https://doi.org/10.1007/978-1-4842-8676-0_1

2

Every general-purpose programming language has control structures

such as tests and loops. Once again, short code examples introduce the

basics of C’s principal control structures; later code examples expand and

refine this first look at control structures.

1.2. � The Function
A C program consists of one or more functions, with a function as a

program module that takes zero or more arguments and can return a

value. To declare a function is to describe how the function should be

invoked, whereas to define a function is to implement it by providing

the statements that make up the function’s body. A function’s body

provides the operational details for whatever task the function performs.

A declaration is a function’s interface, whereas a definition is a function’s

implementation. The following is an example of the declaration and

the definition for a very simple function that takes two integer values as

arguments and returns their sum.

Listing 1-1.  Declaring and defining a function

int add2(int, int); /* declaration ends with semicolon, no body */

int add2(int n1, int n2) { �/* definition: the body is enclosed

in braces */

 int sum = n1 + n2; �/* could avoid this step, here for

clarity */

 return sum; /* could just return n1 + n2 */

} �/* end of block that implements the

function */

Chapter 1 Program Structure

3

The add2 example (see Listing 1-1) contrasts a function’s declaration

with its definition. The declaration has no body of statements enclosed in

braces, but the definition must have such a body. In a contrived example,

the body could be empty, but the braces still would be required in the

definition and absent from the declaration.

If some other function main calls add2, then the declaration of add2

must be visible to main. If the two functions are in the same file, this

requirement can be met by declaring add2 above main. There is, however, a

shortcut. If add2 is defined above main in the same file, then this definition

doubles as a declaration (see Listing 1-2).

Listing 1-2.  More on declaring and defining a function

int add2(int n1, int n2) { �/* definition: the body is enclosed

in braces */

 int sum = n1 + n2; �/* could avoid this step, here for

clarity */

 return sum; /* could just return n1 + n2 */

} �/* end of block that implements the

function */

int main() {

 return add2(123, 987); /* ok: add2 is visible to main */

}

Program structure may require that a function be declared and defined

separately. For instance, if a program’s functions are divided among

various source files, then a function defined in a given file would have to be

declared in another file to be visible there. Examples are forthcoming.

As noted, a function’s body is enclosed in braces, and each statement

within the body ends with a semicolon. Indentation makes source code

easier to read but is otherwise insignificant—as is the placement of the

braces. My habit is to put the opening brace after the argument list and the

closing brace on its own line.

Chapter 1 Program Structure

4

In a program, each function must be defined exactly once and with its

own name, which rules out the name overloading (popular in languages

such as Java) in which different functions share a name but differ in

how they are invoked. A function can be declared as often as needed. As

promised, an easy way of handling declared functions is forthcoming.

In the current example, the declaration shows that function add2 takes

two integer (int) arguments and returns an integer value (likewise an

int). The definition of function add2 provides the familiar details, and this

definition could be shortened to a single statement:

return n1 + n2;

If a C function does not return a value, then void is used in place of

a return data type. The term void, which is shorthand for no value, is

technically not a data type in C; for instance, there are no variables of type

void. By contrast, int is a data type. An int variable holds a signed integer

value and so is able to represent negative and nonnegative values alike; the

underlying implementation is almost certainly 32 bits in size and almost

certainly uses the 2’s complement representation, which is clarified later.

There are various C standards, which relax some rules of what might

be called orthodox C. Furthermore, some C compilers are more forgiving

than others. In orthodox C, for example, there are no nested function

definitions: one function cannot be defined inside another. Also, later

standardizations of C extend the comment syntax from the slash-star

opening and star-slash closing illustrated in Listing 1-1, and an until-

end-of-line comment may be introduced with a double slash. To make

compilation as simple as possible, my examples stick with orthodox C,

avoiding constructs such as nested functions and double slashes for

comments.

Chapter 1 Program Structure

5

1.3. � The Function main
In style, C is a procedural or imperative language, not an object-oriented

or functional one. The program modules in a C program are functions,

which have global scope or visibility by default. There is a way to restrict

a function’s scope to the file in which the function is defined, as a later

chapter explains. The functions in a C program can be distributed among

arbitrarily many different source files, and a given source file can contain

as many functions as desired.

A C program’s entry point is the function main in that program

execution begins with the first statement in main. In a given program,

regardless of how many source files there are, the function main (like any

function) should be defined exactly once. If a collection of C functions

does not include the appropriate main function, then these functions

compile into an object module, which can be part of an executable

program, but do not, without main, constitute an executable program.

Listing 1-3.  An executable program with main and another function

#include <stdio.h>

/* �This definition of add2, occurring as it does _above_ main,

doubles as the function's declaration: main calls add2

and so the declaration of add2 must be visible above the

call. If function add2 were _defined_ below main, then the

function should be declared here above main to avoid

compiler warnings. */

int add2(int n1, int n2) { /* definition: the body is enclosed

in the braces */

 int sum = n1 + n2; �/* could avoid this step, kept here

for verbosity */

 return sum; /* we could just return n1 + n2 */

}

Chapter 1 Program Structure

6

int main() {

 int k = -26, m = 44;

 �int sum = add2(k, m); �/* call the add2 function, save the

returned value */

 /* %i means: format as an integer */

 �printf("%i + %i = %i\n", k, m, sum); �/* output: -26 +

44 = 18 */

 �return 0; �/* 0 signals normal termination, < 0 signals some

error */

}

The revised add2 example (see Listing 1-3) can be compiled and then

run at the command line as shown in the following, assuming that the file

with the two functions is named add2.c. These commands are issued in

the very directory that holds the source file add2.c. My comments begin

with two ## symbols:

% gcc -o add2 add2.c ## alternative: % gcc add2.c -o add2

% ./add2 ## On Windows, drop the ./

The flag -o stands for output. Were this flag omitted, the executable

would be named a.out (A.exe on Windows) by default. On some systems,

the C compiler may be invoked as cc instead of gcc. If both commands are

available, then cc likely invokes a native compiler—a compiler designed

specifically for that system. On Unix-like systems, this command typically

is a shortcut:

% make add2 ## expands to: gcc -o add2 add2.c

The add2 program begins with an include directive. Here is the line:

#include <stdio.h>

Chapter 1 Program Structure

7

This directive is used during the compilation process, with details to

follow. The file stdio.h, with h for header, is an interface file that declares

input/output functions such as printf, with the f for formatted. The angle

brackets signal that stdio.h is located somewhere along the compiler’s

search path (on Unix-like systems, in a directory such as /usr/include or

/usr/local/include). The implementation of a standard function such as

printf resides in a binary library (on Unix-like systems, in a directory such

as /usr/lib or /usr/local/lib), which is linked to the program during the full

compilation process.

HEADER FILES FOR FUNCTION DECLARATIONS

Header files are the natural way to handle function declarations—but not
function definitions. A header file such as stdio.h can be included wherever

needed, and even multiple includes of the same header file, although

inefficient, will work. However, if a header file contains function definitions,

there is a danger. If such a file were included more than once in a program’s

source files, this would break the rule that every function must be defined

exactly once in a program. The sound practice is to use header files for

function declarations, but never for function definitions.

What is the point of having the main function return an int value?

Which function gets the integer value that main returns? When the

user enters

% ./add2

at the command-line prompt and then hits the Return key, a system

function in the exec family (e.g., execv) executes. This exec function then

calls the main function in the add2 program, and main returns 0 to the exec

function to signal normal termination (EXIT_SUCCESS). Were the add2

Chapter 1 Program Structure

8

program to terminate abnormally, the main function might return the

negative value -1 (EXIT_FAILURE). The symbolic constants EXIT_SUCCESS

and EXIT_FAILURE are clarified later.

IS THERE EASY-TO-FIND DOCUMENTATION ON LIBRARY FUNCTIONS?

On Unix-like systems, or Windows with Cygwin installed (https://cygwin.

com), there is a command-line utility man (short for manual) that contains

documentation for the standard library functions and for utilities that often

have the same name as a function: googling for man pages is a good start.

1.4.  C Functions and Assembly
Callable Blocks
The function construct is familiar to any programmer working in a modern

language. In object-oriented languages, functions come in special forms

such as the constructor and the method. Many languages, including object-

oriented ones, now include anonymous or unnamed functions such as

the lambdas added in object-oriented languages such as Java and C#, but

available in Lisp since the 1950s. C functions are named.

Most languages follow the basic C syntax for functions, with some

innovations along the way. The Go language, for example, allows a

function to return multiple values explicitly. Functions are straightforward

with respect to flow of control: one function calls another, and the called

function normally returns to its caller. Information can be sent from the

caller to the callee through arguments passed to the callee; information

can be sent from the callee back to the caller through a return value. Even

in C, which allows only a single return value at the syntax level, multiple

values can be returned by returning an array or other aggregate structure.

Additional tactics for returning multiple values are available, as shown later.

Chapter 1 Program Structure

https://cygwin.com/
https://cygwin.com/

9

Assembly languages do not have functions in the C sense, although it

is now common to talk about assembly language functions. The assembly

counterpart to the function is the callable block, a routine with a label as its

identifier; this label is the counterpart of a function’s name. Information

is passed to a called routine in various ways, but with CPU registers and

the stack as the usual way. This section uses the traditional Hello, world!

program in a first look at (Intel) assembly code.

Listing 1-4.  The traditional greeting program in C

#include <stdio.h>

int main() {

 /* msg is a pointer to a char, the H in Hello, world! */

 �char* msg = "Hello, world!"; �/* the string is implemented

as an array of characters */

 printf("%s\n", msg); �/* %s formats the argument as

a string */

 return 0; �/* main must return an int

value */

}

The hi program (see Listing 1-4) has three points of interest for

comparing C and assembly code. First, the program initializes a variable

msg whose data type is char*, which is a pointer to a character. The star

could be flush against the data type, in between char and msg, or flush

against msg:

char* msg = ...; /* my preferred style, some limitations */

char * msg = ...; /* ok, but unusual */

char *msg = ...; /* perhaps the most common style */

Chapter 1 Program Structure

10

A string in C is implemented as array of char values, with the 1-byte,

nonprinting character 0 terminating the array:

 +---+---+---+---+---+ +---+---+---+

msg--->| H | e | l | l | o |...| l | d | \0| ## \0 is a char

 +---+---+---+---+---+ +---+---+---+

The slash before the 0 in \0 identifies an 8-bit (1-byte) representation

of zero. A zero without the backslash (0) would be an int constant, which

is typically 32 bits in size. In C, character literals such as \0 are enclosed in

single quotes:

char big_A = 'A'; /* 65 in ASCII (and Unicode) */

char nt = '\0'; /* non-printing 0, null terminator for

strings */

In the array to which msg points, the last character \0 is called the

null terminator because its role is to mark where the string ends. As a

nonprinting character, the null terminator is perfect for the job. Of interest

now is how the assembly code represents a string literal.

The second point of interest is the call to the printf function. In this

version of printf, two arguments are passed to the function: the first

argument is a format string, which specifies string (%s) as the formatting

type; the second argument is the pointer variable msg, which points to the

greeting by pointing to the first character H. The third and final point of

interest is the value 0 (EXIT_SUCCESS) that main returns to its caller, some

function in the exec family.

The C code for the hi program can be translated into assembly. In this

example, the following command was used:

% gcc -O1 -S hi.c ## -O1 = Optimize level 1, -S = save

assembly code

The flag -O1 consists of capital letter O for optimize followed by 1,

which is the lowest optimization level. This command produces the output

Chapter 1 Program Structure

11

file hi.s, which contains the corresponding assembly code. The file hi.s

could be compiled in the usual way:

% gcc -o hi hi.s ## produces same output as compiling hi.c

Listing 1-5.  The hi program in assembly code

 .file "hi.c" ## C source file

.LC0: �## .LC0 is the string's label

(address)

 .string "Hello, world!" ## string literal

 .text �## text (program) area: code,

not data

 .globl main ## main is globally visible

 .type main, @function �## main is a function, not a

variable (data)

main: �## label for main, the

entry point

 .cfi_startproc �## Call Frame Information:

metadata

 Subq $8, %rsp ## grow the stack by 8 bytes

 .cfi_def_cfa_offset 16 ## more metadata

 Movl $.LC0, %edi �## copy (pointer to) the

string into register %edi

 Call puts �## call puts, which expects

its argument in %edi

 Movl $0, %eax �## copy 0 into register %eax,

which holds return value

 Addq $8, %rsp ## shrink the stack by 8 bytes

 .cfi_def_cfa_offset 8 ## more metadata

 ret ## return to caller

Chapter 1 Program Structure

12

 .cfi_endproc ## all done (metadata)

The hi program in assembly code (see Listing 1-5) uses AT&T

syntax. There are alternatives, including so-called Intel assembly. The

AT&T version has advantages, which are explained in the forthcoming

discussions. In the example, the ## symbols introduce my comments.

To begin, some points about syntax should be helpful:

•	 Identifiers that begin with a period (e.g., .file) are

directives that guide the assembler in translating the

assembly code into machine-executable code.

•	 Identifiers that end with a colon (with or without a

starting period) are labels, which serve as pointers

(addresses) to relevant parts of the code. For example, the

label main: points to the start of the callable code block

that, in assembly, corresponds to the main function in C.

•	 CPU registers begin with a percentage sign %. In a register

name such as %eax, the e is for extended, which means 32 bits

in Intel. On a 64-bit machine, the register %eax comprises

the lower 32 bits of the 64-bit register %rax. In general,

register names that start with the e are the lower 32 bits of

the corresponding registers whose names start with r: %eax

and %rax are one example, and %edi and %rdi are another

example. A 32-bit machine would have only e registers.

•	 In instructions such as movl, the l is for longword,

which is 32 bits in Intel. In instruction addq, the q is for

quadword, which is 64 bits. By the way, the various mov

instructions are actually copy instructions: the contents

of the source are copied to the destination, but the

source remains unchanged.

The essentials of this assembly code example begin with two labels.

The first, .LC0:, locates the string greeting “Hello, world!”. This label thus

Chapter 1 Program Structure

13

serves the same purpose as the pointer variable msg in the C program. The

label main: locates the program’s entry point and, in this way, the callable

code block that makes up the body of the main: routine.

Two other parts of the main: routine deserve a look. The first is the call

to the library routine puts, where the s indicates a string. In C code, the call

would look like this:

puts("This is a string."); /* C code (puts adds a newline) */

In C, puts would be called with a single argument. In assembly code,

however, the puts is called without an explicit argument. Instead, the

expected argument—the address of the string to print—is copied to the

register %edi, which comprises the lower 32 bits of the 64-bit register %rdi.

For review, here is the code segment:

Movl $.LC0, %edi ## copy (pointer to) the string into %edi

Call puts ## call puts, which expects argument in %edi

A second interesting point about the main: routine is the integer

value returned to its invoker, again some routine in the exec family. The

32-bit register %eax (the lower 32 bits of the 64-bit %rax) is sometimes

used for general-purpose scratchpad, but in this case is used for a special

purpose—to hold the value returned from the main: routine. The assembly

code thus puts 0 in the register immediately before cleaning up the stack

and returning:

movl $0, %eax ## copy 0 into %eax, which holds return value

Although assembly-language programs are made up of callable

routines rather than functions in the C sense, it is common and, indeed,

convenient to talk about assembly functions. For the most part,

the machine-language library routines originate as C functions that have

Chapter 1 Program Structure

14

been translated first into assembly language and then into machine code

(see the sidebar).

HOW ARE C PROGRAMS COMPILED?

The compilation of a C program is a staged process, with four stages:

 +----------+ +-------+ +--------+ +----+

source code--->|preprocess|--->|compile|--->|assemble|--->|link|--->machine code

 +----------+ +-------+ +--------+ +----+

There are flags for the gcc utility, as well as separately named utilities (e.g.,

cpp for preprocess only), for carrying out the process only to a particular stage.

The preprocess stage handles directives such as #include, which start with

a sharp sign. The compile stage generates assembly language code, which the

assemble stage then translates into machine code. The link stage connects the

machine code to the appropriate libraries. The command

% gcc --save-temps net.c

would compile the code but also save the temporary files: net.i (text, from

preprocess stage), net.s (text, from compile stage), and net.o (binary, from

assemble stage).

1.4.1. � A Simpler Program in Assembly Code
A simpler program in assembly language shows that many assembler

directives can be omitted; the remaining directives make the code easier

to read. Also, no explicit stack manipulation is needed in the forthcoming

example, which is written from scratch rather than generated from C

source code.

Chapter 1 Program Structure

15

Listing 1-6.  A bare-bones program in assembly language

hello program

.data # data versus code section

.globl hello # global scope for label hello

hello: # label == symbolic address

 .string "Hello, world!" # a character string

.text # text == code section

.global main # global scope for main subroutine

main: # start of main

 movq $hello, %rdi # copy address of the greeting to %rdi

 call puts # call library routine puts

 movq $0, %rax # copy 0 to %rax (return value)

 ret # return control to routine's caller

The hiAssem program (see Listing 1-6) prints the traditional greeting,

but using assembly code rather than C. The program can be compiled and

executed in the usual way except for the added flag -static:

% gcc -o hiAssem -static hiAssem.s

% ./hiAssem ## on Windows, drop the ./

The program structure is straightforward:

	 1.	 Identify a string greeting with a label, in this

case hello:.

	 2.	 Identify the entry point with a label, in this

case main:.

	 3.	 Copy the greeting’s address hello: into register

%rdi, where the library routine puts expects this

address.

Chapter 1 Program Structure

16

	 4.	 Call puts.

	 5.	 Copy zero into register %rax, which holds a called

routine’s return value.

	 6.	 Return to the caller.

Even the short examples in this section illustrate the basics of C

programs: functions in C correspond to callable blocks (routines) in

assembly language, and in the normal flow of control, a called function

returns to its caller. With respect to called functions, the system provides

scratchpad storage, for local variables and parameters, with CPU registers

and the stack as backup.

1.5.  Passing Command-Line
Arguments to main
The main function seen so far returns an int value and takes no arguments.

The declaration is

int main(); /* one version */

The main function need not return a value, however:

void main(); /* another version, returns nothing */

The function main also can take arguments from the command line:

int main(int argc, char* argv[]); /* with two arguments, also

could return void */

Chapter 1 Program Structure

17

The two arguments in the last declaration of main are named, by

tradition, argc (c for count) and argv (v for values). Here is a summary of

the information in each argument:

•	 The first argument to the main function is argc, a count of

the command-line arguments. This count is one or more

because the name of the executable program is, again

by tradition, the first command-line argument. If the

program hi is invoked from the command line as follows:

% ./hi

then argc would have a value of one. If the same

program were invoked as follows:

% ./hi one two three

then argc would have a value of four. A program is not

obligated to use the command-line arguments passed to it.

•	 The second argument (argv) passed to main is trickier to

explain. All of the command-line arguments, including the

program’s name, are strings. Recall that a string in C is an

array of characters with a null terminator. Because there

may be multiple command-line arguments, these are

stored in a list (a C array), each of whose elements holds

the address of the first character in a command-line string.

For example, in the invocation of program hi, the first

element in the argv array points to the h in hi; the second

element in this array points to the o in one; and so forth.

The empty square brackets in argv[] indicate an array of

unspecified length, as the array’s length is given in argc; the

char* (pointer to character) data type indicates that each array

element is a pointer to the first character in each command-

line string. The argv argument is thus a pointer to an array of

Chapter 1 Program Structure

18

pointers to char; hence, the argv argument is sometimes written

as char** argv, which means literally that argv is a pointer to

pointer(s) to characters.

The details about arrays are covered thoroughly in Chapter 3, but

the preceding sketch should be enough to clarify how command-line

arguments work in C.

Listing 1-7.  Command-line arguments for main

#include <stdio.h>

int main(int argc, char* argv[]) {

 if (argc < 2) {

 puts("Usage: cline <one or more cmd-line args>");

 return -1; /** -1 is EXIT_FAILURE **/

 }

 puts(argv[0]); /* executable program's name */

 int i;

 for (i = 1; i < argc; i++)

 puts(argv[i]); /* additional command-line arguments */

 return 0; /** 0 is EXIT_SUCCESS **/

}

The cline program (see Listing 1-7) first checks whether there are

at least two command-line arguments—at least one in addition to the

program’s name. If not, the usage section introduced by the if clause

explains how the program should be run. Otherwise, the program uses the

library function puts (put string) to print the program’s name (argv[0])

and the other command-line argument(s). (The for loop used in the

program is clarified in the next section.) Here is a sample run:

% ./cline A 1 B2

Chapter 1 Program Structure

19

./cline

A

1

B2

Later examples put the command-line arguments to use. The point for

now is that even main can have arguments passed to it. Both of the control

structures used in this program, the if test and the for loop, now need

clarification.

1.6. � Control Structures
A block is a group of expressions (e.g., integer values to initialize an array)

or statements (e.g., the body of a loop). In either case, a block starts with

the left curly brace { and ends with a matching right curly brace }. Blocks

can be nested to any level, and the body of a function—its definition—is a

block. Within a block of statements, the default flow of control is straight-

line execution.

Listing 1-8.  Default flow of control

#include <stdio.h>

int main() {

 int n = 27; /** 1 **/

 int k = 43; /** 2 **/

 printf("%i * %i = %i\n", n, k, n * k); /** 3 **/

 return 0; /** 4 **/

}

The straight-line program (see Listing 1-8) consists of the single

function main, whose body has four statements, labeled in the comments

for reference. There are no tests, loops, or function calls that interfere

Chapter 1 Program Structure

20

with the straight-line execution: first statement 1, then statement 2, then

statement 3, and then statement 4. The last statement exits main and

thereby effectively ends the program’s execution. Straight-line execution is

fast, but program logic typically requires a more nuanced flow of control.

C has various flavors of the expected control structures, which can be

grouped for convenience into three categories: tests, loops, and (function)

calls. This section covers the first two, tests and loops; the following section

expands on flow of control in function calls.

Listing 1-9.  Various ways to test in C

#include <stdio.h>

int main() {

 int n = 111, k = 98;

 int r = (n > k) ? k + 1 : n - 1; /* conditional operator */

 printf("r's value is %i\n", r); /* 99 */

 if (n < k) puts("if");

 else if (r > k) puts("else if"); /** prints **/

 else puts("else");

 r = 0; /* reset r to zero */

 switch (r) {

 case 0:

 puts("case 0"); /** prints **/

 case 1:

 puts("case 1"); /** prints **/

 break; /** break out of switch construct **/

 case 2:

 puts("case 2");

 break;

Chapter 1 Program Structure

21

 case 3:

 puts("case 3");

 break;

 default:

 puts("none of the above");

 } /* end of switch */

}

The tests program (see Listing 1-9) shows three ways in which to test in

a C program. The first way uses the conditional operator in an assignment

statement. The conditional expression has three parts:

(test) ? if-test-is-true : if-test-is-false ## true is non-

zero, false is zero

In this example, the conditional expression is used as source in an

assignment:

int r = (n > k) ? k + 1 : n - 1; /* n is 111, k is 98 */

A conditional expression consists of a test, which yields one of two

values: one value if the test is true and another if the test is false. The test

evaluates to true (nonzero in C, with a default of 1) because n is 111 and

k is 98, making the expression (n > k) true; hence, variable r is assigned

the value of the expression immediately to the right of the question

mark, k + 1 or 99. Otherwise, variable r would be assigned the value of

the expression immediately to the right of colon, in this case 110. The

expressions after the question mark and the colon could themselves be

conditional expressions, but readability quickly suffers.

The conditional operator is convenient and is used commonly to

assign a value to a variable or to return a value from a function. This

operator also highlights a general rule in C syntax: tests are enclosed in

Chapter 1 Program Structure

22

parentheses, in this example, (n > k). The same syntax applies to if-tests

and to loop-tests. Parentheses always can be used to enhance readability,

as later examples emphasize, but parentheses are required for test

expressions.

The middle part of the tests program introduces the syntax for if-else

constructs, which can be nested to any level. For instance, the body of an

else clause could itself contain an if else construct. In an if and an else

if clause, the test is enclosed in parentheses. There can be an if without

either an else if or an else, but any else clause must be tied to a prior if

or else if, and every else if must be tied to an if. In this example, the

conditions and results (in this case, puts calls) are on the same line. Here

is a more readable version:

if (n < k)

 puts("if");

else if (r > k)

 puts("else if"); /** prints **/

else

 puts("else");

In this example, the body of the if, the else if, and the else is a

single statement; hence, braces are not needed. The bodies are indented

for readability, but indentation has no impact on flow of control. If a body

has more than one statement, the body must be enclosed in braces:

if (n < k) { /* braces needed here */

 puts("if");

 puts("just demoing");

}

Using braces to enclose even a single body statement is admirable

but rare.

The last section of the tests program introduces the switch construct,

which should be used with caution. The switch expression, in this case

Chapter 1 Program Structure

23

the value of variable r, is enclosed as usual in parentheses. The value of r

now determines the flow of control. Four case clauses are listed, together

with an optional default at the end. The value of r is zero, which means

control moves to case 0 and the puts statement is executed. However,

there is no break statement after this puts statement—and so control

continues through the next case, in this example case 1; hence, the second

puts statement executes. If the value of r happened to be 2, only one puts

statement would execute because the case 2 body consists of the puts

statement followed by a break statement.

The body of a case statement can consist of arbitrarily many

statements. The critical point is this: once control enters a case construct,

the flow is sequential until either a break is encountered or the switch

construct itself is exited. In effect, the case expressions are targets for a

high-level goto, and control continues straight line until there is a break or

the end of the switch.

The break statement can be used to break out of a switch construct, or

out of a loop. The discussion now turns to loops.

C has three looping constructs: while, do while, and for. Any one

of the three looping constructs is sufficient to implement program logic,

but each type of loop has its natural uses. For instance, a counted loop

that needs to iterate a specified number of times could be implemented

as while loop, but a for loop readily fits this bill. A conditional loop that

iterates until a specified condition fails to hold is implemented naturally as

a while or a do while loop.

The general form of a while loop is

while (<condition>) {

 /* body */

}

If the condition is true (nonzero), the body executes, after which the

condition is tested again. If the condition is false (zero), control jumps to

the first statement beyond the loop’s body. (If the loop’s body consists of

Chapter 1 Program Structure

24

a single statement, the body need not be enclosed in parentheses.) The do

while construct is similar, except that the loop condition occurs at the end

rather than at the beginning of a loop; hence, the body of a do while loop

executes at least once. The general form is

do {

 /* body */

} while (<condition>);

The break statement in C breaks out of a single loop. Consider this

code segment:

while (someCondition) { /* loop 1 */

 while (anotherCondition) { /* loop 2 */

 /* ... */

 if (thisHappens) break; �/* breaks out of loop2, but

not loop1 */

 }

 /* ... */

}

The break statement in loop2 breaks out of this loop only, and control

resumes within loop1. C does have goto statement whose target is a label,

but this control construct should be mentioned just once and avoided

thereafter.

Listing 1-10.  The while and do while loops

#include <stdio.h>

int main() {

 int n = -1;

 while (1) { /* 1 == true */

 printf("A non-negative integer, please: ");

 scanf("%i", &n);

Chapter 1 Program Structure

25

 if (n > 0) break; /* break out of the loop */

 }

 printf("n is %i\n", n);

 n = -1;

 do {

 printf("A non-negative integer, please: ");

 scanf("%i", &n);

 } while (n < 0);

 printf("n is %i\n", n);

 return 0;

}

The whiling program (see Listing 1-10) prompts the user for a

nonnegative integer and then prints its value. The program does not

otherwise validate the input but rather assumes that only decimal

numerals and, perhaps, the minus sign are entered. The focus is on

contrasting a while and a do while for the same task.

The condition for the while loop is 1, the default value for true:

while (1) { /* 1 == true */

This loop might be an infinite one except that there is a break

statement, which exits the loop: if the user enters a nonnegative integer,

the break executes.

The do while loop is better suited for the task at hand: first, the user

enters a value, and only then does the loop condition test whether the

value is greater than zero; if so, the loop exits. In both loops, the scanf

function is used to read user input. The details about scanf and its close

relatives can wait until later.

Chapter 1 Program Structure

26

Among the looping constructs, the for loop has the most complicated

syntax. Its general form is

for (<init>;<condition>;<post-body>) {

 /* body */

}

A common example is

for (i = 0; i < limit; i = i + 1) { /* int i, limit = 100; from

above */

 /* body */

}

The init section executes exactly once, before anything else. Then

the condition is evaluated: if true, the loop’s body is executed; otherwise,

control goes to the first statement beyond the loop’s body. The post-body

expression is evaluated per iteration after the body executes; then the

condition is evaluated again; and so on. Any part of the for loop can be

empty. The construct

for (;;) { /* huh? */ }

is an obfuscated version of a potentially infinite loop. As shown earlier,

a more readable way to write such a loop is

while (1) { /** clearer **/ }

1.7.  Normal Flow of Control in Function Calls
A called function usually returns to its caller. If a called function returns a

value, the function has a return statement that both returns the value and

marks the end of the function’s execution: control returns to the caller at

the point immediately beyond the call. A function with void instead of a

return type might contain a return statement, but without a value; if not,

Chapter 1 Program Structure

27

the function returns after executing the last statement in the block that

makes up the function’s body.

The normal return-to-caller behavior takes advantage of how modern

systems provide scratchpad for called functions. This scratchpad is a

mix of general-purpose CPU registers and stack storage. As functions are

called, the call frames on the stack are allocated automatically; as functions

return, these call frames can be freed up for future use. The underlying

system bookkeeping is simple, and the mechanism itself is efficient in that

registers and stack call frames are reused across consecutive function calls.

Example 1-1.  Normal calls and returns for functions

#include <stdio.h>

#include <stdlib.h> /* rand() */

int g() {

 return rand() % 100; �/* % is modulus; hence, a number 0

through 99 */

}

int f(int multiplier) {

 int t = g();

 return t * multiplier;

}

int main() {

 int n = 72;

 int r = f(n);

 �printf("Calling f with %i resulted in %i.\n", n, r);

/* 5976 on sample run */

 �return r; /* not usual, but all that's required is a

returned int */

}

Chapter 1 Program Structure

28

The calling program (see Example 1-1) illustrates the basics of normal

return-to-caller behavior. When the calling program is launched from the

command line, recall that a system function in the exec family invokes the

calling program’s main function. In this example, main then calls function

f with an int argument, which function f uses a multiplier. The number

to be multiplied comes from function g, which f calls. Function g, in

turn, invokes the library function rand, which returns a pseudorandomly

generated integer value. Here is a summary of the calls and returns, which

seem so natural in modern programming languages:

 calls calls calls calls

exec-function------->main()------->f(int)------->g()------->rand()

exec-function<-------main()<-------f(int)<-------g()<-------rand()

 returns returns returns returns

Further examples flesh out the details in the return-to-caller pattern.

One such example analyzes the assembly code in the pattern. A later

example looks at abnormal flow of control through signals, which can

interrupt an executing program and thereby disrupt the normal pattern.

1.8.  Functions with a Variable Number
of Arguments
The by-now-familiar printf function takes a variable number of

arguments. Here is its declaration:

int printf(const char* format, ...); �/* returns number of

characters printed */

Chapter 1 Program Structure

29

The first argument is the format string, and the optional remaining

arguments—represented by the ellipsis—are the values to be formatted.

The printf function requires the first argument, but the number of

additional arguments depends on the number of values to be formatted.

There are many other library functions that take a variable number of

arguments, and programmer-defined functions can do the same. Two

examples illustrate.

Example 1-2.  The library function syscall

#include <stdio.h>

#include <unistd.h>

#include <sys/syscall.h>

int main() {

 �/* 0755: owner has read/write/execute permissions, others

read/execute permissions */

 int perms = 0755; /* 0 indicates base-8, octal */

 int status = syscall(SYS_chmod, "/usr/local/website", perms);

 if (-1 == status) perror(NULL);

 return 0;

}

The sysCall program (see Example 1-2) invokes the library function

syscall, which takes a variable number of arguments; the first argument,

in this case the symbolic constant SYS_chmod, is required. SYS_chmod is

clarified shortly.

The syscall function is an indirect way to make system calls, that is, to

invoke functions that execute in kernel space, the address space reserved

for those privileged operating system routines that manage shared

system resources: processors, memory, and input/output devices. This

indirect approach allows for fine-tuning that the direct approach might

not provide. This example is contrived in that the function chmod (change

Chapter 1 Program Structure

30

mode) could be called directly with the same effect. The mode refers to

various permissions (e.g., read and write permissions) on the target, in this

case a directory on the local file system.

As noted, the first argument to syscall is required. The argument is

an integer value that identifies the system function to call. In this case, the

argument is SYS_chmod, which is defined as 90 in the header file syscall.h

and identifies the system function chmod. The variable arguments to

function syscall are as follows:

•	 The path to the file whose mode is to be changed, in

this case /usr/local/website. The path is given as a

string. (The directory /usr/local/website must exist

for the program to work, and this directory must be

accessible to whoever runs the program.)

•	 The file permissions, in this case 0777 (base-8):

everyone can read/write/execute.

The header file stdarg.h has a data type va_list (list of variable

arguments) together with utilities to help programmers write functions

with a variable number of arguments. These utilities allocate and

deallocate storage for the variable arguments, support iteration over

these arguments, and convert each argument to whatever data type is

appropriate. The utilities are well designed and worth using. As a popular

illustration of a function with a variable number of arguments, the next

code example sums up and then averages the arguments. In the example,

the required argument and the others happen to be of the same data

type, in the current case int, but this is not a requirement. Recall again

the printf function, whose first argument is a string but whose optional,

variable arguments all could be of different types.

Example 1-3.  A function with a variable number of arguments

#include <stdio.h>

Chapter 1 Program Structure

31

#include <stdarg.h> �/* va_list type, va_start va_arg va_end

utilities */

double avg(int count, ...) { �/* count is how many, ellipses are

the other args */

 double sum = 0.0;

 va_list args;

 va_start(args, count); �/* allocate storage for the

additional args */

 int i;

 for (i = 0; i < count; i++) sum += va_arg(args, int);

/* compute the running sum */

 va_end(args); �/* deallocate the storage for

the list */

 if (count > 0) return sum / count; �/* compiler promotes

count to double */

 else return 0;

}

void main() {

 printf("%f\n", avg(4, 1, 2, 3, 4));

 printf("%f\n", avg(9, 9, 8, 7, 6, 5, 4, 3, 2, 1));

 printf("%f\n", avg(0));

}

The varArgs program (see Example 1-3) defines a function avg with

one named argument count and then an ellipsis that represents the

variable number of other arguments. In this example, the int parameter

count is a placeholder for the required argument, which specifies how

many other arguments there are. In the first call from main to the function

avg, the first 4 in the list become count, and the remaining four values

make up the variable arguments.

Chapter 1 Program Structure

32

In the function avg, local variable nums is declared to be of type

va_list. The utility va_start is called with args as its first argument

and count as its second. The effect is to provide storage for the variable

arguments. The later call to va_end signals that this storage no longer is

needed. Between the two calls, the va_arg utility is used to extract from

the list one int value at a time. The programmer needs to specify, in the

second argument to va_arg, the data type of the variable arguments. In

this example, the type is the same throughout: int. In a richer example,

however, the type could vary from one argument to the next. Finally,

function main makes three calls to function avg, including a call that has no

arguments other than the required one, which is 0.

1.9. � What’s Next?
C has basic or primitive data types such as char (8 bits), int (typically 32

bits), float (typically 32 bits), and double (typically 64 bits) together with

mechanisms to create arbitrarily rich, programmer-defined types such

as Employee and digital_certificate. Names for the primitive types

are in lowercase. Data type names, like identifiers in general, start with a

letter or an underscore, and the names can contain any mix of uppercase

and lowercase characters together with decimal numerals. Most modern

languages have naming conventions similar to those in C. The basic types

in C deliberately match the ones on the underlying system, which is one

way that C serves as a portable assembly language. The next chapter

focuses on data types, built-in and programmer-defined.

Chapter 1 Program Structure

33

CHAPTER 2

Basic Data Types

2.1. � Overview
C requires explicit data typing for variables, arguments passed to a

function, and a value returned from a function. The names for C data types

occur in many other languages as well: int for signed integers, float for

floating-point numbers, char for numeric values that serve as character

codes, and so on. C programmers can define arbitrarily rich data types

of their own such as Employee and Movie, which reduce ultimately to

primitive types such as int and float. C’s built-in data types deliberately

mirror machine-level types such as integers and floating-point numbers of

various sizes.

At a technical level, a data type such as int, float, char, or Employee

determines

•	 The amount of memory required to store values of

the type (e.g., the int value -3232, a pointer to the

string “ABC”)

•	 The operations allowed on values of type (e.g., an int

value can be shifted left or right, whereas a float value

should not be shifted at all)

© Martin Kalin 2022
M. Kalin, Modern C Up and Running, https://doi.org/10.1007/978-1-4842-8676-0_2

https://doi.org/10.1007/978-1-4842-8676-0_2

34

The sizeof operator gives the size in bytes for any data type or value of

that type. Here is a code segment to illustrate:

printf("%lu\n", sizeof(char)); �/* 1 (%lu... for long

unsigned) */

printf("%lu %lu\n", sizeof(float), sizeof(99)); /* 4, 4 */

The sizeof(char) is required to be 1, which accommodates 7-bit

and 8-bit character encodings such as ASCII and Latin-1, respectively. C

also has a wchar_t type (w for wide), which is 4 bytes in size and designed

for multibyte character codes such as Unicode. Types other than char,

such as int and float, must be at least sizeof(char) but typically are

greater. On a modern handheld device or desktop computer, for example,

sizeof(int) and sizeof(float) are 4 bytes apiece.

Listing 2-1.  The sizeof various basic data types

#include <stdio.h>

#include <wchar.h> /* wchar_t type */

void main() {

 printf("char size: �%lu\n", sizeof(char));

/* 1 (long unsigned) */

 printf("wchar_t size: %lu\n", sizeof(wchar_t)); /* 4 */

 �/* Signed and unsigned variants of each type are of same

size. */

 printf("short size: %lu\n", sizeof(short)); /* 2 */

 printf("int size: %lu\n", sizeof(int)); /* 4 */

 printf("long size: %lu\n", sizeof(long)); /* 8 */

 printf("long long size: %lu\n", sizeof(long long)); �/* 8,

maybe

more */

Chapter 2 Basic Data Types

35

 /* floating point types are all signed */

 printf("float size: %lu\n", sizeof(float)); /* 4 */

 printf("double size: %lu\n", sizeof(double)); /* 8 */

 �printf("long double size: %lu\n", sizeof(long double)); /* 16 */

}

The dataTypes (see Listing 2-1) program prints the byte sizes for the

basic C data types. These sizes are the usual ones on modern devices.

The following sections focus on C’s built-in data types and built-in

operations on these types. Technical matters such as the 2’s complement

representation of integers and the IEEE 754 standard for floating-point

formats is covered in detail.

2.2. � Integer Types
All of C’s integer types come in signed and unsigned flavors. The unsigned

types have a one-field implementation: all of the bits are magnitude bits.

By contrast, signed types have a two-field implementation:

•	 The most significant (by convention, the leftmost) bit is

the sign bit, with 0 for nonnegative and 1 for negative.

•	 The remaining bits are magnitude bits.

The signed and unsigned integer types come in various sizes.

Chapter 2 Basic Data Types

36

Table 2-1.  Basic integer data types

Type Byte size Range

unsigned char 1 0 to 255

signed char 1 -128 to 127

unsigned short 2 0 to 65,535

signed short 2 -32,768 to 32,767

unsigned int 4 0 to 4,294,967,295

signed int 4 -2,147,483,648 to 2,147,483,647

unsigned long 8 0 to 18,446,744,073,709,551,615

signed long 8 –9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

Table 2-1 lists the basic integer types in C, which have the very bit sizes

as their machine-level counterparts. C also has a long long type, which

must be at least 8 bytes in size and typically is the same size as long: 8.

C does not have a distinct boolean type but instead uses integer values

to represent true and false: 0 represents false, and any nonzero value (e.g.,

-999 and 403) represents true. The default value for true is 1. For example, a

potentially infinite loop might start out like this:

while (1) { /** 1 is true in boolean context **/

In C source code, an integer constant such as 22 defaults to type int,

where int is shorthand for signed int. The constant 22L or 22l is of type

long. Here are some quick examples of data type shorthands:

int n; /* short for: signed int n; */

signed m; /* short for: signed int m; */

unsigned k; /* short for: unsigned int k; */

short s; /* short for: signed short s; */

signed short t; /* the full type written out */

Chapter 2 Basic Data Types

37

As the examples indicate, unsigned must be used explicitly if unsigned

is the desired variant.

The type of a variable does not restrict the bits that can be stored in it,

which means that even everyday C can be obfuscating. An example may be

useful here.

Listing 2-2.  Data types and bits

#include <stdio.h>

#include <limits.h> �/* includes convenient min/max values for

integer types */

void main() { /* void instead of int for some variety */

 unsigned int n = -1, m = UINT_MAX; �/* In 2's complement, -1

is all 1s */

 signed int k = 0xffffffff; �/* 0x or 0X for hex: f =

4 1s in hex */

 �if (n == m) printf("m and n have the same value\n");

/* prints */

 �if (k == m) printf("m and k have the same value\n");

/* prints */

 printf("small as signed == %i, small as unsigned == %u\n",

 n, n); /* -1, 4294967295 */

 signed int small = -1; �/* signed converts to unsigned in

mixed comparisons */

 �unsigned int big = 98765; �/* comparing big and small is a

mixed comparison */

 �if (small > big) printf("yep, something's up...\n");

/** small value is UINT_MAX **/

}

Chapter 2 Basic Data Types

38

The obfusc program (see Listing 2-2) is a cautionary tale on the

distinction between internal (machine-level) and external (human-level)

representation. The example’s important points can be summed up as

follows:

•	 The data type of a variable does not restrict the bits

that can be assigned to it. For example, the compiler

does not warn against assigning the negative value -1 to

the unsigned variable n. For the compiler, the decimal

value -1 is, in the 2’s complement representation now

common across computing devices, all 1s in binary.

Accordingly, the variable n holds 32 1s when -1 is

assigned to this variable. (Further details of the 2’s

complement representation are covered shortly.)

•	 The equality operator ==, when applied to integer

values, checks for identical bit patterns. If the left

and the right side expressions (in this example, the

values of two variables) have identical bit patterns, the

comparison is true; otherwise, false. The variables n, m,

and k all store 32 1s in binary; hence, they are all equal

in value by the equality operator ==.

•	 In print statements, the internal representation of a

value (the bit string) can be formatted to yield different

external representations. For example, the 32 1s stored

in variable n can be printed as a negative decimal value

using the formatter %i (integer) or %d (decimal). Recall

that in 2’s complement, a value is negative if its high-

order (leftmost) bit is a 1; hence, the %i formatter for

signed values treats the 32 1s as the negative value -1:

the high-order bit is the sign bit 1 (negative), and the

Chapter 2 Basic Data Types

39

remaining bits are the magnitude bits. By contrast,

the %u formatter for unsigned treats all of the bits as

magnitude bits, which yields the value of the symbolic

constant UINT_MAX (4,294,967,295) in decimal.

•	 Comparing expressions of mixed data types is risky

because the compiler coerces one of the types to the

other, following rules that may not be obvious. In this

example, the value -1 stored in the signed variable

small is converted to unsigned so that the comparison

is apple to apple rather than apple to orange. As

noted earlier, -1 is all 1s in binary; hence, as unsigned,

this value is UNIT_MAX, far greater than the 98,765

stored in big.

In mixed integer comparisons, the compiler follows two general rules:

•	 Signed values are converted to unsigned ones.

•	 Smaller value types are converted to larger ones. For

example, if a 2-byte short is compared to a 4-byte int,

then the short value is converted to an int value for

the comparison.

When floating-point values occur in expressions with integer values,

the compiler converts the integer values into floating-point ones.

In assembly code, an instruction such as cmpl would be used to

compare two integer values. The l in cmpl determines the number of

bits compared: in this case, 32 because l is for longword, a 32-bit word in

the Intel architecture. Were two 64-bit values being compared, then the

instruction would be cmpq instead, as the q stands for quadword, a 64-bit

word in this same architecture. At the assembly level, as at the machine

level, the size of a data type is built into the instruction’s opcode, in this

example cmpl.

Chapter 2 Basic Data Types

40

An earlier example showed that C’s signed char and unsigned char

are likewise integer types. As the name char indicates, the char type is

designed to store single-byte character codes (e.g., ASCII and Latin-1);

the more recent wchar_t type also is an integer type, but one designed for

multibyte character codes (e.g., Unicode). For historical reasons, the char

type is shorthand for either signed char or unsigned char, but which

is platform dependent. For the remaining types, this is not the case. For

example, short is definitely an abbreviation for signed short.

2.2.1. � A Caution on the 2’s Complement
Representation

The 2’s complement representation of signed integers has a surprising but

well-publicized peculiarity. The header file limits.h provides the constant

INT_MIN, the minimum value for a 4-byte signed int value. The binary

representation, with the most significant bits on the left, is

10000000 00000000 00000000 00000000 /* INT_MIN in binary */

For readability, the binary representation has been broken into

four 8-bit chunks. The rightmost (least significant) bit is a 0, which

makes the value (-2,147,483,648) even rather than odd. The leftmost

(most significant) bit is the sign bit: 1 for negative as in this case and 0

for nonnegative. There are similar constants for other integer types (for

instance, SHRT_MIN and LONG_MIN).

There is a straightforward algorithm for computing the absolute value

of a negative 2’s complement value. For example, recall that the -1 in

binary, under the 2’s complement representation, is all 1s: 1111…1. Here is

the recipe for computing the absolute value in binary:

	 1.	 Invert the 1s in -1, which yields all 0s: 00000…000.

	 2.	 Add 1, which yields 00000…001 or 1 in binary and

decimal, the absolute value of -1 in decimal.

Chapter 2 Basic Data Types

41

The same recipe yields -1 from 1: invert the bits in 1 (yielding 11111…0)

and then add 1 (yielding 11111…1), which again is all 1s in binary and -1 in

decimal.

In the case of INT_MIN, the peculiarity becomes obvious:

	 1.	 Invert the bits, which transforms INT_MIN to

01111111 11111111 11111111 11111111.

	 2.	 Add 1 to yield 10000000 00000000 00000000

00000000, which is INT_MIN again.

In C, the unary minus operator is shorthand for (a) inverting the bits

and (b) adding 1. This code segment illustrates

int n = 7;

int k = -n; /* unary-minus operator */

int m = ~n + 1; /* complement operator and addition by 1 */

The value of k and of m is the same: -7. In the case of INT_MIN, however,

the peculiarity is that

INT_MIN == -INT_MIN

A modern C compiler does issue a warning when encountering the

expression -INT_MIN, cautioning that the expression causes an overflow

because of the addition operation. By the way, no other int value is equal

to its negation under the 2’s complement representation.

2.2.2. � Integer Overflow
A programmer who uses any of the primitive C types needs to stay alert

when it comes to sizeof and the potential for overflow. The next code

example illustrates with the int type.

Chapter 2 Basic Data Types

42

Listing 2-3.  Integer overflow

#include <stdio.h>

#include <limits.h> /* INT_MAX */

int main() {

 �printf("Max int in %lu bytes %i.\n", sizeof(int), INT_MAX);

/* 4 bytes 2,147,483,647 */

 int n = 81;

 while (n > 0) {

 printf("%12i %12x\n", n, n);

 n *= n; /* n = n * n */

 }

 printf("%12i %12x\n", n, n); /* -501334399 e21e3e81 */

 return 0;

}

/* 81 51

 6561 19a1

 43046721 290d741

 -501334399 e21e3e81 ## e is 1101 in binary */

The overflow program (see Listing 2-3) initializes int variable n to 81

and then loops. In each loop iteration, n is multiplied by itself as long as the

resulting value is greater than zero. The trace shows that loop iterates three

times, and on the third iteration, the new value of n becomes negative. As

the hex output shows, the leftmost (most significant) four bits are hex digit

e, which is 1110 in binary: the leftmost 1 is now the sign bit for negative. In

this example, the overflow could be delayed, but not prevented, by using a

long instead of an int.

Chapter 2 Basic Data Types

43

There is no compiler warning in the overflow program that overflow

may result. It is up to the programmer to safeguard against this possibility.

There are libraries that support arbitrary-precision arithmetic in C,

including the GMP library (GNU Multiple Precision Arithmetic Library

at https://gmplib.org). A later code example uses embedded assembly

code to check for overflow.

2.3. � Floating-Point Types
C has the floating-point types appropriate in a modern, general-purpose

language. Computers as a rule implement the IEEE 754 specification

(https://standards.ieee.org/ieee/754/6210/) in their floating-point

hardware, so C implementations follow this specification as well.

Table 2-2 lists C’s basic floating-point types. Floating-point types are

signed only, and their values have a three-field representation under IEEE

754: sign bits, exponent bits, and significand (magnitude) bits. A floating-

point constant such as 3.1 is of type double in C, whereas 3.1F and 3.1f

are of type float. Recall that a double is 8 bytes in size, but a float is only

4 bytes in size.

Table 2-2.  Basic floating-point data types

Type Byte size Range Precision

float 4 1.2E-38 to 3.4E+38 6 places

double 8 2.3E-308 to 1.7E+308 15 places

long double 16 3.4E-4932 to 1.1E+4932 19 places

Chapter 2 Basic Data Types

https://gmplib.org/
https://standards.ieee.org/ieee/754/6210/

44

2.3.1. � Floating-Point Challenges
Floating-point types pose challenges that make these types unsuitable for

certain applications. For instance, there are decimal values such as 0.1 that

have no exact binary representation, as this short code segment shows:

float n = 0.1f;

printf("%.24f\n", n); /* 0.100000001490116119384766 */

In the printf statement, the formatter %.24f specifies a precision of

24 decimal places. As a later example illustrates, unexpected rounding up

can occur when a particular decimal value does not have an exact binary

representation. Even this short code segment underscores that floating-

point types should not be used in financial, engineering, and other

applications that require exactness and precision. In such applications,

there are libraries such as GMP (http://gmplib.org), mentioned earlier,

to support arbitrary-precision arithmetic.

WHAT’S A MACRO?

A macro is a code fragment with a name and is created with a #define

directive. The macro expands into its definition during the preprocessing stage

of compilation. Here is a macro for pi from the math.h header file:

#define M_PI 3.14159265358979323846 /* the # need not be flush

against the define */

Although macros are often named in uppercase, this is convention only. Here

are two parameterized macros for computing the max and min of two integer

arguments:

#define min(x, y) (y) ^ ((x ^ y) & -(x < y)) �/* details of

bitwise operators

later */

Chapter 2 Basic Data Types

http://gmplib.org/

45

#define max(x, y) (x) ^ ((x ^ y) & -(x < y)) �/* ^ bitwise xor,

& bitwise and */

These macros look like functions, but the compiler does no type-checking on

the arguments. Here are two sample uses:

int n = min(-127, 44); /* -127 */

n = max(373, 1404); /* 1404 */

Another example underscores the problem of comparing floating-

point values, in particular for equality. Imagine a company in which sales

people earn a bonus if they sell 83% of their quota by the end of the third

quarter. The company assumes that the remaining 17% of the quota, and

probably more, will be met in the last quarter. In this company, 83% is

defined in the official spreadsheet as the value 5.0 / 6.0. (On my handheld

calculator, 5.0 / 6.0 evaluates to 0.833333333.) However, a legacy program

computes 83% as (1.0 / 3.0) × 2.5. At issue, then, is whether (1.0 / 3.0) × 2.5

= 5.0 / 6.0. Here is a segment of C code that makes the comparison, using

double values:

if (((1.0 / 3.0) * 2.5) == (5.0 / 6.0)) /* equal? */

 printf("Equal\n");

else

 printf("Not equal\n"); /** prints **/

A look at the hex values for the two expressions confirms that they are

not equal:

3f ea aa aa aa aa aa aa /* (1.0 / 3.0) x 2.5 */

3f ea aa aa aa aa aa ab /* 5.0 / 6.0 */

The two differ in the least significant digit: hex a is 1010 in binary,

whereas hex b is 1011 in binary. The two values differ ever so slightly, in the

least significant (rightmost) bit of their binary representations. In close-to-

the-metal C, the equality operator compares bits; at the bit level, the two

expressions differ.

Chapter 2 Basic Data Types

46

High-level languages provide a way to make approximate comparisons

where appropriate. In particular, the header file math.h defines the macro

FLT_EPSILON, which represents the difference between 1.0f and the

smallest, 32-bit floating-point value greater than 1.0f. The value of FLT_

EPSILON should be no greater than 1.0e-5f. On my desktop computer:

FLT_EPSILON == 1.192092895508e-07 /** e or E for scientific

notation **/

C has similar constants for other floating-point types (e.g., DBL_

EPSILON).

Listing 2-4.  Approximate equality

float f1 = 5.0f / 6.0f;

float f2 = (1.0f / 3.0f) * 2.5f;

if (fabs(f1 - f2) < FLT_EPSILON) �/* fabs for floating-point

absolute value */

 printf("fabs(f1 - f2) < FLT_EPSILON\n"); /* prints */

The comp code segment (see Listing 2-4) shows how a comparison

can be made using FLT_EPSILON. The library function fabs returns the

absolute value of the difference between f1 and f2. This value is less than

FLT_EPSILON; hence, the two values might be considered equal because

their difference is less than FLT_EPSILON.

