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Preface

�1.  Why C?
C is a small but extensible language, with software libraries (standard and 

third party) extending the core language. Among high-level languages, C 

still sets the mark for performance; hence, C is well suited for applications, 

especially ones such as database systems and web servers that must 

perform at a high level. The syntax for C is straightforward, but with an 

oddity here and there. Anyone who programs in a contemporary high-

level language already knows much of C syntax, as other languages have 

borrowed widely from C.

C is also the dominant systems language: modern operating systems 

are written mostly in C, with assembly language accounting for the rest. 

Other programming languages routinely and transparently use standard 

library routines written in C. For example, when an application written 

in any other high-level language prints the Hello, world! greeting, it is a 

C library function that ultimately writes the message to the screen. The 

standard system libraries for input/output, networking, string processing, 

mathematics, security, cryptography, data encoding, and so on are 

likewise written mainly in C. To write a program in C is to write in the 

system’s native language.
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WHO’S THE INTENDED AUDIENCE?

This book is for programmers and assumes experience in a general-purpose 

language—but none in C. You should be able to work from the command 

line. Linux and macOS come with a C compiler, typically GNU C (https://

gcc.gnu.org) and Clang (https://clang.llvm.org), respectively. At the 

command-line prompt (% is used here), the command

% gcc -v

should provide details. For Windows, Cygwin (https://cygwin.com/

install.html) is recommended.

C has been a modern language from the start. The familiar function, 

which can take arguments and return a value, is the primary code module 

in C. C exhibits a separation of concerns by distinguishing between 

interfaces, which describe how functions are called, and implementations, 

which provide the operational details. As noted, C is naturally and easily 

extended through software libraries, whether standard or third party. As 

these libraries become better and richer, so does C. C programmers can 

create arbitrarily rich data types and data structures and package their 

own code modules as reusable libraries. C supports higher-order functions 

(functions that can take functions as arguments) without any special, fussy 

syntax. This book covers C’s modern features, but always with an eye on 

C’s close-to-the-metal features.

To understand C is to understand the underlying architecture of 

a modern computing machine, from an embedded device through a 

handheld up to a node in a server cluster. C sits atop assembly language, 

which is symbolic (human-understandable) machine language. Every 

assembly language is specific to a computer architecture. The assembly 

language for an Intel device differs from that of an ARM device. Even 

within an architectural family such as Intel, changes in the architecture are 

Preface
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reflected in assembly language. As symbolic machine language, assembly 

language is approachable, although reading and writing assembly code can 

be daunting. Assembly language is of interest even to programmers in other 

languages because it reveals so much about the underlying system. C does 

not reveal quite as much, but far more than any other high-level language; 

C also reveals what is common across architectures. One sign of just how 

close C is to assembly language shows up in compilation: a C compiler can 

handle any mix of C and assembly source code, and C source is translated 

first into assembly code. From time to time, it will be useful to compare C 

source with the assembly source into which the C source translates.

C source code ports well: a C program that compiles on one platform 

should compile on another, unless platform-specific libraries and data 

structure sizes come into play. Perfect portability remains an ideal, even 

for C. C plays still another role—as the lingua franca among programming 

languages: any language that can talk to C can talk to any other language 

that does so. Most other languages support C calls in one form or another; 

a later code example shows how straightforwardly Python can consume 

library functions written in C.

�2.  From the Basics Through 
Advanced Features
This book is code centric, with full program examples and shorter code 

segments in the forefront throughout. The book begins, of course, with 

C basics: program structure, built-in data types and control structures, 

operators, pointers, aggregates such as arrays and structures, input and 

output, and so on. Here is an overview of some advanced topics:

•	 Memory safety and efficiency: Best practices for 

using the stack, the heap, and static area of memory; 

techniques and tools for avoiding memory leakage
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•	 Higher-order functions: Simplifying code by passing 

functions as arguments to other functions

•	 Generic functions: How to use the pointer-to-void 

(void*) data type in creating and calling generic 

functions

•	 Functions with a variable number of arguments: How 

to write your own

•	 Defining new data types: A convenient way to name 

programmer-defined, arbitrarily rich data types

•	 Clarifying C code through assembly-language code: 

Getting closer to the metal

•	 Embedding assembly code: Checking for overflow with 

embedded assembly

•	 Floating-point issues: Code examples and the IEEE 754 

specification in detail

•	 Low-level and high-level input/output: Flexibility and 

performance trade-offs in input/output operations

•	 Networking and wire-level security: Full code 

examples, including digital certificates and 

secure sockets

•	 Nonblocking input/output: Local machine and 

networking examples of this acceleration technique

•	 Concurrency and parallelism: Multiprocessing, 

interprocess communication, multithreading, 

deadlock, and instruction-level SIMD parallelism
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•	 Interprocess communication: Pipes (named and 

unnamed), message queues, sockets, file sharing and 

locking, shared memory with a semaphore, and signals

•	 Data validation: Regular expressions in detail

•	 Internationalization: Standard libraries for locale 

management

•	 Assertions: Expressing and enforcing pre-, post-, and 

invariant conditions in programs

•	 WebAssembly: Compiling C code into WebAssembly 

for high-performance web modules

•	 Software libraries: How to build and deploy both static 

and dynamic software libraries for C and non-C clients

The code examples in the book are available at https://github.com/

mkalin/cbook.git, and comments are welcome at mkalin@depaul.edu.
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CHAPTER 1

Program Structure

1.1. � Overview
This chapter focuses on how C programs are built out of functions, which 

are a construct in just about all modern program languages. The chapter 

uses short code segments and full programs to explain topics such 

as these:

•	 Functions as program modules

•	 Control flow within a program

•	 The special function named main

•	 Passing arguments to a function

•	 Returning a value from a function

•	 Writing functions that take a variable number of 

arguments

C distinguishes between function declarations, which show how 

a function is to be called, and function definitions, which provide the 

implementation detail. This chapter introduces the all-important 

distinction, and later chapters put the distinction to use in a variety of 

examples. The chapter also compares C functions with assembly-language 

blocks, which is helpful in clarifying how C source code compiles into 

machine-executable code.
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Every general-purpose programming language has control structures 

such as tests and loops. Once again, short code examples introduce the 

basics of C’s principal control structures; later code examples expand and 

refine this first look at control structures.

1.2. � The Function
A C program consists of one or more functions, with a function as a 

program module that takes zero or more arguments and can return a 

value. To declare a function is to describe how the function should be 

invoked, whereas to define a function is to implement it by providing 

the statements that make up the function’s body. A function’s body 

provides the operational details for whatever task the function performs. 

A declaration is a function’s interface, whereas a definition is a function’s 

implementation. The following is an example of the declaration and 

the definition for a very simple function that takes two integer values as 

arguments and returns their sum.

Listing 1-1.  Declaring and defining a function

int add2(int, int); /* declaration ends with semicolon, no body */

int add2(int n1, int n2) { �/* definition: the body is enclosed 

in braces */

   int sum = n1 + n2;      �/* could avoid this step, here for 

clarity */

   return sum;             /* could just return n1 + n2 */

}                          �/* end of block that implements the 

function */
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The add2 example (see Listing 1-1) contrasts a function’s declaration 

with its definition. The declaration has no body of statements enclosed in 

braces, but the definition must have such a body. In a contrived example, 

the body could be empty, but the braces still would be required in the 

definition and absent from the declaration.

If some other function main calls add2, then the declaration of add2 

must be visible to main. If the two functions are in the same file, this 

requirement can be met by declaring add2 above main. There is, however, a 

shortcut. If add2 is defined above main in the same file, then this definition 

doubles as a declaration (see Listing 1-2).

Listing 1-2.  More on declaring and defining a function

int add2(int n1, int n2) { �/* definition: the body is enclosed 

in braces */

   int sum = n1 + n2;      �/* could avoid this step, here for 

clarity */

   return sum;             /* could just return n1 + n2 */

}                          �/* end of block that implements the 

function */

int main() {

   return add2(123, 987);  /* ok: add2 is visible to main */

}

Program structure may require that a function be declared and defined 

separately. For instance, if a program’s functions are divided among 

various source files, then a function defined in a given file would have to be 

declared in another file to be visible there. Examples are forthcoming.

As noted, a function’s body is enclosed in braces, and each statement 

within the body ends with a semicolon. Indentation makes source code 

easier to read but is otherwise insignificant—as is the placement of the 

braces. My habit is to put the opening brace after the argument list and the 

closing brace on its own line.
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In a program, each function must be defined exactly once and with its 

own name, which rules out the name overloading (popular in languages 

such as Java) in which different functions share a name but differ in 

how they are invoked. A function can be declared as often as needed. As 

promised, an easy way of handling declared functions is forthcoming.

In the current example, the declaration shows that function add2 takes 

two integer (int) arguments and returns an integer value (likewise an 

int). The definition of function add2 provides the familiar details, and this 

definition could be shortened to a single statement:

return n1 + n2;

If a C function does not return a value, then void is used in place of 

a return data type. The term void, which is shorthand for no value, is 

technically not a data type in C; for instance, there are no variables of type 

void. By contrast, int is a data type. An int variable holds a signed integer 

value and so is able to represent negative and nonnegative values alike; the 

underlying implementation is almost certainly 32 bits in size and almost 

certainly uses the 2’s complement representation, which is clarified later.

There are various C standards, which relax some rules of what might 

be called orthodox C. Furthermore, some C compilers are more forgiving 

than others. In orthodox C, for example, there are no nested function 

definitions: one function cannot be defined inside another. Also, later 

standardizations of C extend the comment syntax from the slash-star 

opening and star-slash closing illustrated in Listing 1-1, and an until-

end-of-line comment may be introduced with a double slash. To make 

compilation as simple as possible, my examples stick with orthodox C, 

avoiding constructs such as nested functions and double slashes for 

comments.
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1.3. � The Function main
In style, C is a procedural or imperative language, not an object-oriented 

or functional one. The program modules in a C program are functions, 

which have global scope or visibility by default. There is a way to restrict 

a function’s scope to the file in which the function is defined, as a later 

chapter explains. The functions in a C program can be distributed among 

arbitrarily many different source files, and a given source file can contain 

as many functions as desired.

A C program’s entry point is the function main in that program 

execution begins with the first statement in main. In a given program, 

regardless of how many source files there are, the function main (like any 

function) should be defined exactly once. If a collection of C functions 

does not include the appropriate main function, then these functions 

compile into an object module, which can be part of an executable 

program, but do not, without main, constitute an executable program.

Listing 1-3.  An executable program with main and another function

#include <stdio.h>

/* �This definition of add2, occurring as it does _above_ main, 

doubles as the function's declaration: main calls add2 

and so the declaration of add2 must be visible above the 

call. If function add2 were _defined_ below main, then the 

function should be declared here above main to avoid 

compiler warnings. */

int add2(int n1, int n2) { /* definition: the body is enclosed 

in the braces */

   int sum = n1 + n2;      �/* could avoid this step, kept here 

for verbosity */

   return sum;             /* we could just return n1 + n2 */

}
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int main() {

    int k = -26, m = 44;

    �int sum = add2(k, m); �/* call the add2 function, save the 

returned value */

    /* %i means: format as an integer */

    �printf("%i + %i = %i\n", k, m, sum); �/* output: -26 + 

44 = 18 */

    �return 0; �/* 0 signals normal termination, < 0 signals some 

error */

}

The revised add2 example (see Listing 1-3) can be compiled and then 

run at the command line as shown in the following, assuming that the file 

with the two functions is named add2.c. These commands are issued in 

the very directory that holds the source file add2.c. My comments begin 

with two ## symbols:

% gcc -o add2 add2.c  ## alternative: % gcc add2.c -o add2

% ./add2              ## On Windows, drop the ./

The flag -o stands for output. Were this flag omitted, the executable 

would be named a.out (A.exe on Windows) by default. On some systems, 

the C compiler may be invoked as cc instead of gcc. If both commands are 

available, then cc likely invokes a native compiler—a compiler designed 

specifically for that system. On Unix-like systems, this command typically 

is a shortcut:

% make add2 ## expands to: gcc -o add2 add2.c

The add2 program begins with an include directive. Here is the line:

#include <stdio.h>
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This directive is used during the compilation process, with details to 

follow. The file stdio.h, with h for header, is an interface file that declares 

input/output functions such as printf, with the f for formatted. The angle 

brackets signal that stdio.h is located somewhere along the compiler’s 

search path (on Unix-like systems, in a directory such as /usr/include or 

/usr/local/include). The implementation of a standard function such as 

printf resides in a binary library (on Unix-like systems, in a directory such 

as /usr/lib or /usr/local/lib), which is linked to the program during the full 

compilation process.

HEADER FILES FOR FUNCTION DECLARATIONS

Header files are the natural way to handle function declarations—but not 
function definitions. A header file such as stdio.h can be included wherever 

needed, and even multiple includes of the same header file, although 

inefficient, will work. However, if a header file contains function definitions, 

there is a danger. If such a file were included more than once in a program’s 

source files, this would break the rule that every function must be defined 

exactly once in a program. The sound practice is to use header files for 

function declarations, but never for function definitions.

What is the point of having the main function return an int value? 

Which function gets the integer value that main returns? When the 

user enters

% ./add2

at the command-line prompt and then hits the Return key, a system 

function in the exec family (e.g., execv) executes. This exec function then 

calls the main function in the add2 program, and main returns 0 to the exec 

function to signal normal termination (EXIT_SUCCESS). Were the add2 
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program to terminate abnormally, the main function might return the 

negative value -1 (EXIT_FAILURE). The symbolic constants EXIT_SUCCESS 

and EXIT_FAILURE are clarified later.

IS THERE EASY-TO-FIND DOCUMENTATION ON LIBRARY FUNCTIONS?

On Unix-like systems, or Windows with Cygwin installed (https://cygwin.

com), there is a command-line utility man (short for manual) that contains 

documentation for the standard library functions and for utilities that often 

have the same name as a function: googling for man pages is a good start.

1.4.  C Functions and Assembly 
Callable Blocks
The function construct is familiar to any programmer working in a modern 

language. In object-oriented languages, functions come in special forms 

such as the constructor and the method. Many languages, including object-

oriented ones, now include anonymous or unnamed functions such as 

the lambdas added in object-oriented languages such as Java and C#, but 

available in Lisp since the 1950s. C functions are named.

Most languages follow the basic C syntax for functions, with some 

innovations along the way. The Go language, for example, allows a 

function to return multiple values explicitly. Functions are straightforward 

with respect to flow of control: one function calls another, and the called 

function normally returns to its caller. Information can be sent from the 

caller to the callee through arguments passed to the callee; information 

can be sent from the callee back to the caller through a return value. Even 

in C, which allows only a single return value at the syntax level, multiple 

values can be returned by returning an array or other aggregate structure. 

Additional tactics for returning multiple values are available, as shown later.

Chapter 1  Program Structure
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Assembly languages do not have functions in the C sense, although it 

is now common to talk about assembly language functions. The assembly 

counterpart to the function is the callable block, a routine with a label as its 

identifier; this label is the counterpart of a function’s name. Information 

is passed to a called routine in various ways, but with CPU registers and 

the stack as the usual way. This section uses the traditional Hello, world! 

program in a first look at (Intel) assembly code.

Listing 1-4.  The traditional greeting program in C

#include <stdio.h>

int main() {

    /* msg is a pointer to a char, the H in Hello, world! */

    �char* msg = "Hello, world!"; �/* the string is implemented 

as an array of characters */

    printf("%s\n", msg);         �/* %s formats the argument as 

a string */

    return 0;                    �/* main must return an int 

value */

}

The hi program (see Listing 1-4) has three points of interest for 

comparing C and assembly code. First, the program initializes a variable 

msg whose data type is char*, which is a pointer to a character. The star 

could be flush against the data type, in between char and msg, or flush 

against msg:

char* msg  = ...;   /* my preferred style, some limitations */

char * msg = ...;   /* ok, but unusual */

char *msg  = ...;   /* perhaps the most common style */
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A string in C is implemented as array of char values, with the 1-byte, 

nonprinting character 0 terminating the array:

       +---+---+---+---+---+   +---+---+---+

msg--->| H | e | l | l | o |...| l | d | \0|  ## \0 is a char

       +---+---+---+---+---+   +---+---+---+

The slash before the 0 in \0 identifies an 8-bit (1-byte) representation 

of zero. A zero without the backslash (0) would be an int constant, which 

is typically 32 bits in size. In C, character literals such as \0 are enclosed in 

single quotes:

char big_A = 'A'; /* 65 in ASCII (and Unicode) */

char nt = '\0';   /* non-printing 0, null terminator for 

strings */

In the array to which msg points, the last character \0 is called the 

null terminator because its role is to mark where the string ends. As a 

nonprinting character, the null terminator is perfect for the job. Of interest 

now is how the assembly code represents a string literal.

The second point of interest is the call to the printf function. In this 

version of printf, two arguments are passed to the function: the first 

argument is a format string, which specifies string (%s) as the formatting 

type; the second argument is the pointer variable msg, which points to the 

greeting by pointing to the first character H. The third and final point of 

interest is the value 0 (EXIT_SUCCESS) that main returns to its caller, some 

function in the exec family.

The C code for the hi program can be translated into assembly. In this 

example, the following command was used:

% gcc -O1 -S hi.c   ## -O1 = Optimize level 1, -S = save 

assembly code

The flag -O1 consists of capital letter O for optimize followed by 1, 

which is the lowest optimization level. This command produces the output 
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file hi.s, which contains the corresponding assembly code. The file hi.s 

could be compiled in the usual way:

% gcc -o hi hi.s    ## produces same output as compiling hi.c

Listing 1-5.  The hi program in assembly code

      .file   "hi.c"             ## C source file

.LC0:                            �## .LC0 is the string's label 

(address)

      .string "Hello, world!"    ## string literal

      .text                      �## text (program) area: code, 

not data

      .globl  main               ## main is globally visible

      .type   main, @function    �## main is a function, not a 

variable (data)

main:                            �## label for main, the 

entry point

      .cfi_startproc             �## Call Frame Information: 

metadata

      Subq    $8, %rsp           ## grow the stack by 8 bytes

      .cfi_def_cfa_offset 16     ## more metadata

      Movl    $.LC0, %edi        �## copy (pointer to) the 

string into register %edi

      Call    puts               �## call puts, which expects 

its argument in %edi

      Movl    $0, %eax           �## copy 0 into register %eax, 

which holds return value

      Addq    $8, %rsp           ## shrink the stack by 8 bytes

      .cfi_def_cfa_offset 8      ## more metadata

      ret                        ## return to caller
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      .cfi_endproc               ## all done (metadata)

The hi program in assembly code (see Listing 1-5) uses AT&T 

syntax. There are alternatives, including so-called Intel assembly. The 

AT&T version has advantages, which are explained in the forthcoming 

discussions. In the example, the ## symbols introduce my comments.

To begin, some points about syntax should be helpful:

•	 Identifiers that begin with a period (e.g., .file) are 

directives that guide the assembler in translating the 

assembly code into machine-executable code.

•	 Identifiers that end with a colon (with or without a 

starting period) are labels, which serve as pointers 

(addresses) to relevant parts of the code. For example, the 

label main: points to the start of the callable code block 

that, in assembly, corresponds to the main function in C.

•	 CPU registers begin with a percentage sign %. In a register 

name such as %eax, the e is for extended, which means 32 bits 

in Intel. On a 64-bit machine, the register %eax comprises 

the lower 32 bits of the 64-bit register %rax. In general, 

register names that start with the e are the lower 32 bits of 

the corresponding registers whose names start with r: %eax 

and %rax are one example, and %edi and %rdi are another 

example. A 32-bit machine would have only e registers.

•	 In instructions such as movl, the l is for longword, 

which is 32 bits in Intel. In instruction addq, the q is for 

quadword, which is 64 bits. By the way, the various mov 

instructions are actually copy instructions: the contents 

of the source are copied to the destination, but the 

source remains unchanged.

The essentials of this assembly code example begin with two labels. 

The first, .LC0:, locates the string greeting “Hello, world!”. This label thus 
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serves the same purpose as the pointer variable msg in the C program. The 

label main: locates the program’s entry point and, in this way, the callable 

code block that makes up the body of the main: routine.

Two other parts of the main: routine deserve a look. The first is the call 

to the library routine puts, where the s indicates a string. In C code, the call 

would look like this:

puts("This is a string."); /* C code (puts adds a newline) */

In C, puts would be called with a single argument. In assembly code, 

however, the puts is called without an explicit argument. Instead, the 

expected argument—the address of the string to print—is copied to the 

register %edi, which comprises the lower 32 bits of the 64-bit register %rdi. 

For review, here is the code segment:

Movl   $.LC0, %edi   ## copy (pointer to) the string into %edi

Call   puts          ## call puts, which expects argument in %edi

A second interesting point about the main: routine is the integer 

value returned to its invoker, again some routine in the exec family. The 

32-bit register %eax (the lower 32 bits of the 64-bit %rax) is sometimes 

used for general-purpose scratchpad, but in this case is used for a special 

purpose—to hold the value returned from the main: routine. The assembly 

code thus puts 0 in the register immediately before cleaning up the stack 

and returning:

movl    $0, %eax  ## copy 0 into %eax, which holds return value

Although assembly-language programs are made up of callable 

routines rather than functions in the C sense, it is common and, indeed, 

convenient to talk about assembly functions. For the most part,  

the machine-language library routines originate as C functions that have 
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been translated first into assembly language and then into machine code 

(see the sidebar).

HOW ARE C PROGRAMS COMPILED?

The compilation of a C program is a staged process, with four stages:

               +----------+    +-------+    +--------+    +----+

source code--->|preprocess|--->|compile|--->|assemble|--->|link|--->machine code

               +----------+    +-------+    +--------+    +----+

There are flags for the gcc utility, as well as separately named utilities (e.g., 

cpp for preprocess only), for carrying out the process only to a particular stage. 

The preprocess stage handles directives such as #include, which start with 

a sharp sign. The compile stage generates assembly language code, which the 

assemble stage then translates into machine code. The link stage connects the 

machine code to the appropriate libraries. The command

% gcc --save-temps net.c

would compile the code but also save the temporary files: net.i (text, from 

preprocess stage), net.s (text, from compile stage), and net.o (binary, from 

assemble stage).

1.4.1. � A Simpler Program in Assembly Code
A simpler program in assembly language shows that many assembler 

directives can be omitted; the remaining directives make the code easier 

to read. Also, no explicit stack manipulation is needed in the forthcoming 

example, which is written from scratch rather than generated from C 

source code.
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Listing 1-6.  A bare-bones program in assembly language

## hello program

.data                      # data versus code section

.globl hello               # global scope for label hello

hello:                     # label == symbolic address

  .string "Hello, world!"  # a character string

.text                      # text == code section

.global main               # global scope for main subroutine

main:                      # start of main

  movq   $hello, %rdi      # copy address of the greeting to %rdi

  call   puts              # call library routine puts

  movq   $0, %rax          # copy 0 to %rax (return value)

  ret                      # return control to routine's caller

The hiAssem program (see Listing 1-6) prints the traditional greeting, 

but using assembly code rather than C. The program can be compiled and 

executed in the usual way except for the added flag -static:

% gcc -o hiAssem -static hiAssem.s

% ./hiAssem    ## on Windows, drop the ./

The program structure is straightforward:

	 1.	 Identify a string greeting with a label, in this 

case hello:.

	 2.	 Identify the entry point with a label, in this 

case main:.

	 3.	 Copy the greeting’s address hello: into register 

%rdi, where the library routine puts expects this 

address.
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	 4.	 Call puts.

	 5.	 Copy zero into register %rax, which holds a called 

routine’s return value.

	 6.	 Return to the caller.

Even the short examples in this section illustrate the basics of C 

programs: functions in C correspond to callable blocks (routines) in 

assembly language, and in the normal flow of control, a called function 

returns to its caller. With respect to called functions, the system provides 

scratchpad storage, for local variables and parameters, with CPU registers 

and the stack as backup.

1.5.  Passing Command-Line 
Arguments to main
The main function seen so far returns an int value and takes no arguments. 

The declaration is

int main(); /* one version */

The main function need not return a value, however:

void main(); /* another version, returns nothing */

The function main also can take arguments from the command line:

int main(int argc, char* argv[ ]); /* with two arguments, also 

could return void */
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The two arguments in the last declaration of main are named, by 

tradition, argc (c for count) and argv (v for values). Here is a summary of 

the information in each argument:

•	 The first argument to the main function is argc, a count of 

the command-line arguments. This count is one or more 

because the name of the executable program is, again 

by tradition, the first command-line argument. If the 

program hi is invoked from the command line as follows:

% ./hi

then argc would have a value of one. If the same 

program were invoked as follows:

% ./hi one two three

then argc would have a value of four. A program is not 

obligated to use the command-line arguments passed to it.

•	 The second argument (argv) passed to main is trickier to 

explain. All of the command-line arguments, including the 

program’s name, are strings. Recall that a string in C is an 

array of characters with a null terminator. Because there 

may be multiple command-line arguments, these are 

stored in a list (a C array), each of whose elements holds 

the address of the first character in a command-line string. 

For example, in the invocation of program hi, the first 

element in the argv array points to the h in hi; the second 

element in this array points to the o in one; and so forth.

The empty square brackets in argv[ ] indicate an array of 

unspecified length, as the array’s length is given in argc; the 

char* (pointer to character) data type indicates that each array 

element is a pointer to the first character in each command-

line string. The argv argument is thus a pointer to an array of 
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pointers to char; hence, the argv argument is sometimes written 

as char** argv, which means literally that argv is a pointer to 

pointer(s) to characters.

The details about arrays are covered thoroughly in Chapter 3, but 

the preceding sketch should be enough to clarify how command-line 

arguments work in C.

Listing 1-7.  Command-line arguments for main

#include <stdio.h>

int main(int argc, char* argv[ ]) {

  if (argc < 2) {

    puts("Usage: cline <one or more cmd-line args>");

    return -1; /** -1 is EXIT_FAILURE **/

  }

  puts(argv[0]);   /* executable program's name */

  int i;

  for (i = 1; i < argc; i++)

    puts(argv[i]); /* additional command-line arguments */

  return 0;    /** 0 is EXIT_SUCCESS **/

}

The cline program (see Listing 1-7) first checks whether there are 

at least two command-line arguments—at least one in addition to the 

program’s name. If not, the usage section introduced by the if clause 

explains how the program should be run. Otherwise, the program uses the 

library function puts (put string) to print the program’s name (argv[0]) 

and the other command-line argument(s). (The for loop used in the 

program is clarified in the next section.) Here is a sample run:

% ./cline A 1 B2
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./cline

A

1

B2

Later examples put the command-line arguments to use. The point for 

now is that even main can have arguments passed to it. Both of the control 

structures used in this program, the if test and the for loop, now need 

clarification.

1.6. � Control Structures
A block is a group of expressions (e.g., integer values to initialize an array) 

or statements (e.g., the body of a loop). In either case, a block starts with 

the left curly brace { and ends with a matching right curly brace }. Blocks 

can be nested to any level, and the body of a function—its definition—is a 

block. Within a block of statements, the default flow of control is straight-

line execution.

Listing 1-8.  Default flow of control

#include <stdio.h>

int main() {

  int n = 27;                             /** 1 **/

  int k = 43;                             /** 2 **/

  printf("%i * %i = %i\n", n, k, n * k);  /** 3 **/

  return 0;                               /** 4 **/

}

The straight-line program (see Listing 1-8) consists of the single 

function main, whose body has four statements, labeled in the comments 

for reference. There are no tests, loops, or function calls that interfere 
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with the straight-line execution: first statement 1, then statement 2, then 

statement 3, and then statement 4. The last statement exits main and 

thereby effectively ends the program’s execution. Straight-line execution is 

fast, but program logic typically requires a more nuanced flow of control.

C has various flavors of the expected control structures, which can be 

grouped for convenience into three categories: tests, loops, and (function) 

calls. This section covers the first two, tests and loops; the following section 

expands on flow of control in function calls.

Listing 1-9.  Various ways to test in C

#include <stdio.h>

int main() {

  int n = 111, k = 98;

  int r = (n > k) ? k + 1 : n - 1;  /* conditional operator */

  printf("r's value is %i\n", r);   /* 99 */

  if (n < k) puts("if");

  else if (r > k) puts("else if");   /** prints **/

  else puts("else");

  r = 0;               /* reset r to zero */

  switch (r) {

  case 0:

    puts("case 0");    /** prints **/

  case 1:

    puts("case 1");    /** prints **/

    break;             /** break out of switch construct **/

  case 2:

    puts("case 2");

    break;
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  case 3:

    puts("case 3");

    break;

  default:

    puts("none of the above");

  } /* end of switch */

}

The tests program (see Listing 1-9) shows three ways in which to test in 

a C program. The first way uses the conditional operator in an assignment 

statement. The conditional expression has three parts:

(test) ? if-test-is-true : if-test-is-false  ## true is non-

zero, false is zero

In this example, the conditional expression is used as source in an 

assignment:

int r = (n > k) ? k + 1 : n - 1;  /* n is 111, k is 98 */

A conditional expression consists of a test, which yields one of two 

values: one value if the test is true and another if the test is false. The test 

evaluates to true (nonzero in C, with a default of 1) because n is 111 and 

k is 98, making the expression (n > k) true; hence, variable r is assigned 

the value of the expression immediately to the right of the question 

mark, k + 1 or 99. Otherwise, variable r would be assigned the value of 

the expression immediately to the right of colon, in this case 110. The 

expressions after the question mark and the colon could themselves be 

conditional expressions, but readability quickly suffers.

The conditional operator is convenient and is used commonly to 

assign a value to a variable or to return a value from a function. This 

operator also highlights a general rule in C syntax: tests are enclosed in 
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parentheses, in this example, (n > k). The same syntax applies to if-tests 

and to loop-tests. Parentheses always can be used to enhance readability, 

as later examples emphasize, but parentheses are required for test 

expressions.

The middle part of the tests program introduces the syntax for if-else 

constructs, which can be nested to any level. For instance, the body of an 

else clause could itself contain an if else construct. In an if and an else 

if clause, the test is enclosed in parentheses. There can be an if without 

either an else if or an else, but any else clause must be tied to a prior if 

or else if, and every else if must be tied to an if. In this example, the 

conditions and results (in this case, puts calls) are on the same line. Here 

is a more readable version:

if (n < k)

  puts("if");

else if (r > k)

  puts("else if");   /** prints **/

else

  puts("else");

In this example, the body of the if, the else if, and the else is a 

single statement; hence, braces are not needed. The bodies are indented 

for readability, but indentation has no impact on flow of control. If a body 

has more than one statement, the body must be enclosed in braces:

if (n < k) {              /* braces needed here */

  puts("if");

  puts("just demoing");

}

Using braces to enclose even a single body statement is admirable 

but rare.

The last section of the tests program introduces the switch construct, 

which should be used with caution. The switch expression, in this case 
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the value of variable r, is enclosed as usual in parentheses. The value of r 

now determines the flow of control. Four case clauses are listed, together 

with an optional default at the end. The value of r is zero, which means 

control moves to case 0 and the puts statement is executed. However, 

there is no break statement after this puts statement—and so control 

continues through the next case, in this example case 1; hence, the second 

puts statement executes. If the value of r happened to be 2, only one puts 

statement would execute because the case 2 body consists of the puts 

statement followed by a break statement.

The body of a case statement can consist of arbitrarily many 

statements. The critical point is this: once control enters a case construct, 

the flow is sequential until either a break is encountered or the switch 

construct itself is exited. In effect, the case expressions are targets for a 

high-level goto, and control continues straight line until there is a break or 

the end of the switch.

The break statement can be used to break out of a switch construct, or 

out of a loop. The discussion now turns to loops.

C has three looping constructs: while, do while, and for. Any one 

of the three looping constructs is sufficient to implement program logic, 

but each type of loop has its natural uses. For instance, a counted loop 

that needs to iterate a specified number of times could be implemented 

as while loop, but a for loop readily fits this bill. A conditional loop that 

iterates until a specified condition fails to hold is implemented naturally as 

a while or a do while loop.

The general form of a while loop is

while (<condition>) {

  /* body */

}

If the condition is true (nonzero), the body executes, after which the 

condition is tested again. If the condition is false (zero), control jumps to 

the first statement beyond the loop’s body. (If the loop’s body consists of 
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a single statement, the body need not be enclosed in parentheses.) The do 

while construct is similar, except that the loop condition occurs at the end 

rather than at the beginning of a loop; hence, the body of a do while loop 

executes at least once. The general form is

do {

  /* body */

} while (<condition>);

The break statement in C breaks out of a single loop. Consider this 

code segment:

while (someCondition) {          /* loop 1 */

   while (anotherCondition) {    /* loop 2 */

     /* ... */

     if (thisHappens) break;     �/* breaks out of loop2, but 

not loop1 */

   }

   /* ... */

}

The break statement in loop2 breaks out of this loop only, and control 

resumes within loop1. C does have goto statement whose target is a label, 

but this control construct should be mentioned just once and avoided 

thereafter.

Listing 1-10.  The while and do while loops

#include <stdio.h>

int main() {

  int n = -1;

  while (1) {  /* 1 == true */

    printf("A non-negative integer, please: ");

    scanf("%i", &n);
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    if (n > 0) break;  /* break out of the loop */

  }

  printf("n is %i\n", n);

  n = -1;

  do {

     printf("A non-negative integer, please: ");

     scanf("%i", &n);

  } while (n < 0);

  printf("n is %i\n", n);

  return 0;

}

The whiling program (see Listing 1-10) prompts the user for a 

nonnegative integer and then prints its value. The program does not 

otherwise validate the input but rather assumes that only decimal 

numerals and, perhaps, the minus sign are entered. The focus is on 

contrasting a while and a do while for the same task.

The condition for the while loop is 1, the default value for true:

while (1) {  /* 1 == true */

This loop might be an infinite one except that there is a break 

statement, which exits the loop: if the user enters a nonnegative integer, 

the break executes.

The do while loop is better suited for the task at hand: first, the user 

enters a value, and only then does the loop condition test whether the 

value is greater than zero; if so, the loop exits. In both loops, the scanf 

function is used to read user input. The details about scanf and its close 

relatives can wait until later.
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Among the looping constructs, the for loop has the most complicated 

syntax. Its general form is

for (<init>;<condition>;<post-body>) {

   /* body */

}

A common example is

for (i = 0; i < limit; i = i + 1) { /* int i, limit = 100; from 

above */

  /* body */

}

The init section executes exactly once, before anything else. Then 

the condition is evaluated: if true, the loop’s body is executed; otherwise, 

control goes to the first statement beyond the loop’s body. The post-body 

expression is evaluated per iteration after the body executes; then the 

condition is evaluated again; and so on. Any part of the for loop can be 

empty. The construct

for (;;) {  /* huh? */ }

is an obfuscated version of a potentially infinite loop. As shown earlier, 

a more readable way to write such a loop is

while (1) { /** clearer **/ }

1.7.  Normal Flow of Control in Function Calls
A called function usually returns to its caller. If a called function returns a 

value, the function has a return statement that both returns the value and 

marks the end of the function’s execution: control returns to the caller at 

the point immediately beyond the call. A function with void instead of a 

return type might contain a return statement, but without a value; if not, 
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the function returns after executing the last statement in the block that 

makes up the function’s body.

The normal return-to-caller behavior takes advantage of how modern 

systems provide scratchpad for called functions. This scratchpad is a 

mix of general-purpose CPU registers and stack storage. As functions are 

called, the call frames on the stack are allocated automatically; as functions 

return, these call frames can be freed up for future use. The underlying 

system bookkeeping is simple, and the mechanism itself is efficient in that 

registers and stack call frames are reused across consecutive function calls.

Example 1-1.  Normal calls and returns for functions

#include <stdio.h>

#include <stdlib.h>  /* rand() */

int g() {

  return rand() %  100; �/* % is modulus; hence, a number 0 

through 99 */

}

int f(int multiplier) {

  int t = g();

  return t * multiplier;

}

int main() {

  int n = 72;

  int r = f(n);

  �printf("Calling f with %i resulted in %i.\n", n, r);  

/* 5976 on sample run */

  �return r; /* not usual, but all that's required is a 

returned int */

}
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The calling program (see Example 1-1) illustrates the basics of normal 

return-to-caller behavior. When the calling program is launched from the 

command line, recall that a system function in the exec family invokes the 

calling program’s main function. In this example, main then calls function 

f with an int argument, which function f uses a multiplier. The number 

to be multiplied comes from function g, which f calls. Function g, in 

turn, invokes the library function rand, which returns a pseudorandomly 

generated integer value. Here is a summary of the calls and returns, which 

seem so natural in modern programming languages:

              calls         calls         calls      calls

exec-function------->main()------->f(int)------->g()------->rand()

exec-function<-------main()<-------f(int)<-------g()<-------rand()

              returns       returns       returns    returns

Further examples flesh out the details in the return-to-caller pattern. 

One such example analyzes the assembly code in the pattern. A later 

example looks at abnormal flow of control through signals, which can 

interrupt an executing program and thereby disrupt the normal pattern.

1.8.  Functions with a Variable Number 
of Arguments
The by-now-familiar printf function takes a variable number of 

arguments. Here is its declaration:

int printf(const char* format, ...); �/* returns number of 

characters printed */
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The first argument is the format string, and the optional remaining 

arguments—represented by the ellipsis—are the values to be formatted. 

The printf function requires the first argument, but the number of 

additional arguments depends on the number of values to be formatted. 

There are many other library functions that take a variable number of 

arguments, and programmer-defined functions can do the same. Two 

examples illustrate.

Example 1-2.  The library function syscall

#include <stdio.h>

#include <unistd.h>

#include <sys/syscall.h>

int main() {

  �/* 0755: owner has read/write/execute permissions, others 

read/execute permissions */

  int perms = 0755; /* 0 indicates base-8, octal */

  int status = syscall(SYS_chmod, "/usr/local/website", perms);

  if (-1 == status) perror(NULL);

  return 0;

}

The sysCall program (see Example 1-2) invokes the library function 

syscall, which takes a variable number of arguments; the first argument, 

in this case the symbolic constant SYS_chmod, is required. SYS_chmod is 

clarified shortly.

The syscall function is an indirect way to make system calls, that is, to 

invoke functions that execute in kernel space, the address space reserved 

for those privileged operating system routines that manage shared 

system resources: processors, memory, and input/output devices. This 

indirect approach allows for fine-tuning that the direct approach might 

not provide. This example is contrived in that the function chmod (change 
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mode) could be called directly with the same effect. The mode refers to 

various permissions (e.g., read and write permissions) on the target, in this 

case a directory on the local file system.

As noted, the first argument to syscall is required. The argument is 

an integer value that identifies the system function to call. In this case, the 

argument is SYS_chmod, which is defined as 90 in the header file syscall.h 

and identifies the system function chmod. The variable arguments to 

function syscall are as follows:

•	 The path to the file whose mode is to be changed, in 

this case /usr/local/website. The path is given as a 

string. (The directory /usr/local/website must exist 

for the program to work, and this directory must be 

accessible to whoever runs the program.)

•	 The file permissions, in this case 0777 (base-8): 

everyone can read/write/execute.

The header file stdarg.h has a data type va_list (list of variable 

arguments) together with utilities to help programmers write functions 

with a variable number of arguments. These utilities allocate and 

deallocate storage for the variable arguments, support iteration over 

these arguments, and convert each argument to whatever data type is 

appropriate. The utilities are well designed and worth using. As a popular 

illustration of a function with a variable number of arguments, the next 

code example sums up and then averages the arguments. In the example, 

the required argument and the others happen to be of the same data 

type, in the current case int, but this is not a requirement. Recall again 

the printf function, whose first argument is a string but whose optional, 

variable arguments all could be of different types.

Example 1-3.  A function with a variable number of arguments

#include <stdio.h>
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#include <stdarg.h> �/* va_list type, va_start va_arg va_end 

utilities */

double avg(int count, ...) { �/* count is how many, ellipses are 

the other args */

  double sum = 0.0;

  va_list args;

  va_start(args, count); �/* allocate storage for the 

additional args */

  int i;

  for (i = 0; i < count; i++) sum += va_arg(args, int);  

/* compute the running sum */

  va_end(args);          �/* deallocate the storage for 

the list */

  if (count > 0) return sum / count;    �/* compiler promotes 

count to double */

  else return 0;

}

void main() {

  printf("%f\n", avg(4, 1, 2, 3, 4));

  printf("%f\n", avg(9, 9, 8, 7, 6, 5, 4, 3, 2, 1));

  printf("%f\n", avg(0));

}

The varArgs program (see Example 1-3) defines a function avg with 

one named argument count and then an ellipsis that represents the 

variable number of other arguments. In this example, the int parameter 

count is a placeholder for the required argument, which specifies how 

many other arguments there are. In the first call from main to the function 

avg, the first 4 in the list become count, and the remaining four values 

make up the variable arguments.
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In the function avg, local variable nums is declared to be of type 

va_list. The utility va_start is called with args as its first argument 

and count as its second. The effect is to provide storage for the variable 

arguments. The later call to va_end signals that this storage no longer is 

needed. Between the two calls, the va_arg utility is used to extract from 

the list one int value at a time. The programmer needs to specify, in the 

second argument to va_arg, the data type of the variable arguments. In 

this example, the type is the same throughout: int. In a richer example, 

however, the type could vary from one argument to the next. Finally, 

function main makes three calls to function avg, including a call that has no 

arguments other than the required one, which is 0.

1.9. � What’s Next?
C has basic or primitive data types such as char (8 bits), int (typically 32 

bits), float (typically 32 bits), and double (typically 64 bits) together with 

mechanisms to create arbitrarily rich, programmer-defined types such 

as Employee and digital_certificate. Names for the primitive types 

are in lowercase. Data type names, like identifiers in general, start with a 

letter or an underscore, and the names can contain any mix of uppercase 

and lowercase characters together with decimal numerals. Most modern 

languages have naming conventions similar to those in C. The basic types 

in C deliberately match the ones on the underlying system, which is one 

way that C serves as a portable assembly language. The next chapter 

focuses on data types, built-in and programmer-defined.
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CHAPTER 2

Basic Data Types

2.1. � Overview
C requires explicit data typing for variables, arguments passed to a 

function, and a value returned from a function. The names for C data types 

occur in many other languages as well: int for signed integers, float for 

floating-point numbers, char for numeric values that serve as character 

codes, and so on. C programmers can define arbitrarily rich data types 

of their own such as Employee and Movie, which reduce ultimately to 

primitive types such as int and float. C’s built-in data types deliberately 

mirror machine-level types such as integers and floating-point numbers of 

various sizes.

At a technical level, a data type such as int, float, char, or Employee 

determines

•	 The amount of memory required to store values of 

the type (e.g., the int value -3232, a pointer to the 

string “ABC”)

•	 The operations allowed on values of type (e.g., an int 

value can be shifted left or right, whereas a float value 

should not be shifted at all)
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The sizeof operator gives the size in bytes for any data type or value of 

that type. Here is a code segment to illustrate:

printf("%lu\n", sizeof(char));  �/* 1 (%lu... for long 

unsigned) */

printf("%lu %lu\n", sizeof(float), sizeof(99));  /* 4, 4 */

The sizeof(char) is required to be 1, which accommodates 7-bit 

and 8-bit character encodings such as ASCII and Latin-1, respectively. C 

also has a wchar_t type (w for wide), which is 4 bytes in size and designed 

for multibyte character codes such as Unicode. Types other than char, 

such as int and float, must be at least sizeof(char) but typically are 

greater. On a modern handheld device or desktop computer, for example, 

sizeof(int) and sizeof(float) are 4 bytes apiece.

Listing 2-1.  The sizeof various basic data types

#include <stdio.h>

#include <wchar.h> /* wchar_t type */

void main() {

  printf("char size:        �%lu\n", sizeof(char));     

/* 1 (long unsigned) */

  printf("wchar_t size:     %lu\n", sizeof(wchar_t)); /* 4 */

  �/* Signed and unsigned variants of each type are of same 

size. */

  printf("short size:       %lu\n", sizeof(short));     /* 2 */

  printf("int size:         %lu\n", sizeof(int));       /* 4 */

  printf("long size:        %lu\n", sizeof(long));      /* 8 */

  printf("long long size:   %lu\n", sizeof(long long)); �/* 8,  

maybe  

more */
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  /* floating point types are all signed */

  printf("float size:     %lu\n", sizeof(float));      /*  4 */

  printf("double size:     %lu\n", sizeof(double));    /*  8 */

  �printf("long double size: %lu\n", sizeof(long double)); /* 16 */

}

The dataTypes (see Listing 2-1) program prints the byte sizes for the 

basic C data types. These sizes are the usual ones on modern devices. 

The following sections focus on C’s built-in data types and built-in 

operations on these types. Technical matters such as the 2’s complement 

representation of integers and the IEEE 754 standard for floating-point 

formats is covered in detail.

2.2. � Integer Types
All of C’s integer types come in signed and unsigned flavors. The unsigned 

types have a one-field implementation: all of the bits are magnitude bits. 

By contrast, signed types have a two-field implementation:

•	 The most significant (by convention, the leftmost) bit is 

the sign bit, with 0 for nonnegative and 1 for negative.

•	 The remaining bits are magnitude bits.

The signed and unsigned integer types come in various sizes.
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Table 2-1.  Basic integer data types

Type Byte size Range

unsigned char 1 0 to 255

signed char 1 -128 to 127

unsigned short 2 0 to 65,535

signed short 2 -32,768 to 32,767

unsigned int 4 0 to 4,294,967,295

signed int 4 -2,147,483,648 to 2,147,483,647

unsigned long 8 0 to 18,446,744,073,709,551,615

signed long 8 –9,223,372,036,854,775,808 to 

9,223,372,036,854,775,807

Table 2-1 lists the basic integer types in C, which have the very bit sizes 

as their machine-level counterparts. C also has a long long type, which 

must be at least 8 bytes in size and typically is the same size as long: 8.

C does not have a distinct boolean type but instead uses integer values 

to represent true and false: 0 represents false, and any nonzero value (e.g., 

-999 and 403) represents true. The default value for true is 1. For example, a 

potentially infinite loop might start out like this:

while (1) { /** 1 is true in boolean context **/

In C source code, an integer constant such as 22 defaults to type int, 

where int is shorthand for signed int. The constant 22L or 22l is of type 

long. Here are some quick examples of data type shorthands:

int n;          /* short for: signed int n; */

signed m;       /* short for: signed int m; */

unsigned k;     /* short for: unsigned int k; */

short s;        /* short for: signed short s; */

signed short t; /* the full type written out */
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As the examples indicate, unsigned must be used explicitly if unsigned 

is the desired variant.

The type of a variable does not restrict the bits that can be stored in it, 

which means that even everyday C can be obfuscating. An example may be 

useful here.

Listing 2-2.  Data types and bits

#include <stdio.h>

#include <limits.h> �/* includes convenient min/max values for 

integer types */

void main() { /* void instead of int for some variety */

  unsigned int n = -1, m = UINT_MAX;  �/* In 2's complement, -1 

is all 1s */

  signed int k = 0xffffffff;          �/* 0x or 0X for hex: f = 

4 1s in hex */

  �if (n == m) printf("m and n have the same value\n");  

/* prints */

  �if (k == m) printf("m and k have the same value\n");  

/* prints */

  printf("small as signed == %i,  small as unsigned == %u\n",

     n, n); /* -1, 4294967295 */

  signed int small = -1;    �/* signed converts to unsigned in 

mixed comparisons */

  �unsigned int big = 98765; �/* comparing big and small is a 

mixed comparison */

  �if (small > big) printf("yep, something's up...\n");  

/** small value is UINT_MAX **/

}
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The obfusc program (see Listing 2-2) is a cautionary tale on the 

distinction between internal (machine-level) and external (human-level) 

representation. The example’s important points can be summed up as 

follows:

•	 The data type of a variable does not restrict the bits 

that can be assigned to it. For example, the compiler 

does not warn against assigning the negative value -1 to 

the unsigned variable n. For the compiler, the decimal 

value -1 is, in the 2’s complement representation now 

common across computing devices, all 1s in binary. 

Accordingly, the variable n holds 32 1s when -1 is 

assigned to this variable. (Further details of the 2’s 

complement representation are covered shortly.)

•	 The equality operator ==, when applied to integer 

values, checks for identical bit patterns. If the left 

and the right side expressions (in this example, the 

values of two variables) have identical bit patterns, the 

comparison is true; otherwise, false. The variables n, m, 

and k all store 32 1s in binary; hence, they are all equal 

in value by the equality operator ==.

•	 In print statements, the internal representation of a 

value (the bit string) can be formatted to yield different 

external representations. For example, the 32 1s stored 

in variable n can be printed as a negative decimal value 

using the formatter %i (integer) or %d (decimal). Recall 

that in 2’s complement, a value is negative if its high-

order (leftmost) bit is a 1; hence, the %i formatter for 

signed values treats the 32 1s as the negative value -1: 

the high-order bit is the sign bit 1 (negative), and the 
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remaining bits are the magnitude bits. By contrast, 

the %u formatter for unsigned treats all of the bits as 

magnitude bits, which yields the value of the symbolic 

constant UINT_MAX (4,294,967,295) in decimal.

•	 Comparing expressions of mixed data types is risky 

because the compiler coerces one of the types to the 

other, following rules that may not be obvious. In this 

example, the value -1 stored in the signed variable 

small is converted to unsigned so that the comparison 

is apple to apple rather than apple to orange. As 

noted earlier, -1 is all 1s in binary; hence, as unsigned, 

this value is UNIT_MAX, far greater than the 98,765 

stored in big.

In mixed integer comparisons, the compiler follows two general rules:

•	 Signed values are converted to unsigned ones.

•	 Smaller value types are converted to larger ones. For 

example, if a 2-byte short is compared to a 4-byte int, 

then the short value is converted to an int value for 

the comparison.

When floating-point values occur in expressions with integer values, 

the compiler converts the integer values into floating-point ones.

In assembly code, an instruction such as cmpl would be used to 

compare two integer values. The l in cmpl determines the number of 

bits compared: in this case, 32 because l is for longword, a 32-bit word in 

the Intel architecture. Were two 64-bit values being compared, then the 

instruction would be cmpq instead, as the q stands for quadword, a 64-bit 

word in this same architecture. At the assembly level, as at the machine 

level, the size of a data type is built into the instruction’s opcode, in this 

example cmpl.
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An earlier example showed that C’s signed char and unsigned char 

are likewise integer types. As the name char indicates, the char type is 

designed to store single-byte character codes (e.g., ASCII and Latin-1); 

the more recent wchar_t type also is an integer type, but one designed for 

multibyte character codes (e.g., Unicode). For historical reasons, the char 

type is shorthand for either signed char or unsigned char, but which 

is platform dependent. For the remaining types, this is not the case. For 

example, short is definitely an abbreviation for signed short.

2.2.1. � A Caution on the 2’s Complement  
Representation

The 2’s complement representation of signed integers has a surprising but 

well-publicized peculiarity. The header file limits.h provides the constant 

INT_MIN, the minimum value for a 4-byte signed int value. The binary 

representation, with the most significant bits on the left, is

10000000 00000000 00000000 00000000  /* INT_MIN in binary */

For readability, the binary representation has been broken into 

four 8-bit chunks. The rightmost (least significant) bit is a 0, which 

makes the value (-2,147,483,648) even rather than odd. The leftmost 

(most significant) bit is the sign bit: 1 for negative as in this case and 0 

for nonnegative. There are similar constants for other integer types (for 

instance, SHRT_MIN and LONG_MIN).

There is a straightforward algorithm for computing the absolute value 

of a negative 2’s complement value. For example, recall that the -1 in 

binary, under the 2’s complement representation, is all 1s: 1111…1. Here is 

the recipe for computing the absolute value in binary:

	 1.	 Invert the 1s in -1, which yields all 0s: 00000…000.

	 2.	 Add 1, which yields 00000…001 or 1 in binary and 

decimal, the absolute value of -1 in decimal.
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The same recipe yields -1 from 1: invert the bits in 1 (yielding 11111…0) 

and then add 1 (yielding 11111…1), which again is all 1s in binary and -1 in 

decimal.

In the case of INT_MIN, the peculiarity becomes obvious:

	 1.	 Invert the bits, which transforms INT_MIN to 

01111111 11111111 11111111 11111111.

	 2.	 Add 1 to yield 10000000 00000000 00000000 

00000000, which is INT_MIN again.

In C, the unary minus operator is shorthand for (a) inverting the bits 

and (b) adding 1. This code segment illustrates

int n = 7;

int k = -n;      /* unary-minus operator */

int m = ~n + 1;  /* complement operator and addition by 1 */

The value of k and of m is the same: -7. In the case of INT_MIN, however, 

the peculiarity is that

INT_MIN == -INT_MIN

A modern C compiler does issue a warning when encountering the 

expression -INT_MIN, cautioning that the expression causes an overflow 

because of the addition operation. By the way, no other int value is equal 

to its negation under the 2’s complement representation.

2.2.2. � Integer Overflow
A programmer who uses any of the primitive C types needs to stay alert 

when it comes to sizeof and the potential for overflow. The next code 

example illustrates with the int type.
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Listing 2-3.  Integer overflow

#include <stdio.h>

#include <limits.h> /* INT_MAX */

int main() {

  �printf("Max int in %lu bytes %i.\n", sizeof(int), INT_MAX); 

/* 4 bytes 2,147,483,647 */

  int n = 81;

  while (n > 0) {

    printf("%12i %12x\n", n, n);

    n *= n; /* n = n * n */

  }

  printf("%12i  %12x\n", n, n); /*  -501334399     e21e3e81 */

  return 0;

}

/*        81           51

        6561         19a1

    43046721      290d741

  -501334399     e21e3e81   ## e is 1101 in binary */

The overflow program (see Listing 2-3) initializes int variable n to 81 

and then loops. In each loop iteration, n is multiplied by itself as long as the 

resulting value is greater than zero. The trace shows that loop iterates three 

times, and on the third iteration, the new value of n becomes negative. As 

the hex output shows, the leftmost (most significant) four bits are hex digit 

e, which is 1110 in binary: the leftmost 1 is now the sign bit for negative. In 

this example, the overflow could be delayed, but not prevented, by using a 

long instead of an int.
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There is no compiler warning in the overflow program that overflow 

may result. It is up to the programmer to safeguard against this possibility. 

There are libraries that support arbitrary-precision arithmetic in C, 

including the GMP library (GNU Multiple Precision Arithmetic Library 

at https://gmplib.org). A later code example uses embedded assembly 

code to check for overflow.

2.3. � Floating-Point Types
C has the floating-point types appropriate in a modern, general-purpose 

language. Computers as a rule implement the IEEE 754 specification 

(https://standards.ieee.org/ieee/754/6210/) in their floating-point 

hardware, so C implementations follow this specification as well.

Table 2-2 lists C’s basic floating-point types. Floating-point types are 

signed only, and their values have a three-field representation under IEEE 

754: sign bits, exponent bits, and significand (magnitude) bits. A floating-

point constant such as 3.1 is of type double in C, whereas 3.1F and 3.1f 

are of type float. Recall that a double is 8 bytes in size, but a float is only 

4 bytes in size.

Table 2-2.  Basic floating-point data types

Type Byte size Range Precision

float 4 1.2E-38 to 3.4E+38 6 places

double 8 2.3E-308 to 1.7E+308 15 places

long double 16 3.4E-4932 to 1.1E+4932 19 places
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2.3.1. � Floating-Point Challenges
Floating-point types pose challenges that make these types unsuitable for 

certain applications. For instance, there are decimal values such as 0.1 that 

have no exact binary representation, as this short code segment shows:

float n = 0.1f;

printf("%.24f\n", n); /* 0.100000001490116119384766 */

In the printf statement, the formatter %.24f specifies a precision of 

24 decimal places. As a later example illustrates, unexpected rounding up 

can occur when a particular decimal value does not have an exact binary 

representation. Even this short code segment underscores that floating-

point types should not be used in financial, engineering, and other 

applications that require exactness and precision. In such applications, 

there are libraries such as GMP (http://gmplib.org), mentioned earlier, 

to support arbitrary-precision arithmetic.

WHAT’S A MACRO?

A macro is a code fragment with a name and is created with a #define 

directive. The macro expands into its definition during the preprocessing stage 

of compilation. Here is a macro for pi from the math.h header file:

#define M_PI   3.14159265358979323846 /* the # need not be flush 

against the define */

Although macros are often named in uppercase, this is convention only. Here 

are two parameterized macros for computing the max and min of two integer 

arguments:

#define min(x, y)  (y) ^ ((x ^ y) & -(x < y))  �/* details of 

bitwise operators 

later */
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#define max(x, y)  (x) ^ ((x ^ y) & -(x < y))  �/* ^ bitwise xor, 

& bitwise and */

These macros look like functions, but the compiler does no type-checking on 

the arguments. Here are two sample uses:

int n = min(-127, 44);  /* -127 */

n = max(373, 1404);     /* 1404 */

Another example underscores the problem of comparing floating-

point values, in particular for equality. Imagine a company in which sales 

people earn a bonus if they sell 83% of their quota by the end of the third 

quarter. The company assumes that the remaining 17% of the quota, and 

probably more, will be met in the last quarter. In this company, 83% is 

defined in the official spreadsheet as the value 5.0 / 6.0. (On my handheld 

calculator, 5.0 / 6.0 evaluates to 0.833333333.) However, a legacy program 

computes 83% as (1.0 / 3.0) × 2.5. At issue, then, is whether (1.0 / 3.0) × 2.5 

= 5.0 / 6.0. Here is a segment of C code that makes the comparison, using 

double values:

if (((1.0 / 3.0) * 2.5) == (5.0 / 6.0)) /* equal? */

  printf("Equal\n");

else

  printf("Not equal\n");  /** prints **/

A look at the hex values for the two expressions confirms that they are 

not equal:

3f ea aa aa aa aa aa aa /* (1.0 / 3.0) x 2.5 */

3f ea aa aa aa aa aa ab /* 5.0 / 6.0 */

The two differ in the least significant digit: hex a is 1010 in binary, 

whereas hex b is 1011 in binary. The two values differ ever so slightly, in the 

least significant (rightmost) bit of their binary representations. In close-to-

the-metal C, the equality operator compares bits; at the bit level, the two 

expressions differ.
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High-level languages provide a way to make approximate comparisons 

where appropriate. In particular, the header file math.h defines the macro 

FLT_EPSILON, which represents the difference between 1.0f and the 

smallest, 32-bit floating-point value greater than 1.0f. The value of FLT_

EPSILON should be no greater than 1.0e-5f. On my desktop computer:

FLT_EPSILON == 1.192092895508e-07  /** e or E for scientific 

notation **/

C has similar constants for other floating-point types (e.g., DBL_

EPSILON).

Listing 2-4.  Approximate equality

float f1 = 5.0f / 6.0f;

float f2 = (1.0f / 3.0f) * 2.5f;

if (fabs(f1 - f2) < FLT_EPSILON)  �/* fabs for floating-point 

absolute value */

  printf("fabs(f1 - f2) < FLT_EPSILON\n"); /* prints */

The comp code segment (see Listing 2-4) shows how a comparison 

can be made using FLT_EPSILON. The library function fabs returns the 

absolute value of the difference between f1 and f2. This value is less than 

FLT_EPSILON; hence, the two values might be considered equal because 

their difference is less than FLT_EPSILON.

The next two examples reinforce the risks that come with floating-

point types. The goal is to show various familiar programming contexts 

in which floating-point issues arise. Following each example is a short 

discussion.
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Listing 2-5.  Issues with floating-point data types

  /* 1.010000

     2.020000

     ...

     7.070001   ;; rounding up now evident

     ...

    10.100001

  */

  float incr = 1.01f;

  float num = incr;

  int i = 0;

  while (i++ < 10) {   /* i++ is the post-increment operator */

    �printf("%12f\n", num); �/* %12f is field width, not 

precision */

    num += incr;

  }

The rounding program (see Listing 2-5) initializes a variable to 1.01 

and then increments this variable by that amount in a loop that iterates ten 

times. The rounding up becomes evident in the seventh loop iteration: the 

expected value is 7.070000, but the printed value is 7.07001. Note that the 

formatter is %12f rather than %.12f. In the latter case, the printouts would 

show 12 decimal places but here show the default places, which happens 

to be six. Instead, the 12 in %12f sets the field width, which right-justifies 

the output to make it more readable.
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WHAT’S THE DIFFERENCE BETWEEN THE PRE-INCREMENT  
AND POST-INCREMENT OPERATORS?

The rounding program uses the post-increment operator on loop counter 

i to check, in the while condition, whether the loop counter is less than 

ten. C also has a pre-increment operator and both pre- and post-decrement 

operators. Each operator involves an evaluation and an update. Here is a code 

segment to illustrate the difference:

int i = 1;

printf("%i\n", i++); /* 1  (evaluate, then increment) */

printf("%i\n", i);   /* 2  (i has been incremented above) */

printf("%i\n", ++i); /* 3  (increment, then evaluate) */

Listing 2-6.  More examples of decimal-to-binary conversion

#include <stdio.h>

#include <math.h> �/* pi and e as macros, M_PI and M_E, 

respectively */

void main() {

  �printf("%0.50f\n", 10.12);  

/* 10.11999999999999921840299066388979554176330566406250 */

  /* On my handheld calculator: 2.2 * 1234.5678 = 2716.04916 */

  double d1 = 2.2, d2 = 1234.5678;

  double d3 = d1 * d2;

  �if (2716.04916 == d3) printf("As expected.\n");  

/* does not print */

  �else printf("Not as expected: %.16f\n", d3);     

/* 2716.0491600000004837 */

  printf("\n");
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  /* Expected price: $84.83 */

  float price = 4.99f;

  int quantity = 17;

  �float total = price * quantity; �/* compiler converts quantity 

to a float value */

  �printf("The total price is $%f.\n", total); �/* The total 

price is 

$84.829994. */

  /* e and pi */

  �double ans = pow(M_E, M_PI) - M_PI; /* e and pi, respectively */

  �printf("%lf\n", ans); /* 19.999100 prints: expected is 

19.99909997 */

}

The d2bconvert program (see Listing 2-6) shows yet again how 

information may be lost in converting from decimal to binary. In these 

isolated examples, of course, no harm is done; but these cases underscore 

that floating-point types such as float and double are not suited for 

applications involving, for instance, currency.

2.3.2. � IEEE 754 Floating-Point Types
This section digs into the details of the IEEE 754 binary floating-point 

specification (https://standards.ieee.org/standard/754-2019.

html), using 32-bit floating-point values as the working example. The 

specification also covers 16-bit and 64-bit binary representations and 

decimal representations as well. Here is the layout of a 32-bit (single-

precision) binary floating-point value under IEEE 754:

+-+--------+-----------------------+

|s|exponent|       magnitude       | 32 bits

+-+--------+-----------------------+

 1    8              23
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For reference, the written exponent comprises the 8 bits depicted 

previously. In the discussion that follows, the written exponent is 

contrasted with the actual exponent. Also, the written magnitude 

comprises the 23 bits shown previously and is contrasted with the actual 

magnitude.

The IEEE 754 specification categorizes floating-point values as either 

normalized or denormalized or special. The category depends on the value 

of the 8-bit exponent:

•	 If the written exponent field contains a mix of 0s and 1s, 

the value is normalized.

•	 If the written exponent field contains only 0s, the value 

is denormalized.

•	 If the written exponent field contains only 1s, the value 

is special.

As the name suggests, normalized values are typical or expected ones 

such as -118.625, which is -1110110.101 in binary. A normalized value has 

an implicit leading 1, which means the written magnitude is the fractional 

part of the actual magnitude:

1.??????...???  ## the question marks ? are the written magnitude

For the sample value -1110110.101 (-118.625 in decimal), the implicit 

leading 1 is obtained by moving the binary point six places to the left, 

which yields -1.110110101 × 26. The written magnitude is then the 

fractional part 110110101.

In the example, the actual exponent is 6, as shown in the  

expression -1.110110101 × 26. However, the written exponent of 133 

(10000101 in binary) is biased, with a bias of 127 for the 32-bit case. The 

bias is subtracted from the written exponent to get the actual exponent:

actual exponent = written exponent - 127 ## 133 - 127 = 6
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In summary, the decimal value -118.625 has a written exponent of 

133 in IEEE 754, but an actual exponent of 6.

Finally, the sample value is negative, which means the most  

significant (leftmost) bit is a 1. The 32-bit representation for the decimal 

value -188.625 is

1 10000101 11011010100000000000000 ## 14 zeros pad to 

make 23 bits

The middle field alone, the 8-bit exponent, indicates that this value is 

indeed normalized: the written exponent contains a mix of 0s and 1s.

Denormalized values cover two representations of zero and evenly 

spaced values in the vicinity of zero. Zero can represented as either a 

negative or a nonnegative value under the IEEE specification, which the C 

compiler honors:

if (-0.0F == 0.0F) puts("yes!");  /* prints */

The IEEE representation of zero is intuitive in that every bit—except, 

perhaps, the sign bit—is a 0. A denormalized value does not have an 

implicit leading 1, and the actual exponent has a fixed value of -126 in the 

32-bit case. The written exponent is always all 0s.

What motivates the denormalized category beyond the two 

representations of zero? Consider the three values in Table 2-3, in 

particular the binary column. In the first row, the value has a single 1—

the least significant bit of the written exponent. Yet this exponent still 

contains a mix of 0s and 1s and so is normalized: it is the smallest positive 

normalized value in 32 bits.
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Table 2-3.  Positive denormalized and normalized values

Binary Decimal

0 00000001 00000000000000000000000 1.175494350822e-38

0 00000000 11111111111111111111111 1.175494210692e-38

0 00000000 00000000000000000000001 1.401298464325e-45

The value in the middle row has all 0s in the exponent, which makes 

the value denormalized. This value is the largest denormalized value in 

32 bits, but this value is still smaller than the very small normalized value 

above it. The smallest denormalized value, the bottom row in the table, 

has a single 1 as the least significant bit: all the rest are 0s. Between the 

smallest and the largest denormalized values are many more, all differing 

in the bit pattern of the written magnitude. Although the denormalized 

values shown so far are positive, there are negative ones as well: the sign 

bit is 1 for such values.

In summary, denormalized values cover the two representations 

of zero, as well as evenly spaced values that are close to zero. The 

preceding examples show that the gap between the smallest positive 

normalized value and positive zero is considerable and filled with 

denormalized values.

The third IEEE category covers special values, three in particular: 

NaN (Not a Number), positive infinity, and negative infinity. A written 

exponent of all 1s signals a special value. If the written magnitude contains 

all 0s, then the value is either negative or positive infinity, with the sign bit 

determining the difference. If the written magnitude contains at least one 

1, the value is NaN. A short code segment clarifies.
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Listing 2-7.  Special values under the IEEE 754 specification

#include <stdio.h>

#include <math.h>

/** gcc -o specVal specVal.c -lm **/

void main() {

  �printf("Sqrt of -1:    %f\n", sqrt(-1.0F)); 

                     /* 1 11111111 10000000000000000000000 */

  �printf("Neg. infinity: %f\n", 1.0F / -0.0F);  

                     /* 1 11111111 00000000000000000000000 */

  �printf("Pos. infinity: %f\n", 1.0F / 0.0F); 

                     /* 0 11111111 00000000000000000000000 */

}

The specVal program (see Listing 2-7) has the following output, with 

comments introduced by ##:

Sqrt of -1:     -nan   ## minus sign because -1.0F is negative

Neg. infinity:  -inf   ## negative zero as divisor

Pos. infinity:   inf   ## non-negative zero as divisor

The floating-point units (FPUs) of modern computers commonly 

follow the IEEE specification; modern languages, including C, do so in 

any case. There are heated discussions within the computing community 

on the merits of the IEEE specification, but there is little doubt that this 

specification is now a de facto standard across programming languages 

and systems.
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HOW DOES LINKING WORK IN THE COMPILATION PROCESS?

Compiling the specVal program into an executable requires an explicit link flag:

% gcc -o specVal specVal.c -lm

In the flag -lm (lowercase L followed by m), the -l stands for link, and the m 

identifies the standard mathematics library libm, which resides in a file such 

as libm.so on the compiler/linker search path (e.g., in a directory such as /usr/
lib or /usr/local/lib). Note that the prefix lib and the file extension so fall away 

in a link specification, leaving only the m for the mathematics library.

The linking is needed because the specVal program calls the sqrt function 

from the mathematics library. A compilation command may contain several 

explicit link flags in same style shown previously: -l followed by the name of 

the library without the prefix lib and without the library extension such as so.

During compilation, libraries such as the standard C library and the input/

output library are linked in automatically. Other libraries, such as the 

mathematics and cryptography libraries, must be linked in explicitly. In 

Chapter 8, the section on building libraries goes into more detail on linking.

2.4. � Arithmetic, Bitwise, and Boolean  
Operators

C has the usual arithmetic, bitwise, and boolean (relational) operators. 

Recall that even the character types char and wchar_t, and the makeshift-

boolean type (zero for false, nonzero for true), are fundamentally 

arithmetic types. However, some operators are ill-suited for some types. 

For example, floating-point values should not be bit-shifted, left or right.
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Recall the layout for a 32-bit floating-point value under IEEE 754:

+-+--------+-----------------------+

|s|exponent|       magnitude       |

+-+--------+-----------------------+

 1    8               23

Bit-shifting a floating-point type, either left or right, would cause one or 

more bits to change fields. On a 2-bit left shift, for instance, magnitude bits 

would become exponent bits, and an exponent bit would become the sign 

bit. The following code segment illustrates the peril of shifting floating-

point values:

float f = 123.456f;

f = (int) f << 2;   /* ERROR without the cast operation (int) */

printf("%f\n", f);  /* 492.000000 */

The second line uses a cast operation, which is an explicit type-

conversion operation; in this case, the floating-point value of variable f is 

converted to an int value so that the compiler does not complain. (The 

syntax of casts is covered in the following sidebar.) In the shift operation, 

<< represents a left shift, and >> represents a right shift. To the left of the 

shift operator is the value (in this case, variable f) to be shifted, and to 

the right is the number of bit places to shift. On left shifts, the vacated 

positions are filled with 0s.

If the preceding example were to omit the cast operation, the compiler 

would complain, with an error rather than just a warning, that the left 

operand to << should be an int, not a float. To get by the compiler, the 

code segment thus includes the cast operation.

It should be emphasized that a cast operation is not an assignment 

operation. In this example, the casted value 123.456 is still stored in 

variable f. The salient point is that floating-point values, in general, should 

not be shifted at all. The shift operation is intended for integer values only, 

and even then caution is in order—as later examples illustrate.
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HOW DO CAST OPERATIONS WORK?

A cast operation consists of a data type enclosed in parentheses immediately 

to the left of a value:

int n = (int) 1234.5678f;   �/* cast float value to int value, 

which is assigned to n */

float f = (float) n;        �/* compiler would do the conversion 

in any case */

n = (int) 1234.5678F << 2;  �/* cast required: float values 

should not be shifted */

A cast is not an assignment: in the second example shown previously, the cast 

(float) does not change what is stored in n but rather creates a new value 

then assigned to variable f. A cast is thus an explicit conversion of one type to 

another. The compiler regularly does such conversions automatically:

int n = 1234.567f; �/* compiler assigns 1234 to n: automatic 

conversion */

For convenience, the following subsections divide the operators into 

the traditional categories of arithmetic, bitwise, and boolean (relational). 

Miscellaneous operators such as sizeof and the cast will continue to be 

clarified as needed.

2.4.1. � Arithmetic Operators
C has the usual unary and binary arithmetic operators, and C uses the 

standard symbols to represent these operators. For operations such as 

exponentiation and square roots, C relies upon library routines, in this 

case the pow and sqrt functions, respectively. Table 2-4 clarifies the binary 

arithmetic operators with sample expressions.
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Table 2-4.  Binary arithmetic operators

Operation C Example

Addition + 12 + 3

Subtraction - 12 - 3

Multiplication * 12 * 3

Division / 12 / 3

Modulus % 12 % 3

The plus and minus signs also designate the unary plus and unary 

minus operators, respectively:

int k =  5;

printf("%i  %i\n", +k, -k); /* 5  -5 */

The binary arithmetic operators associate left to right, with 

multiplication, division, and modulus having a higher precedence than 

addition and subtraction. For example, the expression

8 + 2 * 3

evaluates to 14 rather than 30. Of course, parentheses can be used 

to ensure the desired association and precedence—and to make the 

arithmetic expressions easier to read.

Listing 2-8.  Operator association and precedence

#include <stdio.h>

void main() {

  int n1 = 4, n2 = 11, n3 = 7;

  printf("%i\n", n1 + n2 * n3);     /*  81 */

  printf("%i\n", (n1 + n2) * n3);   /* 105 */
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  printf("%i\n", n3 * n2 % n1);     /*   1 */

  printf("%i\n", n3 * (n2 % n1));   /*  21 */

}

The assoc program (see Listing 2-8) shows how expressions can 

be parenthesized in order to get the desired association when mixed 

operations are in play. The use of parentheses seems easier than trying to 

recall precedence details, and parenthesized expressions are, in any case, 

easier to read.

C has variants of the assignment operator (=) that mix in arithmetic 

and bitwise operators. A few examples should clarify the syntax:

int n = 3;

n += 4;    /* n = n + 4 */

n /= 2;    /* n = n / 2 */

n <<= 1;   /* n = n << 1 */

2.4.2. � Boolean Operators
The boolean or relational operators are so named because the expressions 

in which they occur evaluate to the boolean values true or false. Although 

any integer value other than zero is true in C, true boolean expressions in C 

evaluate to the default value for true, 1. Here are some sample expressions 

to illustrate the boolean operators:

/** equals and not-equals **/

2 == (16 - 14) /* true:  == is 'equals' */

2 != (16 / 8)  /* false: != is 'not equals' */

/** greater, lesser **/

!(2 < 3)       /* false: !  is 'negation' */

3 > 2          /* true:  >  is 'greater than' */

3 >= 3         /* true:  >= is 'greater than or equal to' */
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3 < 2          /* false: <  is 'less than' */

3 <= 3         /* true:  <= is 'less than or equal to */

/** logical-and, logical-or **/

(2 < 3) && (4 < 5) /* true: && is logical-and */

(2 < 3) || (5 < 4) /* true: || is logical-or */

A few cautionary notes are in order. Note that the operators for equality 

(==) and inequality (!=) both have two symbols in them. The equality 

operator can be tricky because it is so close to the assignment operator (=). 

Consider this code segment, the stuff of legend among C programmers 

whose code has gone awry because of some variation of the problem:

int n = 2;

if (n = 1)

  printf("yep\n"); /** prints: presumably meant n == 1 **/

An assignment in C is an expression and so has a value—the value 

of the expression on the right-hand side of the = operator. Accordingly, 

the if test both assigns 1 to n and evaluates to 1, true; hence, the printf 

statement executes. Whenever a constant is to be compared against a 

variable, it is best to put the constant on the left. If the assignment operator 

= is then typed by mistake instead of the equality operator ==, the compiler 

catches the problem:

if (1 = n) /** won't compile **/

The logical and and logical or operators are efficient because they 

short-circuit. For example, in the expression

(3 < 2) && (4 > 2) �/* only (3 < 2), the 1st conjunct, is 

evaluated */
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the second conjunct (4 > 2) is not evaluated: a conjunction is true 

only if each of its conjuncts is true, and the first conjunct (3 < 2) is false, 

thereby making the entire expression false.

The boolean operators occur regularly in loop and other tests. Simple 

examples have been seen already:

int i = 0;

while (i < 10) {  /* loop while i is less than 10 */

   /* ... */

   i += 1;      �/* increment loop counter: i++ or ++i would 

work, too */

}

Richer examples are yet to come.

2.4.3. � Bitwise Operators
As the name suggests, the bitwise operators work on the underlying 

bit-string representation of data. These operators thus deserve caution, 

as it may be hard to visualize the outcome of bit manipulation. Bitwise 

operations are fast, usually requiring but a single clock tick to execute. 

For example, an optimizing compiler might transform a source-code 

expression such as

n = n * 2;  �/* n is an unsigned int variable: double n 

arithmetically */

to a left shift, shown here at the source level:

n = n << 1; /* double n by left-shifting one place */
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Here are some more examples of the bitwise operators in expressions, 

using 4-bit values for readability:

~(0101) == 1010        /* invert bits: complement */

(0101 & 1110) == 0100  /* bitwise-and */

(0101 | 1110) == 1110  /* bitwise-inclusive-or */

(0101 ^ 1110) == 1011  /* bitwise-exclusive-or */

(0111 << 2) == 1100    /* left shift */

(0111 >> 2) == 0001    /* right shift */

The complement or bit inversion operator is tied to the unary minus 

operator considered earlier. Given an underlying 2’s complement 

representation of signed integers, recall that the unary minus operator 

can be viewed as a combination of two operations: complement and 

increment by 1. Another example illustrates:

int n = 5;

if (-n == (~n + 1))

  printf("yep\n"); /* prints */

The shift operators require caution because overshifting in either 

direction is a misstep. As noted earlier, the compiler intervenes in case 

floating-point values are shifted left or right. At issue now are shifts of 

integer values. With signed integer values, left shifts can be risky because 

they may change the sign. Consider this example:

int n = 0x70000000;            /* 7 in binary is 0111 */

printf("%i  %i\n", n, n << 1); /* 1879048192  -536870912 */

The bit-level representation of n starts out 01110..., with the leftmost  

bit as the sign bit 0 for nonnegative. The 1-bit left shift moves a 1 into the 

sign position, which accounts for change in sign from 1,879,048,192  

to -536,870,912. Recall that, in left shifts, the vacated bit positions are filled 

with 0s.
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Right shifts can be even trickier. Consider the signed integer value 

0xffffffff in hex, which is all 1s in binary; in decimal, this is -1. Even in a 

1-bit right shift, the sign could change to 0—if the shift is logical, that is, 

if the vacated bit is filled with a 0. If the shift is sign preserving, it is an 

arithmetic shift: the sign bit becomes the filler for the vacated positions. 

Whether a right is logical or arithmetic is platform dependent. In general, 

it is best to shift only unsigned integer values. Even in this case, of course, 

overshifting is possible; but at least the issue of sign preservation does 

not arise.

Listing 2-9.  Reversing the endian-ness of a multibyte data item

unsigned int endian_reverse32(unsigned int n) { /* designed for 

32 bits, or 4 bytes */

  return (n >> 24)          |  �/* leftmost byte becomes 

rightmost */

    ((n << 8) & 0x00FF0000) |  /* swap the two inner bytes */

    ((n >> 8) & 0x0000FF00) |  /* ditto */

    �(n << 24);                 �/* rightmost byte becomes 

leftmost */

}

The endian code segment (see Listing 2-9) uses bitwise operators in a 

utility function that reverses the endian-ness of a 4-byte integer. Modern 

machines are still byte addressable in that an address is that of a single 

byte. For multibyte entities such as a 4-byte integer, an address thus points 

to a byte at one end or the other in the sequence of 4 bytes. Given this 4-

byte integer
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+----+----+----+----+

| B1 | B2 | B3 | B4 |  ## �B1 is high-order byte, B4 is low-order byte

+----+----+----+----+

the integer’s address would be either that of B1 (high-order byte) or 

that of B4 (low-order byte). Standard network protocols are big endian, 

with the integer’s address that of the big (high-order) byte B1; Intel 

machines are little endian, with the integer’s address that of the little 

(low-order) byte B4. (ARM machines are little endian by default but can be 

configured, as needed, to be big endian.) Given the preceding depiction, 

the endian program would reverse the byte order to yield:

+----+----+----+----+

| B4 | B3 | B2 | B1 |  ## �B4 is high-order byte, B1 is low-order byte

+----+----+----+----+

A short code example illustrates, with integer n initialized to a hex 

value for clarity:

unsigned n = 0x1234abcd;

printf("%x  %x\n", n, endian_reverse(n)); /* 

1234abcd  cdab3412 */

Recall that each hex digit is 4 bits. Accordingly, the leftmost byte in 

variable n is 12, and the rightmost is cd.

C has a header file endian.h that declares various functions for 

transforming little-endian formats to big-endian formats, and vice versa. 

These functions specify the bit sizes on which they work: 16 (2 bytes), 32 (4 

bytes), and 64 (8 bytes).
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WHAT IS AN LVALUE AND AN RVALUE?

An rvalue is one that does not persist. For example, in the statement

printf("%i\n", 444);  �/* 444 does not persist, and is thus an 

rvalue */

the rvalue 444 does not persist beyond the printf statement. By contrast, an 

lvalue does persist as the target of an assignment:

int n = 444;          �/* 444 persists in n beyond the 

assignment */

The variable n is the symbolic name of a memory location or CPU register, and 

a value assigned to n is thus an lvalue.

2.5. � What’s Next?
The examples so far have focused mostly on scalar variables: there is 

an identifier for a single variable, not a collection of variables. A typical 

example is

int n = -1234; /* n identifies a single variable */

C also supports aggregates, a collection of variables under a single 

name. Here is one example:

char* str = "abcd";     �/* string literal abcd is a null-

terminated array of chars */

printf("%c\n", str[0]); �/* string[0] = 1st of 5 variables, %c 

for character */
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The pointer variable str identifies a collection (in this case, an array) 

of five characters: the ones shown and the null terminator. The expression 

str[0] refers to the first of the variables that hold a character, lowercase a 

in this example. Pointer str thus identifies an aggregate rather than just a 

single variable.

Arrays and structures are the primary aggregates in C. Pointers also 

deserve a closer look because they dominate in efficient, production-grade 

programming. The next chapter focuses on aggregates and pointers.

WHAT’S THE RELATIONSHIP BETWEEN C AND C++?

C is a small, strictly procedural or imperative language. C++ is a large 

language that can be used in procedural style but also includes object-

oriented features (e.g., classes, inheritance, and polymorphism) not found in 

C. C++, unlike C, has generic collection types. A C++ program can include 

orthodox C code, but much depends on the compiler; further, header files and 

the corresponding libraries may differ in name and location between the two 

languages. The two languages share history and features but are distinct.
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CHAPTER 3

Aggregates and 
Pointers

3.1. � Overview
This chapter focuses on arrays and structures, which are C’s primary 

aggregate types. Arrays aggregate variables of the same type, whereas 

structures can do the same for variables of different types. Structures can 

be array elements, and a structure may embed arrays. Together these 

aggregate types make it possible for programmers to define arbitrarily rich 

data types (e.g., Employee, Game, Species) that meet application needs.

Pointers—address constants and variables—come into play naturally 

with both arrays and structures, and the code examples throughout the 

chapter get into the details. Among modern general-purpose languages, C 

(together with C++) stands out by giving the programmer so much control 

over—and, therefore, responsibility for—memory addresses and the items 

stored at these addresses. All of the chapters after this one have examples 

that, in one way or another, illustrate the power of pointers.
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3.2. � Arrays
An array in C is a fixed-size collection of variables—of the same type—

accessible under a single name, the array’s identifier. A code example 

illustrates.

Listing 3-1.  A simple array

#define Size 8

void main() {

  int arr[Size];              /* �storage from the stack -- 

uninitialized */

  int i;

  for (i = 0; i < Size; i++)  /* iterate over the array */

    arr[i] = i + 1;           /* �assign a value to each 

element */

}

The array program (see Listing 3-1) shows the basic syntax for declaring 

an array and then uses a for loop to populate the array with values. An array 

has a fixed size, in this case specified by the macro Size. The array’s name, 

in this case arr, is a pointer constant that holds the address of the array’s first 

element, in this case the element that the for loop initializes to 1:

       +---+---+---+---+---+---+---+---+

arr--->| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |   ## array elements

       +---+---+---+---+---+---+---+---+

        [0] [1] [2] [3] [4] [5] [6] [7]    ## indexes

Arrays can be indexed to access elements by using the square brackets: 

legitimate indexes are 0 through the array’s size - 1. The indexes are 

offsets from the start of the array: the first array element is at offset 0, the 

second at offset 1, and so on. For the preceding array, here are some of the 

addresses computed as offsets from the base address arr:
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arr + 0 ---> 1st element  ## arr[0] is value of 1st element: 1

arr + 1 ---> 2nd element  ## arr[1] is value of 2nd element: 2

...

arr + 7 ---> 8th element  ## arr[7] is value of 8th element: 8

A second example builds on the first by introducing pointer variables 

and showing how C supports pointer arithmetic by having data types for 

pointers.

DOES C PROVIDE BOUNDS CHECKING ON ARRAYS?

No. The programmer is responsible for ensuring that array indexes are in 
bounds at runtime. The following code segment compiles without warning and 

likely blows up when executed because of the out-of-bounds index -9876.

int arr[4];      /* four elements */

int ind = -9876; �/* not a good index: 0, 1, 2, and 3 are good 

indexes */

arr[ind] = 27;   �/* out-of-bounds, likely to blow up at 

run-time */

3.3. � Arrays and Pointer Arithmetic
C supports typed pointers so that the compiler can perform the required 

arithmetic when pointers are used to access memory locations. The 

compiler thereby takes on a task that would be error-prone if left to the 

programmer. Consider again the array program with its array of eight 

int elements and a sample index such as 2. The index expression arr[2] 

references the third element in the array, which is two elements over from 

where the array starts: arr is the base address, and 2 is the displacement 

or offset from this base address. However, machine-level addresses are of 

bytes, and an int is a 4-byte element. To reach the array’s third element, 
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it is therefore necessary to move 2 × sizeof(int) bytes from where array 

arr starts, which is a move of 8 bytes in all. Yet the programmer refers 

to the third element as arr[2] (int level), not as arr[8] (byte level). It 

would be tedious and error-prone for programmers to work at the byte 

level in accessing array elements of multibyte types. Accordingly, C’s typed 

pointers allow the programmer to work at the data-type level (e.g., int or 

Employee), while the compiler then works at the byte level.

Listing 3-2.  Pointer variables and pointer arithmetic

#define Size (8)         /* �Size is a macro that expands 

into (8) */

void main() {

  int arr[Size];         /* �storage from the stack -- 

uninitialized */

  int k = 1;

  int* ptr = arr;        /* point to the start of the array */

  int* end = arr + Size; /* �points immediately beyond the end 

of the array */

  while (ptr < end) {    /* beyond the end yet? */

    *ptr = k++;          /* �assign a value to the array 

element */

    ptr++;               /* increment the pointer */

  }

}
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The arrayPtr program (see Listing 3-2), which revises the original array 

program, has three pointers at work:

•	 The array’s name arr, a pointer constant, holds the 

address of the first element in the array.

•	 The pointer variable ptr, assigned to hold the address 

of the first element in the array.

•	 The pointer variable end points just beyond the last 

element in the array.

The following is a depiction of where ptr and end point before the 

looping begins:

       +---+---+---+---+---+---+---+---+---+

ptr--->| ? | ? | ? | ? | ? | ? | ? | ? | ? |<---end

       +---+---+---+---+---+---+---+---+---+

        [0] [1] [2] [3] [4] [5] [6] [7]     ## indexes

A pointer is allowed to point one element beyond the end of the array, 

although nothing should be stored at that location. In this example, the 

array’s initialization now uses a while rather than a for loop, and the loop’s 

condition compares the two pointers, ptr and end: looping continues so 

long as ptr < end. At the bottom of the loop, ptr is incremented by 1—by 

one int, which is 4 bytes. The pointer ptr is a variable, unlike the pointer 

constant arr, and so can have its value changed. Eventually ptr points to 

the same location as does end, which makes the loop condition false.

The initialization of each array element uses the dereference operator, 

the star:

*ptr = k++; /* k is 1,2,3,...,8 */
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In the declaration of ptr, the star comes after the data type int. In the 

dereferencing of ptr, the star comes before the variable’s name. It would be 

an error to change the code to

ptr = k; /** ERROR **/

because ptr then would take on values such as 1,2,3,…,8, which almost 

surely are not addresses within the program’s address space. The aim is to 

initialize the array element to which ptr points, not ptr itself.

3.4. � More on the Address 
and Dereference Operators

In the addPtr example, the pointer variable ptr is initialized to the array’s 

name arr so that both arr and ptr point to the array’s first element. An 

equivalent but less concise initialization uses the address operator &:

int* ptr = &arr[0]; /* alternative to: int* ptr = arr; */

The address operator computes an in-memory address, in this case the 

address of array element arr[0].

The dereference operator uses an address to access the contents stored 

at that address. If ptr points to any cell in the int array arr, then *ptr is 

the value stored at the address. The dereference operator can be used in 

the usual ways, for example, to read or to change a value:

int* ptr = &arr[3]; /* address of 4th element, which contains 4 */

*ptr = *ptr + 9;   /* equivalent to: arr[3] = arr[3] + 9 */

The examples so far have shown pointers that hold the addresses of 

char and int cells, but not pointers to other pointers. In principle, there 

can be pointer to pointer to…, although in practice, it is unusual to see 

more than two levels of indirection. The next example illustrates the case 

of a pointer to a pointer, and later examples motivate such a construct.
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Listing 3-3.  The address and dereference operators

#include <stdio.h>

void main() {

  int n = 1234;

  int* ptr1 = &n;        /* ptr1--->n */

  int** ptr2 = &ptr1;    /* ptr2--->ptr1 */

  printf("%i %p %p\n", n, ptr1, ptr2);   /* �1234 0x7ffee80dfb5c 

0x7ffee80dfb60 */

  **ptr2 = *ptr1 + 100;  /* increment n by 100 */

  printf("%i %i %i\n", n, *ptr1, **ptr2); /* 1334 1334 1334 */

}

The ptr2ptr program (see Listing 3-3) has an int variable n that stores 

1234, a pointer ptr1 that points to n, and a second pointer ptr2 that points 

to ptr1. Here is a depiction, with fictional addresses written in hex above 

the storage cells and variable names below these cells:

              0xAB        0xEF       ## addresses

+------+    +------+    +------+

| 0xAB |--->| OxEF |--->| 1234 |     ## contents

+------+    +------+    +------+

   ptr2       ptr1          n        ## variable names

Given this storage layout, any of the variables n, ptr1, and ptr2 can 

be used to access (including to update) the value stored in variable n. For 

example, each of these statements updates n by one:

n += 1;       /* from 1234 to 1235 */

*ptr1 += 1;   /* from 1235 to 1236 */

**ptr2 += 1;  /* from 1236 to 1237 */
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The index syntax used with arrays can be seen as syntactic sugar, as a 

short example shows:

int arr[] = {9, 8, 7, 6, 5};  /* compiler figures out the size */

int n = arr[2];              /* n = arr[2] = 7 */

The syntax arr[2] is straightforward and now is common across 

programming languages. In C, however, this syntax can be viewed as 

shorthand for

int n = *(arr + 2);  /* n = 7 */

The pointer expression arr + 2 points to two int elements beyond 

the first in the array, which holds 7. Dereferencing the pointer expression 

*(arr + 2) yields the int contents, in this case 7.

The same point can be reinforced with some obfuscated C. Consider 

this code segment:

int arr[] = {9, 8, 7, 6, 5};

int i;

for (i = 0; i < 5; i++)

   printf("%i ", i[arr]); /** peculiar syntax **/

In the printf statement, the usual syntax for array access would be 

arr[i], not i[arr]. Yet either works, and the compiler does not wince at 

the second form. The reason can summarized as follows:

arr[i] == *(arr + i)       /* syntactic sugar */

*(arr + i) == *(i + arr)   /* addition commutes */

*(i + arr) == i[arr]       /* �more syntactic (but peculiar) 

sugar */
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3.5. � Multidimensional Arrays
An array declared with a single pair of square brackets is one-dimensional 

and sometimes called a vector. An array declared with more than one pair 

of square brackets is multidimensional:

int nums[128];          /* one dimensional array */

int nums_table[4][32];  /* �multidimensional array 

(2-dimensional matrix) */

Arrays of any dimension are possible, but more than three dimensions 

is unusual. The array nums_table is two-dimensional. The arrays nums 

and nums_table hold the same number of integer values (128), but they 

do not have the same number of elements: array nums has 128 elements, 

each an int value; by contrast, array nums_table has four elements, each a 

subarray of 32 int values. The sizeof operator, when applied to an array’s 

name, does the sensible thing: it gives the number of bytes required for all 

of the array elements, not the size in bytes of the array’s name as pointer. 

In this case, for example, the sizeof array nums is the same as the sizeof 

array nums_table: 512 because there are 128 int values in each array and 

each int is 4 bytes.

Multidimensional arrays are yet another example of syntactic sugar 

in C. All arrays are implemented as one-dimensional, as the next code 

example illustrates.

Listing 3-4.  Treating a multidimensional array as a one-

dimensional array

#include <stdio.h>

void main() {

  int table[3][4] = {{1, 2, 3, 4}, /* row 1 */

                     {9, 8, 7, 6}, /* row 2 */

                     {3, 5, 7, 9}}; /* row 3 */
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  int i, j;

  for (i = 0; i < 3; i++)    /** outer loop: 3 rows **/

    for (j = 0; j < 4; j++)  /** inner loop: 4 cols per row **/

      printf("%i ", table[i][j]);

  printf("\n");

  int* ptr = (int*) table;  /** ptr points to an int **/

  for (i = 0; i < 12; i++)  /** 12 ints (3 rows, 4 cols each) **/

    printf("%i ", ptr[i]);

  printf("\n");

}

The table program (see Listing 3-4) highlights critical features about 

how pointers work in C. The array name table is, as usual, a pointer 

constant, and this name points to the first byte of the first int in the first 

element in the array, where the first array element is a subarray of four int 

values, in this case 1, 2, 3, and 4:

              1st row         2nd row         3rd row       ## rows

         +---+---+---+---|---+---+---+---|---+---+---+---+

table--->| 1 | 2 | 3 | 4 | 9 | 8 | 7 | 6 | 3 | 5 | 7 | 9 |  ## contents

         +---+---+---+---|---+---+---+---|---+---+---+---+

          [0] [1] [2] [3] [0] [1] [2] [3] [0] [1] [2] [3]   ## column indexes

The data type of table is pointer to an array of subarrays, each with 

four integer elements. In memory, the array is laid out contiguously, with 

the int values in sequence, one table row (subarray) after the other.

The table program traverses the multidimensional array twice. The 

first traversal uses nested for loops: the outer for loop iterates over the 

rows, and the inner for loop iterates over the columns in each row. The C 

compiler lays out the table in row-major order: the first row with all of its 
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columns, then the second row with all of its columns, and so on. A Fortran 

compiler, by contrast, would lay out a multidimensional array in column-

major order.

The second traversal of array table uses only a single for loop. The 

variable ptr is assigned the value of table, but with a cast: the cast (int*) 

is required because ptr is of type int*, whereas table is not. A revision to 

the table example goes into the details.

Listing 3-5.  A function to print the two-dimensional table of three 

rows and three columns

void print(int (*arr)[4], int n) {

  int i, j;

  for (i = 0; i < n; i++)

    for (j = 0; j < 4; j++)

      printf("%i ", arr[i][j]);

  printf("\n");

}

To get a better sense of the table data type, imagine breaking out a 

print function for printing the two-dimensional table (see Listing 3-5). 

The first parameter in the print function could be written in different 

ways, including the one shown. Another way is this:

void print(int arr[ ][4], int n)

Both versions underscore that the first argument passed to print, in 

this case the two-dimensional array table, must be an array of subarrays, 

with each subarray of size 4. The second argument n to the print function 

specifies the number of rows in the array. From the main function in the 

table program, the call would be

print(table, 3); /* 3 rows */
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The parameter arr in function print then points to the first row, and 

second parameter n gives the number of rows. The cast of table to int* in 

the assignment

int* ptr = (int*) table;

acknowledges to the compiler that pointer constant table and pointer 

variable ptr may point to the very same byte, but that the two differ in 

type. As an int* pointer, ptr can be used to iterate over the individual int 

values in the array, rather than over the four-element subarrays that make 

up each table row.

Consider the pointer expressions table[0], table[1], and table[2]. 

Each of these points to an array of three integers. Here is the output from a 

sample run that prints out the three addresses:

printf("%p (%lu) %p (%lu)  %p (%lu)\n",

    table[0], (long) table[0],  /* �0x7ffececccf30 

(140730827343600) */

    table[1], (long) table[1] , /* �0x7ffececccf40 

(140730827343616) */

    table[2], (long) table[2]); /* �0x7ffececccf50 

(140730827343632) */

}

The first and second addresses differ by 16 bytes, as do the third and 

fourth. The variable table[0] points to the first of the three rows in the 

table, and each row has four int values of 4 bytes apiece; hence, table[1] 

points 16 bytes beyond where table[0] points.

The syntax of multidimensional arrays gives a hint about how various 

pointer expressions are to be used. The table array, which holds int 

values, is declared with two sets of square brackets:

int table[3][4] = {...};
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If index syntax is used to read or write an int value, then two square 

brackets must be used:

table[1][2] = -999; /* second row, third column set to -999 */

The first index picks out the row, and the second index picks out the 

column in the row. Any expressions involving table, but with fewer than 

two pairs of brackets, are pointers rather than int values. In particular, 

table points to the first subarray, as does table[0]; pointer table[1] 

points to the second subarray; and pointer table[2] points to the third 

subarray. A quick review exercise is to explain, in plain terms or through a 

code segment, the difference between the data type of table and the data 

type of table[0]. Both pointer expressions point to the same byte, but the 

two differ in type.

C arrays promote efficient modular programming. Consider again a 

function to print one-dimensional integer arrays of arbitrary sizes. As the 

table program shows, it is straightforward to treat an n-dimensional array 

as if it were one-dimensional. The print_array function might be declared 

as follows:

void print_array(int* arr, unsigned n); �/* void print_array(int 

arr[], unsigned n); */

The obvious way to call print_array is to pass it, as the first argument, 

the array’s name—a pointer:

int arr[100000];

/* fill the array */

print_array(arr, 100000); �/* passing a pointer as the 

1st arg */

To pass the array’s name as an argument is thus to pass a pointer to the 

array, not a copy of it. Passing a copy of 100,000 4-byte integers would be 

expensive, maybe prohibitively so. It is possible to pass a copy of an array 

to a function, another issue for later analysis.
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HOW ARE ARGUMENTS PASSED TO C FUNCTIONS?

C uses call by value exclusively in passing arguments to functions: the 

arguments are copied and then accessible in the called function through the 

parameter names. The compiler can optimize such calls in various ways, 

including placing arguments in CPU registers rather than on the stack. 

Addresses (pointers) as well are passed by value. For example, when an 

array’s name is passed as an argument, a copy of this address is passed. Of 

course, both the copy and the original address can be used to access the very 

same array elements.

3.6. � Using Pointers for Return Values
A function in C can take arbitrarily many arguments, but it can return one 

value at most. The restriction to just one returned value is not troubling, 

however. To begin, the single returned value could be a list of values, 

although this approach requires caution. Later code examples explore the 

option and go into best practices for returning collections. This section 

takes on a different approach: using a pointer argument to store a value 

that otherwise might be returned explicitly by a function:

int f() { return 100; }          /* explicitly returned */

void g(int* arg) { *arg = 100; } �/* stored at a provided 

address */

The technique is common in C. A function’s caller provides the address 

of some variable, and the callee then stores a value at this address. The 

effect is to return a value via the pointer. The next code example motivates 

this approach and also introduces in-line assembly code to check for 

integer overflow.
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Listing 3-6.  In-line assembly code to check for integer overflow

#include <stdio.h>

#include <limits.h>

int safe_mult(int n1, int n2, int* product) {

  int flag = 0;       /* assume no overflow */

  *product = n1 * n2; /* potential overflow */

  asm("setae %%bl; movzbl %%bl,%0"

      : "=r" (flag)  /* set flag on overflow */

      :              /* no other inputs */

      : "%rbx");     /* scratchpad */

  return flag; /* zero is no overflow, non-zero is overflow */

}

The safeMult function (see Listing 3-6) introduces in-line assembly 

with a call to the library function asm. The architecture-specific assembly 

code is in AT&T style and targets an Intel machine; the code detects 

overflow in integer multiplication, returning a flag to indicate whether 

overflow occurred.

The syntax of the in-line assembly code needs a quick analysis. The 

percentage sign % used to identify a CPU register sometimes occurs twice, 

in this case to identify the 1-byte, special-purpose register %%bl. The 

double percentage signs are there to prevent the assembler from confusing 

this register identifier with something else. One percentage sign might do, 

but two are safer.

The argument to the asm function can be divided into two parts:

•	 The string

"setae %%bl; movzbl %%bl,%0"
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contains two instructions, with a semicolon 

separating them. The setae instruction puts the 

result of the overflow test in the 1-byte register %bl. 

This register now flags whether overflow occurs. 

The movzbl instruction then copies the contents of 

register %bl into a 32-bit register of the assembler’s 

own choosing, designated as %0.

•	 The parts that begin with a colon (e.g., : "=r" (flag)) 

are metadata. For example, the C source code returns 

the overflow status with the return statement:

return flag; /* zero is no overflow, non-zero is 

overflow */

Recall that assembly routines return a value in the 

register %rax or its lower half %eax. The "=r" (flag) 

clause signals that flag in C is %rax in assembly 

code. If the assembler is in an optimizing mood, 

it should make %rax the register designated by %0 

shown previously: %rax serves as the overflow flag 

returned to the caller. The middle-colon section 

is empty here but in general could contain other 

inputs to the assembly code. The third-colon section 

recommends that the 64-bit register %rbx be used as 

scratchpad.

When the program executes (see the main function in the following), 

the output is

No overflow on 16 * 48: returned product == 768

Overflow on INT_MAX * INT_MAX: returned product == 1

The in-line assembly code does its job.
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The focus now shifts to the C code, in particular to the safe_mult 

function. Here is the challenge:

•	 The safe_mult function needs to signal its caller 

whether overflow has occurred. The returned value is 

used for this purpose: zero (false) means no overflow, 

and nonzero (true) means overflow.

•	 How, then, is the product of the first two arguments to 

be returned? The approach taken here is to have safe_

mult called with three arguments:

int safe_mult(int n1, int n2, int* product); /* 

declaration */

The parameters n1 and n2 are the numbers to be 

multiplied, and the parameter product points to 

where the result of the multiplication should be 

stored. The pointer argument product is the address 

of a variable declared in the caller main.