The next two examples reinforce the risks that come with floating-

point types. The goal is to show various familiar programming contexts

in which floating-point issues arise. Following each example is a short

discussion.

Chapter 2 Basic Data Types

47

Listing 2-5.  Issues with floating-point data types

 /* 1.010000

 2.020000

 ...

 7.070001 ;; rounding up now evident

 ...

 10.100001

 */

 float incr = 1.01f;

 float num = incr;

 int i = 0;

 while (i++ < 10) { /* i++ is the post-increment operator */

 �printf("%12f\n", num); �/* %12f is field width, not

precision */

 num += incr;

 }

The rounding program (see Listing 2-5) initializes a variable to 1.01

and then increments this variable by that amount in a loop that iterates ten

times. The rounding up becomes evident in the seventh loop iteration: the

expected value is 7.070000, but the printed value is 7.07001. Note that the

formatter is %12f rather than %.12f. In the latter case, the printouts would

show 12 decimal places but here show the default places, which happens

to be six. Instead, the 12 in %12f sets the field width, which right-justifies

the output to make it more readable.

Chapter 2 Basic Data Types

48

WHAT’S THE DIFFERENCE BETWEEN THE PRE-INCREMENT
AND POST-INCREMENT OPERATORS?

The rounding program uses the post-increment operator on loop counter

i to check, in the while condition, whether the loop counter is less than

ten. C also has a pre-increment operator and both pre- and post-decrement

operators. Each operator involves an evaluation and an update. Here is a code

segment to illustrate the difference:

int i = 1;

printf("%i\n", i++); /* 1 (evaluate, then increment) */

printf("%i\n", i); /* 2 (i has been incremented above) */

printf("%i\n", ++i); /* 3 (increment, then evaluate) */

Listing 2-6.  More examples of decimal-to-binary conversion

#include <stdio.h>

#include <math.h> �/* pi and e as macros, M_PI and M_E,

respectively */

void main() {

 �printf("%0.50f\n", 10.12);

/* 10.11999999999999921840299066388979554176330566406250 */

 /* On my handheld calculator: 2.2 * 1234.5678 = 2716.04916 */

 double d1 = 2.2, d2 = 1234.5678;

 double d3 = d1 * d2;

 �if (2716.04916 == d3) printf("As expected.\n");

/* does not print */

 �else printf("Not as expected: %.16f\n", d3);

/* 2716.0491600000004837 */

 printf("\n");

Chapter 2 Basic Data Types

49

 /* Expected price: $84.83 */

 float price = 4.99f;

 int quantity = 17;

 �float total = price * quantity; �/* compiler converts quantity

to a float value */

 �printf("The total price is $%f.\n", total); �/* The total

price is

$84.829994. */

 /* e and pi */

 �double ans = pow(M_E, M_PI) - M_PI; /* e and pi, respectively */

 �printf("%lf\n", ans); /* 19.999100 prints: expected is

19.99909997 */

}

The d2bconvert program (see Listing 2-6) shows yet again how

information may be lost in converting from decimal to binary. In these

isolated examples, of course, no harm is done; but these cases underscore

that floating-point types such as float and double are not suited for

applications involving, for instance, currency.

2.3.2. � IEEE 754 Floating-Point Types
This section digs into the details of the IEEE 754 binary floating-point

specification (https://standards.ieee.org/standard/754-2019.

html), using 32-bit floating-point values as the working example. The

specification also covers 16-bit and 64-bit binary representations and

decimal representations as well. Here is the layout of a 32-bit (single-

precision) binary floating-point value under IEEE 754:

+-+--------+-----------------------+

|s|exponent| magnitude | 32 bits

+-+--------+-----------------------+

 1 8 23

Chapter 2 Basic Data Types

https://standards.ieee.org/standard/754-2019.html
https://standards.ieee.org/standard/754-2019.html

50

For reference, the written exponent comprises the 8 bits depicted

previously. In the discussion that follows, the written exponent is

contrasted with the actual exponent. Also, the written magnitude

comprises the 23 bits shown previously and is contrasted with the actual

magnitude.

The IEEE 754 specification categorizes floating-point values as either

normalized or denormalized or special. The category depends on the value

of the 8-bit exponent:

•	 If the written exponent field contains a mix of 0s and 1s,

the value is normalized.

•	 If the written exponent field contains only 0s, the value

is denormalized.

•	 If the written exponent field contains only 1s, the value

is special.

As the name suggests, normalized values are typical or expected ones

such as -118.625, which is -1110110.101 in binary. A normalized value has

an implicit leading 1, which means the written magnitude is the fractional

part of the actual magnitude:

1.??????...??? ## the question marks ? are the written magnitude

For the sample value -1110110.101 (-118.625 in decimal), the implicit

leading 1 is obtained by moving the binary point six places to the left,

which yields -1.110110101 × 26. The written magnitude is then the

fractional part 110110101.

In the example, the actual exponent is 6, as shown in the

expression -1.110110101 × 26. However, the written exponent of 133

(10000101 in binary) is biased, with a bias of 127 for the 32-bit case. The

bias is subtracted from the written exponent to get the actual exponent:

actual exponent = written exponent - 127 ## 133 - 127 = 6

Chapter 2 Basic Data Types

51

In summary, the decimal value -118.625 has a written exponent of

133 in IEEE 754, but an actual exponent of 6.

Finally, the sample value is negative, which means the most

significant (leftmost) bit is a 1. The 32-bit representation for the decimal

value -188.625 is

1 10000101 11011010100000000000000 ## 14 zeros pad to

make 23 bits

The middle field alone, the 8-bit exponent, indicates that this value is

indeed normalized: the written exponent contains a mix of 0s and 1s.

Denormalized values cover two representations of zero and evenly

spaced values in the vicinity of zero. Zero can represented as either a

negative or a nonnegative value under the IEEE specification, which the C

compiler honors:

if (-0.0F == 0.0F) puts("yes!"); /* prints */

The IEEE representation of zero is intuitive in that every bit—except,

perhaps, the sign bit—is a 0. A denormalized value does not have an

implicit leading 1, and the actual exponent has a fixed value of -126 in the

32-bit case. The written exponent is always all 0s.

What motivates the denormalized category beyond the two

representations of zero? Consider the three values in Table 2-3, in

particular the binary column. In the first row, the value has a single 1—

the least significant bit of the written exponent. Yet this exponent still

contains a mix of 0s and 1s and so is normalized: it is the smallest positive

normalized value in 32 bits.

Chapter 2 Basic Data Types

52

Table 2-3.  Positive denormalized and normalized values

Binary Decimal

0 00000001 00000000000000000000000 1.175494350822e-38

0 00000000 11111111111111111111111 1.175494210692e-38

0 00000000 00000000000000000000001 1.401298464325e-45

The value in the middle row has all 0s in the exponent, which makes

the value denormalized. This value is the largest denormalized value in

32 bits, but this value is still smaller than the very small normalized value

above it. The smallest denormalized value, the bottom row in the table,

has a single 1 as the least significant bit: all the rest are 0s. Between the

smallest and the largest denormalized values are many more, all differing

in the bit pattern of the written magnitude. Although the denormalized

values shown so far are positive, there are negative ones as well: the sign

bit is 1 for such values.

In summary, denormalized values cover the two representations

of zero, as well as evenly spaced values that are close to zero. The

preceding examples show that the gap between the smallest positive

normalized value and positive zero is considerable and filled with

denormalized values.

The third IEEE category covers special values, three in particular:

NaN (Not a Number), positive infinity, and negative infinity. A written

exponent of all 1s signals a special value. If the written magnitude contains

all 0s, then the value is either negative or positive infinity, with the sign bit

determining the difference. If the written magnitude contains at least one

1, the value is NaN. A short code segment clarifies.

Chapter 2 Basic Data Types

53

Listing 2-7.  Special values under the IEEE 754 specification

#include <stdio.h>

#include <math.h>

/** gcc -o specVal specVal.c -lm **/

void main() {

 �printf("Sqrt of -1: %f\n", sqrt(-1.0F));

 /* 1 11111111 10000000000000000000000 */

 �printf("Neg. infinity: %f\n", 1.0F / -0.0F);

 /* 1 11111111 00000000000000000000000 */

 �printf("Pos. infinity: %f\n", 1.0F / 0.0F);

 /* 0 11111111 00000000000000000000000 */

}

The specVal program (see Listing 2-7) has the following output, with

comments introduced by ##:

Sqrt of -1: -nan ## minus sign because -1.0F is negative

Neg. infinity: -inf ## negative zero as divisor

Pos. infinity: inf ## non-negative zero as divisor

The floating-point units (FPUs) of modern computers commonly

follow the IEEE specification; modern languages, including C, do so in

any case. There are heated discussions within the computing community

on the merits of the IEEE specification, but there is little doubt that this

specification is now a de facto standard across programming languages

and systems.

Chapter 2 Basic Data Types

54

HOW DOES LINKING WORK IN THE COMPILATION PROCESS?

Compiling the specVal program into an executable requires an explicit link flag:

% gcc -o specVal specVal.c -lm

In the flag -lm (lowercase L followed by m), the -l stands for link, and the m

identifies the standard mathematics library libm, which resides in a file such

as libm.so on the compiler/linker search path (e.g., in a directory such as /usr/
lib or /usr/local/lib). Note that the prefix lib and the file extension so fall away

in a link specification, leaving only the m for the mathematics library.

The linking is needed because the specVal program calls the sqrt function

from the mathematics library. A compilation command may contain several

explicit link flags in same style shown previously: -l followed by the name of

the library without the prefix lib and without the library extension such as so.

During compilation, libraries such as the standard C library and the input/

output library are linked in automatically. Other libraries, such as the

mathematics and cryptography libraries, must be linked in explicitly. In

Chapter 8, the section on building libraries goes into more detail on linking.

2.4. � Arithmetic, Bitwise, and Boolean
Operators

C has the usual arithmetic, bitwise, and boolean (relational) operators.

Recall that even the character types char and wchar_t, and the makeshift-

boolean type (zero for false, nonzero for true), are fundamentally

arithmetic types. However, some operators are ill-suited for some types.

For example, floating-point values should not be bit-shifted, left or right.

Chapter 2 Basic Data Types

55

Recall the layout for a 32-bit floating-point value under IEEE 754:

+-+--------+-----------------------+

|s|exponent| magnitude |

+-+--------+-----------------------+

 1 8 23

Bit-shifting a floating-point type, either left or right, would cause one or

more bits to change fields. On a 2-bit left shift, for instance, magnitude bits

would become exponent bits, and an exponent bit would become the sign

bit. The following code segment illustrates the peril of shifting floating-

point values:

float f = 123.456f;

f = (int) f << 2; /* ERROR without the cast operation (int) */

printf("%f\n", f); /* 492.000000 */

The second line uses a cast operation, which is an explicit type-

conversion operation; in this case, the floating-point value of variable f is

converted to an int value so that the compiler does not complain. (The

syntax of casts is covered in the following sidebar.) In the shift operation,

<< represents a left shift, and >> represents a right shift. To the left of the

shift operator is the value (in this case, variable f) to be shifted, and to

the right is the number of bit places to shift. On left shifts, the vacated

positions are filled with 0s.

If the preceding example were to omit the cast operation, the compiler

would complain, with an error rather than just a warning, that the left

operand to << should be an int, not a float. To get by the compiler, the

code segment thus includes the cast operation.

It should be emphasized that a cast operation is not an assignment

operation. In this example, the casted value 123.456 is still stored in

variable f. The salient point is that floating-point values, in general, should

not be shifted at all. The shift operation is intended for integer values only,

and even then caution is in order—as later examples illustrate.

Chapter 2 Basic Data Types

56

HOW DO CAST OPERATIONS WORK?

A cast operation consists of a data type enclosed in parentheses immediately

to the left of a value:

int n = (int) 1234.5678f; �/* cast float value to int value,

which is assigned to n */

float f = (float) n; �/* compiler would do the conversion

in any case */

n = (int) 1234.5678F << 2; �/* cast required: float values

should not be shifted */

A cast is not an assignment: in the second example shown previously, the cast

(float) does not change what is stored in n but rather creates a new value

then assigned to variable f. A cast is thus an explicit conversion of one type to

another. The compiler regularly does such conversions automatically:

int n = 1234.567f; �/* compiler assigns 1234 to n: automatic

conversion */

For convenience, the following subsections divide the operators into

the traditional categories of arithmetic, bitwise, and boolean (relational).

Miscellaneous operators such as sizeof and the cast will continue to be

clarified as needed.

2.4.1. � Arithmetic Operators
C has the usual unary and binary arithmetic operators, and C uses the

standard symbols to represent these operators. For operations such as

exponentiation and square roots, C relies upon library routines, in this

case the pow and sqrt functions, respectively. Table 2-4 clarifies the binary

arithmetic operators with sample expressions.

Chapter 2 Basic Data Types

57

Table 2-4.  Binary arithmetic operators

Operation C Example

Addition + 12 + 3

Subtraction - 12 - 3

Multiplication * 12 * 3

Division / 12 / 3

Modulus % 12 % 3

The plus and minus signs also designate the unary plus and unary

minus operators, respectively:

int k = 5;

printf("%i %i\n", +k, -k); /* 5 -5 */

The binary arithmetic operators associate left to right, with

multiplication, division, and modulus having a higher precedence than

addition and subtraction. For example, the expression

8 + 2 * 3

evaluates to 14 rather than 30. Of course, parentheses can be used

to ensure the desired association and precedence—and to make the

arithmetic expressions easier to read.

Listing 2-8.  Operator association and precedence

#include <stdio.h>

void main() {

 int n1 = 4, n2 = 11, n3 = 7;

 printf("%i\n", n1 + n2 * n3); /* 81 */

 printf("%i\n", (n1 + n2) * n3); /* 105 */

Chapter 2 Basic Data Types

58

 printf("%i\n", n3 * n2 % n1); /* 1 */

 printf("%i\n", n3 * (n2 % n1)); /* 21 */

}

The assoc program (see Listing 2-8) shows how expressions can

be parenthesized in order to get the desired association when mixed

operations are in play. The use of parentheses seems easier than trying to

recall precedence details, and parenthesized expressions are, in any case,

easier to read.

C has variants of the assignment operator (=) that mix in arithmetic

and bitwise operators. A few examples should clarify the syntax:

int n = 3;

n += 4; /* n = n + 4 */

n /= 2; /* n = n / 2 */

n <<= 1; /* n = n << 1 */

2.4.2. � Boolean Operators
The boolean or relational operators are so named because the expressions

in which they occur evaluate to the boolean values true or false. Although

any integer value other than zero is true in C, true boolean expressions in C

evaluate to the default value for true, 1. Here are some sample expressions

to illustrate the boolean operators:

/** equals and not-equals **/

2 == (16 - 14) /* true: == is 'equals' */

2 != (16 / 8) /* false: != is 'not equals' */

/** greater, lesser **/

!(2 < 3) /* false: ! is 'negation' */

3 > 2 /* true: > is 'greater than' */

3 >= 3 /* true: >= is 'greater than or equal to' */

Chapter 2 Basic Data Types

59

3 < 2 /* false: < is 'less than' */

3 <= 3 /* true: <= is 'less than or equal to */

/** logical-and, logical-or **/

(2 < 3) && (4 < 5) /* true: && is logical-and */

(2 < 3) || (5 < 4) /* true: || is logical-or */

A few cautionary notes are in order. Note that the operators for equality

(==) and inequality (!=) both have two symbols in them. The equality

operator can be tricky because it is so close to the assignment operator (=).

Consider this code segment, the stuff of legend among C programmers

whose code has gone awry because of some variation of the problem:

int n = 2;

if (n = 1)

 printf("yep\n"); /** prints: presumably meant n == 1 **/

An assignment in C is an expression and so has a value—the value

of the expression on the right-hand side of the = operator. Accordingly,

the if test both assigns 1 to n and evaluates to 1, true; hence, the printf

statement executes. Whenever a constant is to be compared against a

variable, it is best to put the constant on the left. If the assignment operator

= is then typed by mistake instead of the equality operator ==, the compiler

catches the problem:

if (1 = n) /** won't compile **/

The logical and and logical or operators are efficient because they

short-circuit. For example, in the expression

(3 < 2) && (4 > 2) �/* only (3 < 2), the 1st conjunct, is

evaluated */

Chapter 2 Basic Data Types

60

the second conjunct (4 > 2) is not evaluated: a conjunction is true

only if each of its conjuncts is true, and the first conjunct (3 < 2) is false,

thereby making the entire expression false.

The boolean operators occur regularly in loop and other tests. Simple

examples have been seen already:

int i = 0;

while (i < 10) { /* loop while i is less than 10 */

 /* ... */

 i += 1; �/* increment loop counter: i++ or ++i would

work, too */

}

Richer examples are yet to come.

2.4.3. � Bitwise Operators
As the name suggests, the bitwise operators work on the underlying

bit-string representation of data. These operators thus deserve caution,

as it may be hard to visualize the outcome of bit manipulation. Bitwise

operations are fast, usually requiring but a single clock tick to execute.

For example, an optimizing compiler might transform a source-code

expression such as

n = n * 2; �/* n is an unsigned int variable: double n

arithmetically */

to a left shift, shown here at the source level:

n = n << 1; /* double n by left-shifting one place */

Chapter 2 Basic Data Types

61

Here are some more examples of the bitwise operators in expressions,

using 4-bit values for readability:

~(0101) == 1010 /* invert bits: complement */

(0101 & 1110) == 0100 /* bitwise-and */

(0101 | 1110) == 1110 /* bitwise-inclusive-or */

(0101 ^ 1110) == 1011 /* bitwise-exclusive-or */

(0111 << 2) == 1100 /* left shift */

(0111 >> 2) == 0001 /* right shift */

The complement or bit inversion operator is tied to the unary minus

operator considered earlier. Given an underlying 2’s complement

representation of signed integers, recall that the unary minus operator

can be viewed as a combination of two operations: complement and

increment by 1. Another example illustrates:

int n = 5;

if (-n == (~n + 1))

 printf("yep\n"); /* prints */

The shift operators require caution because overshifting in either

direction is a misstep. As noted earlier, the compiler intervenes in case

floating-point values are shifted left or right. At issue now are shifts of

integer values. With signed integer values, left shifts can be risky because

they may change the sign. Consider this example:

int n = 0x70000000; /* 7 in binary is 0111 */

printf("%i %i\n", n, n << 1); /* 1879048192 -536870912 */

The bit-level representation of n starts out 01110..., with the leftmost

bit as the sign bit 0 for nonnegative. The 1-bit left shift moves a 1 into the

sign position, which accounts for change in sign from 1,879,048,192

to -536,870,912. Recall that, in left shifts, the vacated bit positions are filled

with 0s.

Chapter 2 Basic Data Types

62

Right shifts can be even trickier. Consider the signed integer value

0xffffffff in hex, which is all 1s in binary; in decimal, this is -1. Even in a

1-bit right shift, the sign could change to 0—if the shift is logical, that is,

if the vacated bit is filled with a 0. If the shift is sign preserving, it is an

arithmetic shift: the sign bit becomes the filler for the vacated positions.

Whether a right is logical or arithmetic is platform dependent. In general,

it is best to shift only unsigned integer values. Even in this case, of course,

overshifting is possible; but at least the issue of sign preservation does

not arise.

Listing 2-9.  Reversing the endian-ness of a multibyte data item

unsigned int endian_reverse32(unsigned int n) { /* designed for

32 bits, or 4 bytes */

 return (n >> 24) | �/* leftmost byte becomes

rightmost */

 ((n << 8) & 0x00FF0000) | /* swap the two inner bytes */

 ((n >> 8) & 0x0000FF00) | /* ditto */

 �(n << 24); �/* rightmost byte becomes

leftmost */

}

The endian code segment (see Listing 2-9) uses bitwise operators in a

utility function that reverses the endian-ness of a 4-byte integer. Modern

machines are still byte addressable in that an address is that of a single

byte. For multibyte entities such as a 4-byte integer, an address thus points

to a byte at one end or the other in the sequence of 4 bytes. Given this 4-

byte integer

Chapter 2 Basic Data Types

63

+----+----+----+----+

| B1 | B2 | B3 | B4 | ## �B1 is high-order byte, B4 is low-order byte

+----+----+----+----+

the integer’s address would be either that of B1 (high-order byte) or

that of B4 (low-order byte). Standard network protocols are big endian,

with the integer’s address that of the big (high-order) byte B1; Intel

machines are little endian, with the integer’s address that of the little

(low-order) byte B4. (ARM machines are little endian by default but can be

configured, as needed, to be big endian.) Given the preceding depiction,

the endian program would reverse the byte order to yield:

+----+----+----+----+

| B4 | B3 | B2 | B1 | ## �B4 is high-order byte, B1 is low-order byte

+----+----+----+----+

A short code example illustrates, with integer n initialized to a hex

value for clarity:

unsigned n = 0x1234abcd;

printf("%x %x\n", n, endian_reverse(n)); /*

1234abcd cdab3412 */

Recall that each hex digit is 4 bits. Accordingly, the leftmost byte in

variable n is 12, and the rightmost is cd.

C has a header file endian.h that declares various functions for

transforming little-endian formats to big-endian formats, and vice versa.

These functions specify the bit sizes on which they work: 16 (2 bytes), 32 (4

bytes), and 64 (8 bytes).

Chapter 2 Basic Data Types

64

WHAT IS AN LVALUE AND AN RVALUE?

An rvalue is one that does not persist. For example, in the statement

printf("%i\n", 444); �/* 444 does not persist, and is thus an

rvalue */

the rvalue 444 does not persist beyond the printf statement. By contrast, an

lvalue does persist as the target of an assignment:

int n = 444; �/* 444 persists in n beyond the

assignment */

The variable n is the symbolic name of a memory location or CPU register, and

a value assigned to n is thus an lvalue.

2.5. � What’s Next?
The examples so far have focused mostly on scalar variables: there is

an identifier for a single variable, not a collection of variables. A typical

example is

int n = -1234; /* n identifies a single variable */

C also supports aggregates, a collection of variables under a single

name. Here is one example:

char* str = "abcd"; �/* string literal abcd is a null-

terminated array of chars */

printf("%c\n", str[0]); �/* string[0] = 1st of 5 variables, %c

for character */

Chapter 2 Basic Data Types

65

The pointer variable str identifies a collection (in this case, an array)

of five characters: the ones shown and the null terminator. The expression

str[0] refers to the first of the variables that hold a character, lowercase a

in this example. Pointer str thus identifies an aggregate rather than just a

single variable.

Arrays and structures are the primary aggregates in C. Pointers also

deserve a closer look because they dominate in efficient, production-grade

programming. The next chapter focuses on aggregates and pointers.

WHAT’S THE RELATIONSHIP BETWEEN C AND C++?

C is a small, strictly procedural or imperative language. C++ is a large

language that can be used in procedural style but also includes object-

oriented features (e.g., classes, inheritance, and polymorphism) not found in

C. C++, unlike C, has generic collection types. A C++ program can include

orthodox C code, but much depends on the compiler; further, header files and

the corresponding libraries may differ in name and location between the two

languages. The two languages share history and features but are distinct.

Chapter 2 Basic Data Types

67

CHAPTER 3

Aggregates and
Pointers

3.1. � Overview
This chapter focuses on arrays and structures, which are C’s primary

aggregate types. Arrays aggregate variables of the same type, whereas

structures can do the same for variables of different types. Structures can

be array elements, and a structure may embed arrays. Together these

aggregate types make it possible for programmers to define arbitrarily rich

data types (e.g., Employee, Game, Species) that meet application needs.

Pointers—address constants and variables—come into play naturally

with both arrays and structures, and the code examples throughout the

chapter get into the details. Among modern general-purpose languages, C

(together with C++) stands out by giving the programmer so much control

over—and, therefore, responsibility for—memory addresses and the items

stored at these addresses. All of the chapters after this one have examples

that, in one way or another, illustrate the power of pointers.

© Martin Kalin 2022
M. Kalin, Modern C Up and Running, https://doi.org/10.1007/978-1-4842-8676-0_3

https://doi.org/10.1007/978-1-4842-8676-0_3

68

3.2. � Arrays
An array in C is a fixed-size collection of variables—of the same type—

accessible under a single name, the array’s identifier. A code example

illustrates.

Listing 3-1.  A simple array

#define Size 8

void main() {

 int arr[Size]; /* �storage from the stack --

uninitialized */

 int i;

 for (i = 0; i < Size; i++) /* iterate over the array */

 arr[i] = i + 1; /* �assign a value to each

element */

}

The array program (see Listing 3-1) shows the basic syntax for declaring

an array and then uses a for loop to populate the array with values. An array

has a fixed size, in this case specified by the macro Size. The array’s name,

in this case arr, is a pointer constant that holds the address of the array’s first

element, in this case the element that the for loop initializes to 1:

 +---+---+---+---+---+---+---+---+

arr--->| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ## array elements

 +---+---+---+---+---+---+---+---+

 [0] [1] [2] [3] [4] [5] [6] [7] ## indexes

Arrays can be indexed to access elements by using the square brackets:

legitimate indexes are 0 through the array’s size - 1. The indexes are

offsets from the start of the array: the first array element is at offset 0, the

second at offset 1, and so on. For the preceding array, here are some of the

addresses computed as offsets from the base address arr:

Chapter 3 Aggregates and Pointers

69

arr + 0 ---> 1st element ## arr[0] is value of 1st element: 1

arr + 1 ---> 2nd element ## arr[1] is value of 2nd element: 2

...

arr + 7 ---> 8th element ## arr[7] is value of 8th element: 8

A second example builds on the first by introducing pointer variables

and showing how C supports pointer arithmetic by having data types for

pointers.

DOES C PROVIDE BOUNDS CHECKING ON ARRAYS?

No. The programmer is responsible for ensuring that array indexes are in
bounds at runtime. The following code segment compiles without warning and

likely blows up when executed because of the out-of-bounds index -9876.

int arr[4]; /* four elements */

int ind = -9876; �/* not a good index: 0, 1, 2, and 3 are good

indexes */

arr[ind] = 27; �/* out-of-bounds, likely to blow up at

run-time */

3.3. � Arrays and Pointer Arithmetic
C supports typed pointers so that the compiler can perform the required

arithmetic when pointers are used to access memory locations. The

compiler thereby takes on a task that would be error-prone if left to the

programmer. Consider again the array program with its array of eight

int elements and a sample index such as 2. The index expression arr[2]

references the third element in the array, which is two elements over from

where the array starts: arr is the base address, and 2 is the displacement

or offset from this base address. However, machine-level addresses are of

bytes, and an int is a 4-byte element. To reach the array’s third element,

Chapter 3 Aggregates and Pointers

70

it is therefore necessary to move 2 × sizeof(int) bytes from where array

arr starts, which is a move of 8 bytes in all. Yet the programmer refers

to the third element as arr[2] (int level), not as arr[8] (byte level). It

would be tedious and error-prone for programmers to work at the byte

level in accessing array elements of multibyte types. Accordingly, C’s typed

pointers allow the programmer to work at the data-type level (e.g., int or

Employee), while the compiler then works at the byte level.

Listing 3-2.  Pointer variables and pointer arithmetic

#define Size (8) /* �Size is a macro that expands

into (8) */

void main() {

 int arr[Size]; /* �storage from the stack --

uninitialized */

 int k = 1;

 int* ptr = arr; /* point to the start of the array */

 int* end = arr + Size; /* �points immediately beyond the end

of the array */

 while (ptr < end) { /* beyond the end yet? */

 ptr = k++; / �assign a value to the array

element */

 ptr++; /* increment the pointer */

 }

}

Chapter 3 Aggregates and Pointers

71

The arrayPtr program (see Listing 3-2), which revises the original array

program, has three pointers at work:

•	 The array’s name arr, a pointer constant, holds the

address of the first element in the array.

•	 The pointer variable ptr, assigned to hold the address

of the first element in the array.

•	 The pointer variable end points just beyond the last

element in the array.

The following is a depiction of where ptr and end point before the

looping begins:

 +---+---+---+---+---+---+---+---+---+

ptr--->| ? | ? | ? | ? | ? | ? | ? | ? | ? |<---end

 +---+---+---+---+---+---+---+---+---+

 [0] [1] [2] [3] [4] [5] [6] [7] ## indexes

A pointer is allowed to point one element beyond the end of the array,

although nothing should be stored at that location. In this example, the

array’s initialization now uses a while rather than a for loop, and the loop’s

condition compares the two pointers, ptr and end: looping continues so

long as ptr < end. At the bottom of the loop, ptr is incremented by 1—by

one int, which is 4 bytes. The pointer ptr is a variable, unlike the pointer

constant arr, and so can have its value changed. Eventually ptr points to

the same location as does end, which makes the loop condition false.

The initialization of each array element uses the dereference operator,

the star:

ptr = k++; / k is 1,2,3,...,8 */

Chapter 3 Aggregates and Pointers

72

In the declaration of ptr, the star comes after the data type int. In the

dereferencing of ptr, the star comes before the variable’s name. It would be

an error to change the code to

ptr = k; /** ERROR **/

because ptr then would take on values such as 1,2,3,…,8, which almost

surely are not addresses within the program’s address space. The aim is to

initialize the array element to which ptr points, not ptr itself.

3.4. � More on the Address
and Dereference Operators

In the addPtr example, the pointer variable ptr is initialized to the array’s

name arr so that both arr and ptr point to the array’s first element. An

equivalent but less concise initialization uses the address operator &:

int* ptr = &arr[0]; /* alternative to: int* ptr = arr; */

The address operator computes an in-memory address, in this case the

address of array element arr[0].

The dereference operator uses an address to access the contents stored

at that address. If ptr points to any cell in the int array arr, then *ptr is

the value stored at the address. The dereference operator can be used in

the usual ways, for example, to read or to change a value:

int* ptr = &arr[3]; /* address of 4th element, which contains 4 */

*ptr = *ptr + 9; /* equivalent to: arr[3] = arr[3] + 9 */

The examples so far have shown pointers that hold the addresses of

char and int cells, but not pointers to other pointers. In principle, there

can be pointer to pointer to…, although in practice, it is unusual to see

more than two levels of indirection. The next example illustrates the case

of a pointer to a pointer, and later examples motivate such a construct.

Chapter 3 Aggregates and Pointers

73

Listing 3-3.  The address and dereference operators

#include <stdio.h>

void main() {

 int n = 1234;

 int* ptr1 = &n; /* ptr1--->n */

 int** ptr2 = &ptr1; /* ptr2--->ptr1 */

 printf("%i %p %p\n", n, ptr1, ptr2); /* �1234 0x7ffee80dfb5c

0x7ffee80dfb60 */

 **ptr2 = *ptr1 + 100; /* increment n by 100 */

 printf("%i %i %i\n", n, *ptr1, **ptr2); /* 1334 1334 1334 */

}

The ptr2ptr program (see Listing 3-3) has an int variable n that stores

1234, a pointer ptr1 that points to n, and a second pointer ptr2 that points

to ptr1. Here is a depiction, with fictional addresses written in hex above

the storage cells and variable names below these cells:

 0xAB 0xEF ## addresses

+------+ +------+ +------+

| 0xAB |--->| OxEF |--->| 1234 | ## contents

+------+ +------+ +------+

 ptr2 ptr1 n ## variable names

Given this storage layout, any of the variables n, ptr1, and ptr2 can

be used to access (including to update) the value stored in variable n. For

example, each of these statements updates n by one:

n += 1; /* from 1234 to 1235 */

ptr1 += 1; / from 1235 to 1236 */

**ptr2 += 1; /* from 1236 to 1237 */

Chapter 3 Aggregates and Pointers

74

The index syntax used with arrays can be seen as syntactic sugar, as a

short example shows:

int arr[] = {9, 8, 7, 6, 5}; /* compiler figures out the size */

int n = arr[2]; /* n = arr[2] = 7 */

The syntax arr[2] is straightforward and now is common across

programming languages. In C, however, this syntax can be viewed as

shorthand for

int n = *(arr + 2); /* n = 7 */

The pointer expression arr + 2 points to two int elements beyond

the first in the array, which holds 7. Dereferencing the pointer expression

*(arr + 2) yields the int contents, in this case 7.

The same point can be reinforced with some obfuscated C. Consider

this code segment:

int arr[] = {9, 8, 7, 6, 5};

int i;

for (i = 0; i < 5; i++)

 printf("%i ", i[arr]); /** peculiar syntax **/

In the printf statement, the usual syntax for array access would be

arr[i], not i[arr]. Yet either works, and the compiler does not wince at

the second form. The reason can summarized as follows:

arr[i] == *(arr + i) /* syntactic sugar */

*(arr + i) == *(i + arr) /* addition commutes */

(i + arr) == i[arr] / �more syntactic (but peculiar)

sugar */

Chapter 3 Aggregates and Pointers

75

3.5. � Multidimensional Arrays
An array declared with a single pair of square brackets is one-dimensional

and sometimes called a vector. An array declared with more than one pair

of square brackets is multidimensional:

int nums[128]; /* one dimensional array */

int nums_table[4][32]; /* �multidimensional array

(2-dimensional matrix) */

Arrays of any dimension are possible, but more than three dimensions

is unusual. The array nums_table is two-dimensional. The arrays nums

and nums_table hold the same number of integer values (128), but they

do not have the same number of elements: array nums has 128 elements,

each an int value; by contrast, array nums_table has four elements, each a

subarray of 32 int values. The sizeof operator, when applied to an array’s

name, does the sensible thing: it gives the number of bytes required for all

of the array elements, not the size in bytes of the array’s name as pointer.

In this case, for example, the sizeof array nums is the same as the sizeof

array nums_table: 512 because there are 128 int values in each array and

each int is 4 bytes.

Multidimensional arrays are yet another example of syntactic sugar

in C. All arrays are implemented as one-dimensional, as the next code

example illustrates.

Listing 3-4.  Treating a multidimensional array as a one-

dimensional array

#include <stdio.h>

void main() {

 int table[3][4] = {{1, 2, 3, 4}, /* row 1 */

 {9, 8, 7, 6}, /* row 2 */

 {3, 5, 7, 9}}; /* row 3 */

Chapter 3 Aggregates and Pointers

76

 int i, j;

 for (i = 0; i < 3; i++) /** outer loop: 3 rows **/

 for (j = 0; j < 4; j++) /** inner loop: 4 cols per row **/

 printf("%i ", table[i][j]);

 printf("\n");

 int* ptr = (int*) table; /** ptr points to an int **/

 for (i = 0; i < 12; i++) /** 12 ints (3 rows, 4 cols each) **/

 printf("%i ", ptr[i]);

 printf("\n");

}

The table program (see Listing 3-4) highlights critical features about

how pointers work in C. The array name table is, as usual, a pointer

constant, and this name points to the first byte of the first int in the first

element in the array, where the first array element is a subarray of four int

values, in this case 1, 2, 3, and 4:

 1st row 2nd row 3rd row ## rows

 +---+---+---+---|---+---+---+---|---+---+---+---+

table--->| 1 | 2 | 3 | 4 | 9 | 8 | 7 | 6 | 3 | 5 | 7 | 9 | ## contents

 +---+---+---+---|---+---+---+---|---+---+---+---+

 [0] [1] [2] [3] [0] [1] [2] [3] [0] [1] [2] [3] ## column indexes

The data type of table is pointer to an array of subarrays, each with

four integer elements. In memory, the array is laid out contiguously, with

the int values in sequence, one table row (subarray) after the other.

The table program traverses the multidimensional array twice. The

first traversal uses nested for loops: the outer for loop iterates over the

rows, and the inner for loop iterates over the columns in each row. The C

compiler lays out the table in row-major order: the first row with all of its

Chapter 3 Aggregates and Pointers

77

columns, then the second row with all of its columns, and so on. A Fortran

compiler, by contrast, would lay out a multidimensional array in column-

major order.

The second traversal of array table uses only a single for loop. The

variable ptr is assigned the value of table, but with a cast: the cast (int*)

is required because ptr is of type int*, whereas table is not. A revision to

the table example goes into the details.

Listing 3-5.  A function to print the two-dimensional table of three

rows and three columns

void print(int (*arr)[4], int n) {

 int i, j;

 for (i = 0; i < n; i++)

 for (j = 0; j < 4; j++)

 printf("%i ", arr[i][j]);

 printf("\n");

}

To get a better sense of the table data type, imagine breaking out a

print function for printing the two-dimensional table (see Listing 3-5).

The first parameter in the print function could be written in different

ways, including the one shown. Another way is this:

void print(int arr[][4], int n)

Both versions underscore that the first argument passed to print, in

this case the two-dimensional array table, must be an array of subarrays,

with each subarray of size 4. The second argument n to the print function

specifies the number of rows in the array. From the main function in the

table program, the call would be

print(table, 3); /* 3 rows */

Chapter 3 Aggregates and Pointers

78

The parameter arr in function print then points to the first row, and

second parameter n gives the number of rows. The cast of table to int* in

the assignment

int* ptr = (int*) table;

acknowledges to the compiler that pointer constant table and pointer

variable ptr may point to the very same byte, but that the two differ in

type. As an int* pointer, ptr can be used to iterate over the individual int

values in the array, rather than over the four-element subarrays that make

up each table row.

Consider the pointer expressions table[0], table[1], and table[2].

Each of these points to an array of three integers. Here is the output from a

sample run that prints out the three addresses:

printf("%p (%lu) %p (%lu) %p (%lu)\n",

 table[0], (long) table[0], /* �0x7ffececccf30

(140730827343600) */

 table[1], (long) table[1] , /* �0x7ffececccf40

(140730827343616) */

 table[2], (long) table[2]); /* �0x7ffececccf50

(140730827343632) */

}

The first and second addresses differ by 16 bytes, as do the third and

fourth. The variable table[0] points to the first of the three rows in the

table, and each row has four int values of 4 bytes apiece; hence, table[1]

points 16 bytes beyond where table[0] points.

The syntax of multidimensional arrays gives a hint about how various

pointer expressions are to be used. The table array, which holds int

values, is declared with two sets of square brackets:

int table[3][4] = {...};

Chapter 3 Aggregates and Pointers

79

If index syntax is used to read or write an int value, then two square

brackets must be used:

table[1][2] = -999; /* second row, third column set to -999 */

The first index picks out the row, and the second index picks out the

column in the row. Any expressions involving table, but with fewer than

two pairs of brackets, are pointers rather than int values. In particular,

table points to the first subarray, as does table[0]; pointer table[1]

points to the second subarray; and pointer table[2] points to the third

subarray. A quick review exercise is to explain, in plain terms or through a

code segment, the difference between the data type of table and the data

type of table[0]. Both pointer expressions point to the same byte, but the

two differ in type.

C arrays promote efficient modular programming. Consider again a

function to print one-dimensional integer arrays of arbitrary sizes. As the

table program shows, it is straightforward to treat an n-dimensional array

as if it were one-dimensional. The print_array function might be declared

as follows:

void print_array(int* arr, unsigned n); �/* void print_array(int

arr[], unsigned n); */

The obvious way to call print_array is to pass it, as the first argument,

the array’s name—a pointer:

int arr[100000];

/* fill the array */

print_array(arr, 100000); �/* passing a pointer as the

1st arg */

To pass the array’s name as an argument is thus to pass a pointer to the

array, not a copy of it. Passing a copy of 100,000 4-byte integers would be

expensive, maybe prohibitively so. It is possible to pass a copy of an array

to a function, another issue for later analysis.

Chapter 3 Aggregates and Pointers

80

HOW ARE ARGUMENTS PASSED TO C FUNCTIONS?

C uses call by value exclusively in passing arguments to functions: the

arguments are copied and then accessible in the called function through the

parameter names. The compiler can optimize such calls in various ways,

including placing arguments in CPU registers rather than on the stack.

Addresses (pointers) as well are passed by value. For example, when an

array’s name is passed as an argument, a copy of this address is passed. Of

course, both the copy and the original address can be used to access the very

same array elements.

3.6. � Using Pointers for Return Values
A function in C can take arbitrarily many arguments, but it can return one

value at most. The restriction to just one returned value is not troubling,

however. To begin, the single returned value could be a list of values,

although this approach requires caution. Later code examples explore the

option and go into best practices for returning collections. This section

takes on a different approach: using a pointer argument to store a value

that otherwise might be returned explicitly by a function:

int f() { return 100; } /* explicitly returned */

void g(int* arg) { *arg = 100; } �/* stored at a provided

address */

The technique is common in C. A function’s caller provides the address

of some variable, and the callee then stores a value at this address. The

effect is to return a value via the pointer. The next code example motivates

this approach and also introduces in-line assembly code to check for

integer overflow.

Chapter 3 Aggregates and Pointers

81

Listing 3-6.  In-line assembly code to check for integer overflow

#include <stdio.h>

#include <limits.h>

int safe_mult(int n1, int n2, int* product) {

 int flag = 0; /* assume no overflow */

 *product = n1 * n2; /* potential overflow */

 asm("setae %%bl; movzbl %%bl,%0"

 : "=r" (flag) /* set flag on overflow */

 : /* no other inputs */

 : "%rbx"); /* scratchpad */

 return flag; /* zero is no overflow, non-zero is overflow */

}

The safeMult function (see Listing 3-6) introduces in-line assembly

with a call to the library function asm. The architecture-specific assembly

code is in AT&T style and targets an Intel machine; the code detects

overflow in integer multiplication, returning a flag to indicate whether

overflow occurred.

The syntax of the in-line assembly code needs a quick analysis. The

percentage sign % used to identify a CPU register sometimes occurs twice,

in this case to identify the 1-byte, special-purpose register %%bl. The

double percentage signs are there to prevent the assembler from confusing

this register identifier with something else. One percentage sign might do,

but two are safer.

The argument to the asm function can be divided into two parts:

•	 The string

"setae %%bl; movzbl %%bl,%0"

Chapter 3 Aggregates and Pointers

82

contains two instructions, with a semicolon

separating them. The setae instruction puts the

result of the overflow test in the 1-byte register %bl.

This register now flags whether overflow occurs.

The movzbl instruction then copies the contents of

register %bl into a 32-bit register of the assembler’s

own choosing, designated as %0.

•	 The parts that begin with a colon (e.g., : "=r" (flag))

are metadata. For example, the C source code returns

the overflow status with the return statement:

return flag; /* zero is no overflow, non-zero is

overflow */

Recall that assembly routines return a value in the

register %rax or its lower half %eax. The "=r" (flag)

clause signals that flag in C is %rax in assembly

code. If the assembler is in an optimizing mood,

it should make %rax the register designated by %0

shown previously: %rax serves as the overflow flag

returned to the caller. The middle-colon section

is empty here but in general could contain other

inputs to the assembly code. The third-colon section

recommends that the 64-bit register %rbx be used as

scratchpad.

When the program executes (see the main function in the following),

the output is

No overflow on 16 * 48: returned product == 768

Overflow on INT_MAX * INT_MAX: returned product == 1

The in-line assembly code does its job.

Chapter 3 Aggregates and Pointers

83

The focus now shifts to the C code, in particular to the safe_mult

function. Here is the challenge:

•	 The safe_mult function needs to signal its caller

whether overflow has occurred. The returned value is

used for this purpose: zero (false) means no overflow,

and nonzero (true) means overflow.

•	 How, then, is the product of the first two arguments to

be returned? The approach taken here is to have safe_

mult called with three arguments:

int safe_mult(int n1, int n2, int* product); /*

declaration */

The parameters n1 and n2 are the numbers to be

multiplied, and the parameter product points to

where the result of the multiplication should be

stored. The pointer argument product is the address

of a variable declared in the caller main.

Listing 3-7.  Using a pointer argument to hold a return value

void main() {

 int n;

 char* msg;

 /* no overflow */

 int flag = safe_mult(16, 48, &n);

 �msg = (!flag) ? "Overflow on 16 * 48" : "No overflow on

16 * 48";

 printf("%s: returned product == %i\n", msg, n);

Chapter 3 Aggregates and Pointers

84

 /* overflow */

 flag = safe_mult(INT_MAX, INT_MAX, &n);

 �msg = (!flag) ? "Overflow on INT_MAX * INT_MAX" : "No

overflow on INT_MAX * INT_MAX";

 printf("%s: returned product == %i\n", msg, n);

}

The main function for the safeMult program (see Listing 3-7) makes

two calls against the function. The first, with 16 and 48 as the values to

be multiplied, does not cause overflow. The second call, however, passes

INT_MAX as both arguments, with overflow as the expected and, because of

safe_mult, the now detected overflow.

3.7. � The void* Data Type and NULL
The term void is not the name of a data type, although C syntax implies

as much:

void main() { /* body */ } �/* void seems to be the

return type */

int some_function(void); /* same as: int some_function(); */

This definition of main suggests that the function returns a void in the

same way that another version of main returns an int; but the suggestion

is misleading. The void is really shorthand for returns no value and so is

not a data type in the technical sense. For instance, a variable cannot be

declared with void as the type:

void n; /** ERROR: void is not a type **/

In the second example shown previously, the void in the declaration

of some_function signals only that this function expects no arguments;

the void once again is not a type, but another way of writing an empty

argument list.

Chapter 3 Aggregates and Pointers

85

There is a very important data type in C that has void in its name:

void*, or pointer to void. This type is a generic pointer type: any other

pointer type can be converted to and from void* without explicit casting.

Why is this useful? A short example provides one answer, and the next

section provides another.

Consider this array of strings:

char* strings[] = {"eins", "zwei", "drei", "vier", "fuenf",

"sechs"};

The array happens to hold six strings, each of which is a char* in C. For

example, the first array element is a pointer to the “e” in “eins”. To write

a loop that traverses this array without going beyond the end requires a

count of how many elements are in the array; in this case, there are six.

There is a better, more robust, and more programmer-friendly way to

build an array of strings:

char* strings[] = {"eins", "zwei", "drei", "vier", "fuenf",

"sechs", 0};

At first sight, this code looks wrong. An array aggregates elements of

the same data type, and the last element here appears to be an integer

value rather than a char* pointer. But the 0 here is NULL, a macro defined

in the header file stdlib.h as follows:

#define NULL ((void*) 0) /* 0 cast as a pointer to void */

Because NULL is of type void*, it can occur in an array of any pointer

type, including the char* element type in the strings array. By the way,

the 0 as shorthand for NULL is the only numeric value that would work in

this case. Were 987 used instead of 0, for instance, the code segment would

not compile. C programmers, in order to save on typing, are fond of using 0

for NULL.

Chapter 3 Aggregates and Pointers

86

Traversing the revised array is now straightforward and illustrates

idiomatic C programming:

int i = 0;

while (strings[i]) /* �short for: while

(strings[i] != NULL) */

 printf("%s\n", strings[i++]); /* �print current string, then

increment i */

The loop condition is true until strings[i] is NULL, which is 0: the

value 0 in C is overloaded, and one of the overloads means false in a test

context. The use of NULL to mark the end of pointer arrays is common in C.

A final note is in order. The NULL used in this most recent example is

not the null terminator used to mark the end of an individual string. Recall

that the string “eins” is represented in C as an array with 8-bit zero at the

end as the terminator:

+---+---+---+---+--+

| e | i | n | s |\0| ## \0 is 8-bit zero

----+---+---+---+--+

By contrast, the NULL that terminates the strings array is either a 32-bit

zero or a 64-bit zero, depending on whether the machine uses 32-bit or 64-

bit addresses. To be sure, the comparison

NULL == '\0' /* evaluates to true */

evaluates to true, but only because the compiler converts the 8-bit null

terminator (zero) to the 32-bit or 64-bit zero.

In summary, zero has three specific uses in C beyond 0 as a

numeric value:

•	 In a boolean context (e.g., an if or while condition),

zero means false, and nonzero means true.

Chapter 3 Aggregates and Pointers

87

•	 In a string context, the 8-bit zero (\0) is the code for the

nonprinting character that marks the end of a string:

the null terminator.

•	 In a pointer context, zero is NULL, the address-size null

pointer that points nowhere.

C programmers are fond of idioms that conflate these overloads of

zero. The

while (strings[i])

test from the preceding example is one such idiom.

3.7.1. � The void* Data Type and Higher-Order
Callback Functions

The void* type plays an important role in library functions designed to

work on arrays of any type. Consider, for example, library functions to

initialize, sort, search, and otherwise process arrays. These functions

should be generic in that they work on arrays of any data type. It would be

impractical to fashion multiple sort functions, each targeted at a specific

type. The task presumably would never be completed.

Among the generic library functions is qsort, which can sort an array of

Employee instances, or int instances, or double instances, and so on. The

first argument to qsort is a pointer that specifies where, in the array, the sort

should begin, which is typically but not necessarily the first element: qsort

can sort arbitrary subarrays, or the whole array, with only small changes to

the arguments passed to this function. For now, the other arguments can be

ignored, as the emphasis is on the type of first argument to qsort. This type

is void* because it satisfies the requirement that qsort should work on any

array of any type. Here is how the declaration of qsort begins:

void qsort(void* start,... /* 4 arguments in all */

Chapter 3 Aggregates and Pointers

88

A full sorting example fleshes out the details of the remaining three

arguments.

Listing 3-8.  Sorting an array with qsort

#include <stdio.h>

#include <stdlib.h> /* rand, qsort */

#define Size 12

void print_array(int* array, unsigned n) {

 unsigned i;

 for (i = 0; i < n; i++) printf("%i ", array[i]);

 printf("\n");

}

int comp(const void* p1, const void* p2) {

 �int n1 = *((int*) p1); /* cast p1 to int*, then

dereference */

 int n2 = *((int*) p2); /* same for p2 */

 return n2 - n1; /* descending order */

}

void main() {

 int arr[Size], i;

 for (i = 0; i < Size; i++) arr[i] = rand() % 100; �/* values

< 100 */

 �print_array(arr, Size); �/* 83 86 77 15 93 35 84 92 49 21

62 27 */

 �qsort(arr, Size, sizeof(int), comp); �/* comp is a pointer to

a function */

 �print_array(arr, Size); �/* 93 92 86 84 83 77 62 49 35 27

21 15 */

}

Chapter 3 Aggregates and Pointers

89

The sort program (see Listing 3-8) does the following:

	 1.	 Populates an int array with pseudorandomly

generated values

	 2.	 Prints the array

	 3.	 Sorts the array in descending order using the library

function qsort

	 4.	 Prints the sorted array

The qsort function has a comparison semantics used throughout

modern programming languages. Here is the full declaration for qsort:

void qsort(void* start,

 size_t nmemb,

 size_t size,

 int (*comp) (const void*, const void*));

The arguments can be clarified as follows:

•	 The first argument, of type void*, points to where in

the array the sorting should begin. This is typically,

but not necessarily, the start of the array. The qsort

function can sort only part of array, if required. Because

the argument is of type void*, any type of array can be

sorted using qsort.

•	 The second argument, of unsigned integer type size_t,

specifies the number of elements to be sorted.

•	 The third argument (also of type size_t) is the sizeof

each element.

Chapter 3 Aggregates and Pointers

90

•	 The fourth argument is a pointer to a function that

matches this prototype:

•	 Returns an int value.

•	 Takes two arguments of type const void*, which

are pointers to two elements that qsort needs to

compare and, perhaps, move. The const indicates

that the pointers are not used to change the values

to which they point.

The critical fourth argument makes qsort a higher-order function, one

that takes a (pointer to a) function as an argument.

A function’s name, like an array’s name, is a pointer constant. A

function’s name points to the first statement in a function’s body; in

assembly language, the function’s name is thus a label.

The comparison function used in qsort can have any name so long as

the function matches the prototype. In the sort program, the comparison

function is named comp. The comparison function is a callback, a function

that a programmer writes for some other function to call, in this case,

qsort itself. In the course of doing the sort, qsort must do pairwise

element comparisons in order to determine how to rearrange the array.

The sort is destructive in that the sort occurs in place: the array being

sorted is rearranged unless it is already sorted.

Here are the details for the comparison. Each argument passed to the

comparison function points at an array element. Assume that the first

argument points to array element E1 and the second argument points to

array element E2. The value returned from the comparison function then

has the following semantics:

•	 If E1 and E2 are considered equal, 0 is returned.

•	 If E1 is considered to precede E2, a negative value is

returned (e.g., -1).

Chapter 3 Aggregates and Pointers

91

•	 If E2 is considered to precede E1, a positive value is

returned (e.g., +1).

These semantics are remarkably simple and flexible. The author of

the comparison function determines the details. Here, for review, is the

comparison function for the sort program:

int comp(const void* p1, const void* p2) {

 int n1 = *((int*) p1); /* �cast p1 to int*, then

dereference */

 int n2 = *((int*) p2); /* same for p2 */

 return n2 - n1; /* descending order */

}

The function’s body could be reduced to a single return statement,

but at the cost of clarity. Since the array being sorted has int elements, the

void* arguments are cast to pointers of type int*. Each int* pointer then

is dereferenced to get the int value pointed to. Variables n1 and n2 hold

these values. Suppose that n1 is 20 and that n2 is 99. The returned value of

n2 - n1

is then 79, a positive value signaling that 99 should precede 20 in the

sorted order. The sort is thus in descending order. If the returned value

were changed to

n1 - n2

then the resulting sort would be in ascending order. If the int array

had the same values throughout, then 0 would be returned for every

comparison, leaving the array unchanged by the sort.

The usefulness of void* is undoubtedly evident to programmers from

object-oriented languages such as Java and C#. In these languages, a

reference (pointer) to Object can point to anything. Here is a segment of

Java to illustrate:

Chapter 3 Aggregates and Pointers

92

Object ptr = new String("Hello, world!"); /* string */

ptr = 99; /* �integer: boxed as

new Integer(99) */

ptr = new int[] {1, 2, 3, 4}; /* �array of

integers */

Generic types such as void* in C, and Object in Java, make languages

flexible.

The second code example uses a typedef to describe the type of

function suitable as an argument to another function. A typedef creates an

alias for an existing type:

typedef unsigned boolean; /* �unsigned is existing type,

boolean is the alias */

boolean flag; /* �use the type in a variable's

declaration */

Pointers to functions, like other C pointers, have data types, and the

typedef is useful in defining the appropriate type, a type that will satisfy

the compiler. It is easy to get a pointer to a function; the function’s name is

just such a pointer. It can be challenging to pass an appropriate function

pointer as an argument in another function.

WHAT’S AN ENUM?

An enum (enumerated type) gives names to integer values. The enumerated

type itself can but need not be named:

enum { false, true }; �/* false is 0, true is

1, and so on */

enum TruthValue { true = 1, false = 0 }; �/* tagged and explicit

assignments */

Chapter 3 Aggregates and Pointers

93

The enumerated values start at 0 and continue in series unless explicit values

are given, as in the second example shown previously. In the second example,

false would default to 2 if not explicitly assigned 0 as its value.

Constructs such as typedef and enum promote readable code:

typedef unsigned boolean;

boolean continue_to_loop = true;

The next example uses a typedef to specify the prototype of a function

passed as an argument to the higher-order reduce function. The reduce

function takes two additional arguments: an array of integer values and the

array’s length.

Listing 3-9.  Another example of pointers to functions

/* pointer to function with two arguments (int array and

length), returns an int */

typedef unsigned (*reducer)(unsigned list[], unsigned len);

 /* type name is reducer */

unsigned sum(unsigned list[], unsigned len) {

 unsigned sum = 0, i;

 for (i = 0; i < len; i++) sum += list[i];

 return sum;

}

unsigned product(unsigned list[], unsigned len) {

 unsigned prod = 1, i;

 for (i = 0; i < len; i++) prod *= list[i];

 return prod;

}

Chapter 3 Aggregates and Pointers

94

unsigned reduce(reducer func, unsigned list[], unsigned len) {

/* 1st arg: ptr to func */

 �return func(list, len); /** invoking a function in the

usual way **/

}

The reducer program (see Listing 3-9) has two functions, sum and

product, that reduce a list of integers to a single value, in this case a sum

and product, respectively. The third function is higher order and named

reduce. This function takes a (pointer to a) function as its first argument,

an array of values as its second, and the array’s length as its third.

The typedef in the reducer program is the tricky part:

typedef unsigned (*reducer)(unsigned list[], unsigned len);

The data type alias is reducer, and it can point to any function that

meets these conditions:

•	 The function takes two arguments: an array of

unsigned integers and a single unsigned integer

(the length) in that order.

•	 The function returns an unsigned integer.

The declaration of the reduce function uses the typedef data type in

the first argument position:

unsigned reduce(reducer func, unsigned list[], unsigned len);

Applying a particular reducer function, in this case sum or product,

through the function pointer func requires no special syntax:

unsigned n = func(list, len); /* invoking a function through a

pointer argument func */

Chapter 3 Aggregates and Pointers

95

Normally, a function is invoked using its name, a pointer constant; in

this case, a function is invoked using a pointer variable instead, func of

type reducer. Invoking reduce also is straightforward:

reduce(sum, nums, Size); /* sum is a function */

reduce(product, nums, Size); /* product is a function */

Listing 3-10.  The main function in the reducer program

#include <stdio.h>

#define Size 30

int main() {

 unsigned nums[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

 21, 22, 23, 24, 25, 26, 27, 28, 29, 30};

 printf("Sum of list: %i\n", reduce(sum, nums, Size));

 /* 465 */

 printf("Product of list: %i\n", reduce(product, nums, Size));

 /* 1,409,286,144 */

 return 0;

}

The main function in the reducer program (see Listing 3-10) shows two

calls to the reduce function: the first using sum as its first argument and the

second using product as this argument.

The reducer program illustrates that higher-order functions are

routine in C. Such functions, used judiciously, make programs easier

to understand. The reduce function maps a list of integers to a single

value, and the first argument—the function pointer—specifies the kind

of mapping involved, in this case reducing the list to either a sum or a

product.

Chapter 3 Aggregates and Pointers

96

3.8. � Structures
Arrays aggregate variables of the same data type, whereas structures can

aggregate variables of different types. The variables in a structure are

known as its fields. There can be arrays of structures, and structures that

embed arrays and even other structures. As a result, programmer-defined

data structures can be arbitrarily rich.

The syntax of structures can be introduced in short code examples.

Here’s a start:

struct {

 int n;

 double k;

} s1;

s1.n = -999;

s1.k = 44.4;

The data type is struct {...}, and variable s1 is of this structure

type; hence, s1 has two fields: an int named n and a double named k. The

member operator, the period, is used to access the structure’s fields, in this

case the int field n and the double field k. The compiler is not bound to lay

out storage for the fields in a way that matches the structure’s declaration.

Although field n occurs before field k in the structure declaration shown

previously, this may not be the case after compilation. The member

operator should be used to access the fields by name.

A second code segment adds a tag to the structure so that the structure

type has a name:

struct TwoNums { /* TwoNums is the tag */

 int n;

 double k;

};

Chapter 3 Aggregates and Pointers

97

struct TwoNums s2; �/* the data type is struct TwoNums: struct

plus the tag */

A third example shows the popular approach, which uses a typedef to

name a structure type:

typedef struct { /* �tag is optional, could be same as typedef

name TwoNums */

 int n;

 double k;

} TwoNums; /* �TwoNums is now an alias for this

struct type */

TwoNums s3; /* �Note: the word 'struct' is not needed

anymore */

The name of a structure, unlike the name of an array, is not a pointer.

Caution is thus required when structures are passed as arguments to

functions.

Listing 3-11.  Passing a structure as an argument

#include <stdio.h>

#define Size 100000

typedef struct { �/* Declare the structure using a typedef for

convenience. */

 double nums1[Size]; /* 8 bytes per double */

 double nums2[Size]; /* 8 bytes per double */

 int nums3[Size]; /* 4 bytes per int */

 float nums4[Size]; /* 4 bytes per float */

 float nums5[Size]; /* 4 bytes per float */

 int n; /* for demo purposes */

} BigNumsStruct;

Chapter 3 Aggregates and Pointers

98

void good(BigNumsStruct* ptr) {

 printf("%lu\n", sizeof(ptr)); /* 8 on my machine */

 printf("%i %i\n", (*ptr).n, ptr->n); /* -9876 -9876 */

}

void bad(BigNumsStruct arg) {

 printf("Argument size is: %lu\n", sizeof(arg)); �/* 2,800,008

bytes */

}

void main() {

 BigNumsStruct bns;

 bns.n = -9876;

 bad(bns); /** CAUTION **/

 good(&bns); /* right approach: pass an address */

}

The bigStruct program (see Listing 3-11) declares a structure, five of

whose fields are large arrays. The function main then creates a local variable

bns of this structure type and passes the variable to function bad. Recall that

C uses call by value in function calls; hence, a byte-per-byte copy of bns is

passed to function bad, a copy that is about 2.8MB (megabytes) in size.

By contrast, main then calls function good by passing the address of bns

rather than a copy of this BigNumsStruct instance. The address is 4 or 8

bytes, depending on whether the underlying machine uses 32-bit or 64-bit

addresses.

The second printf in function good shows how C syntax supports two

ways of accessing structure fields:

•	 The first way uses the member operator (the period)

but is clumsy because the expression contains the

pointer ptr:

(*ptr).n

Chapter 3 Aggregates and Pointers

99

The parentheses are necessary because the period has higher

precedence than the star. Without the parentheses, the deference operator

would apply to ptr.n, but n is a nonpointer field.

•	 The second way uses the arrow operator (a minus

symbol followed by a greater-than symbol):

ptr->n

This syntax is cleaner and is idiomatic in C.

In the bigStruct program, the sizeof of the BigNumsStruct is reported

to be 2,800,008 bytes. The arrays account for 2,800,000 of these bytes, and

int field n requires only 4 bytes. What accounts for the extra 4 bytes? A

simpler example explains.

Consider this structure:

struct {

 int n; /* sizeof(int) == 4 */

 char c; /* sizeof(char) == 1 */

 double d; /* sizeof(double) == 8 */

} test;

The minimum storage required for a variable such as test is 13 bytes,

but most implementations would report sizeof(test) to be 16 rather

than 13. Modern C compilers typically align storage for scalar variables

on multibyte boundaries, for example, on 4-byte (32-bit) boundaries.

The char field named c thus is implemented with four bytes rather than

just one.

3.8.1. � Sorting Pointers to Structures
An earlier discussion noted that pointers to pointers are common in C. The

current discussion, on structures, is an opportunity to show how such

pointers can be put to use.

Chapter 3 Aggregates and Pointers

100

Imagine an array of structure elements, perhaps of Employee instances,

each of which is roughly 8KB (kilobytes) in size and all of which differ

in whatever field (for instance, an ID field) might be used as a sort key.

Suppose, then, that the Employee array is to be sorted by employee ID.

Sorting the Employee array with qsort would require moving 8KB

chunks around in the array in order to get the desired sorted order.

Such moves are inefficient, given the chunk size. A first principle of

programming is not to move large data chunks unless the reasons are

compelling.

There is another way, one that brings pointers to pointers into

the picture. Given an array of relatively large structure elements, it is

straightforward to create an index array for the Employee array, where the

index array is a second array whose elements are pointers to elements in

the first array:

 0x0004 0x1f44 0x3e84 ## addresses, 8KB

bytes or sizeof(Employee) apart

+-----------+-----------+-----------+

| Employee1 | Employee2 | Employee3 |... ## 8KB Employee elements

+-----------+-----------+-----------+

+--------+--------+--------+

| 0x0004 | 0x1f44 | 0x3e84 |...## index array for Employee array

+--------+--------+--------+

In this depiction, the elements in the top or data array are Employee

instances, whereas the elements in the bottom or index array are

Employee* pointers. In short, each index element points to an Employee

element. The addresses in the index array are 8KB (kilobytes) apart

because sizeof(Employee) is 8,000 bytes, and addresses are of bytes.

Given the significant difference in size between elements in the Employee

Chapter 3 Aggregates and Pointers

101

array and the index array, it would be more efficient to sort the index than

the Employee array. Indeed, several index arrays might be created and then

sorted to obtain various orders: employees sorted by ID, by salary, by years

in service, and so on. To print or otherwise process the Employee elements

in the desired order, a program would traverse one of the indexes. The

Employee elements would remain in their initial positions.

This approach does bring a challenge to the programmer, however.

Consider the arguments passed to the qsort comparison function when

an index is sorted on some Employee feature such as ID or years in service.

Each such argument is of type const void*, which in this case is really of

type Employee**: a pointer to a pointer to an Employee. The arguments

to the comparison function thus must be dereferenced twice in order to

access the Employee feature to be used in the comparison. A full code

example goes into the details.

Listing 3-12.  Sorting pointers rather than data

#include <stdio.h>

#include <stdlib.h> /* rand */

#define SizeS 1000

#define SizeA 100

typedef struct {

 double nums[SizeS]; /* 8 bytes per */

 int n; /* for demo purposes */

} BigNumsStruct;

int comp(const void* p1, const void* p2) {

 �BigNumsStruct* ptr1 = *((BigNumsStruct**) p1);

 /* p1 points to a pointer */

 �BigNumsStruct* ptr2 = *((BigNumsStruct**) p2);

 /* p2 points to a pointer */

Chapter 3 Aggregates and Pointers

102

 �return ptr1->n - ptr2->n; /* �ascending

order */

}

void main() {

 BigNumsStruct big_nums[SizeA];

 BigNumsStruct* pointers[SizeA];

 int i;

 for (i = 0; i < SizeA; i++) {

 big_nums[i].n = rand();

 �pointers[i] = big_nums + i; �/* base address (big_nums)

plus offset (index i) */

}

qsort(pointers, SizeA, sizeof(BigNumsStruct*), comp);

 /** sort the pointers **/

for (i = 0; i < SizeA; i++)

 printf("%i\n", pointers[i]->n);

}

The sortPtrs program (see Listing 3-12) revises the earlier example of

the BigNumsStruct. The size of this structure is reduced to a more realistic

number, and a local array of such structures is declared, which means that

storage for the array comes from the stack. The int field named n remains

and now is initialized to a random value.

Although a BigNumsStruct is slimmer than before, its sizeof remains

an impressive 8,008 bytes on my machine. By contrast, a pointer to such a

structure instance requires only 8 bytes on the same machine. In the sortPtrs

program, sorting the big_nums array would require moving 8KB (kilobytes)

chunks, whereas sorting pointers to the elements in this array would require

moving only 8-byte chunks. The resulting gain in efficiency is compelling.

The printf loop at the end confirms that the pointers array has been

sorted as desired, in ascending order by the BigNumsStruct field named n.

Chapter 3 Aggregates and Pointers

103

The cost for this efficiency is a complicated comparison function,

again named comp. Recall that each argument in the comparison callback

is of type const void*. Because an array of pointers is being sorted, the

two arguments to comp, named p1 and p2, are indeed pointers to pointers.

Each of these pointers is therefore cast to its actual type, BigNumsStrut**:

a pointer to a pointer to a BigNumsStruct. A dereference of each point

provides what is needed: a pointer to a BigNumsStruct, which then can be

used with the arrow operator to access the field n. Here, for review, is the

body of the comparison function:

BigNumsStruct* ptr1 = *((BigNumsStruct**) p1); �/* p1 points to

a pointer */

BigNumsStruct* ptr2 = *((BigNumsStruct**) p2); �/* p2 points to

a pointer */

return ptr1->n - ptr2->n; �/* access the field n, sort in

ascending order */

3.8.2. � Unions
There is a specialized type of structure called a union, which is designed

for memory efficiency. A short example highlights the difference between

a struct and a union.

The following structure has two fields: a double and a long. The

sizeof(v1)

struct {

 double d;

 long l;

} v1;

is 16: both the double and the long are 8 bytes in size.

Chapter 3 Aggregates and Pointers

104

By contrast, a union with exactly the same fields would require only

half the bytes. The sizeof(v2)

union {

 double d;

 long l;

} v2;

is 8 bytes. A union provides enough storage for the largest of its fields,

and all of the fields then share this storage. For example, the struct

variable v1 can store both a double and a long at the same time:

v1.d = 44.44;

v1.l = 1234L;

By contrast, the union variable v2 stores either the one or the other:

v2.d = 44.44; /* the double is stored */

v2.l = 1234L; /* initializing the long overwrites the double */

3.9. � String Conversions with Pointers
to Pointers

Earlier examples illustrated very simple conversions involving basic data

types. For example, even the statement

char c = 65; /* 65 is ASCII/Unicode for uppercase A */

involves a conversion: from the 32-bit int constant 65 to the 8-bit char

value stored in variable c. Converting from one single value to another

is routine in C: an explicit cast can be used for clarity, but in general, the

compiler can be counted on to do the converting without complaint. For

example, the compiler does not even warn against this conversion:

Chapter 3 Aggregates and Pointers

105

short n = 3.1415; �/* 64-bit floating-point value stored in 16-

bit integer variable */

The conversion goes from a three-field, 64-bit floating-point source

to a two-field, 16-bit signed-integer destination. In examples such as

these, explicit casts can be used to enhance clarity, but this remains a

recommendation rather than a requirement:

char c = (char) 65;

short n = (short) 3.1415;

The challenge arises in converting between strings, an aggregate rather

than a scalar type, and other basic types. Because a string in C is an array,

converting an array to a single integer or floating-point value is nontrivial.

C provides library functions to do the heavy lifting.

The stdlib.h header file declares functions for converting strings to

integers and floating-point values:

int atoi(const char* nptr); /* string to 32-bit int */

long atol(const char* nptr); /* string to 64-bit long */

long long atoll(const char* nptr); �/* string to long long,

probably 64-bits */

float atof(const char* nptr); /* string to 32-bit float */

The const qualifier signals that the pointer argument is not used to

change the string itself, only to convert the string to a numeric value. The a

in atoi and the others is for ASCII, the default character encoding in C.

None of the ato functions are especially helpful in determining why

an attempted conversion failed. To that end, the stdlib.h header file also

includes functions with names that start out with strto, for example, strtol

(string to long integer) and strtod (string to double). The strto functions

check the string for inappropriate characters and have a mechanism for

separating out the converted part of the source string, if any, from the rest.

A code example clarifies.

Chapter 3 Aggregates and Pointers

106

Listing 3-13.  Converting strings to numeric values

#include <stdio.h>

#include <stdlib.h> /* atoi, etc. */

void main() {

 const char* s1 = "27";

 const char* s2 = "27.99";

 const char* s3 = " 123"; /* whitespace to begin */

 const char* e1 = "1z2q"; /* bad characters */

 const char* e2 = "4m3.abc!#"; /* ditto */

 �printf("%s + 3 is %i.\n", s1, atoi(s1) + 3);

/* 27 + 3 is 30. */

 �printf("%s + 3 is %f.\n", s2, atof(s2) + 3.0);

/* 27.99 + 3 is 30.990000. */

 �printf("%s to int is %i.\n", s3, atoi(s3));

/* 123 to int is 123. */

 �printf("%s to int is %i.\n", e1, atoi(e1));

/* 1z2q to int is 1. */

 �printf("%s to float is %f.\n", e2, atof(e2));

/* 4m3.abc to float is 4.000000. */

 char* bad_chars = NULL;

 const char* e3 = "9876 !!foo bar";

 �long num = strtol(e3, &bad_chars, 10);

/* 10 is the base, for decimal */

 �printf("Number: %li\tJunk: %s\n", num, bad_chars);

/* Number: 9876 Junk: !!foo bar */

}

The str2num program (see Listing 3-13) has three examples of strings

that convert straightforwardly. The pointers to these are s1, s2, and s3. The

string to which s3 points is the most interesting in that it begins with blanks;

Chapter 3 Aggregates and Pointers

107

but the atoi functions ignore the leading whitespace. The challenging

cases are the strings to which e1 and e2 point, as these strings contain

nonnumeric characters other than whitespace. (Numeric characters include

the numerals, the plus and minus signs, and the decimal point.)

For strings with nonnumeric characters such as the sharp sign, the ato

functions convert until the first such character is encountered and then

stop. This is why function atoi converts the string “1z2q” to 1: the function

converts as long as it can and then halts abruptly on the first inappropriate

character. If a string starts with a nonnumeric character, then the ato

functions return 0:

int n = atoi("foo123"); /* n == 0 after the conversion */

The strto functions are more powerful than their ato counterparts,

and they use a pointer-to-pointer type to gain this power. Here is the

declaration for strtol:

long int strtol(const char* nptr, char** endptr, int base);

The first argument is again a pointer to the source string, and the return

value is a long. The last argument specifies the base to be used in the

conversion: 2 for binary, 10 for decimal, and so on. The middle argument

is the tricky one, as its type is pointer-to-pointer-to-char. Here, for review,

is the code segment in the str2num program that sets up and then calls the

strtol function:

char* bad_chars = NULL;

const char* e3 = "9876!!foo bar";

long num = strtol(e3, &bad_chars, 10);

The strtol function determines where to break the source string to

which e3 points: at the first ! character. The library function then sets

pointer bad_chars to this character. In an idiom analyzed earlier, the

strtol function thus uses an argument, in this case the pointer-to-pointer

variable bad_chars, in order to return a value—the first character (the !)

Chapter 3 Aggregates and Pointers

108

that cannot be used in the string-to-number conversion. The return value

for strtol is, of course, the converted number. A pointer-to-pointer type

allows the strtol function to return two pieces of information.

The ato and strto functions are convenient for converting strings to

integer and floating-point types. There is also a more general approach.

The printf function, for type-sensitive printing, has been used in many

examples. This function prints to the standard output, the screen by

default. The inverse function is scanf, which scans the standard input (the

keyboard by default) for strings that then are converted into the specified

type. Two variants of these functions are useful for converting from and

to strings: sprintf, which prints to a buffer (char array) rather than to the

standard output, and sscanf, which reads from a buffer instead of from the

standard input. A code example clarifies.

Listing 3-14.  A general approach to converting to and from strings

#include <stdio.h>

void main() {

 char* s1 = "123456";

 char* s2 = "123.45";

 int n1;

 float n2;

 /** string to other types: sscanf **/

 sscanf(s1, "%i", &n1); /* address of n1, not n1 */

 sscanf(s2, "%f", &n2); /* address of n2, not n2 */

 printf("%i %f\n", n1 + 3, n2 + 8.7f); /* 123459 132.149994 */

 /** other types to string: sprintf **/

 char buffer[64]; /* stack storage, buffer its address */

 sprintf(buffer, "%i", n1 + 3);

 printf("%s\n", buffer); /* 123459 */

}

Chapter 3 Aggregates and Pointers

109

The scanPrint program (see Listing 3-14) illustrates the basics of

converting to and from strings using the printing and scanning functions.

The print and scan functions differ markedly in their arguments. The

print functions (printf, sprintf, and fprintf for printing to a file) take

nonpointer values as the arguments after the format string. By contrast,

the scan functions (scanf, sscanf, and fscanf for scanning data from a

file) take pointers as the arguments after the format string. The scanning

functions require a pointer to indicate where a scanned (and perhaps

converted) value should be stored. For functions in both families, the

format string specifies the desired type for either printing or scanning.

As even this short code example shows, sprintf and sscanf provide a

general-purpose solution to the problem of converting to and from strings.

Finally, the header file ctype.h has various functions for determining

properties of individual characters. For instance, the library function

isdigit(c) checks whether character c is a decimal digit, function

isprint(c) checks whether character c is printable, and so on.

3.10. � Heap Storage and Pointers
A program in execution (process) has access to three areas of memory:

•	 A static area that stores string literals, global variables,

and executable code. The traditional name for the

area that holds the executable code is text, as earlier

assembly-code examples illustrate; the term text is

meant to suggest read-only, but this static area can

store read/write variables as well.

•	 The stack, which provides scratchpad storage for

parameters and local variables. The stack acts as a

backup for CPU registers, which are quite limited in

number (e.g., roughly 16 on standard handheld, laptop,

and desktop machines).

Chapter 3 Aggregates and Pointers

110

•	 The heap, which provides storage that the program

explicitly allocates and, in the case of C, deallocates.

Pointers come into play with heap storage.

The examples so far have not covered the third category, the heap. The

compiler figures out how much storage is required for the read-only area

and the stack; hence, the details about such storage are determined at

compile time—no extra programmer intervention is required. By contrast,

the programmer uses designated operators (e.g., new in many modern

languages) or functions (e.g., malloc and its relatives in C) to allocate

storage from the heap, an allocation traditionally described as dynamic

because it is done explicitly at runtime.

The programmer plays a more active role with heap as opposed to

stack storage. The compiler determines the mix of stack and CPU registers

required for program execution, thereby off-loading this responsibility

from the programmer. By contrast, the programmer manages heap storage

through system calls to allocate and, in the case of C, to deallocate this

storage. A review of stack storage through a code example sets the scene

for a code-based analysis of heap storage.

Listing 3-15.  Summing an array in C

#include <stdio.h>

#define Size 9

int sum_array(int arr[], unsigned n) {

 int sum = 0;

 unsigned i;

 for (i = 0; i < n; i++) sum += arr[i];

 return sum;

}

Chapter 3 Aggregates and Pointers

111

void main() {

 int nums[] = {1, 2, 3, 4, 5, 6, 7, 8, 9};

 int n = sum_array(nums, Size);

 printf("The sum is: %i\n", n); /* The sum is: 45 */

}

The sumArray program (see Listing 3-15) has two functions, main and

sum_array, each of which needs stack storage for scratchpad. The main

function has a local array of nine elements, each an int; these elements

are stored on the stack. This function also has a local variable n to store the

value returned from a call to the sum_array function. Depending on how

optimizing the compiler happens to be, variable n could be implemented

as a CPU register instead of as a stack location.

The sum_array function works with a pointer to the array declared and

populated in main, but sum_array does need some local storage of its own:

the integers sum and i, the loop counter. Both sum and i are scalars rather

than aggregates, and so CPU registers would be ideal; but the stack is the

fallback for the compiler.

The assembly code for the sumArray program is generated in the

usual way:

% gcc -S -O1 sumArray.c ## capital letter O for optimization

level, 1 in this case

Here is a quick overview of how the assembly code handles summing

the array. The assembly code

•	 Stores the array nums on the stack. The assembly code

grows the stack by 56 bytes for this purpose, although

only 36 bytes are needed for the nine int values.

•	 Stores the array’s size in a CPU register for efficiency.

Chapter 3 Aggregates and Pointers

112

For readability, the resulting assembly code has been pared down; for

instance, most of the directives are omitted. The first code display is the

assembly code for main, and the following display is the assembly code for

sum_array. To begin, however, a look at the syntax for pointers in assembly

code will be useful.

Recall the assembly opcode movq, which copies 64 bits (a quadword)

from a source to a destination:

movq $0, %rax ## copy zero into %rax

A comparable C statement is

unsigned long n = 0; /* a long is 64 bits */

Consider a more complicated example:

movq $1, (%rax)

The parentheses are the dereference operator in assembly code.

Accordingly, this statement implies that %rax holds an address, and 1 is to

be copied to wherever %rax points, not into %rax itself. In C, a counterpart

would be

ptr = 1; / copy 1 to where ptr points, not into ptr itself */

A common variant of pointer syntax in assembly language is

movq $1, 16(%rax)

The parentheses with an integer value to the left indicate base-

displacement addressing: inside the parentheses is the base address,

in this case the contents of %rax. To the left of the left parenthesis is

the displacement, the number of bytes added to the base address. (The

displacement can be positive or negative.) In C, a counterpart would be

(ptr + 16) = 1; �/ assuming ptr is of type char* because a

char is a byte */

Chapter 3 Aggregates and Pointers

113

With this background, the assembly code for the function main in the

sumArray program should make sense.

Listing 3-16.  The assembly code for main in the sumArray program

.LC0: ## address of format string

 .string "The sum is: %i\n" ## format string

main:

 subq $56, %rsp ## �grow the stack by 56 bytes (stack grows

high to low)

 movl $1, (%rsp) ## �store 1 to where the stack pointer

points (the TOP)

 movl $2, 4(%rsp) ## store 2 four bytes _up_

 movl $3, 8(%rsp) ## and so on

...

 movl $9, 32(%rsp) ## �9 is stored 32 bytes up from the

stack pointer

 movl $9, %esi ## �this 9 is Size: put in a CPU 32-bit

register %esi

 movq %rsp, %rdi ## �copy stack pointer in %rdi, which now

points to 9 in the array

 call sum_array ## call the subroutine

 movl %eax, %edx ## save the value returned from sum_array

 movl $.LC0, %esi ## copy address of format string into %esi

 movl $1, %edi ## �copy 1 into %edi: number of values to

format, 1 in this case

 movl $0, %eax ## clear %eax for the print routine

 call __printf_chk ## �call print routine (special arg-

checking version of printf)

 addq $56, %rsp ## �restore the stack pointer by reclaiming

the 56 bytes

 ret ## return to caller in exec family

Chapter 3 Aggregates and Pointers

114

The high points of the assembly code for the main block (see

Listing 3-16), the assembly-language counterpart of the main function in C,

can be summarized as follows:

•	 The block begins by growing the scratchpad storage on

the stack: 56 is subtracted from the 64-bit stack pointer

%rsp, which has the effect of growing the stack scratchpad

by 56 bytes because the Intel stack grows from high to

low addresses. Moving the stack pointer %rsp down by 56

bytes means, in other words, that there are now 56 newly

available bytes above where the stack pointer currently

points. Shrinking the scratchpad storage on the stack

is done by adding to the stack pointer, as occurs in the

second-to-last statement in the main block:

addq $56, %rsp ## cleanup from the earlier subq

%56, %rsp

•	 The nine-integer array elements 1,2,…,9 in the array

nums from the C code are stored on the stack. Most of

the values are stored up from the stack pointer. For

example, 1 is stored at where the stack pointer currently

points, 2 is stored 4 bytes up from this position at

4(%rsp), and so on. In general, the compiler stores

arrays on the stack, even very small arrays. There

are simply too few general-purpose registers to store

arrays, and addressing array elements is simplified by

having these elements be stored contiguously. Registers

are used for scalar values, not for aggregates.

•	 The array’s size, 9, is not stored on the stack, but rather

in the 32-bit CPU register %esi. Recall that on a 64-bit

machine, the name %esi refers to the lower-order 32

bits of the 64-bit register %rsi. The sum_array routine

accesses the array’s size from register %esi.

Chapter 3 Aggregates and Pointers

115

•	 The value returned from sum_array in 32-bit register

%eax is copied to register %edx, the address of the

format string is copied to register %esi, and the number

of values to be formatted (in this case, one) is copied

into register %edi. At this pointer, the main module is

ready to call the print routine printf_chk, which does

an integrity check on the arguments, where chk stands

for “check.” As the example shows, the underscore can

be used even to start an identifier.

•	 After shrinking the stack back to its size before the call

to main, the main routine returns to its caller. Recall that

main in the C source does not return a value; hence,

the assembly routine does not place a value in %eax

immediately before returning.

Listing 3-17.  The assembly code for sum_array

sum_array:

 testl %esi, %esi ## is the array size 0?

 je .L4 ## if so, return to caller

 movl $0, %edx ## otherwise, set loop counter to 0

 movl $0, %eax ## initialize sum to 0

.L3:

 addl (%rdi,%rdx,4), %eax ## �increment the running sum by

the next value (sum += arr[i])

 addq $1, %rdx ## �increment loop counter by 1

(integer)

 cmpl %edx, %esi ## �compare loop counter with

array size

 ja .L3 ## �keep looping if size is bigger

(ja = jump if above)

Chapter 3 Aggregates and Pointers

116

 rep ret ## �otherwise, AMD-specific version of ret

for return

.L4: ## �return 0 as the sum because array

is empty

 movl $0, %eax ## copy 0 into returned-value register

 ret ## return to caller

The sum_array routine in assembly code (see Listing 3-17) is

complicated because of the control structure. The code basically handles

two cases:

•	 If the array’s size is zero (the array is empty), then

return 0.

•	 Otherwise, initialize a loop counter (32-bit register

%edx) to 0, and loop until the array’s size is no longer

greater than the loop counter. The running sum is

stored in 32-bit register %eax, and %eax also serves as

the returned-value register.

Several points about the code deserve mention. For one thing, the code

sometimes references the 64-bit register %rdx but sometimes references

only the lower 32 bits of this register under the name %edx. This can be

confusing but works just fine because the upper-order bits in register %rdx

have been zeroed out.

Another point of interest is the most complicated instruction in the

sum_array routine:

addl (%rdi,%rdx,4), %eax ## in C: sum += arr[i]

First, consider the instruction that follows the addl instruction:

addq $1, %rdx ## in C: i = i + 1

Chapter 3 Aggregates and Pointers

117

This instruction updates the loop counter %rdx by one integer, not by

4 bytes. Accordingly, the addl instruction’s first operand is the expression

(%rdi,%rdx,4). Register %rdi points to the start of the array; in the C code,

this is the parameter arr in the function sum_array. The offset from this

base address is %rdx × 4, where %rdx is the loop counter (in C, the index i)

and 4 is sizeof(int).

The assembly code confirms that the stack requirements for the

sumArray program are determined at compile time. The stack management

is thus automatic from the programmer’s perspective: the programmer

declares local variables and parameters, makes a function call, executes

a print statement, and so on. The compiler manages the details when it

comes to providing scratchpad storage on the stack and, in this example, in

CPU registers as well.

This analysis of the sumArray program sets up a contrast between

stack and heap storage. C has functions for allocating heap storage,

with the malloc and the calloc functions as the primary ones. There is

also a realloc function for growing or shrinking previously allocated

heap memory. The free function deallocates the memory allocated by

any of these functions. The general rule for avoiding memory leaks is

this: for every malloc or calloc, there should be a matching free. The

programmer is fully responsible for the calls to these functions. A first code

example covers the basics.

Listing 3-18.  Basic heap allocation and deallocation

#include <stdio.h>

#include <stdlib.h> /* malloc, calloc, realloc */

#include <string.h> /* memset */

#define Size 20

void dump(int* ptr, unsigned size) {

 if (!ptr) return; /* do nothing if ptr is NULL */

 int i;

Chapter 3 Aggregates and Pointers

118

 �for (i = 0; i < size; i++) printf("%i ", ptr[i]);

/* *(ptr + i) */

 printf("\n");

}

void main() {

 /* allocate */

 �int* mptr = malloc(Size * sizeof(int)); �/* 20 ints, 80

bytes */

 �if (mptr) �/* malloc returns NULL (0) if it cannot allocate

the storage */

 �memset(mptr, -1, Size * sizeof(int)); �/* set each byte

to -1 */

 dump(mptr, Size);

 /* realloc */

 �mptr = realloc(mptr, (Size + 8) * sizeof(int)); �/* request

8 more */

 if (mptr) dump(mptr, Size + 8);

 /* deallocate */

 free(mptr);

 /* calloc */

 �mptr = calloc(Size, sizeof(int)); �/* calloc initializes the

storage to zero */

 if (mptr) {

 dump(mptr, Size);

 free(mptr);

 }

}

Chapter 3 Aggregates and Pointers

119

The program memalloc (see Listing 3-18) shows the basic API for

allocating and deallocating memory from the heap. The simplest and most

basic function is malloc, which tries to allocate the number of bytes given

as its single argument. The return type from malloc is the same for calloc

and realloc:

•	 If the memory can be allocated, a pointer to the first

byte is returned.

•	 If the memory cannot be allocated, NULL is returned.

The malloc function could be used to allocate as little as 1 byte but

typically is used to allocate aggregates. In the case of malloc, the allocated

storage is not initialized. The memalloc program therefore initializes the

allocated memory to -1 by using the memset library function:

memset(mptr, -1, Size * sizeof(int)); �/* mptr returned from

malloc */

This function takes three arguments: a pointer to the storage to be

initialized, the value to be stored in each byte, and the number of bytes to

be initialized. The memset function is yet another library routine that works

at the byte level.

The calloc function takes two arguments: the first is the number of

elements to allocate (e.g., 10), and the second is the sizeof each element

(e.g., 4 for an int). The calloc function thus can be used to allocate

storage for multibyte types such as int and double. This function, unlike

malloc, initializes the allocated storage to all 0s. In general, malloc is faster

than calloc because malloc does no memory initialization.

The realloc function can be used to grow or shrink previously

allocated storage. In this example, the function is used to grow the

allocated storage by 8 × sizeof(int) bytes. If realloc succeeds, it leaves

the previously allocated storage unchanged and adds or removes the

requested number of bytes. In the memalloc program, realloc is called

Chapter 3 Aggregates and Pointers

120

to request an additional 32 bytes (8 int values) to a collection of 20 int

values already initialized to -1; hence, the original bytes still have -1 as

their value after the reallocation, but the added bytes have arbitrary values.

As the name suggests, the free function deallocates storage allocated

with the malloc and calloc functions. The realloc function presupposes

a previous call to one of these other functions. To avoid memory leaks, it is

critical for a program to free explicitly allocated storage.

DOES C HAVE GARBAGE COLLECTION?

No. Library functions such as malloc and calloc allocate specified amounts

of storage from the heap, but the programmer then is responsible for explicitly

deallocating (freeing) this heap storage. Allocation without deallocation causes

memory leaks, which can dramatically degrade system performance. Freeing

no longer needed heap storage is, indeed, one of the major challenges in

writing sound C programs.

3.11. � The Challenge of Freeing
Heap Storage

Recall the rule of thumb for freeing heap storage: for every malloc or calloc,

there should be a free. Putting the rule into practice can be challenging, in

particular when dealing with functions that return a pointer to a structure

that, in turn, has, among its fields, pointers to heap storage. In short, the

heap storage allocation may be nested. If the allocation is nested, then the

freeing should be so as well. The documentation on library functions is

worth reading carefully, in particular for functions that return a pointer

to heap storage. There are different ways for memory-allocating library

functions to guard against memory leakage, for example, by providing a

utility function that does the freeing to whatever level is appropriate.

Chapter 3 Aggregates and Pointers

121

Two code examples get into the details of the challenge. The first

example focuses on how to return an aggregate to a caller, and the second

focuses on nested freeing.

Listing 3-19.  Three ways of returning a string to a caller

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define BuffSize 128

void get_name1(char buffer[], size_t len) { /* �safest: buffer

passed in

as arg */

 strncpy(buffer, "Gandalf", len); /* �user-supplied

buffer */

}

void* get_name2() { /* �ok, but invoker

must free */

 void* ptr = malloc(BuffSize + 1);

 if (!ptr) return 0;

 strcpy(ptr, "Sam");

 return ptr;

}

char* get_name3() { /* �VERY BAD

(compiler

warning) */

 char buffer[BuffSize + 1];

 strcpy(buffer, "Frodo");

 return buffer;

}

Chapter 3 Aggregates and Pointers

122

The getname program (see Listing 3-19) contrasts three ways to return

a string—an aggregate—from a function. The compiler generates an

apt warning about one of the ways. Three functions represent the three

different approaches. For each approach, imagine that a user is prompted

for, and then enters, a name. To keep the code short, the example hard-

wires the names. Here is a summary of the three approaches, with

recommendations:

•	 The get_name1 function represents the safest approach.

The function takes two arguments: an array to hold the

name and the array’s length. The function then uses the

library function strncpy to copy a name into this array.

The n in strncpy specifies the maximum number of

characters to be copied, thereby protecting against the

notorious buffer overflow problem. A buffer overflow

occurs if the array is not big enough to hold all of the

elements placed in it. In the case of get_name1, the invoker

of the function is responsible for providing a buffer at least

as big as the len argument specifies. The first three lines of

main illustrate a proper call to get_name1.

A cautionary note is in order. Suppose that the first two

lines of main change from

char buffer[BuffSize + 1];

 �/* + 1 for null terminator */

get_name1(buffer, BuffSize);

to

char* buffer; /* storage for a pointer, but not

for any characters pointed to */

get_name1(buffer, BuffSize);

 /* �false promise: the buffer's

length is zero */

Chapter 3 Aggregates and Pointers

123

The getname program still compiles because the compiler treats these

two data types as being equivalent:

char* buffer ## the argument's type in main

char buffer[] ## the first parameter's type in get_name1

Nonetheless, the program is likely to crash at runtime because there is

no storage provided for the characters in the string; there is storage only for

a single pointer to a char. Increasing the length of the string increases the

likelihood of a crash.

•	 The get_name2 function takes no arguments and instead

allocates heap storage to store a string of BuffSize

characters, where BuffSize is a macro defined as 64;

a pointer to this storage is returned. The call to malloc

requests an additional byte for the null terminator, so

BuffSize + 1 bytes in all. The get_name2 function

returns ptr, which holds the value returned from

malloc. (If malloc returns NULL, so does get_name2.) This

approach makes the caller, in this case main, responsible

for freeing the allocated storage. There is a division of

labor: one function allocates the required heap storage,

but a different function (its invoker) must free these

allocated bytes when they are no longer needed.

•	 The get_name3 function is done badly, and the

compiler points out the shortcoming. The function

declares a local variable buffer of BuffSize + 1 bytes.

This, in itself, is fine. The function then returns the

array’s name—a pointer to the first char in the array.

This is risky because the storage for the array comes

from the stack, and that very area of the stack is open

for reuse once get_name3 returns. Some other function

might place other data in this very area. The general

principle is clear: never return a pointer to local storage.

Chapter 3 Aggregates and Pointers

124

Listing 3-20.  Calling the three functions in the getname program

/** headers and macro above **/

void main() {

 char buffer[BuffSize + 1]; /* �+ 1 for null

terminator */

 get_name1(buffer, BuffSize);

 printf("%s\n", buffer);

 void* retval2 = get_name2();

 printf("%s\n", (char*) retval2); /* cast for the %s */

 free(retval2); /* �safeguard against

memory leak */

 const char* retval1 = get_name3(); /* not a good idea */

 printf("%s\n", retval1); /* unpredictable output */

}

The main function for the getname program (see Listing 3-20) declares

a char buffer, which is used in the call to function get_name1. The

responsibility falls squarely on the caller to provide enough storage for the

string to be stored. The second argument, BuffSize, guards against buffer

overflow because the char array is of size BuffSize + 1, with the added

byte for the null terminator.

The call to get_name2 returns a pointer to the heap storage provided

for the name. In this case, the main function does call free, but the logic is

complicated: one function allocates, another function frees. The approach

works, but it is error-prone.

The last call, to get_name3, provokes a compiler warning because a

pointer to local storage is being returned to main. In this case, the storage

for the name is local to the call frame for get_name3. Once the function

get_name3 returns to main, the call frame for get_name3 should not be

accessed. It is unpredictable whether this third approach works.

Chapter 3 Aggregates and Pointers

125

3.12. � Nested Heap Storage
It is relatively straightforward to handle nonnested cases of allocating and

freeing, as in the previous examples of heap storage. Here is a review of the

pattern:

int* some_nums = malloc(5000 * sizeof(int));

/* ... application logic ... */

free(some_nums);

This code segment allocates heap storage for 5,000 int values, does

whatever logic is appropriate, and then frees the storage. The challenge

increases when, for example, structure instances are allocated from the

heap—and such instances contain fields that are themselves pointers to heap

storage. If the heap allocation is nested, the freeing must be nested as well.

As a common example of the challenge, C has various library functions

that return a pointer to heap storage. Here is a typical scenario:

	 1.	 The C program invokes a library function that

returns a pointer to heap-based storage, typically an

aggregate such as an array or a structure:

SomeStructure* ptr = lib_function(); �/* returns pointer

to heap storage */

	 2.	 The program then uses the allocated storage.

	 3.	 For cleanup, the issue is whether a single call to

free will clean up all of the heap-allocated storage

that the library function allocates. For example, the

SomeStructure instance may have fields that, in

turn, point to heap-allocated storage. A particularly

troublesome case would be a dynamically allocated

array of structures, each of which has a field

pointing to more dynamically allocated storage.

Chapter 3 Aggregates and Pointers

126

The next code example (see Listing 3-21) illustrates the problem and

focuses on how to design a library that safely provides heap-allocated

storage to clients.

Listing 3-21.  Nested heap storage

#include <stdio.h>

#include <stdlib.h>

typedef struct {

 unsigned id;

 unsigned len;

 float* heap_nums;

} HeapStruct;

unsigned structId = 1;

HeapStruct* get_heap_struct(unsigned n) {

 /* Try to allocate a HeapStruct. */

 HeapStruct* heap_struct = malloc(sizeof(HeapStruct));

 if (NULL == heap_struct) /* failure? */

 return NULL; /* if so, return NULL */

 �/* Try to allocate floating-point aggregate within

HeapStruct. */

 heap_struct->heap_nums = malloc(sizeof(float) * n);

 if (NULL == heap_struct->heap_nums) { /* failure? */

 free(heap_struct); /* �if so, first free

the HeapStruct */

 return NULL; /* then return NULL */

 }

 /* Success: set fields */

 heap_struct->id = structId++;

 heap_struct->len = n;

Chapter 3 Aggregates and Pointers

127

 �return heap_struct; /* return pointer to allocated

HeapStruct */

}

void free_all(HeapStruct* heap_struct) {

 if (NULL == heap_struct) /* NULL pointer? */

 return; /* if so, do nothing */

 free(heap_struct->heap_nums); /* �first free encapsulated

aggregate */

 free(heap_struct); /* �then free containing

structure */

}

int main() {

 const unsigned n = 100;

 �HeapStruct* hs = get_heap_struct(n); �/* get structure with N

floats */

 /* Do some (meaningless) work for demo. */

 unsigned i;

 for (i = 0; i < n; i++) hs->heap_nums[i] = 3.14 + (float) i;

 for (i = 0; i < n; i += 10) printf("%12f\n", hs->heap_nums[i]);

 free_all(hs); /* free dynamically allocated storage */

 return 0;

}

The nestedHeap example (see Listing 3-21) centers on a structure

HeapStruct with a pointer field named heap_nums:

Chapter 3 Aggregates and Pointers

128

typedef struct {

 unsigned id;

 unsigned len;

 float* heap_nums; /** pointer **/

} HeapStruct;

The function get_heap_struct tries to allocate heap storage for a

HeapStruct instance, which entails allocating heap storage for a specified

number of float variables to which the field heap_nums points. The result

of a successful call to get_heap_struct can be depicted as follows, with hs

as the pointer to the heap-allocated structure:

hs-->HeapStruct instance

 id

 len

 heap_nums-->N contiguous float elements

In the get_heap_struct function, the first heap allocation is

straightforward:

HeapStruct* heap_struct = malloc(sizeof(HeapStruct));

if (NULL == heap_struct) /* failure? */

 return NULL; /* if so, return NULL */

The sizeof(HeapStruct) includes the bytes (four on a 32-bit machine,

eight on a 64-bit machine) for the heap_nums field, which is a pointer to the

float elements in a dynamically allocated array. At issue, then, is whether

the malloc delivers the bytes for this structure or NULL to signal failure; if

NULL, the get_heap_struct function returns NULL to notify the caller that

the heap allocation failed.

The second attempted heap allocation is more complicated because, at

this step, heap storage for the HeapStruct has been allocated:

Chapter 3 Aggregates and Pointers

129

heap_struct->heap_nums = malloc(sizeof(float) * n);

if (NULL == heap_struct->heap_nums) { /* failure? */

 free(heap_struct); /* �if so, first free the

HeapStruct */

 return NULL; /* �and then

return NULL */

}

The argument n sent to the get_heap_struct function indicates how

many float elements should be in the dynamically allocated heap_nums

array. If the required float elements can be allocated, then the function

sets the structure’s id and len fields before returning the heap address of

the HeapStruct. If the attempted allocation fails, however, two steps are

necessary to meet best practice:

	 1.	 The storage for the HeapStruct must be freed to

avoid memory leakage. Without the dynamic heap_

nums array, the HeapStruct is presumably of no use

to the client function that calls get_heap_struct;

hence, the bytes for the HeapStruct instance should

be explicitly deallocated so that the system can

reclaim these bytes for future heap allocations.

	 2.	 NULL is returned to signal failure.

If the call to the get_heap_struct function succeeds, then freeing

the heap storage is also tricky because it involves two free operations in

the proper order. Accordingly, the program includes a free_all function

instead of requiring the programmer to figure out the proper two-step

deallocation. For review, here’s the free_all function:

Chapter 3 Aggregates and Pointers

130

void free_all(HeapStruct* heap_struct) {

 if (NULL == heap_struct) /* NULL pointer? */

 return; /* if so, do nothing */

 free(heap_struct->heap_nums); /* �first free encapsulated

aggregate */

 free(heap_struct); /* �then free containing

structure */

}

After checking that the argument heap_struct is not NULL, the function

first frees the heap_nums array, which requires that the heap_struct

pointer is still valid. It would be an error to free the heap_struct first.

Once the heap_nums have been deallocated, the heap_struct can be

freed as well. If heap_struct were freed but heap_nums were not, then the

float elements in the array would be leakage: still allocated bytes but

with no possibility of access—hence, of deallocation. The leakage would

persist until the nestedHeap program exited and the system reclaimed the

leaked bytes.

A few cautionary notes on the free library function are in order. Recall

the earlier sample calls:

free(heap_struct->heap_nums); /* �first free encapsulated

aggregate */

free(heap_struct); /* �then free containing

structure */

These calls free the allocated storage—but they do not set their

arguments to NULL. (The free function gets a copy of an address as an

argument; hence, changing the copy to NULL would leave the original

unchanged.) For example, after a successful call to free, the pointer

heap_struct still holds a heap address of some heap-allocated bytes, but

using this address now would be an error because the call to free gives the

system the right to reclaim and then reuse the allocated bytes.

Chapter 3 Aggregates and Pointers

131

Calling free with a NULL argument is pointless but harmless. Calling

free repeatedly on a non-NULL address is an error with indeterminate

results:

free(heap_struct); /* 1st call: ok */

free(heap_struct); /* 2nd call: ERROR */

3.12.1. � Memory Leakage
and Heap Fragmentation

As the previous code examples illustrate, the phrase memory leakage”

refers to dynamically allocated heap storage that is no longer accessible.

Here is a refresher code segment:

float* nums = malloc(sizeof(float) * 10); /* 10 floats */

nums[0] = 3.14f; /* and so on */

nums = malloc(sizeof(float) * 25); /* 25 new floats */

Assume that the first malloc succeeds. The second malloc resets the

nums pointer, either to NULL (allocation failure) or to the address of the

first float among newly allocated 25. Heap storage for the initial ten

float elements remains allocated but is now inaccessible because the

nums pointer either points elsewhere or is NULL. The result is 40 bytes

(sizeof(float) * 10) of leakage.

Before the second call to malloc, the initially allocated storage should

be freed:

float* nums = malloc(sizeof(float) * 10); /* 10 floats */

nums[0] = 3.14f; /* and so on */

free(nums); /** good **/

nums = malloc(sizeof(float) * 25); /* no leakage */

Chapter 3 Aggregates and Pointers

132

Even without leakage, the heap can fragment over time, which then

requires system defragmentation. For example, suppose that the two

biggest heap chunks are currently of sizes 200MB and 100MB. However,

the two chunks are not contiguous, and process P needs to allocate

250MB of contiguous heap storage. Before the allocation can be made, the

system must defragment the heap to provide 250MB contiguous bytes for

P. Defragmentation is complicated and, therefore, time-consuming.

Memory leakage promotes fragmentation by creating allocated but

inaccessible heap chunks. Freeing no-longer-needed heap storage is,

therefore, one way that a programmer can help to reduce the need for

defragmentation.

3.12.2. � Tools to Diagnose Memory Leakage
Various tools are available for profiling memory efficiency and safety.

My favorite is valgrind (www.valgrind.org/). The leaky program (see

Listing 3-22) illustrates the problem and the valgrind solution.

Listing 3-22.  The leaky program

#include <stdio.h>

#include <stdlib.h>

int* get_ints(unsigned n) {

 int* ptr = malloc(n * sizeof(int));

 if (ptr != NULL) {

 unsigned i;

 for (i = 0; i < n; i++) ptr[i] = i + 1;

 }

 return ptr;

}

Chapter 3 Aggregates and Pointers

http://www.valgrind.org/

133

void print_ints(int* ptr, unsigned n) {

 unsigned i;

 for (i = 0; i < n; i++) printf("%3i\n", ptr[i]);

}

int main() {

 const unsigned n = 32;

 int* arr = get_ints(n);

 if (arr != NULL) print_ints(arr, n);

 /** heap storage not yet freed... **/

 return 0;

}

The function main calls get_ints, which tries to malloc 32 four-byte

integers from the heap and then initializes the dynamic array if the malloc

succeeds. On success, the main function then calls print_ints. There is no

call to free to match the call to malloc; hence, memory leaks.

With the valgrind toolbox installed, the following command checks the

leaky program for memory leaks:

% valgrind --leak-check=full ./leaky

In the following code segment, most of the output is shown. The number

of the left, 207683, is the process identifier of the executing leaky program.

The report provides details of where the leak occurs, in this case, from the

call to malloc within the get_ints function that main calls.

==207683== HEAP SUMMARY:

==207683== in use at exit: 128 bytes in 1 blocks

==207683== total heap usage: 2 allocs, 1 frees, 1,152 bytes

allocated

==207683==

Chapter 3 Aggregates and Pointers

134

==207683== 128 bytes in 1 blocks are definitely lost in loss

record 1 of 1

==207683== at 0x483B7F3: malloc (in /usr/lib/x86_64-linux-

gnu/...-linux.so)

==207683== by 0x109186: get_ints (in /home/marty/gc/leaky)

==207683== by 0x109236: main (in /home/marty/gc/leaky)

==207683==

==207683== LEAK SUMMARY:

==207683== definitely lost: 128 bytes in 1 blocks

==207683== indirectly lost: 0 bytes in 0 blocks

==207683== possibly lost: 0 bytes in 0 blocks

==207683== still reachable: 0 bytes in 0 blocks

==207683== suppressed: 0 bytes in 0 blocks

If function main is revised to include a call to free right after the one to

print_ints, then valgrind gives the leaky program a clean bill of health:

==218462== All heap blocks were freed -- no leaks are possible

3.13. � What’s Next?
C variables can be defined inside and outside of blocks, where a block is

the by-now-familiar construct that begins with a left brace { and ends with

a matching right brace }. Where a variable is defined determines, within

options, where its value is stored, how long the variable persists, and where

the variable is visible. Every variable has a storage class (with auto and

extern as examples) that determines the variable’s persistence and scope.

Functions too have a storage class: either extern (the default) or static.

The next chapter gets into the details of storage classes.

Chapter 3 Aggregates and Pointers

135

CHAPTER 4

Storage Classes

4.1. � Overview
In C, a storage class determines where functions and variables are stored,

how long variables persist, and where functions and variables can be made

visible. For functions, the key issue is visibility (scope) because the lifetime

of a function is the lifetime of the program that contains the function. For

variables, both lifetime and scope are of interest to the programmer.

Storage classes also shed further light on the distinction between

declarations and definitions in C. In large programs, with the constituent

functions typically residing in different files, the distinction is especially

important. Once again, code examples illustrate the basics and advanced

features. The chapter ends with a discussion of type qualifier volatile, yet

another aspect of C’s close-to-the-metal personality.