Listing 3-7.  Using a pointer argument to hold a return value

void main() {

  int n;

  char* msg;

  /* no overflow */

  int flag = safe_mult(16, 48, &n);

  �msg =  (!flag) ? "Overflow on 16 * 48" : "No overflow on 

16 * 48";

  printf("%s: returned product == %i\n", msg, n);
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  /* overflow */

  flag = safe_mult(INT_MAX, INT_MAX, &n);

  �msg = (!flag) ? "Overflow on INT_MAX * INT_MAX" : "No 

overflow on INT_MAX * INT_MAX";

  printf("%s: returned product == %i\n", msg, n);

}

The main function for the safeMult program (see Listing 3-7) makes 

two calls against the function. The first, with 16 and 48 as the values to 

be multiplied, does not cause overflow. The second call, however, passes 

INT_MAX as both arguments, with overflow as the expected and, because of 

safe_mult, the now detected overflow.

3.7. � The void* Data Type and NULL
The term void is not the name of a data type, although C syntax implies 

as much:

void main() { /* body */ } �/* void seems to be the 

return type */

int some_function(void);   /* same as: int some_function(); */

This definition of main suggests that the function returns a void in the 

same way that another version of main returns an int; but the suggestion 

is misleading. The void is really shorthand for returns no value and so is 

not a data type in the technical sense. For instance, a variable cannot be 

declared with void as the type:

void n; /** ERROR: void is not a type **/

In the second example shown previously, the void in the declaration 

of some_function signals only that this function expects no arguments; 

the void once again is not a type, but another way of writing an empty 

argument list.
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There is a very important data type in C that has void in its name: 

void*, or pointer to void. This type is a generic pointer type: any other 

pointer type can be converted to and from void* without explicit casting. 

Why is this useful? A short example provides one answer, and the next 

section provides another.

Consider this array of strings:

char* strings[ ] = {"eins", "zwei", "drei", "vier", "fuenf", 

"sechs"};

The array happens to hold six strings, each of which is a char* in C. For 

example, the first array element is a pointer to the “e” in “eins”. To write 

a loop that traverses this array without going beyond the end requires a 

count of how many elements are in the array; in this case, there are six.

There is a better, more robust, and more programmer-friendly way to 

build an array of strings:

char* strings[ ] = {"eins", "zwei", "drei", "vier", "fuenf", 

"sechs", 0};

At first sight, this code looks wrong. An array aggregates elements of 

the same data type, and the last element here appears to be an integer 

value rather than a char* pointer. But the 0 here is NULL, a macro defined 

in the header file stdlib.h as follows:

#define NULL ((void*) 0) /* 0 cast as a pointer to void */

Because NULL is of type void*, it can occur in an array of any pointer 

type, including the char* element type in the strings array. By the way, 

the 0 as shorthand for NULL is the only numeric value that would work in 

this case. Were 987 used instead of 0, for instance, the code segment would 

not compile. C programmers, in order to save on typing, are fond of using 0 

for NULL.

Chapter 3  Aggregates and Pointers



86

Traversing the revised array is now straightforward and illustrates 

idiomatic C programming:

int i = 0;

while (strings[i])               /* �short for: while 

(strings[i] != NULL) */

  printf("%s\n", strings[i++]);  /* �print current string, then 

increment i */

The loop condition is true until strings[i] is NULL, which is 0: the 

value 0 in C is overloaded, and one of the overloads means false in a test 

context. The use of NULL to mark the end of pointer arrays is common in C.

A final note is in order. The NULL used in this most recent example is 

not the null terminator used to mark the end of an individual string. Recall 

that the string “eins” is represented in C as an array with 8-bit zero at the 

end as the terminator:

+---+---+---+---+--+

| e | i | n | s |\0|   ## \0 is 8-bit zero

----+---+---+---+--+

By contrast, the NULL that terminates the strings array is either a 32-bit 

zero or a 64-bit zero, depending on whether the machine uses 32-bit or 64-

bit addresses. To be sure, the comparison

NULL == '\0' /* evaluates to true */

evaluates to true, but only because the compiler converts the 8-bit null 

terminator (zero) to the 32-bit or 64-bit zero.

In summary, zero has three specific uses in C beyond 0 as a 

numeric value:

•	 In a boolean context (e.g., an if or while condition), 

zero means false, and nonzero means true.
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•	 In a string context, the 8-bit zero (\0) is the code for the 

nonprinting character that marks the end of a string: 

the null terminator.

•	 In a pointer context, zero is NULL, the address-size null 

pointer that points nowhere.

C programmers are fond of idioms that conflate these overloads of 

zero. The

while (strings[i])

test from the preceding example is one such idiom.

3.7.1. � The void* Data Type and Higher-Order 
Callback Functions

The void* type plays an important role in library functions designed to 

work on arrays of any type. Consider, for example, library functions to 

initialize, sort, search, and otherwise process arrays. These functions 

should be generic in that they work on arrays of any data type. It would be 

impractical to fashion multiple sort functions, each targeted at a specific 

type. The task presumably would never be completed.

Among the generic library functions is qsort, which can sort an array of 

Employee instances, or int instances, or double instances, and so on. The 

first argument to qsort is a pointer that specifies where, in the array, the sort 

should begin, which is typically but not necessarily the first element: qsort 

can sort arbitrary subarrays, or the whole array, with only small changes to 

the arguments passed to this function. For now, the other arguments can be 

ignored, as the emphasis is on the type of first argument to qsort. This type 

is void* because it satisfies the requirement that qsort should work on any 

array of any type. Here is how the declaration of qsort begins:

void qsort(void* start,... /* 4 arguments in all */

Chapter 3  Aggregates and Pointers



88

A full sorting example fleshes out the details of the remaining three 

arguments.

Listing 3-8.  Sorting an array with qsort

#include <stdio.h>

#include <stdlib.h> /* rand, qsort */

#define Size 12

void print_array(int* array, unsigned n) {

  unsigned i;

  for (i = 0; i < n; i++) printf("%i ", array[i]);

  printf("\n");

}

int comp(const void* p1, const void* p2) {

  �int n1 = *((int*) p1);  /* cast p1 to int*, then 

dereference */

  int n2 = *((int*) p2);  /* same for p2 */

  return n2 - n1;         /* descending order */

}

void main() {

  int arr[Size], i;

  for (i = 0; i < Size; i++) arr[i] = rand() % 100; �/* values 

< 100 */

  �print_array(arr, Size); �/* 83 86 77 15 93 35 84 92 49 21 

62 27 */

  �qsort(arr, Size, sizeof(int), comp); �/* comp is a pointer to 

a function */

  �print_array(arr, Size); �/* 93 92 86 84 83 77 62 49 35 27 

21 15 */

}
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The sort program (see Listing 3-8) does the following:

	 1.	 Populates an int array with pseudorandomly 

generated values

	 2.	 Prints the array

	 3.	 Sorts the array in descending order using the library 

function qsort

	 4.	 Prints the sorted array

The qsort function has a comparison semantics used throughout 

modern programming languages. Here is the full declaration for qsort:

void qsort(void* start,

           size_t nmemb,

           size_t size,

           int (*comp) (const void*, const void*));

The arguments can be clarified as follows:

•	 The first argument, of type void*, points to where in 

the array the sorting should begin. This is typically, 

but not necessarily, the start of the array. The qsort 

function can sort only part of array, if required. Because 

the argument is of type void*, any type of array can be 

sorted using qsort.

•	 The second argument, of unsigned integer type size_t, 

specifies the number of elements to be sorted.

•	 The third argument (also of type size_t) is the sizeof 

each element.

Chapter 3  Aggregates and Pointers



90

•	 The fourth argument is a pointer to a function that 

matches this prototype:

•	 Returns an int value.

•	 Takes two arguments of type const void*, which 

are pointers to two elements that qsort needs to 

compare and, perhaps, move. The const indicates 

that the pointers are not used to change the values 

to which they point.

The critical fourth argument makes qsort a higher-order function, one 

that takes a (pointer to a) function as an argument.

A function’s name, like an array’s name, is a pointer constant. A 

function’s name points to the first statement in a function’s body; in 

assembly language, the function’s name is thus a label.

The comparison function used in qsort can have any name so long as 

the function matches the prototype. In the sort program, the comparison 

function is named comp. The comparison function is a callback, a function 

that a programmer writes for some other function to call, in this case, 

qsort itself. In the course of doing the sort, qsort must do pairwise 

element comparisons in order to determine how to rearrange the array. 

The sort is destructive in that the sort occurs in place: the array being 

sorted is rearranged unless it is already sorted.

Here are the details for the comparison. Each argument passed to the 

comparison function points at an array element. Assume that the first 

argument points to array element E1 and the second argument points to 

array element E2. The value returned from the comparison function then 

has the following semantics:

•	 If E1 and E2 are considered equal, 0 is returned.

•	 If E1 is considered to precede E2, a negative value is 

returned (e.g., -1).
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•	 If E2 is considered to precede E1, a positive value is 

returned (e.g., +1).

These semantics are remarkably simple and flexible. The author of 

the comparison function determines the details. Here, for review, is the 

comparison function for the sort program:

int comp(const void* p1, const void* p2) {

  int n1 = *((int*) p1); /* �cast p1 to int*, then 

dereference */

  int n2 = *((int*) p2); /* same for p2 */

  return n2 - n1;        /* descending order */

}

The function’s body could be reduced to a single return statement, 

but at the cost of clarity. Since the array being sorted has int elements, the 

void* arguments are cast to pointers of type int*. Each int* pointer then 

is dereferenced to get the int value pointed to. Variables n1 and n2 hold 

these values. Suppose that n1 is 20 and that n2 is 99. The returned value of

n2 - n1

is then 79, a positive value signaling that 99 should precede 20 in the 

sorted order. The sort is thus in descending order. If the returned value 

were changed to

n1 - n2

then the resulting sort would be in ascending order. If the int array 

had the same values throughout, then 0 would be returned for every 

comparison, leaving the array unchanged by the sort.

The usefulness of void* is undoubtedly evident to programmers from 

object-oriented languages such as Java and C#. In these languages, a 

reference (pointer) to Object can point to anything. Here is a segment of 

Java to illustrate:
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Object ptr = new String("Hello, world!"); /* string */

ptr = 99;                                 /* �integer: boxed as 

new Integer(99) */

ptr = new int[ ] {1, 2, 3, 4};            /* �array of 

integers */

Generic types such as void* in C, and Object in Java, make languages 

flexible.

The second code example uses a typedef to describe the type of 

function suitable as an argument to another function. A typedef creates an 

alias for an existing type:

typedef unsigned boolean;  /* �unsigned is existing type, 

boolean is the alias */

boolean flag;              /* �use the type in a variable's 

declaration */

Pointers to functions, like other C pointers, have data types, and the 

typedef is useful in defining the appropriate type, a type that will satisfy 

the compiler. It is easy to get a pointer to a function; the function’s name is 

just such a pointer. It can be challenging to pass an appropriate function 

pointer as an argument in another function.

WHAT’S AN ENUM?

An enum (enumerated type) gives names to integer values. The enumerated 

type itself can but need not be named:

enum { false, true };                    �/* false is 0, true is 

1, and so on */

enum TruthValue { true = 1, false = 0 }; �/* tagged and explicit 

assignments */
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The enumerated values start at 0 and continue in series unless explicit values 

are given, as in the second example shown previously. In the second example, 

false would default to 2 if not explicitly assigned 0 as its value.

Constructs such as typedef and enum promote readable code:

typedef unsigned boolean;

boolean continue_to_loop = true;

The next example uses a typedef to specify the prototype of a function 

passed as an argument to the higher-order reduce function. The reduce 

function takes two additional arguments: an array of integer values and the 

array’s length.

Listing 3-9.  Another example of pointers to functions

/* pointer to function with two arguments (int array and 

length), returns an int */

typedef unsigned (*reducer)(unsigned list[], unsigned len);  

                                     /* type name is reducer */

unsigned sum(unsigned list[], unsigned len) {

   unsigned sum = 0, i;

   for (i = 0; i < len; i++) sum += list[i];

   return sum;

}

unsigned product(unsigned list[], unsigned len) {

   unsigned prod = 1, i;

   for (i = 0; i < len; i++) prod *= list[i];

   return prod;

}
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unsigned reduce(reducer func, unsigned list[], unsigned len) { 

/* 1st arg: ptr to func */

   �return func(list, len); /** invoking a function in the 

usual way **/

}

The reducer program (see Listing 3-9) has two functions, sum and 

product, that reduce a list of integers to a single value, in this case a sum 

and product, respectively. The third function is higher order and named 

reduce. This function takes a (pointer to a) function as its first argument, 

an array of values as its second, and the array’s length as its third.

The typedef in the reducer program is the tricky part:

typedef unsigned (*reducer)(unsigned list[], unsigned len);

The data type alias is reducer, and it can point to any function that 

meets these conditions:

•	 The function takes two arguments: an array of 

unsigned integers and a single unsigned integer  

(the length) in that order.

•	 The function returns an unsigned integer.

The declaration of the reduce function uses the typedef data type in 

the first argument position:

unsigned reduce(reducer func, unsigned list[], unsigned len);

Applying a particular reducer function, in this case sum or product, 

through the function pointer func requires no special syntax:

unsigned n = func(list, len); /* invoking a function through a 

pointer argument func */

Chapter 3  Aggregates and Pointers



95

Normally, a function is invoked using its name, a pointer constant; in 

this case, a function is invoked using a pointer variable instead, func of 

type reducer. Invoking reduce also is straightforward:

reduce(sum, nums, Size);     /* sum is a function */

reduce(product, nums, Size); /* product is a function */

Listing 3-10.  The main function in the reducer program

#include <stdio.h>

#define Size 30

int main() {

   unsigned nums[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

                      11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

                      21, 22, 23, 24, 25, 26, 27, 28, 29, 30};

   printf("Sum of list: %i\n", reduce(sum, nums, Size)); 

   /* 465 */

   printf("Product of list: %i\n", reduce(product, nums, Size)); 

   /* 1,409,286,144 */

   return 0;

}

The main function in the reducer program (see Listing 3-10) shows two 

calls to the reduce function: the first using sum as its first argument and the 

second using product as this argument.

The reducer program illustrates that higher-order functions are 

routine in C. Such functions, used judiciously, make programs easier 

to understand. The reduce function maps a list of integers to a single 

value, and the first argument—the function pointer—specifies the kind 

of mapping involved, in this case reducing the list to either a sum or a 

product.
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3.8. � Structures
Arrays aggregate variables of the same data type, whereas structures can 

aggregate variables of different types. The variables in a structure are 

known as its fields. There can be arrays of structures, and structures that 

embed arrays and even other structures. As a result, programmer-defined 

data structures can be arbitrarily rich.

The syntax of structures can be introduced in short code examples. 

Here’s a start:

struct {

   int n;

   double k;

} s1;

s1.n = -999;

s1.k = 44.4;

The data type is struct {...}, and variable s1 is of this structure 

type; hence, s1 has two fields: an int named n and a double named k. The 

member operator, the period, is used to access the structure’s fields, in this 

case the int field n and the double field k. The compiler is not bound to lay 

out storage for the fields in a way that matches the structure’s declaration. 

Although field n occurs before field k in the structure declaration shown 

previously, this may not be the case after compilation. The member 

operator should be used to access the fields by name.

A second code segment adds a tag to the structure so that the structure 

type has a name:

struct TwoNums { /* TwoNums is the tag */

   int n;

   double k;

};
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struct TwoNums s2; �/* the data type is struct TwoNums: struct 

plus the tag */

A third example shows the popular approach, which uses a typedef to 

name a structure type:

typedef struct {  /* �tag is optional, could be same as typedef 

name TwoNums */

   int n;

   double k;

} TwoNums;        /* �TwoNums is now an alias for this 

struct type */

TwoNums s3;       /* �Note: the word 'struct' is not needed 

anymore */

The name of a structure, unlike the name of an array, is not a pointer. 

Caution is thus required when structures are passed as arguments to 

functions.

Listing 3-11.  Passing a structure as an argument

#include <stdio.h>

#define Size 100000

typedef struct { �/* Declare the structure using a typedef for 

convenience. */

  double nums1[Size]; /* 8 bytes per double */

  double nums2[Size]; /* 8 bytes per double */

  int nums3[Size];    /* 4 bytes per int */

  float nums4[Size];  /* 4 bytes per float */

  float nums5[Size];  /* 4 bytes per float */

  int n; /* for demo purposes */

} BigNumsStruct;
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void good(BigNumsStruct* ptr) {

  printf("%lu\n", sizeof(ptr));        /* 8 on my machine */

  printf("%i %i\n", (*ptr).n, ptr->n); /* -9876 -9876 */

}

void bad(BigNumsStruct arg) {

  printf("Argument size is: %lu\n", sizeof(arg)); �/* 2,800,008 

bytes */

}

void main() {

  BigNumsStruct bns;

  bns.n = -9876;

  bad(bns);   /** CAUTION **/

  good(&bns); /* right approach: pass an address */

}

The bigStruct program (see Listing 3-11) declares a structure, five of 

whose fields are large arrays. The function main then creates a local variable 

bns of this structure type and passes the variable to function bad. Recall that 

C uses call by value in function calls; hence, a byte-per-byte copy of bns is 

passed to function bad, a copy that is about 2.8MB (megabytes) in size.

By contrast, main then calls function good by passing the address of bns 

rather than a copy of this BigNumsStruct instance. The address is 4 or 8 

bytes, depending on whether the underlying machine uses 32-bit or 64-bit 

addresses.

The second printf in function good shows how C syntax supports two 

ways of accessing structure fields:

•	 The first way uses the member operator (the period) 

but is clumsy because the expression contains the 

pointer ptr:

(*ptr).n
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The parentheses are necessary because the period has higher 

precedence than the star. Without the parentheses, the deference operator 

would apply to ptr.n, but n is a nonpointer field.

•	 The second way uses the arrow operator (a minus 

symbol followed by a greater-than symbol):

ptr->n

This syntax is cleaner and is idiomatic in C.

In the bigStruct program, the sizeof of the BigNumsStruct is reported 

to be 2,800,008 bytes. The arrays account for 2,800,000 of these bytes, and 

int field n requires only 4 bytes. What accounts for the extra 4 bytes? A 

simpler example explains.

Consider this structure:

struct {

   int n;    /* sizeof(int) == 4 */

   char c;   /* sizeof(char) == 1 */

   double d; /* sizeof(double) == 8 */

} test;

The minimum storage required for a variable such as test is 13 bytes, 

but most implementations would report sizeof(test) to be 16 rather 

than 13. Modern C compilers typically align storage for scalar variables 

on multibyte boundaries, for example, on 4-byte (32-bit) boundaries. 

The char field named c thus is implemented with four bytes rather than 

just one.

3.8.1. � Sorting Pointers to Structures
An earlier discussion noted that pointers to pointers are common in C. The 

current discussion, on structures, is an opportunity to show how such 

pointers can be put to use.
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Imagine an array of structure elements, perhaps of Employee instances, 

each of which is roughly 8KB (kilobytes) in size and all of which differ 

in whatever field (for instance, an ID field) might be used as a sort key. 

Suppose, then, that the Employee array is to be sorted by employee ID.

Sorting the Employee array with qsort would require moving 8KB 

chunks around in the array in order to get the desired sorted order. 

Such moves are inefficient, given the chunk size. A first principle of 

programming is not to move large data chunks unless the reasons are 

compelling.

There is another way, one that brings pointers to pointers into 

the picture. Given an array of relatively large structure elements, it is 

straightforward to create an index array for the Employee array, where the 

index array is a second array whose elements are pointers to elements in 

the first array:

   0x0004     0x1f44      0x3e84         ## addresses, 8KB 

bytes or sizeof(Employee) apart

+-----------+-----------+-----------+

| Employee1 | Employee2 | Employee3 |... ## 8KB Employee elements

+-----------+-----------+-----------+

+--------+--------+--------+

| 0x0004 | 0x1f44 | 0x3e84 |...## index array for Employee array

+--------+--------+--------+

In this depiction, the elements in the top or data array are Employee 

instances, whereas the elements in the bottom or index array are 

Employee* pointers. In short, each index element points to an Employee 

element. The addresses in the index array are 8KB (kilobytes) apart 

because sizeof(Employee) is 8,000 bytes, and addresses are of bytes. 

Given the significant difference in size between elements in the Employee 
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array and the index array, it would be more efficient to sort the index than 

the Employee array. Indeed, several index arrays might be created and then 

sorted to obtain various orders: employees sorted by ID, by salary, by years 

in service, and so on. To print or otherwise process the Employee elements 

in the desired order, a program would traverse one of the indexes. The 

Employee elements would remain in their initial positions.

This approach does bring a challenge to the programmer, however. 

Consider the arguments passed to the qsort comparison function when 

an index is sorted on some Employee feature such as ID or years in service. 

Each such argument is of type const void*, which in this case is really of 

type Employee**: a pointer to a pointer to an Employee. The arguments 

to the comparison function thus must be dereferenced twice in order to 

access the Employee feature to be used in the comparison. A full code 

example goes into the details.

Listing 3-12.  Sorting pointers rather than data

#include <stdio.h>

#include <stdlib.h> /* rand */

#define SizeS 1000

#define SizeA 100

typedef struct {

  double nums[SizeS]; /* 8 bytes per */

  int n;              /* for demo purposes */

} BigNumsStruct;

int comp(const void* p1, const void* p2) {

  �BigNumsStruct* ptr1 = *((BigNumsStruct**) p1);  

                                /* p1 points to a pointer */

  �BigNumsStruct* ptr2 = *((BigNumsStruct**) p2);  

                                /* p2 points to a pointer */

Chapter 3  Aggregates and Pointers



102

  �return ptr1->n - ptr2->n;                      /* �ascending 

order */

}

void main() {

  BigNumsStruct big_nums[SizeA];

  BigNumsStruct* pointers[SizeA];

  int i;

  for (i = 0; i < SizeA; i++) {

    big_nums[i].n = rand();

    �pointers[i] = big_nums + i;   �/* base address (big_nums) 

plus offset (index i) */

}

qsort(pointers, SizeA, sizeof(BigNumsStruct*), comp);  

                                      /** sort the pointers **/

for (i = 0; i < SizeA; i++)

   printf("%i\n", pointers[i]->n);

}

The sortPtrs program (see Listing 3-12) revises the earlier example of 

the BigNumsStruct. The size of this structure is reduced to a more realistic 

number, and a local array of such structures is declared, which means that 

storage for the array comes from the stack. The int field named n remains 

and now is initialized to a random value.

Although a BigNumsStruct is slimmer than before, its sizeof remains 

an impressive 8,008 bytes on my machine. By contrast, a pointer to such a 

structure instance requires only 8 bytes on the same machine. In the sortPtrs 

program, sorting the big_nums array would require moving 8KB (kilobytes) 

chunks, whereas sorting pointers to the elements in this array would require 

moving only 8-byte chunks. The resulting gain in efficiency is compelling. 

The printf loop at the end confirms that the pointers array has been 

sorted as desired, in ascending order by the BigNumsStruct field named n.
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The cost for this efficiency is a complicated comparison function, 

again named comp. Recall that each argument in the comparison callback 

is of type const void*. Because an array of pointers is being sorted, the 

two arguments to comp, named p1 and p2, are indeed pointers to pointers. 

Each of these pointers is therefore cast to its actual type, BigNumsStrut**: 

a pointer to a pointer to a BigNumsStruct. A dereference of each point 

provides what is needed: a pointer to a BigNumsStruct, which then can be 

used with the arrow operator to access the field n. Here, for review, is the 

body of the comparison function:

BigNumsStruct* ptr1 = *((BigNumsStruct**) p1); �/* p1 points to 

a pointer */

BigNumsStruct* ptr2 = *((BigNumsStruct**) p2); �/* p2 points to 

a pointer */

return ptr1->n - ptr2->n; �/* access the field n, sort in 

ascending order */

3.8.2. � Unions
There is a specialized type of structure called a union, which is designed 

for memory efficiency. A short example highlights the difference between 

a struct and a union.

The following structure has two fields: a double and a long. The 

sizeof(v1)

struct {

  double d;

  long l;

} v1;

is 16: both the double and the long are 8 bytes in size.
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By contrast, a union with exactly the same fields would require only 

half the bytes. The sizeof(v2)

union {

  double d;

  long l;

} v2;

is 8 bytes. A union provides enough storage for the largest of its fields, 

and all of the fields then share this storage. For example, the struct 

variable v1 can store both a double and a long at the same time:

v1.d = 44.44;

v1.l = 1234L;

By contrast, the union variable v2 stores either the one or the other:

v2.d = 44.44; /* the double is stored */

v2.l = 1234L; /* initializing the long overwrites the double */

3.9. � String Conversions with Pointers 
to Pointers

Earlier examples illustrated very simple conversions involving basic data 

types. For example, even the statement

char c = 65; /* 65 is ASCII/Unicode for uppercase A */

involves a conversion: from the 32-bit int constant 65 to the 8-bit char 

value stored in variable c. Converting from one single value to another 

is routine in C: an explicit cast can be used for clarity, but in general, the 

compiler can be counted on to do the converting without complaint. For 

example, the compiler does not even warn against this conversion:
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short n = 3.1415; �/* 64-bit floating-point value stored in 16-

bit integer variable */

The conversion goes from a three-field, 64-bit floating-point source 

to a two-field, 16-bit signed-integer destination. In examples such as 

these, explicit casts can be used to enhance clarity, but this remains a 

recommendation rather than a requirement:

char c = (char) 65;

short n = (short) 3.1415;

The challenge arises in converting between strings, an aggregate rather 

than a scalar type, and other basic types. Because a string in C is an array, 

converting an array to a single integer or floating-point value is nontrivial. 

C provides library functions to do the heavy lifting.

The stdlib.h header file declares functions for converting strings to 

integers and floating-point values:

int atoi(const char* nptr);        /* string to 32-bit int */

long atol(const char* nptr);       /* string to 64-bit long */

long long atoll(const char* nptr); �/* string to long long, 

probably 64-bits */

float atof(const char* nptr);      /* string to 32-bit float */

The const qualifier signals that the pointer argument is not used to 

change the string itself, only to convert the string to a numeric value. The a 

in atoi and the others is for ASCII, the default character encoding in C.

None of the ato functions are especially helpful in determining why 

an attempted conversion failed. To that end, the stdlib.h header file also 

includes functions with names that start out with strto, for example, strtol 

(string to long integer) and strtod (string to double). The strto functions 

check the string for inappropriate characters and have a mechanism for 

separating out the converted part of the source string, if any, from the rest. 

A code example clarifies.
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Listing 3-13.  Converting strings to numeric values

#include <stdio.h>

#include <stdlib.h> /* atoi, etc. */

void main() {

  const char* s1 = "27";

  const char* s2 = "27.99";

  const char* s3 = " 123";      /* whitespace to begin */

  const char* e1 = "1z2q";      /* bad characters */

  const char* e2 = "4m3.abc!#"; /* ditto */

  �printf("%s + 3 is %i.\n",      s1, atoi(s1) + 3);    

/* 27 + 3 is 30. */

  �printf("%s + 3 is %f.\n",      s2, atof(s2) + 3.0);  

/* 27.99 + 3 is 30.990000. */

  �printf("%s to int is %i.\n",   s3, atoi(s3));        

/* 123 to int is 123. */

  �printf("%s to int is %i.\n",   e1, atoi(e1));        

/* 1z2q to int is 1. */

  �printf("%s to float is %f.\n", e2, atof(e2));        

/* 4m3.abc to float is 4.000000. */

  char* bad_chars = NULL;

  const char* e3 = "9876 !!foo bar";

  �long num = strtol(e3, &bad_chars, 10);              

/* 10 is the base, for decimal */

  �printf("Number: %li\tJunk: %s\n", num, bad_chars);  

/* Number: 9876 Junk: !!foo bar */

}

The str2num program (see Listing 3-13) has three examples of strings 

that convert straightforwardly. The pointers to these are s1, s2, and s3. The 

string to which s3 points is the most interesting in that it begins with blanks; 
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but the atoi functions ignore the leading whitespace. The challenging 

cases are the strings to which e1 and e2 point, as these strings contain 

nonnumeric characters other than whitespace. (Numeric characters include 

the numerals, the plus and minus signs, and the decimal point.)

For strings with nonnumeric characters such as the sharp sign, the ato 

functions convert until the first such character is encountered and then 

stop. This is why function atoi converts the string “1z2q” to 1: the function 

converts as long as it can and then halts abruptly on the first inappropriate 

character. If a string starts with a nonnumeric character, then the ato 

functions return 0:

int n = atoi("foo123"); /* n == 0 after the conversion */

The strto functions are more powerful than their ato counterparts, 

and they use a pointer-to-pointer type to gain this power. Here is the 

declaration for strtol:

long int strtol(const char* nptr, char** endptr, int base);

The first argument is again a pointer to the source string, and the return 

value is a long. The last argument specifies the base to be used in the 

conversion: 2 for binary, 10 for decimal, and so on. The middle argument 

is the tricky one, as its type is pointer-to-pointer-to-char. Here, for review, 

is the code segment in the str2num program that sets up and then calls the 

strtol function:

char* bad_chars = NULL;

const char* e3 = "9876!!foo bar";

long num = strtol(e3, &bad_chars, 10);

The strtol function determines where to break the source string to 

which e3 points: at the first ! character. The library function then sets 

pointer bad_chars to this character. In an idiom analyzed earlier, the 

strtol function thus uses an argument, in this case the pointer-to-pointer 

variable bad_chars, in order to return a value—the first character (the !) 
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that cannot be used in the string-to-number conversion. The return value 

for strtol is, of course, the converted number. A pointer-to-pointer type 

allows the strtol function to return two pieces of information.

The ato and strto functions are convenient for converting strings to 

integer and floating-point types. There is also a more general approach. 

The printf function, for type-sensitive printing, has been used in many 

examples. This function prints to the standard output, the screen by 

default. The inverse function is scanf, which scans the standard input (the 

keyboard by default) for strings that then are converted into the specified 

type. Two variants of these functions are useful for converting from and 

to strings: sprintf, which prints to a buffer (char array) rather than to the 

standard output, and sscanf, which reads from a buffer instead of from the 

standard input. A code example clarifies.

Listing 3-14.  A general approach to converting to and from strings

#include <stdio.h>

void main() {

  char* s1 = "123456";

  char* s2 = "123.45";

  int n1;

  float n2;

  /** string to other types: sscanf **/

  sscanf(s1, "%i", &n1); /* address of n1, not n1 */

  sscanf(s2, "%f", &n2); /* address of n2, not n2 */

  printf("%i %f\n", n1 + 3, n2 + 8.7f); /* 123459 132.149994 */

  /** other types to string: sprintf **/

  char buffer[64]; /* stack storage, buffer its address */

  sprintf(buffer, "%i", n1 + 3);

  printf("%s\n", buffer); /* 123459 */

}
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The scanPrint program (see Listing 3-14) illustrates the basics of 

converting to and from strings using the printing and scanning functions. 

The print and scan functions differ markedly in their arguments. The 

print functions (printf, sprintf, and fprintf for printing to a file) take 

nonpointer values as the arguments after the format string. By contrast, 

the scan functions (scanf, sscanf, and fscanf for scanning data from a 

file) take pointers as the arguments after the format string. The scanning 

functions require a pointer to indicate where a scanned (and perhaps 

converted) value should be stored. For functions in both families, the 

format string specifies the desired type for either printing or scanning. 

As even this short code example shows, sprintf and sscanf provide a 

general-purpose solution to the problem of converting to and from strings.

Finally, the header file ctype.h has various functions for determining 

properties of individual characters. For instance, the library function 

isdigit(c) checks whether character c is a decimal digit, function 

isprint(c) checks whether character c is printable, and so on.

3.10. � Heap Storage and Pointers
A program in execution (process) has access to three areas of memory:

•	 A static area that stores string literals, global variables, 

and executable code. The traditional name for the 

area that holds the executable code is text, as earlier 

assembly-code examples illustrate; the term text is 

meant to suggest read-only, but this static area can 

store read/write variables as well.

•	 The stack, which provides scratchpad storage for 

parameters and local variables. The stack acts as a 

backup for CPU registers, which are quite limited in 

number (e.g., roughly 16 on standard handheld, laptop, 

and desktop machines).
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•	 The heap, which provides storage that the program 

explicitly allocates and, in the case of C, deallocates. 

Pointers come into play with heap storage.

The examples so far have not covered the third category, the heap. The 

compiler figures out how much storage is required for the read-only area 

and the stack; hence, the details about such storage are determined at 

compile time—no extra programmer intervention is required. By contrast, 

the programmer uses designated operators (e.g., new in many modern 

languages) or functions (e.g., malloc and its relatives in C) to allocate 

storage from the heap, an allocation traditionally described as dynamic 

because it is done explicitly at runtime.

The programmer plays a more active role with heap as opposed to 

stack storage. The compiler determines the mix of stack and CPU registers 

required for program execution, thereby off-loading this responsibility 

from the programmer. By contrast, the programmer manages heap storage 

through system calls to allocate and, in the case of C, to deallocate this 

storage. A review of stack storage through a code example sets the scene 

for a code-based analysis of heap storage.

Listing 3-15.  Summing an array in C

#include <stdio.h>

#define Size 9

int sum_array(int arr[], unsigned n) {

  int sum = 0;

  unsigned i;

  for (i = 0; i < n; i++) sum += arr[i];

  return sum;

}

Chapter 3  Aggregates and Pointers



111

void main() {

  int nums[ ] = {1, 2, 3, 4, 5, 6, 7, 8, 9};

  int n = sum_array(nums, Size);

  printf("The sum is: %i\n", n); /* The sum is: 45 */

}

The sumArray program (see Listing 3-15) has two functions, main and 

sum_array, each of which needs stack storage for scratchpad. The main 

function has a local array of nine elements, each an int; these elements 

are stored on the stack. This function also has a local variable n to store the 

value returned from a call to the sum_array function. Depending on how 

optimizing the compiler happens to be, variable n could be implemented 

as a CPU register instead of as a stack location.

The sum_array function works with a pointer to the array declared and 

populated in main, but sum_array does need some local storage of its own: 

the integers sum and i, the loop counter. Both sum and i are scalars rather 

than aggregates, and so CPU registers would be ideal; but the stack is the 

fallback for the compiler.

The assembly code for the sumArray program is generated in the 

usual way:

% gcc -S -O1 sumArray.c ## capital letter O for optimization 

level, 1 in this case

Here is a quick overview of how the assembly code handles summing 

the array. The assembly code

•	 Stores the array nums on the stack. The assembly code 

grows the stack by 56 bytes for this purpose, although 

only 36 bytes are needed for the nine int values.

•	 Stores the array’s size in a CPU register for efficiency.
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For readability, the resulting assembly code has been pared down; for 

instance, most of the directives are omitted. The first code display is the 

assembly code for main, and the following display is the assembly code for 

sum_array. To begin, however, a look at the syntax for pointers in assembly 

code will be useful.

Recall the assembly opcode movq, which copies 64 bits (a quadword) 

from a source to a destination:

movq $0, %rax   ## copy zero into %rax

A comparable C statement is

unsigned long n = 0; /* a long is 64 bits */

Consider a more complicated example:

movq $1, (%rax)

The parentheses are the dereference operator in assembly code. 

Accordingly, this statement implies that %rax holds an address, and 1 is to 

be copied to wherever %rax points, not into %rax itself. In C, a counterpart 

would be

*ptr = 1; /* copy 1 to where ptr points, not into ptr itself */

A common variant of pointer syntax in assembly language is

movq $1, 16(%rax)

The parentheses with an integer value to the left indicate base-

displacement addressing: inside the parentheses is the base address, 

in this case the contents of %rax. To the left of the left parenthesis is 

the displacement, the number of bytes added to the base address. (The 

displacement can be positive or negative.) In C, a counterpart would be

*(ptr + 16) = 1; �/* assuming ptr is of type char* because a 

char is a byte */
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With this background, the assembly code for the function main in the 

sumArray program should make sense.

Listing 3-16.  The assembly code for main in the sumArray program

.LC0:                         ## address of format string

   .string "The sum is: %i\n" ## format string

main:

   subq $56, %rsp    ## �grow the stack by 56 bytes (stack grows 

high to low)

   movl $1, (%rsp)   ## �store 1 to where the stack pointer 

points (the TOP)

   movl $2, 4(%rsp)  ## store 2 four bytes _up_

   movl $3, 8(%rsp)  ## and so on

...

   movl $9, 32(%rsp) ## �9 is stored 32 bytes up from the 

stack pointer

   movl $9, %esi     ## �this 9 is Size: put in a CPU 32-bit 

register %esi

   movq %rsp, %rdi   ## �copy stack pointer in %rdi, which now 

points to 9 in the array

   call sum_array    ## call the subroutine

   movl %eax, %edx   ## save the value returned from sum_array

   movl $.LC0, %esi  ## copy address of format string into %esi

   movl $1, %edi     ## �copy 1 into %edi: number of values to 

format, 1 in this case

   movl $0, %eax     ## clear %eax for the print routine

   call __printf_chk ## �call print routine (special arg-

checking version of printf)

   addq $56, %rsp    ## �restore the stack pointer by reclaiming 

the 56 bytes

   ret               ## return to caller in exec family
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The high points of the assembly code for the main block (see  

Listing 3-16), the assembly-language counterpart of the main function in C, 

can be summarized as follows:

•	 The block begins by growing the scratchpad storage on 

the stack: 56 is subtracted from the 64-bit stack pointer 

%rsp, which has the effect of growing the stack scratchpad 

by 56 bytes because the Intel stack grows from high to 

low addresses. Moving the stack pointer %rsp down by 56 

bytes means, in other words, that there are now 56 newly 

available bytes above where the stack pointer currently 

points. Shrinking the scratchpad storage on the stack 

is done by adding to the stack pointer, as occurs in the 

second-to-last statement in the main block:

addq $56, %rsp ## cleanup from the earlier subq 

%56, %rsp

•	 The nine-integer array elements 1,2,…,9 in the array 

nums from the C code are stored on the stack. Most of 

the values are stored up from the stack pointer. For 

example, 1 is stored at where the stack pointer currently 

points, 2 is stored 4 bytes up from this position at 

4(%rsp), and so on. In general, the compiler stores 

arrays on the stack, even very small arrays. There 

are simply too few general-purpose registers to store 

arrays, and addressing array elements is simplified by 

having these elements be stored contiguously. Registers 

are used for scalar values, not for aggregates.

•	 The array’s size, 9, is not stored on the stack, but rather 

in the 32-bit CPU register %esi. Recall that on a 64-bit 

machine, the name %esi refers to the lower-order 32 

bits of the 64-bit register %rsi. The sum_array routine 

accesses the array’s size from register %esi.
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•	 The value returned from sum_array in 32-bit register 

%eax is copied to register %edx, the address of the 

format string is copied to register %esi, and the number 

of values to be formatted (in this case, one) is copied 

into register %edi. At this pointer, the main module is 

ready to call the print routine printf_chk, which does 

an integrity check on the arguments, where chk stands 

for “check.” As the example shows, the underscore can 

be used even to start an identifier.

•	 After shrinking the stack back to its size before the call 

to main, the main routine returns to its caller. Recall that 

main in the C source does not return a value; hence, 

the assembly routine does not place a value in %eax 

immediately before returning.

Listing 3-17.  The assembly code for sum_array

sum_array:

   testl %esi, %esi  ## is the array size 0?

   je .L4            ## if so, return to caller

   movl $0, %edx     ## otherwise, set loop counter to 0

   movl $0, %eax     ## initialize sum to 0

.L3:

   addl (%rdi,%rdx,4), %eax  ## �increment the running sum by 

the next value (sum += arr[i])

   addq $1, %rdx             ## �increment loop counter by 1 

(integer)

   cmpl %edx, %esi           ## �compare loop counter with 

array size

   ja .L3                    ## �keep looping if size is bigger 

(ja = jump if above)
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   rep ret           ## �otherwise, AMD-specific version of ret 

for return

.L4:                 ## �return 0 as the sum because array 

is empty

   movl $0, %eax     ## copy 0 into returned-value register

   ret               ## return to caller

The sum_array routine in assembly code (see Listing 3-17) is 

complicated because of the control structure. The code basically handles 

two cases:

•	 If the array’s size is zero (the array is empty), then 

return 0.

•	 Otherwise, initialize a loop counter (32-bit register 

%edx) to 0, and loop until the array’s size is no longer 

greater than the loop counter. The running sum is 

stored in 32-bit register %eax, and %eax also serves as 

the returned-value register.

Several points about the code deserve mention. For one thing, the code 

sometimes references the 64-bit register %rdx but sometimes references 

only the lower 32 bits of this register under the name %edx. This can be 

confusing but works just fine because the upper-order bits in register %rdx 

have been zeroed out.

Another point of interest is the most complicated instruction in the 

sum_array routine:

addl (%rdi,%rdx,4), %eax   ## in C: sum += arr[i]

First, consider the instruction that follows the addl instruction:

addq $1, %rdx   ## in C: i = i + 1
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This instruction updates the loop counter %rdx by one integer, not by 

4 bytes. Accordingly, the addl instruction’s first operand is the expression 

(%rdi,%rdx,4). Register %rdi points to the start of the array; in the C code, 

this is the parameter arr in the function sum_array. The offset from this 

base address is %rdx × 4, where %rdx is the loop counter (in C, the index i) 

and 4 is sizeof(int).

The assembly code confirms that the stack requirements for the 

sumArray program are determined at compile time. The stack management 

is thus automatic from the programmer’s perspective: the programmer 

declares local variables and parameters, makes a function call, executes 

a print statement, and so on. The compiler manages the details when it 

comes to providing scratchpad storage on the stack and, in this example, in 

CPU registers as well.

This analysis of the sumArray program sets up a contrast between 

stack and heap storage. C has functions for allocating heap storage, 

with the malloc and the calloc functions as the primary ones. There is 

also a realloc function for growing or shrinking previously allocated 

heap memory. The free function deallocates the memory allocated by 

any of these functions. The general rule for avoiding memory leaks is 

this: for every malloc or calloc, there should be a matching free. The 

programmer is fully responsible for the calls to these functions. A first code 

example covers the basics.

Listing 3-18.  Basic heap allocation and deallocation

#include <stdio.h>

#include <stdlib.h> /* malloc, calloc, realloc */

#include <string.h> /* memset */

#define Size 20

void dump(int* ptr, unsigned size) {

  if (!ptr) return; /* do nothing if ptr is NULL */

  int i;
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  �for (i = 0; i < size; i++) printf("%i ", ptr[i]);  

/* *(ptr + i) */

  printf("\n");

}

void main() {

  /* allocate */

  �int* mptr = malloc(Size * sizeof(int)); �/* 20 ints, 80 

bytes */

  �if (mptr) �/* malloc returns NULL (0) if it cannot allocate 

the storage */

    �memset(mptr, -1, Size * sizeof(int)); �/* set each byte 

to -1 */

  dump(mptr, Size);

  /* realloc */

  �mptr = realloc(mptr, (Size + 8) * sizeof(int)); �/* request 

8 more */

  if (mptr) dump(mptr, Size + 8);

  /* deallocate */

  free(mptr);

  /* calloc */

  �mptr = calloc(Size, sizeof(int)); �/* calloc initializes the 

storage to zero */

  if (mptr) {

    dump(mptr, Size);

    free(mptr);

  }

}
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The program memalloc (see Listing 3-18) shows the basic API for 

allocating and deallocating memory from the heap. The simplest and most 

basic function is malloc, which tries to allocate the number of bytes given 

as its single argument. The return type from malloc is the same for calloc 

and realloc:

•	 If the memory can be allocated, a pointer to the first 

byte is returned.

•	 If the memory cannot be allocated, NULL is returned.

The malloc function could be used to allocate as little as 1 byte but 

typically is used to allocate aggregates. In the case of malloc, the allocated 

storage is not initialized. The memalloc program therefore initializes the 

allocated memory to -1 by using the memset library function:

memset(mptr, -1, Size * sizeof(int)); �/* mptr returned from 

malloc */

This function takes three arguments: a pointer to the storage to be 

initialized, the value to be stored in each byte, and the number of bytes to 

be initialized. The memset function is yet another library routine that works 

at the byte level.

The calloc function takes two arguments: the first is the number of 

elements to allocate (e.g., 10), and the second is the sizeof each element 

(e.g., 4 for an int). The calloc function thus can be used to allocate 

storage for multibyte types such as int and double. This function, unlike 

malloc, initializes the allocated storage to all 0s. In general, malloc is faster 

than calloc because malloc does no memory initialization.

The realloc function can be used to grow or shrink previously 

allocated storage. In this example, the function is used to grow the 

allocated storage by 8 × sizeof(int) bytes. If realloc succeeds, it leaves 

the previously allocated storage unchanged and adds or removes the 

requested number of bytes. In the memalloc program, realloc is called 
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to request an additional 32 bytes (8 int values) to a collection of 20 int 

values already initialized to -1; hence, the original bytes still have -1 as 

their value after the reallocation, but the added bytes have arbitrary values.

As the name suggests, the free function deallocates storage allocated 

with the malloc and calloc functions. The realloc function presupposes 

a previous call to one of these other functions. To avoid memory leaks, it is 

critical for a program to free explicitly allocated storage.

DOES C HAVE GARBAGE COLLECTION?

No. Library functions such as malloc and calloc allocate specified amounts 

of storage from the heap, but the programmer then is responsible for explicitly 

deallocating (freeing) this heap storage. Allocation without deallocation causes 

memory leaks, which can dramatically degrade system performance. Freeing 

no longer needed heap storage is, indeed, one of the major challenges in 

writing sound C programs.

3.11. � The Challenge of Freeing 
Heap Storage

Recall the rule of thumb for freeing heap storage: for every malloc or calloc, 

there should be a free. Putting the rule into practice can be challenging, in 

particular when dealing with functions that return a pointer to a structure 

that, in turn, has, among its fields, pointers to heap storage. In short, the 

heap storage allocation may be nested. If the allocation is nested, then the 

freeing should be so as well. The documentation on library functions is 

worth reading carefully, in particular for functions that return a pointer 

to heap storage. There are different ways for memory-allocating library 

functions to guard against memory leakage, for example, by providing a 

utility function that does the freeing to whatever level is appropriate.
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Two code examples get into the details of the challenge. The first 

example focuses on how to return an aggregate to a caller, and the second 

focuses on nested freeing.

Listing 3-19.  Three ways of returning a string to a caller

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define BuffSize 128

void get_name1(char buffer[ ], size_t len) {  /* �safest: buffer 

passed in 

as arg */

  strncpy(buffer, "Gandalf", len);            /* �user-supplied 

buffer */

}

void* get_name2() {                          /* �ok, but invoker 

must free */

  void* ptr = malloc(BuffSize + 1);

  if (!ptr) return 0;

  strcpy(ptr, "Sam");

  return ptr;

}

char* get_name3() {                          /* �VERY BAD 

(compiler 

warning) */

  char buffer[BuffSize + 1];

  strcpy(buffer, "Frodo");

  return buffer;

}
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The getname program (see Listing 3-19) contrasts three ways to return 

a string—an aggregate—from a function. The compiler generates an 

apt warning about one of the ways. Three functions represent the three 

different approaches. For each approach, imagine that a user is prompted 

for, and then enters, a name. To keep the code short, the example hard-

wires the names. Here is a summary of the three approaches, with 

recommendations:

•	 The get_name1 function represents the safest approach. 

The function takes two arguments: an array to hold the 

name and the array’s length. The function then uses the 

library function strncpy to copy a name into this array. 

The n in strncpy specifies the maximum number of 

characters to be copied, thereby protecting against the 

notorious buffer overflow problem. A buffer overflow 

occurs if the array is not big enough to hold all of the 

elements placed in it. In the case of get_name1, the invoker 

of the function is responsible for providing a buffer at least 

as big as the len argument specifies. The first three lines of 

main illustrate a proper call to get_name1.

A cautionary note is in order. Suppose that the first two 

lines of main change from

char buffer[BuffSize + 1]; 

                  �/* + 1 for null terminator */

get_name1(buffer, BuffSize);

to

char* buffer; /* storage for a pointer, but not 

for any characters pointed to */

get_name1(buffer, BuffSize); 

              /* �false promise: the buffer's 

length is zero */
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The getname program still compiles because the compiler treats these 

two data types as being equivalent:

char* buffer    ## the argument's type in main

char buffer[ ]  ## the first parameter's type in get_name1

Nonetheless, the program is likely to crash at runtime because there is 

no storage provided for the characters in the string; there is storage only for 

a single pointer to a char. Increasing the length of the string increases the 

likelihood of a crash.

•	 The get_name2 function takes no arguments and instead 

allocates heap storage to store a string of BuffSize 

characters, where BuffSize is a macro defined as 64; 

a pointer to this storage is returned. The call to malloc 

requests an additional byte for the null terminator, so 

BuffSize + 1 bytes in all. The get_name2 function 

returns ptr, which holds the value returned from 

malloc. (If malloc returns NULL, so does get_name2.) This 

approach makes the caller, in this case main, responsible 

for freeing the allocated storage. There is a division of 

labor: one function allocates the required heap storage, 

but a different function (its invoker) must free these 

allocated bytes when they are no longer needed.

•	 The get_name3 function is done badly, and the 

compiler points out the shortcoming. The function 

declares a local variable buffer of BuffSize + 1 bytes. 

This, in itself, is fine. The function then returns the 

array’s name—a pointer to the first char in the array. 

This is risky because the storage for the array comes 

from the stack, and that very area of the stack is open 

for reuse once get_name3 returns. Some other function 

might place other data in this very area. The general 

principle is clear: never return a pointer to local storage.
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Listing 3-20.  Calling the three functions in the getname program

/** headers and macro above **/

void main() {

  char buffer[BuffSize + 1];         /* �+ 1 for null 

terminator */

  get_name1(buffer, BuffSize);

  printf("%s\n", buffer);

  void* retval2 = get_name2();

  printf("%s\n", (char*) retval2);   /* cast for the %s */

  free(retval2);                     /* �safeguard against 

memory leak */

  const char* retval1 = get_name3(); /* not a good idea */

  printf("%s\n", retval1);           /* unpredictable output */

}

The main function for the getname program (see Listing 3-20) declares 

a char buffer, which is used in the call to function get_name1. The 

responsibility falls squarely on the caller to provide enough storage for the 

string to be stored. The second argument, BuffSize, guards against buffer 

overflow because the char array is of size BuffSize + 1, with the added 

byte for the null terminator.

The call to get_name2 returns a pointer to the heap storage provided 

for the name. In this case, the main function does call free, but the logic is 

complicated: one function allocates, another function frees. The approach 

works, but it is error-prone.

The last call, to get_name3, provokes a compiler warning because a 

pointer to local storage is being returned to main. In this case, the storage 

for the name is local to the call frame for get_name3. Once the function 

get_name3 returns to main, the call frame for get_name3 should not be 

accessed. It is unpredictable whether this third approach works.
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3.12. � Nested Heap Storage
It is relatively straightforward to handle nonnested cases of allocating and 

freeing, as in the previous examples of heap storage. Here is a review of the 

pattern:

int* some_nums = malloc(5000 * sizeof(int));

/* ... application logic ... */

free(some_nums);

This code segment allocates heap storage for 5,000 int values, does 

whatever logic is appropriate, and then frees the storage. The challenge 

increases when, for example, structure instances are allocated from the 

heap—and such instances contain fields that are themselves pointers to heap 

storage. If the heap allocation is nested, the freeing must be nested as well.

As a common example of the challenge, C has various library functions 

that return a pointer to heap storage. Here is a typical scenario:

	 1.	 The C program invokes a library function that 

returns a pointer to heap-based storage, typically an 

aggregate such as an array or a structure:

SomeStructure* ptr = lib_function(); �/* returns pointer 

to heap storage */

	 2.	 The program then uses the allocated storage.

	 3.	 For cleanup, the issue is whether a single call to 

free will clean up all of the heap-allocated storage 

that the library function allocates. For example, the 

SomeStructure instance may have fields that, in 

turn, point to heap-allocated storage. A particularly 

troublesome case would be a dynamically allocated 

array of structures, each of which has a field 

pointing to more dynamically allocated storage.
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The next code example (see Listing 3-21) illustrates the problem and 

focuses on how to design a library that safely provides heap-allocated 

storage to clients.

Listing 3-21.  Nested heap storage

#include <stdio.h>

#include <stdlib.h>

typedef struct {

  unsigned id;

  unsigned len;

  float* heap_nums;

} HeapStruct;

unsigned structId = 1;

HeapStruct* get_heap_struct(unsigned n) {

  /* Try to allocate a HeapStruct. */

  HeapStruct* heap_struct = malloc(sizeof(HeapStruct));

  if (NULL == heap_struct) /* failure? */

    return NULL;           /* if so, return NULL */

  �/* Try to allocate floating-point aggregate within 

HeapStruct. */

  heap_struct->heap_nums = malloc(sizeof(float) * n);

  if (NULL == heap_struct->heap_nums) { /* failure? */

    free(heap_struct);                  /* �if so, first free 

the HeapStruct */

    return NULL;                        /* then return NULL */

  }

  /* Success: set fields */

  heap_struct->id = structId++;

  heap_struct->len = n;
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  �return heap_struct; /* return pointer to allocated 

HeapStruct */

}

void free_all(HeapStruct* heap_struct) {

  if (NULL == heap_struct)  /* NULL pointer? */

    return;                 /* if so, do nothing */

  free(heap_struct->heap_nums); /* �first free encapsulated 

aggregate */

  free(heap_struct);            /* �then free containing 

structure */

}

int main() {

  const unsigned n = 100;

  �HeapStruct* hs = get_heap_struct(n); �/* get structure with N 

floats */

  /* Do some (meaningless) work for demo. */

  unsigned i;

  for (i = 0; i < n; i++) hs->heap_nums[i] = 3.14 + (float) i;

  for (i = 0; i < n; i += 10) printf("%12f\n", hs->heap_nums[i]);

  free_all(hs); /* free dynamically allocated storage */

  return 0;

}

The nestedHeap example (see Listing 3-21) centers on a structure 

HeapStruct with a pointer field named heap_nums:
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typedef struct {

  unsigned id;

  unsigned len;

  float* heap_nums; /** pointer **/

} HeapStruct;

The function get_heap_struct tries to allocate heap storage for a 

HeapStruct instance, which entails allocating heap storage for a specified 

number of float variables to which the field heap_nums points. The result 

of a successful call to get_heap_struct can be depicted as follows, with hs 

as the pointer to the heap-allocated structure:

hs-->HeapStruct instance

        id

        len

        heap_nums-->N contiguous float elements

In the get_heap_struct function, the first heap allocation is 

straightforward:

HeapStruct* heap_struct = malloc(sizeof(HeapStruct));

if (NULL == heap_struct)  /* failure? */

  return NULL;            /* if so, return NULL */

The sizeof(HeapStruct) includes the bytes (four on a 32-bit machine, 

eight on a 64-bit machine) for the heap_nums field, which is a pointer to the 

float elements in a dynamically allocated array. At issue, then, is whether 

the malloc delivers the bytes for this structure or NULL to signal failure; if 

NULL, the get_heap_struct function returns NULL to notify the caller that 

the heap allocation failed.

The second attempted heap allocation is more complicated because, at 

this step, heap storage for the HeapStruct has been allocated:
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heap_struct->heap_nums = malloc(sizeof(float) * n);

if (NULL == heap_struct->heap_nums) { /* failure? */

  free(heap_struct);                  /* �if so, first free the 

HeapStruct */

  return NULL;                        /* �and then 

return NULL */

}

The argument n sent to the get_heap_struct function indicates how 

many float elements should be in the dynamically allocated heap_nums 

array. If the required float elements can be allocated, then the function 

sets the structure’s id and len fields before returning the heap address of 

the HeapStruct. If the attempted allocation fails, however, two steps are 

necessary to meet best practice:

	 1.	 The storage for the HeapStruct must be freed to 

avoid memory leakage. Without the dynamic heap_

nums array, the HeapStruct is presumably of no use 

to the client function that calls get_heap_struct; 

hence, the bytes for the HeapStruct instance should 

be explicitly deallocated so that the system can 

reclaim these bytes for future heap allocations.

	 2.	 NULL is returned to signal failure.

If the call to the get_heap_struct function succeeds, then freeing 

the heap storage is also tricky because it involves two free operations in 

the proper order. Accordingly, the program includes a free_all function 

instead of requiring the programmer to figure out the proper two-step 

deallocation. For review, here’s the free_all function:
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void free_all(HeapStruct* heap_struct) {

  if (NULL == heap_struct)  /* NULL pointer? */

    return;                 /* if so, do nothing */

  free(heap_struct->heap_nums);  /* �first free encapsulated 

aggregate */

  free(heap_struct);             /* �then free containing 

structure */

}

After checking that the argument heap_struct is not NULL, the function 

first frees the heap_nums array, which requires that the heap_struct 

pointer is still valid. It would be an error to free the heap_struct first. 

Once the heap_nums have been deallocated, the heap_struct can be 

freed as well. If heap_struct were freed but heap_nums were not, then the 

float elements in the array would be leakage: still allocated bytes but 

with no possibility of access—hence, of deallocation. The leakage would 

persist until the nestedHeap program exited and the system reclaimed the 

leaked bytes.

A few cautionary notes on the free library function are in order. Recall 

the earlier sample calls:

free(heap_struct->heap_nums);  /* �first free encapsulated 

aggregate */

free(heap_struct);             /* �then free containing 

structure */

These calls free the allocated storage—but they do not set their 

arguments to NULL. (The free function gets a copy of an address as an 

argument; hence, changing the copy to NULL would leave the original 

unchanged.) For example, after a successful call to free, the pointer 

heap_struct still holds a heap address of some heap-allocated bytes, but 

using this address now would be an error because the call to free gives the 

system the right to reclaim and then reuse the allocated bytes.

Chapter 3  Aggregates and Pointers



131

Calling free with a NULL argument is pointless but harmless. Calling 

free repeatedly on a non-NULL address is an error with indeterminate 

results:

free(heap_struct);  /* 1st call: ok */

free(heap_struct);  /* 2nd call: ERROR */

3.12.1. � Memory Leakage 
and Heap Fragmentation

As the previous code examples illustrate, the phrase memory leakage” 

refers to dynamically allocated heap storage that is no longer accessible. 

Here is a refresher code segment:

float* nums = malloc(sizeof(float) * 10); /* 10 floats */

nums[0] = 3.14f;                          /* and so on */

nums = malloc(sizeof(float) * 25);        /* 25 new floats */

Assume that the first malloc succeeds. The second malloc resets the 

nums pointer, either to NULL (allocation failure) or to the address of the 

first float among newly allocated 25. Heap storage for the initial ten 

float elements remains allocated but is now inaccessible because the 

nums pointer either points elsewhere or is NULL. The result is 40 bytes 

(sizeof(float) * 10) of leakage.

Before the second call to malloc, the initially allocated storage should 

be freed:

float* nums = malloc(sizeof(float) * 10); /* 10 floats */

nums[0] = 3.14f;                          /* and so on */

free(nums);                               /** good **/

nums = malloc(sizeof(float) * 25);        /* no leakage */
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Even without leakage, the heap can fragment over time, which then 

requires system defragmentation. For example, suppose that the two 

biggest heap chunks are currently of sizes 200MB and 100MB. However, 

the two chunks are not contiguous, and process P needs to allocate 

250MB of contiguous heap storage. Before the allocation can be made, the 

system must defragment the heap to provide 250MB contiguous bytes for 

P. Defragmentation is complicated and, therefore, time-consuming.

Memory leakage promotes fragmentation by creating allocated but 

inaccessible heap chunks. Freeing no-longer-needed heap storage is, 

therefore, one way that a programmer can help to reduce the need for 

defragmentation.

3.12.2. � Tools to Diagnose Memory Leakage
Various tools are available for profiling memory efficiency and safety.  

My favorite is valgrind (www.valgrind.org/). The leaky program (see 

Listing 3-22) illustrates the problem and the valgrind solution.

Listing 3-22.  The leaky program

#include <stdio.h>

#include <stdlib.h>

int* get_ints(unsigned n) {

  int* ptr = malloc(n * sizeof(int));

  if (ptr != NULL) {

    unsigned i;

    for (i = 0; i < n; i++) ptr[i] = i + 1;

  }

  return ptr;

}
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void print_ints(int* ptr, unsigned n) {

  unsigned i;

  for (i = 0; i < n; i++) printf("%3i\n", ptr[i]);

}

int main() {

  const unsigned n = 32;

  int* arr = get_ints(n);

  if (arr != NULL) print_ints(arr, n);

  /** heap storage not yet freed... **/

  return 0;

}

The function main calls get_ints, which tries to malloc 32 four-byte 

integers from the heap and then initializes the dynamic array if the malloc 

succeeds. On success, the main function then calls print_ints. There is no 

call to free to match the call to malloc; hence, memory leaks.

With the valgrind toolbox installed, the following command checks the 

leaky program for memory leaks:

% valgrind  --leak-check=full  ./leaky

In the following code segment, most of the output is shown. The number 

of the left, 207683, is the process identifier of the executing leaky program. 

The report provides details of where the leak occurs, in this case, from the 

call to malloc within the get_ints function that main calls.

==207683== HEAP SUMMARY:

==207683==   in use at exit: 128 bytes in 1 blocks

==207683==   total heap usage: 2 allocs, 1 frees, 1,152 bytes 

allocated

==207683==
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==207683== 128 bytes in 1 blocks are definitely lost in loss 

record 1 of 1

==207683==   at 0x483B7F3: malloc (in /usr/lib/x86_64-linux-

gnu/...-linux.so)

==207683==   by 0x109186: get_ints (in /home/marty/gc/leaky)

==207683==   by 0x109236: main (in /home/marty/gc/leaky)

==207683==

==207683== LEAK SUMMARY:

==207683==   definitely lost: 128 bytes in 1 blocks

==207683==   indirectly lost: 0 bytes in 0 blocks

==207683==   possibly lost: 0 bytes in 0 blocks

==207683==   still reachable: 0 bytes in 0 blocks

==207683==   suppressed: 0 bytes in 0 blocks

If function main is revised to include a call to free right after the one to 

print_ints, then valgrind gives the leaky program a clean bill of health:

==218462==  All heap blocks were freed -- no leaks are possible

3.13. � What’s Next?
C variables can be defined inside and outside of blocks, where a block is 

the by-now-familiar construct that begins with a left brace { and ends with 

a matching right brace }. Where a variable is defined determines, within 

options, where its value is stored, how long the variable persists, and where 

the variable is visible. Every variable has a storage class (with auto and 

extern as examples) that determines the variable’s persistence and scope. 

Functions too have a storage class: either extern (the default) or static. 

The next chapter gets into the details of storage classes.

Chapter 3  Aggregates and Pointers



135

CHAPTER 4

Storage Classes

4.1. � Overview
In C, a storage class determines where functions and variables are stored, 

how long variables persist, and where functions and variables can be made 

visible. For functions, the key issue is visibility (scope) because the lifetime 

of a function is the lifetime of the program that contains the function. For 

variables, both lifetime and scope are of interest to the programmer.

Storage classes also shed further light on the distinction between 

declarations and definitions in C. In large programs, with the constituent 

functions typically residing in different files, the distinction is especially 

important. Once again, code examples illustrate the basics and advanced 

features. The chapter ends with a discussion of type qualifier volatile, yet 

another aspect of C’s close-to-the-metal personality.

4.2. � Storage Class Basics
Here are two examples of where a storage class shows up in C code:

static int counter;                /* �static is a storage-class 

specifier */

extern void main() { /* body */ }  /* �extern is a storage-class 

specifier */
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C has four storage class specifiers: extern, static, auto, and register. 

It is rare for the last two to be used explicitly in modern C because the 

compiler, on its own, does what the specifiers call for. The first two 

specifiers, extern and static, remain relevant. A function can be either 

extern or static only; a variable can be any one of the four. A storage class 

also impacts the following:

•	 The scope or visibility of the storage. For example, C 

functions are extern by default, which means that they 

can be made visible to any other function in the same 

program. To be extern in C is to be potentially global 

in scope.

•	 The lifetime of the storage, which depends directly 

on where the storage is provided. The name storage 

class derives from the fact that different parts of the 

memory hierarchy are in play. For example, a local 

variable—that is, a variable defined inside a block—is 

auto by default. Storage for such a variable comes from 

the stack or a CPU register, and the variable’s lifetime 

is the time span during which the containing block is 

active because some instruction within the block is still 

executing.

HOW DOES A VARIABLE DEFINITION DIFFER FROM A DECLARATION?

A definition implements, whereas a declaration describes. A declared function 

describes how the function is called and excludes the function’s body; a 

defined function includes the body as well. For variables, the distinction 

matters only in the case of extern variables, where there is one definition but 

there can be more than one declaration. For variables of every other storage 

class, the definition and the declaration are effectively the same.
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Here is a summary of the default storage classes for functions and 

variables:

•	 Functions are either extern or static, with extern as 

the default.

•	 Variables defined outside of all blocks are either extern 

or static, with extern as the default.

•	 Variables defined inside a block are either auto, or 

register, or static, with auto as the default.

In summary, neither static (functions or variables) nor register 

(variables only) is a default storage class. For a function or variable defined 

outside all blocks, extern is the default; for a variable defined inside a 

block, auto is the default.

On modern computers, C functions are stored in the text area of 

memory, and a function’s lifetime is accordingly the lifetime of the 

program to which the function belongs. However, a static function or 

variable is not visible outside of its containing source file, whereas an 

extern function or variable can be made visible throughout a program—

no matter the file that contains its definition.

In the case of variables, in particular large arrays, the storage classes 

extern and static raise issues of efficiency. If an array is extern or 

static, then the array’s lifetime is the program’s lifetime. In effect, the size 

of the array becomes part of the program’s runtime memory footprint. It 

is best to keep arrays on the stack or the heap so that storage for the arrays 

persists only as needed.
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4.3. � The auto and register 
Storage Classes

The details of the auto and register specifiers can be clarified through a 

code example.

Listing 4-1.  The auto and register specifiers

#include <stdio.h>

#include <stdlib.h> /* rand() */

int main() {

  �/* i and n are visible from their declaration to the end 

of main */

  auto int i; /* auto is the default in any case */

  int n = 10; /* auto as well */

  for (i = 0; i < n; i++) {

    �register int r = rand() % 100; �/* if no register 

available, auto */

    printf("%i ", r);

  } /* r goes out of scope here */

  putchar('\n'); /* instead of the usual printf("\n") */

  return 0;

}

The autoreg program (see Listing 4-1) shows how the auto and 

register specifiers could be used. Recall that these specifiers are used 

for variables only, and only for variables declared inside a block. In this 

example, there are two blocks:
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•	 The body of function main is the outer block, and int 

variables i and n are declared in this block. Each is 

visible from the point of its declaration until the end 

of the block, in this case the end of function main. In 

particular, local variables i and n are visible inside the 

for loop, a nested code block.

•	 The for loop’s body is another block. Declared therein 

is the register variable r, which is visible only within 

the body of the for loop.

The declarations for variables i and n are equivalent, although only 

the one for variable i explicitly uses the auto specifier. Because auto is 

the default specifier for a variable declared inside a block, this specifier is 

almost never used—except for demonstration purposes, as in the autoreg 

program.

The register specifier, shown here in the declaration for variable r, 

also is rarely used in modern C, as clarified shortly. If the compiler cannot 

implement variable r with a CPU register, then the storage class reverts to 

the default, auto. The scope for auto and register variables is the same in 

any case: the containing block.

The register specifier has become outdated because an optimizing 

compiler tries to use a CPU register to store scalar values such as the ones 

stored in r during the for loop. It is more productive to flag the compiler 

for optimization (e.g., gcc -O1...) than to use the register specifier. The 

auto specifier also has become outdated because an optimizing compiler 

opts for CPU registers whenever possible and uses the stack as the fallback 

for scratchpad. From now on, the code examples dispense with explicit 

uses of auto and register.
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4.4.  The static Storage Class
The static specifier applies to both functions and variables. A variable 

can be declared as static either inside a block (with resulting block scope) 

or outside all blocks (with a scope from that point until the end of the file). 

The first code example deals with static variables.

DOES THE C COMPILER SUPPORT PROFILING?

Yes. The flag -pg enables profiling:

% gcc -pg profile.c   ## produces executable a.out (on 

Windows: A.exe)

Running the program produces the file gmon.out, and the utility gprof then 

can be executed from the command line:

% gprof

A detailed profiling analysis is printed to the screen.

Although the C compiler includes support for profiling (see the 

sidebar), this code example shows how the static specifier can be used to 

keep track of how many times a particular function is invoked.

Listing 4-2.  Using static variables to profile function calls

#include <stdio.h>

#define SizeF 109

#define SizeB 87

void foo() {

  static unsigned n = 0; /* initialized only once */

  if (SizeF == ++n) printf("foo: %i\n", n);

}
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void bar() {

  static unsigned n; /* initialized automatically to zero */

  if (SizeB == ++n) printf("bar: %i\n", n);

}

void main() {

  unsigned i = 0, limit_foo = SizeF, limit_bar = SizeB;

  �while (i++ < limit_foo) foo(); /* call foo() a bunch of 

times */

  i = 0;

  �while (i++ < limit_bar) bar(); /* call bar() a bunch of 

times */

}

The profile program (see Listing 4-2) tracks the number of times that 

main calls two other functions, foo and bar. Each of the called functions 

has a local static variable named n. The compiler initializes a static 

variable to zero unless the program provides an initial value. Two points 

about these static variables are important in this example:

•	 Because each variable is declared inside a function, 

each variable has function scope only. Accordingly, 

the two distinct variables can have the same name, in 

this case n.

•	 Unlike an auto variable (stack based), a static variable 

(not stack based) maintains its state across function 

calls. For example, each time that the foo function is 

called, its variable n is incremented and retains this 

new value even when foo exits. An initialized auto 

variable would be reinitialized on every call to the 

function that encapsulates the variable.
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A static variable has the lifetime of the program regardless of where 

the variable is declared, but its scope does differ depending on where the 

variable is declared. If declared inside a block, a static variable has block 

scope. If declared outside all blocks, a static variable has file scope: it is 

visible from the point of declaration until the end of the containing file.

To define a function as static is to restrict the function’s scope to the 

file in which it resides. Functions are extern by default, which means that 

they are potentially visible throughout the compiled program, regardless of 

the source file that happens to contain them. Making a function static is 

as close as it comes to private in C: static functions might be described as 

private to the file. Scope is the only difference that matters between extern 

and static functions: the former can have program scope, whereas the 

latter can have file scope only.

4.5. � The extern Storage Class
The source code for a large program is likely distributed among many 

files. A function housed in one file may need to call a function housed in 

another file. For example, a program that invokes a library function such 

as printf is thereby calling a function housed in another file—the library’s 

delivery file. Furthermore, a program may require that the same variable—

not just different variables with the same name—be accessible across files. 

But neither a static function nor a static variable can be made visible 

outside of its containing file. Such functions and variables have program 

lifetime due to their static character, but they have only file scope at most.

The extern storage class supports truly global scope, although the 

programmer needs to do some work to make this happen. The basic two 

steps for global scope go as follows:
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•	 A variable or function is defined, implicitly or explicitly, 

as extern in one file. (A variable defined outside all 

blocks defaults to extern, and functions in general 

default to extern.) The term extern can but need not 

be used in the definition.

•	 This variable or function is then declared as extern in 

any other file that requires access.

The rule of thumb for making life easy on the programmer is to avoid 

the explicit extern in a definition (in particular for variables) and to use 

the explicit extern only in a declaration.

A code example should help to clarify the details. The example consists 

of two files, prog2files1.c and prog2files2.c. These will be considered 

in order.

Listing 4-3.  One source file in the prog2files program

#include <stdio.h>

/* definition of the extern variable: keyword extern is absent, 

but could be present if the variable were initialized in its 

definition. */

int global_num = -999; �/* would be initialized to 0 

otherwise */

extern void doubleup(); �/* declaration of a function defined in 

another file */

extern void print() { �/* extern could be dropped from this 

definition */

  printf("global_num: %i\n", global_num);

}

Chapter 4  Storage Classes



144

/* set2zero can be invoked only by functions within 

this file */

static void set2zero() {

  global_num = 0;

}

void main() { /* extern could be added, but not necessary */

  doubleup(); /* function in another file */

  doubleup(); /* call doubleup() again */

  print(); /* -3996 */

  set2zero(); /* function in this file */

  print(); /* 0 */

}

The prog2files1.c file (see Listing 4-3) does the following:

•	 Defines the int variable global_num outside all 

blocks. This makes the variable extern, although the 

specifier extern does not occur in the definition. The 

variable also is initialized to -999. Were the variable 

not initialized explicitly, the compiler would set its 

value to 0. There is subtle syntax at play here. If the 

specifier extern were used, then the variable would 

have to be initialized explicitly in order to distinguish 

its single definition from one of its many possible 

declarations. The safe approach is to omit the specifier 

extern from the definition and to use this specifier 

only in declarations. The second file in the prog2files 

program shows a declaration for global_num with the 

specifier extern.
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•	 Declares the function doubleup as extern, thereby 

signaling that this function is defined elsewhere—in 

this case, in the other source file, prog2files2.c.

•	 Defines the function print using the specifier extern. 

The extern is not necessary because any defined 

function is extern by default unless explicitly specified 

to be static.

•	 Defines the function main as extern, but without using 

the specifier.

The main function, housed in the source file prog2files1.c, invokes 

the doubleup function twice—a function housed in the program’s other 

source file, prog2files2.c. If the doubleup function were not declared in 

prog2files1.c, the compiler would complain. The main function also invokes 

the static function set2zero. Because set2zero is static, it must be 

invoked by a function such as main in the same source file, prog2files1.c.

Listing 4-4.  The other source file in the prog2files program

/* declaration: keyword extern is required, and the variable 

must not be initialized here because it then would be a 

definition. */

extern int global_num;

void doubleup() {   /* �definition: doubleup is declared 

elsewhere, defined here */

  global_num *= 2;  /* �the global_num defined elsewhere, but 

accessed here */

}
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The second source file prog2files2.c (see Listing 4-4) is deliberately 

simple. There are two points of interest:

•	 The variable global_num is declared with the specifier 

extern and not initialized. If the variable global_nums 

were initialized here, this would count as a definition, 

thereby breaking the rule that an extern variable (or 

function) must be defined exactly once in a program. 

The declaration for global_num occurs outside all 

blocks but could occur within the function doubleup. 

In any case, the declaration of global_num with the 

required specifier extern signals that this variable 

is defined elsewhere, which happens to be the other 

source file prog2files1.c.

•	 The function doubleup is defined here and is extern 

by default. This function is declared in the other source 

file with the specifier extern.

The source files in the prog2files program are compiled in the 

usual way:

% gcc -o prog2files prog2files1.c prog2files2.c   ## file names 

could be in any order

For review, here again is the rule of thumb that sidesteps the legalese 

surrounding the specifier extern. This rule can be spelled out as two 

related recommendations:

•	 Never use the specifier extern in function or variable 

definitions, which must occur outside all blocks. The 

variables then can be initialized or not according 

to need.
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•	 Use the specifier extern only in declarations of 

functions and variables. A variable cannot be 

initialized in a declaration, as this would transform the 

declaration into a definition.

WHAT DOES CONST MEAN IN C?

The qualifier const for constant originated in C++ and was brought into C. A 

few code segments clarify.

const int n = 17; /** n is constant or read-only **/

n = -999;         /** ERROR: won't compile -- n is read-only **/

There are workarounds through pointers, however.

int* ptr = &n; /* n is const */

*ptr = -999;   /** WARNING: bad idea, but works **/

The const-ness can be cast away from the pointer:

int* ptr = (int*) &n; /* (int*) cast is critical here, as &n is 

(const int*) */

*ptr = -999;          /* no error, no warning */

Recall that the parameters to the qsort comparison function are const 

void*, in effect a promise that such pointers will not be used to modify the 

values pointed to.

4.6. � The volatile Type Qualifier
A variable of any type, including pointers and struct types, can be 

qualified as volatile:

volatile int n; /* int could be left of volatile */
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The volatile qualifier cautions the compiler against doing any 

optimization on a variable so qualified, in this case n. For example, there 

are situations in which an optimizing compiler should not implement a 

variable as a CPU register. Two sample situations are introduced in the 

following.

The first example deals with an interrupt service routine (ISR). As the 

name indicates, an ISR handles interrupts, which originate from outside 

the executing program. For example, imagine an ISR written in C to handle 

input from one of the machine’s data ports, for example, the port for the 

keyboard. The programmer might define and initialize a variable nextc to 

store the next character read from the keyboard. An optimizing compiler, 

unaware that the data source for the variable is outside the executing 

program, may reason that nextc acts within the program like a constant 

best implemented in read-only storage; in other words, the compiler sees 

the initialization but does not see any updates to nextc. As a result, the 

compiler might deliver only this initial value to functions that read nextc. 

This optimization would undermine the ISR’s task of reading arbitrary 

characters from the keyboard.

WHAT’S A MULTICORE MACHINE?

A core is a fabrication component that contains a processing unit: one or 

more CPUs (processors), registers, cache memory, and other architectural 

components. A multicore machine is therefore a multiprocessor machine, 

with one or more CPUs per core; hence, a multicore machine can support true 

parallelism.

The second example concerns multithreading, which Chapter 7 

covers in detail. In a multithreaded program, multiple threads of execution 

(sequences of instructions) can communicate with one another through 

shared memory, for example, through a global variable N that is visible 
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across the threads because N is implemented as storage in main memory. 

On a multicore machine, however, the registers on a particular core would 

be visible only to a thread executing on the core’s processor(s). The point 

deserves emphasis: if thread T1 executes on core C1, then T1 sees only the 

registers on C1. If the compiler were to implement global variable N as a 

register on core C1, then threads executing on some other core would not 

see N. In short, it is important that N be implemented in main memory if N 

is to be visible across the multiple threads in the process. The programmer 

could make this point to the compiler by qualifying global variable N 

as volatile, thereby recommending that the compiler not optimize by 

implementing N as a CPU register.

A program with no volatile qualifications may compile to the 

same executable as a version of the same program with many such 

qualifications. The volatile qualifier does not guarantee anything; 

instead, the qualifier is only a cautionary note that the programmer sends 

to an optimizing compiler.

Although the syntax for volatile is close to that for storage classes, 

volatile is not a storage class. The volatile qualifier has no connection 

whatsoever with how a variable, thus qualified, is stored.

DOES C COME WITH A DEBUGGER?

The standard compilers have a debugger with the usual support: breakpoints, 

stepping, viewing and resetting variables, and so on. Here is an example with 

the fpoint.c as the source file:

	1.	 Compile with the -g flag:

% gcc -g -o fpoint point.c

	2.	 Invoke the debugger on the compiled file:

% gdb fpoint

Inside the debugger, there is a help menu.
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4.7. � What’s Next?
Every program in execution requires at least one processor (CPU) to 

execute its instructions and memory to store these instructions and 

the data that together make up the program. Except for special cases, 

a program uses I/O devices as well, which are accessible to a program 

as files of one sort or another. A file in this generic, abstract sense is just 

a collection of words, and a word is just a formatted collection of bits. 

For example, a camera in a smartphone and the lowly keyboard on a 

desktop machine are both files in this sense. The role of input and output 

operations is, of course, to allow a program to interact with the outside 

world. The next chapter gets into the details by highlighting C’s flexible 

approach to input/output operations.

Chapter 4  Storage Classes



151

CHAPTER 5

Input and Output

5.1. � Overview
Programs of all sorts regularly perform input/output (I/O) operations, and 

programmers soon learn the pitfalls of these operations: trying to open a 

nonexistent file, having too many files open at the same time, accidentally 

overwriting a file and thereby losing its data, and so on. Nonetheless, I/O 

operations remain at the core of programming.

C has two APIs for I/O operations: a low-level or system-level API, 

which is byte-oriented, and a high-level API, which deals with multibyte 

data types such as integers, floating-point types, and strings. The system-

level functions are ideal for fine-grained control, and the high-level 

functions are there to hide the byte-level details. Although the two APIs 

can be mixed, as various code examples show, this must be done with 

caution. This chapter covers both APIs and examines options such as 

nonblocking and nonsequential for I/O operations.

Files and I/O operations are one way to support interprocess 

communication (IPC). Recall that separate processes have separate 

address spaces by default, which means that shared memory, although 

possible, requires setup for processes to communicate with one another. 

Local files, by contrast, can be used readily for IPC: one process can 

produce data that is streamed to a file, while another process can 

consume the data streamed from this file. A later section examines how to 

synchronize process access to shared files.
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The API for I/O operations extends to networking, in particular to 

socket connections between processes running on different machines. This 

chapter thus provides background for the next.

5.2. � System-Level I/O
A short review of some basic concepts should be helpful in clarifying 

system-level I/O in C. A process, as a program in execution, requires shared 

system resources from at least two but typically from three categories:

•	 Processors to execute the program’s instructions (at 

least one required)

•	 Memory to store the program’s instructions and data 

(required)

•	 Input/output devices to connect to the outside world 

(optional but usual)

Some special-purpose utility processes (background processes) may 

require access to few, if any, I/O devices. For convenience, a normal 

process is one that uses resources from all three categories. When a normal 

process starts, the operating system automatically gives the process access 

to three files, where a file is a collection of words and a word is a formatted 

collection of bits (e.g., bits that represent printable characters such as A 

and Z in a character-encoding scheme such as ASCII). These three files 

have traditional names, and they are associated by default with particular 

I/O devices:

•	 The standard input defaults to the keyboard but can 

be redirected to some other device (e.g., a network 

connection).

•	 The standard output defaults to the screen but can be 

redirected to some other device (e.g., a printer).
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•	 The standard error defaults to the screen but can be 

redirected to some other device (e.g., a log file on the 

local disk).

At the command line on modern systems, the less-than sign < redirects 

the standard input; the greater-than sign > redirects the standard output; 

and the combined symbols 2> redirect the standard error. Examples are 

forthcoming, together with a clarification of why the numeral in 2> is 2.

In system-level I/O, nonnegative integer values called file descriptors 

are used to identify, within a process, the files that the process has opened. 

Recall that files can be used for interprocess communication (IPC). If 

two processes were to open a file to share data using system-level I/O, 

then each process would have a file descriptor identifying the file; the file 

descriptor values would not have to be the same because the operating 

system maintains a global file table that tracks which processes have 

opened which files.

Table 5-1 summarizes the basics about the three files to which 

a normal process automatically gets access. For other files, access is 

achieved through a successful call to an open function: in low-level I/O, 

the basic function is named open, and in high-level I/O, the basic function 

is named fopen. The table now can be clarified further:

Table 5-1.  File descriptor and FILE* overview

Name File descriptor Macro FILE*

standard input 0 STDIN_FILENO stdin

standard output 1 STDOUT_FILENO stdout

standard error 2 STDERR_FILENO stderr
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•	 In system-level I/O, a program can use the three 

reserved file descriptors (0, 1, and 2) for I/O operations. 

A short example follows. The integer values themselves 

can be used, or the macros (defined in unistd.h) shown 

in the third column.

•	 In high-level I/O, the header file stdio.h includes three 

pointers to a FILE structure, which contains pertinent 

information about an opened file. The pointer stdin is 

the high-level counterpart of file descriptor 0, stdout 

is the high-level counterpart of file descriptor 1, and 

stderr is the high-level counterpart of file descriptor 2.

A first code example draws these introductory points together.

Listing 5-1.  Some basic I/O operations using the system-level API

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#define BuffSize 4

void main() {

  const char* prompt = "Four characters, please: ";

  char buffer[BuffSize]; /* 4-byte buffer */

  �/* write returns -1 on error, count of bytes written on 

success */

  write(STDOUT_FILENO, prompt, strlen(prompt));

  �ssize_t flag = read(0, buffer, sizeof(buffer)); /* 0 == 

stdin */

if (flag < 0)

  �perror("Ooops...");   /* �this string + a system msg 

explaining errno */
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else

  �write(1, buffer, sizeof(buffer));                

/* 1 == stdout */

putchar('\n');

}

The ioLL program (see Listing 5-1) is a first look at low-level or byte-

oriented I/O. The program uses two of the three automatically supplied 

file descriptors: 0 for the standard input (keyboard) and 1 for the standard 

output (screen). The key features of the program can be summarized as 

follows:

•	 The program writes a prompt, implemented as a string 

literal, to the standard output. The write function takes 

three arguments:

•	 The first argument specifies the destination for the 

write, in this case the standard output. The file 

descriptor value 1 could be used here instead of the 

macro STDOUT_FILENO.

•	 The second argument is the source of the bytes, in 

this case the address of the first character F in the 

prompt string.

•	 The third argument is the number of bytes to be 

written, in this case the value of strlen(prompt). 

The characters are, by default, encoded in ASCII; 

hence, strlen effectively returns the number of 

bytes to be written.

The read function likewise expects three arguments:

•	 The first argument specifies the source from which the 

bytes are read, in this case the standard input (0), the 

keyboard by default.
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•	 The second argument specifies where the bytes 

should be stored, in this case the char (byte) array 

named buffer.

•	 The third argument specifies the number of bytes to be 

read into the buffer, in this case four.

Like many of the low-level I/O functions, read returns an int value: 

the number of bytes read, on success, and -1, on error. If an error occurs, 

an error code is available in the global variable errno, which is declared 

in the header file errno.h. The perror function prints a human-readable 

description of this error. This function takes a single string argument 

so that the user can add a customized error message to which perror 

appends a system error message. If only the system error message is of 

interest, perror can be called with NULL as its argument.

The program concludes with another call to write, this time using 1 

to designate the standard output. The bytes to be written come from the 

array buffer, and the number of bytes is computed as sizeof(buffer), 

which returns the number of bytes in the array, not the size of the pointer 

constant buffer.

The buffer does not include extra space for a null terminator: the 

program does not treat the input from keyboard as a string, but rather as 

four independent bytes. The write function takes the same approach: no 

string terminator is needed because the last argument to write specifies 

exactly how many bytes should be written, in this case four.

A short experiment underscores the level at which the functions read 

and write work. The experiment is to replace

char buffer[BuffSize];

with

int buffer; /* sizeof(int) is 4 */
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or, indeed, with a variable of any data type whose size is at least 4 bytes. 

The read call now changes to

ssize_t flag = read(0, &buffer, sizeof(buffer)); 

                             /* &buffer == address of buffer */

The 4 bytes are to be put into a single int variable, which now acts 

like a 4-byte buffer. The write statement requires only a minor but 

critical change:

write(1, &buffer, sizeof(buffer));  /* need buffer's address */

The address operator must be applied to buffer, which is now just a 

scalar int variable.

This experiment underscores that system-level I/O does not honor 

multibyte types. For example, the bytes read into the int variable buffer 

could be any characters whatsoever. Here is a screen capture of a sample 

run of the revised rwLL program:

% ./ioLL

Four characters, please: !$ef

!$ef

These characters are not numerals, of course. The low-level read and 

write functions treat these simply as 8-bit bytes stored together in a 4-byte 

variable named buffer.

5.2.1. � Low-Level Opening and Closing
The next two code examples introduce the byte-oriented open and close 

functions. The sysWrite program writes an array of int values, 4 bytes 

apiece, to a disk file, and the sysRead program reads the bytes from the 

same file in two different ways. The file descriptors 0 (standard input), 1 

(standard output), and 2 (standard error) identify files that are opened 

automatically when a process begins execution; hence, there is no need for 
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the program to call open on these three. For other files, however, a call to 

open is required, and a matching call to close is sound practice. (When a 

program terminates, the system closes any files that the program may have 

opened.) The open function, like so many in the standard libraries, takes a 

variable number of arguments.

Listing 5-2.  Writing to a local file with system-level I/O

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

#define FILE_NAME "nums.dat"

void main() {

  /* Open a file for reading and writing. */

  int fd = open(FILE_NAME,                    /* name */

                �O_CREAT | O_RDWR,             /* �create, read/

write */

                �S_IRUSR | S_IWUSR | S_IXUSR | /* �owner's 

rights */

                �S_IROTH | S_IWOTH | S_IXOTH); /* �others' 

rights */

  if (fd < 0) { /* -1 on error, positive value on success */

    perror(NULL);

    return;

  }

  /* Write some data. */

  int nums[ ] = {9, 7, 5, 3, 1}; /* int[ ] type */

  ssize_t flag = write(fd, nums, sizeof(nums));

  �if (flag < 0) { �/* -1 on error, count of written bytes on 

success */
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    perror(NULL);

    return;

  }

  /* Close the file. */

  flag = close(fd);

  if (flag < 0) perror(NULL);

}

The sysWrite program (see Listing 5-2) tries to open a file on the local 

disk, creating this file if necessary. The program sets the access rights for 

the file’s owner and for others. The program then writes five integers to 

the file and closes the file. There is error-checking on all three of these I/O 

operations.

In this example, the call to the open function has three arguments, but 

the open function also can be called with only the first two arguments. The 

arguments in this case are as follows:

•	 The first argument is the name of the file to open. In 

this case, the full path is not used; hence, the file will 

be created in the directory from which the sysWrite 

program is launched.

•	 The second argument consists of flags, perhaps bitwise 

or-ed together as in this case. The pair

O_CREAT | O_RDWR

signals that the file should be created, if necessary, 

and opened for both read and write operations.

•	 The third argument consists of bitwise or-ed values that 

specify access permissions on the file. In this example, 

the file’s owner has read/write/execute permissions, 

as do others. In a production environment, the access 

permissions of owner and others might differ.
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If the call to open succeeds, a file descriptor is returned. Its value is 

the smallest positive value not currently in use by the process as a file 

descriptor. Since the file descriptor for the standard error (2) is in use, the 

smallest available value in this case would be 3. A print statement could be 

added to confirm that the value of fd is, indeed, 3.

If the call to open fails, -1 is returned to signal some error or other. (The 

next code example shows a sample perror message.) The call to write 

again has the three required arguments: the destination for the written 

bytes, the source of these bytes, and the number of bytes to write. Here is 

the relevant code segment:

int nums[ ] = {9, 7, 5, 3, 1}; /* int[ ] type */

ssize_t flag = write(fd, nums, sizeof(nums));  

                         /* ssize_t is a signed integer type */

No looping is needed to write the array’s contents because the third 

argument, sizeof(nums), is the number of bytes in the array as a whole. 

In this example, the bytes are written as integer values because the array’s 

elements are stored in memory as int instances. In short, the target file 

nums.dat contains binary data, not text. Checking the size of the file nums.

dat confirms that it holds 20 bytes, 4 bytes apiece for the 5 integers written 

to this file.

The sysWrite program opens a file by specifying access rights for the 

file’s owner and for others. In general, these rights are divided into three 

categories: owner, group, and other. The macros such as S_IRUSR and 

S_IWUSR are assigned values such that their bitwise or-ing yields unique 

values. For example:

S_IRUSR | S_IWUSR == 384 ## decimal

whereas

S_IRUSR | S_IRWXU == 448 ## decimal
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The bitwise or-ings can be as complicated as needed. It is common in 

Unix-like systems to set file permissions from the command line with octal 

values that reflect the bitwise or-ing of the values shown. For example:

S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH == 0664 ## octal

Table 5-2 summarizes the access permissions on files. In the left 

column, the values are octal. In C programs, an integer constant that starts 

with a 0 is interpreted as being in base-8, just as one starting with 0x or 0X 

is interpreted as being in base-16. It is common to use the octal values in 

command-line utilities such as chmod, but the symbolic constants are the 

way to go in programs. Note, by the way, that the permission values are such 

that any bitwise or-ing still yields a unique value. Also, mistakes such as

Table 5-2.  Access permissions

Octal code Symbolic code Meaning

0001 S_IXOTH Others can execute.

0002 S_IWOTH Others can write.

0004 S_IROTH Others can read.

0007 S_IRWXO Others can do anything.

0010 S_IXGRP Group can execute.

0020 S_IWGRP Group can write.

0040 S_IRGRP Group can read.

0070 S_IRWXG Group can do anything.

0100 S_IXUSR Owner can execute.

0200 S_IWUSR Owner can write.

0400 S_IRUSR Owner can read.

0700 S_IRWXU Owner can do anything.
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S_IWUSR | S_IXGRP | S_IWUSR /* S_IWUSR occurs twice */

are harmless.

Listing 5-3.  Reading from a local file with system-level I/O

#include <unistd.h>

#include <fcntl.h>

#include <stdio.h>

#define FILE_NAME "nums.dat"

void main() {

  �int fd = open(FILE_NAME, O_RDONLY); /* open for 

reading only */

  if (fd < 0) { /* -1 on error, > 2 on success */

    �perror(NULL); /* "No such file or directory" if nums.dat 

doesn't exist */

    return;

  }

  int read_in[5]; /* buffer to hold the bytes */

  ssize_t how_many = read(fd, read_in, sizeof(read_in));

  if (how_many < 0) {

    perror(NULL);

    return;

  }

  close(fd); /* no error check this time */

  int i;

  �int n = how_many / sizeof(int); �/* from byte count to number 

of ints */

  �for (i = 0; i < n; i++) printf("%i\n", read_in[i] * 10);  

                                /* 90 70 50 30 10 */

}
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The sysRead program (see Listing 5-3) reads five 4-byte int values from 

the same file that the sysWrite program populates with these integers. In 

the sysRead program, the file is opened for read-only. The available macro 

flags for a call to open, together with their values, are

#define O_RDONLY  0x0000  /* open for reading only */

#define O_WRONLY  0x0001  /* open for writing only */

#define O_RDWR    0x0002  /* open for reading and writing */

The source code documentation shows the perror message if the file 

nums.dat does not exist.

Once the file is opened, the read function requires a buffer in which 

to place the bytes, in this case the read_in array that can hold five int 

elements, or 20 bytes in all. The read function, like the others seen so far, 

returns -1 in case of error; 0 on end of file; and otherwise the number of 

bytes read.

A read operation is the inverse of a write operation, and the arguments 

passed to read and write reflect this relationship. The first argument to 

read is a file descriptor for the source of bytes, whereas this argument 

specifies the destination in the case of write. The second argument to 

read is the destination buffer, whereas this argument specifies the source 

in a write. The last argument is the same in both: the number of bytes 

involved.

The sysRead program uses the high-level printf function to print the 

int values. Each value is multiplied by 10 to confirm that int instances 

have been read into memory from the source file. Recall that a successful 

read returns the number of bytes, in this case stored in the local variable 

how_many; hence, how_many is divided by sizeof(int) to get the number of 

4-byte integers, in this case five.

Together the sysWrite and sysRead programs illustrate how local disk 

files can support basic interprocess communication. The programs would 
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need to be amended so that, for example, the sysRead program would 

wait for the nums.dat file to be created and populated with integer values 

before trying to read from that file. A later code example covers file locking 

for synchronizing access to shared files.

5.3. � Redirecting the Standard Input, 
Standard Output, and Standard Error

Redirecting the standard input, the standard output, and the standard 

error with programs launched from the command line is straightforward. 

A simplified version of an earlier program illustrates. This approach 

brings the advantage of using one and the same program for reading and 

writing arbitrarily many files, but without editing and then recompiling the 

source code.

Listing 5-4.  Redirecting I/O

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#define BuffSize 8

void main() {

  char buffer[BuffSize]; /* 8-byte buffer */

  �ssize_t flag = read(0, buffer, sizeof(buffer)); �/* 0 == 

stdin */

  if (flag < 0) {

    perror("Ooops...");

    return;

  }

  char ws = '\t';
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  write(1, buffer, sizeof(buffer));    /* 1 == stdout */

  write(1, &ws, 1);                    /* ditto */

  write(2, buffer, sizeof(buffer));    /* 2 == stderr */

  putchar('\n');

}

The ioRedirect program (see Listing 5-4) expects to read 8 bytes from 

the standard input and then echoes these bytes to the standard output and 

the standard error. If the bytes are ASCII character codes, the program is 

easy to follow. Here is a screen capture of a sample run; my comments start 

with ##:

% ./ioRedirect      ## on Windows, drop the ./

12345678            ## �typed in from the keyboard, echoed on 

the screen

12345678 12345678   ## �1st 8 to standard output, 2nd 8 to 

standard error

The file infile contains a single line:

abcdefgh

To redirect the standard input to this file, the command is

% ./ioRedirect < infile ## < redirects the standard input

The output now is

abcdefgh abcdefgh

To redirect the standard output to the file outfile, the command is

% ./ioRedirect > outfile
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The eight characters entered on the keyboard now appear once on the 

screen (default for the standard error) and once in the local disk file outfile. 

By the way, if outfile already exists, then the redirection purges this file and 

then repopulates it; hence, caution is in order.

Redirection to the standard error differs only slightly. Recall that 2 is 

the file descriptor for the standard error:

% ./ioRedirect 2> logfile

Redirections can be combined as needed, for example:

% ./ioRedirect < infile 2> logfile

Assuming that infile is the same as before, the contents of logfile are

abcdefgh  abcdefgh

5.4. � Nonsequential I/O
The examples so far have dealt with sequential I/O: bytes are read in 

sequence and written in sequence. It is convenient at times, however, to 

have random or nonsequential access to a file’s contents. A short code 

example illustrates the basic API.

Listing 5-5.  Random or nonsequential file access

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <fcntl.h>

#define FILE_NAME "test.dat"
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void main() {

  const char* bytes = "abcdefghijklmnopqrstuvwxyz";

  int len = strlen(bytes);

  char buffer[len / 2];

  char big_N = 'N';

  /* Open the file and populate it with some bytes. */

  int fd = open(FILE_NAME,

                O_RDWR | O_CREAT,             /* flags */

                �S_IRUSR | S_IWUSR | S_IXUSR); �/* owner's 

rights */

  write(fd, bytes, len);

  �off_t offset = len / 2;          �/* twelve bytes in is 

character n */

  �lseek(fd, offset, SEEK_SET);     �/* SEEK_SET is the start of 

the file */

  write(fd, &big_N, sizeof(char)); �/* overwrite 'n' with 'N' */

  close(fd);

  fd = open(FILE_NAME, O_RDONLY);

  lseek(fd, offset, SEEK_SET);

  read(fd, buffer, len / 2);

  close(fd);

  write(1, buffer, len / 2); /* Nopqrstuvwxyz */

  putchar('\n');

}

The nonseq program (see Listing 5-5) skips the error checking to 

minimize the clutter, thereby keeping the focus on the nonsequential file 

access. The program first writes 26 bytes (the lowercase characters in the 

English alphabet) to a file. After closing the file, the program reopens the 

file to do an lseek operation that sets up another write operation, this 
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time a write of just one byte. As the name indicates, the function lseek 

performs a seeking operation, which can change the current file-position 

marker. A closer look at lseek clarifies.

The library function lseek takes three arguments. They are, in order:

•	 A file descriptor

•	 A byte offset from a designated position in the file

•	 The start position for the offset, with three convenient 

macros to define the usual positions:

•	 SEEK_SET is the start position in the file.

•	 SEEK_CUR is the current position in the file.

•	 SEEK_END is the end position in the file.

The lseek function returns -1 in case of an error, or the offset to 

indicate success. The returned offset could be saved for later use. The 

offsets for lseek are like indexes in a char array: an offset of 0 is the 

position of the first byte in the file from the seek position, and an offset of 

1 is the position of the second byte in the file from the seek position, and 

so on. In this example, the offset is 13, the position of the ASCII character 

code for lowercase n. An lseek operation beyond the current end of a file 

does not expand the file’s size; a subsequent write operation would be 

required to do so.

Once the current position has been reset with lseek, the program 

overwrites the lowercase n with an uppercase N. The file then is closed 

again only to be reopened one more time. There is another lseek to the 

position of the now uppercase N and a read operation to get the bytes for 

N through z into the char array named buffer. For confirmation, buffer is 

printed to the standard output.
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5.5. � High-Level I/O
System-level I/O is low level because it works with bytes, the char type in 

C; by contrast, high-level I/O can work with multibyte data types such as 

integers, floating-point numbers, and strings. To take but one convenient 

example, the API for the high-level I/O makes it straightforward to convert 

between, for example, integers and strings. High-level I/O can work at 

the byte (char) level, but this kind of I/O is especially useful above the 

byte level.

The names are similar for some functions in the high-level and the 

low-level API. For example, there is a low-level open function and the 

high-level fopen function, as well as the low-level close and the high-

level fclose functions. There is an fread function in the high-level API 

that matches up with the read function in the low-level API. The functions 

differ in syntax, of course, but also in how they work at the byte level. The 

low-level functions work only at the byte level, whereas the high-level API 

can work directly with multibyte types such as int and double.

There is crossover. For example, the high-level fdopen function takes 

a low-level file descriptor as an argument but returns the high-level type 

FILE*, the return type for various high-level library functions. Consider 

this contrast for opening and closing a file on the local disk:

int fd = open("input.dat", O_RDONLY);  �/* low-level: -1 on 

failure */

FILE* fptr = fopen("input.dat", "r");  �/* high-level: NULL on 

failure */

The corresponding function calls to close the opened file would be

close(fd);    /* fd is an int value */

fclose(fptr); /* fptr is a FILE* value */
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In general, a file opened with the low-level open function is closed with 

the low-level close function. In a similar fashion, a file opened with fopen 

is closed with the fclose function. By the way, there is a limit on how 

many files a process can have open at a time; hence, it is critical to close 

files when keeping them open is no longer important.

In the low-level API, the integer values 0, 1, and 2 identify the standard 

input, the standard output, and the standard error, respectively. In the 

high-level API, the FILE* pointers stdin, stdout, and stderr do the same. 

The data type of interest in high-level I/O is FILE*, not FILE. It would be 

highly unusual for a program to declare a variable of type FILE, but typical 

for a program to assign the value returned from a high-level I/O function to 

a variable of type FILE*.

The following code segment summarizes the contrast between low-

level and high-level I/O, with variable fd as a file descriptor and variable 

fptr as a pointer to FILE:

int buffer[5];                        /* 5 ints == 20 bytes */

read(fd, buffer, sizeof(int) * 5);    /* �byte level read: read 

20 bytes */

fread(buffer, sizeof(int), 5, fptr);  /* �int level read: read 

5 ints */

The low-level read function reads a specified number of bytes and 

stores them somewhere—in this case, in a 20-byte buffer that happens 

to be an int array of size five. By contrast, the high-level fread function 

can read multibyte chunks, in this case five int values, which are 4 

bytes apiece.