4.2. � Storage Class Basics
Here are two examples of where a storage class shows up in C code:

static int counter; /* �static is a storage-class

specifier */

extern void main() { /* body */ } /* �extern is a storage-class

specifier */

© Martin Kalin 2022
M. Kalin, Modern C Up and Running, https://doi.org/10.1007/978-1-4842-8676-0_4

https://doi.org/10.1007/978-1-4842-8676-0_4

136

C has four storage class specifiers: extern, static, auto, and register.

It is rare for the last two to be used explicitly in modern C because the

compiler, on its own, does what the specifiers call for. The first two

specifiers, extern and static, remain relevant. A function can be either

extern or static only; a variable can be any one of the four. A storage class

also impacts the following:

•	 The scope or visibility of the storage. For example, C

functions are extern by default, which means that they

can be made visible to any other function in the same

program. To be extern in C is to be potentially global

in scope.

•	 The lifetime of the storage, which depends directly

on where the storage is provided. The name storage

class derives from the fact that different parts of the

memory hierarchy are in play. For example, a local

variable—that is, a variable defined inside a block—is

auto by default. Storage for such a variable comes from

the stack or a CPU register, and the variable’s lifetime

is the time span during which the containing block is

active because some instruction within the block is still

executing.

HOW DOES A VARIABLE DEFINITION DIFFER FROM A DECLARATION?

A definition implements, whereas a declaration describes. A declared function

describes how the function is called and excludes the function’s body; a

defined function includes the body as well. For variables, the distinction

matters only in the case of extern variables, where there is one definition but

there can be more than one declaration. For variables of every other storage

class, the definition and the declaration are effectively the same.

Chapter 4 Storage Classes

137

Here is a summary of the default storage classes for functions and

variables:

•	 Functions are either extern or static, with extern as

the default.

•	 Variables defined outside of all blocks are either extern

or static, with extern as the default.

•	 Variables defined inside a block are either auto, or

register, or static, with auto as the default.

In summary, neither static (functions or variables) nor register

(variables only) is a default storage class. For a function or variable defined

outside all blocks, extern is the default; for a variable defined inside a

block, auto is the default.

On modern computers, C functions are stored in the text area of

memory, and a function’s lifetime is accordingly the lifetime of the

program to which the function belongs. However, a static function or

variable is not visible outside of its containing source file, whereas an

extern function or variable can be made visible throughout a program—

no matter the file that contains its definition.

In the case of variables, in particular large arrays, the storage classes

extern and static raise issues of efficiency. If an array is extern or

static, then the array’s lifetime is the program’s lifetime. In effect, the size

of the array becomes part of the program’s runtime memory footprint. It

is best to keep arrays on the stack or the heap so that storage for the arrays

persists only as needed.

Chapter 4 Storage Classes

138

4.3. � The auto and register
Storage Classes

The details of the auto and register specifiers can be clarified through a

code example.

Listing 4-1.  The auto and register specifiers

#include <stdio.h>

#include <stdlib.h> /* rand() */

int main() {

 �/* i and n are visible from their declaration to the end

of main */

 auto int i; /* auto is the default in any case */

 int n = 10; /* auto as well */

 for (i = 0; i < n; i++) {

 �register int r = rand() % 100; �/* if no register

available, auto */

 printf("%i ", r);

 } /* r goes out of scope here */

 putchar('\n'); /* instead of the usual printf("\n") */

 return 0;

}

The autoreg program (see Listing 4-1) shows how the auto and

register specifiers could be used. Recall that these specifiers are used

for variables only, and only for variables declared inside a block. In this

example, there are two blocks:

Chapter 4 Storage Classes

139

•	 The body of function main is the outer block, and int

variables i and n are declared in this block. Each is

visible from the point of its declaration until the end

of the block, in this case the end of function main. In

particular, local variables i and n are visible inside the

for loop, a nested code block.

•	 The for loop’s body is another block. Declared therein

is the register variable r, which is visible only within

the body of the for loop.

The declarations for variables i and n are equivalent, although only

the one for variable i explicitly uses the auto specifier. Because auto is

the default specifier for a variable declared inside a block, this specifier is

almost never used—except for demonstration purposes, as in the autoreg

program.

The register specifier, shown here in the declaration for variable r,

also is rarely used in modern C, as clarified shortly. If the compiler cannot

implement variable r with a CPU register, then the storage class reverts to

the default, auto. The scope for auto and register variables is the same in

any case: the containing block.

The register specifier has become outdated because an optimizing

compiler tries to use a CPU register to store scalar values such as the ones

stored in r during the for loop. It is more productive to flag the compiler

for optimization (e.g., gcc -O1...) than to use the register specifier. The

auto specifier also has become outdated because an optimizing compiler

opts for CPU registers whenever possible and uses the stack as the fallback

for scratchpad. From now on, the code examples dispense with explicit

uses of auto and register.

Chapter 4 Storage Classes

140

4.4.  The static Storage Class
The static specifier applies to both functions and variables. A variable

can be declared as static either inside a block (with resulting block scope)

or outside all blocks (with a scope from that point until the end of the file).

The first code example deals with static variables.

DOES THE C COMPILER SUPPORT PROFILING?

Yes. The flag -pg enables profiling:

% gcc -pg profile.c ## produces executable a.out (on

Windows: A.exe)

Running the program produces the file gmon.out, and the utility gprof then

can be executed from the command line:

% gprof

A detailed profiling analysis is printed to the screen.

Although the C compiler includes support for profiling (see the

sidebar), this code example shows how the static specifier can be used to

keep track of how many times a particular function is invoked.

Listing 4-2.  Using static variables to profile function calls

#include <stdio.h>

#define SizeF 109

#define SizeB 87

void foo() {

 static unsigned n = 0; /* initialized only once */

 if (SizeF == ++n) printf("foo: %i\n", n);

}

Chapter 4 Storage Classes

141

void bar() {

 static unsigned n; /* initialized automatically to zero */

 if (SizeB == ++n) printf("bar: %i\n", n);

}

void main() {

 unsigned i = 0, limit_foo = SizeF, limit_bar = SizeB;

 �while (i++ < limit_foo) foo(); /* call foo() a bunch of

times */

 i = 0;

 �while (i++ < limit_bar) bar(); /* call bar() a bunch of

times */

}

The profile program (see Listing 4-2) tracks the number of times that

main calls two other functions, foo and bar. Each of the called functions

has a local static variable named n. The compiler initializes a static

variable to zero unless the program provides an initial value. Two points

about these static variables are important in this example:

•	 Because each variable is declared inside a function,

each variable has function scope only. Accordingly,

the two distinct variables can have the same name, in

this case n.

•	 Unlike an auto variable (stack based), a static variable

(not stack based) maintains its state across function

calls. For example, each time that the foo function is

called, its variable n is incremented and retains this

new value even when foo exits. An initialized auto

variable would be reinitialized on every call to the

function that encapsulates the variable.

Chapter 4 Storage Classes

142

A static variable has the lifetime of the program regardless of where

the variable is declared, but its scope does differ depending on where the

variable is declared. If declared inside a block, a static variable has block

scope. If declared outside all blocks, a static variable has file scope: it is

visible from the point of declaration until the end of the containing file.

To define a function as static is to restrict the function’s scope to the

file in which it resides. Functions are extern by default, which means that

they are potentially visible throughout the compiled program, regardless of

the source file that happens to contain them. Making a function static is

as close as it comes to private in C: static functions might be described as

private to the file. Scope is the only difference that matters between extern

and static functions: the former can have program scope, whereas the

latter can have file scope only.

4.5. � The extern Storage Class
The source code for a large program is likely distributed among many

files. A function housed in one file may need to call a function housed in

another file. For example, a program that invokes a library function such

as printf is thereby calling a function housed in another file—the library’s

delivery file. Furthermore, a program may require that the same variable—

not just different variables with the same name—be accessible across files.

But neither a static function nor a static variable can be made visible

outside of its containing file. Such functions and variables have program

lifetime due to their static character, but they have only file scope at most.

The extern storage class supports truly global scope, although the

programmer needs to do some work to make this happen. The basic two

steps for global scope go as follows:

Chapter 4 Storage Classes

143

•	 A variable or function is defined, implicitly or explicitly,

as extern in one file. (A variable defined outside all

blocks defaults to extern, and functions in general

default to extern.) The term extern can but need not

be used in the definition.

•	 This variable or function is then declared as extern in

any other file that requires access.

The rule of thumb for making life easy on the programmer is to avoid

the explicit extern in a definition (in particular for variables) and to use

the explicit extern only in a declaration.

A code example should help to clarify the details. The example consists

of two files, prog2files1.c and prog2files2.c. These will be considered

in order.

Listing 4-3.  One source file in the prog2files program

#include <stdio.h>

/* definition of the extern variable: keyword extern is absent,

but could be present if the variable were initialized in its

definition. */

int global_num = -999; �/* would be initialized to 0

otherwise */

extern void doubleup(); �/* declaration of a function defined in

another file */

extern void print() { �/* extern could be dropped from this

definition */

 printf("global_num: %i\n", global_num);

}

Chapter 4 Storage Classes

144

/* set2zero can be invoked only by functions within

this file */

static void set2zero() {

 global_num = 0;

}

void main() { /* extern could be added, but not necessary */

 doubleup(); /* function in another file */

 doubleup(); /* call doubleup() again */

 print(); /* -3996 */

 set2zero(); /* function in this file */

 print(); /* 0 */

}

The prog2files1.c file (see Listing 4-3) does the following:

•	 Defines the int variable global_num outside all

blocks. This makes the variable extern, although the

specifier extern does not occur in the definition. The

variable also is initialized to -999. Were the variable

not initialized explicitly, the compiler would set its

value to 0. There is subtle syntax at play here. If the

specifier extern were used, then the variable would

have to be initialized explicitly in order to distinguish

its single definition from one of its many possible

declarations. The safe approach is to omit the specifier

extern from the definition and to use this specifier

only in declarations. The second file in the prog2files

program shows a declaration for global_num with the

specifier extern.

Chapter 4 Storage Classes

145

•	 Declares the function doubleup as extern, thereby

signaling that this function is defined elsewhere—in

this case, in the other source file, prog2files2.c.

•	 Defines the function print using the specifier extern.

The extern is not necessary because any defined

function is extern by default unless explicitly specified

to be static.

•	 Defines the function main as extern, but without using

the specifier.

The main function, housed in the source file prog2files1.c, invokes

the doubleup function twice—a function housed in the program’s other

source file, prog2files2.c. If the doubleup function were not declared in

prog2files1.c, the compiler would complain. The main function also invokes

the static function set2zero. Because set2zero is static, it must be

invoked by a function such as main in the same source file, prog2files1.c.

Listing 4-4.  The other source file in the prog2files program

/* declaration: keyword extern is required, and the variable

must not be initialized here because it then would be a

definition. */

extern int global_num;

void doubleup() { /* �definition: doubleup is declared

elsewhere, defined here */

 global_num *= 2; /* �the global_num defined elsewhere, but

accessed here */

}

Chapter 4 Storage Classes

146

The second source file prog2files2.c (see Listing 4-4) is deliberately

simple. There are two points of interest:

•	 The variable global_num is declared with the specifier

extern and not initialized. If the variable global_nums

were initialized here, this would count as a definition,

thereby breaking the rule that an extern variable (or

function) must be defined exactly once in a program.

The declaration for global_num occurs outside all

blocks but could occur within the function doubleup.

In any case, the declaration of global_num with the

required specifier extern signals that this variable

is defined elsewhere, which happens to be the other

source file prog2files1.c.

•	 The function doubleup is defined here and is extern

by default. This function is declared in the other source

file with the specifier extern.

The source files in the prog2files program are compiled in the

usual way:

% gcc -o prog2files prog2files1.c prog2files2.c ## file names

could be in any order

For review, here again is the rule of thumb that sidesteps the legalese

surrounding the specifier extern. This rule can be spelled out as two

related recommendations:

•	 Never use the specifier extern in function or variable

definitions, which must occur outside all blocks. The

variables then can be initialized or not according

to need.

Chapter 4 Storage Classes

147

•	 Use the specifier extern only in declarations of

functions and variables. A variable cannot be

initialized in a declaration, as this would transform the

declaration into a definition.

WHAT DOES CONST MEAN IN C?

The qualifier const for constant originated in C++ and was brought into C. A

few code segments clarify.

const int n = 17; /** n is constant or read-only **/

n = -999; /** ERROR: won't compile -- n is read-only **/

There are workarounds through pointers, however.

int* ptr = &n; /* n is const */

*ptr = -999; /** WARNING: bad idea, but works **/

The const-ness can be cast away from the pointer:

int* ptr = (int*) &n; /* (int*) cast is critical here, as &n is

(const int*) */

ptr = -999; / no error, no warning */

Recall that the parameters to the qsort comparison function are const

void*, in effect a promise that such pointers will not be used to modify the

values pointed to.

4.6. � The volatile Type Qualifier
A variable of any type, including pointers and struct types, can be

qualified as volatile:

volatile int n; /* int could be left of volatile */

Chapter 4 Storage Classes

148

The volatile qualifier cautions the compiler against doing any

optimization on a variable so qualified, in this case n. For example, there

are situations in which an optimizing compiler should not implement a

variable as a CPU register. Two sample situations are introduced in the

following.

The first example deals with an interrupt service routine (ISR). As the

name indicates, an ISR handles interrupts, which originate from outside

the executing program. For example, imagine an ISR written in C to handle

input from one of the machine’s data ports, for example, the port for the

keyboard. The programmer might define and initialize a variable nextc to

store the next character read from the keyboard. An optimizing compiler,

unaware that the data source for the variable is outside the executing

program, may reason that nextc acts within the program like a constant

best implemented in read-only storage; in other words, the compiler sees

the initialization but does not see any updates to nextc. As a result, the

compiler might deliver only this initial value to functions that read nextc.

This optimization would undermine the ISR’s task of reading arbitrary

characters from the keyboard.

WHAT’S A MULTICORE MACHINE?

A core is a fabrication component that contains a processing unit: one or

more CPUs (processors), registers, cache memory, and other architectural

components. A multicore machine is therefore a multiprocessor machine,

with one or more CPUs per core; hence, a multicore machine can support true

parallelism.

The second example concerns multithreading, which Chapter 7

covers in detail. In a multithreaded program, multiple threads of execution

(sequences of instructions) can communicate with one another through

shared memory, for example, through a global variable N that is visible

Chapter 4 Storage Classes

149

across the threads because N is implemented as storage in main memory.

On a multicore machine, however, the registers on a particular core would

be visible only to a thread executing on the core’s processor(s). The point

deserves emphasis: if thread T1 executes on core C1, then T1 sees only the

registers on C1. If the compiler were to implement global variable N as a

register on core C1, then threads executing on some other core would not

see N. In short, it is important that N be implemented in main memory if N

is to be visible across the multiple threads in the process. The programmer

could make this point to the compiler by qualifying global variable N

as volatile, thereby recommending that the compiler not optimize by

implementing N as a CPU register.

A program with no volatile qualifications may compile to the

same executable as a version of the same program with many such

qualifications. The volatile qualifier does not guarantee anything;

instead, the qualifier is only a cautionary note that the programmer sends

to an optimizing compiler.

Although the syntax for volatile is close to that for storage classes,

volatile is not a storage class. The volatile qualifier has no connection

whatsoever with how a variable, thus qualified, is stored.

DOES C COME WITH A DEBUGGER?

The standard compilers have a debugger with the usual support: breakpoints,

stepping, viewing and resetting variables, and so on. Here is an example with

the fpoint.c as the source file:

	1.	 Compile with the -g flag:

% gcc -g -o fpoint point.c

	2.	 Invoke the debugger on the compiled file:

% gdb fpoint

Inside the debugger, there is a help menu.

Chapter 4 Storage Classes

150

4.7. � What’s Next?
Every program in execution requires at least one processor (CPU) to

execute its instructions and memory to store these instructions and

the data that together make up the program. Except for special cases,

a program uses I/O devices as well, which are accessible to a program

as files of one sort or another. A file in this generic, abstract sense is just

a collection of words, and a word is just a formatted collection of bits.

For example, a camera in a smartphone and the lowly keyboard on a

desktop machine are both files in this sense. The role of input and output

operations is, of course, to allow a program to interact with the outside

world. The next chapter gets into the details by highlighting C’s flexible

approach to input/output operations.

Chapter 4 Storage Classes

151

CHAPTER 5

Input and Output

5.1. � Overview
Programs of all sorts regularly perform input/output (I/O) operations, and

programmers soon learn the pitfalls of these operations: trying to open a

nonexistent file, having too many files open at the same time, accidentally

overwriting a file and thereby losing its data, and so on. Nonetheless, I/O

operations remain at the core of programming.

C has two APIs for I/O operations: a low-level or system-level API,

which is byte-oriented, and a high-level API, which deals with multibyte

data types such as integers, floating-point types, and strings. The system-

level functions are ideal for fine-grained control, and the high-level

functions are there to hide the byte-level details. Although the two APIs

can be mixed, as various code examples show, this must be done with

caution. This chapter covers both APIs and examines options such as

nonblocking and nonsequential for I/O operations.

Files and I/O operations are one way to support interprocess

communication (IPC). Recall that separate processes have separate

address spaces by default, which means that shared memory, although

possible, requires setup for processes to communicate with one another.

Local files, by contrast, can be used readily for IPC: one process can

produce data that is streamed to a file, while another process can

consume the data streamed from this file. A later section examines how to

synchronize process access to shared files.

© Martin Kalin 2022
M. Kalin, Modern C Up and Running, https://doi.org/10.1007/978-1-4842-8676-0_5

https://doi.org/10.1007/978-1-4842-8676-0_5

152

The API for I/O operations extends to networking, in particular to

socket connections between processes running on different machines. This

chapter thus provides background for the next.

5.2. � System-Level I/O
A short review of some basic concepts should be helpful in clarifying

system-level I/O in C. A process, as a program in execution, requires shared

system resources from at least two but typically from three categories:

•	 Processors to execute the program’s instructions (at

least one required)

•	 Memory to store the program’s instructions and data

(required)

•	 Input/output devices to connect to the outside world

(optional but usual)

Some special-purpose utility processes (background processes) may

require access to few, if any, I/O devices. For convenience, a normal

process is one that uses resources from all three categories. When a normal

process starts, the operating system automatically gives the process access

to three files, where a file is a collection of words and a word is a formatted

collection of bits (e.g., bits that represent printable characters such as A

and Z in a character-encoding scheme such as ASCII). These three files

have traditional names, and they are associated by default with particular

I/O devices:

•	 The standard input defaults to the keyboard but can

be redirected to some other device (e.g., a network

connection).

•	 The standard output defaults to the screen but can be

redirected to some other device (e.g., a printer).

Chapter 5 Input and Output

153

•	 The standard error defaults to the screen but can be

redirected to some other device (e.g., a log file on the

local disk).

At the command line on modern systems, the less-than sign < redirects

the standard input; the greater-than sign > redirects the standard output;

and the combined symbols 2> redirect the standard error. Examples are

forthcoming, together with a clarification of why the numeral in 2> is 2.

In system-level I/O, nonnegative integer values called file descriptors

are used to identify, within a process, the files that the process has opened.

Recall that files can be used for interprocess communication (IPC). If

two processes were to open a file to share data using system-level I/O,

then each process would have a file descriptor identifying the file; the file

descriptor values would not have to be the same because the operating

system maintains a global file table that tracks which processes have

opened which files.

Table 5-1 summarizes the basics about the three files to which

a normal process automatically gets access. For other files, access is

achieved through a successful call to an open function: in low-level I/O,

the basic function is named open, and in high-level I/O, the basic function

is named fopen. The table now can be clarified further:

Table 5-1.  File descriptor and FILE* overview

Name File descriptor Macro FILE*

standard input 0 STDIN_FILENO stdin

standard output 1 STDOUT_FILENO stdout

standard error 2 STDERR_FILENO stderr

Chapter 5 Input and Output

154

•	 In system-level I/O, a program can use the three

reserved file descriptors (0, 1, and 2) for I/O operations.

A short example follows. The integer values themselves

can be used, or the macros (defined in unistd.h) shown

in the third column.

•	 In high-level I/O, the header file stdio.h includes three

pointers to a FILE structure, which contains pertinent

information about an opened file. The pointer stdin is

the high-level counterpart of file descriptor 0, stdout

is the high-level counterpart of file descriptor 1, and

stderr is the high-level counterpart of file descriptor 2.

A first code example draws these introductory points together.

Listing 5-1.  Some basic I/O operations using the system-level API

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#define BuffSize 4

void main() {

 const char* prompt = "Four characters, please: ";

 char buffer[BuffSize]; /* 4-byte buffer */

 �/* write returns -1 on error, count of bytes written on

success */

 write(STDOUT_FILENO, prompt, strlen(prompt));

 �ssize_t flag = read(0, buffer, sizeof(buffer)); /* 0 ==

stdin */

if (flag < 0)

 �perror("Ooops..."); /* �this string + a system msg

explaining errno */

Chapter 5 Input and Output

155

else

 �write(1, buffer, sizeof(buffer));

/* 1 == stdout */

putchar('\n');

}

The ioLL program (see Listing 5-1) is a first look at low-level or byte-

oriented I/O. The program uses two of the three automatically supplied

file descriptors: 0 for the standard input (keyboard) and 1 for the standard

output (screen). The key features of the program can be summarized as

follows:

•	 The program writes a prompt, implemented as a string

literal, to the standard output. The write function takes

three arguments:

•	 The first argument specifies the destination for the

write, in this case the standard output. The file

descriptor value 1 could be used here instead of the

macro STDOUT_FILENO.

•	 The second argument is the source of the bytes, in

this case the address of the first character F in the

prompt string.

•	 The third argument is the number of bytes to be

written, in this case the value of strlen(prompt).

The characters are, by default, encoded in ASCII;

hence, strlen effectively returns the number of

bytes to be written.

The read function likewise expects three arguments:

•	 The first argument specifies the source from which the

bytes are read, in this case the standard input (0), the

keyboard by default.

Chapter 5 Input and Output

156

•	 The second argument specifies where the bytes

should be stored, in this case the char (byte) array

named buffer.

•	 The third argument specifies the number of bytes to be

read into the buffer, in this case four.

Like many of the low-level I/O functions, read returns an int value:

the number of bytes read, on success, and -1, on error. If an error occurs,

an error code is available in the global variable errno, which is declared

in the header file errno.h. The perror function prints a human-readable

description of this error. This function takes a single string argument

so that the user can add a customized error message to which perror

appends a system error message. If only the system error message is of

interest, perror can be called with NULL as its argument.

The program concludes with another call to write, this time using 1

to designate the standard output. The bytes to be written come from the

array buffer, and the number of bytes is computed as sizeof(buffer),

which returns the number of bytes in the array, not the size of the pointer

constant buffer.

The buffer does not include extra space for a null terminator: the

program does not treat the input from keyboard as a string, but rather as

four independent bytes. The write function takes the same approach: no

string terminator is needed because the last argument to write specifies

exactly how many bytes should be written, in this case four.

A short experiment underscores the level at which the functions read

and write work. The experiment is to replace

char buffer[BuffSize];

with

int buffer; /* sizeof(int) is 4 */

Chapter 5 Input and Output

157

or, indeed, with a variable of any data type whose size is at least 4 bytes.

The read call now changes to

ssize_t flag = read(0, &buffer, sizeof(buffer));

 /* &buffer == address of buffer */

The 4 bytes are to be put into a single int variable, which now acts

like a 4-byte buffer. The write statement requires only a minor but

critical change:

write(1, &buffer, sizeof(buffer)); /* need buffer's address */

The address operator must be applied to buffer, which is now just a

scalar int variable.

This experiment underscores that system-level I/O does not honor

multibyte types. For example, the bytes read into the int variable buffer

could be any characters whatsoever. Here is a screen capture of a sample

run of the revised rwLL program:

% ./ioLL

Four characters, please: !$ef

!$ef

These characters are not numerals, of course. The low-level read and

write functions treat these simply as 8-bit bytes stored together in a 4-byte

variable named buffer.

5.2.1. � Low-Level Opening and Closing
The next two code examples introduce the byte-oriented open and close

functions. The sysWrite program writes an array of int values, 4 bytes

apiece, to a disk file, and the sysRead program reads the bytes from the

same file in two different ways. The file descriptors 0 (standard input), 1

(standard output), and 2 (standard error) identify files that are opened

automatically when a process begins execution; hence, there is no need for

Chapter 5 Input and Output

158

the program to call open on these three. For other files, however, a call to

open is required, and a matching call to close is sound practice. (When a

program terminates, the system closes any files that the program may have

opened.) The open function, like so many in the standard libraries, takes a

variable number of arguments.

Listing 5-2.  Writing to a local file with system-level I/O

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

#define FILE_NAME "nums.dat"

void main() {

 /* Open a file for reading and writing. */

 int fd = open(FILE_NAME, /* name */

 �O_CREAT | O_RDWR, /* �create, read/

write */

 �S_IRUSR | S_IWUSR | S_IXUSR | /* �owner's

rights */

 �S_IROTH | S_IWOTH | S_IXOTH); /* �others'

rights */

 if (fd < 0) { /* -1 on error, positive value on success */

 perror(NULL);

 return;

 }

 /* Write some data. */

 int nums[] = {9, 7, 5, 3, 1}; /* int[] type */

 ssize_t flag = write(fd, nums, sizeof(nums));

 �if (flag < 0) { �/* -1 on error, count of written bytes on

success */

Chapter 5 Input and Output

159

 perror(NULL);

 return;

 }

 /* Close the file. */

 flag = close(fd);

 if (flag < 0) perror(NULL);

}

The sysWrite program (see Listing 5-2) tries to open a file on the local

disk, creating this file if necessary. The program sets the access rights for

the file’s owner and for others. The program then writes five integers to

the file and closes the file. There is error-checking on all three of these I/O

operations.

In this example, the call to the open function has three arguments, but

the open function also can be called with only the first two arguments. The

arguments in this case are as follows:

•	 The first argument is the name of the file to open. In

this case, the full path is not used; hence, the file will

be created in the directory from which the sysWrite

program is launched.

•	 The second argument consists of flags, perhaps bitwise

or-ed together as in this case. The pair

O_CREAT | O_RDWR

signals that the file should be created, if necessary,

and opened for both read and write operations.

•	 The third argument consists of bitwise or-ed values that

specify access permissions on the file. In this example,

the file’s owner has read/write/execute permissions,

as do others. In a production environment, the access

permissions of owner and others might differ.

Chapter 5 Input and Output

160

If the call to open succeeds, a file descriptor is returned. Its value is

the smallest positive value not currently in use by the process as a file

descriptor. Since the file descriptor for the standard error (2) is in use, the

smallest available value in this case would be 3. A print statement could be

added to confirm that the value of fd is, indeed, 3.

If the call to open fails, -1 is returned to signal some error or other. (The

next code example shows a sample perror message.) The call to write

again has the three required arguments: the destination for the written

bytes, the source of these bytes, and the number of bytes to write. Here is

the relevant code segment:

int nums[] = {9, 7, 5, 3, 1}; /* int[] type */

ssize_t flag = write(fd, nums, sizeof(nums));

 /* ssize_t is a signed integer type */

No looping is needed to write the array’s contents because the third

argument, sizeof(nums), is the number of bytes in the array as a whole.

In this example, the bytes are written as integer values because the array’s

elements are stored in memory as int instances. In short, the target file

nums.dat contains binary data, not text. Checking the size of the file nums.

dat confirms that it holds 20 bytes, 4 bytes apiece for the 5 integers written

to this file.

The sysWrite program opens a file by specifying access rights for the

file’s owner and for others. In general, these rights are divided into three

categories: owner, group, and other. The macros such as S_IRUSR and

S_IWUSR are assigned values such that their bitwise or-ing yields unique

values. For example:

S_IRUSR | S_IWUSR == 384 ## decimal

whereas

S_IRUSR | S_IRWXU == 448 ## decimal

Chapter 5 Input and Output

161

The bitwise or-ings can be as complicated as needed. It is common in

Unix-like systems to set file permissions from the command line with octal

values that reflect the bitwise or-ing of the values shown. For example:

S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH == 0664 ## octal

Table 5-2 summarizes the access permissions on files. In the left

column, the values are octal. In C programs, an integer constant that starts

with a 0 is interpreted as being in base-8, just as one starting with 0x or 0X

is interpreted as being in base-16. It is common to use the octal values in

command-line utilities such as chmod, but the symbolic constants are the

way to go in programs. Note, by the way, that the permission values are such

that any bitwise or-ing still yields a unique value. Also, mistakes such as

Table 5-2.  Access permissions

Octal code Symbolic code Meaning

0001 S_IXOTH Others can execute.

0002 S_IWOTH Others can write.

0004 S_IROTH Others can read.

0007 S_IRWXO Others can do anything.

0010 S_IXGRP Group can execute.

0020 S_IWGRP Group can write.

0040 S_IRGRP Group can read.

0070 S_IRWXG Group can do anything.

0100 S_IXUSR Owner can execute.

0200 S_IWUSR Owner can write.

0400 S_IRUSR Owner can read.

0700 S_IRWXU Owner can do anything.

Chapter 5 Input and Output

162

S_IWUSR | S_IXGRP | S_IWUSR /* S_IWUSR occurs twice */

are harmless.

Listing 5-3.  Reading from a local file with system-level I/O

#include <unistd.h>

#include <fcntl.h>

#include <stdio.h>

#define FILE_NAME "nums.dat"

void main() {

 �int fd = open(FILE_NAME, O_RDONLY); /* open for

reading only */

 if (fd < 0) { /* -1 on error, > 2 on success */

 �perror(NULL); /* "No such file or directory" if nums.dat

doesn't exist */

 return;

 }

 int read_in[5]; /* buffer to hold the bytes */

 ssize_t how_many = read(fd, read_in, sizeof(read_in));

 if (how_many < 0) {

 perror(NULL);

 return;

 }

 close(fd); /* no error check this time */

 int i;

 �int n = how_many / sizeof(int); �/* from byte count to number

of ints */

 �for (i = 0; i < n; i++) printf("%i\n", read_in[i] * 10);

 /* 90 70 50 30 10 */

}

Chapter 5 Input and Output

163

The sysRead program (see Listing 5-3) reads five 4-byte int values from

the same file that the sysWrite program populates with these integers. In

the sysRead program, the file is opened for read-only. The available macro

flags for a call to open, together with their values, are

#define O_RDONLY 0x0000 /* open for reading only */

#define O_WRONLY 0x0001 /* open for writing only */

#define O_RDWR 0x0002 /* open for reading and writing */

The source code documentation shows the perror message if the file

nums.dat does not exist.

Once the file is opened, the read function requires a buffer in which

to place the bytes, in this case the read_in array that can hold five int

elements, or 20 bytes in all. The read function, like the others seen so far,

returns -1 in case of error; 0 on end of file; and otherwise the number of

bytes read.

A read operation is the inverse of a write operation, and the arguments

passed to read and write reflect this relationship. The first argument to

read is a file descriptor for the source of bytes, whereas this argument

specifies the destination in the case of write. The second argument to

read is the destination buffer, whereas this argument specifies the source

in a write. The last argument is the same in both: the number of bytes

involved.

The sysRead program uses the high-level printf function to print the

int values. Each value is multiplied by 10 to confirm that int instances

have been read into memory from the source file. Recall that a successful

read returns the number of bytes, in this case stored in the local variable

how_many; hence, how_many is divided by sizeof(int) to get the number of

4-byte integers, in this case five.

Together the sysWrite and sysRead programs illustrate how local disk

files can support basic interprocess communication. The programs would

Chapter 5 Input and Output

164

need to be amended so that, for example, the sysRead program would

wait for the nums.dat file to be created and populated with integer values

before trying to read from that file. A later code example covers file locking

for synchronizing access to shared files.

5.3. � Redirecting the Standard Input,
Standard Output, and Standard Error

Redirecting the standard input, the standard output, and the standard

error with programs launched from the command line is straightforward.

A simplified version of an earlier program illustrates. This approach

brings the advantage of using one and the same program for reading and

writing arbitrarily many files, but without editing and then recompiling the

source code.

Listing 5-4.  Redirecting I/O

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#define BuffSize 8

void main() {

 char buffer[BuffSize]; /* 8-byte buffer */

 �ssize_t flag = read(0, buffer, sizeof(buffer)); �/* 0 ==

stdin */

 if (flag < 0) {

 perror("Ooops...");

 return;

 }

 char ws = '\t';

Chapter 5 Input and Output

165

 write(1, buffer, sizeof(buffer)); /* 1 == stdout */

 write(1, &ws, 1); /* ditto */

 write(2, buffer, sizeof(buffer)); /* 2 == stderr */

 putchar('\n');

}

The ioRedirect program (see Listing 5-4) expects to read 8 bytes from

the standard input and then echoes these bytes to the standard output and

the standard error. If the bytes are ASCII character codes, the program is

easy to follow. Here is a screen capture of a sample run; my comments start

with ##:

% ./ioRedirect ## on Windows, drop the ./

12345678 ## �typed in from the keyboard, echoed on

the screen

12345678 12345678 ## �1st 8 to standard output, 2nd 8 to

standard error

The file infile contains a single line:

abcdefgh

To redirect the standard input to this file, the command is

% ./ioRedirect < infile ## < redirects the standard input

The output now is

abcdefgh abcdefgh

To redirect the standard output to the file outfile, the command is

% ./ioRedirect > outfile

Chapter 5 Input and Output

166

The eight characters entered on the keyboard now appear once on the

screen (default for the standard error) and once in the local disk file outfile.

By the way, if outfile already exists, then the redirection purges this file and

then repopulates it; hence, caution is in order.

Redirection to the standard error differs only slightly. Recall that 2 is

the file descriptor for the standard error:

% ./ioRedirect 2> logfile

Redirections can be combined as needed, for example:

% ./ioRedirect < infile 2> logfile

Assuming that infile is the same as before, the contents of logfile are

abcdefgh abcdefgh

5.4. � Nonsequential I/O
The examples so far have dealt with sequential I/O: bytes are read in

sequence and written in sequence. It is convenient at times, however, to

have random or nonsequential access to a file’s contents. A short code

example illustrates the basic API.

Listing 5-5.  Random or nonsequential file access

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <fcntl.h>

#define FILE_NAME "test.dat"

Chapter 5 Input and Output

167

void main() {

 const char* bytes = "abcdefghijklmnopqrstuvwxyz";

 int len = strlen(bytes);

 char buffer[len / 2];

 char big_N = 'N';

 /* Open the file and populate it with some bytes. */

 int fd = open(FILE_NAME,

 O_RDWR | O_CREAT, /* flags */

 �S_IRUSR | S_IWUSR | S_IXUSR); �/* owner's

rights */

 write(fd, bytes, len);

 �off_t offset = len / 2; �/* twelve bytes in is

character n */

 �lseek(fd, offset, SEEK_SET); �/* SEEK_SET is the start of

the file */

 write(fd, &big_N, sizeof(char)); �/* overwrite 'n' with 'N' */

 close(fd);

 fd = open(FILE_NAME, O_RDONLY);

 lseek(fd, offset, SEEK_SET);

 read(fd, buffer, len / 2);

 close(fd);

 write(1, buffer, len / 2); /* Nopqrstuvwxyz */

 putchar('\n');

}

The nonseq program (see Listing 5-5) skips the error checking to

minimize the clutter, thereby keeping the focus on the nonsequential file

access. The program first writes 26 bytes (the lowercase characters in the

English alphabet) to a file. After closing the file, the program reopens the

file to do an lseek operation that sets up another write operation, this

Chapter 5 Input and Output

168

time a write of just one byte. As the name indicates, the function lseek

performs a seeking operation, which can change the current file-position

marker. A closer look at lseek clarifies.

The library function lseek takes three arguments. They are, in order:

•	 A file descriptor

•	 A byte offset from a designated position in the file

•	 The start position for the offset, with three convenient

macros to define the usual positions:

•	 SEEK_SET is the start position in the file.

•	 SEEK_CUR is the current position in the file.

•	 SEEK_END is the end position in the file.

The lseek function returns -1 in case of an error, or the offset to

indicate success. The returned offset could be saved for later use. The

offsets for lseek are like indexes in a char array: an offset of 0 is the

position of the first byte in the file from the seek position, and an offset of

1 is the position of the second byte in the file from the seek position, and

so on. In this example, the offset is 13, the position of the ASCII character

code for lowercase n. An lseek operation beyond the current end of a file

does not expand the file’s size; a subsequent write operation would be

required to do so.

Once the current position has been reset with lseek, the program

overwrites the lowercase n with an uppercase N. The file then is closed

again only to be reopened one more time. There is another lseek to the

position of the now uppercase N and a read operation to get the bytes for

N through z into the char array named buffer. For confirmation, buffer is

printed to the standard output.

Chapter 5 Input and Output

169

5.5. � High-Level I/O
System-level I/O is low level because it works with bytes, the char type in

C; by contrast, high-level I/O can work with multibyte data types such as

integers, floating-point numbers, and strings. To take but one convenient

example, the API for the high-level I/O makes it straightforward to convert

between, for example, integers and strings. High-level I/O can work at

the byte (char) level, but this kind of I/O is especially useful above the

byte level.

The names are similar for some functions in the high-level and the

low-level API. For example, there is a low-level open function and the

high-level fopen function, as well as the low-level close and the high-

level fclose functions. There is an fread function in the high-level API

that matches up with the read function in the low-level API. The functions

differ in syntax, of course, but also in how they work at the byte level. The

low-level functions work only at the byte level, whereas the high-level API

can work directly with multibyte types such as int and double.

There is crossover. For example, the high-level fdopen function takes

a low-level file descriptor as an argument but returns the high-level type

FILE*, the return type for various high-level library functions. Consider

this contrast for opening and closing a file on the local disk:

int fd = open("input.dat", O_RDONLY); �/* low-level: -1 on

failure */

FILE* fptr = fopen("input.dat", "r"); �/* high-level: NULL on

failure */

The corresponding function calls to close the opened file would be

close(fd); /* fd is an int value */

fclose(fptr); /* fptr is a FILE* value */

Chapter 5 Input and Output

170

In general, a file opened with the low-level open function is closed with

the low-level close function. In a similar fashion, a file opened with fopen

is closed with the fclose function. By the way, there is a limit on how

many files a process can have open at a time; hence, it is critical to close

files when keeping them open is no longer important.

In the low-level API, the integer values 0, 1, and 2 identify the standard

input, the standard output, and the standard error, respectively. In the

high-level API, the FILE* pointers stdin, stdout, and stderr do the same.

The data type of interest in high-level I/O is FILE*, not FILE. It would be

highly unusual for a program to declare a variable of type FILE, but typical

for a program to assign the value returned from a high-level I/O function to

a variable of type FILE*.

The following code segment summarizes the contrast between low-

level and high-level I/O, with variable fd as a file descriptor and variable

fptr as a pointer to FILE:

int buffer[5]; /* 5 ints == 20 bytes */

read(fd, buffer, sizeof(int) * 5); /* �byte level read: read

20 bytes */

fread(buffer, sizeof(int), 5, fptr); /* �int level read: read

5 ints */

The low-level read function reads a specified number of bytes and

stores them somewhere—in this case, in a 20-byte buffer that happens

to be an int array of size five. By contrast, the high-level fread function

can read multibyte chunks, in this case five int values, which are 4

bytes apiece.

Some in the C community believe that FILE should have been named

STREAM, and it is common to describe high-level I/O as stream-based

I/O. In a technical sense, C has two ways for a program to connect to any

file, including the standard input, a local disk file, and so on:

Chapter 5 Input and Output

171

•	 Through a file descriptor, an integer value that identifies

the opened file.

•	 Through a stream, a channel that connects a source and

a destination: the file could be either the source (read

operation) or destination (write operation).

To study the API for the high-level I/O is, in effect, to study various

ways of managing I/O streams. The forthcoming examples do so.

Listing 5-6.  Basics of high-level I/O

#include <stdio.h>

#define FILE_NAME "data.in"

void main() {

 float num;

 printf("A floating-point value, please: ");

 �int how_many_floats = fscanf(stdin, "%f", &num);

 /* last arg must be an address */

 if (how_many_floats < 1)

 fprintf(stderr, "Bad scan -- probably bad characters\n");

 else

 fprintf(stdout, "%f times 2.1 is %f\n", num, num * 2.1);

 FILE* fptr = fopen(FILE_NAME, "w"); /* write only */

 �if (!fptr) perror("Error on fopen"); �/* fptr is NULL (0) if

fopen fails */

 int i;

 for (i = 0; i < 5; i++)

 fprintf(fptr, "%i\n", i + 1);

 fclose(fptr);

 fptr = fopen(FILE_NAME, "r");

 int n;

Chapter 5 Input and Output

172

 puts("\nScanning from the input file:");

 �while (fscanf(fptr, "%i", &n) != EOF) �/* EOF == -1 == all 1s

in binary */

 printf("%i\n", n);

 fclose(fptr);

}

The scanPrint program (see Listing 5-6) covers some basics of high-

level I/O, beginning with scanning a file for input. The statement

int how_many_floats = fscanf(stdin, "%f", &num);

highlights some distinctive features of the high-level API. The function

fscanf, with f for file, is structured as follows:

•	 The first argument specifies the source from which to

scan for input, in this case stdin. The shortcut function

scanf is hard-wired to read from the standard input,

but fscanf explicitly names the source as its first

argument. The first argument to scanf is the second

argument to fscanf, the format string:

int how_many_floats = scanf("%f", &num); /* scanf

instead of fscanf */

•	 The second argument to fscanf is the format string,

which specifies how scanned bytes are to be converted

into an instance of some type, including a multibyte

type such as the 4-byte float. The format string can

contain arbitrarily many formatters.

•	 The third argument is the destination address, that

is, the address of where the formatted bytes are to be

stored. In this example, the third argument is &num. The

scanning functions in general, including fscanf, return

Chapter 5 Input and Output

173

the number of properly formatted instances of the

specified data type, in this case float. The format string

requests that only a single float be formatted; hence,

the returned value is either 0 (failure) or 1 (success).

WHY IS THE ADDRESS OPERATOR & SO CRITICAL IN THE SCANNING
FUNCTIONS?

A typical call to scanf is

int num; �/* num is a local variable, and so contains

random bits */

scanf("%i", &num); �/* read an int, store it at the address of n */

If the address operator & were missing from &num in the scanf call, the

contents of num would be interpreted as an address, and it is highly unlikely

that these random bits make up an address within the executing program’s

address space. If num is a local variable, for example, its contents are random

bits from the stack or a register.

The scanPrint program prompts the user to enter a floating-point

value. If inappropriate characters such as abc.de are entered instead, the

program prints an error message to that effect. The fprintf function is

used to print to the standard error:

if (how_many_floats < 1)

 fprintf(stderr, "Bad scan -- probably bad characters\n");

Otherwise, the scanned float value is multiplied to confirm that the

conversion from bytes to a float instance indeed succeeded. The printf

function is hard-wired for printing to the standard output, just as the scanf

function is hard-wired for scanning from the standard input. In general,

error messages should have the standard error as their destination; hence,

the scanPrint function uses fprintf with stderr as the first argument.

Chapter 5 Input and Output

174

The last loop in the program is a while loop, and the loop’s condition is

a common one in programs that use high-level I/O to read from files:

while (fscanf(fptr, "%i", &n) != EOF) /* EOF == -1 == all 1s in

binary */

The value returned from fscanf in particular, and the related scanning

functions in general, is tricky:

•	 If fscanf is successful in reading and converting, it

returns the number of such successes. This number

could be zero, which does not represent an input error,

but rather a data conversion failure.

•	 If an end-of-stream condition occurs before a successful

scan-and-convert, the function returns -1 (the value of

the macro EOF). The high-level API also includes the

function feof(), which returns true (nonzero) to signal

end of file and false (zero) otherwise.

•	 If an input error occurs (e.g., the data source is absent),

fscanf also returns -1.

At issue, then, is how to distinguish between EOF, a normal eventuality

when reading from a stream, and an outright error. The library function

ferror returns nonzero (true) to indicate an error condition in the

stream, and the global variable errno contains an error code under

the same condition; as usual, the perror function can be used to print

a corresponding error message. For the programmer, however, the

difference may not matter: fscanf returns a negative value to signal, in

effect, that a scan-and-convert operation on a stream has failed. The

ferror function and the errno variable then can be used, if needed, to get

more information on why the failure occurred.

Chapter 5 Input and Output

175

A final point about EOF is in order. The EOF value (32 1s in binary)

marks the end of a stream, and streams can differ in their sources. If the

source is a file on a local disk, then the EOF is generated when a read

operation tries to read beyond the last byte stored in the file. If the source

is a pipe, a one-way channel between two processes, then the EOF is

generated when the pipe is closed on the sending side. An EOF thus should

be treated as a condition, rather than as just another data item. To be sure,

a program recognizes the EOF condition by reading the 32 bits that make

up the EOF value; but these 32 bits differ in meaning from whatever else

happens to be read from the stream.

High-level I/O is appropriately named, for this level focuses on

the multibyte data types that are dominant in high-level programming

languages. There may be times at which any program must drop down to

the byte level, but the usual level is awash with integers, strings, floating-

point values, and other instances of multibyte types. C works well at either

I/O level. Other technical aspects of high-level I/O will be explored in

forthcoming examples, which provide context for exploring this API.

5.6. � Unbuffered and Buffered I/O
There is yet another way to contrast low-level and high-level I/O: low-level

I/O operations are said to be unbuffered, whereas the high-level ones are

said to be buffered. It is important, however, to consider carefully what

it means for low-level I/O to be unbuffered. A buffer in this context is a

system-supplied, in-memory storage area between the executing program,

on the one side, and the data source, on the other side.

Consider a code segment that reads a single byte:

char byte;

read(fd, &byte, 1); /* fd identifies a local disk file */

Chapter 5 Input and Output

176

For reasons of efficiency, no modern operating system would fetch a

single byte from disk into memory. Instead, the system would fetch a block

of bytes into a memory buffer and then deliver the single byte from this

buffer to the program:

 block of bytes +---------------+ 1 byte to read

local disk---------------->| memory buffer |---------------->read(fd, &byte, 1)

 +---------------+

To call low-level I/O unbuffered is not to deny system buffering

under the hood. Instead, the point is that the low-level API supports the

reading of just one byte, regardless of exactly how that byte might have

been delivered to the program that invokes the read function with a third

argument of 1.

The high-level fread function is essentially a wrapper around the

low-level read function. Each can read a single byte:

char byte;

read(0, &byte, 1); /* one byte from standard input */

fread(&byte, 1, 1, stdin); /* ditto */

There are also high-level functions such as fgetc that seem to read a

single byte, as the c for char in the function’s name suggests. But the return

type for fgetc and related high-level functions is int, not char. The fgetc

function, like its high-level cousins, returns EOF to signal the end-of-stream

condition, and EOF is a 4-byte int value. In situations other than EOF, the

fgetc function returns a byte packaged in an int whose high-order 24 bits

are zeroed out; the byte of interest occupies the low-order 8 bits.

Chapter 5 Input and Output

177

Listing 5-7.  A program contrasting read and fgetc

#include <unistd.h>

#include <stdio.h>

void main() {

 int i = 0, n = 8;

 char byte;

 /* unbuffered */

 while (i++ < n) {

 read(0, &byte, 1); /* read a single byte */

 write(1, &byte, 1); /* write it */

 }

 /* buffered */

 i = 0;

 while (i++ < n) {

 int next = fgetc(stdin); /* char read in a 4-byte int */

 fputc(next, stdout); /* char written as a 4-byte int */

 }

 putchar('\n');

}

/* stdin is: 12345678abcdefgh */

The buffer program (see Listing 5-7) contrasts byte-fetching in the

low-level and the high-level APIs. The low-level read stores the byte in a

char variable, and sizeof(char) is guaranteed to be 1 byte. By contrast,

the high-level fgetc function returns a 4-byte int. From the command

line, the program can be tested against the in.dat file, whose contents are

shown in the comment at the bottom:

% buffer < in.dat

Chapter 5 Input and Output

178

Otherwise, all 16 characters should be entered at once from the

keyboard, and only then should the Return key be hit.

The traditional contrast between buffered and unbuffered I/O can be

misleading, as emphasized in the previous discussion. It is more useful to

focus on program requirements. If a program needs to work directly with

bytes, then the low-level API is designed to do precisely this. If a program

deals mostly with multibyte types but occasionally drops down to the byte

level, then the high-level API, which includes wrappers such as fread for

low-level functions, is the sensible alternative.

5.7. � Nonblocking I/O
Nonblocking I/O has become a popular technique for boosting

performance. For example, a production-grade web server is likely to

include nonblocking I/O in the mix of acceleration techniques. The

potential boost in performance is likewise a challenge to the programmer:

nonblocking I/O is simply trickier to manage than its blocking counterpart.

As the name indicates, nonblocking I/O operations do not block—that

is, wait—until a read, write, or other I/O operation completes. Consider

this code segment in system-level I/O:

int n; /* 4 bytes */

read(fd, &n, sizeof(int)); /* blocking read operation */

printf("%i\n", n); /* �next statement after

blocking read */

The file descriptor fd might identify a local file on the disk but also

a less reliable source of bytes such as a network connection. If the read

operation in the second statement blocks, then the printf statement

immediately thereafter does not execute until the read call returns,

perhaps because of an error.

Chapter 5 Input and Output

179

If the read call were nonblocking, the code segment would need a

more complicated approach. A nonblocking call returns immediately, and

there are now various possibilities to consider, including the following:

•	 The read call got all of the expected bytes, in this

case four.

•	 The read call got only some of the expected bytes and

perhaps none at all.

•	 The read call encountered an error or end-of-stream

condition.

The program now needs logic to handle such cases. Consider the

second case. If one call to a nonblocking read gets only some of the

expected bytes, then these bytes need to be saved, and another read

attempted to get the rest. Perhaps a loop becomes part of the read logic:

loop until all of the expected bytes arrive or an error occurs. At the very

least, it seems that the printf statement would need to occur inside

an if test that checks whether enough bytes were received to go on with

the printf.

IS NONBLOCKING I/O THE SAME AS ASYNCHRONOUS I/O?

The use of the terms blocking/nonblocking and synchronous/asynchronous
varies enough to rule out a simple yes or no answer. My preference is for

the blocking/nonblocking pair because they seem more intuitive. That said,

code examples are the best way to clarify exactly what these terms mean in

practice.

Chapter 5 Input and Output

180

5.7.1. � A Named Pipe for Nonblocking I/O
The next code example uses the nonblocking read operation as

representative of nonblocking I/O operations in general. For the example

to be realistic, it should have two features:

•	 The data consumed in a nonblocking read operation

should arrive randomly; otherwise, the nonblocking

reads might behave exactly as blocking reads

would have.

•	 After an attempted nonblocking read operation, the

program should have meaningful work to do before the

next read operation: the appeal of nonblocking I/O is

that it frees up a program to do something else besides

just waiting for an I/O operation to complete.

Accordingly, the code example consists of two programs: one writes

in a pseudorandom fashion to a named pipe, and the other reads from

this pipe. A pipe is a connection between processes, and one way in that

one end of the pipe is for writing, and the other is for reading. There are

both unnamed (or anonymous) and named pipes, both of which are used

widely across modern systems for interprocess communication. A later

example covers unnamed pipes.

Unix-like systems, and Cygwin for Windows, have command-line

utilities that make it easy to demonstrate named pipes. The steps are as

follows:

	 1.	 Open two terminal windows so that two command-

line prompts are available. The working directory

should be the same for both command-line

prompts.

Chapter 5 Input and Output

181

	 2.	 In one of the terminal windows, enter these two

commands (my comments start with ##):

% mkfifo tester ## �creates special file named tester,

which implements the pipe

% cat tester ## �type the pipe's contents to the

standard output

To begin, nothing should appear in the window

because nothing has been written yet to the

named pipe.

	 3.	 In the second terminal window, enter the following

command:

% cat > tester ## redirect keyboard input to the pipe

hello, world! ## then hit Return key

bye, bye ## ditto

<Control-C> ## terminate session with a Control-C

Whatever is typed into this terminal window is echoed

in the other. Once Control-C is entered, the regular

command-line prompt returns in both windows: the

pipe has been closed.

	 4.	 For cleanup, remove the file that implements the

named pipe:

% rm tester

As the name mkfifo suggests, a named pipe also is called a fifo for first

in, first out (FIFO). A named pipe implements the FIFO discipline so that

the pipe acts like a normal queue: the first byte into the pipe is the first byte

out, and so on. There is also a library function named mkfifo, which is

used in the next code example.