Some in the C community believe that FILE should have been named 

STREAM, and it is common to describe high-level I/O as stream-based 

I/O. In a technical sense, C has two ways for a program to connect to any 

file, including the standard input, a local disk file, and so on:
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•	 Through a file descriptor, an integer value that identifies 

the opened file.

•	 Through a stream, a channel that connects a source and 

a destination: the file could be either the source (read 

operation) or destination (write operation).

To study the API for the high-level I/O is, in effect, to study various 

ways of managing I/O streams. The forthcoming examples do so.

Listing 5-6.  Basics of high-level I/O

#include <stdio.h>

#define FILE_NAME "data.in"

void main() {

  float num;

  printf("A floating-point value, please: ");

  �int how_many_floats = fscanf(stdin, "%f", &num); 

                           /* last arg must be an address */

  if (how_many_floats < 1)

    fprintf(stderr, "Bad scan -- probably bad characters\n");

  else

    fprintf(stdout, "%f times 2.1 is %f\n", num, num * 2.1);

  FILE* fptr = fopen(FILE_NAME, "w");  /* write only */

  �if (!fptr) perror("Error on fopen"); �/* fptr is NULL (0) if 

fopen fails */

  int i;

  for (i = 0; i < 5; i++)

    fprintf(fptr, "%i\n", i + 1);

  fclose(fptr);

  fptr = fopen(FILE_NAME, "r");

  int n;
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  puts("\nScanning from the input file:");

  �while (fscanf(fptr, "%i", &n) != EOF)  �/* EOF == -1 == all 1s 

in binary */

    printf("%i\n", n);

  fclose(fptr);

}

The scanPrint program (see Listing 5-6) covers some basics of high-

level I/O, beginning with scanning a file for input. The statement

int how_many_floats = fscanf(stdin, "%f", &num);

highlights some distinctive features of the high-level API. The function 

fscanf, with f for file, is structured as follows:

•	 The first argument specifies the source from which to 

scan for input, in this case stdin. The shortcut function 

scanf is hard-wired to read from the standard input, 

but fscanf explicitly names the source as its first 

argument. The first argument to scanf is the second 

argument to fscanf, the format string:

int how_many_floats = scanf("%f", &num); /* scanf 

instead of fscanf */

•	 The second argument to fscanf is the format string, 

which specifies how scanned bytes are to be converted 

into an instance of some type, including a multibyte 

type such as the 4-byte float. The format string can 

contain arbitrarily many formatters.

•	 The third argument is the destination address, that 

is, the address of where the formatted bytes are to be 

stored. In this example, the third argument is &num. The 

scanning functions in general, including fscanf, return 
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the number of properly formatted instances of the 

specified data type, in this case float. The format string 

requests that only a single float be formatted; hence, 

the returned value is either 0 (failure) or 1 (success).

WHY IS THE ADDRESS OPERATOR & SO CRITICAL IN THE SCANNING 
FUNCTIONS?

A typical call to scanf is

int num;           �/* num is a local variable, and so contains 

random bits */

scanf("%i", &num); �/* read an int, store it at the address of n */

If the address operator & were missing from &num in the scanf call, the 

contents of num would be interpreted as an address, and it is highly unlikely 

that these random bits make up an address within the executing program’s 

address space. If num is a local variable, for example, its contents are random 

bits from the stack or a register.

The scanPrint program prompts the user to enter a floating-point 

value. If inappropriate characters such as abc.de are entered instead, the 

program prints an error message to that effect. The fprintf function is 

used to print to the standard error:

if (how_many_floats < 1)

  fprintf(stderr, "Bad scan -- probably bad characters\n");

Otherwise, the scanned float value is multiplied to confirm that the 

conversion from bytes to a float instance indeed succeeded. The printf 

function is hard-wired for printing to the standard output, just as the scanf 

function is hard-wired for scanning from the standard input. In general, 

error messages should have the standard error as their destination; hence, 

the scanPrint function uses fprintf with stderr as the first argument.
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The last loop in the program is a while loop, and the loop’s condition is 

a common one in programs that use high-level I/O to read from files:

while (fscanf(fptr, "%i", &n) != EOF) /* EOF == -1 == all 1s in 

binary */

The value returned from fscanf in particular, and the related scanning 

functions in general, is tricky:

•	 If fscanf is successful in reading and converting, it 

returns the number of such successes. This number 

could be zero, which does not represent an input error, 

but rather a data conversion failure.

•	 If an end-of-stream condition occurs before a successful 

scan-and-convert, the function returns -1 (the value of 

the macro EOF). The high-level API also includes the 

function feof(), which returns true (nonzero) to signal 

end of file and false (zero) otherwise.

•	 If an input error occurs (e.g., the data source is absent), 

fscanf also returns -1.

At issue, then, is how to distinguish between EOF, a normal eventuality 

when reading from a stream, and an outright error. The library function 

ferror returns nonzero (true) to indicate an error condition in the 

stream, and the global variable errno contains an error code under 

the same condition; as usual, the perror function can be used to print 

a corresponding error message. For the programmer, however, the 

difference may not matter: fscanf returns a negative value to signal, in 

effect, that a scan-and-convert operation on a stream has failed. The 

ferror function and the errno variable then can be used, if needed, to get 

more information on why the failure occurred.
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A final point about EOF is in order. The EOF value (32 1s in binary) 

marks the end of a stream, and streams can differ in their sources. If the 

source is a file on a local disk, then the EOF is generated when a read 

operation tries to read beyond the last byte stored in the file. If the source 

is a pipe, a one-way channel between two processes, then the EOF is 

generated when the pipe is closed on the sending side. An EOF thus should 

be treated as a condition, rather than as just another data item. To be sure, 

a program recognizes the EOF condition by reading the 32 bits that make 

up the EOF value; but these 32 bits differ in meaning from whatever else 

happens to be read from the stream.

High-level I/O is appropriately named, for this level focuses on 

the multibyte data types that are dominant in high-level programming 

languages. There may be times at which any program must drop down to 

the byte level, but the usual level is awash with integers, strings, floating-

point values, and other instances of multibyte types. C works well at either 

I/O level. Other technical aspects of high-level I/O will be explored in 

forthcoming examples, which provide context for exploring this API.

5.6. � Unbuffered and Buffered I/O
There is yet another way to contrast low-level and high-level I/O: low-level 

I/O operations are said to be unbuffered, whereas the high-level ones are 

said to be buffered. It is important, however, to consider carefully what 

it means for low-level I/O to be unbuffered. A buffer in this context is a 

system-supplied, in-memory storage area between the executing program, 

on the one side, and the data source, on the other side.

Consider a code segment that reads a single byte:

char byte;

read(fd, &byte, 1); /* fd identifies a local disk file */
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For reasons of efficiency, no modern operating system would fetch a 

single byte from disk into memory. Instead, the system would fetch a block 

of bytes into a memory buffer and then deliver the single byte from this 

buffer to the program:

            block of bytes +---------------+ 1 byte to read

local disk---------------->| memory buffer |---------------->read(fd, &byte, 1)

                           +---------------+

To call low-level I/O unbuffered is not to deny system buffering 

under the hood. Instead, the point is that the low-level API supports the 

reading of just one byte, regardless of exactly how that byte might have 

been delivered to the program that invokes the read function with a third 

argument of 1.

The high-level fread function is essentially a wrapper around the  

low-level read function. Each can read a single byte:

char byte;

read(0, &byte, 1);          /* one byte from standard input */

fread(&byte, 1, 1, stdin);  /* ditto */

There are also high-level functions such as fgetc that seem to read a 

single byte, as the c for char in the function’s name suggests. But the return 

type for fgetc and related high-level functions is int, not char. The fgetc 

function, like its high-level cousins, returns EOF to signal the end-of-stream 

condition, and EOF is a 4-byte int value. In situations other than EOF, the 

fgetc function returns a byte packaged in an int whose high-order 24 bits 

are zeroed out; the byte of interest occupies the low-order 8 bits.
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Listing 5-7.  A program contrasting read and fgetc

#include <unistd.h>

#include <stdio.h>

void main() {

  int i = 0, n = 8;

  char byte;

  /* unbuffered */

  while (i++ < n) {

    read(0, &byte, 1);   /* read a single byte */

    write(1, &byte, 1);  /* write it */

  }

  /* buffered */

  i = 0;

  while (i++ < n) {

    int next = fgetc(stdin); /* char read in a 4-byte int */

    fputc(next, stdout);     /* char written as a 4-byte int */

  }

  putchar('\n');

}

/* stdin is: 12345678abcdefgh */

The buffer program (see Listing 5-7) contrasts byte-fetching in the 

low-level and the high-level APIs. The low-level read stores the byte in a 

char variable, and sizeof(char) is guaranteed to be 1 byte. By contrast, 

the high-level fgetc function returns a 4-byte int. From the command 

line, the program can be tested against the in.dat file, whose contents are 

shown in the comment at the bottom:

% buffer < in.dat
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Otherwise, all 16 characters should be entered at once from the 

keyboard, and only then should the Return key be hit.

The traditional contrast between buffered and unbuffered I/O can be 

misleading, as emphasized in the previous discussion. It is more useful to 

focus on program requirements. If a program needs to work directly with 

bytes, then the low-level API is designed to do precisely this. If a program 

deals mostly with multibyte types but occasionally drops down to the byte 

level, then the high-level API, which includes wrappers such as fread for 

low-level functions, is the sensible alternative.

5.7. � Nonblocking I/O
Nonblocking I/O has become a popular technique for boosting 

performance. For example, a production-grade web server is likely to 

include nonblocking I/O in the mix of acceleration techniques. The 

potential boost in performance is likewise a challenge to the programmer: 

nonblocking I/O is simply trickier to manage than its blocking counterpart.

As the name indicates, nonblocking I/O operations do not block—that 

is, wait—until a read, write, or other I/O operation completes. Consider 

this code segment in system-level I/O:

int n;                     /* 4 bytes */

read(fd, &n, sizeof(int)); /* blocking read operation */

printf("%i\n", n);         /* �next statement after 

blocking read */

The file descriptor fd might identify a local file on the disk but also 

a less reliable source of bytes such as a network connection. If the read 

operation in the second statement blocks, then the printf statement 

immediately thereafter does not execute until the read call returns, 

perhaps because of an error.
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If the read call were nonblocking, the code segment would need a 

more complicated approach. A nonblocking call returns immediately, and 

there are now various possibilities to consider, including the following:

•	 The read call got all of the expected bytes, in this 

case four.

•	 The read call got only some of the expected bytes and 

perhaps none at all.

•	 The read call encountered an error or end-of-stream 

condition.

The program now needs logic to handle such cases. Consider the 

second case. If one call to a nonblocking read gets only some of the 

expected bytes, then these bytes need to be saved, and another read 

attempted to get the rest. Perhaps a loop becomes part of the read logic: 

loop until all of the expected bytes arrive or an error occurs. At the very 

least, it seems that the printf statement would need to occur inside 

an if test that checks whether enough bytes were received to go on with 

the printf.

IS NONBLOCKING I/O THE SAME AS ASYNCHRONOUS I/O?

The use of the terms blocking/nonblocking and synchronous/asynchronous 
varies enough to rule out a simple yes or no answer. My preference is for 

the blocking/nonblocking pair because they seem more intuitive. That said, 

code examples are the best way to clarify exactly what these terms mean in 

practice.
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5.7.1. � A Named Pipe for Nonblocking I/O
The next code example uses the nonblocking read operation as 

representative of nonblocking I/O operations in general. For the example 

to be realistic, it should have two features:

•	 The data consumed in a nonblocking read operation 

should arrive randomly; otherwise, the nonblocking 

reads might behave exactly as blocking reads 

would have.

•	 After an attempted nonblocking read operation, the 

program should have meaningful work to do before the 

next read operation: the appeal of nonblocking I/O is 

that it frees up a program to do something else besides 

just waiting for an I/O operation to complete.

Accordingly, the code example consists of two programs: one writes 

in a pseudorandom fashion to a named pipe, and the other reads from 

this pipe. A pipe is a connection between processes, and one way in that 

one end of the pipe is for writing, and the other is for reading. There are 

both unnamed (or anonymous) and named pipes, both of which are used 

widely across modern systems for interprocess communication. A later 

example covers unnamed pipes.

Unix-like systems, and Cygwin for Windows, have command-line 

utilities that make it easy to demonstrate named pipes. The steps are as 

follows:

	 1.	 Open two terminal windows so that two command-

line prompts are available. The working directory 

should be the same for both command-line 

prompts.
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	 2.	 In one of the terminal windows, enter these two 

commands (my comments start with ##):

% mkfifo tester  ## �creates special file named tester, 

which implements the pipe

% cat tester     ## �type the pipe's contents to the 

standard output

To begin, nothing should appear in the window 

because nothing has been written yet to the 

named pipe.

	 3.	 In the second terminal window, enter the following 

command:

% cat > tester ## redirect keyboard input to the pipe

hello, world!  ## then hit Return key

bye, bye       ## ditto

<Control-C>    ## terminate session with a Control-C

Whatever is typed into this terminal window is echoed 

in the other. Once Control-C is entered, the regular 

command-line prompt returns in both windows: the 

pipe has been closed.

	 4.	 For cleanup, remove the file that implements the 

named pipe:

% rm tester

As the name mkfifo suggests, a named pipe also is called a fifo for first 

in, first out (FIFO). A named pipe implements the FIFO discipline so that 

the pipe acts like a normal queue: the first byte into the pipe is the first byte 

out, and so on. There is also a library function named mkfifo, which is 

used in the next code example.
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Listing 5-8.  A named pipe writer

#include <fcntl.h>

#include <unistd.h>

#include <time.h>

#include <stdlib.h>

#include <stdio.h>

#include <sys/stat.h>

#include <sys/types.h>

#define MaxLoops 12000   /* outer loop */

#define ChunkSize 16     /* how many written at a time */

#define IntsPerChunk 4   /* four 4-byte ints per chunk */

#define MaxZs 250        /* max microseconds to sleep */

void main() {

  const char* pipeName = "./fifoChannel";

  �mkfifo(pipeName, 0666);   �/* read/write for user/group/

others */

  �int fd = open(pipeName, O_CREAT | O_WRONLY);   �/* open as 

write-only */

  sleep(2); /* give user a chance to start the fifoReader */

  int i;

  �for (i = 0; i < MaxLoops; i++) {    �/* write MaxWrites 

times */

    int j;

    �for (j = 0; j < ChunkSize; j++) { �/* each time, write 

ChunkSize bytes */

      int k;

      int chunk[IntsPerChunk];
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      for (k = 0; k < IntsPerChunk; k++)

        chunk[k] = rand();

      write(fd, chunk, sizeof(chunk));

    }

    usleep((rand() % MaxZs) + 1); /* pause a bit for realism */

  }

  close(fd);                      /* �close pipe: generates an 

end-of-file */

  unlink(pipeName);               /* �unlink from the 

implementing file */

  �printf("%i ints sent to the pipe.\n", MaxLoops * ChunkSize * 

IntsPerChunk);

}

The fifoWriter program (see Listing 5-8) creates and then writes 

sporadically to the named pipe called fifoChannel. Two statements at the 

start do the setup:

mkfifo(pipeName, 0666);  /* read/write for user/group/others */

int fd = open(pipeName, O_CREAT | O_WRONLY);  �/* open as 

write-only */

The first statement calls the library function mkfifo with two 

arguments: the name of the implementing file and the access permissions 

in octal. The second statement invokes the by-now-familiar open function, 

specifying that the file underlying the named pipe be created if necessary; 

the fifoWriter is restricted to write operations because of the O_WRONLY flag.

The fifoWriter then pauses for two seconds to give the user a chance 

to start the other program, the fifoReader. The fifoWriter needs to start 

first because it creates and opens the named pipe; but the two-second 

pause is there only for convenience. The fifoWriter program then loops 
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MaxLoops times (currently 12,000), writing multibyte chunks rather than 

single bytes to the pipe. A chunk is an array of four 4-byte int values. 

After writing the bytes to the pipe, the program pauses a pseudorandom 

number of microseconds, thereby making the write operations somewhat 

unpredictable. In all, the fifoWriter writes 768,000 int values to the pipe.

The program does cleanup at the end. The file descriptor fd is used to 

close the pipe, which generates an end-of-file signal for the reader side. 

The call to the unlink function unlinks the fifoWriter program from the 

implementation file fifoChannel. When all of the processes connected 

to the pipe unlink, the system is free to remove the file. In the current 

example, there is only a single writer process to the pipe and a single 

reader process from the pipe; hence, only two unlink operations are 

required.

Listing 5-9.  A named pipe reader

#include <fcntl.h>

#include <unistd.h>

#include <time.h>

#include <stdlib.h>

#include <stdio.h>

#include <sys/stat.h>

#include <sys/types.h>

unsigned is_prime(unsigned n) { /* not pretty, but efficient */

  if (n <= 3) return n > 1;

  if (0 == (n % 2) || 0 == (n % 3)) return 0;

  unsigned i;

  for (i = 5; (i * i) <= n; i += 6)

    if (0 == (n % i) || 0 == (n % (i + 2))) return 0;

  return 1;

}
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void main() {

  const char* file = "./fifoChannel";

  �int fd = open(file, O_RDONLY | O_NONBLOCK); �/* non-

blocking */

  if (fd < 0) return; /* no point in continuing */

  unsigned primes_count = 0, success = 0, failure = 0;

  while (1) {

    int next;

    int i;

    ssize_t count = read(fd, &next, sizeof(int));

    if (0 == count)

      break;                  /* end of stream */

    �else if (count == sizeof(int)) { �/* read a 4-byte int 

value */

      success++;

      if (is_prime(next)) primes_count++;

    }

    else                             /* �includes errors, and < 

4 bytes read */

      failure++;

  }

  close(fd);     /* close pipe from read end */

  unlink(file);  /* unlink from the underlying file */

  �printf("Success: %u\tPrimes: %u\tFailure: %u\n", 

success,   primes_count, failure);

}
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The fifoReader program (see Listing 5-9) reads from the named pipe 

that the fifoWriter creates and then populates with chunks of int values. 

The program configures the pipe for nonblocking read operations with the 

O_NONBLOCK flag passed as an argument to the open function:

int fd = open(file, O_RDONLY | O_NONBLOCK); /* non-blocking */

The utility function fcntl also could be used to set the nonblocking 

status, as illustrated shortly. The program tries to read int values from 

the pipe:

ssize_t count = read(fd, &next, sizeof(int)); �/* 4-byte int 

values */

Recall that the fifoWriter writes an array of four int values at a time 

and does so sporadically. Because the read operation in the fifoReader is 

nonblocking, three cases are singled out for application logic:

•	 If the read function returns 0, this signals an end-of-

stream condition in the named pipe: no further bytes 

are coming from the one and only writer, and so the 

fifoReader breaks out of its infinite loop.

•	 If the read function yields exactly 4 bytes, then the 

program checks whether the integer value is a prime; 

this check represents the do something step before 

attempting the next read operation.

•	 If the read function fails to read exactly 4 bytes, or 

detects an error condition of any kind, then the 

program records the failure. The fifoReader program 

does not distinguish between partial reads (e.g., 2 

bytes instead of the expected 4) and miscellaneous but 

nonfatal errors.
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The fifoReader, like the fifoWriter, cleans up by closing the named 

file and unlinking from the implementation file. The fifoReader generates 

a short report at the end. On a sample run, the output (formatted for 

readability) was

Success: 768,000 Primes: 37,682 Failure: 31,642,062

Recall that the thirty-one million or so failures cover partial reads 

(read returns less than sizeof(int)) and nonfatal errors. In the end, the 

fifoReader does manage to read all of the 768,000 4-byte integer values 

that the fifoWriter writes to the pipe; but the fifoReader has plenty of 

unsuccessful reads as well: the fifoWriter sleeps between write operations, 

which gives the fifoReader ample opportunity to attempt nonblocking read 

operations doomed to fail because no unread bytes remain in the channel. 

In short, the output from the fifoReader is not surprising.

The fifoReader program has a dismal record of successful reads: about 

2% of its read operations succeed in getting desired 4-byte int values, 

and the remaining read operations fail. The next chapter introduces an 

event-driven approach to read operations. This new approach first checks a 

channel for available bytes before even attempting a read operation.

The fifoReader program uses a flag passed to the open function to set 

the nonblocking status. The standard libraries include an fcntl utility, 

declared in the header file fcntl.h, that can do the same. The fcntl 

function has many uses and a correspondingly long documentation.

Listing 5-10.  A function to set the nonblocking feature

unsigned set_nonblock(int fd) {

  int flags = fcntl(fd, F_GETFL);         /* �get the current 

flag values */

  if (-1 == flags) return 0;              /* �on error, return 

false */
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  flags |= O_NONBLOCK;                    /* �add non-

blocking */

  return -1 != fcntl(fd, F_SETFL, flags); /* �1 == success, 0 == 

failure */

}

The setNonBlock example (see Listing 5-10) shows how a file descriptor 

can be used to change the status from blocking to nonblocking. The set_

nonblock function takes a file descriptor as its only argument and returns 

either true (1) or false (0) to signal whether the attempt succeeded. The 

function first gets the flags currently set (e.g., O_CREAT and O_RDONLY); if 

an error occurs here, false is returned. Otherwise, the function adds the O_

NONBLOCK flag and then uses the fcntl function for updating. If the update 

succeeds, set_nonblock returns true, and false otherwise.

5.8. � What’s Next?
Network programming centers on the socket API, where a socket is an 

endpoint in a point-to-point connection between two processes. If the 

processes are running on physically distinct hosts (machines), a network 

socket is in play. If the processes are running on the same host, a domain 

socket could be used instead. (Domain sockets are a popular way for large 

systems, such as database systems, to interact with clients.) The very same 

I/O API used to interact with disk files works with sockets as well. Sockets, 

unlike pipes, are bidirectional.

This chapter has focused on I/O operations on a single machine. 

The next chapter broadens the study to include I/O operations across 

machines, and the chapter also explores an event-driven alternative to the 

nonblocking I/O introduced in this chapter.
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CHAPTER 6

Networking

6.1. � Overview
Network programming brings challenges beyond the details of yet 

another API. Networks can be brittle, as connections go down for reasons 

that may be hard to determine. Performance can vary widely because 

of network load. Programs must be sufficiently robust to deal with such 

issues and to anticipate the many others that come with the territory. 

Debugging network applications is harder, in general, than debugging 

ones that involve only a single machine. Given the challenges of network 

programming, it is no surprise that library functions in its support can 

seem subtle, complicated, and even overwhelming. This chapter uses 

relatively short but realistic examples to illustrate the challenges and 

sound ways to address them. After a few more introductory points, the 

discussion moves to a series of code examples.

Table 6-1.  The basic protocol stack

Acronym Meaning Comments

HTTP Hyper Text Transport Protocol Web servers and their clients

TCP Transmission Control Protocol Connection-oriented, reliable

UDP User Datagram Protocol Connectionless, best-try

IP Internet Protocol Addressing: symbolic and numeric
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Table 6-1 lists the protocols of interest in the forthcoming examples. 

The protocol stack shown in the table has IP at the bottom and HTTP at 

the top: IP handles network addressing, and HTTP manages conversations 

between web servers and their clients. The HTTP protocol sits atop TCP, 

which is connection-oriented: the protocol sets up a connection between 

the endpoints before any data are transmitted. This connection-oriented 

feature contrasts with the best-try character of UDP. Under UDP, a sender 

sends a datagram to a receiver, but the receiver does not acknowledge 

automatically the receipt of the transmitted packet. Further, there is no 

error sent to the sender if the datagram gets lost. TCP adds error reporting, 

acknowledgment, and other services to the underlying UDP layer. HTTP, in 

turn, specializes the features inherited from TCP. The web socket protocol 

so popular in interactive web-based applications is built on top of TCP as 

well and has less overhead than HTTP.

The socket API has settings that reflect the different protocol layers 

shown in Table 6-1. Each of the protocols supports some level of 

configuration, which is done through a mix of utility functions and flags. 

The socket API must be complicated, in short, because the underlying 

protocol stack is so.

The library functions exposed in the socket API have been fine-tuned, 

reworked, and even obsoleted over time. Again, this is to be expected: the 

protocols themselves have changed. For example, the IP protocol comes 

in versions such as IPv4 and IPv6. The move from IPv4 to IPv6 is a major 

one in that Internet addresses go from 32 to 128 bits. The code examples 

address this versioning issue.

6.2. � A Web Client
The first code example, a web client, is divided into two source files for 

convenience. The file web_client.c contains the high-level application 

logic: connect to a web server, send a request, and print the response. 
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The file get_connection.c contains the low-level networking details such 

as determining the type of connection (UDP or TCP) to the server, the 

amount of time a read operation should wait on a response before timing 

out, and so on. (The next sidebar describes a Makefile for compiling the 

files into an executable.)

Listing 6-1.  A basic web client

#include <unistd.h>  /* low-level I/O */

#include <string.h>

#include <stdio.h>

#include <stdlib.h>  /* exit */

#include <errno.h>

#define BuffSize   2048  /* bytes */

extern int get_connection(const char*, const char*);  

                                          /* declaration */

void main() {

  �const char* host = "www.google.com";    �/* symbolic IP 

address */

  �const char* port = "80";                �/* standard port for 

HTTP connections */

  �const char* request = "GET / HTTP/1.1\nHost: www.google.

com\r\n\r\n";

  ssize_t count;

  char buffer[BuffSize];

  /* connect */

  int sock_fd = get_connection(host, port);

  if (sock_fd < 0) {

    fprintf(stderr, "Can't connect\n");

    exit(-1);

  }
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  /* send request */

  if (write(sock_fd, request, strlen(request)) < 0) {

    fprintf(stderr, "Can't write request\n");

    exit(-1);

  }

  /* get and write response */

  unsigned read_count = 0, total_bytes = 0;

  �memset(buffer, 0, BuffSize); /* clear the buffer for reading */

  while (1) {

    count = read(sock_fd, buffer, sizeof(buffer));

    �if (EWOULDBLOCK == errno || 0 == count) break;  

/* EWOULDBLOCK on timeout */

    �if (-1 == count) continue;  /* continue on non-fatal 

error */

    write(1, buffer, count);

    read_count++; total_bytes += count;

  }

  close(sock_fd);

  �fprintf(stderr, "\n\n%u bytes read in %u separate reads.\n", 

total_bytes, read_count);

}

The file web_client.c (see Listing 6-1), one of the two source files in 

the webclient program, uses the familiar read and write functions to 

communicate with a web server, in this case a Google HTTP server. A 

socket, just like a file on the local disk, has a file descriptor as its identifier. 

In addition to the read and write functions, the socket API also has send 

and recv functions, which take four arguments instead of the three in read 

and write. The fourth argument, in both cases, allows for configuration 

through various flags.
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The webclient program initializes two strings, host and port, which 

specify the symbolic IP address for the Google server and the port number: 

www.google.com and 80, respectively. The port number 80 is the default for 

HTTP connections, just as 443 is the default port for HTTPS connections. 

Instead of the symbolic IP address, the program could have used the IPv4 

dotted-decimal address 216.58.192.132, each of whose four parts is 8 bits 

in size. The IP address and port number are sent as arguments to the get_

connection function, which returns either the file descriptor for a socket 

(success) or -1 (failure). In case of failure, the webclient program exits after 

an error message.

WHAT’S A MAKEFILE?

The webclient program consists of two source files. It can be tedious to 

compile multiple files into an executable. The make utility, available on most 

Unix-like systems and through Cygwin, automates the process. Here is a bare-

bones Makefile (with Makefile as its name), which the make utility reads by 

default:

webclient: web_client.c get_connection.c

        gcc -o webclient web_client.c get_connection.c

The first line lists the target (webclient) and its dependencies, with a colon as 

the separator. The dependencies consist of the two source files in any order. 

The second line begins with a single tab character, not blanks. This line is 

the command to be executed, in this case a familiar gcc command. At the 

command line, invoke the make utility:

% make     ## reads Makefile, follows the instructions

Far more extravagant examples of Makefile are available on the Web.
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The webclient program has a third string literal, which holds the 

request. In more readable form, the request is

GET / HTTP/1.1          ## �start line: verb (GET), noun (URI /),  

HTTP version (1.1)

Host: www.google.com    ## required header element in HTTP 1.1

The first line is the HTTP start line, consisting of the HTTP method 

(verb) named GET: a GET request is a read request, whereas a POST 

request is a create request (e.g., a POSTed order form is a request to create 

an order). After the start line come arbitrarily many header elements, or 

headers for short. These are key/value pairs, with a colon as the separator. 

Under HTTP 1.1, the host header, which specifies the device address 

to which the request is being sent, is required; but a half-dozen or so 

headers is typical. The headers section ends with two carriage-return/

newline combinations. (Two newlines are likely to work.) A GET request 

has no HTTP body, and so is complete as shown. In the start line, the 

URI (Uniform Resource Identifier) is the single slash, which web servers 

typically interpret as the identifier for their home page. In effect, then, 

the start line and the host header make up a read request for Google’s 

home page.

The write function, with the socket’s descriptor as its first argument, is 

used to send the request to the server. As usual in network programming, 

there is a check for an error condition: the write could fail for any number 

of reasons; if it does so, there is no point in continuing. Next comes a loop 

to read the server’s response. There are some subtle issues to consider, as a 

closer analysis of client’s connection to the web server will indicate.

Web servers typically keep client connections alive so that repeated 

request/response pairs can use the original connection. The motive, of 

course, is efficiency. Also, a web server is likely to chunk its response, that 

is, break the requested document (in this case, Google’s HTML home 

page) into parts, transmitting each of these separately. The webclient 
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program has a read buffer of about 2KB (kilobytes). On a sample run, the 

program printed out this report:

48431 bytes read in 34 separate reads.

The Google home page is a hefty 48K bytes, and these were fetched 

in 34 separate read operations. The chunks of data from the various read 

operations vary in size.

How much time should be allowed between responses from the 

server? This is a question without an obvious answer. Whatever the answer, 

the socket API supports a timeout on a blocking read operation, which is in 

use here. For review, here are the three critical lines in the while loop that 

reads the Google response:

count = read(sock_fd, buffer, sizeof(buffer));

if (EWOULDBLOCK == errno || 0 == count) break;   �/* EWOULDBLOCK 

without a 

timeout */

if (-1 == count) continue;            �/* continue on non-fatal 

error */

If the blocking read operation times out, there is a signal with an aptly 

named error code EWOULDBLOCK, which says that the read operation would 

have continued to block except for the interrupting signal. If the blocking 

times out, the program assumes that no further response bytes are coming.

Recall that read returns 0 on an end-of-byte-stream condition. In this 

case too, there is a break out of the while loop. If any other nonfatal error 

should occur (the -1 test), then execution of the while loop continues: the 

continue statement moves control directly to the loop condition, in this 

case bypassing the write operation to the standard output.
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6.2.1. � Utility Functions for the Web Client
The utility functions for the webclient program are broken out into their 

own file. These functions handle the networking details such as the 

protocol to be used, the address information of the web server, and the 

amount of time the client should wait for bytes from the server.

Listing 6-2.  Utility code for the web client

#include <sys/types.h>

#include <sys/socket.h>

#include <netdb.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

#include <fcntl.h>

int get_connection(const char* host, const char* port) {

  struct addrinfo hints, *result, *next;

  int sock_fd, flag;

  �memset(&hints, 0, sizeof(struct addrinfo)); /* zero out the 

structure */

  �hints.ai_family = AF_UNSPEC;       /* IPv4 or IPv6 */

  �hints.ai_socktype = SOCK_STREAM;   �/* connection-

based, TCP */

  �hints.ai_flags = 0;         /* various possibilities here */

  �hints.ai_protocol = 0;      /* any protocol */

  �if ((flag = getaddrinfo(host, port, &hints, &result)) < 0) 

{  /* error? */
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    fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(flag)); 

    /* messages */

    exit(-1);                                     /* failure */

  }

  /* Iterate over the list of addresses until one works. */

  for (next = result; next; next = next->ai_next) {

    �sock_fd = socket(next->ai_family, next->ai_socktype,  

next->ai_protocol);

    if (-1 == sock_fd) continue;                  /* failure */

    �if (connect(sock_fd, next->ai_addr, next->ai_addrlen) != 

-1) break; /* success */

    close(sock_fd);                   /* close and try again */

  }

  if (!next) {

    fprintf(stderr, "can't find an address\n");

    exit(-1);

  }

  freeaddrinfo(result); /* clean up storage no longer needed */

  /* Set a timeout on read operations. */

  struct timeval timeout;

  timeout.tv_sec = 2;  /* seconds */

  timeout.tv_usec = 0;

  if (setsockopt(sock_fd, SOL_SOCKET, SO_RCVTIMEO,

                 (char*) &timeout, sizeof(timeout)) < 0) {

    fprintf(stderr, "setsockopt failed\n");

    exit(-1);

  }

  return sock_fd;

}
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The code in the file get_connection.c (see Listing 6-2) handles the 

networking details. This code also illustrates various points made 

throughout earlier chapters. At the center is the data type struct 

addrinfo, which encapsulates information about an IP address. The 

program declares a variable hints of this type and then initializes the 

structure’s fields with information that provides hints to the library 

function getaddrinfo. One hint is that the program could deal with either 

an IPv4 or an IPv6 address (AF_UNSPEC for address family unspecified), 

and a second hint is that the program wants a reliable connection (SOCK_

STREAM vs. SOCK_DGRAM), which is typically TCP based. Two other fields 

are initialized to zero, indicating that the webclient program defers to the 

library function to make the default choices.

A pointer to the hints structure is one of the arguments to library 

function getaddrinfo. Here is a summary of the four arguments passed to 

this function:

•	 The host argument is www.google.com, the symbolic IP 

address.

•	 The port argument is 80 as a string, the standard 

server-side port number for accepting HTTP 

connections.

•	 The third argument is &hints: a pointer to the hints 

structure, rather than a copy of it.

•	 The last argument is the pointer results of type struct 

addrinfo*: the library function sets this pointer to the 

address of a structure that contains the information 

about available addresses for the Google server.

A successful call to getaddrinfo may contain several addresses for the 

Google server; hence, a for loop is used to iterate over the options, picking 

the first one that supports a connection. Two key library functions are in 

play in the loop:
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•	 The socket function returns a file descriptor on 

success.

•	 The connect function uses the file descriptor and 

address information to attempt a connection to a host.

The socket and connect functions both return -1 on failure. Once the 

program confirms that a usable network address is in hand, the program 

frees the dynamically allocated storage to which result points. The library 

function freeaddrinfo does whatever nested freeing may be needed, and 

so this function rather than the regular free function should be used.

The last configuration in this utility code involves setting a timer on 

the socket. The relevant type is struct timeval, and the library function 

is setsockopt. In this example, the timer applies only to read operations 

because of the SO_RCVTIMEO (receive timeout) flag. The timeout can be 

set in a mix of seconds and microseconds; in this example, the socket is 

configured to time out after two seconds of waiting.

After fetching Google’s home page from www.google.com, the webclient 

program prints the HTML document to the standard output. If the 

program is run, there likely will be a pause of two seconds or so after the 

printing but before the program exits. There is no magic in the two-second 

timeout, of course; the example invites experimentation.

6.3. � An Event-Driven Web Server
In an earlier example, the fifoReader (recall Listing 5-9) did nonblocking 

read operations on a named pipe. The fifoWriter sporadically populated 

this pipe with 16-byte chunks, each chunk consisting of four 4-byte int 

values. The fifoReader, in turn, tried to read 4 bytes, or one int value, at 

a time. Most of the read operations by the fifoReader failed to deliver the 

integer values, although all of the int values eventually were read. Indeed, 

only about 2% of the read operations yielded the expected int value—a 
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failure rate of 98%! The approach taken in the code example was crude 

and inefficient and designed only to introduce the nonblocking API. The 

fifoReader tried, on every loop iteration, to read whatever happened to be 

available in the named pipe. But the fifoWriter paused a random amount 

of time between write operations so that there was a discontinuous byte 

stream from the writer to the reader. The odds were overwhelmingly 

against successful nonblocking read operations by the fifoReader.

A different approach can improve the efficiency of read operations 

and also make application logic easier to follow. The approach involves a 

division of labor:

•	 A library function monitors a channel to detect whether 

there are bytes to read.

•	 The application can query the monitor function before 

even attempting a read operation: if the monitor 

detects nothing to read, the application does not bother 

to attempt a read operation.

Under this approach, the odds of successful read operations should 

improve dramatically. Moreover, there is no need to use nonblocking 

reads, as the monitor itself blocks until it detects bytes to be read.

Various C libraries have emerged, over time, for performing the 

monitoring task, with epoll and kqueue as some recent examples.  

A good place for an overview and analysis is the C10K project  

at www.kegel.com/c10k.html. The forthcoming webserver program code 

introduces the select library function, which has a long history in C.

Before moving on to the web server program, however, it may be 

helpful to look at a simpler example of how select works. The next code 

example uses the select function to check whether there are bytes to read 

from the standard input. If so, a single byte is read and then written to the 

standard output; if not, an appropriate message is printed.
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Listing 6-3.  Introducing the select function

#include <stdio.h>

#include <stdlib.h>

#include <sys/time.h>

#include <unistd.h>

void main() {

  fd_set fds;         /* set of file descriptors */

  struct timeval tv;

  int flag;

  char byte;

  FD_ZERO(&fds);      /* clear the set of fds */

  FD_SET(0, &fds);    /* 0 == standard input */

  tv.tv_sec = 5;

  tv.tv_usec = 0;

  flag = select(FD_SETSIZE,  /* how many file descriptors */

                &fds,        /* file descriptors for readers */

            NULL,        /* no writers */

            NULL,        /* no exceptions */

            &tv);        /* timeout info */

  if (-1 == flag)

    perror("select error");

  else if (flag) {          /* flag == 1 == true */

    read(0, &byte, 1);      /* read the byte */

    puts("data read");

  }

  if (flag)

    printf("The byte value is: %c\n", byte);

}
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The selectStdin program (see Listing 6-3) declares a variable of type 

fd_set, which represents a set of file descriptors. The macro FD_ZERO 

clears the set by zeroing out the variable, and the macro FD_SET adds a 

file descriptor to the set—in this case, the file descriptor 0 for the standard 

input is added. A timeout of five seconds is then configured using the 

struct timeval variable tv.

The library function select holds center stage in the example. The 

function, which blocks until the specified timeout occurs, is called with 

five arguments:

•	 The first argument, FD_SETSIZE, is the count of the file 

descriptors in the set, in this case 1. Normally, there 

would be multiple file descriptors in the set.

•	 The second argument &fds is the address of readers set.

•	 The third and fourth arguments, both NULL, are 

the addresses of the writers and exceptions sets, 

respectively. In this example, only the readers set has a 

member, and then only one.

•	 The fifth and final argument is the timeout 

configuration, a pointer to the struct timeval 

structure. If the timeout argument is NULL, the select 

function waits (blocks) indefinitely.

The select function returns -1 on error. If there is a byte to read within 

the timeout period of five seconds, select returns true to confirm the fact, 

and the program then tries to read the byte. If the timeout occurs first, 

there is no attempt to read because this would be wasted effort.
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6.3.1. � The webserver Program
The forthcoming webserver example puts the select function to practical 

use. The program has three source files and a Makefile for convenience. 

Two of the source files contain utility functions, whereas the code in the 

third file implements the application logic. This logic can be summarized 

now and analyzed in detail after the code displays. The summary ignores 

technical details taken up later.

•	 For convenience, the server awaits connections on port 

3000 rather than on the default port of 80. Port numbers 

greater than 1023 do not require special administrative 

privileges. There is a backlog of 100, which means that 

up to 100 clients can be connected at the same time. 

The server can be built and started from the command 

line in the usual way:

% make

% ./web_server    ## on Windows: % web_server

The server runs indefinitely, and so the program should 

be shut down with Control-C or the equivalent.

•	 The server uses a set of file descriptors (fd_set). 

To start, the only file descriptor in the set identifies 

the original socket, an accepting socket that awaits 

connecting clients. The file descriptor for this socket 

remains in the fd_set from start to finish, but other file 

descriptors—ones that represent read/write channels 

to clients—are added to and removed from the set of 

file descriptors.
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•	 Clients attempt to connect to the web server and then 

to send requests. From the web server’s perspective, 

the clients are in one of two states:

•	 A connecting client is trying to connect and has not 

yet sent a request for the server to read.

•	 A requesting client has connected and is thus able 

to send a request.

•	 If a connecting client succeeds in connecting, the file 

descriptor for the socket is placed in the fd_set that the 

select function monitors. The client’s request now can 

be read when it arrives.

•	 If a requesting client is selected, its request is read, 

and a response is written: the response echoes back 

the request. After responding to a client, the server 

removes the client from the fd_set.

6.3.2. � Utility Functions for the Web Server
The webserver program breaks out the utility functions into two separate 

files. These functions handle the many low-level details from getting 

the original file descriptor for the socket to logging information about a 

connecting client and through sending a response back to a client.

Listing 6-4.  Utility functions for the web server

#include <netinet/in.h>

#include <string.h>

#include <stdio.h>

#include <arpa/inet.h>

#define BuffSize 256
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void log_client(struct in_addr* addr) {

  char buffer[BuffSize + 1];

  �if (inet_ntop(AF_INET, addr, buffer, sizeof(buffer)))  

/* NULL? */

    fprintf(stderr, "Client connected from %s...\n", buffer);

}

void get_response(char request[ ], char response[ ]) {

  �strcpy(response, "HTTP/1.1 200 OK\n");                  

/* start line */

  �strcat(response, "Content-Type: text/*\n");             

/* headers... */

  strcat(response, "Accept-Ranges: bytes\n");

  strcat(response, "Connection: close\n\n");

  �strcat(response, "Echoing request:\n");                 

/* body of response */

  strcat(response, request);

}

The servutils2.c file (see Listing 6-4) contains two utility functions. The 

log_client function has one argument, a pointer to a struct in_addr 

(Internet address). This structure contains information about the client, 

including the client’s IP address. The log_client function calls the 

library function inet_ntop (Internet name to protocol) with the structure 

pointer as an argument; the library function generates a human-readable 

string and puts the string in the caller-supplied buffer. If the web server 

is running on localhost (127.0.0.1), and a request comes from this same 

machine, then the message would be

Client connected from 127.0.0.1...
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The get_response function creates an HTTP-compliant response 

consisting of an HTTP start line, four HTTP headers, and the HTTP body, 

if any, that came with the request. (Recall that a POST request has a 

body, whereas a GET request does not.) This response is sufficient for 

development and initial testing.

Listing 6-5.  Core utilities for the webserver

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/socket.h>

#include <netinet/in.h>

#define Backlog  100

void report_and_exit(const char* msg) {

  fprintf(stderr, "%s\n", msg);

  exit(-1); /* EXIT_FAILURE */

}

int get_servsocket(int port) {

  struct sockaddr_in server_addr;

  /** create, bind, listen **/

  /* create the socket, make it non-blocking */

  �int sock_fd = socket(PF_INET, SOCK_STREAM, 0); /* internet 

family, connection-oriented */

  if (sock_fd < 0)

    report_and_exit("socket(...)");

  /* bind to a local address: implementation details */

  memset(&server_addr, 0, sizeof(server_addr));

  server_addr.sin_family = AF_INET;

  server_addr.sin_addr.s_addr = INADDR_ANY;
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  �server_addr.sin_port = htons(port); /* host to network 

endian */

  �if (bind(sock_fd, (struct sockaddr*) &server_addr, 

sizeof(server_addr)) < 0)

    report_and_exit("bind(...)");

  /* listen for connections */

  �if (listen(sock_fd, Backlog) < 0) report_and_

exit("listen(...)");

  return sock_fd;

}

The principal function in the servrutils.c file (see Listing 6-5) is 

get_servsocket, which takes a port number as its single argument. The 

function performs the classic three steps for setting up a web server: create, 

bind, and listen. Here are some details:

	 1.	 Create a socket with the library function socket. In 

this example, the socket is in the IP protocol family 

(PF_INET) and is connection based (SOCK_STREAM).

	 2.	 Bind the socket to a local port number, in this case 

port 3000. A server_addr structure is used to store 

the required information. The port number is 

passed as an argument to the htons library function, 

which converts local endian-ness to network endian-

ness. Recall that Intel machines are little endian, 

whereas network protocols are big endian. The 

library function of interest here is bind.

	 3.	 Listen for up to Backlog clients at a time, where 

Backlog is 100. If 100 clients are connected already 

to the server, then any would-be client gets a 

Connection refused message. The library function 

is listen.
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If there are no errors in the three steps, the get_servsocket function 

returns the identifying file descriptor. Otherwise, the web server exits.

WHAT’S CURL?

The curl command-line tool (https://curl.haxx.se) can fetch data 

through URLs. The tool is cross-platform and works with an impressive 

number of protocols. The curl tool is used later to test the web server.

Listing 6-6.  A web server with select

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <netinet/in.h>

#include "servutils.h" /* function declarations */

#define BuffSize 250

int main() {

  const int port = 3000;

  char request[BuffSize + 1];

  memset(request, 0, sizeof(request));

  struct sockaddr_in client_addr;

  socklen_t len = sizeof(struct sockaddr_in);

  �fd_set active_set, temp_set;          /* �temp_set becomes 

a copy of 

active_set */

  �FD_ZERO(&active_set);                 /* �clear the 

active_set */
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  int sock_fd = get_servsocket(port);   /* �get the original 

socket fd */

  FD_SET(sock_fd, &active_set);         /* add it to the set */

  �fprintf(stderr, "Server awaiting connections on port 

%i.\n", port);

  while (1) {

    �temp_set = active_set; /* make a working copy, as active_

set changes */

    �if (select(FD_SETSIZE, &temp_set, NULL, NULL, NULL) < 0)   

/* activity? */

      report_and_exit("select(...)");

    int i;

    �for (i = 0; i < FD_SETSIZE; i++) {       �/* handle the 

current fds */

      �if (!FD_ISSET(i, &temp_set)) continue; �/* member of 

the set? */

      if (i == sock_fd) { /** original accepting socket **/

        int client_fd = accept(sock_fd,

                               (struct sockaddr*) &client_addr,

                               &len);

        if (-1 == client_fd) continue; /* try again */

        log_client(&client_addr.sin_addr);

        �FD_SET(client_fd, &active_set); �/* add this fd to 

select list */

      }

      else {              /** read/write socket **/

        int bytes_read = read(i, request, BuffSize);

        if (bytes_read < 0) continue;
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        /* Send a response. */

        �char response[BuffSize * 2]; /* twice as big to 

be safe */

        memset(response, 0, sizeof(response));

        get_response(request, response);

        �int bytes_written = write(i, response, 

strlen(response));

        if (bytes_written < 0) report_and_exit("write(...)");

        close(i);

        FD_CLR(i, &active_set); /* remove from active set */

      }

    }

  }

  return 0;

}

The webserver program (see Listing 6-6) uses the select function and 

its supporting macros such as FD_SET and FD_CLR to read client requests 

and to write back responses. The salient points can be summarized as 

follows:

•	 The primary setup is a call to the utility function 

get_servsocket, which returns the file descriptor for 

the socket, if successful; otherwise, the webserver exits 

as there is no point in going on. For reference, this 

first socket is the accepting socket because its job is to 

accept client connections. The accepting socket is not 

used as a channel to read requests and write responses. 

Among the sockets used in the application, there is a 

strong separation of concerns: one socket accepts client 

connections, whereas all of the others act as read/write 

channels between the web server and its clients.
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•	 The accepting socket’s file descriptor is added, using 

the FD_SET macro, to the fd_set variable named 

active_set. This file descriptor is the one permanent 

member of the active_set.

•	 After a client connects, this socket’s file descriptor is 

added to the active_set; after a client receives its 

response, the same file descriptor is removed from the 

active_set.

•	 The program has two loops: an outer while loop that 

iterates indefinitely and an inner for loop that iterates 

over a copy of the active_set named the temp_set. The 

copy is important because of what happens in a loop 

iteration. During a for loop iteration, file descriptors 

may be added to and removed from the active_set: 

added if a new client connects and removed if a client 

receives a response. At the top of the outer while loop, 

the active_set is thus copied into the temp_set, and 

the iteration is over this temporary copy, which does 

not change during for loop execution.

•	 The second statement in the while loop is a blocking 

call to select, which monitors only the read set named 

temp_set. There is no monitoring of writers and 

exceptions (the third and fourth arguments), and the 

select does not have a timeout: the select should 

not return unless there is client activity of some kind—

connecting or requesting.
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•	 Once the select function returns, the inner for loop 

iterates over the file descriptors in the temp_set. For 

each member of this set, there are two possibilities:

•	 The file descriptor is of the single accepting socket; 

hence, a client connection is pending. The program 

uses the library function accept to finalize the 

connection and to get the connecting socket’s 

descriptor. This file descriptor is added to the 

active_set to enable read/write operations later. 

For reference, this socket is the client socket.

•	 The file descriptor is of a client socket used for 

read/write operations. In this case, the client’s 

request is read and then echoed back as a response. 

Examples follow shortly. Once the response has 

been sent, the socket’s descriptor is passed as an 

argument to close, which effectively breaks the 

connection. This descriptor also is removed from 

the active_set. The conversation with the client is 

short and sweet: the client sends one request and 

gets one response in return.

6.3.3. � Testing the Web Server with curl
There are various ways to test the webserver program. For example, 

the earlier webclient program might be used, but this program is not 

sufficiently flexible to go beyond preliminary testing. The curl utility, by 

contrast, is well suited for the task. As an example, the curl command

% curl localhost:3000?msg=Hello,world!
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generates the following response, with comments following ##:

Echoing request:

GET /?msg=Hello,world! HTTP/1.1   ## �GET request with a 

query string

User-Agent: curl/7.35.0           ## user program is curl

Host: localhost:3000              ## localhost on port 3000

Accept: */*                       ## �accept any MIME type/

subtype combination

By contrast, the curl command

curl --data "name=Fred Flintstone&occupation=handyman" 

localhost:3000

generates this response:

Echoing request:

POST / HTTP/1.1                             ## POST, not GET

User-Agent: curl/7.35.0

Host: localhost:3000

Accept: */*

Content-Length: 40                          ## �in bytes for 

HTTP body

Content-Type: application/x-www-form-urlencoded     

## POSTed form

                               ## two newlines end the headers

name=Fred Flintstone&occupation=handyman     ## �body of 

POST request

The webserver is an iterative rather than a concurrent server: the server 

handles one request at a time, completing the response to a given request 

before turning to the next request. In more technical terms, the webserver 

program executes as a single process with a single thread of execution 
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and thus uses neither of the standard concurrency mechanisms—

multiprocessing and multithreading. For development and testing, an 

iterative server is acceptable and even preferable because it is relatively 

easy to debug the connect/request/response trio. Modern languages 

typically have libraries for development web servers (e.g., the Ruby 

WEBrick library), and these web servers are typically iterative. However, 

any production-grade web server is going to be concurrent. The next 

chapter focuses on concurrency. The next section in this chapter moves 

from HTTP to HTTPS to analyze wire-level security in web connections.

6.4. � Secure Sockets with OpenSSL
The S in HTTPS is for secure. Various security layers are suitable for sitting 

atop HTTP, including SSL (Secure Sockets Layer, from Netscape) and TLS 

(Transport Layer Security, derived from SSL). SSL and TLS are distinct but 

sometimes lumped together as SSL/TLS.

Among the production-grade and most popular implementations of 

SSL and TLS is OpenSSL (www.openssl.org/). OpenSSL also includes 

a full library for cryptography: functions for message digests, digital 

signatures, digital certificates, encryption/decryption, and more. OpenSSL 

can be installed as a development environment—header files and 

implementation libraries. Once OpenSSL is installed, the header files and 

libraries are typically in openssl subdirectories such as in /usr/include/

openssl and /usr/lib/openssl, respectively.

HTTPS provides wire-level or transport-level security, as opposed to 

users/roles security in which a user provides an identity (e.g., a login name) 

and a credential (e.g., a password) to confirm the identity. The wire-level 

security comprises three major services: peer authentication (mutual 

challenge), confidentiality (data encryption/decryption), and reliability 

(message sent equals message received). These are clarified in order.
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Consider a scenario in which Alice and Bob exchange messages over a 

channel:

        messages

Alice<------------>Bob

How does Alice know that it is Bob, and not an impostor, at the other 

end? The same goes for Bob. The eavesdropper Eve might be in the 

middle (man-in-the-middle attack), pretending to be both Alice and Bob, 

thereby intercepting all of the messages sent in one direction or the other. 

Alice and Bob need a procedure (peer authentication) so that each can 

authenticate the other’s identity before any significant messages are sent 

between them.

Peer authentication, as used in HTTPS, requires a key pair apiece for 

Alice and Bob: a digital public key (distributable to anyone) and a digital 

private key (secret to its owner). The public key is an identity. For example, 

Amazon’s public key identifies Amazon, and Alice’s public key identifies 

her. A public key can be embedded in a digital certificate, with a certificate 

authority (CA) vouching for this key through the CA’s own digital signature 

on the same certificate. For example, a CA such as VeriSign or RSA 

vouches with its own digital signature that the public key on Alice’s digital 

certificate indeed identifies Alice. The vouching may come with a fee, 

of course.

Here is a scenario for peer authentication between Alice and Bob:

	 1.	 Alice sends a signed certificate request containing 

her name, her public key, and some additional 

information to a CA such as VeriSign or 

RSA. Assume that the public key is unique.

	 2.	 The CA creates a message M from Alice’s request, 

signing the message M with the CA’s own private 

key, thereby creating a separate signature 

message DSIG.
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	 3.	 The CA returns to Alice the message M with its 

signature DSIG. Together M and DSIG form the core 

of Alice’s certificate. The certificate has a from and a 

to date together with some other information.

	 4.	 Alice sends her newly minted certificate to Bob, and 

the certificate contains Alice’s public key.

	 5.	 Bob verifies the signature DSIG using the CA’s public 

key. If the signature is verified, Bob accepts the 

public key in the certificate as Alice’s public key, that 

is, as her identity.

	 6.	 Bob repeats Alice’s steps.

There is, of course, a fly in this ointment. If Eve manages to get a copy 

of Alice’s digital certificate and also manages to intercept an authentication 

request from Bob to Alice, then Eve becomes indistinguishable from Alice. 

To guard against this possibility, Bob might request from Alice several 

digital certificates, each with a different signer and with different validity 

dates. There also are certificates with more than one CA as a signer. 

When it comes to peer authentication, there are precautions rather than 

guarantees.

WHAT’S A MESSAGE DIGEST?

A message digest, also called a hash, is a fixed-length digest of input bits:

                +----------------+

N input bits--->| message digest |--->fixed-length digest

                +----------------+
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For example, SHA-1 (Secure Hash Algorithm 1) generates a 160-bit digest of 

any input bits. Duplicate digests from different inputs are possible, but unlikely. 

A digest is one-way secure: it is relatively easy to compute the digest, but it 

is computationally intractable to go from the digest back to the original input 

bits—even if the digest algorithm is known.

One more fly in the ointment deserves mention. As noted earlier, a 

digital certificate contains a CA’s digital signature to vouch for the public 

key on the certificate. What is a digital signature, and how is one to be 

verified?

A digital signature is a message digest (see the sidebar) encrypted with 

the private key from a key pair. To create her own digital signature, Alice 

would create a message digest of information about her (e.g., name, city 

of residence, employer’s name, and so on) and then encrypt this digest 

with her private key. This signature then can be verified with the public 

key from the same pair. If Bob has Alice’s public key, Bob can verify Alice’s 

digital signature:

                             +--------------+

Alice's public key---------->| verification |--->yes or no

Alice's digital signature--->|   engine     |

                             +--------------+

Validating a CA’s digital signature requires the CA’s public key: a CA’s 

public key is available on the CA’s own digital certificate, which in turn 

has a digital signature as a voucher. Thus begins the verification regress. 

At some point, of course, the regress stops because a digital signature is 

accepted as valid.
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Listing 6-7.  A sample X.509 digital certificate

Certificate:

   Data:

     Signature Algorithm: md5WithRSAEncryption

     Iss�uer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte 

Consulting cc,

     ...

     CN=Thawte Server CA/emailAddress=server-certs@thawte.com

     Validity

        Not Before: Aug  1 00:00:00 1996 GMT

        Not After : Dec 31 23:59:59 2028 GMT

     Subject Public Key Info:

        Public Key Algorithm: rsaEncryption

        RSA Public Key: (1024 bit)

          Modulus (1024 bit):

            00:d3:a4:50:6e:c8:ff:56:6b:e6:cf:5d:b6:ea:0c:

            ...

            3a:c2:b5:66:22:12:d6:87:0d

          Exponent: 65537 (0x10001)

     ...

     Signature Algorithm: md5WithRSAEncryption

        07:fa:4c:69:5c:fb:95:cc:46:ee:85:83:4d:21:30:8e:ca:d9:

        ...

        �b2:75:1b:f6:42:f2:ef:c7:f2:18:f9:89:bc:a3:ff:8a:2

3:2e:70:47

The dcert display (see Listing 6-7) shows parts from a sample digital 

certificate, with Thawte as the CA. The public key algorithm is RSA, the 

industry standard. The certificate also gives details about the digital 

signature.
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With web sites as opposed to web services, peer authentication 

typically becomes one-way authentication: the browser, as the client 

application, challenges the web server to establish its identity through one 

or more digital certificates, but the web server usually does not challenge 

the browser. For web services, by contrast, the challenge may be mutual.

The second HTTPS service is confidentiality, achieved through the 

encryption of sent messages and the corresponding decryption of received 

messages:

      msg  +---------+ encrypted msg  +---------+ msg

Alice----->| encrypt |--------------->| decrypt |----->Bob

           +---------+                +---------+

Here is a depiction of how encryption and decryption work:

                 +------------+ encrypted bits  +------------+

plainbits------->| encryption |---------------->| decryption |--->plainbits

encryption key-->| engine     |         +------>| engine     |

                 +------------+         |       +------------+

                        decryption key--+

There are two general approaches to encryption/decryption, 

depending on whether the same key is used for both operations:

•	 In the symmetric approach, the same key is used to 

encrypt and decrypt. The upside is that this approach 

is very efficient, about a thousand times faster than the 

alternative explained in the following. The downside 

is the key distribution problem: How is the key to be 

distributed to both Alice and Bob?
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•	 In the asymmetric approach, one key is used to encrypt, 

but a different key is used to decrypt. The upside is that 

this approach solves the key-distribution problem. 

For example, Alice can encrypt a message using Bob’s 

public key, but only Bob can decrypt this message 

because he has the one and only copy of his private key. 

The downside is that this approach is about a thousand 

times slower than the symmetric approach.

HTTPS uses a clever combination of the two approaches:

	 1.	 After the client and the server have agreed upon a 

cryptographic suite of algorithms, and the client has 

received at least one acceptable digital certificate 

from the server during the authentication phase, the 

client generates a premaster secret, bits that will be 

used on both sides to generate a session key.

	 2.	 The client encrypts the premaster secret with the server’s 

public key and sends the encrypted bits over the wire.

	 3.	 The server (and presumably the server alone) can decrypt 

these encrypted bits using the server’s private key.

	 4.	 During the rest of the conversation between client 

and server, the session key is used both to encrypt 

and decrypt bits; hence, the symmetric approach is 

now used for efficiency.

The third major HTTPS service, message reliability, checks whether 

the sent message is the same as the received message:

      sent message      received message

Alice-------------->...------------------>Bob   �## Sent message 

= received 

message?
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Recall that the client and the server have settled on a cryptographic 

suite, which includes a message digest (hash) algorithm. The sender 

computes a hash of the message to be sent and sends the hash as well. 

The receiver recomputes the hash locally, using the same algorithm, and 

then checks whether the received hash matches the locally computed one. 

Assume that the locally computed hash is correct. If the two hashes do not 

match, then something in the sent message (the original message and/or 

the sender’s hash) has been corrupted in transit; the message and a hash 

need to be sent again.

The wcSSL program is an HTTPS client that exhibits the security 

features discussed previously. The OpenSSL libraries do a nice job of 

wrapping the usual HTTP client functions—create a socket, open a 

connection, engage in a conversation, close the connection—within 

security-enabled counterparts. The resulting flow of control is easy to 

follow. For readability, the source code for wcSSL program is divided 

among three files. A Makefile is included.

The three source files in the wcSSL program are as follows:

•	 The header file wcSSL.h has the required include 

directives for the standard libraries and for 

OpenSSL. This file also declares five utility functions 

defined in the file wcSSLutils.c.

•	 The source file wcSSLutils.c defines five utility 

functions, which are clarified shortly.

•	 The source file wcSSL.c contains the high-level logic. 

The code tries to open an HTTPS connection to Google; 

calls a stub function to verify the Google certificate; 

sends a request over the now encrypted channel; 

and prints the response, which again is the Google 

home page.
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Listing 6-8.  The header file wcSSL.h

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <openssl/bio.h>

#include <openssl/ssl.h>

#include <openssl/x509.h>

#include <openssl/x509_vfy.h>

extern void report_exit(const char* msg);

extern void load_SSL();

extern int verify_dc(int ver, X509_STORE_CTX* x509_ctx);

extern void view_cert(SSL* ssl, BIO* out);

extern void cleanup(BIO* out, BIO* web, SSL_CTX* ctx);

The five functions declared in the header file wcSSL.h (see Listing 6-8) 

can be clarified as follows:

•	 The report_exit function prints an error message 

before exiting. The error (e.g., a socket connection 

cannot be opened) makes it impossible to continue.

•	 The load_ssl function calls various OpenSSL 

functions, which in turn load the required OpenSSL 

modules.

•	 In production mode, the verify_dc function would 

check the certificate(s) sent from Google during the 

HTTPS handshake. The details of verification can 

differ widely depending on how a system stores trusted 

digital certificates. One straightforward approach is 

to have a persistent store of trusted certificates on the 

client machine or local network. For instance, there 

might be a local file with a copy of a trusted Google 
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certificate in either a text format such as PEM (Privacy-

Enhanced Mail) or a binary format such as DER 

(Distinguished Encoding Rules). OpenSSL has utilities 

to convert from one standard format to another. In 

any case, a Google certificate downloaded during the 

peer authentication phase would be compared against 

a stored copy, using OpenSSL functions designed 

for the purpose. If there is no such local copy, then 

the certificate’s digital signature from a CA could be 

verified instead. The current example omits these 

details by having the verify_dc function simply return 

true (1). The verify_dc function is thus a stub that 

needs to be fleshed out for production.

Unix-like systems typically include a directory such as /etc/ssl/certs, 

which contains accepted digital certificates. This directory thus acts as the 

local truststore for such certificates.

•	 The view_cert function prints the subject line from the 

certificate to confirm its arrival.

•	 The cleanup function calls OpenSSL utility functions to 

free heap storage.

These five functions are defined and wcSSLutils.c and called in the 

main program file wcSSL.c.

Listing 6-9.  The utilities file cwSSLutils.c

#include "wcSSL.h"

void report_exit(const char* msg) {

  puts(msg);

  exit(-1);

}
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void load_SSL() {  /* load various OpenSSL libraries */

  OpenSSL_add_all_algorithms();

  ERR_load_BIO_strings();

  ERR_load_SSL_strings();

  SSL_load_error_strings();

  �if (SSL_library_init() < 0) report_exit("SSL_library_init()");

}

int verify_dc(int ver, X509_STORE_CTX* x509_ctx) {  /* stub 

function */

  /* In production, a full verification would be needed. */

  return 1;

}

/* Extract the subject line for the certificate, then free 

storage. */

void view_cert(SSL* ssl, BIO* out) {

  X509* cert = SSL_get_peer_certificate(ssl);

  �if (NULL == cert) report_exit("SSL_get_peer_

certificate(...)");

  X509_NAME* cert_name = X509_NAME_new();

  cert_name = X509_get_subject_name(cert);

  BIO_printf(out, "Certificate subject:\n");

  X509_NAME_print_ex(out, cert_name, 0, 0);

  BIO_printf(out, "\n");

  X509_free(cert);

}

void cleanup(BIO* out, BIO* web, SSL_CTX* ctx) {

  if (out) BIO_free(out);

  if (web) BIO_free_all(web); /* handles nested frees */

  if (ctx) SSL_CTX_free(ctx); /* ditto */

}
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The load_SSL function in the wcSSLutils.c file (see Listing 6-9) calls 

four functions from the OpenSSL API in order to load various SSL modules. 

The load_SSL then calls a fifth OpenSSL function SSL_library_init to 

do whatever SSL initialization is required. Any error in the initialization 

would make it impossible to continue; hence, the wcSSL client exits if an 

error occurs.

The view_cert function gets the X509-formatted certificate from 

Google, extracts some information, and then prints this information. X509 

is versioned and remains the dominant format for digital certificates; 

hence, OpenSSL includes many functions with X509 in the name. Once 

information about the certificate is printed, in this case only the subject 

line, the heap storage for the certificate is freed. The X509_free utility 

function does whatever nested freeing is required; hence, this function and 

not the library function free should be called.

Throughout the wcSSL program, there are calls to various OpenSSL 

functions with BIO (Basic Input/Output) in the name. The BIO library is 

roughly a wrapper around the standard FILE type, and the BIO API mimics 

the FILE API. However, the BIO functions have access to the all-important 

SSL context, which is discussed shortly.

In working with the OpenSSL libraries, it is best practice to use the 

BIO functions for any input/output operations that involve web content. 

Accordingly, the wcSSL program uses the standard puts function in 

report_exit but otherwise sticks with the BIO input/output functions. 

For instance, the BIO_puts function is used to send the request, over an 

encrypted channel, to the Google web server.

Listing 6-10.  The main source file wcSSL.c

#include "wcSSL.h"

#define BuffSize 2048

int main() {

  const char* host_port = "www.google.com:443";
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  �const char* request = "GET / \r\nHost: www.google.com\r\

nConnection: close\r\n\r\n";

  �BIO* out = BIO_new_fp(stdout, BIO_NOCLOSE); /* �standard 

output */

  �SSL* ssl = NULL;                             

/* primary data structure for SSL connect */

  load_SSL();

  �const SSL_METHOD* method = SSLv23_method(); /* protocol 

version */

  if (NULL == method) report_exit("SSLv23_method()");

  �SSL_CTX* ctx = SSL_CTX_new(method);          

/* global context for client/server */

  if (NULL == ctx) report_exit("SSL_CTX_new(...)");

  �BIO* web = BIO_new_ssl_connect(ctx);  /* BIO is roughly FILE, 

but with SSL baked in */

  if (NULL == web) report_exit("BIO_new_ssl_connect(...)");

  �if (1 !=  BIO_set_conn_hostname(web, host_port)) report_

exit("BIO_set_conn_host(...)");

  BIO_get_ssl(web, &ssl); /* the security layer atop HTTP */

  if (NULL == ssl) report_exit("BIO_get_ssl(...)");

  �if (BIO_do_connect(web) <= 0) report_exit("BIO_do_

connect(...)");     /* connect */

  �if (BIO_do_handshake(web) <= 0) report_exit("BIO_do_

handshake(...)"); /* handshake */

  SSL_CTX_set_verify(ctx, SSL_VERIFY_PEER, verify_dc);

  �if (!SSL_get_verify_result(ssl)) report_exit("SSL_get_

verify(...)");  /* verify cert */

  view_cert(ssl, out);                      /* look at cert */

  BIO_puts(web, request);   /* the GET request */
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  int len = 0;

  do {                   /* read chunks from Google server */

    char buff[BuffSize] = { };

    len = BIO_read(web, buff, sizeof(buff));

    if (len > 0) BIO_write(out, buff, len);

  } while (len > 0 || BIO_should_retry(web));

  cleanup(out, web, ctx);  /* free heap storage */

  return 0;

}

The main file for the wcSSL program is wcSSL.c (see Listing 6-10). 

Rather than analyze each OpenSSL function call separately, it may be 

more useful to group the calls, focusing on what each group is meant to 

accomplish. The following describes three groups in turn:

•	 The init group specifies the SSL version to be used, in 

this case with the OpenSSL call SSLv23_method. This 

function constructs an SSL_CTX instance, which is the 

global context for all of the remaining OpenSSL calls. 

The SSL_CTX tracks the state of the SSL session, from 

setup through cleanup; this context is the last item to 

be freed in the program.

•	 The socket group then uses the SSL_CTX instance (ctx 

is the variable) to create an SSL layer atop HTTP. The 

secure channel is named web in this program and is 

the secure counterpart of a file descriptor. Writing the 

request to and reading the response from Google uses 

the web variable. The standard socket call now occurs 

under the hood, in the OpenSSL libraries.
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•	 The connect group establishes a connection, 

performing the handshake operations that include 

authentication. In this case, the authentication is 

one way rather than peer because the Google server 

does not challenge the wcSSL program (the client) 

for a certificate; but the call to the OpenSSL BIO_do_

handshake function does result in a challenge to the 

Google server. The SSL_CTX is used again, this time to 

declare a callback function (in this case, verify_dc) 

that is to verify the Google certificate. Fine-tuning 

is possible here and would be appropriate in a 

production environment. In this example, the interest 

is in verifying that a certificate arrived, rather than in its 

validity. Google sends three certificates in response to 

the challenge.

•	 The request/response group uses the OpenSSL function 

BIO_puts to send the GET request to Google and the 

BIO_read function to read the response. The BIO_write 

function writes the response to the standard output. 

The BIO_read and BIO_write functions are the 

counterparts of the standard read and write functions, 

but the BIO functions have access to the SSL_CTX.

•	 The cleanup group uses OpenSSL functions to free 

heap storage allocated in the course of setting up and 

using the HTTPS connection.

To confirm that a certificate arrived from Google, the wcSSL program 

prints the subject line:

Certificate subject:

C=US, ST=California, L=Mountain View, O=Google Inc, CN=www.

google.com
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As noted earlier, there is a Makefile to build the wcSSL program. 

The program also can be built with this command, which is part of the 

Makefile:

% gcc -o wcSSL wcSSL.c  wcSSLutils.c  -lssl -lcrypto -I.

The two link libraries (the two -l flags) are the OpenSSL library and 

the standard cryptography library, respectively. In the flag at the end -I., 

the I is for include files, and the period represents the current working 

directory, which means that only this directory should be searched for any 

include files. In general, any search path could be specified for include files.

6.5. � What’s Next?
Concurrency and parallelism are distinct but related concepts. A 

concurrent program handles multiple tasks within the same time span. 

For example, a concurrent web server might handle, say, 20 client 

requests within a second or so. Concurrency is possible even on an old-

fashioned, single-CPU machine through time-sharing: one task gets the 

CPU for a certain amount of time, and then its processing is preempted 

so that another task can have a turn, and so on. A concurrent program 

becomes a truly parallel one if the tasks are delegated to separate 

processors so that all of tasks can be processed literally at the same time. 

There is also instruction-level parallelism on modern machines; this 

parallelism involves the execution of instructions that perform machine-

level operations in parallel. The next chapter fleshes out the details of 

concurrency and parallelism with code examples.
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CHAPTER 7

Concurrency and 
Parallelism

7.1. � Overview
A concurrent program handles more than one task at a time. A familiar 

example is a web server that handles multiple client requests at the same 

time. Although concurrent programs can run even on a single-processor 

machine of bygone days, these programs should show a marked gain in 

performance by running on a multiprocessor machine: different tasks can 

be delegated to different processors. A parallel program in this sense is a 

concurrent program whose tasks can be handled literally at the same time 

because multiple processors are at hand.

The two traditional and still relevant approaches to concurrency are 

multiprocessing and multithreading. Applications such as web servers 

and database systems may mix the approaches and throw in acceleration 

techniques such as nonblocking I/O. Multiprocessing has a relatively long 

history and is still widespread. For example, early web servers supported 

concurrency through multiprocessing; but even state-of-the-art web 

servers such as Nginx are multiprocessing systems.

Recall that a process is a program in execution and that each process 

has its own address space. Two processes could share a memory location, 

but this requires setup: shared memory is not the default. Separate address 
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spaces are appealing to the programmer, who does need to worry about 

memory-based race conditions when writing a multiprocessing program. 

A typical race condition arises when two or more operations, at least one of 

which is a write, could access the same memory location at the same time. 

Of interest now is that separate processes, by default, do not share access 

to a memory location, which is requisite for such a race condition.

What is the downside of multiprocessing? When the operating system 

preempts a not-yet-finished process, a process-level context switch 

occurs: the operating system gives the processor to another process for its 

execution. The preempted process must be scheduled again to complete 

its execution. A process-level context switch is expensive because the 

operating system may have to swap data structures such as page tables 

(virtual-to-physical address translators) between memory and disk; in 

any case, there is nontrivial bookkeeping to track the state of both the 

preempted and the newly executing process. It is hard to come up with an 

exact figure, but a process-level context switch takes about 5ms to 15ms 

(milliseconds), time that is not available for other tasks.

Recall too that a thread (short for thread of execution) is a sequence of 

executable instructions. Every process has at least one thread; a process 

with only one thread is single threaded, and a process with more than one 

thread is multithreaded. Operating systems schedule threads to processors; 

to schedule a process is, in effect, to schedule one of its threads. On a 

multiprocessor machine, multiple threads from the same process can 

execute at the very same time. A thread-level context switch—preempting 

one thread in a process for another in the same process—is not free, but 

the cost is very low: nanoseconds rather than milliseconds. Multithreading 

is efficient.

In a simplifying move, Linux systems turn process scheduling into 

thread scheduling by treating even a multithreaded process as if it were 

single threaded. A multithreaded process with N threads then requires N 

scheduling actions to cover the threads. Threads within a multithreaded 

process remain related in that they share resources such as memory 
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address space. Accordingly, Linux threads are sometimes described as 

lightweight processes, with the lightweight underscoring the sharing of 

resources among the threads within a process.

What is the downside of multithreading? Threads within a process 

have the same address space; hence, multithreaded programs are 

susceptible to memory-based race conditions. On a multiprocessor 

machine, for instance, one thread might try to read memory location N 

at the very instant that another thread is trying to write N. The outcome 

is indeterminate. The burden of preventing race conditions falls on 

the programmer, not the operating system. Multithreaded programs, 

especially ones with variables shared among the threads, are a challenge 

even for the experienced programmer.

7.2. � Multiprocessing Through 
Process Forking

The standard library functions provide options for multiprocessing, but  

the fork function is the most explicit. The first code example covers the 

basics of a fork call using unnamed pipes; an earlier example (recall 

Listings 5-8 and 5-9) covered named pipes. A look at unnamed pipes from 

the command line serves as preparation.

At the command line, the vertical bar | represents an unnamed pipe: 

to the left is the pipe writer and to the right is the pipe reader. Each is a 

process. Here is a contrived example using the sleep and echo utilities 

available on Unix-like systems and through Cygwin:

% sleep 5 | echo "Hello, world!"

The greeting Hello, world! appears on the screen; then, after about five 

seconds, the command-line prompt returns, signaling that both the sleep 

and echo processes have exited. The pipe is closed automatically when the 
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reader and writer terminate. There is multiprocessing here, but it does no 

useful work; instead, the example shows how the unnamed pipe works.

In normal usage, the writer process on the left writes bytes to the pipe, 

and the reader process on the right blocks until there are bytes to read. By 

closing the write end of a pipe before exiting, the writer process thereby 

generates an end-of-stream condition. The reader process closes the read 

end before exiting as well. Once the reader and the writer process exit, the 

pipe shuts down.

The preceding example is contrived because the sleep process does 

not write any bytes to the pipe and the echo process does not read any 

bytes from the pipe. Nonetheless, there is multiprocessing. The sleep 

process on the left does just that, and for five seconds. In the meanwhile, 

the echo process immediately writes its greeting to the screen because this 

process need not wait for bytes from the pipe. The echo process exits after 

printing its message. The sleep process then exits, the pipe goes away, and 

the command-line prompt reappears.

The first code example focuses on the basics of fork. The second 

example then uses the pipe library function in a multiprocessing example 

with an unnamed pipe.

Listing 7-1.  Introducing the fork function

#include <sys/types.h> /* just in case... */

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <signal.h>

void main() {

  signal(SIGCHLD, SIG_IGN);    /* prevents zombie */

  int n = 777;                 /* �both parent and child have 

a copy */
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  pid_t pid = fork();

  if (-1 == pid) {             /* -1 signals an error */

    perror(NULL);

    exit(-1);

  }

  if (0 == pid) {           /** child **/

    n = n + 10;

    printf("%i\n", n);      /** 787 ***/

  }

  else {                    /** parent **/

    n = n * 10;

    printf("%i\n", n);      /** 7770 */

  }

}

The basicFork program (see Listing 7-1) opens with a call to the signal 

function. This is a precaution to prevent zombie processes, as clarified in 

an upcoming section. The int variable n is declared and initialized to 777. 

If the subsequent call to the library function fork succeeds, both the child 

and the parent process get their own separate copy of variable n; hence, 

each process manages different variables with the same name.

The library function fork tries to create a new process. If the attempt 

succeeds, the newly created process becomes the child of the original 

process, which is now a parent. The fork function returns an integer 

value; for portability, the recommended type is pid_t, where pid stands 

for process identifier. The tricky part of the fork call is that, if successful, it 

returns one value to the parent—but a different value to the child. A short 

digression into the process id explains.
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Every process has a nonnegative integer value as its identifier (pid). 

There is a library function getpid to retrieve the pid, and a related function 

getppid to retrieve the parent process identifier (ppid). Every process except 

the first has a ppid, which is guaranteed to be the same as the parent’s pid.

If the fork call fails to spawn a child process, it returns -1 to signal the 

error. If fork succeeds, it returns

•	 0 to the child

•	 The child’s pid to the parent

Once forked, the child process executes a copy of the very same code 

as the parent—the code that comes after the call to fork. Accordingly, a 

test is typically used (in this case, the if test) to distinguish between code 

intended for the child and code intended for the parent. In this example, 

the child executes the if block, printing 787; the parent executes the else 

block, printing 7770. The order in which the prints occur is indeterminate. 

If the program runs on a multiprocessor machine, this concurrent program 

can execute in a truly parallel fashion.

The second code example uses an unnamed pipe for interprocess 

communication. The parent again calls fork to spawn a child process, 

and the two processes then communicate through the pipe: the parent as 

the writer process and the child as the reader process. The discussion also 

explains zombie processes and how to reap them.

Listing 7-2.  The basics of the fork function

#include <sys/wait.h> /* wait */

#include <stdio.h>

#include <stdlib.h>   /* exit functions */

#include <unistd.h>   /* read, write, pipe */

#include <string.h>

#define ReadEnd  0

#define WriteEnd 1

Chapter 7  Concurrency and Parallelism



237

void report_and_die() {

   perror(NULL);

   exit(-1);    /** failure **/

}

void main() {

  int pipeFDs[2]; /* two file descriptors */

  char buf;       /* 1-byte buffer */

  �const char* msg = "This is the winter of our discontent\n"; 

/* bytes to write */

  if (pipe(pipeFDs) < 0) report_and_die();

  pid_t cpid = fork();              /* fork a child process */

  if (cpid < 0) report_and_die();   /* check for failure */

  if (0 == cpid) {    /*** child ***/     /* child process */

    cl�ose(pipeFDs[WriteEnd]);             �/* child reads, 

doesn't write */

    w�hile (read(pipeFDs[ReadEnd], &buf, 1) > 0)   �/* read until 

end of byte 

stream */

      �write(STDOUT_FILENO, &buf, sizeof(buf));    �/* echo to 

the standard 

output */

    close(pipeFDs[ReadEnd]);   /* c�lose the ReadEnd: 

all done */

    _exit(0);                  /* exit fast */

  }

  else {              /*** parent ***/

    close(pipeFDs[ReadEnd]);  /* parent writes, doesn't read */

    �write(pipeFDs[WriteEnd], msg, strlen(msg));   �/* write the 

bytes to 

the pipe */
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    �close(pipeFDs[WriteEnd]);     /* �done writing: 

generate eof */

    �wait(NULL);                   /* wait for child to exit */

    �exit(0);                      /* exit normally */

  }

}

The pipeUN program (see Listing 7-2) uses the fork function for 

multiprocessing and the pipe function for creating an unnamed pipe so 

that the processes can communicate. To begin, here is an overview of the 

library function pipe:

•	 The pipe function takes an int array of two elements as 

its single argument: the first element (index 0) is the file 

descriptor for read operations, and the second element 

(index 1) is the file descriptor for write operations.

•	 The function returns -1 to signal failure and 0 to signal 

success.

•	 Note that the pipe function creates an unnamed pipe, 

whereas the mkfifo function creates a named pipe.

The fork function is used to create the reader process, although this 

spawned process could have been the writer. The process that does the 

forking is the parent, and the forked process is the child. The child process, 

an almost exact duplicate of the parent, is said to inherit from the parent. 

For example, a forked child process inherits open file descriptors from the 

parent. Recall that once forked, the child process executes the very same 

code as the parent process, unless an if test or the equivalent is used to 

divide the code that each process executes. A closer look at the example 

clarifies.
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Here, for quick review and with added detail, are the values that the 

fork function can return:

•	 A returned value of -1 indicates an error: the fork failed 

to spawn a child process. This could occur for various 

reasons, including a full process table. The process table 

is a data structure that the operating system maintains 

in tracking processes.

•	 If the fork call succeeds, it returns different values to 

the child and the parent processes:

•	 0 is returned to the child.

•	 The child’s process identifier (pid) is returned to 

the parent.

The pipeUN program uses an if else construct to distinguish 

between the parent and the child. Keep in mind that both processes 

execute this test:

if (0 == cpid) {    /*** child ***/

The else clause is thus for the parent to execute. Because the child 

process is the reader, it immediately closes the WriteEnd of the pipe; in a 

similar fashion, the parent process as the writer immediately closes the 

ReadEnd of the pipe. Both file descriptors are open because of the call to 

pipe. By closing one end of the pipe, each process exhibits the separation-

of-concerns pattern.

The writer process then writes bytes to the pipe, and the reader process 

reads these bytes one at a time. When the writer process closes the pipe’s 

write end, an end-of-stream marker is sent to the reader, which responds 

by closing the pipe’s read end. At this point, the pipe closes down.
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7.2.1. � Safeguarding Against Zombie Processes
In the pipeUN program, the parent process writes a full string to the pipe 

and then waits for the child process to terminate with the call to library 

function wait; the child reads the string byte by byte. The wait call is a 

precaution against creating a permanent zombie process: a zombie is a 

process that has terminated but which still has an entry in the process 

table. If zombies are not reaped from the process table, this table can fill—

and thus prevent the forking of any other process. Although a forked child 

is largely independent of its parent process, the operating system does 

notify the parent when the child terminates. If a child terminates after its 

parent, and there is no safeguard against zombies, the child can remain 

a zombie.

In the pipeUN example, it is unpredictable whether the parent or the 

child will terminate first, and so the parent—the process being notified—

makes the precautionary call to wait: if the child has already exited, the 

call has no effect; otherwise, the parent’s execution is suspended until the 

child terminates. The wait function expects one argument, the address 

of an int variable that stores the exit code of the process being waited on. 

In this example, the argument of NULL is used to keep things simple, but 

a parent process in general might implement different logic depending 

on the status code of a terminated child. There is also a waitpid function 

of three arguments, which allows for more granular control. The waitpid 

function is used in a forthcoming example.

The pipeUN program adopts another safeguard. The child calls library 

function _exit rather than exit: the former fast-tracks parent notification 

and so speeds up the reaping of a zombie entry. The parent process, by 

contrast, calls the regular exit function.
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There are different ways to safeguard against zombies. The pipeUN 

program uses the wait approach to illustrate how independently 

executing processes still can be coordinated. A simpler approach, used 

in the basicFork program, is to make this call to signal at the start of the 

program:

signal(SIGCHLD, SIG_IGN); �/* ignore signal about a child's 

termination */

The effect of this call is to automate the reaping of a zombie. Were this 

approach taken in the current example, the parent’s call to wait would not 

be needed to safeguard against a zombie.

7.3. � The exec Family of Functions
In the forking of a child process, the multiprocessing is obvious in that the 

parent process, which calls fork, continues to execute as well; indeed, the 

parent and the child execute the same code unless program logic explicitly 

controls which process executes which code. The typical approach, 

illustrated in the code examples so far, is to use an if-test to separate the 

code intended for the parent from the code intended for the child.

The functions in the exec family, mentioned several times already but 

not yet analyzed, work differently. All of the functions in the family do 

essentially the same thing, but their argument formats differ. For example, 

the execv function has an argument vector, implemented as a NULL-

terminated array of strings. Other members of the family such as execle 

use an environment variable to pass information to the executing program. 

The next code example goes into the details.
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WHAT’S A PROCESS IMAGE?

Recall that a process is a program in execution, something dynamic. The 

executable program is stored somewhere, typically as a file on a local disk. 

To execute the program, the operating system first must load the file into 

memory. This in-memory representation of the process, read-only during 

process execution, is the process image.

Listing 7-3.  The exec family of functions

#include <sys/types.h>  �/* for safety: maybe there's no 

unistd.h */

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

int main() {

  pid_t pid = fork();      /* try to create a child process */

  if (-1 == pid) {         /* did the fork() work? */

    perror("fork()");      /* if not, error message and exit */

    exit(-1);

  }

  if (!pid) {              /* fork() returns 0 to the child */

    char* const args[ ] =

      �{"./cline", "foo", "bar", "123", NULL}; �/* some cmd-line 

args: NULL to 

terminate */

    int ret = execv("./cline", args);   /* "v" for "vector" */

    if (-1 == ret) {                    /* check for failure */

      perror("execv(...)");

      exit(-1);

Chapter 7  Concurrency and Parallelism



243

    }

    else

      �printf("This should not print!\n");     �/* never 

executes */

  }

  return 0;

}

The execing program (see Listing 7-3) forks a child process, which then 

calls execv to execute the cline program (recall Listing 1-7). Each function 

in the exec family does the following:

•	 Replaces the image of the process that calls an exec 

function with a new process image. This is described as 

overlaying one process image with another.

•	 The new process, in this case cline, runs with the same 

pid as the original process, in this case execing.

The cline program expects command-line arguments, which are 

supplied in a NULL-terminated array of strings; the cline program simply 

prints the arguments to the standard output and then exits.

In the execing program, the call to fork follows the usual pattern except 

that parent process has nothing left to do if the fork succeeds; the parent 

terminates by returning from main. By contrast, the child process invokes 

execv with two arguments:

•	 The first argument is the path to the executable as a 

string, in this case ".\cline".

•	 The second argument is an array of strings, including 

(by tradition) the name of the executable as the first 

element in this array. A NULL marks the end of the 

string array.
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The execv function returns -1 to signal an error—and otherwise does 

not return. Instead, the overlayed process image is used to execute the 

overlay program, in this case cline. Accordingly, the last printf statement 

in the execing program

printf("This should not print!\n");

does not execute. Only the newly executed cline program runs to 

completion: the process image for the forked child indeed has been 

overlaid.

There is a short experiment that can confirm the overlay in the execing 

program:

•	 Immediately after the successful fork of the child 

process, print the child’s pid value, which can be 

obtained with a call within the if block to the getpid 

function.

•	 Amend the cline program to print its own pid, again 

using the library function getpid.

The two printed pid values should be the same, thereby confirming 

that the execed program cline is executing under the forked child’s pid. The 

code available on GitHub includes this experiment.

7.3.1. � Process Id and Exit Status
The next program reviews the forking API, in particular the pid and ppid 

values for a child process, but also focuses on the information available 

about how a child process terminates. The exit status of a forked process 

is available, with convenient macros for extracting this status information. 

These macros belong to C’s waiting API, whose principal functions are 

wait (one argument for ease of use) and waitpid (three or four arguments 

for fine-grained control). The example introduces the waitpid function.
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In production-grade multiprocessing programs, logic likely depends 

on the state of the constituent processes, including information about how 

a given process terminates. For example, a multiprocessing web server 

such as Nginx needs to track whether the master process and the worker 

processes (request handlers) are still alive and, if not, the exit status of a 

terminated process. The multiprocessing examples so far have ignored the 

exit status of a child process. The forthcoming exiting example focuses on 

the child’s exit status and how the parent can get this status.

Listing 7-4.  Exit status

#include <unistd.h>     /* symbolic constants */

#include <stdio.h>      /* printf, etc. */

#include <sys/wait.h>   /* waiting on process termination */

#include <stdlib.h>     /* utilities */

void main() {

  int status;         /* parent captures child's status here */

  int cret = 0xaa11bb22;  /* child returns this value */

  pid_t cpid = fork();    /* spawn the child process */

  if (0 == cpid) {        /* fork() returns 0 to the child */

    pr�intf("Child's pid and ppid: %i  %i\n", getpid(), 

getppid()); /* 2614 2613 */

    printf("Child returns %x explicitly.\n", cret);

    _exit(cret);               /* return an arbitrary value */

  }

  else { /* fork() returns new pid to the parent process */

    printf("Parent's pid: %i\n", getpid());   /* 2613 */

    printf("Waiting for child to exit\n");
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    i�f (-1 != waitpid(cpid, &status, 0)) { �/* wait for child 

to exit, store its 

status */

      if (WIFEXITED(status))

      �printf("Normal exit with %x\n", WEXITSTATUS(status)); 

/** 22 **/

      else if (WIFSIGNALED(status))

        printf("Signaled with %x\n", WTERMSIG(status));

      else if (WIFSTOPPED(status))

        �printf("Stopped with %x\n", WSTOPSIG(status));  

/* stop pauses the process */

      else

      puts("peculiar...");

    }

    exit(0); /* parent exits with normal termination */

  }

}

In the exiting program (see Listing 7-4), one process forks another 

in the by-now-familiar way. The parent waits for the child with a call to 

waitpid, which expects three arguments:

•	 The first argument is the pid of the process on which to 

wait, in this case the child.

•	 The second argument points to an int variable where 

the child’s exit or comparable status is stored.

•	 The last argument consists of additional options, 

for instance, WNOHANG for return at once if no child 

has exited.

The wait(NULL) call used earlier is shorthand for

waitpid(-1, NULL, NULL);
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The first argument to waitpid (-1) means, in effect, any child of mine; 

the second argument is NULL instead of a pointer to an int variable to store 

the child’s exit status; and the third argument is NULL for no flags.

For the child process, there are various possibilities that a waiter such 

as the parent needs to consider. Three of these possibilities are considered 

in the exiting program:

•	 The child exits normally, with a nonnegative 

return value.

•	 The child receives a signal such as SIGKILL (terminate 

immediately), which cannot be ignored, or SIGTERM 

(please terminate immediately), which can be ignored.

•	 The child receives a SIGSTOP (stop executing: pause) 

signal, which cannot be ignored.

In this example, the child exits normally with a call to _exit. The 

WEXITSTATUS macro returns the low-order 8 bits of the child’s 32-bit 

explicitly returned value, 0xaa11bb22 in hex. The macro thus extracts 22.

The exiting program also confirms that a child’s ppid is the same as 

its parent’s pid. In a sample run, this value was 2613, and the child’s pid 

was 2614. These values are not guaranteed to be consecutive, but it is a 

common pattern: the child’s pid is one greater than the parent’s.

7.4. � Interprocess Communication Through 
Shared Memory

Although every process has its own address space, which ensures that 

processes do not share memory locations by default, processes can share 

memory. A standard library provides the appropriate functions. Shared 

memory is, like pipes, a mechanism for interprocess communication. A 

code example with two processes explores the details.
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There are two separate libraries and APIs for shared memory: the 

legacy System V library and API, and the more recent POSIX pair. These 

APIs should never be mixed in a single application, however. The POSIX 

pair is still in development and dependent upon the version of the 

operating system kernel, which impacts code portability. By default, 

the POSIX API implements shared memory as a memory-mapped file: 

for a shared memory segment, the system maintains a backing file with 

corresponding contents. Shared memory under POSIX can be configured 

without a backing file, but this may impact portability. My example uses 

the POSIX API with a backing file, which combines the benefits of memory 

access (speed) and file storage (persistence).

The shared memory example has two programs, named memwriter and 

memreader, and uses a semaphore to coordinate their access to the shared 

memory. Whenever shared memory comes into the picture with a writer, so 

does the risk of a memory-based race condition with indeterminate results; 

hence, the semaphore is used to coordinate (synchronize) access to the 

shared memory so that the writer and the reader operations do not overlap.

The memwriter program, which creates the shared memory segment, 

should be started first in its own terminal. The memreader program then 

can be started (within a dozen seconds) in its own terminal. The output 

from the memreader is

This is the way the world ends...

Here is a review of how semaphores work as a synchronization 

mechanism. A general semaphore also is called a counting semaphore, 

as it has a value (typically initialized to zero) that can be incremented. 

Consider a shop that rents bicycles, with a hundred of them in stock, with 

a program that clerks use to do the rentals. Every time a bike is rented, the 

semaphore is incremented by one; when a bike is returned, the semaphore 

is decremented by one. Rentals can continue until the value hits 100 but 

then must halt until at least one bike is returned, thereby decrementing the 

semaphore to 99.
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A binary semaphore is a special case requiring only two values, 

which are traditionally 0 and 1. In this situation, a semaphore acts as 

a mutex: a mutual exclusion construct. The shared memory example 

uses a semaphore as a mutex. When the semaphore’s value is 0, the 

memwriter alone can access the shared memory. After writing, this process 

increments the semaphore’s value, thereby allowing the memreader to 

read the shared memory.

Listing 7-5.  The memwriter program

/** Compilation: gcc -o memwriter memwriter.c -lrt  

-lpthread **/

#include <stdio.h>

#include <stdlib.h>

#include <sys/mman.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

#include <semaphore.h>

#include <string.h>

#include "shmem.h"

void report_and_exit(const char* msg) {

  perror(msg);

  exit(-1);

}

int main() {

  int fd = shm_open(BackingFile,      /* name from smem.h */

                    �O_RDWR | O_CREAT, �/* read/write, create if 

needed */

                    �AccessPerms);     �/* access permissions 

(0644) */
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  if (fd < 0) report_and_exit("Can't open shared mem segment...");

  ftruncate(fd, ByteSize); /* get the bytes */

  �caddr_t memptr = mmap(NULL,       �/* let system pick where to 

put segment */

                        ByteSize,   /* how many bytes */

                        P�ROT_READ | PROT_WRITE, �/* access 

protections */

                        �MAP_SHARED, �/* mapping visible to other 

processes */

                        fd,         /* file descriptor */

                        �0);         �/* offset: start at 

1st byte */

  �if ((caddr_t) -1  == memptr) report_and_exit("Can't get 

segment...");

  �fprintf(stderr, "shared mem address: %p [0..%d]\n", memptr, 

ByteSize - 1);

  �fprintf(stderr, "backing file:       /dev/shm%s\n", 

BackingFile );

  /* semaphore code to lock the shared mem */

  sem_t* semptr = sem_open(SemaphoreName, /* name */

                           �O_CREAT,       �/* create the 

semaphore */

                           �AccessPerms,   �/* protection 

perms */

                           0);            /* initial value */

  if (semptr == (void*) -1) report_and_exit("sem_open");

  st�rcpy(memptr, MemContents); �/* copy some ASCII bytes to the 

segment */
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  /* increment the semaphore so that memreader can read */

  if (sem_post(semptr) < 0) report_and_exit("sem_post");

  sleep(12); /* give reader a chance */

  /* clean up */

  munmap(memptr, ByteSize); /* unmap the storage */

  close(fd);

  sem_close(semptr);

  shm_unlink(BackingFile); /* unlink from the backing file */

  return 0;

}

The memwriter and memreader programs communicate through 

shared memory as follows. The memwriter program (see Listing 7-5) calls 

the shm_open library function to get a file descriptor for the backing file that 

the system coordinates with the shared memory. At this point, no memory 

has been allocated. The subsequent call to the misleadingly named 

function ftruncate

ftruncate(fd, ByteSize); /* get the bytes */

allocates ByteSize bytes, in this case, a modest 512 bytes. The memwriter 

and memreader programs access the shared memory only, not the backing 

file. The system is responsible for synchronizing the shared memory and 

the backing file.

The memwriter then calls the mmap library function

caddr_t memptr = mmap(�NULL,       �/* let system pick where to 

put segment */

                      ByteSize,   /* how many bytes */

                      �PROT_READ | PROT_WRITE, �/* access 

protections */
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                      �MAP_SHARED, �/* mapping visible to other 

processes */

                      fd,         /* file descriptor */

                      �0);         �/* offset: start at 

1st byte */

to get a pointer to the shared memory. (The memreader makes a similar 

call.) The pointer type caddr_t starts with a c for calloc, which initializes 

dynamically allocated storage to zeros. The memwriter uses the memptr for 

the later write operation, which uses the library strcpy function. At this 

point, the memwriter is ready for writing, but it first creates a semaphore to 

ensure exclusive access to the shared memory.

If the call to sem_open for the semaphore’s creation succeeds

sem_t* semptr = sem_open(SemaphoreName, /* name */

                         �O_CREAT,       �/* create the 

semaphore */

                         AccessPerms,   /* protection perms */

                         0);            /* initial value */

then the writing can proceed. The SemaphoreName (any unique nonempty 

name will do) identifies the semaphore in both the memwriter and the 

memreader. The initial value of zero gives the semaphore’s creator (in 

this case, the memwriter) the right to proceed (in this case, to the write 

operation).

After writing, the memwriter increments the semaphore value to 1:

if (sem_post(semptr) < 0)

with a call to the sem_post library function. Incrementing the semaphore 

releases the mutex lock and enables the memreader to perform its read 

operation. For good measure, the memwriter also unmaps the shared 

memory from the memwriter address space:

munmap(memptr, ByteSize); /* unmap the storage *
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This bars the memwriter from further access to the shared memory.

Listing 7-6.  The memreader program

/** Compilation: gcc -o memreader memreader.c -lrt  

-lpthread **/

#include <stdio.h>

#include <stdlib.h>

#include <sys/mman.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

#include <semaphore.h>

#include <string.h>

#include "shmem.h"

void report_and_exit(const char* msg) {

  perror(msg);

  exit(-1);

}

int main() {

  �int fd = shm_open(BackingFile, O_RDWR, AccessPerms);   

/* empty to begin */

  if (fd < 0) report_and_exit("Can't get file descriptor...");

  /* get a pointer to memory */

  caddr_t memptr = mmap(�NULL,       �/* let system pick where to 

put segment */

                        ByteSize,   /* how many bytes */

                        �PROT_READ | PROT_WRITE, �/* access 

protections */

                        �MAP_SHARED, �/* mapping visible to other 

processes */
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                        fd,         /* file descriptor */

                        �0);         �/* offset: start at 

1st byte */

  �if ((caddr_t) -1 == memptr) report_and_exit("Can't access 

segment...");

  /* create a semaphore for mutual exclusion */

  sem_t* semptr = sem_open(SemaphoreName, /* name */

                           �O_CREAT,       �/* create the 

semaphore */

                           �AccessPerms,   �/* protection 

perms */

                           0);            /* initial value */

  if (semptr == (void*) -1) report_and_exit("sem_open");

  �/* use semaphore as a mutex (lock) by waiting for writer to 

increment it */

  if (!sem_wait(semptr)) { /* wait until semaphore != 0 */

    int i;

    for (i = 0; i < strlen(MemContents); i++)

      �write(STDOUT_FILENO, memptr + i, 1); �/* one byte at 

a time */

    sem_post(semptr);

  }

  /* cleanup */

  munmap(memptr, ByteSize);

  close(fd);

  sem_close(semptr);

  unlink(BackingFile);

  return 0;

}
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In both the memwriter and memreader (see Listing 7-6) programs, the 

shared memory functions of primary interest are shm_open and mmap: on 

success, the first call returns a file descriptor for the backing file, which 

the second call then uses to get a pointer to the shared memory segment. 

The calls to shm_open are similar in the two programs except that the 

memwriter program creates the shared memory, whereas the memreader 

only accesses this already allocated memory:

int fd = shm_open(BackingFile, O_RDWR | O_CREAT, AccessPerms); 

/* memwriter */

int fd = shm_open(BackingFile, O_RDWR, 

AccessPerms);           /* memreader */

With a file descriptor in hand, the calls to mmap are the same:

caddr_t memptr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_

SHARED, fd, 0);

The first argument to mmap is NULL, which means that the system 

determines where to allocate the memory in virtual address space. It is 

possible (but tricky) to specify an address instead. The MAP_SHARED flag 

indicates that the allocated memory is shareable among processes, and 

the last argument (in this case, zero) means that the offset for the shared 

memory should be the first byte. The size argument specifies the number 

of bytes to be allocated (in this case, 512), and the protection argument 

indicates that the shared memory can be written and read.

When the memwriter program executes successfully, the system 

creates and maintains the backing file; on my system, the file is /dev/shm/

shMemEx, with shMemEx as my name (given in the header file shmem.h) 

for the shared storage. In the current version of the memwriter and 

memreader programs, the statement

shm_unlink(BackingFile); /* removes backing file */
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removes the backing file. If the unlink statement is omitted, then the 

backing file persists after the program terminates.

The memreader, like the memwriter, accesses the semaphore through 

its name in a call to sem_open. But the memreader then goes into a wait 

state until the memwriter increments the semaphore, whose initial 

value is 0:

if (!sem_wait(semptr)) { /* wait until semaphore != 0 */

Once the wait is over, the memreader reads the ASCII bytes from the 

shared memory, cleans up, and terminates.

The shared memory API includes operations explicitly to synchronize 

the shared memory segment and the backing file. These operations have 

been omitted from the example to reduce clutter and keep the focus on the 

memory-sharing and semaphore code.

The memwriter and memreader programs are likely to execute without 

inducing a race condition even if the semaphore code is removed: the 

memwriter creates the shared memory segment and writes immediately 

to it; the memreader cannot even access the shared memory until this 

has been created. However, best practice requires that shared memory 

access is synchronized whenever a write operation is in the mix, and the 

semaphore API is important enough to be highlighted in a code example.