Chapter 5 Input and Output

182

Listing 5-8.  A named pipe writer

#include <fcntl.h>

#include <unistd.h>

#include <time.h>

#include <stdlib.h>

#include <stdio.h>

#include <sys/stat.h>

#include <sys/types.h>

#define MaxLoops 12000 /* outer loop */

#define ChunkSize 16 /* how many written at a time */

#define IntsPerChunk 4 /* four 4-byte ints per chunk */

#define MaxZs 250 /* max microseconds to sleep */

void main() {

 const char* pipeName = "./fifoChannel";

 �mkfifo(pipeName, 0666); �/* read/write for user/group/

others */

 �int fd = open(pipeName, O_CREAT | O_WRONLY); �/* open as

write-only */

 sleep(2); /* give user a chance to start the fifoReader */

 int i;

 �for (i = 0; i < MaxLoops; i++) { �/* write MaxWrites

times */

 int j;

 �for (j = 0; j < ChunkSize; j++) { �/* each time, write

ChunkSize bytes */

 int k;

 int chunk[IntsPerChunk];

Chapter 5 Input and Output

183

 for (k = 0; k < IntsPerChunk; k++)

 chunk[k] = rand();

 write(fd, chunk, sizeof(chunk));

 }

 usleep((rand() % MaxZs) + 1); /* pause a bit for realism */

 }

 close(fd); /* �close pipe: generates an

end-of-file */

 unlink(pipeName); /* �unlink from the

implementing file */

 �printf("%i ints sent to the pipe.\n", MaxLoops * ChunkSize *

IntsPerChunk);

}

The fifoWriter program (see Listing 5-8) creates and then writes

sporadically to the named pipe called fifoChannel. Two statements at the

start do the setup:

mkfifo(pipeName, 0666); /* read/write for user/group/others */

int fd = open(pipeName, O_CREAT | O_WRONLY); �/* open as

write-only */

The first statement calls the library function mkfifo with two

arguments: the name of the implementing file and the access permissions

in octal. The second statement invokes the by-now-familiar open function,

specifying that the file underlying the named pipe be created if necessary;

the fifoWriter is restricted to write operations because of the O_WRONLY flag.

The fifoWriter then pauses for two seconds to give the user a chance

to start the other program, the fifoReader. The fifoWriter needs to start

first because it creates and opens the named pipe; but the two-second

pause is there only for convenience. The fifoWriter program then loops

Chapter 5 Input and Output

184

MaxLoops times (currently 12,000), writing multibyte chunks rather than

single bytes to the pipe. A chunk is an array of four 4-byte int values.

After writing the bytes to the pipe, the program pauses a pseudorandom

number of microseconds, thereby making the write operations somewhat

unpredictable. In all, the fifoWriter writes 768,000 int values to the pipe.

The program does cleanup at the end. The file descriptor fd is used to

close the pipe, which generates an end-of-file signal for the reader side.

The call to the unlink function unlinks the fifoWriter program from the

implementation file fifoChannel. When all of the processes connected

to the pipe unlink, the system is free to remove the file. In the current

example, there is only a single writer process to the pipe and a single

reader process from the pipe; hence, only two unlink operations are

required.

Listing 5-9.  A named pipe reader

#include <fcntl.h>

#include <unistd.h>

#include <time.h>

#include <stdlib.h>

#include <stdio.h>

#include <sys/stat.h>

#include <sys/types.h>

unsigned is_prime(unsigned n) { /* not pretty, but efficient */

 if (n <= 3) return n > 1;

 if (0 == (n % 2) || 0 == (n % 3)) return 0;

 unsigned i;

 for (i = 5; (i * i) <= n; i += 6)

 if (0 == (n % i) || 0 == (n % (i + 2))) return 0;

 return 1;

}

Chapter 5 Input and Output

185

void main() {

 const char* file = "./fifoChannel";

 �int fd = open(file, O_RDONLY | O_NONBLOCK); �/* non-

blocking */

 if (fd < 0) return; /* no point in continuing */

 unsigned primes_count = 0, success = 0, failure = 0;

 while (1) {

 int next;

 int i;

 ssize_t count = read(fd, &next, sizeof(int));

 if (0 == count)

 break; /* end of stream */

 �else if (count == sizeof(int)) { �/* read a 4-byte int

value */

 success++;

 if (is_prime(next)) primes_count++;

 }

 else /* �includes errors, and <

4 bytes read */

 failure++;

 }

 close(fd); /* close pipe from read end */

 unlink(file); /* unlink from the underlying file */

 �printf("Success: %u\tPrimes: %u\tFailure: %u\n",

success, primes_count, failure);

}

Chapter 5 Input and Output

186

The fifoReader program (see Listing 5-9) reads from the named pipe

that the fifoWriter creates and then populates with chunks of int values.

The program configures the pipe for nonblocking read operations with the

O_NONBLOCK flag passed as an argument to the open function:

int fd = open(file, O_RDONLY | O_NONBLOCK); /* non-blocking */

The utility function fcntl also could be used to set the nonblocking

status, as illustrated shortly. The program tries to read int values from

the pipe:

ssize_t count = read(fd, &next, sizeof(int)); �/* 4-byte int

values */

Recall that the fifoWriter writes an array of four int values at a time

and does so sporadically. Because the read operation in the fifoReader is

nonblocking, three cases are singled out for application logic:

•	 If the read function returns 0, this signals an end-of-

stream condition in the named pipe: no further bytes

are coming from the one and only writer, and so the

fifoReader breaks out of its infinite loop.

•	 If the read function yields exactly 4 bytes, then the

program checks whether the integer value is a prime;

this check represents the do something step before

attempting the next read operation.

•	 If the read function fails to read exactly 4 bytes, or

detects an error condition of any kind, then the

program records the failure. The fifoReader program

does not distinguish between partial reads (e.g., 2

bytes instead of the expected 4) and miscellaneous but

nonfatal errors.

Chapter 5 Input and Output

187

The fifoReader, like the fifoWriter, cleans up by closing the named

file and unlinking from the implementation file. The fifoReader generates

a short report at the end. On a sample run, the output (formatted for

readability) was

Success: 768,000 Primes: 37,682 Failure: 31,642,062

Recall that the thirty-one million or so failures cover partial reads

(read returns less than sizeof(int)) and nonfatal errors. In the end, the

fifoReader does manage to read all of the 768,000 4-byte integer values

that the fifoWriter writes to the pipe; but the fifoReader has plenty of

unsuccessful reads as well: the fifoWriter sleeps between write operations,

which gives the fifoReader ample opportunity to attempt nonblocking read

operations doomed to fail because no unread bytes remain in the channel.

In short, the output from the fifoReader is not surprising.

The fifoReader program has a dismal record of successful reads: about

2% of its read operations succeed in getting desired 4-byte int values,

and the remaining read operations fail. The next chapter introduces an

event-driven approach to read operations. This new approach first checks a

channel for available bytes before even attempting a read operation.

The fifoReader program uses a flag passed to the open function to set

the nonblocking status. The standard libraries include an fcntl utility,

declared in the header file fcntl.h, that can do the same. The fcntl

function has many uses and a correspondingly long documentation.

Listing 5-10.  A function to set the nonblocking feature

unsigned set_nonblock(int fd) {

 int flags = fcntl(fd, F_GETFL); /* �get the current

flag values */

 if (-1 == flags) return 0; /* �on error, return

false */

Chapter 5 Input and Output

188

 flags |= O_NONBLOCK; /* �add non-

blocking */

 return -1 != fcntl(fd, F_SETFL, flags); /* �1 == success, 0 ==

failure */

}

The setNonBlock example (see Listing 5-10) shows how a file descriptor

can be used to change the status from blocking to nonblocking. The set_

nonblock function takes a file descriptor as its only argument and returns

either true (1) or false (0) to signal whether the attempt succeeded. The

function first gets the flags currently set (e.g., O_CREAT and O_RDONLY); if

an error occurs here, false is returned. Otherwise, the function adds the O_

NONBLOCK flag and then uses the fcntl function for updating. If the update

succeeds, set_nonblock returns true, and false otherwise.

5.8. � What’s Next?
Network programming centers on the socket API, where a socket is an

endpoint in a point-to-point connection between two processes. If the

processes are running on physically distinct hosts (machines), a network

socket is in play. If the processes are running on the same host, a domain

socket could be used instead. (Domain sockets are a popular way for large

systems, such as database systems, to interact with clients.) The very same

I/O API used to interact with disk files works with sockets as well. Sockets,

unlike pipes, are bidirectional.

This chapter has focused on I/O operations on a single machine.

The next chapter broadens the study to include I/O operations across

machines, and the chapter also explores an event-driven alternative to the

nonblocking I/O introduced in this chapter.

Chapter 5 Input and Output

189

CHAPTER 6

Networking

6.1. � Overview
Network programming brings challenges beyond the details of yet

another API. Networks can be brittle, as connections go down for reasons

that may be hard to determine. Performance can vary widely because

of network load. Programs must be sufficiently robust to deal with such

issues and to anticipate the many others that come with the territory.

Debugging network applications is harder, in general, than debugging

ones that involve only a single machine. Given the challenges of network

programming, it is no surprise that library functions in its support can

seem subtle, complicated, and even overwhelming. This chapter uses

relatively short but realistic examples to illustrate the challenges and

sound ways to address them. After a few more introductory points, the

discussion moves to a series of code examples.

Table 6-1.  The basic protocol stack

Acronym Meaning Comments

HTTP Hyper Text Transport Protocol Web servers and their clients

TCP Transmission Control Protocol Connection-oriented, reliable

UDP User Datagram Protocol Connectionless, best-try

IP Internet Protocol Addressing: symbolic and numeric

© Martin Kalin 2022
M. Kalin, Modern C Up and Running, https://doi.org/10.1007/978-1-4842-8676-0_6

https://doi.org/10.1007/978-1-4842-8676-0_6

190

Table 6-1 lists the protocols of interest in the forthcoming examples.

The protocol stack shown in the table has IP at the bottom and HTTP at

the top: IP handles network addressing, and HTTP manages conversations

between web servers and their clients. The HTTP protocol sits atop TCP,

which is connection-oriented: the protocol sets up a connection between

the endpoints before any data are transmitted. This connection-oriented

feature contrasts with the best-try character of UDP. Under UDP, a sender

sends a datagram to a receiver, but the receiver does not acknowledge

automatically the receipt of the transmitted packet. Further, there is no

error sent to the sender if the datagram gets lost. TCP adds error reporting,

acknowledgment, and other services to the underlying UDP layer. HTTP, in

turn, specializes the features inherited from TCP. The web socket protocol

so popular in interactive web-based applications is built on top of TCP as

well and has less overhead than HTTP.

The socket API has settings that reflect the different protocol layers

shown in Table 6-1. Each of the protocols supports some level of

configuration, which is done through a mix of utility functions and flags.

The socket API must be complicated, in short, because the underlying

protocol stack is so.

The library functions exposed in the socket API have been fine-tuned,

reworked, and even obsoleted over time. Again, this is to be expected: the

protocols themselves have changed. For example, the IP protocol comes

in versions such as IPv4 and IPv6. The move from IPv4 to IPv6 is a major

one in that Internet addresses go from 32 to 128 bits. The code examples

address this versioning issue.

6.2. � A Web Client
The first code example, a web client, is divided into two source files for

convenience. The file web_client.c contains the high-level application

logic: connect to a web server, send a request, and print the response.

Chapter 6 Networking

191

The file get_connection.c contains the low-level networking details such

as determining the type of connection (UDP or TCP) to the server, the

amount of time a read operation should wait on a response before timing

out, and so on. (The next sidebar describes a Makefile for compiling the

files into an executable.)

Listing 6-1.  A basic web client

#include <unistd.h> /* low-level I/O */

#include <string.h>

#include <stdio.h>

#include <stdlib.h> /* exit */

#include <errno.h>

#define BuffSize 2048 /* bytes */

extern int get_connection(const char*, const char*);

 /* declaration */

void main() {

 �const char* host = "www.google.com"; �/* symbolic IP

address */

 �const char* port = "80"; �/* standard port for

HTTP connections */

 �const char* request = "GET / HTTP/1.1\nHost: www.google.

com\r\n\r\n";

 ssize_t count;

 char buffer[BuffSize];

 /* connect */

 int sock_fd = get_connection(host, port);

 if (sock_fd < 0) {

 fprintf(stderr, "Can't connect\n");

 exit(-1);

 }

Chapter 6 Networking

192

 /* send request */

 if (write(sock_fd, request, strlen(request)) < 0) {

 fprintf(stderr, "Can't write request\n");

 exit(-1);

 }

 /* get and write response */

 unsigned read_count = 0, total_bytes = 0;

 �memset(buffer, 0, BuffSize); /* clear the buffer for reading */

 while (1) {

 count = read(sock_fd, buffer, sizeof(buffer));

 �if (EWOULDBLOCK == errno || 0 == count) break;

/* EWOULDBLOCK on timeout */

 �if (-1 == count) continue; /* continue on non-fatal

error */

 write(1, buffer, count);

 read_count++; total_bytes += count;

 }

 close(sock_fd);

 �fprintf(stderr, "\n\n%u bytes read in %u separate reads.\n",

total_bytes, read_count);

}

The file web_client.c (see Listing 6-1), one of the two source files in

the webclient program, uses the familiar read and write functions to

communicate with a web server, in this case a Google HTTP server. A

socket, just like a file on the local disk, has a file descriptor as its identifier.

In addition to the read and write functions, the socket API also has send

and recv functions, which take four arguments instead of the three in read

and write. The fourth argument, in both cases, allows for configuration

through various flags.

Chapter 6 Networking

193

The webclient program initializes two strings, host and port, which

specify the symbolic IP address for the Google server and the port number:

www.google.com and 80, respectively. The port number 80 is the default for

HTTP connections, just as 443 is the default port for HTTPS connections.

Instead of the symbolic IP address, the program could have used the IPv4

dotted-decimal address 216.58.192.132, each of whose four parts is 8 bits

in size. The IP address and port number are sent as arguments to the get_

connection function, which returns either the file descriptor for a socket

(success) or -1 (failure). In case of failure, the webclient program exits after

an error message.

WHAT’S A MAKEFILE?

The webclient program consists of two source files. It can be tedious to

compile multiple files into an executable. The make utility, available on most

Unix-like systems and through Cygwin, automates the process. Here is a bare-

bones Makefile (with Makefile as its name), which the make utility reads by

default:

webclient: web_client.c get_connection.c

 gcc -o webclient web_client.c get_connection.c

The first line lists the target (webclient) and its dependencies, with a colon as

the separator. The dependencies consist of the two source files in any order.

The second line begins with a single tab character, not blanks. This line is

the command to be executed, in this case a familiar gcc command. At the

command line, invoke the make utility:

% make ## reads Makefile, follows the instructions

Far more extravagant examples of Makefile are available on the Web.

Chapter 6 Networking

http://www.google.com/

194

The webclient program has a third string literal, which holds the

request. In more readable form, the request is

GET / HTTP/1.1 ## �start line: verb (GET), noun (URI /),

HTTP version (1.1)

Host: www.google.com ## required header element in HTTP 1.1

The first line is the HTTP start line, consisting of the HTTP method

(verb) named GET: a GET request is a read request, whereas a POST

request is a create request (e.g., a POSTed order form is a request to create

an order). After the start line come arbitrarily many header elements, or

headers for short. These are key/value pairs, with a colon as the separator.

Under HTTP 1.1, the host header, which specifies the device address

to which the request is being sent, is required; but a half-dozen or so

headers is typical. The headers section ends with two carriage-return/

newline combinations. (Two newlines are likely to work.) A GET request

has no HTTP body, and so is complete as shown. In the start line, the

URI (Uniform Resource Identifier) is the single slash, which web servers

typically interpret as the identifier for their home page. In effect, then,

the start line and the host header make up a read request for Google’s

home page.

The write function, with the socket’s descriptor as its first argument, is

used to send the request to the server. As usual in network programming,

there is a check for an error condition: the write could fail for any number

of reasons; if it does so, there is no point in continuing. Next comes a loop

to read the server’s response. There are some subtle issues to consider, as a

closer analysis of client’s connection to the web server will indicate.

Web servers typically keep client connections alive so that repeated

request/response pairs can use the original connection. The motive, of

course, is efficiency. Also, a web server is likely to chunk its response, that

is, break the requested document (in this case, Google’s HTML home

page) into parts, transmitting each of these separately. The webclient

Chapter 6 Networking

195

program has a read buffer of about 2KB (kilobytes). On a sample run, the

program printed out this report:

48431 bytes read in 34 separate reads.

The Google home page is a hefty 48K bytes, and these were fetched

in 34 separate read operations. The chunks of data from the various read

operations vary in size.

How much time should be allowed between responses from the

server? This is a question without an obvious answer. Whatever the answer,

the socket API supports a timeout on a blocking read operation, which is in

use here. For review, here are the three critical lines in the while loop that

reads the Google response:

count = read(sock_fd, buffer, sizeof(buffer));

if (EWOULDBLOCK == errno || 0 == count) break; �/* EWOULDBLOCK

without a

timeout */

if (-1 == count) continue; �/* continue on non-fatal

error */

If the blocking read operation times out, there is a signal with an aptly

named error code EWOULDBLOCK, which says that the read operation would

have continued to block except for the interrupting signal. If the blocking

times out, the program assumes that no further response bytes are coming.

Recall that read returns 0 on an end-of-byte-stream condition. In this

case too, there is a break out of the while loop. If any other nonfatal error

should occur (the -1 test), then execution of the while loop continues: the

continue statement moves control directly to the loop condition, in this

case bypassing the write operation to the standard output.

Chapter 6 Networking

196

6.2.1. � Utility Functions for the Web Client
The utility functions for the webclient program are broken out into their

own file. These functions handle the networking details such as the

protocol to be used, the address information of the web server, and the

amount of time the client should wait for bytes from the server.

Listing 6-2.  Utility code for the web client

#include <sys/types.h>

#include <sys/socket.h>

#include <netdb.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

#include <fcntl.h>

int get_connection(const char* host, const char* port) {

 struct addrinfo hints, *result, *next;

 int sock_fd, flag;

 �memset(&hints, 0, sizeof(struct addrinfo)); /* zero out the

structure */

 �hints.ai_family = AF_UNSPEC; /* IPv4 or IPv6 */

 �hints.ai_socktype = SOCK_STREAM; �/* connection-

based, TCP */

 �hints.ai_flags = 0; /* various possibilities here */

 �hints.ai_protocol = 0; /* any protocol */

 �if ((flag = getaddrinfo(host, port, &hints, &result)) < 0)

{ /* error? */

Chapter 6 Networking

197

 fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(flag));

 /* messages */

 exit(-1); /* failure */

 }

 /* Iterate over the list of addresses until one works. */

 for (next = result; next; next = next->ai_next) {

 �sock_fd = socket(next->ai_family, next->ai_socktype,

next->ai_protocol);

 if (-1 == sock_fd) continue; /* failure */

 �if (connect(sock_fd, next->ai_addr, next->ai_addrlen) !=

-1) break; /* success */

 close(sock_fd); /* close and try again */

 }

 if (!next) {

 fprintf(stderr, "can't find an address\n");

 exit(-1);

 }

 freeaddrinfo(result); /* clean up storage no longer needed */

 /* Set a timeout on read operations. */

 struct timeval timeout;

 timeout.tv_sec = 2; /* seconds */

 timeout.tv_usec = 0;

 if (setsockopt(sock_fd, SOL_SOCKET, SO_RCVTIMEO,

 (char*) &timeout, sizeof(timeout)) < 0) {

 fprintf(stderr, "setsockopt failed\n");

 exit(-1);

 }

 return sock_fd;

}

Chapter 6 Networking

198

The code in the file get_connection.c (see Listing 6-2) handles the

networking details. This code also illustrates various points made

throughout earlier chapters. At the center is the data type struct

addrinfo, which encapsulates information about an IP address. The

program declares a variable hints of this type and then initializes the

structure’s fields with information that provides hints to the library

function getaddrinfo. One hint is that the program could deal with either

an IPv4 or an IPv6 address (AF_UNSPEC for address family unspecified),

and a second hint is that the program wants a reliable connection (SOCK_

STREAM vs. SOCK_DGRAM), which is typically TCP based. Two other fields

are initialized to zero, indicating that the webclient program defers to the

library function to make the default choices.

A pointer to the hints structure is one of the arguments to library

function getaddrinfo. Here is a summary of the four arguments passed to

this function:

•	 The host argument is www.google.com, the symbolic IP

address.

•	 The port argument is 80 as a string, the standard

server-side port number for accepting HTTP

connections.

•	 The third argument is &hints: a pointer to the hints

structure, rather than a copy of it.

•	 The last argument is the pointer results of type struct

addrinfo*: the library function sets this pointer to the

address of a structure that contains the information

about available addresses for the Google server.

A successful call to getaddrinfo may contain several addresses for the

Google server; hence, a for loop is used to iterate over the options, picking

the first one that supports a connection. Two key library functions are in

play in the loop:

Chapter 6 Networking

https://www.google.com

199

•	 The socket function returns a file descriptor on

success.

•	 The connect function uses the file descriptor and

address information to attempt a connection to a host.

The socket and connect functions both return -1 on failure. Once the

program confirms that a usable network address is in hand, the program

frees the dynamically allocated storage to which result points. The library

function freeaddrinfo does whatever nested freeing may be needed, and

so this function rather than the regular free function should be used.

The last configuration in this utility code involves setting a timer on

the socket. The relevant type is struct timeval, and the library function

is setsockopt. In this example, the timer applies only to read operations

because of the SO_RCVTIMEO (receive timeout) flag. The timeout can be

set in a mix of seconds and microseconds; in this example, the socket is

configured to time out after two seconds of waiting.

After fetching Google’s home page from www.google.com, the webclient

program prints the HTML document to the standard output. If the

program is run, there likely will be a pause of two seconds or so after the

printing but before the program exits. There is no magic in the two-second

timeout, of course; the example invites experimentation.

6.3. � An Event-Driven Web Server
In an earlier example, the fifoReader (recall Listing 5-9) did nonblocking

read operations on a named pipe. The fifoWriter sporadically populated

this pipe with 16-byte chunks, each chunk consisting of four 4-byte int

values. The fifoReader, in turn, tried to read 4 bytes, or one int value, at

a time. Most of the read operations by the fifoReader failed to deliver the

integer values, although all of the int values eventually were read. Indeed,

only about 2% of the read operations yielded the expected int value—a

Chapter 6 Networking

http://www.google.com/

200

failure rate of 98%! The approach taken in the code example was crude

and inefficient and designed only to introduce the nonblocking API. The

fifoReader tried, on every loop iteration, to read whatever happened to be

available in the named pipe. But the fifoWriter paused a random amount

of time between write operations so that there was a discontinuous byte

stream from the writer to the reader. The odds were overwhelmingly

against successful nonblocking read operations by the fifoReader.

A different approach can improve the efficiency of read operations

and also make application logic easier to follow. The approach involves a

division of labor:

•	 A library function monitors a channel to detect whether

there are bytes to read.

•	 The application can query the monitor function before

even attempting a read operation: if the monitor

detects nothing to read, the application does not bother

to attempt a read operation.

Under this approach, the odds of successful read operations should

improve dramatically. Moreover, there is no need to use nonblocking

reads, as the monitor itself blocks until it detects bytes to be read.

Various C libraries have emerged, over time, for performing the

monitoring task, with epoll and kqueue as some recent examples.

A good place for an overview and analysis is the C10K project

at www.kegel.com/c10k.html. The forthcoming webserver program code

introduces the select library function, which has a long history in C.

Before moving on to the web server program, however, it may be

helpful to look at a simpler example of how select works. The next code

example uses the select function to check whether there are bytes to read

from the standard input. If so, a single byte is read and then written to the

standard output; if not, an appropriate message is printed.

Chapter 6 Networking

http://www.kegel.com/c10k.html

201

Listing 6-3.  Introducing the select function

#include <stdio.h>

#include <stdlib.h>

#include <sys/time.h>

#include <unistd.h>

void main() {

 fd_set fds; /* set of file descriptors */

 struct timeval tv;

 int flag;

 char byte;

 FD_ZERO(&fds); /* clear the set of fds */

 FD_SET(0, &fds); /* 0 == standard input */

 tv.tv_sec = 5;

 tv.tv_usec = 0;

 flag = select(FD_SETSIZE, /* how many file descriptors */

 &fds, /* file descriptors for readers */

 NULL, /* no writers */

 NULL, /* no exceptions */

 &tv); /* timeout info */

 if (-1 == flag)

 perror("select error");

 else if (flag) { /* flag == 1 == true */

 read(0, &byte, 1); /* read the byte */

 puts("data read");

 }

 if (flag)

 printf("The byte value is: %c\n", byte);

}

Chapter 6 Networking

202

The selectStdin program (see Listing 6-3) declares a variable of type

fd_set, which represents a set of file descriptors. The macro FD_ZERO

clears the set by zeroing out the variable, and the macro FD_SET adds a

file descriptor to the set—in this case, the file descriptor 0 for the standard

input is added. A timeout of five seconds is then configured using the

struct timeval variable tv.

The library function select holds center stage in the example. The

function, which blocks until the specified timeout occurs, is called with

five arguments:

•	 The first argument, FD_SETSIZE, is the count of the file

descriptors in the set, in this case 1. Normally, there

would be multiple file descriptors in the set.

•	 The second argument &fds is the address of readers set.

•	 The third and fourth arguments, both NULL, are

the addresses of the writers and exceptions sets,

respectively. In this example, only the readers set has a

member, and then only one.

•	 The fifth and final argument is the timeout

configuration, a pointer to the struct timeval

structure. If the timeout argument is NULL, the select

function waits (blocks) indefinitely.

The select function returns -1 on error. If there is a byte to read within

the timeout period of five seconds, select returns true to confirm the fact,

and the program then tries to read the byte. If the timeout occurs first,

there is no attempt to read because this would be wasted effort.

Chapter 6 Networking

203

6.3.1. � The webserver Program
The forthcoming webserver example puts the select function to practical

use. The program has three source files and a Makefile for convenience.

Two of the source files contain utility functions, whereas the code in the

third file implements the application logic. This logic can be summarized

now and analyzed in detail after the code displays. The summary ignores

technical details taken up later.

•	 For convenience, the server awaits connections on port

3000 rather than on the default port of 80. Port numbers

greater than 1023 do not require special administrative

privileges. There is a backlog of 100, which means that

up to 100 clients can be connected at the same time.

The server can be built and started from the command

line in the usual way:

% make

% ./web_server ## on Windows: % web_server

The server runs indefinitely, and so the program should

be shut down with Control-C or the equivalent.

•	 The server uses a set of file descriptors (fd_set).

To start, the only file descriptor in the set identifies

the original socket, an accepting socket that awaits

connecting clients. The file descriptor for this socket

remains in the fd_set from start to finish, but other file

descriptors—ones that represent read/write channels

to clients—are added to and removed from the set of

file descriptors.

Chapter 6 Networking

204

•	 Clients attempt to connect to the web server and then

to send requests. From the web server’s perspective,

the clients are in one of two states:

•	 A connecting client is trying to connect and has not

yet sent a request for the server to read.

•	 A requesting client has connected and is thus able

to send a request.

•	 If a connecting client succeeds in connecting, the file

descriptor for the socket is placed in the fd_set that the

select function monitors. The client’s request now can

be read when it arrives.

•	 If a requesting client is selected, its request is read,

and a response is written: the response echoes back

the request. After responding to a client, the server

removes the client from the fd_set.

6.3.2. � Utility Functions for the Web Server
The webserver program breaks out the utility functions into two separate

files. These functions handle the many low-level details from getting

the original file descriptor for the socket to logging information about a

connecting client and through sending a response back to a client.

Listing 6-4.  Utility functions for the web server

#include <netinet/in.h>

#include <string.h>

#include <stdio.h>

#include <arpa/inet.h>

#define BuffSize 256

Chapter 6 Networking

205

void log_client(struct in_addr* addr) {

 char buffer[BuffSize + 1];

 �if (inet_ntop(AF_INET, addr, buffer, sizeof(buffer)))

/* NULL? */

 fprintf(stderr, "Client connected from %s...\n", buffer);

}

void get_response(char request[], char response[]) {

 �strcpy(response, "HTTP/1.1 200 OK\n");

/* start line */

 �strcat(response, "Content-Type: text/*\n");

/* headers... */

 strcat(response, "Accept-Ranges: bytes\n");

 strcat(response, "Connection: close\n\n");

 �strcat(response, "Echoing request:\n");

/* body of response */

 strcat(response, request);

}

The servutils2.c file (see Listing 6-4) contains two utility functions. The

log_client function has one argument, a pointer to a struct in_addr

(Internet address). This structure contains information about the client,

including the client’s IP address. The log_client function calls the

library function inet_ntop (Internet name to protocol) with the structure

pointer as an argument; the library function generates a human-readable

string and puts the string in the caller-supplied buffer. If the web server

is running on localhost (127.0.0.1), and a request comes from this same

machine, then the message would be

Client connected from 127.0.0.1...

Chapter 6 Networking

206

The get_response function creates an HTTP-compliant response

consisting of an HTTP start line, four HTTP headers, and the HTTP body,

if any, that came with the request. (Recall that a POST request has a

body, whereas a GET request does not.) This response is sufficient for

development and initial testing.

Listing 6-5.  Core utilities for the webserver

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/socket.h>

#include <netinet/in.h>

#define Backlog 100

void report_and_exit(const char* msg) {

 fprintf(stderr, "%s\n", msg);

 exit(-1); /* EXIT_FAILURE */

}

int get_servsocket(int port) {

 struct sockaddr_in server_addr;

 /** create, bind, listen **/

 /* create the socket, make it non-blocking */

 �int sock_fd = socket(PF_INET, SOCK_STREAM, 0); /* internet

family, connection-oriented */

 if (sock_fd < 0)

 report_and_exit("socket(...)");

 /* bind to a local address: implementation details */

 memset(&server_addr, 0, sizeof(server_addr));

 server_addr.sin_family = AF_INET;

 server_addr.sin_addr.s_addr = INADDR_ANY;

Chapter 6 Networking

207

 �server_addr.sin_port = htons(port); /* host to network

endian */

 �if (bind(sock_fd, (struct sockaddr*) &server_addr,

sizeof(server_addr)) < 0)

 report_and_exit("bind(...)");

 /* listen for connections */

 �if (listen(sock_fd, Backlog) < 0) report_and_

exit("listen(...)");

 return sock_fd;

}

The principal function in the servrutils.c file (see Listing 6-5) is

get_servsocket, which takes a port number as its single argument. The

function performs the classic three steps for setting up a web server: create,

bind, and listen. Here are some details:

	 1.	 Create a socket with the library function socket. In

this example, the socket is in the IP protocol family

(PF_INET) and is connection based (SOCK_STREAM).

	 2.	 Bind the socket to a local port number, in this case

port 3000. A server_addr structure is used to store

the required information. The port number is

passed as an argument to the htons library function,

which converts local endian-ness to network endian-

ness. Recall that Intel machines are little endian,

whereas network protocols are big endian. The

library function of interest here is bind.

	 3.	 Listen for up to Backlog clients at a time, where

Backlog is 100. If 100 clients are connected already

to the server, then any would-be client gets a

Connection refused message. The library function

is listen.

Chapter 6 Networking

208

If there are no errors in the three steps, the get_servsocket function

returns the identifying file descriptor. Otherwise, the web server exits.

WHAT’S CURL?

The curl command-line tool (https://curl.haxx.se) can fetch data

through URLs. The tool is cross-platform and works with an impressive

number of protocols. The curl tool is used later to test the web server.

Listing 6-6.  A web server with select

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <netinet/in.h>

#include "servutils.h" /* function declarations */

#define BuffSize 250

int main() {

 const int port = 3000;

 char request[BuffSize + 1];

 memset(request, 0, sizeof(request));

 struct sockaddr_in client_addr;

 socklen_t len = sizeof(struct sockaddr_in);

 �fd_set active_set, temp_set; /* �temp_set becomes

a copy of

active_set */

 �FD_ZERO(&active_set); /* �clear the

active_set */

Chapter 6 Networking

https://curl.haxx.se

209

 int sock_fd = get_servsocket(port); /* �get the original

socket fd */

 FD_SET(sock_fd, &active_set); /* add it to the set */

 �fprintf(stderr, "Server awaiting connections on port

%i.\n", port);

 while (1) {

 �temp_set = active_set; /* make a working copy, as active_

set changes */

 �if (select(FD_SETSIZE, &temp_set, NULL, NULL, NULL) < 0)

/* activity? */

 report_and_exit("select(...)");

 int i;

 �for (i = 0; i < FD_SETSIZE; i++) { �/* handle the

current fds */

 �if (!FD_ISSET(i, &temp_set)) continue; �/* member of

the set? */

 if (i == sock_fd) { /** original accepting socket **/

 int client_fd = accept(sock_fd,

 (struct sockaddr*) &client_addr,

 &len);

 if (-1 == client_fd) continue; /* try again */

 log_client(&client_addr.sin_addr);

 �FD_SET(client_fd, &active_set); �/* add this fd to

select list */

 }

 else { /** read/write socket **/

 int bytes_read = read(i, request, BuffSize);

 if (bytes_read < 0) continue;

Chapter 6 Networking

210

 /* Send a response. */

 �char response[BuffSize * 2]; /* twice as big to

be safe */

 memset(response, 0, sizeof(response));

 get_response(request, response);

 �int bytes_written = write(i, response,

strlen(response));

 if (bytes_written < 0) report_and_exit("write(...)");

 close(i);

 FD_CLR(i, &active_set); /* remove from active set */

 }

 }

 }

 return 0;

}

The webserver program (see Listing 6-6) uses the select function and

its supporting macros such as FD_SET and FD_CLR to read client requests

and to write back responses. The salient points can be summarized as

follows:

•	 The primary setup is a call to the utility function

get_servsocket, which returns the file descriptor for

the socket, if successful; otherwise, the webserver exits

as there is no point in going on. For reference, this

first socket is the accepting socket because its job is to

accept client connections. The accepting socket is not

used as a channel to read requests and write responses.

Among the sockets used in the application, there is a

strong separation of concerns: one socket accepts client

connections, whereas all of the others act as read/write

channels between the web server and its clients.

Chapter 6 Networking

211

•	 The accepting socket’s file descriptor is added, using

the FD_SET macro, to the fd_set variable named

active_set. This file descriptor is the one permanent

member of the active_set.

•	 After a client connects, this socket’s file descriptor is

added to the active_set; after a client receives its

response, the same file descriptor is removed from the

active_set.

•	 The program has two loops: an outer while loop that

iterates indefinitely and an inner for loop that iterates

over a copy of the active_set named the temp_set. The

copy is important because of what happens in a loop

iteration. During a for loop iteration, file descriptors

may be added to and removed from the active_set:

added if a new client connects and removed if a client

receives a response. At the top of the outer while loop,

the active_set is thus copied into the temp_set, and

the iteration is over this temporary copy, which does

not change during for loop execution.

•	 The second statement in the while loop is a blocking

call to select, which monitors only the read set named

temp_set. There is no monitoring of writers and

exceptions (the third and fourth arguments), and the

select does not have a timeout: the select should

not return unless there is client activity of some kind—

connecting or requesting.

Chapter 6 Networking

212

•	 Once the select function returns, the inner for loop

iterates over the file descriptors in the temp_set. For

each member of this set, there are two possibilities:

•	 The file descriptor is of the single accepting socket;

hence, a client connection is pending. The program

uses the library function accept to finalize the

connection and to get the connecting socket’s

descriptor. This file descriptor is added to the

active_set to enable read/write operations later.

For reference, this socket is the client socket.

•	 The file descriptor is of a client socket used for

read/write operations. In this case, the client’s

request is read and then echoed back as a response.

Examples follow shortly. Once the response has

been sent, the socket’s descriptor is passed as an

argument to close, which effectively breaks the

connection. This descriptor also is removed from

the active_set. The conversation with the client is

short and sweet: the client sends one request and

gets one response in return.

6.3.3. � Testing the Web Server with curl
There are various ways to test the webserver program. For example,

the earlier webclient program might be used, but this program is not

sufficiently flexible to go beyond preliminary testing. The curl utility, by

contrast, is well suited for the task. As an example, the curl command

% curl localhost:3000?msg=Hello,world!

Chapter 6 Networking

213

generates the following response, with comments following ##:

Echoing request:

GET /?msg=Hello,world! HTTP/1.1 ## �GET request with a

query string

User-Agent: curl/7.35.0 ## user program is curl

Host: localhost:3000 ## localhost on port 3000

Accept: */* ## �accept any MIME type/

subtype combination

By contrast, the curl command

curl --data "name=Fred Flintstone&occupation=handyman"

localhost:3000

generates this response:

Echoing request:

POST / HTTP/1.1 ## POST, not GET

User-Agent: curl/7.35.0

Host: localhost:3000

Accept: */*

Content-Length: 40 ## �in bytes for

HTTP body

Content-Type: application/x-www-form-urlencoded

POSTed form

 ## two newlines end the headers

name=Fred Flintstone&occupation=handyman ## �body of

POST request

The webserver is an iterative rather than a concurrent server: the server

handles one request at a time, completing the response to a given request

before turning to the next request. In more technical terms, the webserver

program executes as a single process with a single thread of execution

Chapter 6 Networking

214

and thus uses neither of the standard concurrency mechanisms—

multiprocessing and multithreading. For development and testing, an

iterative server is acceptable and even preferable because it is relatively

easy to debug the connect/request/response trio. Modern languages

typically have libraries for development web servers (e.g., the Ruby

WEBrick library), and these web servers are typically iterative. However,

any production-grade web server is going to be concurrent. The next

chapter focuses on concurrency. The next section in this chapter moves

from HTTP to HTTPS to analyze wire-level security in web connections.

6.4. � Secure Sockets with OpenSSL
The S in HTTPS is for secure. Various security layers are suitable for sitting

atop HTTP, including SSL (Secure Sockets Layer, from Netscape) and TLS

(Transport Layer Security, derived from SSL). SSL and TLS are distinct but

sometimes lumped together as SSL/TLS.

Among the production-grade and most popular implementations of

SSL and TLS is OpenSSL (www.openssl.org/). OpenSSL also includes

a full library for cryptography: functions for message digests, digital

signatures, digital certificates, encryption/decryption, and more. OpenSSL

can be installed as a development environment—header files and

implementation libraries. Once OpenSSL is installed, the header files and

libraries are typically in openssl subdirectories such as in /usr/include/

openssl and /usr/lib/openssl, respectively.

HTTPS provides wire-level or transport-level security, as opposed to

users/roles security in which a user provides an identity (e.g., a login name)

and a credential (e.g., a password) to confirm the identity. The wire-level

security comprises three major services: peer authentication (mutual

challenge), confidentiality (data encryption/decryption), and reliability

(message sent equals message received). These are clarified in order.

Chapter 6 Networking

http://www.openssl.org/

215

Consider a scenario in which Alice and Bob exchange messages over a

channel:

 messages

Alice<------------>Bob

How does Alice know that it is Bob, and not an impostor, at the other

end? The same goes for Bob. The eavesdropper Eve might be in the

middle (man-in-the-middle attack), pretending to be both Alice and Bob,

thereby intercepting all of the messages sent in one direction or the other.

Alice and Bob need a procedure (peer authentication) so that each can

authenticate the other’s identity before any significant messages are sent

between them.

Peer authentication, as used in HTTPS, requires a key pair apiece for

Alice and Bob: a digital public key (distributable to anyone) and a digital

private key (secret to its owner). The public key is an identity. For example,

Amazon’s public key identifies Amazon, and Alice’s public key identifies

her. A public key can be embedded in a digital certificate, with a certificate

authority (CA) vouching for this key through the CA’s own digital signature

on the same certificate. For example, a CA such as VeriSign or RSA

vouches with its own digital signature that the public key on Alice’s digital

certificate indeed identifies Alice. The vouching may come with a fee,

of course.

Here is a scenario for peer authentication between Alice and Bob:

	 1.	 Alice sends a signed certificate request containing

her name, her public key, and some additional

information to a CA such as VeriSign or

RSA. Assume that the public key is unique.

	 2.	 The CA creates a message M from Alice’s request,

signing the message M with the CA’s own private

key, thereby creating a separate signature

message DSIG.

Chapter 6 Networking

216

	 3.	 The CA returns to Alice the message M with its

signature DSIG. Together M and DSIG form the core

of Alice’s certificate. The certificate has a from and a

to date together with some other information.

	 4.	 Alice sends her newly minted certificate to Bob, and

the certificate contains Alice’s public key.

	 5.	 Bob verifies the signature DSIG using the CA’s public

key. If the signature is verified, Bob accepts the

public key in the certificate as Alice’s public key, that

is, as her identity.

	 6.	 Bob repeats Alice’s steps.

There is, of course, a fly in this ointment. If Eve manages to get a copy

of Alice’s digital certificate and also manages to intercept an authentication

request from Bob to Alice, then Eve becomes indistinguishable from Alice.

To guard against this possibility, Bob might request from Alice several

digital certificates, each with a different signer and with different validity

dates. There also are certificates with more than one CA as a signer.

When it comes to peer authentication, there are precautions rather than

guarantees.

WHAT’S A MESSAGE DIGEST?

A message digest, also called a hash, is a fixed-length digest of input bits:

 +----------------+

N input bits--->| message digest |--->fixed-length digest

 +----------------+

Chapter 6 Networking

217

For example, SHA-1 (Secure Hash Algorithm 1) generates a 160-bit digest of

any input bits. Duplicate digests from different inputs are possible, but unlikely.

A digest is one-way secure: it is relatively easy to compute the digest, but it

is computationally intractable to go from the digest back to the original input

bits—even if the digest algorithm is known.

One more fly in the ointment deserves mention. As noted earlier, a

digital certificate contains a CA’s digital signature to vouch for the public

key on the certificate. What is a digital signature, and how is one to be

verified?

A digital signature is a message digest (see the sidebar) encrypted with

the private key from a key pair. To create her own digital signature, Alice

would create a message digest of information about her (e.g., name, city

of residence, employer’s name, and so on) and then encrypt this digest

with her private key. This signature then can be verified with the public

key from the same pair. If Bob has Alice’s public key, Bob can verify Alice’s

digital signature:

 +--------------+

Alice's public key---------->| verification |--->yes or no

Alice's digital signature--->| engine |

 +--------------+

Validating a CA’s digital signature requires the CA’s public key: a CA’s

public key is available on the CA’s own digital certificate, which in turn

has a digital signature as a voucher. Thus begins the verification regress.

At some point, of course, the regress stops because a digital signature is

accepted as valid.

Chapter 6 Networking

218

Listing 6-7.  A sample X.509 digital certificate

Certificate:

 Data:

 Signature Algorithm: md5WithRSAEncryption

 Iss�uer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte

Consulting cc,

 ...

 CN=Thawte Server CA/emailAddress=server-certs@thawte.com

 Validity

 Not Before: Aug 1 00:00:00 1996 GMT

 Not After : Dec 31 23:59:59 2028 GMT

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 RSA Public Key: (1024 bit)

 Modulus (1024 bit):

 00:d3:a4:50:6e:c8:ff:56:6b:e6:cf:5d:b6:ea:0c:

 ...

 3a:c2:b5:66:22:12:d6:87:0d

 Exponent: 65537 (0x10001)

 ...

 Signature Algorithm: md5WithRSAEncryption

 07:fa:4c:69:5c:fb:95:cc:46:ee:85:83:4d:21:30:8e:ca:d9:

 ...

 �b2:75:1b:f6:42:f2:ef:c7:f2:18:f9:89:bc:a3:ff:8a:2

3:2e:70:47

The dcert display (see Listing 6-7) shows parts from a sample digital

certificate, with Thawte as the CA. The public key algorithm is RSA, the

industry standard. The certificate also gives details about the digital

signature.

Chapter 6 Networking

219

With web sites as opposed to web services, peer authentication

typically becomes one-way authentication: the browser, as the client

application, challenges the web server to establish its identity through one

or more digital certificates, but the web server usually does not challenge

the browser. For web services, by contrast, the challenge may be mutual.

The second HTTPS service is confidentiality, achieved through the

encryption of sent messages and the corresponding decryption of received

messages:

 msg +---------+ encrypted msg +---------+ msg

Alice----->| encrypt |--------------->| decrypt |----->Bob

 +---------+ +---------+

Here is a depiction of how encryption and decryption work:

 +------------+ encrypted bits +------------+

plainbits------->| encryption |---------------->| decryption |--->plainbits

encryption key-->| engine | +------>| engine |

 +------------+ | +------------+

 decryption key--+

There are two general approaches to encryption/decryption,

depending on whether the same key is used for both operations:

•	 In the symmetric approach, the same key is used to

encrypt and decrypt. The upside is that this approach

is very efficient, about a thousand times faster than the

alternative explained in the following. The downside

is the key distribution problem: How is the key to be

distributed to both Alice and Bob?

Chapter 6 Networking

220

•	 In the asymmetric approach, one key is used to encrypt,

but a different key is used to decrypt. The upside is that

this approach solves the key-distribution problem.

For example, Alice can encrypt a message using Bob’s

public key, but only Bob can decrypt this message

because he has the one and only copy of his private key.

The downside is that this approach is about a thousand

times slower than the symmetric approach.

HTTPS uses a clever combination of the two approaches:

	 1.	 After the client and the server have agreed upon a

cryptographic suite of algorithms, and the client has

received at least one acceptable digital certificate

from the server during the authentication phase, the

client generates a premaster secret, bits that will be

used on both sides to generate a session key.

	 2.	 The client encrypts the premaster secret with the server’s

public key and sends the encrypted bits over the wire.

	 3.	 The server (and presumably the server alone) can decrypt

these encrypted bits using the server’s private key.

	 4.	 During the rest of the conversation between client

and server, the session key is used both to encrypt

and decrypt bits; hence, the symmetric approach is

now used for efficiency.

The third major HTTPS service, message reliability, checks whether

the sent message is the same as the received message:

 sent message received message

Alice-------------->...------------------>Bob �## Sent message

= received

message?

Chapter 6 Networking

221

Recall that the client and the server have settled on a cryptographic

suite, which includes a message digest (hash) algorithm. The sender

computes a hash of the message to be sent and sends the hash as well.

The receiver recomputes the hash locally, using the same algorithm, and

then checks whether the received hash matches the locally computed one.

Assume that the locally computed hash is correct. If the two hashes do not

match, then something in the sent message (the original message and/or

the sender’s hash) has been corrupted in transit; the message and a hash

need to be sent again.

The wcSSL program is an HTTPS client that exhibits the security

features discussed previously. The OpenSSL libraries do a nice job of

wrapping the usual HTTP client functions—create a socket, open a

connection, engage in a conversation, close the connection—within

security-enabled counterparts. The resulting flow of control is easy to

follow. For readability, the source code for wcSSL program is divided

among three files. A Makefile is included.

The three source files in the wcSSL program are as follows:

•	 The header file wcSSL.h has the required include

directives for the standard libraries and for

OpenSSL. This file also declares five utility functions

defined in the file wcSSLutils.c.

•	 The source file wcSSLutils.c defines five utility

functions, which are clarified shortly.

•	 The source file wcSSL.c contains the high-level logic.

The code tries to open an HTTPS connection to Google;

calls a stub function to verify the Google certificate;

sends a request over the now encrypted channel;

and prints the response, which again is the Google

home page.

Chapter 6 Networking

222

Listing 6-8.  The header file wcSSL.h

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <openssl/bio.h>

#include <openssl/ssl.h>

#include <openssl/x509.h>

#include <openssl/x509_vfy.h>

extern void report_exit(const char* msg);

extern void load_SSL();

extern int verify_dc(int ver, X509_STORE_CTX* x509_ctx);

extern void view_cert(SSL* ssl, BIO* out);

extern void cleanup(BIO* out, BIO* web, SSL_CTX* ctx);

The five functions declared in the header file wcSSL.h (see Listing 6-8)

can be clarified as follows:

•	 The report_exit function prints an error message

before exiting. The error (e.g., a socket connection

cannot be opened) makes it impossible to continue.

•	 The load_ssl function calls various OpenSSL

functions, which in turn load the required OpenSSL

modules.

•	 In production mode, the verify_dc function would

check the certificate(s) sent from Google during the

HTTPS handshake. The details of verification can

differ widely depending on how a system stores trusted

digital certificates. One straightforward approach is

to have a persistent store of trusted certificates on the

client machine or local network. For instance, there

might be a local file with a copy of a trusted Google

Chapter 6 Networking

223

certificate in either a text format such as PEM (Privacy-

Enhanced Mail) or a binary format such as DER

(Distinguished Encoding Rules). OpenSSL has utilities

to convert from one standard format to another. In

any case, a Google certificate downloaded during the

peer authentication phase would be compared against

a stored copy, using OpenSSL functions designed

for the purpose. If there is no such local copy, then

the certificate’s digital signature from a CA could be

verified instead. The current example omits these

details by having the verify_dc function simply return

true (1). The verify_dc function is thus a stub that

needs to be fleshed out for production.

Unix-like systems typically include a directory such as /etc/ssl/certs,

which contains accepted digital certificates. This directory thus acts as the

local truststore for such certificates.

•	 The view_cert function prints the subject line from the

certificate to confirm its arrival.

•	 The cleanup function calls OpenSSL utility functions to

free heap storage.

These five functions are defined and wcSSLutils.c and called in the

main program file wcSSL.c.

Listing 6-9.  The utilities file cwSSLutils.c

#include "wcSSL.h"

void report_exit(const char* msg) {

 puts(msg);

 exit(-1);

}

Chapter 6 Networking

224

void load_SSL() { /* load various OpenSSL libraries */

 OpenSSL_add_all_algorithms();

 ERR_load_BIO_strings();

 ERR_load_SSL_strings();

 SSL_load_error_strings();

 �if (SSL_library_init() < 0) report_exit("SSL_library_init()");

}

int verify_dc(int ver, X509_STORE_CTX* x509_ctx) { /* stub

function */

 /* In production, a full verification would be needed. */

 return 1;

}

/* Extract the subject line for the certificate, then free

storage. */

void view_cert(SSL* ssl, BIO* out) {

 X509* cert = SSL_get_peer_certificate(ssl);

 �if (NULL == cert) report_exit("SSL_get_peer_

certificate(...)");

 X509_NAME* cert_name = X509_NAME_new();

 cert_name = X509_get_subject_name(cert);

 BIO_printf(out, "Certificate subject:\n");

 X509_NAME_print_ex(out, cert_name, 0, 0);

 BIO_printf(out, "\n");

 X509_free(cert);

}

void cleanup(BIO* out, BIO* web, SSL_CTX* ctx) {

 if (out) BIO_free(out);

 if (web) BIO_free_all(web); /* handles nested frees */

 if (ctx) SSL_CTX_free(ctx); /* ditto */

}

Chapter 6 Networking

225

The load_SSL function in the wcSSLutils.c file (see Listing 6-9) calls

four functions from the OpenSSL API in order to load various SSL modules.

The load_SSL then calls a fifth OpenSSL function SSL_library_init to

do whatever SSL initialization is required. Any error in the initialization

would make it impossible to continue; hence, the wcSSL client exits if an

error occurs.

The view_cert function gets the X509-formatted certificate from

Google, extracts some information, and then prints this information. X509

is versioned and remains the dominant format for digital certificates;

hence, OpenSSL includes many functions with X509 in the name. Once

information about the certificate is printed, in this case only the subject

line, the heap storage for the certificate is freed. The X509_free utility

function does whatever nested freeing is required; hence, this function and

not the library function free should be called.

Throughout the wcSSL program, there are calls to various OpenSSL

functions with BIO (Basic Input/Output) in the name. The BIO library is

roughly a wrapper around the standard FILE type, and the BIO API mimics

the FILE API. However, the BIO functions have access to the all-important

SSL context, which is discussed shortly.

In working with the OpenSSL libraries, it is best practice to use the

BIO functions for any input/output operations that involve web content.

Accordingly, the wcSSL program uses the standard puts function in

report_exit but otherwise sticks with the BIO input/output functions.

For instance, the BIO_puts function is used to send the request, over an

encrypted channel, to the Google web server.

Listing 6-10.  The main source file wcSSL.c

#include "wcSSL.h"

#define BuffSize 2048

int main() {

 const char* host_port = "www.google.com:443";

Chapter 6 Networking

226

 �const char* request = "GET / \r\nHost: www.google.com\r\

nConnection: close\r\n\r\n";

 �BIO* out = BIO_new_fp(stdout, BIO_NOCLOSE); /* �standard

output */

 �SSL* ssl = NULL;

/* primary data structure for SSL connect */

 load_SSL();

 �const SSL_METHOD* method = SSLv23_method(); /* protocol

version */

 if (NULL == method) report_exit("SSLv23_method()");

 �SSL_CTX* ctx = SSL_CTX_new(method);

/* global context for client/server */

 if (NULL == ctx) report_exit("SSL_CTX_new(...)");

 �BIO* web = BIO_new_ssl_connect(ctx); /* BIO is roughly FILE,

but with SSL baked in */

 if (NULL == web) report_exit("BIO_new_ssl_connect(...)");

 �if (1 != BIO_set_conn_hostname(web, host_port)) report_

exit("BIO_set_conn_host(...)");

 BIO_get_ssl(web, &ssl); /* the security layer atop HTTP */

 if (NULL == ssl) report_exit("BIO_get_ssl(...)");

 �if (BIO_do_connect(web) <= 0) report_exit("BIO_do_

connect(...)"); /* connect */

 �if (BIO_do_handshake(web) <= 0) report_exit("BIO_do_

handshake(...)"); /* handshake */

 SSL_CTX_set_verify(ctx, SSL_VERIFY_PEER, verify_dc);

 �if (!SSL_get_verify_result(ssl)) report_exit("SSL_get_

verify(...)"); /* verify cert */

 view_cert(ssl, out); /* look at cert */

 BIO_puts(web, request); /* the GET request */

Chapter 6 Networking

227

 int len = 0;

 do { /* read chunks from Google server */

 char buff[BuffSize] = { };

 len = BIO_read(web, buff, sizeof(buff));

 if (len > 0) BIO_write(out, buff, len);

 } while (len > 0 || BIO_should_retry(web));

 cleanup(out, web, ctx); /* free heap storage */

 return 0;

}

The main file for the wcSSL program is wcSSL.c (see Listing 6-10).