7.5. � Interprocess Communication Through 
File Locking

Programmers are all too familiar with file access, including the many 

pitfalls (nonexistent files, bad file permissions, and so on) that beset the 

use of files in programs. Nonetheless, shared files may be the most basic 

mechanism for interprocess communication. Consider the relatively 
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simple case in which one process (producer) creates and writes to a file 

and another process (consumer) reads from this same file:

         writes  +-----------+  reads

producer-------->| disk file |<-------consumer

                 +-----------+

The obvious challenge in using a shared file is that a race condition 

might arise: the producer and the consumer might access the file at exactly 

the same time, thereby making the outcome indeterminate. To avoid a 

race condition, the file must be locked in a way that prevents a conflict 

between a write operation and any another operation, whether a read or a 

write. The locking API in the standard system library can be summarized 

as follows:

•	 A producer should gain an exclusive lock on the file 

before writing to the file. An exclusive lock can be 

held by one process at most, which rules out a race 

condition because no other process can access the file 

until the lock is released. (It is possible to lock only part 

of a file.)

•	 A consumer should gain at least a shared lock on the 

file before reading from the file. Multiple readers can 

hold a shared lock at the same time, but no writer can 

access a file when even a single reader holds a shared 

lock. A shared lock promotes efficiency. If one process 

is just reading a file and not changing its contents, there 

is no reason to prevent other processes from doing the 

same. Writing, however, clearly demands exclusive 

access to a file, as a whole or just in part.
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The standard I/O library includes a utility function named fcntl that 

can be used to inspect and manipulate both exclusive and shared locks 

on a file. The function works through the by-now-familiar file descriptor, 

a nonnegative integer value that, within a process, identifies a file. (Recall 

that different file descriptors in different processes may identify the same 

physical file.) For file locking, Linux provides the library function flock, 

which is a thin wrapper around fcntl. The code examples use the fcntl 

function to expose API details.

Listing 7-7.  The producer program

#include <stdio.h>

#include <stdlib.h>

#include <fcntl.h>

#include <unistd.h>

#include <string.h>

#define FileName "data.dat"

#define DataString "Now is the winter of our discontent\nMade 

glorious summer by this sun of York\n"

void report_and_exit(const char* msg) {

  perror(msg);

  exit(-1); /* EXIT_FAILURE */

}

int main() {

  struct flock lock;

  �lock.l_type = F_WRLCK;    �/* read/write (exclusive versus 

shared) lock */

  lock.l_whence = SEEK_SET; /* base for seek offsets */

  lock.l_start = 0;         /* 1st byte in file */

  lock.l_len = 0;           /* 0 here means 'until EOF' */

  lock.l_pid = getpid();    /* process id */
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  �int fd; �/* file descriptor to identify a file within a 

process */

  �if ((fd = open(FileName, O_RDWR | O_CREAT, 0666)) < 0)  /* -1 

signals an error */

    report_and_exit("open failed...");

  �if (fcntl(fd, F_SETLK, &lock) < 0) �/** F_SETLK doesn't block, 

F_SETLKW does **/

    report_and_exit("fcntl failed to get lock...");

  else {

    �write(fd, DataString, strlen(DataString)); �/* populate 

data file */

    �fprintf(stderr, "Process %d has written to data file...\n", 

lock.l_pid);

  }

  /* Now release the lock explicitly. */

  lock.l_type = F_UNLCK;

  if (fcntl(fd, F_SETLK, &lock) < 0)

    report_and_exit("explicit unlocking failed...");

  close(fd); /* close the file: would unlock if needed */

  return 0;  /* terminating the process would unlock as well */

}

The main steps in the producer program (see Listing 7-7) can be 

summarized as follows. The program declares a variable of type struct 

flock, which represents a lock, and initializes the structure’s five fields. 

The first initialization

lock.l_type = F_WRLCK; /* exclusive lock */
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makes the lock an exclusive (read-write) rather than a shared (read-only) 

lock. If the producer gains the lock, then no other process will be able to 

write or read the file until the producer releases the lock, either explicitly 

with the appropriate call to fcntl or implicitly by closing the file. (When 

the process terminates, any opened files would be closed automatically, 

thereby releasing the lock.) The program then initializes the remaining 

fields. The chief effect is that the entire file is to be locked. However, the 

locking API allows only designated bytes to be locked. For example, if the 

file contains multiple text records, then a single record (or even part of a 

record) could be locked and the rest left unlocked.

The first call to fcntl

if (fcntl(fd, F_SETLK, &lock) < 0)

tries to lock the file exclusively, checking whether the call succeeded. In 

general, the fcntl function returns -1 (hence, less than zero) to indicate 

failure. The second argument F_SETLK means that the call to fcntl does 

not block: the function returns immediately, either granting the lock or 

indicating failure. If the flag F_SETLKW (the W at the end is for wait) were 

used instead, the call to fcntl would block until gaining the lock was 

possible. In the calls to fcntl, the first argument fd is the file descriptor, 

the second argument specifies the action to be taken (in this case, F_SETLK 

for setting the lock), and the third argument is the address of the lock 

structure (in this case, &lock).

If the producer gains the lock, the program writes two text records to 

the file. After writing to the file, the producer changes the lock structure’s 

l_type field to the unlock value:

lock.l_type = F_UNLCK;

and calls fcntl to perform the unlocking operation. The program finishes 

up by closing the file and exiting.
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Listing 7-8.  The consumer program

#include <stdio.h>

#include <stdlib.h>

#include <fcntl.h>

#include <unistd.h>

#define FileName "data.dat"

void report_and_exit(const char* msg) {

  perror(msg);

  exit(-1); /* EXIT_FAILURE */

}

int main() {

  struct flock lock;

  lock.l_type = F_WRLCK;    /* read/write (exclusive) lock */

  lock.l_whence = SEEK_SET; /* base for seek offsets */

  lock.l_start = 0;         /* 1st byte in file */

  lock.l_len = 0;           /* 0 here means 'until EOF' */

  lock.l_pid = getpid();    /* process id */

  �int fd; /* file descriptor to identify a file within a 

process */

  �if ((fd = open(FileName, O_RDONLY)) < 0)  �/* -1 signals an 

error */

    report_and_exit("open to read failed...");

  /* If the file is write-locked, we can't continue. */

  f�cntl(fd, F_GETLK, &lock); �/* sets lock.l_type to F_UNLCK if 

no write lock */

  if (lock.l_type != F_UNLCK)

    report_and_exit("file is still write locked...");
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  loc�k.l_type = F_RDLCK; �/* prevents any writing during the 

reading */

  if (fcntl(fd, F_SETLK, &lock) < 0)

    report_and_exit("can't get a read-only lock...");

  �/* Read the bytes (they happen to be ASCII codes) one at a 

time. */

  int c; /* buffer for read bytes */

  while (read(fd, &c, 1) > 0)    /* 0 signals EOF */

    �write(STDOUT_FILENO, &c, 1); �/* write one byte to the 

standard output */

  /* Release the lock explicitly. */

  lock.l_type = F_UNLCK;

  if (fcntl(fd, F_SETLK, &lock) < 0)

    report_and_exit("explicit unlocking failed...");

  close(fd);

  return 0;

}

The consumer program (see Listing 7-8) is more complicated than 

necessary to highlight features of the locking API. In particular, the 

consumer program first checks whether the file is exclusively locked and 

only then tries to gain a shared lock. The relevant code is

lock.l_type = F_WRLCK;

...

fcntl(fd, F_GETLK, &lock); �/* sets lock.l_type to F_UNLCK if no 

write lock */

if (lock.l_type != F_UNLCK)

  report_and_exit("file is still write locked...");
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The F_GETLK operation specified in the fcntl call checks for a lock, in 

this case, an exclusive lock given as F_WRLCK in the first statement earlier. If 

the specified lock does not exist, then the fcntl call automatically changes 

the lock type field to F_UNLCK to indicate this fact. If the file is exclusively 

locked, the consumer terminates. (A more robust version of the program 

might have the consumer sleep a bit and try again several times.)

If the file is not currently locked, then the consumer tries to gain a 

shared (read-only) lock (F_RDLCK). To shorten the program, the F_GETLK 

call to fcntl could be dropped because the F_RDLCK call would fail if a 

read-write lock already were held by some other process. Recall that a 

read-only lock does prevent any other process from writing to the file but 

allows other processes to read from the file. In short, a shared lock can 

be held by multiple processes. After gaining a shared lock, the consumer 

program reads the bytes one at a time from the file, prints the bytes to the 

standard output, releases the lock, closes the file, and terminates.

Here is the output from the two programs launched from the same 

terminal:

% ./producer

Process 29255 has written to data file...

% ./consumer

Now is the winter of our discontent

Made glorious summer by this sun of York

The data shared through this interprocess communication is text: two 

lines from Shakespeare’s play Richard III. Yet the shared file’s contents 

could be voluminous, arbitrary bytes (e.g., a digitized movie), which makes 

file sharing an impressively flexible mechanism. The downside is that file 

access is relatively slow, whether the access involves reading or writing. As 

always, programming comes with trade-offs.
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7.6. � Interprocess Communication Through 
Message Queues

Earlier code examples highlighted pipes, both named and unnamed. Pipes 

of either type have strict FIFO behavior: the first byte written is the first 

byte read, the second byte written is the second byte read, and so forth. 

Message queues can behave in the same way but are flexible enough that 

byte chunks can be retrieved out of FIFO order.

As the name suggests, a message queue is a sequence of messages, 

each of which has two parts:

•	 The payload, which is an array of bytes (char).

•	 A type, given as a positive integer value; types 

categorize messages for flexible retrieval.

Consider the following depiction of a message queue, with each 

message labeled with an integer type:

          +-+    +-+    +-+    +-+

sender--->|3|--->|2|--->|2|--->|1|--->receiver

          +-+    +-+    +-+    +-+

Of the four messages shown, the one labeled 1 is at the front, that is, 

closest to the receiver. Next come two messages with label 2, and finally, a 

message labeled 3 at the back. If strict FIFO behavior were in play, then the 

messages would be received in the order 1-2-2-3. However, the message 

queue allows other retrieval orders. For example, the messages could be 

retrieved by the receiver in the order 3-2-1-2.

The mqueue example consists of two programs: the sender that writes 

to the message queue and the receiver that reads from this queue. Both 

programs include the header file queue.h shown in Listing 7-9.
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Listing 7-9.  The header file queue.h

#define ProjectId 123

#define PathName  "queue.h" �/* any existing, accessible file 

would do */

#define MsgLen    4

#define MsgCount  6

typedef struct {

  long type;                 /* must be of type long */

  char payload[MsgLen + 1];  /* bytes in the message */

} queuedMessage;

The header file defines a structure type named queuedMessage, 

with payload (byte array) and type (integer) fields. This file also defines 

symbolic constants (the #define directives), the first two of which are 

used to generate a key that, in turn, is used to get a message queue ID. The 

ProjectId can be any positive integer value, and the PathName must be 

of an existing, accessible file—in this case, the file queue.h. The setup 

statements in both the sender and the receiver programs are

key_t key = ftok(PathName, ProjectId);   /* generate key */

int qid = msgget(key, 0666 | IPC_CREAT); /* use key to get 

queue id */

The ID qid is, in effect, the counterpart of a file descriptor for 

message queues.

Listing 7-10.  The message sender program

#include <stdio.h>

#include <sys/ipc.h>

#include <sys/msg.h>

#include <stdlib.h>
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#include <string.h>

#include "queue.h"

void report_and_exit(const char* msg) {

  perror(msg);

  exit(-1); /* EXIT_FAILURE */

}

int main() {

  key_t key = ftok(PathName, ProjectId);

  if (key < 0) report_and_exit("couldn't get key...");

  int qid = msgget(key, 0666 | IPC_CREAT);

  if (qid < 0) report_and_exit("couldn't get queue id...");

  �char* payloads[] = {"msg1", "msg2", "msg3", "msg4", "msg5", 

"msg6"};

  int types[] = {1, 1, 2, 2, 3, 3}; /* each must be > 0 */

  int i;

  for (i = 0; i < MsgCount; i++) {

    /* build the message */

    queuedMessage msg;

    msg.type = types[i];

    strcpy(msg.payload, payloads[i]);

    /* send the message */

    �msgsnd(qid, &msg, MsgLen + 1, IPC_NOWAIT); �/* don't 

block */

    �printf("%s sent as type %i\n", msg.payload, (int) 

msg.type);

  }

  return 0;

}

Chapter 7  Concurrency and Parallelism



267

The preceding sender program sends out six messages, two each of a 

specified type: the first messages are of type 1, the next two of type 2, and 

the last two of type 3. The sending statement

msgsnd(qid, &msg, MsgLen + 1, IPC_NOWAIT);

is configured to be nonblocking (the flag IPC_NOWAIT) because the 

messages are so small. The only danger is that a full queue, unlikely in this 

example, would result in a sending failure. The following receiver program 

also receives messages using the IPC_NOWAIT flag.

Listing 7-11.  The message receiver program

#include <stdio.h>

#include <sys/ipc.h>

#include <sys/msg.h>

#include <stdlib.h>

#include "queue.h"

void report_and_exit(const char* msg) {

  perror(msg);

  exit(-1); /* EXIT_FAILURE */

}

int main() {

  �key_t key= ftok(PathName, ProjectId); �/* key to identify the 

queue */

  if (key < 0) report_and_exit("key not gotten...");

  �int qid = msgget(key, 0666 | IPC_CREAT); �/* access if created 

already */

  if (qid < 0) report_and_exit("no access to queue...");

  �int types[] = {3, 1, 2, 1, 3, 2}; �/* different than in 

sender */

Chapter 7  Concurrency and Parallelism



268

  int i;

  for (i = 0; i < MsgCount; i++) {

    queuedMessage msg; /* defined in queue.h */

    �if (msgrcv(qid, &msg, MsgLen + 1, types[i], MSG_NOERROR | 

IPC_NOWAIT) < 0)

      puts("msgrcv trouble...");

    �printf("%s received as type %i\n", msg.payload, (int) 

msg.type);

  }

  /** remove the queue **/

  if (msgctl(qid, IPC_RMID, NULL) < 0)  /* NULL = 'no flags' */

    report_and_exit("trouble removing queue...");

  return 0;

}

The receiver program does not create the message queue, although the 

API suggests as much. In the receiver, the call

int qid = msgget(key, 0666 | IPC_CREAT);

is misleading because of the IPC_CREAT flag, but this flag really means 

create if needed, otherwise access. The sender program calls msgsnd to 

send messages, whereas the receiver calls msgrcv to retrieve them. In this 

example, the sender sends the messages in the order 1-1-2-2-3-3, but the 

receiver then retrieves them in the order 3-1-2-1-3-2, showing that message 

queues are not bound to strict FIFO behavior:

% ./sender

msg1 sent as type 1

msg2 sent as type 1

msg3 sent as type 2

msg4 sent as type 2
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msg5 sent as type 3

msg6 sent as type 3

% ./receiver

msg5 received as type 3

msg1 received as type 1

msg3 received as type 2

msg2 received as type 1

msg6 received as type 3

msg4 received as type 2

The preceding output shows that the sender and the receiver can be 

launched from the same terminal. The output also shows that the message 

queue persists even after the sender process creates the queue, writes to 

it, and exits. The queue goes away only after the receiver process explicitly 

removes the queue with the call to msgctl:

if (msgctl(qid, IPC_RMID, NULL) < 0) /* remove queue */

7.7. � Multithreading
Recall that a multithreaded process has multiple threads (sequences) of 

executable instructions, which can be executed concurrently and, on a 

multiprocessor machine, in parallel. Multithreading, like multiprocessing, 

is a way to multitask. Multithreading has the upside of efficiency 

because thread-level context switches are quite fast but the downside of 

challenging the programmer with the twin perils of race conditions and 

deadlock. Code examples go into detail. To begin, an example of pthread 

(the standard thread library) basics should be helpful.
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Listing 7-12.  A first multithreaded example

/* compilation: gcc -o greet greet.c -lpthread */

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#define ThreadCount 4

void* greet(void* my_id) { /* void* is 8 bytes on a 64-bit 

machine */

  unsigned i, n = ThreadCount;

  for (i = 0; i < n; i++) {

    printf("from thread %ld...\n", (unsigned long) my_id);

    sleep(rand() % 3);

  }

  return 0;

} /* implicit call to pthread_exit(NULL) */

void main() {

  pthread_t threads[ThreadCount];

  unsigned long i;

  for (i = 0; i < ThreadCount; i++) {

    �/* four args: pointer to pthread_t instance, attributes, 

start function,

       and argument passed to start function */

    int flag = pthread_create(threads + i,  /* 0 on success */

                              NULL,

                              greet,

                              (void*) i + 1);

    if (flag < 0) {

      perror(NULL);
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      exit(-1);

    }

  }

  puts("main exiting...");

  �pthread_exit(NULL); �/* allows other threads to continue 

execution */

}

The multiT program (see Listing 7-12) has five threads in all: the main 

thread, which executes the body of main, and four additional threads that 

main creates through calls to the library function pthread_create. The 

pthread_create function takes four arguments:

•	 The first argument is a pointer to a pthread_t instance, 

in this case an element in the threads array.

•	 The second argument specifies thread attributes. 

A value of NULL indicates that the default attributes 

should be used.

•	 The third argument is a pointer to the thread’s start 

function, which the thread executes once the operating 

system starts the thread. A created thread automatically 

terminates when it returns from its start function. The 

start function can call other functions and do whatever 

else comes naturally to functions.

•	 The fourth and last argument specifies what should be 

passed, as an argument, to the start function. In this 

case, the argument passed to the greet start function 

will be one of the values 1, 2, 3, and 4, which identify 

each of the created threads. The argument passed to 

the start function is always of the generic type void*, 

and NULL for no argument can be used.
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All four of the created threads execute the same code, the body of 

the greet function, but no race condition arises. Arguments passed to a 

function, and local (auto or register) variables within the function, are 

thereby thread-safe because each thread gets its own copies. If a variable 

is neither extern nor static, then it represents a thread-safe memory 

location.

The pthread_create function returns -1 to signal an error and 0 to 

signal success. A successfully created thread is ready to be scheduled for 

execution on a processor.

At the end of main, the multiT program calls the library function 

pthread_exit with an argument of NULL. The address of an int exit-status 

variable also could be used as the argument. This call from main allows 

other threads to continue executing. On a sample run, for instance, the 

output began:

from thread 2...

from thread 4...

main exiting...

from thread 3...

...

The order of thread execution is indeterminate. Once the threads are 

created, the operating system takes over the scheduling, using whatever 

algorithm the host system employs. A pthread instance is a native thread 

under operating system control. By contrast, a green thread is under the 

control of a virtual machine. For example, early implementations of Java 

(before JDK 1.4) were required to support only green threads. If the multiT 

program is run several times, the output is likely to differ each time.
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WHAT’S POSIX?

The Portable Operating System Interface is a family of standards from the IEEE 

Computer Society meant to encourage compatibility among operating systems. 

The multithreading examples use pthreads, where the p stands for POSIX.

7.7.1. � A Thread-Based Race Condition
The next code example illustrates a race condition in a multithreaded 

program. The program later introduces a mechanism for coordinating 

thread execution, thereby preventing this race condition. A short depiction 

of a race condition follows.

Suppose that there is a static variable named n, which is initialized to 

1 and updated as follows:

n += rand();  /* add a pseudo random value to n */

The assignment operator += makes it clear that two operations are 

involved: an addition followed by an assignment. Suppose that this 

same statement belongs to two separate threads of execution, T1 and 

T2, each of which accesses the same variable n. For emphasis, assume 

that each thread executes literally at the same time on a multiprocessor 

machine. Here is one possible scenario, where each of the numbered items 

represents one tick of the system clock:

	 1.	 Thread T1 gets 123 from its call to rand() and 

performs the addition. Assume that the sum of 

the two numbers 123 + 1 = 124 is stored on the 

stack. Call this storage location temp1, which now 

holds 124.
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	 2.	 Thread T2 gets 987 from its call to rand() and 

performs the addition. The sum 988 is stored in 

temp2, also on the stack.

	 3.	 Thread T2 performs the assignment, using the value 

from temp2: the value of n is updated to 988.

	 4.	 Thread T1 performs the assignment, using the value 

from temp1: the value of n changes to 124.

It is clear that improper interleaving of machine-level instructions 

has taken place. Thread T2 does its addition and assignment without 

interruption, which is the correct way to perform the two operations. By 

contrast, thread T1 does its addition, is delayed two ticks of the clock, and 

then finishes up with an assignment. By coming in last, thread T1 wins the 

race: the final value of variable n, 124, reflects only what thread T1 did, and 

what thread T2 did is effectively lost.

The two operations, the addition and then the assignment, make up a 

critical section, a sequence of operations that must be executed in a single-

threaded, uninterrupted manner: if one thread starts its addition, no other 

thread should access variable n until this first thread completes its work 

with an assignment. The code segment at present does not enforce single-

threaded or thread-safe execution of the

n += rand(); /* addition then assignment */

critical section. The outcome is, therefore, indeterminate and 

unpredictable.

7.7.2. � The Miser/Spendthrift Race Condition
The forthcoming miserSpend program encourages a race condition by 

having two threads concurrently update a shared memory location, in 

this case the single static variable named account, which represents a 
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shared bank account: both threads access the same account. A memory-

based race condition requires contention for a shared memory location. Of 

course, the account variable could be extern rather than static without 

changing the program’s behavior.

The miser (saver) and the spendthrift (spender) are implemented as 

two separate threads, each with uncoordinated access to the account. 

To highlight the race condition, the miser and the spendthrift update the 

balance the same number of times, given as a command-line argument. 

Here is a depiction of what goes on in the miserSpend program:

      increment  +---------+  decrement

miser----------->| account |<-----------spendthrift  ## updates are done many times

                 +---------+

On a multiprocessor machine, the miser and the spendthrift can 

execute in a truly parallel fashion. Because access to the account is 

uncoordinated, a race condition ensues, and the final value of account 

is indeterminate. Indeed, if the two threads increment and decrement a 

sufficient number of times (e.g., ten million apiece), it becomes highly 

unlikely that the account will have zero as its value at the end, or that the 

account will have a repeated value over multiple runs.

As in the earlier multithreading example, the main thread starts the 

other threads, but the main thread now must wait for the miser and the 

spendthrift threads to terminate. For the program to illustrate the race 

condition, the main thread must be the last thread standing. The reason 

is that the main thread prints the final value of the account and must 

not do so prematurely, that is, before all of the updates have completed. 

Otherwise, the main thread might print the value of account when this 

value just happens to be zero. The pthread library has a function to enable 

the required waiting.
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Listing 7-13.  Creating, starting, and waiting on the miser and 

spendthrift threads

void report_and_die(const char* msg) {

  fprintf(stderr, "%s\n", msg);

   exit(-1);

}

void main(int argc, char* argv[]) {

  �if (argc < 2) report_and_die("Usage: saveSpend <number of 

operations apiece>\n");

  �int n = atoi(argv[1]); �/** command-line argument conversion 

to integer **/

  pthread_t miser, spendt;

  if (pthread_create(&miser, NULL, deposit, &n) < 0)

    report_and_die("pthread_create: miser");

  if (pthread_create(&spendt, NULL, withdraw, &n) < 0)

    report_and_die("pthread_create: spendt");

  �pthread_join(miser,  NULL);  �/* main thread waits on miser: 

NULL for exit status */

  �pthread_join(spendt, NULL);  �/* main thread waits on spendt: 

NULL for exit status */

  printf("The final account balance is: %10i\n", account);

}

The code for the saveSpend program is divided into two parts for 

readability. The first part (see Listing 7-13) has the main thread create and 

then start two other threads: the miser and the spendthrift threads. Each 

created thread is of type pthread_t, and the pthread_create function can 

be reviewed as follows:
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•	 The first argument is the address of a pthread_t 

instance, in this case, of either the miser or the spendt 

variable.

•	 The second argument, NULL, indicates that default 

thread properties are to be used.

•	 The third argument is the address of the start function, 

either deposit (miser) or withdraw (spendthrift). Recall 

that each created thread terminates automatically 

when exiting its start function.

•	 The fourth argument is the address of the argument 

passed to the start function, in this case the address of 

integer variable n, which is the number of times that 

each started thread should update the account.

The saveSpend program introduces only one new function from 

the pthread API, pthread_join. The caller of the function, in this case 

main, thereby goes into a wait state until the thread identified in the first 

argument has exited. For review, the main function calls the pthread_join 

function twice:

pthread_join(miser,  NULL);  /* main thread waits on miser */

pthread_join(spendt, NULL);  /* main thread waits on spendt */

If the miser already has exited, the first call to pthread_join returns 

immediately; if not, the call returns when the miser does exit. The second 

argument to pthread_join can be used to get the exit status of the thread 

given as the second argument; in this case, the status is ignored with NULL 

as the second argument. The two calls to pthread_join ensure that the 

main thread prints the final balance—the balance after the other two 

threads have terminated.
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Listing 7-14.  The miser/spendthrift start functions

/** To compile: gcc -o saveSpend saveSpend.c -lpthread **/

#include<stdio.h>

#include<pthread.h>

#include<stdlib.h>

static int account = 0;  �/** shared storage across the 

threads **/

void update(int n) {

  account += n; /** critical section **/

}

void* deposit(void* n) {  /** miser code **/

  int limit = *(int*) n, i;

  �for (i = 0; i < limit; i++) update(+1); �/* add 1 to 

account */

  return NULL;

} /** thread terminates when exiting deposit **/

void* withdraw(void* n) { /** spendt code **/

  int limit = *(int*) n, i;

  �for (i = 0; i < limit; i++) update(-1); �/* subtract 1 from 

account */

  return NULL;

} /** thread terminates when exiting withdraw **/

The second part of the saveSpend program (see Listing 7-14) has the 

two start functions for the created threads: deposit (miser) and withdraw 

(spendthrift). Each of these functions takes, as its single argument, the 

number of times to perform an account update, implemented as the 

update function: the deposit function calls update with 1 as the argument, 

whereas the withdraw function calls update with -1 as the argument.
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A command-line argument determines the number of deposits 

and withdrawals, and this number is the same for the miser and the 

spendthrift. The command-line argument should be sufficiently large to be 

interesting, that is, to confirm the race condition. If the number is too small 

(e.g., 100), then the miser might do its 100 deposits before the spendthrift 

does any withdrawals. The goal is to have each thread run long enough 

that there is improper interleaving of the arithmetic and assignment 

operations in the critical section, the body of the update function. 

With a command-line argument of 10M (million), the output from two 

consecutive runs was

The final account balance is:   203692

The final account balance is: -1800416

With a command-line argument of 10M, a result of zero is highly 

unlikely.

In the saveSpend program, the account is changed in only one place: 

the function update, which takes a single int argument and updates the 

account by this amount. For the saveSpend program to behave properly, 

the body of update function must execute in a single-threaded fashion. 

There are different ways to enforce this policy, and using a mutex to 

lock access to the account is one way. (Recall the earlier example of the 

memwriter/memreader in which a semaphore is used as a mutex.) In 

the current example, the mutex from the pthread library ensures single-

threaded execution of a critical section—the body of the update function 

in which the account is either incremented or decremented.

Listing 7-15.  Fixing the saveSpend program

static int account = 0;  �/** shared storage across the 

threads **/

static pthread_mutex_t lock; /* named lock for clarity */
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void update(int n) {

  if (0 == pthread_mutex_lock(&lock)) {

    account += n;                    /** critical section **/

    pthread_mutex_unlock(&lock);

  }

}

The saveSpend program requires only a few changes to fix (see 

Listing 7-15):

•	 A pthread_mutex_lock variable named lock is added. 

There should be a single lock to ensure that the miser 

and the spendthrift contend for the same lock. The lock 

is static but could be extern as well.

•	 The lock is used in the update function. To update the 

account, a thread first must grab the lock, expressed 

here as the condition of the if clause. The pthread_

mutex_lock function returns 0 to signal that the lock 

has been grabbed.

•	 Once a thread completes its update, the thread releases 

the lock so that another thread can try to grab it.

With these changes in place, the saveSpend program always prints 0 

as the value of the account when the miser and spendthrift threads have 

terminated.

One more change is recommended in fixing the saveSpend program. 

After the miser and spendthrift threads terminate, the lock is no longer 

needed; hence, it should be destroyed. The function main could be 

changed as follows:

...

pthread_join(spendt, NULL);

pthread_mutex_destroy(&lock); /** added **/
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A high-level summary of the pthread_mutex seems in order:

•	 To execute a locked critical section, a thread first 

must grab the lock. After finishing the execution of 

the critical section, a thread should release the lock to 

enable some other thread to grab the lock and thus to 

safeguard against deadlock.

•	 If multiple threads are contending for the lock, the 

implementation ensures that exactly one thread 

grabs it.

•	 In general, a mutex such as pthread_mutex does not 

guarantee fairness. For example, if two threads are 

contending for the lock, the mutex implementation 

does not guarantee that each thread will be successful 

half the time. However, the saveSpend program has 

other logic to ensure that the miser and the spendthrift 

threads execute the same number of times.

If the fixed saveSpend program is run with a sufficiently large loop 

count (e.g., 10,000,000) as the command-line argument, there will be 

noticeable slowdown compared to the original version of the program. 

There is a performance cost to mutual exclusion, which enforces single-

threaded execution of a critical section; in this code example, the cost 

ensures that the saveSpend program runs correctly.

7.8. � Deadlock in Multithreading
Deadlock can occur in either a multiprocessing or multithreading. In the 

multithreading context, deadlock can occur with just two threads: T1 and 

T2. To access a shared resource R, either T1 or T2 must hold two locks (L1 

and L2) at the same time. Suppose the two threads try to access R, with T1 

managing to grab lock L1 and T2 managing to grab lock L2. Each thread 
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now waits indefinitely for the other to release its held lock—and deadlock 

results. Deadlock is usually inadvertent, of course, but the next code 

example tries to cause deadlock.

Listing 7-16.  Deadlocking with threads

/** To compile: gcc -o deadlock deadlock.c -lpthread **/

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

static pthread_mutex_t lock1, lock2; �/** two locks protect the 

resource **/

static int resource = 0;             /** the resource **/

void grab_locks(const char* tname,

                const char* lock_name,

                const char* other_lock_name,

                pthread_mutex_t* lock,

                pthread_mutex_t* other_lock) {

  printf("%s trying to grab %s...\n", tname, lock_name);

  pthread_mutex_lock(lock);

  printf("%s grabbed %s\n", tname, lock_name);

  �if (0 == strcmp(tname, "thread1")) usleep(100); �/** fix 

is in! **/

  printf("%s trying to grab %s...\n", tname, other_lock_name);

  pthread_mutex_lock(other_lock);

  printf("%s grabbed %s\n", tname, other_lock_name);
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  resource = (0 == strcmp(tname, "thread1")) ? -9999 : 1111;

  pthread_mutex_unlock(other_lock);

  pthread_mutex_unlock(lock);

}

void* thread1() {

  �grab_locks("thread1", "lock1", "lock2", &lock1, &lock2);  

/* lock1...lock2 */

  return NULL;

}

void* thread2() {

  �grab_locks("thread2", "lock2", "lock1", &lock2, &lock1);  

/* lock2...lock1 */

  return NULL;

}

void main(){

    pthread_t t1, t2;

    �pthread_create(&t1, NULL, thread1, NULL);     �/* start 

thread 1 */

    �pthread_create(&t2, NULL, thread2, NULL);     �/* start 

thread 2 */

    pthread_join(t1, NULL);           /* wait for thread 1 */

    pthread_join(t2, NULL);           /* wait for thread 2 */

    printf("Number: %i (Unlikely to print...)\n", resource);

}

The deadlock program (see Listing 7-16) is likely but not certain to 

deadlock. Although deadlock is intended, the code still might execute in 

such a way that deadlock does not occur. On a sample run, however, the 

deadlock program produced this output:
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thread1 trying to grab lock1...

thread1 grabbed lock1

thread2 trying to grab lock2...

thread2 grabbed lock2

thread2 trying to grab lock1...

thread1 trying to grab lock2...

A code analysis shows what happened.

The main thread creates two threads: t1 and t2. Thread t1 is created 

first, and the output confirms that t1 starts executing first—although the 

order of execution is indeterminate. There are two locks, lock1 and lock2, 

which protect resource, an int variable: thread t1 tries to set this variable 

to -9999, whereas thread t2 tries to set the variable to 1111. To set the 

variable, a thread must grab both locks.

Thread t1 has thread1 as its start function, and t2 has thread2 as 

its start function. In turn, these functions immediately call the grab_

locks function, but with arguments in a different order. Recall that, in 

multithreading, each thread has its own copies of arguments and local 

variables.

Given the output shown previously, the concurrent execution of grab_

locks can be summarized as follows:

	 1.	 Thread t1 succeeds in grabbing lock1 but fails in 

the attempt to grab lock2. After grabbing lock1, 

thread t1 sleeps for 100 microseconds—time 

enough, as it turns out, for thread t2 to grab lock2.

	 2.	 After grabbing lock2, thread t2 tries to grab lock1, 

which thread t1 already holds. At this point, t1 

holds lock1 and t2 holds lock2.
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	 3.	 The last two statements in the grab_locks function 

release the locks. However, neither thread can 

proceed to the release code without first grabbing a 

lock that the other thread already holds—deadlock.

Why is deadlock not certain in the deadlock program? On my desktop 

machine, no deadlock results if the usleep call is removed from the 

grab_locks function. No deadlock results if the argument passed to 

usleep is sufficiently small. Even with the current usleep value of 100, it is 

possible that thread t1 might grab both locks before thread t2 even begins 

executing. It is also possible, on a multiprocessor machine, that thread 

t2 is scheduled on a faster processor than is t1; as a result, t2 grabs both 

locks before t1 even begins executing. A thread that holds both locks can 

proceed to the release code: no deadlock occurs. The deadlock program 

tries to cause deadlock, but even this requires some experimentation 

by setting the amount of time that thread t1 sleeps after grabbing the 

first lock.

The deadlock program tries to cause deadlock, but the real-world 

challenge is a concurrent program that, although designed not to 

deadlock, does so anyway. Modern database systems typically include at 

least a deadlock-detection module. In general, however, software systems 

neither detect, nor prevent, nor recover from deadlock. The burden thus 

falls on the programmer to write code that avoids deadlock.

7.9. � SIMD Parallelism
The acronym SIMD was introduced in the mid-1960s as part of Flynn’s 

taxonomy for parallel computing. SIMD stands for single instruction, 

multiple data stream. Flynn’s taxonomy introduces other acronyms 

(e.g., MIMD for multiple instruction, multiple data stream) to describe 

additional approaches to parallel computation. This section focuses on 

SIMD parallelism.
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Imagine integer values collected in array and a code segment that 

doubles the value of each element. A conventional approach would be 

to loop over the array and, one element at a time, double each value. In 

a SIMD architecture, a single instruction would execute on each element 

in parallel. The serial or iterative computation gives way to a one-step 

parallel computation, with a boost in performance that is both intuitive 

and compelling.

The concurrent programs examined so far become truly parallel 

programs without any programmer intervention. If a multiprocessing or 

multithreading program happens to execute on a multiprocessor machine 

(now the norm), then the operating system transforms the concurrent 

program into a parallel one by scheduling processes/threads onto different 

processors. SIMD parallelism differs in that parallel instructions come into 

play. SIMD is thus a type of instruction-level parallelism, which requires 

underlying architectural support.

The appeal of SIMD parallelism is obvious. Even everyday applications 

regularly iterate over arrays, performing the same operation on each 

element. For an array of size N, this iterative approach requires that N 

instructions be executed in sequence. Assume, for simplicity, that each 

instruction requires one tick of the system clock. In this scenario, doubling 

the array elements takes N ticks. If the doubling can be done in a single 

SIMD instruction, the time required drops from N ticks to roughly one tick, 

although there is nontrivial overhead to set up the parallel addition.

For some time, computers have had devices tailored for SIMD. A 

graphics processing unit (GPU) is a case in point; indeed, the acronym 

GP_GPU describes a GPU designed for general purpose rather than just 

graphics-specific processing. There are various C libraries and entire 

frameworks devoted to putting such devices to use in SIMD processing. 

This section goes another way, focusing instead on how the standard C 

compilers are now able to use native SIMD instructions, in particular 

on modern Intel and AMD machines. (ARM Neon machines likewise 

support SIMD.)
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In the late 1990s, Intel released the P5 (P for Pentium) line of 

microprocessors, which support the MMX instruction set, a first step 

toward SIMD parallelism. The MM registers associated with this 

instruction set, and the instruction set itself, soon gave way to SSE 

(Streaming SIMD Extensions) in different versions (e.g., SSE2 and SSE4). 

The XMM registers of SSE are 128 bits in size and small in number—only 

eight to begin but later sixteen. The SIMD architecture and instruction set 

have continued to evolve. For example, the XMM registers (128 bits) now 

have siblings: YMM registers (256 bits) and ZMM registers (512 bits).

Listing 7-17.  A SIMD program in C

#include <stdio.h>

#define Length 8

typedef double doubleV8 __attribute__ ((vector_size (Length * 

sizeof(double)))); /** critical **/

void main() {

  �doubleV8 dataV1 = {1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8};   

/* no square brackets on dataV1 */

  �doubleV8 dataV2 = {4.4, 6.6, 1.1, 3.3, 5.5, 2.2, 3.3, 5.5};   

/* no square brackets on dataV2 */

  doubleV8 add = dataV1 + dataV2;

  doubleV8 mul = dataV1 * dataV2;

  doubleV8 div = dataV1 / dataV2;

  int i;

  for (i = 0; i < Length; i++)

    �printf("%f ", add[i]); /* 5.500000 8.800000 4.400000 

7.700000 11.000000 8.800000 11.000000 14.300000 */
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  putchar('\n');

  for (i = 0; i < Length; i++)

    �printf("%f ", mul[i]); �/* 4.840000 14.520000 3.630000 

14.520000 30.250000 14.520000 

25.410000 48.400000 */

  putchar('\n');

  for (i = 0; i < Length; i++)

    �printf("%f ", div[i]); �/* 0.250000 0.333333 3.000000 

1.333333 1.000000 3.000000 2.333333 

1.600000 */

  putchar('\n');

}

The simd program (see Listing 7-17) has a typedef that triggers the C 

compiler to use native SIMD instructions and the supporting architectural 

components, in particular SIMD registers. The typedef makes doubleV8 

an alias for a double vector by using a special attribute:

__attribute__ ((vector_size (Length * sizeof(double)))

The attribute specifier has two underscores in front and in back. 

The specified attribute is vector_size, whose value is Length (defined as 

8) multiplied by sizeof(double), which is typically 8 bytes. A doubleV8 

instance is thereby defined as a vector of eight 8-byte floating-point values, 

which requires 512 bits in all.

With this typedef in place, the arithmetic operations in the remaining 

code are easy to read—and highly efficient. To begin, each of the two 

doubleV8 variables, dataV1 and dataV2, is initialized. Notice that the 

square brackets usually associated with arrays are absent. Here, for review, 

is the initialization of vector dataV1:

doubleV8 dataV1 = {1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8};
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The vectors dataV1 and dataV2 can be used with indexes, as the three 

loops near the end of the code illustrate:

printf("%f ", div[i]); /* print ith value */

However, the arithmetic operations to add, multiply, and divide the 

vectors are one statement apiece in the source code. Here, for review, is the 

multiplication of the two vectors:

doubleV8 mul = dataV1 * dataV2; /* no looping! */

The standard compilers now make SIMD programming 

straightforward in C itself, without any additional libraries or tools. Of 

course, the underlying architecture must support machine-level SIMD 

instructions. It is reasonable to expect that SIMD architectures will 

continue to improve and that the C compilers will continue to generate 

code that takes advantage of the evolving SIMD instruction sets and 

architectures.

7.10. � What’s Next?
The next chapter covers miscellaneous topics to provide a better sense of 

the libraries available in C, both standard and third party. There is also 

a section on building software libraries from scratch. As usual, the code 

examples highlight the power and flexibility of C.

The forthcoming code examples cover regular expressions for pattern 

matching and data validation; assertions for enforcing conditions in code 

modules; locale management for internationalization; the compilation of 

C code into WebAssembly for high-performance web modules; signals for 

interprocess communication; and the building, deployment, and use (by 

both C and Python clients) of software libraries.
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CHAPTER 8

Miscellaneous Topics

8.1. � Overview
This chapter introduces libraries and topics not seen so far, but it also 

extends and refines the coverage of earlier material. For example, the 

flexible library function system, for quick multiprocessing, is introduced; 

the input function scanf is examined more closely.

The chapter begins with regular expressions, a language designed for 

pattern matching, which makes the language well suited for verifying 

input. Indeed, professional data validation relies on regular expressions 

as a base level. The chapter then moves to assertions, which allow the 

programmer to express and enforce constraints in a program. A section 

on locales and internationalization follows. Short code examples and full 

programs get into the details.

WebAssembly is a language designed for high-performance web 

modules, for example, ones that do serious number crunching. C is among 

the earliest languages (the others are C++ and Rust) to compile into 

WebAssembly. This section goes into detail with an full code example.

A signal is a low-level but still powerful way for one process to 

communicate with another, and C has an API for generating and handling 

signals. The section on signals is code oriented as usual.
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The chapter ends with a section on building static and dynamic 

libraries in C. It is no surprise that a client written in C can consume a 

library written in the same language, but almost every modern language 

can interoperate with C. This section underscores the point by having a 

Python client consume a C library built from scratch.

8.2. � Regular Expressions
The regular expression language, or regex for short, is used to match 

strings against patterns and even for editing strings. Users of command-

line utilities such as grep (short for grab regular expression) or rename 

already have experience with regex. In web and other applications, regex 

verification of user input is best practice; modern programming languages 

typically support regex. The first code example prompts a user for an 

employee ID and then checks whether the entered string matches a 

pattern that validates IDs.

Listing 8-1.  A regex to check an employee ID

#include <stdio.h>

#include <regex.h>

#define MaxBuffer 64

void main() {

  char input[MaxBuffer];

  char error[MaxBuffer + 1]; /* null terminator */

  printf("Employee Id: ");

  scanf("%7s", input); /* read only 7 chars */

  �const char* regex = "^[A-Z]{2}[1-9]{3}[a-k]{2}$"; �/* regex as 

a string */

  regex_t regex_comp;
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  int flag;

  �if ((flag = regcomp(&regex_comp, regex, REG_EXTENDED)) < 0) { 

/* compile regex */

    regerror(flag, &regex_comp, error, MaxBuffer);

    fprintf(stderr, "Error compiling '%s': %s\n", regex, error);

    return;

  }

  �if (REG_NOMATCH == regexec(&regex_comp, input, 0, NULL, 0)) 

/* match? */

    fprintf(stderr, "\n%s is an invalid employee ID.\n", input);

  else

    fprintf(stderr, "\n%s is a valid employee ID.\n", input);

  regfree(&regex_comp); /* good idea to clean up */

}

The empId program (see Listing 8-1) prompts the user for an employee 

ID and then reads the entered ID using scanf:

scanf("%7s", input); /* read only 7 chars */

The 7 in the format string %7s ensures that no more than seven 

characters are scanned into the buffer named input, which has room for 

64 in any case.

The program then compiles a regex pattern given as a string. This 

pattern is the most complicated part of the program and so deserves 

careful analysis. The pattern consists of three parts, and each part consists 

of a set and a count. For now, ignore the start character ^ and the end 

character $; these are covered shortly.

The first set/count pair is

[A-Z]{2}
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The square brackets represent a set, a collection of nonduplicate items 

in which order does not matter. For example, the set

[1234]

is the same as the set

[2143]

In the empId program, the members of the first set are the uppercase 

letters A,B,…,Z. These letters could be enumerated in the square brackets 

and in any order—a tedious undertaking. The regex language thus has a 

shortcut: [A-Z] means the uppercase letters A through Z.

Immediately after the set [A-Z] comes the count (quantifier) of how 

many characters from the set are required. The count occurs in braces:

[A-Z]{2} /* exactly 2 letters from the set A-Z */

The count can be flexible. For example, the count in

[A-Z]{2,4} /* 2 to 4 letters from the set A-Z */

allows two to four letters from the set.

The second part of the pattern requires exactly three decimal digits 

from the set [1-9]:

[1-9]{3} /* 3 digits, 1 through 9 */

The third part of the pattern requires two lowercase letters, but in the 

range of a through k:

[a-k]{2} /* 2 letters, a through k */

Here is a summary of other quantifier options:

[A-Z]?   /* zero or one from the set */

[A-Z]*   /* zero or more from the set */

[A-Z]+   /* one or more from the set */
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The employee ID is supposed to begin with an uppercase letter and 

end with a lowercase letter. There should not be any other characters, 

including whitespace, flanking the employee ID on either side. To express 

this requirement, the regex expression uses anchors: the hat character   ̂ is 

the left anchor, and the dollar-sign character $ is the right anchor. Without 

these anchors, an employee ID such as

foobarAB123bb9876

would pass muster because the substring AB123bb matches the pattern 

without the anchors. The anchored expression requires that the ID start 

with an uppercase letter and end with a lowercase one.

The employee ID pattern as a string is compiled using the library 

function regcomp, which creates a regex_t instance if successful. The 

compiled pattern is used in matches. The last argument to regcomp is REG_

EXTENDED, which enables various POSIX extensions to the original regex 

library. There is also a C library that supports Perl syntax and features (see 

www.pcre.org/), which has become the de facto standard for regex syntax.

Once the pattern is compiled, it can be used in a call to regexec, which 

matches the pattern against an input string. The call takes five arguments:

if (REG_NOMATCH == regexec(&pattern_comp, /* pattern */

                           input,         /* input string */

                           0,        /* zero capture groups */

                           NULL,     /* no capture array */

                           0))       /* no special flags */

The first two arguments are the address of the compiled pattern and 

the string to test against the pattern, which in this case is the user input. 

The next two arguments, 0 and NULL, are for capture groups: parts of the 

string to be tested can be captured for later reference. In this example, the 

capture option is not needed; hence, the number of capture groups is 0, 

and then there is NULL instead of an array in which to save the captures. A 

later example illustrates captures. The last argument consists of optional 
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integer flags, for example, a flag to ignore case when matching letters. In 

this example, there are no flags, which 0 represents.

The empId program works as advertised. For example, it accepts 

AQ431af as an employee ID but rejects AQ431mf (m is not between a and 

k, inclusive) and AQ444kk7 (ends with a digit, not a letter).

A first experience with regex syntax may seem daunting, but a 

rhetorical question puts the challenge into perspective: Would it be easier 

to learn regex, or to write a program from scratch that does what the empId 

example requires? Regular expressions are not always intuitive, but they 

make up for this shortcoming with their power and flexibility.

Listing 8-2.  A revised version of the empId program

#include <stdio.h>

#include <unistd.h>

#include <regex.h>

#define MaxBuffer 128

#define GroupCount  4 /* entire expression counts as one group 

by default */

void main() {

  char error[MaxBuffer + 1];

  char* inputs[ ] = {"AABC123dd95", "Az4321jb81", "QQ987ii4",

                     �"QQ98ii4", "YTE987ef4", "ARNQ999kk6", NULL};

  �const char* regex = "^([A-Z]{2,4})([1-9]{3})([a-k]{2})

[0-9]+$";

  regex_t regex_comp;

  int flag;

  if ((flag = regcomp(&regex_comp, regex, REG_EXTENDED)) < 0) {

    regerror(flag, &regex_comp, error, MaxBuffer);

    printf("Regex error compiling '%s': %s\n", regex, error);

    return;

  }
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  unsigned i = 0, j;

  while (inputs[i]) { /* iterate over the inputs */

    �regmatch_t groups[GroupCount]; /* for extracting 

substrings */

    �if (REG_NOMATCH == regexec(&regex_comp, inputs[i], 

GroupCount, groups, 0))

      �fprintf(stderr, "\t%s is not a valid employee ID.\n", 

inputs[i]);

    else {

      �fprintf(stdout, "\nValid employee ID. %i parts 

follow:\n", GroupCount);

      for (j = 0; j < GroupCount; j++) {

        if (groups[j].rm_so < 0) break;

        �write(1, inputs[i] + groups[j].rm_so, groups[j].rm_eo - 

groups[j].rm_so);

        write(1, "\n", 1);

      }

      printf("-----");

    }

    i++; /* loop counter */

  }

  regfree(&regex_comp); /* good idea to clean up */

}

The empId2 program (see Listing 8-2) adds features to the original 

empId program. The new features can be summarized as follows:

•	 An employee ID may start out with between two and 

four letters. In the fictitious company for which the 

employees work, the number of starting letters is 

a security code: two letters is low-security, three is 

middle-security, and four is high-security clearance.
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•	 An employee ID must end with one or more 

decimal digits.

•	 The empId2 program introduces groups, the three 

parenthesized expressions, in order to parse the 

employee ID.

The revised regex expression is

^([A-Z]{2,4})([1-9]{3})([a-k]{2})[0-9]+$ ## [0-9]+ means 1 or 

more decimal digits

The anchors remain, but the end requirement for one or more 

decimal digits is new. The other major change is the use of parenthesized 

subexpressions, each of which represents a group that is captured for later 

analysis.

The major change in the rest of the code has to do with group captures. 

The code declares an array:

regmatch_t groups[GroupCount]; /* for extracting substrings */

The value of GroupCount is four, one more than the number of 

parenthesized subexpressions (in this case, three) in the regex. The reason 

is that the entire string to be matched counts as one group, in fact the first. 

The regmatch_t type is

typedef struct {

   regoff_t rm_so; /* start offset */

   regoff_t rm_eo; /* end offset */

} regmatch_t;

The two offsets indicate where, in the string to be matched, the 

different groups begin and end. The groups array, in the current 

example, has four elements of this type. For the first string to be matched, 

AABC123dd95, the start index (rm_so in the structure) for the first 

subexpression is 0, and the end index (rm_eo) is 4, immediately beyond the 

last character C in the first subexpression.
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Given the regmatch_t, it is straightforward to print the captured 

groups in valid employee IDs. Indeed, the easy way is to use the low-level 

I/O API. Here is the relevant statement:

write(1,                                  /* stdout */

      inputs[i] + groups[j].rm_so,        /* start */

      groups[j].rm_eo - groups[j].rm_so); /* length */

The first argument to write is, of course, the standard output. The 

second argument takes the base address of a test string (for instance, 

inputs[0] is the string AABC123dd95) and adds the start offset (rm_so, 

which is 0, 4, or 7). The third argument to write is the captured part’s 

length: the end index (one beyond the end of the part) minus the start 

index. The output for parsing the first two candidate IDs is

Valid employee ID. 4 parts follow:

AABC123dd95

AABC

123

dd

        Az4321jb81 is not a valid employee ID.

The standard C library for regex covers the basics but does not include 

newer features such as lookaheads. These features make it easier or more 

efficient to do pattern matching that still can be done without them. The 

previously mentioned PCRE (Perl Compatible Regular Expressions) library 

is an option for such newer features.
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8.3. � Assertions
An assertion checks whether a program satisfies a condition at a specified 

point in its execution. There are three traditional types of assertion that 

can be used to check a program module such as a C block:

•	 An assertion expressing a precondition, which must 

hold at the start of a block

•	 An assertion expressing a postcondition, which must 

hold at the end of a block

•	 An assertion expressing an invariant, which must hold 

throughout a block

C implements assertions with the assert macro, which takes an 

arbitrary boolean expression as its argument. If the assert evaluates to 

true (nonzero), the program continues execution; otherwise, the program 

aborts with an explanatory error message.

Listing 8-3.  Using assertions to track login attempts

#include <stdio.h>

#include <regex.h>

#include <assert.h>

#define MaxBuffer 64

#define MaxTries 3

unsigned check_id(const char* id, regex_t* regex) {

  return REG_NOMATCH != regexec(regex, id, 0, NULL, 0);

}

void main() {

  const char* regex_s = "^[A-Z]{2,4}[1-9]{3}[a-k]{2}[0-1]?$";

  regex_t regex_c;
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  if (regcomp(&regex_c, regex_s, REG_EXTENDED) < 0) {

    fprintf(stderr, "Bad regex. Exiting.\n");

    return;

  }

  char id[MaxBuffer];

  unsigned tries = 0, flag = 0;

  assert(0 == tries);            /* precondition */

  do {

    assert(tries < MaxTries);    /* invariant */

    printf("Employee Id: ");

    scanf("%10s", id);

    if (check_id(id, &regex_c)) {

      flag = 1;

      break;

    }

    tries++;

  } while (tries < MaxTries);

  assert(tries <= MaxTries);        /* postcondition */

  regfree(&regex_c); /* clean up */

  if (flag) printf("%s verified.\n", id);

  else printf("%s not verified.\n", id);

}

The verifyEmp program (see Listing 8-3) builds on the earlier empId 

program, in particular by using a regex to verify an employee’s ID. The 

regex itself has changed a little in order to show more aspects of the 

language:

^[A-Z]{2,4}[1-9]{3}[a-k]{2}[0-1]?$ /* new part is: [0-1]? */
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This pattern allows the starting uppercase letters to be between 

two and four in number and makes a single ending digit (either 0 or 1) 

optional. The function check_id takes two arguments, the ID to verify and 

the compiled regex; the function returns either true, if the candidate ID 

matches the regex, or false otherwise.

The program uses a do while loop to prompt the user for an employee 

ID. Of interest now is that the employee is to get no more than MaxTries 

chances to enter the ID. Similar approaches are used for login/password 

combinations, of course. The loop condition is

while (tries < MaxTries)

where tries is updated on each attempt and MaxTries is a macro defined 

as 3. If this condition were changed to

while (tries < MaxTries + 1)

and the user failed to provide a valid ID, the program would abort, and the 

error message from the failed assertion would be

empId3: empId3.c:24: main: Assertion 'tries < 3' failed.

The 24 represents line 24 in the source code, the assertion immediately 

after the do:

assert(tries < MaxTries); /* invariant */

The verifyEmp program has three assertions, each with a different test:

•	 The precondition occurs immediately before the loop 

starts. It checks that, at this point, the value of tries 

is zero. If tries were not initialized at all, then—as 

a stack-based variable—its value would be random 

and possibly greater than MaxTries already. The 

precondition is evaluated exactly once, as it occurs 

before the loop.
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•	 The postcondition occurs immediately after the loop 

ends. It checks that, at this point, tries is less than 

or equal to the value of MaxTries. There are two 

possibilities:

•	 Suppose that the candidate ID is verified in any 

one of the three allowed attempts. Even if success 

comes at the third and final attempt, the value 

of tries is only 2 and so still less than MaxTries, 

which is 3.

•	 Suppose that the candidate ID fails three times. 

Control then exits the loop because of the loop test 

that the value of tries be strictly less than the value 

of MaxTries: both tries and MaxTries now have 

a value of 3. The loop test has done its job, and so 

the program should continue to run normally. The 

postcondition thus must allow tries to be less than 

or equal to the value of constant MaxTries.

•	 The invariant occurs immediately inside the loop, 

which is the only place that tries changes after its 

initialization to zero. On each iteration, tries is 

incremented by 1. If the candidate ID is verified, then 

the break statement, rather than the loop test, is what 

moves control beyond the loop. If tries is incremented 

to 3, then the loop condition, not the break statement, 

should cause control to exit the loop. Accordingly, 

the invariant checks that tries is always less than 

MaxTries.
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The syntax of assertions is easy in C, but the reasoning behind 

assertion tests and assertion placement can be complicated. Even 

a program as relatively simple as verifyEmp confirms the point. The 

complication arises because assertions articulate reasoning about 

program correctness—and determining what makes a program correct is 

notoriously hard.

C has a convenient way to turn assertions off without commenting out 

the assert statements or deleting them from the source code. In a file with 

assertions, simply define the macro NDEBUG:

#define NDEBUG /* turns off assertions */

As code development moves from testing to production, it is common 

to turn assertions off.

8.4. � Locales and i18n
Date, currency, and other information should be formatted in a locale-

aware way as part of i18n programming, where i18n abbreviates 

internationalization. (The skeptic should count the letters between the i 

and the n.) Consider, for example, this large number formatted in a way 

familiar to North Americans:

1,234,567,891.234

In Germany, Italy, or Norway, the expected format would be

1 234 567.891,234

Locale information is available as part of the environment of a local 

system. When a C program begins execution, the program inherits 

environment variables about the locale and other features, but this locale 

inheritance does not extend to library functions that the program may 
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call. Accordingly, a locale-aware program needs to do some initialization. 

Before looking at this initialization in code, it will be useful to consider 

how a C program can get environment information in general.

Listing 8-4.  How to get information about the program 

environment

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

extern char** environ; /* declaration */

void main () {

  int i = 0;

  while (environ[i]) printf("%s\n", environ[i++]);

  printf("Locale: %s\n", getenv("LANG")); /* en_US.UTF-8 */

  char cmd[32];

  strcpy(cmd, "locale -a");

  int status = system(cmd);

  printf("\n%s exited with %i\n", cmd, status);

}

The environ program (see Listing 8-4) shows two ways to access 

environment information. The first way uses the extern variable environ, 

an array of strings each with a key=value format. Here, for example, are 

two entries from my desktop system: the first key/value pair provides 

information about the terminal and the second about the shell language.

TERM=xterm

SHELL=/bin/bash

Chapter 8  Miscellaneous Topics



306

The library function getenv takes a single argument, a key such as 

TERM or SHELL as a string. The printf call illustrates with the key LANG, 

which gives a standard abbreviation (en_US for English in the United States) 

together with the character encoding scheme, in this case UTF-8 (Unicode 

Transformation Format-8). UTF-8 formats multibyte Unicode character 

encodings as a sequence of 8-bit bytes.

The last part of the environ program introduces the versatile system 

function. This function takes a single string argument, which represents 

a shell command, that is, a command that can be given at the command 

line. The system function starts another process and then blocks until the 

started process terminates. The int value returned to the system function 

is the exit status of the process in question. In this example, the command 

is locale -a, a utility that (with the -a flag) lists all of the locales available 

on the system. (The locale utility is available on Unix-like systems and on 

Windows through Cygwin.)

A given system supports some locales, but not others. The system 

administrator is responsible for installing and otherwise managing locale 

information. At the command line, or through the environ program shown 

previously, a listing of locales would look something like this:

C

C.UTF-8

en_AG.utf8

en_AU.utf8

...

The string en_AG.utf-8 represents English in Antigua, whereas 

en_AU.utf8 represents English in Australia. The first two entries, C 

and C.UTF-8, represent the default locale. In the setlocale function, 

investigated shortly, entries such as C.UTF-8 can be used as an argument.

Here is the declaration for the setlocale function:

char* setlocale(int category, const char* locale);
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If the second argument is NULL, the function acts as a getter or query: 

the function returns a string that represents the current locale. If the 

second argument is not NULL, the function acts as a setter by setting the 

locale represented by the second argument, a string. (The empty string as 

the second argument also represents the default locale C.) Furthermore, 

the string returned from setlocale is opaque and typically prints as 

(null). This string is useful only as a second argument to setlocale. A 

typical use of the string would be as follows:

	 1.	 Retrieve the current locale, and save it as a string.

	 2.	 Set the locale to something new, and perform 

whatever application logic is appropriate.

	 3.	 Restore the saved locale by using the string from 

step 1 as the second argument to setlocale.

The next code example illustrates.

Listing 8-5.  Introducing the setlocale function

#include <locale.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

void main () {

  �setlocale(LC_ALL, ""); �/* set current locale for library 

functions */

  �char* prev_locale = setlocale(LC_ALL, NULL); 

                      /* with NULL, a getter, not a setter */

  �char* saved_locale = strdup(prev_locale); 

                                    /* get a separate copy */
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  if (NULL == saved_locale) {          /* verify the copying */

    perror(NULL); /* out of memory */

    return;

  }

  �const struct lconv* loc = localeconv(); �/* get ptr to current 

locale struct */

  printf("Currency symbol: %s\n", loc->currency_symbol);

  �setlocale(LC_ALL, "en_GB.utf8"); �/* english in Great 

Britain */

  loc = localeconv();

  printf("Currency symbol: %s\n", loc->currency_symbol);

  setlocale(LC_ALL, saved_locale); /* restored saved locale */

  /*...*/

}

The localeBasics program (see Listing 8-5) opens with two calls to 

library function setlocale, but the calls are quite different. The first call 

has the empty string, hence non-NULL, as its second argument:

setlocale(LC_ALL, ""); �/* set current locale for library 

functions */

The integer macro LC_ALL represents all of the locale categories, 

and the empty string represents the default locale. Because the second 

argument is a string, even though empty, this call to setlocale acts as a 

setter rather than a getter of information.

The immediately following call to the setlocale function acts as 

a getter:

char* prev_locale = setlocale(LC_ALL, NULL); 

                          /* with NULL as 2nd arg, a getter */
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The program then uses the strdup function (string duplicate) to make 

an altogether separate copy of this string just in case there are further calls 

to setlocale. Note that setlocale returns a pointer to a string, not a copy 

of this string.

The program ends by resetting the locale to the saved_locale. The 

save/restore pattern is common in locale-aware programs.

In the middle, the localeBasics program calls the library function 

localeconv to get a pointer to a structure that contains information in 

all of the locale categories. This structure is displayed shortly. For now, 

the pointer loc is used to access the currency symbol, first for the United 

States and then for Great Britain. The output is

Currency symbol: $ /* default locale, en_US */

Currency symbol: £ /* en_GB */

At the end, the program resets the locale to the original one:

setlocale(LC_ALL, saved_locale); /* restored saved locale */

Recall that saved_locale is a string copy of the original locale and so 

not NULL. This call to setlocale is therefore a setter, which restores the 

locale back to the original setting.

Listing 8-6.  The lconv structure with locale information

typedef struct {

   char *decimal_point;

   char *thousands_sep;

   char *grouping;

   char *int_curr_symbol;

   char *currency_symbol;

   char *mon_decimal_point;

   char *mon_thousands_sep;

   char *mon_grouping;
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   char *positive_sign;

   char *negative_sign;

   char int_frac_digits;

   char frac_digits;

   char p_cs_precedes;

   char p_sep_by_space;

   char n_cs_precedes;

   char n_sep_by_space;

   char p_sign_posn;

   char n_sign_posn;

} lconv;

Locale information is stored in a structure of type lconv (see Listing 8-6), 

and the library function localeconv returns a pointer to a typically static 

instance of this structure. The 18 fields contain locale-specific information. 

In Canada, for example, the decimal_point is the period symbol, whereas 

in Germany, the decimal_point is the comma symbol.

Table 8-1.  Argument categories for setlocale

Category Meaning

LC_ALL All of the below

LC_COLLATE regex string settings

LC_CTYPE regex, character conversion, etc.

LC_MESSAGES Localizable natural-language messages

LC_MONETARY Currency formatting

LC_NUMERIC Number formatting

LC_TIME Time and date formatting
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The fields in the lconv structure are numerous, and there are 

connections among many of them. The connections may not be evident. 

Accordingly, these fields are divided into seven categories, with macros to 

define each category (see Table 8-1). The categories make it easier to set 

related pieces of locale information.

A typical call to function setlocale uses the LC_ALL category as the 

first argument:

setlocale(LC_ALL, ""); /* set all categories to default 

locale */

For fine-tuning, however, a specific category could be used instead as 

the first argument:

setlocale(LC_MONETARY, "en_GB.utf-8"); /* monetary category for 

Great Britain */

The next code example puts the LC_MONETARY category to use. The 

program first sets all locale categories (LC_ALL) to local settings. The 

program then resets LC_MONETARY only to get locale-specific currency 

information from six English-speaking regions around the world.

Listing 8-7.  Using the category LC_MONENTARY

#include <locale.h>

#include <stdio.h>

#include <stdlib.h>

void main () {

  �setlocale(LC_ALL, ""); /* set all categories to default 

locale */

  �char* regions[ ] = {"en_AU.utf-8", "en_CA.utf-8",  

"en_GB.utf-8", "en_US.utf-8", "en_NZ.utf-8",  

"en_ZM.utf-8", NULL};
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  int i = 0;

  while (regions[i]) {

    setlocale(LC_MONETARY, regions[i]); /* change the locale */

    const struct lconv* loc = localeconv();

    �printf("Region: %s Currency symbol: %s International 

currency symbol: %s\n",

           r�egions[i], loc->currency_symbol, loc->int_curr_

symbol);

    i++;

  }

}

The locMonetary program (see Listing 8-7) initializes the array 

regions to standard codes for six English-speaking regions around the 

world. For each of these regions, the LC_MONETARY category is set before 

the currency_symbol and the int_curr_symbol (international currency 

symbol) are printed in a while loop. The localeconv library function 

is called to get a pointer to the lconv structure that stores the desired 

information.

Listing 8-8.  Output from the locMonetary program

Region: en_AU.utf-8  Currency symbol: $  International currency 

symbol: AUD

Region: en_CA.utf-8  Currency symbol: $  International currency 

symbol: CAD

Region: en_GB.utf-8  Currency symbol: £  International currency 

symbol: GBP

Region: en_US.utf-8  Currency symbol: $  International currency 

symbol: USD

Region: en_NZ.utf-8 Currency symbol: $ International currency 

symbol: NZD

Region: en_ZM.utf-8 Currency symbol: K International currency 

symbol: ZMK
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The output from the locMonetary program (see Listing 8-8) shows the 

region, currency symbol, and international currency acronym for the six 

regions.

8.5. � C and WebAssembly
WebAssembly is a language well-suited for compute-bound tasks (e.g., 

number crunching) executed on a browser. All rumors to the contrary, the 

WebAssembly language is not meant to replace JavaScript, but rather to 

supplement JavaScript by providing better performance on CPU-intensive 

tasks that JavaScript otherwise might perform. JavaScript remains the glue 

that ties together HTML pages and WebAssembly modules:

HTML pages<--->JavaScript<--->WebAssembly modules

WebAssembly has an advantage over other web artifacts when it 

comes to downloading. For example, a browser fetches HTML pages, CSS 

stylesheets, and JavaScript code as text, an inefficiency that WebAssembly 

addresses: a WebAssembly module has a compact binary format, which 

speeds up downloading.

After a WebAssembly program is downloaded to a browser, the just-in-

time (JIT) compiler in the browser’s virtual machine translates the binary 

WebAssembly code into fast, platform-specific machine code. Here is a 

summary depiction:

            download  +-------+ translate

wasm module---------->|browser|----------->fast machine code

                      +-------+

JavaScript code embedded in an HTML page can call functions 

delivered in WebAssembly modules.

WebAssembly has a development language known as the text format 

language, which has a Lisp-like syntax for writing programs on a virtual 
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stack-based machine. However, code from higher-level programming 

languages (including C) can be translated in WebAssembly. Although the 

list of languages that can be translated into WebAssembly is growing, the 

original ones were C, C++, and Rust—three languages suited for systems 

programming and high-performance applications programming. These 

three languages share two features that promote fast execution: explicit 

data typing and no garbage collector.

When it comes to high-performance web code, WebAssembly is not 

the only game in town. For example, asm.js is a JavaScript dialect designed, 

like WebAssembly, to approach native speed. The asm.js dialect invites 

optimization because the code mimics the explicit data types in the three 

aforementioned languages. Here is an example with C and then asm.js. 

The sample function in C is

int f(int n) {  /** C **/

  return n + 1;

}

Both the parameter n and the returned value are explicitly typed as 

int. The equivalent function is asm.js would be

function f(n) { /** asm.js **/

  n = n | 0;

  return (n + 1) | 0;

}

JavaScript, in general, does not have explicit data types, but a bitwise-

OR operation in JavaScript yields an integer value. This explains the 

otherwise pointless bitwise-OR operation:

n = n | 0; /* bitwise-OR of n and zero */
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The bitwise-OR of n and zero evaluates to n, but the purpose here is 

to signal that n holds an integer value. The return statement repeats this 

optimizing trick. Among the JavaScript dialects, TypeScript stands out 

for adopting explicit data types, which makes this language attractive for 

compilation into WebAssembly.

Almost any discussion of the WebAssembly language covers near-

native speed as one of the language’s major design goals. The native 

speed is that of the compiled systems languages C, C++, and Rust; hence, 

these three languages were also the originally designated candidates for 

compilation into WebAssembly.

8.5.1. � A C into WebAssembly Example
A production-grade example would have WebAssembly code perform a 

heavy compute-bound task such as generating large cryptographic key 

pairs or using such pairs for encryption and decryption. A simpler example 

fits the bill as a stand-in that is easy to follow. There is number crunching, 

but of the routine sort.

Consider the function hstone (for hailstone), which takes a positive 

integer as an argument. The function is defined as follows:

               3N + 1 if N is odd

hstone(N) =

               N/2 if N is even

For example, hstone(12) returns 6, whereas hstone(11) returns 34. If N 

is odd, then 3N+1 is even; but if N is even, then N/2 could be either even 

(e.g., 4/2 = 2) or odd (e.g., 6/2 = 3).

The hstone function can be used iteratively by passing the returned 

value as the next argument. The result is a hailstone sequence such as this 

one, which starts with 24 as the original argument, the returned value 12 as 

the next argument, and so on:

24,12,6,3,10,5,16,8,4,2,1,4,2,1,...
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It takes ten calls for the sequence to converge to 1, at which point the 

sequence of 4,2,1 repeats indefinitely: (3x1)+1 is 4, which is halved to yield 

2, which is halved to yield 1, and so on. The Wikipedia page (https://

en.wikipedia.org/wiki/Collatz_conjecture) goes into technical detail 

on the hailstone function, including a clarification of the name hailstone.

Note that powers of two (2N) converge quickly to 1, requiring just N 

divisions by two to reach 1. For example, 32 (25) has a convergence length 

of five, and 64 (26) has a convergence length of six. A hailstone sequence 

converges to 1 if and only if the sequence generates a power of two. At issue, 

therefore, is whether a hailstone sequence inevitably generates a power of two.

The Collatz conjecture is that a hailstone sequence converges to 1 no 

matter what the initial argument N > 0 happens to be. No one has found a 

counterexample to the Collatz conjecture, nor has anyone come up with 

a proof to elevate the conjecture to a theorem. The conjecture, simple as 

it is to test with a program, remains a profoundly challenging problem 

in mathematics. My hstone example generates hailstone sequences and 

counts the number of steps required for a sequence to hit the first 1.

8.5.2. � The Emscripten Toolchain
The systems languages, including C, require specialized toolchains to 

translate source code into WebAssembly. Emscripten is a pioneering and 

excellent option, one built upon the well-known LLVM (Low-Level Virtual 

Machine) compiler infrastructure. Emscription can be installed following 

the instructions at https://emscripten.org/docs/getting_started/

downloads.html.

To begin, consider this version of a C hstone program (see Listing 8-9) 

with two functions, the familiar entry point main and hstone, which main 

invokes repeatedly.
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Listing 8-9.  The hstoneCL program with main

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int hstone(int n) {

  int len = 0;

  while (1) {

    if (1 == n) break; /* halt on 1 */

    if (0 == (n & 1)) n = n / 2; /* if n is even */

    else n = (3 * n) + 1; /* if n is odd */

    len++; /* increment counter */

  }

  return len;

}

#define HowMany 8

int main() {

  srand(time(NULL)); /* seed random number generator */

  int i;

  puts(" Num Steps to 1");

  for (i = 0; i < HowMany; i++) {

    int num = rand() % 100 + 1; /* + 1 to avoid zero */

    printf("%4i %7i\n", num, hstone(num));

  }

  return 0;

}

On a sample run, the hstoneCL program (with CL for command line) 

had this output:

Num   Steps to 1

64        6
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40        8

86       30

16        4

30       18

47      104

12        9

60       19

The hstoneCL program can be webified—with no changes whatsoever 

to the source code—by using the Emscription toolchain, which can do the 

following:

•	 Compile the C source into a WebAssembly module.

•	 Generate a test HTML page with calls to ams.js code 

that, in turn, invokes the hstone function through a call 

to main.

However, the WebAssembly module does not require the main function 

because JavaScript could invoke the hstone function directly. The hstone 

program can be simplified by dropping the main function in the hstoneCL 

version.

The hstoneWA revision (see Listing 8-10) drops main and adds the 

directive EMSCRIPTEN_KEEPALIVE to the hstone function. This directive 

informs the compiler that the C function named hstone should be 

exposed, under the same name, as a WebAssembly function.

Listing 8-10.  The revised hstone code

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <emscripten/emscripten.h>

int EMSCRIPTEN_KEEPALIVE hstone(int n) {
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  int len = 0;

  while (1) {

    if (1 == n) break; /* halt on 1 */

    if (0 == (n & 1)) n = n / 2; /* if n is even */

    else n = (3 * n) + 1; /* if n is odd */

    len++; /* increment counter */

  }

  return len;

}

As noted earlier, the Emscripten toolchain can be used not only to 

compile C code into WebAssembly but also to generate an appropriate 

HTML page together with JavaScript glue that links the WebAssembly 

module with the HTML page. To understand the details, however, it is 

useful to generate only the WebAssembly module and to craft, by hand, the 

HTML page and some JavaScript test calls.

With the Emscripten toolchain installed, the C function hstone in the 

file hstoneWA.c can be compiled into WebAssembly from the command 

line as follows:

% emcc hstoneWA.c --no-entry -o hstone.wasm

The flag --no-entry indicates that the file hstoneWA.c does not 

contain the function main, and the -o flag stands for output: the resulting 

WebAssembly file is named hstone.wasm. On my desktop machine, this file 

is a trim 662 bytes in size.

For testing, the next requirement is an HTML page that, when 

downloaded to a browser, fetches the WebAssembly module. A 

production-grade version of the HTML page would include embedded 

JavaScript calls to appropriate WebAssembly functions. A handcrafted 

version of the HTML page reveals details that otherwise remain hidden. 

Here is an HTML page that downloads and prepares the WebAssembly 

module stored in the hstone.wasm file:
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<!doctype html>

<html>

  <head>

    <meta charset="utf-8"/>

    <script>

      fetch('hstone.wasm').then(response =>     <!-- Line 1 -->

      response.arrayBuffer()                    <!-- Line 2 -->

      ).then(bytes =>                           <!-- Line 3 -->

      �WebAssembly.instantiate(bytes, {imports: {}})     

<!-- Line 4 -->

      ).then(results => {                       <!-- Line 5 -->

      �window.hstone = results.instance.exports.hstone;  

<!-- Line 6 -->

});

    </script>

  </head>

  <body/>

</html>

The script element in the preceding HTML page can be clarified 

line by line. The fetch call in Line 1 uses the web Fetch module to get the 

WebAssembly module from the web server that hosts this HTML page. 

When the HTTP response arrives, the WebAssembly module does so as 

a sequence of bytes, which are stored in the arrayBuffer of the script’s 

Line 2. These bytes make up the WebAssembly module, the contents of the 

file hstone.wasm. This module has no imports from other WebAssembly 

modules, as indicated at the end of Line 4.

At the start of Line 4, the WebAssembly module is instantiated. A 

WebAssembly module is akin to a nonstatic class with nonstatic members 

in an object-oriented language such as Java. The module contains 

variables, functions, and various support artifacts; but the module must be 

instantiated to be called from JavaScript.
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The script’s Line 6 exports the original C function hstone under the 

same name. This WebAssembly function is available now to any JavaScript 

code, as a session in the browser’s JavaScript console confirms. Here is part 

of my test session in Chrome’s JavaScript console:

> hstone(27)      ## invoke hstone by name

< 111             ## output

> hstone(7)       ## again

< 16              ## output

The outputs are the steps required to reach 1 from the input (e.g., 

hstone(27) requires 111 steps to reach 1).

WebAssembly now has a more concise API for fetching and 

instantiating a module; the new API reduces the preceding script to only 

the fetch and instantiate operations. The longer version shown previously 

has the benefit of exhibiting details, in particular the representation of a 

WebAssembly module as a byte array that gets instantiated as an object 

with exported functions.

Emscripten comes with a test server, which can be invoked as follows 

to host the handcrafted HTML file hstone.html and the WebAssembly file 

hstone.wasm:

% emrun --no_browser --port 7777 .

The flag --no_browser means that a user manually opens a browser 

such as Firefox or Chrome. The request URL from the browser is then 

localhost:7777/hstone.html. If all goes well, the browser’s JavaScript 

console can be used to confirm, as shown previously, that the 

WebAssembly module is available for use.

8.5.3. � WebAssembly and Code Reuse
The EMSCRIPTEN_KEEPALIVE directive is the straightforward way to have the 

Emscripten compiler produce a WebAssembly module that exports any 

Chapter 8  Miscellaneous Topics



322

C function of interest to the JavaScript glue embedded in an HTML page. 

A customized HTML document, with whatever handcrafted JavaScript 

is appropriate, can call the functions exported from the WebAssembly 

module. Hats off to Emscripten for this clean approach.

Web programmers are unlikely to write WebAssembly in its own text 

format language, as compiling from some high-level language, such as C 

or Rust, is far too attractive an option. Compiler writers, by contrast, might 

find it productive to work at the fine-grained level that the text format 

language provides.

Much has been made of WebAssembly’s goal of achieving near-native 

speed. But as the JIT compilers for JavaScript continue to improve, and as 

dialects well-suited for optimization (e.g., TypeScript) emerge and evolve, 

it may be that JavaScript also achieves near-native speed. Would this imply 

that WebAssembly is wasted effort? I think not.

WebAssembly addresses another traditional goal in computing: code 

reuse. As even the short hstone example illustrates, code in a suitable 

language, such as C, translates readily into a WebAssembly module, 

which plays well with JavaScript code—the glue that connects a range 

of technologies used on the Web. WebAssembly is thus an inviting way 

to reuse legacy code and to broaden the use of new code. For example, 

a high-performance program for image processing, written originally 

as a desktop application, might also be useful in a web application. 

WebAssembly then becomes an attractive path to reuse. (For new web 

modules that are compute bound, WebAssembly is a sound choice.) 

My hunch is that WebAssembly will thrive as much for reuse as for 

performance.

Chapter 8  Miscellaneous Topics



323

8.6. � Signals
A signal interrupts an executing program (process) to notify it of some 

exceptional event:

                                 interrupt +---------+

signal from outside the program----------->| process |

              /                            +---------+

  e.g., Control-C from the keyboard

Signals have integer values as identifiers, with symbolic constants 

such as SIGKILL for ease of reference. When interrupted through a signal, 

a process may be able to ignore the interruption or else handle it in some 

program-appropriate way. However, some signals cannot be ignored, in 

particular SIGKILL (terminate) and SIGSTOP (pause).

Operating system routines regularly use signals to notify a process of 

an exceptional condition. For example, if a process runs out of memory, an 

operating system routine uses a signal as notification. Programs designed 

to handle signals typically do so in one of two ways:

•	 The program requests that the signal be ignored. Recall 

the basicFork program (see Listing 7-1), which included 

this call to the signal function:

signal(SIGCHLD, SIG_IGN); /** prevent child 

from becoming a permanent zombie **/

The call requests that the SIGCHLD signal, which 

the system sends to a parent process when a child 

terminates, be ignored. The motive is to prevent the 

child from becoming a permanent zombie process, if 

the parent should happen to terminate before the child.
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•	 The program provides a signal handler as a callback 

function automatically invoked when a specified signal 

occurs. For example, the SIGINT (interrupt) signal can 

be sent to a process by hitting Control-C in the terminal 

window from which the program is launched. Perhaps 

a user hits Control-C by accident: the program might 

handle the signal by asking the user to confirm that the 

running program should be stopped.

At the core of the signal library is the legacy signal function, but 

best practice now favors the newer sigaction function. The signal 

function may behave differently across platforms and even operating 

system versions. The forthcoming code example uses the better-behaved 

sigaction function, introduced as a POSIX replacement for signal.

Listing 8-11.  A signal-handling program

#include <stdio.h>

#include <stdlib.h>

#include <signal.h>

#include <unistd.h>

#define MaxLoops 500

void cntrlC_handler(int signum) { /** callback function: int 

arg, void return **/

  fprintf(stderr, "\n\tHandling signal %i\n", signum);

  int ans = 1;

  printf("Sure you want to exit (1 = yes, 0 = no)? ");

  scanf("%i", &ans);

  if (1 == ans) exit(EXIT_SUCCESS);

}
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void main() {

  /** Set up a signal handler. **/

  struct sigaction current;

  �sigemptyset(&current.sa_mask);       /* �clear the 

signal set */

  �current.sa_flags = 0;                /* �enables setting 

sa_handler, not sa_

action */

  current.sa_handler = cntrlC_handler; /* specify a handler */

  �sigaction(SIGINT, &current, NULL);   /* �control-C is a 

SIGINT */

  int i;

  for (i = 0; i < MaxLoops; i++) {

    printf("Counting sheep %i...\n", i + 1);

    sleep(1);

  }

}

The signals program (see Listing 8-11) introduces the basic signal 

API. Here is an overview of how the program handles SIGINT and why the 

program does so:

•	 The main function has a tiresome loop that prints 

integer values 1 through MaxLoops, currently set at 

500. After printing each value, the program sleeps 

for a second. A user will be inclined to terminate this 

program from the command line with a Control-C.

•	 At the start of main, a signal handler is registered for 

SIGINT, which a Control-C from the keyboard can 

generate. A program’s default response to a SIGINT is 

termination.
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•	 The signal handler cntrlC_handler can have any name 

but should return void and take a single int argument, 

which is the signal number. (The integer value for SIGINT 

happens to be 2.) This signal handler prompts the user 

for confirmation: if the user confirms, the program exits; 

otherwise, the program continues as before.

To record a signal handler using the sigaction function, a program 

first uses an instance of the struct sigaction type to set relevant 

information. In this example, the signal set for the process first is emptied; 

the relevant field is sa_mask, whose address is passed to the library 

function sigemptyset. In general, a child process may inherit signal 

behavior from a parent, and so clearing the signal set may be done to 

wipe out the inheritance. In this case, the call to sigemptyset is simply to 

illustrate details of the API.

Two different callback types can be registered with the sigaction 

function: one takes a single argument (the signal number), and the other 

takes three arguments (the signal number and pointers to two different 

structures that contain pertinent information about the current process 

state with respect to signals). The initialization

current.sa_flags = 0; /* current is a struct sigaction 

instance */

is a setup for using the simpler of the two callbacks:

current.sa_handler = cntrlC_handler; /* cntrlC_handler is the 

1-argument callback */

If the sa_action field were used instead, then the sa_flags field would 

indicate which pieces of signal information were of interest.

The sigaction function, which sets the desired signal-handling action, 

takes three arguments:

sigaction(SIGINT, &current, NULL);
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The first argument is the signal number, in this case SIGINT. The 

second argument is a pointer to the new signal-handling action, and the 

last argument is a pointer to the previous action, which can be saved with 

a non-NULL pointer for later retrieval. In this example, the old action is not 

saved: the third argument is NULL. Each action is specified by setting a field 

in an instance of the struct sigaction type.

Listing 8-12.  A sample run of the signals program

% ./signals                              ## on Windows, drop ./

Counting sheep 1...

Counting sheep 2...

^C                                         ## 1st Control-C

        Handling signal 2

Sure you want to exit (1 = yes, 0 = no)? 0 ## resume execution

Counting sheep 3...

Counting sheep 4...

^C                                         ## 2nd Control-C

        Handling signal 2

Sure you want to exit (1 = yes, 0 = no)? 1 ## terminate

%

A sample run (see Listing 8-12) of the signals program confirms 

that the signal handling works as expected. As the loop starts, there is 

a Control-C from the user, and then a user response of 0, which means 

continue. The looping thus goes on. After a second Control-C and a user 

response of 1, which means terminate, the program ends.

Signals are a powerful, widely used mechanism not only for user/

program interaction but also for interprocess communication. For 

example, the kill function

int kill(pid_t pid, int signum)

Chapter 8  Miscellaneous Topics



328

can be used by one process to terminate another process or group of 

processes. If the first argument to function kill is greater than zero, this 

argument is treated as the pid of the targeted process; if the argument 

is zero, the argument identifies the group of processes to which the 

signal sender belongs. The graceful shutdown of a multiprocessing 

application such as a web server could be accomplished by killing a group 

of processes. The second argument to kill is either a standard signal 

number (e.g., SIGTERM terminates a process but can be blocked, whereas 

SIGKILL terminates a process and cannot be blocked) or 0, which makes 

the call to signal a query about whether the pid in the first argument is 

indeed valid.

The older signal function is still used widely and dominates in legacy 

code. It is worth repeating that the sigaction replacement is the preferred 

way forward.

8.7. � Software Libraries
Software libraries are a long-standing, easy, and sensible way to reuse code 

and to extend C by providing new functionalities. This section explains 

how to build such libraries from scratch and to make them easily available 

to clients. Although the two sample libraries target Linux, the steps for 

creating, publishing, and using these libraries apply in essentials to other 

Unix-like systems.

There are two sample clients (one in C, the other in Python) to access 

the libraries. It is no surprise that a C client can access a library written in 

C, but the Python client underscores that a library written in C can serve 

clients from other languages.

Computer systems in general and Linux in particular have two types of 

library:

•	 A static library (library archive) is baked into a statically 

compiled client (e.g., one in C or Rust) during the 
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link phase of the compilation process. In effect, each 

client gets its own copy of the library. A significant 

downside of a static library comes to the fore if the 

library needs revision, for example, to fix a bug—each 

library client now must be linked to the revised static 

library. A dynamic library, described next, avoids this 

shortcoming.

•	 A dynamic (shared) library is flagged during the link 

phase of a statically compiled client program, but the 

client program and the library code remain otherwise 

unconnected until runtime—the library code is not 

baked into the client. At runtime, the system’s dynamic 

loader connects a shared library with an executing 

client, regardless of whether the client comes from a 

statically compiled language such as C or a dynamically 

compiled language such as Python. As a result, a 

dynamic library can be updated without thereby 

inconveniencing clients. Finally, multiple clients can 

share a single copy of a dynamic library.

In general, dynamic libraries are preferred over static ones, although 

there is a cost in complexity and performance. Here is a first look at how a 

library of either type is created and published:

	 1.	 The source code for the library is compiled into one 

or more object modules, which can be packaged as 

a library and linked to executable clients.

	 2.	 The object modules are packaged into a single file. 

For a static library, the standard extension is .a for 

“archive.” For a dynamic library, the extension is 

.so for “shared object.” The two sample libraries, 

which have the same functionality, are published 
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as the files libprimes.a (static) and libshprimes.so 

(dynamic). The prefix lib is standard for both types 

of library.

	 3.	 The library file is copied to a standard directory so 

that client programs, without fuss, can access the 

library. A typical location for the library, whether 

static or dynamic, is /usr/lib or /usr/local/lib; other 

locations are possible.

Detailed steps for building and publishing each type of library are 

coming shortly. First, however, the C functions in the two libraries should 

be introduced.

8.7.1. � The Library Functions
The two sample libraries are built from the same five C functions, four of 

which are extern and, therefore, accessible to client programs. The fifth 

function, which is a utility for one of the other four, is static and thus 

accessible only to the four extern functions defined in the same file.  

The library functions are elementary and deal, in various ways, with prime 

numbers. All of the functions expect unsigned (nonnegative) integer 

values as arguments:

•	 The is_prime function tests whether its single 

argument is a prime.

•	 The are_coprimes function checks whether its two 

arguments have a greatest common divisor (gcd) of 1, 

which defines co-primes.

•	 The prime_factors function lists the prime factors of 

its argument.
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•	 The goldbach function expects an even integer value 

of 4 or more, listing whichever two primes sum to 

this argument; there may be multiple summing 

pairs. The function is named after the 18th-century 

mathematician Christian Goldbach, whose conjecture 

that every even integer greater than two is the sum 

of two primes remains one of the oldest unsolved 

problems in number theory.

The static utility function gcd, which the are_coprimes function 

invokes, resides in the deployed library files, but this function is not 

accessible outside of its containing file; hence, a library client cannot 

directly invoke the gcd function.

8.7.2. � Library Source Code and Header File
The header file primes.h provides declarations for the four extern 

functions in each library. Such a header file also serves as input for utilities 

(e.g., the Rust bindgen utility) that enable clients in other languages to 

access a C library. Here is the primes.h header file:

/** header file primes.h: function declarations **/

extern unsigned is_prime(unsigned);

extern void prime_factors(unsigned);

extern unsigned are_coprimes(unsigned, unsigned);

extern void goldbach(unsigned);

As usual, these declarations serve as an interface by specifying the 

invocation syntax for each function. For client convenience, the text file 

primes.h could be stored in a directory on the C compiler’s search path. 

Typical locations are /usr/include and /usr/local/include.
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Listing 8-13.  The library functions

#include <stdio.h>

#include <math.h>

extern unsigned is_prime(unsigned n) {

  �if (n <= 3) return n > 1;            /* 2 and 3 are prime */

  �if (0 == (n % 2) || 0 == (n % 3)) return 0; /* multiples of 2 

or 3 aren't */

  /* check that n is not a multiple of other values < n */

  unsigned i;

  for (i = 5; (i * i) <= n; i += 6)

    �if (0 == (n % i) || 0 == (n % (i + 2))) return 0; /* not 

prime */

  return 1; /* a prime other than 2 or 3 */

}

extern void prime_factors(unsigned n) {

  /* list 2s in n's prime factorization */

  while (0 == (n % 2)) {

    printf("%i ", 2);

    n /= 2;

  }

  /* 2s are done, the divisor is now odd */

  unsigned i;

  for (i = 3; i <= sqrt(n); i += 2) {

    while (0 == (n % i)) {

      printf("%i ", i);

      n /= i;

    }

  }
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  /* one more prime factor? */

  if (n > 2) printf("%i", n);

}

/* utility function: greatest common divisor */

static unsigned gcd(unsigned n1, unsigned n2) {

  while (n1 != 0) {

    unsigned n3 = n1;

    n1 = n2 % n1;

    n2 = n3;

  }

  return n2;

}

extern unsigned are_coprimes(unsigned n1, unsigned n2) {

  return 1 == gcd(n1, n2);

}

extern void goldbach(unsigned n) {

  /* input errors */

  if ((n <= 2) || ((n & 0x01) > 0)) {

    printf("Number must be > 2 and even: %i is not.\n", n);

    return;

  }

  /* two simple cases: 4 and 6 */

  if ((4 == n) || (6 == n)) {

    printf("%i = %i + %i\n", n, n / 2, n / 2);

    return;

  }

  /* for n >= 8: multiple possibilities for many */

  unsigned i;

  for (i = 3; i < (n / 2); i++) {
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    if (is_prime(i) && is_prime(n - i)) {

      printf("%i = %i + %i\n", n, i, n - i);

      /* if one pair is enough, replace this with break */

    }

  }

}

The five functions (see Listing 8-13) serve as grist for the library mill. 

The two libraries derive from exactly the same source code, and the header 

file primes.h is the C interface for both libraries.

8.7.3. � Steps for Building the Libraries
The steps for building and then publishing a static and a dynamic library 

differ in a few details. Only three steps are required for the static library 

and just two more for the dynamic library. The additional steps in building 

the dynamic library reflect the added flexibility of the dynamic approach.

The library source file primes.c is compiled into an object module. 

Here is the command, with the percent sign again as the system prompt 

and with double sharp signs to introduce my comments:

% gcc -c primes.c ## step 1 static

This produces the binary file primes.o, the object module. The flag -c 

means compile only. The next step is to archive the object module(s) by 

using the Linux ar utility:

% ar -cvq libprimes.a primes.o ## step 2 static

The three flags -cvq are short for “create,” “verbose,” and “quick 

append” in case new files must be added to an archive. The prefix lib is 

standard, but the library name is arbitrary. Of course, the file name for a 

library must be unique to avoid conflicts.
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The archive is ready to be published:

% sudo cp libprimes.a /usr/local/lib ## step 3 static

The static library is now accessible to clients, examples of which are 

forthcoming. (The sudo is included to ensure the correct access rights for 

copying a file into /usr/local/lib.)

The dynamic library also requires one or more object modules for 

packaging:

% gcc primes.c -c -fpic ## step 1 dynamic

The added flag -fpic directs the compiler to generate position-

independent code, which is a binary module that need not be loaded into 

a fixed memory location. Such flexibility is critical in a system of multiple 

dynamic libraries. The resulting object module is slightly larger than the 

one generated for the static library.

Here is the command to create the single library file from the object 

module(s):

% gcc -shared -Wl,-soname,libshprimes.so -o libshprimes.so.1 

primes.o ## step 2 dynamic

The flag -shared indicates that the library is shared (dynamic) rather 

than static. The -Wl flag introduces a list of compiler options, the first of 

which sets the dynamic library’s soname, which is required. The soname 

first specifies the library’s logical name (libshprimes.so) and then, following 

the -o flag, the library’s physical file name (libshprimes.so.1). The goal is 

to keep the logical name constant while allowing the physical file name to 

change with new versions. In this example, the 1 at the end of the physical 

file name libshprimes.so.1 represents the first version of the library. The 

logical and physical file names could be the same, but best practice is to 

have separate names. A client accesses the library through its logical name 

(in this case, libshprimes.so), as clarified shortly.
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The next step is to make the shared library easily accessible to clients 

by copying it to the appropriate directory, for example, /usr/local/lib again:

% sudo cp libshprimes.so.1 /usr/local/lib ## step 3 dynamic

A symbolic link is now set up between the shared library’s logical name 

(libshprimes.so) and its full physical file name (/usr/local/lib/libshprimes.

so.1). Here is the command with /usr/local/lib as the working directory:

% sudo ln --symbolic libshprimes.so.1 libshprimes.so ## step 

4 dynamic

The logical name libshprimes.so should not change, but the target of 

the symbolic link (libshprimes.so.1) can be updated as needed for new 

library implementations that fix bugs, boost performance, and so on.

The final step (a precautionary one) is to invoke the ldconfig utility, 

which configures the system’s dynamic loader. This configuration ensures 

that the loader will find the newly published library:

% sudo ldconfig ## step 5 dynamic

The dynamic library is now ready for clients, including the two sample 

ones that follow.

8.7.4. � A Sample C Client
The sample C client is the program tester, whose source code begins with 

two #include directives:

#include <stdio.h>   /* standard input/output functions */

#include <primes.h>  /* my library functions */

Both header files are to be found on the compiler’s search path (in the 

case of primes.h, the directory /usr/local/include). Without this #include, 

the compiler would complain as usual about missing declarations for 
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functions such as is_prime and prime_factors. By the way, the source 

code for the tester program need not change at all to test each of the two 

libraries.

By contrast, the source file for the library (primes.c) opens with these 

#include directives:

#include <stdio.h>

#include <math.h>

The header file math.h is required because the library function prime_

factors calls the mathematics function sqrt from the standard library 

libm.so.

For reference, Listing 8-14 is the source code for the tester program.

Listing 8-14.  A sample C client

#include <stdio.h>

#include <primes.h>

int main() {

  /* is_prime */

  printf("\nis_prime\n");

  unsigned i, count = 0, n = 1000;

  for (i = 1; i <= n; i++) {

    if (is_prime(i)) {

      count++;

      �if (1 == (i % 100)) printf("Sample prime ending in 1: 

%i\n", i);

    }

  }

  printf("%i primes in range of 1 to a thousand.\n", count);

  /* prime_factors */

  printf("\nprime_factors\n");
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  printf("prime factors of 12: ");

  prime_factors(12);

  printf("\n");

  printf("prime factors of 13: ");

  prime_factors(13);

  printf("\n");

  printf("prime factors of 876,512,779: ");

  prime_factors(876512779);

  printf("\n");

  /* are_coprimes */

  printf("\nare_coprime\n");

  printf("Are %i and %i coprime? %s\n",

         21, 22, are_coprimes(21, 22) ? "yes" : "no");

  printf("Are %i and %i coprime? %s\n",

         21, 24, are_coprimes(21, 24) ? "yes" : "no");

  /* goldbach */

  printf("\ngoldbach\n");

  goldbach(11);  /* error */

  goldbach(4);   /* small one */

  goldbach(6);   /* another */

  for (i = 100; i <= 150; i += 2) goldbach(i);

  return 0;

}

In compiling tester.c into an executable, the tricky part is the order of 

the link flags. Recall that the two sample libraries begin with the prefix lib 

and each has the usual extension: .a for the static library libprimes.a and 

.so for the dynamic library libshprimes.so. In a links specification, the prefix 

lib and the extension fall away. A link flag begins with -l (lowercase L), and 
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a compilation command may contain arbitrarily many link flags. Here is 

the full compilation command for the tester program, using the dynamic 

library as the example:

% gcc -o tester tester.c -lshprimes -lm

The first link flag identifies the library libshprimes.so, and the second 

link flag identifies the standard mathematics library libm.so.

The linker is lazy, which means that the order of the link flags matters. 

For example, reversing the order of the link specifications generates a 

compile-time error:

% gcc -o tester tester.c -lm -lshprimes ## DANGER!

The flag that links to libm.so comes first, but no function from this 

library is invoked explicitly in the tester program; hence, the linker does 

not link to the math.so library. The call to the sqrt library function occurs 

only in the prime_factors function from the libshprimes.so library. The 

resulting error in compiling the tester program is

primes.c: undefined reference to 'sqrt'

Accordingly, the order of the link flags should notify the linker that the 

sqrt function is needed:

% gcc -o tester tester.c -lshprimes -lm ## -lshprimes 1st

The linker picks up the call to the library function sqrt in the 

libshprimes.so library and, therefore, does the appropriate link to the 

mathematics library libm.so. There is a more complicated option for 

linking that supports either link-flag order; in this case, however, it is just 

as easy to arrange the link flags appropriately.

Here is some output from a run of the tester client:

is_prime

Sample prime ending in 1: 101
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Sample prime ending in 1: 401

...

168 primes in range of 1 to a thousand.

prime_factors

prime factors of 12: 2 2 3

prime factors of 13: 13

prime factors of 876,512,779: 211 4154089

are_coprime

Are 21 and 22 coprime? yes

Are 21 and 24 coprime? no

goldbach

Number must be > 2 and even: 11 is not.

4 = 2 + 2

6 = 3 + 3

...

32 = 3 + 29

32 = 13 + 19

...

100 = 3 + 97

100 = 11 + 89

...

For the goldbach function, even a relatively small even value (e.g., 18) 

may have multiple pairs of primes that sum to it (in this case, 5 + 13 and 7 

+ 11). Such multiple prime pairs are among the factors that complicate an 

attempted proof of Goldbach’s conjecture.
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8.7.5. � A Sample Python Client
Python, unlike C, is not a statically compiled language, which means 

that the sample Python client must access the dynamic rather than the 

static version of the primes library. To do so, Python has various modules 

(standard and third party) that support a foreign function interface (FFI), 

which allows a program written in one language to invoke functions 

written in another. Python ctypes is a standard and relatively simple FFI 

that enables Python code to call C functions.

Any FFI has challenges because the interfacing languages are unlikely 

to have exactly the same data types. For example, the primes library uses 

the C type unsigned int, which Python does not have; the ctypes FFI 

maps a C unsigned int to a Python int. Of the four extern C functions 

published in the primes library, two behave better in Python with explicit 

ctypes configuration.

The C functions prime_factors and goldbach have void instead of a 

return type, but ctypes by default replaces the C void with the Python int. 

When called from Python code, the two C functions then return a random 

(hence, meaningless) integer value from the stack. However, ctypes can be 

configured to have the functions return None (Python’s null type) instead. 

Here is the configuration for the prime_factors function:

primes.prime_factors.restype = None

A similar statement handles the goldbach function.

The following interactive session (in Python3) shows that the interface 

between a Python client and the primes library is straightforward:

>>> from ctypes import cdll

>>> primes = cdll.LoadLibrary("libshprimes.so") ## logical name

>>> primes.is_prime(13)

1
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>>> primes.is_prime(12)

0

>>> primes.are_coprimes(8, 24)

0

>>> primes.are_coprimes(8, 25)

1

>>> primes.prime_factors.restype = None

>>> primes.goldbach.restype = None

>>> primes.prime_factors(72)

2 2 2 3 3

>>> primes.goldbach(32)

32 = 3 + 29

32 = 13 + 19

The functions in the primes library use only a simple data type, 

unsigned int. If this C library used complicated types such as structures, 

and if pointers to structures were passed to and returned from library 

functions, then an FFI more powerful than ctypes might be better for a 

smooth interface between Python and C. Nonetheless, the ctypes example 

shows that a Python client can use a library written in C. Indeed, the 

popular NumPy library for scientific computing is written in C and then 

exposed in a high-level Python API.

8.8. � What’s Next?
This is a small book about a big language—not big in size, but in its impact 

throughout computing. C is a very small language with easy access to an 

expanse of standard and third-party libraries. As the libraries get better, C 

gets better.
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C has quirks and presents challenges. Perhaps the greatest challenge is 

memory leakage: heap storage that the program either allocates explicitly 

or obtains indirectly through library functions must be freed explicitly, and 

it is easy to allocate—and then forget to deallocate. Better APIs and tools 

such as valgrind (https://valgrind.org) address this challenge. The 

OpenSSL API illustrates best practices: the API includes a family of free 

functions that do whatever nested deallocation might be required. C brings 

the programmer close to the machine, an intimacy that requires particular 

discipline in code that uses dynamic storage.

Despite its age, C has the look and feel of a modern language with an 

emphatic separation of concerns: an interface describes, in particular the 

invocation syntax of functions; an implementation defines by providing 

the appropriate operational detail. Once published, an interface should 

remain unchanged, as it represents a contract with programmers; by 

contrast, an implementation can change to fix bugs, boost performance, 

and so on.

The standard C library functions are minimalist in design and, 

therefore, a guide for programmers. Recall the write function, which 

requires three arguments: where to write, what to write, and how many 

bytes to write. There are no formatting flags or data-type specifications. If 

these are needed, there are higher-level I/O functions at hand.

C can interact with virtually every other programming language. 

Is it nonetheless possible that C might lose its role as the lingua franca 

in programming? What would replace C? Its position as the dominant 

systems language, but one suited for applications as well, makes C the 

natural language to play this role. Are the standard system libraries, let 

alone the operating system kernel, to be rewritten in some other language? 

C combines two features that make it an ideal systems language: C has a 

high-level syntax that promotes the writing of clear, modular code; but C 

remains close to the metal, which promotes efficiency.
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What, then, is next? The code examples are available from GitHub 

(https://github.com/mkalin/cbook.git). They are short enough to 

explore, to tweak, and to improve.
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