Rather than analyze each OpenSSL function call separately, it may be

more useful to group the calls, focusing on what each group is meant to

accomplish. The following describes three groups in turn:

•	 The init group specifies the SSL version to be used, in

this case with the OpenSSL call SSLv23_method. This

function constructs an SSL_CTX instance, which is the

global context for all of the remaining OpenSSL calls.

The SSL_CTX tracks the state of the SSL session, from

setup through cleanup; this context is the last item to

be freed in the program.

•	 The socket group then uses the SSL_CTX instance (ctx

is the variable) to create an SSL layer atop HTTP. The

secure channel is named web in this program and is

the secure counterpart of a file descriptor. Writing the

request to and reading the response from Google uses

the web variable. The standard socket call now occurs

under the hood, in the OpenSSL libraries.

Chapter 6 Networking

228

•	 The connect group establishes a connection,

performing the handshake operations that include

authentication. In this case, the authentication is

one way rather than peer because the Google server

does not challenge the wcSSL program (the client)

for a certificate; but the call to the OpenSSL BIO_do_

handshake function does result in a challenge to the

Google server. The SSL_CTX is used again, this time to

declare a callback function (in this case, verify_dc)

that is to verify the Google certificate. Fine-tuning

is possible here and would be appropriate in a

production environment. In this example, the interest

is in verifying that a certificate arrived, rather than in its

validity. Google sends three certificates in response to

the challenge.

•	 The request/response group uses the OpenSSL function

BIO_puts to send the GET request to Google and the

BIO_read function to read the response. The BIO_write

function writes the response to the standard output.

The BIO_read and BIO_write functions are the

counterparts of the standard read and write functions,

but the BIO functions have access to the SSL_CTX.

•	 The cleanup group uses OpenSSL functions to free

heap storage allocated in the course of setting up and

using the HTTPS connection.

To confirm that a certificate arrived from Google, the wcSSL program

prints the subject line:

Certificate subject:

C=US, ST=California, L=Mountain View, O=Google Inc, CN=www.

google.com

Chapter 6 Networking

229

As noted earlier, there is a Makefile to build the wcSSL program.

The program also can be built with this command, which is part of the

Makefile:

% gcc -o wcSSL wcSSL.c wcSSLutils.c -lssl -lcrypto -I.

The two link libraries (the two -l flags) are the OpenSSL library and

the standard cryptography library, respectively. In the flag at the end -I.,

the I is for include files, and the period represents the current working

directory, which means that only this directory should be searched for any

include files. In general, any search path could be specified for include files.

6.5. � What’s Next?
Concurrency and parallelism are distinct but related concepts. A

concurrent program handles multiple tasks within the same time span.

For example, a concurrent web server might handle, say, 20 client

requests within a second or so. Concurrency is possible even on an old-

fashioned, single-CPU machine through time-sharing: one task gets the

CPU for a certain amount of time, and then its processing is preempted

so that another task can have a turn, and so on. A concurrent program

becomes a truly parallel one if the tasks are delegated to separate

processors so that all of tasks can be processed literally at the same time.

There is also instruction-level parallelism on modern machines; this

parallelism involves the execution of instructions that perform machine-

level operations in parallel. The next chapter fleshes out the details of

concurrency and parallelism with code examples.

Chapter 6 Networking

231

CHAPTER 7

Concurrency and
Parallelism

7.1. � Overview
A concurrent program handles more than one task at a time. A familiar

example is a web server that handles multiple client requests at the same

time. Although concurrent programs can run even on a single-processor

machine of bygone days, these programs should show a marked gain in

performance by running on a multiprocessor machine: different tasks can

be delegated to different processors. A parallel program in this sense is a

concurrent program whose tasks can be handled literally at the same time

because multiple processors are at hand.

The two traditional and still relevant approaches to concurrency are

multiprocessing and multithreading. Applications such as web servers

and database systems may mix the approaches and throw in acceleration

techniques such as nonblocking I/O. Multiprocessing has a relatively long

history and is still widespread. For example, early web servers supported

concurrency through multiprocessing; but even state-of-the-art web

servers such as Nginx are multiprocessing systems.

Recall that a process is a program in execution and that each process

has its own address space. Two processes could share a memory location,

but this requires setup: shared memory is not the default. Separate address

© Martin Kalin 2022
M. Kalin, Modern C Up and Running, https://doi.org/10.1007/978-1-4842-8676-0_7

https://doi.org/10.1007/978-1-4842-8676-0_7

232

spaces are appealing to the programmer, who does need to worry about

memory-based race conditions when writing a multiprocessing program.

A typical race condition arises when two or more operations, at least one of

which is a write, could access the same memory location at the same time.

Of interest now is that separate processes, by default, do not share access

to a memory location, which is requisite for such a race condition.

What is the downside of multiprocessing? When the operating system

preempts a not-yet-finished process, a process-level context switch

occurs: the operating system gives the processor to another process for its

execution. The preempted process must be scheduled again to complete

its execution. A process-level context switch is expensive because the

operating system may have to swap data structures such as page tables

(virtual-to-physical address translators) between memory and disk; in

any case, there is nontrivial bookkeeping to track the state of both the

preempted and the newly executing process. It is hard to come up with an

exact figure, but a process-level context switch takes about 5ms to 15ms

(milliseconds), time that is not available for other tasks.

Recall too that a thread (short for thread of execution) is a sequence of

executable instructions. Every process has at least one thread; a process

with only one thread is single threaded, and a process with more than one

thread is multithreaded. Operating systems schedule threads to processors;

to schedule a process is, in effect, to schedule one of its threads. On a

multiprocessor machine, multiple threads from the same process can

execute at the very same time. A thread-level context switch—preempting

one thread in a process for another in the same process—is not free, but

the cost is very low: nanoseconds rather than milliseconds. Multithreading

is efficient.

In a simplifying move, Linux systems turn process scheduling into

thread scheduling by treating even a multithreaded process as if it were

single threaded. A multithreaded process with N threads then requires N

scheduling actions to cover the threads. Threads within a multithreaded

process remain related in that they share resources such as memory

Chapter 7 Concurrency and Parallelism

233

address space. Accordingly, Linux threads are sometimes described as

lightweight processes, with the lightweight underscoring the sharing of

resources among the threads within a process.

What is the downside of multithreading? Threads within a process

have the same address space; hence, multithreaded programs are

susceptible to memory-based race conditions. On a multiprocessor

machine, for instance, one thread might try to read memory location N

at the very instant that another thread is trying to write N. The outcome

is indeterminate. The burden of preventing race conditions falls on

the programmer, not the operating system. Multithreaded programs,

especially ones with variables shared among the threads, are a challenge

even for the experienced programmer.

7.2. � Multiprocessing Through
Process Forking

The standard library functions provide options for multiprocessing, but

the fork function is the most explicit. The first code example covers the

basics of a fork call using unnamed pipes; an earlier example (recall

Listings 5-8 and 5-9) covered named pipes. A look at unnamed pipes from

the command line serves as preparation.

At the command line, the vertical bar | represents an unnamed pipe:

to the left is the pipe writer and to the right is the pipe reader. Each is a

process. Here is a contrived example using the sleep and echo utilities

available on Unix-like systems and through Cygwin:

% sleep 5 | echo "Hello, world!"

The greeting Hello, world! appears on the screen; then, after about five

seconds, the command-line prompt returns, signaling that both the sleep

and echo processes have exited. The pipe is closed automatically when the

Chapter 7 Concurrency and Parallelism

234

reader and writer terminate. There is multiprocessing here, but it does no

useful work; instead, the example shows how the unnamed pipe works.

In normal usage, the writer process on the left writes bytes to the pipe,

and the reader process on the right blocks until there are bytes to read. By

closing the write end of a pipe before exiting, the writer process thereby

generates an end-of-stream condition. The reader process closes the read

end before exiting as well. Once the reader and the writer process exit, the

pipe shuts down.

The preceding example is contrived because the sleep process does

not write any bytes to the pipe and the echo process does not read any

bytes from the pipe. Nonetheless, there is multiprocessing. The sleep

process on the left does just that, and for five seconds. In the meanwhile,

the echo process immediately writes its greeting to the screen because this

process need not wait for bytes from the pipe. The echo process exits after

printing its message. The sleep process then exits, the pipe goes away, and

the command-line prompt reappears.

The first code example focuses on the basics of fork. The second

example then uses the pipe library function in a multiprocessing example

with an unnamed pipe.

Listing 7-1.  Introducing the fork function

#include <sys/types.h> /* just in case... */

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <signal.h>

void main() {

 signal(SIGCHLD, SIG_IGN); /* prevents zombie */

 int n = 777; /* �both parent and child have

a copy */

Chapter 7 Concurrency and Parallelism

235

 pid_t pid = fork();

 if (-1 == pid) { /* -1 signals an error */

 perror(NULL);

 exit(-1);

 }

 if (0 == pid) { /** child **/

 n = n + 10;

 printf("%i\n", n); /** 787 ***/

 }

 else { /** parent **/

 n = n * 10;

 printf("%i\n", n); /** 7770 */

 }

}

The basicFork program (see Listing 7-1) opens with a call to the signal

function. This is a precaution to prevent zombie processes, as clarified in

an upcoming section. The int variable n is declared and initialized to 777.

If the subsequent call to the library function fork succeeds, both the child

and the parent process get their own separate copy of variable n; hence,

each process manages different variables with the same name.

The library function fork tries to create a new process. If the attempt

succeeds, the newly created process becomes the child of the original

process, which is now a parent. The fork function returns an integer

value; for portability, the recommended type is pid_t, where pid stands

for process identifier. The tricky part of the fork call is that, if successful, it

returns one value to the parent—but a different value to the child. A short

digression into the process id explains.

Chapter 7 Concurrency and Parallelism

236

Every process has a nonnegative integer value as its identifier (pid).

There is a library function getpid to retrieve the pid, and a related function

getppid to retrieve the parent process identifier (ppid). Every process except

the first has a ppid, which is guaranteed to be the same as the parent’s pid.

If the fork call fails to spawn a child process, it returns -1 to signal the

error. If fork succeeds, it returns

•	 0 to the child

•	 The child’s pid to the parent

Once forked, the child process executes a copy of the very same code

as the parent—the code that comes after the call to fork. Accordingly, a

test is typically used (in this case, the if test) to distinguish between code

intended for the child and code intended for the parent. In this example,

the child executes the if block, printing 787; the parent executes the else

block, printing 7770. The order in which the prints occur is indeterminate.

If the program runs on a multiprocessor machine, this concurrent program

can execute in a truly parallel fashion.

The second code example uses an unnamed pipe for interprocess

communication. The parent again calls fork to spawn a child process,

and the two processes then communicate through the pipe: the parent as

the writer process and the child as the reader process. The discussion also

explains zombie processes and how to reap them.

Listing 7-2.  The basics of the fork function

#include <sys/wait.h> /* wait */

#include <stdio.h>

#include <stdlib.h> /* exit functions */

#include <unistd.h> /* read, write, pipe */

#include <string.h>

#define ReadEnd 0

#define WriteEnd 1

Chapter 7 Concurrency and Parallelism

237

void report_and_die() {

 perror(NULL);

 exit(-1); /** failure **/

}

void main() {

 int pipeFDs[2]; /* two file descriptors */

 char buf; /* 1-byte buffer */

 �const char* msg = "This is the winter of our discontent\n";

/* bytes to write */

 if (pipe(pipeFDs) < 0) report_and_die();

 pid_t cpid = fork(); /* fork a child process */

 if (cpid < 0) report_and_die(); /* check for failure */

 if (0 == cpid) { /*** child ***/ /* child process */

 cl�ose(pipeFDs[WriteEnd]); �/* child reads,

doesn't write */

 w�hile (read(pipeFDs[ReadEnd], &buf, 1) > 0) �/* read until

end of byte

stream */

 �write(STDOUT_FILENO, &buf, sizeof(buf)); �/* echo to

the standard

output */

 close(pipeFDs[ReadEnd]); /* c�lose the ReadEnd:

all done */

 _exit(0); /* exit fast */

 }

 else { /*** parent ***/

 close(pipeFDs[ReadEnd]); /* parent writes, doesn't read */

 �write(pipeFDs[WriteEnd], msg, strlen(msg)); �/* write the

bytes to

the pipe */

Chapter 7 Concurrency and Parallelism

238

 �close(pipeFDs[WriteEnd]); /* �done writing:

generate eof */

 �wait(NULL); /* wait for child to exit */

 �exit(0); /* exit normally */

 }

}

The pipeUN program (see Listing 7-2) uses the fork function for

multiprocessing and the pipe function for creating an unnamed pipe so

that the processes can communicate. To begin, here is an overview of the

library function pipe:

•	 The pipe function takes an int array of two elements as

its single argument: the first element (index 0) is the file

descriptor for read operations, and the second element

(index 1) is the file descriptor for write operations.

•	 The function returns -1 to signal failure and 0 to signal

success.

•	 Note that the pipe function creates an unnamed pipe,

whereas the mkfifo function creates a named pipe.

The fork function is used to create the reader process, although this

spawned process could have been the writer. The process that does the

forking is the parent, and the forked process is the child. The child process,

an almost exact duplicate of the parent, is said to inherit from the parent.

For example, a forked child process inherits open file descriptors from the

parent. Recall that once forked, the child process executes the very same

code as the parent process, unless an if test or the equivalent is used to

divide the code that each process executes. A closer look at the example

clarifies.

Chapter 7 Concurrency and Parallelism

239

Here, for quick review and with added detail, are the values that the

fork function can return:

•	 A returned value of -1 indicates an error: the fork failed

to spawn a child process. This could occur for various

reasons, including a full process table. The process table

is a data structure that the operating system maintains

in tracking processes.

•	 If the fork call succeeds, it returns different values to

the child and the parent processes:

•	 0 is returned to the child.

•	 The child’s process identifier (pid) is returned to

the parent.

The pipeUN program uses an if else construct to distinguish

between the parent and the child. Keep in mind that both processes

execute this test:

if (0 == cpid) { /*** child ***/

The else clause is thus for the parent to execute. Because the child

process is the reader, it immediately closes the WriteEnd of the pipe; in a

similar fashion, the parent process as the writer immediately closes the

ReadEnd of the pipe. Both file descriptors are open because of the call to

pipe. By closing one end of the pipe, each process exhibits the separation-

of-concerns pattern.

The writer process then writes bytes to the pipe, and the reader process

reads these bytes one at a time. When the writer process closes the pipe’s

write end, an end-of-stream marker is sent to the reader, which responds

by closing the pipe’s read end. At this point, the pipe closes down.

Chapter 7 Concurrency and Parallelism

240

7.2.1. � Safeguarding Against Zombie Processes
In the pipeUN program, the parent process writes a full string to the pipe

and then waits for the child process to terminate with the call to library

function wait; the child reads the string byte by byte. The wait call is a

precaution against creating a permanent zombie process: a zombie is a

process that has terminated but which still has an entry in the process

table. If zombies are not reaped from the process table, this table can fill—

and thus prevent the forking of any other process. Although a forked child

is largely independent of its parent process, the operating system does

notify the parent when the child terminates. If a child terminates after its

parent, and there is no safeguard against zombies, the child can remain

a zombie.

In the pipeUN example, it is unpredictable whether the parent or the

child will terminate first, and so the parent—the process being notified—

makes the precautionary call to wait: if the child has already exited, the

call has no effect; otherwise, the parent’s execution is suspended until the

child terminates. The wait function expects one argument, the address

of an int variable that stores the exit code of the process being waited on.

In this example, the argument of NULL is used to keep things simple, but

a parent process in general might implement different logic depending

on the status code of a terminated child. There is also a waitpid function

of three arguments, which allows for more granular control. The waitpid

function is used in a forthcoming example.

The pipeUN program adopts another safeguard. The child calls library

function _exit rather than exit: the former fast-tracks parent notification

and so speeds up the reaping of a zombie entry. The parent process, by

contrast, calls the regular exit function.

Chapter 7 Concurrency and Parallelism

241

There are different ways to safeguard against zombies. The pipeUN

program uses the wait approach to illustrate how independently

executing processes still can be coordinated. A simpler approach, used

in the basicFork program, is to make this call to signal at the start of the

program:

signal(SIGCHLD, SIG_IGN); �/* ignore signal about a child's

termination */

The effect of this call is to automate the reaping of a zombie. Were this

approach taken in the current example, the parent’s call to wait would not

be needed to safeguard against a zombie.

7.3. � The exec Family of Functions
In the forking of a child process, the multiprocessing is obvious in that the

parent process, which calls fork, continues to execute as well; indeed, the

parent and the child execute the same code unless program logic explicitly

controls which process executes which code. The typical approach,

illustrated in the code examples so far, is to use an if-test to separate the

code intended for the parent from the code intended for the child.

The functions in the exec family, mentioned several times already but

not yet analyzed, work differently. All of the functions in the family do

essentially the same thing, but their argument formats differ. For example,

the execv function has an argument vector, implemented as a NULL-

terminated array of strings. Other members of the family such as execle

use an environment variable to pass information to the executing program.

The next code example goes into the details.

Chapter 7 Concurrency and Parallelism

242

WHAT’S A PROCESS IMAGE?

Recall that a process is a program in execution, something dynamic. The

executable program is stored somewhere, typically as a file on a local disk.

To execute the program, the operating system first must load the file into

memory. This in-memory representation of the process, read-only during

process execution, is the process image.

Listing 7-3.  The exec family of functions

#include <sys/types.h> �/* for safety: maybe there's no

unistd.h */

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

int main() {

 pid_t pid = fork(); /* try to create a child process */

 if (-1 == pid) { /* did the fork() work? */

 perror("fork()"); /* if not, error message and exit */

 exit(-1);

 }

 if (!pid) { /* fork() returns 0 to the child */

 char* const args[] =

 �{"./cline", "foo", "bar", "123", NULL}; �/* some cmd-line

args: NULL to

terminate */

 int ret = execv("./cline", args); /* "v" for "vector" */

 if (-1 == ret) { /* check for failure */

 perror("execv(...)");

 exit(-1);

Chapter 7 Concurrency and Parallelism

243

 }

 else

 �printf("This should not print!\n"); �/* never

executes */

 }

 return 0;

}

The execing program (see Listing 7-3) forks a child process, which then

calls execv to execute the cline program (recall Listing 1-7). Each function

in the exec family does the following:

•	 Replaces the image of the process that calls an exec

function with a new process image. This is described as

overlaying one process image with another.

•	 The new process, in this case cline, runs with the same

pid as the original process, in this case execing.

The cline program expects command-line arguments, which are

supplied in a NULL-terminated array of strings; the cline program simply

prints the arguments to the standard output and then exits.

In the execing program, the call to fork follows the usual pattern except

that parent process has nothing left to do if the fork succeeds; the parent

terminates by returning from main. By contrast, the child process invokes

execv with two arguments:

•	 The first argument is the path to the executable as a

string, in this case ".\cline".

•	 The second argument is an array of strings, including

(by tradition) the name of the executable as the first

element in this array. A NULL marks the end of the

string array.

Chapter 7 Concurrency and Parallelism

244

The execv function returns -1 to signal an error—and otherwise does

not return. Instead, the overlayed process image is used to execute the

overlay program, in this case cline. Accordingly, the last printf statement

in the execing program

printf("This should not print!\n");

does not execute. Only the newly executed cline program runs to

completion: the process image for the forked child indeed has been

overlaid.

There is a short experiment that can confirm the overlay in the execing

program:

•	 Immediately after the successful fork of the child

process, print the child’s pid value, which can be

obtained with a call within the if block to the getpid

function.

•	 Amend the cline program to print its own pid, again

using the library function getpid.

The two printed pid values should be the same, thereby confirming

that the execed program cline is executing under the forked child’s pid. The

code available on GitHub includes this experiment.

7.3.1. � Process Id and Exit Status
The next program reviews the forking API, in particular the pid and ppid

values for a child process, but also focuses on the information available

about how a child process terminates. The exit status of a forked process

is available, with convenient macros for extracting this status information.

These macros belong to C’s waiting API, whose principal functions are

wait (one argument for ease of use) and waitpid (three or four arguments

for fine-grained control). The example introduces the waitpid function.

Chapter 7 Concurrency and Parallelism

245

In production-grade multiprocessing programs, logic likely depends

on the state of the constituent processes, including information about how

a given process terminates. For example, a multiprocessing web server

such as Nginx needs to track whether the master process and the worker

processes (request handlers) are still alive and, if not, the exit status of a

terminated process. The multiprocessing examples so far have ignored the

exit status of a child process. The forthcoming exiting example focuses on

the child’s exit status and how the parent can get this status.

Listing 7-4.  Exit status

#include <unistd.h> /* symbolic constants */

#include <stdio.h> /* printf, etc. */

#include <sys/wait.h> /* waiting on process termination */

#include <stdlib.h> /* utilities */

void main() {

 int status; /* parent captures child's status here */

 int cret = 0xaa11bb22; /* child returns this value */

 pid_t cpid = fork(); /* spawn the child process */

 if (0 == cpid) { /* fork() returns 0 to the child */

 pr�intf("Child's pid and ppid: %i %i\n", getpid(),

getppid()); /* 2614 2613 */

 printf("Child returns %x explicitly.\n", cret);

 _exit(cret); /* return an arbitrary value */

 }

 else { /* fork() returns new pid to the parent process */

 printf("Parent's pid: %i\n", getpid()); /* 2613 */

 printf("Waiting for child to exit\n");

Chapter 7 Concurrency and Parallelism

246

 i�f (-1 != waitpid(cpid, &status, 0)) { �/* wait for child

to exit, store its

status */

 if (WIFEXITED(status))

 �printf("Normal exit with %x\n", WEXITSTATUS(status));

/** 22 **/

 else if (WIFSIGNALED(status))

 printf("Signaled with %x\n", WTERMSIG(status));

 else if (WIFSTOPPED(status))

 �printf("Stopped with %x\n", WSTOPSIG(status));

/* stop pauses the process */

 else

 puts("peculiar...");

 }

 exit(0); /* parent exits with normal termination */

 }

}

In the exiting program (see Listing 7-4), one process forks another

in the by-now-familiar way. The parent waits for the child with a call to

waitpid, which expects three arguments:

•	 The first argument is the pid of the process on which to

wait, in this case the child.

•	 The second argument points to an int variable where

the child’s exit or comparable status is stored.

•	 The last argument consists of additional options,

for instance, WNOHANG for return at once if no child

has exited.

The wait(NULL) call used earlier is shorthand for

waitpid(-1, NULL, NULL);

Chapter 7 Concurrency and Parallelism

247

The first argument to waitpid (-1) means, in effect, any child of mine;

the second argument is NULL instead of a pointer to an int variable to store

the child’s exit status; and the third argument is NULL for no flags.

For the child process, there are various possibilities that a waiter such

as the parent needs to consider. Three of these possibilities are considered

in the exiting program:

•	 The child exits normally, with a nonnegative

return value.

•	 The child receives a signal such as SIGKILL (terminate

immediately), which cannot be ignored, or SIGTERM

(please terminate immediately), which can be ignored.

•	 The child receives a SIGSTOP (stop executing: pause)

signal, which cannot be ignored.

In this example, the child exits normally with a call to _exit. The

WEXITSTATUS macro returns the low-order 8 bits of the child’s 32-bit

explicitly returned value, 0xaa11bb22 in hex. The macro thus extracts 22.

The exiting program also confirms that a child’s ppid is the same as

its parent’s pid. In a sample run, this value was 2613, and the child’s pid

was 2614. These values are not guaranteed to be consecutive, but it is a

common pattern: the child’s pid is one greater than the parent’s.

7.4. � Interprocess Communication Through
Shared Memory

Although every process has its own address space, which ensures that

processes do not share memory locations by default, processes can share

memory. A standard library provides the appropriate functions. Shared

memory is, like pipes, a mechanism for interprocess communication. A

code example with two processes explores the details.

Chapter 7 Concurrency and Parallelism

248

There are two separate libraries and APIs for shared memory: the

legacy System V library and API, and the more recent POSIX pair. These

APIs should never be mixed in a single application, however. The POSIX

pair is still in development and dependent upon the version of the

operating system kernel, which impacts code portability. By default,

the POSIX API implements shared memory as a memory-mapped file:

for a shared memory segment, the system maintains a backing file with

corresponding contents. Shared memory under POSIX can be configured

without a backing file, but this may impact portability. My example uses

the POSIX API with a backing file, which combines the benefits of memory

access (speed) and file storage (persistence).

The shared memory example has two programs, named memwriter and

memreader, and uses a semaphore to coordinate their access to the shared

memory. Whenever shared memory comes into the picture with a writer, so

does the risk of a memory-based race condition with indeterminate results;

hence, the semaphore is used to coordinate (synchronize) access to the

shared memory so that the writer and the reader operations do not overlap.

The memwriter program, which creates the shared memory segment,

should be started first in its own terminal. The memreader program then

can be started (within a dozen seconds) in its own terminal. The output

from the memreader is

This is the way the world ends...

Here is a review of how semaphores work as a synchronization

mechanism. A general semaphore also is called a counting semaphore,

as it has a value (typically initialized to zero) that can be incremented.

Consider a shop that rents bicycles, with a hundred of them in stock, with

a program that clerks use to do the rentals. Every time a bike is rented, the

semaphore is incremented by one; when a bike is returned, the semaphore

is decremented by one. Rentals can continue until the value hits 100 but

then must halt until at least one bike is returned, thereby decrementing the

semaphore to 99.

Chapter 7 Concurrency and Parallelism

249

A binary semaphore is a special case requiring only two values,

which are traditionally 0 and 1. In this situation, a semaphore acts as

a mutex: a mutual exclusion construct. The shared memory example

uses a semaphore as a mutex. When the semaphore’s value is 0, the

memwriter alone can access the shared memory. After writing, this process

increments the semaphore’s value, thereby allowing the memreader to

read the shared memory.

Listing 7-5.  The memwriter program

/** Compilation: gcc -o memwriter memwriter.c -lrt

-lpthread **/

#include <stdio.h>

#include <stdlib.h>

#include <sys/mman.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

#include <semaphore.h>

#include <string.h>

#include "shmem.h"

void report_and_exit(const char* msg) {

 perror(msg);

 exit(-1);

}

int main() {

 int fd = shm_open(BackingFile, /* name from smem.h */

 �O_RDWR | O_CREAT, �/* read/write, create if

needed */

 �AccessPerms); �/* access permissions

(0644) */

Chapter 7 Concurrency and Parallelism

250

 if (fd < 0) report_and_exit("Can't open shared mem segment...");

 ftruncate(fd, ByteSize); /* get the bytes */

 �caddr_t memptr = mmap(NULL, �/* let system pick where to

put segment */

 ByteSize, /* how many bytes */

 P�ROT_READ | PROT_WRITE, �/* access

protections */

 �MAP_SHARED, �/* mapping visible to other

processes */

 fd, /* file descriptor */

 �0); �/* offset: start at

1st byte */

 �if ((caddr_t) -1 == memptr) report_and_exit("Can't get

segment...");

 �fprintf(stderr, "shared mem address: %p [0..%d]\n", memptr,

ByteSize - 1);

 �fprintf(stderr, "backing file: /dev/shm%s\n",

BackingFile);

 /* semaphore code to lock the shared mem */

 sem_t* semptr = sem_open(SemaphoreName, /* name */

 �O_CREAT, �/* create the

semaphore */

 �AccessPerms, �/* protection

perms */

 0); /* initial value */

 if (semptr == (void*) -1) report_and_exit("sem_open");

 st�rcpy(memptr, MemContents); �/* copy some ASCII bytes to the

segment */

Chapter 7 Concurrency and Parallelism

251

 /* increment the semaphore so that memreader can read */

 if (sem_post(semptr) < 0) report_and_exit("sem_post");

 sleep(12); /* give reader a chance */

 /* clean up */

 munmap(memptr, ByteSize); /* unmap the storage */

 close(fd);

 sem_close(semptr);

 shm_unlink(BackingFile); /* unlink from the backing file */

 return 0;

}

The memwriter and memreader programs communicate through

shared memory as follows. The memwriter program (see Listing 7-5) calls

the shm_open library function to get a file descriptor for the backing file that

the system coordinates with the shared memory. At this point, no memory

has been allocated. The subsequent call to the misleadingly named

function ftruncate

ftruncate(fd, ByteSize); /* get the bytes */

allocates ByteSize bytes, in this case, a modest 512 bytes. The memwriter

and memreader programs access the shared memory only, not the backing

file. The system is responsible for synchronizing the shared memory and

the backing file.

The memwriter then calls the mmap library function

caddr_t memptr = mmap(�NULL, �/* let system pick where to

put segment */

 ByteSize, /* how many bytes */

 �PROT_READ | PROT_WRITE, �/* access

protections */

Chapter 7 Concurrency and Parallelism

252

 �MAP_SHARED, �/* mapping visible to other

processes */

 fd, /* file descriptor */

 �0); �/* offset: start at

1st byte */

to get a pointer to the shared memory. (The memreader makes a similar

call.) The pointer type caddr_t starts with a c for calloc, which initializes

dynamically allocated storage to zeros. The memwriter uses the memptr for

the later write operation, which uses the library strcpy function. At this

point, the memwriter is ready for writing, but it first creates a semaphore to

ensure exclusive access to the shared memory.

If the call to sem_open for the semaphore’s creation succeeds

sem_t* semptr = sem_open(SemaphoreName, /* name */

 �O_CREAT, �/* create the

semaphore */

 AccessPerms, /* protection perms */

 0); /* initial value */

then the writing can proceed. The SemaphoreName (any unique nonempty

name will do) identifies the semaphore in both the memwriter and the

memreader. The initial value of zero gives the semaphore’s creator (in

this case, the memwriter) the right to proceed (in this case, to the write

operation).

After writing, the memwriter increments the semaphore value to 1:

if (sem_post(semptr) < 0)

with a call to the sem_post library function. Incrementing the semaphore

releases the mutex lock and enables the memreader to perform its read

operation. For good measure, the memwriter also unmaps the shared

memory from the memwriter address space:

munmap(memptr, ByteSize); /* unmap the storage *

Chapter 7 Concurrency and Parallelism

253

This bars the memwriter from further access to the shared memory.

Listing 7-6.  The memreader program

/** Compilation: gcc -o memreader memreader.c -lrt

-lpthread **/

#include <stdio.h>

#include <stdlib.h>

#include <sys/mman.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

#include <semaphore.h>

#include <string.h>

#include "shmem.h"

void report_and_exit(const char* msg) {

 perror(msg);

 exit(-1);

}

int main() {

 �int fd = shm_open(BackingFile, O_RDWR, AccessPerms);

/* empty to begin */

 if (fd < 0) report_and_exit("Can't get file descriptor...");

 /* get a pointer to memory */

 caddr_t memptr = mmap(�NULL, �/* let system pick where to

put segment */

 ByteSize, /* how many bytes */

 �PROT_READ | PROT_WRITE, �/* access

protections */

 �MAP_SHARED, �/* mapping visible to other

processes */

Chapter 7 Concurrency and Parallelism

254

 fd, /* file descriptor */

 �0); �/* offset: start at

1st byte */

 �if ((caddr_t) -1 == memptr) report_and_exit("Can't access

segment...");

 /* create a semaphore for mutual exclusion */

 sem_t* semptr = sem_open(SemaphoreName, /* name */

 �O_CREAT, �/* create the

semaphore */

 �AccessPerms, �/* protection

perms */

 0); /* initial value */

 if (semptr == (void*) -1) report_and_exit("sem_open");

 �/* use semaphore as a mutex (lock) by waiting for writer to

increment it */

 if (!sem_wait(semptr)) { /* wait until semaphore != 0 */

 int i;

 for (i = 0; i < strlen(MemContents); i++)

 �write(STDOUT_FILENO, memptr + i, 1); �/* one byte at

a time */

 sem_post(semptr);

 }

 /* cleanup */

 munmap(memptr, ByteSize);

 close(fd);

 sem_close(semptr);

 unlink(BackingFile);

 return 0;

}

Chapter 7 Concurrency and Parallelism

255

In both the memwriter and memreader (see Listing 7-6) programs, the

shared memory functions of primary interest are shm_open and mmap: on

success, the first call returns a file descriptor for the backing file, which

the second call then uses to get a pointer to the shared memory segment.

The calls to shm_open are similar in the two programs except that the

memwriter program creates the shared memory, whereas the memreader

only accesses this already allocated memory:

int fd = shm_open(BackingFile, O_RDWR | O_CREAT, AccessPerms);

/* memwriter */

int fd = shm_open(BackingFile, O_RDWR,

AccessPerms); /* memreader */

With a file descriptor in hand, the calls to mmap are the same:

caddr_t memptr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_

SHARED, fd, 0);

The first argument to mmap is NULL, which means that the system

determines where to allocate the memory in virtual address space. It is

possible (but tricky) to specify an address instead. The MAP_SHARED flag

indicates that the allocated memory is shareable among processes, and

the last argument (in this case, zero) means that the offset for the shared

memory should be the first byte. The size argument specifies the number

of bytes to be allocated (in this case, 512), and the protection argument

indicates that the shared memory can be written and read.

When the memwriter program executes successfully, the system

creates and maintains the backing file; on my system, the file is /dev/shm/

shMemEx, with shMemEx as my name (given in the header file shmem.h)

for the shared storage. In the current version of the memwriter and

memreader programs, the statement

shm_unlink(BackingFile); /* removes backing file */

Chapter 7 Concurrency and Parallelism

256

removes the backing file. If the unlink statement is omitted, then the

backing file persists after the program terminates.

The memreader, like the memwriter, accesses the semaphore through

its name in a call to sem_open. But the memreader then goes into a wait

state until the memwriter increments the semaphore, whose initial

value is 0:

if (!sem_wait(semptr)) { /* wait until semaphore != 0 */

Once the wait is over, the memreader reads the ASCII bytes from the

shared memory, cleans up, and terminates.

The shared memory API includes operations explicitly to synchronize

the shared memory segment and the backing file. These operations have

been omitted from the example to reduce clutter and keep the focus on the

memory-sharing and semaphore code.

The memwriter and memreader programs are likely to execute without

inducing a race condition even if the semaphore code is removed: the

memwriter creates the shared memory segment and writes immediately

to it; the memreader cannot even access the shared memory until this

has been created. However, best practice requires that shared memory

access is synchronized whenever a write operation is in the mix, and the

semaphore API is important enough to be highlighted in a code example.

7.5. � Interprocess Communication Through
File Locking

Programmers are all too familiar with file access, including the many

pitfalls (nonexistent files, bad file permissions, and so on) that beset the

use of files in programs. Nonetheless, shared files may be the most basic

mechanism for interprocess communication. Consider the relatively

Chapter 7 Concurrency and Parallelism

257

simple case in which one process (producer) creates and writes to a file

and another process (consumer) reads from this same file:

 writes +-----------+ reads

producer-------->| disk file |<-------consumer

 +-----------+

The obvious challenge in using a shared file is that a race condition

might arise: the producer and the consumer might access the file at exactly

the same time, thereby making the outcome indeterminate. To avoid a

race condition, the file must be locked in a way that prevents a conflict

between a write operation and any another operation, whether a read or a

write. The locking API in the standard system library can be summarized

as follows:

•	 A producer should gain an exclusive lock on the file

before writing to the file. An exclusive lock can be

held by one process at most, which rules out a race

condition because no other process can access the file

until the lock is released. (It is possible to lock only part

of a file.)

•	 A consumer should gain at least a shared lock on the

file before reading from the file. Multiple readers can

hold a shared lock at the same time, but no writer can

access a file when even a single reader holds a shared

lock. A shared lock promotes efficiency. If one process

is just reading a file and not changing its contents, there

is no reason to prevent other processes from doing the

same. Writing, however, clearly demands exclusive

access to a file, as a whole or just in part.

Chapter 7 Concurrency and Parallelism

258

The standard I/O library includes a utility function named fcntl that

can be used to inspect and manipulate both exclusive and shared locks

on a file. The function works through the by-now-familiar file descriptor,

a nonnegative integer value that, within a process, identifies a file. (Recall

that different file descriptors in different processes may identify the same

physical file.) For file locking, Linux provides the library function flock,

which is a thin wrapper around fcntl. The code examples use the fcntl

function to expose API details.

Listing 7-7.  The producer program

#include <stdio.h>

#include <stdlib.h>

#include <fcntl.h>

#include <unistd.h>

#include <string.h>

#define FileName "data.dat"

#define DataString "Now is the winter of our discontent\nMade

glorious summer by this sun of York\n"

void report_and_exit(const char* msg) {

 perror(msg);

 exit(-1); /* EXIT_FAILURE */

}

int main() {

 struct flock lock;

 �lock.l_type = F_WRLCK; �/* read/write (exclusive versus

shared) lock */

 lock.l_whence = SEEK_SET; /* base for seek offsets */

 lock.l_start = 0; /* 1st byte in file */

 lock.l_len = 0; /* 0 here means 'until EOF' */

 lock.l_pid = getpid(); /* process id */

Chapter 7 Concurrency and Parallelism

259

 �int fd; �/* file descriptor to identify a file within a

process */

 �if ((fd = open(FileName, O_RDWR | O_CREAT, 0666)) < 0) /* -1

signals an error */

 report_and_exit("open failed...");

 �if (fcntl(fd, F_SETLK, &lock) < 0) �/** F_SETLK doesn't block,

F_SETLKW does **/

 report_and_exit("fcntl failed to get lock...");

 else {

 �write(fd, DataString, strlen(DataString)); �/* populate

data file */

 �fprintf(stderr, "Process %d has written to data file...\n",

lock.l_pid);

 }

 /* Now release the lock explicitly. */

 lock.l_type = F_UNLCK;

 if (fcntl(fd, F_SETLK, &lock) < 0)

 report_and_exit("explicit unlocking failed...");

 close(fd); /* close the file: would unlock if needed */

 return 0; /* terminating the process would unlock as well */

}

The main steps in the producer program (see Listing 7-7) can be

summarized as follows. The program declares a variable of type struct

flock, which represents a lock, and initializes the structure’s five fields.

The first initialization

lock.l_type = F_WRLCK; /* exclusive lock */

Chapter 7 Concurrency and Parallelism

260

makes the lock an exclusive (read-write) rather than a shared (read-only)

lock. If the producer gains the lock, then no other process will be able to

write or read the file until the producer releases the lock, either explicitly

with the appropriate call to fcntl or implicitly by closing the file. (When

the process terminates, any opened files would be closed automatically,

thereby releasing the lock.) The program then initializes the remaining

fields. The chief effect is that the entire file is to be locked. However, the

locking API allows only designated bytes to be locked. For example, if the

file contains multiple text records, then a single record (or even part of a

record) could be locked and the rest left unlocked.

The first call to fcntl

if (fcntl(fd, F_SETLK, &lock) < 0)

tries to lock the file exclusively, checking whether the call succeeded. In

general, the fcntl function returns -1 (hence, less than zero) to indicate

failure. The second argument F_SETLK means that the call to fcntl does

not block: the function returns immediately, either granting the lock or

indicating failure. If the flag F_SETLKW (the W at the end is for wait) were

used instead, the call to fcntl would block until gaining the lock was

possible. In the calls to fcntl, the first argument fd is the file descriptor,

the second argument specifies the action to be taken (in this case, F_SETLK

for setting the lock), and the third argument is the address of the lock

structure (in this case, &lock).

If the producer gains the lock, the program writes two text records to

the file. After writing to the file, the producer changes the lock structure’s

l_type field to the unlock value:

lock.l_type = F_UNLCK;

and calls fcntl to perform the unlocking operation. The program finishes

up by closing the file and exiting.

Chapter 7 Concurrency and Parallelism

261

Listing 7-8.  The consumer program

#include <stdio.h>

#include <stdlib.h>

#include <fcntl.h>

#include <unistd.h>

#define FileName "data.dat"

void report_and_exit(const char* msg) {

 perror(msg);

 exit(-1); /* EXIT_FAILURE */

}

int main() {

 struct flock lock;

 lock.l_type = F_WRLCK; /* read/write (exclusive) lock */

 lock.l_whence = SEEK_SET; /* base for seek offsets */

 lock.l_start = 0; /* 1st byte in file */

 lock.l_len = 0; /* 0 here means 'until EOF' */

 lock.l_pid = getpid(); /* process id */

 �int fd; /* file descriptor to identify a file within a

process */

 �if ((fd = open(FileName, O_RDONLY)) < 0) �/* -1 signals an

error */

 report_and_exit("open to read failed...");

 /* If the file is write-locked, we can't continue. */

 f�cntl(fd, F_GETLK, &lock); �/* sets lock.l_type to F_UNLCK if

no write lock */

 if (lock.l_type != F_UNLCK)

 report_and_exit("file is still write locked...");

Chapter 7 Concurrency and Parallelism

262

 loc�k.l_type = F_RDLCK; �/* prevents any writing during the

reading */

 if (fcntl(fd, F_SETLK, &lock) < 0)

 report_and_exit("can't get a read-only lock...");

 �/* Read the bytes (they happen to be ASCII codes) one at a

time. */

 int c; /* buffer for read bytes */

 while (read(fd, &c, 1) > 0) /* 0 signals EOF */

 �write(STDOUT_FILENO, &c, 1); �/* write one byte to the

standard output */

 /* Release the lock explicitly. */

 lock.l_type = F_UNLCK;

 if (fcntl(fd, F_SETLK, &lock) < 0)

 report_and_exit("explicit unlocking failed...");

 close(fd);

 return 0;

}

The consumer program (see Listing 7-8) is more complicated than

necessary to highlight features of the locking API. In particular, the

consumer program first checks whether the file is exclusively locked and

only then tries to gain a shared lock. The relevant code is

lock.l_type = F_WRLCK;

...

fcntl(fd, F_GETLK, &lock); �/* sets lock.l_type to F_UNLCK if no

write lock */

if (lock.l_type != F_UNLCK)

 report_and_exit("file is still write locked...");

Chapter 7 Concurrency and Parallelism

263

The F_GETLK operation specified in the fcntl call checks for a lock, in

this case, an exclusive lock given as F_WRLCK in the first statement earlier. If

the specified lock does not exist, then the fcntl call automatically changes

the lock type field to F_UNLCK to indicate this fact. If the file is exclusively

locked, the consumer terminates. (A more robust version of the program

might have the consumer sleep a bit and try again several times.)

If the file is not currently locked, then the consumer tries to gain a

shared (read-only) lock (F_RDLCK). To shorten the program, the F_GETLK

call to fcntl could be dropped because the F_RDLCK call would fail if a

read-write lock already were held by some other process. Recall that a

read-only lock does prevent any other process from writing to the file but

allows other processes to read from the file. In short, a shared lock can

be held by multiple processes. After gaining a shared lock, the consumer

program reads the bytes one at a time from the file, prints the bytes to the

standard output, releases the lock, closes the file, and terminates.

Here is the output from the two programs launched from the same

terminal:

% ./producer

Process 29255 has written to data file...

% ./consumer

Now is the winter of our discontent

Made glorious summer by this sun of York

The data shared through this interprocess communication is text: two

lines from Shakespeare’s play Richard III. Yet the shared file’s contents

could be voluminous, arbitrary bytes (e.g., a digitized movie), which makes

file sharing an impressively flexible mechanism. The downside is that file

access is relatively slow, whether the access involves reading or writing. As

always, programming comes with trade-offs.

Chapter 7 Concurrency and Parallelism

264

7.6. � Interprocess Communication Through
Message Queues

Earlier code examples highlighted pipes, both named and unnamed. Pipes

of either type have strict FIFO behavior: the first byte written is the first

byte read, the second byte written is the second byte read, and so forth.

Message queues can behave in the same way but are flexible enough that

byte chunks can be retrieved out of FIFO order.

As the name suggests, a message queue is a sequence of messages,

each of which has two parts:

•	 The payload, which is an array of bytes (char).

•	 A type, given as a positive integer value; types

categorize messages for flexible retrieval.

Consider the following depiction of a message queue, with each

message labeled with an integer type:

 +-+ +-+ +-+ +-+

sender--->|3|--->|2|--->|2|--->|1|--->receiver

 +-+ +-+ +-+ +-+

Of the four messages shown, the one labeled 1 is at the front, that is,

closest to the receiver. Next come two messages with label 2, and finally, a

message labeled 3 at the back. If strict FIFO behavior were in play, then the

messages would be received in the order 1-2-2-3. However, the message

queue allows other retrieval orders. For example, the messages could be

retrieved by the receiver in the order 3-2-1-2.

The mqueue example consists of two programs: the sender that writes

to the message queue and the receiver that reads from this queue. Both

programs include the header file queue.h shown in Listing 7-9.

Chapter 7 Concurrency and Parallelism

265

Listing 7-9.  The header file queue.h

#define ProjectId 123

#define PathName "queue.h" �/* any existing, accessible file

would do */

#define MsgLen 4

#define MsgCount 6

typedef struct {

 long type; /* must be of type long */

 char payload[MsgLen + 1]; /* bytes in the message */

} queuedMessage;

The header file defines a structure type named queuedMessage,

with payload (byte array) and type (integer) fields. This file also defines

symbolic constants (the #define directives), the first two of which are

used to generate a key that, in turn, is used to get a message queue ID. The

ProjectId can be any positive integer value, and the PathName must be

of an existing, accessible file—in this case, the file queue.h. The setup

statements in both the sender and the receiver programs are

key_t key = ftok(PathName, ProjectId); /* generate key */

int qid = msgget(key, 0666 | IPC_CREAT); /* use key to get

queue id */

The ID qid is, in effect, the counterpart of a file descriptor for

message queues.

Listing 7-10.  The message sender program

#include <stdio.h>

#include <sys/ipc.h>

#include <sys/msg.h>

#include <stdlib.h>

Chapter 7 Concurrency and Parallelism

266

#include <string.h>

#include "queue.h"

void report_and_exit(const char* msg) {

 perror(msg);

 exit(-1); /* EXIT_FAILURE */

}

int main() {

 key_t key = ftok(PathName, ProjectId);

 if (key < 0) report_and_exit("couldn't get key...");

 int qid = msgget(key, 0666 | IPC_CREAT);

 if (qid < 0) report_and_exit("couldn't get queue id...");

 �char* payloads[] = {"msg1", "msg2", "msg3", "msg4", "msg5",

"msg6"};

 int types[] = {1, 1, 2, 2, 3, 3}; /* each must be > 0 */

 int i;

 for (i = 0; i < MsgCount; i++) {

 /* build the message */

 queuedMessage msg;

 msg.type = types[i];

 strcpy(msg.payload, payloads[i]);

 /* send the message */

 �msgsnd(qid, &msg, MsgLen + 1, IPC_NOWAIT); �/* don't

block */

 �printf("%s sent as type %i\n", msg.payload, (int)

msg.type);

 }

 return 0;

}

Chapter 7 Concurrency and Parallelism

267

The preceding sender program sends out six messages, two each of a

specified type: the first messages are of type 1, the next two of type 2, and

the last two of type 3. The sending statement

msgsnd(qid, &msg, MsgLen + 1, IPC_NOWAIT);

is configured to be nonblocking (the flag IPC_NOWAIT) because the

messages are so small. The only danger is that a full queue, unlikely in this

example, would result in a sending failure. The following receiver program

also receives messages using the IPC_NOWAIT flag.

Listing 7-11.  The message receiver program

#include <stdio.h>

#include <sys/ipc.h>

#include <sys/msg.h>

#include <stdlib.h>

#include "queue.h"

void report_and_exit(const char* msg) {

 perror(msg);

 exit(-1); /* EXIT_FAILURE */

}

int main() {

 �key_t key= ftok(PathName, ProjectId); �/* key to identify the

queue */

 if (key < 0) report_and_exit("key not gotten...");

 �int qid = msgget(key, 0666 | IPC_CREAT); �/* access if created

already */

 if (qid < 0) report_and_exit("no access to queue...");

 �int types[] = {3, 1, 2, 1, 3, 2}; �/* different than in

sender */

Chapter 7 Concurrency and Parallelism

268

 int i;

 for (i = 0; i < MsgCount; i++) {

 queuedMessage msg; /* defined in queue.h */

 �if (msgrcv(qid, &msg, MsgLen + 1, types[i], MSG_NOERROR |

IPC_NOWAIT) < 0)

 puts("msgrcv trouble...");

 �printf("%s received as type %i\n", msg.payload, (int)

msg.type);

 }

 /** remove the queue **/

 if (msgctl(qid, IPC_RMID, NULL) < 0) /* NULL = 'no flags' */

 report_and_exit("trouble removing queue...");

 return 0;

}

The receiver program does not create the message queue, although the

API suggests as much. In the receiver, the call

int qid = msgget(key, 0666 | IPC_CREAT);

is misleading because of the IPC_CREAT flag, but this flag really means

create if needed, otherwise access. The sender program calls msgsnd to

send messages, whereas the receiver calls msgrcv to retrieve them. In this

example, the sender sends the messages in the order 1-1-2-2-3-3, but the

receiver then retrieves them in the order 3-1-2-1-3-2, showing that message

queues are not bound to strict FIFO behavior:

% ./sender

msg1 sent as type 1

msg2 sent as type 1

msg3 sent as type 2

msg4 sent as type 2

Chapter 7 Concurrency and Parallelism

269

msg5 sent as type 3

msg6 sent as type 3

% ./receiver

msg5 received as type 3

msg1 received as type 1

msg3 received as type 2

msg2 received as type 1

msg6 received as type 3

msg4 received as type 2

The preceding output shows that the sender and the receiver can be

launched from the same terminal. The output also shows that the message

queue persists even after the sender process creates the queue, writes to

it, and exits. The queue goes away only after the receiver process explicitly

removes the queue with the call to msgctl:

if (msgctl(qid, IPC_RMID, NULL) < 0) /* remove queue */

7.7. � Multithreading
Recall that a multithreaded process has multiple threads (sequences) of

executable instructions, which can be executed concurrently and, on a

multiprocessor machine, in parallel. Multithreading, like multiprocessing,

is a way to multitask. Multithreading has the upside of efficiency

because thread-level context switches are quite fast but the downside of

challenging the programmer with the twin perils of race conditions and

deadlock. Code examples go into detail. To begin, an example of pthread

(the standard thread library) basics should be helpful.

Chapter 7 Concurrency and Parallelism

270

Listing 7-12.  A first multithreaded example

/* compilation: gcc -o greet greet.c -lpthread */

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#define ThreadCount 4

void* greet(void* my_id) { /* void* is 8 bytes on a 64-bit

machine */

 unsigned i, n = ThreadCount;

 for (i = 0; i < n; i++) {

 printf("from thread %ld...\n", (unsigned long) my_id);

 sleep(rand() % 3);

 }

 return 0;

} /* implicit call to pthread_exit(NULL) */

void main() {

 pthread_t threads[ThreadCount];

 unsigned long i;

 for (i = 0; i < ThreadCount; i++) {

 �/* four args: pointer to pthread_t instance, attributes,

start function,

 and argument passed to start function */

 int flag = pthread_create(threads + i, /* 0 on success */

 NULL,

 greet,

 (void*) i + 1);

 if (flag < 0) {

 perror(NULL);

Chapter 7 Concurrency and Parallelism

271

 exit(-1);

 }

 }

 puts("main exiting...");

 �pthread_exit(NULL); �/* allows other threads to continue

execution */

}

The multiT program (see Listing 7-12) has five threads in all: the main

thread, which executes the body of main, and four additional threads that

main creates through calls to the library function pthread_create. The

pthread_create function takes four arguments:

•	 The first argument is a pointer to a pthread_t instance,

in this case an element in the threads array.

•	 The second argument specifies thread attributes.

A value of NULL indicates that the default attributes

should be used.

•	 The third argument is a pointer to the thread’s start

function, which the thread executes once the operating

system starts the thread. A created thread automatically

terminates when it returns from its start function. The

start function can call other functions and do whatever

else comes naturally to functions.

•	 The fourth and last argument specifies what should be

passed, as an argument, to the start function. In this

case, the argument passed to the greet start function

will be one of the values 1, 2, 3, and 4, which identify

each of the created threads. The argument passed to

the start function is always of the generic type void*,

and NULL for no argument can be used.

Chapter 7 Concurrency and Parallelism

272

All four of the created threads execute the same code, the body of

the greet function, but no race condition arises. Arguments passed to a

function, and local (auto or register) variables within the function, are

thereby thread-safe because each thread gets its own copies. If a variable

is neither extern nor static, then it represents a thread-safe memory

location.

The pthread_create function returns -1 to signal an error and 0 to

signal success. A successfully created thread is ready to be scheduled for

execution on a processor.

At the end of main, the multiT program calls the library function

pthread_exit with an argument of NULL. The address of an int exit-status

variable also could be used as the argument. This call from main allows

other threads to continue executing. On a sample run, for instance, the

output began:

from thread 2...

from thread 4...

main exiting...

from thread 3...

...

The order of thread execution is indeterminate. Once the threads are

created, the operating system takes over the scheduling, using whatever

algorithm the host system employs. A pthread instance is a native thread

under operating system control. By contrast, a green thread is under the

control of a virtual machine. For example, early implementations of Java

(before JDK 1.4) were required to support only green threads. If the multiT

program is run several times, the output is likely to differ each time.

Chapter 7 Concurrency and Parallelism

273

WHAT’S POSIX?

The Portable Operating System Interface is a family of standards from the IEEE

Computer Society meant to encourage compatibility among operating systems.

The multithreading examples use pthreads, where the p stands for POSIX.

7.7.1. � A Thread-Based Race Condition
The next code example illustrates a race condition in a multithreaded

program. The program later introduces a mechanism for coordinating

thread execution, thereby preventing this race condition. A short depiction

of a race condition follows.

Suppose that there is a static variable named n, which is initialized to

1 and updated as follows:

n += rand(); /* add a pseudo random value to n */

The assignment operator += makes it clear that two operations are

involved: an addition followed by an assignment. Suppose that this

same statement belongs to two separate threads of execution, T1 and

T2, each of which accesses the same variable n. For emphasis, assume

that each thread executes literally at the same time on a multiprocessor

machine. Here is one possible scenario, where each of the numbered items

represents one tick of the system clock:

	 1.	 Thread T1 gets 123 from its call to rand() and

performs the addition. Assume that the sum of

the two numbers 123 + 1 = 124 is stored on the

stack. Call this storage location temp1, which now

holds 124.

Chapter 7 Concurrency and Parallelism

274

	 2.	 Thread T2 gets 987 from its call to rand() and

performs the addition. The sum 988 is stored in

temp2, also on the stack.

	 3.	 Thread T2 performs the assignment, using the value

from temp2: the value of n is updated to 988.

	 4.	 Thread T1 performs the assignment, using the value

from temp1: the value of n changes to 124.

It is clear that improper interleaving of machine-level instructions

has taken place. Thread T2 does its addition and assignment without

interruption, which is the correct way to perform the two operations. By

contrast, thread T1 does its addition, is delayed two ticks of the clock, and

then finishes up with an assignment. By coming in last, thread T1 wins the

race: the final value of variable n, 124, reflects only what thread T1 did, and

what thread T2 did is effectively lost.

The two operations, the addition and then the assignment, make up a

critical section, a sequence of operations that must be executed in a single-

threaded, uninterrupted manner: if one thread starts its addition, no other

thread should access variable n until this first thread completes its work

with an assignment. The code segment at present does not enforce single-

threaded or thread-safe execution of the

n += rand(); /* addition then assignment */

critical section. The outcome is, therefore, indeterminate and

unpredictable.

7.7.2. � The Miser/Spendthrift Race Condition
The forthcoming miserSpend program encourages a race condition by

having two threads concurrently update a shared memory location, in

this case the single static variable named account, which represents a

Chapter 7 Concurrency and Parallelism

275

shared bank account: both threads access the same account. A memory-

based race condition requires contention for a shared memory location. Of

course, the account variable could be extern rather than static without

changing the program’s behavior.

The miser (saver) and the spendthrift (spender) are implemented as

two separate threads, each with uncoordinated access to the account.

To highlight the race condition, the miser and the spendthrift update the

balance the same number of times, given as a command-line argument.

Here is a depiction of what goes on in the miserSpend program:

 increment +---------+ decrement

miser----------->| account |<-----------spendthrift ## updates are done many times

 +---------+

On a multiprocessor machine, the miser and the spendthrift can

execute in a truly parallel fashion. Because access to the account is

uncoordinated, a race condition ensues, and the final value of account

is indeterminate. Indeed, if the two threads increment and decrement a

sufficient number of times (e.g., ten million apiece), it becomes highly

unlikely that the account will have zero as its value at the end, or that the

account will have a repeated value over multiple runs.

As in the earlier multithreading example, the main thread starts the

other threads, but the main thread now must wait for the miser and the

spendthrift threads to terminate. For the program to illustrate the race

condition, the main thread must be the last thread standing. The reason

is that the main thread prints the final value of the account and must

not do so prematurely, that is, before all of the updates have completed.

Otherwise, the main thread might print the value of account when this

value just happens to be zero. The pthread library has a function to enable

the required waiting.

Chapter 7 Concurrency and Parallelism

276

Listing 7-13.  Creating, starting, and waiting on the miser and

spendthrift threads

void report_and_die(const char* msg) {

 fprintf(stderr, "%s\n", msg);

 exit(-1);

}

void main(int argc, char* argv[]) {

 �if (argc < 2) report_and_die("Usage: saveSpend <number of

operations apiece>\n");

 �int n = atoi(argv[1]); �/** command-line argument conversion

to integer **/

 pthread_t miser, spendt;

 if (pthread_create(&miser, NULL, deposit, &n) < 0)

 report_and_die("pthread_create: miser");

 if (pthread_create(&spendt, NULL, withdraw, &n) < 0)

 report_and_die("pthread_create: spendt");

 �pthread_join(miser, NULL); �/* main thread waits on miser:

NULL for exit status */

 �pthread_join(spendt, NULL); �/* main thread waits on spendt:

NULL for exit status */

 printf("The final account balance is: %10i\n", account);

}

The code for the saveSpend program is divided into two parts for

readability. The first part (see Listing 7-13) has the main thread create and

then start two other threads: the miser and the spendthrift threads. Each

created thread is of type pthread_t, and the pthread_create function can

be reviewed as follows:

Chapter 7 Concurrency and Parallelism

277

•	 The first argument is the address of a pthread_t

instance, in this case, of either the miser or the spendt

variable.

•	 The second argument, NULL, indicates that default

thread properties are to be used.

•	 The third argument is the address of the start function,

either deposit (miser) or withdraw (spendthrift). Recall

that each created thread terminates automatically

when exiting its start function.

•	 The fourth argument is the address of the argument

passed to the start function, in this case the address of

integer variable n, which is the number of times that

each started thread should update the account.

The saveSpend program introduces only one new function from

the pthread API, pthread_join. The caller of the function, in this case

main, thereby goes into a wait state until the thread identified in the first

argument has exited. For review, the main function calls the pthread_join

function twice:

pthread_join(miser, NULL); /* main thread waits on miser */

pthread_join(spendt, NULL); /* main thread waits on spendt */

If the miser already has exited, the first call to pthread_join returns

immediately; if not, the call returns when the miser does exit. The second

argument to pthread_join can be used to get the exit status of the thread

given as the second argument; in this case, the status is ignored with NULL

as the second argument. The two calls to pthread_join ensure that the

main thread prints the final balance—the balance after the other two

threads have terminated.

Chapter 7 Concurrency and Parallelism

278

Listing 7-14.  The miser/spendthrift start functions

/** To compile: gcc -o saveSpend saveSpend.c -lpthread **/

#include<stdio.h>

#include<pthread.h>

#include<stdlib.h>

static int account = 0; �/** shared storage across the

threads **/

void update(int n) {

 account += n; /** critical section **/

}

void* deposit(void* n) { /** miser code **/

 int limit = *(int*) n, i;

 �for (i = 0; i < limit; i++) update(+1); �/* add 1 to

account */

 return NULL;

} /** thread terminates when exiting deposit **/

void* withdraw(void* n) { /** spendt code **/

 int limit = *(int*) n, i;

 �for (i = 0; i < limit; i++) update(-1); �/* subtract 1 from

account */

 return NULL;

} /** thread terminates when exiting withdraw **/

The second part of the saveSpend program (see Listing 7-14) has the

two start functions for the created threads: deposit (miser) and withdraw

(spendthrift). Each of these functions takes, as its single argument, the

number of times to perform an account update, implemented as the

update function: the deposit function calls update with 1 as the argument,

whereas the withdraw function calls update with -1 as the argument.

Chapter 7 Concurrency and Parallelism

279

A command-line argument determines the number of deposits

and withdrawals, and this number is the same for the miser and the

spendthrift. The command-line argument should be sufficiently large to be

interesting, that is, to confirm the race condition. If the number is too small

(e.g., 100), then the miser might do its 100 deposits before the spendthrift

does any withdrawals. The goal is to have each thread run long enough

that there is improper interleaving of the arithmetic and assignment

operations in the critical section, the body of the update function.

With a command-line argument of 10M (million), the output from two

consecutive runs was

The final account balance is: 203692

The final account balance is: -1800416

With a command-line argument of 10M, a result of zero is highly

unlikely.

In the saveSpend program, the account is changed in only one place:

the function update, which takes a single int argument and updates the

account by this amount. For the saveSpend program to behave properly,

the body of update function must execute in a single-threaded fashion.

There are different ways to enforce this policy, and using a mutex to

lock access to the account is one way. (Recall the earlier example of the

memwriter/memreader in which a semaphore is used as a mutex.) In

the current example, the mutex from the pthread library ensures single-

threaded execution of a critical section—the body of the update function

in which the account is either incremented or decremented.

Listing 7-15.  Fixing the saveSpend program

static int account = 0; �/** shared storage across the

threads **/

static pthread_mutex_t lock; /* named lock for clarity */

Chapter 7 Concurrency and Parallelism

280

void update(int n) {

 if (0 == pthread_mutex_lock(&lock)) {

 account += n; /** critical section **/

 pthread_mutex_unlock(&lock);

 }

}

The saveSpend program requires only a few changes to fix (see

Listing 7-15):

•	 A pthread_mutex_lock variable named lock is added.

There should be a single lock to ensure that the miser

and the spendthrift contend for the same lock. The lock

is static but could be extern as well.

•	 The lock is used in the update function. To update the

account, a thread first must grab the lock, expressed

here as the condition of the if clause. The pthread_

mutex_lock function returns 0 to signal that the lock

has been grabbed.

•	 Once a thread completes its update, the thread releases

the lock so that another thread can try to grab it.

With these changes in place, the saveSpend program always prints 0

as the value of the account when the miser and spendthrift threads have

terminated.

One more change is recommended in fixing the saveSpend program.

After the miser and spendthrift threads terminate, the lock is no longer

needed; hence, it should be destroyed. The function main could be

changed as follows:

...

pthread_join(spendt, NULL);

pthread_mutex_destroy(&lock); /** added **/

Chapter 7 Concurrency and Parallelism

281

A high-level summary of the pthread_mutex seems in order:

•	 To execute a locked critical section, a thread first

must grab the lock. After finishing the execution of

the critical section, a thread should release the lock to

enable some other thread to grab the lock and thus to

safeguard against deadlock.

•	 If multiple threads are contending for the lock, the

implementation ensures that exactly one thread

grabs it.

•	 In general, a mutex such as pthread_mutex does not

guarantee fairness. For example, if two threads are

contending for the lock, the mutex implementation

does not guarantee that each thread will be successful

half the time. However, the saveSpend program has

other logic to ensure that the miser and the spendthrift

threads execute the same number of times.

If the fixed saveSpend program is run with a sufficiently large loop

count (e.g., 10,000,000) as the command-line argument, there will be

noticeable slowdown compared to the original version of the program.

There is a performance cost to mutual exclusion, which enforces single-

threaded execution of a critical section; in this code example, the cost

ensures that the saveSpend program runs correctly.

7.8. � Deadlock in Multithreading
Deadlock can occur in either a multiprocessing or multithreading. In the

multithreading context, deadlock can occur with just two threads: T1 and

T2. To access a shared resource R, either T1 or T2 must hold two locks (L1

and L2) at the same time. Suppose the two threads try to access R, with T1

managing to grab lock L1 and T2 managing to grab lock L2. Each thread

Chapter 7 Concurrency and Parallelism

282

now waits indefinitely for the other to release its held lock—and deadlock

results. Deadlock is usually inadvertent, of course, but the next code

example tries to cause deadlock.

Listing 7-16.  Deadlocking with threads

/** To compile: gcc -o deadlock deadlock.c -lpthread **/

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

static pthread_mutex_t lock1, lock2; �/** two locks protect the

resource **/

static int resource = 0; /** the resource **/

void grab_locks(const char* tname,

 const char* lock_name,

 const char* other_lock_name,

 pthread_mutex_t* lock,

 pthread_mutex_t* other_lock) {

 printf("%s trying to grab %s...\n", tname, lock_name);

 pthread_mutex_lock(lock);

 printf("%s grabbed %s\n", tname, lock_name);

 �if (0 == strcmp(tname, "thread1")) usleep(100); �/** fix

is in! **/

 printf("%s trying to grab %s...\n", tname, other_lock_name);

 pthread_mutex_lock(other_lock);

 printf("%s grabbed %s\n", tname, other_lock_name);

Chapter 7 Concurrency and Parallelism

283

 resource = (0 == strcmp(tname, "thread1")) ? -9999 : 1111;

 pthread_mutex_unlock(other_lock);

 pthread_mutex_unlock(lock);

}

void* thread1() {

 �grab_locks("thread1", "lock1", "lock2", &lock1, &lock2);

/* lock1...lock2 */

 return NULL;

}

void* thread2() {

 �grab_locks("thread2", "lock2", "lock1", &lock2, &lock1);

/* lock2...lock1 */

 return NULL;

}

void main(){

 pthread_t t1, t2;

 �pthread_create(&t1, NULL, thread1, NULL); �/* start

thread 1 */

 �pthread_create(&t2, NULL, thread2, NULL); �/* start

thread 2 */

 pthread_join(t1, NULL); /* wait for thread 1 */

 pthread_join(t2, NULL); /* wait for thread 2 */

 printf("Number: %i (Unlikely to print...)\n", resource);

}

The deadlock program (see Listing 7-16) is likely but not certain to

deadlock. Although deadlock is intended, the code still might execute in

such a way that deadlock does not occur. On a sample run, however, the

deadlock program produced this output:

Chapter 7 Concurrency and Parallelism

284

thread1 trying to grab lock1...

thread1 grabbed lock1

thread2 trying to grab lock2...

thread2 grabbed lock2

thread2 trying to grab lock1...

thread1 trying to grab lock2...

A code analysis shows what happened.

The main thread creates two threads: t1 and t2. Thread t1 is created

first, and the output confirms that t1 starts executing first—although the

order of execution is indeterminate. There are two locks, lock1 and lock2,

which protect resource, an int variable: thread t1 tries to set this variable

to -9999, whereas thread t2 tries to set the variable to 1111. To set the

variable, a thread must grab both locks.

Thread t1 has thread1 as its start function, and t2 has thread2 as

its start function. In turn, these functions immediately call the grab_

locks function, but with arguments in a different order. Recall that, in

multithreading, each thread has its own copies of arguments and local

variables.

Given the output shown previously, the concurrent execution of grab_

locks can be summarized as follows:

	 1.	 Thread t1 succeeds in grabbing lock1 but fails in

the attempt to grab lock2. After grabbing lock1,

thread t1 sleeps for 100 microseconds—time

enough, as it turns out, for thread t2 to grab lock2.

	 2.	 After grabbing lock2, thread t2 tries to grab lock1,

which thread t1 already holds. At this point, t1

holds lock1 and t2 holds lock2.

Chapter 7 Concurrency and Parallelism

285

	 3.	 The last two statements in the grab_locks function

release the locks. However, neither thread can

proceed to the release code without first grabbing a

lock that the other thread already holds—deadlock.

Why is deadlock not certain in the deadlock program? On my desktop

machine, no deadlock results if the usleep call is removed from the

grab_locks function. No deadlock results if the argument passed to

usleep is sufficiently small. Even with the current usleep value of 100, it is

possible that thread t1 might grab both locks before thread t2 even begins

executing. It is also possible, on a multiprocessor machine, that thread

t2 is scheduled on a faster processor than is t1; as a result, t2 grabs both

locks before t1 even begins executing. A thread that holds both locks can

proceed to the release code: no deadlock occurs. The deadlock program

tries to cause deadlock, but even this requires some experimentation

by setting the amount of time that thread t1 sleeps after grabbing the

first lock.

The deadlock program tries to cause deadlock, but the real-world

challenge is a concurrent program that, although designed not to

deadlock, does so anyway. Modern database systems typically include at

least a deadlock-detection module. In general, however, software systems

neither detect, nor prevent, nor recover from deadlock. The burden thus

falls on the programmer to write code that avoids deadlock.

7.9. � SIMD Parallelism
The acronym SIMD was introduced in the mid-1960s as part of Flynn’s

taxonomy for parallel computing. SIMD stands for single instruction,

multiple data stream. Flynn’s taxonomy introduces other acronyms

(e.g., MIMD for multiple instruction, multiple data stream) to describe

additional approaches to parallel computation. This section focuses on

SIMD parallelism.

Chapter 7 Concurrency and Parallelism

286

Imagine integer values collected in array and a code segment that

doubles the value of each element. A conventional approach would be

to loop over the array and, one element at a time, double each value. In

a SIMD architecture, a single instruction would execute on each element

in parallel. The serial or iterative computation gives way to a one-step

parallel computation, with a boost in performance that is both intuitive

and compelling.

The concurrent programs examined so far become truly parallel

programs without any programmer intervention. If a multiprocessing or

multithreading program happens to execute on a multiprocessor machine

(now the norm), then the operating system transforms the concurrent

program into a parallel one by scheduling processes/threads onto different

processors. SIMD parallelism differs in that parallel instructions come into

play. SIMD is thus a type of instruction-level parallelism, which requires

underlying architectural support.

The appeal of SIMD parallelism is obvious. Even everyday applications

regularly iterate over arrays, performing the same operation on each

element. For an array of size N, this iterative approach requires that N

instructions be executed in sequence. Assume, for simplicity, that each

instruction requires one tick of the system clock. In this scenario, doubling

the array elements takes N ticks. If the doubling can be done in a single

SIMD instruction, the time required drops from N ticks to roughly one tick,

although there is nontrivial overhead to set up the parallel addition.

For some time, computers have had devices tailored for SIMD. A

graphics processing unit (GPU) is a case in point; indeed, the acronym

GP_GPU describes a GPU designed for general purpose rather than just

graphics-specific processing. There are various C libraries and entire

frameworks devoted to putting such devices to use in SIMD processing.

This section goes another way, focusing instead on how the standard C

compilers are now able to use native SIMD instructions, in particular

on modern Intel and AMD machines. (ARM Neon machines likewise

support SIMD.)

Chapter 7 Concurrency and Parallelism

287

In the late 1990s, Intel released the P5 (P for Pentium) line of

microprocessors, which support the MMX instruction set, a first step

toward SIMD parallelism. The MM registers associated with this

instruction set, and the instruction set itself, soon gave way to SSE

(Streaming SIMD Extensions) in different versions (e.g., SSE2 and SSE4).

The XMM registers of SSE are 128 bits in size and small in number—only

eight to begin but later sixteen. The SIMD architecture and instruction set

have continued to evolve. For example, the XMM registers (128 bits) now

have siblings: YMM registers (256 bits) and ZMM registers (512 bits).

Listing 7-17.  A SIMD program in C

#include <stdio.h>

#define Length 8

typedef double doubleV8 __attribute__ ((vector_size (Length *

sizeof(double)))); /** critical **/

void main() {

 �doubleV8 dataV1 = {1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8};

/* no square brackets on dataV1 */

 �doubleV8 dataV2 = {4.4, 6.6, 1.1, 3.3, 5.5, 2.2, 3.3, 5.5};

/* no square brackets on dataV2 */

 doubleV8 add = dataV1 + dataV2;

 doubleV8 mul = dataV1 * dataV2;

 doubleV8 div = dataV1 / dataV2;

 int i;

 for (i = 0; i < Length; i++)

 �printf("%f ", add[i]); /* 5.500000 8.800000 4.400000

7.700000 11.000000 8.800000 11.000000 14.300000 */

Chapter 7 Concurrency and Parallelism

288

 putchar('\n');

 for (i = 0; i < Length; i++)

 �printf("%f ", mul[i]); �/* 4.840000 14.520000 3.630000

14.520000 30.250000 14.520000

25.410000 48.400000 */

 putchar('\n');

 for (i = 0; i < Length; i++)

 �printf("%f ", div[i]); �/* 0.250000 0.333333 3.000000

1.333333 1.000000 3.000000 2.333333

1.600000 */

 putchar('\n');

}

The simd program (see Listing 7-17) has a typedef that triggers the C

compiler to use native SIMD instructions and the supporting architectural

components, in particular SIMD registers. The typedef makes doubleV8

an alias for a double vector by using a special attribute:

__attribute__ ((vector_size (Length * sizeof(double)))

The attribute specifier has two underscores in front and in back.

The specified attribute is vector_size, whose value is Length (defined as

8) multiplied by sizeof(double), which is typically 8 bytes. A doubleV8

instance is thereby defined as a vector of eight 8-byte floating-point values,

which requires 512 bits in all.

With this typedef in place, the arithmetic operations in the remaining

code are easy to read—and highly efficient. To begin, each of the two

doubleV8 variables, dataV1 and dataV2, is initialized. Notice that the

square brackets usually associated with arrays are absent. Here, for review,

is the initialization of vector dataV1:

doubleV8 dataV1 = {1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8};

Chapter 7 Concurrency and Parallelism

289

The vectors dataV1 and dataV2 can be used with indexes, as the three

loops near the end of the code illustrate:

printf("%f ", div[i]); /* print ith value */

However, the arithmetic operations to add, multiply, and divide the

vectors are one statement apiece in the source code. Here, for review, is the

multiplication of the two vectors:

doubleV8 mul = dataV1 * dataV2; /* no looping! */

The standard compilers now make SIMD programming

straightforward in C itself, without any additional libraries or tools. Of

course, the underlying architecture must support machine-level SIMD

instructions. It is reasonable to expect that SIMD architectures will

continue to improve and that the C compilers will continue to generate

code that takes advantage of the evolving SIMD instruction sets and

architectures.

7.10. � What’s Next?
The next chapter covers miscellaneous topics to provide a better sense of

the libraries available in C, both standard and third party. There is also

a section on building software libraries from scratch. As usual, the code

examples highlight the power and flexibility of C.

The forthcoming code examples cover regular expressions for pattern

matching and data validation; assertions for enforcing conditions in code

modules; locale management for internationalization; the compilation of

C code into WebAssembly for high-performance web modules; signals for

interprocess communication; and the building, deployment, and use (by

both C and Python clients) of software libraries.

Chapter 7 Concurrency and Parallelism

291

CHAPTER 8

Miscellaneous Topics

8.1. � Overview
This chapter introduces libraries and topics not seen so far, but it also

extends and refines the coverage of earlier material. For example, the

flexible library function system, for quick multiprocessing, is introduced;

the input function scanf is examined more closely.

The chapter begins with regular expressions, a language designed for

pattern matching, which makes the language well suited for verifying

input. Indeed, professional data validation relies on regular expressions

as a base level. The chapter then moves to assertions, which allow the

programmer to express and enforce constraints in a program. A section

on locales and internationalization follows. Short code examples and full

programs get into the details.

WebAssembly is a language designed for high-performance web

modules, for example, ones that do serious number crunching. C is among

the earliest languages (the others are C++ and Rust) to compile into

WebAssembly. This section goes into detail with an full code example.

A signal is a low-level but still powerful way for one process to

communicate with another, and C has an API for generating and handling

signals. The section on signals is code oriented as usual.

© Martin Kalin 2022
M. Kalin, Modern C Up and Running, https://doi.org/10.1007/978-1-4842-8676-0_8

https://doi.org/10.1007/978-1-4842-8676-0_8

292

The chapter ends with a section on building static and dynamic

libraries in C. It is no surprise that a client written in C can consume a

library written in the same language, but almost every modern language

can interoperate with C. This section underscores the point by having a

Python client consume a C library built from scratch.

8.2. � Regular Expressions
The regular expression language, or regex for short, is used to match

strings against patterns and even for editing strings. Users of command-

line utilities such as grep (short for grab regular expression) or rename

already have experience with regex. In web and other applications, regex

verification of user input is best practice; modern programming languages

typically support regex. The first code example prompts a user for an

employee ID and then checks whether the entered string matches a

pattern that validates IDs.

Listing 8-1.  A regex to check an employee ID

#include <stdio.h>

#include <regex.h>

#define MaxBuffer 64

void main() {

 char input[MaxBuffer];

 char error[MaxBuffer + 1]; /* null terminator */

 printf("Employee Id: ");

 scanf("%7s", input); /* read only 7 chars */

 �const char* regex = "^[A-Z]{2}[1-9]{3}[a-k]{2}$"; �/* regex as

a string */

 regex_t regex_comp;

Chapter 8 Miscellaneous Topics

293

 int flag;

 �if ((flag = regcomp(®ex_comp, regex, REG_EXTENDED)) < 0) {

/* compile regex */

 regerror(flag, ®ex_comp, error, MaxBuffer);

 fprintf(stderr, "Error compiling '%s': %s\n", regex, error);

 return;

 }

 �if (REG_NOMATCH == regexec(®ex_comp, input, 0, NULL, 0))

/* match? */

 fprintf(stderr, "\n%s is an invalid employee ID.\n", input);

 else

 fprintf(stderr, "\n%s is a valid employee ID.\n", input);

 regfree(®ex_comp); /* good idea to clean up */

}

The empId program (see Listing 8-1) prompts the user for an employee

ID and then reads the entered ID using scanf:

scanf("%7s", input); /* read only 7 chars */

The 7 in the format string %7s ensures that no more than seven

characters are scanned into the buffer named input, which has room for

64 in any case.

The program then compiles a regex pattern given as a string. This

pattern is the most complicated part of the program and so deserves

careful analysis. The pattern consists of three parts, and each part consists

of a set and a count. For now, ignore the start character ^ and the end

character $; these are covered shortly.

The first set/count pair is

[A-Z]{2}

Chapter 8 Miscellaneous Topics

294

The square brackets represent a set, a collection of nonduplicate items

in which order does not matter. For example, the set

[1234]

is the same as the set

[2143]

In the empId program, the members of the first set are the uppercase

letters A,B,…,Z. These letters could be enumerated in the square brackets

and in any order—a tedious undertaking. The regex language thus has a

shortcut: [A-Z] means the uppercase letters A through Z.

Immediately after the set [A-Z] comes the count (quantifier) of how

many characters from the set are required. The count occurs in braces:

[A-Z]{2} /* exactly 2 letters from the set A-Z */

The count can be flexible. For example, the count in

[A-Z]{2,4} /* 2 to 4 letters from the set A-Z */

allows two to four letters from the set.

The second part of the pattern requires exactly three decimal digits

from the set [1-9]:

[1-9]{3} /* 3 digits, 1 through 9 */

The third part of the pattern requires two lowercase letters, but in the

range of a through k:

[a-k]{2} /* 2 letters, a through k */

Here is a summary of other quantifier options:

[A-Z]? /* zero or one from the set */

[A-Z]* /* zero or more from the set */

[A-Z]+ /* one or more from the set */

Chapter 8 Miscellaneous Topics

295

The employee ID is supposed to begin with an uppercase letter and

end with a lowercase letter. There should not be any other characters,

including whitespace, flanking the employee ID on either side. To express

this requirement, the regex expression uses anchors: the hat character ̂ is

the left anchor, and the dollar-sign character $ is the right anchor. Without

these anchors, an employee ID such as

foobarAB123bb9876

would pass muster because the substring AB123bb matches the pattern

without the anchors. The anchored expression requires that the ID start

with an uppercase letter and end with a lowercase one.

The employee ID pattern as a string is compiled using the library

function regcomp, which creates a regex_t instance if successful. The

compiled pattern is used in matches. The last argument to regcomp is REG_

EXTENDED, which enables various POSIX extensions to the original regex

library. There is also a C library that supports Perl syntax and features (see

www.pcre.org/), which has become the de facto standard for regex syntax.

Once the pattern is compiled, it can be used in a call to regexec, which

matches the pattern against an input string. The call takes five arguments:

if (REG_NOMATCH == regexec(&pattern_comp, /* pattern */

 input, /* input string */

 0, /* zero capture groups */

 NULL, /* no capture array */

 0)) /* no special flags */

The first two arguments are the address of the compiled pattern and

the string to test against the pattern, which in this case is the user input.

The next two arguments, 0 and NULL, are for capture groups: parts of the

string to be tested can be captured for later reference. In this example, the

capture option is not needed; hence, the number of capture groups is 0,

and then there is NULL instead of an array in which to save the captures. A

later example illustrates captures. The last argument consists of optional

Chapter 8 Miscellaneous Topics

https://www.pcre.org/

296

integer flags, for example, a flag to ignore case when matching letters. In

this example, there are no flags, which 0 represents.

The empId program works as advertised. For example, it accepts

AQ431af as an employee ID but rejects AQ431mf (m is not between a and

k, inclusive) and AQ444kk7 (ends with a digit, not a letter).

A first experience with regex syntax may seem daunting, but a

rhetorical question puts the challenge into perspective: Would it be easier

to learn regex, or to write a program from scratch that does what the empId

example requires? Regular expressions are not always intuitive, but they

make up for this shortcoming with their power and flexibility.

Listing 8-2.  A revised version of the empId program

#include <stdio.h>

#include <unistd.h>

#include <regex.h>

#define MaxBuffer 128

#define GroupCount 4 /* entire expression counts as one group

by default */

void main() {

 char error[MaxBuffer + 1];

 char* inputs[] = {"AABC123dd95", "Az4321jb81", "QQ987ii4",

 �"QQ98ii4", "YTE987ef4", "ARNQ999kk6", NULL};

 �const char* regex = "^([A-Z]{2,4})([1-9]{3})([a-k]{2})

[0-9]+$";

 regex_t regex_comp;

 int flag;

 if ((flag = regcomp(®ex_comp, regex, REG_EXTENDED)) < 0) {

 regerror(flag, ®ex_comp, error, MaxBuffer);

 printf("Regex error compiling '%s': %s\n", regex, error);

 return;

 }

Chapter 8 Miscellaneous Topics

297

 unsigned i = 0, j;

 while (inputs[i]) { /* iterate over the inputs */

 �regmatch_t groups[GroupCount]; /* for extracting

substrings */

 �if (REG_NOMATCH == regexec(®ex_comp, inputs[i],

GroupCount, groups, 0))

 �fprintf(stderr, "\t%s is not a valid employee ID.\n",

inputs[i]);

 else {

 �fprintf(stdout, "\nValid employee ID. %i parts

follow:\n", GroupCount);

 for (j = 0; j < GroupCount; j++) {

 if (groups[j].rm_so < 0) break;

 �write(1, inputs[i] + groups[j].rm_so, groups[j].rm_eo -

groups[j].rm_so);

 write(1, "\n", 1);

 }

 printf("-----");

 }

 i++; /* loop counter */

 }

 regfree(®ex_comp); /* good idea to clean up */

}

The empId2 program (see Listing 8-2) adds features to the original

empId program. The new features can be summarized as follows:

•	 An employee ID may start out with between two and

four letters. In the fictitious company for which the

employees work, the number of starting letters is

a security code: two letters is low-security, three is

middle-security, and four is high-security clearance.

Chapter 8 Miscellaneous Topics

298

•	 An employee ID must end with one or more

decimal digits.

•	 The empId2 program introduces groups, the three

parenthesized expressions, in order to parse the

employee ID.

The revised regex expression is

^([A-Z]{2,4})([1-9]{3})([a-k]{2})[0-9]+$ ## [0-9]+ means 1 or

more decimal digits

The anchors remain, but the end requirement for one or more

decimal digits is new. The other major change is the use of parenthesized

subexpressions, each of which represents a group that is captured for later

analysis.

The major change in the rest of the code has to do with group captures.

The code declares an array:

regmatch_t groups[GroupCount]; /* for extracting substrings */

The value of GroupCount is four, one more than the number of

parenthesized subexpressions (in this case, three) in the regex. The reason

is that the entire string to be matched counts as one group, in fact the first.

The regmatch_t type is

typedef struct {

 regoff_t rm_so; /* start offset */

 regoff_t rm_eo; /* end offset */

} regmatch_t;

The two offsets indicate where, in the string to be matched, the

different groups begin and end. The groups array, in the current

example, has four elements of this type. For the first string to be matched,

AABC123dd95, the start index (rm_so in the structure) for the first

subexpression is 0, and the end index (rm_eo) is 4, immediately beyond the

last character C in the first subexpression.

Chapter 8 Miscellaneous Topics

299

Given the regmatch_t, it is straightforward to print the captured

groups in valid employee IDs. Indeed, the easy way is to use the low-level

I/O API. Here is the relevant statement:

write(1, /* stdout */

 inputs[i] + groups[j].rm_so, /* start */

 groups[j].rm_eo - groups[j].rm_so); /* length */

The first argument to write is, of course, the standard output. The

second argument takes the base address of a test string (for instance,

inputs[0] is the string AABC123dd95) and adds the start offset (rm_so,

which is 0, 4, or 7). The third argument to write is the captured part’s

length: the end index (one beyond the end of the part) minus the start

index. The output for parsing the first two candidate IDs is

Valid employee ID. 4 parts follow:

AABC123dd95

AABC

123

dd

 Az4321jb81 is not a valid employee ID.

The standard C library for regex covers the basics but does not include

newer features such as lookaheads. These features make it easier or more

efficient to do pattern matching that still can be done without them. The

previously mentioned PCRE (Perl Compatible Regular Expressions) library

is an option for such newer features.

Chapter 8 Miscellaneous Topics

300

8.3. � Assertions
An assertion checks whether a program satisfies a condition at a specified

point in its execution. There are three traditional types of assertion that

can be used to check a program module such as a C block:

•	 An assertion expressing a precondition, which must

hold at the start of a block

•	 An assertion expressing a postcondition, which must

hold at the end of a block

•	 An assertion expressing an invariant, which must hold

throughout a block

C implements assertions with the assert macro, which takes an

arbitrary boolean expression as its argument. If the assert evaluates to

true (nonzero), the program continues execution; otherwise, the program

aborts with an explanatory error message.

Listing 8-3.  Using assertions to track login attempts

#include <stdio.h>

#include <regex.h>

#include <assert.h>

#define MaxBuffer 64

#define MaxTries 3

unsigned check_id(const char* id, regex_t* regex) {

 return REG_NOMATCH != regexec(regex, id, 0, NULL, 0);

}

void main() {

 const char* regex_s = "^[A-Z]{2,4}[1-9]{3}[a-k]{2}[0-1]?$";

 regex_t regex_c;

Chapter 8 Miscellaneous Topics

301

 if (regcomp(®ex_c, regex_s, REG_EXTENDED) < 0) {

 fprintf(stderr, "Bad regex. Exiting.\n");

 return;

 }

 char id[MaxBuffer];

 unsigned tries = 0, flag = 0;

 assert(0 == tries); /* precondition */

 do {

 assert(tries < MaxTries); /* invariant */

 printf("Employee Id: ");

 scanf("%10s", id);

 if (check_id(id, ®ex_c)) {

 flag = 1;

 break;

 }

 tries++;

 } while (tries < MaxTries);

 assert(tries <= MaxTries); /* postcondition */

 regfree(®ex_c); /* clean up */

 if (flag) printf("%s verified.\n", id);

 else printf("%s not verified.\n", id);

}

The verifyEmp program (see Listing 8-3) builds on the earlier empId

program, in particular by using a regex to verify an employee’s ID. The

regex itself has changed a little in order to show more aspects of the

language:

^[A-Z]{2,4}[1-9]{3}[a-k]{2}[0-1]?$ /* new part is: [0-1]? */

Chapter 8 Miscellaneous Topics

302

This pattern allows the starting uppercase letters to be between

two and four in number and makes a single ending digit (either 0 or 1)

optional. The function check_id takes two arguments, the ID to verify and

the compiled regex; the function returns either true, if the candidate ID

matches the regex, or false otherwise.

The program uses a do while loop to prompt the user for an employee

ID. Of interest now is that the employee is to get no more than MaxTries

chances to enter the ID. Similar approaches are used for login/password

combinations, of course. The loop condition is

while (tries < MaxTries)

where tries is updated on each attempt and MaxTries is a macro defined

as 3. If this condition were changed to

while (tries < MaxTries + 1)

and the user failed to provide a valid ID, the program would abort, and the

error message from the failed assertion would be

empId3: empId3.c:24: main: Assertion 'tries < 3' failed.

The 24 represents line 24 in the source code, the assertion immediately

after the do:

assert(tries < MaxTries); /* invariant */

The verifyEmp program has three assertions, each with a different test:

•	 The precondition occurs immediately before the loop

starts. It checks that, at this point, the value of tries

is zero. If tries were not initialized at all, then—as

a stack-based variable—its value would be random

and possibly greater than MaxTries already. The

precondition is evaluated exactly once, as it occurs

before the loop.

Chapter 8 Miscellaneous Topics

303

•	 The postcondition occurs immediately after the loop

ends. It checks that, at this point, tries is less than

or equal to the value of MaxTries. There are two

possibilities:

•	 Suppose that the candidate ID is verified in any

one of the three allowed attempts. Even if success

comes at the third and final attempt, the value

of tries is only 2 and so still less than MaxTries,

which is 3.

•	 Suppose that the candidate ID fails three times.

Control then exits the loop because of the loop test

that the value of tries be strictly less than the value

of MaxTries: both tries and MaxTries now have

a value of 3. The loop test has done its job, and so

the program should continue to run normally. The

postcondition thus must allow tries to be less than

or equal to the value of constant MaxTries.

•	 The invariant occurs immediately inside the loop,

which is the only place that tries changes after its

initialization to zero. On each iteration, tries is

incremented by 1. If the candidate ID is verified, then

the break statement, rather than the loop test, is what

moves control beyond the loop. If tries is incremented

to 3, then the loop condition, not the break statement,

should cause control to exit the loop. Accordingly,

the invariant checks that tries is always less than

MaxTries.

Chapter 8 Miscellaneous Topics

304

The syntax of assertions is easy in C, but the reasoning behind

assertion tests and assertion placement can be complicated. Even

a program as relatively simple as verifyEmp confirms the point. The

complication arises because assertions articulate reasoning about

program correctness—and determining what makes a program correct is

notoriously hard.

C has a convenient way to turn assertions off without commenting out

the assert statements or deleting them from the source code. In a file with

assertions, simply define the macro NDEBUG:

#define NDEBUG /* turns off assertions */

As code development moves from testing to production, it is common

to turn assertions off.

8.4. � Locales and i18n
Date, currency, and other information should be formatted in a locale-

aware way as part of i18n programming, where i18n abbreviates

internationalization. (The skeptic should count the letters between the i

and the n.) Consider, for example, this large number formatted in a way

familiar to North Americans:

1,234,567,891.234

In Germany, Italy, or Norway, the expected format would be

1 234 567.891,234

Locale information is available as part of the environment of a local

system. When a C program begins execution, the program inherits

environment variables about the locale and other features, but this locale

inheritance does not extend to library functions that the program may

Chapter 8 Miscellaneous Topics

305

call. Accordingly, a locale-aware program needs to do some initialization.

Before looking at this initialization in code, it will be useful to consider

how a C program can get environment information in general.

Listing 8-4.  How to get information about the program

environment

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

extern char** environ; /* declaration */

void main () {

 int i = 0;

 while (environ[i]) printf("%s\n", environ[i++]);

 printf("Locale: %s\n", getenv("LANG")); /* en_US.UTF-8 */

 char cmd[32];

 strcpy(cmd, "locale -a");

 int status = system(cmd);

 printf("\n%s exited with %i\n", cmd, status);

}

The environ program (see Listing 8-4) shows two ways to access

environment information. The first way uses the extern variable environ,

an array of strings each with a key=value format. Here, for example, are

two entries from my desktop system: the first key/value pair provides

information about the terminal and the second about the shell language.

TERM=xterm

SHELL=/bin/bash

Chapter 8 Miscellaneous Topics

306

The library function getenv takes a single argument, a key such as

TERM or SHELL as a string. The printf call illustrates with the key LANG,

which gives a standard abbreviation (en_US for English in the United States)

together with the character encoding scheme, in this case UTF-8 (Unicode

Transformation Format-8). UTF-8 formats multibyte Unicode character

encodings as a sequence of 8-bit bytes.

The last part of the environ program introduces the versatile system

function. This function takes a single string argument, which represents

a shell command, that is, a command that can be given at the command

line. The system function starts another process and then blocks until the

started process terminates. The int value returned to the system function

is the exit status of the process in question. In this example, the command

is locale -a, a utility that (with the -a flag) lists all of the locales available

on the system. (The locale utility is available on Unix-like systems and on

Windows through Cygwin.)

A given system supports some locales, but not others. The system

administrator is responsible for installing and otherwise managing locale

information. At the command line, or through the environ program shown

previously, a listing of locales would look something like this:

C

C.UTF-8

en_AG.utf8

en_AU.utf8

...

The string en_AG.utf-8 represents English in Antigua, whereas

en_AU.utf8 represents English in Australia. The first two entries, C

and C.UTF-8, represent the default locale. In the setlocale function,

investigated shortly, entries such as C.UTF-8 can be used as an argument.

Here is the declaration for the setlocale function:

char* setlocale(int category, const char* locale);

Chapter 8 Miscellaneous Topics

307

If the second argument is NULL, the function acts as a getter or query:

the function returns a string that represents the current locale. If the

second argument is not NULL, the function acts as a setter by setting the

locale represented by the second argument, a string. (The empty string as

the second argument also represents the default locale C.) Furthermore,

the string returned from setlocale is opaque and typically prints as

(null). This string is useful only as a second argument to setlocale. A

typical use of the string would be as follows:

	 1.	 Retrieve the current locale, and save it as a string.

	 2.	 Set the locale to something new, and perform

whatever application logic is appropriate.

	 3.	 Restore the saved locale by using the string from

step 1 as the second argument to setlocale.

The next code example illustrates.

Listing 8-5.  Introducing the setlocale function

#include <locale.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

void main () {

 �setlocale(LC_ALL, ""); �/* set current locale for library

functions */

 �char* prev_locale = setlocale(LC_ALL, NULL);

 /* with NULL, a getter, not a setter */

 �char* saved_locale = strdup(prev_locale);

 /* get a separate copy */

Chapter 8 Miscellaneous Topics

308

 if (NULL == saved_locale) { /* verify the copying */

 perror(NULL); /* out of memory */

 return;

 }

 �const struct lconv* loc = localeconv(); �/* get ptr to current

locale struct */

 printf("Currency symbol: %s\n", loc->currency_symbol);

 �setlocale(LC_ALL, "en_GB.utf8"); �/* english in Great

Britain */

 loc = localeconv();

 printf("Currency symbol: %s\n", loc->currency_symbol);

 setlocale(LC_ALL, saved_locale); /* restored saved locale */

 /*...*/

}

The localeBasics program (see Listing 8-5) opens with two calls to

library function setlocale, but the calls are quite different. The first call

has the empty string, hence non-NULL, as its second argument:

setlocale(LC_ALL, ""); �/* set current locale for library

functions */

The integer macro LC_ALL represents all of the locale categories,

and the empty string represents the default locale. Because the second

argument is a string, even though empty, this call to setlocale acts as a

setter rather than a getter of information.

The immediately following call to the setlocale function acts as

a getter:

char* prev_locale = setlocale(LC_ALL, NULL);

 /* with NULL as 2nd arg, a getter */

Chapter 8 Miscellaneous Topics

309

The program then uses the strdup function (string duplicate) to make

an altogether separate copy of this string just in case there are further calls

to setlocale. Note that setlocale returns a pointer to a string, not a copy

of this string.

The program ends by resetting the locale to the saved_locale. The

save/restore pattern is common in locale-aware programs.

In the middle, the localeBasics program calls the library function

localeconv to get a pointer to a structure that contains information in

all of the locale categories. This structure is displayed shortly. For now,

the pointer loc is used to access the currency symbol, first for the United

States and then for Great Britain. The output is

Currency symbol: $ /* default locale, en_US */

Currency symbol: £ /* en_GB */

At the end, the program resets the locale to the original one:

setlocale(LC_ALL, saved_locale); /* restored saved locale */

Recall that saved_locale is a string copy of the original locale and so

not NULL. This call to setlocale is therefore a setter, which restores the

locale back to the original setting.

Listing 8-6.  The lconv structure with locale information

typedef struct {

 char *decimal_point;

 char *thousands_sep;

 char *grouping;

 char *int_curr_symbol;

 char *currency_symbol;

 char *mon_decimal_point;

 char *mon_thousands_sep;

 char *mon_grouping;

Chapter 8 Miscellaneous Topics

310

 char *positive_sign;

 char *negative_sign;

 char int_frac_digits;

 char frac_digits;

 char p_cs_precedes;

 char p_sep_by_space;

 char n_cs_precedes;

 char n_sep_by_space;

 char p_sign_posn;

 char n_sign_posn;

} lconv;

Locale information is stored in a structure of type lconv (see Listing 8-6),

and the library function localeconv returns a pointer to a typically static

instance of this structure. The 18 fields contain locale-specific information.

In Canada, for example, the decimal_point is the period symbol, whereas

in Germany, the decimal_point is the comma symbol.

Table 8-1.  Argument categories for setlocale

Category Meaning

LC_ALL All of the below

LC_COLLATE regex string settings

LC_CTYPE regex, character conversion, etc.

LC_MESSAGES Localizable natural-language messages

LC_MONETARY Currency formatting

LC_NUMERIC Number formatting

LC_TIME Time and date formatting

Chapter 8 Miscellaneous Topics

311

The fields in the lconv structure are numerous, and there are

connections among many of them. The connections may not be evident.

Accordingly, these fields are divided into seven categories, with macros to

define each category (see Table 8-1). The categories make it easier to set

related pieces of locale information.

A typical call to function setlocale uses the LC_ALL category as the

first argument:

setlocale(LC_ALL, ""); /* set all categories to default

locale */

For fine-tuning, however, a specific category could be used instead as

the first argument:

setlocale(LC_MONETARY, "en_GB.utf-8"); /* monetary category for

Great Britain */

The next code example puts the LC_MONETARY category to use. The

program first sets all locale categories (LC_ALL) to local settings. The

program then resets LC_MONETARY only to get locale-specific currency

information from six English-speaking regions around the world.

Listing 8-7.  Using the category LC_MONENTARY

#include <locale.h>

#include <stdio.h>

#include <stdlib.h>

void main () {

 �setlocale(LC_ALL, ""); /* set all categories to default

locale */

 �char* regions[] = {"en_AU.utf-8", "en_CA.utf-8",

"en_GB.utf-8", "en_US.utf-8", "en_NZ.utf-8",

"en_ZM.utf-8", NULL};

Chapter 8 Miscellaneous Topics

312

 int i = 0;

 while (regions[i]) {

 setlocale(LC_MONETARY, regions[i]); /* change the locale */

 const struct lconv* loc = localeconv();

 �printf("Region: %s Currency symbol: %s International

currency symbol: %s\n",

 r�egions[i], loc->currency_symbol, loc->int_curr_

symbol);

 i++;

 }

}

The locMonetary program (see Listing 8-7) initializes the array

regions to standard codes for six English-speaking regions around the

world. For each of these regions, the LC_MONETARY category is set before

the currency_symbol and the int_curr_symbol (international currency

symbol) are printed in a while loop. The localeconv library function

is called to get a pointer to the lconv structure that stores the desired

information.

Listing 8-8.  Output from the locMonetary program

Region: en_AU.utf-8 Currency symbol: $ International currency

symbol: AUD

Region: en_CA.utf-8 Currency symbol: $ International currency

symbol: CAD

Region: en_GB.utf-8 Currency symbol: £ International currency

symbol: GBP

Region: en_US.utf-8 Currency symbol: $ International currency

symbol: USD

Region: en_NZ.utf-8 Currency symbol: $ International currency

symbol: NZD

Region: en_ZM.utf-8 Currency symbol: K International currency

symbol: ZMK

Chapter 8 Miscellaneous Topics

313

The output from the locMonetary program (see Listing 8-8) shows the

region, currency symbol, and international currency acronym for the six

regions.

8.5. � C and WebAssembly
WebAssembly is a language well-suited for compute-bound tasks (e.g.,

number crunching) executed on a browser. All rumors to the contrary, the

WebAssembly language is not meant to replace JavaScript, but rather to

supplement JavaScript by providing better performance on CPU-intensive

tasks that JavaScript otherwise might perform. JavaScript remains the glue

that ties together HTML pages and WebAssembly modules:

HTML pages<--->JavaScript<--->WebAssembly modules

WebAssembly has an advantage over other web artifacts when it

comes to downloading. For example, a browser fetches HTML pages, CSS

stylesheets, and JavaScript code as text, an inefficiency that WebAssembly

addresses: a WebAssembly module has a compact binary format, which

speeds up downloading.

After a WebAssembly program is downloaded to a browser, the just-in-

time (JIT) compiler in the browser’s virtual machine translates the binary

WebAssembly code into fast, platform-specific machine code. Here is a

summary depiction:

 download +-------+ translate

wasm module---------->|browser|----------->fast machine code

 +-------+

JavaScript code embedded in an HTML page can call functions

delivered in WebAssembly modules.

WebAssembly has a development language known as the text format

language, which has a Lisp-like syntax for writing programs on a virtual

Chapter 8 Miscellaneous Topics

314

stack-based machine. However, code from higher-level programming

languages (including C) can be translated in WebAssembly. Although the

list of languages that can be translated into WebAssembly is growing, the

original ones were C, C++, and Rust—three languages suited for systems

programming and high-performance applications programming. These

three languages share two features that promote fast execution: explicit

data typing and no garbage collector.

When it comes to high-performance web code, WebAssembly is not

the only game in town. For example, asm.js is a JavaScript dialect designed,

like WebAssembly, to approach native speed. The asm.js dialect invites

optimization because the code mimics the explicit data types in the three

aforementioned languages. Here is an example with C and then asm.js.

The sample function in C is

int f(int n) { /** C **/

 return n + 1;

}

Both the parameter n and the returned value are explicitly typed as

int. The equivalent function is asm.js would be

function f(n) { /** asm.js **/

 n = n | 0;

 return (n + 1) | 0;

}

JavaScript, in general, does not have explicit data types, but a bitwise-

OR operation in JavaScript yields an integer value. This explains the

otherwise pointless bitwise-OR operation:

n = n | 0; /* bitwise-OR of n and zero */

Chapter 8 Miscellaneous Topics

315

The bitwise-OR of n and zero evaluates to n, but the purpose here is

to signal that n holds an integer value. The return statement repeats this

optimizing trick. Among the JavaScript dialects, TypeScript stands out

for adopting explicit data types, which makes this language attractive for

compilation into WebAssembly.

Almost any discussion of the WebAssembly language covers near-

native speed as one of the language’s major design goals. The native

speed is that of the compiled systems languages C, C++, and Rust; hence,

these three languages were also the originally designated candidates for

compilation into WebAssembly.

8.5.1. � A C into WebAssembly Example
A production-grade example would have WebAssembly code perform a

heavy compute-bound task such as generating large cryptographic key

pairs or using such pairs for encryption and decryption. A simpler example

fits the bill as a stand-in that is easy to follow. There is number crunching,

but of the routine sort.

Consider the function hstone (for hailstone), which takes a positive

integer as an argument. The function is defined as follows:

 3N + 1 if N is odd

hstone(N) =

 N/2 if N is even

For example, hstone(12) returns 6, whereas hstone(11) returns 34. If N

is odd, then 3N+1 is even; but if N is even, then N/2 could be either even

(e.g., 4/2 = 2) or odd (e.g., 6/2 = 3).

The hstone function can be used iteratively by passing the returned

value as the next argument. The result is a hailstone sequence such as this

one, which starts with 24 as the original argument, the returned value 12 as

the next argument, and so on:

24,12,6,3,10,5,16,8,4,2,1,4,2,1,...

Chapter 8 Miscellaneous Topics

316

It takes ten calls for the sequence to converge to 1, at which point the

sequence of 4,2,1 repeats indefinitely: (3x1)+1 is 4, which is halved to yield

2, which is halved to yield 1, and so on. The Wikipedia page (https://

en.wikipedia.org/wiki/Collatz_conjecture) goes into technical detail

on the hailstone function, including a clarification of the name hailstone.

Note that powers of two (2N) converge quickly to 1, requiring just N

divisions by two to reach 1. For example, 32 (25) has a convergence length

of five, and 64 (26) has a convergence length of six. A hailstone sequence

converges to 1 if and only if the sequence generates a power of two. At issue,

therefore, is whether a hailstone sequence inevitably generates a power of two.

The Collatz conjecture is that a hailstone sequence converges to 1 no

matter what the initial argument N > 0 happens to be. No one has found a

counterexample to the Collatz conjecture, nor has anyone come up with

a proof to elevate the conjecture to a theorem. The conjecture, simple as

it is to test with a program, remains a profoundly challenging problem

in mathematics. My hstone example generates hailstone sequences and

counts the number of steps required for a sequence to hit the first 1.

8.5.2. � The Emscripten Toolchain
The systems languages, including C, require specialized toolchains to

translate source code into WebAssembly. Emscripten is a pioneering and

excellent option, one built upon the well-known LLVM (Low-Level Virtual

Machine) compiler infrastructure. Emscription can be installed following

the instructions at https://emscripten.org/docs/getting_started/

downloads.html.

To begin, consider this version of a C hstone program (see Listing 8-9)

with two functions, the familiar entry point main and hstone, which main

invokes repeatedly.

Chapter 8 Miscellaneous Topics

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html

317

Listing 8-9.  The hstoneCL program with main

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int hstone(int n) {

 int len = 0;

 while (1) {

 if (1 == n) break; /* halt on 1 */

 if (0 == (n & 1)) n = n / 2; /* if n is even */

 else n = (3 * n) + 1; /* if n is odd */

 len++; /* increment counter */

 }

 return len;

}

#define HowMany 8

int main() {

 srand(time(NULL)); /* seed random number generator */

 int i;

 puts(" Num Steps to 1");

 for (i = 0; i < HowMany; i++) {

 int num = rand() % 100 + 1; /* + 1 to avoid zero */

 printf("%4i %7i\n", num, hstone(num));

 }

 return 0;

}

On a sample run, the hstoneCL program (with CL for command line)

had this output:

Num Steps to 1

64 6

Chapter 8 Miscellaneous Topics

318

40 8

86 30

16 4

30 18

47 104

12 9

60 19

The hstoneCL program can be webified—with no changes whatsoever

to the source code—by using the Emscription toolchain, which can do the

following:

•	 Compile the C source into a WebAssembly module.

•	 Generate a test HTML page with calls to ams.js code

that, in turn, invokes the hstone function through a call

to main.

However, the WebAssembly module does not require the main function

because JavaScript could invoke the hstone function directly. The hstone

program can be simplified by dropping the main function in the hstoneCL

version.

The hstoneWA revision (see Listing 8-10) drops main and adds the

directive EMSCRIPTEN_KEEPALIVE to the hstone function. This directive

informs the compiler that the C function named hstone should be

exposed, under the same name, as a WebAssembly function.

Listing 8-10.  The revised hstone code

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <emscripten/emscripten.h>

int EMSCRIPTEN_KEEPALIVE hstone(int n) {

Chapter 8 Miscellaneous Topics

319

 int len = 0;

 while (1) {

 if (1 == n) break; /* halt on 1 */

 if (0 == (n & 1)) n = n / 2; /* if n is even */

 else n = (3 * n) + 1; /* if n is odd */

 len++; /* increment counter */

 }

 return len;

}

As noted earlier, the Emscripten toolchain can be used not only to

compile C code into WebAssembly but also to generate an appropriate

HTML page together with JavaScript glue that links the WebAssembly

module with the HTML page. To understand the details, however, it is

useful to generate only the WebAssembly module and to craft, by hand, the

HTML page and some JavaScript test calls.

With the Emscripten toolchain installed, the C function hstone in the

file hstoneWA.c can be compiled into WebAssembly from the command

line as follows:

% emcc hstoneWA.c --no-entry -o hstone.wasm

The flag --no-entry indicates that the file hstoneWA.c does not

contain the function main, and the -o flag stands for output: the resulting

WebAssembly file is named hstone.wasm. On my desktop machine, this file

is a trim 662 bytes in size.

For testing, the next requirement is an HTML page that, when

downloaded to a browser, fetches the WebAssembly module. A

production-grade version of the HTML page would include embedded

JavaScript calls to appropriate WebAssembly functions. A handcrafted

version of the HTML page reveals details that otherwise remain hidden.

Here is an HTML page that downloads and prepares the WebAssembly

module stored in the hstone.wasm file:

Chapter 8 Miscellaneous Topics

320

<!doctype html>

<html>

 <head>

 <meta charset="utf-8"/>

 <script>

 fetch('hstone.wasm').then(response => <!-- Line 1 -->

 response.arrayBuffer() <!-- Line 2 -->

).then(bytes => <!-- Line 3 -->

 �WebAssembly.instantiate(bytes, {imports: {}})

<!-- Line 4 -->

).then(results => { <!-- Line 5 -->

 �window.hstone = results.instance.exports.hstone;

<!-- Line 6 -->

});

 </script>

 </head>

 <body/>

</html>

The script element in the preceding HTML page can be clarified

line by line. The fetch call in Line 1 uses the web Fetch module to get the

WebAssembly module from the web server that hosts this HTML page.

When the HTTP response arrives, the WebAssembly module does so as

a sequence of bytes, which are stored in the arrayBuffer of the script’s

Line 2. These bytes make up the WebAssembly module, the contents of the

file hstone.wasm. This module has no imports from other WebAssembly

modules, as indicated at the end of Line 4.

At the start of Line 4, the WebAssembly module is instantiated. A

WebAssembly module is akin to a nonstatic class with nonstatic members

in an object-oriented language such as Java. The module contains

variables, functions, and various support artifacts; but the module must be

instantiated to be called from JavaScript.

Chapter 8 Miscellaneous Topics

321

The script’s Line 6 exports the original C function hstone under the

same name. This WebAssembly function is available now to any JavaScript

code, as a session in the browser’s JavaScript console confirms. Here is part

of my test session in Chrome’s JavaScript console:

> hstone(27) ## invoke hstone by name

< 111 ## output

> hstone(7) ## again

< 16 ## output

The outputs are the steps required to reach 1 from the input (e.g.,

hstone(27) requires 111 steps to reach 1).

WebAssembly now has a more concise API for fetching and

instantiating a module; the new API reduces the preceding script to only

the fetch and instantiate operations. The longer version shown previously

has the benefit of exhibiting details, in particular the representation of a

WebAssembly module as a byte array that gets instantiated as an object

with exported functions.

Emscripten comes with a test server, which can be invoked as follows

to host the handcrafted HTML file hstone.html and the WebAssembly file

hstone.wasm:

% emrun --no_browser --port 7777 .

The flag --no_browser means that a user manually opens a browser

such as Firefox or Chrome. The request URL from the browser is then

localhost:7777/hstone.html. If all goes well, the browser’s JavaScript

console can be used to confirm, as shown previously, that the

WebAssembly module is available for use.

8.5.3. � WebAssembly and Code Reuse
The EMSCRIPTEN_KEEPALIVE directive is the straightforward way to have the

Emscripten compiler produce a WebAssembly module that exports any

Chapter 8 Miscellaneous Topics

322

C function of interest to the JavaScript glue embedded in an HTML page.

A customized HTML document, with whatever handcrafted JavaScript

is appropriate, can call the functions exported from the WebAssembly

module. Hats off to Emscripten for this clean approach.

Web programmers are unlikely to write WebAssembly in its own text

format language, as compiling from some high-level language, such as C

or Rust, is far too attractive an option. Compiler writers, by contrast, might

find it productive to work at the fine-grained level that the text format

language provides.

Much has been made of WebAssembly’s goal of achieving near-native

speed. But as the JIT compilers for JavaScript continue to improve, and as

dialects well-suited for optimization (e.g., TypeScript) emerge and evolve,

it may be that JavaScript also achieves near-native speed. Would this imply

that WebAssembly is wasted effort? I think not.

WebAssembly addresses another traditional goal in computing: code

reuse. As even the short hstone example illustrates, code in a suitable

language, such as C, translates readily into a WebAssembly module,

which plays well with JavaScript code—the glue that connects a range

of technologies used on the Web. WebAssembly is thus an inviting way

to reuse legacy code and to broaden the use of new code. For example,

a high-performance program for image processing, written originally

as a desktop application, might also be useful in a web application.

WebAssembly then becomes an attractive path to reuse. (For new web

modules that are compute bound, WebAssembly is a sound choice.)

My hunch is that WebAssembly will thrive as much for reuse as for

performance.

Chapter 8 Miscellaneous Topics

323

8.6. � Signals
A signal interrupts an executing program (process) to notify it of some

exceptional event:

 interrupt +---------+

signal from outside the program----------->| process |

 / +---------+

 e.g., Control-C from the keyboard

Signals have integer values as identifiers, with symbolic constants

such as SIGKILL for ease of reference. When interrupted through a signal,

a process may be able to ignore the interruption or else handle it in some

program-appropriate way. However, some signals cannot be ignored, in

particular SIGKILL (terminate) and SIGSTOP (pause).

Operating system routines regularly use signals to notify a process of

an exceptional condition. For example, if a process runs out of memory, an

operating system routine uses a signal as notification. Programs designed

to handle signals typically do so in one of two ways:

•	 The program requests that the signal be ignored. Recall

the basicFork program (see Listing 7-1), which included

this call to the signal function:

signal(SIGCHLD, SIG_IGN); /** prevent child

from becoming a permanent zombie **/

The call requests that the SIGCHLD signal, which

the system sends to a parent process when a child

terminates, be ignored. The motive is to prevent the

child from becoming a permanent zombie process, if

the parent should happen to terminate before the child.

Chapter 8 Miscellaneous Topics

324

•	 The program provides a signal handler as a callback

function automatically invoked when a specified signal

occurs. For example, the SIGINT (interrupt) signal can

be sent to a process by hitting Control-C in the terminal

window from which the program is launched. Perhaps

a user hits Control-C by accident: the program might

handle the signal by asking the user to confirm that the

running program should be stopped.

At the core of the signal library is the legacy signal function, but

best practice now favors the newer sigaction function. The signal

function may behave differently across platforms and even operating

system versions. The forthcoming code example uses the better-behaved

sigaction function, introduced as a POSIX replacement for signal.

Listing 8-11.  A signal-handling program

#include <stdio.h>

#include <stdlib.h>

#include <signal.h>

#include <unistd.h>

#define MaxLoops 500

void cntrlC_handler(int signum) { /** callback function: int

arg, void return **/

 fprintf(stderr, "\n\tHandling signal %i\n", signum);

 int ans = 1;

 printf("Sure you want to exit (1 = yes, 0 = no)? ");

 scanf("%i", &ans);

 if (1 == ans) exit(EXIT_SUCCESS);

}

Chapter 8 Miscellaneous Topics

325

void main() {

 /** Set up a signal handler. **/

 struct sigaction current;

 �sigemptyset(¤t.sa_mask); /* �clear the

signal set */

 �current.sa_flags = 0; /* �enables setting

sa_handler, not sa_

action */

 current.sa_handler = cntrlC_handler; /* specify a handler */

 �sigaction(SIGINT, ¤t, NULL); /* �control-C is a

SIGINT */

 int i;

 for (i = 0; i < MaxLoops; i++) {

 printf("Counting sheep %i...\n", i + 1);

 sleep(1);

 }

}

The signals program (see Listing 8-11) introduces the basic signal

API. Here is an overview of how the program handles SIGINT and why the

program does so:

•	 The main function has a tiresome loop that prints

integer values 1 through MaxLoops, currently set at

500. After printing each value, the program sleeps

for a second. A user will be inclined to terminate this

program from the command line with a Control-C.

•	 At the start of main, a signal handler is registered for

SIGINT, which a Control-C from the keyboard can

generate. A program’s default response to a SIGINT is

termination.

Chapter 8 Miscellaneous Topics

326

•	 The signal handler cntrlC_handler can have any name

but should return void and take a single int argument,

which is the signal number. (The integer value for SIGINT

happens to be 2.) This signal handler prompts the user

for confirmation: if the user confirms, the program exits;

otherwise, the program continues as before.

To record a signal handler using the sigaction function, a program

first uses an instance of the struct sigaction type to set relevant

information. In this example, the signal set for the process first is emptied;

the relevant field is sa_mask, whose address is passed to the library

function sigemptyset. In general, a child process may inherit signal

behavior from a parent, and so clearing the signal set may be done to

wipe out the inheritance. In this case, the call to sigemptyset is simply to

illustrate details of the API.

Two different callback types can be registered with the sigaction

function: one takes a single argument (the signal number), and the other

takes three arguments (the signal number and pointers to two different

structures that contain pertinent information about the current process

state with respect to signals). The initialization

current.sa_flags = 0; /* current is a struct sigaction

instance */

is a setup for using the simpler of the two callbacks:

current.sa_handler = cntrlC_handler; /* cntrlC_handler is the

1-argument callback */

If the sa_action field were used instead, then the sa_flags field would

indicate which pieces of signal information were of interest.

The sigaction function, which sets the desired signal-handling action,

takes three arguments:

sigaction(SIGINT, ¤t, NULL);

Chapter 8 Miscellaneous Topics

327

The first argument is the signal number, in this case SIGINT. The

second argument is a pointer to the new signal-handling action, and the

last argument is a pointer to the previous action, which can be saved with

a non-NULL pointer for later retrieval. In this example, the old action is not

saved: the third argument is NULL. Each action is specified by setting a field

in an instance of the struct sigaction type.

Listing 8-12.  A sample run of the signals program

% ./signals ## on Windows, drop ./

Counting sheep 1...

Counting sheep 2...

^C ## 1st Control-C

 Handling signal 2

Sure you want to exit (1 = yes, 0 = no)? 0 ## resume execution

Counting sheep 3...

Counting sheep 4...

^C ## 2nd Control-C

 Handling signal 2

Sure you want to exit (1 = yes, 0 = no)? 1 ## terminate

%

A sample run (see Listing 8-12) of the signals program confirms

that the signal handling works as expected. As the loop starts, there is

a Control-C from the user, and then a user response of 0, which means

continue. The looping thus goes on. After a second Control-C and a user

response of 1, which means terminate, the program ends.

Signals are a powerful, widely used mechanism not only for user/

program interaction but also for interprocess communication. For

example, the kill function

int kill(pid_t pid, int signum)

Chapter 8 Miscellaneous Topics

328

can be used by one process to terminate another process or group of

processes. If the first argument to function kill is greater than zero, this

argument is treated as the pid of the targeted process; if the argument

is zero, the argument identifies the group of processes to which the

signal sender belongs. The graceful shutdown of a multiprocessing

application such as a web server could be accomplished by killing a group

of processes. The second argument to kill is either a standard signal

number (e.g., SIGTERM terminates a process but can be blocked, whereas

SIGKILL terminates a process and cannot be blocked) or 0, which makes

the call to signal a query about whether the pid in the first argument is

indeed valid.

The older signal function is still used widely and dominates in legacy

code. It is worth repeating that the sigaction replacement is the preferred

way forward.

8.7. � Software Libraries
Software libraries are a long-standing, easy, and sensible way to reuse code

and to extend C by providing new functionalities. This section explains

how to build such libraries from scratch and to make them easily available

to clients. Although the two sample libraries target Linux, the steps for

creating, publishing, and using these libraries apply in essentials to other

Unix-like systems.

There are two sample clients (one in C, the other in Python) to access

the libraries. It is no surprise that a C client can access a library written in

C, but the Python client underscores that a library written in C can serve

clients from other languages.

Computer systems in general and Linux in particular have two types of

library:

•	 A static library (library archive) is baked into a statically

compiled client (e.g., one in C or Rust) during the

Chapter 8 Miscellaneous Topics

329

link phase of the compilation process. In effect, each

client gets its own copy of the library. A significant

downside of a static library comes to the fore if the

library needs revision, for example, to fix a bug—each

library client now must be linked to the revised static

library. A dynamic library, described next, avoids this

shortcoming.

•	 A dynamic (shared) library is flagged during the link

phase of a statically compiled client program, but the

client program and the library code remain otherwise

unconnected until runtime—the library code is not

baked into the client. At runtime, the system’s dynamic

loader connects a shared library with an executing

client, regardless of whether the client comes from a

statically compiled language such as C or a dynamically

compiled language such as Python. As a result, a

dynamic library can be updated without thereby

inconveniencing clients. Finally, multiple clients can

share a single copy of a dynamic library.

In general, dynamic libraries are preferred over static ones, although

there is a cost in complexity and performance. Here is a first look at how a

library of either type is created and published:

	 1.	 The source code for the library is compiled into one

or more object modules, which can be packaged as

a library and linked to executable clients.

	 2.	 The object modules are packaged into a single file.

For a static library, the standard extension is .a for

“archive.” For a dynamic library, the extension is

.so for “shared object.” The two sample libraries,

which have the same functionality, are published

Chapter 8 Miscellaneous Topics

330

as the files libprimes.a (static) and libshprimes.so

(dynamic). The prefix lib is standard for both types

of library.

	 3.	 The library file is copied to a standard directory so

that client programs, without fuss, can access the

library. A typical location for the library, whether

static or dynamic, is /usr/lib or /usr/local/lib; other

locations are possible.

Detailed steps for building and publishing each type of library are

coming shortly. First, however, the C functions in the two libraries should

be introduced.

8.7.1. � The Library Functions
The two sample libraries are built from the same five C functions, four of

which are extern and, therefore, accessible to client programs. The fifth

function, which is a utility for one of the other four, is static and thus

accessible only to the four extern functions defined in the same file.

The library functions are elementary and deal, in various ways, with prime

numbers. All of the functions expect unsigned (nonnegative) integer

values as arguments:

•	 The is_prime function tests whether its single

argument is a prime.

•	 The are_coprimes function checks whether its two

arguments have a greatest common divisor (gcd) of 1,

which defines co-primes.

•	 The prime_factors function lists the prime factors of

its argument.

Chapter 8 Miscellaneous Topics

331

•	 The goldbach function expects an even integer value

of 4 or more, listing whichever two primes sum to

this argument; there may be multiple summing

pairs. The function is named after the 18th-century

mathematician Christian Goldbach, whose conjecture

that every even integer greater than two is the sum

of two primes remains one of the oldest unsolved

problems in number theory.

The static utility function gcd, which the are_coprimes function

invokes, resides in the deployed library files, but this function is not

accessible outside of its containing file; hence, a library client cannot

directly invoke the gcd function.

8.7.2. � Library Source Code and Header File
The header file primes.h provides declarations for the four extern

functions in each library. Such a header file also serves as input for utilities

(e.g., the Rust bindgen utility) that enable clients in other languages to

access a C library. Here is the primes.h header file:

/** header file primes.h: function declarations **/

extern unsigned is_prime(unsigned);

extern void prime_factors(unsigned);

extern unsigned are_coprimes(unsigned, unsigned);

extern void goldbach(unsigned);

As usual, these declarations serve as an interface by specifying the

invocation syntax for each function. For client convenience, the text file

primes.h could be stored in a directory on the C compiler’s search path.

Typical locations are /usr/include and /usr/local/include.

Chapter 8 Miscellaneous Topics

332

Listing 8-13.  The library functions

#include <stdio.h>

#include <math.h>

extern unsigned is_prime(unsigned n) {

 �if (n <= 3) return n > 1; /* 2 and 3 are prime */

 �if (0 == (n % 2) || 0 == (n % 3)) return 0; /* multiples of 2

or 3 aren't */

 /* check that n is not a multiple of other values < n */

 unsigned i;

 for (i = 5; (i * i) <= n; i += 6)

 �if (0 == (n % i) || 0 == (n % (i + 2))) return 0; /* not

prime */

 return 1; /* a prime other than 2 or 3 */

}

extern void prime_factors(unsigned n) {

 /* list 2s in n's prime factorization */

 while (0 == (n % 2)) {

 printf("%i ", 2);

 n /= 2;

 }

 /* 2s are done, the divisor is now odd */

 unsigned i;

 for (i = 3; i <= sqrt(n); i += 2) {

 while (0 == (n % i)) {

 printf("%i ", i);

 n /= i;

 }

 }

Chapter 8 Miscellaneous Topics

333

 /* one more prime factor? */

 if (n > 2) printf("%i", n);

}

/* utility function: greatest common divisor */

static unsigned gcd(unsigned n1, unsigned n2) {

 while (n1 != 0) {

 unsigned n3 = n1;

 n1 = n2 % n1;

 n2 = n3;

 }

 return n2;

}

extern unsigned are_coprimes(unsigned n1, unsigned n2) {

 return 1 == gcd(n1, n2);

}

extern void goldbach(unsigned n) {

 /* input errors */

 if ((n <= 2) || ((n & 0x01) > 0)) {

 printf("Number must be > 2 and even: %i is not.\n", n);

 return;

 }

 /* two simple cases: 4 and 6 */

 if ((4 == n) || (6 == n)) {

 printf("%i = %i + %i\n", n, n / 2, n / 2);

 return;

 }

 /* for n >= 8: multiple possibilities for many */

 unsigned i;

 for (i = 3; i < (n / 2); i++) {

Chapter 8 Miscellaneous Topics

334

 if (is_prime(i) && is_prime(n - i)) {

 printf("%i = %i + %i\n", n, i, n - i);

 /* if one pair is enough, replace this with break */

 }

 }

}

The five functions (see Listing 8-13) serve as grist for the library mill.

The two libraries derive from exactly the same source code, and the header

file primes.h is the C interface for both libraries.

8.7.3. � Steps for Building the Libraries
The steps for building and then publishing a static and a dynamic library

differ in a few details. Only three steps are required for the static library

and just two more for the dynamic library. The additional steps in building

the dynamic library reflect the added flexibility of the dynamic approach.

The library source file primes.c is compiled into an object module.

Here is the command, with the percent sign again as the system prompt

and with double sharp signs to introduce my comments:

% gcc -c primes.c ## step 1 static

This produces the binary file primes.o, the object module. The flag -c

means compile only. The next step is to archive the object module(s) by

using the Linux ar utility:

% ar -cvq libprimes.a primes.o ## step 2 static

The three flags -cvq are short for “create,” “verbose,” and “quick

append” in case new files must be added to an archive. The prefix lib is

standard, but the library name is arbitrary. Of course, the file name for a

library must be unique to avoid conflicts.

Chapter 8 Miscellaneous Topics

335

The archive is ready to be published:

% sudo cp libprimes.a /usr/local/lib ## step 3 static

The static library is now accessible to clients, examples of which are

forthcoming. (The sudo is included to ensure the correct access rights for

copying a file into /usr/local/lib.)

The dynamic library also requires one or more object modules for

packaging:

% gcc primes.c -c -fpic ## step 1 dynamic

The added flag -fpic directs the compiler to generate position-

independent code, which is a binary module that need not be loaded into

a fixed memory location. Such flexibility is critical in a system of multiple

dynamic libraries. The resulting object module is slightly larger than the

one generated for the static library.

Here is the command to create the single library file from the object

module(s):

% gcc -shared -Wl,-soname,libshprimes.so -o libshprimes.so.1

primes.o ## step 2 dynamic

The flag -shared indicates that the library is shared (dynamic) rather

than static. The -Wl flag introduces a list of compiler options, the first of

which sets the dynamic library’s soname, which is required. The soname

first specifies the library’s logical name (libshprimes.so) and then, following

the -o flag, the library’s physical file name (libshprimes.so.1). The goal is

to keep the logical name constant while allowing the physical file name to

change with new versions. In this example, the 1 at the end of the physical

file name libshprimes.so.1 represents the first version of the library. The

logical and physical file names could be the same, but best practice is to

have separate names. A client accesses the library through its logical name

(in this case, libshprimes.so), as clarified shortly.

Chapter 8 Miscellaneous Topics

336

The next step is to make the shared library easily accessible to clients

by copying it to the appropriate directory, for example, /usr/local/lib again:

% sudo cp libshprimes.so.1 /usr/local/lib ## step 3 dynamic

A symbolic link is now set up between the shared library’s logical name

(libshprimes.so) and its full physical file name (/usr/local/lib/libshprimes.

so.1). Here is the command with /usr/local/lib as the working directory:

% sudo ln --symbolic libshprimes.so.1 libshprimes.so ## step

4 dynamic

The logical name libshprimes.so should not change, but the target of

the symbolic link (libshprimes.so.1) can be updated as needed for new

library implementations that fix bugs, boost performance, and so on.

The final step (a precautionary one) is to invoke the ldconfig utility,

which configures the system’s dynamic loader. This configuration ensures

that the loader will find the newly published library:

% sudo ldconfig ## step 5 dynamic

The dynamic library is now ready for clients, including the two sample

ones that follow.

8.7.4. � A Sample C Client
The sample C client is the program tester, whose source code begins with

two #include directives:

#include <stdio.h> /* standard input/output functions */

#include <primes.h> /* my library functions */

Both header files are to be found on the compiler’s search path (in the

case of primes.h, the directory /usr/local/include). Without this #include,

the compiler would complain as usual about missing declarations for

Chapter 8 Miscellaneous Topics

337

functions such as is_prime and prime_factors. By the way, the source

code for the tester program need not change at all to test each of the two

libraries.

By contrast, the source file for the library (primes.c) opens with these

#include directives:

#include <stdio.h>

#include <math.h>

The header file math.h is required because the library function prime_

factors calls the mathematics function sqrt from the standard library

libm.so.

For reference, Listing 8-14 is the source code for the tester program.

Listing 8-14.  A sample C client

#include <stdio.h>

#include <primes.h>

int main() {

 /* is_prime */

 printf("\nis_prime\n");

 unsigned i, count = 0, n = 1000;

 for (i = 1; i <= n; i++) {

 if (is_prime(i)) {

 count++;

 �if (1 == (i % 100)) printf("Sample prime ending in 1:

%i\n", i);

 }

 }

 printf("%i primes in range of 1 to a thousand.\n", count);

 /* prime_factors */

 printf("\nprime_factors\n");

Chapter 8 Miscellaneous Topics

338

 printf("prime factors of 12: ");

 prime_factors(12);

 printf("\n");

 printf("prime factors of 13: ");

 prime_factors(13);

 printf("\n");

 printf("prime factors of 876,512,779: ");

 prime_factors(876512779);

 printf("\n");

 /* are_coprimes */

 printf("\nare_coprime\n");

 printf("Are %i and %i coprime? %s\n",

 21, 22, are_coprimes(21, 22) ? "yes" : "no");

 printf("Are %i and %i coprime? %s\n",

 21, 24, are_coprimes(21, 24) ? "yes" : "no");

 /* goldbach */

 printf("\ngoldbach\n");

 goldbach(11); /* error */

 goldbach(4); /* small one */

 goldbach(6); /* another */

 for (i = 100; i <= 150; i += 2) goldbach(i);

 return 0;

}

In compiling tester.c into an executable, the tricky part is the order of

the link flags. Recall that the two sample libraries begin with the prefix lib

and each has the usual extension: .a for the static library libprimes.a and

.so for the dynamic library libshprimes.so. In a links specification, the prefix

lib and the extension fall away. A link flag begins with -l (lowercase L), and

Chapter 8 Miscellaneous Topics

339

a compilation command may contain arbitrarily many link flags. Here is

the full compilation command for the tester program, using the dynamic

library as the example:

% gcc -o tester tester.c -lshprimes -lm

The first link flag identifies the library libshprimes.so, and the second

link flag identifies the standard mathematics library libm.so.

The linker is lazy, which means that the order of the link flags matters.

For example, reversing the order of the link specifications generates a

compile-time error:

% gcc -o tester tester.c -lm -lshprimes ## DANGER!

The flag that links to libm.so comes first, but no function from this

library is invoked explicitly in the tester program; hence, the linker does

not link to the math.so library. The call to the sqrt library function occurs

only in the prime_factors function from the libshprimes.so library. The

resulting error in compiling the tester program is

primes.c: undefined reference to 'sqrt'

Accordingly, the order of the link flags should notify the linker that the

sqrt function is needed:

% gcc -o tester tester.c -lshprimes -lm ## -lshprimes 1st

The linker picks up the call to the library function sqrt in the

libshprimes.so library and, therefore, does the appropriate link to the

mathematics library libm.so. There is a more complicated option for

linking that supports either link-flag order; in this case, however, it is just

as easy to arrange the link flags appropriately.

Here is some output from a run of the tester client:

is_prime

Sample prime ending in 1: 101

Chapter 8 Miscellaneous Topics

340

Sample prime ending in 1: 401

...

168 primes in range of 1 to a thousand.

prime_factors

prime factors of 12: 2 2 3

prime factors of 13: 13

prime factors of 876,512,779: 211 4154089

are_coprime

Are 21 and 22 coprime? yes

Are 21 and 24 coprime? no

goldbach

Number must be > 2 and even: 11 is not.

4 = 2 + 2

6 = 3 + 3

...

32 = 3 + 29

32 = 13 + 19

...

100 = 3 + 97

100 = 11 + 89

...

For the goldbach function, even a relatively small even value (e.g., 18)

may have multiple pairs of primes that sum to it (in this case, 5 + 13 and 7

+ 11). Such multiple prime pairs are among the factors that complicate an

attempted proof of Goldbach’s conjecture.

Chapter 8 Miscellaneous Topics

341

8.7.5. � A Sample Python Client
Python, unlike C, is not a statically compiled language, which means

that the sample Python client must access the dynamic rather than the

static version of the primes library. To do so, Python has various modules

(standard and third party) that support a foreign function interface (FFI),

which allows a program written in one language to invoke functions

written in another. Python ctypes is a standard and relatively simple FFI

that enables Python code to call C functions.

Any FFI has challenges because the interfacing languages are unlikely

to have exactly the same data types. For example, the primes library uses

the C type unsigned int, which Python does not have; the ctypes FFI

maps a C unsigned int to a Python int. Of the four extern C functions

published in the primes library, two behave better in Python with explicit

ctypes configuration.

The C functions prime_factors and goldbach have void instead of a

return type, but ctypes by default replaces the C void with the Python int.

When called from Python code, the two C functions then return a random

(hence, meaningless) integer value from the stack. However, ctypes can be

configured to have the functions return None (Python’s null type) instead.

Here is the configuration for the prime_factors function:

primes.prime_factors.restype = None

A similar statement handles the goldbach function.

The following interactive session (in Python3) shows that the interface

between a Python client and the primes library is straightforward:

>>> from ctypes import cdll

>>> primes = cdll.LoadLibrary("libshprimes.so") ## logical name

>>> primes.is_prime(13)

1

Chapter 8 Miscellaneous Topics

342

>>> primes.is_prime(12)

0

>>> primes.are_coprimes(8, 24)

0

>>> primes.are_coprimes(8, 25)

1

>>> primes.prime_factors.restype = None

>>> primes.goldbach.restype = None

>>> primes.prime_factors(72)

2 2 2 3 3

>>> primes.goldbach(32)

32 = 3 + 29

32 = 13 + 19

The functions in the primes library use only a simple data type,

unsigned int. If this C library used complicated types such as structures,

and if pointers to structures were passed to and returned from library

functions, then an FFI more powerful than ctypes might be better for a

smooth interface between Python and C. Nonetheless, the ctypes example

shows that a Python client can use a library written in C. Indeed, the

popular NumPy library for scientific computing is written in C and then

exposed in a high-level Python API.

8.8. � What’s Next?
This is a small book about a big language—not big in size, but in its impact

throughout computing. C is a very small language with easy access to an

expanse of standard and third-party libraries. As the libraries get better, C

gets better.

Chapter 8 Miscellaneous Topics

343

C has quirks and presents challenges. Perhaps the greatest challenge is

memory leakage: heap storage that the program either allocates explicitly

or obtains indirectly through library functions must be freed explicitly, and

it is easy to allocate—and then forget to deallocate. Better APIs and tools

such as valgrind (https://valgrind.org) address this challenge. The

OpenSSL API illustrates best practices: the API includes a family of free

functions that do whatever nested deallocation might be required. C brings

the programmer close to the machine, an intimacy that requires particular

discipline in code that uses dynamic storage.

Despite its age, C has the look and feel of a modern language with an

emphatic separation of concerns: an interface describes, in particular the

invocation syntax of functions; an implementation defines by providing

the appropriate operational detail. Once published, an interface should

remain unchanged, as it represents a contract with programmers; by

contrast, an implementation can change to fix bugs, boost performance,

and so on.

The standard C library functions are minimalist in design and,

therefore, a guide for programmers. Recall the write function, which

requires three arguments: where to write, what to write, and how many

bytes to write. There are no formatting flags or data-type specifications. If

these are needed, there are higher-level I/O functions at hand.

C can interact with virtually every other programming language.

Is it nonetheless possible that C might lose its role as the lingua franca

in programming? What would replace C? Its position as the dominant

systems language, but one suited for applications as well, makes C the

natural language to play this role. Are the standard system libraries, let

alone the operating system kernel, to be rewritten in some other language?

C combines two features that make it an ideal systems language: C has a

high-level syntax that promotes the writing of clear, modular code; but C

remains close to the metal, which promotes efficiency.

Chapter 8 Miscellaneous Topics

https://valgrind.org/

344

What, then, is next? The code examples are available from GitHub

(https://github.com/mkalin/cbook.git). They are short enough to

explore, to tweak, and to improve.

Chapter 8 Miscellaneous Topics

https://github.com/mkalin/cbook.git

345

Index

A
Access permissions, 159, 161, 183
Address operator, 72–74, 157, 173
Amazon’s public key, 215
API, 291, 299, 321, 325, 326,

342, 343
Applications, 231
Arguments

avg function, 31, 32
format string, 29
printf function, 28, 30
syscall function, 29, 30
SYS_chmod function, 30
utilities, 30, 32
varArgs program, 31

Arithmetic operators, 56–58
Arrays

array program, 68
for loop, 68
square brackets, 68

ASCII bytes, 256
asm.js, 314
Assembly callable blocks

AT&T version, 12
char and msg, 9
code segment, 13
hi program, 9, 11

integer value, 13
labels, 13
null terminator, 10
optimization, 11
printf function, 10
puts argument, 13
slash, 10
translation, 10

Assembly languages, 1, 9, 13–16,
114, 315

Assertions, 291, 300–304
Asymmetric approach, 220
Autoreg program, 138, 139

B
BasicFork program, 235, 241, 323
Binary semaphore, 249
BIO library, 225
Bitwise operators, 61

arithmetic shift, 62
bit-level representation, 61
4-byte integer, 62
compiler, 60
complement operator, 61
endian program, 62, 63
functions, 63
integer’s address, 63

© Martin Kalin 2022
M. Kalin, Modern C Up and Running, https://doi.org/10.1007/978-1-4842-8676-0

https://doi.org/10.1007/978-1-4842-8676-0

346

right shifts, 62
shift operator, 61

Blocks, 19, 134, 137, 138,
140, 142–146

Boolean operators, 54–56, 58–60

C
Call by value, 80, 98
Called functions

call frames, 27
calling program, 27
calls and returns, 28
flow of control, 28
return statement, 26
return-to-caller, 27

C and WebAssembly
advantage, 313
asm.js, 314
C, C++, 314
code reuse, 321, 322
Collatz conjecture, 316
compute-bound tasks, 313
Emscripten toolchains, 316–321
hstone function, 315
JavaScript, 313, 314
near-native speed, 315
production-grade example, 315
rust—three languages, 314
text format language, 313

CA’s digital signature, 217
Cast operation, 55, 56
C compiler, 4, 6, 41, 51, 99, 140, 286

Certificate authority (CA)
vouching, 215

C functions, 8–14, 137, 330, 341
Child process, 236, 238–241,

247, 326
Chrome’s JavaScript console, 321
C language, 291, 342, 343
cleanup function, 223
Cleanup group, 228
C libraries, 200, 286
Cline program, 18, 243, 244
Command-line arguments, 279

argc, 17
argv, 17
main function, 16, 18
program, run, 18, 19
usage section, 18

Compilation process, 7, 54, 329
Concurrency, 214, 229, 231
Concurrent program, 229, 231, 236,

285, 286
Connect group, 228
Consumer program, 261–263
Control structures

break statement, 23, 24
case statement, 23
categories, 20
conditional expression, 21
do while loop, 24, 25
flow of control, 19
for loop, 26
if else construct, 22
infinite loop, 26
init section, 26

Bitwise operators (cont.)

INDEX

347

puts statement, 23
scanf function, 25
straight-line execution, 20
switch construct, 22
test program, 20, 21
while loop, 23–25

Critical section, 274, 279, 281
Cryptographic suite, 220, 221
Curl command-line tool, 208
Curl utility, 212
C vs. C++, 65
cwSSLutils.c, 223–224

D
Data types, 33–37, 47, 175, 314
Deadlock

code analysis, 284
concurrent program, 285
experimentation, 285
grab_locks function, 284, 285
main thread, 284
multithreading, 281
output, 283
threads, 282

Deadlock-detection module, 285
Debugging network applications, 189
Dereference operator, 71–74, 112
Digital certificates, 214, 216, 219,

222, 223, 225
Digital signature, 214, 215, 217,

218, 223
Dynamic library, 329, 334–336,

338, 339

E
empId program, 293, 294, 296,

297, 301
empId2 program, 297, 298
Emscripten toolchains, 316–321
Encryption/decryption, 214, 219
Enum, 92–93
Environ program, 305, 306
Event-driven web server

fifoReader, 199, 200
read operations, 200
select function, 200–202
selectStdin program, 202
webserver program, 203, 204

Exec family functions
argument formats, 241
child process, 243
cline program, 243
execing program, 243
execle, 241
execv, 241, 243
printed pid values, 244
return value, 244

Execing program, 243, 244
Exiting program, 246, 247

F
fcntl function, 186–188, 258, 260
fifoReader program, 183, 186, 187,

199, 200
fifoWriter program, 183, 184, 186,

187, 199, 200

INDEX

348

File descriptor, 153–157, 168–171,
202–204, 210–212, 255

File locking
API, 257
by-now-familiar file

descriptor, 258
consumer program, 261–263
Linux, 258
producer program, 258–260
race condition, 257
shared file, 257
standard I/O library, 258

Floating-point types
basic, 43
challenges

approximate equality, 46
comparison, 45
d2bconvert program, 49
d2bconvert program, 48
decimal values, 44
FLT_EPSILON, 46
hex values, 45
printf statement, 44
rounding program, 47

IEEE 754
categories, 50
decimal value, 51
denormalized values, 51, 52
exponents, 50
normalized values, 50–52
sample value, 50, 51
special values, 52, 53

shifting, 55
Floating-point units (FPUs), 53

Flynn’s taxonomy, 285
Foreign function interface (FFI),

341, 342
Forked child process, 238, 240, 244
Fork function

basics, 234, 236
child process, 236
echo process, 234
integer value, 235
pipe reader, 233
pipeUN program, 238
reader process, 234, 238
returned value, 239
sleep process, 234
unnamed pipe, 233, 236
variables, 235
writer process, 234

ftruncate function, 251
Functions

body, 3
declaration, 2, 3
definition, 2, 3
header files, 7
int, 4
library functions, 8
main function

add2 program, 6
commands, 6
exec function, 7
executable program, 5
printf, 7

orthodox C, 4
overloading, 4
void, 4

INDEX

349

G
General semaphore, 248
getpid function, 244
GET request, 194, 206, 213, 228
Go language, 8
goldbach function, 331, 340, 341
Google certificate, 221, 223, 228
grab_locks function, 284, 285
Graphics-specific processing, 286

H
Heap fragmentation, 131–132
Heap storage, 125

addl instruction, 116
allocation, 120
approaches, 122, 123
assembly code, 111
calloc function, 119
compiler, 110
C statement, 112
free function, 117, 120
getname program, 122, 124
get_name2 function, 124
get_name3 function, 124
getname program, 121, 124
library functions, 125
main function, 113–115
malloc function, 119
malloc program, 118, 119
movq, 112
parentheses, 112
programmer, 110

realloc function, 117, 119
stack management, 117
sum_array function, 111, 115
sum_array routine, 116
sumArray program, 110,

111, 117
High-level I/O

API, 169, 171
bytes, 169
code segment, 170
EOF, 174, 175
fdopen function, 169
fopen function, 169
fscanf, 172, 174
integer values, 170
read function, 170
scanning functions, 174

High-level languages, 32, 46
hstoneCL program, 317, 318
HTTP protocol, 190
HTTPS, 193, 214, 215, 219–222

I
Init group, 227
Input/output (I/O) operations

APIs, 151, 152
buffer, 156
bytes, 155, 160
code segment, 160
concepts, 152
devices, 152
event-driven, 188
features, 155

INDEX

350

files, 151, 152
fopen, 153
function, 153
int value, 156
ioLL program, 155
open and close functions, 157
open succeeds, 160
perror, 156
random/nonsequential file, 166
read and write, 157
read function, 155
redirecting, 164
system-level, 152–157
write function, 156

Instruction-level parallelism,
229, 286

Integer types
assembly code, 39
basic, 36
bits, 37
char type, 40
comparing expressions, 39
compiler, 39
complement

representation, 40, 41
equality operator, 38
floating-point values, 39
integer overflow, 41, 42
print statements, 38
shorthands, 36
signed, 35
unsigned, 35

variable, 38
Internationalization, 289, 291, 304
Interprocess communication

(IPC), 151, 153, 289
file locking, 256–263
message queues, 264–269
shared memory, 247–256

Interrupt service routine (ISR), 148
ioRedirect program, 165

J, K
Java, 4, 8, 91, 92, 272, 320
JavaScript, 313–315, 318–322

L
Library functions, 120, 330, 331

exit, 240
getpid, 236
lseek, 168
mmap, 251
pipe, 234
sem_post, 252
strcpy, 252
wait, 240

Linux systems, 232
Linux threads, 233
load_ssl function, 222, 225
Locale-aware program, 305, 309
Locales and i18n

argument categories,
setlocale, 310

C program, 304

Input/output (I/O)
operations (cont.)

INDEX

351

date, currency, 304
environ program, 305
LC_MONETARY category, 311
lconv structure with locale

information, 309
library function getenv, 306
localeconv, 309
locale information, 304, 310
locMonetary program, 312, 313
setlocale function, 306–308, 311
strdup function, 309
system administrator, 306
system function, 306

locMonetary program, 312, 313
lseek function, 168

M
Macros, 44–46, 153, 160, 210,

244, 308
MaxTries, 302, 303
Memory address space, 232–233
Memory-based race conditions,

233, 275
Memory leakage, 131, 132

leaky program, 132, 133
main function, 133, 134
output, 133
valgrind toolbox, 133

memreader program, 248,
251, 253–256

memwriter program, 248–251, 255
Message digest, 214, 216–217, 221
Message queues

FIFO behavior, 264
integer type, 264
parts, 264
queue.h header, 264, 265
receiver, 264
receiver program, 267–269
sender, 264
sender program, 265, 267
setup statements, 265
symbolic constants, 265

miserSpend program
command-line argument, 275
main thread, 275
multiprocessor machine, 275
race condition, 274
threads, 275

mkfifo function, 181, 183
Multidimensional arrays, 75

addresses, 78
compilers, 76, 78
for loops, 76, 77
index syntax, 79
int*, 78
nums, 75
nums_table, 75
one-dimensional, 79
passing copy, 79
print function, 77
print_array, 79
subarrays, 76
table array, 78
table points, 79
table program, 75, 76
two-dimensional, 77

INDEX

352

Multiprocessing, 231
disadvantages, 232
early web servers, 231
forking, 233–241
race conditions, 232
standard library functions, 233

multiT program, 271, 272
Multithreaded program, 148,

233, 273
Multithreading, 231

advantage, 269
deadlock, 281–285
disadvantages, 233
executable instructions, 269
multiT program, 271
pthread, 269
race condition, 273–281
thread execution, 272

Mutex, 249, 252, 279

N
Nested heap storage

allocation, 128
best practices, 129
cautionary notes, 130
float elements, 129
free_all function, 129, 130
get_heap_struct function, 128
heap_nums, 127, 130
heap_struct, 130
nestedHeap example, 126, 127
NULL argument, 131

sizeof(HeapStruct)
function, 128

Network programming, 188, 189
protocol stack, 189, 190

Nginx, 231, 245
Nonblocking I/O, 178, 267

features, 180
mkfifo, 181
performance, 178
pipe, 180
printf statement, 179
read operation, 178, 179

Not-yet-finished process, 232
NULL data type

comparison, 86
loop condition, 86
stdlib.h, 85
strings, 86
traversing, 86
zero, 86

NULL-terminated array, 241, 243

O
Object-oriented languages,

8, 91, 320
OpenSSL, 214, 221–223,

225, 227–229

P
Parallelism, 231, 285–289
Parallel program, 231, 286

INDEX

353

Parent process identifier
(ppid), 236

Peer authentication, 214–216,
219, 223

perror message, 163
pipe function, 238
pipeUN program, 238–240
Pointers

array program, 69
arrayPtr program, 70, 71
asm function, 81, 82
dereference operator, 71
error, 72
heap storage, 110
in-line assembly code, 81
output, 82
pointer argument, 83, 84
return values, 80
safe_mult function, 81, 83
sorting structures, 99
technique, 80
while, 71

POSIX, 248, 273, 295, 324
Post-increment operators, 48
Pre-increment operators, 48
Process-level context switch, 232
Producer program, 258–260
Production-grade multiprocessing

programs, 245
Program

heap area, 110
prog2files, 143–146
stack area, 109
static area, 109

Protocol stack, 189, 190
pthread_create function, 271,

272, 276
pthread_join function, 277
pthread_mutex, 280, 281
pthread_t, 271, 276, 277
Public key, 215–218, 220
Python, 289, 292, 328, 329, 341–342
Python ctypes, 341, 342

Q
qsort function

clarification, 89, 90
comp.function, 90
comparison semantics, 89
declaration, 87
function’s name, 90
int, 91
Java, 91
sort program, 88, 89, 91

R
Race condition, 232, 233, 256,

257, 269
Receiver program, 267–269
Reduce function

arguments, 93
conditions, 94
declaration, 94
invoking, 95
main function, 95
pointer function, 94

INDEX

354

reducer program, 93–95
typedef function, 94

Regex language, 294
Regular expression

check an employee ID, 292
C library, 295, 299
count, 294
empId2 program, 297, 298
empId program, 293, 294
employee ID, 295
grep, 292
GroupCount value, 298
regcomp function, 295

report_exit function, 222, 225
Request/response group, 228

S
saveSpend program

account, 279, 280
command-line argument, 279
fixing, 279, 280
loop count, 281
parts, 276
pthread API, 277
pthread_join, 277
pthread_mutex, 281
single-threaded execution, 281
start functions, 278
thread, 276
update function, 279

scanf function, 25, 173
scanPrint program, 109, 172, 173

Secure Hash Algorithm 1
(SHA-1), 217

Secure Sockets Layer (SSL), 214,
225, 227

Semaphore, 248, 249, 252, 256, 279
Sender program, 265–268
Separation-of-concerns

pattern, 239
setlocale function, 306–308
setsockopt function, 199
Shared memory

allocation, 255
APIs, 248, 256
ByteSize bytes, 251
definition, 247
libraries, 248
memory-based race

condition, 248
memory-mapped file, 248
memreader, 248, 252, 256
memwriter, 248, 251, 256
pointer type, 252
program communication, 251
semaphores, 248, 249, 252, 256
shm_open and mmap, 255
size argument, 255
synchronized access, 256

sigaction function, 324, 326
signal function, 235, 323, 324, 328
Signal-handling program, 324–325
Signals, 323–328
SIMD parallelism

architecture and instruction
set, 287

Reduce function (cont.)

INDEX

355

arithmetic operations, 288
attribute specifier, 288
in C, 287, 288
concurrent programs, 286
conventional approach, 286
dataV1 and dataV2 vectors, 289
GPU, 286
instruction-level

parallelism, 286
integer values, 286
MMX instruction set, 287
multiprocessing/multithreading

program, 286
N instructions, 286
standard compilers, 286, 289

Simpler program, assembly
code, 14–16

Single instruction stream, multiple
data stream
(SIMD), 285–289

Socket group, 227
Socket API, 188, 190, 192, 195
Software libraries

building/publishing, 329,
330, 334–336

C client, 328
dynamic (shared) library, 329
header file, 331, 334
library functions, 330, 331
library source, 331, 334
Linux, 328
sample C client, 336–340
sample Python client, 341, 342

static library, 328
Source file wcSSLutils.c, 221
Static library, 328–329, 334,

335, 338
Storage classes

auto and register, 138
in C code, 135
declaration, 135, 136
doubleup, 146
doubleup as extern, 145
doubleup function, 145
extern, 143, 145
extern and static, 137
extern storage, 142
for loop, 139
functions/variables, 135, 137
int variable, 144
ISR, 148
lifetime, 136
main function, 145
printf, 142
profile program, 141
register specifier, 139
scope/visibility, 136
specifier extern, 147
static specifier, 140
static variables, 140, 141
variable, 136, 143
volatile qualifications, 149
volatile qualifier, 148

String conversions
ato function, 105, 108
compiler, 104

INDEX

356

const qualifier, 105
ctype.h, 109
nonnumeric characters, 107
scanPrint program, 108, 109
stdlib.h file, 105
str2num program, 106, 107
strto functions, 105, 107, 108

Structures
add tag, 96
BigNumsStruct, 99, 102
bigStruct program, 97, 98
comparison function, 101, 103
data type, 96
Employee array, 100
index array, 100
orders, 101
parentheses, 99
printf, 98
sortPtrs program, 101, 102
storage, 99
syntax, 96
typedef, 97

Symbolic link, 336
Symmetric approach, 219, 220
sysRead program, 157, 163, 164
sysWrite program, 157, 159, 160, 163

T
Text format language, 313, 322
Thread-based race condition

assignment operator, 273

critical section, 274
improper interleaving, 274
single-threaded/thread-safe

execution, 274
static variable, 273
system clock, 273

typedef function, 92

U
Unbuffered and buffered I/O

fgetc, 176
fgetc function, 177
fread function, 176
read and fgetc, 177
system-supplied, 175

Unions, 103–104
Unix-like systems, 6–8, 161, 180,

193, 223
update function, 278–280

V
verify_dc function, 222, 223
verifyEmp program, 301–304
view_cert function, 223, 225
void data type

main, 84
some_function, 84
strings, 85
syntax, 84
void*, 85

void* data type, 84–87

String conversions (cont.)

INDEX

357

W, X, Y
waitpid function, 240, 244, 246
wcSSL.h, file, 221, 222
wcSSL program, 221, 225, 227–229
WebAssembly, 291, 313–322
Web client

basic web client, 191
file get_connection.c, 191
file web_client.c, 190, 192
Google’s home page, 195, 199
strings, host and port, 193
HTTP start line, 194
read operation, 195
socket and connect

functions, 199
source files, 190
utility functions, 196, 198
while loop, 195
write function, 194

Webserver program, 203, 204
connecting client, 203, 204
curl utility, 212–214

utility functions, 204
core utilities, 206
get_response function, 206
get_servsocket function,

207, 208
log_client function, 205
requesting client, 204
select function, 210
servutils2.c file, 205

Web socket protocol, 190
withdraw function, 278
Worker processes, 245
Writer process, 184, 234, 239

Z
Zombie process, 235, 236

definition, 240
NULL argument, 240
pipeUN program, 240
safeguarding methods, 241
wait function, 240

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	Chapter 1: Program Structure
	1.1. Overview
	1.2. The Function
	1.3. The Function main
	1.4. C Functions and Assembly Callable Blocks
	1.4.1. A Simpler Program in Assembly Code

	1.5. Passing Command-Line Arguments to main
	1.6. Control Structures
	1.7. Normal Flow of Control in Function Calls
	1.8. Functions with a Variable Number of Arguments
	1.9. What’s Next?

	Chapter 2: Basic Data Types
	2.1. Overview
	2.2. Integer Types
	2.2.1. A Caution on the 2’s Complement Representation
	2.2.2. Integer Overflow

	2.3. Floating-Point Types
	2.3.1. Floating-Point Challenges
	2.3.2. IEEE 754 Floating-Point Types

	2.4. Arithmetic, Bitwise, and Boolean Operators
	2.4.1. Arithmetic Operators
	2.4.2. Boolean Operators
	2.4.3. Bitwise Operators

	2.5. What’s Next?

	Chapter 3: Aggregates and Pointers
	3.1. Overview
	3.2. Arrays
	3.3. Arrays and Pointer Arithmetic
	3.4. More on the Address and Dereference Operators
	3.5. Multidimensional Arrays
	3.6. Using Pointers for Return Values
	3.7. The void* Data Type and NULL
	3.7.1. The void* Data Type and Higher-Order Callback Functions

	3.8. Structures
	3.8.1. Sorting Pointers to Structures
	3.8.2. Unions

	3.9. String Conversions with Pointers to Pointers
	3.10. Heap Storage and Pointers
	3.11. The Challenge of Freeing Heap Storage
	3.12. Nested Heap Storage
	3.12.1. Memory Leakage and Heap Fragmentation
	3.12.2. Tools to Diagnose Memory Leakage

	3.13. What’s Next?

	Chapter 4: Storage Classes
	4.1. Overview
	4.2. Storage Class Basics
	4.3. The auto and register Storage Classes
	4.4. The static Storage Class
	4.5. The extern Storage Class
	4.6. The volatile Type Qualifier
	4.7. What’s Next?

	Chapter 5: Input and Output
	5.1. Overview
	5.2. System-Level I/O
	5.2.1. Low-Level Opening and Closing

	5.3. Redirecting the Standard Input, Standard Output, and Standard Error
	5.4. Nonsequential I/O
	5.5. High-Level I/O
	5.6. Unbuffered and Buffered I/O
	5.7. Nonblocking I/O
	5.7.1. A Named Pipe for Nonblocking I/O

	5.8. What’s Next?

	Chapter 6: Networking
	6.1. Overview
	6.2. A Web Client
	6.2.1. Utility Functions for the Web Client

	6.3. An Event-Driven Web Server
	6.3.1. The webserver Program
	6.3.2. Utility Functions for the Web Server
	6.3.3. Testing the Web Server with curl

	6.4. Secure Sockets with OpenSSL
	6.5. What’s Next?

	Chapter 7: Concurrency and Parallelism
	7.1. Overview
	7.2. Multiprocessing Through Process Forking
	7.2.1. Safeguarding Against Zombie Processes

	7.3. The exec Family of Functions
	7.3.1. Process Id and Exit Status

	7.4. Interprocess Communication Through Shared Memory
	7.5. Interprocess Communication Through File Locking
	7.6. Interprocess Communication Through Message Queues
	7.7. Multithreading
	7.7.1. A Thread-Based Race Condition
	7.7.2. The Miser/Spendthrift Race Condition

	7.8. Deadlock in Multithreading
	7.9. SIMD Parallelism
	7.10. What’s Next?

	Chapter 8: Miscellaneous Topics
	8.1. Overview
	8.2. Regular Expressions
	8.3. Assertions
	8.4. Locales and i18n
	8.5. C and WebAssembly
	8.5.1. A C into WebAssembly Example
	8.5.2. The Emscripten Toolchain
	8.5.3. WebAssembly and Code Reuse

	8.6. Signals
	8.7. Software Libraries
	8.7.1. The Library Functions
	8.7.2. Library Source Code and Header File
	8.7.3. Steps for Building the Libraries
	8.7.4. A Sample C Client
	8.7.5. A Sample Python Client

	8.8. What’s Next?

	Index

